WorldWideScience

Sample records for human neutrophil function

  1. Swell activated chloride channel function in human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, Michael D. [Leukocyte and Ion Channel Research Laboratory, School of Health and Biosciences, University of East London, Stratford Campus, London E15 4LZ (United Kingdom); Ahluwalia, Jatinder, E-mail: j.ahluwalia@uel.ac.uk [Leukocyte and Ion Channel Research Laboratory, School of Health and Biosciences, University of East London, Stratford Campus, London E15 4LZ (United Kingdom)

    2009-04-17

    Non-excitable cells such as neutrophil granulocytes are the archetypal inflammatory immune cell involved in critical functions of the innate immune system. The electron current generated (I{sub e}) by the neutrophil NADPH oxidase is electrogenic and rapidly depolarises the membrane potential. For continuous function of the NADPH oxidase, I{sub e} has to be balanced to preserve electroneutrality, if not; sufficient depolarisation would prevent electrons from leaving the cell and neutrophil function would be abrogated. Subsequently, the depolarisation generated by the neutrophil NADPH oxidase I{sub e} must be counteracted by ion transport. The finding that depolarisation required counter-ions to compensate electron transport was followed by the observation that chloride channels activated by swell can counteract the NADPH oxidase membrane depolarisation. In this mini review, we discuss the research findings that revealed the essential role of swell activated chloride channels in human neutrophil function.

  2. Platelet modulation of human neutrophil functions

    Energy Technology Data Exchange (ETDEWEB)

    McGarrity, S.T.; Hyers, T.M.; Webster, R.O.

    1986-03-01

    The combined presence of platelets (PLTS) and neutrophils (PMN) at inflammatory sites has led to examination of the hypothesis that interaction of these cells modulates their responses to stimuli. Gel-filtered human PLTS (GFP) were found to inhibit N-formyl-met-leu-phe (FMLP) and phorbol myristate acetate (PMA) stimulated PMN O/sub 2//sup -/ generation in a concentration-dependent fashion. The heat-stable inhibitory activity was present in the supernatants of GFP after incubation with FMLP (10/sup -7/M), thrombin (0.5 U/ml) or ADP (20 ..mu..M), suggesting a role for PLT release products. PLT lysates added to PMN produced up to 80% inhibition of O/sub 2//sup -/ generation for PMA and 40% for FMLP. Like GFP, lysates failed to scavenge O/sub 2/..pi.. produced by xanthine oxidase-hypoxanthine. The inhibitory activity could not be ascribed to serotonin or adenosine. PLT lysates failed to compete with /sup 3/H-FMLP for binding to PMN. Sephadex G-200 fractionation of PLT lysates releaved two peaks of inhibitory activity with apparent Mr > 200,000 and < 14,000 Daltons. Pretreatment of PMN with PLT lysates also results in a concentration-dependent inhibition of degranulation provoked by FMLP (2 x 10/sup -7/M) or PMA (2 ng/ml) and PMN chemotaxis to FMLP (10/sup -8/M). These studies indicate that preformed PLT mediator(s) released in response to physiological stimuli may limit tissue damage by PMN at sites of inflammation.

  3. Relationship between chemical composition and biological function of Pseudomonas aeruginosa lipopolysaccharide: effect on human neutrophil chemotaxis and oxidative burst

    DEFF Research Database (Denmark)

    Kharazmi, A; Fomsgaard, A; Conrad, R S

    1991-01-01

    There are conflicting data on the effect of bacterial lipopolysaccharides (LPS) on the function of human neutrophils. The present study was designed to examine the relationship between chemical composition and the modulatory effect of LPS on human neutrophil function. LPS was extracted from five...

  4. Cytoplasmic lipid bodies of human neutrophilic leukocytes

    International Nuclear Information System (INIS)

    Weller, P.F.; Ackerman, S.J.; Nicholson-Weller, A.; Dvorak, A.M.

    1989-01-01

    The morphology and function of cytoplasmic lipid bodies in human neutrophils were evaluated. By transmission electron microscopy, neutrophil lipid bodies were cytoplasmic inclusions, usually several microns in diameter, that occasionally coalesced to attain a diameter up to 7 microM. Neutrophil lipid bodies were not enveloped by membrane but were often surrounded by a more electron-dense shell at their periphery. Normal peripheral blood neutrophils contained an average of approximately one lipid body per cell. Lipid bodies appeared in greater numbers in neutrophils from inflammatory lesions. Perturbation of neutrophils during conventional methods of cell isolation and purification modestly increased lipid body numbers in neutrophils, whereas incubation of neutrophils with 1 microM oleic acid rapidly induced lipid body formation over 30 to 60 minutes. After granulocytes were incubated for 2 hours with 3H-fatty acids, including arachidonic, oleic, and palmitic acids, electron microscopic autoradiography demonstrated that lipid bodies represented the predominant intracellular sites of localization of each of the three 3H-fatty acids. There was lesser labeling noted in the perinuclear cisterna, but not in cell membranes. Virtually all of each of the three 3H-fatty acids incorporated by the neutrophils were esterified into chromatographically resolved classes of neutral lipids or phospholipids. These findings indicate that cytoplasmic lipid bodies are more prominent in neutrophils in vivo engaged in inflammatory responses and that these organelles in human neutrophils function as sites of deposition of esterified, incorporated fatty acids

  5. Extracellular lipase of Pseudomonas aeruginosa: biochemical characterization and effect on human neutrophil and monocyte function in vitro

    DEFF Research Database (Denmark)

    Jaeger, K E; Kharazmi, A; Høiby, N

    1991-01-01

    concentrations of this lipase preparation were preincubated with human peripheral blood neutrophils and monocytes. The chemotaxis and chemiluminescence of these cells were then determined. It was shown that lipase inhibited the monocyte chemotaxis and chemiluminescence, whereas it had no or very little effect...... on neutrophils. The inhibitory effect was concentration dependent and was abolished by heat treatment of the enzyme at 100 degrees C. Since monocytes are one of the important cells of the host defence system the inhibition of the function of these cells may contribute to the pathogenesis of infections caused...

  6. Proinflammatory effects of bacterial lipoprotein on human neutrophil activation status, function and cytotoxic potential in vitro.

    LENUS (Irish Health Repository)

    Power, C

    2012-02-03

    Bacterial lipoprotein (BLP) is the most abundant protein in gram-negative bacterial cell walls, heavily outweighing lipopolysaccharide (LPS). Herein we present findings demonstrating the potent in vitro effects of BLP on neutrophil (PMN) activation status, function, and capacity to transmigrate an endothelial monolayer. PMNs are the principal effectors of the initial host response to injury or infection and constitute a significant threat to invading bacterial pathogens. The systemic inflammatory response syndrome (SIRS) is characterised by significant host tissue injury mediated, in part, by uncontrolled regulation of PMN cytotoxic activity. We found that BLP-activated human PMN as evidenced by increased CD11b\\/CD18 (Mac-1) expression. Up-regulation of PMN Mac-1 in response to BLP occurred independently of membrane-bound CD14 (mCD14). A similar up-regulation of intercellular adhesion molecule-1 (ICAM-1) on endothelial cells was observed whilst E-Selectin expression was unaffected. PMN transmigration across a human umbilical vein endothelial cell (HUVEC) monolayer was markedly increased after treating either PMN\\'s or HUVEC independently with BLP. This increased transmigration did not occur as a result of any direct effect of BLP on HUVEC monolayer permeability, assessed objectively using the passage of FITC-labeled Dextran-70. BLP primed PMN for enhanced respiratory burst and superoxide anion production in response to PMA, but did not influence phagocytosis of opsonized Escherichia coli. BLP far exceeds LPS as a gram-negative bacterial wall component, these findings therefore implicate BLP as an additional putative mediator of SIRS arising from gram-negative infection.

  7. Attenuated, oncolytic, but not wild-type measles virus infection has pleiotropic effects on human neutrophil function.

    Science.gov (United States)

    Zhang, Yu; Patel, Bella; Dey, Aditi; Ghorani, Ehsan; Rai, Lena; Elham, Mohammed; Castleton, Anna Z; Fielding, Adele K

    2012-02-01

    We previously showed that neutrophils play a role in regression of human tumor xenografts in immunodeficient mice following oncolytic vaccine measles virus (MV-Vac) treatment. In this study, we sought, using normal human neutrophils, to identify potential neutrophil-mediated mechanisms for the attenuated MV-Vac induced effects seen in vivo, by comparison with those consequent on wild-type (WT-MV) infection. Both MV-Vac and WT-MV infected and replicated within neutrophils, despite lack of SLAM expression. In both cases, neutrophils survived longer ex vivo postinfection. Furthermore, MV-Vac (but not WT-MV) infection activated neutrophils and stimulated secretion of several specific antitumor cytokines (IL-8, TNF-α, MCP-1, and IFN-α) via induction of de novo RNA and protein synthesis. In addition, MV-Vac (but not WT-MV) infection caused TRAIL secretion in the absence of de novo synthesis by triggering release of prefabricated TRAIL, via a direct effect upon degranulation. The differences between the outcome of infection by MV-Vac and WT-MV were not entirely explained by differential infection and replication of the viruses within neutrophils. To our knowledge, this is the first demonstration of potential mechanisms of oncolytic activity of an attenuated MV as compared with its WT parent. Furthermore, our study suggests that neutrophils have an important role to play in the antitumor effects of oncolytic MV.

  8. Leishmania major surface protease Gp63 interferes with the function of human monocytes and neutrophils in vitro

    DEFF Research Database (Denmark)

    Sørensen, A L; Hey, A S; Kharazmi, A

    1994-01-01

    In the present study the effect of Leishmania major surface protease Gp63 on the chemotaxis and oxidative burst response of human peripheral blood monocytes and neutrophils was investigated. It was shown that prior incubation of cells with Gp63 inhibited chemotaxis of neutrophils but not monocytes...... towards the chemotactic peptide f-met-leu-phe. On the other hand, chemotaxis of both neutrophils and monocytes towards zymosan-activated serum containing C5a was inhibited by Gp63. Monocyte and neutrophil chemiluminescence response to opsonized zymosan was reduced by preincubation of the cells with Gp63...... in a concentration-dependent manner. Notably, monocytes were inhibited to a much greater degree than neutrophils by a given concentration of Gp63, and they were also inhibited at much lower concentrations of the protease. The inhibitory effect of Gp63 on chemotaxis and chemiluminescence was completely abolished...

  9. Regulation of Discrete Functional Responses by Syk and Src Family Tyrosine Kinases in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    Thornin Ear

    2017-01-01

    Full Text Available Neutrophils play a critical role in innate immunity and also influence adaptive immune responses. This occurs in good part through their production of inflammatory and immunomodulatory cytokines, in conjunction with their prolonged survival at inflamed foci. While a picture of the signaling machinery underlying these neutrophil responses is now emerging, much remains to be uncovered. In this study, we report that neutrophils constitutively express various Src family isoforms (STKs, as well as Syk, and that inhibition of these protein tyrosine kinases selectively hinders inflammatory cytokine generation by acting posttranscriptionally. Accordingly, STK or Syk inhibition decreases the phosphorylation of signaling intermediates (e.g., eIF-4E, S6K, and MNK1 involved in translational control. By contrast, delayed apoptosis appears to be independent of either STKs or Syk. Our data therefore significantly extend our understanding of which neutrophil responses are governed by STKs and Syk and pinpoint some signaling intermediates that are likely involved. In view of the foremost role of neutrophils in several chronic inflammatory conditions, our findings identify potential molecular targets that could be exploited for future therapeutic intervention.

  10. Modulation of neutrophil and monocyte function by recombinant human granulocyte macrophage colony-stimulating factor in patients with lymphoma

    DEFF Research Database (Denmark)

    Kharazmi, A; Nielsen, H; Hovgaard, D

    1991-01-01

    by up to 43-fold. rhGM-CSF treatment did not affect degranulation of the neutrophils as measured by release of vitamin B12 binding protein. Degree of modulation of neutrophil and monocyte function by rhGM-CSF was independent of rhGM-CSF dosages administered. These data suggest that phagocytic defence...... and chemiluminescence responses to f-Met-Leu-Phe, zymosan activated serum (ZAS) and opsonized zymosan (OZ) were determined. It was observed that chemotactic response of neutrophils to f-Met-Leu-Phe and ZAS was reduced, whereas the chemiluminescence response of both cell types to f-Met-Leu-Phe and zymosan was enhanced...

  11. Localization and Functionality of the Inflammasome in Neutrophils

    DEFF Research Database (Denmark)

    Bakele, Martina; Joos, Melanie; Burdi, Sofia

    2014-01-01

    Neutrophils represent the major fraction of circulating immune cells and are rapidly recruited to sites of infection and inflammation. The inflammasome is a multiprotein complex that regulates the generation of IL-1 family proteins. The precise subcellular localization and functionality...... of the inflammasome in human neutrophils are poorly defined. Here we demonstrate that highly purified human neutrophils express key components of the NOD-like receptor family, pyrin domain containing 3 (NLRP3), and absent in melanoma 2 (AIM2) inflammasomes, particularly apoptosis-associated speck-like protein...... and released as protein, highly purified neutrophils neither expressed nor released IL-1α at baseline or upon stimulation. Upon inflammasome activation, highly purified neutrophils released substantially lower levels of IL-1β protein compared with partially purified neutrophils. Serine proteases and caspases...

  12. Combined activity of post-exercise concentrations of NA and eHsp72 on human neutrophil function: role of cAMP.

    Science.gov (United States)

    Giraldo, Esther; Hinchado, María D; Ortega, Eduardo

    2013-09-01

    Extracellular heat shock proteins of 72 kDa (eHsp72) and noradrenaline (NA) can act as "danger signals" during exercise-induced stress by activating neutrophil function (chemotaxis, phagocytosis, and fungicidal capacity). In addition, post-exercise concentrations of NA increase the expression and release of Hsp72 by human neutrophils, and adrenoreceptors and cAMP are involved in the stimulation of neutrophils by eHsp72. This suggests an interaction between the two molecules in the modulation of neutrophils during exercise-induced stress. Given this context, the aim of the present investigation was to study the combined activity of post-exercise circulating concentrations of NA and eHsp72 on the neutrophil phagocytic process, and to evaluate the role of cAMP as intracellular signal in these effects. Results showed an accumulative stimulation of chemotaxis induced by NA and eHsp72. However, while NA and eHsp72, separately, stimulate the phagocytosis and fungicidal activity of neutrophils, when they act together they do not modify these capacities of neutrophils. Similarly, post-exercise concentrations of NA and eHsp72 separately increased the intracellular level of cAMP, but NA and eHsp72 acting together did not modify the intracellular concentration of cAMP. These results confirm that cAMP can be involved in the autocrine/paracrine physiological regulation of phagocytosis and fungicidal capacity of human neutrophils mediated by NA and eHsp72 in the context of exercise-induced stress. Copyright © 2013 Wiley Periodicals, Inc.

  13. Biomaterial associated impairment of local neutrophil function.

    Science.gov (United States)

    Kaplan, S S; Basford, R E; Kormos, R L; Hardesty, R L; Simmons, R L; Mora, E M; Cardona, M; Griffith, B L

    1990-01-01

    The effect of biomaterials on neutrophil function was studied in vitro to determine if these materials activated neutrophils and to determine the subsequent response of these neutrophils to further stimulation. Two biomaterials--polyurethane, a commonly used substance, and Velcro pile (used in the Jarvik 7 heart)--were evaluated. Two control substances, polyethylene and serum-coated polystyrene, were used for comparison. Neutrophil superoxide release was measured following incubation with these materials for 10, 30, and 120 min in the absence of additional stimulation and after stimulation with formylmethionylleucylphenylalanine (fMLP) or phorbol myristate acetate (PMA). The authors observed that the incubation of neutrophils on both polyurethane and Velcro resulted in substantially increased superoxide release that was greater after the 10 min than after the 30 or 120 min association. These activated neutrophils exhibited a poor additional response to fMLP but responded well to PMA. The effect of implantation of the Novacor left ventricular assist device on peripheral blood neutrophil function was also evaluated. The peripheral blood neutrophils exhibited normal superoxide release and chemotaxis. These studies suggest that biomaterials may have a profound local effect on neutrophils, which may predispose the patient to periprosthetic infection, but that the reactivity of circulating neutrophils is unimpaired.

  14. Effects of lithium on the functions of human neutrophils and lymphocytes in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.; Walters, L.; Grabow, G.; Van der Merwe, M.; Van Rensburg, C.E. (Pretoria Univ. (South Africa))

    1982-10-02

    The effects of lithium sulphate (LiSO/sub 4/) at concentrations ranging from 10/sup -7/M to 10/sup -2/M on human polymorphonuclear leucocyte (PMNL) and lymphocyte functions in vitro were investigated. The leucocyte functions assessed were PMNL motility, post-phagocytic hexose-monophosphate shunt activity, myeloperoxidase-mediated iodination of Candida albicans and lymphocyte transformation to mitogens. These same functions as well the results of serological studies were assessed in normal volunteers prior to ingestion of lithium carbonate (LiCO/sub 3/), 2 hours and 24 hours after the ingestion of a single oral dose of 480 mg LiCO/sub 3/ and on the 4th day of ingestion of 2x480 mg LiCO/sub 3/ tablets daily. Incubation of PMNL with LiSO/sub 4/ at concentrations up to 10/sup -3/M had no detectable effects on motility or post-phagocytic metabolic activity. Higher concentrations (10/sup -3/M) inhibited these functions. Likewise, at concentrations up to 1x10/sup -4/M LiSO/sub 4/ had no effects on mitogen-induced transformation of lymphocytes, although higher concentrations did inhibit this activity. These same leucocyte functions were unaffected by ingestion of LiCO/sub 3/. Levels of serum immunoglobulins and complement components, total haemolytic complement activity and salivary lgA values also remained unaltered. In vitro investigations showed that at a concentration of 10/sup -3/M LiSO/sub 4/ had no inhibitory effects on the stimulation of PMNL motility mediated by ascorbate, levamisole and thiamine.

  15. Effect of sevoflurane on human neutrophil apoptosis.

    LENUS (Irish Health Repository)

    Tyther, R

    2012-02-03

    BACKGROUND AND OBJECTIVE: Both chronic occupational exposure to volatile anaesthetic agents and acute in vitro exposure of neutrophils to isoflurane have been shown to inhibit the rate of apoptosis of human neutrophils. It is possible that inhibition of neutrophil apoptosis arises through delaying mitochondrial membrane potential collapse. We assessed mitochondrial depolarization and apoptosis in unexposed neutrophils and neutrophils exposed to sevoflurane in vivo. METHODS: A total of 20 mL venous blood was withdrawn pre- and postinduction of anaesthesia, the neutrophils isolated and maintained in culture. At 1, 12 and 24 h in culture, the percentage of neutrophil apoptosis was assessed by dual staining with annexin V-FITC and propidium iodide. Mitochondrial depolarization was measured using the dual emission styryl dye JC-1. RESULTS: Apoptosis was significantly inhibited in neutrophils exposed to sevoflurane in vivo at 24 (exposed: 38 (12)% versus control: 28 (11)%, P = 0.001), but not at 1 or 12 h, in culture. Mitochondrial depolarization was not delayed in neutrophils exposed to sevoflurane. CONCLUSIONS: The most important findings are that sevoflurane inhibits neutrophil apoptosis in vivo and that inhibition is not mediated primarily by an effect on mitochondrial depolarization.

  16. Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis

    NARCIS (Netherlands)

    Maianski, N. A.; Geissler, J.; Srinivasula, S. M.; Alnemri, E. S.; Roos, D.; Kuijpers, T. W.

    2004-01-01

    Mitochondria are known to combine life-supporting functions with participation in apoptosis by controlling caspase activity. Here, we report that in human blood neutrophils the mitochondria are different, because they preserve mainly death-mediating abilities. Neutrophil mitochondria hardly

  17. Human neutrophils in auto-immunity.

    Science.gov (United States)

    Thieblemont, Nathalie; Wright, Helen L; Edwards, Steven W; Witko-Sarsat, Véronique

    2016-04-01

    Human neutrophils have great capacity to cause tissue damage in inflammatory diseases via their inappropriate activation to release reactive oxygen species (ROS), proteases and other tissue-damaging molecules. Furthermore, activated neutrophils can release a wide variety of cytokines and chemokines that can regulate almost every element of the immune system. In addition to these important immuno-regulatory processes, activated neutrophils can also release, expose or generate neoepitopes that have the potential to break immune tolerance and result in the generation of autoantibodies, that characterise a number of human auto-immune diseases. For example, in vasculitis, anti-neutrophil cytoplasmic antibodies (ANCA) that are directed against proteinase 3 or myeloperoxidase are neutrophil-derived autoantigens and activated neutrophils are the main effector cells of vascular damage. In other auto-immune diseases, these neutrophil-derived neoepitopes may arise from a number of processes that include release of granule enzymes and ROS, changes in the properties of components of their plasma membrane as a result of activation or apoptosis, and via the release of Neutrophil Extracellular Traps (NETs). NETs are extracellular structures that contain chromatin that is decorated with granule enzymes (including citrullinated proteins) that can act as neo-epitopes to generate auto-immunity. This review therefore describes the processes that can result in neutrophil-mediated auto-immunity, and the role of neutrophils in the molecular pathologies of auto-immune diseases such as vasculitis, rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We discuss the potential role of NETs in these processes and some of the debate in the literature regarding the role of this phenomenon in microbial killing, cell death and auto-immunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Heterogeneity in Neutrophil Microparticles Reveals Distinct Proteome and Functional Properties*

    Science.gov (United States)

    Dalli, Jesmond; Montero-Melendez, Trinidad; Norling, Lucy V; Yin, Xiaoke; Hinds, Charles; Haskard, Dorian; Mayr, Manuel; Perretti, Mauro

    2013-01-01

    Altered plasma neutrophil microparticle levels have recently been implicated in a number of vascular and inflammatory diseases, yet our understanding of their actions is very limited. Herein, we investigate the proteome of neutrophil microparticles in order to shed light on their biological actions. Stimulation of human neutrophils, either in suspension or adherent to an endothelial monolayer, led to the production of microparticles containing >400 distinct proteins with only 223 being shared by the two subsets. For instance, postadherent microparticles were enriched in alpha-2 macroglobulin and ceruloplasmin, whereas microparticles produced by neutrophils in suspension were abundant in heat shock 70 kDa protein 1. Annexin A1 and lactotransferrin were expressed in both microparticle subsets. We next determined relative abundance of these proteins in three types of human microparticle samples: healthy volunteer plasma, plasma of septic patients and skin blister exudates finding that these proteins were differentially expressed on neutrophil microparticles from these samples reflecting in part the expression profiles we found in vitro. Functional assessment of the neutrophil microparticles subsets demonstrated that in response to direct stimulation neutrophil microparticles produced reactive oxygen species and leukotriene B4 as well as locomoted toward a chemotactic gradient. Finally, we investigated the actions of the two neutrophil microparticles subsets described herein on target cell responses. Microarray analysis with human primary endothelial cells incubated with either microparticle subset revealed a discrete modulation of endothelial cell gene expression profile. These findings demonstrate that neutrophil microparticles are heterogenous and can deliver packaged information propagating the activation status of the parent cell, potentially exerting novel and fundamental roles both under homeostatic and disease conditions. PMID:23660474

  19. Visceral leishmaniasis patients display altered composition and maturity of neutrophils as well as impaired neutrophil effector functions

    Directory of Open Access Journals (Sweden)

    Endalew Yizengaw

    2016-11-01

    Full Text Available Immunologically, active visceral leishmaniasis (VL is characterised by profound immunosuppression, severe systemic inflammatory responses and an impaired capacity to control parasite replication. Neutrophils are highly versatile cells, which play a crucial role in the induction as well as the resolution of inflammation, the control of pathogen replication and the regulation of immune responses. Neutrophil functions have been investigated in human cutaneous leishmaniasis, however, their role in human visceral leishmaniasis is poorly understood.In the present study we evaluated the activation status and effector functions of neutrophils in patients with active VL and after successful anti-leishmanial treatment. Our results show that neutrophils are highly activated and have degranulated; high levels of arginase, myeloperoxidase and elastase, all contained in neutrophils’ granules, were found in the plasma of VL patients. In addition, we show that a large proportion of these cells are immature. We also analysed effector functions of neutrophils that are essential for pathogen clearance and show that neutrophils have an impaired capacity to release neutrophil extracellular traps, produce reactive oxygen species and phagocytose bacterial particles, but not Leishmania parasites.Our results suggest that impaired effector functions, increased activation and immaturity of neutrophils play a key role in the pathogenesis of VL.

  20. Disentangling the effects of tocilizumab on neutrophil survival and function.

    Science.gov (United States)

    Gaber, Timo; Hahne, Martin; Strehl, Cindy; Hoff, Paula; Dörffel, Yvonne; Feist, Eugen; Burmester, Gerd-Rüdiger; Buttgereit, Frank

    2016-06-01

    The synovial tissue in rheumatoid arthritis (RA) represents a hypoxic environment with up-regulated pro-inflammatory cytokines and cellular infiltrates including neutrophils. Although inhibition of the interleukin (IL)6 receptor pathway by tocilizumab is a potent treatment option for RA, it may also cause adverse effects such as an occasionally high-grade neutropenia. We analysed the impact of tocilizumab on survival, mediator secretion, oxidative burst, phagocytosis and energy availability of high-dose toll-like receptor (TLR)2/4-stimulated neutrophils (to mimic an arthritis flare) under normoxic versus hypoxic conditions. Human neutrophils were purified, pre-treated with varying doses of tocilizumab, dexamethasone or human IgG1 and high-dose-stimulated with lipopolysaccharide (LPS) alone-triggering TLR2/4-, LPS plus IL6, or left unstimulated. Cells were then incubated under normoxic (18 % O2) or hypoxic (1 % O2) conditions and subsequently analysed. Neutrophil survival and energy availability were significantly decreased by tocilizumab in a dose-dependent manner in high-dose TLR2/4-stimulated cells, but to a greater extent under normoxia as compared to hypoxia. We also found high-dose LPS-stimulated oxidative burst and phagocytosis of neutrophils to be higher under hypoxic versus normoxic conditions, but this difference was reduced by tocilizumab. Finally, we observed that tocilizumab affected neutrophil mediator secretion as a function of oxygen availability. Tocilizumab is known for both beneficial effects and a higher incidence of neutropenia when treating RA patients. Our results suggest that both effects can at least in part be explained by a reduction in neutrophil survival, a dose-dependent inhibition of hypoxia-induced NADPH oxidase-mediated oxidative burst and phagocytosis of infiltrating hypoxic neutrophils and an alteration of mediator secretion.

  1. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation.

    Science.gov (United States)

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMN) are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA) are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil.

  2. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation

    Directory of Open Access Journals (Sweden)

    Omar Rafael Alemán

    2016-01-01

    Full Text Available Neutrophils (PMN are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil.

  3. Changes in Neutrophil Functions in Astronauts

    Science.gov (United States)

    Kaur, Indreshpal; Simons, Elizabeth R.; Castro, Victoria; Pierson, Duane L.

    2002-01-01

    Neutrophil functions (phagocytosis, oxidative burst, degranulation) and expression of surface markers involved in these functions were studied in 25 astronauts before and after 4 space shuttle missions. Space flight duration ranged from 5 to 11 days. Blood specimens were obtained 10 days before launch (preflight or L-10), immediately after landing (landing or R+0), and again at 3 days after landing (postflight or R+3). Blood samples were also collected from 9 healthy low-stressed subjects at 3 time points simulating a 10-day shuttle mission. The number of neutrophils increased at landing by 85 percent when compared to the preflight numbers. Neutrophil functions were studied in whole blood using flow cytometric methods. Phagocytosis of E.coli-FITC and oxidative burst capacity of the neutrophils following the 9 to 11 day missions were lower at all three sampling points than the mean values for control subjects. Phagocytosis and oxidative burst capacity of the astronauts was decreased even 10-days before space flight. Mission duration appears to be a factor in phagocytic and oxidative functions. In contrast, following the short-duration (5-days) mission, these functions were unchanged from control values. No consistent changes in degranulation were observed following either short or medium length space missions. The expression of CD16, CD32, CD11a, CD11b, CD11c, L-selectin and CD36 was measured and found to be variable. Specifically, CD16 and CD32 did not correlate with the changes in oxidative burst and phagocytosis. We can conclude from this study that the stresses associated with space flight can alter the important functions of neutrophils.

  4. Human neutrophils facilitate tumor cell transendothelial migration.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  5. Peptide secreted by human alveolar macrophages releases neutrophil granule contents

    International Nuclear Information System (INIS)

    MacArthur, C.K.; Miller, E.J.; Cohen, A.B.

    1987-01-01

    A monoclonal antibody was developed against an 8000-kDa enzyme-releasing peptide (ERP) released from human alveolar macrophages. ERP was isolated on an immunoaffinity column containing the antibody bound to staphylococcal protein A-Sepharose, and by autoradiography. Release of ERP from the macrophages is not changed by plastic adherence, phagocytosis, calcium ionophore, or phorbol esters. The peptide was not antigenically similar to interferon-γ, tumor necrosis factor, or interleukin lα or 1β. The release of constituents from azurophilic and specific granules was the main identified biologic function of ERP. ERP was a more effective secretagogue in the untreated neutrophils and f-met-leu-phe was more effective in the cytochalasin B-treated neutrophils. Absorption of ERP from macrophage-conditioned medium removed a small amount of the chemotactic activity; however, the immunopurified peptide was not chemotactic or chemokinetic for neutrophils, and at high concentrations, it suppressed base line chemokinesis. Treatment of washed macrophages with trypsin released active ERP of approximately the same m.w. of spontaneously secreted ERP. These studies showed that human alveolar macrophages release a peptide which is a secretagogue for human neutrophils under conditions which may be encountered in the lungs during certain disease states. Proteolytic enzymes which are free in the lungs may release the peptide and lead to the secretion of neutrophil enzymes

  6. Superoxide anion production by human neutrophils activated by Trichomonas vaginalis.

    Science.gov (United States)

    Song, Hyun-Ouk; Ryu, Jae-Sook

    2013-08-01

    Neutrophils are the predominant inflammatory cells found in vaginal discharges of patients infected with Trichomonas vaginalis. In this study, we examined superoxide anion (O2 (.-)) production by neutrophils activated by T. vaginalis. Human neutrophils produced superoxide anions when stimulated with either a lysate of T. vaginalis, its membrane component (MC), or excretory-secretory product (ESP). To assess the role of trichomonad protease in production of superoxide anions by neutrophils, T. vaginalis lysate, ESP, and MC were each pretreated with a protease inhibitor cocktail before incubation with neutrophils. Superoxide anion production was significantly decreased by this treatment. Trichomonad growth was inhibited by preincubation with supernatants of neutrophils incubated for 3 hr with T. vaginalis lysate. Furthermore, myeloperoxidase (MPO) production by neutrophils was stimulated by live trichomonads. These results indicate that the production of superoxide anions and MPO by neutrophils stimulated with T. vaginalis may be a part of defense mechanisms of neutrophils in trichomoniasis.

  7. Impaired neutrophil function in intestinal lymphangiectasia.

    OpenAIRE

    Bolton, R P; Cotter, K L; Losowsky, M S

    1986-01-01

    Impaired neutrophil chemotaxis and phagocytosis were shown in three patients with intestinal lymphangiectasia. Abnormalities in cell associated and serum derived activity occurred, and possible mechanisms are suggested.

  8. Local anesthetic-induced inhibition of human neutrophil priming: the influence of structure, lipophilicity, and charge

    NARCIS (Netherlands)

    Picardi, Susanne; Cartellieri, Sibylle; Groves, Danja; Hahnenekamp, Klaus; Gerner, Peter; Durieux, Marcel E.; Stevens, Markus F.; Lirk, Philipp; Hollmann, Markus W.

    2013-01-01

    Local anesthetics (LAs) are widely known for inhibition of voltage-gated sodium channels underlying their antiarrhythmic and antinociceptive effects. However, LAs have significant immunomodulatory properties and were shown to affect human neutrophil functions independent of sodium-channel blockade.

  9. Diverse novel functions of neutrophils in immunity, inflammation, and beyond

    OpenAIRE

    Mocsai, A.

    2013-01-01

    Neutrophils have long been considered simple suicide killers at the bottom of the hierarchy of the immune response. That view began to change 10–20 yr ago, when the sophisticated mechanisms behind how neutrophils locate and eliminate pathogens and regulate immunity and inflammation were discovered. The last few years witnessed a new wave of discoveries about additional novel and unexpected functions of these cells. Neutrophils have been proposed to participate in protection against intracellu...

  10. Characterization of Yersinia pestis Interactions with Human Neutrophils In vitro

    Directory of Open Access Journals (Sweden)

    Sophia C. Dudte

    2017-08-01

    Full Text Available Yersinia pestis is a gram-negative, zoonotic, bacterial pathogen, and the causative agent of plague. The bubonic form of plague occurs subsequent to deposition of bacteria in the skin by the bite of an infected flea. Neutrophils are recruited to the site of infection within the first few hours and interactions between neutrophils and Y. pestis have been demonstrated in vivo. In contrast to macrophages, neutrophils have been considered non-permissive to Y. pestis intracellular survival. Several studies have shown killing of the vast majority of Y. pestis ingested by human neutrophils. However, survival of 10–15% of Y. pestis after phagocytosis by neutrophils is consistently observed. Furthermore, these surviving bacteria eventually replicate within and escape from the neutrophils. We set out to further characterize the interactions between Y. pestis and human neutrophils by (1 determining the effects of known Y. pestis virulence factors on bacterial survival after uptake by neutrophils, (2 examining the mechanisms employed by the neutrophil to kill the majority of intracellular Y. pestis, (3 determining the activation phenotype of Y. pestis-infected neutrophils, and (4 characterizing the Y. pestis-containing phagosome in neutrophils. We infected human neutrophils in vitro with Y. pestis and assayed bacterial survival and uptake. Deletion of the caf1 gene responsible for F1 capsule production resulted in significantly increased uptake of Y. pestis. Surprisingly, while the two-component regulator PhoPQ system is important for survival of Y. pestis within neutrophils, pre-induction of this system prior to infection did not increase bacterial survival. We used an IPTG-inducible mCherry construct to distinguish viable from non-viable intracellular bacteria and determined the association of the Y. pestis-containing phagosome with neutrophil NADPH-oxidase and markers of primary, secondary and tertiary granules. Additionally, we show that inhibition of

  11. p21-Activated kinase (PAK regulates cytoskeletal reorganization and directional migration in human neutrophils.

    Directory of Open Access Journals (Sweden)

    Asako Itakura

    Full Text Available Neutrophils serve as a first line of defense in innate immunity owing in part to their ability to rapidly migrate towards chemotactic factors derived from invading pathogens. As a migratory function, neutrophil chemotaxis is regulated by the Rho family of small GTPases. However, the mechanisms by which Rho GTPases orchestrate cytoskeletal dynamics in migrating neutrophils remain ill-defined. In this study, we characterized the role of p21-activated kinase (PAK downstream of Rho GTPases in cytoskeletal remodeling and chemotactic processes of human neutrophils. We found that PAK activation occurred upon stimulation of neutrophils with f-Met-Leu-Phe (fMLP, and PAK accumulated at the actin-rich leading edge of stimulated neutrophils, suggesting a role for PAK in Rac-dependent actin remodeling. Treatment with the pharmacological PAK inhibitor, PF3758309, abrogated the integrity of RhoA-mediated actomyosin contractility and surface adhesion. Moreover, inhibition of PAK activity impaired neutrophil morphological polarization and directional migration under a gradient of fMLP, and was associated with dysregulated Ca(2+ signaling. These results suggest that PAK serves as an important effector of Rho-family GTPases in neutrophil cytoskeletal reorganization, and plays a key role in driving efficient directional migration of human neutrophils.

  12. Regulation of calcium homeostasis in activated human neutrophils ...

    African Journals Online (AJOL)

    Objectives. The objectives of the current study were to: (i) present an integrated model for the restoration of calcium homeostasis in activated human neutrophils based on current knowledge and recent research; and (ii) identify potential targets for the modulation of calcium fluxes in activated neutrophils based on this model ...

  13. Diverse novel functions of neutrophils in immunity, inflammation, and beyond.

    Science.gov (United States)

    Mócsai, Attila

    2013-07-01

    Neutrophils have long been considered simple suicide killers at the bottom of the hierarchy of the immune response. That view began to change 10-20 yr ago, when the sophisticated mechanisms behind how neutrophils locate and eliminate pathogens and regulate immunity and inflammation were discovered. The last few years witnessed a new wave of discoveries about additional novel and unexpected functions of these cells. Neutrophils have been proposed to participate in protection against intracellular pathogens such as viruses and mycobacteria. They have been shown to intimately shape the adaptive immune response at various levels, including marginal zone B cells, plasmacytoid dendritic cells and T cell populations, and even to control NK cell homeostasis. Neutrophils have been shown to mediate an alternative pathway of systemic anaphylaxis and to participate in allergic skin reactions. Finally, neutrophils were found to be involved in physiological and pathological processes beyond the immune system, such as diabetes, atherosclerosis, and thrombus formation. Many of those functions appear to be related to their unique ability to release neutrophil extracellular traps even in the absence of pathogens. This review summarizes those novel findings on versatile functions of neutrophils and how they change our view of neutrophil biology in health and disease.

  14. Rac1 deletion in mouse neutrophils has selective effects on neutrophil functions

    NARCIS (Netherlands)

    Glogauer, Michael; Marchal, Christophe C.; Zhu, Fei; Worku, Aelaf; Clausen, Björn E.; Foerster, Irmgard; Marks, Peter; Downey, Gregory P.; Dinauer, Mary; Kwiatkowski, David J.

    2003-01-01

    Defects in myeloid cell function in Rac2 knockout mice underline the importance of this isoform in activation of NADPH oxidase and cell motility. However, the specific role of Rac1 in neutrophil function has been difficult to assess since deletion of Rac1 results in embryonic lethality in mice. To

  15. Staphylococcus epidermidis strategies to avoid killing by human neutrophils.

    Directory of Open Access Journals (Sweden)

    Gordon Y C Cheung

    2010-10-01

    Full Text Available Staphylococcus epidermidis is a leading nosocomial pathogen. In contrast to its more aggressive relative S. aureus, it causes chronic rather than acute infections. In highly virulent S. aureus, phenol-soluble modulins (PSMs contribute significantly to immune evasion and aggressive virulence by their strong ability to lyse human neutrophils. Members of the PSM family are also produced by S. epidermidis, but their role in immune evasion is not known. Notably, strong cytolytic capacity of S. epidermidis PSMs would be at odds with the notion that S. epidermidis is a less aggressive pathogen than S. aureus, prompting us to examine the biological activities of S. epidermidis PSMs. Surprisingly, we found that S. epidermidis has the capacity to produce PSMδ, a potent leukocyte toxin, representing the first potent cytolysin to be identified in that pathogen. However, production of strongly cytolytic PSMs was low in S. epidermidis, explaining its low cytolytic potency. Interestingly, the different approaches of S. epidermidis and S. aureus to causing human disease are thus reflected by the adaptation of biological activities within one family of virulence determinants, the PSMs. Nevertheless, S. epidermidis has the capacity to evade neutrophil killing, a phenomenon we found is partly mediated by resistance mechanisms to antimicrobial peptides (AMPs, including the protease SepA, which degrades AMPs, and the AMP sensor/resistance regulator, Aps (GraRS. These findings establish a significant function of SepA and Aps in S. epidermidis immune evasion and explain in part why S. epidermidis may evade elimination by innate host defense despite the lack of cytolytic toxin expression. Our study shows that the strategy of S. epidermidis to evade elimination by human neutrophils is characterized by a passive defense approach and provides molecular evidence to support the notion that S. epidermidis is a less aggressive pathogen than S. aureus.

  16. Tissue-transglutaminase contributes to neutrophil granulocyte differentiation and functions.

    Science.gov (United States)

    Balajthy, Zoltán; Csomós, Krisztián; Vámosi, György; Szántó, Attila; Lanotte, Michel; Fésüs, László

    2006-09-15

    Promyelocytic NB4 leukemia cells undergo differentiation to granulocytes following retinoic acid treatment. Here we report that tissue transglutaminase (TG2), a protein cross-linking enzyme, was induced, then partially translocated into the nucleus, and became strongly associated with the chromatin during the differentiation process. The transglutaminase-catalyzed cross-link content of both the cytosolic and the nuclear protein fractions increased while NB4 cells underwent cellular maturation. Inhibition of cross-linking activity of TG2 by monodansylcadaverin in these cells led to diminished nitroblue tetrazolium (NBT) positivity, production of less superoxide anion, and decreased expression of GP91PHOX, the membrane-associated subunit of NADPH oxidase. Neutrophils isolated from TG2(-/-) mice showed diminished NBT reduction capacity, reduced superoxide anion formation, and down-regulation of the gp91phox subunit of NADPH oxidase, compared with wild-type cells. It was also observed that TG2(-/-) mice exhibited increased neutrophil phagocytic activity, but had attenuated neutrophil chemotaxis and impaired neutrophil extravasation with higher neutrophil counts in their circulation during yeast extract-induced peritonitis. These results clearly suggest that TG2 may modulate the expression of genes related to neutrophil functions and is involved in several intracellular and extracellular functions of extravasating neutrophil.

  17. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans

    Energy Technology Data Exchange (ETDEWEB)

    Williams, C. David; Bajt, Mary Lynn [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Sharpe, Matthew R. [Department of Internal Medicine, University of Kansas Hospital, Kansas City, KS (United States); McGill, Mitchell R. [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States); Farhood, Anwar [Department of Pathology, St. David' s North Austin Medical Center, Austin, TX 78756 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS (United States)

    2014-03-01

    Following acetaminophen (APAP) overdose there is an inflammatory response triggered by the release of cellular contents from necrotic hepatocytes into the systemic circulation which initiates the recruitment of neutrophils into the liver. It has been demonstrated that neutrophils do not contribute to APAP-induced liver injury, but their role and the role of NADPH oxidase in injury resolution are controversial. C57BL/6 mice were subjected to APAP overdose and neutrophil activation status was determined during liver injury and liver regeneration. Additionally, human APAP overdose patients (ALT: > 800 U/L) had serial blood draws during the injury and recovery phases for the determination of neutrophil activation. Neutrophils in the peripheral blood of mice showed an increasing activation status (CD11b expression and ROS priming) during and after the peak of injury but returned to baseline levels prior to complete injury resolution. Hepatic sequestered neutrophils showed an increased and sustained CD11b expression, but no ROS priming was observed. Confirming that NADPH oxidase is not critical to injury resolution, gp91{sup phox}−/− mice following APAP overdose displayed no alteration in injury resolution. Peripheral blood from APAP overdose patients also showed increased neutrophil activation status after the peak of liver injury and remained elevated until discharge from the hospital. In mice and humans, markers of activation, like ROS priming, were increased and sustained well after active liver injury had subsided. The similar findings between surviving patients and mice indicate that neutrophil activation may be a critical event for host defense or injury resolution following APAP overdose, but not a contributing factor to APAP-induced injury. - Highlights: • Neutrophil (PMN) function increases during liver repair after acetaminophen overdose. • Liver repair after acetaminophen (APAP)-overdose is not dependent on NADPH oxidase. • Human PMNs do not appear

  18. Effects of Acrolein on Leukotriene Biosynthesis in Human Neutrophils

    OpenAIRE

    Zemski Berry, Karin A.; Henson, Peter M.; Murphy, Robert C.

    2008-01-01

    Acrolein is a toxic, highly reactive α,β-unsaturated aldehyde that is present in high concentrations in cigarette smoke. In the current study, the effect of acrolein on eicosanoid synthesis in stimulated human neutrophils was examined. Eicosanoid synthesis in neutrophils was initiated by priming with granulocyte-macrophage colony-stimulating factor (GM-CSF) and subsequent stimulation with formyl-methionyl-leucyl-phenylalanine (fMLP) and 5-LO products in addition to small amounts of COX produc...

  19. Suppressed neutrophil function in children with acute lymphoblastic leukemia.

    Science.gov (United States)

    Tanaka, Fumiko; Goto, Hiroaki; Yokosuka, Tomoko; Yanagimachi, Masakatsu; Kajiwara, Ryosuke; Naruto, Takuya; Nishimaki, Shigeru; Yokota, Shumpei

    2009-10-01

    Infection is a major obstacle in cancer chemotherapy. Neutropenia has been considered to be the most important risk factor for severe infection; however, other factors, such as impaired neutrophil function, may be involved in susceptibility to infection in patients undergoing chemotherapy. In this study, we analyzed neutrophil function in children with acute lymphoblastic leukemia (ALL). Whole blood samples were obtained from 16 children with ALL at diagnosis, after induction chemotherapy, and after consolidation chemotherapy. Oxidative burst and phagocytic activity of neutrophils were analyzed by flow cytometry. Oxidative burst of neutrophils was impaired in ALL patients. The percentage of neutrophils with normal oxidative burst after PMA stimulation was 59.0 +/- 13.2 or 70.0 +/- 21.0% at diagnosis or after induction chemotherapy, respectively, which was significantly lower compared with 93.8 +/- 6.1% in healthy control subjects (P = 0.00004, or 0.002, respectively); however, this value was normal after consolidation chemotherapy. No significant differences were noted in phagocytic activity in children with ALL compared with healthy control subjects. Impaired oxidative burst of neutrophils may be one risk factor for infections in children with ALL, especially in the initial periods of treatment.

  20. Tumor Associated Neutrophils in Human Lung Cancer

    Science.gov (United States)

    2016-10-01

    tumor innate immune response. anti-tumor adaptive immune response, neutrophil and T cell interaction. ACCOMPLISHMENTS There were no significant...and by producing factors to recruit and acti- vate cells of the innate and adaptive immune system (Mantovani et al., 2011). Given these varying effects...vivo effects on neutro- phil activation (Figure 2, A and B) and cleavage of myeloid and lymphoid cell markers (Supplemental Figure 1, C–G). Once opti

  1. Hidden truth of circulating neutrophils (polymorphonuclear neutrophil function in periodontally healthy smoker subjects

    Directory of Open Access Journals (Sweden)

    Chitra Agarwal

    2016-01-01

    Full Text Available Context: Tobacco smoking is considered to be a major risk factor associated with periodontal disease. Smoking exerts a major effect on the protective elements of the immune response, resulting in an increase in the extent and severity of periodontal destruction. Aims: The aim of the present study was to assess viability and phagocytic function of neutrophils in circulating blood of the smokers and nonsmokers who are periodontally healthy. Settings and Design: Two hundred subjects in the mean range of 20–30 years of age were included in the study population. It was a retrospective study carried out for 6 months. Materials and Methods: Two hundred subjects were divided into four groups: 50 nonsmokers, 50 light smokers (15 cigarettes/day. Full mouth plaque index, sulcus bleeding index, and probing depths were measured. Percentage viability of circulating neutrophils and average number of phagocytosed Candida albicans were recorded. Statistical Analysis Used: Means and standard deviations were calculated from data obtained within the groups. Comparison between the smokers and nonsmokers was performed by Kruskal–Wallis ANOVA analysis. Comparison between smoker groups was performed using Mann–Whitney–Wilcoxon test. Results: Percentage viability of neutrophils was significantly less in heavy smokers (66.9 ± 4.0, moderate (76.6 ± 4.2, light smokers (83.1 ± 2.5 as compared to nonsmokers (92.3 ± 2.6 (P < 0.01. The ability of neutrophils to phagocytose, i.e., mean particle number was significantly less in light smokers (3.5 ± 0.5, moderate smokers (2.3 ± 0.5, and heavy smokers (1.4 ± 0.5 compared to nonsmokers (4.9 ± 0.7 (P < 0.01 with evidence of dose-response effect. Conclusions: Smoking significantly affects neutrophils viability and phagocytic function in periodontally healthy population.

  2. Chemotactic Activity on Human Neutrophils to Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Tetiana Haniastuti

    2013-07-01

    Full Text Available Objective: The aim of this study was to evaluate chemotactic activity o neutrophil to S. mutans. Chemotaxis assay was performed in blind well chambers. Materials and Methods: Hanks balanced salt solution (HBSS containing 106 S. mutans,  108 S. mutans, 10-8 M fMLP, or HBSS alone were placed in the lower wells of the chamber and covered with polycorbonate membrane filter. Neutrophils suspension (2x105 cells was then placed in the upper compartment. After incubation for 60 mins at 37ºC in a humidified atmosphere with 5% CO2, the filters were removed and stained with Giemsa. Result: ANOVA revealed statistically significant differences among groups (p<0.05, indicating that S. mutans induced neutrophils chemotaxis. The number of neutrophils migration in response to 108 S. mutans and 106 S. mutans were signifiantly greater compared to fMLP (p<0.05. Conclusion: S. mutans may activate human neutrophils, resulting in the chemotaxis of the neutrophils.DOI: 10.14693/jdi.v16i2.99

  3. Human Neutrophils Use Different Mechanisms To Kill Aspergillus fumigatus Conidia and Hyphae: Evidence from Phagocyte Defects.

    Science.gov (United States)

    Gazendam, Roel P; van Hamme, John L; Tool, Anton T J; Hoogenboezem, Mark; van den Berg, J Merlijn; Prins, Jan M; Vitkov, Ljubomir; van de Veerdonk, Frank L; van den Berg, Timo K; Roos, Dirk; Kuijpers, Taco W

    2016-02-01

    Neutrophils are known to play a pivotal role in the host defense against Aspergillus infections. This is illustrated by the prevalence of Aspergillus infections in patients with neutropenia or phagocyte functional defects, such as chronic granulomatous disease. However, the mechanisms by which human neutrophils recognize and kill Aspergillus are poorly understood. In this work, we have studied in detail which neutrophil functions, including neutrophil extracellular trap (NET) formation, are involved in the killing of Aspergillus fumigatus conidia and hyphae, using neutrophils from patients with well-defined genetic immunodeficiencies. Recognition of conidia involves integrin CD11b/CD18 (and not dectin-1), which triggers a PI3K-dependent nonoxidative intracellular mechanism of killing. When the conidia escape from early killing and germinate, the extracellular destruction of the Aspergillus hyphae needs opsonization by Abs and involves predominantly recognition via Fcγ receptors, signaling via Syk, PI3K, and protein kinase C to trigger the production of toxic reactive oxygen metabolites by the NADPH oxidase and myeloperoxidase. A. fumigatus induces NET formation; however, NETs did not contribute to A. fumigatus killing. Thus, our findings reveal distinct killing mechanisms of Aspergillus conidia and hyphae by human neutrophils, leading to a comprehensive insight in the innate antifungal response. Copyright © 2016 by The American Association of Immunologists, Inc.

  4. Solar ultraviolet irradiation induces decorin degradation in human skin likely via neutrophil elastase.

    Science.gov (United States)

    Li, Yong; Xia, Wei; Liu, Ying; Remmer, Henriette A; Voorhees, John; Fisher, Gary J

    2013-01-01

    Exposure of human skin to solar ultraviolet (UV) irradiation induces matrix metalloproteinase-1 (MMP-1) activity, which degrades type I collagen fibrils. Type I collagen is the most abundant protein in skin and constitutes the majority of skin connective tissue (dermis). Degradation of collagen fibrils impairs the structure and function of skin that characterize skin aging. Decorin is the predominant proteoglycan in human dermis. In model systems, decorin binds to and protects type I collagen fibrils from proteolytic degradation by enzymes such as MMP-1. Little is known regarding alterations of decorin in response to UV irradiation. We found that solar-simulated UV irradiation of human skin in vivo stimulated substantial decorin degradation, with kinetics similar to infiltration of polymorphonuclear (PMN) cells. Proteases that were released from isolated PMN cells degraded decorin in vitro. A highly selective inhibitor of neutrophil elastase blocked decorin breakdown by proteases released from PMN cells. Furthermore, purified neutrophil elastase cleaved decorin in vitro and generated fragments with similar molecular weights as those resulting from protease activity released from PMN cells, and as observed in UV-irradiated human skin. Cleavage of decorin by neutrophil elastase significantly augmented fragmentation of type I collagen fibrils by MMP-1. Taken together, these data indicate that PMN cell proteases, especially neutrophil elastase, degrade decorin, and this degradation renders collagen fibrils more susceptible to MMP-1 cleavage. These data identify decorin degradation and neutrophil elastase as potential therapeutic targets for mitigating sun exposure-induced collagen fibril degradation in human skin.

  5. Effects of acrolein on leukotriene biosynthesis in human neutrophils.

    Science.gov (United States)

    Berry, Karin A Zemski; Henson, Peter M; Murphy, Robert C

    2008-12-01

    Acrolein is a toxic, highly reactive alpha,beta-unsaturated aldehyde that is present in high concentrations in cigarette smoke. In the current study, the effect of acrolein on eicosanoid synthesis in stimulated human neutrophils was examined. Eicosanoid synthesis in neutrophils was initiated by priming with granulocyte-macrophage colony-stimulating factor (GM-CSF) and subsequent stimulation with formyl-methionyl-leucyl-phenylalanine (fMLP) and 5-lipoxygenase (5-LO) products in addition to small amounts of cyclooxygenase (COX) products were detected using LC/MS/MS. A dose-dependent decrease in the formation of 5-LO products was observed in GM-CSF/fMLP-stimulated neutrophils when acrolein (0-50 microM) was present with almost complete inhibition at > or = 25 microM acrolein. The production of COX products was not affected by acrolein in these cells. The effect of acrolein was examined on key parts of the eicosanoid pathway, such as arachidonic acid release, intracellular calcium ion concentration, and adenosine production. In addition, the direct effect of acrolein on 5-LO enzymatic activity was probed using a recombinant enzyme. Some of these factors were affected by acrolein but did not completely explain the almost complete inhibition of 5-LO product formation in GM-CSF/fMLP-treated cells with acrolein. In addition, the effect of acrolein on different stimuli that initiate the 5-LO pathway [platelet-activating factor (PAF)/fMLP, GM-CSF/PAF, opsonized zymosan, and A23187] was examined. Acrolein had no significant effect on the leukotriene production in neutrophils stimulated with PAF/fMLP, GM-CSF/ PAF, or OPZ. Additionally, 50% inhibition of the 5-LO pathway was observed in A23187-stimulated neutrophils. Our results suggest that acrolein has a profound effect on the 5-LO pathway in neutrophils, which may have implications in disease states, such as chronic obstructive pulmonary disease and other pulmonary disease, where both activated neutrophils and acrolein are

  6. Doxycycline induced photodamage to human neutrophils and tryptophan

    International Nuclear Information System (INIS)

    Sandberg, S.; Glette, J.; Hopen, G.; Solberg, C.O.

    1984-01-01

    Neutrophil function were studied following irradiation (340-380 nm) of the cells in the presence of 22 μM doxycycline. At increasing light fluence the locomotion, chemiluminescence and glucose oxidation (by the hexose monophosphate shunt) of the neutrophils steadily decreased. The photodamage increased with increasing preincubation temperature and time and was enhanced in D 2 O, reduced in azide and abolished in anaerobiosis. Superoxide dismutase, catalase or mannitol did not influence the photodamage. Photooxidation of tryptophan in the presence of doxycycline was increased 9-10-fold in D 2 O and nearly abolished in the presence of 0.25 mM NaN 3 , indicating that singlet oxygen is the most important reactive oxygen species in the doxycycline-induced photodamage. The results may explain some of the features of tetracycline-induced photosensitivity and why other authors have obtained diverging results when studying the influence of tetracyclines on neutrophil functions. (author)

  7. On the Pharmacology of Oxidative Burst of Human Neutrophils

    Czech Academy of Sciences Publication Activity Database

    Nosáľ, R.; Drábiková, K.; Jančinová, V.; Mačičková, T.; Pečivová, J.; Perečko, T.; Harmatha, Juraj; Šmidrkal, J.

    2015-01-01

    Roč. 64, Suppl 4 (2015), S445-S452 ISSN 0862-8408 Institutional support: RVO:61388963 Keywords : human neutrophils * oxidative burst * chemiluminescence * protein kinase C * apoptosis Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 1.643, year: 2015 http://www.biomed.cas.cz/physiolres/pdf/64/64_S445.pdf

  8. Pharmacological intervention with oxidative burst in human neutrophils

    Czech Academy of Sciences Publication Activity Database

    Nosál, R.; Drábiková, K.; Jančinová, V.; Mačičková, T.; Pečivová, J.; Perečko, T.; Harmatha, Juraj

    2017-01-01

    Roč. 10, č. 2 (2017), s. 56-60 ISSN 1337-6853 Institutional support: RVO:61388963 Keywords : human neutrophils * oxidative burst * tharapeutical drugs * natural antioxidants Subject RIV: FR - Pharmacology ; Medidal Chemistry OBOR OECD: Pharmacology and pharmacy https://www.degruyter.com/downloadpdf/j/intox.2017.10.issue-2/intox-2017-0009/intox-2017-0009.pdf

  9. Enhancement by platelets of oxygen radical responses of human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, K.K.; Powell, J.; Johnson, K.J.; Ward, P.A.

    1986-03-01

    When human blood neutrophils were incubated with immune complexes (consisting of IgG antibody) in the presence of platelets, there was a 2 to 10 fold enhancement in the generation of O-/sub 2/ and H/sub 2/O/sub 2/. This enhancement phenomenon was proportional to the dose of immune complex added and the number of platelets present. The response was not agonist specific since similar enhancement also occurred with the following agonists: phorbol myristate acetate, opsonized zymosan particles and the chemotactic peptide N-formyl-met-leu-phe. The platelet related phenomenon of enhanced O-/sub 2/ generation could not be reproduced by the addition of serotonin, histamine or platelet-derived growth factor and was not affected by prior treatment of platelets with cyclooxygenase inhibitors (indomethacin, piroxicam) or lipoxygenase inhibitors (nafazatrom, BW755C or nordihydroguaiaretic acid). However, activation of platelets by thrombin caused release into the platelet supernatant fluid of a factor that, only in the presence of immune complexes, caused enhanced O-/sub 2/ responses to neutrophils. These data indicate that platelets potentiate oxygen radical responses of human neutrophils and suggest a mechanisms by which platelets may participate in tissue injury which is mediated by oxygen radical products from activated neutrophils.

  10. Enhancement by platelets of oxygen radical responses of human neutrophils

    International Nuclear Information System (INIS)

    McCulloch, K.K.; Powell, J.; Johnson, K.J.; Ward, P.A.

    1986-01-01

    When human blood neutrophils were incubated with immune complexes (consisting of IgG antibody) in the presence of platelets, there was a 2 to 10 fold enhancement in the generation of O- 2 and H 2 O 2 . This enhancement phenomenon was proportional to the dose of immune complex added and the number of platelets present. The response was not agonist specific since similar enhancement also occurred with the following agonists: phorbol myristate acetate, opsonized zymosan particles and the chemotactic peptide N-formyl-met-leu-phe. The platelet related phenomenon of enhanced O- 2 generation could not be reproduced by the addition of serotonin, histamine or platelet-derived growth factor and was not affected by prior treatment of platelets with cyclooxygenase inhibitors (indomethacin, piroxicam) or lipoxygenase inhibitors (nafazatrom, BW755C or nordihydroguaiaretic acid). However, activation of platelets by thrombin caused release into the platelet supernatant fluid of a factor that, only in the presence of immune complexes, caused enhanced O- 2 responses to neutrophils. These data indicate that platelets potentiate oxygen radical responses of human neutrophils and suggest a mechanisms by which platelets may participate in tissue injury which is mediated by oxygen radical products from activated neutrophils

  11. Theophylline and adenosine modulate the inflammatory functions of the human neutrophil by exerting an opposing influence on the stimulus-induced increase in intracellular calcium

    International Nuclear Information System (INIS)

    Schmeichel Morley, C.J.

    1988-01-01

    Based on evidence that endogenously-produced adenosine inhibited neutrophil responses, the influence of methylxanthine bronchodilators on neutrophil responses stimulated in vitro by n-formyl-methionyl-leucyl-phenylalanine (fMLP) was examined. At concentrations between 10/sup /minus/5/ M and 10/sup /minus/4/ M, theophylline potentiated lysosomal enzyme release by 30 to 50%, superoxide anion formation by 30 to 60%, and neutrophil aggregation. Theophylline at concentrations >10/sup /minus/4/ M inhibited the same responses by >90%. Adenosine deaminase mimicked, whereas adenosine reversed the theophylline potentiation. A potential role for calcium in the modulation of the neutrophil responses by theophylline and adenosine was explored. Theophylline enhanced by >150% the fMLP-stimulated increase in cytoplasmic calcium concentration ([Ca 2+ ]/sub i/) at time points between 5 and 90 sec as measured by Fura-2. Adenosine deaminase induced a comparable enhancement, whereas 3 /times/ 10/sup /minus/7/ M adenosine and 10/sup /minus/7/ M N-ethylcarboxamideadenosine decreased the [Ca 2+ ]/sub i/ in fMLP-stimulated neutrophils. Extracellular calcium was not required for the opposing influences of theophylline and adenosine and neither compound altered fMLP-stimulated 45 Ca uptake at the early time points

  12. Ascorbic acid transport and accumulation in human neutrophils

    International Nuclear Information System (INIS)

    Washko, P.; Rotrosen, D.; Levine, M.

    1989-01-01

    The transport, accumulation, and distribution of ascorbic acid were investigated in isolated human neutrophils utilizing a new ascorbic acid assay, which combined the techniques of high performance liquid chromatography and coulometric electrochemical detection. Freshly isolated human neutrophils contained 1.0-1.4 mM ascorbic acid, which was localized greater than or equal to 94% to the cytosol, was not protein bound, and was present only as ascorbic acid and not as dehydroascorbic acid. Upon addition of ascorbic acid to the extracellular medium in physiologic amounts, ascorbic acid was accumulated in neutrophils in millimolar concentrations. Accumulation was mediated by a high affinity and a low affinity transporter; both transporters were responsible for maintenance of concentration gradients as large as 50-fold. The high affinity transporter had an apparent Km of 2-5 microns by Lineweaver-Burk and Eadie-Hofstee analyses, and the low affinity transporter had an apparent Km of 6-7 mM by similar analyses. Each transporter was saturable and temperature dependent. In normal human blood the high affinity transporter should be saturated, whereas the low affinity transporter should be in its linear phase of uptake

  13. Staphylococcus aureus panton-valentine leukocidin is a very potent cytotoxic factor for human neutrophils.

    Directory of Open Access Journals (Sweden)

    Bettina Löffler

    2010-01-01

    Full Text Available The role of the pore-forming Staphylococcus aureus toxin Panton-Valentine leukocidin (PVL in severe necrotizing diseases is debated due to conflicting data from epidemiological studies of community-associated methicillin-resistant S. aureus (CA-MRSA infections and various murine disease-models. In this study, we used neutrophils isolated from different species to evaluate the cytotoxic effect of PVL in comparison to other staphylococcal cytolytic components. Furthermore, to study the impact of PVL we expressed it heterologously in a non-virulent staphylococcal species and examined pvl-positive and pvl-negative clinical isolates as well as the strain USA300 and its pvl-negative mutant. We demonstrate that PVL induces rapid activation and cell death in human and rabbit neutrophils, but not in murine or simian cells. By contrast, the phenol-soluble modulins (PSMs, a newly identified group of cytolytic staphylococcal components, lack species-specificity. In general, after phagocytosis of bacteria different pvl-positive and pvl-negative staphylococcal strains, expressing a variety of other virulence factors (such as surface proteins, induced cell death in neutrophils, which is most likely associated with the physiological clearing function of these cells. However, the release of PVL by staphylococcal strains caused rapid and premature cell death, which is different from the physiological (and programmed cell death of neutrophils following phagocytosis and degradation of virulent bacteria. Taken together, our results question the value of infection-models in mice and non-human primates to elucidate the impact of PVL. Our data clearly demonstrate that PVL acts differentially on neutrophils of various species and suggests that PVL has an important cytotoxic role in human neutrophils, which has major implications for the pathogenesis of CA-MRSA infections.

  14. Autophagy Mediates Interleukin-1β Secretion in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    Leonardo Iula

    2018-02-01

    AEBSF reduced IL-1β secretion. Moreover, IL-1β could be also found colocalizing with elastase, suggesting both some vesicles containing IL-1β intersect azurophil granules content and that serine proteases also regulate IL-1β secretion. Altogether, our findings indicate that an unconventional autophagy-mediated secretory pathway mediates IL-1β secretion in human neutrophils.

  15. Effects of gadolinium oxide nanoparticles on the oxidative burst from human neutrophil granulocytes

    International Nuclear Information System (INIS)

    Abrikossova, Natalia; Skoglund, Caroline; Ahrén, Maria; Uvdal, Kajsa; Bengtsson, Torbjörn

    2012-01-01

    We have previously shown that gadolinium oxide (Gd 2 O 3 ) nanoparticles are promising candidates to be used as contrast agents in magnetic resonance (MR) imaging applications. In this study, these nanoparticles were investigated in a cellular system, as possible probes for visualization and targeting intended for bioimaging applications. We evaluated the impact of the presence of Gd 2 O 3 nanoparticles on the production of reactive oxygen species (ROS) from human neutrophils, by means of luminol-dependent chemiluminescence. Three sets of Gd 2 O 3 nanoparticles were studied, i.e. as synthesized, dialyzed and both PEG-functionalized and dialyzed Gd 2 O 3 nanoparticles. In addition, neutrophil morphology was evaluated by fluorescent staining of the actin cytoskeleton and fluorescence microscopy. We show that surface modification of these nanoparticles with polyethylene glycol (PEG) is essential in order to increase their biocompatibility. We observed that the as synthesized nanoparticles markedly decreased the ROS production from neutrophils challenged with prey (opsonized yeast particles) compared to controls without nanoparticles. After functionalization and dialysis, more moderate inhibitory effects were observed at a corresponding concentration of gadolinium. At lower gadolinium concentration the response was similar to that of the control cells. We suggest that the diethylene glycol (DEG) present in the as synthesized nanoparticle preparation is responsible for the inhibitory effects on the neutrophil oxidative burst. Indeed, in the present study we also show that even a low concentration of DEG, 0.3%, severely inhibits neutrophil function. In summary, the low cellular response upon PEG-functionalized Gd 2 O 3 nanoparticle exposure indicates that these nanoparticles are promising candidates for MR-imaging purposes. (paper)

  16. A novel bacterial transport mechanism of Acinetobacter baumannii via activated human neutrophils through interleukin-8.

    Science.gov (United States)

    Kamoshida, Go; Tansho-Nagakawa, Shigeru; Kikuchi-Ueda, Takane; Nakano, Ryuichi; Hikosaka, Kenji; Nishida, Satoshi; Ubagai, Tsuneyuki; Higashi, Shouichi; Ono, Yasuo

    2016-12-01

    Hospital-acquired infections as a result of Acinetobacter baumannii have become problematic because of high rates of drug resistance. Although neutrophils play a critical role in early protection against bacterial infection, their interactions with A. baumannii remain largely unknown. To elucidate the interactions between A. baumannii and human neutrophils, we cocultured these cells and analyzed them by microscopy and flow cytometry. We found that A. baumannii adhered to neutrophils. We next examined neutrophil and A. baumannii infiltration into Matrigel basement membranes by an in vitro transmigration assay. Neutrophils were activated by A. baumannii, and invasion was enhanced. More interestingly, A. baumannii was transported together by infiltrating neutrophils. Furthermore, we observed by live cell imaging that A. baumannii and neutrophils moved together. In addition, A. baumannii-activated neutrophils showed increased IL-8 production. The transport of A. baumannii was suppressed by inhibiting neutrophil infiltration by blocking the effect of IL-8. A. baumannii appears to use neutrophils for transport by activating these cells via IL-8. In this study, we revealed a novel bacterial transport mechanism that A. baumannii exploits human neutrophils by adhering to and inducing IL-8 release for bacterial portage. This mechanism might be a new treatment target. © Society for Leukocyte Biology.

  17. Gene transfer and expression in human neutrophils. The phox homology domain of p47phox translocates to the plasma membrane but not to the membrane of mature phagosomes

    Directory of Open Access Journals (Sweden)

    Brzezinska Agnieszka A

    2006-12-01

    Full Text Available Abstract Background Neutrophils are non-dividing cells with poor survival after isolation. Consequently, exogenous gene expression in neutrophils is challenging. We report here the transfection of genes and expression of active proteins in human primary peripheral neutrophils using nucleofection. Results Exogenous gene expression in human neutrophils was achieved 2 h post-transfection. We show that neutrophils transfected by nucleofection are functional cells, able to respond to soluble and particulate stimuli. They conserved the ability to undergo physiological processes including phagocytosis. Using this technique, we were able to show that the phox homology (PX domain of p47phox localizes to the plasma membrane in human neutrophils. We also show that RhoB, but not the PX domain of p47phox, is translocated to the membrane of mature phagosomes. Conclusion We demonstrated that cDNA transfer and expression of exogenous protein in human neutrophils is compatible with cell viability and is no longer a limitation for the study of protein function in human neutrophils.

  18. Computer-assisted image analysis assay of human neutrophil chemotaxis in vitro

    DEFF Research Database (Denmark)

    Jensen, P; Kharazmi, A

    1991-01-01

    We have developed a computer-based image analysis system to measure in-filter migration of human neutrophils in the Boyden chamber. This method is compared with the conventional manual counting techniques. Neutrophils from healthy individuals and from patients with reduced chemotactic activity were....... Another advantage of the assay is that it can be used to show the migration pattern of different populations of neutrophils from both healthy individuals and patients....

  19. Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis

    Science.gov (United States)

    Ong, Catherine W. M.; Elkington, Paul T.; Brilha, Sara; Ugarte-Gil, Cesar; Tome-Esteban, Maite T.; Tezera, Liku B.; Pabisiak, Przemyslaw J.; Moores, Rachel C.; Sathyamoorthy, Tarangini; Patel, Vimal; Gilman, Robert H.; Porter, Joanna C.; Friedland, Jon S.

    2015-01-01

    Pulmonary cavities, the hallmark of tuberculosis (TB), are characterized by high mycobacterial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB immunopathology and their influx are associated with poor outcomes. We investigated neutrophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived NF-kB-dependent matrix metalloproteinase-8 (MMP-8) secretion was up-regulated in TB and caused matrix destruction both in vitro and in respiratory samples of TB patients. Collagen destruction induced by TB infection was abolished by doxycycline, a licensed MMP inhibitor. Neutrophil extracellular traps (NETs) contain MMP-8 and are increased in samples from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and sputum MMP-8 concentrations reflected TB radiological and clinical disease severity. AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neutrophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei. These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathology of TB and is a potential target for host-directed therapy in this infectious disease. PMID:25996154

  20. Neutrophil-Derived MMP-8 Drives AMPK-Dependent Matrix Destruction in Human Pulmonary Tuberculosis.

    Science.gov (United States)

    Ong, Catherine W M; Elkington, Paul T; Brilha, Sara; Ugarte-Gil, Cesar; Tome-Esteban, Maite T; Tezera, Liku B; Pabisiak, Przemyslaw J; Moores, Rachel C; Sathyamoorthy, Tarangini; Patel, Vimal; Gilman, Robert H; Porter, Joanna C; Friedland, Jon S

    2015-05-01

    Pulmonary cavities, the hallmark of tuberculosis (TB), are characterized by high mycobacterial load and perpetuate the spread of M. tuberculosis. The mechanism of matrix destruction resulting in cavitation is not well defined. Neutrophils are emerging as key mediators of TB immunopathology and their influx are associated with poor outcomes. We investigated neutrophil-dependent mechanisms involved in TB-associated matrix destruction using a cellular model, a cohort of 108 patients, and in separate patient lung biopsies. Neutrophil-derived NF-kB-dependent matrix metalloproteinase-8 (MMP-8) secretion was up-regulated in TB and caused matrix destruction both in vitro and in respiratory samples of TB patients. Collagen destruction induced by TB infection was abolished by doxycycline, a licensed MMP inhibitor. Neutrophil extracellular traps (NETs) contain MMP-8 and are increased in samples from TB patients. Neutrophils lined the circumference of human pulmonary TB cavities and sputum MMP-8 concentrations reflected TB radiological and clinical disease severity. AMPK, a central regulator of catabolism, drove neutrophil MMP-8 secretion and neutrophils from AMPK-deficient patients secrete lower MMP-8 concentrations. AMPK-expressing neutrophils are present in human TB lung biopsies with phospho-AMPK detected in nuclei. These data demonstrate that neutrophil-derived MMP-8 has a key role in the immunopathology of TB and is a potential target for host-directed therapy in this infectious disease.

  1. Induction of hyperresponsiveness in human airway tissue by neutrophils--mechanism of action.

    Science.gov (United States)

    Anticevich, S Z; Hughes, J M; Black, J L; Armour, C L

    1996-05-01

    The two main features of asthma are bronchial hyperresponsiveness and inflammation. The inflammatory response in asthma consists of infiltration and activation of a variety of inflammatory cells including neutrophils. Our previous studies have shown that stimulated neutrophil supernatants cause hyperresponsiveness of human bronchial tissue in vitro. To investigate the effect of the sensitization status of the tissue and the albumin concentration used to prepare supernatants on the response of human bronchial tissue to stimulated neutrophil supernatants. Neutrophil supernatants were prepared from human isolated blood in the presence of varying concentrations of albumin (0%, 0.1% and 4%). Neutrophil supernatants were added to sensitized and non-sensitized human isolated bronchial tissue which was stimulated with electrical field stimulation (EFS) (20 s every 4 min). Receptor antagonists specific for the prostaglandin and thromboxane (10(-7) M GR32191), platelet activating factor (10(-6) M WEB 2086), leukotriene D4 (10(-6) M MK-679) and neurokinin A (10(-7) M SR48968) receptors were used to identify neutrophil products responsible for the effects observed in the bronchial tissue. In non-sensitized human bronchial tissue, stimulated neutrophil supernatants induced a direct contraction in the presence of 0% and 0.1% but not 4% albumin. This contraction was due to leukotriene D4 as MK-679 completely inhibited the contraction. In contrast, stimulated neutrophil supernatants increased responsiveness of sensitized human bronchial tissue to EFS. The increased responsiveness was observed only in the presence of 0.1% albumin, with the site of modulation likely to be prejunctional on the parasympathetic nerve. The increased responsiveness was not inhibited by any of the antagonists tested. Sensitization status of the tissue and albumin concentration effect the responsiveness of human bronchial tissue to stimulated neutrophil supernatant. Our results suggest a possible role for

  2. IL-17A potentiates TNFα-induced secretion from human endothelial cells and alters barrier functions controlling neutrophils rights of passage

    DEFF Research Database (Denmark)

    Bosteen, Markus H; Tritsaris, Katerina; Hansen, Anker J

    2014-01-01

    Interleukin-17A (IL-17A) is an important pro-inflammatory cytokine that regulates leukocyte mobilization and recruitment. To better understand how IL-17A controls leukocyte trafficking across capillaries in the peripheral blood circulation, we used primary human dermal microvascular endothelial...

  3. Synchronisation of glycolytic oscillations in a suspension of human neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Poulsen, Allan K.; Olsen, Lars Folke

    Neutrophils are known to be able to synchronize their production of superoxide. We show that glycolysis is also synchronized in human neutrophils being in suspension and suggest that oscillations in glycolysis are driving the pulsatile production of superoxide. The synchronising agent remains so...... far unknown, however, much evident points to that it might be hydrogen peroxide or an intermediate in glycolysis....

  4. Medium-chain, triglyceride-containing lipid emulsions increase human neutrophil beta2 integrin expression, adhesion, and degranulation

    NARCIS (Netherlands)

    Wanten, G. J.; Geijtenbeek, T. B.; Raymakers, R. A.; van Kooyk, Y.; Roos, D.; Jansen, J. B.; Naber, A. H.

    2000-01-01

    BACKGROUND: To test the hypothesis that lipid emulsions with different triglyceride structures have distinct immunomodulatory properties, we analyzed human neutrophil adhesion and degranulation after lipid incubation. METHODS: Neutrophils, isolated from the blood of 10 healthy volunteers, were

  5. Distinct Trypanosoma cruzi isolates induce activation and apoptosis of human neutrophils.

    Directory of Open Access Journals (Sweden)

    Luísa M D Magalhães

    Full Text Available Neutrophils are critical players in the first line of defense against pathogens and in the activation of subsequent cellular responses. We aimed to determine the effects of the interaction of Trypanosoma cruzi with human neutrophils, using isolates of the two major discrete type units (DTUs associated with Chagas' disease in Latin America (clone Col1.7G2 and Y strain, DTU I and II, respectively. Thus, we used CFSE-stained trypomastigotes to measure neutrophil-T. cruzi interaction, neutrophil activation, cytokine expression and death, after infection with Col1.7G2 and Y strain. Our results show that the frequency of CFSE+ neutrophils, indicative of interaction, and CFSE intensity on a cell-per-cell basis were similar when comparing Col1.7G2 and Y strains. Interaction with T. cruzi increased neutrophil activation, as measured by CD282, CD284, TNF and IL-12 expression, although at different levels between the two strains. No change in IL-10 expression was observed after interaction of neutrophils with either strain. We observed that exposure to Y and Col1.7G2 caused marked neutrophil death. This was specific to neutrophils, since interaction of either strain with monocytes did not cause death. Our further analysis showed that neutrophil death was a result of apoptosis, which was associated with an upregulation of TNF-receptor, TNF and FasLigand, but not of Fas. Induction of TNF-associated neutrophil apoptosis by the different T. cruzi isolates may act as an effective common mechanism to decrease the host's immune response and favor parasite survival.

  6. High resolution of heterogeneity among human neutrophil granules: physical, biochemical, and ultrastructural properties of isolated fractions.

    Science.gov (United States)

    Rice, W G; Kinkade, J M; Parmley, R T

    1986-08-01

    -TCH-SP staining of isolated granule fractions revealed patterns similar to those of granules in intact neutrophils at different stages of development. Granules from human acute promyelocytic leukemia cells (HL-60) exhibited a surprisingly low density compared with typical azurophil granules from normal, mature neutrophils. The data suggest that both functional and maturational differences contribute to granule heterogeneity, and provide a new practical and conceptual framework for further defining the phenomenon of neutrophil granule heterogeneity.

  7. GMP-140 binds to a glycoprotein receptor on human neutrophils: Evidence for a lectin-like interaction

    International Nuclear Information System (INIS)

    Moore, K.L.; Varki, A.; McEver, R.P.

    1991-01-01

    GMP-140 is a rapidly inducible receptor for neutrophils and monocytes expressed on activated platelets and endothelial cells. It is a member of the selectin family of lectin-like cell surface molecules that mediate leukocyte adhesion. We used a radioligand binding assay to characterize the interaction of purified GMP-140 with human neutrophils. Unstimulated neutrophils rapidly bound [125I]GMP-140 at 4 degrees C, reaching equilibrium in 10-15 min. Binding was Ca2+ dependent, reversible, and saturable at 3-6 nM free GMP-140 with half-maximal binding at approximately 1.5 nM. Receptor density and apparent affinity were not altered when neutrophils were stimulated with 4 beta-phorbol 12-myristate 13-acetate. Treatment of neutrophils with proteases abolished specific binding of [125I]GMP-140. Binding was also diminished when neutrophils were treated with neuraminidase from Vibrio cholerae, which cleaves alpha 2-3-, alpha 2-6-, and alpha 2-8-linked sialic acids, or from Newcastle disease virus, which cleaves only alpha 2-3- and alpha 2-8-linked sialic acids. Binding was not inhibited by an mAb to the abundant myeloid oligosaccharide, Lex (CD15), or by the neoglycoproteins Lex-BSA and sialyl-Lex-BSA. We conclude that neutrophils constitutively express a glycoprotein receptor for GMP-140, which contains sialic acid residues that are essential for function. These findings support the concept that GMP-140 interacts with leukocytes by a lectin-like mechanism

  8. Activated human neutrophils release hepatocyte growth factor/scatter factor.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Hepatocyte growth factor or scatter factor (HGF\\/SF) is a pleiotropic cytokine that has potent angiogenic properties. We have previously demonstrated that neutrophils (PMN) are directly angiogenic by releasing vascular endothelial growth factor (VEGF). We hypothesized that the acute inflammatory response can stimulate PMN to release HGF. AIMS: To examine the effects of inflammatory mediators on PMN HGF release and the effect of recombinant human HGF (rhHGF) on PMN adhesion receptor expression and PMN VEGF release. METHODS: In the first experiment, PMN were isolated from healthy volunteers and stimulated with tumour necrosis factor-alpha (TNF-alpha), lipopolysaccharide (LPS), interleukin-8 (IL-8), and formyl methionyl-leucyl-phenylalanine (fMLP). Culture supernatants were assayed for HGF using ELISA. In the second experiment, PMN were lysed to measure total HGF release and HGF expression in the PMN was detected by Western immunoblotting. Finally, PMN were stimulated with rhHGF. PMN CD 11a, CD 11b, and CD 18 receptor expression and VEGF release was measured using flow cytometry and ELISA respectively. RESULTS: TNF-alpha, LPS and fMLP stimulation resulted in significantly increased release of PMN HGF (755+\\/-216, 484+\\/-221 and 565+\\/-278 pg\\/ml, respectively) compared to controls (118+\\/-42 pg\\/ml). IL-8 had no effect. Total HGF release following cell lysis and Western blot suggests that HGF is released from intracellular stores. Recombinant human HGF did not alter PMN adhesion receptor expression and had no effect on PMN VEGF release. CONCLUSIONS: This study demonstrates that pro-inflammatory mediators can stimulate HGF release from a PMN intracellular store and that activated PMN in addition to secreting VEGF have further angiogenic potential by releasing HGF.

  9. Thrombin Production and Human Neutrophil Elastase Sequestration by Modified Cellulosic Dressings and Their Electrokinetic Analysis

    Directory of Open Access Journals (Sweden)

    Nicolette Prevost

    2011-12-01

    Full Text Available Wound healing is a complex series of biochemical and cellular events. Optimally, functional material design addresses the overlapping acute and inflammatory stages of wound healing based on molecular, cellular, and bio-compatibility issues. In this paper the issues addressed are uncontrolled hemostasis and inflammation which can interfere with the orderly flow of wound healing. In this regard, we review the serine proteases thrombin and elastase relative to dressing functionality that improves wound healing and examine the effects of charge in cotton/cellulosic dressing design on thrombin production and elastase sequestration (uptake by the wound dressing. Thrombin is central to the initiation and propagation of coagulation, and elastase is released from neutrophils that can function detrimentally in a stalled inflammatory phase characteristic of chronic wounds. Electrokinetic fiber surface properties of the biomaterials of this study were determined to correlate material charge and polarity with function relative to thrombin production and elastase sequestration. Human neutrophil elastase sequestration was assessed with an assay representative of chronic wound concentration with cotton gauze cross-linked with three types of polycarboxylic acids and one phosphorylation finish; thrombin production, which was assessed in a plasma-based assay via a fluorogenic peptide substrate, was determined for cotton, cotton-grafted chitosan, chitosan, rayon/polyester, and two kaolin-treated materials including a commercial hemorrhage control dressing (QuickClot Combat Gauze. A correlation in thrombin production to zeta potential was found. Two polycarboxylic acid cross linked and a phosphorylated cotton dressing gave high elastase sequestration.

  10. α-1 Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8.

    LENUS (Irish Health Repository)

    Bergin, David A

    2010-12-01

    Hereditary deficiency of the protein α-1 antitrypsin (AAT) causes a chronic lung disease in humans that is characterized by excessive mobilization of neutrophils into the lung. However, the reason for the increased neutrophil burden has not been fully elucidated. In this study we have demonstrated using human neutrophils that serum AAT coordinates both CXCR1- and soluble immune complex (sIC) receptor-mediated chemotaxis by divergent pathways. We demonstrated that glycosylated AAT can bind to IL-8 (a ligand for CXCR1) and that AAT-IL-8 complex formation prevented IL-8 interaction with CXCR1. Second, AAT modulated neutrophil chemotaxis in response to sIC by controlling membrane expression of the glycosylphosphatidylinositol-anchored (GPI-anchored) Fc receptor FcγRIIIb. This process was mediated through inhibition of ADAM-17 enzymatic activity. Neutrophils isolated from clinically stable AAT-deficient patients were characterized by low membrane expression of FcγRIIIb and increased chemotaxis in response to IL-8 and sIC. Treatment of AAT-deficient individuals with AAT augmentation therapy resulted in increased AAT binding to IL-8, increased AAT binding to the neutrophil membrane, decreased FcγRIIIb release from the neutrophil membrane, and normalization of chemotaxis. These results provide new insight into the mechanism underlying the effect of AAT augmentation therapy in the pulmonary disease associated with AAT deficiency.

  11. Naloxone inhibits superoxide but not enzyme release by human neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, C.; Alailima, S.; Tate, E.

    1986-03-01

    The release of toxic oxygen metabolites and enzymes by phagocytic cells is thought to play a role in the multisystemic tissue injury of sepsis. Naloxone protects septic animals. We have found that at concentrations administered to animals (10/sup -7/ to 10/sup -4/M), naloxone inhibited (p < .001) the release of superoxide (O/sub 2//sup -/) by human neutrophils (HN), stimulated with N-formyl methionyl leucyl phenylalanine (FMLP). Naloxone had no effect on cell viability. Maximum inhibition was 65% of the total O/sub 2//sup -/ released (13.1 nMoles/8 min/320,000 cells). FMLP-stimulated release of beta-glucoronidase or lysozyme was not altered by naloxone. Naloxone had no effect on the binding of /sup 3/H FMLP to HN. Using /sup 3/H naloxone and various concentrations of unlabeled naloxone higher affinity (K/sub D/ = 12nM) and lower affinity (K/sub D/ = 4.7 x 10/sup -5/) binding sites were detected. The K/sub D/ of the low affinity site corresponded to the ED/sub 50/ for naloxone inhibition of O/sub 2//sup -/ (1 x 10/sup -5/M). Binding to this low affinity site was decreased by (+) naloxone, beta-endorphin and N acetyl beta-endorphin, but not by leu-enkephalin, thyrotropin releasing factor, prostaglandin D/sub 2/ or E/sub 2/. Conclusions: (1) naloxone inhibits FMLP-stimulated O/sub 2/ but not enzyme release, (2) this inhibition is not due to alteration of FMLP receptor binding, (3) naloxone may act via a low affinity binding site which is ligand specific, and (4) a higher affinity receptor is present on HN.

  12. Intracellular accumulation of potent amiloride analogues by human neutrophils

    International Nuclear Information System (INIS)

    Simchowitz, L.; Woltersdorf, O.W. Jr.; Cragoe, E.J. Jr.

    1987-01-01

    The mechanism of uptake of a series of amiloride derivatives by human neutrophils was investigated using [ 14 C]amiloride and the 14 C-labeled 5-(1-hexahydroazepinyl)-6-bromo analogue (BrMM) which is approximately 500-fold more potent than the parent compound at inhibiting Na+/H+ exchange. At an external concentration of 2 microM, the influx of BrMM at 37 degrees C was rapid, reaching a steady state by approximately 20 min. The rate of BrMM uptake (approximately 25 mumol/liter.min) was approximately 90-fold faster than for the same concentration of amiloride, a finding which correlates with differences in lipid partitioning of the two compounds. Uptake was unrelated to specific binding to Na+/H+ exchange transport sites: influx of either drug was nonsaturable whereas amiloride- and BrMM-mediated inhibition of Na+/H+ countertransport obeyed Michaelis-Menten kinetics with apparent Ki values of approximately 75 and approximately 0.2 microM. Entry occurred exclusively via the neutral (uncharged) forms (pK'a 8.40-8.55). Influx was markedly pH-dependent: it was enhanced by extracellular alkalinization and reduced by acidification. Influx was, however, insensitive to large changes in membrane voltage, thereby implying the protonated (charged) species to be impermeant. About 75% of the total intracellular pool of amiloride, but only approximately 25% of BrMM, is contained within the lysosomes, an expected consequence of the partitioning and subsequent trapping of a weak base within this strongly acidic subcellular compartment. With BrMM, there was a relative approximately 60-fold enrichment in the internal/external water concentration ratio of the drug; the value for amiloride was much less, approximately 4. This disparity is consistent with substantial binding of BrMM to internal constituents, presumably to proteins and/or nucleic acids

  13. Naloxone inhibits superoxide but not enzyme release by human neutrophils

    International Nuclear Information System (INIS)

    Simpkins, C.; Alailima, S.; Tate, E.

    1986-01-01

    The release of toxic oxygen metabolites and enzymes by phagocytic cells is thought to play a role in the multisystemic tissue injury of sepsis. Naloxone protects septic animals. We have found that at concentrations administered to animals (10 -7 to 10 -4 M), naloxone inhibited (p 2 - ) by human neutrophils (HN), stimulated with N-formyl methionyl leucyl phenylalanine (FMLP). Naloxone had no effect on cell viability. Maximum inhibition was 65% of the total O 2 - released (13.1 nMoles/8 min/320,000 cells). FMLP-stimulated release of beta-glucoronidase or lysozyme was not altered by naloxone. Naloxone had no effect on the binding of 3 H FMLP to HN. Using 3 H naloxone and various concentrations of unlabeled naloxone higher affinity (K/sub D/ = 12nM) and lower affinity (K/sub D/ = 4.7 x 10 -5 ) binding sites were detected. The K/sub D/ of the low affinity site corresponded to the ED 50 for naloxone inhibition of O 2 - (1 x 10 -5 M). Binding to this low affinity site was decreased by (+) naloxone, beta-endorphin and N acetyl beta-endorphin, but not by leu-enkephalin, thyrotropin releasing factor, prostaglandin D 2 or E 2 . Conclusions: (1) naloxone inhibits FMLP-stimulated O 2 but not enzyme release, (2) this inhibition is not due to alteration of FMLP receptor binding, (3) naloxone may act via a low affinity binding site which is ligand specific, and (4) a higher affinity receptor is present on HN

  14. Tumor-Associated Neutrophils in Human Lung Cancer

    Science.gov (United States)

    2017-10-01

    markers in humans. The logistical, ethical , and regulatory difficulties in obtaining human tumor tissue for research also act to discourage such...Mouse models of cancer. Annu. Rev. Pathol 6, 95–119 52. Merlo, L.M. et al. (2006) Cancer as an evolutionary and ecological process. Nat. Rev. Cancer...some effect on the phenotype and function of TANs. The logistical, ethical , and regulatory difficulties in obtaining human tumor tissue for research

  15. Proteome profiling of human neutrophil granule subsets, secretory vesicles, and cell membrane

    DEFF Research Database (Denmark)

    Rørvig, Sara; Østergaard, Ole; Heegaard, Niels Henrik Helweg

    2013-01-01

    granules, SVs, and plasma membrane has been performed before. Here, we performed subcellular fractionation on freshly isolated human neutrophils by nitrogen cavitation and density centrifugation on a four-layer Percoll gradient. Granule subsets were pooled and subjected to SDS-PAGE, and gel pieces were in...... subcellular proteome profiles presented here may be used as a database in combination with the mRNA array database to predict and test the presence and localization of proteins in neutrophil granules and membranes....

  16. In vivo study of indomethacin in bronchiectasis: effect on neutrophil function and lung secretion.

    Science.gov (United States)

    Llewellyn-Jones, C G; Johnson, M M; Mitchell, J L; Pye, A; Okafor, V C; Hill, S L; Stockley, R A

    1995-09-01

    Bronchiectasis is associated with sputum containing high levels of the proteolytic enzyme elastase, which is thought to be involved in the pathogenesis of the disease. Agents which inhibit neutrophil function and interfere with neutrophil elastase release may have a beneficial effect on the development and progression of such diseases. We have studied the effects of the nonsteroidal anti-inflammatory agent indomethacin on neutrophil function in nine patients with clinically stable bronchiectasis. All patients remained clinically stable during the study. We observed a significant reduction in peripheral neutrophil chemotaxis to 10 nmol.L-1 N-formyl-methionyl-leucyl-phenylalanine (FMLP) from a mean of 19.86 (SEM 1.35) to 8.46 (0.68) cells.field-1 after 4 weeks of therapy. There was also a significant reduction in fibronectin degradation both by resting and FMLP-stimulated neutrophils, from a mean of 1.90 (0.19) micrograms x 3 x 10(5) cells at the start of therapy to 0.87 (0.08) micrograms after 4 weeks, and from 3.17 (0.35) micrograms to 1.48 (0.05) micrograms, respectively. There was no effect on spontaneous or stimulated superoxide anion generation by neutrophils. Despite the marked changes in peripheral neutrophil function, no adverse effect was observed on viable bacterial load in the bronchial secretions. In addition, there was no difference in sputum albumin, elastase or myeloperoxidase levels, and only minor changes in the chemotactic activity of the sputum. These results suggest that nonsteroidal anti-inflammatory agents have a major effect on peripheral neutrophil function but do not appear to have an adverse effect on bacterial colonization of the airways.

  17. Heterogeneity of Human Neutrophil CD177 Expression Results from CD177P1 Pseudogene Conversion.

    Directory of Open Access Journals (Sweden)

    Zuopeng Wu

    2016-05-01

    Full Text Available Most humans harbor both CD177neg and CD177pos neutrophils but 1-10% of people are CD177null, placing them at risk for formation of anti-neutrophil antibodies that can cause transfusion-related acute lung injury and neonatal alloimmune neutropenia. By deep sequencing the CD177 locus, we catalogued CD177 single nucleotide variants and identified a novel stop codon in CD177null individuals arising from a single base substitution in exon 7. This is not a mutation in CD177 itself, rather the CD177null phenotype arises when exon 7 of CD177 is supplied entirely by the CD177 pseudogene (CD177P1, which appears to have resulted from allelic gene conversion. In CD177 expressing individuals the CD177 locus contains both CD177P1 and CD177 sequences. The proportion of CD177hi neutrophils in the blood is a heritable trait. Abundance of CD177hi neutrophils correlates with homozygosity for CD177 reference allele, while heterozygosity for ectopic CD177P1 gene conversion correlates with increased CD177neg neutrophils, in which both CD177P1 partially incorporated allele and paired intact CD177 allele are transcribed. Human neutrophil heterogeneity for CD177 expression arises by ectopic allelic conversion. Resolution of the genetic basis of CD177null phenotype identifies a method for screening for individuals at risk of CD177 isoimmunisation.

  18. CD177 modulates human neutrophil migration through activation-mediated integrin and chemoreceptor regulation.

    Science.gov (United States)

    Bai, Ming; Grieshaber-Bouyer, Ricardo; Wang, Junxia; Schmider, Angela B; Wilson, Zachary S; Zeng, Liling; Halyabar, Olha; Godin, Matthew D; Nguyen, Hung N; Levescot, Anaïs; Cunin, Pierre; Lefort, Craig T; Soberman, Roy J; Nigrovic, Peter A

    2017-11-09

    CD177 is a glycosylphosphatidylinositol (GPI)-anchored protein expressed by a variable proportion of human neutrophils that mediates surface expression of the antineutrophil cytoplasmic antibody antigen proteinase 3. CD177 associates with β2 integrins and recognizes platelet endothelial cell adhesion molecule 1 (PECAM-1), suggesting a role in neutrophil migration. However, CD177 pos neutrophils exhibit no clear migratory advantage in vivo, despite interruption of in vitro transendothelial migration by CD177 ligation. We sought to understand this paradox. Using a PECAM-1-independent transwell system, we found that CD177 pos and CD177 neg neutrophils migrated comparably. CD177 ligation selectively impaired migration of CD177 pos neutrophils, an effect mediated through immobilization and cellular spreading on the transwell membrane. Correspondingly, CD177 ligation enhanced its interaction with β2 integrins, as revealed by fluorescence lifetime imaging microscopy, leading to integrin-mediated phosphorylation of Src and extracellular signal-regulated kinase (ERK). CD177-driven cell activation enhanced surface β2 integrin expression and affinity, impaired internalization of integrin attachments, and resulted in ERK-mediated attenuation of chemokine signaling. We conclude that CD177 signals in a β2 integrin-dependent manner to orchestrate a set of activation-mediated mechanisms that impair human neutrophil migration. © 2017 by The American Society of Hematology.

  19. Characterization of a receptor for human monocyte-derived neutrophil chemotactic factor/interleukin-8

    International Nuclear Information System (INIS)

    Grob, P.M.; David, E.; Warren, T.C.; DeLeon, R.P.; Farina, P.R.; Homon, C.A.

    1990-01-01

    Monocyte-derived neutrophil chemotactic factor/interleukin-8 (MDNCF/IL-8) is an 8,000-dalton protein produced by monocytes which exhibits activity as a chemoattractant for neutrophils with maximal activity achieved at a concentration of 50 ng/ml. This polypeptide has been iodinated by chloramine-T methodology (350 Ci/mM), and specific receptors for MDNCF/IL-8 have been detected on human neutrophils, U937 cells, THP-1 cells, and dimethyl sulfoxide-differentiated HL-60 cells. The binding of MDNCF/IL-8 to human neutrophils is not inhibited by interleukin-1 alpha, tumor necrosis factor-alpha, insulin, or epidermal growth factor. In addition, chemoattractants such as C5a, fMet-Leu-Phe, leukotriene B4, and platelet-activating factor fail to inhibit binding, suggesting that MDNCF/IL-8 utilizes a unique receptor. The receptor for MDNCF/IL-8 is apparently glycosylated since ligand binding is inhibited by the presence of wheat germ agglutinin, a lectin with a binding specificity for N-acetylglucosamine and neuraminic acid. Steady state binding experiments indicate Kd values of 4 and 0.5 nM and receptor numbers of 75,000 and 7,400 for human neutrophils and differentiated HL-60 cells, respectively. 125I-MDNCF/IL-8 bound to human neutrophils is rapidly internalized and subsequently released from cells as trichloroacetic acid-soluble radioactivity. Affinity labeling experiments suggest that the human neutrophil MDNCF/IL-8 receptor exhibits a mass of approximately 58,000 daltons

  20. Coccidioides Endospores and Spherules Draw Strong Chemotactic, Adhesive, and Phagocytic Responses by Individual Human Neutrophils.

    Directory of Open Access Journals (Sweden)

    Cheng-Yuk Lee

    Full Text Available Coccidioides spp. are dimorphic pathogenic fungi whose parasitic forms cause coccidioidomycosis (Valley fever in mammalian hosts. We use an innovative interdisciplinary approach to analyze one-on-one encounters between human neutrophils and two forms of Coccidioides posadasii. To examine the mechanisms by which the innate immune system coordinates different stages of the host response to fungal pathogens, we dissect the immune-cell response into chemotaxis, adhesion, and phagocytosis. Our single-cell technique reveals a surprisingly strong response by initially quiescent neutrophils to close encounters with C. posadasii, both from a distance (by complement-mediated chemotaxis as well as upon contact (by serum-dependent adhesion and phagocytosis. This response closely resembles neutrophil interactions with Candida albicans and zymosan particles, and is significantly stronger than the neutrophil responses to Cryptococcus neoformans, Aspergillus fumigatus, and Rhizopus oryzae under identical conditions. The vigorous in vitro neutrophil response suggests that C. posadasii evades in vivo recognition by neutrophils through suppression of long-range mobilization and recruitment of the immune cells. This observation elucidates an important paradigm of the recognition of microbes, i.e., that intact immunotaxis comprises an intricate spatiotemporal hierarchy of distinct chemotactic processes. Moreover, in contrast to earlier reports, human neutrophils exhibit vigorous chemotaxis toward, and frustrated phagocytosis of, the large spherules of C. posadasii under physiological-like conditions. Finally, neutrophils from healthy donors and patients with chronic coccidioidomycosis display subtle differences in their responses to antibody-coated beads, even though the patient cells appear to interact normally with C. posadasii endospores.

  1. Activation of Triggering Receptor Expressed on Myeloid Cells-1 on Human Neutrophils by Marburg and Ebola Viruses

    National Research Council Canada - National Science Library

    Mohamadzadeh, Mansour; Coberley, Sadie S; Olinger, Gene G; Kalina, Warren V; Ruthel, Gordon; Fullter, Claudette L; Swenson, Dana L; Pratt, William D; Kuhns, Douglas B; Schmaljohn, Alan L

    2006-01-01

    .... Here, we report that MARV and EBOV activate TREM-1 on human neutrophils, resulting in DAP12 phosphorylation, TREM-1 shedding, mobilization of intracellular calcium, secretion of proinflammatory...

  2. Evasion of Human Neutrophil-Mediated Host Defense during Toxoplasma gondii Infection.

    Science.gov (United States)

    Lima, Tatiane S; Gov, Lanny; Lodoen, Melissa B

    2018-02-13

    Neutrophils are a major player in host immunity to infection; however, the mechanisms by which human neutrophils respond to the intracellular protozoan parasite Toxoplasma gondii are still poorly understood. In the current study, we found that, whereas primary human monocytes produced interleukin-1beta (IL-1β) in response to T. gondii infection, human neutrophils from the same blood donors did not. Moreover, T. gondii inhibited lipopolysaccharide (LPS)-induced IL-1β synthesis in human peripheral blood neutrophils. IL-1β suppression required active parasite invasion, since heat-killed or mycalolide B-treated parasites did not inhibit IL-1β release. By investigating the mechanisms involved in this process, we found that T. gondii infection of neutrophils treated with LPS resulted in reduced transcript levels of IL-1β and NLRP3 and reduced protein levels of pro-IL-1β, mature IL-1β, and the inflammasome sensor NLRP3. In T. gondii -infected neutrophils stimulated with LPS, the levels of MyD88, TRAF6, IKKα, IKKβ, and phosphorylated IKKα/β were not affected. However, LPS-induced IκBα degradation and p65 phosphorylation were reduced in T. gondii- infected neutrophils, and degradation of IκBα was reversed by treatment with the proteasome inhibitor MG-132. Finally, we observed that T. gondii inhibited the cleavage and activity of caspase-1 in human neutrophils. These results indicate that T. gondii suppression of IL-1β involves a two-pronged strategy whereby T. gondii inhibits both NF-κB signaling and activation of the NLRP3 inflammasome. These findings represent a novel mechanism of T. gondii evasion of human neutrophil-mediated host defense by targeting the production of IL-1β. IMPORTANCE Toxoplasma gondii is an obligate intracellular parasite that infects approximately one-third of humans worldwide and can invade virtually any nucleated cell in the human body. Although it is well documented that neutrophils infiltrate the site of acute T

  3. Neutrophil-mediated protection of cultured human vascular endothelial cells from damage by growing Candida albicans hyphae

    International Nuclear Information System (INIS)

    Edwards, J.E. Jr.; Rotrosen, D.; Fontaine, J.W.; Haudenschild, C.C.; Diamond, R.D.

    1987-01-01

    Interactions were studied between human neutrophils and cultured human umbilical vein endothelial cells invaded by Candida albicans. In the absence of neutrophils, progressive Candida germination and hyphal growth extensively damaged endothelial cell monolayers over a period of 4 to 6 hours, as determined both by morphological changes and release of 51 Cr from radiolabeled endothelial cells. Monolayers were completely destroyed and replaced by hyphae after 18 hours of incubation. In contrast, when added 2 hours after the monolayers had been infected with Candida, neutrophils selectively migrated toward and attached to hyphae at points of hyphal penetration into individual endothelial cells (observed by time-lapse video-microscopy). Attached neutrophils spread over hyphal surfaces both within and beneath the endothelial cells; neutrophil recruitment to initial sites of leukocyte-Candida-endothelial cell interactions continued throughout the first 60 minutes of observation. Neutrophil spreading and stasis were observed only along Candida hyphae and at sites of Candida-endothelial cell interactions. These events resulted in 58.0% killing of Candida at 2 hours and subsequent clearance of Candida from endothelial cell monolayers, as determined by microcolony counts and morphological observation. On introduction of additional neutrophils to yield higher ratios of neutrophils to endothelial cells (10 neutrophils:1 endothelial cell), neutrophil migration toward hyphal elements continued. Despite retraction or displacement of occasional endothelial cells by invading Candida and neutrophils, most endothelial cells remained intact, viable, and motile as verified both by morphological observations and measurement of 51 Cr release from radiolabeled monolayers

  4. Data on human neutrophil activation induced by pepducins with amino acid sequences derived from β2AR and CXCR4

    Directory of Open Access Journals (Sweden)

    André Holdfeldt

    2016-09-01

    Full Text Available The data described here is related to the research article titled (Gabl et al., 2016 [1]. Pepducins with peptide sequence derived from one of the intracellular domains of a given G-protein coupled receptor (GPCR can either activate or inhibit cell functions. Here we include data on human neutrophil function induced by pepducins derived from β2AR (ICL3-8 and CXCR4 (ATI-2341, respectively. ICL3-8 exerts neither direct activating effect on the NADPH-oxidase as measured by superoxide release nor inhibitory effect on FPR signaling. ATI-2341 dose-dependently triggers neutrophil activation and these cells were subsequently desensitized in their response to FPR2 specific agonists F2Pal10 and WKYMVM. Moreover, the ATI-2341 response is inhibited by PBP10 and the peptidomimetic Pam-(Lys-betaNSpe6-NH2 (both are FPR2 specific inhibitors, but not to the FPR1 specific inhibitor cyclosporine H.

  5. Products of neutrophils and eosinophils increase the responsiveness of human isolated bronchial tissue.

    Science.gov (United States)

    Hallahan, A R; Armour, C L; Black, J L

    1990-05-01

    This study examines the possibility that products of neutrophils and eosinophils could increase the responsiveness of human isolated bronchial tissue. Neutrophils and eosinophils were isolated from the peripheral blood of healthy volunteers. The cells were incubated with 1 microM calcium ionophore A23187 for 10-15 min then centrifuged, the supernatant collected and stored at -70 degrees C. Human bronchial rings (2-3 mm diameter, 3-4 mm long) were prepared from specimens resected at thoracotomy. The tissues were suspended in organ baths under a 1 g load and changes in tension measured isometrically. Stable contractions to bolus doses of histamine (0.1-10 microM) or to electrical field stimulation (40-100 V, 4-16 Hz, 1 ms for 20 s) were established. Supernatant from 106 neutrophils or 105 eosinophils was then added and tissue responsiveness reassessed. Neutrophil supernatant increased tissue responsiveness to histamine and electrical field stimulation by 54 +/- 17% (n = 5, p less than 0.05) and 18 +/- 7% (n = 6, p less than 0.05), respectively. Eosinophil supernatant increased the histamine response by 60 +/- 23% (n = 8, p less than 0.05) while tissue responsiveness to electrical field stimulation was unchanged (n = 3). Thus, as neutrophils and eosinophils can change the responsiveness of human bronchus in vitro it is possible that they do this in vivo and may not simply be temporally related to the development of bronchial hyperresponsiveness.

  6. The influence of blood glucose on neutrophil function in individuals without diabetes.

    Science.gov (United States)

    Saito, Yuriko; Takahashi, Ippei; Iwane, Kaori; Okubo, Noriyuki; Nishimura, Miya; Matsuzaka, Masashi; Wada, Naoko; Miwa, Takashi; Umeda, Takashi; Nakaji, Shigeyuki

    2013-01-01

    We assessed the association of neutrophil function with glycated hemoglobin (HbA1c) levels in a Japanese general population. Participants were 809 males and females who were over 20 years old living in the Iwaki region in Aomori Prefecture located in northern Japan. Lifestyle parameters (smoking, alcohol consumption, and exercise habits), HbA1c and neutrophil function such as reactive oxygen species (ROS) production capability and phagocytic activity (PA) were measured. ROS production capability was measured before and after phagocytic stimulus to obtain basal ROS production and stimulated ROS production. Level of HbA1c had a positive correlation with basal ROS production (p=0.053), a negative correlation with stimulated ROS production (p=0.072) and PA (p=0.059) only in post-menopausal groups, and not in pre-menopausal groups. However, there were no correlations between levels of HbA1c and neutrophil functions in male. In conclusion, in the present study, despite the presence of diabetes, chronic hyperglycemia was found to cause an increase in daily basal ROS production of neutrophils, and increased susceptibility to infection caused by reduced neutrophilic reaction in females in their menopause. Therefore, from the oxidative point of view, strict glycemic control is necessary to prevent post-menopausal females from developing diabetic complications in spite of the presence of diabetes. Copyright © 2013 John Wiley & Sons, Ltd.

  7. The effect of N-nitrosodimethylamine (NDMA) on Bax and Mcl-1 expression in human neutrophils.

    Science.gov (United States)

    Jablonski, Jakub; Jablonska, Ewa; Leonik, Agnieszka

    2011-12-01

    In the present study we examined a role of pro-apoptotic Bax and anti-apoptotic Mcl-1 proteins, participating in the regulation of intrinsic apoptosis pathway in human neutrophils (PMNs) exposed to N-nitrosodimethylamine (NDMA), the environmental xenobiotic. For the purpose comparison, the same studies were conducted in autologous peripheral blood mononuclear cells (PBMCs). The production of cytochrome c by PMNs was also determined. A deficit of anti-apoptotic Mcl-1 and overexpression of the pro-apoptotic protein Bax suggest that the apoptosis process in human neutrophils exposed to NDMA is dependent on changes in the expression of these proteins. PMNs were more sensitive to NDMA than PBMCs.

  8. Neutrophil-induced human bronchial hyperresponsiveness in vitro--pharmacological modulation.

    Science.gov (United States)

    Hughes, J M; McKay, K O; Johnson, P R; Tragoulias, S; Black, J L; Armour, C L

    1993-04-01

    Although it has been postulated that inflammatory cells cause the bronchial hyperresponsiveness which is diagnostic of asthma, until recently there has been little direct evidence of such a link. We have recently shown that calcium ionophore-activated human neutrophils and eosinophils can induce a state of human airway hyperresponsiveness in vitro. In this study we have shown that the anti-inflammatory agent nedocromil sodium, 10(-7) M, inhibited the hyperresponsiveness induced by products released from ionophore activated neutrophils but did not inhibit the release of leukotriene B4 from the same cells. Neutrophil-induced bronchial hyperresponsiveness was also inhibited by pre-treatment of the bronchial tissues with a thromboxane A2 and prostaglandin receptor antagonist, GR32191, 10(-7) M. These findings indicate that cyclooxygenase products are involved in bronchial hyperresponsiveness induced by inflammatory cell products in vitro and that their release can be inhibited by nedocromil sodium.

  9. Multiple lupus-associated ITGAM variants alter Mac-1 functions on neutrophils.

    Science.gov (United States)

    Zhou, Yebin; Wu, Jianming; Kucik, Dennis F; White, Nathan B; Redden, David T; Szalai, Alexander J; Bullard, Daniel C; Edberg, Jeffrey C

    2013-11-01

    Multiple studies have demonstrated that single-nucleotide polymorphisms (SNPs) in the ITGAM locus (including the nonsynonymous SNPs rs1143679, rs1143678, and rs1143683) are associated with systemic lupus erythematosus (SLE). ITGAM encodes the protein CD11b, a subunit of the β2 integrin Mac-1. The purpose of this study was to determine the effects of ITGAM genetic variation on the biologic functions of neutrophil Mac-1. Neutrophils from ITGAM-genotyped and -sequenced healthy donors were isolated for functional studies. The phagocytic capacity of neutrophil ITGAM variants was probed with complement-coated erythrocytes, serum-treated zymosan, heat-treated zymosan, and IgG-coated erythrocytes. The adhesion capacity of ITGAM variants, in adhering to either purified intercellular adhesion molecule 1 or tumor necrosis factor α-stimulated endothelial cells, was assessed in a flow chamber. Expression levels of total CD11b and activation of CD11b were assessed by flow cytometry. Mac-1-mediated neutrophil phagocytosis, determined in cultures with 2 different complement-coated particles, was significantly reduced in individuals with nonsynonymous variant alleles of ITGAM. This reduction in phagocytosis was related to variation at either rs1143679 (in the β-propeller region) or rs1143678/rs1143683 (highly linked SNPs in the cytoplasmic/calf-1 regions). Phagocytosis mediated by Fcγ receptors was also significantly reduced in donors with variant ITGAM alleles. Similarly, firm adhesion of neutrophils was significantly reduced in individuals with variant ITGAM alleles. These functional alterations were not attributable to differences in total receptor expression or activation. The nonsynonymous ITGAM variants rs1143679 and rs1143678/rs113683 contribute to altered Mac-1 function on neutrophils. These results underscore the need to consider multiple nonsynonymous SNPs when assessing the functional consequences of ITGAM variation on immune cell processes and the risk of SLE

  10. Inductive potential of recombinant human granulocyte colony-stimulating factor to mature neutrophils from X-irradiated human peripheral blood hematopoietic progenitor cells

    International Nuclear Information System (INIS)

    Katsumori, Takeo; Yoshino, Hironori; Hayashi, Masako; Takahashi, Kenji; Kashiwakura, Ikuo

    2009-01-01

    Recombinant human granulocyte colony-stimulating factor (rhG-CSF) has been used for treatment of neutropenia. Filgrastim, Nartograstim, and Lenograstim are clinically available in Japan. However, the differences in potential benefit for radiation-induced disorder between these types of rhG-CSFs remain unknown. Therefore, the effects of three different types of rhG-CSFs on granulocyte progenitor cells and expansion of neutrophils from nonirradiated or 2 Gy X-irradiated human CD34 + hematopoietic progenitor cells were examined. For analysis of granulocyte colony-forming units (CFU-G) and a surviving fraction of CFU-G, nonirradiated or X-irradiated CD34 + cells were cultured in methylcellulose containing rhG-CSF. These cells were cultured in serum-free medium supplemented with rhG-CSF, and the expansion and characteristics of neutrophils were analyzed. All three types of rhG-CSFs increased the number of CFU-G in a dose-dependent manner; however, Lenograstim is superior to others because of CFU-G-derived colony formation at relatively low doses. The surviving fraction of CFU-G was independent of the types of rhG-CSFs. Expansion of neutrophils by rhG-CSF was largely attenuated by X-irradiation, though no significant difference in neutrophil number was observed between the three types of rhG-CSFs under both nonirradiation and X-irradiation conditions. In terms of functional characteristics of neutrophils, Lenograstim-induced neutrophils produced high levels of reactive oxygen species compared to Filgrastim, when rhG-CSF was applied to nonirradiated CD34 + cells. In conclusion, different types of rhG-CSFs lead to different effects when rhG-CSF is applied to nonirradiated CD34 + cells, though Filgrastim, Nartograstim, and Lenograstim show equal effects on X-irradiated CD34 + cells. (author)

  11. Indium-111 labeling of leukocytes: a detrimental effect on neutrophil and lymphocyte function and an improved method of cell labelling

    International Nuclear Information System (INIS)

    Segal, A.W.; Deteix, P.; Garcia, R.; Tooth, P.; Zanelli, G.D.; Allison, A.C.

    1978-01-01

    A technique for the labeling of cells with the gamma emitter indium-111 has recently been developed. In this study the effects of the labeling procedure on some in vitro functions of human neutrophils and lymphocytes were investigated. With the standard labeling procedure, neutrophil chemotaxis was reduced to approximately 50% of normal and lymphocytes lost surface receptors and failed to respond to stimulation with phytohemagglutinin. The 8-hydroxyquinoline that is used to chelate the indium is toxic to lymphocytes; accordingly the relationship between the quantity of oxine, the chelation of indium, and cell labeling were investigated. Optimal conditions for In-111 cell labeling were established: 100 million cells in 10 ml Hanks' balanced salt solution are mixed with 5 μg of oxine in a mixture of 50 μl of ethanol and 200 μl of saline; they are incubated at 37 0 C for 10 min and then washed. Initially, neutrophils and lymphocytes appear functionally normal, but after 24 to 48 hr lymphocyte function is impaired as a result of radiation damage. This toxicity may limit studies by external scanning on the distribution and kinetics of lymphocytes labeled with In-111

  12. Cultured rat and purified human Pneumocystis carinii stimulate intra- but not extracellular free radical production in human neutrophils

    DEFF Research Database (Denmark)

    Jensen, T; Aliouat, E M; Lundgren, B

    1998-01-01

    The production of free radicals in human neutrophils was studied in both Pneumocystis carinii derived from cultures of L2 rat lung epithelial-like cells and Pneumocystis carinii purified from human lung. Using the cytochrome C technique, which selectively measured extracellular superoxide...... generation, hardly any free radical production was observed after stimulation with cultured rat-derived P. carinii. A chemiluminescence technique, which separately measured intra- and extracellular free radical production, was subsequently employed to differentiate the free radical generation....... It was established that 1) P. carinii stimulated intra- but not extracellular free radical production in human neutrophils, 2) opsonized cultured rat-derived P. carinii stimulated human neutrophils to a strong intracellular response of superoxide production, and 3) opsonized P. carinii, purified from human lung also...

  13. Aspiration of human neutrophils: effects of shear thinning and cortical dissipation.

    Science.gov (United States)

    Drury, J L; Dembo, M

    2001-12-01

    It is generally accepted that the human neutrophil can be mechanically represented as a droplet of polymeric fluid enclosed by some sort of thin slippery viscoelastic cortex. Many questions remain however about the detailed rheology and chemistry of the interior fluid and the cortex. To address these quantitative issues, we have used a finite element method to simulate the dynamics of neutrophils during micropipet aspiration using various plausible assumptions. The results were then systematically compared with aspiration experiments conducted at eight different combinations of pipet size and pressure. Models in which the cytoplasm was represented by a simple Newtonian fluid (i.e., models without shear thinning) were grossly incapable of accounting for the effects of pressure on the general time scale of neutrophil aspiration. Likewise, models in which the cortex was purely elastic (i.e., models without surface viscosity) were unable to explain the effects of pipet size on the general aspiration rate. Such models also failed to explain the rapid acceleration of the aspiration rate during the final phase of aspiration nor could they account for the geometry of the neutrophil during various phases of aspiration. Thus, our results indicate that a minimal mechanical model of the neutrophil needs to incorporate both shear thinning and surface viscosity to remain valid over a reasonable range of conditions. At low shear rates, the surface dilatation viscosity of the neutrophil was found to be on the order of 100 poise-cm, whereas the viscosity of the interior cytoplasm was on the order of 1000 poise. Both the surface viscosity and the interior viscosity seem to decrease in a similar fashion when the shear rate exceeds approximately 0.05 s(-1). Unfortunately, even models with both surface viscosity and shear thinning studied are still not sufficient to fully explain all the features of neutrophil aspiration. In particular, the very high rate of aspiration during the

  14. YKL-40, a mammalian member of the chitinase family, is a matrix protein of specific granules in human neutrophils

    DEFF Research Database (Denmark)

    Volck, B; Price, P A; Johansen, J S

    1998-01-01

    YKL-40, also called human cartilage glycoprotein-39 (HC gp-39), is a member of family 18 glycosyl hydrolases. YKL-40 is secreted by chondrocytes, synovial cells, and macrophages, and recently it has been reported that YKL-40 has a role as an autoantigen in rheumatoid arthritis (RA). The function...... of patients with RA, and the cells are assumed to play a role in joint destruction in that disorder. Therefore, we examined whether neutrophils are a source of YKL-40. YKL-40 was found to colocalize and comobilize with lactoferrin (the most abundant protein of specific granules) but not with gelatinase...... YKL-40 at the myelocyte-metamyelocyte stage, the stage of maturation at which other specific granule proteins are formed. Assuming that YKL-40 has a role as an autoantigen in RA by inducing T cell-mediated autoimmune response, YKL-40 released from neutrophils in the inflamed joint could be essential...

  15. Use of CFSE staining of borreliae in studies on the interaction between borreliae and human neutrophils

    Directory of Open Access Journals (Sweden)

    Hytönen Jukka

    2006-10-01

    Full Text Available Abstract Background Species of the tick-transmitted spirochete group Borrelia burgdorferi sensu lato (B. burgdorferi cause Lyme borreliosis. Acute borrelial infection of the skin has unusual characteristics with only a mild local inflammatory response suggesting that the interaction between borreliae and the cells of the first-line defence might differ from that of other bacteria. It has been reported that human neutrophils phagocytose motile borreliae through an unconventional mechanism (tube phagocytosis which is not observed with non-motile borreliae. Therefore, it would be of great interest to visualise the bacteria by a method not affecting motility and viability of borreliae to be able to study their interaction with the cells of the innate immunity. Carboxyfluorescein diacetate, succinimidyl ester (CFSE labelling has been previously used for studying the adhesion of labelled bacteria to host cells and the uptake of labelled substrates by various cells using flow cytometry. Results In this study, CFSE was shown to efficiently stain different genospecies of B. burgdorferi without affecting bacterial viability or motility. Use of CFSE staining allowed subsequent quantification of borreliae associated with human neutrophils with flow cytometry and confocal microscopy. As a result, no difference in association between different borrelial genospecies (Borrelia burgdorferi sensu stricto, Borrelia afzelii, Borrelia garinii, or between borreliae and the pyogenic bacterium Streptococcus pyogenes, with neutrophils could be detected. Borrelial virulence, on the other hand, affected association with neutrophils, with significantly higher association of a non-virulent mutant B. burgdorferi sensu stricto strain compared to the parental virulent wild type strain. Conclusion These results suggest that the flow cytometric assay using CFSE labelled borreliae is a valuable tool in the analysis of the interaction between borreliae and human neutrophils. The

  16. Alpha-1-antitrypsin is produced by human neutrophil granulocytes and their precursors and liberated during granule exocytosis

    DEFF Research Database (Denmark)

    Clemmensen, Stine N; Jacobsen, Lars C; Rørvig, Sara

    2011-01-01

    Alpha-1-antitrypsin (A1AT) is an important inhibitor of neutrophil proteases including elastase, cathepsin G, and proteinase 3. Transcription profiling data suggest that A1AT is expressed by human neutrophil granulocytes during all developmental stages. A1AT has hitherto only been found associate...... significantly to the antiprotease levels in tissues during inflammation. Impaired binding of neutrophil A1AT to serine proteases in patients with (PI)ZZ mutations may enhance their susceptibility to the development of emphysema....

  17. Minocycline affects human neutrophil respiratory burst and transendothelial migration.

    Science.gov (United States)

    Parenti, Astrid; Indorato, Boris; Paccosi, Sara

    2017-02-01

    This study aimed at investigating the in vitro activity of minocycline and doxycycline on human polymorphonuclear (h-PMN) cell function. h-PMNs were isolated from whole venous blood of healthy subjects; PMN oxidative burst was measured by monitoring ROS-induced oxidation of luminol and transendothelial migration was studied by measuring PMN migration through a monolayer of human umbilical vein endothelial cells. Differences between multiple groups were determined by ANOVA followed by Tukey's multiple comparison test; Student's t test for unpaired data for two groups. Minocycline (1-300 µM) concentration dependently and significantly inhibited oxidative burst of h-PMNs stimulated with 100 nM fMLP. Ten micromolar concentrations, which are superimposable to C max following a standard oral dose of minocycline, promoted a 29.8 ± 4 % inhibition of respiratory burst (P minocycline impaired PMN transendothelial migration, with maximal effect at 100 µM (42.5 ± 7 %, inhibition, n = 5, P minocycline exerted on innate immune h-PMN cell function.

  18. Taurine modulates neutrophil function but potentiates uropathogenic E. coli infection in the murine bladder.

    LENUS (Irish Health Repository)

    Condron, Claire

    2010-08-01

    Eradication of a urinary tract infection (UTI) appears to be related to a number of innate host defence mechanisms and their interactions with invading bacteria. Recurrent UTIs (rUTIs) pose a difficult problem in that these bacteria use both host and bacterial factors to evade elimination. Neutrophil bactericidal function is depressed, both systemically and in urine, in patients with a history of recurrent UTI. Taurine is a semi-essential amino acid and is successful in preserving neutrophil bactericidal function in urine. Taurine may preserve neutrophil function at the urothelium and thus aid UTI resolution. Adult female (6 weeks old) C57Bl\\/6 mice were randomised into three groups: a saline gavage only control group, a saline gavage + E. coli group, and a taurine gavage + E. coli group [21 g\\/70 kg taurine in 0.9% normal saline (N\\/S) for 5 days]. Whilst taurine gavage pre-treatment resulted in increased serum neutrophils respiratory burst activity, at the urothelial-endothelial interface it caused higher colony forming units in the urine and a higher incidence of E. coli invasion in the bladder wall with no evidence of increased bladder wall neutrophils infiltration on MPO assay of histological assessment. Histologically there was also evidence of reduced bladder inflammation and urothelial cell apoptosis. In conclusion, taurine effectively increases neutrophils activity but given its anti-inflammatory properties, at the expense of decreased urothelial-endothelial activation thus preventing clearance of active E. coli infection in the bladder. Despite the negative results, this study demonstrates the importance of modulating interactions at the urothelial interface.

  19. Achyrocline satureioides (Lam. D.C. Hydroalcoholic Extract Inhibits Neutrophil Functions Related to Innate Host Defense

    Directory of Open Access Journals (Sweden)

    Eric Diego Barioni

    2013-01-01

    Full Text Available Achyrocline satureioides (Lam. D.C. is a herb native to South America, and its inflorescences are popularly employed to treat inflammatory diseases. Here, the effects of the in vivo actions of the hydroalcoholic extract obtained from inflorescences of A. satureioides on neutrophil trafficking into inflamed tissue were investigated. Male Wistar rats were orally treated with A. satureioides extract, and inflammation was induced one hour later by lipopolysaccharide injection into the subcutaneous tissue. The number of leukocytes and the amount of chemotactic mediators were quantified in the inflammatory exudate, and adhesion molecule and toll-like receptor 4 (TLR-4 expressions and phorbol-myristate-acetate- (PMA- stimulated oxidative burst were quantified in circulating neutrophils. Leukocyte-endothelial interactions were quantified in the mesentery tissue. Enzymes and tissue morphology of the liver and kidney were evaluated. Treatment with A. satureioides extract reduced neutrophil influx and secretion of leukotriene B4 and CINC-1 in the exudates, the number of rolling and adhered leukocytes in the mesentery postcapillary venules, neutrophil L-selectin, β2-integrin and TLR-4 expression, and oxidative burst, but did not cause an alteration in the morphology and activities of liver and kidney. Together, the data show that A. satureioides extract inhibits neutrophil functions related to the innate response and does not cause systemic toxicity.

  20. Monoclonal antibodies to antigens on human neutrophils, activated T lymphocytes, and acute leukemia blast cells

    International Nuclear Information System (INIS)

    Miterev, G.Yu.; Burova, G.F.; Puzhitskaya, M.S.; Danilevich, S.V.; Bulycheva, T.I.

    1987-01-01

    The authors describe the production of two mouse hybridomas secreting monoclonal antibodies to antigenic determinants of the surface membranes of human neutrophils, activated T lymphocytes, and acute leukemic blast cells. The degree of lymphocyte stimulation was estimated from incorporation of 3 H-thymidine with parallel microculture. Monoclonal antibodies of supernatants of hybridoma cultures shown here reacted in both immunofluorescence test and cytotoxicity test with surface membrane antigens on the majority of neutrophils and PHA-activated peripheral blood lymphocytes from healthy subjects, but did not give positive reactions with unactivated lymphocytes, adherent monocytes, erythrocytes, and alloantigen-stimulated lymphocytes

  1. Monoclonal antibodies to antigens on human neutrophils, activated T lymphocytes, and acute leukemia blast cells

    Energy Technology Data Exchange (ETDEWEB)

    Miterev, G.Yu.; Burova, G.F.; Puzhitskaya, M.S.; Danilevich, S.V.; Bulycheva, T.I.

    1987-11-01

    The authors describe the production of two mouse hybridomas secreting monoclonal antibodies to antigenic determinants of the surface membranes of human neutrophils, activated T lymphocytes, and acute leukemic blast cells. The degree of lymphocyte stimulation was estimated from incorporation of /sup 3/H-thymidine with parallel microculture. Monoclonal antibodies of supernatants of hybridoma cultures shown here reacted in both immunofluorescence test and cytotoxicity test with surface membrane antigens on the majority of neutrophils and PHA-activated peripheral blood lymphocytes from healthy subjects, but did not give positive reactions with unactivated lymphocytes, adherent monocytes, erythrocytes, and alloantigen-stimulated lymphocytes.

  2. Legionella phosphatase hydrolyzes phosphatidylinositol 4,5-bisphosphate and inosital triphosphate in human neutrophils

    International Nuclear Information System (INIS)

    Dowling, J.N.; Saha, A.K.; Glew, R.H.

    1987-01-01

    Legionella are facultative intracellular bacterial pathogens which multiply in host phagocytes. L. micdadei cells contain an acid phosphatase (ACP) that blocks superoxide anion production by human neutrophils stimulated with the formylated peptide, fMLP. The possibility that ACP acts by interefering with polyphosphoinositide metabolism and the production of the intracellular second messenger, inositol triphosphate (IP 3 ) was explored. When neutrophil phosphoinositides were labeled with 32 P, incubation of the cells with ACP caused an 85% loss of the labeled phosphatidylinositol-4,5-bisphosphate (PIP 2 ) over 2 h. Treatment of [ 3 H]inositol-labeled neutrophils with ACP for 30 min resulted in a 20% decrease of labeled PIP 2 . Following fMLP stimulation, the fractional reduction in PIP 2 and the fractional increase in IP 3 was the same in ACP-treated and untreated neutrophils, but the total quantity of IP 3 was reduced by ACP pre-treatment. The reduction in IP 3 generated following fMLP stimulation seems to be due primarily to the decreased amount of PIP 2 available for hydrolysis. However, some loss of IP 3 due to direct hydrolysis by ACP cannot be ruled out. The Legionella phosphatase may compromise neutrophil response to the bacteria by hydrolyzing PIP 2 , the prognitor of IP 3 , and by hydrolyzing IP 3 itself

  3. Nucleobindin co-localizes and associates with cyclooxygenase (COX-2 in human neutrophils.

    Directory of Open Access Journals (Sweden)

    Patrick Leclerc

    2008-05-01

    Full Text Available The inducible cyclooxygenase isoform (COX-2 is associated with inflammation, tumorigenesis, as well as with physiological events. Despite efforts deployed in order to understand the biology of this multi-faceted enzyme, much remains to be understood. Nucleobindin (Nuc, a ubiquitous Ca(2+-binding protein, possesses a putative COX-binding domain. In this study, we investigated its expression and subcellular localization in human neutrophils, its affinity for COX-2 as well as its possible impact on PGE(2 biosynthesis. Complementary subcellular localization approaches including nitrogen cavitation coupled to Percoll fractionation, immunofluorescence, confocal and electron microscopy collectively placed Nuc, COX-2, and all of the main enzymes involved in prostanoid synthesis, in the Golgi apparatus and endoplasmic reticulum of human neutrophils. Immunoprecipitation experiments indicated a high affinity between Nuc and COX-2. Addition of human recombinant (hr Nuc to purified hrCOX-2 dose-dependently caused an increase in PGE(2 biosynthesis in response to arachidonic acid. Co-incubation of Nuc with COX-2-expressing neutrophil lysates also increased their capacity to produce PGE(2. Moreover, neutrophil transfection with hrNuc specifically enhanced PGE(2 biosynthesis. Together, these results identify a COX-2-associated protein which may have an impact in prostanoid biosynthesis.

  4. Medium-chain, triglyceride-containing lipid emulsions increase human neutrophil beta2 integrin expression, adhesion, and degranulation.

    Science.gov (United States)

    Wanten, G J; Geijtenbeek, T B; Raymakers, R A; van Kooyk, Y; Roos, D; Jansen, J B; Naber, A H

    2000-01-01

    To test the hypothesis that lipid emulsions with different triglyceride structures have distinct immunomodulatory properties, we analyzed human neutrophil adhesion and degranulation after lipid incubation. Neutrophils, isolated from the blood of 10 healthy volunteers, were incubated in medium or physiologic (2.5 mmol/L) emulsions containing long-chain (LCT), medium-chain (MCT), mixed LCT/MCT, or structured (SL) triglycerides. Expression of adhesion molecules and degranulation markers was evaluated by flow cytometry. Also, functional adhesion was investigated by means of a flow cytometric assay using fluorescent beads coated with the integrin ligand intercellular adhesion molecule (ICAM)-1. Although LCT and SL had no effect, LCT/MCT significantly increased expression of the beta2 integrins lymphocyte-function-associated antigen 1 (+18%), macrophage antigen 1 (+387%), p150,95 (+82%), and (alphaDbeta2 (+230%). Degranulation marker expression for azurophilic (CD63, +210%) and specific granules (CD66b, +370%) also significantly increased, whereas L-selectin (CD62L, -70%) decreased. The effects of LCT/MCT were mimicked by the MCT emulsion. ICAM-1 adhesion (% beads bound) was increased by LCT/MCT (34% +/- 4%), whereas LCT (19% +/-3%) and SL (20% +/- 2%) had no effect compared with medium (17% +/- 3%). LCT/MCT and MCT, contrary to LCT and SL emulsions, increased neutrophil beta2 integrin expression, adhesion, and degranulation. Apart from other emulsion constituents, triglyceride chain length might therefore be a key feature in the interaction of lipid emulsions and the phagocyte immune system.

  5. Innate Defense against Influenza A Virus: Activity of Human Neutrophil Defensins and Interactions of Defensins with Surfactant Protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L.; White, Mitchell R.; Tecle, Tesfaldet

    2006-01-01

    Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study...

  6. Periodontal bacteria in human carotid atherothrombosis as a potential trigger for neutrophil activation.

    Science.gov (United States)

    Rangé, Hélène; Labreuche, Julien; Louedec, Liliane; Rondeau, Philippe; Planesse, Cynthia; Sebbag, Uriel; Bourdon, Emmanuel; Michel, Jean-Baptiste; Bouchard, Philippe; Meilhac, Olivier

    2014-10-01

    Epidemiological, biological and clinical links between periodontal and cardiovascular diseases are now well established. Several human studies have detected bacterial DNA corresponding to periodontal pathogens in cardiovascular samples. Intraplaque hemorrhage has been associated with a higher risk of atherosclerotic plaque rupture, potentially mediated by neutrophil activation. In this study, we hypothesized that plaque composition may be related to periodontal pathogens. Carotid culprit plaque samples were collected from 157 patients. Macroscopic characterization was performed at the time of collection: presence of blood, lipid core, calcification and fibrosis. Markers of neutrophil activation released by carotid samples were quantified (myeloperoxidase or MPO, cell-free DNA and DNA-MPO complexes). PCR analysis using specific primers for Porphyromonas gingivalis, Aggregatibacter actinomycetemcommitans, Treponema denticola, Prevotella intermedia and Tannerella forsythia was used to detect DNA from periodontal pathogens in carotid tissues. In addition, bacterial lipopolysaccharide (LPS) and Immunoglobulins G against T. forsythia were quantified in atherosclerotic carotid conditioned medium. Intraplaque hemorrhage was present in 73/157 carotid samples and was associated with neutrophil activation, reflected by the release of MPO, cell-free DNA and MPO-DNA complexes. LPS levels were also linked to intraplaque hemorrhage but not with the neutrophil activation markers. Seventy-three percent of the carotid samples were positive for periodontal bacterial DNA. Furthermore, hemoglobin levels were associated with the detection of T. forsythia and neutrophil activation/inflammation markers. This study suggests a potential role of periodontal microorganisms, especially T. forsythia, in neutrophil activation within hemorrhagic atherosclerotic carotid plaques. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Potent inhibition of human neutrophil activations by bractelactone, a novel chalcone from Fissistigma bracteolatum

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yang-Chang [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan (China); Sureshbabu, Munisamy; Fang, Yao-Ching; Wu, Yi-Hsiu [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Lan, Yu-Hsuan [School of Pharmacy, China Medical University, Taichung 404, Taiwan (China); Chang, Fang-Rong [Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chang, Ya-Wen [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan (China); Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan 333, Taiwan (China)

    2013-02-01

    Fissistigma bracteolatum is widely used in traditional medicine to treat inflammatory diseases. However, its active components and mechanisms of action remain unclear. In this study, (3Z)-6,7-dihydroxy-4-methoxy-3-(phenylmethylidene)-5-(3-phenylpropanoyl) -1-benzofuran-2(3H) (bractelactone), a novel chalcone from F. bracteolatum, showed potent inhibitory effects against superoxide anion (O{sub 2}{sup ·−}) production, elastase release, and CD11b expression in formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP)-induced human neutrophils. However, bractelactone showed only weak inhibition of phorbol myristate acetate-caused O{sub 2}{sup ·−} production. The peak cytosolic calcium concentration ([Ca{sup 2+}]{sub i}) was unaltered by bractelactone in FMLP-induced neutrophils, but the decay time of [Ca{sup 2+}]{sub i} was significantly shortened. In a calcium-free solution, changes in [Ca{sup 2+}]{sub i} caused by the addition of extracellular Ca{sup 2+} were inhibited by bractelactone in FMLP-activated cells. In addition, bractelactone did not alter the phosphorylation of p38 MAPK, ERK, JNK, or AKT or the concentration of cAMP. These results suggest that bractelactone selectively inhibits store-operated calcium entry (SOCE). In agreement with this concept, bractelactone suppressed sustained [Ca{sup 2+}]{sub i} changes in thapsigargin-activated neutrophils. Furthermore, bractelactone did not alter FMLP-induced formation of inositol 1,4,5-triphosphate. Taken together, our results demonstrate that the anti-inflammatory effects of bractelactone, an active ingredient of F. bracteolatum, in human neutrophils are through the selective inhibition of SOCE. Highlights: ► Bractelactone isolated from Fissistigma bracteolatum. ► Bractelactone inhibited FMLP-induced human neutrophil activations. ► Bractelactone had no effect on IP3 formation. ► Bractelactone did not alter MAPKs, AKT, and cAMP pathways. ► Bractelactone inhibited store-operated calcium entry.

  8. Human neutrophil clearance of bacterial pathogens triggers anti-microbial γδ T cell responses in early infection.

    Directory of Open Access Journals (Sweden)

    Martin S Davey

    2011-05-01

    Full Text Available Human blood Vγ9/Vδ2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vγ9/Vδ2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8. In turn, Vγ9/Vδ2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN-γ and tumor necrosis factor (TNF-α. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP, requires cell-cell contact of Vγ9/Vδ2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1, and results in a TNF-α dependent proliferation of Vγ9/Vδ2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting γδ T cell responses in vitro. Patients with acute peritoneal-dialysis (PD-associated bacterial peritonitis--characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity--show a selective activation of local Vγ9/Vδ2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The γδ T cell-driven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of γδ T cells and TNF-α and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive γδ T cells in

  9. Human Neutrophil Clearance of Bacterial Pathogens Triggers Anti-Microbial γδ T Cell Responses in Early Infection

    Science.gov (United States)

    Roberts, Gareth W.; Heuston, Sinéad; Brown, Amanda C.; Chess, James A.; Toleman, Mark A.; Gahan, Cormac G. M.; Hill, Colin; Parish, Tanya; Williams, John D.; Davies, Simon J.; Johnson, David W.; Topley, Nicholas; Moser, Bernhard; Eberl, Matthias

    2011-01-01

    Human blood Vγ9/Vδ2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vγ9/Vδ2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vγ9/Vδ2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-γ and tumor necrosis factor (TNF)-α. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vγ9/Vδ2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-α dependent proliferation of Vγ9/Vδ2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting γδ T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vγ9/Vδ2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The γδ T cell-driven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of γδ T cells and TNF-α and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive γδ T cells in early

  10. Neutrophil Extracellular Traps and Fibrin in Otitis Media: Analysis of Human and Chinchilla Temporal Bones.

    Science.gov (United States)

    Schachern, Patricia A; Kwon, Geeyoun; Briles, David E; Ferrieri, Patricia; Juhn, Steven; Cureoglu, Sebahattin; Paparella, Michael M; Tsuprun, Vladimir

    2017-10-01

    Bacterial resistance in acute otitis can result in bacterial persistence and biofilm formation, triggering chronic and recurrent infections. To investigate the middle ear inflammatory response to bacterial infection in human and chinchilla temporal bones. Six chinchillas underwent intrabullar inoculations with 0.5 mL of 106 colony-forming units (CFUs) of Streptococcus pneumoniae, serotype 2. Two days later, we counted bacteria in middle ear effusions postmortem. One ear from each chinchilla was processed in paraffin and sectioned at 5 µm. The opposite ear was embedded in epoxy resin, sectioned at a thickness of 1 µm, and stained with toluidine blue. In addition, we examined human temporal bones from 2 deceased donors with clinical histories of otitis media (1 with acute onset otitis media, 1 with recurrent infection). Temporal bones had been previously removed at autopsy, processed, embedded in celloidin, and cut at a thickness of 20 µm. Sections of temporal bones from both chinchillas and humans were stained with hematoxylin-eosin and immunolabeled with antifibrin and antihistone H4 antibodies. Histopatological and imminohistochemical changes owing to otitis media. Bacterial counts in chinchilla middle ear effusions 2 days after inoculation were approximately 2 logs above initial inoculum counts. Both human and chinchilla middle ear effusions contained bacteria embedded in a fibrous matrix. Some fibers in the matrix showed positive staining with antifibrin antibody, others with antihistone H4 antibody. In acute and recurrent otitis media, fibrin and neutrophil extracellular traps (NETs) are part of the host inflammatory response to bacterial infection. In the early stages of otitis media the host defense system uses fibrin to entrap bacteria, and NETs function to eliminate bacteria. In chronic otitis media, fibrin and NETs appear to persist.

  11. Postprandial triglyceride-rich lipoproteins promote lipid accumulation and apolipoprotein B-48 receptor transcriptional activity in human circulating and murine bone marrow neutrophils in a fatty acid-dependent manner.

    Science.gov (United States)

    Ortega-Gómez, Almudena; Varela, Lourdes M; López, Sergio; Montserrat de la Paz, Sergio; Sánchez, Rosario; Muriana, Francisco J G; Bermúdez, Beatriz; Abia, Rocío

    2017-09-01

    Postprandial triglyceride-rich lipoproteins (TRLs) promote atherosclerosis. Recent research points the bone marrow (BM) as a primary site in atherosclerosis. We elucidated how the acute administration of monounsaturated fatty acids (MUFAs) MUFAs, omega-3 polyunsaturated fatty acids (PUFAs) PUFAs and saturated fatty acids (SFAs) affects human circulating and murine BM neutrophil lipid accumulation and functionality. Postprandial hypertriglyceridemia was induced in healthy subjects and Apoe -/- mice by the acute administration of dietary fats enriched in MUFAs, PUFAs, or SFAs. Postprandial hypertriglyceridemia increased apolipoprotein-B48 receptor (ApoB48R) transcriptional activity that was linearly correlated with intracellular triglycerides (TGs) TGs accumulation in human circulating and murine BM neutrophils. MUFA and omega-3 PUFAs attenuated ApoB48R gene expression and intracellular TG accumulation compared to SFAs. TRLs induced apoB48R-dependent TG accumulation in human neutrophils ex vivo. Murine BM neutrophils showed a decrease in surface L-selectin and an increase in TNF-α and IL-1β mRNA expressions only after SFAs administration. TRLs enriched in SFAs induced BM neutrophil degranulation ex vivo suggesting cell priming/activation. Postprandial TRLs disrupts the normal biology and function of circulating and BM neutrophils. MUFA- and omega-3 PUFA-rich dietary fats such as virgin olive oil or fish oil has the potential to prevent excessive neutrophil lipid accumulation and activation by targeting the fatty acid composition of TRLs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of progesterone receptor status on maspin synthesis via nitric oxide production in neutrophils in human breast cancer.

    Science.gov (United States)

    Ganguly Bhattacharjee, Karabi; Bhattacharyya, Mau; Halder, Umesh Chandra; Jana, Pradipta; Sinha, Asru K

    2014-09-01

    Although progesterone receptor (PR) status, similarly to estrogen receptor status, is of prognostic importance in breast cancer, the involvement of the PR in breast cancer remains obscure. Studies were conducted to determine the function of the PR in neutrophils in the nitric oxide-induced synthesis of maspin, an anti-breast-cancer protein produced in nonmalignant mammary cells and in neutrophils in the circulation. PR status was determined by immunohistochemistry. Maspin synthesis was determined by in-vitro translation of messenger RNA and quantified by enzyme-linked immunosorbent assay. Nitric oxide was determined by the methemoglobin method. It was found that PR status in neutrophils was identical with that in malignant breast tissues. A Scatchard plot for progesterone binding to normal and PR-positive (PR+) neutrophils revealed that whereas normal neutrophils had 11.5 × 10(10) PR sites/cell with K d = 47.619 nM, PR+ neutrophils had 6.6 × 10(10) PR sites/cell with K d = 47.619 nM. The progesterone negative (PR-) neutrophils failed to bind to progesterone. Incubation of normal and PR+ neutrophils with 25 nM progesterone produced 1.317 μM NO and 2.329 nM maspin; the PR+ neutrophils produced 0.72 μM NO and 1.138 nM maspin. The PR- neutrophils failed to produce any NO or maspin in the presence of progesterone. Inhibition of progesterone-induced NO synthesis led to complete inhibition of maspin synthesis in all neutrophils. These results suggest that estrogen and progesterone complement each other in NO-induced maspin synthesis, and do not necessarily antagonize in the synthesis of the anti-breast-cancer protein.

  13. Tamoxifen induces apoptotic neutrophil efferocytosis in horses.

    Science.gov (United States)

    Olave, C; Morales, N; Uberti, B; Henriquez, C; Sarmiento, J; Ortloff, A; Folch, H; Moran, G

    2018-03-01

    Macrophages and neutrophils are important cellular components in the process of acute inflammation and its subsequent resolution, and evidence increasingly suggests that they play important functions during the resolution of chronic, adaptive inflammatory processes. Exacerbated neutrophil activity can be harmful to surrounding tissues; this is important in a range of diseases, including allergic asthma and chronic obstructive pulmonary disease in humans, and equine asthma (also known as recurrent airway obstruction (RAO). Tamoxifen (TX) is a non-steroidal estrogen receptor modulator with effects on cell growth and survival. Previous studies showed that TX treatment in horses with induced acute pulmonary inflammation promoted early apoptosis of blood and BALF neutrophils, reduction of BALF neutrophils, and improvement in animals' clinical status. The aim of this study was to describe if TX induces in vitro efferocytosis of neutrophils by alveolar macrophages. Efferocytosis assay, myeloperoxidase (MPO) detection and translocation phosphatidylserine (PS) were performed on neutrophils isolated from peripheral blood samples from five healthy horses. In in vitro samples from heathy horses, TX treatment increases the phenomenon of efferocytosis of peripheral neutrophils by alveolar macrophages. Similar increases in supernatant MPO concentration and PS translocation were observed in TX-treated neutrophils, compared to control cells. In conclusion, these results confirm that tamoxifen has a direct effect on equine peripheral blood neutrophils, through stimulation of the engulfment of apoptotic neutrophils by alveolar macrophages.

  14. The Natural Stilbenoid Piceatannol Decreases Activity and Accelerates Apoptosis of Human Neutrophils: Involvement of Protein Kinase C

    Directory of Open Access Journals (Sweden)

    Viera Jancinova

    2013-01-01

    Full Text Available Neutrophils are able to release cytotoxic substances and inflammatory mediators, which, along with their delayed apoptosis, have a potential to maintain permanent inflammation. Therefore, treatment of diseases associated with chronic inflammation should be focused on neutrophils; formation of reactive oxygen species and apoptosis of these cells represent two promising targets for pharmacological intervention. Piceatannol, a naturally occurring stilbenoid, has the ability to reduce the toxic action of neutrophils. This substance decreased the amount of oxidants produced by neutrophils both extra- and intracellularly. Radicals formed within neutrophils (fulfilling a regulatory role were reduced to a lesser extent than extracellular oxidants, potentially dangerous for host tissues. Moreover, piceatannol did not affect the phosphorylation of p40phox—a component of NADPH oxidase, responsible for the assembly of functional oxidase in intracellular (granular membranes. The stilbenoid tested elevated the percentage of early apoptotic neutrophils, inhibited the activity of protein kinase C (PKC—the main regulatory enzyme in neutrophils, and reduced phosphorylation of PKC isoforms α, βII, and δ on their catalytic region. The results indicated that piceatannol may be useful as a complementary medicine in states associated with persisting neutrophil activation and with oxidative damage of tissues.

  15. Human neutrophil peptides and complement factor Bb in pathogenesis of acquired thrombotic thrombocytopenic purpura.

    Science.gov (United States)

    Cao, Wenjing; Pham, Huy P; Williams, Lance A; McDaniel, Jenny; Siniard, Rance C; Lorenz, Robin G; Marques, Marisa B; Zheng, X Long

    2016-11-01

    Acquired thrombotic thrombocytopenic purpura is primarily caused by the deficiency of plasma ADAMTS13 activity resulting from autoantibodies against ADAMTS13. However, ADAMTS13 deficiency alone is often not sufficient to cause acute thrombotic thrombocytopenic purpura. Infections or systemic inflammation may precede acute bursts of the disease, but the underlying mechanisms are not fully understood. Herein, 52 patients with acquired autoimmune thrombotic thrombocytopenic purpura and 30 blood donor controls were recruited for the study. The plasma levels of human neutrophil peptides 1-3 and complement activation fragments (i.e. Bb, iC3b, C4d, and sC5b-9) were determined by enzyme-linked immunosorbent assays. Univariate analyses were performed to determine the correlation between each biomarker and clinical outcomes. We found that the plasma levels of human neutrophil peptides 1-3 and Bb in patients with acute thrombotic thrombocytopenic purpura were significantly higher than those in the control (Ppurpura patients and the control. We conclude that innate immunity, i.e. neutrophil and complement activation via the alternative pathway, may play a role in the pathogenesis of acute autoimmune thrombotic thrombocytopenic purpura, and a therapy targeted at these pathways may be considered in a subset of these patients. Copyright© Ferrata Storti Foundation.

  16. Indomethacin increases the formation of lipoxygenase products in calcium ionophore stimulated human neutrophils.

    Science.gov (United States)

    Docherty, J C; Wilson, T W

    1987-10-29

    Arachidonic acid metabolism in human neutrophils stimulated in vitro with the calcium ionophore A23187 was studied using combined HPLC and radioimmunoassays. Indomethacin (0.1 and 1.0 microM) caused a 300% increase in LTB4 formation in neutrophils stimulated with A23187. 5-, 12- and 15-HETE levels were also increased. In the presence of exogenous arachidonic acid 1.0 microM Indomethacin caused a 37% increase in LTB4 formation. Acetyl Salicylic Acid and Ibuprofen had no effect on the formation of lipoxygenase metabolites. The effect of indomethacin on LTB4 formation does not appear to be due to a simple redirection of substrate arachidonic acid from the cyclooxygenase to the lipoxygenase pathways.

  17. Amburanins A and B from Amburana cearensis: daphnodorin-type biflavonoids that modulate human neutrophil degranulation

    Energy Technology Data Exchange (ETDEWEB)

    Canuto, Kirley M.; Silveira, Edilberto R., E-mail: edil@ufc.br [Universidade Federal do Ceara (UFCE), Fortaleza, CE (Brazil). Departamento de Quimica Organica e Inorganica; Leal, Luzia K.A.M.; Lopes, Amanda A. [Universidade Federal do Ceara (CEFAC/UFCE), Fortaleza, CE (Brazil). Centro de Estudos Farmaceuticos e Cosmeticos. Departamento de Farmacia; Coleman, Christina M.; Ferreira, Daneel [Department of Pharmacognosy and the Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, MS (United States)

    2014-04-15

    Two new biflavonoids 3,5,7,4'-tetrahydroxyflavanone-(2→O→4':3→3')-2',4',6',4- tetrahydroxydihydrochalcone (1) and 3,5,7,4'-tetrahydroxyflavanone-(2→O→7:3→8)-3,4',5,7-tetrahydroxyflavone (2), named as amburanin A and amburanin B, respectively, were isolated from the trunk bark of Amburana cearensis, and their structures elucidated on the basis of spectroscopic analysis and by comparison with literature data. The effects of 1 and 2 on the pro-inflammatory response of human neutrophils were investigated (0.1; 1; 25; 50 e 100 μg mL{sup -1}). At concentration higher than 25 μg mL{sup -1}, both compounds suppressed nearly 92% of the neutrophil degranulation and 53% of myeloperoxidase activity, thus indicating that they are potential anti-inflammatory lead compounds. (author)

  18. Amburanins A and B from Amburana cearensis: daphnodorin-type biflavonoids that modulate human neutrophil degranulation

    Energy Technology Data Exchange (ETDEWEB)

    Canuto, Kirley M.; Silveira, Edilberto R., E-mail: edil@ufc.br [Universidade Federal do Ceara (UFCE), Fortaleza, CE (Brazil). Departamento de Quimica Organica e Inorganica; Leal, Luzia K.A.M.; Lopes, Amanda A. [Universidade Federal do Ceara (CEFAC/UFCE), Fortaleza, CE (Brazil). Centro de Estudos Farmaceuticos e Cosmeticos. Departamento de Farmacia; Coleman, Christina M.; Ferreira, Daneel [Department of Pharmacognosy and the Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, MS (United States)

    2014-04-15

    Two new biflavonoids 3,5,7,4'-tetrahydroxyflavanone-(2→O→4':3→3')-2',4',6',4- tetrahydroxydihydrochalcone (1) and 3,5,7,4'-tetrahydroxyflavanone-(2→O→7:3→8)-3,4',5,7-tetrahydroxyflavone (2), named as amburanin A and amburanin B, respectively, were isolated from the trunk bark of Amburana cearensis, and their structures elucidated on the basis of spectroscopic analysis and by comparison with literature data. The effects of 1 and 2 on the pro-inflammatory response of human neutrophils were investigated (0.1; 1; 25; 50 e 100 μg mL{sup -1}). At concentration higher than 25 μg mL{sup -1}, both compounds suppressed nearly 92% of the neutrophil degranulation and 53% of myeloperoxidase activity, thus indicating that they are potential anti-inflammatory lead compounds. (author)

  19. Amburanins A and B from Amburana cearensis: daphnodorin-type biflavonoids that modulate human neutrophil degranulation

    International Nuclear Information System (INIS)

    Canuto, Kirley M.; Silveira, Edilberto R.

    2014-01-01

    Two new biflavonoids 3,5,7,4'-tetrahydroxyflavanone-(2→O→4':3→3')-2',4',6',4- tetrahydroxydihydrochalcone (1) and 3,5,7,4'-tetrahydroxyflavanone-(2→O→7:3→8)-3,4',5,7-tetrahydroxyflavone (2), named as amburanin A and amburanin B, respectively, were isolated from the trunk bark of Amburana cearensis, and their structures elucidated on the basis of spectroscopic analysis and by comparison with literature data. The effects of 1 and 2 on the pro-inflammatory response of human neutrophils were investigated (0.1; 1; 25; 50 e 100 μg mL -1 ). At concentration higher than 25 μg mL -1 , both compounds suppressed nearly 92% of the neutrophil degranulation and 53% of myeloperoxidase activity, thus indicating that they are potential anti-inflammatory lead compounds. (author)

  20. Flow Cytometric Evaluation of Human Neutrophil Apoptosis During Nitric Oxide Generation In Vitro: The Role of Exogenous Antioxidants

    Directory of Open Access Journals (Sweden)

    Zofia Sulowska

    2005-01-01

    in vitro. The effect of exogenous supply of NO donors such as SNP, SIN-1, and GEA-3162 on the course of human neutrophil apoptosis and the role of extracellular antioxidants in this process was investigated. Isolated from peripheral blood, neutrophils were cultured in the presence or absence of NO donor compounds and antioxidants for 8, 12, and 20 hours. Apoptosis of neutrophils was determined in vitro by flow cytometric analysis of cellular DNA content and Annexin V protein binding to the cell surface. Exposure of human neutrophils to GEA-3162 and SIN-1 significantly accelerates and enhances their apoptosis in vitro in a time-dependent fashion. In the presence of SNP, intensification of apoptosis has not been revealed until 12 hours after the culture. The inhibition of GEA-3162- and SIN-1-mediated neutrophil apoptosis by superoxide dismutase (SOD but not by catalase (CAT was observed. Our results show that SOD and CAT can protect neutrophils against NO-donors-induced apoptosis and suggest that the interaction of NO and oxygen metabolites signals may determine the destructive or protective role of NO donor compounds during apoptotic neutrophil death.

  1. Mycobacterium tuberculosis Cell Wall Fragments Released upon Bacterial Contact with the Human Lung Mucosa Alter the Neutrophil Response to Infection.

    Science.gov (United States)

    Scordo, Julia M; Arcos, Jesús; Kelley, Holden V; Diangelo, Lauren; Sasindran, Smitha J; Youngmin, Ellie; Wewers, Mark D; Wang, Shu-Hua; Balada-Llasat, Joan-Miquel; Torrelles, Jordi B

    2017-01-01

    In 2016, the World Health Organization reported that one person dies of tuberculosis (TB) every 21 s. A host environment that Mycobacterium tuberculosis ( M.tb ) finds during its route of infection is the lung mucosa bathing the alveolar space located in the deepest regions of the lungs. We published that human lung mucosa, or alveolar lining fluid (ALF), contains an array of hydrolytic enzymes that can significantly alter the M.tb surface during infection by cleaving off parts of its cell wall. This interaction results in two different outcomes: modifications on the M.tb cell wall surface and release of M.tb cell wall fragments into the environment. Typically, one of the first host immune cells at the site of M.tb infection is the neutrophil. Neutrophils can mount an extracellular and intracellular innate immune response to M.tb during infection. We hypothesized that exposure of neutrophils to ALF-induced M.tb released cell wall fragments would prime neutrophils to control M.tb infection better. Our results show that ALF fragments activate neutrophils leading to an increased production of inflammatory cytokines and oxidative radicals. However, neutrophil exposure to these fragments reduces production of chemoattractants (i.e., interleukin-8), and degranulation, with the subsequent reduction of myeloperoxidase release, and does not induce cytotoxicity. Unexpectedly, these ALF fragment-derived modulations in neutrophil activity do not further, either positively or negatively, contribute to the intracellular control of M.tb growth during infection. However, secreted products from neutrophils primed with ALF fragments are capable of regulating the activity of resting macrophages. These results indicate that ALF-induced M.tb fragments could further contribute to the control of M.tb growth and local killing by resident neutrophils by switching on the total oxidative response and limiting migration of neutrophils to the infection site.

  2. The effect of aprotinin on hypoxia-reoxygenation-induced changes in neutrophil and endothelial function.

    LENUS (Irish Health Repository)

    Harmon, D

    2012-02-03

    BACKGROUND AND OBJECTIVE: An acute inflammatory response associated with cerebral ischaemia-reperfusion contributes to the development of brain injury. Aprotinin has potential, though unexplained, neuroprotective effects in patients undergoing cardiac surgery. METHODS: Human neutrophil CD11 b\\/CD18, endothelial cell intercellular adhesion molecule-1 (ICAM-1) expression and endothelial interleukin (IL)-1beta supernatant concentrations in response to in vitro hypoxia-reoxygenation was studied in the presence or absence of aprotinin (1600 KIU mL(-1)). Adhesion molecule expression was quantified using flow cytometry and IL-1beta concentrations by enzyme-linked immunosorbent assay. Data were analysed using ANOVA and post hoc Student-Newman-Keuls test as appropriate. RESULTS: Exposure to 60-min hypoxia increased neutrophil CD11b expression compared to normoxia (170+\\/-46% vs. 91+\\/-27%, P = 0.001) (percent intensity of fluorescence compared to time 0) (n = 8). Hypoxia (60 min) produced greater upregulation of CD11b expression in controls compared to aprotinin-treated neutrophils [(170+\\/-46% vs. 129+\\/-40%) (P = 0.04)] (n = 8). Hypoxia-reoxygenation increased endothelial cell ICAM-1 expression (155+\\/-3.7 vs. 43+\\/-21 mean channel fluorescence, P = 0.0003) and IL-1beta supernatant concentrations compared to normoxia (3.4+\\/-0.4 vs. 2.6+\\/-0.2, P = 0.02) (n = 3). Hypoxia-reoxygenation produced greater upregulation of ICAM- 1 expression [(155+\\/-3.3 vs. 116+\\/-0.7) (P = 0.001)] and IL-1beta supernatant concentrations [(3.4+\\/-0.3 vs. 2.6+\\/-0.1) (P = 0.01)] in controls compared to aprotinin-treated endothelial cell preparation (n = 3). CONCLUSIONS: Hypoxia-reoxygenation-induced upregulation of neutrophil CD11b, endothelial cell ICAM-1 expression and IL-1beta concentrations is decreased by aprotinin at clinically relevant concentrations.

  3. Sulfur mustard primes human neutrophils for increased degranulation and stimulates cytokine release via TRPM2/p38 MAPK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Hwa-Yong [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of); Hong, Chang-Won, E-mail: chyj7983@hallym.ac.kr [Department of Chemical and Biological Warfare Research, The Armed Forces Medical Research Institute, Daejeon (Korea, Republic of); Lee, Si-Nae [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of); Kwon, Min-Soo [Department of Pharmacology, School of Medicine, CHA University, Seongnam (Korea, Republic of); Kim, Yeon-Ja [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of); Song, Dong-Keun, E-mail: dksong@hallym.ac.kr [Department of Pharmacology, Infectious Diseases Medical Research Center, College of Medicine, Hallym University, Chuncheon (Korea, Republic of)

    2012-01-01

    Sulfur mustard (2,2′-bis-chloroethyl-sulfide; SM) has been a military threat since the World War I. The emerging threat of bioterrorism makes SM a major threat not only to military but also to civilian world. SM injury elicits an inflammatory response characterized by infiltration of neutrophils. Although SM was reported to prime neutrophils, the mechanism has not been identified yet. In the present study, we investigated the mechanism of SM-induced priming in human neutrophils. SM increased [Ca{sup 2+}]{sub i} in human neutrophils in a concentration-dependent fashion. Transient receptor potential melastatin (TRPM) 2 inhibitors (clotrimazole, econazole and flufenamic acid) and silencing of TRPM2 by shRNA attenuated SM-induced [Ca{sup 2+}]{sub i} increase. SM primed degranulation of azurophil and specific granules in response to activation by fMLP as previously reported. SB203580, an inhibitor of p38 MAPK, inhibited SM-induced priming. Neither PD98057, an ERK inhibitor, nor SP600215, a JNK inhibitor, inhibited SM-induced priming. In addition, SM enhanced phosphorylation of NF-kB p65 and release of TNF-α, interleukin (IL)-6 and IL-8. SB203580 inhibited SM-induced NF-kB phosphorylation and cytokine release. These results suggest the involvement of TRPM2/p38 MAPK pathway in SM-induced priming and cytokines release in neutrophils. -- Highlights: ► SM increased [Ca{sup 2+}]{sub i} in human neutrophils through TPRM2-mediated calcium influx. ► SM primed degranulation of azurophil and specific granules. ► SM enhanced p38 MAPK and NF-κB p65 phosphorylation in human neutrophils. ► SM enhanced release of TNF-α, interleukin (IL)-6 and IL-8 from human neutrophils. ► SB203580 inhibited SM-induced priming, NF-κB p65 phosphorylation and cytokine release.

  4. Lactose Induces Phenotypic and Functional Changes of Neutrophils and Macrophages to Alleviate Acute Pancreatitis in Mice

    Directory of Open Access Journals (Sweden)

    Li-Long Pan

    2018-04-01

    Full Text Available Acute pancreatitis (AP is one common clinical acute abdominal disease, for which specific pharmacological or nutritional therapies remain elusive. Lactose, a macronutrient and an inducer of host innate immune responses, possesses immune modulatory functions. The current study aimed to investigate potential modulatory effects of lactose and the interplay between the nutrient and pancreatic immunity during experimentally induced AP in mice. We found that either prophylactic or therapeutic treatment of lactose time-dependently reduced the severity of AP, as evidenced by reduced pancreatic edema, serum amylase levels, and pancreatic myeloperoxidase activities, as well as by histological examination of pancreatic damage. Overall, lactose promoted a regulatory cytokine milieu in the pancreas and reduced infiltration of inflammatory neutrophils and macrophages. On acinar cells, lactose was able to suppress caerulein-induced inflammatory signaling pathways and to suppress chemoattractant tumor necrosis factor (TNF-α and monocyte chemotactic protein-1 production. Additionally, lactose acted on pancreas-infiltrated macrophages, increasing interleukin-10 and decreasing tumor necrosis factor alpha production. Notably, lactose treatment reversed AP-associated infiltration of activated neutrophils. Last, the effect of lactose on neutrophil infiltration was mimicked by a galectin-3 antagonist, suggesting a potential endogenous target of lactose. Together, the current study demonstrates an immune regulatory effect of lactose to alleviate AP and suggests its potential as a convenient, value-added therapeutic macronutrient to control AP, and lower the risk of its systemic complications.

  5. Earthworm coelomocyte extracellular traps: structural and functional similarities with neutrophil NETs.

    Science.gov (United States)

    Homa, Joanna

    2018-03-01

    Invertebrate immunity is associated with natural mechanisms that include cellular and humoral elements, similar to those that play a role in vertebrate innate immune responses. Formation of extracellular traps (ETs) is a newly discovered mechanism to combat pathogens, operating not only in vertebrate leucocytes but also in invertebrate immune cells. The ET components include extracellular DNA (exDNA), antimicrobial proteins and histones. Formation of mammalian ETs depends on enzymes such as neutrophil elastase, myeloperoxidase, the citrullination of histones and protease activity. It was confirmed that coelomocytes-immunocompetent cells of the earthworm Eisenia andrei-are also able to release ETs in a protease-dependent manner, dependent or independent of the formation of reactive oxygen species and rearrangement of the cell cytoskeleton. Similar to vertebrate leukocytes (e.g., neutrophil), coelomocytes are responsible for many immune functions like phagocytosis, cytotoxicity and secretion of humoral factors. ETs formed by coelomocyte analogues to neutrophil ETs consist of exDNA, histone H3 and attached to these structures proteins, e.g., heat shock proteins HSP27. The latter fact confirms that mechanisms of ET release are conserved in evolution. The study on Annelida adds this animal group to the list of invertebrates capable of ET release, but most importantly provides insides into innate mechanisms of ET formation in lower animal taxa.

  6. Anaplasma phagocytophilum inhibits human neutrophil apoptosis via upregulation of bfl-1, maintenance of mitochondrial membrane potential and prevention of caspase 3 activation.

    Science.gov (United States)

    Ge, Yan; Yoshiie, Kiyotaka; Kuribayashi, Futoshi; Lin, Mingqun; Rikihisa, Yasuko

    2005-01-01

    The inhibition of neutrophil apoptosis plays a central role in human granulocytic anaplasmosis. Intracellular signalling pathways through which the obligatory intracellular bacterium Anaplasma phagocytophilum inhibits the spontaneous apoptosis of human peripheral blood neutrophils were investigated. bfl-1 mRNA levels in uninfected neutrophils after 12 h in culture were reduced to approximately 5-25% of 0 h levels, but remained high in infected neutrophils. The eukaryotic RNA synthesis inhibitor, actinomycin D, prevented the maintenance of bfl-1 mRNA levels by A. phagocytophilum. Differences in mcl-1, bax, bcl-w, bad or bak mRNA levels in infected versus uninfected neutrophils were not remarkable. By using mitochondrial fluorescent dyes, Mitotracker Red and JC-1, it was found that most uninfected neutrophils lost mitochondrial membrane potential after 10-12 h incubation, whereas A. phagocytophilum-infected neutrophils maintained high membrane potential. Caspase 3 activity and the degree of apoptosis were lower in dose-dependent manner in A. phagocytophilum-infected neutrophils at 16 h post infection, as compared to uninfected neutrophils. Anti-active caspase 3 antibody labelling showed less positively stained population in infected neutrophils compared to those in uninfected neutrophils after 12 h incubation. These results suggest that A. phagocytophilum inhibits human neutrophil apoptosis via transcriptional upregulation of bfl-1 and inhibition of mitochondria-mediated activation of caspase 3.

  7. Brucella abortus Induces the Premature Death of Human Neutrophils through the Action of Its Lipopolysaccharide

    Science.gov (United States)

    Barquero-Calvo, Elías; Mora-Cartín, Ricardo; Arce-Gorvel, Vilma; de Diego, Juana L.; Chacón-Díaz, Carlos; Chaves-Olarte, Esteban; Guzmán-Verri, Caterina; Buret, Andre G.; Gorvel, Jean-Pierre; Moreno, Edgardo

    2015-01-01

    Most bacterial infections induce the activation of polymorphonuclear neutrophils (PMNs), enhance their microbicidal function, and promote the survival of these leukocytes for protracted periods of time. Brucella abortus is a stealthy pathogen that evades innate immunity, barely activates PMNs, and resists the killing mechanisms of these phagocytes. Intriguing clinical signs observed during brucellosis are the low numbers of Brucella infected PMNs in the target organs and neutropenia in a proportion of the patients; features that deserve further attention. Here we demonstrate that B. abortus prematurely kills human PMNs in a dose-dependent and cell-specific manner. Death of PMNs is concomitant with the intracellular Brucella lipopolysaccharide (Br-LPS) release within vacuoles. This molecule and its lipid A reproduce the premature cell death of PMNs, a phenomenon associated to the low production of proinflammatory cytokines. Blocking of CD14 but not TLR4 prevents the Br-LPS-induced cell death. The PMNs cell death departs from necrosis, NETosis and classical apoptosis. The mechanism of PMN cell death is linked to the activation of NADPH-oxidase and a modest but steadily increase of ROS mediators. These effectors generate DNA damage, recruitments of check point kinase 1, caspases 5 and to minor extent of caspase 4, RIP1 and Ca++ release. The production of IL-1β by PMNs was barely stimulated by B. abortus infection or Br-LPS treatment. Likewise, inhibition of caspase 1 did not hamper the Br-LPS induced PMN cell death, suggesting that the inflammasome pathway was not involved. Although activation of caspases 8 and 9 was observed, they did not seem to participate in the initial triggering mechanisms, since inhibition of these caspases scarcely blocked PMN cell death. These findings suggest a mechanism for neutropenia in chronic brucellosis and reveal a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN. PMID:25946018

  8. Immune modulation by neutrophil subsets

    NARCIS (Netherlands)

    Kamp, V.M.

    2013-01-01

    We show that human neutrophils can suppress T-cell proliferation in acute systemic inflammation and thus have anti-inflammatory functions, next to their well-known pro-inflammatory functions. The suppression is mediated by ROS production and integrin MAC-1, which are also important for the

  9. Human neutrophil peptide-1 promotes alcohol-induced hepatic fibrosis and hepatocyte apoptosis.

    Directory of Open Access Journals (Sweden)

    Rie Ibusuki

    Full Text Available Neutrophil infiltration of the liver is a typical feature of alcoholic liver injury. Human neutrophil peptide (HNP-1 is an antimicrobial peptide secreted by neutrophils. The aim of this study was to determine if HNP-1 affects ethanol-induced liver injury and to examine the mechanism of liver injury induced by HNP-1.Transgenic (TG mice expressing HNP-1 under the control of a β-actin-based promoter were established. Ethanol was orally administered to HNP-1 TG or wild-type C57BL/6N (WT mice. SK-Hep1 hepatocellular carcinoma cells were used to investigate the effect of HNP-1 on hepatocytes in vitro.After 24 weeks of ethanol intake, hepatic fibrosis and hepatocyte apoptosis were significantly more severe in TG mice than in WT mice. Levels of CD14, TLR4, and IL-6 in liver tissues were higher in TG mice than in WT mice. Apoptosis was accompanied by higher protein levels of caspase-3, caspase-8, and cleaved PARP in liver tissue. In addition, phosphorylated ASK1, ASK1, phosphorylated JNK, JNK1, JNK2, Bax, Bak and Bim were all more abundant in TG mice than in WT mice. In contrast, the level of anti-apoptotic Bcl2 in the liver was significantly lower in TG mice than in WT mice. Analysis of microRNAs in liver tissue showed that miR-34a-5p expression was significantly higher in TG mice than in WT mice. Furthermore, in the presence of ethanol, HNP-1 increased the apoptosis with the decreased level of Bcl2 in a concentration-dependent manner in vitro.HNP-1 secreted by neutrophils may exacerbate alcohol-induced hepatic fibrosis and hepatocyte apoptosis with a decrease in Bcl2 expression and an increase in miR-34a-5p expression.

  10. Damage to Aspergillus fumigatus and Rhizopus oryzae Hyphae by Oxidative and Nonoxidative Microbicidal Products of Human Neutrophils In Vitro

    OpenAIRE

    Diamond, Richard D.; Clark, Robert A.

    1982-01-01

    Our previous studies established that human neutrophils could damage and probably kill hyphae of Aspergillus fumigatus and Rhizopus oryzae in vitro, primarily by oxygen-dependent mechanisms active at the cell surface. These studies were extended, again quantitating hyphal damage by reduction in uptake of 14C-labeled uracil or glutamine. Neither A. fumigatus nor R. oryzae hyphae were damaged by neutrophils from patients with chronic granulomatous disease, confirming the importance of oxidative...

  11. Protectin DX, a double lipoxygenase product of DHA, inhibits both ROS production in human neutrophils and cyclooxygenase activities

    Science.gov (United States)

    Liu, Miao; Boussetta, Tarek; Makni-Maalej, Karama; Fay, Michèle; Driss, Fathi; El-Benna, Jamel; Lagarde, Michel; Guichardant, Michel

    2014-01-01

    Neutrophils play a major role in inflammation by releasing large amounts of reactive oxygen species (ROS) produced by NADPH oxidase (NOX) and myeloperoxidase (MPO). This ROS overproduction is mediated by phosphorylation of the NOX subunits with an uncontrolled manner. Therefore, targeting neutrophil subunits would represent a promising strategy to moderate NOX activity, lower ROS, and other inflammatory agents, such as cytokines and leukotrienes, produced by neutrophils. For this purpose, we investigated the effects of protectin DX (PDX) - a docosahexaenoic acid (DHA) di-hydroxylated product which inhibits blood platelet aggregation - on neutrophil activation in vitro. We found that PDX decreases ROS production, inhibits NOX activation and MPO release from neutrophils. We also confirm, that PDX is an anti-aggregatory and anti-inflammatory agent by inhibiting both cyclooxygenase-1 and -2 (COX-1 and COX-2, E.C. 1.14.99.1) as well as COX-2 in lipopolysaccharides (LPS)-treated human neutrophils. However, PDX has no effect on the 5-lipoxygenase pathway that produces the chemotactic agent leukotriene B4 (LTB4). Taken together, our results suggest that PDX could be a protective agent against neutrophil invasion in chronic inflammatory diseases. PMID:24254970

  12. Neutrophils in critical illness.

    Science.gov (United States)

    McDonald, Braedon

    2018-03-01

    During critical illness, dramatic alterations in neutrophil biology are observed including abnormalities of granulopoeisis and lifespan, cell trafficking and antimicrobial effector functions. As a result, neutrophils transition from powerful antimicrobial protectors into dangerous mediators of tissue injury and organ dysfunction. In this article, the role of neutrophils in the pathogenesis of critical illness (sepsis, trauma, burns and others) will be explored, including pathological changes to neutrophil function during critical illness and the utility of monitoring aspects of the neutrophil phenotype as biomarkers for diagnosis and prognostication. Lastly, we review findings from clinical trials of therapies that target the harmful effects of neutrophils, providing a bench-to-bedside perspective on neutrophils in critical illness.

  13. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils

    DEFF Research Database (Denmark)

    Galli, Stephen J; Borregaard, Niels; Wynn, Thomas A

    2011-01-01

    Hematopoietic cells, including lymphoid and myeloid cells, can develop into phenotypically distinct 'subpopulations' with different functions. However, evidence indicates that some of these subpopulations can manifest substantial plasticity (that is, undergo changes in their phenotype and function......). Here we focus on the occurrence of phenotypically distinct subpopulations in three lineages of myeloid cells with important roles in innate and acquired immunity: macrophages, mast cells and neutrophils. Cytokine signals, epigenetic modifications and other microenvironmental factors can substantially...... and, in some cases, rapidly and reversibly alter the phenotype of these cells and influence their function. This suggests that regulation of the phenotype and function of differentiated hematopoietic cells by microenvironmental factors, including those generated during immune responses, represents...

  14. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils

    DEFF Research Database (Denmark)

    Galli, Stephen J; Borregaard, Niels; Wynn, Thomas A

    2011-01-01

    ). Here we focus on the occurrence of phenotypically distinct subpopulations in three lineages of myeloid cells with important roles in innate and acquired immunity: macrophages, mast cells and neutrophils. Cytokine signals, epigenetic modifications and other microenvironmental factors can substantially......Hematopoietic cells, including lymphoid and myeloid cells, can develop into phenotypically distinct 'subpopulations' with different functions. However, evidence indicates that some of these subpopulations can manifest substantial plasticity (that is, undergo changes in their phenotype and function...... and, in some cases, rapidly and reversibly alter the phenotype of these cells and influence their function. This suggests that regulation of the phenotype and function of differentiated hematopoietic cells by microenvironmental factors, including those generated during immune responses, represents...

  15. A stable aspirin-triggered lipoxin A4 analog blocks phosphorylation of leukocyte-specific protein 1 in human neutrophils.

    Science.gov (United States)

    Ohira, Taisuke; Bannenberg, Gerard; Arita, Makoto; Takahashi, Minoru; Ge, Qingyuan; Van Dyke, Thomas E; Stahl, Gregory L; Serhan, Charles N; Badwey, John A

    2004-08-01

    Lipoxins and their aspirin-triggered 15-epimers are endogenous anti-inflammatory agents that block neutrophil chemotaxis in vitro and inhibit neutrophil influx in several models of acute inflammation. In this study, we examined the effects of 15-epi-16-(p-fluoro)-phenoxy-lipoxin A(4) methyl ester, an aspirin-triggered lipoxin A(4)-stable analog (ATLa), on the protein phosphorylation pattern of human neutrophils. Neutrophils stimulated with the chemoattractant fMLP were found to exhibit intense phosphorylation of a 55-kDa protein that was blocked by ATLa (10-50 nM). This 55-kDa protein was identified as leukocyte-specific protein 1, a downstream component of the p38-MAPK cascade in neutrophils, by mass spectrometry, Western blotting, and immunoprecipitation experiments. ATLa (50 nM) also reduced phosphorylation/activation of several components of the p38-MAPK pathway in these cells (MAPK kinase 3/MAPK kinase 6, p38-MAPK, MAPK-activated protein kinase-2). These results indicate that ATLa exerts its anti-inflammatory effects, at least in part, by blocking activation of the p38-MAPK cascade in neutrophils, which is known to promote chemotaxis and other proinflammatory responses by these cells.

  16. Lipopolysaccharide-induced expression of cell surface receptors and cell activation of neutrophils and monocytes in whole human blood

    Directory of Open Access Journals (Sweden)

    N.E. Gomes

    2010-09-01

    Full Text Available Lipopolysaccharide (LPS activates neutrophils and monocytes, inducing a wide array of biological activities. LPS rough (R and smooth (S forms signal through Toll-like receptor 4 (TLR4, but differ in their requirement for CD14. Since the R-form LPS can interact with TLR4 independent of CD14 and the differential expression of CD14 on neutrophils and monocytes, we used the S-form LPS from Salmonella abortus equi and the R-form LPS from Salmonella minnesota mutants to evaluate LPS-induced activation of human neutrophils and monocytes in whole blood from healthy volunteers. Expression of cell surface receptors and reactive oxygen species (ROS and nitric oxide (NO generation were measured by flow cytometry in whole blood monocytes and neutrophils. The oxidative burst was quantified by measuring the oxidation of 2',7'-dichlorofluorescein diacetate and the NO production was quantified by measuring the oxidation of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. A small increase of TLR4 expression by monocytes was observed after 6 h of LPS stimulation. Monocyte CD14 modulation by LPS was biphasic, with an initial 30% increase followed by a 40% decrease in expression after 6 h of incubation. Expression of CD11b was rapidly up-regulated, doubling after 5 min on monocytes, while down-regulation of CXCR2 was observed on neutrophils, reaching a 50% reduction after 6 h. LPS induced low production of ROS and NO. This study shows a complex LPS-induced cell surface receptor modulation on human monocytes and neutrophils, with up- and down-regulation depending on the receptor. R- and S-form LPS activate human neutrophils similarly, despite the low CD14 expression, if the stimulation occurs in whole blood.

  17. Cytotoxicity towards human endothelial cells, induced by neutrophil myeloperoxidase: protection by ceftazidime

    Directory of Open Access Journals (Sweden)

    M. Mathy-Hartert

    1995-01-01

    Full Text Available We investigated the effects of the antibiotic ceftazidime (CAZ on the cytolytic action of the neutrophil myeloperoxidase–hydrogen peroxide–chloride anion system (MPO/H2O2/Cl−. In this system, myeloperoxidase catalyses the conversion of H2O2 and CI− to the cytotoxic agent HOCl. Stimulated neutrophils can release MPO into the extracellular environment and then may cause tissue injury through direct endothelial cells lysis. We showed that human umbilical vein endothelial cells (HUVEC were capable of taking up active MPO. In presence of H2O2 (10−4 M, this uptake was accompanied by cell lysis. The cytolysis was estimated by the release of 51Cr from HUVEC and expressed as an index of cytotoxicity (IC. Dose dependent protection was obtained for CAZ concentrations ranging from 10−5 to 10−3 M;this can be attributed to inactivation of HOCl by the drug. This protection is comparable to that obtained with methionine and histidine, both of which are known to neutralize HOCl. This protection by CAZ could also be attributed to inactivation of H2O2, but when cytolysis was achieved with H2O2 or O2− generating enzymatic systems, no protection by CAZ was observed. Moreover, the peroxidation activity of MPO (action on H2O2 was not affected by CAZ, while CAZ prevented the chlorination activity of MPO (chlorination of monochlorodimedon. So, we concluded that CAZ acts via HOCl inactivation. These antioxidant properties of CAZ may be clinically useful in pathological situations where excessive activation of neutrophils occurs, such as in sepsis.

  18. Extracellular traps are associated with human and mouse neutrophil and macrophage mediated killing of larval Strongyloides stercoralis.

    Science.gov (United States)

    Bonne-Année, Sandra; Kerepesi, Laura A; Hess, Jessica A; Wesolowski, Jordan; Paumet, Fabienne; Lok, James B; Nolan, Thomas J; Abraham, David

    2014-06-01

    Neutrophils are multifaceted cells that are often the immune system's first line of defense. Human and murine cells release extracellular DNA traps (ETs) in response to several pathogens and diseases. Neutrophil extracellular trap (NET) formation is crucial to trapping and killing extracellular pathogens. Aside from neutrophils, macrophages and eosinophils also release ETs. We hypothesized that ETs serve as a mechanism of ensnaring the large and highly motile helminth parasite Strongyloides stercoralis thereby providing a static target for the immune response. We demonstrated that S. stercoralis larvae trigger the release of ETs by human neutrophils and macrophages. Analysis of NETs revealed that NETs trapped but did not kill larvae. Induction of NETs was essential for larval killing by human but not murine neutrophils and macrophages in vitro. In mice, extracellular traps were induced following infection with S. stercoralis larvae and were present in the microenvironment of worms being killed in vivo. These findings demonstrate that NETs ensnare the parasite facilitating larval killing by cells of the immune system. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Metabolism of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine in the human neutrophil

    International Nuclear Information System (INIS)

    Triggiani, M.; D'Souza, D.M.; Chilton, F.H.

    1991-01-01

    The biosynthesis of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine (1-acyl-2-acetyl-GPC) together with that of 1-alkyl-2-acetyl-GPC (platelet-activating factor) has been demonstrated in a variety of inflammatory cells and tissues. It has been hypothesized that the relative proportion of these phospholipids produced upon cell activation may be influenced by their rates of catabolism. We studied the catabolism of 1-acyl-2-acetyl-GPC in resting and activated human neutrophils and compared it to that of 1-alkyl-2-acetyl-GPC. Neutrophils rapidly catabolize both 1-alkyl-2-acetyl-GPC and 1-acyl-2-acetyl-GPC; however, the rate of catabolism of 1-acyl-2-acetyl-GPC is approximately 2-fold higher than that of 1-alkyl-2-acetyl-GPC. In addition, most of 1-acyl-2-acetyl-GPC is catabolized through a pathway different from that of 1-alkyl-2-acetyl-GPC. The main step in the catabolism of 1-acyl-2-acetyl-GPC is the removal of the long chain at the sn-1 position; the long chain residue is subsequently incorporated either into triglycerides or into phosphatidylcholine. The 1-lyso-2-acetyl-GPC formed in this reaction is then further degraded to glycerophosphocholine, choline, or phosphocholine. 1-Acyl-2-acetyl-GPC is also catabolized, to a lesser extent, through deacetylation at the sn-2 position and reacylation with a long chain fatty acid. Stimulation of neutrophils by A23187 results in a higher rate of catabolism of 1-acyl-2-acetyl-GPC by increasing both the removal of the long chain at the sn-1 position and the deacetylation-reacylation at the sn-2 position. In a broken cell preparation, the cytosolic fraction of the neutrophil was shown to contain an enzyme activity which cleaved the sn-1 position of 1-acyl-2-acetyl-GPC and 1-acyl-2-lyso-GPC but not of 1,2-diacyl-GPC

  20. Severe exercise and exercise training exert opposite effects on human neutrophil apoptosis via altering the redox status.

    Directory of Open Access Journals (Sweden)

    Guan-Da Syu

    Full Text Available Neutrophil spontaneous apoptosis, a process crucial for immune regulation, is mainly controlled by alterations in reactive oxygen species (ROS and mitochondria integrity. Exercise has been proposed to be a physiological way to modulate immunity; while acute severe exercise (ASE usually impedes immunity, chronic moderate exercise (CME improves it. This study aimed to investigate whether and how ASE and CME oppositely regulate human neutrophil apoptosis. Thirteen sedentary young males underwent an initial ASE and were subsequently divided into exercise and control groups. The exercise group (n = 8 underwent 2 months of CME followed by 2 months of detraining. Additional ASE paradigms were performed at the end of each month. Neutrophils were isolated from blood specimens drawn at rest and immediately after each ASE for assaying neutrophil spontaneous apoptosis (annexin-V binding on the outer surface along with redox-related parameters and mitochondria-related parameters. Our results showed that i the initial ASE immediately increased the oxidative stress (cytosolic ROS and glutathione oxidation, and sequentially accelerated the reduction of mitochondrial membrane potential, the surface binding of annexin-V, and the generation of mitochondrial ROS; ii CME upregulated glutathione level, retarded spontaneous apoptosis and delayed mitochondria deterioration; iii most effects of CME were unchanged after detraining; and iv CME blocked ASE effects and this capability remained intact even after detraining. Furthermore, the ASE effects on neutrophil spontaneous apoptosis were mimicked by adding exogenous H(2O(2, but not by suppressing mitochondrial membrane potential. In conclusion, while ASE induced an oxidative state and resulted in acceleration of human neutrophil apoptosis, CME delayed neutrophil apoptosis by maintaining a reduced state for long periods of time even after detraining.

  1. DioxolaneA3-phosphatidylethanolamines are generated by human platelets and stimulate neutrophil integrin expression

    Directory of Open Access Journals (Sweden)

    Maceler Aldrovandi

    2017-04-01

    Full Text Available Activated platelets generate an eicosanoid proposed to be 8-hydroxy-9,10-dioxolane A3 (DXA3. Herein, we demonstrate that significant amounts of DXA3 are rapidly attached to phosphatidylethanolamine (PE forming four esterified eicosanoids, 16:0p, 18:0p, 18:1p and 18:0a/DXA3-PEs that can activate neutrophil integrin expression. These lipids comprise the majority of DXA3 generated by platelets, are formed in ng amounts (24.3±6.1 ng/2×108 and remain membrane bound. Pharmacological studies revealed DXA3-PE formation involves cyclooxygenase-1 (COX, protease-activated receptors (PAR 1 and 4, cytosolic phospholipase A2 (cPLA2, phospholipase C and intracellular calcium. They are generated primarily via esterification of newly formed DXA3, but can also be formed in vitro via co-oxidation of PE during COX-1 co-oxidation of arachidonate. All four DXA3-PEs were detected in human clots. Purified platelet DXA3-PE activated neutrophil Mac-1 expression, independently of its hydrolysis to the free eicosanoid. This study demonstrates the structures and cellular synthetic pathway for a family of leukocyte-activating platelet phospholipids generated on acute activation, adding to the growing evidence that enzymatic PE oxidation is a physiological event in innate immune cells.

  2. (±)-2-Chloropropionic acid elevates reactive oxygen species formation in human neutrophil granulocytes

    International Nuclear Information System (INIS)

    Aam, B.B.; Fonnum, F.

    2006-01-01

    (±)-2-Chloropropionic acid (2-CPA) is a neurotoxic compound which kills cerebellar granule cells in vivo, and makes cerebellar granule cells in vitro produce reactive oxygen species (ROS). We have studied the effect of 2-CPA on ROS formation in human neutrophil granulocytes in vitro. We found an increased formation of ROS after 2-CPA exposure using three different methods; the fluorescent probe DCFH-DA and the chemiluminescent probes lucigenin and luminol. Four different inhibitors of ROS formation were tested on the cells in combination with 2-CPA to characterize the signalling pathways. The spin-trap s-PBN, the ERK1/2 inhibitor U0126 and the antioxidant Vitamin E inhibited the 2-CPA-induced ROS formation completely, while the mitochondrial transition permeability pore blocker cyclosporine A inhibited the ROS formation partly. We also found that 2-CPA induced an increased nitric oxide production in the cells by using the Griess reagent. The level of reduced glutathione, measured with the DTNB assay, was decreased after exposure to high concentrations of 2-CPA. Western blotting analysis showed that 2-CPA exposure led to an elevated phosphorylation of ERK MAP kinase. This phosphorylation was inhibited by U0126. Based on these experiments it seems like the mechanisms for 2-CPA induced toxicity involves ROS formation and is similar in neutrophil granulocytes as earlier shown in cerebellar granule cells. This also implies that 2-CPA may be immunotoxic

  3. Autophagy Primes Neutrophils for Neutrophil Extracellular Trap Formation during Sepsis.

    Science.gov (United States)

    Park, So Young; Shrestha, Sanjeeb; Youn, Young-Jin; Kim, Jun-Kyu; Kim, Shin-Yeong; Kim, Hyun Jung; Park, So-Hee; Ahn, Won-Gyun; Kim, Shin; Lee, Myung Goo; Jung, Ki-Suck; Park, Yong Bum; Mo, Eun-Kyung; Ko, Yousang; Lee, Suh-Young; Koh, Younsuck; Park, Myung Jae; Song, Dong-Keun; Hong, Chang-Won

    2017-09-01

    Neutrophils are key effectors in the host's immune response to sepsis. Excessive stimulation or dysregulated neutrophil functions are believed to be responsible for sepsis pathogenesis. However, the mechanisms regulating functional plasticity of neutrophils during sepsis have not been fully determined. We investigated the role of autophagy in neutrophil functions during sepsis in patients with community-acquired pneumonia. Neutrophils were isolated from patients with sepsis and stimulated with phorbol 12-myristate 13-acetate (PMA). The levels of reactive oxygen species generation, neutrophil extracellular trap (NET) formation, and granule release, and the autophagic status were evaluated. The effect of neutrophil autophagy augmentation was further evaluated in a mouse model of sepsis. Neutrophils isolated from patients who survived sepsis showed an increase in autophagy induction, and were primed for NET formation in response to subsequent PMA stimulation. In contrast, neutrophils isolated from patients who did not survive sepsis showed dysregulated autophagy and a decreased response to PMA stimulation. The induction of autophagy primed healthy neutrophils for NET formation and vice versa. In a mouse model of sepsis, the augmentation of autophagy improved survival via a NET-dependent mechanism. These results indicate that neutrophil autophagy primes neutrophils for increased NET formation, which is important for proper neutrophil effector functions during sepsis. Our study provides important insights into the role of autophagy in neutrophils during sepsis.

  4. The proteolytically stable peptidomimetic Pam-(Lys-βNSpe)6-NH2 selectively inhibits human neutrophil activation via formyl peptide receptor 2.

    Science.gov (United States)

    Skovbakke, Sarah Line; Heegaard, Peter M H; Larsen, Camilla J; Franzyk, Henrik; Forsman, Huamei; Dahlgren, Claes

    2015-01-15

    Immunomodulatory host defense peptides (HDPs) are considered to be lead compounds for novel anti-sepsis and anti-inflammatory agents. However, development of drugs based on HDPs has been hampered by problems with toxicity and low bioavailability due to in vivo proteolysis. Here, a subclass of proteolytically stable HDP mimics consisting of lipidated α-peptide/β-peptoid oligomers was investigated for their effect on neutrophil function. The most promising compound, Pam-(Lys-βNSpe)6-NH2, was shown to inhibit formyl peptide receptor 2 (FPR2) agonist-induced neutrophil granule mobilization and release of reactive oxygen species. The potency of Pam-(Lys-βNSpe)6-NH2 was comparable to that of PBP10, the most potent FPR2-selective inhibitor known. The immunomodulatory effects of structural analogs of Pam-(Lys-βNSpe)6-NH2 emphasized the importance of both the lipid and peptidomimetic parts. By using imaging flow cytometry in primary neutrophils and FPR-transfected cell lines, we found that a fluorescently labeled analog of Pam-(Lys-βNSpe)6-NH2 interacted selectively with FPR2. Furthermore, the interaction between Pam-(Lys-βNSpe)6-NH2 and FPR2 was found to prevent binding of the FPR2-specific activating peptide agonist Cy5-WKYMWM, while the binding of an FPR1-selective agonist was not inhibited. To our knowledge, Pam-(Lys-βNSpe)6-NH2 is the first HDP mimic found to inhibit activation of human neutrophils via direct interaction with FPR2. Hence, we consider Pam-(Lys-βNSpe)6-NH2 to be a convenient tool in the further dissection of the role of FPR2 in inflammation and homeostasis as well as for investigation of the importance of neutrophil stimulation in anti-infective therapy involving HDPs. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Effects of Malnutrition on Neutrophil/Mononuclear Cell Apoptotic Functions in Children with Acute Lymphoblastic Leukemia.

    Science.gov (United States)

    Cakir, Fatma Betul; Berrak, Su Gülsün; Aydogan, Gonul; Tulunay, Aysin; Timur, Cetin; Canpolat, Cengiz; Eksioglu Demiralp, Emel

    2017-04-01

    Recent studies claim that apoptosis may explain immune dysfunction observed in malnutrition. The objective of this study was to determine the effect of malnutrition on apoptotic functions of phagocytic cells in acute lymphoblastic leukemia (ALL). Twenty-eight ALL patients (13 with malnutrition) and thirty controls were enrolled. Neutrophil and mononuclear cell apoptosis of ALL patients and the control group were studied on admission before chemotherapy and repeated at a minimum of three months after induction of chemotherapy or when the nutritional status of leukemic children improved. The apoptotic functions of both ALL groups on admission were significantly lower than those of the control group. The apoptotic functions were lower in ALL patients with malnutrition than those in ALL patients without malnutrition, but this was not statistically significant. The repeated apoptotic functions of both ALL groups were increased to similar values with the control group. This increase was found to be statistically significant. The apoptotic functions in ALL patients were not found to be affected by malnutrition. However, after dietary intervention, increased apoptotic functions in both ALL patient groups deserve mentioning. Dietary intervention should always be recommended as malnutrition or cachexia leads to multiple complications. Enhanced apoptosis might originate also from remission state of cancer.

  6. Suppression of blood monocyte and neutrophil chemotaxis in acute human malaria

    DEFF Research Database (Denmark)

    Nielsen, H; Kharazmi, A; Theander, T G

    1986-01-01

    tested monocyte chemotactic responsiveness in 19 patients with acute primary attack malaria. In addition, the neutrophil chemotaxis was measured in 12 patients. Before the initiation of antimalarial treatment a significant depression of monocyte chemotaxis was observed in approximately half...... of the patients when compared with healthy control subjects. The depression was found in Plasmodium falciparum malaria as well as in P. vivax or P. ovale malaria patients. The defective responsiveness was not receptor specific, since the responses towards casein and zymosan activated serum proved to be equally...... of treatment, and nearly normalized after 7 days (87% of controls). Furthermore, monocyte phagocytic and candidacidal activities were assessed in the same patients on admission and during the follow-up. In contrast to chemotaxis, these functions were normal in all of the patients whenever measured...

  7. Compromised neutrophil function and severe bovine E.coli mastitis: is C5a the missing link?

    Science.gov (United States)

    Around the periparturient period and during early lactation dairy cows have an elevated risk for clinical mastitis. The severity of Gram-negative infections during these periods has been correlated with reduced neutrophil functions. In this review we focus on the potential role of C5a in the develop...

  8. Intramuscular administration of a synthetic CpG-oligodeoxynucleotide modulates functional responses of neutrophils of neonatal foals.

    Directory of Open Access Journals (Sweden)

    Noah D Cohen

    Full Text Available Neutrophils play an important role in protecting against infection. Foals have age-dependent deficiencies in neutrophil function that may contribute to their predisposition to infection. Thus, we investigated the ability of a CpG-ODN formulated with Emulsigen to modulate functional responses of neutrophils in neonatal foals. Eighteen foals were randomly assigned to receive either a CpG-ODN with Emulsigen (N = 9 or saline intramuscularly at ages 1 and 7 days. At ages 1, 3, 9, 14, and 28, blood was collected and neutrophils were isolated from each foal. Neutrophils were assessed for basal and Rhodococcus equi-stimulated mRNA expression of the cytokines interferon-γ (IFN-γ, interleukin (IL-4, IL-6, and IL-8 using real-time PCR, degranulation by quantifying the amount of β-D glucuronidase activity, and reactive oxygen species (ROS generation using flow cytometry. In vivo administration of the CpG-ODN formulation on days 1 and 7 resulted in significantly (P<0.05 increased IFN-γ mRNA expression by foal neutrophils on days 3, 9, and 14. Degranulation was significantly (P<0.05 lower for foals in the CpG-ODN-treated group than the control group at days 3 and 14, but not at other days. No effect of treatment on ROS generation was detected. These results indicate that CpG-ODN administration to foals might improve innate and adaptive immune responses that could protect foals against infectious diseases and possibly improve responses to vaccination.

  9. Effect of induced subclinical hypocalcemia on physiological responses and neutrophil function in dairy cows.

    Science.gov (United States)

    Martinez, N; Sinedino, L D P; Bisinotto, R S; Ribeiro, E S; Gomes, G C; Lima, F S; Greco, L F; Risco, C A; Galvão, K N; Taylor-Rodriguez, D; Driver, J P; Thatcher, W W; Santos, J E P

    2014-02-01

    The objectives were to study the effects of induced subclinical hypocalcemia [SCH, blood ionized Ca (iCa(2+)) dairy cows. Ten nonpregnant, nonlactating Holstein cows were blocked by lactation and assigned randomly to a normocalcemic (NC; intravenous infusion of 0.9% NaCl i.v. plus 43 g of oral Ca, as Ca sulfate and Ca chloride, at -1 and 11h) or an induced SCH [SCHI, 5% ethylene glycol tetraacetic acid (EGTA), a selective iCa(2+) chelator, intravenous infusion] treatment for 24h, using a crossover design. The sequence of treatments was either NC-SCHI or SCHI-NC, with a 6-d washout period. Ionized Ca was evaluated before, hourly during the infusion period, and at 48 and 72 h, to monitor concentrations and adjust the rate of infusion, maintaining blood iCa(2+) insulin in plasma, and urinary excretion of Ca. Total and differential leukocyte count in blood was also performed. The concentration of cytosolic iCa(2+) in neutrophils and lymphocytes was quantified and neutrophil function was assayed in vitro. Infusion of a 5% EGTA solution successfully induced SCH in all SCHI cows, resulting in decreased blood iCa(2+) concentrations throughout the 24-h treatment period (0.77 ± 0.01 vs. 1.26 ± 0.01 mM iCa(2+)). Induction of SCH reduced dry matter intake on the day of infusion (5.3 ± 0.8 vs. 9.1 ± 0.8 kg/d) and rumen contractions (1.9 ± 0.2 vs. 2.7 ± 0.2 contractions/2 min) for the last 12h of infusion. Cows in SCHI had decreased plasma insulin concentration (1.44 ± 0.23 vs. 2.32 ± 0.23 ng/mL) evident between 6 and 18 h after the beginning of the infusion, accompanied by increased concentrations of glucose (4.40 ± 0.04 vs. 4.17 ± 0.04 mM). Plasma nonesterified fatty acids concentration was greater for SCHI than NC cows (0.110 ± 0.019 vs. 0.061 ± 0.014 mM). Neutrophils of cows in SCHI had a faster decrease in cytosolic iCa(2+) after stimulation with ionomycin (9.9 ± 1.0 vs. 13.6 ± 1.4 Fluo-4:Fura Red post-end ratio) in vitro. Furthermore, induction of SCH reduced

  10. Clinical symptoms and neutropenia: the balance of neutrophil development, functional activity, and cell death

    NARCIS (Netherlands)

    Kuijpers, Taco W.

    2002-01-01

    Neutrophilic granulocytes form the major type of leukocytes with counts ranging from about 1500-5000 cells/ micro l of blood under normal conditions. Neutrophils protect our body against bacterial and fungal infections. For this purpose, these cells are equipped with a machinery to sense the site of

  11. A convenient diagnostic function test of peripheral blood neutrophils in glycogen storage disease type Ib

    NARCIS (Netherlands)

    Verhoeven, A.J.; Visser, G; Van Zwieten, R; Gruszczynska, B; Poll-The, DWEET; Smit, GPA

    Neutrophils from patients suffering from glycogen storage disease type To (GSD-Ib) show several defects, one of which is a decreased rate of glucose utilization. In this study, we established experimental conditions to show the stimulation of the neutrophil respiratory burst by extracellular

  12. Phagocytosis and killing of Candida albicans by human neutrophils after exposure to structurally different lipid emulsions.

    NARCIS (Netherlands)

    Wanten, G.J.A.; Curfs, J.H.A.J.; Meis, J.F.G.M.; Naber, A.H.J.

    2001-01-01

    BACKGROUND: To test the hypothesis that structurally different lipid emulsions have distinct immune-modulating properties, we analyzed the elimination of Candida albicans by neutrophils after exposure to various emulsions. METHODS: Neutrophils from 8 volunteers were incubated in physiologic 5 mmol/L

  13. Divergent effects of tumor necrosis factor alpha on apoptosis of human neutrophils

    NARCIS (Netherlands)

    van den Berg, J. M.; Weyer, S.; Weening, J. J.; Roos, D.; Kuijpers, T. W.

    2001-01-01

    Apoptosis of neutrophils is a key mechanism to control the intensity of the acute inflammatory response. Previously, the cytokine tumor necrosis factor alpha (TNF-alpha) was reported by some to have pro-apoptotic and by others to have antiapoptotic effects on neutrophils. The aim of this study was

  14. Role of ERK1/2 kinase in the expression of iNOS by NDMA in human neutrophils.

    Science.gov (United States)

    Ratajczak-Wrona, Wioletta; Jablonska, Ewa; Garley, Marzena; Jablonski, Jakub; Radziwon, Piotr

    2013-01-01

    Potential role of ERK1/2 kinase in conjunction with p38 in the regulation of inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production, and superoxide anion generation by human neutrophils (PMNs) exposed to N-nitrosodimethylamine (NDMA) was determined. Increased synthesis of NO due to the involvement of iNOS in neutrophils exposed to NDMA was observed. In addition, intensified activation of ERK1/2 and p38 kinases was determined in these cells. Inhibition of kinase regulated by extracellular signals (ERK1/2) pathway, in contrast to p38 pathway, led to an increased production of NO and expression of iNOS in PMNs. Moreover, as a result of inhibition of ERK1/2 pathway, a decreased activation of p38 kinase was observed in neutrophils, while inhibition of p38 kinase did not affect activation of ERK1/2 pathway in these cells. An increased ability to release superoxide anion by the studied PMNs was observed, which decreased after ERK1/2 pathway inhibition. In conclusion, in human neutrophils, ERK1/2 kinase is not directly involved in the regulation of iNOS and NO production induced by NDMA; however, the kinase participates in superoxide anion production in these cells.

  15. Innate Defense against Influenza A Virus: Activity of Human Neutrophil Defensins and Interactions of Defensins with Surfactant Protein D

    DEFF Research Database (Denmark)

    Hartshorn, Kevan L.; White, Mitchell R.; Tecle, Tesfaldet

    2006-01-01

    Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study was to characte......Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study...... was to characterize antiviral interactions between SP-D and HNPs. Recombinant and/or natural forms of SP-D and related collectins and HNPs were tested for antiviral activity against two different strains of IAV. HNPs 1 and 2 did not inhibit viral hemagglutination activity, but they interfered...... with the hemagglutination-inhibiting activity of SP-D. HNPs had significant viral neutralizing activity against divergent IAV strains. However, the HNPs generally had competitive effects when combined with SP-D in assays using an SP-D-sensitive IAV strain. In contrast, cooperative antiviral effects were noted in some...

  16. Effects of ghrelin on the apoptosis of human neutrophils in vitro

    Science.gov (United States)

    Li, Bin; Zeng, Mian; Zheng, Haichong; Huang, Chunrong; He, Wanmei; Lu, Guifang; Li, Xia; Chen, Yanzhu; Xie, Ruijie

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is characterized by lung inflammation and the diffuse infiltration of neutrophils into the alveolar space. Neutrophils are abundant, short-lived leukocytes that play a key role in immune defense against microbial infections. These cells die via apoptosis following the activation and uptake of microbes, and will also enter apoptosis spontaneously at the end of their lifespan if they do not encounter pathogens. Apoptosis is essential for the removal of neutrophils from inflamed tissues and for the timely resolution of neutrophilic inflammation. Ghrelin is an endogenous ligand for the growth hormone (GH) secretagogue receptor, produced and secreted mainly from the stomach. Previous studies have reported that ghrelin exerts anti-inflammatory effects in lung injury through the regulation of the apoptosis of different cell types; however, the ability of ghrelin to regulate alveolar neutrophil apoptosis remains largely undefined. We hypothesized that ghrelin may have the ability to modulate neutrophil apoptosis. In this study, to examine this hypothesis, we investigated the effects of ghrelin on freshly isolated neutrophils in vitro. Our findings demonstrated a decrease in the apoptotic ratio (as shown by flow cytometry), as well as in the percentage of cells with decreased mitochondrial membrane potential (ΔΨm) and in the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick-end labeling-positive rate, accompanied by an increased B-cell lymphoma 2/Bax ratio and the downregulation of cleaved caspase-3 in neutrophils following exposure to lipopolysaccharide (100 ng/ml). However, pre-treatment with ghrelin at a physiological level (100 nM) did not have a notable influence on the neutrophils in all the aforementioned tests. Our findings suggest that ghrelin may not possess the ability to modulate the neutrophil lifespan in vitro. PMID:27431014

  17. Neutrophil programming dynamics and its disease relevance.

    Science.gov (United States)

    Ran, Taojing; Geng, Shuo; Li, Liwu

    2017-11-01

    Neutrophils are traditionally considered as first responders to infection and provide antimicrobial host defense. However, recent advances indicate that neutrophils are also critically involved in the modulation of host immune environments by dynamically adopting distinct functional states. Functionally diverse neutrophil subsets are increasingly recognized as critical components mediating host pathophysiology. Despite its emerging significance, molecular mechanisms as well as functional relevance of dynamically programmed neutrophils remain to be better defined. The increasing complexity of neutrophil functions may require integrative studies that address programming dynamics of neutrophils and their pathophysiological relevance. This review aims to provide an update on the emerging topics of neutrophil programming dynamics as well as their functional relevance in diseases.

  18. The effect of cigarette smoking on neutrophil kinetics in human lungs [see comments

    International Nuclear Information System (INIS)

    MacNee, W.; Wiggs, B.; Belzberg, A.S.; Hogg, J.C.

    1989-01-01

    Neutrophils may play a part in the pathogenesis of the centrilobular emphysema associated with cigarette smoking. The capillary bed of the lungs concentrates neutrophils approximately 100-fold with respect to erythrocytes, producing a large pool of marginated cells. We examined the effect of cigarette smoking on the kinetics of this pool of cells, using 99mTc-labeled erythrocytes to measure regional blood velocity and 111In-labeled neutrophils to measure the removal of neutrophils during the first passage through the pulmonary circulation, their subsequent washout from the lungs, and the effect of local blood velocity on the number of neutrophils retained in each lung region. We observed no difference in these measurements between subjects who had never smoked (n = 6) and smokers who did not smoke during the study (n = 12). However, subjects who did smoke during the study (n = 12) had a significantly slower rate of washout of radiolabeled neutrophils from the lung (0.08 +/- 0.04 of the total per minute, as compared with 0.13 +/- 0.06 in smokers who did not smoke during the experiment and 0.14 +/- 0.08 in non-smokers) (P = 0.02). We also observed an increase in the regional retention of labeled neutrophils with respect to blood velocity in 5 of the 12 subjects who smoked during the study, but in none of the other subjects. We conclude that the presence of cigarette smoke in the lungs of some subjects increases the local concentration of neutrophils, and suggest that the lesions that characterize emphysema may be a result of the destruction of lung tissue by neutrophils that remain within pulmonary microvessels

  19. Noradrenaline increases the expression and release of Hsp72 by human neutrophils.

    Science.gov (United States)

    Giraldo, E; Multhoff, G; Ortega, E

    2010-05-01

    The blood concentration of extracellular 72kDa heat shock protein (eHsp72) increases under conditions of stress, including intense exercise. However, the signal(s), source(s), and secretory pathways in its release into the bloodstream have yet to be clarified. The aim of the present study was to evaluate the role of noradrenaline (NA) as a stress signal on the expression and release of Hsp72 by circulating neutrophils (as a source), all within a context of the immunophysiological regulation during exercise-induced stress in sedentary and healthy young (21-26years) women. The expression of Hsp72 on the surface of isolated neutrophils was determined by flow cytometry, and its release by cultured isolated neutrophils was determined by ELISA. Incubation with cmHsp70-FITC showed that neutrophils express Hsp72 on their surface under basal conditions. In addition, cultured isolated neutrophils (37 degrees C and 5% CO(2)) also released Hsp72 under basal conditions, with this release increasing from 10min to 24h in the absence of cell damage. NA at 10(-9)-10(-5)M doubled the percentage of neutrophils expressing Hsp72 after 60min and 24h incubation. NA also stimulated (by about 20%) the release of Hsp72 after 10min of incubation. (1) Hsp72 is expressed on the surface of isolated neutrophils under basal conditions, and this expression is augmented by NA. (2) Isolated neutrophils can also release Hsp72 under cultured basal conditions in the absence of cell death, and NA can increase this release. These results may contribute to confirming the hypothesis that NA can act as a "stress signal" for the increased eHsp72 in the context of exercise stress, with a role for neutrophils as a source for the expression and, to a lesser degree, the release of Hsp72 after activation by NA. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Ir-LBP, an ixodes ricinus tick salivary LTB4-binding lipocalin, interferes with host neutrophil function.

    Directory of Open Access Journals (Sweden)

    Jérôme Beaufays

    Full Text Available BACKGROUND: During their blood meal, ticks secrete a wide variety of proteins that can interfere with their host's defense mechanisms. Among these proteins, lipocalins play a major role in the modulation of the inflammatory response. METHODOLOGY/PRINCIPAL FINDINGS: We previously identified 14 new lipocalin genes in the tick Ixodes ricinus. One of them codes for a protein that specifically binds leukotriene B4 with a very high affinity (Kd: +/-1 nM, similar to that of the neutrophil transmembrane receptor BLT1. By in silico approaches, we modeled the 3D structure of the protein and the binding of LTB4 into the ligand pocket. This protein, called Ir-LBP, inhibits neutrophil chemotaxis in vitro and delays LTB4-induced apoptosis. Ir-LBP also inhibits the host inflammatory response in vivo by decreasing the number and activation of neutrophils located at the tick bite site. Thus, Ir-LBP participates in the tick's ability to interfere with proper neutrophil function in inflammation. CONCLUSIONS/SIGNIFICANCE: These elements suggest that Ir-LBP is a "scavenger" of LTB4, which, in combination with other factors, such as histamine-binding proteins or proteins inhibiting the classical or alternative complement pathways, permits the tick to properly manage its blood meal. Moreover, with regard to its properties, Ir-LBP could possibly be used as a therapeutic tool for illnesses associated with an increased LTB4 production.

  1. Effect of the dimetilsulfoxido in the response chemiluminescent and the consumption of oxygen of neutrophils activated human

    International Nuclear Information System (INIS)

    Garcia, J.

    2001-01-01

    Dimethylsulfoxide (DMSO), a hydroxyl radical scavenger, exerted a dose dependent inhibition on the luminol and lucigenin-enhanced chemiluminescent responses of human neutrophils activated with soluble and particulate stimulants. DMSO inhibition of the luminol chemiluminescense induced by calcium ionophore A23187 was probably due to OH scavenging, whereas inhibition of the lucigenin chemiluminescence suggested DMSO negatively affects the NADPH-dependent membrane oxidase of neutrophils. In agreement with this, DMSO moderately inhibited O2 consumption in PMN suspensions stimulated with chemotactic peptide and opsonized zymosan-induced luminol chemiluminescense was observed only when added before or in conjunction with stimulants, whereas A23187-induced chemiluminescense was inhibited by DMSO regardless of time of addition. Washing of DMSO-treated PMN resulted in increased luminol enhanced chemiluminescense in response to chemotactic peptide and opsonized zymosan. This is consistent with the idea that DMSO may be interfering with activation of the membrane subunits of the oxidase by translocation and docking of the cytoplasmic, regulatory subunits. These data imply that DMSO inhibits neutrophil chemiluminescense both by OH scavenging and interfering with oxidase activation. Key words:Dimethylsulfoxide, chemiluminescent, luminol, lucigenin,neutrophils [es

  2. Selective kallikrein inhibitors alter human neutrophil elastase release during extracorporeal circulation

    NARCIS (Netherlands)

    Wachtfogel, Y.T.; Hack, C.E.; Nuijens, J.H; Kettner, C.; Reilly, T.M.; Knabb, R.M.; Bischoff, Rainer; Tschesche, H.; Wenzel, H.; Kucich, U.

    1995-01-01

    Cardiopulmonary bypass causes hemorrhagic complications and initiates a biochemical and cellular "whole body inflammatory response." This study investigates whether a variety of selective inhibitors of the contact pathway of intrinsic coagulation modulate complement and neutrophil activation during

  3. Association of neutrophil gelatinase associated lipocalin and cystatin-c with kidney function in children with nephrotic syndrome

    Directory of Open Access Journals (Sweden)

    Alaleh Gheissari

    2013-01-01

    Full Text Available Background: Nephrotic syndrome (NS is a major clinical concern in human health, especially in children. Despite of the etiology, the prediction of remission in different treatment regimens based on suitable biomarkers is under development. The goal of this evaluation was the demonstration of correlation between serum level of Neutrophil gelatinase associated lipocalin (NGAL and cystatin-C with kidney function in patients with NS. Methods: During the period between September 2008 and December 2011, 52 patients admitted to St. Al Zahra University Hospital were selected for evaluation. The measured parameters consisted of NGAL, cystatin-C, creatinine, albumin, blood urea nitrogen, urine protein, glomerular filtration rate. Demographic data were collected and considered in comparisons. Comparison between variables and their correlations were examined. Results: Means of serum NGAL and cystatin-C were significantly higher in case than the control group, P < 0.05. The mean of serum NGAL in patients without remission and who achieved remission were 23.09 (standard deviation [SD] ±10.11 and 36.26 (SD ± 20.10 ng/ml respectively; P < 0.05. Serum NGAL levels had a correlation with the following factors: Systolic blood pressure, diastolic blood pressure (DBP, cystatin-C, remission. Linear regression analysis showed a significant correlation between cystatin-C and systolic and DBP. Conclusions: Based on the results, serum NGAL can be used as a prognostic marker for remission. In addition, NGAL and cystatin-C are biomarkers of kidney injury in NS.

  4. The Beta-2-Adrenoreceptor Agonists, Formoterol and Indacaterol, but Not Salbutamol, Effectively Suppress the Reactivity of Human Neutrophils In Vitro

    Directory of Open Access Journals (Sweden)

    Ronald Anderson

    2014-01-01

    Full Text Available The clinical relevance of the anti-inflammatory properties of beta-2 agonists remains contentious possibly due to differences in their molecular structures and agonist activities. The current study has compared the effects of 3 different categories of β2-agonists, namely, salbutamol (short-acting, formoterol (long-acting and indacaterol (ultra-long-acting, at concentrations of 1–1000 nM, with human blood neutrophils in vitro. Neutrophils were activated with either N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP, 1 µM or platelet-activating factor (PAF, 200 nM in the absence and presence of the β2-agonists followed by measurement of the generation of reactive oxygen species and leukotriene B4, release of elastase, and expression of the β2-integrin, CR3, using a combination of chemiluminescence, ELISA, colorimetric, and flow cytometric procedures respectively. These were correlated with alterations in the concentrations of intracellular cyclic-AMP and cytosolic Ca2+. At the concentrations tested, formoterol and indacaterol caused equivalent, significant (P<0.05 at 1–10 nM dose-related inhibition of all of the pro-inflammatory activities tested, while salbutamol was much less effective (P<0.05 at 100 nM and higher. Suppression of neutrophil reactivity was accompanied by elevations in intracellular cAMP and accelerated clearance of Ca2+ from the cytosol of activated neutrophils. These findings demonstrate that β2-agonists vary with respect to their suppressive effects on activated neutrophils.

  5. Oxidative burst of human neutrophils is suppressed by N-feruloylserotonin isolated from seeds of Leuzea carthamoides (Wild) DC

    Czech Academy of Sciences Publication Activity Database

    Nosáľ, R.; Perečko, T.; Jančinová, V.; Drábiková, K.; Harmatha, Juraj; Sviteková, K.

    2010-01-01

    Roč. 3, č. 3 (2010), A70-A71 ISSN 1337-6853. [Toxcon 2010, Borderless Toxicology. 15th Interdisciplinary Toxicological Conference & Advanced Toxicological Course. 06.09.-10.09.2010, Stará Lesná - Hotel Academia] R&D Projects: GA ČR(CZ) GA203/07/1227 Institutional research plan: CEZ:AV0Z40550506 Keywords : N-feruloylserotonin * human neutrophils * Leuzea carthamoides Subject RIV: CC - Organic Chemistry

  6. Quantitative proteomics reveals differential biological processes in healthy neonatal cord neutrophils and adult neutrophils

    KAUST Repository

    Zhu, Jiang; Zhang, Huoming; Guo, Tiannan; Li, Wenying; Li, Huiyu; Zhu, Yi; Huang, Shiang

    2014-01-01

    Neonatal neutrophils are characterized by the immaturity of bactericidal mechanisms that contributes largely to neonatal mortality. However, underlying molecular mechanism associated with the immaturity remains incompletely understood. In this study, we performed comparative proteomic analysis on neonatal neutrophils derived from human cord blood and adult peripheral neutrophils. A total of 1332 proteins were identified and quantified, and 127 proteins were characterized as differentially expressed between adult and cord neutrophils. The differentially expressed proteins are mapped in KEGG pathways into five clusters and indicated impaired functions of neonatal neutrophils in proteasome, lysosome, phagosome, and leukocyte transendothelial migration. In particular, many proteins associated with NETosis, a critical mechanism for antimicrobial process and auto-clearance, were also found to be downregulated in cord neutrophils. This study represents a first comparative proteome profiling of neonatal and adult neutrophils, and provides a global view of differentially expressed proteome for enhancing our understanding of their various functional difference. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Quantitative proteomics reveals differential biological processes in healthy neonatal cord neutrophils and adult neutrophils

    KAUST Repository

    Zhu, Jiang

    2014-06-11

    Neonatal neutrophils are characterized by the immaturity of bactericidal mechanisms that contributes largely to neonatal mortality. However, underlying molecular mechanism associated with the immaturity remains incompletely understood. In this study, we performed comparative proteomic analysis on neonatal neutrophils derived from human cord blood and adult peripheral neutrophils. A total of 1332 proteins were identified and quantified, and 127 proteins were characterized as differentially expressed between adult and cord neutrophils. The differentially expressed proteins are mapped in KEGG pathways into five clusters and indicated impaired functions of neonatal neutrophils in proteasome, lysosome, phagosome, and leukocyte transendothelial migration. In particular, many proteins associated with NETosis, a critical mechanism for antimicrobial process and auto-clearance, were also found to be downregulated in cord neutrophils. This study represents a first comparative proteome profiling of neonatal and adult neutrophils, and provides a global view of differentially expressed proteome for enhancing our understanding of their various functional difference. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Applying label-free dynamic mass redistribution assay for studying endogenous FPR1 receptor signalling in human neutrophils

    DEFF Research Database (Denmark)

    Christensen, Hanna B; Gloriam, David E; Pedersen, Daniel Sejer

    2017-01-01

    INTRODUCTION: The label-free dynamic mass redistribution-based assay (DMR) is a powerful method for studying signalling pathways of G protein-coupled receptors (GPCRs). Herein we present the label-free DMR assay as a robust readout for pharmacological characterization of formyl peptide receptors...... (FPRs) in human neutrophils. METHODS: Neutrophils were isolated from fresh human blood and their responses to FPR1 and FPR2 agonists, i.e. compound 43, fMLF and WKYMVm were measured in a label-free DMR assay using Epic Benchtop System from Corning®. Obtained DMR traces were used to calculate agonist...... potencies. RESULTS: The potencies (pEC50) of fMLF, WKYMVm and compound 43, determined on human neutrophils using the label-free DMR assay were 8.63, 7.76 and 5.92, respectively. The DMR response to fMLF, but not WKYMVm and compound 43 could be blocked by the FPR1-specific antagonist cyclosporin H...

  9. The effects of beta 2-agonists and methylxanthines on neutrophil function in vitro.

    Science.gov (United States)

    Llewellyn-Jones, C G; Stockley, R A

    1994-08-01

    Therapeutic agents which affect polymorphonuclear neutrophil (PMN) functions have the potential to reduce or increase PMN activation and, hence, influence the progression of lung inflammation. We have assessed the effects of the beta 2-agonist, terbutaline, and the methylxanthine, aminophylline, on PMN functions in vitro at both therapeutic and higher concentrations. At therapeutic levels, both agents increased PMN chemotaxis to formyl-methionyl-leucyl-phenylalanine (FMLP) in a dose-dependent manner from a control value of 22.5 +/- 3.58 cells.field-1 to 26.1 +/- 4.73 cells.field-1 with 4 mg.l-1 terbutaline, and to 26.3 +/- 4.49 cells.field-1 with 20 mg.l-1 aminophylline. When the cells were preincubated with higher doses of the agents in separate experiments there was inhibition of chemotaxis from a control value of 31.1 +/- 2.06 cells.field-1 to 18.3 +/- 0.82 cells.field-1 at 160 mg.l-1 terbutaline, and to 16.1 +/- 0.77 cells.field-1 at 400 mg.l-1 aminophylline. A similar effect was seen when the PMNs were preincubated with terbutaline and aminophylline prior to assessment of superoxide anion generation, with stimulation of superoxide release at therapeutic levels of the drugs and inhibition at higher doses (19% increase from resting control cells at terbutaline 4 mg.l-1 and 53% reduction at 160 mg.l-1; 28% increase with aminophylline 20 mg.l-1 and 22% reduction at 400 mg.l-1). Both terbutaline and aminophylline had no effect on PMN degranulation, as assessed by the degradation of fibronectin.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Regulation of neutrophil senescence by microRNAs.

    Directory of Open Access Journals (Sweden)

    Jon R Ward

    2011-01-01

    Full Text Available Neutrophils are rapidly recruited to sites of tissue injury or infection, where they protect against invading pathogens. Neutrophil functions are limited by a process of neutrophil senescence, which renders the cells unable to respond to chemoattractants, carry out respiratory burst, or degranulate. In parallel, aged neutrophils also undergo spontaneous apoptosis, which can be delayed by factors such as GMCSF. This is then followed by their subsequent removal by phagocytic cells such as macrophages, thereby preventing unwanted inflammation and tissue damage. Neutrophils translate mRNA to make new proteins that are important in maintaining functional longevity. We therefore hypothesised that neutrophil functions and lifespan might be regulated by microRNAs expressed within human neutrophils. Total RNA from highly purified neutrophils was prepared and subjected to microarray analysis using the Agilent human miRNA microarray V3. We found human neutrophils expressed a selected repertoire of 148 microRNAs and that 6 of these were significantly upregulated after a period of 4 hours in culture, at a time when the contribution of apoptosis is negligible. A list of predicted targets for these 6 microRNAs was generated from http://mirecords.biolead.org and compared to mRNA species downregulated over time, revealing 83 genes targeted by at least 2 out of the 6 regulated microRNAs. Pathway analysis of genes containing binding sites for these microRNAs identified the following pathways: chemokine and cytokine signalling, Ras pathway, and regulation of the actin cytoskeleton. Our data suggest that microRNAs may play a role in the regulation of neutrophil senescence and further suggest that manipulation of microRNAs might represent an area of future therapeutic interest for the treatment of inflammatory disease.

  11. Aspirin-triggered lipoxin A4 and lipoxin A4 up-regulate transcriptional corepressor NAB1 in human neutrophils.

    Science.gov (United States)

    Qiu, F H; Devchand, P R; Wada, K; Serhan, C N

    2001-12-01

    Aspirin-triggered 15-epi-lipoxin A4 (ATL) is an endogenous lipid mediator that mimics the actions of native lipoxin A4, a putative "stop signal" involved in regulating resolution of inflammation. A metabolically more stable analog of ATL, 15-epi-16-(para-fluoro)-phenoxy-lipoxin A4 analog (ATLa), inhibits neutrophil recruitment in vitro and in vivo and displays potent anti-inflammatory actions. ATLa binds with high affinity to the lipoxin A4 receptor, a G protein-coupled receptor on the surface of leukocytes. In this study, we used freshly isolated human neutrophils to examine ATLa's potential for initiating rapid nuclear responses. Using differential display reverse transcription polymerase chain reaction, we identified a subset of genes that was selectively up-regulated upon short exposure of polymorphonuclear leukocytes to ATLa but not to the chemoattractant leukotriene B4 or vehicle alone. We further investigated ATLa regulation of one of the genes, NAB1, a transcriptional corepressor identified previously as a glucocorticoid-responsive gene in hamster smooth muscle cells. Treatment of human neutrophils with pertussis toxin blocked ATLa up-regulation of NAB1. In addition, ATLa stimulated NAB1 gene expression in murine lung vascular smooth muscle in vivo. These findings provide evidence for rapid transcriptional induction of a cassette of genes via an ATLa-stimulated G protein-coupled receptor pathway that is potentially protective and overlaps with the anti-inflammatory glucocorticoid regulatory circuit.

  12. Complete identification of E-selectin ligands on neutrophils reveals distinct functions of PSGL-1, ESL-1, and CD44.

    Science.gov (United States)

    Hidalgo, Andrés; Peired, Anna J; Wild, Martin; Vestweber, Dietmar; Frenette, Paul S

    2007-04-01

    The selectins and their ligands are required for leukocyte extravasation during inflammation. Several glycoproteins have been suggested to bind to E-selectin in vitro, but the complete identification of its physiological ligands has remained elusive. Here, we showed that E-selectin ligand-1 (ESL-1), P-selectin glycoprotein ligand-1 (PSGL-1), and CD44 encompassed all endothelial-selectin ligand activity on neutrophils by using gene- and RNA-targeted loss of function. PSGL-1 played a major role in the initial leukocyte capture, whereas ESL-1 was critical for converting initial tethers into steady slow rolling. CD44 controlled rolling velocity and mediated E-selectin-dependent redistribution of PSGL-1 and L-selectin to a major pole on slowly rolling leukocytes through p38 signaling. These results suggest distinct and dynamic contributions of these three glycoproteins in selectin-mediated neutrophil adhesion and signaling.

  13. GROUP B STREPTOCOCCUS CIRCUMVENTS NEUTROPHILS AND NEUTROPHIL EXTRACELLULAR TRAPS DURING AMNIOTIC CAVITY INVASION AND PRETERM LABOR

    Science.gov (United States)

    Boldenow, Erica; Gendrin, Claire; Ngo, Lisa; Bierle, Craig; Vornhagen, Jay; Coleman, Michelle; Merillat, Sean; Armistead, Blair; Whidbey, Christopher; Alishetti, Varchita; Santana-Ufret, Veronica; Ogle, Jason; Gough, Michael; Srinouanprachanh, Sengkeo; MacDonald, James W; Bammler, Theo K; Bansal, Aasthaa; Liggitt, H. Denny; Rajagopal, Lakshmi; Waldorf, Kristina M Adams

    2016-01-01

    Preterm birth is a leading cause of neonatal morbidity and mortality. Although microbial invasion of the amniotic cavity (MIAC) is associated with the majority of early preterm births, the temporal events that occur during MIAC and preterm labor are not known. Group B Streptococci (GBS) are β-hemolytic, gram-positive bacteria, which commonly colonize the vagina but have been recovered from the amniotic fluid in preterm birth cases. To understand temporal events that occur during MIAC, we utilized a unique chronically catheterized nonhuman primate model that closely emulates human pregnancy. This model allows monitoring of uterine contractions, timing of MIAC and immune responses during pregnancy-associated infections. Here, we show that adverse outcomes such as preterm labor, MIAC, and fetal sepsis were observed more frequently during infection with hemolytic GBS when compared to nonhemolytic GBS. Although MIAC was associated with systematic progression in chorioamnionitis beginning with chorionic vasculitis and progressing to neutrophilic infiltration, the ability of the GBS hemolytic pigment toxin to induce neutrophil cell death and subvert killing by neutrophil extracellular traps (NETs) in placental membranes in vivo facilitated MIAC and fetal injury. Furthermore, compared to maternal neutrophils, fetal neutrophils exhibit decreased neutrophil elastase activity and impaired phagocytic functions to GBS. Collectively, our studies demonstrate how a unique bacterial hemolytic lipid toxin enables GBS to circumvent neutrophils and NETs in placental membranes to induce fetal injury and preterm labor. PMID:27819066

  14. Impairment of Several Immune Functions and Redox State in Blood Cells of Alzheimer’s Disease Patients. Relevant Role of Neutrophils in Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Carmen Vida

    2018-01-01

    Full Text Available Since aging is considered the most risk factor for sporadic Alzheimer’s Disease (AD, the age-related impairment of the immune system (immunosenescence, based on a chronic oxidative-inflammatory stress situation, could play a key role in the development and progression of AD. Although AD is accompanied by systemic disturbance, reflecting the damage in the brain, the changes in immune response and redox-state in different types of blood cells in AD patients have been scarcely studied. The aim was to analyze the variations in several immune functions and oxidative-inflammatory stress and damage parameters in both isolated peripheral neutrophils and mononuclear blood cells, as well as in whole blood cells, from patients diagnosed with mild (mAD and severe AD, and of age-matched controls (elderly healthy subjects as well as of adult controls. The cognitive decline of all subjects was determined by Mini-Mental State Examination (MMSE test (mAD stage was established at 20 ≤ MMSE ≤ 23 score; AD stage at <18 MMSE; elderly subjects >27 MMSE. The results showed an impairment of the immune functions of human peripheral blood neutrophils and mononuclear cells of mAD and AD patients in relation to healthy elderly subjects, who showed the typical immunosenescence in comparison with the adult individuals. However, several alterations were only observed in severe AD patients (lower chemotaxis, lipopolysaccharide lymphoproliferation, and interleukin (IL-10 release; higher basal proliferation, tumor necrosis factor (TNF-α release, and IL-10/TNF-α ratio, others only in mAD subjects (higher adherence, meanwhile others appeared in both mAD and AD patients (lower phytohemaglutinin lymphoproliferation and higher IL-6 release. This impairment of immune functions could be mediated by: (1 the higher oxidative stress and damage also observed in blood cells from mAD and AD patients and in isolated neutrophils [lower glutathione (GSH levels, high oxidized

  15. Oviduct-Specific Expression of Human Neutrophil Defensin 4 in Lentivirally Generated Transgenic Chickens

    Science.gov (United States)

    Liu, Tongxin; Wu, Hanyu; Cao, Dainan; Li, Qingyuan; Zhang, Yaqiong; Li, Ning; Hu, Xiaoxiang

    2015-01-01

    The expression of oviduct-specific recombinant proteins in transgenic chickens is a promising technology for the production of therapeutic biologics in eggs. In this study, we constructed a lentiviral vector encoding an expression cassette for human neutrophil defensin 4 (HNP4), a compound that displays high activity against Escherichia coli, and produced transgenic chickens that expressed the recombinant HNP4 protein in egg whites. After the antimicrobial activity of the recombinant HNP4 protein was tested at the cellular level, a 2.8-kb ovalbumin promoter was used to drive HNP4 expression specifically in oviduct tissues. From 669 injected eggs, 218 chickens were successfully hatched. Ten G0 roosters, with semens identified as positive for the transgene, were mated with wild-type hens to generate G1 chickens. From 1,274 total offspring, fifteen G1 transgenic chickens were positive for the transgene, which was confirmed by PCR and Southern blotting. The results of the Southern blotting and genome walking indicated that a single copy of the HNP4 gene was integrated into chromosomes 1, 2, 3, 4, 6 and 24 of the chickens. As expected, HNP4 expression was restricted to the oviduct tissues, and the levels of both transcriptional and translational HNP4 expression varied greatly in transgenic chickens with different transgene insertion sites. The amount of HNP4 protein expressed in the eggs of G1 and G2 heterozygous transgenic chickens ranged from 1.65 μg/ml to 10.18 μg/ml. These results indicated that the production of transgenic chickens that expressed HNP4 protein in egg whites was successful. PMID:26020529

  16. Human neutrophil antigen profiles in Banjar, Bugis, Champa, Jawa and Kelantan Malays in Peninsular Malaysia.

    Science.gov (United States)

    Manaf, Siti M; NurWaliyuddin, Hanis Z A; Panneerchelvam, Sundararajulu; Zafarina, Zainuddin; Norazmi, Mohd N; Chambers, Geoffrey K; Edinur, Hisham A

    2015-10-01

    Human neutrophil antigens (HNA) are polymorphic and immunogenic proteins involved in the pathogenesis of neonatal alloimmune neutropenia, transfusion-related acute lung injury (TRALI) and transfusion-related alloimmune neutropenia. The characterisation of HNA at a population level is important for predicting the risk of alloimmunisation associated with blood transfusion and gestation and for anthropological studies. Blood samples from 192 healthy, unrelated Malays were collected and genotyped using polymerase chain reaction-sequence specific primers (HNA-1, -3, -4) and polymerase chain reaction-restriction fragment length polymorphisms (HNA-5). The group comprised 30 Banjar, 37 Bugis, 51 Champa, 39 Jawa and 35 Kelantan Malays. The most common HNA alleles in the Malays studied were HNA-1a (0.641-0.765), -3a (0.676-0.867), -4a (0.943-1.000) and -5a (0.529-0.910). According to principal coordinate plots constructed using HNA allele frequencies, the Malay sub-ethnic groups are closely related and grouped together with other Asian populations. The risks of TRALI or neonatal neutropenia were not increased for subjects with HNA-1, -3 and -4 loci even for donor and recipient or pairs from different Malay sub-ethnic groups. Nonetheless, our estimates showed significantly higher risks of HNA alloimmunisation during pregnancy and transfusion between Malays and other genetically differentiated populations such as Africans and Europeans. This study reports HNA allele and genotype frequencies for the five Malay sub-ethnic groups living in Peninsular Malaysia for the first time. These Malay sub-ethnic groups show closer genetic relationships with other Asian populations than with Europeans and Africans. The distributions of HNA alleles in other lineages of people living in Malaysia (e.g. Chinese, Indian and Orang Asli) would be an interesting subject for future study.

  17. Porphyromonas gingivalis regulates TREM-1 in human polymorphonuclear neutrophils via its gingipains.

    Directory of Open Access Journals (Sweden)

    Nagihan Bostanci

    Full Text Available The Triggering Receptor Expressed on Myeloid cells 1 (TREM-1 is a cell surface receptor of the immunoglobulin superfamily, with the capacity to amplify pro-inflammatory cytokine production and regulate apoptosis. Polymorphonuclear neutrophils (PMNs are the first line of defence against infection, and a major source of TREM-1. Porphyromonas gingivalis is a Gram-negative anaerobe highly implicated in the inflammatory processes governing periodontal disease, which is characterized by the destruction of the tooth-supporting tissues. It expresses a number of virulence factors, including the cysteine proteinases (or gingipains. The aim of this in vitro study was to investigate the effect of P. gingivalis on TREM-1 expression and production by primary human PMNs, and to evaluate the role of its gingipains in this process. After 4 h of challenge, P. gingivalis enhanced TREM-1 expression as identified by quantitative real-time PCR. This was followed by an increase in soluble (sTREM-1 secretion over a period of 18 h, as determined by ELISA. At this time-point, the P. gingivalis-challenged PMNs exhibited diminished TREM-1 cell-membrane staining, as identified by flow cytometry and confocal laser scanning microscopy. Furthermore engagement of TREM-1, by means of anti-TREM-1 antibodies, enhanced the capacity of P. gingivalis to stimulate interleukin (IL-8 production. Conversely, antagonism of TREM-1 using a synthetic peptide resulted in reduction of IL-8 secretion. Using isogenic P. gingivalis mutant strains, we identified the Arg-gingipain to be responsible for shedding of sTREM-1 from the PMN surface, whereas the Lys-gingipain had the capacity to degrade TREM-1. In conclusion, the differential regulation of TREM-1 by the P. gingivalis gingipains may present a novel mechanism by which P. gingivalis manipulates the host innate immune response helping to establish chronic periodontal inflammation.

  18. ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia

    NARCIS (Netherlands)

    Woodfin, Abigail; Beyrau, Martina; Voisin, Mathieu-Benoit; Ma, Bin; Whiteford, James R.; Hordijk, Peter L.; Hogg, Nancy; Nourshargh, Sussan

    2016-01-01

    Intracellular adhesion molecule-1 (ICAM-1) is a transmembrane glycoprotein expressed on the cell surface of numerous cell types such as endothelial and epithelial cells, vascular smooth muscle cells, and certain leukocyte subsets. With respect to the latter, ICAM-1 has been detected on neutrophils

  19. Transmigration of polymorphnuclear neutrophils and monocytes through the human blood-cerebrospinal fluid barrier after bacterial infection in vitro.

    Science.gov (United States)

    Steinmann, Ulrike; Borkowski, Julia; Wolburg, Hartwig; Schröppel, Birgit; Findeisen, Peter; Weiss, Christel; Ishikawa, Hiroshi; Schwerk, Christian; Schroten, Horst; Tenenbaum, Tobias

    2013-02-28

    Bacterial invasion through the blood-cerebrospinal fluid barrier (BCSFB) during bacterial meningitis causes secretion of proinflammatory cytokines/chemokines followed by the recruitment of leukocytes into the CNS. In this study, we analyzed the cellular and molecular mechanisms of polymorphonuclear neutrophil (PMN) and monocyte transepithelial transmigration (TM) across the BCSFB after bacterial infection. Using an inverted transwell filter system of human choroid plexus papilloma cells (HIBCPP), we studied leukocyte TM rates, the migration route by immunofluorescence, transmission electron microscopy and focused ion beam/scanning electron microscopy, the secretion of cytokines/chemokines by cytokine bead array and posttranslational modification of the signal regulatory protein (SIRP) α via western blot. PMNs showed a significantly increased TM across HIBCPP after infection with wild-type Neisseria meningitidis (MC58). In contrast, a significantly decreased monocyte transmigration rate after bacterial infection of HIBCPP could be observed. Interestingly, in co-culture experiments with PMNs and monocytes, TM of monocytes was significantly enhanced. Analysis of paracellular permeability and transepithelial electrical resistance confirmed an intact barrier function during leukocyte TM. With the help of the different imaging techniques we could provide evidence for para- as well as for transcellular migrating leukocytes. Further analysis of secreted cytokines/chemokines showed a distinct pattern after stimulation and transmigration of PMNs and monocytes. Moreover, the transmembrane glycoprotein SIRPα was deglycosylated in monocytes, but not in PMNs, after bacterial infection. Our findings demonstrate that PMNs and monoctyes differentially migrate in a human BCSFB model after bacterial infection. Cytokines and chemokines as well as transmembrane proteins such as SIRPα may be involved in this process.

  20. Improved recovery of functionally active eosinophils and neutrophils using novel immunomagnetic technology.

    Science.gov (United States)

    Son, Kiho; Mukherjee, Manali; McIntyre, Brendan A S; Eguez, Jose C; Radford, Katherine; LaVigne, Nicola; Ethier, Caroline; Davoine, Francis; Janssen, Luke; Lacy, Paige; Nair, Parameswaran

    2017-10-01

    Clinically relevant and reliable reports derived from in vitro research are dependent on the choice of cell isolation protocols adopted between different laboratories. Peripheral blood eosinophils are conventionally isolated using density-gradient centrifugation followed by immunomagnetic selection (positive/negative) while neutrophils follow a more simplified dextran-sedimentation methodology. With the increasing sophistication of molecular techniques, methods are now available that promise protocols with reduced user-manipulations, improved efficiency, and better yield without compromising the purity of enriched cell populations. These recent techniques utilize immunomagnetic particles with multiple specificities against differential cell surface markers to negatively select non-target cells from whole blood, greatly reducing the cost/time taken to isolate granulocytes. Herein, we compare the yield efficiencies, purity and baseline activation states of eosinophils/neutrophils isolated using one of these newer protocols that use immunomagnetic beads (MACSxpress isolation) vs. the standard isolation procedures. The study shows that the MACSxpress method consistently allowed higher yields per mL of peripheral blood compared to conventional methods (Peosinophils (95.0±1.7%) and neutrophils (94.2±10.1%) assessed by two methods: Wright's staining and flow cytometry. In addition, enumeration of CD63 + (marker for eosinophil activation) and CD66b + (marker for neutrophil activation) cells within freshly isolated granulocytes, respectively, confirmed that conventional protocols using density-gradient centrifugation caused cellular activation of the granulocytes at baseline compared to the MACSxpress method. In conclusion, MACSxpress isolation kits were found to be superior to conventional techniques for consistent purifications of eosinophils and neutrophils that were suitable for activation assays involving degranulation markers. Copyright © 2017 Elsevier B.V. All

  1. Nimesulide inhibits platelet-activating factor synthesis in activated human neutrophils

    NARCIS (Netherlands)

    Verhoeven, A. J.; Tool, A. T.; Kuijpers, T. W.; Roos, D.

    1993-01-01

    In an inflammatory locus, products of activated neutrophils may be toxic both to the micro-organisms to be eliminated and to the surrounding tissue. In several models of inflammation, nimesulide possesses marked anti-inflammatory properties. The present study was undertaken to further investigate

  2. Equol Effectively Inhibits Toxic Activity of Human Neutrophils without Influencing Their Viability

    Czech Academy of Sciences Publication Activity Database

    Pažoureková, S.; Lucová, M.; Nosál, R.; Drábiková, K.; Harmatha, Juraj; Šmidrkal, J.; Jančinová, V.

    2016-01-01

    Roč. 97, 3/4 (2016), s. 138-145 ISSN 0031-7012 Institutional support: RVO:61388963 Keywords : neutrophils * equol * chemiluminescence * reactive oxygen species * p40(phox) * apoptosis Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 1.442, year: 2016

  3. Antimicrobial Peptide Human Neutrophil Peptide 1 as a Potential Link Between Chronic Inflammation and Ductal Adenocarcinoma of the Pancreas.

    Science.gov (United States)

    Pausch, Thomas; Adolph, Sarah; Felix, Klaus; Bauer, Andrea S; Bergmann, Frank; Werner, Jens; Hartwig, Werner

    Defensins are antimicrobial peptides playing a role in innate immunity, in epithelial cell regeneration, and in carcinogenesis of inflammation-triggered malignancies. We analyzed this role in pancreatic ductal adenocarcinoma (PDAC) in the context of its association with chronic pancreatitis (CP). Human tissue of healthy pancreas, CP, and PDAC was screened for defensins by immunohistochemistry. Defensin α 1 (human neutrophil peptide 1 [HNP-1]) expression was validated using mass spectrometry and microarray analysis. Human neutrophil peptide 1 expression and influences of proinflammatory cytokines (tumor necrosis factor α, interleukin 1β, and interferon γ) were studied in human pancreatic cancer cells (Colo 357, T3M4, PANC-1) and normal human pancreatic duct epithelial cells (HPDE). Accumulation of HNP-1 in malignant pancreatic ductal epithelia was seen. Spectrometry showed increased expression of HNP-1 in CP and even more in PDAC. At RNA level, no significant regulation was found. In cancer cells, HNP-1 expression was significantly higher than in HPDE. Proinflammatory cytokines significantly led to increased HNP-1 levels in culture supernatants and decreased levels in lysates of cancer cells. In HPDE cytokines significantly decreased HNP-1 levels. Inflammatory regulation of HNP-1 in PDAC tissue and cells indicates that HNP-1 may be a link between chronic inflammation and malignant transformation in the pancreas.

  4. fMLP-Induced IL-8 Release Is Dependent on NADPH Oxidase in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    María A. Hidalgo

    2015-01-01

    Full Text Available N-Formyl-methionyl-leucyl-phenylalanine (fMLP and platelet-activating factor (PAF induce similar intracellular signalling profiles; but only fMLP induces interleukin-8 (IL-8 release and nicotinamide adenine dinucleotide phosphate reduced (NADPH oxidase activity in neutrophils. Because the role of ROS on IL-8 release in neutrophils is until now controversial, we assessed if NADPH oxidase is involved in the IL-8 secretions and PI3K/Akt, MAPK, and NF-κB pathways activity induced by fMLP. Neutrophils were obtained from healthy volunteers. IL-8 was measured by ELISA, IL-8 mRNA by qPCR, and ROS production by luminol-amplified chemiluminescence, reduction of ferricytochrome c, and FACS. Intracellular pH changes were detected by spectrofluorescence. ERK1/2, p38 MAPK, and Akt phosphorylation were analysed by immunoblotting and NF-κB was analysed by immunocytochemistry. Hydroxy-3-methoxyaceto-phenone (HMAP, diphenyleneiodonium (DPI, and siRNA Nox2 reduced the ROS and IL-8 release in neutrophils treated with fMLP. HMAP, DPI, and amiloride (a Na+/H+ exchanger inhibitor inhibited the Akt phosphorylation and did not affect the p38 MAPK and ERK1/2 activity. DPI and HMAP reduced NF-κB translocation induced by fMLP. We showed that IL-8 release induced by fMLP is dependent on NADPH oxidase, and ROS could play a redundant role in cell signalling, ultimately activating the PI3K/Akt and NF-κB pathways in neutrophils.

  5. Oxidative burst of circulating neutrophils following traumatic brain injury in human.

    Directory of Open Access Journals (Sweden)

    Yiliu Liao

    Full Text Available Besides secondary injury at the lesional site, Traumatic brain injury (TBI can cause a systemic inflammatory response, which may cause damage to initially unaffected organs and potentially further exacerbate the original injury. Here we investigated plasma levels of important inflammatory mediators, oxidative activity of circulating leukocytes, particularly focusing on neutrophils, from TBI subjects and control subjects with general trauma from 6 hours to 2 weeks following injury, comparing with values from uninjured subjects. We observed increased plasma level of inflammatory cytokines/molecules TNF-α, IL-6 and CRP, dramatically increased circulating leukocyte counts and elevated expression of TNF-α and iNOS in circulating leukocytes from TBI patients, which suggests a systemic inflammatory response following TBI. Our data further showed increased free radical production in leukocyte homogenates and elevated expression of key oxidative enzymes iNOS, COX-2 and NADPH oxidase (gp91(phox in circulating leukocytes, indicating an intense induction of oxidative burst following TBI, which is significantly greater than that in control subjects with general trauma. Furthermore, flow cytometry assay proved neutrophils as the largest population in circulation after TBI and showed significantly up-regulated oxidative activity and suppressed phagocytosis rate for circulating neutrophils following brain trauma. It suggests that the highly activated neutrophils might play an important role in the secondary damage, even outside the injured brain. Taken together, the potent systemic inflammatory response induced by TBI, especially the intensively increase oxidative activity of circulating leukocytes, mainly neutrophils, may lead to a systemic damage, dysfunction/damage of bystander tissues/organs and even further exacerbate secondary local damage. Controlling these pathophysiological processes may be a promising therapeutic strategy and will protect unaffected

  6. Zinc and magnesium ions synergistically inhibit superoxide generation by cultured human neutrophils--a promising candidate formulation for amnioinfusion fluid.

    Science.gov (United States)

    Uchida, Toshiyuki; Itoh, Hiroaki; Nakamura, Yuki; Kobayashi, Yukiko; Hirai, Kyuya; Suzuki, Kazunao; Sugihara, Kazuhiro; Kanayama, Naohiro; Hiramatsu, Mitsuo

    2010-06-01

    Oligohydramnios is often caused by the premature rupturing of membranes and subsequent intrauterine infections, such as chorioamnionitis, in which event oxidative stress is hypothesized to be closely associated with the damage to the fetal organs. The clinical efficiency of amnioinfusion using warmed saline in cases of premature rupture of membranes is still controversial, especially concerning the prognosis for the fetus. In the present study, we found that human amniotic fluid per se suppresses the release of superoxide from cultured human neutrophils, suggesting an acute or chronic shortage of amniotic fluid in cases of premature rupture of membranes can affect the shielding of intrauterine organs from oxidative stress. The aim of this study was to propose a formula of zinc and magnesium ions in saline for amnioinfusion, by assessing antioxidative activities. A combination of 5 microM zinc and 5mM magnesium in saline synergistically inhibited superoxide production by cultured human neutrophils, equivalent to human amniotic fluid. The intraperitoneal administration of this formula significantly improved the survival rate in a rat model of peritonitis compared to the saline control (46.7% vs. 10%). The combination of these metals with saline may thus be a promising formula for an amnioinfusion fluid with the capacity to protect fetal organs from oxidative stress. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Immunosenescence of Polymorphonuclear Neutrophils

    Directory of Open Access Journals (Sweden)

    Inga Wessels

    2010-01-01

    Full Text Available All immune cells are affected by aging, contributing to the high susceptibility to infections and increased mortality observed in the elderly. The effect of aging on cells of the adaptive immune system is well documented. In contrast, knowledge concerning age-related defects of polymorphonuclear neutrophils (PMN is limited. During the past decade, it has become evident that in addition to their traditional role as phagocytes, neutrophils are able to secrete a wide array of immunomodulating molecules. Their importance is underlined by the finding that genetic defects that lead to neutropenia increase susceptibility to infections. Whereas there is consistence about the constant circulating number of PMN throughout aging, the abilities of tissue infiltration, phagocytosis, and oxidative burst of PMN from aged donors are discussed controversially. Furthermore, there are numerous discrepancies between in vivo and in vitro results, as well as between results for murine and human PMN. Most of the reported functional changes can be explained by defective signaling pathways, but further research is required to get a detailed insight into the underlying molecular mechanisms. This could form the basis for drug development in order to prevent or treat age-related diseases, and thus to unburden the public health systems.

  8. The influence of human neutrophils on N-nitrosodimethylamine (NDMA) synthesis.

    Science.gov (United States)

    Jabłoński, Jakub; Jabłońska, Ewa; Iwanowska, Jolanta; Marcińczyk, Magda; Moniuszko-Jakoniuk, Janina

    2006-01-01

    N-nitrozodimethyloamine (NDMA) is a carcinogenic compound that can be formed in vivo. NDMA is synthesized from precursors-amines and nitrosating agents. Nitrosating agents are formed through the reaction of oxide, reactive oxygen species and nitric oxide (NO). Human neutrophils (PMN) are an important source of the most reactive oxygen species as well as of the nitric oxide. The increase in oxygen metabolism of PMN can lead to the increase nitrosating agent and nitroso-forms. Inflammatory process is associated with locally decreased pH that may favor nitrosation reaction. In the present study, we estimated the NDMA synthesis by LPS-stimulated PMN in the presence of the iNOS inhibitor--N-nitro-L-arginine methyl ester (L-NAME). In the nitrosation reaction dimethylamine (DMA) was used as substrat. The viability of the cells was measured by cytometric method. NDMA concentrations the culture media was measured by GCMS method. NO production was estimated by Griess's method. Expression of iNOS was determined by western blotting. Results obtained showed that DMA nitrosation is most effective in pH between 3-4.5. Nonstimulated PMN produced lower concentrations of NO than LPS-stimulated cells (1.27 microg/cm3 and 1.57 microg/cm3, respectively). In the culture of nonstimulated PMN supplemented with DMA, there was NDMA (mean--0.99 ng/cm3). In the culture of LPS-stimulated PMN in the presence of DMA, the concentration of NDMA was higher than in the culture of nonstimulated PMN (median--1.45 ng/cm3). In the supernatants of cells incubated without DMA and with DMA, LPS and L-NAME, no NDMA was detected. These results indicate that PMN can be one of sources of nitrosating agents and can play a role in endogenous NDMA synthesis. Stimulation of PMN can lead to the increase of NDMA concentration following the increase of NO production. Different pathological conditions associated with PMN activation as well as the decreased pH may favor endogenous NDMA synthesis.

  9. Human Rights and Human Function

    Directory of Open Access Journals (Sweden)

    Mohsen Javadi

    2006-03-01

    Full Text Available This paper firstly explores some theories of Human Rights justification and then assents to the theory that Human Rights is based on justified moral values. In order to justify moral values, Aristotle’s approach called “Function Argument” is reviewed. Propounding this argument, the writer attempts to show that all analysis of human identity will directly contribute to the man’s view of his rights. Not only Human rights is really determined by human function or human distinguishing characteristic i.e. human identity, but in the world of knowledge the proper method to know human rights is to know human being himself. n cloning violates man’s rights due to two reasons: damage of human identity and violation of the right to be unique. Attempting to clarify the nature of human cloning, this article examines the aspects to be claimed to violate human rights and evaluates the strength of the reasons for this claim. این مقاله پس از بررسی اجمالی برخی از نظریه‌های توجیه حقوق بشر، نظریة ابتنای آن بر ارزش‌های اخلاقی موجّه را می‌پذیرد. دربارة چگونگی توجیه ارزش اخلاقی، رویکرد ارسطو که به «برهان ارگن» موسوم است، مورد بحث و بررسی قرار می‌گیرد. مؤلف با طرح این برهان می‌کوشد نشان دهد ارائه هرگونه تحلیل از هویت انسان در نگرش آدمی به حقوق خود تأثیر مستقیم خواهد گذاشت. حقوق آدمی نه فقط از ناحیة کارویژه یا فصل ممیز وی (هویت انسان تعیّن واقعی می‌گیرد، بلکه در عالم معرفت هم راه درست شناخت حقوق بشر، شناخت خود انسان است.

  10. Selective inhibition of extracellular oxidants liberated from human neutrophils--A new mechanism potentially involved in the anti-inflammatory activity of hydroxychloroquine.

    Science.gov (United States)

    Jančinová, Viera; Pažoureková, Silvia; Lucová, Marianna; Perečko, Tomáš; Mihalová, Danica; Bauerová, Katarína; Nosáľ, Radomír; Drábiková, Katarína

    2015-09-01

    Hydroxychloroquine is used in the therapy of rheumatoid arthritis or lupus erythematosus. Although these diseases are often accompanied by activation of neutrophils, there are still few data relating to the impact of hydroxychloroquine on these cells. We investigated the effect of orally administered hydroxychloroquine on neutrophil oxidative burst in rats with adjuvant arthritis. In human neutrophils, extra- and intracellular formation of oxidants, mobilisation of intracellular calcium and the phosphorylation of proteins regulating NADPH oxidase assembly were analysed. Administration of hydroxychloroquine decreased the concentration of oxidants in blood of arthritic rats. The inhibition was comparable with the reference drug methotrexate, yet it was not accompanied by a reduction in neutrophil count. When both drugs were co-applied, the effect became more pronounced. In isolated human neutrophils, treatment with hydroxychloroquine resulted in reduced mobilisation of intracellular calcium, diminished concentration of external oxidants and in decreased phosphorylation of Ca(2+)-dependent protein kinase C isoforms PKCα and PKCβII, which regulate activation of NADPH oxidase on plasma membrane. On the other hand, no reduction was observed in intracellular oxidants or in the phosphorylation of p40(phox) and PKCδ, two proteins directing the oxidase assembly to intracellular membranes. Hydroxychloroquine reduced neutrophil-derived oxidants potentially involved in tissue damage and protected those capable to suppress inflammation. The observed effects may represent a new mechanism involved in the anti-inflammatory activity of this drug. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Overhauser-enhanced MRI of elastase activity from in vitro human neutrophil degranulation.

    Directory of Open Access Journals (Sweden)

    Elodie Parzy

    Full Text Available Magnetic resonance imaging can reveal exquisite anatomical details. However several diseases would benefit from an imaging technique able to specifically detect biochemical alterations. In this context protease activity imaging is one of the most promising areas of research.We designed an elastase substrate by grafting stable nitroxide free radicals on soluble elastin. This substrate generates a high Overhauser magnetic resonance imaging (OMRI contrast upon digestion by the target proteases through the modulation of its rotational correlation time. The sensitivity is sufficient to generate contrasted images of the degranulation of neutrophils induced by a calcium ionophore from 2×10(4 cells per milliliter, well under the physiological neutrophils concentrations.These ex-vivo experiments give evidence that OMRI is suitable for imaging elastase activity from neutrophil degranulation. Provided that a fast protease-substrate is used these results open the door to better diagnoses of a number of important pathologies (cystic fibrosis, inflammation, pancreatitis by OMRI or Electron Paramagnetic Resonance Imaging in vivo. It also provides a long-expected method to monitor anti-protease treatments efficiency and help pharmaceutical research.

  12. Comparison of the effect of timegadine, levamisole, and D-penicillamine on human neutrophil metabolism of endogenous arachidonic acid and chemotaxis

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, O.H.; Ahnfelt-Roenne, I. Department of Pharmacology, Leo Pharmaceutical Products, Ballerup; Elmgreen, J.

    1988-01-01

    The effect of timegadine, a novel experimental antirheumatic drug, on human neutrophil (PMN) 5-lipoxygenase activity and leukotriene B/sub 4/ (LTB/sub 4/) chemotaxis was compared with that of two second-line antiinflammatory drugs, D-penicillamine and levamisole. 1-/sup 14/C-Arachidonic acid (AA) was incorporated into the purified cells until steady state conditions were obtained. After preincubation with serial dilutions of the three drugs, AA release and metabolism was stimulated with calcium ionophore A23187. The radioactive eicosanoids released were extracted and separated by thinlayer chromatography, followed by autoradiography and quantitative laser densitometry. Chemotaxi of PMNs towards LTB/sub 4/ was measured in a modified Boyden chamber. Timegardine showed dose-dependent inhibition of both the 5-lipoxygenase pathway (IC50 3.4 x 10/sup -5/ M), and of chemotaxis (IC50 3 x 10/sup -4/ M). Inhibition of the release of AA from phospholipids, however, occurred only at therapeutically irrelevant doses (millimolar concentrations). Levamisole and D-penicillamine did not inhibit any of the cell functions investigated. Inhibition of both neutrophil motility and cellular synthesis of pro-inflammatory eicosanoids, may thus contribute to the clinical effects of timegadine in rheumatoid arthritis.

  13. Plasma Neutrophil Gelatinase-Associated Lipocalin Reflects Both Inflammation and Kidney Function in Patients with Myocardial Infarction

    DEFF Research Database (Denmark)

    Lindberg, Søren; Jensen, Jan S; Hoffmann, Søren

    2016-01-01

    BACKGROUND/AIMS: Neutrophil gelatinase-associated lipocalin (NGAL) has emerged as a marker for acute kidney injury and cardiovascular outcome. However, the relative importance of inflammation versus kidney function on plasma NGAL levels is uncertain, making the interpretation of plasma NGAL unclear....... Accordingly, we investigated the relationship between plasma NGAL, inflammation and kidney function in patients with myocardial infarction (MI). METHODS: We prospectively included 584 patients with acute ST-segment elevation MI (STEMI) treated with primary percutaneous coronary intervention (PCI) from 2006.......001). Leukocyte count and C-reactive protein were the main determinants of plasma NGAL in patients with normal eGFR, whereas eGFR was the main determinant at reduced kidney function. CONCLUSIONS: eGFR determines the association of NGAL with either inflammation or kidney function; in patients with normal e...

  14. Cathelicidin host defence peptide augments clearance of pulmonary Pseudomonas aeruginosa infection by its influence on neutrophil function in vivo.

    Directory of Open Access Journals (Sweden)

    Paula E Beaumont

    Full Text Available Cathelicidins are multifunctional cationic host-defence peptides (CHDP; also known as antimicrobial peptides and an important component of innate host defence against infection. In addition to microbicidal potential, these peptides have properties with the capacity to modulate inflammation and immunity. However, the extent to which such properties play a significant role during infection in vivo has remained unclear. A murine model of acute P. aeruginosa lung infection was utilised, demonstrating cathelicidin-mediated enhancement of bacterial clearance in vivo. The delivery of exogenous synthetic human cathelicidin LL-37 was found to enhance a protective pro-inflammatory response to infection, effectively promoting bacterial clearance from the lung in the absence of direct microbicidal activity, with an enhanced early neutrophil response that required both infection and peptide exposure and was independent of native cathelicidin production. Furthermore, although cathelicidin-deficient mice had an intact early cellular inflammatory response, later phase neutrophil response to infection was absent in these animals, with significantly impaired clearance of P. aeruginosa. These findings demonstrate the importance of the modulatory properties of cathelicidins in pulmonary infection in vivo and highlight a key role for cathelicidins in the induction of protective pulmonary neutrophil responses, specific to the infectious milieu. In additional to their physiological roles, CHDP have been proposed as future antimicrobial therapeutics. Elucidating and utilising the modulatory properties of cathelicidins has the potential to inform the development of synthetic peptide analogues and novel therapeutic approaches based on enhancing innate host defence against infection with or without direct microbicidal targeting of pathogens.

  15. Malnutrition in Healthy Individuals Results in Increased Mixed Cytokine Profiles, Altered Neutrophil Subsets and Function

    Science.gov (United States)

    Takele, Y.; Adem, E.; Getahun, M.; Tajebe, F.; Kiflie, A.; Hailu, A.; Raynes, J.; Mengesha, B.; Ayele, T. A.; Shkedy, Z.; Lemma, M.; Diro, E.; Toulza, F.; Modolell, M.; Munder, M.; Müller, I.; Kropf, P.

    2016-01-01

    Malnutrition is commonly associated with increased infectious disease susceptibility and severity. Whereas malnutrition might enhance the incidence of disease as well as its severity, active infection can in turn exacerbate malnutrition. Therefore, in a malnourished individual suffering from a severe infection, it is not possible to determine the contribution of the pre-existing malnutrition and/or the infection itself to increased disease severity. In the current study we focussed on two groups of malnourished, but otherwise healthy individuals: moderately malnourished (BMI: 18.4–16.5) and severely malnourished (BMI <16.5) and compared several immune parameters with those of individuals with a normal BMI (≥18.5). Our results show a similar haematological profile in all three groups, as well as a similar ratio of CD4+ and CD8+ T cells. We found significant correlations between low BMI and increased levels of T helper (Th) 1 (Interferon (IFN)-γ, (interleukin (IL)-2, IL-12), Th2 (IL-4, IL-5, IL-13), as well as IL-10, IL-33 and tumor necrosis factor-α, but not IL-8 or C reactive protein. The activities of arginase, an enzyme associated with immunosuppression, were similar in plasma, peripheral blood mononuclear cells (PBMC) and neutrophils from all groups and no differences in the expression levels of CD3ζ, a marker of T cell activation, were observed in CD4+ and CD8+T cells. Furthermore, whereas the capacity of neutrophils from the malnourished groups to phagocytose particles was not impaired, their capacity to produce reactive oxygen species was impaired. Finally we evaluated the frequency of a subpopulation of low-density neutrophils and show that they are significantly increased in the malnourished individuals. These differences were more pronounced in the severely malnourished group. In summary, our results show that even in the absence of apparent infections, healthy malnourished individuals display dysfunctional immune responses that might contribute to

  16. Assessment of Antioxidant Activity of Spray Dried Extracts of Psidium guajava Leaves by DPPH and Chemiluminescence Inhibition in Human Neutrophils

    Directory of Open Access Journals (Sweden)

    M. R. V. Fernandes

    2014-01-01

    Full Text Available This work evaluated the physicochemical properties and antioxidant activity of spray dried extracts (SDE from Psidium guajava L. leaves. Different drying carriers, namely, maltodextrin, colloidal silicon dioxide, Arabic gum, and β-cyclodextrin at concentrations of 40 and 80% relative to solids content, were added to drying composition. SDE were characterized through determination of the total phenolic, tannins, and flavonoid content. Antioxidant potential of the SDE was assessed by two assays: cellular test that measures the luminol-enhanced chemiluminescence (LumCL produced by neutrophils stimulated with phorbol myristate acetate (PMA and the DPPH radical scavenging (DPPH* method. In both assays the antioxidant activity of the SDE occurred in a concentration-dependent manner and showed no toxicity to the cells. Using the CLlum method, the IC50 ranged from 5.42 to 6.50 µg/mL. The IC50 of the SDE ranged from 7.96 to 8.11 µg/mL using the DPPH• method. Psidium guajava SDE presented significant antioxidant activity; thus they show high potential as an active phytopharmaceutical ingredient. Our findings in human neutrophils are pharmacologically relevant since they indicate that P. guajava SDE is a potential antioxidant and anti-inflammatory agent in human cells.

  17. Assessment of antioxidant activity of spray dried extracts of Psidium guajava leaves by DPPH and chemiluminescence inhibition in human neutrophils.

    Science.gov (United States)

    Fernandes, M R V; Azzolini, A E C S; Martinez, M L L; Souza, C R F; Lucisano-Valim, Y M; Oliveira, W P

    2014-01-01

    This work evaluated the physicochemical properties and antioxidant activity of spray dried extracts (SDE) from Psidium guajava L. leaves. Different drying carriers, namely, maltodextrin, colloidal silicon dioxide, Arabic gum, and β -cyclodextrin at concentrations of 40 and 80% relative to solids content, were added to drying composition. SDE were characterized through determination of the total phenolic, tannins, and flavonoid content. Antioxidant potential of the SDE was assessed by two assays: cellular test that measures the luminol-enhanced chemiluminescence (LumCL) produced by neutrophils stimulated with phorbol myristate acetate (PMA) and the DPPH radical scavenging (DPPH∗ method). In both assays the antioxidant activity of the SDE occurred in a concentration-dependent manner and showed no toxicity to the cells. Using the CLlum method, the IC50 ranged from 5.42 to 6.50 µg/mL. The IC50 of the SDE ranged from 7.96 to 8.11 µg/mL using the DPPH(•) method. Psidium guajava SDE presented significant antioxidant activity; thus they show high potential as an active phytopharmaceutical ingredient. Our findings in human neutrophils are pharmacologically relevant since they indicate that P. guajava SDE is a potential antioxidant and anti-inflammatory agent in human cells.

  18. Regulation of apoptosis and priming of neutrophil oxidative burst by diisopropyl fluorophosphate

    Directory of Open Access Journals (Sweden)

    Tsang Jennifer LY

    2010-07-01

    Full Text Available Abstract Background Diisopropyl fluorophosphate (DFP is a serine protease inhibitor that is widely used as an inhibitor of endogenous proteases in in vitro neutrophil studies. Its effects on neutrophil function are unclear. We sought to determine the biological effects of DFP on human neutrophil apoptosis and oxidative burst. Methods We isolated neutrophils from healthy volunteers, incubated them with DFP (2.5 mM, and evaluated neutrophil elastase (NE activity, neutrophil degranulation, apoptosis as reflected in hypodiploid DNA formation and exteriorization of phosphatidylserine (PS, processing and activity of caspases-3 and -8, oxidative burst activity and hydrogen peroxide release. Results Consistent with its activity as a serine protease inhibitor, DFP significantly inhibited NE activity but not the degranulation of azurophilic granules. DFP inhibited constitutive neutrophil apoptosis as reflected in DNA fragmentation, and the processing and activity of caspases-3 and -8. DFP also inhibited priming of neutrophils for oxidative burst activity and hydrogen peroxide release. However, DFP enhanced the exteriorization of PS in a dose-dependent manner. Conclusion We conclude that DFP exerts significant effects on neutrophil inflammatory function that may confound the interpretation of studies that use it for its antiprotease activity. We further conclude that endogenous proteases play a role in the biology of constitutive neutrophil apoptosis.

  19. Transient increase in phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol trisphosphate during activation of human neutrophils

    International Nuclear Information System (INIS)

    Traynor-Kaplan, A.E.; Thompson, B.L.; Harris, A.L.; Taylor, P.; Omann, G.M.; Sklar, L.A.

    1989-01-01

    We recently showed that phosphatidylinositol trisphosphate (PIP3) was present in a unique lipid fraction generated in neutrophils during activation. Here, we demonstrate that the band containing this fraction isolated from thin layer chromatography consists primarily of PIP3 and that only small amounts of radiolabeled PIP3 exist prior to activation. In addition, high performance liquid chromatography of deacylated phospholipids from stimulated cells reveals an increase in a fraction eluting ahead of glycerophosphoinositol 4,5-P2. After removal of the glycerol we found that it coeluted with inositol 1,3,4-P3 when resubjected to high performance liquid chromatography. Thus, we have detected a second, novel form of phosphatidylinositol bisphosphate in activated neutrophils, PI-(3,4)P2. The elevation of PIP3 through the formyl peptide receptor is blocked by pretreatment with pertussis toxin, implicating mediation of the increase in PIP3 by a guanosine triphosphate-binding (G) protein. The rise in PIP3 is not secondary to calcium elevation. Buffering the rise in intracellular calcium did not diminish the increase in PIP3. The elevation of PIP3 appears to occur during activation with physiological agonists, its level varying with the degree of activation. Leukotriene B4, which elicits many of the same responses as stimulation of the formyl peptide receptor but with minimal oxidant production, stimulates a much attenuated rise in PIP3. Isoproterenol, which inhibits oxidant production also reduces the rise in PIP3. Hence formation of PI(3,4)P2 and PIP3 (presumed to be PI(3,4,5)P3) correlates closely with the early events of neutrophil activation

  20. Bacterial lipoprotein delays apoptosis in human neutrophils through inhibition of caspase-3 activity: regulatory roles for CD14 and TLR-2.

    LENUS (Irish Health Repository)

    Power, Colm P

    2012-02-03

    The human sepsis syndrome resulting from bacterial infection continues to account for a significant proportion of hospital mortality. Neutralizing strategies aimed at individual bacterial wall products (such as LPS) have enjoyed limited success in this arena. Bacterial lipoprotein (BLP) is a major constituent of the wall of diverse bacterial forms and profoundly influences cellular function in vivo and in vitro, and has been implicated in the etiology of human sepsis. Delayed polymorphonuclear cell (PMN) apoptosis is a characteristic feature of human sepsis arising from Gram-negative or Gram-positive bacterial infection. Bacterial wall product ligation and subsequent receptor-mediated events upstream of caspase inhibition in neutrophils remain incompletely understood. BLP has been shown to exert its cellular effects primarily through TLR-2, and it is now widely accepted that lateral associations with the TLRs represent the means by which CD14 communicates intracellular messages. In this study, we demonstrate that BLP inhibits neutrophil mitochondrial membrane depolarization with a subsequent reduction in caspase-3 processing, ultimately leading to a significant delay in PMN apoptosis. Pretreatment of PMNs with an anti-TLR-2 mAb or anti-CD14 mAb prevented BLP from delaying PMN apoptosis to such a marked degree. Combination blockade using both mAbs completely prevented the effects of BLP (in 1 and 10 ng\\/ml concentrations) on PMN apoptosis. At higher concentrations of BLP, the antiapoptotic effects were observed, but were not as pronounced. Our findings therefore provide the first evidence of a crucial role for both CD14 and TLR-2 in delayed PMN apoptosis arising from bacterial infection.

  1. Inhibition of neutrophil elastase and metalloprotease-9 of human adenocarcinoma gastric cells by chamomile (Matricaria recutita L.) infusion.

    Science.gov (United States)

    Bulgari, Michela; Sangiovanni, Enrico; Colombo, Elisa; Maschi, Omar; Caruso, Donatella; Bosisio, Enrica; Dell'Agli, Mario

    2012-12-01

    This study investigated whether the antiinflammatory effect of chamomile infusion at gastric level could be ascribed to the inhibition of metalloproteinase-9 and elastase. The infusions from capitula and sifted flowers (250-1500 µg/mL) and individual flavonoids (10 µM) were tested on phorbol 12-myristate 13-acetate-stimulated AGS cells and human neutrophil elastase. The results indicate that the antiinflammatory activity associated with chamomile infusions from both the capitula and sifted flowers is most likely due to the inhibition of neutrophil elastase and gastric metalloproteinase-9 activity and secretion; the inhibition occurring in a concentration dependent manner. The promoter activity was inhibited as well and the decrease of metalloproteinase-9 expression was found to be associated with the inhibition of NF-kB driven transcription. The results further indicate that the flavonoid-7-glycosides, major constituents of chamomile flowers, may be responsible for the antiinflammatory action of the chamomile infusion observed here. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Source and role of diacylglycerol formed during phagocytosis of opsonized yeast particles and associated respiratory burst in human neutrophils

    International Nuclear Information System (INIS)

    Della Bianca, V.; Grzeskowiak, M.; Lissandrini, D.; Rossi, F.

    1991-01-01

    The results presented in this paper demonstrate that in human neutrophils phagocytosis of C3b/bi and IgG-opsonized yeast particles is associated with activation of phospholipase D and that this reaction is the main source of diglycerides. The demonstration is based upon the following findings: (1) the challenge of neutrophils with these opsonized particles was followed by a rapid formation of [3H]alkyl-phosphatidic acid [( 3H]alkyl-PA) and [3H]alkyl-diglyceride [( 3H]alkyl-DG) in cells labeled with [3H]alkyl-lyso-phosphatidylcholine; (2) in the presence of ethanol [3H]alkyl-phosphatidylethanol was formed, and accumulation of [3H]alkyl-PA and [3H]alkyl-DG was depressed; (3) propranolol, by inhibiting the dephosphorylation of [3H]alkyl-PA, completely inhibited the accumulation of [3H]alkyl-DG and depressed by about 75% the formation of diglyceride mass. Evidence is also presented that phagocytosis of C3b/bi and IgG-opsonized yeast particles and associated respiratory burst can take place independently of diglyceride formation and of the activity of this second messenger on protein kinase C. In fact: (a) propranolol while completely inhibited the formation of diglyceride mass did not modify either the phagocytosis or respiratory burst; (b) these two processes were insensitive to staurosporine

  3. Thermal injury induces impaired function in polymorphonuclear neutrophil granulocytes and reduced control of burn wound infection

    DEFF Research Database (Denmark)

    Calum, H.; Moser, C.; Jensen, P. O.

    2009-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6% third-degree burn...... injury was induced in mice with a hot-air blower. The third-degree burn was confirmed histologically. The mice were allocated into five groups: control, shave, burn, infection and burn infection group. At 48 h, a decline in the concentration of peripheral blood leucocytes was observed in the group...... of mice with burn wound. The reduction was ascribed to the decline in concentration of polymorphonuclear neutrophil leucocytes and monocytes. When infecting the skin with Pseudomonas aeruginosa, a dissemination of bacteria was observed only in the burn wound group. Histological characterization...

  4. Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic vasculitis in mice with a humanized immune system.

    Directory of Open Access Journals (Sweden)

    Mark A Little

    Full Text Available Evidence is lacking for direct pathogenicity of human anti-proteinase-3 (PR3 antibodies in development of systemic vasculitis and granulomatosis with polyangiitis (GPA, Wegener's granulomatosis. Progress in study of these antibodies in rodents has been hampered by lack of PR3 expression on murine neutrophils, and by different Fc-receptor affinities for IgG across species. Therefore, we tested whether human anti-PR3 antibodies can induce acute vasculitis in mice with a human immune system. Chimeric mice were generated by injecting human haematopoietic stem cells into irradiated NOD-scid-IL2Rγ⁻/⁻ mice. Matched chimera mice were treated with human IgG from patients with: anti-PR3 positive renal and lung vasculitis; patients with non-vasculitic renal disease; or healthy controls. Six-days later, 39% of anti-PR3 treated mice had haematuria, compared with none of controls. There was punctate bleeding on the surface of lungs of anti-PR3 treated animals, with histological evidence of vasculitis and haemorrhage. Anti-PR3 treated mice had mild pauci-immune proliferative glomerulonephritis, with infiltration of human and mouse leukocytes. In 3 mice (17% more severe glomerular injury was present. There were no glomerular changes in controls. Human IgG from patients with anti-PR3 autoantibodies is therefore pathogenic. This model of anti-PR3 antibody-mediated vasculitis may be useful in dissecting mechanisms of microvascular injury.

  5. Anti-proteinase 3 anti-neutrophil cytoplasm autoantibodies recapitulate systemic vasculitis in mice with a humanized immune system.

    LENUS (Irish Health Repository)

    Little, Mark A

    2012-01-01

    Evidence is lacking for direct pathogenicity of human anti-proteinase-3 (PR3) antibodies in development of systemic vasculitis and granulomatosis with polyangiitis (GPA, Wegener\\'s granulomatosis). Progress in study of these antibodies in rodents has been hampered by lack of PR3 expression on murine neutrophils, and by different Fc-receptor affinities for IgG across species. Therefore, we tested whether human anti-PR3 antibodies can induce acute vasculitis in mice with a human immune system. Chimeric mice were generated by injecting human haematopoietic stem cells into irradiated NOD-scid-IL2Rγ⁻\\/⁻ mice. Matched chimera mice were treated with human IgG from patients with: anti-PR3 positive renal and lung vasculitis; patients with non-vasculitic renal disease; or healthy controls. Six-days later, 39% of anti-PR3 treated mice had haematuria, compared with none of controls. There was punctate bleeding on the surface of lungs of anti-PR3 treated animals, with histological evidence of vasculitis and haemorrhage. Anti-PR3 treated mice had mild pauci-immune proliferative glomerulonephritis, with infiltration of human and mouse leukocytes. In 3 mice (17%) more severe glomerular injury was present. There were no glomerular changes in controls. Human IgG from patients with anti-PR3 autoantibodies is therefore pathogenic. This model of anti-PR3 antibody-mediated vasculitis may be useful in dissecting mechanisms of microvascular injury.

  6. Neutrophil degranulation and immunosuppression in patients with GBM: restoration of cellular immune function by targeting arginase I.

    Science.gov (United States)

    Sippel, Trisha R; White, Jason; Nag, Kamalika; Tsvankin, Vadim; Klaassen, Marci; Kleinschmidt-DeMasters, B K; Waziri, Allen

    2011-11-15

    The source of glioblastoma (GBM)-associated immunosuppression remains multifactorial. We sought to clarify and therapeutically target myeloid cell-derived peripheral immunosuppression in patients with GBM. Direct ex vivo T-cell function, serum Arginase I (ArgI) levels, and circulating myeloid lineage populations were compared between patients with GBM and normal donors or patients with other intracranial tumors. Immunofunctional assays were conducted using bulk and sorted cell populations to explore the potential transfer of myeloid cell-mediated immunosuppression and to identify a potential mechanism for these effects. ArgI-mediated immunosuppression was therapeutically targeted in vitro through pharmacologic inhibition or arginine supplementation. We identified a significantly expanded population of circulating, degranulated neutrophils associated with elevated levels of serum ArgI and decreased T-cell CD3ζ expression within peripheral blood from patients with GBM. Sorted CD11b(+) cells from patients with GBM were found to markedly suppress normal donor T-cell function in coculture, and media harvested from mitogen-stimulated GBM peripheral blood mononuclear cell (PBMC) or GBM-associated mixed lymphoid reactions showed ArgI levels that were significantly higher than controls. Critically, T-cell suppression in both settings could be completely reversed through pharmacologic ArgI inhibition or with arginine supplementation. These data indicate that peripheral cellular immunosuppression in patients with GBM is associated with neutrophil degranulation and elevated levels of circulating ArgI, and that T-cell function can be restored in these individuals by targeting ArgI. These data identify a novel pathway of GBM-mediated suppression of cellular immunity and offer a potential therapeutic window for improving antitumor immunity in affected patients.

  7. Modulation of IgE-dependent COX-2 gene expression by reactive oxygen species in human neutrophils.

    Science.gov (United States)

    Vega, Antonio; Chacón, Pedro; Alba, Gonzalo; El Bekay, Rajaa; Martín-Nieto, José; Sobrino, Francisco

    2006-07-01

    Cyclooxygenase (COX) is a key enzyme in prostaglandin (PG) synthesis. Up-regulation of its COX-2 isoform is responsible for the increased PG release, taking place under inflammatory conditions, and also, is thought to be involved in allergic and inflammatory diseases. In the present work, we demonstrate that COX-2 expression becomes highly induced by anti-immunoglobulin E (IgE) antibodies and by antigens in human neutrophils from allergic patients. This induction was detected at mRNA and protein levels and was accompanied by a concomitant PGE(2) and thromboxane A(2) release. We also show evidence that inhibitors of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, such as 4-(2-aminoethyl)benzenesulphonyl fluoride and 4-hydroxy-3-methoxyaceto-phenone, completely cancelled anti-IgE-induced COX-2 protein up-regulation, suggesting that this process is mediated by reactive oxygen species (ROS) derived from NADPH oxidase activity. Moreover, the mitogen-activated protein kinases (MAPKs), p38 and extracellular signal-regulated kinase, and also, the transcription factor, nuclear factor (NF)-kappaB, are involved in the up-regulation of COX-2 expression, as specific chemical inhibitors of these two kinases, such as SB203580 and PD098059, and of the NF-kappaB pathway, such as N(alpha)-benzyloxycarbonyl-l-leucyl-l-leucyl-l-leucinal, abolished IgE-dependent COX-2 induction. Evidence is also presented, using Fe(2)(+)/Cu(2)(+) ions, that hydroxyl radicals generated from hydrogen peroxide through Fenton reactions could constitute candidate modulators able to directly trigger anti-IgE-elicited COX-2 expression through MAPK and NF-kappaB pathways. Present results underscore a new role for ROS as second messengers in the modulation of COX-2 expression by human neutrophils in allergic conditions.

  8. An exploratory study of the effect of regular aquatic exercise on the function of neutrophils from women with fibromyalgia: role of IL-8 and noradrenaline.

    Science.gov (United States)

    Bote, M E; García, J J; Hinchado, M D; Ortega, E

    2014-07-01

    Fibromyalgia (FM) syndrome is associated with elevated systemic inflammatory and stress biomarkers, and an elevated innate cellular response mediated by monocytes and neutrophils. Exercise is accepted as a good non-pharmacological therapy for FM. We have previously found that regular aquatic exercise decreases the release of inflammatory cytokines by monocytes from FM patients. However, its effects on the functional capacity of neutrophils have not been studied. The aim of the present exploratory study was to evaluate, in 10 women diagnosed with FM, the effect of an aquatic exercise program (8months, 2sessions/week, 60min/session) on their neutrophils' function (phagocytic process), and on IL-8 and NA as potential inflammatory and stress mediators, respectively. A control group of 10 inactive FM patients was included in the study. After 4months of the exercise program, no significant changes were observed in neutrophil function (chemotaxis, phagocytosis, or fungicidal capacity) or in IL-8 and NA. However, at the end of the exercise program (8months), a neuro-immuno-endocrine adaptation was observed, manifested by a significant decrease to values below those in the basal state in neutrophil chemotaxis, IL-8, and NA. No significant seasonal changes in these parameters were observed during the same period in the group of non-exercised FM patients. After the 8months of the exercise program, the FM patients had lower concentrations of IL-8 and NA together with reduced chemotaxis of neutrophils compared with the values determined in the same month in the control group of non-exercised FM women. These results suggest that "anti-inflammatory" and "anti-stress" adaptations may be contributing to the symptomatic benefits that have been attributed to regular aquatic exercise in FM syndrome, as was corroborated in the present study by the scores on the Fibromyalgia Impact Questionnaire. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. TLR9 and NF-κB are partially involved in activation of human neutrophils by Helicobacter pylori and its purified DNA.

    Directory of Open Access Journals (Sweden)

    Lourdes Alvarez-Arellano

    Full Text Available Helicobacter pylori infection represents one of the most common bacterial infections worldwide. The inflammatory response to this bacterium involves a large influx of neutrophils to the lamina propria of the gastric mucosa. However, little is known about the receptors and molecular mechanisms involved in activation of these neutrophils. In this study, we aimed to determine the role of toll-like receptor 9 (TLR9 in the response of human neutrophils to H. pylori and purified H. pylori DNA (Hp-DNA. Neutrophils were isolated from the blood of adult volunteers and challenged with either H. pylori or Hp-DNA. We found that both, H. pylori and Hp-DNA induced increased expression and release of IL-8. Furthermore, we showed that TLR9 is involved in the induction of IL-8 production by H. pylori and Hp-DNA. IL-8 production induced by H. pylori but not by Hp-DNA was partially mediated by NF-κB. In conclusion, this study showed for first time that both, H. pylori and Hp-DNA activate TLR9 and induce a different inflammatory response that leads to activation of neutrophils.

  10. Neutrophil evasion strategies by Streptococcus pneumoniae and Staphylococcus aureus.

    Science.gov (United States)

    Lewis, Megan L; Surewaard, Bas G J

    2018-03-01

    Humans are well equipped to defend themselves against bacteria. The innate immune system employs diverse mechanisms to recognize, control and initiate a response that can destroy millions of different microbes. Microbes that evade the sophisticated innate immune system are able to escape detection and could become pathogens. The pathogens Streptococcus pneumoniae and Staphylococcus aureus are particularly successful due to the development of a wide variety of virulence strategies for bacterial pathogenesis and they invest significant efforts towards mechanisms that allow for neutrophil evasion. Neutrophils are a primary cellular defense and can rapidly kill invading microbes, which is an indispensable function for maintaining host health. This review compares the key features of Streptococcus pneumoniae and Staphylococcus aureus in epidemiology, with a specific focus on virulence mechanisms utilized to evade neutrophils in bacterial pathogenesis. It is important to understand the complex interactions between pathogenic bacteria and neutrophils so that we can disrupt the ability of pathogens to cause disease.

  11. Possible in vivo tolerance of human polymorphonuclear neutrophil to low-grade exercise-induced endotoxaemia

    Directory of Open Access Journals (Sweden)

    G. Camus

    1998-01-01

    Full Text Available To address the question of whether translocation of bacterial lipopolysaccharide (LPS into the blood could be involved in the process of exercise-induced polymorphonuclear neutrophil (PMN activation, 12 healthy male subjects who took part in a sprint triathlon (1.5 km river swim, 40 km bicycle race, 10 km road race were studied. While there was no detectable amount of endotoxin in the blood samples drawn at rest, exercise was followed by the appearance of circulating endotoxin molecules at the end of competition in four subjects, and after one and 24 h recovery in three and seven athletes, respectively. The concentrations of plasma granulocyte myeloperoxidase ([MPO], were significantly higher immediately after exercise and one hour later than baseline values (P<0.001. This variable returned to pre-race levels the day after exercise, despite the presence of detectable amounts of LPS, at that time, in seven athletes. The absence of significant correlation (r=0.26;P=0.383 and temporal association between [MPO]and plasma endotoxin levels led us to conclude that endotoxaemia was not involved in the process of exercise-induced PMN degranulation observed in our subjects.

  12. Mitochondrial membrane potential in human neutrophils is maintained by complex III activity in the absence of supercomplex organisation

    NARCIS (Netherlands)

    van Raam, Bram J.; Sluiter, Wim; de Wit, Elly; Roos, Dirk; Verhoeven, Arthur J.; Kuijpers, Taco W.

    2008-01-01

    BACKGROUND: Neutrophils depend mainly on glycolysis for their energy provision. Their mitochondria maintain a membrane potential (Deltapsi(m)), which is usually generated by the respiratory chain complexes. We investigated the source of Deltapsi(m) in neutrophils, as compared to peripheral blood

  13. Mitochondrial membrane potential in human neutrophils is maintained by complex III activity in the absence of supercomplex organisation

    NARCIS (Netherlands)

    B.J. van Raam (Bram); W.J. Sluiter (Wim); F.R.C. de Wit (Frank); D. Roos (Dirk); A.J. Verhoeven (Arthur); T.W. Kuijpers (Taco W.)

    2008-01-01

    textabstractBackground: Neutrophils depend mainly on glycolysis for their enegry provision. Their mitochondria maintain a membrace potential (ΔΨm), which is usually generated by the repiratory chain complexes. We investigated the source of ΔΨm in neutrophils, as compared to peripheral blood

  14. Relationship between human respiratory reactivity and neutrophil metabolism under intermittent hypoxic influences in humans exposed to low-level radiation

    International Nuclear Information System (INIS)

    Serebrovskaya, T.V.; Oberenko, O.A.; Guseva, S.A.

    1996-01-01

    The group of 18 men exposed to radiation during amelioration work in the Chernobyl NPP was examined in the course of adaptation to intermittent hypoxia (rebreathing technique during 10 days of three dayly 5-7 min sessions with 15 min break). The starting level of ventilatory response to hypoxic stimulus (HVR) did not differ from the one in persons living in non-contaminated areas. This hypoxic training (HT) caused the increase of HVR, activity of NADPH-oxidase and cationic protein content in neutrophyls as well as various changes in mieloperoxidase activity. The correlation between respiration reactivity and deviations in neutrophil metabolism under HT was found. 14 refs., 2 figs

  15. Chemokine Receptor Ccr1 Drives Neutrophil-Mediated Kidney Immunopathology and Mortality in Invasive Candidiasis

    Science.gov (United States)

    Lionakis, Michail S.; Swamydas, Muthulekha; Wan, Wuzhou; Richard Lee, Chyi-Chia; Cohen, Jeffrey I.; Scheinberg, Phillip; Gao, Ji-Liang; Murphy, Philip M.

    2012-01-01

    Invasive candidiasis is the 4th leading cause of nosocomial bloodstream infection in the US with mortality that exceeds 40% despite administration of antifungal therapy; neutropenia is a major risk factor for poor outcome after invasive candidiasis. In a fatal mouse model of invasive candidiasis that mimics human bloodstream-derived invasive candidiasis, the most highly infected organ is the kidney and neutrophils are the major cellular mediators of host defense; however, factors regulating neutrophil recruitment have not been previously defined. Here we show that mice lacking chemokine receptor Ccr1, which is widely expressed on leukocytes, had selectively impaired accumulation of neutrophils in the kidney limited to the late phase of the time course of the model; surprisingly, this was associated with improved renal function and survival without affecting tissue fungal burden. Consistent with this, neutrophils from wild-type mice in blood and kidney switched from Ccr1lo to Ccr1high at late time-points post-infection, when Ccr1 ligands were produced at high levels in the kidney and were chemotactic for kidney neutrophils ex vivo. Further, when a 1∶1 mixture of Ccr1+/+ and Ccr1−/− donor neutrophils was adoptively transferred intravenously into Candida-infected Ccr1+/+ recipient mice, neutrophil trafficking into the kidney was significantly skewed toward Ccr1+/+ cells. Thus, neutrophil Ccr1 amplifies late renal immunopathology and increases mortality in invasive candidiasis by mediating excessive recruitment of neutrophils from the blood to the target organ. PMID:22916017

  16. Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis.

    Directory of Open Access Journals (Sweden)

    Michail S Lionakis

    Full Text Available Invasive candidiasis is the 4(th leading cause of nosocomial bloodstream infection in the US with mortality that exceeds 40% despite administration of antifungal therapy; neutropenia is a major risk factor for poor outcome after invasive candidiasis. In a fatal mouse model of invasive candidiasis that mimics human bloodstream-derived invasive candidiasis, the most highly infected organ is the kidney and neutrophils are the major cellular mediators of host defense; however, factors regulating neutrophil recruitment have not been previously defined. Here we show that mice lacking chemokine receptor Ccr1, which is widely expressed on leukocytes, had selectively impaired accumulation of neutrophils in the kidney limited to the late phase of the time course of the model; surprisingly, this was associated with improved renal function and survival without affecting tissue fungal burden. Consistent with this, neutrophils from wild-type mice in blood and kidney switched from Ccr1(lo to Ccr1(high at late time-points post-infection, when Ccr1 ligands were produced at high levels in the kidney and were chemotactic for kidney neutrophils ex vivo. Further, when a 1∶1 mixture of Ccr1(+/+ and Ccr1(-/- donor neutrophils was adoptively transferred intravenously into Candida-infected Ccr1(+/+ recipient mice, neutrophil trafficking into the kidney was significantly skewed toward Ccr1(+/+ cells. Thus, neutrophil Ccr1 amplifies late renal immunopathology and increases mortality in invasive candidiasis by mediating excessive recruitment of neutrophils from the blood to the target organ.

  17. Metabolism of isoniazid by neutrophil myeloperoxidase leads to isoniazid-NAD(+) adduct formation: A comparison of the reactivity of isoniazid with its known human metabolites.

    Science.gov (United States)

    Khan, Saifur R; Morgan, Andrew G M; Michail, Karim; Srivastava, Nutan; Whittal, Randy M; Aljuhani, Naif; Siraki, Arno G

    2016-04-15

    The formation of isonicotinyl-nicotinamide adenine dinucleotide (INH-NAD(+)) via the mycobacterial catalase-peroxidase enzyme, KatG, has been described as the major component of the mode of action of isoniazid (INH). However, there are numerous human peroxidases that may catalyze this reaction. The role of neutrophil myeloperoxidase (MPO) in INH-NAD(+) adduct formation has never been explored; this is important, as neutrophils are recruited at the site of tuberculosis infection (granuloma) through infected macrophages' cell death signals. In our studies, we showed that neutrophil MPO is capable of INH metabolism using electron paramagnetic resonance (EPR) spin-trapping and UV-Vis spectroscopy. MPO or activated human neutrophils (by phorbol myristate acetate) catalyzed the oxidation of INH and formed several free radical intermediates; the inclusion of superoxide dismutase revealed a carbon-centered radical which is considered to be the reactive metabolite that binds with NAD(+). Other human metabolites, including N-acetyl-INH, N-acetylhydrazine, and hydrazine did not show formation of carbon-centered radicals, and either produced no detectable free radicals, N-centered free radicals, or superoxide, respectively. A comparison of these free radical products indicated that only the carbon-centered radical from INH is reducing in nature, based on UV-Vis measurement of nitroblue tetrazolium reduction. Furthermore, only INH oxidation by MPO led to a new product (λmax=326nm) in the presence of NAD(+). This adduct was confirmed to be isonicotinyl-NAD(+) using LC-MS analysis where the intact adduct was detected (m/z=769). The findings of this study suggest that neutrophil MPO may also play a role in INH pharmacological activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Oral neutrophil responses to acute prolonged exercise may not be representative of blood neutrophil responses.

    Science.gov (United States)

    Davison, Glen; Jones, Arwel Wyn

    2015-03-01

    Neutrophil numbers and function (oxidative burst) were assessed in peripheral blood and oral samples before and after prolonged exercise. Blood neutrophil count increased (∼3.5-fold, P < 0.001) and function decreased (30% ± 19% decrease, P = 0.005) postexercise. Oral neutrophil count (P = 0.392) and function (P = 0.334) were unchanged. Agreement between oral and blood neutrophil function responses to exercise was poor. These findings highlight the importance of studying neutrophils within various compartments/sample types.

  19. Expression of IL-17A concentration and effector functions of peripheral blood neutrophils in food allergy hypersensitivity patients.

    Science.gov (United States)

    Żbikowska-Gotz, Magdalena; Pałgan, Krzysztof; Gawrońska-Ukleja, Ewa; Kuźmiński, Andrzej; Przybyszewski, Michał; Socha, Ewa; Bartuzi, Zbigniew

    2016-03-01

    Lymphocytes Th17 and other types of immune system cells produce IL17. By induction of cytokines and chemokines, the IL17 cytokine is involved in mechanisms of allergic reaction with participation of neutrophil granulocytes. It affects activation, recruitment, and migration of neutrophils to the tissues, regulating inflammatory reaction intensity. Excited neutrophils secrete inter alia elastase and reactive oxygen species (ROS)--significant mediators of inflammation process responsible for tissues damage.The aim of the study was to evaluate the concentrations of serum interleukin 17A, serum neutrophil elastase, and ROS production by neutrophils in patients with food allergy.The study included 30 patients with food allergy diagnosed based on interview, clinical symptoms, positive SPT, placebo controlled double-blind oral provocation trial, and the presence of asIgE in blood serum against selected food allergens using fluoro-immuno-enzymatic method FEIA UNICap 100. The control group consisted of 10 healthy volunteers. The concentrations of IL17A were determined in all patients using ELISA method with eBioscience kits, and elastase using BenderMed Systems kits. Chemiluminescence of non-stimulated neutrophils was evaluated using luminol-dependent kinetic method for 40 min on Luminoskan (Labsystems luminometer).The results of serum IL-17A concentrations and the values of chemiluminescence obtained by non-activated neutrophils, as well as elastase concentrations, were higher in patients with food allergic hypersensitivity compared to healthy volunteers.This study demonstrates a significance of IL-17A and activated neutrophil granulocytes in the course of diseases with food allergic hypersensitivity. © The Author(s) 2015.

  20. [Immunologic indexes, enzyme status of lymphocytes and functional activity of blood neutrophils in children with infectious mononucleosis caused by Epstein-Barr virus].

    Science.gov (United States)

    Kurtasova, L M; Tolstikova, A E; Savchenko, A A

    2013-01-01

    Explore the immunological parameters, levels of activity of NAD(P)-dependent dehydrogenases lymphocytes, interferon status parameters, phagocytic activity and chemiluminescence response of neutrophils in the blood of children in the acute phase of infectious mononucleosis caused by the Epstein-Barr virus. 65 children at the age of 4-6 years old with infectious mononucleosis caused by EBV in acute phase were observed. Such indexes as cell-mediated, humoral and interferon immunity, NAD(P)-depended dehydrogenases activity in blood lymphocyte, phagocytes activity, levels of spontaneous and induced chemiluminescence ofperipheral blood neutrophils were studied. Children with EVB-infection have immunophenotype spectrum changes and changes of enzymes status of blood lymphocytes against the increasing in leucocytes and the useful increasing in lymphocytes. The useful increasing in IgA, IgM, IgG contenting in serum blood were found. The decreasing of spontaneous production of IFN alpha and the decreasing of induced production of IFNalpha, IFNgamma were determined. The breach of phagocytes activity and chemiluminescent response of blood neutrophils were found. The children in the acute phase of infectious mononucleosis caused by the Epstein-Barr virus, there are changes in the immune status, changes the activity of NAD(P)-dependent dehydrogenases in blood lymphocytes, marked changes in functional and metabolic state of peripheral blood neutrophils.

  1. Endogenous acute phase serum amyloid A lacks pro-inflammatory activity, contrasting the two recombinant variants that activate human neutrophils through different receptors

    Directory of Open Access Journals (Sweden)

    Karin eChristenson

    2013-04-01

    Full Text Available Most notable among the acute phase proteins is serum amyloid A (SAA, levels of which can increase 1000-fold during infections, aseptic inflammation, and/or trauma. Chronically elevated SAA levels are associated with a wide variety of pathological conditions, including obesity and rheumatic diseases. Using a recombinant hybrid of the two human SAA isoforms (SAA1 and 2 that does not exist in vivo, numerous in vitro studies have given rise to the notion that acute phase SAA is a pro-inflammatory molecule with cytokine-like properties. It is however unclear whether endogenous acute phase SAA per se mediates pro-inflammatory effects. We tested this in samples from patients with inflammatory arthritis and in a transgenic mouse model that expresses human SAA1. Endogenous human SAA did not drive production of pro-inflammatory IL-8/KC in either of these settings. Human neutrophils derived from arthritis patients displayed no signs of activation, despite being exposed to severely elevated SAA levels in circulation, and SAA-rich sera also failed to activate cells in vitro. In contrast, two recombinant SAA variants (the hybrid SAA and SAA1 both activated human neutrophils, inducing L-selectin shedding, production of reactive oxygen species, and production of IL-8. The hybrid SAA was approximately 100-fold more potent than recombinant SAA1. Recombinant hybrid SAA and SAA1 activated neutrophils through different receptors, with recombinant SAA1 being a ligand for formyl peptide receptor 2 (FPR2. We conclude that even though recombinant SAAs can be valuable tools for studying neutrophil activation, they do not reflect the nature of the endogenous protein.

  2. PARTICIPATION OF TLR4 IN ENGULFMENT OF ESCHERICHIA COLI BY HUMAN BLOOD NEUTROPHILS IN PRESENCE OF LIPOPOLYSACCHARIDES

    Directory of Open Access Journals (Sweden)

    S. V. Zubova

    2012-01-01

    Full Text Available Abstract. TLR4 is a key player in signaling system of host cells. Possible role of TLR4 is actively discussed, e.g. its significance for phagocytosis. A capacity of neutrophils to engulf FITC-labeled E. coli bacteria upon activation with LPS of different origin was studied in presence of anti-TLR4 Mab’s (HTA125 clone. It was shown that, in whole blood, TLR4 does not play any essential role in engulfment of bacteria by the neutrophils. Phagocytic activity of neutrophils in blood increases increased after their priming with E. coli endotoxins. LPS from Rb. сapsulatus did not affect phagocytosis. In presence of endotoxins, the degree of TLR4 involvement in neutrophil phagocytosis depends on LPS structure.

  3. Validation of an enzyme-linked immunosorbent assay for the quantification of citrullinated histone H3 as a marker for neutrophil extracellular traps in human plasma.

    Science.gov (United States)

    Thålin, Charlotte; Daleskog, Maud; Göransson, Sophie Paues; Schatzberg, Daphne; Lasselin, Julie; Laska, Ann-Charlotte; Kallner, Anders; Helleday, Thomas; Wallén, Håkan; Demers, Mélanie

    2017-06-01

    There is an emerging interest in the diverse functions of neutrophil extracellular traps (NETs) in a variety of disease settings. However, data on circulating NETs rely largely upon surrogate NET markers such as cell-free DNA, nucleosomes, and NET-associated enzymes. Citrullination of histone H3 by peptidyl arginine deiminase 4 (PAD4) is central for NET formation, and citrullinated histone H3 (H3Cit) is considered a NET-specific biomarker. We therefore aimed to optimize and validate a new enzyme-linked immunosorbent assay (ELISA) to quantify the levels of H3Cit in human plasma. A standard curve made of in vitro PAD4-citrullinated histones H3 allows for the quantification of H3Cit in plasma using an anti-histone antibody as capture antibody and an anti-histone H3 citrulline antibody for detection. The assay was evaluated for linearity, stability, specificity, and precision on plasma samples obtained from a human model of inflammation before and after lipopolysaccharide injection. The results revealed linearity and high specificity demonstrated by the inability of detecting non-citrullinated histone H3. Coefficients of variation for intra- and inter-assay variability ranged from 2.1 to 5.1% and from 5.8 to 13.5%, respectively, allowing for a high precision. Furthermore, our results support an inflammatory induction of a systemic NET burden by showing, for the first time, clear intra-individual elevations of plasma H3Cit in a human model of lipopolysaccharide-induced inflammation. Taken together, our work demonstrates the development of a new method for the quantification of H3Cit by ELISA that can reliably be used for the detection of NETs in human plasma.

  4. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with L-lysine

    NARCIS (Netherlands)

    Peschel, A.; Jack, R.W.; Otto, M.; Collins, L.V.; Staubitz, P.; Nicholson, G.; Kalbacher, H.; Nieuwenhuizen, W.F.; Jung, G.; Tarkowski, A.; Kessel, K.P.M. van; Strijp, J.A.G. van

    2001-01-01

    Defensins, antimicrobial peptides of the innate immune system, protect human mucosal epithelia and skin against microbial infections and are produced in large amounts by neutrophils. The bacterial pathogen Staphylococcus aureus is insensitive to defensins by virtue of an unknown resistance

  5. Effect of a 2.45-GHz radiofrequency electromagnetic field on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells.

    Science.gov (United States)

    Koyama, Shin; Narita, Eijiro; Suzuki, Yoshihisa; Taki, Masao; Shinohara, Naoki; Miyakoshi, Junji

    2015-01-01

    The potential public health risks of radiofrequency (RF) fields have been discussed at length, especially with the use of mobile phones spreading extensively throughout the world. In order to investigate the properties of RF fields, we examined the effect of 2.45-GHz RF fields at the specific absorption rate (SAR) of 2 and 10 W/kg for 4 and 24 h on neutrophil chemotaxis and phagocytosis in differentiated human HL-60 cells. Neutrophil chemotaxis was not affected by RF-field exposure, and subsequent phagocytosis was not affected either compared with that under sham exposure conditions. These studies demonstrated an initial immune response in the human body exposed to 2.45-GHz RF fields at the SAR of 2 W/kg, which is the maximum value recommended by the International Commission for Non-Ionizing Radiation Protection (ICNIRP) guidelines. The results of our experiments for RF-field exposure at an SAR under 10 W/kg showed very little or no effects on either chemotaxis or phagocytosis in neutrophil-like human HL-60 cells. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  6. Candida albicans escapes from mouse neutrophils

    DEFF Research Database (Denmark)

    Ermert, David; Niemiec, Maria J; Röhm, Marc

    2013-01-01

    is the most widely used model organism. Neutrophils are essential immune cells to prevent opportunistic mycoses. To explore potential differences between the rodent infection model and the human host, we compared the interactions of C. albicans with neutrophil granulocytes from mice and humans. We revealed...

  7. Protein kinase C promotes restoration of calcium homeostasis to platelet activating factor-stimulated human neutrophils by inhibition of phospholipase C

    Directory of Open Access Journals (Sweden)

    Anderson Ronald

    2009-10-01

    Full Text Available Abstract Background The role of protein kinase C (PKC in regulating the activity of phospholipase C (PLC in neutrophils activated with the chemoattractant, platelet-activating factor (PAF, 20 and 200 nM, was probed in the current study using the selective PKC inhibitors, GF10903X (0.5 - 1 μM and staurosporine (400 nM. Methods Alterations in cytosolic Ca2+, Ca2+ influx, inositol triphosphate (IP3, and leukotriene B4 production were measured using spectrofluorimetric, radiometric and competitive binding radioreceptor and immunoassay procedures, respectively. Results Activation of the cells with PAF was accompanied by an abrupt increase in cytosolic Ca2+ followed by a gradual decline towards basal levels. Pretreatment of neutrophils with the PKC inhibitors significantly increased IP3 production with associated enhanced Ca2+ release from storage vesicles, prolongation of the peak cytosolic Ca2+ transients, delayed clearance and exaggerated reuptake of the cation, and markedly increased synthesis of LTB4. The alterations in Ca2+ fluxes observed with the PKC inhibitors were significantly attenuated by U73122, a PLC inhibitor, as well as by cyclic AMP-mediated upregulation of the Ca2+-resequestering endomembrane ATPase. Taken together, these observations are compatible with a mechanism whereby PKC negatively modulates the activity of PLC, with consequent suppression of IP3 production and down-regulation of Ca2+ mediated pro-inflammatory responses of PAF-activated neutrophils. Conclusion Although generally considered to initiate and/or amplify intracellular signalling cascades which activate and sustain the pro-inflammatory activities of neutrophils and other cell types, the findings of the current study have identified a potentially important physiological, anti-inflammatory function for PKC, at least in neutrophils.

  8. Effects of Acer okamotoanum sap on the function of polymorphonuclear neutrophilic leukocytes in vitro and in vivo.

    Science.gov (United States)

    An, Beum-Soo; Kang, Ji-Houn; Yang, Hyun; Yang, Mhan-Pyo; Jeung, Eui-Bae

    2013-02-01

    Sap is a plant fluid that primarily consists of water and small amounts of mineral elements, sugars, hormones and other nutrients. Acer mono (A. mono) is an endemic Korean mono maple which was recently suggested to have health benefits due to its abundant calcium and magnesium ion content. In the present study, we examined the effects of sap from Acer okamotoanum (A. okamotoanum) on the phagocytic response of mouse neutrophils in vivo and rat and canine neutrophils in vitro. We tested the regulation of phagocytic activity, oxidative burst activity (OBA) and the levels of filamentous polymeric actin (F-actin) in the absence and presence of dexamethasone (DEX) in vitro and in vivo. Our results showed that DEX primarily reduced OBA in the mouse neutrophils, and that this was reversed in the presence of the sap. By contrast, the phagocytic activity of the mouse cells was not regulated by either DEX or the sap. Rat and canine polymorphonuclear neutrophilic leukocytes (PMNs) responded in vitro to the sap in a similar manner by increasing OBA. However, regulation of phagocytic activity by the sap was different between the species. In canine PMNs, phagocytic activity was enhanced by the sap at a high dose, while it did not significantly modulate this activity in rat PMNs. These findings suggest that the sap of A. okamotoanum stimulates neutrophil activity in the mouse, rat and canine by increasing OBA in vivo and in vitro, and thus may have a potential antimicrobial effect in the PMNs of patients with infections.

  9. Modulation of the counts and functions of neutrophils and monocytes under in vivo hyperthermia conditions

    DEFF Research Database (Denmark)

    Kappel, M; Kharazmi, A; Nielsen, H

    1994-01-01

    reduced 2 h after hot WI. The total amount (per litre of blood) of superoxide production by PMN stimulated with opsonized zymosan (OZ) was significantly augmented at 39 and 39.5 degrees C and 2 h after WI. In vivo hyperthermia did not affect the function of monocytes, but when correlated to the changes...... in the concentrations of monocytes (response per litre blood) a significant increase in the phorbol myristate acetate (PMA)- and OZ-enhanced superoxide production occurred at 38 and 39 degrees C, as well as 2 h after termination of hot WI. Furthermore the OZ-enhanced monocyte chemiluminescence response per litre...

  10. Abrogation of Antibody-Induced Arthritis in Mice by a Self-Activating Viridin Prodrug and Association With Impaired Neutrophil and Endothelial Cell Function

    Science.gov (United States)

    Stangenberg, Lars; Ellson, Chris; Cortez-Retamozo, Virna; Ortiz-Lopez, Adriana; Yuan, Hushan; Blois, Joseph; Smith, Ralph A.; Yaffe, Michael B.; Weissleder, Ralph; Benoist, Christophe; Mathis, Diane; Josephson, Lee; Mahmood, Umar

    2009-01-01

    Objective To test a novel self-activating viridin (SAV) prodrug that slowly releases wortmannin, a potent phosphoinositide 3-kinase inhibitor, in a model of antibody-mediated inflammatory arthritis. Methods The SAV prodrug was administered to K/BxN mice or to C57BL/6 (B6) mice that had been injected with K/BxN serum. Ankle thickness was measured, and histologic changes were scored after a 10-day disease course (serum-transfer arthritis). Protease activity was measured by a near-infrared imaging approach using a cleavable cathepsin–selective probe. Further near-infrared imaging techniques were used to analyze early changes in vascular permeability after serum injection, as well as neutrophil–endothelial cell interactions. Neutrophil functions were assessed using an oxidative burst assay as well as a degranulation assay. Results SAV prevented ankle swelling in mice with serum-transfer arthritis in a dose-dependent manner. It also markedly reduced the extent of other features of arthritis, such as protease activity and histology scores for inflammation and joint erosion. Moreover, SAV was an effective therapeutic agent. The underlying mechanisms for the antiinflammatory activity were manifold. Endothelial permeability after serum injection was reduced, as was firm neutrophil attachment to endothelial cells. Endothelial cell activation by tumor necrosis factor α was impeded by SAV, as measured by the expression of vascular cell adhesion molecule. Crucial neutrophil functions, such as generation of reactive oxygen species and degranulation of protease-laden vesicles, were decreased by SAV administration. Conclusion A novel SAV prodrug proved strongly antiinflammatory in a murine model of antibody-induced inflammatory arthritis. Its activity could be attributed, at least in part, to the inhibition of neutrophil and endothelial cell functions. PMID:19644878

  11. Heterogeneity of neutrophil antibodies in patients with primary Sjögren's syndrome.

    Science.gov (United States)

    Lamour, A; Le Corre, R; Pennec, Y L; Cartron, J; Youinou, P

    1995-11-01

    Our aims were to determine the prevalence of neutrophil antibodies in patients with primary Sjögren's syndrome (pSS), identify their target antigen(s), and evaluate their functional significance. Neutrophil antibodies were detected using an indirect immunofluorescence (IIIF) test and an enzyme-linked immunosorbent assay (ELISA), using recombinant human Fc-gamma receptor (Fc gamma RIIIb) as a capture agent. Luminol-dependent chemiluminescence was then measured by an established technique. Antibodies to neutrophils were detected in 30 of 66 patients (45%) and categorized on the basis of positivity for the two assays: IIF+/ELISA+ (group A: five patients), IIF+/ELISA- (group B: five patients), and IFF-/ELISA+ (group C: 20 patients). All positive sera contained antibodies directed to the neutrophil specific Fc gamma RIIIb, and none of them bound to NAnull neutrophils. The titer of neutrophil-reactive antibodies (groups A and B) showed no correlation with the neutrophil count, but these autoantibodies did reduce the cell ability to generate a respiratory burst. Thus, neutrophil antibodies are common in patients with pSS. Their main target appears to be Fc gamma RIII, and this may partly account for the dysfunction in Fc gamma R-mediated clearance by the reticuloendothelial system reported in these patients.

  12. Unsaturated long-chain fatty acids induce the respiratory burst of human neutrophils and monocytes in whole blood

    Directory of Open Access Journals (Sweden)

    Osthaus Wilhelm A

    2008-07-01

    Full Text Available Abstract Background It is increasingly recognized that infectious complications in patients treated with total parenteral nutrition (TPN may be caused by altered immune responses. Neutrophils and monocytes are the first line of defence against bacterial and fungal infection through superoxide anion production during the respiratory burst. To characterize the impact of three different types of lipid solutions that are applied as part of TPN formulations, we investigated the unstimulated respiratory burst activation of neutrophils and monocytes in whole blood. Methods Whole blood samples were incubated with LCT (Intralipid®, LCT/MCT (Lipofundin® and LCT-MUFA (ClinOleic® in three concentrations (0.06, 0.3 and 0.6 mg ml-1 for time periods up to one hour. Hydrogen peroxide production during the respiratory burst of neutrophils and monocytes was measured by flow cytometry. Results LCT and LCT-MUFA induced a hydrogen peroxide production in neutrophils and monocytes without presence of a physiological stimulus in contrast to LCT/MCT. Conclusion We concluded that parenteral nutrition containing unsaturated oleic (C18:1 and linoleic (C18:2 acid can induce respiratory burst of neutrophils and monocytes, resulting in an elevated risk of tissue damage by the uncontrolled production of reactive oxygen species. Contradictory observations reported in previous studies may in part be the result of different methods used to determine hydrogen peroxide production.

  13. Activated Protein C Attenuates Severe Inflammation by Targeting VLA-3high Neutrophil Subpopulation in Mice.

    Science.gov (United States)

    Sarangi, Pranita P; Lee, Hyun-Wook; Lerman, Yelena V; Trzeciak, Alissa; Harrower, Eric J; Rezaie, Alireza R; Kim, Minsoo

    2017-10-15

    The host injury involved in multiorgan system failure during severe inflammation is mediated, in part, by massive infiltration and sequestration of hyperactive neutrophils in the visceral organ. A recombinant form of human activated protein C (rhAPC) has shown cytoprotective and anti-inflammatory functions in some clinical and animal studies, but the direct mechanism is not fully understood. Recently, we reported that, during endotoxemia and severe polymicrobial peritonitis, integrin VLA-3 (CD49c/CD29) is specifically upregulated on hyperinflammatory neutrophils and that targeting the VLA-3 high neutrophil subpopulation improved survival in mice. In this article, we report that rhAPC binds to human neutrophils via integrin VLA-3 (CD49c/CD29) with a higher affinity compared with other Arg-Gly-Asp binding integrins. Similarly, there is preferential binding of activated protein C (PC) to Gr1 high CD11b high VLA-3 high cells isolated from the bone marrow of septic mice. Furthermore, specific binding of rhAPC to human neutrophils via VLA-3 was inhibited by an antagonistic peptide (LXY2). In addition, genetically modified mutant activated PC, with a high affinity for VLA-3, shows significantly improved binding to neutrophils compared with wild-type activated PC and significantly reduced neutrophil infiltration into the lungs of septic mice. These data indicate that variants of activated PC have a stronger affinity for integrin VLA-3, which reveals novel therapeutic possibilities. Copyright © 2017 by The American Association of Immunologists, Inc.

  14. Complete identification of E-selectin ligand activity on neutrophils reveals a dynamic interplay and distinct functions of PSGL-1, ESL-1 and CD44

    Science.gov (United States)

    Wild, Martin; Vestweber, Dietmar; Frenette, Paul S.

    2014-01-01

    SUMMARY The selectins and their ligands are required for leukocyte extravasation during inflammation. Several glycoproteins have been suggested to bind to E-selectin in vitro but the complete identification of its physiological ligands has remained elusive. Here, we show using gene- and RNA-targeted loss-of-function that E-selectin ligand-1 (ESL-1), PSGL-1 and CD44 encompass all endothelial selectin ligand activity on neutrophils. PSGL-1 plays a major role in the initial leukocyte capture, while ESL-1 is critical to convert initial tethers into steady slow rolling. CD44 controls rolling velocity and mediates E-selectin-dependent redistribution of PSGL-1 and L-selectin to a major pole on slowly rolling leukocytes through p38 signaling. These results suggest distinct and dynamic contributions of these three glycoproteins in selectin-mediated neutrophil adhesion and signaling. PMID:17442598

  15. Characterization of the response chemiluminescence of neutrophils human beings to the hemolysin Escherichia coli alpha

    International Nuclear Information System (INIS)

    Garcia, J.

    2000-01-01

    Escherichia coli alpha hemolysin (AH) evoked a luminol-amplified chemiluminescence (CL) response from human polymorphonuclear leukocytes (PMN). Analysis of kinetic parameters of the PMN CL response to AH established similarities with that of PMN to the calcium ionophore A23187. PMN CL responses to both AH and A23187 were equally decreased by preincubating PMN with A63612, a hidroxamic acid derivative and lipooxigenase inhibitor, showing that the CL response to both hemolysin and ionophore share a common mechanism, probably activation of leukotriene synthesis, due to calcium entry into the cells brought about by AH and A23187. In addition, the CL response of PMN to AH was lowered by the hydroxyl radical scavenger dimethyl sulfoxide, further suggesting arachidonate metabolism is involved in CL response. (Author) [es

  16. The effect of tumour necrosis factor-α (TNF-α muteins on human neutrophils in vitro

    Directory of Open Access Journals (Sweden)

    H. Tchorzewski

    1993-01-01

    Full Text Available Tumour necrosis factor-α (TNF-α has been implicated as an important inflammatory mediator. In vitro, TNF-α is reported to activate human polymorphonuclear neutrophils (PMN, inducing responses such as phagocytic activity, degranulation and oxidative metabolism. Biological responses to TNF-α are initiated by its binding to specific cell surface receptors, and various studies have shown that the major TNF receptor species on PMN is the 75 kDa receptor. To verify the suggestion that the receptor binding domain includes the region close to the N-terminus of the TNF-α molecule, four TNF-α derivatives termed muteins were constructed, using a synthetic cDNA fragment substituting the N-terminal 3–7 selected hydrophilic or hydrophobic amino acids in the original TNF-α genomic DNA. Binding of muteins to PMN was assessed using monoclonal antibodies recognizing either the 55 kDa (p55 or the 75 kDa (p75 TNF receptor subtypes. Blocking by muteins of anti-p75 antibody binding to PMN was as expected from their N-terminal amino acid composition and hydrophilic properties. Hydrophilic muteins competed well with anti-TNF receptor antibodies for binding to the p75 receptor. In contrast, hydrophobic muteins were unable to block anti-p75 binding. Similarly, degranulation, chemiluminescence or enhancement of the PMN response to specific stimuli by the muteins correlated with the hydrophilic properties of the muteins. The significance of these observations in relation to the molecular structure of TNF-α is discussed.

  17. Direct interaction between caffeic acid phenethyl ester and human neutrophil elastase inhibits the growth and migration of PANC-1 cells.

    Science.gov (United States)

    Duan, Jianhui; Xiaokaiti, Yilixiati; Fan, Shengjun; Pan, Yan; Li, Xin; Li, Xuejun

    2017-05-01

    Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignant tumors of the digestive system, but the mechanisms of its development and progression are unclear. Inflammation is thought to be fundamental to pancreatic cancer development and caffeic acid phenethyl ester (CAPE) is an active component of honey bee resin or propolis with anti-inflammatory and anticancer activities. We investigated the inhibitory effects of CAPE on cell growth and migration induced by human neutrophil elastase (HNE) and report that HNE induced cancer cell migration at low doses and growth at higher doses. In contrast, lower CAPE doses inhibited migration and higher doses of CAPE inhibited the growth induced by HNE. HNE activity was significantly inhibited by CAPE (7.5-120 µM). Using quantitative real-time PCR and western blotting, we observed that CAPE (18-60 µM) did not affect transcription and translation of α1-antitrypsin (α1-AT), an endogenous HNE inhibitor. However, in an in silico drug target docking model, we found that CAPE directly bound to the binding pocket of HNE (25.66 kcal/mol) according to CDOCKER, and the residue of the catalytic site stabilized the interaction between CAPE and HNE as evidenced by molecular dynamic simulation. Response unit (RU) values of surface plasmon resonance (SPR) significantly increased with incremental CAPE doses (7.5-120 µM), indicating that CAPE could directly bind to HNE in a concentration-dependent manner. Thus, CAPE is an effective inhibitor of HNE via direct interaction whereby it inhibits the migration and growth of PANC-1 cells in a dose-dependent manner.

  18. Epithelial Cell-Neutrophil Interactions in the Alimentary Tract: A Complex Dialog in Mucosal Surveillance and Inflammation

    Directory of Open Access Journals (Sweden)

    Sean P. Colgan

    2002-01-01

    Full Text Available Inflammatory diseases of mucosal organs as diverse as the lung, kidney, and intestine, inevitably require the intimate interactions of neutrophils with columnar epithelia. The physiologic consequences of such interactions often determine endpoint organ function, and for this reason, much recent interest has developed in identifying mechanisms and novel targets for the treatment of mucosal inflammation. Elegant in vitro model systems incorporating purified human neutrophils and human epithelial cells grown in physiologic orientations have aided in discovery of new and insightful pathways to define basic inflammatory pathways. Here, we will review the recent literature regarding the interactions between columnar epithelial cells and neutrophils, with an emphasis on intestinal epithelial cells, structural aspects of neutrophil transepithelial migration, molecular determinants of neutrophil-epithelial cell interactions, as well as modulation of these pathways. These recent studies highlight the dynamic nature of these pathways and lend insight into the complexity of treating mucosal inflammation.

  19. β-Glucan induces reactive oxygen species production in human neutrophils to improve the killing of Candida albicans and Candida glabrata isolates from vulvovaginal candidiasis.

    Directory of Open Access Journals (Sweden)

    Patricia de Souza Bonfim-Mendonça

    Full Text Available Vulvovaginal candidiasis (VVC is among the most prevalent vaginal diseases. Candida albicans is still the most prevalent species associated with this pathology, however, the prevalence of other Candida species, such as C. glabrata, is increasing. The pathogenesis of these infections has been intensely studied, nevertheless, no consensus has been reached on the pathogenicity of VVC. In addition, inappropriate treatment or the presence of resistant strains can lead to RVVC (vulvovaginal candidiasis recurrent. Immunomodulation therapy studies have become increasingly promising, including with the β-glucans. Thus, in the present study, we evaluated microbicidal activity, phagocytosis, intracellular oxidant species production, oxygen consumption, myeloperoxidase (MPO activity, and the release of tumor necrosis factor α (TNF-α, interleukin-8 (IL-8, IL-1β, and IL-1Ra in neutrophils previously treated or not with β-glucan. In all of the assays, human neutrophils were challenged with C. albicans and C. glabrata isolated from vulvovaginal candidiasis. β-glucan significantly increased oxidant species production, suggesting that β-glucan may be an efficient immunomodulator that triggers an increase in the microbicidal response of neutrophils for both of the species isolated from vulvovaginal candidiasis. The effects of β-glucan appeared to be mainly related to the activation of reactive oxygen species and modulation of cytokine release.

  20. Elevated glucose concentrations promote receptor-independent activation of adherent human neutrophils: an experimental and computational approach

    DEFF Research Database (Denmark)

    Kummer, Ursula; Zobeley, Jürgen; Brasen, Jens Christian

    2007-01-01

    of NO and superoxide formation were observed. However, these changes were not observed for sorbitol, a nonmetabolizable carbohydrate. Glucose transport appears to be important in this process as phloretin interferes with the glucose-specific receptor-independent activation of neutrophils. However, LY83583...

  1. Correlation between the neutrophil-lymphocyte count ratio and bacterial infection in patient with human immunodeficiency virus

    Science.gov (United States)

    Kusnadi, D.; Liwang, M. N. I.; Katu, S.; Mubin, A. H.; Halim, R.

    2018-03-01

    Parameters for starting antibiotic therapy such as CRP andleukocytosis are considered non-specific. Previous studies have shown the Neutrophil-Lymphocyte Count Ratio (NLCR) can serve as the basis of bacterial infection, the level of infection, and the basis of antibiotic therapy. Compared with the Procalcitonin parameter, this NLCR is rapid, an inexpensive and requires no additional sampling. To determine the correlation between The Neutrophil-LymphocyteCount Ratio to bacterial infection in HIV patients. This study was a cross-sectional observational approach to HIV subject at Wahidin Sudirohusodo and Hasanuddin University Hospital. The subjects performed routine blood, microbiology test,and blood Procalcitonin levels tests. Then performed NLCR calculations based on routine blood results. The subjects then grouped the presence or absence of bacterial infection.In 146 study subjects, there were 78 (53.4%) with bacterial infections and 68 (46.6%) without bacterial infection as controls. Subjects with bacterial infections had higher total neutrophils (84.83) compared with non-bacterial infections. Subjects with bacterial infections had total lymphocytes with an average of 8.51 lower than non-bacterial infections. Subjects with bacterial infections had higher NLCR values with an average of 12.80. The Neutrophil-Lymphocyte Count Ratio can become a marker of bacterial infection in HIV patients.

  2. Azurophil granule proteins constitute the major mycobactericidal proteins in human neutrophils and enhance the killing of mycobacteria in macrophages.

    Directory of Open Access Journals (Sweden)

    Prajna Jena

    Full Text Available Pathogenic mycobacteria reside in, and are in turn controlled by, macrophages. However, emerging data suggest that neutrophils also play a critical role in innate immunity to tuberculosis, presumably by their different antibacterial granule proteins. In this study, we purified neutrophil azurophil and specific granules and systematically analyzed the antimycobacterial activity of some purified azurophil and specific granule proteins against M. smegmatis, M. bovis-BCG and M. tuberculosis H37Rv. Using gel overlay and colony forming unit assays we showed that the defensin-depleted azurophil granule proteins (AZP were more active against mycobacteria compared to other granule proteins and cytosolic proteins. The proteins showing antimycobacterial activity were identified by MALDI-TOF mass spectrometry. Electron microscopic studies demonstrate that the AZP disintegrate bacterial cell membrane resulting in killing of mycobacteria. Exogenous addition of AZP to murine macrophage RAW 264.7, THP-1 and peripheral blood monocyte-derived macrophages significantly reduced the intracellular survival of mycobacteria without exhibiting cytotoxic activity on macrophages. Immunofluorescence studies showed that macrophages actively endocytose neutrophil granular proteins. Treatment with AZP resulted in increase in co-localization of BCG containing phagosomes with lysosomes but not in increase of autophagy. These data demonstrate that neutrophil azurophil proteins may play an important role in controlling intracellular survival of mycobacteria in macrophages.

  3. Selection of reliable reference genes for quantitative real-time PCR in human T cells and neutrophils

    Directory of Open Access Journals (Sweden)

    Ledderose Carola

    2011-10-01

    Full Text Available Abstract Background The choice of reliable reference genes is a prerequisite for valid results when analyzing gene expression with real-time quantitative PCR (qPCR. This method is frequently applied to study gene expression patterns in immune cells, yet a thorough validation of potential reference genes is still lacking for most leukocyte subtypes and most models of their in vitro stimulation. In the current study, we evaluated the expression stability of common reference genes in two widely used cell culture models-anti-CD3/CD28 activated T cells and lipopolysaccharide stimulated neutrophils-as well as in unselected untreated leukocytes. Results The mRNA expression of 17 (T cells, 7 (neutrophils or 8 (unselected leukocytes potential reference genes was quantified by reverse transcription qPCR, and a ranking of the preselected candidate genes according to their expression stability was calculated using the programs NormFinder, geNorm and BestKeeper. IPO8, RPL13A, TBP and SDHA were identified as suitable reference genes in T cells. TBP, ACTB and SDHA were stably expressed in neutrophils. TBP and SDHA were also the most stable genes in untreated total blood leukocytes. The critical impact of reference gene selection on the estimated target gene expression is demonstrated for IL-2 and FIH expression in T cells. Conclusions The study provides a shortlist of suitable reference genes for normalization of gene expression data in unstimulated and stimulated T cells, unstimulated and stimulated neutrophils and in unselected leukocytes.

  4. Neutrophil Responses to Sterile Implant Materials.

    Directory of Open Access Journals (Sweden)

    Siddharth Jhunjhunwala

    Full Text Available In vivo implantation of sterile materials and devices results in a foreign body immune response leading to fibrosis of implanted material. Neutrophils, one of the first immune cells to be recruited to implantation sites, have been suggested to contribute to the establishment of the inflammatory microenvironment that initiates the fibrotic response. However, the precise numbers and roles of neutrophils in response to implanted devices remains unclear. Using a mouse model of peritoneal microcapsule implantation, we show 30-500 fold increased neutrophil presence in the peritoneal exudates in response to implants. We demonstrate that these neutrophils secrete increased amounts of a variety of inflammatory cytokines and chemokines. Further, we observe that they participate in the foreign body response through the formation of neutrophil extracellular traps (NETs on implant surfaces. Our results provide new insight into neutrophil function during a foreign body response to peritoneal implants which has implications for the development of biologically compatible medical devices.

  5. Neutrophils in Tuberculosis: Heterogeneity Shapes the Way?

    Science.gov (United States)

    2017-01-01

    Infection with M. tuberculosis remains one of the most common infections in the world. The outcome of the infection depends on host ability to mount effective protection and balance inflammatory responses. Neutrophils are innate immune cells implicated in both processes. Accordingly, during M. tuberculosis infection, they play a dual role. Particularly, they contribute to the generation of effector T cells, participate in the formation of granuloma, and are directly involved in tissue necrosis, destruction, and infection dissemination. Neutrophils have a high bactericidal potential. However, data on their ability to eliminate M. tuberculosis are controversial, and the results of neutrophil depletion experiments are not uniform. Thus, the overall roles of neutrophils during M. tuberculosis infection and factors that determine these roles are not fully understood. This review analyzes data on neutrophil defensive and pathological functions during tuberculosis and considers hypotheses explaining the dualism of neutrophils during M. tuberculosis infection and tuberculosis disease. PMID:28626346

  6. Phenotypic Diversity and Plasticity in Circulating Neutrophil Subpopulations in Cancer

    Directory of Open Access Journals (Sweden)

    Jitka Y. Sagiv

    2015-02-01

    Full Text Available Controversy surrounds neutrophil function in cancer because neutrophils were shown to provide both pro- and antitumor functions. We identified a heterogeneous subset of low-density neutrophils (LDNs that appear transiently in self-resolving inflammation but accumulate continuously with cancer progression. LDNs display impaired neutrophil function and immunosuppressive properties, characteristics that are in stark contrast to those of mature, high-density neutrophils (HDNs. LDNs consist of both immature myeloid-derived suppressor cells (MDSCs and mature cells that are derived from HDNs in a TGF-β-dependent mechanism. Our findings identify three distinct populations of circulating neutrophils and challenge the concept that mature neutrophils have limited plasticity. Furthermore, our findings provide a mechanistic explanation to mitigate the controversy surrounding neutrophil function in cancer.

  7. The Proteolytically Stable Peptidomimetic Pam-(Lys-ßNSpe)6-NH2 Selectively Inhibits Human Neutrophil Activation via Formyl Peptide Receptor 2

    DEFF Research Database (Denmark)

    Skovbakke, Sarah Line; Heegaard, Peter M. H.; Larsen, Camilla J.

    2015-01-01

    of proteolytically stable HDP mimics consisting of lipidated α-peptide/β-peptoid oligomers was investigated for their effect on neutrophil function. The most promising compound, Pam-(Lys-βNSpe)6-NH2, was shown to inhibit formyl peptide receptor 2 (FPR2) agonist-induced neutrophil granule mobilization and release...... of reactive oxygen species. The potency of Pam-(Lys-βNSpe)6-NH2 was comparable to that of PBP10, the most potent FPR2-selective inhibitor known. The immunomodulatory effects of structural analogues of Pam-(Lys-βNSpe)6-NH2 emphasized the importance of both the lipid and peptidomimetic parts. By using imaging...... flow cytometry in primary neutrophils and FPR-transfected cell lines we found that a fluorescently labelled analogue of Pam-(Lys-βNSpe)6-NH2 interacted selectively with FPR2. Furthermore the interaction between Pam-(Lys-βNSpe)6-NH2 and FPR2 was found to prevent binding of the FPR2-specific activating...

  8. Cxcl8b and Cxcr2 Regulate Neutrophil Migration through Bloodstream in Zebrafish

    Directory of Open Access Journals (Sweden)

    Constanza Zuñiga-Traslaviña

    2017-01-01

    Full Text Available Neutrophils play an essential role during an inflammatory response, which is dependent on their rapid recruitment from the bone marrow to the vasculature. However, there is no information about the molecular signals that regulate neutrophil entry to circulation during an inflammatory process in humans. This is mainly due to the lack of a suitable model of study that contains similar set of molecules and that allows in vivo analyses. In this study, we used the zebrafish to assess the role of Cxcl8a, Cxcl8b, and Cxcr2 in neutrophil migration to blood circulation after injury. Using Tg(BACmpx:GFPi114 transgenic embryos and two damage models (severe and mild, we developed in vivo lack of function assays. We found that the transcription levels of cxcl8a, cxcl8b, and cxcr2 were upregulated in the severe damage model. In contrast, only cxcr2 and cxcl8a mRNA levels were increased during mild damage. After knocking down Cxcl8a, neutrophil quantity decreased at the injury site, while Cxcl8b decreased neutrophils in circulation. When inhibiting Cxcr2, we observed a decrease in neutrophil entry to the bloodstream. In conclusion, we identified different functions for both Cxcl8 paralogues, being the Cxcl8b/Cxcr2 axis that regulates neutrophil entry to the bloodstream, while Cxcl8a/Cxcr2 regulates the migration to the affected area.

  9. Serum and Glucocorticoid Regulated Kinase 1 (SGK1) Regulates Neutrophil Clearance During Inflammation Resolution

    Science.gov (United States)

    Burgon, Joseph; Robertson, Anne L.; Sadiku, Pranvera; Wang, Xingang; Hooper-Greenhill, Edward; Prince, Lynne R.; Walker, Paul; Hoggett, Emily E.; Ward, Jonathan R.; Farrow, Stuart N.; Zuercher, William J.; Jeffrey, Philip; Savage, Caroline O.; Ingham, Philip W.; Hurlstone, Adam F.; Whyte, Moira K. B.; Renshaw, Stephen A.

    2013-01-01

    The inflammatory response is integral to maintaining health, by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralise invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein Serum and Glucocorticoid Regulated Kinase 1 (SGK1). We have characterised the expression patterns and regulation of SGK family members in human neutrophils, and shown that inhibition of SGK activity completely abrogates the anti-apoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signalling, and thus may prove a valuable therapeutic target for the treatment of inflammatory disease. PMID:24431232

  10. Serum and glucocorticoid-regulated kinase 1 regulates neutrophil clearance during inflammation resolution.

    Science.gov (United States)

    Burgon, Joseph; Robertson, Anne L; Sadiku, Pranvera; Wang, Xingang; Hooper-Greenhill, Edward; Prince, Lynne R; Walker, Paul; Hoggett, Emily E; Ward, Jonathan R; Farrow, Stuart N; Zuercher, William J; Jeffrey, Philip; Savage, Caroline O; Ingham, Philip W; Hurlstone, Adam F; Whyte, Moira K B; Renshaw, Stephen A

    2014-02-15

    The inflammatory response is integral to maintaining health by functioning to resist microbial infection and repair tissue damage. Large numbers of neutrophils are recruited to inflammatory sites to neutralize invading bacteria through phagocytosis and the release of proteases and reactive oxygen species into the extracellular environment. Removal of the original inflammatory stimulus must be accompanied by resolution of the inflammatory response, including neutrophil clearance, to prevent inadvertent tissue damage. Neutrophil apoptosis and its temporary inhibition by survival signals provides a target for anti-inflammatory therapeutics, making it essential to better understand this process. GM-CSF, a neutrophil survival factor, causes a significant increase in mRNA levels for the known anti-apoptotic protein serum and glucocorticoid-regulated kinase 1 (SGK1). We have characterized the expression patterns and regulation of SGK family members in human neutrophils and shown that inhibition of SGK activity completely abrogates the antiapoptotic effect of GM-CSF. Using a transgenic zebrafish model, we have disrupted sgk1 gene function and shown this specifically delays inflammation resolution, without altering neutrophil recruitment to inflammatory sites in vivo. These data suggest SGK1 plays a key role in regulating neutrophil survival signaling and thus may prove a valuable therapeutic target for the treatment of inflammatory disease.

  11. Obesity is associated with more activated neutrophils in African American male youth.

    Science.gov (United States)

    Xu, X; Su, S; Wang, X; Barnes, V; De Miguel, C; Ownby, D; Pollock, J; Snieder, H; Chen, W; Wang, X

    2015-01-01

    There is emerging evidence suggesting the role of peripheral blood leukocytes in the pathogenesis of obesity and related diseases. However, few studies have taken a genome-wide approach to investigating gene expression profiles in peripheral leukocytes between obese and lean individuals with the consideration of obesity-related shifts in leukocyte types. We conducted this study in 95 African Americans (AAs) of both genders (age 14-20 years, 46 lean and 49 obese). Complete blood count with differential test (CBC) was performed in whole blood. Genome-wide gene expression analysis was obtained using the Illumina HumanHT-12 V4 Beadchip with RNA extracted from peripheral leukocytes. Out of the 95 participants, 64 had neutrophils stored. The validation study was based on real-time PCR with RNA extracted from purified neutrophils. CBC test suggested that, in males, obesity was associated with increased neutrophil percentage (P=0.03). Genome-wide gene expression analysis showed that, in males, the majority of the most differentially expressed genes were related to neutrophil activation. Validation of the gene expression levels of ELANE (neutrophil elastase) and MPO (myeloperoxidase) in purified neutrophils demonstrated that the expression of these two genes--important biomarkers of neutrophils activation--were significantly elevated in obese males (P=0.01 and P=0.02, respectively). The identification of increased neutrophil percentage and activation in obese AA males suggests that neutrophils have an essential role in the pathogenesis of obesity-related disease. Further functional and mechanistic studies on neutrophils may contribute to the development of novel intervention strategies reducing the burden associated with obesity-related health problems.

  12. Neutrophils in Cancer: Two Sides of the Same Coin.

    Science.gov (United States)

    Uribe-Querol, Eileen; Rosales, Carlos

    2015-01-01

    Neutrophils are the most abundant leukocytes in blood and are considered to be the first line of defense during inflammation and infections. In addition, neutrophils are also found infiltrating many types of tumors. Tumor-associated neutrophils (TANs) have relevant roles in malignant disease. Indeed neutrophils may be potent antitumor effector cells. However, increasing clinical evidence shows TANs correlate with poor prognosis. The tumor microenvironment controls neutrophil recruitment and in turn TANs help tumor progression. Hence, TANs can be beneficial or detrimental to the host. It is the purpose of this review to highlight these two sides of the neutrophil coin in cancer and to describe recent studies that provide some light on the mechanisms for neutrophil recruitment to the tumor, for neutrophils supporting tumor progression, and for neutrophil activation to enhance their antitumor functions.

  13. Neutrophils in Cancer: Two Sides of the Same Coin

    Directory of Open Access Journals (Sweden)

    Eileen Uribe-Querol

    2015-01-01

    Full Text Available Neutrophils are the most abundant leukocytes in blood and are considered to be the first line of defense during inflammation and infections. In addition, neutrophils are also found infiltrating many types of tumors. Tumor-associated neutrophils (TANs have relevant roles in malignant disease. Indeed neutrophils may be potent antitumor effector cells. However, increasing clinical evidence shows TANs correlate with poor prognosis. The tumor microenvironment controls neutrophil recruitment and in turn TANs help tumor progression. Hence, TANs can be beneficial or detrimental to the host. It is the purpose of this review to highlight these two sides of the neutrophil coin in cancer and to describe recent studies that provide some light on the mechanisms for neutrophil recruitment to the tumor, for neutrophils supporting tumor progression, and for neutrophil activation to enhance their antitumor functions.

  14. NR4A orphan nuclear receptor family members, NR4A2 and NR4A3, regulate neutrophil number and survival.

    Science.gov (United States)

    Prince, Lynne R; Prosseda, Svenja D; Higgins, Kathryn; Carlring, Jennifer; Prestwich, Elizabeth C; Ogryzko, Nikolay V; Rahman, Atiqur; Basran, Alexander; Falciani, Francesco; Taylor, Philip; Renshaw, Stephen A; Whyte, Moira K B; Sabroe, Ian

    2017-08-24

    The lifespan of neutrophils is plastic and highly responsive to factors that regulate cellular survival. Defects in neutrophil number and survival are common to both hematologic disorders and chronic inflammatory diseases. At sites of inflammation, neutrophils respond to multiple signals that activate protein kinase A (PKA) signaling, which positively regulates neutrophil survival. The aim of this study was to define transcriptional responses to PKA activation and to delineate the roles of these factors in neutrophil function and survival. In human neutrophil gene array studies, we show that PKA activation upregulates a significant number of apoptosis-related genes, the most highly regulated of these being NR4A2 and NR4A3 Direct PKA activation by the site-selective PKA agonist pair N6/8-AHA (8-AHA-cAMP and N6-MB-cAMP) and treatment with endogenous activators of PKA, including adenosine and prostaglandin E2, results in a profound delay of neutrophil apoptosis and concomitant upregulation of NR4A2/3 in a PKA-dependent manner. NR4A3 expression is also increased at sites of neutrophilic inflammation in a human model of intradermal inflammation. PKA activation also promotes survival of murine neutrophil progenitor cells, and small interfering RNA to NR4A2 decreases neutrophil production in this model. Antisense knockdown of NR4A2 and NR4A3 homologs in zebrafish larvae significantly reduces the absolute neutrophil number without affecting cellular migration. In summary, we show that NR4A2 and NR4A3 are components of a downstream transcriptional response to PKA activation in the neutrophil, and that they positively regulate neutrophil survival and homeostasis. © 2017 by The American Society of Hematology.

  15. Effect of moderate exercise on peritoneal neutrophils from juvenile rats.

    Science.gov (United States)

    Braz, Glauber Ruda; Ferreira, Diorginis Soares; Pedroza, Anderson Apolonio; da Silva, Aline Isabel; Sousa, Shirley Maria; Pithon-Curi, Tania Cristina; Lagranha, Claudia

    2015-09-01

    Previous studies showed that moderate exercise in adult rats enhances neutrophil function, although no studies were performed in juvenile rats. We evaluated the effects of moderate exercise on the neutrophil function in juvenile rats. Viability and neutrophils function were evaluated. Moderate exercise did not impair the viability and mitochondrial transmembrane potential of neutrophils, whereas there was greater reactive oxygen species production (164%; p < 0.001) and phagocytic capacity (29%; p < 0.05). Our results suggest that moderate exercise in juvenile rats improves neutrophil function, similar to adults.

  16. Azurophil granule proteins constitute the major mycobactericidal proteins in human neutrophils and enhance the killing of mycobacteria in macrophages

    DEFF Research Database (Denmark)

    Jena, Prajna; Mohanty, Soumitra; Mohanty, Tirthankar

    2012-01-01

    Pathogenic mycobacteria reside in, and are in turn controlled by, macrophages. However, emerging data suggest that neutrophils also play a critical role in innate immunity to tuberculosis, presumably by their different antibacterial granule proteins. In this study, we purified neutrophil azurophil...... and specific granules and systematically analyzed the antimycobacterial activity of some purified azurophil and specific granule proteins against M. smegmatis, M. bovis-BCG and M. tuberculosis H37Rv. Using gel overlay and colony forming unit assays we showed that the defensin-depleted azurophil granule...... proteins (AZP) were more active against mycobacteria compared to other granule proteins and cytosolic proteins. The proteins showing antimycobacterial activity were identified by MALDI-TOF mass spectrometry. Electron microscopic studies demonstrate that the AZP disintegrate bacterial cell membrane...

  17. Suppression of oxidative burst in human neutrophils with the naturally occurring serotonin derivative isomer from Leuzea carthamoides

    Czech Academy of Sciences Publication Activity Database

    Nosáľ, R.; Perečko, T.; Jančinová, V.; Drábiková, K.; Harmatha, Juraj; Sviteková, K.

    2010-01-01

    Roč. 31, Suppl.2 (2010), s. 69-72 ISSN 0172-780X R&D Projects: GA ČR(CZ) GA203/07/1227 Institutional research plan: CEZ:AV0Z40550506 Keywords : N-feruloylserotonin * neutrophil chemiluminescence * protein kinase C Subject RIV: CC - Organic Chemistry Impact factor: 1.621, year: 2010 http://node.nel.edu

  18. Neutrophils at work

    DEFF Research Database (Denmark)

    Nauseef, William M; Borregaard, Niels

    2014-01-01

    In this Review we discuss data demonstrating recently recognized aspects of neutrophil homeostasis in the steady state, granulopoiesis in 'emergency' conditions and interactions of neutrophils with the adaptive immune system. We explore in vivo observations of the recruitment of neutrophils from ...

  19. Formation of neutrophil extracellular traps under low oxygen level

    Directory of Open Access Journals (Sweden)

    Katja Branitzki-Heinemann

    2016-11-01

    Full Text Available Since their discovery, neutrophil extracellular traps (NETs have been characterized as a fundamental host innate immune defense mechanism. Conversely, excessive NET release may have a variety of detrimental consequences for the host. A fine balance between NET formation and elimination is necessary to sustain a protective effect during an infectious challenge. Our own recently published data revealed that stabilization of hypoxia inducible factor 1α (HIF-1α by the iron chelating HIF-1α-agonist desferoxamine or AKB-4924 enhanced the release of phagocyte extracellular traps. Since HIF-1α is a global regulator of the cellular response to low oxygen, we hypothesized that NET formation may be similarly increased under low oxygen conditions. Hypoxia occurs in tissues during infection or inflammation, mostly due to overconsumption of oxygen by pathogens and recruited immune cells. Therefore, experiments were performed to characterize the formation of NETs under hypoxic oxygen conditions compared to normoxia. Human blood-derived neutrophils were isolated and incubated under normoxic (21% oxygen level and compared to hypoxic (1% conditions. Dissolved oxygen levels were monitored in the primary cell culture using a Fibox4-PSt3 measurement system. The formation of NETs was quantified by fluorescence microscopy in response to the known NET-inducer phorbol 12-myristate 13-acetate (PMA or S. aureus wildtype and a nuclease-deficient mutant. In contrast to our hypothesis, spontaneous NET formation of neutrophils incubated under hypoxia was distinctly reduced compared to control neutrophils incubated under normoxia. Furthermore, neutrophils incubated under hypoxia showed significantly reduced formation of NETs in response to PMA. Gene expression analysis revealed that mRNA level of hif-1α as well as hif-1α target genes was not altered. However, in good correlation to the decreased NET formation under hypoxia, the cholesterol content of the neutrophils was

  20. The complex interplay between neutrophils and cancer.

    Science.gov (United States)

    Rakic, Andrea; Beaudry, Paul; Mahoney, Douglas J

    2018-03-01

    Neutrophils are the most abundant type of white blood cell, and are an essential component of the innate immune system. They characteristically arrive rapidly at sites of infection and injury, and release a variety of cytokines and toxic molecules to eliminate pathogens and elicit an acute inflammatory response. Research into the function of neutrophils in cancer suggest they have divergent roles. Indeed, while most studies have found neutrophils to be associated with cancer progression, others have also documented anticancer effects. In this review, we describe the investigations into neutrophil populations that have been implicated in promoting tumor growth and metastasis as well those demonstrating antitumor functions. The collective research suggests a complex role for neutrophils in cancer biology, which raises the prospect of their targeting for the treatment of cancer.

  1. Plasma neutrophil gelatinase associated lipocalin (NGAL) is associated with kidney function in uraemic patients before and after kidney transplantation

    DEFF Research Database (Denmark)

    Magnusson, Nils Erik; Hornum, Mads; Jørgensen, Kaj Anker

    2012-01-01

    Neutrophil gelatinase associated lipocalin (NGAL) is a biomarker of kidney injury. We examined plasma levels of NGAL in a cohort of 57 kidney allograft recipients (Tx group, 39 ± 13 years), a uraemic group of 40 patients remaining on the waiting list (47 ± 11 years) and a control group of 14...... healthy subjects matched for age, sex and body mass index (BMI). The kidney graft recipients were studied at baseline before transplantation and 3 and 12 months after transplantation and the uraemic group at baseline and after 12 months....

  2. Chronic neutrophilic leukemia.

    Science.gov (United States)

    Bredeweg, Arthur; Burch, Micah; Krause, John R

    2018-01-01

    Chronic neutrophilic leukemia is a rare myeloproliferative disorder characterized by a sustained peripheral blood neutrophilia, absence of the BCR/ABL oncoprotein, bone marrow hypercellularity with less than 5% myeloblasts and normal neutrophil maturation, and no dysplasia. This leukemia has been associated with mutations in the colony-stimulating factor 3 receptor (CSF3R) that may activate this receptor, leading to the proliferation of neutrophils that are the hallmark of chronic neutrophilic leukemia. We present a case of chronic neutrophilic leukemia and discuss the criteria for diagnosis and the significance of mutations found in this leukemia.

  3. Inhibition of PAF-induced expression of CD11b and shedding of L-selectin on human neutrophils and eosinophils by the type IV selective PDE inhibitor, rolipram

    NARCIS (Netherlands)

    Dijkhuizen, B; deMonchy, JGR; Dubois, AEJ; Gerritsen, J; Kauffman, HF

    We quantitatively determined whether the selective phosphodiesterase (PDE) inhibitor, rolipram, inhibits changes in the adhesion molecules CD11b and L-selectin on platelet-activating factor (PAF)-stimulated human neutrophils and eosinophils in vitro. Incubations were performed in human whole blood

  4. Tasting Pseudomonas aeruginosa biofilms.Human neutrophils express the bitter receptor T2R38 as sensor for the quorum sensing molecule N-(3-oxododecanoyl-L-homoserine lactone

    Directory of Open Access Journals (Sweden)

    Susanne eMaurer

    2015-07-01

    Full Text Available Bacteria communicate with each other via specialized signalling molecules, known as quorum sensing molecules or autoinducers. The Pseudomonas aeruginosa-derived quorum sensing molecule N-(3-oxododecanoyl-L-homoserine lactone (AHL-12, however, also activates mammalian cells. As shown previously, AHL-12 induced chemotaxis, up-regulated CD11b expression, and enhanced phagocytosis of polymorphonuclear neutrophils (PMN. Circumstantial evidence concurred with a receptor for AHL-12, which so far has been elusive. We investigated the bitter receptor T2R38 as a potential candidate. Although identified as a taste receptor, cells outside the gustatory system express T2R38, for example epithelial cells in the lung. We now detected T2R38 in peripheral blood neutrophils, monocytes and lymphocytes on the cell membrane, but also intracellular. In neutrophils, T2R38 was located in vesicles with characteristics of lipid droplets, and super-resolution microscopy showed a co-localisation with the lipid droplet membrane. Neutrophils take up AHL-12, and it co-localized with T2R38 as seen by laser scan microscopy. Binding of AHL-12 to T2R28 was confirmed by pull-down assays using biotin-coupled AHL-12 as bait. A commercially available antibody to T2R38 inhibited binding of AHL-12 to neutrophils, and this antibody by itself stimulated neutrophils, similarly to AHL-12. In conclusion, our data provide evidence for expression of functional T2R38 on neutrophils, and are compatible with the notion that T2R38 is the receptor for AHL-12 on neutrophils.

  5. Functional Connectivity of Human Chewing

    Science.gov (United States)

    Quintero, A.; Ichesco, E.; Schutt, R.; Myers, C.; Peltier, S.; Gerstner, G.E.

    2013-01-01

    Mastication is one of the most important orofacial functions. The neurobiological mechanisms of masticatory control have been investigated in animal models, but less so in humans. This project used functional connectivity magnetic resonance imaging (fcMRI) to assess the positive temporal correlations among activated brain areas during a gum-chewing task. Twenty-nine healthy young-adults underwent an fcMRI scanning protocol while they chewed gum. Seed-based fcMRI analyses were performed with the motor cortex and cerebellum as regions of interest. Both left and right motor cortices were reciprocally functionally connected and functionally connected with the post-central gyrus, cerebellum, cingulate cortex, and precuneus. The cerebellar seeds showed functional connections with the contralateral cerebellar hemispheres, bilateral sensorimotor cortices, left superior temporal gyrus, and left cingulate cortex. These results are the first to identify functional central networks engaged during mastication. PMID:23355525

  6. Lipoxin A4 and lipoxin B4 stimulate the release but not the oxygenation of arachidonic acid in human neutrophils: Dissociation between lipid remodeling and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Nigam, S.; Fiore, S.; Luscinskas, F.W.; Serhan, C.N. (Brigham and Women' s Hospital, Boston, MA (USA))

    1990-06-01

    The profiles of actions of lipoxin A4 (LXA4) and lipoxin B4 (LXB4), two lipoxygenase-derived eicosanoids, were examined with human neutrophils. At nanomolar concentrations, LXA4 and LXB4 each stimulated the release of (1-14C)arachidonic acid from esterified sources in neutrophils. Lipoxin-induced release of (1-14C)arachidonic acid was both dose- and time-dependent and was comparable to that induced by the chemotactic peptide f-met-leu-phe. Time-course studies revealed that lipoxin A4 and lipoxin B4 each induced a biphasic release of (1-14C)arachidonic acid, which was evident within seconds (5-15 sec) in its initial phase and minutes (greater than 30 sec) in the second phase. In contrast, the all-trans isomers of LXA4 and LXB4 did not provoke (1-14C)AA release. Lipoxin-induced release of arachidonic acid was inhibited by prior treatment of the cells with pertussis toxin but not by its beta-oligomers, suggesting the involvement of guaninine nucleotide-binding regulatory proteins in this event. Dual radiolabeling of neutrophil phospholipid classes with (1-14C)arachidonic acid and (3H)palmitic acid showed that phosphatidylcholine was a major source of lipoxin-induced release of (1-14C)arachidonic acid. They also demonstrated that lipoxins rapidly stimulate both formation of phosphatidic acid as well as phospholipid remodeling. Although both LXA4 and LXB4 (10(-8)-10(-6) M) stimulated the release of (1-14C)arachidonic acid, neither compound evoked its oxygenation by either the 5- or 15-lipoxygenase pathways (including the formation of LTB4, 20-COOH-LTB4, 5-HETE, or 15-HETE). LXA4 and LXB4 (10(-7) M) each stimulated the elevation of cytosolic Ca2+ as monitored with Fura 2-loaded cells, albeit to a lesser extent than equimolar concentrations of FMLP. Neither lipoxin altered the binding of (3H)LTB4 to its receptor on neutrophils.

  7. Lundep, a sand fly salivary endonuclease increases Leishmania parasite survival in neutrophils and inhibits XIIa contact activation in human plasma.

    Directory of Open Access Journals (Sweden)

    Andrezza C Chagas

    2014-02-01

    Full Text Available Neutrophils are the host's first line of defense against infections, and their extracellular traps (NET were recently shown to kill Leishmania parasites. Here we report a NET-destroying molecule (Lundep from the salivary glands of Lutzomyia longipalpis. Previous analysis of the sialotranscriptome of Lu. longipalpis showed the potential presence of an endonuclease. Indeed, not only was the cloned cDNA (Lundep shown to encode a highly active ss- and dsDNAse, but also the same activity was demonstrated to be secreted by salivary glands of female Lu. longipalpis. Lundep hydrolyzes both ss- and dsDNA with little sequence specificity with a calculated DNase activity of 300000 Kunitz units per mg of protein. Disruption of PMA (phorbol 12 myristate 13 acetate- or parasite-induced NETs by treatment with recombinant Lundep or salivary gland homogenates increases parasite survival in neutrophils. Furthermore, co-injection of recombinant Lundep with metacyclic promastigotes significantly exacerbates Leishmania infection in mice when compared with PBS alone or inactive (mutagenized Lundep. We hypothesize that Lundep helps the parasite to establish an infection by allowing it to escape from the leishmanicidal activity of NETs early after inoculation. Lundep may also assist blood meal intake by lowering the local viscosity caused by the release of host DNA and as an anticoagulant by inhibiting the intrinsic pathway of coagulation.

  8. The lipidated peptidomimetic Lau-[(S)-Aoc]-(Lys-βNphe)6-NH2 is a novel formyl peptide receptor 2 agonist that activates both human and mouse neutrophil NADPH-oxidase

    DEFF Research Database (Denmark)

    Holdfeldt, Andre; Skovbakke, Sarah Line; Winther, Malene

    2016-01-01

    Neutrophils expressing formyl peptide receptor 2 (FPR2) play key roles in host defense, immune regulation, and resolution of inflammation. Consequently, the search for FPR2-specific modulators has attracted much attention due to its therapeutic potential. Earlier described agonists......2 (F2M2), showing comparable potency in activating human and mouse neutrophils by inducing a rise in intracellular Ca2+ concentration and assembly of the superoxide-generating NADPH oxidase. This FPR2/Fpr2 agonist contains a headgroup consisting of a 2-aminooctanoic acid (Aoc) residue acylated......2 signaling as well as for development of prophylactic immunomodulatory therapy. This novel class of cross-species FPR2/Fpr2 agonists should enable translation of results obtained with mouse neutrophils (and disease models) into enhanced understanding of human inflammatory and immune diseases....

  9. The functions of human saliva

    DEFF Research Database (Denmark)

    Dawes, C; Pedersen, Anne Marie Lynge; Villa, A

    2015-01-01

    This narrative review of the functions of saliva was conducted in the PubMed, Embase and Web of Science databases. Additional references relevant to the topic were used, as our key words did not generate references which covered all known functions of saliva. These functions include maintaining a...... of oral wounds. Clearly, saliva has many functions which are needed for proper protection and functioning of the human body....... a moist oral mucosa which is less susceptible to abrasion, and removal of micro-organisms, desquamated epithelial cells, leucocytes and food debris by swallowing. The mucins form a slimy coating on all surfaces in the mouth and act as a lubricant during such processes as mastication, formation of a food...

  10. Dynamic interactions of neutrophils and biofilms

    Directory of Open Access Journals (Sweden)

    Josefine Hirschfeld

    2014-12-01

    Full Text Available Background: The majority of microbial infections in humans are biofilm-associated and difficult to treat, as biofilms are highly resistant to antimicrobial agents and protect themselves from external threats in various ways. Biofilms are tenaciously attached to surfaces and impede the ability of host defense molecules and cells to penetrate them. On the other hand, some biofilms are beneficial for the host and contain protective microorganisms. Microbes in biofilms express pathogen-associated molecular patterns and epitopes that can be recognized by innate immune cells and opsonins, leading to activation of neutrophils and other leukocytes. Neutrophils are part of the first line of defense and have multiple antimicrobial strategies allowing them to attack pathogenic biofilms. Objective/design: In this paper, interaction modes of neutrophils with biofilms are reviewed. Antimicrobial strategies of neutrophils and the counteractions of the biofilm communities, with special attention to oral biofilms, are presented. Moreover, possible adverse effects of neutrophil activity and their biofilm-promoting side effects are discussed. Results/conclusion: Biofilms are partially, but not entirely, protected against neutrophil assault, which include the processes of phagocytosis, degranulation, and formation of neutrophil extracellular traps. However, virulence factors of microorganisms, microbial composition, and properties of the extracellular matrix determine whether a biofilm and subsequent microbial spread can be controlled by neutrophils and other host defense factors. Besides, neutrophils may inadvertently contribute to the physical and ecological stability of biofilms by promoting selection of more resistant strains. Moreover, neutrophil enzymes can degrade collagen and other proteins and, as a result, cause harm to the host tissues. These parameters could be crucial factors in the onset of periodontal inflammation and the subsequent tissue breakdown.

  11. Interleukin-17 Promotes Neutrophil-Mediated Immunity by Activating Microvascular Pericytes and Not Endothelium

    Science.gov (United States)

    Liu, Rebecca; Lauridsen, Holly M.; Amezquita, Robert A.; Pierce, Richard W.; Jane-wit, Dan; Fang, Caodi; Pellowe, Amanda S.; Kirkiles-Smith, Nancy C.; Gonzalez, Anjelica L.; Pober, Jordan S.

    2016-01-01

    A classical hallmark of acute inflammation is neutrophil infiltration of tissues, a multi-step process that involves sequential cell-cell interactions of circulating leukocytes with interleukin (IL)-1- or tumor necrosis factor-α (TNF)-activated microvascular endothelial cells (ECs) and pericytes (PCs) that form the wall of the postcapillary venules. The initial infiltrating cells accumulate perivascularly in close proximity to PCs. IL-17, a pro-inflammatory cytokine that acts on target cells via a heterodimeric receptor formed by IL-17RA and IL-17RC subunits, also promotes neutrophilic inflammation but its effects on vascular cells are less clear. We report that both cultured human ECs and PCs strongly express IL-17RC and, while neither cell type expresses much IL-17RA, PCs express significantly more than ECs. IL-17, alone or synergistically with TNF, significantly alters inflammatory gene expression in cultured human PCs but not ECs. RNA-seq analysis identifies many IL-17-induced transcripts in PCs encoding proteins known to stimulate neutrophil-mediated immunity. Conditioned media (CM) from IL-17-activated PCs, but not ECs, induce pertussis toxin-sensitive neutrophil polarization, likely mediated by PC-secreted chemokines, and also stimulate neutrophil production of pro-inflammatory molecules, including TNF, IL-1α, IL-1β, and IL-8. Furthermore, IL-17-activated PCs but not ECs can prolong neutrophil survival by producing G-CSF and GM-CSF, delaying the mitochondria outer membrane permeabilization and caspase 9 activation. Importantly, neutrophils exhibit enhanced phagocytic capacity after activation by CM from IL-17-treated PCs. We conclude that PCs, not ECs, are the major target of IL-17 within the microvessel wall and that IL-17-activated PCs can modulate neutrophil functions within the perivascular tissue space. PMID:27534549

  12. CD177: A member of the Ly-6 gene superfamily involved with neutrophil proliferation and polycythemia vera

    Directory of Open Access Journals (Sweden)

    Bettinotti Maria

    2004-03-01

    Full Text Available Abstract Genes in the Leukocyte Antigen 6 (Ly-6 superfamily encode glycosyl-phosphatidylinositol (GPI anchored glycoproteins (gp with conserved domains of 70 to 100 amino acids and 8 to 10 cysteine residues. Murine Ly-6 genes encode important lymphocyte and hematopoietic stem cell antigens. Recently, a new member of the human Ly-6 gene superfamily has been described, CD177. CD177 is polymorphic and has at least two alleles, PRV-1 and NB1. CD177 was first described as PRV-1, a gene that is overexpressed in neutrophils from approximately 95% of patients with polycythemia vera and from about half of patients with essential thrombocythemia. CD177 encodes NB1 gp, a 58–64 kD GPI gp that is expressed by neutrophils and neutrophil precursors. NB1 gp carries Human Neutrophil Antigen (HNA-2a. Investigators working to identify the gene encoding NB1 gp called the CD177 allele they described NB1. NB1 gp is unusual in that neutrophils from some healthy people lack the NB1 gp completely and in most people NB1 gp is expressed by a subpopulation of neutrophils. The function of NB1 gp and the role of CD177 in the pathogenesis and clinical course of polycythemia vera and essential thrombocythemia are not yet known. However, measuring neutrophil CD177 mRNA levels has become an important marker for diagnosing the myeloproliferative disorders polycythemia vera and essential thrombocythemia.

  13. Matrix Metalloproteinase-9/Neutrophil Gelatinase-Associated Lipocalin Complex Activity in Human Glioma Samples Predicts Tumor Presence and Clinical Prognosis

    Directory of Open Access Journals (Sweden)

    Ming-Fa Liu

    2015-01-01

    Full Text Available Matrix metalloproteinase-9/neutrophil gelatinase-associated lipocalin (MMP-9/NGAL complex activity is elevated in brain tumors and may serve as a molecular marker for brain tumors. However, the relationship between MMP-9/NGAL activity in brain tumors and patient prognosis and treatment response remains unclear. Here, we compared the clinical characteristics of glioma patients with the MMP-9/NGAL activity measured in their respective tumor and urine samples. Using gelatin zymography assays, we found that MMP-9/NGAL activity was significantly increased in tumor tissues (TT and preoperative urine samples (Preop-1d urine. Activity was reduced by seven days after surgery (Postop-1w urine and elevated again in cases of tumor recurrence. The MMP-9/NGAL status correlated well with MRI-based tumor assessments. These findings suggest that MMP-9/NGAL activity could be a novel marker to detect gliomas and predict the clinical outcome of patients.

  14. Characterisation of Neutropenia-Associated Neutrophil Elastase Mutations in a Murine Differentiation Model In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Michael Wiesmeier

    Full Text Available Severe congenital neutropenia (SCN is characterised by a differentiation block in the bone marrow and low neutrophil numbers in the peripheral blood, which correlates with increased risk of bacterial infections. Several underlying gene defects have been identified in SCN patients. Mutations in the neutrophil elastase (ELANE gene are frequently found in SCN and cyclic neutropenia. Both mislocalization and misfolding of mutant neutrophil elastase protein resulting in ER stress and subsequent induction of the unfolded protein response (UPR have been proposed to be responsible for neutrophil survival and maturation defects. However, the detailed molecular mechanisms still remain unclear, in part due to the lack of appropriate in vitro and in vivo models. Here we used a system of neutrophil differentiation from immortalised progenitor lines by conditional expression of Hoxb8, permitting the generation of mature near-primary neutrophils in vitro and in vivo. NE-deficient Hoxb8 progenitors were reconstituted with murine and human forms of typical NE mutants representative of SCN and cyclic neutropenia, and differentiation of the cells was analysed in vitro and in vivo. ER stress induction by NE mutations could be recapitulated during neutrophil differentiation in all NE mutant-reconstituted Hoxb8 cells. Despite ER stress induction, no change in survival, maturation or function of differentiating cells expressing either murine or human NE mutants was observed. Further analysis of in vivo differentiation of Hoxb8 cells in a murine model of adoptive transfer did not reveal any defects in survival or differentiation in the mouse. Although the Hoxb8 system has been found to be useful for dissection of defects in neutrophil development, our findings indicate that the use of murine systems for analysis of NE-mutation-associated pathogenesis is complicated by differences between humans and mice in the physiology of granulopoiesis, which may go beyond possible

  15. Characterization of Total Phenolic Constituents from the Stems of Spatholobus suberectus Using LC-DAD-MSn and Their Inhibitory Effect on Human Neutrophil Elastase Activity

    Directory of Open Access Journals (Sweden)

    Yiming Li

    2013-06-01

    Full Text Available Spatholobus suberectus Dunn, belonging to the legume family (Fabaceae, has been used as a Traditional Chinese Medicine for the treatment of anemia, menoxenia and rheumatism. A limited number of studies report that various types of flavonoids are the main characteristic constituents of this herb. We have now found that S. suberectus contains about 2% phenolic components and characterized the major phenolic components as homogeneous B-type procyanidin conjugates using a liquid chromatography with diode-array detection-ESI mass spectrometry (LC-DAD/ESI-MS method. This is the first report on occurrence of most B-type procyanidins in this herb. Moreover, the total phenolics extract was assayed for inhibitory activity on human neutrophil elastase and its IC50 was found to be 1.33 μg/mL.

  16. Synthesis and evaluation of the potential deleterious effects of ZnO nanomaterials (nanoneedles and nanoflowers) on blood components, including albumin, erythrocytes and human isolated primary neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Pastrello, Bruna [São Paulo State University (UNESP), Department of Chemistry, Faculty of Sciences (Brazil); Paracatu, Luana Chiquetto [São Paulo State University (UNESP), Department of Clinical Analysis, School of Pharmaceutical Sciences (Brazil); Carvalho Bertozo, Luiza de [São Paulo State University (UNESP), Department of Chemistry, Faculty of Sciences (Brazil); Paino, Iêda Maria Martinez [University of São Paulo (USP), Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos (IFSC) (Brazil); Lisboa-Filho, Paulo Noronha [São Paulo State University (UNESP), Department of Physics, Faculty of Sciences (Brazil); Ximenes, Valdecir Farias, E-mail: vfximenes@fc.unesp.br [São Paulo State University (UNESP), Department of Chemistry, Faculty of Sciences (Brazil)

    2016-07-15

    The application of zinc oxide (ZnO) nanoparticles in biomaterials has increased significantly in the recent years. Here, we aimed to study the potential deleterious effects of ZnO on blood components, including human serum albumin (HSA), erythrocytes and human isolated primary neutrophils. To test the influence of the morphology of the nanomaterials, ZnO nanoneedles (ZnO-nn) and nanoflowers (ZnO-nf) were synthesized. The zeta potential and mean size of ZnO-nf and ZnO-nn suspensions in phosphate-buffered saline were −10.73 mV and 3.81 nm and −5.27 mV and 18.26 nm, respectively. The incubation of ZnO with HSA did not cause its denaturation as verified by the absence of significant alterations in the intrinsic and extrinsic fluorescence and in the circular dichroism spectrum of the protein. The capacity of HSA as a drug carrier was not affected as verified by employing site I and II fluorescent markers. Neither type of ZnO was able to provoke the activation of neutrophils, as verified by lucigenin- and luminol-dependent chemiluminescence and by the extracellular release of hydrogen peroxide. ZnO-nf, but not ZnO-nn, induced the haemolysis of erythrocytes. In conclusion, our results reinforce the concept that ZnO nanomaterials are relatively safe for usage in biomaterials. A potential exception is the capacity of ZnO-nf to promote the lysis of erythrocytes, a discovery that shows the importance of the morphology in the toxicity of nanoparticles.

  17. Activation of bovine neutrophils by Brucella spp.

    Science.gov (United States)

    Keleher, Lauren L; Skyberg, Jerod A

    2016-09-01

    Brucellosis is a globally important zoonotic infectious disease caused by gram negative bacteria of the genus Brucella. While many species of Brucella exist, Brucella melitensis, Brucella abortus, and Brucella suis are the most common pathogens of humans and livestock. The virulence of Brucella is largely influenced by its ability to evade host factors, including phagocytic killing mechanisms, which are critical for the host response to infection. The aim of this study was to characterize the bovine neutrophil response to virulent Brucella spp. Here, we found that virulent strains of smooth B. abortus, B. melitensis, B. suis, and virulent, rough, strains of Brucella canis possess similar abilities to resist killing by resting, or IFN-γ-activated, bovine neutrophils. Bovine neutrophils responded to infection with a time-dependent oxidative burst that varied little between Brucella spp. Inhibition of TAK1, or SYK kinase blunted the oxidative burst of neutrophils in response to Brucella infection. Interestingly, Brucella spp. did not induce robust death of bovine neutrophils. These results indicate that bovine neutrophils respond similarly to virulent Brucella spp. In addition, virulent Brucella spp., including naturally rough strains of B. canis, have a conserved ability to resist killing by bovine neutrophils. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Sexy again: the renaissance of neutrophils in psoriasis.

    Science.gov (United States)

    Schön, Michael P; Broekaert, Sigrid M C; Erpenbeck, Luise

    2017-04-01

    Notwithstanding their prominent presence in psoriatic skin, the functional role of neutrophilic granulocytes still remains somewhat enigmatic. Sparked by exciting scientific discoveries regarding neutrophil functions within the last years, the interest in these short-lived cells of the innate immune system has been boosted recently. While it had been known for some time that neutrophils produce and respond to a number of inflammatory mediators, recent research has linked neutrophils with the pathogenic functions of IL-17, possibly in conjunction with the formation of NETs (neutrophil extracellular traps). Antipsoriatic therapies exert their effects, at least in part, through interference with neutrophils. Neutrophils also appear to connect psoriasis with comorbid diseases. However, directly tampering with neutrophil functions is not trivial as evinced by the failure of therapeutic approaches targeting redundantly regulated cellular communication networks. It has also become apparent that neutrophils link important pathogenic functions of the innate and the adaptive immune system and that they are intricately involved in regulatory networks underlying the pathophysiology of psoriasis. In order to advocate intensified research into the role of this interesting cell population, we here highlight some features of neutrophils and put them into perspective with our current view of the pathophysiology of psoriasis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Mitochondria in neutrophil apoptosis

    NARCIS (Netherlands)

    van Raam, B. J.; Verhoeven, A. J.; Kuijpers, T. W.

    2006-01-01

    Central in the regulation of the short life span of neutrophils are their mitochondria. These organelles hardly contribute to the energy status of neutrophils but play a vital role in the apoptotic process. Not only do the mitochondria contain cytotoxic proteins that are released during apoptosis

  20. Targeting Neutrophilic Inflammation Using Polymersome-Mediated Cellular Delivery.

    Science.gov (United States)

    Robertson, James D; Ward, Jon R; Avila-Olias, Milagros; Battaglia, Giuseppe; Renshaw, Stephen A

    2017-05-01

    Neutrophils are key effector cells in inflammation and play an important role in neutralizing invading pathogens. During inflammation resolution, neutrophils undergo apoptosis before they are removed by macrophages, but if apoptosis is delayed, neutrophils can cause extensive tissue damage and chronic disease. Promotion of neutrophil apoptosis is a potential therapeutic approach for treating persistent inflammation, yet neutrophils have proven difficult cells to manipulate experimentally. In this study, we deliver therapeutic compounds to neutrophils using biocompatible, nanometer-sized synthetic vesicles, or polymersomes, which are internalized by binding to scavenger receptors and subsequently escape the early endosome through a pH-triggered disassembly mechanism. This allows polymersomes to deliver molecules into the cell cytosol of neutrophils without causing cellular activation. After optimizing polymersome size, we show that polymersomes can deliver the cyclin-dependent kinase inhibitor (R)-roscovitine into human neutrophils to promote apoptosis in vitro. Finally, using a transgenic zebrafish model, we show that encapsulated (R)-roscovitine can speed up inflammation resolution in vivo more efficiently than the free drug. These results show that polymersomes are effective intracellular carriers for drug delivery into neutrophils. This has important consequences for the study of neutrophil biology and the development of neutrophil-targeted therapeutics. Copyright © 2017 The Authors.

  1. Intermittent Hypoxia Affects the Spontaneous Differentiation In Vitro of Human Neutrophils into Long-Lived Giant Phagocytes

    Directory of Open Access Journals (Sweden)

    Larissa Dyugovskaya

    2016-01-01

    Full Text Available Previously we identified, for the first time, a new small-size subset of neutrophil-derived giant phagocytes (Gϕ which spontaneously develop in vitro without additional growth factors or cytokines. Gϕ are CD66b+/CD63+/MPO+/LC3B+ and are characterized by extended lifespan, large phagolysosomes, active phagocytosis, and reactive oxygen species (ROS production, and autophagy largely controls their formation. Hypoxia, and particularly hypoxia/reoxygenation, is a prominent feature of many pathological processes. Herein we investigated Gϕ formation by applying various hypoxic conditions. Chronic intermittent hypoxia (IH (29 cycles/day for 5 days completely abolished Gϕ formation, while acute IH had dose-dependent effects. Exposure to 24 h (56 IH cycles decreased their size, yield, phagocytic ability, autophagy, mitophagy, and gp91-phox/p22-phox expression, whereas under 24 h sustained hypoxia (SH the size and expression of LC3B and gp91-phox/p22-phox resembled Gϕ formed in normoxia. Diphenyl iodide (DPI, a NADPH oxidase inhibitor, as well as the PI3K/Akt and autophagy inhibitor LY294002 abolished Gϕ formation at all oxygen conditions. However, the potent antioxidant, N-acetylcysteine (NAC abrogated the effects of IH by inducing large CD66b+/LC3B+ Gϕ and increased both NADPH oxidase expression and phagocytosis. These findings suggest that NADPH oxidase, autophagy, and the PI3K/Akt pathway are involved in Gϕ development.

  2. The selective estrogen receptor modulator raloxifene inhibits neutrophil extracellular trap formation.

    Directory of Open Access Journals (Sweden)

    Roxana Flores

    2016-12-01

    Full Text Available Raloxifene is a selective estrogen receptor modulator typically prescribed for the prevention/treatment of osteoporosis in postmenopausal women. Although raloxifene is known to have anti-inflammatory properties, its effect on human neutrophils, the primary phagocytic leukocytes of the immune system, remain poorly understood. Here, through a screen of pharmacologically active small molecules, we find that raloxifene prevents neutrophil cell death in response to the classical activator phorbol 12-myristate 13-acetate (PMA, a compound known to induce formation of DNA-based neutrophil extracellular traps (NETs. Inhibition of PMA-induced NET production by raloxifene was confirmed using quantitative and imaging-based assays. Human neutrophils from both male and female donors express the nuclear estrogen receptors ERα and ERβ, known targets of raloxifene. Like raloxifene, selective antagonists of these receptors inhibit PMA-induced NET production. Furthermore, raloxifene inhibited PMA-induced ERK phosphorylation but not reactive oxygen species (ROS production, pathways known to be key modulators of NET production. Finally, we found that raloxifene inhibited PMA-induced, NET-based killing of the leading human bacterial pathogen, methicillin-resistant Staphylococcus aureus (MRSA. Our results reveal that raloxifene is a potent modulator of neutrophil function and NET production.

  3. Swimming Motility Mediates the Formation of Neutrophil Extracellular Traps Induced by Flagellated Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Madison Floyd

    2016-11-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections often characterized by robust neutrophilic infiltration. Neutrophils provide the first line of defense against P. aeruginosa. Aside from their defense conferred by phagocytic activity, neutrophils also release neutrophil extracellular traps (NETs to immobilize bacteria. Although NET formation is an important antimicrobial process, the details of its mechanism are largely unknown. The identity of the main components of P. aeruginosa responsible for triggering NET formation is unclear. In this study, our focus was to identify the main bacterial factors mediating NET formation and to gain insight into the underlying mechanism. We found that P. aeruginosa in its exponential growth phase promoted strong NET formation in human neutrophils while its NET-inducing ability dramatically decreased at later stages of bacterial growth. We identified the flagellum as the primary component of P. aeruginosa responsible for inducing NET extrusion as flagellum-deficient bacteria remained seriously impaired in triggering NET formation. Purified P. aeruginosa flagellin, the monomeric component of the flagellum, does not stimulate NET formation in human neutrophils. P. aeruginosa-induced NET formation is independent of the flagellum-sensing receptors TLR5 and NLRC4 in both human and mouse neutrophils. Interestingly, we found that flagellar motility, not flagellum binding to neutrophils per se, mediates NET release induced by flagellated bacteria. Immotile, flagellar motor-deficient bacterial strains producing paralyzed flagella did not induce NET formation. Forced contact between immotile P. aeruginosa and neutrophils restored their NET-inducing ability. Both the motAB and motCD genetic loci encoding flagellar motor genes contribute to maximal NET release; however the motCD genes play a more important role. Phagocytosis of P. aeruginosa and superoxide production by neutrophils were also

  4. Specificity and Effector Functions of Human RSV-Specific IgG from Bovine Milk.

    Directory of Open Access Journals (Sweden)

    Gerco den Hartog

    Full Text Available Respiratory syncytial virus (RSV infection is the second most important cause of death in the first year of life, and early RSV infections are associated with the development of asthma. Breastfeeding and serum IgG have been shown to protect against RSV infection. Yet, many infants depend on bovine milk-based nutrition, which at present lacks intact immunoglobulins.To investigate whether IgG purified from bovine milk (bIgG can modulate immune responses against human RSV.ELISAs were performed to analyse binding of bIgG to human respiratory pathogens. bIgG or hRSV was coated to plates to assess dose-dependent binding of bIgG to human Fcγ receptors (FcγR or bIgG-mediated binding of myeloid cells to hRSV respectively. S. Epidermidis and RSV were used to test bIgG-mediated binding and internalisation of pathogens by myeloid cells. Finally, the ability of bIgG to neutralise infection of HEp2 cells by hRSV was evaluated.bIgG recognised human RSV, influenza haemagglutinin and Haemophilus influenza. bIgG bound to FcγRII on neutrophils, monocytes and macrophages, but not to FcγRI and FcγRIII, and could bind simultaneously to hRSV and human FcγRII on neutrophils. In addition, human neutrophils and dendritic cells internalised pathogens that were opsonised with bIgG. Finally, bIgG could prevent infection of HEp2 cells by hRSV.The data presented here show that bIgG binds to hRSV and other human respiratory pathogens and induces effector functions through binding to human FcγRII on phagocytes. Thus bovine IgG may contribute to immune protection against RSV.

  5. Specificity and Effector Functions of Human RSV-Specific IgG from Bovine Milk.

    Science.gov (United States)

    den Hartog, Gerco; Jacobino, Shamir; Bont, Louis; Cox, Linda; Ulfman, Laurien H; Leusen, Jeanette H W; van Neerven, R J Joost

    2014-01-01

    Respiratory syncytial virus (RSV) infection is the second most important cause of death in the first year of life, and early RSV infections are associated with the development of asthma. Breastfeeding and serum IgG have been shown to protect against RSV infection. Yet, many infants depend on bovine milk-based nutrition, which at present lacks intact immunoglobulins. To investigate whether IgG purified from bovine milk (bIgG) can modulate immune responses against human RSV. ELISAs were performed to analyse binding of bIgG to human respiratory pathogens. bIgG or hRSV was coated to plates to assess dose-dependent binding of bIgG to human Fcγ receptors (FcγR) or bIgG-mediated binding of myeloid cells to hRSV respectively. S. Epidermidis and RSV were used to test bIgG-mediated binding and internalisation of pathogens by myeloid cells. Finally, the ability of bIgG to neutralise infection of HEp2 cells by hRSV was evaluated. bIgG recognised human RSV, influenza haemagglutinin and Haemophilus influenza. bIgG bound to FcγRII on neutrophils, monocytes and macrophages, but not to FcγRI and FcγRIII, and could bind simultaneously to hRSV and human FcγRII on neutrophils. In addition, human neutrophils and dendritic cells internalised pathogens that were opsonised with bIgG. Finally, bIgG could prevent infection of HEp2 cells by hRSV. The data presented here show that bIgG binds to hRSV and other human respiratory pathogens and induces effector functions through binding to human FcγRII on phagocytes. Thus bovine IgG may contribute to immune protection against RSV.

  6. Effect of Legionella pneumophila cytotoxic protease on human neutrophil and monocyte function

    DEFF Research Database (Denmark)

    Rechnitzer, C; Kharazmi, A

    1992-01-01

    The extracellular metalloprotease of Legionella pneumophila, also called tissue-destructive protease or major secretory protein, has been proposed as one of the virulence factors of this organism. Considering the decisive role played by the phagocytic cells in host defense against Legionella...

  7. Bid truncation, Bid/Bax targeting to the mitochondria, and caspase activation associated with neutrophil apoptosis are inhibited by granulocyte colony-stimulating factor

    NARCIS (Netherlands)

    Maianski, Nikolai A.; Roos, Dirk; Kuijpers, Taco W.

    2004-01-01

    Neutrophil apoptosis constitutes a way of managing neutrophil-mediated reactions. It allows coping with infections, but avoiding overt bystander tissue damage. Using digitonin-based subcellular fractionation and Western blotting, we found that spontaneous apoptosis of human neutrophils (after

  8. Influence of standard and novel LTB4 analogs on human neutrophil chemotaxis measured by the multiwell cap assay.

    Science.gov (United States)

    Psychoyos, S; Uziel-Fusi, S; Bhagwat, S; Morrissey, M M

    1989-11-30

    Standard and novel LTB4 analogs were tested for neutrophil chemoattractant activity using the multiwell cap assay (Evans et al. (1986) Biosc. Rep. 6, 1041). The assay uses disposable equipment and measures chemotaxis by the number of cells able to migrate across the full thickness of cellulose nitrate filters. Under standard conditions (90 min incubation at 37 degrees C in buffer containing 2% bovine albumin), LTB4 and 6-cis-LTB1 had EC50 values of 3.5 and 15,000 nM, respectively. 20-hydroxy-LTB4 was equipotent with LTB4 and exhibited a similar biphasic chemotactic response, however, only one third of the number of cells migrated through the filter. 20-carboxy-LTB4 was inactive up to 1,000 nM. 5-desoxy-((6,7)-cis-cyclopropyl)-LTB2, (6,7)-benzo-LTB2 and 5-desoxy-(8,10)-LTB2 had EC50 values of 11,300, 50,000 and 84,000 nM, respectively. Checkerboard analysis indicated a chemokinetic component of 42% for LTB4 at a concentration causing peak chemotaxis. Reduction of albumin in the buffer to 0.5% increased the apparent potencies of LTB4 and 6-cis-LTB1 five-fold. Since LTB4 is a mediator of inflammation, various anti-inflammatory agents were tested at peak concentrations observed in vivo for in vitro inhibition of LTB4-stimulated chemotaxis in the presence of 0.5% albumin. Under the conditions of the assay, chloroquine diphosphate, dexamethasone, indomethacin, penicillamine, piroxicam and diclofenac sodium were inactive; gold sodium thiomalate was inhibitory (IC50 = 20 microM).

  9. Neutrophil-to-lymphocyte ratio as a predictor of worsening renal function in diabetic patients (3-year follow-up study).

    Science.gov (United States)

    Azab, Basem; Daoud, Jacques; Naeem, Fahad Ben; Nasr, Rabih; Ross, Jennifer; Ghimire, Pratima; Siddiqui, Ayesha; Azzi, Nadine; Rihana, Nancy; Abdallah, Marie; Azzi, Nassif; Patel, Parishram; Kleiner, Morton; El-Sayegh, Suzanne

    2012-01-01

    Previous studies have demonstrated the role of inflammation in diabetic nephropathy (DN). Neutrophil to lymphocyte ratio (NLR) rather than other white cell parameters was found to be a useful inflammatory marker to predict adverse outcomes in medical and surgical conditions. Nevertheless, the value of NLR in predicting DN has not been elucidated. An observational study included 338 diabetic patients, who were followed at our clinic between 2007 and 2009. We arranged our patients into tertiles according to their 2007 NLR. The primary outcome was continuous decrease of GFR >12 mL/min between 2007 and 2009 with the last GFR <60 mL/min. The lowest NLR tertile had fewer patients (2.7%) with primary outcome (i.e., worsening renal function) compared with middle and highest NLR tertiles, which had more patients with primary outcomes (8.7% and 11.5%, respectively) with a significant p-value 0.0164. When other potential confounders were individually analyzed with NLR tertile, the NLR tertiles remained a significant predictor of poor GFR outcome in the presence of other variables (hemoglobin A1C, systolic blood pressure, diastolic blood pressure, age, and congestive heart failure with p-values 0.018, 0.019, 0.017, 0.033, and 0.022, respectively). NLR predicted the worsening of the renal function in diabetic patients. Further studies are needed to confirm this result.

  10. Hyperglycemia Impairs Neutrophil-Mediated Bacterial Clearance in Mice Infected with the Lyme Disease Pathogen.

    Directory of Open Access Journals (Sweden)

    Ashkan Javid

    Full Text Available Insulin-insufficient type 1 diabetes is associated with attenuated bactericidal function of neutrophils, which are key mediators of innate immune responses to microbes as well as pathological inflammatory processes. Neutrophils are central to immune responses to the Lyme pathogen Borrelia burgdorferi. The effect of hyperglycemia on host susceptibility to and outcomes of B. burgdorferi infection has not been examined. The present study investigated the impact of sustained obesity-independent hyperglycemia in mice on bacterial clearance, inflammatory pathology and neutrophil responses to B. burgdorferi. Hyperglycemia was associated with reduced arthritis incidence but more widespread tissue colonization and reduced clearance of bacterial DNA in multiple tissues including brain, heart, liver, lung and knee joint. B. burgdorferi uptake and killing were impaired in neutrophils isolated from hyperglycemic mice. Thus, attenuated neutrophil function in insulin-insufficient hyperglycemia was associated with reduced B. burgdorferi clearance in target organs. These data suggest that investigating the effects of comorbid conditions such as diabetes on outcomes of B. burgdorferi infections in humans may be warranted.

  11. A role for protein phosphatase-2A in p38 mitogen-activated protein kinase-mediated regulation of the c-Jun NH(2)-terminal kinase pathway in human neutrophils.

    Science.gov (United States)

    Avdi, Natalie J; Malcolm, Kenneth C; Nick, Jerry A; Worthen, G Scott

    2002-10-25

    Human neutrophil accumulation in inflammatory foci is essential for the effective control of microbial infections. Although exposure of neutrophils to cytokines such as tumor necrosis factor-alpha (TNFalpha), generated at sites of inflammation, leads to activation of MAPK pathways, mechanisms responsible for the fine regulation of specific MAPK modules remain unknown. We have previously demonstrated activation of a TNFalpha-mediated JNK pathway module, leading to apoptosis in adherent human neutrophils (Avdi, N. J., Nick, J. A., Whitlock, B. B., Billstrom, M. A., Henson, P. M., Johnson, G. L., and Worthen, G. S. (2001) J. Biol. Chem. 276, 2189-2199). Herein, evidence is presented linking regulation of the JNK pathway to p38 MAPK and the Ser/Thr protein phosphatase-2A (PP2A). Inhibition of p38 MAPK by SB 203580 and M 39 resulted in significant augmentation of TNFalpha-induced JNK and MKK4 (but not MKK7 or MEKK1) activation, whereas prior exposure to a p38-activating agent (platelet-activating factor) diminished the TNFalpha-induced JNK response. TNFalpha-induced apoptosis was also greatly enhanced upon p38 inhibition. Studies with a reconstituted cell-free system indicated the absence of a direct inhibitory effect of p38 MAPK on the JNK module. Neutrophil exposure to the Ser/Thr phosphatase inhibitors okadaic acid and calyculin A induced JNK activation. Increased phosphatase activity following TNFalpha stimulation was shown to be PP2A-associated and p38-dependent. Furthermore, PP2A-induced dephosphorylation of MKK4 resulted in its inactivation. Thus, in neutrophils, p38 MAPK, through a PP2A-mediated mechanism, regulates the JNK pathway, thus determining the extent and nature of subsequent responses such as apoptosis.

  12. The fruRBA Operon Is Necessary for Group A Streptococcal Growth in Fructose and for Resistance to Neutrophil Killing during Growth in Whole Human Blood

    Science.gov (United States)

    Valdes, Kayla M.; Sundar, Ganesh S.; Vega, Luis A.; Belew, Ashton T.; Islam, Emrul; Binet, Rachel; El-Sayed, Najib M.

    2016-01-01

    Bacterial pathogens rely on the availability of nutrients for survival in the host environment. The phosphoenolpyruvate-phosphotransferase system (PTS) is a global regulatory network connecting sugar uptake with signal transduction. Since the fructose PTS has been shown to impact virulence in several streptococci, including the human pathogen Streptococcus pyogenes (the group A Streptococcus [GAS]), we characterized its role in carbon metabolism and pathogenesis in the M1T1 strain 5448. Growth in fructose as a sole carbon source resulted in 103 genes affected transcriptionally, where the fru locus (fruRBA) was the most induced. Reverse transcriptase PCR showed that fruRBA formed an operon which was repressed by FruR in the absence of fructose, in addition to being under carbon catabolic repression. Growth assays and carbon utilization profiles revealed that although the entire fru operon was required for growth in fructose, FruA was the main transporter for fructose and also was involved in the utilization of three additional PTS sugars: cellobiose, mannitol, and N-acetyl-d-galactosamine. The inactivation of sloR, a fruA homolog that also was upregulated in the presence of fructose, failed to reveal a role as a secondary fructose transporter. Whereas the ability of both ΔfruR and ΔfruB mutants to survive in the presence of whole human blood or neutrophils was impaired, the phenotype was not reproduced in murine whole blood, and those mutants were not attenuated in a mouse intraperitoneal infection. Since the ΔfruA mutant exhibited no phenotype in the human or mouse assays, we propose that FruR and FruB are important for GAS survival in a human-specific environment. PMID:26787724

  13. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils

    Science.gov (United States)

    Wang, Zhenjia; Li, Jing; Cho, Jaehyung; Malik, Asrar B.

    2014-03-01

    Inflammatory diseases such as acute lung injury and ischaemic tissue injury are caused by the adhesion of a type of white blood cell--polymorphonuclear neutrophils--to the lining of the circulatory system or vascular endothelium and unchecked neutrophil transmigration. Nanoparticle-mediated targeting of activated neutrophils on vascular endothelial cells at the site of injury may be a useful means of directly inactivating neutrophil transmigration and hence mitigating vascular inflammation. Here, we report a method employing drug-loaded albumin nanoparticles, which efficiently deliver drugs into neutrophils adherent to the surface of the inflamed endothelium. Using intravital microscopy of tumour necrosis factor-α-challenged mouse cremaster post-capillary venules, we demonstrate that fluorescently tagged albumin nanoparticles are largely internalized by neutrophils adherent to the activated endothelium via cell surface Fcɣ receptors. Administration of albumin nanoparticles loaded with the spleen tyrosine kinase inhibitor, piceatannol, which blocks `outside-in' β2 integrin signalling in leukocytes, detached the adherent neutrophils and elicited their release into the circulation. Thus, internalization of drug-loaded albumin nanoparticles into neutrophils inactivates the pro-inflammatory function of activated neutrophils, thereby offering a promising approach for treating inflammatory diseases resulting from inappropriate neutrophil sequestration and activation.

  14. Upregulated expression of human neutrophil peptides 1, 2 and 3 (HNP 1-3) in colon cancer serum and tumours: a biomarker study

    International Nuclear Information System (INIS)

    Albrethsen, Jakob; Bøgebo, Rikke; Gammeltoft, Steen; Olsen, Jesper; Winther, Benny; Raskov, Hans

    2005-01-01

    Molecular markers for localized colon tumours and for prognosis following therapy are needed. Proteomics research is currently producing numerous biomarker studies with clinical potential. We investigate the protein composition of plasma and of tumour extracts with the aim of identifying biomarkers for colon cancer. By Surface Enhanced Laser Desorption/Ionisation – Time Of Flight / Mass spectrometry (SELDI-TOF/MS) we compare the protein profiles of colon cancer serum with serum from healthy individuals and the protein profiles of colon tumours with normal colon tissue. By size exclusion chromatography, we investigate the binding of HNP 1-3 to high mass plasma proteins. By microflow we investigate the effect of HNP 1-3 on mammalian cells. Human Neutrophil Peptides -1, -2 and -3 (HNP 1-3), also known as alfa-defensin-1, -2 and -3, are present in elevated concentrations in serum from colon cancer patients and in protein extracts from colon tumours. A fraction of HNP 1-3 in serum is bound to unidentified high mass plasma proteins. HNP 1-3 purified from colon tumours are lethal to mammalian cells. HNP 1-3 may serve as blood markers for colon cancer in combination with other diagnostic tools. We propose that HNP 1-3 are carried into the bloodstream by attaching to high mass plasma proteins in the tumour microenvironment. We discuss the effect of HNP 1-3 on tumour progression

  15. Inhibitory Effects of Standardized Extracts of Phyllanthus amarus and Phyllanthus urinaria and Their Marker Compounds on Phagocytic Activity of Human Neutrophils

    Directory of Open Access Journals (Sweden)

    Yuandani

    2013-01-01

    Full Text Available The standardized methanol extracts of Phyllanthus amarus and P. urinaria, collected from Malaysia and Indonesia, and their isolated chemical markers, phyllanthin and hypophyllanthin, were evaluated for their effects on the chemotaxis, phagocytosis and chemiluminescence of human phagocytes. All the plant extracts strongly inhibited the migration of polymorphonuclear leukocytes (PMNs with the Malaysian P. amarus showing the strongest inhibitory activity (IC50 value, 1.1 µg/mL. There was moderate inhibition by the extracts of the bacteria engulfment by the phagocytes with the Malaysian P. amarus exhibiting the highest inhibition (50.8% of phagocytizing cells. The Malaysian P. amarus and P. urinaria showed strong reactive oxygen species (ROS inhibitory activity, with both extracts exhibiting IC50 value of 0.7 µg/mL. Phyllanthin and hypophyllanthin exhibited relatively strong activity against PMNs chemotaxis, with IC50 values slightly lower than that of ibuprofen (1.4 µg/mL. Phyllanthin exhibited strong inhibitory activity on the oxidative burst with an IC50 value comparable to that of aspirin (1.9 µg/mL. Phyllanthin exhibited strong engulfment inhibitory activity with percentage of phagocytizing cells of 14.2 and 27.1% for neutrophils and monocytes, respectively. The strong inhibitory activity of the extracts was due to the presence of high amounts of phyllanthin and hypophyllanthin although other constituents may also contribute.

  16. Monitoring human neutrophil granule secretion by flow cytometry: secretion and membrane potential changes assessed by light scatter and a fluorescent probe of membrane potential

    International Nuclear Information System (INIS)

    Fletcher, M.P.; Seligmann, B.E.

    1985-01-01

    Purified human peripheral blood polymorphonuclear neutrophils (PMN) were incubated at 37 degrees C with the fluorescent membrane potential sensitive cyanine dye di-O-C(5)(3) and exposed to a number of stimulatory agents (N-formylmethionylleucylphenylalanine (FMLP), cytochalasin B (cyto B) + FMLP, phorbol myristate acetate (PMA). Flow cytometry was utilized to measure changes in forward light scatter (FS), orthogonal light scatter (90 degrees-SC), and fluorescence intensity of individual cells over time. A saturating (10(-6) M) dose of FMLP lead to a significant increase in the cells' FS without a change in 90 degrees-SC as well as a heterogeneous loss of di-O-C(5)(3) fluorescence. PMA (100 ng/ml) also caused an increase in FS but a uniform loss of dye fluorescence by all cells (apparent depolarization). Cyto B + FMLP produced an increase in FS, a marked loss of 90 degrees-SC, and a uniform loss of fluorescence. Secretion experiments under identical incubation conditions indicated a significantly positive relationship between loss of enzyme markers or cell granularity and orthogonal light scatter (r . 0.959, 0.998, and 0.989 for loss of 90 degrees-SC vs lysozyme, beta-glucuronidase, and granularity index, respectively). Flow cytometric light scatter measurements may yield important information on the extent of prior cell degranulation or activation

  17. Pathogenic Bacterium Acinetobacter baumannii Inhibits the Formation of Neutrophil Extracellular Traps by Suppressing Neutrophil Adhesion

    Science.gov (United States)

    Kamoshida, Go; Kikuchi-Ueda, Takane; Nishida, Satoshi; Tansho-Nagakawa, Shigeru; Ubagai, Tsuneyuki; Ono, Yasuo

    2018-01-01

    Hospital-acquired infections caused by Acinetobacter baumannii have become problematic because of high rates of drug resistance. A. baumannii is usually harmless, but it may cause infectious diseases in an immunocompromised host. Although neutrophils are the key players of the initial immune response against bacterial infection, their interactions with A. baumannii remain largely unknown. A new biological defense mechanism, termed neutrophil extracellular traps (NETs), has been attracting attention. NETs play a critical role in bacterial killing by bacterial trapping and inactivation. Many pathogenic bacteria have been reported to induce NET formation, while an inhibitory effect on NET formation is rarely reported. In the present study, to assess the inhibition of NET formation by A. baumannii, bacteria and human neutrophils were cocultured in the presence of phorbol 12-myristate 13-acetate (PMA), and NET formation was evaluated. NETs were rarely observed during the coculture despite neutrophil PMA stimulation. Furthermore, A. baumannii prolonged the lifespan of neutrophils by inhibiting NET formation. The inhibition of NET formation by other bacteria was also investigated. The inhibitory effect was only apparent with live A. baumannii cells. Finally, to elucidate the mechanism of this inhibition, neutrophil adhesion was examined. A. baumannii suppressed the adhesion ability of neutrophils, thereby inhibiting PMA-induced NET formation. This suppression of cell adhesion was partly due to suppression of the surface expression of CD11a in neutrophils. The current study constitutes the first report on the inhibition of NET formation by a pathogenic bacterium, A. baumannii, and prolonging the neutrophil lifespan. This novel pathogenicity to inhibit NET formation, thereby escaping host immune responses might contribute to a development of new treatment strategies for A. baumannii infections. PMID:29467765

  18. Pathogenic Bacterium Acinetobacter baumannii Inhibits the Formation of Neutrophil Extracellular Traps by Suppressing Neutrophil Adhesion

    Directory of Open Access Journals (Sweden)

    Go Kamoshida

    2018-02-01

    Full Text Available Hospital-acquired infections caused by Acinetobacter baumannii have become problematic because of high rates of drug resistance. A. baumannii is usually harmless, but it may cause infectious diseases in an immunocompromised host. Although neutrophils are the key players of the initial immune response against bacterial infection, their interactions with A. baumannii remain largely unknown. A new biological defense mechanism, termed neutrophil extracellular traps (NETs, has been attracting attention. NETs play a critical role in bacterial killing by bacterial trapping and inactivation. Many pathogenic bacteria have been reported to induce NET formation, while an inhibitory effect on NET formation is rarely reported. In the present study, to assess the inhibition of NET formation by A. baumannii, bacteria and human neutrophils were cocultured in the presence of phorbol 12-myristate 13-acetate (PMA, and NET formation was evaluated. NETs were rarely observed during the coculture despite neutrophil PMA stimulation. Furthermore, A. baumannii prolonged the lifespan of neutrophils by inhibiting NET formation. The inhibition of NET formation by other bacteria was also investigated. The inhibitory effect was only apparent with live A. baumannii cells. Finally, to elucidate the mechanism of this inhibition, neutrophil adhesion was examined. A. baumannii suppressed the adhesion ability of neutrophils, thereby inhibiting PMA-induced NET formation. This suppression of cell adhesion was partly due to suppression of the surface expression of CD11a in neutrophils. The current study constitutes the first report on the inhibition of NET formation by a pathogenic bacterium, A. baumannii, and prolonging the neutrophil lifespan. This novel pathogenicity to inhibit NET formation, thereby escaping host immune responses might contribute to a development of new treatment strategies for A. baumannii infections.

  19. Neutrophils in Homeostasis, Immunity, and Cancer.

    Science.gov (United States)

    Nicolás-Ávila, José Ángel; Adrover, José M; Hidalgo, Andrés

    2017-01-17

    Neutrophils were among the first leukocytes described and visualized by early immunologists. Prominent effector functions during infection and sterile inflammation classically placed them low in the immune tree as rapid, mindless aggressors with poor regulatory functions. This view is currently under reassessment as we uncover new aspects of their life cycle and identify transcriptional and phenotypic diversity that endows them with regulatory properties that extend beyond their lifetime in the circulation. These properties are revealing unanticipated roles for neutrophils in supporting homeostasis, as well as complex disease states such as cancer. We focus this review on these emerging functions in order to define the true roles of neutrophils in homeostasis, immunity, and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Distinct and nonredundant in vivo functions of TNF produced by T cells and macrophages/neutrophils: Protective and deleterious effects

    NARCIS (Netherlands)

    Grivennikov, Sergei I.; Tumanov, Alexei V.; Liepinsh, Dmitry J.; Kruglov, Andrei A.; Marakusha, Boris I.; Shakhov, Alexander N.; Murakami, Takaya; Drutskaya, Ludmila N.; Förster, Irmgard; Clausen, Björn E.; Tessarollo, Lino; Ryffel, Bernhard; Kuprash, Dmitry V.; Nedospasov, Sergei A.

    2005-01-01

    Tumor necrosis factor (TNF, TNFalpha) is implicated in various pathophysiological processes and can be either protective, as in host defense, or deleterious, as in autoimmunity or toxic shock. To uncover the in vivo functions of TNF produced by different cell types, we generated mice with TNF

  1. Hypoxia upregulates neutrophil degranulation and potential for tissue injury

    Science.gov (United States)

    Hoenderdos, Kim; Lodge, Katharine M; Hirst, Robert A; Chen, Cheng; Palazzo, Stefano G C; Emerenciana, Annette; Summers, Charlotte; Angyal, Adri; Porter, Linsey; Juss, Jatinder K; O'Callaghan, Christopher; Chilvers, Edwin R

    2016-01-01

    Background The inflamed bronchial mucosal surface is a profoundly hypoxic environment. Neutrophilic airway inflammation and neutrophil-derived proteases have been linked to disease progression in conditions such as COPD and cystic fibrosis, but the effects of hypoxia on potentially harmful neutrophil functional responses such as degranulation are unknown. Methods and results Following exposure to hypoxia (0.8% oxygen, 3 kPa for 4 h), neutrophils stimulated with inflammatory agonists (granulocyte-macrophage colony stimulating factor or platelet-activating factor and formylated peptide) displayed a markedly augmented (twofold to sixfold) release of azurophilic (neutrophil elastase, myeloperoxidase), specific (lactoferrin) and gelatinase (matrix metalloproteinase-9) granule contents. Neutrophil supernatants derived under hypoxic but not normoxic conditions induced extensive airway epithelial cell detachment and death, which was prevented by coincubation with the antiprotease α-1 antitrypsin; both normoxic and hypoxic supernatants impaired ciliary function. Surprisingly, the hypoxic upregulation of neutrophil degranulation was not dependent on hypoxia-inducible factor (HIF), nor was it fully reversed by inhibition of phospholipase C signalling. Hypoxia augmented the resting and cytokine-stimulated phosphorylation of AKT, and inhibition of phosphoinositide 3-kinase (PI3K)γ (but not other PI3K isoforms) prevented the hypoxic upregulation of neutrophil elastase release. Conclusion Hypoxia augments neutrophil degranulation and confers enhanced potential for damage to respiratory airway epithelial cells in a HIF-independent but PI3Kγ-dependent fashion. PMID:27581620

  2. Experimental and Human Evidence for Lipocalin-2 (Neutrophil Gelatinase-Associated Lipocalin [NGAL]) in the Development of Cardiac Hypertrophy and heart failure.

    Science.gov (United States)

    Marques, Francine Z; Prestes, Priscilla R; Byars, Sean G; Ritchie, Scott C; Würtz, Peter; Patel, Sheila K; Booth, Scott A; Rana, Indrajeetsinh; Minoda, Yosuke; Berzins, Stuart P; Curl, Claire L; Bell, James R; Wai, Bryan; Srivastava, Piyush M; Kangas, Antti J; Soininen, Pasi; Ruohonen, Saku; Kähönen, Mika; Lehtimäki, Terho; Raitoharju, Emma; Havulinna, Aki; Perola, Markus; Raitakari, Olli; Salomaa, Veikko; Ala-Korpela, Mika; Kettunen, Johannes; McGlynn, Maree; Kelly, Jason; Wlodek, Mary E; Lewandowski, Paul A; Delbridge, Lea M; Burrell, Louise M; Inouye, Michael; Harrap, Stephen B; Charchar, Fadi J

    2017-06-14

    Cardiac hypertrophy increases the risk of developing heart failure and cardiovascular death. The neutrophil inflammatory protein, lipocalin-2 (LCN2/NGAL), is elevated in certain forms of cardiac hypertrophy and acute heart failure. However, a specific role for LCN2 in predisposition and etiology of hypertrophy and the relevant genetic determinants are unclear. Here, we defined the role of LCN2 in concentric cardiac hypertrophy in terms of pathophysiology, inflammatory expression networks, and genomic determinants. We used 3 experimental models: a polygenic model of cardiac hypertrophy and heart failure, a model of intrauterine growth restriction and Lcn2 -knockout mouse; cultured cardiomyocytes; and 2 human cohorts: 114 type 2 diabetes mellitus patients and 2064 healthy subjects of the YFS (Young Finns Study). In hypertrophic heart rats, cardiac and circulating Lcn2 was significantly overexpressed before, during, and after development of cardiac hypertrophy and heart failure. Lcn2 expression was increased in hypertrophic hearts in a model of intrauterine growth restriction, whereas Lcn2 -knockout mice had smaller hearts. In cultured cardiomyocytes, Lcn2 activated molecular hypertrophic pathways and increased cell size, but reduced proliferation and cell numbers. Increased LCN2 was associated with cardiac hypertrophy and diastolic dysfunction in diabetes mellitus. In the YFS, LCN2 expression was associated with body mass index and cardiac mass and with levels of inflammatory markers. The single-nucleotide polymorphism, rs13297295, located near LCN2 defined a significant cis -eQTL for LCN2 expression. Direct effects of LCN2 on cardiomyocyte size and number and the consistent associations in experimental and human analyses reveal a central role for LCN2 in the ontogeny of cardiac hypertrophy and heart failure. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  3. Local and systemic immunomodulatory mechanisms triggered by Human Papillomavirus transformed cells: a potential role for G-CSF and neutrophils

    OpenAIRE

    Alvarez, Karla Lucia Fernandez; Beldi, Mariana Carmezim; Sarmanho, Fabiane; Rossetti, Renata Ariza Marques; Silveira, Caio Raony Farina; Mota, Giana Rabello; Andreoli, Maria Antonieta; Caruso, Eliana Dias de Carvalho; Kamillos, Marcia Ferreira; Souza, Ana Marta; Mastrocalla, Haydee; Clavijo-Salomon, Maria Alejandra; Barbuto, José Alexandre Marzagão; Lorenzi, Noely Paula; Longatto Filho, Adhemar

    2017-01-01

    Cervical cancer is the last stage of a series of molecular and cellular alterations initiated with Human Papillomavirus (HPV) infection. The process involves immune responses and evasion mechanisms, which culminates with tolerance toward tumor antigens. Our objective was to understand local and systemic changes in the interactions between HPV associated cervical lesions and the immune system as lesions progress to cancer. Locally, we observed higher cervical leukocyte infiltrate, reflected by...

  4. L-carnosine modulates respiratory burst and reactive oxygen species production in neutrophil biochemistry and function: may oral dosage form of non-hydrolized dipeptide L-carnosine complement anti-infective anti-influenza flu treatment, prevention and self-care as an alternative to the conventional vaccination?

    Science.gov (United States)

    Babizhayev, Mark A; Deyev, Anatoliy I; Yegorov, Yegor E

    2014-05-01

    Influenza A is a viral disease of global dimension, presenting with high morbidity and mortality in annual epidemics, and in pandemics which are of infrequent occurrence but which have very high attack rates. Influenza vaccines of the future must be directed toward use of conserved group-specific viral antigens, such as are present in transitional proteins which are exposed during the fusion of virus to the host cell. Influenza probes revealed a continuing battle for survival between host and parasite in which the host population updates the specificity of its pool of humoral immunity by contact with and response to infection with the most recent viruses which possess altered antigenic specificity in their hemagglutinin (HA) ligand. It is well known that the HA protein is found on the surface of the influenza virus particle and is responsible for binding to receptors on host cells and initiating infection. Polymorphonuclear neutrophils (PMN) have been reported to be involved in the initial host response to influenza A virus (IAV). Early after IAV infection, neutrophils infiltrate the airway probably due to release of chemokines that attract PMN. Clearly, severe IAV infection is characterized by increased neutrophil influx into the lung or upper respiratory tract. Carnosine (β-alanyl-L-histidine) and anserine (N-β-alanyl-1-methyl-L-histidine) are found in skeletal muscle of most vertebrates, including those used for food; for example, 100 g of chicken breast contains 400 mg (17.6 mmol/L) of carnosine and 1020 mg (33.6 mmol/l) of anserine. Carnosine-stimulated respiratory burst in neutrophils is a universal biological mechanism of influenza virus destruction. Our own studies revealed previously unappreciated functional effects of carnosine and related histidine containing compounds as a natural biological prevention and barrier against Influenza virus infection, expand public understanding of the antiviral properties of imidazole-containing dipeptide based

  5. Anti-human neutrophil antigen-1a, -1b, and -2 antibodies in neonates and children with immune neutropenias analyzed by extracted granulocyte antigen immunofluorescence assay.

    Science.gov (United States)

    Onodera, Rie; Kurita, Emi; Taniguchi, Kikuyo; Karakawa, Shuhei; Okada, Satoshi; Kihara, Hirotaka; Fujii, Teruhisa; Kobayashi, Masao

    2017-11-01

    Anti-human neutrophil antigen (HNA) antibodies have been implicated in the development of neonatal alloimmune neutropenia (NAN) and autoimmune neutropenia (AIN). There are many conventional assay methods that detect anti-HNA antibodies. However, a method to measure multiple samples and detect several anti-HNA antibodies simultaneously is needed. We developed a new method, the extracted granulocyte antigen immunofluorescence assay (EGIFA), to analyze anti-HNA-1a, -1b, and -2 antibodies in sera. The results obtained by EGIFA were evaluated in comparison with those from several standard assay methods. Anti-HNA antibodies in serum samples from nine familial cases with suspected NAN (n = 19) and children with suspected AIN (n = 88) were also measured by EGIFA. The evaluation of nine serum samples with anti-HNA antibodies suggested that EGIFA demonstrated equivalent specificity and superior sensitivity to monoclonal antibody-specific immobilization of granulocyte antigens and had comparable sensitivity to the granulocyte indirect immunofluorescence test. EGIFA successfully detected anti-HNA-1a or -1b antibodies in seven of nine familial cases with suspected NAN. EGIFA detected anti-HNA antibodies in 40.9% of children with suspected AIN. Among them, isolated anti-HNA-1a or -1b antibody was detected in 4.5 or 12.5% of children, respectively, and anti-HNA-2 antibody was identified in 3.4% of children. The 30.8% (16 of 52) of children negative for anti-HNA antibody by EGIFA were positive for anti-HLA antibody. EGIFA facilitated the measurement of anti-HNA-1a, -1b, and/or -2 antibodies in sera. The prompt measurement of anti-HNA antibodies will improve the diagnosis and clinical management of patients with suspected NAN or AIN. © 2017 AABB.

  6. Lipopolysaccharide induces VCAM-1 expression and neutrophil adhesion to human tracheal smooth muscle cells: Involvement of Src/EGFR/PI3-K/Akt pathway

    International Nuclear Information System (INIS)

    Lin, W.-N.; Luo, S.-F.; Wu, C.-B.; Lin, C.-C.; Yang, C.-M.

    2008-01-01

    In our previous study, LPS has been shown to induce vascular cell adhesion molecule-1(VCAM-1) expression through MAPKs and NF-κB in human tracheal smooth muscle cells (HTSMCs). In addition to these pathways, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3K) have been shown to be implicated in the expression of several inflammatory target proteins. Here, we reported that LPS-induced up-regulation of VCAM-1 enhanced the adhesion of neutrophils onto HTSMC monolayer, which was inhibited by LY294002 and wortmannin. LPS stimulated phosphorylation of protein tyrosine kinases including Src, PYK2, and EGFR, which were further confirmed using specific anti-phospho-Src, PYK2, or EGFR Ab, respectively, revealed by Western blotting. LPS-stimulated Src, PYK2, EGFR, and Akt phosphorylation and VCAM-1 expression were attenuated by the inhibitors of Src (PP1), EGFR (AG1478), PI3-K (LY294002 and wortmannin), and Akt (SH-5), respectively, or transfection with siRNAs of Src or Akt and shRNA of p110. LPS-induced VCAM-1 expression was also blocked by pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA. LPS-stimulated Akt activation translocated into nucleus and associated with p300 and VCAM-1 promoter region was further confirmed by immunofluorescence, immunoprecipitation, and chromatin immunoprecipitation assays. This association of Akt and p300 to VCAM-1 promoter was inhibited by pretreatment with PP1, AG1478, wortmannin, and SH-5. LPS-induced p300 activation enhanced VCAM-1 promoter activity and VCAM-1 mRNA expression. These results suggested that in HTSMCs, Akt phosphorylation mediated through transactivation of Src/PYK2/EGFR promoted the transcriptional p300 activity and eventually led to VCAM-1 expression induced by LPS

  7. The Application of Dextran Sedimentation as an Initial Step in Neutrophil Purification Promotes Their Stimulation, due to the Presence of Monocytes

    Science.gov (United States)

    Ferrante, Antonio

    2017-01-01

    The purification of human neutrophils for in vitro studies is challenging as they are easily activated through ex vivo manipulations. The technique of erythrocyte sedimentation combined with density gradient centrifugation remains widely practiced and was the subject of this study. Since in the sedimentation step the leukocytes are incubated with dextran, we have raised the likelihood that cellular activation would occur with mediator release leading to neutrophil activation. By comparing the activity of neutrophils purified from whole blood by the classical 2-step method of dextran sedimentation followed by low-density Ficoll-Hypaque (1.077 g/mL) medium, and the 1-step high-density Ficoll-Hypaque (1.114 g/mL) gradient centrifugation, we found that neutrophils from the 2-step method had a significant increase in cell surface CD11b expression and CD62L shedding and a marked increase in adhesion. Decreased random migration and chemotaxis and raised baseline oxidative burst activity were also observed. The effect was not specific to dextran, as using Ficoll for erythrocyte sedimentation replicated the elevated neutrophil adherence. Through the depletion of monocytes, lymphocytes, and platelets prior to sedimentation, we deduced that monocytes were responsible for the neutrophil activation. Our findings suggest that care needs to be exercised in choosing the method of neutrophil purification for functional studies. PMID:29164154

  8. Comparative antioxidant activity of cultivated and wild Vaccinium species investigated by EPR, human neutrophil burst and COMET assay.

    Science.gov (United States)

    Braga, P C; Antonacci, R; Wang, Y Y; Lattuada, N; Dal Sasso, M; Marabini, L; Fibiani, M; Lo Scalzo, R

    2013-01-01

    The Vaccinium (V.) spp. berries are considered a source of antioxidants, mainly belonging to polyphenols, specifically flavonoids and anthocyanins. Wild genotypes generally contain more antioxidants than cultivated counterparts. So, seven different antioxidants assays on extracts from cultivated and wild Vaccinium berries were performed, to evaluate their difference in terms of bioactivity on oxidative protection and minimum dosage to have a significant action. Four cell-free antioxidant assays (ABTS radical scavenging and electronic paramagnetic resonance using Fremy's salt, superoxide anion and hydroxyl radical), and three assays on human cells (two luminol amplified chemiluminescence, LACL, one on DNA damage, COMET) were used to measure the effects of cultivated blueberry (V. corymbosum) and wild bilberry (V. myrtillus) on the differently induced oxidative stress. Concentrations vs activity patterns were obtained by successive dilutions of extracts in order to identify both EC50 and minimum significant activity (MSA). All the assays (except for the hydroxyl radical scavenging) showed a good relationship mainly with anthocyanin and polyphenol content and the significant greater activity of wild Vaccinium extracts. In fact, LACL data gave an EC50 of 11.8 and an MSA of 5.2 g were calculated as fresh weight dosage in cultivated berries, compared with lower doses in wild berries, EC50 of 5.7 g and MSA of 3.4 g. Wild Vaccinium extracts averaged 3.04 and 2.40 fold more activity than cultivated extracts by EC50 and MSA, respectively. COMET assay confirmed the stronger action on DNA protection in wild samples.

  9. The emerging role of neutrophils in thrombosis – The journey of TF through NETs

    Directory of Open Access Journals (Sweden)

    Konstantinos eKambas

    2012-12-01

    Full Text Available The production of TF by neutrophils and their contribution in thrombosis was until recently a matter of scientific debate. Experimental data suggested the de novo TF production by neutrophils under inflammatory stimuli, while others proposed that these cells acquired microparticle-derived TF. Recent experimental evidence revealed the critical role of neutrophils in thrombotic events. Neutrophil derived TF has been implicated in this process in several human and animal models. Additionally, neutrophil extracellular trap (NET release has emerged as a major contributor in neutrophil-driven thrombogenicity in disease models including sepsis, deep venous thrombosis and malignancy. It is suggested that NETs provide the scaffold for fibrin deposition and platelet entrapment and subsequent activation. The recently reported autophagy-dependent extracellular delivery of TF in NETs further supports the involvement of neutrophils in thrombosis. Herein, we seek to review novel data regarding the role of neutrophils in thrombosis, emphasizing the implication of TF and NETs.

  10. CIRCULATING CD11B EXPRESSION CORRELATES WITH THE NEUTROPHIL RESPONSE AND AIRWAY MCD-14 EXPRESSION IS ENHANCED FOLLOWING OZONE EXPOSURE IN HUMANS

    Science.gov (United States)

    We recently reported that baseline expression of circulating CD11b is associated with the magnitude of the neutrophil response following inhaled endotoxin. In this study, we examined whether circulating CD11b plays a similar role in the inflammatory response following inhaled ozo...

  11. The effect of the anaesthetic agent isoflurane on the rate of neutrophil apoptosis in vitro.

    LENUS (Irish Health Repository)

    Tyther, R

    2012-02-03

    BACKGROUND: Volatile anaesthetic agents influence neutrophil function, and potentially, the inflammatory response to surgery. AIM: The objective of this study was to determine the effect of isoflurane (1-4%) on human polymorphonuclear neutrophil apoptosis in vitro. METHODS: Venous blood from 12 healthy volunteers was exposed to 0, 1, and 4% isoflurane delivered via a 14G Wallace flexihub internal jugular cannula, at a fresh gas flow of 0.51\\/min for 5 minutes. Isolated neutrophils were assessed for apoptosis at 1, 12, and 24 hours in culture using dual staining with annexin V-FITC and propidium iodide (Annexin-V FITC assay). Data were analysed using paired, one-tailed Student\\'s t-tests. p<0.05 was considered significant. RESULTS: At 1 hour apoptosis was inhibited in the 1% (5.1 [6.8]%; p=0.017) and 4% (4.8 [4.5]%; p=0.008) isoflurane groups compared to control (11.3 [6.9]%). At 12 and 24 hours, a dose-dependent inhibition of apoptosis was demonstrated, i.e. 4% > 1% > 0%. CONCLUSION: Human neutrophil apoptosis is inhibited in a concentration-dependent manner in vitro by isoflurane in clinical concentrations.

  12. The Functional Human C-Terminome.

    Directory of Open Access Journals (Sweden)

    Surbhi Sharma

    Full Text Available All translated proteins end with a carboxylic acid commonly called the C-terminus. Many short functional sequences (minimotifs are located on or immediately proximal to the C-terminus. However, information about the function of protein C-termini has not been consolidated into a single source. Here, we built a new "C-terminome" database and web system focused on human proteins. Approximately 3,600 C-termini in the human proteome have a minimotif with an established molecular function. To help evaluate the function of the remaining C-termini in the human proteome, we inferred minimotifs identified by experimentation in rodent cells, predicted minimotifs based upon consensus sequence matches, and predicted novel highly repetitive sequences in C-termini. Predictions can be ranked by enrichment scores or Gene Evolutionary Rate Profiling (GERP scores, a measurement of evolutionary constraint. By searching for new anchored sequences on the last 10 amino acids of proteins in the human proteome with lengths between 3-10 residues and up to 5 degenerate positions in the consensus sequences, we have identified new consensus sequences that predict instances in the majority of human genes. All of this information is consolidated into a database that can be accessed through a C-terminome web system with search and browse functions for minimotifs and human proteins. A known consensus sequence-based predicted function is assigned to nearly half the proteins in the human proteome. Weblink: http://cterminome.bio-toolkit.com.

  13. The Functional Human C-Terminome

    Science.gov (United States)

    Hedden, Michael; Lyon, Kenneth F.; Brooks, Steven B.; David, Roxanne P.; Limtong, Justin; Newsome, Jacklyn M.; Novakovic, Nemanja; Rajasekaran, Sanguthevar; Thapar, Vishal; Williams, Sean R.; Schiller, Martin R.

    2016-01-01

    All translated proteins end with a carboxylic acid commonly called the C-terminus. Many short functional sequences (minimotifs) are located on or immediately proximal to the C-terminus. However, information about the function of protein C-termini has not been consolidated into a single source. Here, we built a new “C-terminome” database and web system focused on human proteins. Approximately 3,600 C-termini in the human proteome have a minimotif with an established molecular function. To help evaluate the function of the remaining C-termini in the human proteome, we inferred minimotifs identified by experimentation in rodent cells, predicted minimotifs based upon consensus sequence matches, and predicted novel highly repetitive sequences in C-termini. Predictions can be ranked by enrichment scores or Gene Evolutionary Rate Profiling (GERP) scores, a measurement of evolutionary constraint. By searching for new anchored sequences on the last 10 amino acids of proteins in the human proteome with lengths between 3–10 residues and up to 5 degenerate positions in the consensus sequences, we have identified new consensus sequences that predict instances in the majority of human genes. All of this information is consolidated into a database that can be accessed through a C-terminome web system with search and browse functions for minimotifs and human proteins. A known consensus sequence-based predicted function is assigned to nearly half the proteins in the human proteome. Weblink: http://cterminome.bio-toolkit.com. PMID:27050421

  14. Effector Mechanisms of Neutrophils within the Innate Immune System in Response to Mycobacterium tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Eric Warren

    2017-02-01

    Full Text Available Neutrophils have a significant yet controversial role in the innate immune response to Mycobacterium tuberculosis (M. tb infection, which is not yet fully understood. In addition to neutrophils’ well-known effector mechanisms, they may also help control infection of M. tb through the formation of neutrophil extracellular traps (NETs, which are thought to further promote the killing of M. tb by resident alveolar macrophages. Cytokines such as IFN-γ have now been shown to serve an immunomodulatory role in neutrophil functioning in conjunction to its pro-inflammatory function. Additionally, the unique transcriptional changes of neutrophils may be used to differentiate between infection with M. tb and other bacterial and chronic rheumatological diseases such as Systemic Lupus Erythematosus. Adversely, during the innate immune response to M. tb, inappropriate phagocytosis of spent neutrophils can result in nonspecific damage to host cells due to necrotic lysis. Furthermore, some individuals have been shown to be more genetically susceptible to tuberculosis (TB due to a “Trojan Horse” phenomenon whereby neutrophils block the ability of resident macrophages to kill M. tb. Despite these aforementioned negative consequences, through the scope of this review we will provide evidence to support the idea that neutrophils, while sometimes damaging, can also be an important component in warding off M. tb infection. This is exemplified in immunocompromised individuals, such as those with human immunodeficiency virus (HIV infection or Type 2 diabetes mellitus. These individuals are at an increased risk of developing tuberculosis (TB due to a diminished innate immune response associated with decreased levels of glutathione. Consequently, there has been a worldwide effort to limit and contain M. tb infection through the use of antibiotics and vaccinations. However, due to several significant limitations, the current bacille Calmette-Guerin vaccine (BCG

  15. Effect of the level of maternal energy intake prepartum on immunometabolic markers, polymorphonuclear leukocyte function, and neutrophil gene network expression in neonatal Holstein heifer calves.

    Science.gov (United States)

    Osorio, J S; Trevisi, E; Ballou, M A; Bertoni, G; Drackley, J K; Loor, J J

    2013-06-01

    A conventional approach in dairy cow nutrition programs during late gestation is to feed moderate-energy diets. The effects of the maternal plane of nutrition on immune function and metabolism in newborn calves are largely unknown. Holstein cows (n=20) were fed a controlled-energy (CON) diet (1.24 Mcal/kg) for the entire dry period (~50 d) or the CON diet during the first 29 d of the dry period followed by a moderate-energy (OVE) diet (1.47 Mcal/kg) during the last 21 d prepartum. All calves were weighed at birth before first colostrum intake. Calves chosen for this study (n=6 per maternal diet) had blood samples harvested before colostrum feeding (d 0) and at 2 and 7 d of age. Blood samples were used to determine metabolites, acute-phase proteins, oxidative stress markers, hormones, phagocytic capacity of polymorphonuclear leukocytes (PMN) and monocytes, and total RNA was isolated from PMN. Calves from OVE dams weighed, on average, 5kg less at birth (44.0 vs. 48.6kg) than calves from CON dams. Blood glucose concentration in OVE calves had a more pronounced increase between 0 and 2 d than CON, at which point phagocytosis by PMN averaged 85% in OVE and 62% in CON. Compared with CON, calves from OVE had greater expression of TLR4, but lower expression of PPARA and PPARD at birth. Expression of PPARG and RXRA decreased between 0 and 2 d in both groups. Concentrations of leptin, cholesterol, ceruloplasmin, reactive oxygen metabolites, myeloperoxidase, retinol, tocopherol, IgG, and total protein, as well as expression of SOD2 and SELL increased markedly by 2 d in both groups; whereas, cortisol, albumin, acid-soluble protein, NEFA, insulin, as well as expression of IL6, TLR4, IL1R2, LTC4S, and ALOX5 decreased by 2 d. By 7 d of age, the concentration of haptoglobin was greater than precolostrum and was lower for OVE than CON calves. Our data provide evidence for a carry-over effect of maternal energy overfeeding during the last 3 wk before calving on some measurements of

  16. Neutrophil labeling with [99mTc]-technetium stannous colloid is complement receptor 3-mediated and increases the neutrophil priming response to lipopolysaccharide

    International Nuclear Information System (INIS)

    Gallagher, Hayley; Ramsay, Stuart C.; Barnes, Jodie; Maggs, Jacqueline; Cassidy, Nathan; Ketheesan, Natkunam

    2006-01-01

    Introduction: [ 99m Tc]-technetium stannous colloid (TcSnC)-labeled white cells are used to image inflammation. Neutrophil labeling with TcSnC is probably phagocytic, but the phagocytic receptor involved is not known. We hypothesised that complement receptor 3 (CR3) plays a key role. Phagocytic labeling could theoretically result in neutrophil activation or priming, affecting the behaviour of labeled cells. Fluorescence-activated cell sorter (FACS) analysis side scatter measurements can assess neutrophil activation and priming. Methods: We tested whether TcSnC neutrophil labeling is CR3-mediated by assessing if neutrophil uptake of TcSnC was inhibited by a monoclonal antibody (mAb) directed at the CD11b component of CR3. We tested if TcSnC-labeled neutrophils show altered activation or priming status, comparing FACS side scatter in labeled and unlabeled neutrophils and examining the effect of lipopolysaccharide (LPS), a known priming agent. Results: Anti-CD11b mAb reduced neutrophil uptake of TcSnC in a dose-dependent fashion. Labeled neutrophils did not show significantly increased side scatter compared to controls. LPS significantly increased side scatter in control cells and labeled neutrophils. However, the increase was significantly greater in labeled neutrophils than unlabeled cells. Conclusions: Neutrophil labeling with TcSnC is related to the function of CR3, a receptor which plays a central role in phagocytosis. TcSnC labeling did not significantly activate or prime neutrophils. However, labeled neutrophils showed a greater priming response to LPS. This could result in labeled neutrophils demonstrating increased adhesion on activated endothelium at sites of infection

  17. Neutrophil labeling with [{sup 99m}Tc]-technetium stannous colloid is complement receptor 3-mediated and increases the neutrophil priming response to lipopolysaccharide

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, Hayley [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Ramsay, Stuart C. [School of Medicine, James Cook University, Townsville, Queensland (Australia) and Townsville Nuclear Medicine, Mater Hospital, Townsville, Queensland 4812 (Australia)]. E-mail: stuart.ramsey@jcu.edu.au; Barnes, Jodie [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); Maggs, Jacqueline [Department of Nuclear Medicine, Townsville Hospital, Townsville, Queensland 4814 (Australia); Cassidy, Nathan [Townsville Nuclear Medicine, Mater Hospital, Townsville, Queensland 4812 (Australia); Ketheesan, Natkunam [School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland 4811 (Australia); School of Medicine, James Cook University, Townsville, Queensland (Australia)

    2006-04-15

    Introduction: [{sup 99m}Tc]-technetium stannous colloid (TcSnC)-labeled white cells are used to image inflammation. Neutrophil labeling with TcSnC is probably phagocytic, but the phagocytic receptor involved is not known. We hypothesised that complement receptor 3 (CR3) plays a key role. Phagocytic labeling could theoretically result in neutrophil activation or priming, affecting the behaviour of labeled cells. Fluorescence-activated cell sorter (FACS) analysis side scatter measurements can assess neutrophil activation and priming. Methods: We tested whether TcSnC neutrophil labeling is CR3-mediated by assessing if neutrophil uptake of TcSnC was inhibited by a monoclonal antibody (mAb) directed at the CD11b component of CR3. We tested if TcSnC-labeled neutrophils show altered activation or priming status, comparing FACS side scatter in labeled and unlabeled neutrophils and examining the effect of lipopolysaccharide (LPS), a known priming agent. Results: Anti-CD11b mAb reduced neutrophil uptake of TcSnC in a dose-dependent fashion. Labeled neutrophils did not show significantly increased side scatter compared to controls. LPS significantly increased side scatter in control cells and labeled neutrophils. However, the increase was significantly greater in labeled neutrophils than unlabeled cells. Conclusions: Neutrophil labeling with TcSnC is related to the function of CR3, a receptor which plays a central role in phagocytosis. TcSnC labeling did not significantly activate or prime neutrophils. However, labeled neutrophils showed a greater priming response to LPS. This could result in labeled neutrophils demonstrating increased adhesion on activated endothelium at sites of infection.

  18. Predictors of neutrophilic airway inflammation in young smokers with asthma

    DEFF Research Database (Denmark)

    Westergaard, Christian Grabow; Munck, Christian; Helby, Jens

    2014-01-01

    by a higher degree of neutrophilic inflammation than in non-smokers. A state of neutrophilic inflammation may lead to increased steroid resistance and an accelerated loss of lung function owing to tissue destruction. The aim of this study was to elucidate predictors of neutrophilic inflammation in young...... asthmatic smokers not on steroid treatment, including analysis of tobacco history and bacterial colonization. Methods: In a cross-sectional study, 52 steroid-free, current smokers with asthma were examined with induced sputum, fractional exhaled nitric oxide (FeNO), lung function, ACQ6 score, mannitol...... smokers, neutrophilia may be induced when a certain threshold of tobacco consumption is reached....

  19. Phenotypic changes in neutrophils related to anti-inflammatory therapy.

    Science.gov (United States)

    Barton, A E; Bayley, D L; Mikami, M; Llewellyn-Jones, C G; Stockley, R A

    2000-01-03

    Previous work from the group has shown that non-steroidal anti-inflammatory agents given to volunteers and patients inhibit PMN function possibly by affecting the developing neutrophil during the differentiation process. In this study indomethacin treatment in vivo reduced neutrophil chemotaxis and proteolytic degradation of fibronectin, with a maximal effect after 14 days. Stimulated neutrophil adherence to fibronectin was also reduced but this was not due to quantitative changes in beta(2) integrin expression or function. L-Selectin expression on resting and stimulated neutrophils was increased after 14 days and there was a small decrease in plasma levels of soluble L-selectin. These effects, however, could not be reproduced by treatment of neutrophils with indomethacin in vitro, suggesting they are due to effects on differentiating/maturing PMNs. In an attempt to interpret these changes, studies were performed with dexamethasone, which is known to alter neutrophil function and kinetics. Dexamethasone treatment reduced chemotaxis and increased superoxide generation after 1 day and was associated with increased expression of activated beta(2) integrins and reduced L-selectin expression on resting neutrophils. This suggests the appearance of mainly 'activated' cells as a result of demargination and indicates that the effects of indomethacin are distinctive and not related to changes in compartmentalisation.

  20. Airway bacteria measured by quantitative polymerase chain reaction and culture in patients with stable COPD: relationship with neutrophilic airway inflammation, exacerbation frequency, and lung function

    Directory of Open Access Journals (Sweden)

    Bafadhel M

    2015-06-01

    Full Text Available Mona Bafadhel,1 Koirobi Haldar,2 Bethan Barker,2,3 Hemu Patel,4 Vijay Mistry,2,3 Michael R Barer,2–4 Ian D Pavord,1 Christopher E Brightling2,3 1Respiratory Medicine Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK; 2Department of Infection, Immunity and Inflammation, University of Leicester, 3Institute for Lung Health, National Institute for Health Research Respiratory Biomedical Research Unit, Glenfield Hospital, University of Leicester, 4Department of Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, UK Background: Potentially pathogenic microorganisms can be detected by quantitative real-time polymerase chain reaction (qPCR in sputum from patients with COPD, although how this technique relates to culture and clinical measures of disease is unclear. We used cross-sectional and longitudinal data to test the hypotheses that qPCR is a more sensitive measure of bacterial presence and is associated with neutrophilic airway inflammation and adverse clinical outcomes.Methods: Sputum was collected from 174 stable COPD subjects longitudinally over 12 months. Microbial sampling using culture and qPCR was performed. Spirometry and sputum measures of airway inflammation were assessed.Findings: Sputum was qPCR-positive (>106 copies/mL in 77/152 samples (Haemophilus influenzae [n=52], Moraxella catarrhalis [n=24], Streptococcus pneumoniae [n=19], and Staphylococcus aureus [n=7]. Sputum was culture-positive in 50/174 samples, with 49 out of 50 culture-positive samples having pathogen-specific qPCR bacterial loads >106 copies/mL. Samples that had qPCR copy numbers >106/mL, whether culture-positive or not, had increased sputum neutrophil counts. H. influenzae qPCR copy numbers correlated with sputum neutrophil counts (r=0.37, P<0.001, were repeatable within subjects, and were >106/mL three or more times in 19 patients, eight of whom were repeatedly sputum culture-positive. Persistence, whether

  1. Ontogenesis of testicular function in humans.

    Directory of Open Access Journals (Sweden)

    GaĂŤlle Angenard

    2010-01-01

    Full Text Available The two major functions of the testis, steroidogenesis and gametogenesis, take place during fetal life. These two functions have been extensively studied in rodents and adult humans. However, their onset during fetal life is poorly documented in humans. In the first part of this work we presented both our experimental data and some data of literature concerning the development of the human fetal testis. In the second part of this article, using the organ culture system we previously developed, we have investigated the regulations or perturbations of fetal testis development both in rodent and human models. Our findings provide important insight into the potential role of exposure to environmental pollutants (physical factors, in particular ionizing radiation, cadmium and endocrine disruptors such as phthalates during fetal testicular development and their potential deleterious effects on male fertility in adulthood. Our results highlight the specificity of the human model compared with rodent models.

  2. Human milk metagenome: a functional capacity analysis

    Science.gov (United States)

    2013-01-01

    Background Human milk contains a diverse population of bacteria that likely influences colonization of the infant gastrointestinal tract. Recent studies, however, have been limited to characterization of this microbial community by 16S rRNA analysis. In the present study, a metagenomic approach using Illumina sequencing of a pooled milk sample (ten donors) was employed to determine the genera of bacteria and the types of bacterial open reading frames in human milk that may influence bacterial establishment and stability in this primal food matrix. The human milk metagenome was also compared to that of breast-fed and formula-fed infants’ feces (n = 5, each) and mothers’ feces (n = 3) at the phylum level and at a functional level using open reading frame abundance. Additionally, immune-modulatory bacterial-DNA motifs were also searched for within human milk. Results The bacterial community in human milk contained over 360 prokaryotic genera, with sequences aligning predominantly to the phyla of Proteobacteria (65%) and Firmicutes (34%), and the genera of Pseudomonas (61.1%), Staphylococcus (33.4%) and Streptococcus (0.5%). From assembled human milk-derived contigs, 30,128 open reading frames were annotated and assigned to functional categories. When compared to the metagenome of infants’ and mothers’ feces, the human milk metagenome was less diverse at the phylum level, and contained more open reading frames associated with nitrogen metabolism, membrane transport and stress response (P milk metagenome also contained a similar occurrence of immune-modulatory DNA motifs to that of infants’ and mothers’ fecal metagenomes. Conclusions Our results further expand the complexity of the human milk metagenome and enforce the benefits of human milk ingestion on the microbial colonization of the infant gut and immunity. Discovery of immune-modulatory motifs in the metagenome of human milk indicates more exhaustive analyses of the functionality of the human

  3. Pseudomonas aeruginosa ExoU augments neutrophil transepithelial migration.

    Science.gov (United States)

    Pazos, Michael A; Lanter, Bernard B; Yonker, Lael M; Eaton, Alex D; Pirzai, Waheed; Gronert, Karsten; Bonventre, Joseph V; Hurley, Bryan P

    2017-08-01

    Excessive neutrophil infiltration of the lungs is a common contributor to immune-related pathology in many pulmonary disease states. In response to pathogenic infection, airway epithelial cells produce hepoxilin A3 (HXA3), initiating neutrophil transepithelial migration. Migrated neutrophils amplify this recruitment by producing a secondary gradient of leukotriene B4 (LTB4). We sought to determine whether this two-step eicosanoid chemoattractant mechanism could be exploited by the pathogen Pseudomonas aeruginosa. ExoU, a P. aeruginosa cytotoxin, exhibits phospholipase A2 (PLA2) activity in eukaryotic hosts, an enzyme critical for generation of certain eicosanoids. Using in vitro and in vivo models of neutrophil transepithelial migration, we evaluated the impact of ExoU expression on eicosanoid generation and function. We conclude that ExoU, by virtue of its PLA2 activity, augments and compensates for endogenous host neutrophil cPLA2α function, leading to enhanced transepithelial migration. This suggests that ExoU expression in P. aeruginosa can circumvent immune regulation at key signaling checkpoints in the neutrophil, resulting in exacerbated neutrophil recruitment.

  4. Pseudomonas aeruginosa ExoU augments neutrophil transepithelial migration.

    Directory of Open Access Journals (Sweden)

    Michael A Pazos

    2017-08-01

    Full Text Available Excessive neutrophil infiltration of the lungs is a common contributor to immune-related pathology in many pulmonary disease states. In response to pathogenic infection, airway epithelial cells produce hepoxilin A3 (HXA3, initiating neutrophil transepithelial migration. Migrated neutrophils amplify this recruitment by producing a secondary gradient of leukotriene B4 (LTB4. We sought to determine whether this two-step eicosanoid chemoattractant mechanism could be exploited by the pathogen Pseudomonas aeruginosa. ExoU, a P. aeruginosa cytotoxin, exhibits phospholipase A2 (PLA2 activity in eukaryotic hosts, an enzyme critical for generation of certain eicosanoids. Using in vitro and in vivo models of neutrophil transepithelial migration, we evaluated the impact of ExoU expression on eicosanoid generation and function. We conclude that ExoU, by virtue of its PLA2 activity, augments and compensates for endogenous host neutrophil cPLA2α function, leading to enhanced transepithelial migration. This suggests that ExoU expression in P. aeruginosa can circumvent immune regulation at key signaling checkpoints in the neutrophil, resulting in exacerbated neutrophil recruitment.

  5. Flow Perturbation Mediates Neutrophil Recruitment and Potentiates Endothelial Injury via TLR2 in Mice: Implications for Superficial Erosion.

    Science.gov (United States)

    Franck, Grégory; Mawson, Thomas; Sausen, Grasiele; Salinas, Manuel; Masson, Gustavo Santos; Cole, Andrew; Beltrami-Moreira, Marina; Chatzizisis, Yiannis; Quillard, Thibault; Tesmenitsky, Yevgenia; Shvartz, Eugenia; Sukhova, Galina K; Swirski, Filip K; Nahrendorf, Matthias; Aikawa, Elena; Croce, Kevin J; Libby, Peter

    2017-06-23

    Superficial erosion currently causes up to a third of acute coronary syndromes; yet, we lack understanding of its mechanisms. Thrombi because of superficial intimal erosion characteristically complicate matrix-rich atheromata in regions of flow perturbation. This study tested in vivo the involvement of disturbed flow and of neutrophils, hyaluronan, and Toll-like receptor 2 ligation in superficial intimal injury, a process implicated in superficial erosion. In mouse carotid arteries with established intimal lesions tailored to resemble the substrate of human eroded plaques, acute flow perturbation promoted downstream endothelial cell activation, neutrophil accumulation, endothelial cell death and desquamation, and mural thrombosis. Neutrophil loss-of-function limited these findings. Toll-like receptor 2 agonism activated luminal endothelial cells, and deficiency of this innate immune receptor decreased intimal neutrophil adherence in regions of local flow disturbance, reducing endothelial cell injury and local thrombosis ( P <0.05). These results implicate flow disturbance, neutrophils, and Toll-like receptor 2 signaling as mechanisms that contribute to superficial erosion, a cause of acute coronary syndrome of likely growing importance in the statin era. © 2017 American Heart Association, Inc.

  6. Flow Perturbation Mediates Neutrophil Recruitment and Potentiates Endothelial Injury via TLR2 in Mice – Implications for Superficial Erosion

    Science.gov (United States)

    Franck, Grégory; Mawson, Thomas; Sausen, Grasiele; Salinas, Manuel; Masson, Gustavo Santos; Cole, Andrew; Beltrami-Moreira, Marina; Chatzizisis, Yiannis; Quillard, Thibault; Tesmenitsky, Yevgenia; Shvartz, Eugenia; Sukhova, Galina K.; Swirski, Filip K.; Nahrendorf, Matthias; Aikawa, Elena; Croce, Kevin J.; Libby, Peter

    2017-01-01

    Rationale Superficial erosion currently causes up to a third of acute coronary syndromes (ACS), yet we lack understanding of its mechanisms. Thrombi due to superficial intimal erosion characteristically complicate matrix-rich atheromata in regions of flow perturbation. Objective This study tested in vivo the involvement of disturbed flow, and of neutrophils, hyaluronan, and TLR2 ligation in superficial intimal injury, a process implicated in superficial erosion. Methods and Results : In mouse carotid arteries with established intimal lesions tailored to resemble the substrate of human eroded plaques, acute flow perturbation promoted downstream endothelial cell (EC) activation, neutrophil accumulation, EC death and desquamation, and mural thrombosis. Neutrophil loss-of-function limited these findings. TLR2 agonism activated luminal ECs, and deficiency of this innate immune receptor decreased intimal neutrophil adherence in regions of local flow disturbance, reducing EC injury and local thrombosis (p<0.05). Conclusions These results implicate flow disturbance, neutrophils, and TLR2 signaling as mechanisms that contribute to superficial erosion, a cause of ACS of likely growing importance in the statin era. PMID:28428204

  7. Neutrophil extracellular traps - the dark side of neutrophils

    DEFF Research Database (Denmark)

    Sørensen, Ole E.; Borregaard, Niels

    2016-01-01

    Neutrophil extracellular traps (NETs) were discovered as extracellular strands of decondensed DNA in complex with histones and granule proteins, which were expelled from dying neutrophils to ensnare and kill microbes. NETs are formed during infection in vivo by mechanisms different from those ori...

  8. Leukotriene B4-Neutrophil Elastase Axis Drives Neutrophil Reverse Transendothelial Cell Migration In Vivo

    Science.gov (United States)

    Colom, Bartomeu; Bodkin, Jennifer V.; Beyrau, Martina; Woodfin, Abigail; Ody, Christiane; Rourke, Claire; Chavakis, Triantafyllos; Brohi, Karim; Imhof, Beat A.; Nourshargh, Sussan

    2015-01-01

    Summary Breaching endothelial cells (ECs) is a decisive step in the migration of leukocytes from the vascular lumen to the extravascular tissue, but fundamental aspects of this response remain largely unknown. We have previously shown that neutrophils can exhibit abluminal-to-luminal migration through EC junctions within mouse cremasteric venules and that this response is elicited following reduced expression and/or functionality of the EC junctional adhesion molecule-C (JAM-C). Here we demonstrate that the lipid chemoattractant leukotriene B4 (LTB4) was efficacious at causing loss of venular JAM-C and promoting neutrophil reverse transendothelial cell migration (rTEM) in vivo. Local proteolytic cleavage of EC JAM-C by neutrophil elastase (NE) drove this cascade of events as supported by presentation of NE to JAM-C via the neutrophil adhesion molecule Mac-1. The results identify local LTB4-NE axis as a promoter of neutrophil rTEM and provide evidence that this pathway can propagate a local sterile inflammatory response to become systemic. PMID:26047922

  9. Leukotriene B4-Neutrophil Elastase Axis Drives Neutrophil Reverse Transendothelial Cell Migration In Vivo.

    Science.gov (United States)

    Colom, Bartomeu; Bodkin, Jennifer V; Beyrau, Martina; Woodfin, Abigail; Ody, Christiane; Rourke, Claire; Chavakis, Triantafyllos; Brohi, Karim; Imhof, Beat A; Nourshargh, Sussan

    2015-06-16

    Breaching endothelial cells (ECs) is a decisive step in the migration of leukocytes from the vascular lumen to the extravascular tissue, but fundamental aspects of this response remain largely unknown. We have previously shown that neutrophils can exhibit abluminal-to-luminal migration through EC junctions within mouse cremasteric venules and that this response is elicited following reduced expression and/or functionality of the EC junctional adhesion molecule-C (JAM-C). Here we demonstrate that the lipid chemoattractant leukotriene B4 (LTB4) was efficacious at causing loss of venular JAM-C and promoting neutrophil reverse transendothelial cell migration (rTEM) in vivo. Local proteolytic cleavage of EC JAM-C by neutrophil elastase (NE) drove this cascade of events as supported by presentation of NE to JAM-C via the neutrophil adhesion molecule Mac-1. The results identify local LTB4-NE axis as a promoter of neutrophil rTEM and provide evidence that this pathway can propagate a local sterile inflammatory response to become systemic. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Biomaterial-induced alterations of neutrophil superoxide production.

    Science.gov (United States)

    Kaplan, S S; Basford, R E; Mora, E; Jeong, M H; Simmons, R L

    1992-08-01

    Because periprosthetic infection remains a vexing problem for patients receiving implanted devices, we evaluated the effect of several materials on neutrophil free radical production. Human peripheral blood neutrophils were incubated with several sterile, lipopolysaccharide (LPS)-free biomaterials used in surgically implantable prosthetic devices: polyurethane, woven dacron, and velcro. Free radical formation as the superoxide (O2-) anion was evaluated by cytochrome c reduction in neutrophils that were exposed to the materials and then removed and in neutrophils allowed to remain in association with the materials. Neutrophils exposed to polyurethane or woven dacron for 30 or 60 min and then removed consistently exhibited an enhanced release of O2- after simulation via receptor engagement with formyl methionyl-leucyl-phenylalanine. Enhanced reactivity to stimulation via protein kinase C with phorbol myristate acetate, however, was not consistently observed. The cells evaluated for O2- release during continuous association with the biomaterials showed enhanced metabolic activity during short periods of association (especially with polyurethane and woven dacron). Although O2- release by neutrophils in association with these materials decreased with longer periods of incubation, it was not obliterated. These studies, therefore, show that several commonly used biomaterials activate neutrophils soon after exposure and that this activated state diminishes with prolonged exposure but nevertheless remains measurable. The diminishing level of activity with prolonged exposure, however, suggests that ultimately a depletion of reactivity may occur and may result in increased susceptibility to periprosthetic infection.

  11. Survival and differentiation defects contribute to neutropenia in glucose-6-phosphatase-β (G6PC3) deficiency in a model of mouse neutrophil granulocyte differentiation.

    Science.gov (United States)

    Gautam, S; Kirschnek, S; Gentle, I E; Kopiniok, C; Henneke, P; Häcker, H; Malleret, L; Belaaouaj, A; Häcker, G

    2013-08-01

    Differentiation of neutrophil granulocytes (neutrophils) occurs through several steps in the bone marrow and requires a coordinate regulation of factors determining survival and lineage-specific development. A number of genes are known whose deficiency disrupts neutrophil generation in humans and in mice. One of the proteins encoded by these genes, glucose-6-phosphatase-β (G6PC3), is involved in glucose metabolism. G6PC3 deficiency causes neutropenia in humans and in mice, linked to enhanced apoptosis and ER stress. We used a model of conditional Hoxb8 expression to test molecular and functional differentiation as well as survival defects in neutrophils from G6PC3(-/-) mice. Progenitor lines were established and differentiated into neutrophils when Hoxb8 was turned off. G6PC3(-/-) progenitor cells underwent substantial apoptosis when differentiation was started. Transgenic expression of Bcl-XL rescued survival; however, Bcl-XL-protected differentiated cells showed reduced proliferation, immaturity and functional deficiency such as altered MAP kinase signaling and reduced cytokine secretion. Impaired glucose utilization was found and was associated with ER stress and apoptosis, associated with the upregulation of Bim and Bax; downregulation of Bim protected against apoptosis during differentiation. ER-stress further caused a profound loss of expression and secretion of the main neutrophil product neutrophil elastase during differentiation. Transplantation of wild-type Hoxb8-progenitor cells into irradiated mice allowed differentiation into neutrophils in the bone marrow in vivo. Transplantation of G6PC3(-/-) cells yielded few mature neutrophils in bone marrow and peripheral blood. Transgenic Bcl-XL permitted differentiation of G6PC3(-/-) cells in vivo. However, functional deficiencies and differentiation abnormalities remained. Differentiation of macrophages from Hoxb8-dependent progenitors was only slightly disturbed. A combination of defects in differentiation

  12. Recruitment of classical monocytes can be inhibited by disturbing heteromers of neutrophil HNP1 and platelet CCL5

    NARCIS (Netherlands)

    Alard, Jean-Eric; Ortega-Gomez, Almudena; Wichapong, Kanin; Bongiovanni, Dario; Horckmans, Michael; Megens, Remco T. A.; Leoni, Giovanna; Ferraro, Bartolo; Rossaint, Jan; Paulin, Nicole; Ng, Judy; Ippel, Hans; Suylen, Dennis; Hinkel, Rabea; Blanchet, Xavier; Gaillard, Fanny; D'Amico, Michele; von Hundelshausen, Phillipp; Zarbock, Alexander; Scheiermann, Christoph; Hackeng, Tilman M.; Steffens, Sabine; Kupatt, Christian; Nicolaes, Gerry A. F.; Weber, Christian; Soehnlein, Oliver

    2015-01-01

    In acute and chronic inflammation, neutrophils and platelets, both of which promote monocyte recruitment, are often activated simultaneously. We investigated how secretory products of neutrophils and platelets synergize to enhance the recruitment of monocytes. We found that neutrophil-borne human

  13. Functional anatomy of the human ureterovesical junction

    NARCIS (Netherlands)

    Roshani, H.; Dabhoiwala, N. F.; Verbeek, F. J.; Lamers, W. H.

    1996-01-01

    BACKGROUND: The valve function of the ureterovesical-junction (UVJ) is responsible for protection of the low pressure upper urinary tract from the refluxing of urine from the bladder. Controversy about the microanatomy of the human ureterovesical-junction persists. METHODS: Ten (3 male and 7 female)

  14. Tiny plastic lung mimics human pulmonary function

    Science.gov (United States)

    Careers Inclusion & Diversity Work-Life Balance Career Resources Apply for a Job Postdocs Students Goals Recycling Green Purchasing Pollution Prevention Reusing Water Resources Environmental Management Releases - 2016 » April » Tiny plastic lung mimics human pulmonary function Tiny plastic lung mimics

  15. Targeting neutrophilic inflammation in severe neutrophilic asthma : can we target the disease-relevant neutrophil phenotype?

    NARCIS (Netherlands)

    Bruijnzeel, Piet L B; Uddin, Mohib; Koenderman, Leo

    2015-01-01

    In severe, neutrophilic asthma, neutrophils are thought to have an important role in both the maintenance of the disease and during exacerbations. These patients often display excessive, mucosal airway inflammation with unresolving neutrophilia. Because this variant of asthma is poorly controlled by

  16. Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Jaehong Kim

    2016-01-01

    Full Text Available Distinct tumor microenvironment forms in each progression step of cancer and has diverse capacities to induce both adverse and beneficial consequences for tumorigenesis. It is now known that immune cells can be activated to favor tumor growth and progression, most probably influenced by the tumor microenvironment. Tumor-associated macrophages and tumor-associated neutrophils can exert protumoral functions, enhancing tumor cell invasion and metastasis, angiogenesis, and extracellular matrix remodeling, while inhibiting the antitumoral immune surveillance. Considering that neutrophils in inflammatory environments recruit macrophages and that recruited macrophages affect neutrophil functions, there may be various degrees of interaction between tumor-associated macrophages and tumor-associated neutrophils. Platelets also play an important role in the recruitment and regulation of monocytic and granulocytic cells in the tumor tissues, suggesting that platelet function may be essential for generation of tumor-associated macrophages and tumor-associated neutrophils. In this review, we will explore the biology of tumor-associated macrophages and tumor-associated neutrophils and their possible interactions in the tumor microenvironment. Special attention will be given to the recruitment and activation of these tumor-associated cells and to the roles they play in maintenance of the tumor microenvironment and progression of tumors.

  17. Pneumovirus-Induced Lung Disease in Mice Is Independent of Neutrophil-Driven Inflammation

    NARCIS (Netherlands)

    Cortjens, Bart; Lutter, René; Boon, Louis; Bem, Reinout A.; van Woensel, Job B. M.

    2016-01-01

    The human pneumovirus respiratory syncytial virus (RSV) is the most common pathogen causing lower respiratory tract disease in young children worldwide. A hallmark of severe human RSV infection is the strong neutrophil recruitment to the airways and lungs. Massive neutrophil activation has been

  18. Mesocortical dopaminergic function and human cognition

    International Nuclear Information System (INIS)

    Weinberger, D.R.; Berman, K.F.; Chase, T.N.

    1988-01-01

    In summary, we have reviewed rCBF data in humans that suggest that mesoprefrontal dopaminergic activity is involved in human cognition. In patients with Parkinson's disease and possibly in patients with schizophrenia, prefrontal physiological activation during a cognitive task that appears to depend on prefrontal neural systems correlates positively with cognitive performance on the task and with clinical signs of dopaminergic function. It may be possible in the future to examine prefrontal dopamine metabolism directly during prefrontal cognition using positron emission tomography and tracers such as F-18 DOPA. 21 references

  19. Systems biology of neutrophil differentiation and immune response

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim; Porse, Bo T; Borregaard, Niels

    2005-01-01

    Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies. These stu......Systems biology has emerged as a new scientific field, which aims at investigating biological processes at the genomic and proteomic levels. Recent studies have unravelled aspects of neutrophil differentiation and immune responses at the systems level using high-throughput technologies....... These studies have identified a plethora of novel effector proteins stored in the granules of neutrophils. In addition, these studies provide evidence that neutrophil differentiation and immune response are governed by a highly coordinated transcriptional programme that regulates cellular fate and function...

  20. Hypertonic Saline Suppresses NADPH Oxidase-Dependent Neutrophil Extracellular Trap Formation and Promotes Apoptosis

    Directory of Open Access Journals (Sweden)

    Ajantha Nadesalingam

    2018-03-01

    Full Text Available Tonicity of saline (NaCl is important in regulating cellular functions and homeostasis. Hypertonic saline is administered to treat many inflammatory diseases, including cystic fibrosis. Excess neutrophil extracellular trap (NET formation, or NETosis, is associated with many pathological conditions including chronic inflammation. Despite the known therapeutic benefits of hypertonic saline, its underlying mechanisms are not clearly understood. Therefore, we aimed to elucidate the effects of hypertonic saline in modulating NETosis. For this purpose, we purified human neutrophils and induced NETosis using agonists such as diacylglycerol mimetic phorbol myristate acetate (PMA, Gram-negative bacterial cell wall component lipopolysaccharide (LPS, calcium ionophores (A23187 and ionomycin from Streptomyces conglobatus, and bacteria (Pseudomonas aeruginosa and Staphylococcus aureus. We then analyzed neutrophils and NETs using Sytox green assay, immunostaining of NET components and apoptosis markers, confocal microscopy, and pH sensing reagents. This study found that hypertonic NaCl suppresses nicotinamide adenine dinucleotide phosphate oxidase (NADPH2 or NOX2-dependent NETosis induced by agonists PMA, Escherichia coli LPS (0111:B4 and O128:B12, and P. aeruginosa. Hypertonic saline also suppresses LPS- and PMA- induced reactive oxygen species production. It was determined that supplementing H2O2 reverses the suppressive effect of hypertonic saline on NOX2-dependent NETosis. Many of the aforementioned suppressive effects were observed in the presence of equimolar concentrations of choline chloride and osmolytes (d-mannitol and d-sorbitol. This suggests that the mechanism by which hypertonic saline suppresses NOX2-dependent NETosis is via neutrophil dehydration. Hypertonic NaCl does not significantly alter the intracellular pH of neutrophils. We found that hypertonic NaCl induces apoptosis while suppressing NOX2-dependent NETosis. In contrast, hypertonic

  1. Imaging visual function of the human brain

    International Nuclear Information System (INIS)

    Marg, E.

    1988-01-01

    Imaging of human brain structure and activity with particular reference to visual function is reviewed along with methods of obtaining the data including computed tomographic (CT) scan, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET). The literature is reviewed and the potential for a new understanding of brain visual function is discussed. PET is reviewed from basic physical principles to the most recent visual brain findings with oxygen-15. It is shown that there is a potential for submillimeter localization of visual functions with sequentially different visual stimuli designed for the temporal separation of the responses. Single photon emission computed tomography (SPECT), a less expensive substitute for PET, is also discussed. MRS is covered from basic physical principles to the current state of the art of in vivo biochemical analysis. Future possible clinical applications are discussed. Improved understanding of the functional neural organization of vision and brain will open a window to maps and circuits of human brain function.119 references

  2. Intracellular Secretory Leukoprotease Inhibitor Modulates Inositol 1,4,5-Triphosphate Generation and Exerts an Anti-Inflammatory Effect on Neutrophils of Individuals with Cystic Fibrosis and Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Emer P. Reeves

    2013-01-01

    Full Text Available Secretory leukoprotease inhibitor (SLPI is an anti-inflammatory protein present in respiratory secretions. Whilst epithelial cell SLPI is extensively studied, neutrophil associated SLPI is poorly characterised. Neutrophil function including chemotaxis and degranulation of proteolytic enzymes involves changes in cytosolic calcium (Ca2+ levels which is mediated by production of inositol 1,4,5-triphosphate (IP3 in response to G-protein-coupled receptor (GPCR stimuli. The aim of this study was to investigate the intracellular function of SLPI and the mechanism-based modulation of neutrophil function by this antiprotease. Neutrophils were isolated from healthy controls (n=10, individuals with cystic fibrosis (CF (n=5 or chronic obstructive pulmonary disease (COPD (n=5. Recombinant human SLPI significantly inhibited fMet-Leu-Phe (fMLP and interleukin(IL-8 induced neutrophil chemotaxis (P<0.05 and decreased degranulation of matrix metalloprotease-9 (MMP-9, hCAP-18, and myeloperoxidase (MPO (P<0.05. The mechanism of inhibition involved modulation of cytosolic IP3 production and downstream Ca2+ flux. The described attenuation of Ca2+ flux was overcome by inclusion of exogenous IP3 in electropermeabilized cells. Inhibition of IP3 generation and Ca2+ flux by SLPI may represent a novel anti-inflammatory mechanism, thus strengthening the attractiveness of SLPI as a potential therapeutic molecule in inflammatory airway disease associated with excessive neutrophil influx including CF, non-CF bronchiectasis, and COPD.

  3. Soluble CD40 ligand stimulates CD40-dependent activation of the β2 integrin Mac-1 and protein kinase C zeda (PKCζ in neutrophils: implications for neutrophil-platelet interactions and neutrophil oxidative burst.

    Directory of Open Access Journals (Sweden)

    Rong Jin

    Full Text Available Recent work has revealed an essential involvement of soluble CD40L (sCD40L in inflammation and vascular disease. Activated platelets are the major source of sCD40L, which has been implicated in platelet and leukocyte activation, although its exact functional impact on leukocyte-platelet interactions and the underlying mechanisms remain undefined. We aimed to determine the impact and the mechanisms of sCD40L on neutrophils. We studied neutrophil interactions with activated, surface-adherent platelets as a model for leukocyte recruitment to the sites of injury. Our data show that CD40L contributes to neutrophil firm adhesion to and transmigration across activated surface-adherent platelets, possibly through two potential mechanisms. One involves the direct interaction of ligand-receptor (CD40L-CD40, i.e., platelet surface CD40L interaction with neutrophil CD40; another involves an indirect mechanism, i.e. soluble CD40L stimulates activation of the leukocyte-specific β2 integrin Mac-1 in neutrophils and thereby further promotes neutrophil adhesion and migration. Activation of the integrin Mac-1 is known to be critical for mediating neutrophil adhesion and migration. sCD40L activated Mac-1 in neutrophils and enhanced neutrophil-platelet interactions in wild-type neutrophils, but failed to elicit such responses in CD40-deficient neutrophils. Furthermore, our data show that the protein kinase C zeta (PKCζ is critically required for sCD40L-induced Mac-1 activation and neutrophil adhesive function. sCD40L strongly stimulated the focal clustering of Mac-1 (CD11b and the colocalization of Mac-1 with PKCζ in wild-type neutrophils, but had minimal effect in CD40-deficient neutrophils. Blocking PKCζ completely inhibited sCD40L-induced neutrophil firm adhesion. Moreover, sCD40L strongly stimulates neutrophil oxidative burst via CD40-dependent activation of PI3K/NF-KB, but independent of Mac-1 and PKCζ. These findings may contribute to a better

  4. Anti-neutrophil cytoplasmic antibodies stimulate release of neutrophil microparticles.

    LENUS (Irish Health Repository)

    Hong, Ying

    2012-01-01

    The mechanisms by which anti-neutrophil cytoplasmic antibodies (ANCAs) may contribute to the pathogenesis of ANCA-associated vasculitis are not well understood. In this study, both polyclonal ANCAs isolated from patients and chimeric proteinase 3-ANCA induced the release of neutrophil microparticles from primed neutrophils. These microparticles expressed a variety of markers, including the ANCA autoantigens proteinase 3 and myeloperoxidase. They bound endothelial cells via a CD18-mediated mechanism and induced an increase in endothelial intercellular adhesion molecule-1 expression, production of endothelial reactive oxygen species, and release of endothelial IL-6 and IL-8. Removal of the neutrophil microparticles by filtration or inhibition of reactive oxygen species production with antioxidants abolished microparticle-mediated endothelial activation. In addition, these microparticles promoted the generation of thrombin. In vivo, we detected more neutrophil microparticles in the plasma of children with ANCA-associated vasculitis compared with that in healthy controls or those with inactive vasculitis. Taken together, these results support a role for neutrophil microparticles in the pathogenesis of ANCA-associated vasculitis, potentially providing a target for future therapeutics.

  5. Production of macrophage inflammatory protein (MIP)-1alpha and MIP-1beta by human polymorphonuclear neutrophils stimulated with Porphyromonas endodontalis lipopolysaccharide.

    Science.gov (United States)

    Ko, Hyun Jung; Lim, Sung Sam

    2002-11-01

    This study was undertaken to investigate the capacity of polymorphonuclear neutrophils (PMNs) to secrete Macrophage Inflammatory Protein (MIP)-1alpha and MIP-1beta after stimulation with Porphyromonas endodontalis lipopolysaccharide (LPS). Escherichia coli LPS was used as a positive control. Venous blood was collected and PMNs were isolated from healthy volunteers. Cells were cultured with various concentrations of LPS for different periods of time. Cell supernatants were assayed by enzyme-linked immunosorbent assay. The levels of chemokine secretion in PMNs stimulated with each LPS were found to be significantly higher than in the unstimulated control cells (p endodontalis LPS. These findings demonstrated that P. endodontalis LPS is capable of stimulating PMNs to produce chemotactic cytokines and suggested that PMNs stimulated with P. endodontalis LPS may play a crucial role in the inflammatory and immunopathological reactions of pulpal and periapical diseases.

  6. The Brain Prize 2014: complex human functions.

    Science.gov (United States)

    Grigaityte, Kristina; Iacoboni, Marco

    2014-11-01

    Giacomo Rizzolatti, Stanislas Dehaene, and Trevor Robbins were recently awarded the 2014 Grete Lundbeck European Brain Research Prize for their 'pioneering research on higher brain mechanisms underpinning such complex human functions as literacy, numeracy, motivated behavior and social cognition, and for their effort to understand cognitive and behavioral disorders'. Why was their work highlighted? Is there anything that links together these seemingly disparate lines of research? Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Proinflammatory mediators stimulate neutrophil-directed angiogenesis.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Vascular endothelial growth factor (VEGF; vascular permeability factor) is one of the most potent proangiogenic cytokines, and it plays a central role in mediating the process of angiogenesis or new blood vessel formation. Neutrophils (PMNs) recently have been shown to produce VEGF. HYPOTHESIS: The acute inflammatory response is a potent stimulus for PMN-directed angiogenesis. METHODS: Neutrophils were isolated from healthy volunteers and stimulated with lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6), and anti-human Fas monoclonal antibody. Culture supernatants were assayed for VEGF using enzyme-linked immunosorbent assays. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs were then added to human umbilical vein endothelial cells and human microvessel endothelial cells and assessed for endothelial cell proliferation using 5-bromodeoxyuridine labeling. Tubule formation was also assessed on MATRIGEL basement membrane matrix. Neutrophils were lysed to measure total VEGF release, and VEGF expression was detected using Western blot analysis. RESULTS: Lipopolysaccharide and TNF-alpha stimulation resulted in significantly increased release of PMN VEGF (532+\\/-49 and 484+\\/-80 pg\\/mL, respectively; for all, presented as mean +\\/- SEM) compared with control experiments (32+\\/-4 pg\\/mL). Interleukin 6 and Fas had no effect. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs also resulted in significant increases (P<.005) in macrovascular and microvascular endothelial cell proliferation and tubule formation. Adding anti-human VEGF-neutralizing polyclonal antibody to stimulated PMN supernatant inhibited these effects. Total VEGF release following cell lysis and Western blot analysis suggests that the VEGF is released from an intracellular store. CONCLUSION: Activated human PMNs are directly angiogenic by releasing VEGF, and this has important implications for inflammation, capillary leak syndrome

  8. Neutrophil transmigration mediated by the neutrophil-specific antigen CD177 is influenced by the endothelial S536N dimorphism of platelet endothelial cell adhesion molecule-1.

    Science.gov (United States)

    Bayat, Behnaz; Werth, Silke; Sachs, Ulrich J H; Newman, Debra K; Newman, Peter J; Santoso, Sentot

    2010-04-01

    The human neutrophil-specific adhesion molecule CD177 (also known as the NB1 alloantigen) becomes upregulated on the cell surface in a number of inflammatory settings. We recently showed that CD177 functions as a novel heterophilic counterreceptor for the endothelial junctional protein PECAM-1 (CD31), an interaction that is mediated by membrane-proximal PECAM-1 IgD 6, which is known to harbor an S(536)N single nucleotide polymorphism of two major isoforms V(98)N(536)G(643) and L(98)S(536)R(643) and a yet-to-be-determined region on CD177. In vitro transendothelial migration experiments revealed that CD177(+) neutrophils migrated significantly faster through HUVECs expressing the LSR, compared with the VNG, allelic variant of PECAM-1 and that this correlated with the decreased ability of anti-PECAM-1 Ab of ITIM tyrosine phosphorylation in HUVECs expressing the LSR allelic variant relative to the VNG allelic variant. Moreover, engagement of PECAM-1 with rCD177-Fc (to mimic heterophilic CD177 binding) suppressed Ab-induced tyrosine phosphorylation to a greater extent in cells expressing the LSR isoform compared with the VNG isoform, with a corresponding increased higher level of beta-catenin phosphorylation. These data suggest that heterophilic PECAM-1/CD177 interactions affect the phosphorylation state of PECAM-1 and endothelial cell junctional integrity in such a way as to facilitate neutrophil transmigration in a previously unrecognized allele-specific manner.

  9. Dihydroxyoctadecamonoenoate esters inhibit the neutrophil ...

    Indian Academy of Sciences (India)

    PRAKASH

    that observed with arachidonic acid treatment (Li et al 1996). ..... An alternative possibility is that the methyl DiHOMEs .... nitric oxide-derived reactive species in vascular cells; Circ. ... necrosis factor 1-alpha-initiated neutrophil responses and.

  10. Effect of bacterial components of mixed culture supernatants of planktonic and biofilm Pseudomonas aeruginosa with commensal Escherichia coli on the neutrophil response in vitro.

    Science.gov (United States)

    Maslennikova, Irina L; Kuznetsova, Marina V; Nekrasova, Irina V; Shirshev, Sergei V

    2017-11-30

    Pseudomonas aeruginosa (PA) responsible for acute and chronic infections often forms a well-organized bacterial population with different microbial species including commensal strains of Escherichia coli. Bacterial extracellular components of mixed culture can modulate the influence of bacteria on the neutrophil functions. The objective of this study was to compare the effect of pyocyanin, pyoverdine, LPS, exopolysaccharide of single species and mixed culture supernatants of PA strains and E. coli K12 on microbicidal, secretory activity of human neutrophils in vitro. Bacterial components of E. coli K12 in mixed supernatants with 'biofilm' PA strains (PA ATCC, PA BALG) enhanced short-term microbicidal mechanisms and inhibited neutrophil secretion delayed in time. The influence of 'planktonic' PA (PA 9-3) exometabolites in mixed culture is almost mimicked by E. coli K12 effect on functional neutrophil changes. This investigation may help to understand some of the mechanisms of neutrophil response to mixed infections of different PA with other bacteria species. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Promotion of health and human functionality

    Directory of Open Access Journals (Sweden)

    Ana Cristhina de Oliveira Brasil

    2013-08-01

    Organization, signatory of Resolution WHA54.21-OMS54.21, which recommends the use of the International Classification of Functioning, Disability and Health (ICF, translated into Portuguese in 2003. The main paradigm that ICF brings is the shift from an approach based on the disease to an approach focused on the human functionality (3. Only in May 2012 the National Health Council (Conselho nacioinal de Saúde – CNS approved the resolution 452 for the Ministry of Health to adopt the ICF, among other uses, as a generator of indicators of human functionality (4. Human functionality, according to the International Classification of Functioning, Disability and Health (ICF of the World Health Organization, is a comprehensive term that designates the elements of the body, its functions and structures, the human activities and participation in the social processes, indicating the positive aspects of the interaction of individuals with certain health conditions and thee context in which he lives with regard to personal and environmental factors (structural and attitudinal (3. However, health information appears incomplete, since data regarding the human functionality is not yet meaningful enough to support the developed policies so that they could accomplish the expected results in the face of the disabilities posed by the deficiencies, limitations in activities and restrictions of participation(5. Given the above, a change in direction is required in the paths of public health policies in Brazil, disposing of the exclusively biological approach to the disease, and starting to see it as a problem produced by the society. Therefore, it is necessary to develop information that record not only the disease but the additional aspects of the individuals´ health status. The human functionality is directly influenced both by the presence of diseases, mainly the chronic ones (featuring the change induced by the epidemiologic transition, as by the occurance of negative context, like the

  12. Promotion of Health and Human Functionality

    Directory of Open Access Journals (Sweden)

    Ana Cristhina de Oliveira Brasil

    2013-03-01

    Organization, signatory of Resolution WHA54.21-OMS54.21, which recommends the use of the International Classification of Functioning, Disability and Health (ICF, translated into Portuguese in 2003. The main paradigm that ICF brings is the shift from an approach based on the disease to an approach focused on the human functionality (3. Only in May 2012 the National Health Council (Conselho nacioinal de Saúde – CNS approved the resolution 452 for the Ministry of Health to adopt the ICF, among other uses, as a generator of indicators of human functionality (4. Human functionality, according to the International Classification of Functioning, Disability and Health (ICF of the World Health Organization, is a comprehensive term that designates the elements of the body, its functions and structures, the human activities and participation in the social processes, indicating the positive aspects of the interaction of individuals with certain health conditions and thee context in which he lives with regard to personal and environmental factors (structural and attitudinal (3. However, health information appears incomplete, since data regarding the human functionality is not yet meaningful enough to support the developed policies so that they could accomplish the expected results in the face of the disabilities posed by the deficiencies, limitations in activities and restrictions of participation(5.Given the above, a change in direction is required in the paths of public health policies in Brazil, disposing of the exclusively biological approach to the disease, and starting to see it as a problem produced by the society. Therefore, it is necessary to develop information that record not only the disease but the additional aspects of the individuals´ health status.The human functionality is directly influenced both by the presence of diseases, mainly the chronic ones (featuring the change induced by the epidemiologic transition, as by the occurance of negative context, like the diverse

  13. Biomimetics of human movement: functional or aesthetic?

    International Nuclear Information System (INIS)

    Harris, Christopher M

    2009-01-01

    How should robotic or prosthetic arms be programmed to move? Copying human smooth movements is popular in synthetic systems, but what does this really achieve? We cannot address these biomimetic issues without a deep understanding of why natural movements are so stereotyped. In this article, we distinguish between 'functional' and 'aesthetic' biomimetics. Functional biomimetics requires insight into the problem that nature has solved and recognition that a similar problem exists in the synthetic system. In aesthetic biomimetics, nature is copied for its own sake and no insight is needed. We examine the popular minimum jerk (MJ) model that has often been used to generate smooth human-like point-to-point movements in synthetic arms. The MJ model was originally justified as maximizing 'smoothness'; however, it is also the limiting optimal trajectory for a wide range of cost functions for brief movements, including the minimum variance (MV) model, where smoothness is a by-product of optimizing the speed-accuracy trade-off imposed by proportional noise (PN: signal-dependent noise with the standard deviation proportional to mean). PN is unlikely to be dominant in synthetic systems, and the control objectives of natural movements (speed and accuracy) would not be optimized in synthetic systems by human-like movements. Thus, employing MJ or MV controllers in robotic arms is just aesthetic biomimetics. For prosthetic arms, the goal is aesthetic by definition, but it is still crucial to recognize that MV trajectories and PN are deeply embedded in the human motor system. Thus, PN arises at the neural level, as a recruitment strategy of motor units and probably optimizes motor neuron noise. Human reaching is under continuous adaptive control. For prosthetic devices that do not have this natural architecture, natural plasticity would drive the system towards unnatural movements. We propose that a truly neuromorphic system with parallel force generators (muscle fibres) and noisy

  14. Granule protein processing and regulated secretion in neutrophils

    Directory of Open Access Journals (Sweden)

    Avinash eSheshechalam

    2014-09-01

    Full Text Available Neutrophils are part of a family of granulocytes that, together with eosinophils and basophils, play an essential role in innate immunity. Neutrophils are the most abundant circulating leukocytes and are vital for rapid immune responses, being recruited to sites of injury or infection within minutes, where they can act as specialized phagocytic cells. However, another prominent function of neutrophils is the release of pro-inflammatory compounds, including cytokines, chemokines and digestive enzymes, which are stored in intracellular compartments and released through regulated exocytosis. Hence, an important feature that contributes to rapid immune responses is capacity of neutrophils to synthesize and store pre-formed pro-inflammatory mediators in specialized intracellular vesicles and thus no new synthesis is required. This review will focus on advancement in three topics relevant to neutrophil secretion. First we will examine what is known about basal level pro-inflammatory mediator synthesis, trafficking and storage in secretory compartments. Second, we will review recent advancements in the mechanisms that control vesicle mobilization and the release of pre-formed mediators. Third, we will examine the upregulation and de novo synthesis of pro-inflammatory mediators by neutrophils engaged at sites of infection.

  15. Human Eosinophils Express Functional CCR7

    Science.gov (United States)

    Ueki, Shigeharu; Estanislau, Jessica; Weller, Peter F.

    2013-01-01

    Human eosinophils display directed chemotactic activity toward an array of soluble chemokines. Eosinophils have been observed to migrate to draining lymph nodes in experimental models of allergic inflammation, yet it is unknown whether eosinophils express CCR7, a key chemokine receptor in coordinating leukocyte trafficking to lymph nodes. The purpose of this study is to demonstrate expression of CCR7 by human eosinophils and functional responses to CCL19 and CCL21, the known ligands of CCR7. Human eosinophils were purified by negative selection from healthy donors. CCR7 expression of freshly purified, unstimulated eosinophils and of IL-5–primed eosinophils was determined by flow cytometry and Western blot. Chemotaxis to CCL19 and CCL21 was measured in transwell assays. Shape changes to CCL19 and CCL21 were analyzed by flow cytometry and microscopy. Calcium fluxes of fluo-4 AM–loaded eosinophils were recorded by flow cytometry after chemokine stimulation. ERK phosphorylation of CCL19- and CCL21-stimulated eosinophils was measured by Western blot and Luminex assay. Human eosinophils expressed CCR7 as demonstrated by flow cytometry and Western blots. Eosinophils exhibited detectable cell surface expression of CCR7. IL-5–primed eosinophils exhibited chemotaxis toward CCL19 and CCL21 in a dose-dependent fashion. Upon stimulation with CCL19 or CCL21, IL-5–primed eosinophils demonstrated dose-dependent shape changes with polarization of F-actin and exhibited calcium influxes. Finally, primed eosinophils stimulated with CCL19 or CCL21 exhibited increased phosphorylation of ERK in response to both CCR7 ligands. We demonstrate that human eosinophils express CCR7 and have multipotent responses to the known ligands of CCR7. PMID:23449735

  16. Hierarchical modularity in human brain functional networks

    Directory of Open Access Journals (Sweden)

    David Meunier

    2009-10-01

    Full Text Available The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or “modules-within-modules” decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at the highest level of the hierarchy were medial occipital, lateral occipital, central, parieto-frontal and fronto-temporal systems; occipital modules demonstrated less sub-modular organization than modules comprising regions of multimodal association cortex. Connector nodes and hubs, with a key role in inter-modular connectivity, were also concentrated in association cortical areas. We conclude that methods are available for hierarchical modular decomposition of large numbers of high resolution brain functional networks using computationally expedient algorithms. This could enable future investigations of Simon's original hypothesis that hierarchy or near-decomposability of physical symbol systems is a critical design feature for their fast adaptivity to changing environmental conditions.

  17. Neutrophilic dermatosis resembling pyoderma gangrenosum in a dog with polyarthritis.

    Science.gov (United States)

    Bardagí, M; Lloret, A; Fondati, A; Ferrer, L

    2007-04-01

    This report describes a case of neutrophilic dermatosis in a dog, with a number of clinical and pathological similarities to human pyoderma gangrenosum. A seven-year-old, female German shepherd dog with a history of non-erosive idiopathic polyarthritis was presented with severe facial swelling, bilateral erosivoulcerative lesions on the muzzle and multiple, eroded, dermal-subcutaneous nodules on the cranial trunk. Histopathological examination of skin biopsies revealed a necrotising neutrophilic dermatitis. No infectious agents could be detected using specific stains, immunohistochemistry, serology and bacterial aerobic, anaerobic or fungal cultures. A sterile neutrophilic dermatosis resembling human pyoderma gangrenosum was presumptively diagnosed, and the patient showed an excellent response to treatment with prednisone and ciclosporin.

  18. The functional biology of human milk oligosaccharides.

    Science.gov (United States)

    Bode, Lars

    2015-11-01

    Human milk oligosaccharides (HMOs) are a group of complex sugars that are highly abundant in human milk, but currently not present in infant formula. More than a hundred different HMOs have been identified so far. The amount and composition of HMOs are highly variable between women, and each structurally defined HMO might have a distinct functionality. HMOs are not digested by the infant and serve as metabolic substrates for select microbes, contributing to shape the infant gut microbiome. HMOs act as soluble decoy receptors that block the attachment of viral, bacterial or protozoan parasite pathogens to epithelial cell surface sugars, which may help prevent infectious diseases in the gut and also the respiratory and urinary tracts. HMOs are also antimicrobials that act as bacteriostatic or bacteriocidal agents. In addition, HMOs alter host epithelial and immune cell responses with potential benefits for the neonate. The article reviews current knowledge as well as future challenges and opportunities related to the functional biology of HMOs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. The effect of midazolam on neutrophil mitogen-activated protein kinase.

    LENUS (Irish Health Repository)

    Ghori, Kamran

    2010-06-01

    Neutrophil p38 mitogen-activated protein kinase (MAPK) is a key enzyme in the intracellular signalling pathway that is responsible for many neutrophil functions, which are important in neutrophil-endothelial interaction. The imidazole compounds are inhibitors of this enzyme system. The objectives of this in-vitro investigation were to examine the effect of midazolam on neutrophil p38 MAPK activation (phosphorylation) following in-vitro ischaemia-reperfusion injury, and the expression of adhesion molecule CD11b\\/CD18.

  20. Structure-function relationships of human meniscus.

    Science.gov (United States)

    Danso, Elvis K; Oinas, Joonas M T; Saarakkala, Simo; Mikkonen, Santtu; Töyräs, Juha; Korhonen, Rami K

    2017-03-01

    Biomechanical properties of human meniscus have been shown to be site-specific. However, it is not known which meniscus constituents at different depths and locations contribute to biomechanical properties obtained from indentation testing. Therefore, we investigated the composition and structure of human meniscus in a site- and depth-dependent manner and their relationships with tissue site-specific biomechanical properties. Elastic and poroelastic properties were analyzed from experimental stress-relaxation and sinusoidal indentation measurements with fibril reinforced poroelastic finite element modeling. Proteoglycan (PG) and collagen contents, as well as the collagen orientation angle, were determined as a function of tissue depth using microscopic and spectroscopic methods, and they were compared with biomechanical properties. For all the measurement sites (anterior, middle and posterior) of lateral and medial menisci (n=26), PG content and collagen orientation angle increased as a function of tissue depth while the collagen content had an initial sharp increase followed by a decrease across tissue depth. The highest values (pmeniscus. This location had also higher (pmeniscus, higher (pmeniscus) significantly higher (pmeniscus modulus and/or nonlinear permeability. This study suggests that nonlinear biomechanical properties of meniscus, caused by the collagen network and fluid, may be strongly influenced by tissue osmotic swelling from the deep meniscus caused by the increased PG content, leading to increased collagen fibril tension. These nonlinear biomechanical properties are suggested to be further amplified by higher collagen content at all tissue depths and superficial collagen fibril orientation. However, these structure-function relationships are suggested to be highly site-specific. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Neutrophils are not less sensitive than other blood leukocytes to the genomic effects of glucocorticoids.

    Directory of Open Access Journals (Sweden)

    Gaelle Hirsch

    Full Text Available Neutrophils are generally considered less responsive to glucocorticoids compared to other inflammatory cells. The reported increase in human neutrophil survival mediated by these drugs partly supports this assertion. However, it was recently shown that dexamethasone exerts potent anti-inflammatory effects in equine peripheral blood neutrophils. Few comparative studies of glucocorticoid effects in neutrophils and other leukocytes have been reported and a relative insensitivity of neutrophils to these drugs could not be ruled out.We assessed glucocorticoid-responsiveness in equine and human peripheral blood neutrophils and neutrophil-depleted leukocytes.Blood neutrophils and neutrophil-depleted leukocytes were isolated from 6 healthy horses and 4 human healthy subjects. Cells were incubated for 5 h with or without LPS (100 ng/mL alone or combined with hydrocortisone, prednisolone or dexamethasone (10(-8 M and 10(-6 M. IL-1β, TNF-α, IL-8, glutamine synthetase and GR-α mRNA expression was quantified by qPCR. Equine neutrophils were also incubated for 20 h with or without the three glucocorticoids and cell survival was assessed by flow cytometry and light microscopy on cytospin preparations.We found that glucocorticoids down-regulated LPS-induced pro-inflammatory mRNA expression in both cell populations and species. These drugs also significantly increased glutamine synthetase gene expression in both equine cell populations. The magnitude of glucocorticoid response between cell populations was generally similar in both species. We also showed that dexamethasone had a comparable inhibitory effect on pro-inflammatory gene expression in both human and equine neutrophils. As reported in other species, glucocorticoids significantly increase the survival in equine neutrophils.Glucocorticoids exert genomic effects of similar magnitude on neutrophils and on other blood leukocytes. We speculate that the poor response to glucocorticoids observed in some

  2. Neutrophils Are Not Less Sensitive Than Other Blood Leukocytes to the Genomic Effects of Glucocorticoids

    Science.gov (United States)

    Hirsch, Gaelle; Lavoie-Lamoureux, Anouk; Beauchamp, Guy; Lavoie, Jean-Pierre

    2012-01-01

    Background Neutrophils are generally considered less responsive to glucocorticoids compared to other inflammatory cells. The reported increase in human neutrophil survival mediated by these drugs partly supports this assertion. However, it was recently shown that dexamethasone exerts potent anti-inflammatory effects in equine peripheral blood neutrophils. Few comparative studies of glucocorticoid effects in neutrophils and other leukocytes have been reported and a relative insensitivity of neutrophils to these drugs could not be ruled out. Objective We assessed glucocorticoid-responsiveness in equine and human peripheral blood neutrophils and neutrophil-depleted leukocytes. Methods Blood neutrophils and neutrophil-depleted leukocytes were isolated from 6 healthy horses and 4 human healthy subjects. Cells were incubated for 5 h with or without LPS (100 ng/mL) alone or combined with hydrocortisone, prednisolone or dexamethasone (10−8 M and 10−6 M). IL-1β, TNF-α, IL-8, glutamine synthetase and GR-α mRNA expression was quantified by qPCR. Equine neutrophils were also incubated for 20 h with or without the three glucocorticoids and cell survival was assessed by flow cytometry and light microscopy on cytospin preparations. Results We found that glucocorticoids down-regulated LPS-induced pro-inflammatory mRNA expression in both cell populations and species. These drugs also significantly increased glutamine synthetase gene expression in both equine cell populations. The magnitude of glucocorticoid response between cell populations was generally similar in both species. We also showed that dexamethasone had a comparable inhibitory effect on pro-inflammatory gene expression in both human and equine neutrophils. As reported in other species, glucocorticoids significantly increase the survival in equine neutrophils. Conclusions Glucocorticoids exert genomic effects of similar magnitude on neutrophils and on other blood leukocytes. We speculate that the poor response to

  3. Reverse translation in tuberculosis: neutrophils as clues for development of active disease

    Directory of Open Access Journals (Sweden)

    Anca eDorhoi

    2014-02-01

    Full Text Available Tuberculosis (TB is a major health issue globally. Although typically the disease can be cured by chemotherapy and prevented – at least in part, in newborn by vaccination, general consensus exists that development of novel intervention measures requires better understanding of disease mechanisms. Human TB is characterized by polarity between host resistance as seen in 2 billion individuals with latent TB infection and susceptibility occurring in 9 million individuals who develop active TB disease every year. Experimental animal models often do not reflect this polarity adequately, calling for a reverse translational approach. Gene expression profiling has allowed identification of biomarkers that discriminate between latent infection and active disease. Functional analysis of most relevant markers in experimental animal models can help to better understand mechanisms driving disease progression. We have embarked on in-depth characterization of candidate markers of pathology and protection hereby harnessing mouse mutants with defined gene deficiencies. Analysis of mutants deficient in miR223 expression and CXCL5 production allowed elucidation of relevant pathogenic mechanisms. Intriguingly, these deficiencies were linked to aberrant neutrophil activities. Our findings point to a detrimental potential of neutrophils in TB. Reciprocally, measures that control neutrophils should be leveraged for amelioration of TB in adjunct to chemotherapy.

  4. Formyl Met-Leu-Phe-Stimulated FPR1 Phosphorylation in Plate-Adherent Human Neutrophils: Enhanced Proteolysis but Lack of Inhibition by Platelet-Activating Factor

    Directory of Open Access Journals (Sweden)

    Algirdas J. Jesaitis

    2018-01-01

    Full Text Available N-formyl-Met-Leu-Phe (fMLF is a model PAMP/DAMP driving human PMN to sites of injury/infection utilizing the GPCR, FPR1. We examined a microtiter plate format for measurement of FPR1 phosphorylation in adherent PMN at high densities and found that a new phosphosensitive FPR1 fragment, 25K-FPR1, accumulates in SDS-PAGE extracts. 25K-FPR1 is fully inhibited by diisopropylfluorophosphate PMN pretreatment but is not physiologic, as its formation failed to be significantly perturbed by ATP depletion, time and temperature of adherence, or adherence mechanism. 25K-FPR1 was minimized by extracting fMLF-exposed PMN in lithium dodecylsulfate at 4°C prior to reduction/alkylation. After exposure of adherent PMN to a 5 log range of PAF before or after fMLF, unlike in suspension PMN, no inhibition of fMLF-induced FPR1 phosphorylation was observed. However, PAF induced the release of 40% of PMN lactate dehydrogenase, implying significant cell lysis. We infer that PAF-induced inhibition of fMLF-dependent FPR1 phosphorylation observed in suspension PMN does not occur in the unlysed adherent PMN. We speculate that although the conditions of the assay may induce PAF-stimulated necrosis, the cell densities on the plates may approach levels observed in inflamed tissues and provide for an explanation of PAF’s divergent effects on FPR1 phosphorylation as well as PMN function.

  5. Human-Robot Teams Informed by Human Performance Moderator Functions

    Science.gov (United States)

    2012-08-29

    performance factors that affect the ability of a human to drive at night, which includes the eyesight of the driver, the fatigue level of the driver...where human factors are factors that affect the performance of an individual. 7 for human interaction. For instance, they explain the various human... affecting trust in human-robot interaction. Human Factors 53(5), 517-527 (2001) 35. Hart, S. G. and Staveland, L. E. Development of NASA-TLX (Task

  6. ADAM9 Is a Novel Product of Polymorphonuclear Neutrophils

    DEFF Research Database (Denmark)

    Roychaudhuri, Robin; Hergrueter, Anja H; Polverino, Francesca

    2014-01-01

    A disintegrin and a metalloproteinase domain (ADAM) 9 is known to be expressed by monocytes and macrophages. In this study, we report that ADAM9 is also a product of human and murine polymorphonuclear neutrophils (PMNs). ADAM9 is not synthesized de novo by circulating PMNs. Rather, ADAM9 protein...

  7. Neutrophil extracellular traps in patients with pulmonary tuberculosis

    NARCIS (Netherlands)

    van der Meer, Anne Jan; Zeerleder, Sacha; Blok, Dana C.; Kager, Liesbeth M.; Lede, Ivar O.; Rahman, Wahid; Afroz, Rumana; Ghose, Aniruddha; Visser, Caroline E.; Zahed, Abu Shahed Md; Husain, Md Anwar; Alam, Khan Mashrequl; Barua, Pravat Chandra; Hassan, Mahtabuddin; Tayab, Md Abu; Dondorp, Arjen M.; van der Poll, Tom

    2017-01-01

    Tuberculosis is a devastating infectious disease causing many deaths worldwide. Recent investigations have implicated neutrophil extracellular traps (NETs) in the host response to tuberculosis. The aim of the current study was to obtain evidence for NETs release in the circulation during human

  8. Localized Subcutaneous Acute Febrile Neutrophilic Dermatosis in a Dog

    Directory of Open Access Journals (Sweden)

    Karolin Schoellhorn

    2012-01-01

    Full Text Available A two-year-old spayed female mixed-breed dog was presented with a five-day history of hemorrhagic gastroenteritis and fever. On physical examination, the dog was lethargic and clinically dehydrated. The skin of the entire ventral abdomen extending to both flanks was erythematous, swollen and painful on palpation. Histopathological examination of skin biopsies revealed a severe diffuse neutrophilic dermatitis and panniculitis, resembling the subcutaneous form of Sweet’s syndrome in humans. A large part of the skin lesion developed full-thickness necrosis. After intensive care, three surgical wound debridements and wound adaptations, the wound healed by secondary intention within ten weeks. In the absence of infection of the skin or neoplasia, a diagnosis of neutrophilic dermatosis and panniculitis, resembling the subcutaneous form of acute febrile neutrophilic dermatosis, was made.

  9. Imaging neutrophil migration dynamics using micro-optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Chu, Kengyeh K.; Yonker, Lael; Som, Avira; Pazos, Michael; Kusek, Mark E.; Hurley, Bryan P.; Tearney, Guillermo J.

    2016-03-01

    Neutrophils are immune cells that undergo chemotaxis, detecting and migrating towards a chemical signal gradient. Neutrophils actively migrate across epithelial boundaries, interacting with the epithelium to selectively permit passage without compromising the epithelial barrier. In many inflammatory disorders, excessive neutrophil migration can cause damage to the epithelium itself. The signaling pathways and mechanisms that facilitate trans-epithelial migration are not fully characterized. Our laboratory has developed micro-optical coherence tomography (μOCT), which has 2 μm lateral resolution and 1 μm axial resolution. As a high-resolution native contrast modality, μOCT can directly visualize individual neutrophils as they interact with a cell layer cultured on a transwell filter. A chemoattractant can be applied to the apical side of inverted monolayer, and human neutrophils placed in the basolateral compartment, while μOCT captures 3D images of the chemotaxis. μOCT images can also generate quantitative metrics of migration volume to study the dependence of chemotaxis on monolayer cell type, chemoattractant type, and disease state of the neutrophils. For example, a disease known as leukocyte adhesion deficiency (LAD) can be simulated by treating neutrophils with antibodies that interfere with the CD18 receptor, a facilitator of trans-epithelial migration. We conducted a migration study of anti-CD18 treated and control neutrophils using T84 intestinal epithelium as a barrier. After one hour, μOCT time-lapse imaging indicated a strong difference in the fraction of neutrophils that remain attached to the epithelium after migration (0.67 +/- 0.12 attached anti-CD18 neutrophils, 0.23 +/- 0.08 attached control neutrophils, n = 6, p < 0.05), as well as a modest but non-significant decrease in total migration volume for treated neutrophils. We can now integrate μOCT-derived migration metrics with simultaneously acquired measurements of transepithelial electrical

  10. Neutrophils, dendritic cells and Toxoplasma.

    Science.gov (United States)

    Denkers, Eric Y; Butcher, Barbara A; Del Rio, Laura; Bennouna, Soumaya

    2004-03-09

    Toxoplasma gondii rapidly elicits strong Type 1 cytokine-based immunity. The necessity for this response is well illustrated by the example of IFN-gamma and IL-12 gene knockout mice that rapidly succumb to the effects of acute infection. The parasite itself is skilled at sparking complex interactions in the innate immune system that lead to protective immunity. Neutrophils are one of the first cell types to arrive at the site of infection, and the cells release several proinflammatory cytokines and chemokines in response to Toxoplasma. Dendritic cells are an important source of IL-12 during infection with T. gondii and other microbial pathogens, and they are also specialized for high-level antigen presentation to T lymphocytes. Tachyzoites express at least two types of molecules that trigger innate immune cell cytokine production. One of these involves Toll-like receptor/MyD88 pathways common to many microbial pathogens. The second pathway is less conventional and involves molecular mimicry between a parasite cyclophilin and host CC chemokine receptor 5-binding ligands. Neutrophils, dendritic cells and Toxoplasma work together to elicit the immune response required for host survival. Cytokine and chemokine cross-talk between parasite-triggered neutrophils and dendritic cells results in recruitment, maturation and activation of the latter. Neutrophil-empowered dendritic cells possess properties expected of highly potent antigen presenting cells that drive T helper 1 generation.

  11. Sirt3 deficiency does not affect venous thrombosis or NETosis despite mild elevation of intracellular ROS in platelets and neutrophils in mice.

    Directory of Open Access Journals (Sweden)

    Hideki Hayashi

    Full Text Available Inflammation is a common denominator in chronic diseases of aging. Yet, how inflammation fuels these diseases remains unknown. Neutrophils are the primary leukocytes involved in the early phase of innate immunity and inflammation. As part of their anti-microbial defense, neutrophils form extracellular traps (NETs by releasing decondensed chromatin lined with cytotoxic proteins. NETs have been shown to induce tissue injury and thrombosis. Here, we demonstrated that Sirt3, a nicotinamide adenine dinucleotide (NAD+-dependent protein deacetylase, an enzyme linked to human longevity, was expressed in mouse neutrophils and platelets. Using Sirt3-/- mice as a model of accelerated aging, we investigated the effects of Sirt3 deficiency on NETosis and platelet function, aiming to detect enhancement of thrombosis. More mitochondrial reactive oxygen species (ROS were generated in neutrophils and platelets of Sirt3-/- mice compared to WT, when stimulated with a low concentration of phorbol 12-myristate 13-acetate (PMA and a high concentration of thrombin, respectively. There were no differences in in vitro NETosis, with or without stimulation. Platelet aggregation was mildly augmented in Sirt3-/- mice compared to WT mice, when stimulated with a low concentration of collagen. The effect of Sirt3 deficiency on platelet and neutrophil activation in vivo was examined by the venous thrombosis model of inferior vena cava stenosis. Elevation of plasma DNA concentration was observed after stenosis in both genotypes, but no difference was shown between the two genotypes. The systemic response to thrombosis was enhanced in Sirt3-/- mice with significantly elevated neutrophil count and reduced platelet count. However, no differences were observed in incidence of thrombus formation, thrombus weight and thrombin-antithrombin complex generation between WT and Sirt3-/- mice. We conclude that Sirt3 does not considerably impact NET formation, platelet function, or venous

  12. Burn injury reduces neutrophil directional migration speed in microfluidic devices.

    Directory of Open Access Journals (Sweden)

    Kathryn L Butler

    2010-07-01

    Full Text Available Thermal injury triggers a fulminant inflammatory cascade that heralds shock, end-organ failure, and ultimately sepsis and death. Emerging evidence points to a critical role for the innate immune system, and several studies had documented concurrent impairment in neutrophil chemotaxis with these post-burn inflammatory changes. While a few studies suggest that a link between neutrophil motility and patient mortality might exist, so far, cumbersome assays have prohibited exploration of the prognostic and diagnostic significance of chemotaxis after burn injury. To address this need, we developed a microfluidic device that is simple to operate and allows for precise and robust measurements of chemotaxis speed and persistence characteristics at single-cell resolution. Using this assay, we established a reference set of migration speed values for neutrophils from healthy subjects. Comparisons with samples from burn patients revealed impaired directional migration speed starting as early as 24 hours after burn injury, reaching a minimum at 72-120 hours, correlated to the size of the burn injury and potentially serving as an early indicator for concurrent infections. Further characterization of neutrophil chemotaxis using this new assay may have important diagnostic implications not only for burn patients but also for patients afflicted by other diseases that compromise neutrophil functions.

  13. Growth factors G-CSF and GM-CSF differentially preserve chemotaxis of neutrophils aging in vitro

    NARCIS (Netherlands)

    Wolach, Baruch; van der Laan, Luc J. W.; Maianski, Nikolai A.; Tool, Anton T. J.; van Bruggen, Robin; Roos, Dirk; Kuijpers, Taco W.

    2007-01-01

    OBJECTIVE: The ability of human neutrophils to migrate was studied during culture in vitro. METHODS: Neutrophils were isolated from human blood and cultured at 37 degrees C. Apoptosis was determined by Annexin-V fluorescein isothiocyanate binding. Receptor expression was measured by fluorescence in

  14. CARD9-Dependent Neutrophil Recruitment Protects against Fungal Invasion of the Central Nervous System.

    Directory of Open Access Journals (Sweden)

    Rebecca A Drummond

    2015-12-01

    Full Text Available Candida is the most common human fungal pathogen and causes systemic infections that require neutrophils for effective host defense. Humans deficient in the C-type lectin pathway adaptor protein CARD9 develop spontaneous fungal disease that targets the central nervous system (CNS. However, how CARD9 promotes protective antifungal immunity in the CNS remains unclear. Here, we show that a patient with CARD9 deficiency had impaired neutrophil accumulation and induction of neutrophil-recruiting CXC chemokines in the cerebrospinal fluid despite uncontrolled CNS Candida infection. We phenocopied the human susceptibility in Card9-/- mice, which develop uncontrolled brain candidiasis with diminished neutrophil accumulation. The induction of neutrophil-recruiting CXC chemokines is significantly impaired in infected Card9-/- brains, from both myeloid and resident glial cellular sources, whereas cell-intrinsic neutrophil chemotaxis is Card9-independent. Taken together, our data highlight the critical role of CARD9-dependent neutrophil trafficking into the CNS and provide novel insight into the CNS fungal susceptibility of CARD9-deficient humans.

  15. Quorum sensing communication between bacteria and human cells: signals, targets and functions

    Directory of Open Access Journals (Sweden)

    Angelika eHolm

    2014-06-01

    Full Text Available Both direct and long-range interactions between pathogenic Pseudomonas aeruginosa bacteria and their eukaryotic hosts are important in the outcome of infections. For cell-to-cell communication, these bacteria employ the quorum sensing (QS system to pass on information of the density of the bacterial population and collectively switch on virulence factor production, biofilm formation and resistance development. Thus, QS allows bacteria to behave as a community to perform tasks which would be impossible for individual cells, e.g. to overcome defense and immune systems and establish infections in higher organisms. This review highlights these aspects of QS and our own recent research on how P.aeruginosa communicates with human cells using the small QS signal molecules N-acyl homoserine lactones (AHL. We focus on how this conversation changes the behavior and function of neutrophils, macrophages and epithelial cells and on how the signaling machinery in human cells responsible for the recognition of AHL. Understanding the bacteria-host relationships at both cellular and molecular levels is essential for the identification of new targets and for the development of novel strategies to fight bacterial infections in the future.

  16. Lifestyle influences human sperm functional quality

    Institute of Scientific and Technical Information of China (English)

    Mnica Ferreira; Joana Vieira Silva; Vladimiro Silva; Antnio Barros; Margarida Fardilha

    2012-01-01

    Objective:To investigate the impact of acute lifestyle changes on human sperm functional quality.Methods:In the academic festivities week, young and apparently healthy male students who voluntarily submit themselves to acute lifestyle alterations(among the potentially important variations are increase in alcohol, caffeine, and tobacco consumption and circadian rhythm shifts) were used as a model system.Sperm samples were obtained before and after the academic week and compared by traditional semen analysis(n=54) and also tested for cleavedPolyADP-ribose polymerase(PARP) protein, an apoptotic marker(n=35).Results:Acute lifestyle changes that occurred during the academic week festivities(the study model) resulted both in a significant reduction in sperm quality, assessed by basic semen analysis(decrease in sperm concentration, total number of spermatozoa, progressive and non-progressive motility and increase in sperm morphological abnormalities) and by an increase in the expression of the apoptotic marker, cleavedPARP, in the ejaculate.Conclusions:Acute lifestyle changes have clear deleterious effects on sperm quality.We propose cleavedPARP as a novel molecular marker, valuable for assessing spermquality in parallel with the basic semen analysis method.

  17. 2',3-dihydroxy-5-methoxybiphenyl suppresses fMLP-induced superoxide anion production and cathepsin G release by targeting the β-subunit of G-protein in human neutrophils.

    Science.gov (United States)

    Liao, Hsiang-Ruei; Chen, Ih-Sheng; Liu, Fu-Chao; Lin, Shinn-Zhi; Tseng, Ching-Ping

    2018-06-15

    This study investigates the effect and the underlying mechanism of 2',3-dihydroxy-5-methoxybiphenyl (RIR-2), a lignan extracted from the roots of Rhaphiolepis indica (L.) Lindl. ex Ker var. tashiroi Hayata ex Matsum. & Hayata (Rosaceae), on N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP)-induced respiratory burst and cathepsin G in human neutrophils. Signaling pathways regulated by RIR-2 which modulated fMLP-induced respiratory burst were evaluated by an interaction between β subunit of G-protein (Gβ) with downstream signaling induced by fMLP and by immunoblotting analysis of the downstream targets of Gβ-protein. RIR-2 inhibited fMLP-induced superoxide anion production (IC 50 :2.57 ± 0.22 μM), cathepsin G release (IC 50 :18.72 ± 3.76 μM) and migration in a concentration dependent manner. RIR-2 specifically suppresses fMLP-induced Src family kinases phosphorylation by inhibiting the interaction between Gβ-protein with Src kinases without inhibiting Src kinases activities, therefore, RIR-2 attenuated the downstream targets of Src kinase, such as phosphorylation of Raf/ERK, AKT, P38, PLCγ2, PKC and translocation Tec, p47 ph ° x and P40 ph ° x from the cytosol to the inner leaflet of the plasma membrane. Furthermore, RIR-2 attenuated fMLP-induced intracellular calcium mobilization by inhibiting the interaction between Gβ-protein with PLCβ2. RIR-2 was not a competitive or allosteric antagonist of fMLP. On the contrary, phorbol 12-myristate 13-acetate (PMA)-induced phosphorylation of Src, AKT, P38, PKC and membrane localization of p47 ph ° x and P40 ph ° x remained unaffected. RIR-2 specifically modulates fMLP-mediated neutrophil superoxide anion production and cathepsin G release by inhibiting the interaction between Gβ-protein with downstream signaling which subsequently interferes with the activation of intracellular calcium, PLCγ2, AKT, p38, PKC, ERK, p47 ph ° x and p40 phox . Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Treatment with Rutin - A Therapeutic Strategy for Neutrophil-Mediated Inflammatory and Autoimmune Diseases - Anti-inflammatory Effects of Rutin on Neutrophils -

    Directory of Open Access Journals (Sweden)

    Bahareh Abd Nikfarjam

    2017-03-01

    Full Text Available Objectives: Neutrophils represent the front line of human defense against infections. Immediately after stimulation, neutrophilic enzymes are activated and produce toxic mediators such as pro-inflammatory cytokines, nitric oxide (NO and myeloperoxidase (MPO. These mediators can be toxic not only to infectious agents but also to host tissues. Because flavonoids exhibit antioxidant and anti-inflammatory effects, they are subjects of interest for pharmacological modulation of inflammation. In the present study, the effects of rutin on stimulus-induced NO and tumor necrosis factor (TNF-α productions and MPO activity in human neutrophils were investigated. Methods: Human peripheral blood neutrophils were isolated using Ficoll-Hypaque density gradient centrifugation coupled with dextran T500 sedimentation. The cell preparations containing > 98% granulocytes were determined by morphological examination through Giemsa staining. Neutrophils were cultured in complete Roswell Park Memorial Institute (RPMI medium, pre-incubated with or without rutin (25 μM for 45 minutes, and stimulated with phorbol 12-myristate 13-acetate (PMA. Then, the TNF-α, NO and MPO productions were analyzed using enzyme-linked immunosorbent assay (ELISA, Griess Reagent, and MPO assay kits, respectively. Also, the viability of human neutrophils was assessed using tetrazolium salt 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT, and neutrophils were treated with various concentrations of rutin (1 - 100 μM, after which MTT was appended and incubated at 37ºC for 4 hour. Results: Rutin at concentrations up to 100 μM did not affect neutrophil viability during the 4-hour incubation period. Rutin significantly decreased the NO and TNF-α productions in human peripheral blood neutrophils compared to PMA-control cells (P < 0.001. Also, MPO activity was significantly reduced by rutin (P < 0.001. Conclusion: In this in vitro study, rutin had an anti-inflammatory effect

  19. The Vi capsular polysaccharide enables Salmonella enterica serovar typhi to evade microbe-guided neutrophil chemotaxis.

    Directory of Open Access Journals (Sweden)

    Tamding Wangdi

    2014-08-01

    Full Text Available Salmonella enterica serovar Typhi (S. Typhi causes typhoid fever, a disseminated infection, while the closely related pathogen S. enterica serovar Typhimurium (S. Typhimurium is associated with a localized gastroenteritis in humans. Here we investigated whether both pathogens differ in the chemotactic response they induce in neutrophils using a single-cell experimental approach. Surprisingly, neutrophils extended chemotactic pseudopodia toward Escherichia coli and S. Typhimurium, but not toward S. Typhi. Bacterial-guided chemotaxis was dependent on the presence of complement component 5a (C5a and C5a receptor (C5aR. Deletion of S. Typhi capsule biosynthesis genes markedly enhanced the chemotactic response of neutrophils in vitro. Furthermore, deletion of capsule biosynthesis genes heightened the association of S. Typhi with neutrophils in vivo through a C5aR-dependent mechanism. Collectively, these data suggest that expression of the virulence-associated (Vi capsular polysaccharide of S. Typhi obstructs bacterial-guided neutrophil chemotaxis.

  20. Arsenic trioxide (AT) is a novel human neutrophil pro-apoptotic agent: effects of catalase on AT-induced apoptosis, degradation of cytoskeletal proteins and de novo protein synthesis.

    Science.gov (United States)

    Binet, François; Cavalli, Hélène; Moisan, Eliane; Girard, Denis

    2006-02-01

    The anti-cancer drug arsenic trioxide (AT) induces apoptosis in a variety of transformed or proliferating cells. However, little is known regarding its ability to induce apoptosis in terminally differentiated cells, such as neutrophils. Because neutropenia has been reported in some cancer patients after AT treatment, we hypothesised that AT could induce neutrophil apoptosis, an issue that has never been investigated. Herein, we found that AT-induced neutrophil apoptosis and gelsolin degradation via caspases. AT did not increase neutrophil superoxide production and did not induce mitochondrial generation of reactive oxygen species. AT-induced apoptosis in PLB-985 and X-linked chronic granulomatous disease (CGD) cells (PLB-985 cells deficient in gp91(phox) mimicking CGD) at the same potency. Addition of catalase, an inhibitor of H2O2, reversed AT-induced apoptosis and degradation of the cytoskeletal proteins gelsolin, alpha-tubulin and lamin B1. Unexpectedly, AT-induced de novo protein synthesis, which was reversed by catalase. Cycloheximide partially reversed AT-induced apoptosis. We conclude that AT induces neutrophil apoptosis by a caspase-dependent mechanism and via de novo protein synthesis. H2O2 is of major importance in AT-induced neutrophil apoptosis but its production does not originate from nicotinamide adenine dinucleotide phosphate dehydrogenase activation and mitochondria. Cytoskeletal structures other than microtubules can now be considered as novel targets of AT.

  1. Spontaneous neutrophil activation in HTLV-1 infected patients

    Directory of Open Access Journals (Sweden)

    Jaqueline B. Guerreiro

    Full Text Available Human T cell lymphotropic Virus type-1 (HTLV-1 induces lymphocyte activation and proliferation, but little is known about the innate immune response due to HTLV-1 infection. We evaluated the percentage of neutrophils that metabolize Nitroblue tetrazolium (NBT to formazan in HTLV-1 infected subjects and the association between neutrophil activation and IFN-gamma and TNF-alpha levels. Blood was collected from 35 HTLV-1 carriers, from 8 patients with HAM/TSP (HTLV-1- associated myelopathy; 22 healthy individuals were evaluated for spontaneous and lipopolysaccharide (LPS-stimulated neutrophil activity (reduction of NBT to formazan. The production of IFN-gamma and TNF-alpha by unstimulated mononuclear cells was determined by ELISA. Spontaneous NBT levels, as well as spontaneous IFN-gamma and TNF-alpha production, were significantly higher (p<0.001 in HTLV-1 infected subjects than in healthy individuals. A trend towards a positive correlation was noted, with increasing percentage of NBT positive neutrophils and levels of IFN-gamma. The high IFN-gamma producing HTLV-1 patient group had significantly greater NBT than healthy controls, 43±24% and 17±4.8% respectively (p< 0.001, while no significant difference was observed between healthy controls and the low IFN-gamma-producing HTLV-1 patient group (30±20%. Spontaneous neutrophil activation is another marker of immune perturbation resulting from HTLV-1 infection. In vivo activation of neutrophils observed in HTLV-1 infected subjects is likely to be the same process that causes spontaneous IFN-gamma production, or it may partially result from direct IFN-gamma stimulation.

  2. Functional Crosstalk between Human Papillomaviruses and Lentiviruses

    OpenAIRE

    Pryszlak, Anna Marta

    2016-01-01

    Human papillomaviruses (HPVs) and human immunodeficiency virus‐1 (HIV‐1) are human pathogens of high biomedical significance worldwide. Interestingly, increasing epidemiological evidence indicates that individuals with active HPV infections possess an enhanced risk of being infected by HIV‐1. These findings raise the possibility that HPVs may directly or indirectly increase the pathogenicity of lentiviruses, such as HIV‐1. Using a Vesicular Stomatitis Virus‐G‐(VSV‐G)‐pseudotype...

  3. Toward discovery science of human brain function

    DEFF Research Database (Denmark)

    Biswal, Bharat B; Mennes, Maarten; Zuo, Xi-Nian

    2010-01-01

    Although it is being successfully implemented for exploration of the genome, discovery science has eluded the functional neuroimaging community. The core challenge remains the development of common paradigms for interrogating the myriad functional systems in the brain without the constraints...... individual's functional connectome exhibits unique features, with stable, meaningful interindividual differences in connectivity patterns and strengths. Comprehensive mapping of the functional connectome, and its subsequent exploitation to discern genetic influences and brain-behavior relationships...... in the brain. To initiate discovery science of brain function, the 1000 Functional Connectomes Project dataset is freely accessible at www.nitrc.org/projects/fcon_1000/....

  4. Differential expression of granulopoiesis related genes in neutrophil subsets distinguished by membrane expression of CD177

    DEFF Research Database (Denmark)

    Hu, Nan; Mora-Jensen, Helena; Theilgaard-Mønch, Kim

    2014-01-01

    OBJECTIVE: Differential gene expression in CD177+ and CD177- neutrophils was investigated, in order to detect possible differences in neutrophil function which could be related to the pathogenesis of ANCA-associated Vasculitides (AAV). METHODS: Neutrophils were isolated from healthy controls (HC......) with high, negative or bimodal CD177 expression, and sorted into CD177+ and CD177- subpopulations. Total RNA was screened for expression of 24,000 probes with Illumina Ref-8 Beadchips. Genes showing differential expression between CD177+ and CD177- subsets in microarray analysis were re-assessed using...... quantitative-PCR. CD177 expression on neutrophil precursors in bone marrow was analyzed using quantitative PCR and flowcytometry. RESULTS: The proportion of CD177+ cells increased during neutrophil maturation in bone marrow. Fold change analysis of gene expression profile of sorted CD177+ and CD177...

  5. Depression of efficiency of neutrophils for Candida albicans phagocytosis in personnel working in radiation field

    International Nuclear Information System (INIS)

    Hassan, A.A.

    2000-01-01

    The neutrophil functions, chemotaxis (direct and random migration), phagocytosis using Candida albicans (percent, index), phagocytosis by NBT (percent, score) and adherence were studied on 55 persons working in radiation field (group I) and 40 persons as control (group II). The effect of radiation on blood picture of persons working in this field with special references to leucocytic counts and neutrophil functions was studied. White and red cells counts were 6.275 +- 1.723 and 5.475 +- 1.039 (group I) and 6.440 +- 1.556, 4.704 +- 0.734 for group II, respectively with no significant difference, while in neutrophil function there was a statistically significant difference in all functions between two groups (P < 0.01). This indicates the importance of neutrophil functions in following up persons working in radiation field

  6. Neutrophils Compromise Retinal Pigment Epithelial Barrier Integrity

    Directory of Open Access Journals (Sweden)

    Jiehao Zhou

    2010-01-01

    Full Text Available We hypothesized that neutrophils and their secreted factors mediate breakdown of the integrity of the outer blood-retina-barrier by degrading the apical tight junctions of the retinal pigment epithelium (RPE. The effect of activated neutrophils or neutrophil cell lysate on apparent permeability of bovine RPE-Choroid explants was evaluated by measuring [H] mannitol flux in a modified Ussing chamber. The expression of matrix metalloproteinase- (MMP- 9 in murine peritoneal neutrophils, and the effects of neutrophils on RPE tight-junction protein expression were assessed by confocal microscopy and western blot. Our results revealed that basolateral incubation of explants with neutrophils decreased occludin and ZO-1 expression at 1 and 3 hours and increased the permeability of bovine RPE-Choroid explants by >3-fold (P<.05. Similarly, basolateral incubation of explants with neutrophil lysate decreased ZO-1 expression at 1 and 3 hours (P<.05 and increased permeability of explants by 75%. Further, we found that neutrophils prominently express MMP-9 and that incubation of explants with neutrophils in the presence of anti-MMP-9 antibody inhibited the increase in permeability. These data suggest that neutrophil-derived MMP-9 may play an important role in disrupting the integrity of the outer blood-retina barrier.

  7. Functional analysis of human and chimpanzee promoters.

    Science.gov (United States)

    Heissig, Florian; Krause, Johannes; Bryk, Jaroslaw; Khaitovich, Philipp; Enard, Wolfgang; Pääbo, Svante

    2005-01-01

    It has long been argued that changes in gene expression may provide an additional and crucial perspective on the evolutionary differences between humans and chimpanzees. To investigate how often expression differences seen in tissues are caused by sequence differences in the proximal promoters, we tested the expression activity in cultured cells of human and chimpanzee promoters from genes that differ in mRNA expression between human and chimpanzee tissues. Twelve promoters for which the corresponding gene had been shown to be differentially expressed between humans and chimpanzees in liver or brain were tested. Seven showed a significant difference in activity between the human promoter and the orthologous chimpanzee promoter in at least one of the two cell lines used. However, only three of them showed a difference in the same direction as in the tissues. Differences in proximal promoter activity are likely to be common between humans and chimpanzees, but are not linked in a simple fashion to gene-expression levels in tissues. This suggests that several genetic differences between humans and chimpanzees might be responsible for a single expression difference and thus that relevant expression differences between humans and chimpanzees will be difficult to predict from cell culture experiments or DNA sequences.

  8. Functional impact of the human mobilome.

    Science.gov (United States)

    Babatz, Timothy D; Burns, Kathleen H

    2013-06-01

    The human genome is replete with interspersed repetitive sequences derived from the propagation of mobile DNA elements. Three families of human retrotransposons remain active today: LINE1, Alu, and SVA elements. Since 1988, de novo insertions at previously recognized disease loci have been shown to generate highly penetrant alleles in Mendelian disorders. Only recently has the extent of germline-transmitted retrotransposon insertion polymorphism (RIP) in human populations been fully realized. Also exciting are recent studies of somatic retrotransposition in human tissues and reports of tumor-specific insertions, suggesting roles in tissue heterogeneity and tumorigenesis. Here we discuss mobile elements in human disease with an emphasis on exciting developments from the last several years. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Mixed species biofilms of Fusobacterium necrophorum and Porphyromonas levii impair the oxidative response of bovine neutrophils in vitro.

    Science.gov (United States)

    Lockhart, Joey S; Buret, Andre G; Ceri, Howard; Storey, Douglas G; Anderson, Stefanie J; Morck, Douglas W

    2017-10-01

    Biofilms composed of anaerobic bacteria can result in persistent infections and chronic inflammation. Host immune cells have difficulties clearing biofilm-related infections and this can result in tissue damage. Neutrophils are a vital component of the innate immune system and help clear biofilms. The comparative neutrophilic response to biofilms versus planktonic bacteria remains incompletely understood, particularly in the context of mixed infections. The objective of this study was to generate mixed species anaerobic bacterial biofilms composed of two opportunistic pathogens, Fusobacterium necrophorum and Porphyromonas levii, and evaluate neutrophil responses to extracellular fractions from both biofilms and planktonic cell co-cultures of the same bacteria. Purified bovine neutrophils exposed to culture supernatants from mixed species planktonic bacteria showed elevated oxidative activity compared to neutrophils exposed to biofilms composed of the same bacteria. Bacterial lipopolysaccharide plays a significant role in the stimulation of neutrophils; biofilms produced substantially more lipopolysaccharide than planktonic bacteria under these experimental conditions. Removal of lipopolysaccharide significantly reduced neutrophil oxidative response to culture supernatants of planktonic bacteria. Oxidative responses to LPS-removed biofilm supernatants and LPS-removed planktonic cell supernatants were similar. The limited neutrophil response to biofilm bacteria observed in this study supports the reduced ability of the innate immune system to eradicate biofilm-associated infections. Lipopolysaccharide is likely important in neutrophil response; however, the presence of other extracellular, immune modifying molecules in the bacterial media also appears to be important in altering neutrophil function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Development and function of human innate immune cells in a humanized mouse model.

    Science.gov (United States)

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V; Teichmann, Lino L; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A Karolina; Manz, Markus G; Flavell, Richard A

    2014-04-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models cannot support development of human innate immune cells, including myeloid cells and natural killer (NK) cells. Here we describe two mouse strains called MITRG and MISTRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked into their respective mouse loci. The human cytokines support the development and function of monocytes, macrophages and NK cells derived from human fetal liver or adult CD34(+) progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MITRG and MISTRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.

  11. N-Formyl-Perosamine Surface Homopolysaccharides Hinder the Recognition of Brucella abortus by Mouse Neutrophils.

    Science.gov (United States)

    Mora-Cartín, Ricardo; Chacón-Díaz, Carlos; Gutiérrez-Jiménez, Cristina; Gurdián-Murillo, Stephany; Lomonte, Bruno; Chaves-Olarte, Esteban; Barquero-Calvo, Elías; Moreno, Edgardo

    2016-06-01

    Brucella abortus is an intracellular pathogen of monocytes, macrophages, dendritic cells, and placental trophoblasts. This bacterium causes a chronic disease in bovines and in humans. In these hosts, the bacterium also invades neutrophils; however, it fails to replicate and just resists the killing action of these leukocytes without inducing significant activation or neutrophilia. Moreover, B. abortus causes the premature cell death of human neutrophils. In the murine model, the bacterium is found within macrophages and dendritic cells at early times of infection but seldom in neutrophils. Based on this observation, we explored the interaction of mouse neutrophils with B. abortus In contrast to human, dog, and bovine neutrophils, naive mouse neutrophils fail to recognize smooth B. abortus bacteria at early stages of infection. Murine normal serum components do not opsonize smooth Brucella strains, and neutrophil phagocytosis is achieved only after the appearance of antibodies. Alternatively, mouse normal serum is capable of opsonizing rough Brucella mutants. Despite this, neutrophils still fail to kill Brucella, and the bacterium induces cell death of murine leukocytes. In addition, mouse serum does not opsonize Yersinia enterocolitica O:9, a bacterium displaying the same surface polysaccharide antigen as smooth B. abortus Therefore, the lack of murine serum opsonization and absence of murine neutrophil recognition are specific, and the molecules responsible for the Brucella camouflage are N-formyl-perosamine surface homopolysaccharides. Although the mouse is a valuable model for understanding the immunobiology of brucellosis, direct extrapolation from one animal system to another has to be undertaken with caution. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. A Neutrophil Phenotype Model for Extracorporeal Treatment of Sepsis.

    Directory of Open Access Journals (Sweden)

    Alexander D Malkin

    2015-10-01

    Full Text Available Neutrophils play a central role in eliminating bacterial pathogens, but may also contribute to end-organ damage in sepsis. Interleukin-8 (IL-8, a key modulator of neutrophil function, signals through neutrophil specific surface receptors CXCR-1 and CXCR-2. In this study a mechanistic computational model was used to evaluate and deploy an extracorporeal sepsis treatment which modulates CXCR-1/2 levels. First, a simplified mechanistic computational model of IL-8 mediated activation of CXCR-1/2 receptors was developed, containing 16 ODEs and 43 parameters. Receptor level dynamics and systemic parameters were coupled with multiple neutrophil phenotypes to generate dynamic populations of activated neutrophils which reduce pathogen load, and/or primed neutrophils which cause adverse tissue damage when misdirected. The mathematical model was calibrated using experimental data from baboons administered a two-hour infusion of E coli and followed for a maximum of 28 days. Ensembles of parameters were generated using a Bayesian parallel tempering approach to produce model fits that could recreate experimental outcomes. Stepwise logistic regression identified seven model parameters as key determinants of mortality. Sensitivity analysis showed that parameters controlling the level of killer cell neutrophils affected the overall systemic damage of individuals. To evaluate rescue strategies and provide probabilistic predictions of their impact on mortality, time of onset, duration, and capture efficacy of an extracorporeal device that modulated neutrophil phenotype were explored. Our findings suggest that interventions aiming to modulate phenotypic composition are time sensitive. When introduced between 3-6 hours of infection for a 72 hour duration, the survivor population increased from 31% to 40-80%. Treatment efficacy quickly diminishes if not introduced within 15 hours of infection. Significant harm is possible with treatment durations ranging from 5

  13. Cathepsin G-dependent modulation of platelet thrombus formation in vivo by blood neutrophils.

    Directory of Open Access Journals (Sweden)

    Nauder Faraday

    Full Text Available Neutrophils are consistently associated with arterial thrombotic morbidity in human clinical studies but the causal basis for this association is unclear. We tested the hypothesis that neutrophils modulate platelet activation and thrombus formation in vivo in a cathepsin G-dependent manner. Neutrophils enhanced aggregation of human platelets in vitro in dose-dependent fashion and this effect was diminished by pharmacologic inhibition of cathepsin G activity and knockdown of cathepsin G expression. Tail bleeding time in the mouse was prolonged by a cathepsin G inhibitor and in cathepsin G knockout mice, and formation of neutrophil-platelet conjugates in blood that was shed from transected tails was reduced in the absence of cathepsin G. Bleeding time was highly correlated with blood neutrophil count in wildtype but not cathepsin G deficient mice. In the presence of elevated blood neutrophil counts, the anti-thrombotic effect of cathepsin G inhibition was greater than that of aspirin and additive to it when administered in combination. Both pharmacologic inhibition of cathepsin G and its congenital absence prolonged the time for platelet thrombus to form in ferric chloride-injured mouse mesenteric arterioles. In a vaso-occlusive model of ischemic stroke, inhibition of cathepsin G and its congenital absence improved cerebral blood flow, reduced histologic brain injury, and improved neurobehavioral outcome. These experiments demonstrate that neutrophil cathepsin G is a physiologic modulator of platelet thrombus formation in vivo and has potential as a target for novel anti-thrombotic therapies.

  14. Functional Neuronal Processing of Human Body Odors

    OpenAIRE

    Lundström, Johan N.; Olsson, Mats J.

    2010-01-01

    Body odors carry informational cues of great importance for individuals across a wide range of species, and signals hidden within the body odor cocktail are known to regulate several key behaviors in animals. For a long time, the notion that humans may be among these species has been dismissed. We now know, however, that each human has a unique odor signature that carries information related to his or her genetic makeup, as well as information about personal environmental variables, such as d...

  15. Neutrophil Reverse Migration Becomes Transparent with Zebrafish

    Directory of Open Access Journals (Sweden)

    Taylor W. Starnes

    2012-01-01

    Full Text Available The precise control of neutrophil-mediated inflammation is critical for both host defense and the prevention of immunopathology. In vivo imaging studies in zebrafish, and more recently in mice, have made the novel observation that neutrophils leave a site of inflammation through a process called neutrophil reverse migration. The application of advanced imaging techniques to the genetically tractable, optically transparent zebrafish larvae was critical for these advances. Still, the mechanisms underlying neutrophil reverse migration and its effects on the resolution or priming of immune responses remain unclear. Here, we review the current knowledge of neutrophil reverse migration, its potential roles in host immunity, and the live imaging tools that make zebrafish a valuable model for increasing our knowledge of neutrophil behavior in vivo.

  16. Neutrophil Extracellular Traps in Ulcerative Colitis

    DEFF Research Database (Denmark)

    Bjerg Bennike, Tue; Carlsen, Thomas Gelsing; Ellingsen, Torkell

    2015-01-01

    microscopy and confocal microscopy. RESULTS: We identified and quantified 5711 different proteins with proteomics. The abundance of the proteins calprotectin and lactotransferrin in the tissue correlated with the degree of tissue inflammation as determined by histology. However, fecal calprotectin did...... not correlate. Forty-six proteins were measured with a statistically significant differences in abundances between the UC colon tissue and controls. Eleven of the proteins with increased abundances in the UC biopsies were associated with neutrophils and neutrophil extracellular traps. The findings were...... validated by microscopy, where an increased abundance of neutrophils and the presence of neutrophil extracellular traps by extracellular DNA present in the UC colon tissue were confirmed. CONCLUSIONS: Neutrophils, induced neutrophil extracellular traps, and several proteins that play a part in innate...

  17. Semi-Automatic Rating Method for Neutrophil Alkaline Phosphatase Activity.

    Science.gov (United States)

    Sugano, Kanae; Hashi, Kotomi; Goto, Misaki; Nishi, Kiyotaka; Maeda, Rie; Kono, Keigo; Yamamoto, Mai; Okada, Kazunori; Kaga, Sanae; Miwa, Keiko; Mikami, Taisei; Masauzi, Nobuo

    2017-01-01

    The neutrophil alkaline phosphatase (NAP) score is a valuable test for the diagnosis of myeloproliferative neoplasms, but it has still manually rated. Therefore, we developed a semi-automatic rating method using Photoshop ® and Image-J, called NAP-PS-IJ. Neutrophil alkaline phosphatase staining was conducted with Tomonaga's method to films of peripheral blood taken from three healthy volunteers. At least 30 neutrophils with NAP scores from 0 to 5+ were observed and taken their images. From which the outer part of neutrophil was removed away with Image-J. These were binarized with two different procedures (P1 and P2) using Photoshop ® . NAP-positive area (NAP-PA) and granule (NAP-PGC) were measured and counted with Image-J. The NAP-PA in images binarized with P1 significantly (P < 0.05) differed between images with NAP scores from 0 to 3+ (group 1) and those from 4+ to 5+ (group 2). The original images in group 1 were binarized with P2. NAP-PGC of them significantly (P < 0.05) differed among all four NAP score groups. The mean NAP-PGC with NAP-PS-IJ indicated a good correlation (r = 0.92, P < 0.001) to results by human examiners. The sensitivity and specificity of NAP-PS-IJ were 60% and 92%, which might be considered as a prototypic method for the full-automatic rating NAP score. © 2016 Wiley Periodicals, Inc.

  18. Human Systems Integration: Requirements and Functional Decomposition

    Science.gov (United States)

    Berson, Barry; Gershzohn, Gary; Boltz, Laura; Wolf, Russ; Schultz, Mike

    2005-01-01

    This deliverable was intended as an input to the Access 5 Policy and Simulation Integrated Product Teams. This document contains high-level pilot functionality for operations in the National Airspace System above FL430. Based on the derived pilot functions the associated pilot information and control requirements are given.

  19. Prolonged pharmacological inhibition of cathepsin C results in elimination of neutrophil serine proteases

    DEFF Research Database (Denmark)

    Guarino, Carla; Hamon, Yveline; Croix, Cécile

    2017-01-01

    cyclopropyl nitrile CatC inhibitor almost totally lack elastase. We confirmed the elimination of neutrophil elastase-like proteases by prolonged inhibition of CatC in a non-human primate. We also showed that neutrophils lacking elastase-like protease activities were still recruited to inflammatory sites....... These preclinical results demonstrate that the disappearance of neutrophil elastase-like proteases as observed in PLS patients can be achieved by pharmacological inhibition of bone marrow CatC. Such a transitory inhibition of CatC might thus help to rebalance the protease load during chronic inflammatory diseases...

  20. Effects of Wharton's jelly-derived mesenchymal stem cells on neonatal neutrophils

    Directory of Open Access Journals (Sweden)

    Khan I

    2014-12-01

    Full Text Available Imteyaz Khan,1 Liying Zhang,2 Moiz Mohammed,1 Faith E Archer,1 Jehan Abukharmah,1 Zengrong Yuan,2 S Saif Rizvi,1 Michael G Melek,1 Arnold B Rabson,1,2 Yufang Shi,2 Barry Weinberger,1 Anna M Vetrano1,21Department of Pediatrics, Division of Neonatology, Rutgers Robert Wood Johnson Medical School, 2Rutgers Child Health Institute of New Jersey, New Brunswick, NJ, USABackground: Mesenchymal stem cells (MSCs have been proposed as autologous therapy for inflammatory diseases in neonates. MSCs from umbilical cord Wharton's jelly (WJ-MSCs are accessible, with high proliferative capacity. The effects of WJ-MSCs on neutrophil activity in neonates are not known. We compared the effects of WJ-MSCs on apoptosis and the expression of inflammatory, oxidant, and antioxidant mediators in adult and neonatal neutrophils.Methods: WJ-MSCs were isolated, and their purity and function were confirmed by flow cytometry. Neutrophils were isolated from cord and adult blood by density centrifugation. The effects of neutrophil/WJ-MSC co-culture on apoptosis and gene and protein expression were measured.Results: WJ-MSCs suppressed neutrophil apoptosis in a dose-dependent manner. WJ-MSCs decreased gene expression of NADPH oxidase-1 in both adult and neonatal neutrophils, but decreased heme oxygenase-1 and vascular endothelial growth factor and increased catalase and cyclooxygenase-2 in the presence of lipopolysaccharide only in adult cells. Similarly, generation of interleukin-8 was suppressed in adult but not neonatal neutrophils. Thus, WJ-MSCs dampened oxidative, vascular, and inflammatory activity by adult neutrophils, but neonatal neutrophils were less responsive. Conversely, Toll-like receptor-4, and cyclooxygenase-2 were upregulated in WJ-MSCs only in the presence of adult neutrophils, suggesting an inflammatory MSC phenotype that is not induced by neonatal neutrophils.Conclusion: Whereas WJ-MSCs altered gene expression in adult neutrophils in ways suggesting anti

  1. Infection and cellular defense dynamics in a novel 17β-estradiol murine model of chronic human group B streptococcus genital tract colonization reveal a role for hemolysin in persistence and neutrophil accumulation.

    Science.gov (United States)

    Carey, Alison J; Tan, Chee Keong; Mirza, Shaper; Irving-Rodgers, Helen; Webb, Richard I; Lam, Alfred; Ulett, Glen C

    2014-02-15

    Genital tract carriage of group B streptococcus (GBS) is prevalent among adult women; however, the dynamics of chronic GBS genital tract carriage, including how GBS persists in this immunologically active host niche long term, are not well defined. To our knowledge, in this study, we report the first animal model of chronic GBS genital tract colonization using female mice synchronized into estrus by delivery of 17β-estradiol prior to intravaginal challenge with wild-type GBS 874391. Cervicovaginal swabs, which were used to measure bacterial persistence, showed that GBS colonized the vaginal mucosa of mice at high numbers (10(6)-10(7) CFU/swab) for at least 90 d. Cellular and histological analyses showed that chronic GBS colonization of the murine genital tract caused significant lymphocyte and PMN cell infiltrates, which were localized to the vaginal mucosal surface. Long-term colonization was independent of regular hormone cycling. Immunological analyses of 23 soluble proteins related to chemotaxis and inflammation showed that the host response to GBS in the genital tract comprised markers of innate immune activation including cytokines such as GM-CSF and TNF-α. A nonhemolytic isogenic mutant of GBS 874391, Δcyle9, was impaired for colonization and was associated with amplified local PMN responses. Induction of DNA neutrophil extracellular traps, which was observed in GBS-infected human PMNs in vitro in a hemolysin-dependent manner, appeared to be part of this response. Overall, this study defines key infection dynamics in a novel murine model of chronic GBS genital tract colonization and establishes previously unknown cellular and soluble defense responses to GBS in the female genital tract.

  2. General versus regional anaesthesia for cataract surgery: effects on neutrophil apoptosis and the postoperative pro-inflammatory state.

    LENUS (Irish Health Repository)

    Goto, Y

    2012-02-03

    At clinically relevant concentrations, volatile anaesthetic agents influence neutrophil function. Our hypothesis was that sevoflurane would inhibit neutrophil apoptosis and consequently influence the postoperative pro-inflammatory state. In order to identify selectively the effect of the anaesthetic agent sevoflurane, we studied patients undergoing minimally stimulating (cataract) surgery randomly allocated to receive either sevoflurane (n = 11) or local anaesthesia (n = 12). Venous blood samples were taken immediately prior to anaesthesia and at 1, 8 and 24 h thereafter. The rate of neutrophil apoptosis, plasma concentration of cytokines and differential white cell count were measured. The rates of neutrophil apoptosis and plasma concentrations of IL-1beta, TNF-alpha and IL-8 at each time point were similar in the two groups. IL-6 concentrations increased significantly and to a similar extent compared to preanaesthetic levels at 8 and 24 h. This study demonstrates that sevoflurane does not influence the rate of neutrophil apoptosis, cytokine concentrations and neutrophil count following cataract surgery.

  3. Complement Activation Induces Neutrophil Adhesion and Neutrophil-Platelet Aggregate Formation on Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Magdalena Riedl

    2017-01-01

    Discussion: Therefore, our findings of (i neutrophils adhering to complement-activated endothelial cells, (ii the formation of neutrophil-platelet aggregates on endothelial cells, and (iii the ability of aHUS serum to induce similar effects identify a possible role for neutrophils in aHUS manifestation.

  4. Functional neuronal processing of human body odors.

    Science.gov (United States)

    Lundström, Johan N; Olsson, Mats J

    2010-01-01

    Body odors carry informational cues of great importance for individuals across a wide range of species, and signals hidden within the body odor cocktail are known to regulate several key behaviors in animals. For a long time, the notion that humans may be among these species has been dismissed. We now know, however, that each human has a unique odor signature that carries information related to his or her genetic makeup, as well as information about personal environmental variables, such as diet and hygiene. Although a substantial number of studies have investigated the behavioral effects of body odors, only a handful have studied central processing. Recent studies have, however, demonstrated that the human brain responds to fear signals hidden within the body odor cocktail, is able to extract kin specific signals, and processes body odors differently than other perceptually similar odors. In this chapter, we provide an overview of the current knowledge of how the human brain processes body odors and the potential importance these signals have for us in everyday life. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Marijuana Effects on Human Forgetting Functions

    Science.gov (United States)

    Lane, Scott D.; Cherek, Don R.; Lieving, Lori M.; Tcheremissine, Oleg V.

    2005-01-01

    It has long been known that acute marijuana administration impairs working memory (e.g., the discrimination of stimuli separated by a delay). The determination of which of the individual components of memory are altered by marijuana is an unresolved problem. Previous human studies did not use test protocols that allowed for the determination of…

  6. Human reproduction functions: Evaluation with radiobioassay

    International Nuclear Information System (INIS)

    El Hassan, N.D.

    1983-01-01

    Many studies reveal that the ovary is capable of responding to an adequate gonadotropic stimulus long before menarche. Similarly, the pituitary is capable of producing gonadotropins in response to an adequate hypothalamic signal before menarche. Recent studies in the primate confirm that the hypothalamus signals are temporarily different before menarche as compared to the reproductive years, so that if the luteotropic hormone (LRH) stimulus is pulsed to the pituitary at the required time sequence, the follicle stimulating hormone (FSH) and the luteinizing hormone (LH) as well as ovulation can be achieved even in the immature monkey. HPL is another hormone produced by the syncytiotrophoblast that is also used to identify pregnancies at a higher risk of fetal demise. It shares structural similarities with the human growth hormone (hGH) and PRL. HPL is diabetogenic. Its effect is mediated through glucose metabolism. Circulating HPL is elevated during multiple gestations. Its circulating levels in fact correlate with the fetoplacental mass. It has a short half-life and the larger the fetoplacental mass, the higher the HPL level. Hyperglycemic states are associated with a decrease in HPL levels, and hypoglycemia is associated with elevated levels of HPL. RIA through the measurement of HPL has helped in the management of the high-risk fetus and its mother. Through RIA other fetoplacental hormones are identifiable and their levels are obtainable. There is a human chorionic ACTH, a human chorionic TSH, and a human chorionic PRL. These can be involved in health and disease

  7. Type 1 Diabetes Prone NOD Mice Have Diminished Cxcr1 mRNA Expression in Polymorphonuclear Neutrophils and CD4+ T Lymphocytes.

    Directory of Open Access Journals (Sweden)

    Karine Haurogné

    Full Text Available In humans, CXCR1 and CXCR2 are two homologous proteins that bind ELR+ chemokines. Both receptors play fundamental roles in neutrophil functions such as migration and reactive oxygen species production. Mouse Cxcr1 and Cxcr2 genes are located in an insulin-dependent diabetes genetic susceptibility locus. The non obese diabetic (NOD mouse is a spontaneous well-described animal model for insulin-dependent type 1 diabetes. In this disease, insulin deficiency results from the destruction of insulin-producing beta cells by autoreactive T lymphocytes. This slow-progressing disease is dependent on both environmental and genetic factors. Here, we report descriptive data about the Cxcr1 gene in NOD mice. We demonstrate decreased expression of mRNA for Cxcr1 in neutrophils and CD4+ lymphocytes isolated from NOD mice compared to other strains, related to reduced NOD Cxcr1 gene promoter activity. Looking for Cxcr1 protein, we next analyze the membrane proteome of murine neutrophils by mass spectrometry. Although Cxcr2 protein is clearly found in murine neutrophils, we did not find evidence of Cxcr1 peptides using this method. Nevertheless, in view of recently-published experimental data obtained in NOD mice, we argue for possible Cxcr1 involvement in type 1 diabetes pathogenesis.

  8. Genomic profiling of neutrophil transcripts in Asian Qigong practitioners: a pilot study in gene regulation by mind-body interaction.

    Science.gov (United States)

    Li, Quan-Zhen; Li, Ping; Garcia, Gabriela E; Johnson, Richard J; Feng, Lili

    2005-02-01

    The great similarity of the genomes of humans and other species stimulated us to search for genes regulated by elements associated with human uniqueness, such as the mind-body interaction. DNA microarray technology offers the advantage of analyzing thousands of genes simultaneously, with the potential to determine healthy phenotypic changes in gene expression. The aim of this study was to determine the genomic profile and function of neutrophils in Falun Gong (FLG, an ancient Chinese Qigong) practitioners, with healthy subjects as controls. Six (6) Asian FLG practitioners and 6 Asian normal healthy controls were recruited for our study. The practitioners have practiced FLG for at least 1 year (range, 1-5 years). The practice includes daily reading of FLG books and daily practice of exercises lasting 1-2 hours. Selected normal healthy controls did not perform Qigong, yoga, t'ai chi, or any other type of mind-body practice, and had not followed any conventional physical exercise program for at least 1 year. Neutrophils were isolated from fresh blood and assayed for gene expression, using microarrays and RNase protection assay (RPA), as well as for function (phagocytosis) and survival (apoptosis). The changes in gene expression of FLG practitioners in contrast to normal healthy controls were characterized by enhanced immunity, downregulation of cellular metabolism, and alteration of apoptotic genes in favor of a rapid resolution of inflammation. The lifespan of normal neutrophils was prolonged, while the inflammatory neutrophils displayed accelerated cell death in FLG practitioners as determined by enzyme-linked immunosorbent assay. Correlating with enhanced immunity reflected by microarray data, neutrophil phagocytosis was significantly increased in Qigong practitioners. Some of the altered genes observed by microarray were confirmed by RPA. Qigong practice may regulate immunity, metabolic rate, and cell death, possibly at the transcriptional level. Our pilot study

  9. Circulating neutrophil transcriptome may reveal intracranial aneurysm signature.

    Directory of Open Access Journals (Sweden)

    Vincent M Tutino

    Full Text Available Unruptured intracranial aneurysms (IAs are typically asymptomatic and undetected except for incidental discovery on imaging. Blood-based diagnostic biomarkers could lead to improvements in IA management. This exploratory study examined circulating neutrophils to determine whether they carry RNA expression signatures of IAs.Blood samples were collected from patients receiving cerebral angiography. Eleven samples were collected from patients with IAs and 11 from patients without IAs as controls. Samples from the two groups were paired based on demographics and comorbidities. RNA was extracted from isolated neutrophils and subjected to next-generation RNA sequencing to obtain differential expressions for identification of an IA-associated signature. Bioinformatics analyses, including gene set enrichment analysis and Ingenuity Pathway Analysis, were used to investigate the biological function of all differentially expressed transcripts.Transcriptome profiling identified 258 differentially expressed transcripts in patients with and without IAs. Expression differences were consistent with peripheral neutrophil activation. An IA-associated RNA expression signature was identified in 82 transcripts (p<0.05, fold-change ≥2. This signature was able to separate patients with and without IAs on hierarchical clustering. Furthermore, in an independent, unpaired, replication cohort of patients with IAs (n = 5 and controls (n = 5, the 82 transcripts separated 9 of 10 patients into their respective groups.Preliminary findings show that RNA expression from circulating neutrophils carries an IA-associated signature. These findings highlight a potential to use predictive biomarkers from peripheral blood samples to identify patients with IAs.

  10. Circulating neutrophil transcriptome may reveal intracranial aneurysm signature

    Science.gov (United States)

    Tutino, Vincent M.; Poppenberg, Kerry E.; Jiang, Kaiyu; Jarvis, James N.; Sun, Yijun; Sonig, Ashish; Siddiqui, Adnan H.; Snyder, Kenneth V.; Levy, Elad I.; Kolega, John

    2018-01-01

    Background Unruptured intracranial aneurysms (IAs) are typically asymptomatic and undetected except for incidental discovery on imaging. Blood-based diagnostic biomarkers could lead to improvements in IA management. This exploratory study examined circulating neutrophils to determine whether they carry RNA expression signatures of IAs. Methods Blood samples were collected from patients receiving cerebral angiography. Eleven samples were collected from patients with IAs and 11 from patients without IAs as controls. Samples from the two groups were paired based on demographics and comorbidities. RNA was extracted from isolated neutrophils and subjected to next-generation RNA sequencing to obtain differential expressions for identification of an IA-associated signature. Bioinformatics analyses, including gene set enrichment analysis and Ingenuity Pathway Analysis, were used to investigate the biological function of all differentially expressed transcripts. Results Transcriptome profiling identified 258 differentially expressed transcripts in patients with and without IAs. Expression differences were consistent with peripheral neutrophil activation. An IA-associated RNA expression signature was identified in 82 transcripts (pIAs on hierarchical clustering. Furthermore, in an independent, unpaired, replication cohort of patients with IAs (n = 5) and controls (n = 5), the 82 transcripts separated 9 of 10 patients into their respective groups. Conclusion Preliminary findings show that RNA expression from circulating neutrophils carries an IA-associated signature. These findings highlight a potential to use predictive biomarkers from peripheral blood samples to identify patients with IAs. PMID:29342213

  11. Targeting Neutrophil Protease-Mediated Degradation of Tsp-1 to Induce Metastatic Dormancy

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0615 TITLE: Targeting Neutrophil Protease-Mediated Degradation of Tsp-1 to Induce Metastatic Dormancy PRINCIPAL...29 Sep 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Targeting Neutrophil Protease-Mediated Degradation of Tsp-1 to Induce Metastatic Dormancy...infection or cigarette smoke enhanced pulmonary metastasis from breast cancer in humans and mice. Similarly, autoimmune arthritis, characterized by

  12. Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells

    International Nuclear Information System (INIS)

    Park, Yoon Shin; Lim, Goh-Woon; Cho, Kyung-Ah; Woo, So-Youn; Shin, Meeyoung; Yoo, Eun-Sun; Chan Ra, Jeong; Ryu, Kyung-Ha

    2012-01-01

    Highlights: ► Neutropenia is a principal complication of cancer treatment. ► Co-culture of neutrophils with AD-MSC retained cell survival and proliferation and inhibited neutrophil apoptosis under serum starved conditions. ► AD-MSC increased functions of neutrophil. ► AD-MSC promoted the viability of neutrophils by enhancing respiratory burst through the expression of IFN-α, G-CSF, and TGF-β. ► AD-MSC can be used to improve immunity for neutropenia treatment. -- Abstract: Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cells by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-α, granulocyte colony-stimulating factor (G-CSF), granulocyte–macrophage colony-stimulating factor, and transforming growth factor (TGF)-β in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-α, G-CSF, and TGF-β. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function.

  13. Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yoon Shin; Lim, Goh-Woon [Department of Pediatrics, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of); Cho, Kyung-Ah; Woo, So-Youn; Shin, Meeyoung [Department of Microbiology, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of); Yoo, Eun-Sun [Department of Pediatrics, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of); Chan Ra, Jeong [Stem Cell Research Center, RNL BIO, Seoul 153-768 (Korea, Republic of); Ryu, Kyung-Ha, E-mail: ykh@ewha.ac.kr [Department of Pediatrics, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Neutropenia is a principal complication of cancer treatment. Black-Right-Pointing-Pointer Co-culture of neutrophils with AD-MSC retained cell survival and proliferation and inhibited neutrophil apoptosis under serum starved conditions. Black-Right-Pointing-Pointer AD-MSC increased functions of neutrophil. Black-Right-Pointing-Pointer AD-MSC promoted the viability of neutrophils by enhancing respiratory burst through the expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Black-Right-Pointing-Pointer AD-MSC can be used to improve immunity for neutropenia treatment. -- Abstract: Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cells by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-{alpha}, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-{beta} in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function.

  14. Different innate neutrophil responses in controlled and uncontrolled asthma

    NARCIS (Netherlands)

    Tang, Francesca; Foxley, Gloria; Gibson, Peter; Burgess, Janette; Baines, Katherine; Oliver, Brian

    2015-01-01

    Introduction: Respiratory viruses are a major cause of asthma exacerbations. Neutrophilic inflammation occurs during infections and is associated with difficult to treat asthma. The role of neutrophils in viral infections and whether neutrophil dysfunction contributes to exacerbation pathogenesis

  15. Ensemble models of neutrophil trafficking in severe sepsis.

    Directory of Open Access Journals (Sweden)

    Sang Ok Song

    Full Text Available A hallmark of severe sepsis is systemic inflammation which activates leukocytes and can result in their misdirection. This leads to both impaired migration to the locus of infection and increased infiltration into healthy tissues. In order to better understand the pathophysiologic mechanisms involved, we developed a coarse-grained phenomenological model of the acute inflammatory response in CLP (cecal ligation and puncture-induced sepsis in rats. This model incorporates distinct neutrophil kinetic responses to the inflammatory stimulus and the dynamic interactions between components of a compartmentalized inflammatory response. Ensembles of model parameter sets consistent with experimental observations were statistically generated using a Markov-Chain Monte Carlo sampling. Prediction uncertainty in the model states was quantified over the resulting ensemble parameter sets. Forward simulation of the parameter ensembles successfully captured experimental features and predicted that systemically activated circulating neutrophils display impaired migration to the tissue and neutrophil sequestration in the lung, consequently contributing to tissue damage and mortality. Principal component and multiple regression analyses of the parameter ensembles estimated from survivor and non-survivor cohorts provide insight into pathologic mechanisms dictating outcome in sepsis. Furthermore, the model was extended to incorporate hypothetical mechanisms by which immune modulation using extracorporeal blood purification results in improved outcome in septic rats. Simulations identified a sub-population (about 18% of the treated population that benefited from blood purification. Survivors displayed enhanced neutrophil migration to tissue and reduced sequestration of lung neutrophils, contributing to improved outcome. The model ensemble presented herein provides a platform for generating and testing hypotheses in silico, as well as motivating further experimental

  16. Rapid Sequestration of Leishmania mexicana by Neutrophils Contributes to the Development of Chronic Lesion.

    Directory of Open Access Journals (Sweden)

    Benjamin P Hurrell

    2015-05-01

    Full Text Available The protozoan Leishmania mexicana parasite causes chronic non-healing cutaneous lesions in humans and mice with poor parasite control. The mechanisms preventing the development of a protective immune response against this parasite are unclear. Here we provide data demonstrating that parasite sequestration by neutrophils is responsible for disease progression in mice. Within hours of infection L. mexicana induced the local recruitment of neutrophils, which ingested parasites and formed extracellular traps without markedly impairing parasite survival. We further showed that the L. mexicana-induced recruitment of neutrophils impaired the early recruitment of dendritic cells at the site of infection as observed by intravital 2-photon microscopy and flow cytometry analysis. Indeed, infection of neutropenic Genista mice and of mice depleted of neutrophils at the onset of infection demonstrated a prominent role for neutrophils in this process. Furthermore, an increase in monocyte-derived dendritic cells was also observed in draining lymph nodes of neutropenic mice, correlating with subsequent increased frequency of IFNγ-secreting T helper cells, and better parasite control leading ultimately to complete healing of the lesion. Altogether, these findings show that L. mexicana exploits neutrophils to block the induction of a protective immune response and impairs the control of lesion development. Our data thus demonstrate an unanticipated negative role for these innate immune cells in host defense, suggesting that in certain forms of cutaneous leishmaniasis, regulating neutrophil recruitment could be a strategy to promote lesion healing.

  17. Role of oncogene 24p3 neutrophil gelatinase-associated lipocalin (NGAL) in digestive system cancers.

    Science.gov (United States)

    Michalak, Łukasz; Bulska, Magdalena; Kudłacz, Katarzyna; Szcześniak, Piotr

    2016-01-04

    Neutrophil gelatinase-associated lipocalin, known also as 24p3 lipocalin, lipocalin-2 or uterocalin (in mouse), is a small secretory protein binding small molecular weight ligands which takes part in numerous processes including apoptosis induction in leukocytes, iron transport, smell, and prostaglandins and retinol transport [19]. It was discovered in activated neutrophils as a covalent peptide associated with human gelatinase neutrophils [7]. Neutrophil lipocalin is secreted physiologically in the digestive system, respiratory tract, renal tubular cells, liver or immunity system. Systematic (circulated in plasma) neutrophil gelatinase come from multiple sources; it may be synthesized in the liver, secreted from activated neutrophils or macrophages, or derive from atherosclerosis or inflammatory endothelial cells [17]. NGAL is stored secondarily in granulates with lactoferrin, calprotectin or MAC-1, which take part in neutrophils' action and migration [13,19]. NGAL participates in acute and chronic inflammation (production of NGAL is indicated by factors conducive to cancer progression) [13,21]. NGAL levels increase in inflammatory or endothelial damage. NGAL level is measured in blood or urine. It is known as a kidney failure factor [7,20]. NGAL is therefore one of the most promising new generation biomarkers in clinical nephrology [6]. The role of NGAL in digestive system neoplasms has not been explored in detail. However, overexpression of this marker was proved in neoplasms such as esophageal carcinoma, stomach cancer, pancreatic cancer or colon cancer, which may indicate an association between concentration and neoplasm [3].

  18. High glucose impairs superoxide production from isolated blood neutrophils

    DEFF Research Database (Denmark)

    Perner, A; Nielsen, S E; Rask-Madsen, J

    2003-01-01

    Superoxide (O(2)(-)), a key antimicrobial agent in phagocytes, is produced by the activity of NADPH oxidase. High glucose concentrations may, however, impair the production of O(2)(-) through inhibition of glucose-6-phosphate dehydrogenase (G6PD), which catalyzes the formation of NADPH. This study...... measured the acute effects of high glucose or the G6PD inhibitor dehydroepiandrosterone (DHEA) on the production of O(2)(-) from isolated human neutrophils....

  19. Neutrophil migration under normal and sepsis conditions.

    Science.gov (United States)

    Lerman, Yelena V; Kim, Minsoo

    2015-01-01

    Neutrophil migration is critical for pathogen clearance and host survival during severe sepsis. Interaction of neutrophil adhesion receptors with ligands on endothelial cells results in firm adhesion of the circulating neutrophils, followed by neutrophil activation and directed migration to sites of infection through the basement membrane and interstitial extracellular matrix. Proteolytic enzymes and reactive oxygen species are produced and released by neutrophils in response to a variety of inflammatory stimuli. Although these mediators are important for host defense, they also promote tissue damage. Excessive neutrophil migration during the early stages of sepsis may lead to an exaggerated inflammatory response with associated tissue damage and subsequent organ dysfunction. On the other hand, dysregulation of migration and insufficient migratory response that occurs during the latter stages of severe sepsis contributes to neutrophils' inability to contain and control infection and impaired wound healing. This review discusses the major steps and associated molecules involved in the balance of neutrophil trafficking, the precise regulation of which during sepsis spells life or death for the host.

  20. Neutrophil heterogeneity: implications for homeostasis and pathogenesis

    NARCIS (Netherlands)

    Silvestre-Roig, Carlos; Hidalgo, Andres; Soehnlein, Oliver

    2016-01-01

    Neutrophils are polymorphonuclear leukocytes of the phagocytic system that act as first line of host defense against invading pathogens but are also important mediators of inflammation-induced injury. In contrast to other members of the innate immune system, neutrophils are classically considered a

  1. Neutrophils: potential therapeutic targets in tularemia?

    Directory of Open Access Journals (Sweden)

    Lee-Ann H Allen

    2013-12-01

    Full Text Available The central role of neutrophils in innate immunity and host defense has long been recognized, and the ability of these cells to efficiently engulf and kill invading bacteria has been extensively studied, as has the role of neutrophil apoptosis in resolution of the inflammatory response. In the past few years additional immunoregulatory properties of neutrophils were discovered, and it is now clear that these cells play a much greater role in control of the immune response than was previously appreciated. In this regard, it is noteworthy that Francisella tularensis is one of relatively few pathogens that can successfully parasitize neutrophils as well as macrophages, DC and epithelial cells. Herein we will review the mechanisms used by F. tularensis to evade elimination by neutrophils. We will also reprise effects of this pathogen on neutrophil migration and lifespan as compared with other infectious and inflammatory disease states. In addition, we will discuss the evidence which suggests that neutrophils contribute to disease progression rather than effective defense during tularemia, and consider whether manipulation of neutrophil migration or turnover may be suitable adjunctive therapeutic strategies.

  2. The Functional Neuroanatomy of Human Face Perception.

    Science.gov (United States)

    Grill-Spector, Kalanit; Weiner, Kevin S; Kay, Kendrick; Gomez, Jesse

    2017-09-15

    Face perception is critical for normal social functioning and is mediated by a network of regions in the ventral visual stream. In this review, we describe recent neuroimaging findings regarding the macro- and microscopic anatomical features of the ventral face network, the characteristics of white matter connections, and basic computations performed by population receptive fields within face-selective regions composing this network. We emphasize the importance of the neural tissue properties and white matter connections of each region, as these anatomical properties may be tightly linked to the functional characteristics of the ventral face network. We end by considering how empirical investigations of the neural architecture of the face network may inform the development of computational models and shed light on how computations in the face network enable efficient face perception.

  3. Marijuana's effects on human cognitive functions, psychomotor functions, and personality.

    Science.gov (United States)

    Murray, J B

    1986-01-01

    Marijuana is complex chemically and not yet fully understood, but it is not a narcotic. Like alcohol, marijuana acts as both stimulant and depressant, but it lingers in body organs longer than alcohol. Smoking marijuana can injure mucosal tissue and may have more carcinogenic potential than tobacco. Research has indicated that marijuana intoxication definitely hinders attention, long-term memory storage, and psychomotor skills involved in driving a car or flying a plane. Expectations and past experience with marijuana have often influenced results more than pharmacological aspects have. Marijuana has triggered psychotic episodes in those more vulnerable. Psychological and some instances of physiological dependence on marijuana have been demonstrated. As a psychoactive drug, marijuana surely alters mental functioning. Although it is possible that chronic use of marijuana produces irreversible damage to mind or brain areas, this has not been determined by research.

  4. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    DEFF Research Database (Denmark)

    Moore, Aimee M.; Munck, Christian; Sommer, Morten Otto Alexander

    2011-01-01

    The human intestinal microbiota encode multiple critical functions impacting human health, including metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity...... microorganisms, but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community, independent of identity to known genes, by subjecting the metagenome to functional assays in a genetically tractable host....... Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex...

  5. On the allocation of functions between human and machine

    International Nuclear Information System (INIS)

    Wirstad, J.

    1979-09-01

    The idea of allocating functions between human and machine was proceduralized early through aids like Fitts' List which describes the relative advantages of men and machines. Although the principle is clear, function allocation has never worked in practice. Some conditions for function allocations are discussed; adequate logic, a common man-machine system language, usable human engineering guides and data and professional habits and attitudes. Trends which will influence ergonomics procedures are described; influence from technology, increasing work environment requirements and user participation requirements. A procedural structure for human engineering or ergonomics in control system design is suggested. This does not include a separate function allocation activity but a number of activities, the result of which will be a systematic function allocation. A case study on ergonomics techniques for systematic function allocation in a control system is described in an appendix to the report. (author)

  6. Contribution of neutrophils to acute lung injury.

    Science.gov (United States)

    Grommes, Jochen; Soehnlein, Oliver

    2011-01-01

    Treatment of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), remain unsolved problems of intensive care medicine. ALI/ARDS are characterized by lung edema due to increased permeability of the alveolar-capillary barrier and subsequent impairment of arterial oxygenation. Lung edema, endothelial and epithelial injury are accompanied by an influx of neutrophils into the interstitium and broncheoalveolar space. Hence, activation and recruitment of neutrophils are regarded to play a key role in progression of ALI/ARDS. Neutrophils are the first cells to be recruited to the site of inflammation and have a potent antimicrobial armour that includes oxidants, proteinases and cationic peptides. Under pathological circumstances, however, unregulated release of these microbicidal compounds into the extracellular space paradoxically can damage host tissues. This review focuses on the mechanisms of neutrophil recruitment into the lung and on the contribution of neutrophils to tissue damage in ALI.

  7. Effects of chronic occupational exposure to anaesthetic gases on the rate of neutrophil apoptosis among anaesthetists.

    LENUS (Irish Health Repository)

    Tyther, R

    2012-02-03

    BACKGROUND AND OBJECTIVE: Volatile anaesthetic agents are known to influence neutrophil function. The aim was to determine the effect of chronic occupational exposure to volatile anaesthetic agents on the rate of neutrophil apoptosis among anaesthetists. To test this hypothesis, we compared the rate of neutrophil apoptosis in anaesthetists who had been chronically exposed to volatile anaesthetic agents with that in unexposed volunteers. METHODS: Venous blood (20 mL) was withdrawn from 24 ASA I-II volunteers, from which neutrophils were isolated, and maintained in culture. At 1, 12 and 24 h in culture, the percentage of neutrophil apoptosis was assessed by dual staining with annexin V-FITC and propidium iodide. RESULTS: At 1 h (but not at 12 and 24 h) in culture, the rate of neutrophil apoptosis was significantly less in the anaesthetists--13.8 (12.9%) versus 34.4 (12.1%) (P = 0.001). CONCLUSIONS: Chronic occupational exposure to volatile anaesthetic agents may inhibit neutrophil apoptosis. This may have implications for anaesthetists and similarly exposed healthcare workers in terms of the adequacy of their inflammatory response.

  8. Effect of aberrations in human eye on contrast sensitivity function

    Science.gov (United States)

    Quan, Wei; Wang, Feng-lin; Wang, Zhao-qi

    2011-06-01

    The quantitative analysis of the effect of aberrations in human eye on vision has important clinical value in the correction of aberrations. The wave-front aberrations of human eyes were measured with the Hartmann-Shack wave-front sensor and modulation transfer function (MTF) was computed from the wave-front aberrations. Contrast sensitivity function (CSF) was obtained from MTF and the retinal aerial image modulation (AIM). It is shown that the 2nd, 3rd, 4th, 5th, 6th Zernike aberrations deteriorate contrast sensitivity function. When the 2nd, 3rd, 4th, 5th, 6th Zernike aberrations are corrected high contrast sensitivity function can be obtained.

  9. A canine model of Cohen syndrome: Trapped Neutrophil Syndrome.

    Science.gov (United States)

    Shearman, Jeremy R; Wilton, Alan N

    2011-05-23

    Trapped Neutrophil Syndrome (TNS) is a common autosomal recessive neutropenia in Border collie dogs. We used a candidate gene approach and linkage analysis to show that the causative gene for TNS is VPS13B. We chose VPS13B as a candidate because of similarities in clinical signs between TNS and Cohen syndrome, in human, such as neutropenia and a typical facial dysmorphism. Linkage analysis using microsatellites close to VPS13B showed positive linkage of the region to TNS. We sequenced each of the 63 exons of VPS13B in affected and control dogs and found that the causative mutation in Border collies is a 4 bp deletion in exon 19 of the largest transcript that results in premature truncation of the protein. Cohen syndrome patients present with mental retardation in 99% of cases, but learning disabilities featured in less than half of TNS affected dogs. It has been implied that loss of the alternate transcript of VPS13B in the human brain utilising an alternate exon, 28, may cause mental retardation. Mice cannot be used to test this hypothesis as they do not express the alternate exon. We show that dogs do express alternate transcripts in the brain utilising an alternate exon homologous to human exon 28. Dogs can be used as a model organism to explore the function of the alternately spliced transcript of VPS13B in the brain. TNS in Border collies is the first animal model for Cohen syndrome and can be used to study the disease aetiology.

  10. A canine model of Cohen syndrome: Trapped Neutrophil Syndrome

    Directory of Open Access Journals (Sweden)

    Shearman Jeremy R

    2011-05-01

    Full Text Available Abstract Background Trapped Neutrophil Syndrome (TNS is a common autosomal recessive neutropenia in Border collie dogs. Results We used a candidate gene approach and linkage analysis to show that the causative gene for TNS is VPS13B. We chose VPS13B as a candidate because of similarities in clinical signs between TNS and Cohen syndrome, in human, such as neutropenia and a typical facial dysmorphism. Linkage analysis using microsatellites close to VPS13B showed positive linkage of the region to TNS. We sequenced each of the 63 exons of VPS13B in affected and control dogs and found that the causative mutation in Border collies is a 4 bp deletion in exon 19 of the largest transcript that results in premature truncation of the protein. Cohen syndrome patients present with mental retardation in 99% of cases, but learning disabilities featured in less than half of TNS affected dogs. It has been implied that loss of the alternate transcript of VPS13B in the human brain utilising an alternate exon, 28, may cause mental retardation. Mice cannot be used to test this hypothesis as they do not express the alternate exon. We show that dogs do express alternate transcripts in the brain utilising an alternate exon homologous to human exon 28. Conclusion Dogs can be used as a model organism to explore the function of the alternately spliced transcript of VPS13B in the brain. TNS in Border collies is the first animal model for Cohen syndrome and can be used to study the disease aetiology.

  11. Human otolith function, experiment M009

    Science.gov (United States)

    Graybiel, A.; Miller, E. F., II

    1971-01-01

    The experiments that were performed during the Gemini 5 and 7 missions resulted in quantitative information concerning otolithic function and orientation of four subjects exposed to an orbiting spacecraft environment for prolonged periods of time. Preflight counterrolling measurements revealed significant differences between crewmembers with regard to the basic magnitude of otolith response. However, after the flight, each crewmember maintained his respective preflight level of response. This was indicative that no significant change in otolithic sensitivity occurred as a result of the flight, or at least no change persisted long enough to be recorded several hours after recovery. The EVLH data recorded for each subject confirmed the observation that a coordinate space sense exists even in a weightless environment if contact cues are adequate. However, it was noted that the apparent location of the horizontal within the spacecraft may not agree necessarily with its physical correlate in the spacecraft.

  12. Protective effects of an aptamer inhibitor of neutrophil elastase in lung inflammatory injury

    DEFF Research Database (Denmark)

    Bless, N M; Smith, D; Charlton, J

    1997-01-01

    Neutrophils play an important part in the development of acute inflammatory injury. Human neutrophils contain high levels of the serine protease elastase, which is stored in azurophilic granules and is secreted in response to inflammatory stimuli. Elastase is capable of degrading many components...... of extracellular matrix [1-4] and has cytotoxic effects on endothelial cells [5-7] and airway epithelial cells. Three types of endogenous protease inhibitors control the activity of neutrophil elastase, including alpha-1 protease inhibitor (alpha-1PI), alpha-2 macroglobulin and secreted leukoproteinase inhibitor...... (SLPI) [8-10]. A disturbed balance between neutrophil elastase and these inhibitors has been found in various acute clinical conditions (such as adult respiratory syndrome and ischemia-reperfusion injury) and in chronic diseases. We investigated the effect of NX21909, a selected oligonucleotide (aptamer...

  13. The effect of lidocaine on neutrophil respiratory burst during induction of general anaesthesia and tracheal intubation.

    LENUS (Irish Health Repository)

    Swanton, B J

    2012-02-03

    BACKGROUND AND OBJECTIVE: Respiratory burst is an essential component of the neutrophil\\'s biocidal function. In vitro, sodium thiopental, isoflurane and lidocaine each inhibit neutrophil respiratory burst. The objectives of this study were (a) to determine the effect of a standard clinical induction\\/tracheal intubation sequence on neutrophil respiratory burst and (b) to determine the effect of intravenous lidocaine administration during induction of anaesthesia on neutrophil respiratory burst. METHODS: Twenty ASA I and II patients, aged 18-60 years, undergoing elective surgery were studied. After induction of anaesthesia [fentanyl (2 microg kg-1), thiopental (4-6 mg kg-1), isoflurane (end-tidal concentration 0.5-1.5%) in nitrous oxide (66%) and oxygen], patients randomly received either lidocaine 1.5 mg kg-1 (group L) or 0.9% saline (group S) prior to tracheal intubation. Neutrophil respiratory burst was measured immediately prior to induction of anaesthesia, immediately before and 1 and 5 min after lidocaine\\/saline. RESULTS: Neutrophil respiratory burst decreased significantly after induction of anaesthesia in both groups [87.4 +\\/- 8.2% (group L) and 88.5 +\\/- 13.4% (group S) of preinduction level (P < 0.01 both groups)]. After intravenous lidocaine (but not saline) administration, neutrophil respiratory burst returned towards preinduction levels, both before (97.1 +\\/- 23.6%) and after (94.4 +\\/- 16.6%) tracheal intubation. CONCLUSION: Induction of anaesthesia and tracheal intubation using thiopentone and isoflurane, inhibit neutrophil respiratory burst. This effect may be diminished by the administration of lidocaine.

  14. Structural analysis of the receptors for granulocyte colony-stimulating factor on neutrophils

    International Nuclear Information System (INIS)

    Hanazono, Y.; Hosoi, T.; Kuwaki, T.; Matsuki, S.; Miyazono, K.; Miyagawa, K.; Takaku, F.

    1990-01-01

    We investigated granulocyte colony-stimulating factor (G-CSF) receptors on neutrophils from three patients with chronic myelogenous leukemia (CML) in the chronic phase, in comparison with four normal volunteers. Because we experienced some difficulties in radioiodinating intact recombinant human G-CSF, we developed a new derivative of human G-CSF termed YPY-G-CSF. It was easy to iodinate this protein using the lactoperoxidase method because of two additional tyrosine residues, and its radioactivity was higher than that previously reported. The biological activity of YPY-G-CSF as G-CSF was fully retained. Scatchard analysis demonstrated that CML neutrophils had a single class of binding sites (1400 +/- 685/cell) with a dissociation constant (Kd) of 245 +/- 66 pM. The number of sites and Kd value of CML neutrophils were not significantly different from those of normal neutrophils (p greater than 0.9). Cross-linking studies revealed two specifically labeled bands of [125I]YPY-G-CSF-receptor complexes with apparent molecular masses of 160 and 110 kd on both normal and CML neutrophils. This is the first report describing two receptor proteins on neutrophils. According to the analyses of the proteolytic process of these cross-linked complexes and proteolytic mapping, we assume that alternative splicing or processing from a single gene may generate two distinct receptor proteins that bind specifically to G-CSF but have different fates in intracellular metabolism

  15. Neutrophils and Granulocytic MDSC: The Janus God of Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Serena Zilio

    2016-09-01

    Full Text Available Neutrophils are the most abundant circulating blood cell type in humans, and are the first white blood cells recruited at the inflammation site where they orchestrate the initial immune response. Although their presence at the tumor site was recognized in the 1970s, until recently these cells have been neglected and considered to play just a neutral role in tumor progression. Indeed, in recent years neutrophils have been recognized to play a dual role in tumor development by either assisting the growth, angiogenesis, invasion, and metastasis or by exerting tumoricidal action directly via the secretion of antitumoral compounds, or indirectly via the orchestration of antitumor immunity. Understanding the biology of these cells and influencing their polarization in the tumor micro- and macro-environment may be the key for the development of new therapeutic strategies, which may finally hold the promise of an effective immunotherapy for cancer.

  16. The endocytic receptor megalin binds the iron transporting neutrophil-gelatinase-associated lipocalin with high affinity and mediates its cellular uptake

    DEFF Research Database (Denmark)

    Hvidberg, Vibeke; Jacobsen, Christian; Strong, Roland K

    2005-01-01

    Neutrophil-gelatinase-associated lipocalin (NGAL) is a prominent protein of specific granules of human neutrophils also synthesized by epithelial cells during inflammation. NGAL binds bacterial siderophores preventing bacteria from retrieving iron from this source. Also, NGAL may be important in ...... by surface plasmon resonance analysis. Furthermore, a rat yolk sac cell line known to express high levels of megalin, endocytosed NGAL by a mechanism completely blocked by an antibody against megalin.......Neutrophil-gelatinase-associated lipocalin (NGAL) is a prominent protein of specific granules of human neutrophils also synthesized by epithelial cells during inflammation. NGAL binds bacterial siderophores preventing bacteria from retrieving iron from this source. Also, NGAL may be important...

  17. Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide.

    Science.gov (United States)

    Sumioka, Ryuichi; Nakata, Masanobu; Okahashi, Nobuo; Li, Yixuan; Wada, Satoshi; Yamaguchi, Masaya; Sumitomo, Tomoko; Hayashi, Mikako; Kawabata, Shigetada

    2017-01-01

    Streptococcus is the dominant bacterial genus in the human oral cavity and a leading cause of infective endocarditis. Streptococcus sanguinis belongs to the mitis group of streptococci and produces hydrogen peroxide (H2O2) by the action of SpxB, a pyruvate oxidase. In this study, we investigated the involvement of SpxB in survival of S. sanguinis in human blood and whether bacterial H2O2 exhibits cytotoxicity against human neutrophils. Results of a bactericidal test with human whole blood revealed that the spxB mutation in S. sanguinis is detrimental to its survival in blood. When S. sanguinis strains were exposed to isolated neutrophils, the bacterial survival rate was significantly decreased by spxB deletion. Furthermore, human neutrophils exposed to the S. sanguinis wild-type strain, in contrast to those exposed to an spxB mutant strain, underwent cell death with chromatin de-condensation and release of web-like extracellular DNA, reflecting induction of neutrophil extracellular traps (NETs). Since reactive oxygen species-mediated NET induction requires citrullination of arginine residues in histone proteins and subsequent chromatin de-condensation, we examined citrullination levels of histone in infected neutrophils. It is important to note that the citrullinated histone H3 was readily detected in neutrophils infected with the wild-type strain, as compared to infection with the spxB mutant strain. Moreover, decomposition of streptococcal H2O2 with catalase reduced NET induction. These results suggest that H2O2 produced by S. sanguinis provokes cell death of neutrophils and NET formation, thus potentially affecting bacterial survival in the bloodstream.

  18. Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide.

    Directory of Open Access Journals (Sweden)

    Ryuichi Sumioka

    Full Text Available Streptococcus is the dominant bacterial genus in the human oral cavity and a leading cause of infective endocarditis. Streptococcus sanguinis belongs to the mitis group of streptococci and produces hydrogen peroxide (H2O2 by the action of SpxB, a pyruvate oxidase. In this study, we investigated the involvement of SpxB in survival of S. sanguinis in human blood and whether bacterial H2O2 exhibits cytotoxicity against human neutrophils. Results of a bactericidal test with human whole blood revealed that the spxB mutation in S. sanguinis is detrimental to its survival in blood. When S. sanguinis strains were exposed to isolated neutrophils, the bacterial survival rate was significantly decreased by spxB deletion. Furthermore, human neutrophils exposed to the S. sanguinis wild-type strain, in contrast to those exposed to an spxB mutant strain, underwent cell death with chromatin de-condensation and release of web-like extracellular DNA, reflecting induction of neutrophil extracellular traps (NETs. Since reactive oxygen species-mediated NET induction requires citrullination of arginine residues in histone proteins and subsequent chromatin de-condensation, we examined citrullination levels of histone in infected neutrophils. It is important to note that the citrullinated histone H3 was readily detected in neutrophils infected with the wild-type strain, as compared to infection with the spxB mutant strain. Moreover, decomposition of streptococcal H2O2 with catalase reduced NET induction. These results suggest that H2O2 produced by S. sanguinis provokes cell death of neutrophils and NET formation, thus potentially affecting bacterial survival in the bloodstream.

  19. Functional similarities between the dictyostelium protein AprA and the human protein dipeptidyl-peptidase IV.

    Science.gov (United States)

    Herlihy, Sarah E; Tang, Yu; Phillips, Jonathan E; Gomer, Richard H

    2017-03-01

    Autocrine proliferation repressor protein A (AprA) is a protein secreted by Dictyostelium discoideum cells. Although there is very little sequence similarity between AprA and any human protein, AprA has a predicted structural similarity to the human protein dipeptidyl peptidase IV (DPPIV). AprA is a chemorepellent for Dictyostelium cells, and DPPIV is a chemorepellent for neutrophils. This led us to investigate if AprA and DPPIV have additional functional similarities. We find that like AprA, DPPIV is a chemorepellent for, and inhibits the proliferation of, D. discoideum cells, and that AprA binds some DPPIV binding partners such as fibronectin. Conversely, rAprA has DPPIV-like protease activity. These results indicate a functional similarity between two eukaryotic chemorepellent proteins with very little sequence similarity, and emphasize the usefulness of using a predicted protein structure to search a protein structure database, in addition to searching for proteins with similar sequences. © 2016 The Protein Society.

  20. Functional similarities between the dictyostelium protein AprA and the human protein dipeptidyl‐peptidase IV

    Science.gov (United States)

    Herlihy, Sarah E.; Tang, Yu; Phillips, Jonathan E.

    2017-01-01

    Abstract Autocrine proliferation repressor protein A (AprA) is a protein secreted by Dictyostelium discoideum cells. Although there is very little sequence similarity between AprA and any human protein, AprA has a predicted structural similarity to the human protein dipeptidyl peptidase IV (DPPIV). AprA is a chemorepellent for Dictyostelium cells, and DPPIV is a chemorepellent for neutrophils. This led us to investigate if AprA and DPPIV have additional functional similarities. We find that like AprA, DPPIV is a chemorepellent for, and inhibits the proliferation of, D. discoideum cells, and that AprA binds some DPPIV binding partners such as fibronectin. Conversely, rAprA has DPPIV‐like protease activity. These results indicate a functional similarity between two eukaryotic chemorepellent proteins with very little sequence similarity, and emphasize the usefulness of using a predicted protein structure to search a protein structure database, in addition to searching for proteins with similar sequences. PMID:28028841

  1. A Preliminary Classification of Human Functional Sexual Disorders

    Science.gov (United States)

    Sharpe, Lawrence; And Others

    1976-01-01

    A preliminary classification is presented for functional human sexual disorders. This system is based on objective behavior and reports of distress. Five categories of sexual disorders are proposed, including the behavioral, psychological and informational components of sexual functioning in the individual and the couple. (Author)

  2. Adult Functional Literacy Curriculum: Effective Strategy for Human ...

    African Journals Online (AJOL)

    Adult functional literacy curriculum no doubt, is a panacea to human resource development in Nigeria. Government and non-government organizations have roles to play in providing functional education to adults who drop out of school or have no opportunity of attending the formal school system for all round development.

  3. Identifying Network Motifs that Buffer Front-to-Back Signaling in Polarized Neutrophils

    Directory of Open Access Journals (Sweden)

    Yanqin Wang

    2013-05-01

    Full Text Available Neutrophil polarity relies on local, mutual inhibition to segregate incompatible signaling circuits to the leading and trailing edges. Mutual inhibition alone should lead to cells having strong fronts and weak backs or vice versa. However, analysis of cell-to-cell variation in human neutrophils revealed that back polarity remains consistent despite changes in front strength. How is this buffering achieved? Pharmacological perturbations and mathematical modeling revealed a functional role for microtubules in buffering back polarity by mediating positive, long-range crosstalk from front to back; loss of microtubules inhibits buffering and results in anticorrelation between front and back signaling. Furthermore, a systematic, computational search of network topologies found that a long-range, positive front-to-back link is necessary for back buffering. Our studies suggest a design principle that can be employed by polarity networks: short-range mutual inhibition establishes distinct signaling regions, after which directed long-range activation insulates one region from variations in the other.

  4. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke.

    Science.gov (United States)

    Gelderblom, Mathias; Weymar, Anna; Bernreuther, Christian; Velden, Joachim; Arunachalam, Priyadharshini; Steinbach, Karin; Orthey, Ellen; Arumugam, Thiruma V; Leypoldt, Frank; Simova, Olga; Thom, Vivien; Friese, Manuel A; Prinz, Immo; Hölscher, Christoph; Glatzel, Markus; Korn, Thomas; Gerloff, Christian; Tolosa, Eva; Magnus, Tim

    2012-11-01

    The devastating effect of ischemic stroke is attenuated in mice lacking conventional and unconventional T cells, suggesting that inflammation enhances tissue damage in cerebral ischemia. We explored the functional role of αβ and γδ T cells in a murine model of stroke and distinguished 2 different T cell-dependent proinflammatory pathways in ischemia-reperfusion injury. IFN-γ produced by CD4(+) T cells induced TNF-α production in macrophages, whereas IL-17A secreted by γδ T cells led to neutrophil recruitment. The synergistic effect of TNF-α and IL-17A on astrocytes resulted in enhanced secretion of CXCL-1, a neutrophil chemoattractant. Application of an IL-17A-blocking antibody within 3 hours after stroke induction decreased infarct size and improved neurologic outcome in the murine model. In autoptic brain tissue of patients who had a stroke, we detected IL-17A-positive lymphocytes, suggesting that this aspect of the inflammatory cascade is also relevant in the human brain. We propose that selective targeting of IL-17A signaling might provide a new therapeutic option for the treatment of stroke.

  5. An anatomical and functional topography of human auditory cortical areas

    Directory of Open Access Journals (Sweden)

    Michelle eMoerel

    2014-07-01

    Full Text Available While advances in magnetic resonance imaging (MRI throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla. Importantly, we illustrate that - whereas a group-based approach to analyze functional (tonotopic maps is appropriate to highlight the main tonotopic axis - the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e. myelination as well as of functional properties (e.g. broadness of frequency tuning is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions.

  6. Ursolic acid inhibits superoxide production in activated neutrophils and attenuates trauma-hemorrhage shock-induced organ injury in rats.

    Directory of Open Access Journals (Sweden)

    Tsong-Long Hwang

    Full Text Available Neutrophil activation is associated with the development of organ injury after trauma-hemorrhagic shock. In the present study, ursolic acid inhibited the superoxide anion generation and elastase release in human neutrophils. Administration of ursolic acid attenuated trauma-hemorrhagic shock-induced hepatic and lung injuries in rats. In addition, administration of ursolic acid attenuated the hepatic malondialdehyde levels and reduced the plasma aspartate aminotransferase and alanine aminotransferase levels after trauma-hemorrhagic shock. In conclusion, ursolic acid, a bioactive natural compound, inhibits superoxide anion generation and elastase release in human neutrophils and ameliorates trauma-hemorrhagic shock-induced organ injury in rats.

  7. Biochemical changes in neutrophils of cervical cancer patients treated with 60Co

    International Nuclear Information System (INIS)

    Krishnamurthy, Vijayalakshmi; Gunalan, Gayathri; Haridas, Sumathy; Thangamani, Vanitha

    2008-01-01

    Cervical carcinoma is the second most common malignancy of the female genital tract in India. The highest incidence occurs at Chennai. This study was conducted on 30 women with biopsy-proved squamous cell carcinoma of the cervix of stage IIb. The neutrophil count increased significantly in cancer patients compared to control subjects. Total protein, glycogen and total lipid increased in neutrophils of cervical cancer patients. The level of cholestrol, triglycerides and fatty acids increased significantly in neutrophils of such patients compared to control subjects. The activity of alkaline phosphatase increased significantly in cervical cancer patients. Upon treatment with cobalt-60, these changes were brought to near-normal levels. This study highlights the impairment in the neutrophil function in cervical cancer patients, which may lead to reduced immune status. (author)

  8. Neutrophil trails guide influenza-specific CD8⁺ T cells in the airways.

    Science.gov (United States)

    Lim, Kihong; Hyun, Young-Min; Lambert-Emo, Kris; Capece, Tara; Bae, Seyeon; Miller, Richard; Topham, David J; Kim, Minsoo

    2015-09-04

    During viral infections, chemokines guide activated effector T cells to infection sites. However, the cells responsible for producing these chemokines and how such chemokines recruit T cells are unknown. Here, we show that the early recruitment of neutrophils into influenza-infected trachea is essential for CD8(+) T cell-mediated immune protection in mice. We observed that migrating neutrophils leave behind long-lasting trails that are enriched in the chemokine CXCL12. Experiments with granulocyte-specific CXCL12 conditionally depleted mice and a CXCR4 antagonist revealed that CXCL12 derived from neutrophil trails is critical for virus-specific CD8(+) T cell recruitment and effector functions. Collectively, these results suggest that neutrophils deposit long-lasting, chemokine-containing trails, which may provide both chemotactic and haptotactic cues for efficient CD8(+) T cell migration and localization in influenza-infected tissues. Copyright © 2015, American Association for the Advancement of Science.

  9. Neutrophil trails guide influenza-specific CD8+ T cells in the airways

    Science.gov (United States)

    Lim, Kihong; Hyun, Young-Min; Lambert-Emo, Kris; Capece, Tara; Bae, Seyeon; Miller, Richard; Topham, David J.; Kim, Minsoo

    2016-01-01

    During viral infections, chemokines guide activated effector T cells to infection sites. However, the cells responsible for producing these chemokines and how such chemokines recruit T cells is unknown. Here, we show that the early recruitment of neutrophils into influenza-infected trachea is essential for CD8+ T cell-mediated immune protection in mice. We observed that migrating neutrophils leave behind long-lasting trails that are enriched in the chemokine CXCL12. Experiments with granulocyte-specific CXCL12 conditional knock-out mice and a CXCR4 antagonist revealed that CXCL12 derived from neutrophil trails is critical for virus-specific CD8+ T cell recruitment and effector functions. Collectively, these results suggest neutrophils deposit long-lasting, chemokine-containing trails, which may provide both chemotactic and haptotactic cues for efficient CD8+ T cell migration and localization in influenza-infected tissues. PMID:26339033

  10. Bioinformatic prediction and functional characterization of human KIAA0100 gene

    Directory of Open Access Journals (Sweden)

    He Cui

    2017-02-01

    Full Text Available Our previous study demonstrated that human KIAA0100 gene was a novel acute monocytic leukemia-associated antigen (MLAA gene. But the functional characterization of human KIAA0100 gene has remained unknown to date. Here, firstly, bioinformatic prediction of human KIAA0100 gene was carried out using online softwares; Secondly, Human KIAA0100 gene expression was downregulated by the clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated (Cas 9 system in U937 cells. Cell proliferation and apoptosis were next evaluated in KIAA0100-knockdown U937 cells. The bioinformatic prediction showed that human KIAA0100 gene was located on 17q11.2, and human KIAA0100 protein was located in the secretory pathway. Besides, human KIAA0100 protein contained a signalpeptide, a transmembrane region, three types of secondary structures (alpha helix, extended strand, and random coil , and four domains from mitochondrial protein 27 (FMP27. The observation on functional characterization of human KIAA0100 gene revealed that its downregulation inhibited cell proliferation, and promoted cell apoptosis in U937 cells. To summarize, these results suggest human KIAA0100 gene possibly comes within mitochondrial genome; moreover, it is a novel anti-apoptotic factor related to carcinogenesis or progression in acute monocytic leukemia, and may be a potential target for immunotherapy against acute monocytic leukemia.

  11. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    Directory of Open Access Journals (Sweden)

    Aimee Marguerite Moore

    2011-10-01

    Full Text Available The human intestinal microbiota encode multiple critical functions impacting human health, including, metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity of this microbial community, its recalcitrance to standard cultivation and the immense diversity of its encoded genes has necessitated the development of novel molecular, microbiological, and genomic tools. Functional metagenomics is one such culture-independent technique used for decades to study environmental microorganisms but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community independent of identity to known genes by subjecting the metagenome to functional assays in a genetically tractable host. Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex community and its human host.

  12. Regional specialization within the human striatum for diverse psychological functions.

    Science.gov (United States)

    Pauli, Wolfgang M; O'Reilly, Randall C; Yarkoni, Tal; Wager, Tor D

    2016-02-16

    Decades of animal and human neuroimaging research have identified distinct, but overlapping, striatal zones, which are interconnected with separable corticostriatal circuits, and are crucial for the organization of functional systems. Despite continuous efforts to subdivide the human striatum based on anatomical and resting-state functional connectivity, characterizing the different psychological processes related to each zone remains a work in progress. Using an unbiased, data-driven approach, we analyzed large-scale coactivation data from 5,809 human imaging studies. We (i) identified five distinct striatal zones that exhibited discrete patterns of coactivation with cortical brain regions across distinct psychological processes and (ii) identified the different psychological processes associated with each zone. We found that the reported pattern of cortical activation reliably predicted which striatal zone was most strongly activated. Critically, activation in each functional zone could be associated with distinct psychological processes directly, rather than inferred indirectly from psychological functions attributed to associated cortices. Consistent with well-established findings, we found an association of the ventral striatum (VS) with reward processing. Confirming less well-established findings, the VS and adjacent anterior caudate were associated with evaluating the value of rewards and actions, respectively. Furthermore, our results confirmed a sometimes overlooked specialization of the posterior caudate nucleus for executive functions, often considered the exclusive domain of frontoparietal cortical circuits. Our findings provide a precise functional map of regional specialization within the human striatum, both in terms of the differential cortical regions and psychological functions associated with each striatal zone.

  13. Decreased neutrophil-associated miRNA and increased B-cell associated miRNA expression during tuberculosis.

    Science.gov (United States)

    van Rensburg, I C; du Toit, L; Walzl, G; du Plessis, N; Loxton, A G

    2018-05-20

    MicroRNAs are short non-coding RNAs that regulate gene expression by binding to, and suppressing the expression of genes. Research show that microRNAs have potential to be used as biomarkers for diagnosis, treatment response and can be used for therapeutic interventions. Furthermore, microRNA expression has effects on immune cell functions, which may lead to disease. Considering the important protective role of neutrophils and B-cells during M.tb infection, we evaluated the expression of microRNAs, known to alter function of these cells, in the context of human TB. We utilised real-time PCR to evaluate the levels of microRNA transcripts in the peripheral blood of TB cases and healthy controls. We found that neutrophil-associated miR-197-3p, miR-99b-5p and miR-191-5p transcript levels were significantly lower in TB cases. Additionally, B-cell-associated miR-320a, miR-204-5p, miR331-3p and other transcript levels were higher in TB cases. The miRNAs differentially expressed in neutrophils are predominantly implicated in signalling pathways leading to cytokine productions. Here, the decreased expression in TB cases may imply a lack of suppression on signalling pathways, which may lead to increased production of pro-inflammatory cytokines such as interferon-gamma. Furthermore, the miRNAs differentially expressed in B-cells are mostly involved in the induction/suppression of apoptosis. Further functional studies are however required to elucidate the significance and functional effects of changes in the expression of these microRNAs. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Human brain networks function in connectome-specific harmonic waves.

    Science.gov (United States)

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  15. Human astrocytes: structure and functions in the healthy brain.

    Science.gov (United States)

    Vasile, Flora; Dossi, Elena; Rouach, Nathalie

    2017-07-01

    Data collected on astrocytes' physiology in the rodent have placed them as key regulators of synaptic, neuronal, network, and cognitive functions. While these findings proved highly valuable for our awareness and appreciation of non-neuronal cell significance in brain physiology, early structural and phylogenic investigations of human astrocytes hinted at potentially different astrocytic properties. This idea sparked interest to replicate rodent-based studies on human samples, which have revealed an analogous but enhanced involvement of astrocytes in neuronal function of the human brain. Such evidence pointed to a central role of human astrocytes in sustaining more complex information processing. Here, we review the current state of our knowledge of human astrocytes regarding their structure, gene profile, and functions, highlighting the differences with rodent astrocytes. This recent insight is essential for assessment of the relevance of findings using animal models and for comprehending the functional significance of species-specific properties of astrocytes. Moreover, since dysfunctional astrocytes have been described in many brain disorders, a more thorough understanding of human-specific astrocytic properties is crucial for better-adapted translational applications.

  16. HEATING AND ULTRAVIOLET LIGHT ACTIVATE ANTI-STRESS GENE FUNCTIONS IN HUMANS

    Directory of Open Access Journals (Sweden)

    Victor Fadeevitch Semenkov

    2015-07-01

    Full Text Available All types of cell stress are accompanied by the activation of anti-stress genes that can suppress ROS synthesis. We hypothesized that different environmental factors would affect organisms through the activation of anti-stress genes by autologous serum (AS proteins, followed by the synthesis of molecules that increase cell resistance to oxidative stress. The goal of this work was to study the influence of AS on ROS production by peripheral blood neutrophils isolated from donors in different age groups. Neutrophils were isolated from 59 donors (38-94 years old. AS was heated at 100˚C for 30 sec. or irradiated by ultraviolet light (UV at 200-280 nm and 8 W for 10 min. Neutrophils were exposed to heat shock at 42˚C for 1 min. (short-term heating stress or 43˚C for 10 min., followed by the determination of the chemiluminescence reaction induced by zymosan. AS can increase or decrease ROS production by neutrophils depending on the structure of the proteins in the serum; these structures can be changed by heating or UV treatment and the temperature of their interaction (4˚C or 37˚C. We propose that the effect of environmental factors on AS proteins can cause an adverse increase in oxidative stress levels due to the functional reduction of anti-stress genes. We found a negative correlation between the quantity of intracellular Hsp70 and levels of intracellular ROS production following 10 minutes of heat shock at 43°C. Short-term heating stress (1 minute at 42°C was followed by a prominent reduction in ROS production. This effect may be a result of the impact of the hormone adrenaline on the functions of anti-stress genes. Indeed, the same effect was observed after treatment of the neutrophils with adrenaline at concentrations of 10-4 M and 10-5 M. In contrast, dexamethasone from the other stress hormone group did not evoke the same effect at the same concentrations.

  17. Cytoarchitecture, probability maps and functions of the human frontal pole.

    Science.gov (United States)

    Bludau, S; Eickhoff, S B; Mohlberg, H; Caspers, S; Laird, A R; Fox, P T; Schleicher, A; Zilles, K; Amunts, K

    2014-06-01

    The frontal pole has more expanded than any other part in the human brain as compared to our ancestors. It plays an important role for specifically human behavior and cognitive abilities, e.g. action selection (Kovach et al., 2012). Evidence about divergent functions of its medial and lateral part has been provided, both in the healthy brain and in psychiatric disorders. The anatomical correlates of such functional segregation, however, are still unknown due to a lack of stereotaxic, microstructural maps obtained in a representative sample of brains. Here we show that the human frontopolar cortex consists of two cytoarchitectonically and functionally distinct areas: lateral frontopolar area 1 (Fp1) and medial frontopolar area 2 (Fp2). Based on observer-independent mapping in serial, cell-body stained sections of 10 brains, three-dimensional, probabilistic maps of areas Fp1 and Fp2 were created. They show, for each position of the reference space, the probability with which each area was found in a particular voxel. Applying these maps as seed regions for a meta-analysis revealed that Fp1 and Fp2 differentially contribute to functional networks: Fp1 was involved in cognition, working memory and perception, whereas Fp2 was part of brain networks underlying affective processing and social cognition. The present study thus disclosed cortical correlates of a functional segregation of the human frontopolar cortex. The probabilistic maps provide a sound anatomical basis for interpreting neuroimaging data in the living human brain, and open new perspectives for analyzing structure-function relationships in the prefrontal cortex. The new data will also serve as a starting point for further comparative studies between human and non-human primate brains. This allows finding similarities and differences in the organizational principles of the frontal lobe during evolution as neurobiological basis for our behavior and cognitive abilities. Copyright © 2013 Elsevier Inc. All

  18. Phylotyping and functional analysis of two ancient human microbiomes.

    Directory of Open Access Journals (Sweden)

    Raúl Y Tito

    Full Text Available BACKGROUND: The Human Microbiome Project (HMP is one of the U.S. National Institutes of Health Roadmap for Medical Research. Primary interests of the HMP include the distinctiveness of different gut microbiomes, the factors influencing microbiome diversity, and the functional redundancies of the members of human microbiotas. In this present work, we contribute to these interests by characterizing two extinct human microbiotas. METHODOLOGY/PRINCIPAL FINDINGS: We examine two paleofecal samples originating from cave deposits in Durango Mexico and dating to approximately 1300 years ago. Contamination control is a serious issue in ancient DNA research; we use a novel approach to control contamination. After we determined that each sample originated from a different human, we generated 45 thousand shotgun DNA sequencing reads. The phylotyping and functional analysis of these reads reveals a signature consistent with the modern gut ecology. Interestingly, inter-individual variability for phenotypes but not functional pathways was observed. The two ancient samples have more similar functional profiles to each other than to a recently published profile for modern humans. This similarity could not be explained by a chance sampling of the databases. CONCLUSIONS/SIGNIFICANCE: We conduct a phylotyping and functional analysis of ancient human microbiomes, while providing novel methods to control for DNA contamination and novel hypotheses about past microbiome biogeography. We postulate that natural selection has more of an influence on microbiome functional profiles than it does on the species represented in the microbial ecology. We propose that human microbiomes were more geographically structured during pre-Columbian times than today.

  19. Identification and Characterization of Roseltide, a Knottin-type Neutrophil Elastase Inhibitor Derived from Hibiscus sabdariffa

    Science.gov (United States)

    Loo, Shining; Kam, Antony; Xiao, Tianshu; Nguyen, Giang K. T.; Liu, Chuan Fa; Tam, James P.

    2016-01-01

    Plant knottins are of therapeutic interest due to their high metabolic stability and inhibitory activity against proteinases involved in human diseases. The only knottin-type proteinase inhibitor against porcine pancreatic elastase was first identified from the squash family in 1989. Here, we report the identification and characterization of a knottin-type human neutrophil elastase inhibitor from Hibiscus sabdariffa of the Malvaceae family. Combining proteomic and transcriptomic methods, we identified a panel of novel cysteine-rich peptides, roseltides (rT1-rT8), which range from 27 to 39 residues with six conserved cysteine residues. The 27-residue roseltide rT1 contains a cysteine spacing and amino acid sequence that is different from the squash knottin-type elastase inhibitor. NMR analysis demonstrated that roseltide rT1 adopts a cystine-knot fold. Transcriptome analyses suggested that roseltides are bioprocessed by asparagine endopeptidases from a three-domain precursor. The cystine-knot structure of roseltide rT1 confers its high resistance against degradation by endopeptidases, 0.2 N HCl, and human serum. Roseltide rT1 was shown to inhibit human neutrophil elastase using enzymatic and pull-down assays. Additionally, roseltide rT1 ameliorates neutrophil elastase-stimulated cAMP accumulation in vitro. Taken together, our findings demonstrate that roseltide rT1 is a novel knottin-type neutrophil elastase inhibitor with therapeutic potential for neutrophil elastase associated diseases. PMID:27991569

  20. Neutrophil Lymphocyte Ratio Predicts Postoperative Pain after ...

    African Journals Online (AJOL)

    2018-02-07

    Feb 7, 2018 ... between preoperatively measured neutrophil-lymphocyte ratio (NLR) – as an inflammation ... analgesic (tenoxicam – as the first drug of choice, paracetamol, tramadol, or pethidine) usage ... fracture fixation). Age, sex, type of ...