WorldWideScience

Sample records for human nasal microbiota

  1. The human nasal microbiota and Staphylococcus aureus carriage.

    Directory of Open Access Journals (Sweden)

    Daniel N Frank

    Full Text Available BACKGROUND: Colonization of humans with Staphylococcus aureus is a critical prerequisite of subsequent clinical infection of the skin, blood, lung, heart and other deep tissues. S. aureus persistently or intermittently colonizes the nares of approximately 50% of healthy adults, whereas approximately 50% of the general population is rarely or never colonized by this pathogen. Because microbial consortia within the nasal cavity may be an important determinant of S. aureus colonization we determined the composition and dynamics of the nasal microbiota and correlated specific microorganisms with S. aureus colonization. METHODOLOGY/PRINCIPAL FINDINGS: Nasal specimens were collected longitudinally from five healthy adults and a cross-section of hospitalized patients (26 S. aureus carriers and 16 non-carriers. Culture-independent analysis of 16S rRNA sequences revealed that the nasal microbiota of healthy subjects consists primarily of members of the phylum Actinobacteria (e.g., Propionibacterium spp. and Corynebacterium spp., with proportionally less representation of other phyla, including Firmicutes (e.g., Staphylococcus spp. and Proteobacteria (e.g. Enterobacter spp. In contrast, inpatient nasal microbiotas were enriched in S. aureus or Staphylococcus epidermidis and diminished in several actinobacterial groups, most notably Propionibacterium acnes. Moreover, within the inpatient population S. aureus colonization was negatively correlated with the abundances of several microbial groups, including S. epidermidis (p = 0.004. CONCLUSIONS/SIGNIFICANCE: The nares environment is colonized by a temporally stable microbiota that is distinct from other regions of the integument. Negative association between S. aureus, S. epidermidis, and other groups suggests microbial competition during colonization of the nares, a finding that could be exploited to limit S. aureus colonization.

  2. Resident aerobic microbiota of the adult human nasal cavity

    DEFF Research Database (Denmark)

    Rasmussen, TT; Kirkeby Nielsen, LP; Poulsen, Knud

    2000-01-01

    Recent evidence strongly suggests that the microbiota of the nasal cavity plays a crucial role in determining the reaction patterns of the mucosal and systemic immune system. However, little is known about the normal microbiota of the nasal cavity. The purpose of this study was to determine...... the microbiota in different parts of the nasal cavity and to develop and evaluate methods for this purpose. Samples were collected from 10 healthy adults by nasal washes and by swabbing of the mucosa through a sterile introduction device. Both methods gave results that were quantitatively and qualitatively...... reproducible, and revealed significant differences in the density of the nasal microbiota between individuals. The study revealed absence of gram-negative bacteria that are regular members of the commensal microbiota of the pharynx. Likewise, viridans type streptococci were sparsely represented. The nasal...

  3. The nasal cavity microbiota of healthy adults

    OpenAIRE

    Bassis, Christine M; Tang, Alice L; Young, Vincent B; Pynnonen, Melissa A

    2014-01-01

    Background The microbiota of the nares has been widely studied. However, relatively few studies have investigated the microbiota of the nasal cavity posterior to the nares. This distinct environment has the potential to contain a distinct microbiota and play an important role in health. Results We obtained 35,142 high-quality bacterial 16S rRNA-encoding gene sequence reads from the nasal cavity and oral cavity (the dorsum of the tongue and the buccal mucosa) of 12 healthy adult humans and dep...

  4. Streptococcus pneumoniae Colonization Is Required To Alter the Nasal Microbiota in Cigarette Smoke-Exposed Mice.

    Science.gov (United States)

    Shen, Pamela; Whelan, Fiona J; Schenck, L Patrick; McGrath, Joshua J C; Vanderstocken, Gilles; Bowdish, Dawn M E; Surette, Michael G; Stämpfli, Martin R

    2017-10-01

    Smokers have nasal microbiota dysbiosis, with an increased frequency of colonizing bacterial pathogens. It is possible that cigarette smoke increases pathogen acquisition by perturbing the microbiota and decreasing colonization resistance. However, it is difficult to disentangle microbiota dysbiosis due to cigarette smoke exposure from microbiota changes caused by increased pathogen acquisition in human smokers. Using an experimental mouse model, we investigated the impact of cigarette smoke on the nasal microbiota in the absence and presence of nasal pneumococcal colonization. We observed that cigarette smoke exposure alone did not alter the nasal microbiota composition. The microbiota composition was also unchanged at 12 h following low-dose nasal pneumococcal inoculation, suggesting that the ability of the microbiota to resist initial nasal pneumococcal acquisition was not impaired in smoke-exposed mice. However, nasal microbiota dysbiosis occurred as a consequence of established high-dose nasal pneumococcal colonization at day 3 in smoke-exposed mice. Similar to clinical reports on human smokers, an enrichment of potentially pathogenic bacterial genera such as Fusobacterium , Gemella , and Neisseria was observed. Our findings suggest that cigarette smoke exposure predisposes to pneumococcal colonization independent of changes to the nasal microbiota and that microbiota dysbiosis observed in smokers may occur as a consequence of established pathogen colonization. Copyright © 2017 American Society for Microbiology.

  5. The human microbiota associated with overall health.

    Science.gov (United States)

    Xu, Xiaofei; Wang, Zhujun; Zhang, Xuewu

    2015-03-01

    Human body harbors diverse microbes, the main components include bacteria, eukaryotes and viruses. Emerging evidences show that the human microbiota is intrinsically linked with overall health. The development of next-generation sequencing provides an unprecedented opportunity to investigate the complex microbial communities that are associated with the human body. Many factors like host genetics and environmental factors have a major impact on the composition and dynamic changes of human microbiota. The purpose of this paper is to present an overview of the relationship between human health and human microbiota (skin, nasal, throat, oral, vaginal and gut microbiota), then to focus on the factors modulating the composition of the microbiota and the future challenges to manipulate the microbiota for personalized health.

  6. Characterization of the nasal and oral microbiota of detection dogs.

    Directory of Open Access Journals (Sweden)

    Anitha Isaiah

    Full Text Available Little is known about physiological factors that affect the sense of olfaction in dogs. The objectives of this study were to describe the canine nasal and oral microbiota in detection dogs. We sought to determine the bacterial composition of the nasal and oral microbiota of a diverse population of detection canines. Nasal and oral swabs were collected from healthy dogs (n = 81 from four locations-Alabama, Georgia, California, and Texas. Nasal and oral swabs were also collected from a second cohort of detection canines belonging to three different detection job categories: explosive detection dogs (SP-E; n = 22, patrol and narcotics detection dogs (P-NDD; n = 15, and vapor wake dogs (VWD-E; n = 9. To understand if the nasal and oral microbiota of detection canines were variable, sample collection was repeated after 7 weeks in a subset of dogs. DNA was extracted from the swabs and used for 454-pyrosequencing of the16S rRNA genes. Nasal samples had a significantly lower diversity than oral samples (P<0.01. Actinobacteria and Proteobacteria were higher in nasal samples, while Bacteroidetes, Firmicutes, Fusobacteria, and Tenericutes were higher in oral samples. Bacterial diversity was not significantly different based on the detection job. No significant difference in beta diversity was observed in the nasal samples based on the detection job. In oral samples, however, ANOSIM suggested a significant difference in bacterial communities based on job category albeit with a small effect size (R = 0.1079, P = 0.02. Analysis of the composition of bacterial communities using LEfSe showed that within the nasal samples, Cardiobacterium and Riemerella were higher in VWD-E dogs, and Sphingobacterium was higher in the P-NDD group. In the oral samples Enterococcus and Capnocytophaga were higher in the P-NDD group. Gemella and Aggregatibacter were higher in S-PE, and Pigmentiphaga, Chryseobacterium, Parabacteroides amongst others were higher within the VWD-E group

  7. Characterization of the nasal and oral microbiota of detection dogs.

    Science.gov (United States)

    Isaiah, Anitha; Hoffmann, Aline Rodrigues; Kelley, Russ; Mundell, Paul; Steiner, Jörg M; Suchodolski, Jan S

    2017-01-01

    Little is known about physiological factors that affect the sense of olfaction in dogs. The objectives of this study were to describe the canine nasal and oral microbiota in detection dogs. We sought to determine the bacterial composition of the nasal and oral microbiota of a diverse population of detection canines. Nasal and oral swabs were collected from healthy dogs (n = 81) from four locations-Alabama, Georgia, California, and Texas. Nasal and oral swabs were also collected from a second cohort of detection canines belonging to three different detection job categories: explosive detection dogs (SP-E; n = 22), patrol and narcotics detection dogs (P-NDD; n = 15), and vapor wake dogs (VWD-E; n = 9). To understand if the nasal and oral microbiota of detection canines were variable, sample collection was repeated after 7 weeks in a subset of dogs. DNA was extracted from the swabs and used for 454-pyrosequencing of the16S rRNA genes. Nasal samples had a significantly lower diversity than oral samples (P<0.01). Actinobacteria and Proteobacteria were higher in nasal samples, while Bacteroidetes, Firmicutes, Fusobacteria, and Tenericutes were higher in oral samples. Bacterial diversity was not significantly different based on the detection job. No significant difference in beta diversity was observed in the nasal samples based on the detection job. In oral samples, however, ANOSIM suggested a significant difference in bacterial communities based on job category albeit with a small effect size (R = 0.1079, P = 0.02). Analysis of the composition of bacterial communities using LEfSe showed that within the nasal samples, Cardiobacterium and Riemerella were higher in VWD-E dogs, and Sphingobacterium was higher in the P-NDD group. In the oral samples Enterococcus and Capnocytophaga were higher in the P-NDD group. Gemella and Aggregatibacter were higher in S-PE, and Pigmentiphaga, Chryseobacterium, Parabacteroides amongst others were higher within the VWD-E group. Our initial

  8. Linking Microbiota to Human Diseases

    DEFF Research Database (Denmark)

    Wu, Hao; Tremaroli, Valentina; Bäckhed, F

    2015-01-01

    The human gut microbiota encompasses a densely populated ecosystem that provides essential functions for host development, immune maturation, and metabolism. Alterations to the gut microbiota have been observed in numerous diseases, including human metabolic diseases such as obesity, type 2...

  9. Piglet nasal microbiota at weaning may influence the development of Glässer's disease during the rearing period.

    Science.gov (United States)

    Correa-Fiz, Florencia; Fraile, Lorenzo; Aragon, Virginia

    2016-05-26

    The microbiota, the ensemble of microorganisms on a particular body site, has been extensively studied during the last few years, and demonstrated to influence the development of many diseases. However, these studies focused mainly on the human digestive system, while the populations in the respiratory tract have been poorly assessed, especially in pigs. The nasal mucosa of piglets is colonized by an array of bacteria, many of which are unknown. Among the early colonizers, Haemophilus parasuis also has clinical importance, since it is also the etiological agent of Glässer's disease. This disease produces economical losses in all the countries with pig production, and the factors influencing its development are not totally understood. Hence, the purpose of this work was to characterize the nasal microbiota composition of piglets, and its possible role in Glässer's disease development. Seven farms from Spain (4 with Glässer's disease and 3 control farms without any respiratory disease) and three farms from UK (all control farms) were studied. Ten piglets from each farm were sampled at 3-4 weeks of age before weaning. The total DNA extracted from nasal swabs was used to amplify the 16S RNA gene for sequencing in Illumina MiSeq. Sequencing data was quality filtered and analyzed using QIIME software. The diversity of the nasal microbiota was low in comparison with other body sites, showing a maximum number of operational taxonomic units (OTUs) per pig of 1,603, clustered in five phyla. Significant differences were found at various taxonomical levels, when the microbiota was compared regarding the farm health status. Healthy status was associated to higher species richness and diversity, and UK farms demonstrated the highest diversity. The composition of the nasal microbiota of healthy piglets was uncovered and different phylotypes were shown to be significantly altered in animals depending on the clinical status of the farm of origin. Several OTUs at genus level were

  10. Microbial shifts in the swine nasal microbiota in response to parenteral antimicrobial administration.

    Science.gov (United States)

    Zeineldin, Mohamed; Aldridge, Brian; Blair, Benjamin; Kancer, Katherine; Lowe, James

    2018-05-24

    The continuous administration of antimicrobials in swine production has been widely criticized with the increase of antimicrobial-resistant bacteria and dysbiosis of the beneficial microbial communities. While an increasing number of studies investigate the effects of antimicrobial administration on swine gastrointestinal microbiota biodiversity, the impact of their use on the composition and diversity of nasal microbial communities has not been widely explored. The objective of this study was to characterize the short-term impact of different parenteral antibiotics administration on the composition and diversity of nasal microbial communities in growing pigs. Five antimicrobial treatment groups, each consisting of four, eight-week old piglets, were administered one of the antimicrobials; Ceftiofur Crystalline free acid (CCFA), Ceftiofur hydrochloride (CHC), Tulathromycin (TUL), Oxytetracycline (OTC), and Procaine Penicillin G (PPG) at label dose and route. Individual deep nasal swabs were collected immediately before antimicrobial administration (control = day 0), and again on days 1, 3, 7, and 14 after dosing. The nasal microbiota across all the samples were dominated by Firmicutes, proteobacteria and Bacteroidetes. While, the predominant bacterial genera were Moraxella, Clostridium and Streptococcus. Linear discriminant analysis, showed a pronounced, antimicrobial-dependent microbial shift in the composition of nasal microbiota and over time from day 0. By day 14, the nasal microbial compositions of the groups receiving CCFA and OTC had returned to a distribution that closely resembled that observed on day 0. In contrast, pigs that received CHC, TUL and PPG appeared to deviate away from the day 0 composition by day 14. Based on our results, it appears that the impact of parenteral antibiotics on the swine nasal microbiota is variable and has a considerable impact in modulating the nasal microbiota structure. Our results will aid in developing alternative

  11. Nasal obstruction and human communication.

    Science.gov (United States)

    Malinoff, R; Moreno, C

    1989-04-01

    Nasal obstruction may cause a variety of communication disorders, particularly in children. The effects of nasal obstruction on hearing, speech, language, and voice are examined. Methods for assessing the effects of nasal obstruction are delineated, and recommendations for therapeutic interventions are described.

  12. The Human Gut Microbiota

    NARCIS (Netherlands)

    Harmsen, Hermie J. M.; de Goffau, Marcus. C.; Schwiertz, A

    2016-01-01

    The microbiota in our gut performs many different essential functions that help us to stay healthy. These functions include vitamin production, regulation of lipid metabolism and short chain fatty acid production as fuel for epithelial cells and regulation of gene expression. There is a very

  13. The Human Microbiota in Early Life

    DEFF Research Database (Denmark)

    Mortensen, Martin Steen

    The bacteria that colonize the human body, our microbiota, can influence our health, both positively and negatively. The importance and functions of the microbiota in our intestinal tract have been the focus of several research projects and are widely published. However, there are great gaps in our...... knowledge concerning microbiota composition, development and function in other areas of human body. Lack of knowledge about the microbiota development in the airways is an example of such a deficiency. The work presented in this PhD thesis is based on the vast sample collection of the COPSAC2010 cohort......, with 700 mother-infant pairs. The objectives were to perform a detailed examination of the mothers’ vaginal microbiota, describe the early composition and development of the microbiota in the airways of their infants, and determine whether the infants’ microbiota are affected by that of their mothers...

  14. Nasal, oral and rectal microbiota of Black lion tamarins (Leontopithecus chrysopygus

    Directory of Open Access Journals (Sweden)

    Vania M. Carvalho

    2014-12-01

    Full Text Available Black lion tamarins (Leontopithecus chrysopygus are endangered callithrichids. Their conservation may require future translocations or reintroductions; however these approaches involve risks of pathogen introduction in the environment and stress-related opportunistic infections in these animals. In order to screen for opportunistic and potential pathogenic bacterial and fungal microbiota, ten free-ranging and ten captive Black lion tamarins were studied and the results compared. Nasal, oral and rectal swabs were collected and cultured for aerobic and facultative anaerobic bacteria and fungi, and a total 203 bacterial and 84 fungal isolates were obtained. Overall, the most frequent organisms were Staphylococcus spp., Bacillus spp., Candida spp. and Aspergillus spp. Microbiota of free-ranging and captive animals were similar in composition. A number of potentially pathogenic organisms were identified, emphasizing the importance of microbiological screening in future translocation or reintroduction conservation management programs.

  15. Regional deposition of mometasone furoate nasal spray suspension in humans.

    Science.gov (United States)

    Shah, Samir A; Berger, Robert L; McDermott, John; Gupta, Pranav; Monteith, David; Connor, Alyson; Lin, Wu

    2015-01-01

    Nasal deposition studies can demonstrate whether nasal sprays treating allergic rhinitis and polyposis reach the ciliated posterior nasal cavity, where turbinate inflammation and other pathology occurs. However, quantifying nasal deposition is challenging, because in vitro tests do not correlate to human nasal deposition; gamma scintigraphy studies are thus used. For valid data, the radiolabel must distribute, as the drug, into different-sized droplets, remain associated with the drug in the formulation after administration, and not alter its deposition. Some nasal deposition studies have demonstrated this using homogenous solutions. However, most commercial nasal sprays are heterogeneous suspensions. Using mometasone furoate nasal suspension (MFS), we developed a technique to validate radiolabel deposition as a surrogate for nasal cavity drug deposition and characterized regional deposition and nasal clearance in humans. Mometasone furoate (MF) formulation was spiked with diethylene triamine pentacaetic acid. Both unlabeled and radiolabeled formulations (n = 3) were sprayed into a regionally divided nasal cast. Drug deposition was quantified by high pressure liquid chromatography within each region; radiolabel deposition was determined by gamma camera. Healthy subjects (n = 12) were dosed and imaged for six hours. Scintigraphic images were coregistered with magnetic resonance imaging scans to quantify anterior and posterior nasal cavity deposition and mucociliary clearance. The ratio of radiolabel to unlabeled drug was 1.05 in the nasal cast and regionally appeared to match, indicating that in vivo radiolabel deposition could represent drug deposition. In humans, MFS delivered 86% (9.2) of metered dose to the nasal cavity, approximately 60% (9.1) of metered dose to the posterior nasal cavity. After 15 minutes, mucociliary clearance removed 59% of the initial radiolabel in the nasal cavity, consistent with clearance rates from the ciliated posterior surface. MFS

  16. The Microbiota of the Human Skin.

    Science.gov (United States)

    Egert, Markus; Simmering, Rainer

    2016-01-01

    The aim of this chapter is to sum up important progress in the field of human skin microbiota research that was achieved over the last years.The human skin is one of the largest and most versatile organs of the human body. Owing to its function as a protective interface between the largely sterile interior of the human body and the highly microbially contaminated outer environment, it is densely colonized with a diverse and active microbiota. This skin microbiota is of high importance for human health and well-being. It is implicated in several severe skin diseases and plays a major role in wound infections. Many less severe, but negatively perceived cosmetic skin phenomena are linked with skin microbes, too. In addition, skin microorganisms, in particular on the human hands, are crucial for the field of hygiene research. Notably, apart from being only a potential source of disease and contamination, the skin microbiota also contributes to the protective functions of the human skin in many ways. Finally, the analysis of structure and function of the human skin microbiota is interesting from a basic, evolutionary perspective on human microbe interactions.Key questions in the field of skin microbiota research deal with (a) a deeper understanding of the structure (species inventory) and function (physiology) of the healthy human skin microbiota in space and time, (b) the distinction of resident and transient skin microbiota members, (c) the distinction of beneficial skin microorganisms from microorganisms or communities with an adverse or sickening effect on their hosts, (d) factors shaping the skin microbiota and its functional role in health and disease, (e) strategies to manipulate the skin microbiota for therapeutic reasons.

  17. The effect of cigarette smoking on the oral and nasal microbiota.

    Science.gov (United States)

    Yu, Guoqin; Phillips, Stephen; Gail, Mitchell H; Goedert, James J; Humphrys, Michael S; Ravel, Jacques; Ren, Yanfang; Caporaso, Neil E

    2017-01-17

    The goal of the study was to investigate whether cigarette smoking alters oral and nasal microbial diversity, composition, and structure. Twenty-three current smokers and 20 never smokers were recruited. From each subject, nine samples including supra and subgingiva plaque scrapes, saliva, swabs from five soft oral tissue sites, and one nasal swab from both the anterior nares were collected. 16S rRNA V3-V4 region was sequenced for microbial profiles. We found that alpha diversity was lower in smokers than in nonsmokers in the buccal mucosa, but in other sample sites, microbial diversity and composition were not significantly different by smoking status. Microbial profiles differed significantly among eight oral sites. This study investigates the effect of cigarette smoking on different sites of the oral cavity and shows a potential effect of cigarette smoking on the buccal mucosa microbiota. The marked heterogeneity of the oral microbial ecosystem that we found may contribute to the stability of the oral microbiota in most sites when facing environmental perturbations such as that caused by cigarette smoking.

  18. Carbohydrates and the human gut microbiota.

    Science.gov (United States)

    Chassard, Christophe; Lacroix, Christophe

    2013-07-01

    Due to its scale and its important role in maintaining health, the gut microbiota can be considered as a 'new organ' inside the human body. Many complex carbohydrates are degraded and fermented by the human gut microbiota in the large intestine to both yield basic energy salvage and impact gut health through produced metabolites. This review will focus on the gut microbes and microbial mechanisms responsible for polysaccharides degradation and fermentation in the large intestine. Gut microbes and bacterial metabolites impact the host at many levels, including modulation of inflammation, and glucose and lipid metabolisms. A complex relationship occurs in the intestine between the human gut microbiota, diet and the host. Research on carbohydrates and gut microbiota composition and functionality is fast developing and will open opportunities for prevention and treatment of obesity, diabetes and other related metabolic disorders through manipulation of the gut ecosystem.

  19. Chemical ecology of interactions between human skin microbiota and mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Takken, W.; Dicke, M.; Schraa, G.; Smallegange, R.C.

    2010-01-01

    Microbiota on the human skin plays a major role in body odour production. The human microbial and chemical signature displays a qualitative and quantitative correlation. Genes may influence the chemical signature by shaping the composition of the microbiota. Recent studies on human skin microbiota,

  20. Correlation of nasal geometry with aerosol deposition in human volunteers

    International Nuclear Information System (INIS)

    Cheng, Yung-Seng; Simpson, S.Q.; Cheng, Kuo-His; Swift, D.L.; Yeh, Hsu-Chi; Guilmette, R.A.

    1994-01-01

    The nasal airways act as the first filter in the respiratory tract to remove very large or small particles, that would otherwise penetrate to the lower airways. Aerosol deposition data obtained with human volunteers vary considerably under comparable experimental conditions. Reasons for the intersubject variations have been frequently attributed to the geometry of the nasal passages. Because there is no direct proof of this hypothesis, nasal deposition of ultrafine particles in human volunteers has been studied in our laboratory. Preliminary results obtained with four adult volunteers also vary considerably between subjects. The purpose of this part of the study was to establish a theoretical equation relating diffusional deposition in nasal airways to the geometrical dimensions of the individual nasal airways. This relationship was then applied to the experimental deposition data and measurement of airway morphometry for correlation

  1. Deviations in human gut microbiota

    DEFF Research Database (Denmark)

    Casén, C; Vebø, H C; Sekelja, M

    2015-01-01

    microbiome profiling. AIM: To develop and validate a novel diagnostic test using faecal samples to profile the intestinal microbiota and identify and characterise dysbiosis. METHODS: Fifty-four DNA probes targeting ≥300 bacteria on different taxonomic levels were selected based on ability to distinguish......, and potential clinically relevant deviation in the microbiome from normobiosis. This model was tested in different samples from healthy volunteers and IBS and IBD patients (n = 330) to determine the ability to detect dysbiosis. RESULTS: Validation confirms dysbiosis was detected in 73% of IBS patients, 70...

  2. Introduction to the human gut microbiota.

    Science.gov (United States)

    Thursby, Elizabeth; Juge, Nathalie

    2017-05-16

    The human gastrointestinal (GI) tract harbours a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host during homeostasis and disease. Multiple factors contribute to the establishment of the human gut microbiota during infancy. Diet is considered as one of the main drivers in shaping the gut microbiota across the life time. Intestinal bacteria play a crucial role in maintaining immune and metabolic homeostasis and protecting against pathogens. Altered gut bacterial composition (dysbiosis) has been associated with the pathogenesis of many inflammatory diseases and infections. The interpretation of these studies relies on a better understanding of inter-individual variations, heterogeneity of bacterial communities along and across the GI tract, functional redundancy and the need to distinguish cause from effect in states of dysbiosis. This review summarises our current understanding of the development and composition of the human GI microbiota, and its impact on gut integrity and host health, underlying the need for mechanistic studies focusing on host-microbe interactions. © 2017 The Author(s).

  3. Nasal cytochrome P4502A: Identification in rats and humans

    Energy Technology Data Exchange (ETDEWEB)

    Thornton-Manning, J.R.; Hotchkiss, J.A. [Michigan State Univ., East Lansing, MI (United States); Ding, Xinxin [Wadsworth Center for Laboratories and Research, Albany, NY (United States)] [and others

    1995-12-01

    The nasal mucosa, the first tissue of contact for inhaled xenobiotics, possesses substantial enobiotic-metabolizing capacti. Enzymes of the nasal cavity may metabolize xenobiotics to innocuous, more water-soluble compounds that are eliminated from the body, or they may bioactivate them to toxic metabolites. These toxic metabolites may find to cellular macromolecules in the nasal cavity or be transported to other parts of the body where they may react. Nasal carcinogenesis in rodents often results from bioactivation of xenobiotics. The increased incidences of nasal tumors associated with certain occupations suggest that xenobiotic bioactivation may be important in human nasal cancer etiology, as well. The increasing popularity of the nose as a route of drug administration makes information concerning nasal drug metabolism and disposition vital to accomplish therapeutic goals. For these reasons, the study of xenobiotic-met abolizing capacity of the nasal cavity is an important area of health-related research. In the present study, we have confirmed the presence of CYP2A6 mRNA in human respiratory mucosa.

  4. Human factor in Staphylococcus aureus nasal carriage

    NARCIS (Netherlands)

    J.L. Nouwen (Jan); H.A.M. Boelens (Hélène); A.F. van Belkum (Alex); H.A. Verbrugh (Henri)

    2004-01-01

    textabstractPersistent nasal carriers and noncarriers of Staphylococcus aureus were inoculated with a mixture of different S. aureus strains. The majority of noncarriers and nearly all persistent carriers returned to their original carrier state after artificial inoculation. Furthermore, the

  5. Staphylococcus aureus and the ecology of the nasal microbiome

    DEFF Research Database (Denmark)

    Liu, Cindy M; Price, Lance B; Hungate, Bruce A

    2015-01-01

    The human microbiome can play a key role in host susceptibility to pathogens, including in the nasal cavity, a site favored by Staphylococcus aureus. However, what determines our resident nasal microbiota-the host or the environment-and can interactions among nasal bacteria determine S. aureus...

  6. Zicam-induced damage to mouse and human nasal tissue.

    Directory of Open Access Journals (Sweden)

    Jae H Lim

    Full Text Available Intranasal medications are used to treat various nasal disorders. However, their effects on olfaction remain unknown. Zicam (zinc gluconate; Matrixx Initiatives, Inc, a homeopathic substance marketed to alleviate cold symptoms, has been implicated in olfactory dysfunction. Here, we investigated Zicam and several common intranasal agents for their effects on olfactory function. Zicam was the only substance that showed significant cytotoxicity in both mouse and human nasal tissue. Specifically, Zicam-treated mice had disrupted sensitivity of olfactory sensory neurons to odorant stimulation and were unable to detect novel odorants in behavioral testing. These findings were long-term as no recovery of function was observed after two months. Finally, human nasal explants treated with Zicam displayed significantly elevated extracellular lactate dehydrogenase levels compared to saline-treated controls, suggesting severe necrosis that was confirmed on histology. Our results demonstrate that Zicam use could irreversibly damage mouse and human nasal tissue and may lead to significant smell dysfunction.

  7. Weaned beef calves fed selenium-biofortified alfalfa hay have an enriched nasal microbiota compared with healthy controls

    Science.gov (United States)

    Hall, Jean A.; Isaiah, Anitha; Estill, Charles T.; Pirelli, Gene J.; Suchodolski, Jan S.

    2017-01-01

    Selenium (Se) is an essential trace mineral important for immune function and overall health of cattle. The nasopharyngeal microbiota in cattle plays an important role in overall respiratory health, especially when stresses associated with weaning, transport, and adaptation to a feedlot affect the normal respiratory defenses. Recent evidence suggests that cattle diagnosed with bovine respiratory disease complex have significantly less bacterial diversity. The objective of this study was to determine whether feeding weaned beef calves Se-enriched alfalfa (Medicago sativa) hay for 9 weeks in a preconditioning program prior to entering the feedlot alters nasal microbiota. Recently weaned beef calves (n = 45) were blocked by sex and body weight, randomly assigned to 3 treatment groups with 3 pens of 5 calves per treatment group, and fed an alfalfa hay based diet for 9 weeks. Alfalfa hay was harvested from fields fertilized with sodium selenate at a rate of 0, 45.0 or 89.9 g Se/ha. Blood samples were collected biweekly and analyzed for whole-blood Se concentrations. Nasal swabs were collected during week 9 from one or two calves from each pen (total n = 16). Calculated Se intake from dietary sources was 3.0, 15.6, and 32.2 mg Se/head/day for calves consuming alfalfa hay with Se concentrations of 0.34 to 2.42 and 5.17 mg Se/kg dry matter, respectively. Whole-blood Se concentrations after 8 weeks of feeding Se-fertilized alfalfa hay were dependent upon Se-application rates (0, 45.0, or 89.9 g Se/ha) and were 155, 345, and 504 ng/mL (PLinear calves fed selenium-biofortified alfalfa hay compared with control calves showed that Se-supplementation tended to be associated with an enriched nasal microbiota. ANOSIM of unweighted UniFrac distances showed that calves fed high Se-biofortified alfalfa hay clustered separately when compared with control calves in the PCoA plot (R = 0.216, P = 0.04). The bacterial orders Lactobacillales and Flavobacteriales were increased in healthy

  8. We Are Never Alone: Living with the Human Microbiota

    OpenAIRE

    da Silva, Gabriela Jorge; Domingues, Sara

    2017-01-01

    The human body is inhabited by millions of tiny living organisms, which, all together, are called the human microbiota. Bacteria are microbes found on the skin, in the nose, mouth, and especially in the gut. We acquire these bacteria during birth and the first years of life, and they live with us throughout our lives. The human microbiota is involved in healthy growth, in protecting the body from invaders, in helping digestion, and in regulating moods. Some changes in the microbiota may occur...

  9. Mechanics of airflow in the human nasal airways.

    Science.gov (United States)

    Doorly, D J; Taylor, D J; Schroter, R C

    2008-11-30

    The mechanics of airflow in the human nasal airways is reviewed, drawing on the findings of experimental and computational model studies. Modelling inevitably requires simplifications and assumptions, particularly given the complexity of the nasal airways. The processes entailed in modelling the nasal airways (from defining the model, to its production and, finally, validating the results) is critically examined, both for physical models and for computational simulations. Uncertainty still surrounds the appropriateness of the various assumptions made in modelling, particularly with regard to the nature of flow. New results are presented in which high-speed particle image velocimetry (PIV) and direct numerical simulation are applied to investigate the development of flow instability in the nasal cavity. These illustrate some of the improved capabilities afforded by technological developments for future model studies. The need for further improvements in characterising airway geometry and flow together with promising new methods are briefly discussed.

  10. [Microbiota and representations of the human body].

    Science.gov (United States)

    Dodet, Betty

    2016-11-01

    Although the presence of an intestinal flora has been known for a long time, the discovery of the role of gut microbiota in human health and disease has been widely recognized as one of the most important advances in the recent years. Chronic diseases may result from dysbiosis, i.e. a disruption of the balance within the bacterial population hosted by the human body. These developments open new prospects in terms of prevention and treatment, including the design of adapted diets, the development of functional foods and fecal transplantation. These discoveries have profoundly altered our view of microbes, of health and disease, of self and non-self, as well as our representations of the body and its relationship with its ecosystem. Gut microbiota is now generally considered as an organ in its own right. A model of the "microbiotic person" thus arises, in which the human organism is defined as an ecosystem, a chimeric superorganism with a double genome, both human and microbial. Thought should be given to the way in which these new paradigms modify lay perceptions of the human body. © 2016 médecine/sciences – Inserm.

  11. Effect of in-feed versus injected oxytetracycline on piglet nasal and tonsil microbiota

    Science.gov (United States)

    Several studies have revealed the core microbiome of pig nasal and tonsil regions. However, little is known about how antibiotics and their different routes of administration affect the microbiome of these areas. Such questions are important areas to research since the tonsil and nasal regions are p...

  12. Antibiotics and specialized metabolites from the human microbiota.

    Science.gov (United States)

    Mousa, Walaa K; Athar, Bilal; Merwin, Nishanth J; Magarvey, Nathan A

    2017-11-15

    Covering: 2000 to 2017Decades of research on human microbiota have revealed much of their taxonomic diversity and established their direct link to health and disease. However, the breadth of bioactive natural products secreted by our microbial partners remains unknown. Of particular interest are antibiotics produced by our microbiota to ward off invasive pathogens. Members of the human microbiota exclusively produce evolved small molecules with selective antimicrobial activity against human pathogens. Herein, we expand upon the current knowledge concerning antibiotics derived from human microbiota and their distribution across body sites. We analyze, using our in-house chem-bioinformatic tools and natural products database, the encoded antibiotic potential of the human microbiome. This compilation of information may create a foundation for the continued exploration of this intriguing resource of chemical diversity and expose challenges and future perspectives to accelerate the discovery rate of small molecules from the human microbiota.

  13. Weaned beef calves fed selenium-biofortified alfalfa hay have an enriched nasal microbiota compared with healthy controls.

    Science.gov (United States)

    Hall, Jean A; Isaiah, Anitha; Estill, Charles T; Pirelli, Gene J; Suchodolski, Jan S

    2017-01-01

    Selenium (Se) is an essential trace mineral important for immune function and overall health of cattle. The nasopharyngeal microbiota in cattle plays an important role in overall respiratory health, especially when stresses associated with weaning, transport, and adaptation to a feedlot affect the normal respiratory defenses. Recent evidence suggests that cattle diagnosed with bovine respiratory disease complex have significantly less bacterial diversity. The objective of this study was to determine whether feeding weaned beef calves Se-enriched alfalfa (Medicago sativa) hay for 9 weeks in a preconditioning program prior to entering the feedlot alters nasal microbiota. Recently weaned beef calves (n = 45) were blocked by sex and body weight, randomly assigned to 3 treatment groups with 3 pens of 5 calves per treatment group, and fed an alfalfa hay based diet for 9 weeks. Alfalfa hay was harvested from fields fertilized with sodium selenate at a rate of 0, 45.0 or 89.9 g Se/ha. Blood samples were collected biweekly and analyzed for whole-blood Se concentrations. Nasal swabs were collected during week 9 from one or two calves from each pen (total n = 16). Calculated Se intake from dietary sources was 3.0, 15.6, and 32.2 mg Se/head/day for calves consuming alfalfa hay with Se concentrations of 0.34 to 2.42 and 5.17 mg Se/kg dry matter, respectively. Whole-blood Se concentrations after 8 weeks of feeding Se-fertilized alfalfa hay were dependent upon Se-application rates (0, 45.0, or 89.9 g Se/ha) and were 155, 345, and 504 ng/mL (PLinear Microbial DNA was extracted from nasal swabs and amplified and sequenced. Alpha rarefaction curves comparing the species richness (observed OTUs) and overall diversity (Chao1, Observed OTU, and Shannon index) between calves fed selenium-biofortified alfalfa hay compared with control calves showed that Se-supplementation tended to be associated with an enriched nasal microbiota. ANOSIM of unweighted UniFrac distances showed that calves

  14. Weaned beef calves fed selenium-biofortified alfalfa hay have an enriched nasal microbiota compared with healthy controls.

    Directory of Open Access Journals (Sweden)

    Jean A Hall

    Full Text Available Selenium (Se is an essential trace mineral important for immune function and overall health of cattle. The nasopharyngeal microbiota in cattle plays an important role in overall respiratory health, especially when stresses associated with weaning, transport, and adaptation to a feedlot affect the normal respiratory defenses. Recent evidence suggests that cattle diagnosed with bovine respiratory disease complex have significantly less bacterial diversity. The objective of this study was to determine whether feeding weaned beef calves Se-enriched alfalfa (Medicago sativa hay for 9 weeks in a preconditioning program prior to entering the feedlot alters nasal microbiota. Recently weaned beef calves (n = 45 were blocked by sex and body weight, randomly assigned to 3 treatment groups with 3 pens of 5 calves per treatment group, and fed an alfalfa hay based diet for 9 weeks. Alfalfa hay was harvested from fields fertilized with sodium selenate at a rate of 0, 45.0 or 89.9 g Se/ha. Blood samples were collected biweekly and analyzed for whole-blood Se concentrations. Nasal swabs were collected during week 9 from one or two calves from each pen (total n = 16. Calculated Se intake from dietary sources was 3.0, 15.6, and 32.2 mg Se/head/day for calves consuming alfalfa hay with Se concentrations of 0.34 to 2.42 and 5.17 mg Se/kg dry matter, respectively. Whole-blood Se concentrations after 8 weeks of feeding Se-fertilized alfalfa hay were dependent upon Se-application rates (0, 45.0, or 89.9 g Se/ha and were 155, 345, and 504 ng/mL (PLinear < 0.0001. Microbial DNA was extracted from nasal swabs and amplified and sequenced. Alpha rarefaction curves comparing the species richness (observed OTUs and overall diversity (Chao1, Observed OTU, and Shannon index between calves fed selenium-biofortified alfalfa hay compared with control calves showed that Se-supplementation tended to be associated with an enriched nasal microbiota. ANOSIM of unweighted Uni

  15. Characterizing adult human nasal airway dimensions

    International Nuclear Information System (INIS)

    Guilmette, R.A.; Griffith, W.C.

    1994-01-01

    Respiratory tract models used in calculating radiation dose from exposure to inhaled radioactive aerosols have only recently focused attention on the importance of the nasal airways (NAs). Because the NAs are the first tissues of the respiratory tract available for aerosol deposition in normally nose-breathing people, any deposition of aerosol in this anatomical structure will reduce the amounts available to be deposited in the remainder of the respiratory tract. Thus, uncertainties in estimating the deposition fractions in the NAs will propagate throughout the remainder of the respiratory tract, creating errors in the calculated dose estimates. Additionally, there is evidence that the NAs are also at risk for induction of cancer from exposure to certain occupational aerosols such as wood dust, leather dust, chromium, and nickel. The purpose of this investigation was to conduct an anatomical study to assess the variabilities in NA dimensions

  16. Microbiota and Human Health: characterization techniques and transference.

    Science.gov (United States)

    Del Campo-Moreno, Rosa; Alarcón-Cavero, Teresa; D'Auria, Giuseppe; Delgado-Palacio, Susana; Ferrer-Martínez, Manuel

    2018-04-01

    The human microbiota comprises all the microorganisms of our body, which can also be categorised as commensals, mutualists and pathogens according to their behaviour. Our knowledge of the human microbiota has considerably increased since the introduction of 16S rRNA next generation sequencing (16S rDNA gene). This technological breakthrough has seen a revolution in the knowledge of the microbiota composition and its implications in human health. This article details the different human bacterial ecosystems and the scientific evidence of their involvement in different diseases. The faecal microbiota transplant procedure, particularly used to treat recurrent diarrhoea caused by Clostridium difficile, and the methodological bases of the new molecular techniques used to characterise microbiota are also described. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  17. Human Gut Microbiota: Toward an Ecology of Disease

    Directory of Open Access Journals (Sweden)

    Susannah Selber-Hnatiw

    2017-07-01

    Full Text Available Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics.

  18. Human Gut Microbiota: Toward an Ecology of Disease

    Science.gov (United States)

    Selber-Hnatiw, Susannah; Rukundo, Belise; Ahmadi, Masoumeh; Akoubi, Hayfa; Al-Bizri, Hend; Aliu, Adelekan F.; Ambeaghen, Tanyi U.; Avetisyan, Lilit; Bahar, Irmak; Baird, Alexandra; Begum, Fatema; Ben Soussan, Hélène; Blondeau-Éthier, Virginie; Bordaries, Roxane; Bramwell, Helene; Briggs, Alicia; Bui, Richard; Carnevale, Matthew; Chancharoen, Marisa; Chevassus, Talia; Choi, Jin H.; Coulombe, Karyne; Couvrette, Florence; D'Abreau, Samantha; Davies, Meghan; Desbiens, Marie-Pier; Di Maulo, Tamara; Di Paolo, Sean-Anthony; Do Ponte, Sabrina; dos Santos Ribeiro, Priscyla; Dubuc-Kanary, Laure-Anne; Duncan, Paola K.; Dupuis, Frédérique; El-Nounou, Sara; Eyangos, Christina N.; Ferguson, Natasha K.; Flores-Chinchilla, Nancy R.; Fotakis, Tanya; Gado Oumarou H D, Mariam; Georgiev, Metodi; Ghiassy, Seyedehnazanin; Glibetic, Natalija; Grégoire Bouchard, Julien; Hassan, Tazkia; Huseen, Iman; Ibuna Quilatan, Marlon-Francis; Iozzo, Tania; Islam, Safina; Jaunky, Dilan B.; Jeyasegaram, Aniththa; Johnston, Marc-André; Kahler, Matthew R.; Kaler, Kiranpreet; Kamani, Cedric; Karimian Rad, Hessam; Konidis, Elisavet; Konieczny, Filip; Kurianowicz, Sandra; Lamothe, Philippe; Legros, Karina; Leroux, Sebastien; Li, Jun; Lozano Rodriguez, Monica E.; Luponio-Yoffe, Sean; Maalouf, Yara; Mantha, Jessica; McCormick, Melissa; Mondragon, Pamela; Narayana, Thivaedee; Neretin, Elizaveta; Nguyen, Thi T. T.; Niu, Ian; Nkemazem, Romeo B.; O'Donovan, Martin; Oueis, Matthew; Paquette, Stevens; Patel, Nehal; Pecsi, Emily; Peters, Jackie; Pettorelli, Annie; Poirier, Cassandra; Pompa, Victoria R.; Rajen, Harshvardhan; Ralph, Reginald-Olivier; Rosales-Vasquez, Josué; Rubinshtein, Daria; Sakr, Surya; Sebai, Mohammad S.; Serravalle, Lisa; Sidibe, Fily; Sinnathurai, Ahnjana; Soho, Dominique; Sundarakrishnan, Adithi; Svistkova, Veronika; Ugbeye, Tsolaye E.; Vasconcelos, Megan S.; Vincelli, Michael; Voitovich, Olga; Vrabel, Pamela; Wang, Lu; Wasfi, Maryse; Zha, Cong Y.; Gamberi, Chiara

    2017-01-01

    Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics. PMID:28769880

  19. Long-term monitoring of the human intestinal microbiota composition

    NARCIS (Netherlands)

    Rajilic-Stojanovic, M.; Heilig, G.H.J.; Tims, S.; Zoetendal, E.G.; Vos, de W.M.

    2013-01-01

    The microbiota that colonizes the human intestinal tract is complex and its structure is specific for each of us. In this study we expand the knowledge about the stability of the subject-specific microbiota and show that this ecosystem is stable in short-term intervals (¿10 years). The faecal

  20. Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity.

    Science.gov (United States)

    Tong, Xuwen; Dong, Jingliang; Shang, Yidan; Inthavong, Kiao; Tu, Jiyuan

    2016-10-01

    In this study, the effects of nasal drug delivery device and the spray nozzle orientation on sprayed droplets deposition in a realistic human nasal cavity were numerically studied. Prior to performing the numerical investigation, an in-house designed automated actuation system representing mean adults actuation force was developed to produce realistic spray plume. Then, the spray plume development was filmed by high speed photography system, and spray characteristics such as spray cone angle, break-up length, and average droplet velocity were obtained through off-line image analysis. Continuing studies utilizing those experimental data as boundary conditions were applied in the following numerical spray simulations using a commercially available nasal spray device, which was inserted into a realistic adult nasal passage with external facial features. Through varying the particle releasing direction, the deposition fractions of selected particle sizes on the main nasal passage for targeted drug delivery were compared. The results demonstrated that the middle spray direction showed superior spray efficiency compared with upper or lower directions, and the 10µm agents were the most suitable particle size as the majority of sprayed agents can be delivered to the targeted area, the main passage. This study elaborates a comprehensive approach to better understand nasal spray mechanism and evaluate its performance for existing nasal delivery practices. Results of this study can assist the pharmaceutical industry to improve the current design of nasal drug delivery device and ultimately benefit more patients through optimized medications delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Effect of diet on the human gut microbiota

    DEFF Research Database (Denmark)

    Bahl, Martin Iain

    The gut microbiota plays an important role for humans in both health and disease. It is therefore important to understand how and to what extent choice of diet may influence the microbial community and the effects this has on the host. The variation in the normal human gut microbiota may however...... impede the discovery of correlations between dietary changes and compositional shifts in the microbiota by masking such effects. Although specific functional food ingredients, such as prebiotics, are known to have measurable effects on e.g. abundance of bifidobacteria, it is nevertheless clear...... that induced shifts in gut microbiota show large inter-individual variations. It thus seems plausible that knowing the microbiota composition could facilitate predictions as to how the community will react to dietary interventions thus moving towards some degree of personalised dietary recommendations. During...

  2. Immediate effect of benzalkonium chloride in decongestant nasal spray on the human nasal mucosal temperature.

    Science.gov (United States)

    Lindemann, J; Leiacker, R; Wiesmiller, K; Rettinger, G; Keck, T

    2004-08-01

    Benzalkonium chloride is a preservative commonly used in nasal decongestant sprays. It has been suggested that benzalkonium chloride may be harmful to the nasal mucosa. Decongestion with the vasoconstrictor xylometazoline containing benzalkonium chloride has been shown to cause a significant reduction of the nasal mucosal temperature. The purpose of the present study was to determine the short-term influence of xylometazoline nasal spray with and without benzalkonium chloride on the nasal mucosal temperature. Healthy volunteers (30) were included in the study. Fifteen volunteers received xylometazoline nasal spray (1.0 mg/mL) containing benzalkonium chloride (0.1 mg/mL) and 15 age-matched subjects, received xylometazoline nasal spray without benzalkonium chloride. Using a miniaturized thermocouple the septal mucosal temperature was continuously measured at defined intranasal detection sites before and after application of the nasal spray. The mucosal temperature values did not significantly differ between the group receiving xylometazoline containing benzalkonium chloride and the group receiving xylometazoline spray without benzalkonium chloride before and after decongestion (P > 0.05). In both study groups septal mucosal temperatures significantly decreased after decongestion (P reduction of the nasal mucosal blood flow following vasoconstriction. This study indicates that benzalkonium chloride itself does not seem to influence nasal blood flow and nasal mucosal temperature in topical nasal decongestants.

  3. Systematic Review of the Human Milk Microbiota.

    Science.gov (United States)

    Fitzstevens, John L; Smith, Kelsey C; Hagadorn, James I; Caimano, Melissa J; Matson, Adam P; Brownell, Elizabeth A

    2017-06-01

    Human milk-associated microbes are among the first to colonize the infant gut and may help to shape both short- and long-term infant health outcomes. We performed a systematic review to characterize the microbiota of human milk. Relevant primary studies were identified through a comprehensive search of PubMed (January 1, 1964, to June 31, 2015). Included studies were conducted among healthy mothers, were written in English, identified bacteria in human milk, used culture-independent methods, and reported primary results at the genus level. Twelve studies satisfied inclusion criteria. All varied in geographic location and human milk collection/storage/analytic methods. Streptococcus was identified in human milk samples in 11 studies (91.6%) and Staphylococcus in 10 (83.3%); both were predominant genera in 6 (50%). Eight of the 12 studies used conventional ribosomal RNA (rRNA) polymerase chain reaction (PCR), of which 7 (87.5%) identified Streptococcus and 6 (80%) identified Staphylococcus as present. Of these 8 studies, 2 (25%) identified Streptococcus and Staphylococcus as predominant genera. Four of the 12 studies used next-generation sequencing (NGS), all of which identified Streptococcus and Staphylococcus as present and predominant genera. Relative to conventional rRNA PCR, NGS is a more sensitive method to identify/quantify bacterial genera in human milk, suggesting the predominance of Streptococcus and Staphylococcus may be underestimated in studies using older methods. These genera, Streptococcus and Staphylococcus, may be universally predominant in human milk, regardless of differences in geographic location or analytic methods. Primary studies designed to evaluate the effect of these 2 genera on short- and long-term infant outcomes are warranted.

  4. Metaproteomic analysis of human gut microbiota: where are we heading?

    Science.gov (United States)

    Lee, Pey Yee; Chin, Siok-Fong; Neoh, Hui-Min; Jamal, Rahman

    2017-06-12

    The human gut is home to complex microbial populations that change dynamically in response to various internal and external stimuli. The gut microbiota provides numerous functional benefits that are crucial for human health but in the setting of a disturbed equilibrium, the microbial community can cause deleterious outcomes such as diseases and cancers. Characterization of the functional activities of human gut microbiota is fundamental to understand their roles in human health and disease. Metaproteomics, which refers to the study of the entire protein collection of the microbial community in a given sample is an emerging area of research that provides informative details concerning functional aspects of the microbiota. In this mini review, we present a summary of the progress of metaproteomic analysis for studying the functional role of gut microbiota. This is followed by an overview of the experimental approaches focusing on fecal specimen for metaproteomics and is concluded by a discussion on the challenges and future directions of metaproteomic research.

  5. Effects of antibiotics on human microbiota and subsequent disease.

    Science.gov (United States)

    Keeney, Kristie M; Yurist-Doutsch, Sophie; Arrieta, Marie-Claire; Finlay, B Brett

    2014-01-01

    Although antibiotics have significantly improved human health and life expectancy, their disruption of the existing microbiota has been linked to significant side effects such as antibiotic-associated diarrhea, pseudomembranous colitis, and increased susceptibility to subsequent disease. By using antibiotics to break colonization resistance against Clostridium, Salmonella, and Citrobacter species, researchers are now exploring mechanisms for microbiota-mediated modulation against pathogenic infection, revealing potential roles for different phyla and family members as well as microbiota-liberated sugars, hormones, and short-chain fatty acids in regulating pathogenicity. Furthermore, connections are now being made between microbiota dysbiosis and a variety of different diseases such as rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, atopy, and obesity. Future advances in the rapidly developing field of microbial bioinformatics will enable researchers to further characterize the mechanisms of microbiota modulation of disease and potentially identify novel therapeutics against disease.

  6. Development of the human infant intestinal microbiota.

    Science.gov (United States)

    Palmer, Chana; Bik, Elisabeth M; DiGiulio, Daniel B; Relman, David A; Brown, Patrick O

    2007-07-01

    Almost immediately after a human being is born, so too is a new microbial ecosystem, one that resides in that person's gastrointestinal tract. Although it is a universal and integral part of human biology, the temporal progression of this process, the sources of the microbes that make up the ecosystem, how and why it varies from one infant to another, and how the composition of this ecosystem influences human physiology, development, and disease are still poorly understood. As a step toward systematically investigating these questions, we designed a microarray to detect and quantitate the small subunit ribosomal RNA (SSU rRNA) gene sequences of most currently recognized species and taxonomic groups of bacteria. We used this microarray, along with sequencing of cloned libraries of PCR-amplified SSU rDNA, to profile the microbial communities in an average of 26 stool samples each from 14 healthy, full-term human infants, including a pair of dizygotic twins, beginning with the first stool after birth and continuing at defined intervals throughout the first year of life. To investigate possible origins of the infant microbiota, we also profiled vaginal and milk samples from most of the mothers, and stool samples from all of the mothers, most of the fathers, and two siblings. The composition and temporal patterns of the microbial communities varied widely from baby to baby. Despite considerable temporal variation, the distinct features of each baby's microbial community were recognizable for intervals of weeks to months. The strikingly parallel temporal patterns of the twins suggested that incidental environmental exposures play a major role in determining the distinctive characteristics of the microbial community in each baby. By the end of the first year of life, the idiosyncratic microbial ecosystems in each baby, although still distinct, had converged toward a profile characteristic of the adult gastrointestinal tract.

  7. Development of the human infant intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Chana Palmer

    2007-07-01

    Full Text Available Almost immediately after a human being is born, so too is a new microbial ecosystem, one that resides in that person's gastrointestinal tract. Although it is a universal and integral part of human biology, the temporal progression of this process, the sources of the microbes that make up the ecosystem, how and why it varies from one infant to another, and how the composition of this ecosystem influences human physiology, development, and disease are still poorly understood. As a step toward systematically investigating these questions, we designed a microarray to detect and quantitate the small subunit ribosomal RNA (SSU rRNA gene sequences of most currently recognized species and taxonomic groups of bacteria. We used this microarray, along with sequencing of cloned libraries of PCR-amplified SSU rDNA, to profile the microbial communities in an average of 26 stool samples each from 14 healthy, full-term human infants, including a pair of dizygotic twins, beginning with the first stool after birth and continuing at defined intervals throughout the first year of life. To investigate possible origins of the infant microbiota, we also profiled vaginal and milk samples from most of the mothers, and stool samples from all of the mothers, most of the fathers, and two siblings. The composition and temporal patterns of the microbial communities varied widely from baby to baby. Despite considerable temporal variation, the distinct features of each baby's microbial community were recognizable for intervals of weeks to months. The strikingly parallel temporal patterns of the twins suggested that incidental environmental exposures play a major role in determining the distinctive characteristics of the microbial community in each baby. By the end of the first year of life, the idiosyncratic microbial ecosystems in each baby, although still distinct, had converged toward a profile characteristic of the adult gastrointestinal tract.

  8. How informative is the mouse for human gut microbiota research?

    Science.gov (United States)

    Nguyen, Thi Loan Anh; Vieira-Silva, Sara; Liston, Adrian; Raes, Jeroen

    2015-01-01

    The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research. © 2015. Published by The Company of Biologists Ltd.

  9. The human gut microbiota and virome: Potential therapeutic implications.

    Science.gov (United States)

    Scarpellini, Emidio; Ianiro, Gianluca; Attili, Fabia; Bassanelli, Chiara; De Santis, Adriano; Gasbarrini, Antonio

    2015-12-01

    Human gut microbiota is a complex ecosystem with several functions integrated in the host organism (metabolic, immune, nutrients absorption, etc.). Human microbiota is composed by bacteria, yeasts, fungi and, last but not least, viruses, whose composition has not been completely described. According to previous evidence on pathogenic viruses, the human gut harbours plant-derived viruses, giant viruses and, only recently, abundant bacteriophages. New metagenomic methods have allowed to reconstitute entire viral genomes from the genetic material spread in the human gut, opening new perspectives on the understanding of the gut virome composition, the importance of gut microbiome, and potential clinical applications. This review reports the latest evidence on human gut "virome" composition and its function, possible future therapeutic applications in human health in the context of the gut microbiota, and attempts to clarify the role of the gut "virome" in the larger microbial ecosystem. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  10. Characterization of deposition from nasal spray devices using a computational fluid dynamics model of the human nasal passages.

    Science.gov (United States)

    Kimbell, Julia S; Segal, Rebecca A; Asgharian, Bahman; Wong, Brian A; Schroeter, Jeffry D; Southall, Jeremy P; Dickens, Colin J; Brace, Geoff; Miller, Frederick J

    2007-01-01

    Many studies suggest limited effectiveness of spray devices for nasal drug delivery due primarily to high deposition and clearance at the front of the nose. Here, nasal spray behavior was studied using experimental measurements and a computational fluid dynamics model of the human nasal passages constructed from magnetic resonance imaging scans of a healthy adult male. Eighteen commercially available nasal sprays were analyzed for spray characteristics using laser diffraction, high-speed video, and high-speed spark photography. Steadystate, inspiratory airflow (15 L/min) and particle transport were simulated under measured spray conditions. Simulated deposition efficiency and spray behavior were consistent with previous experimental studies, two of which used nasal replica molds based on this nasal geometry. Deposition fractions (numbers of deposited particles divided by the number released) of 20- and 50-microm particles exceeded 90% in the anterior part of the nose for most simulated conditions. Predicted particle penetration past the nasal valve improved when (1) the smaller of two particle sizes or the lower of two spray velocities was used, (2) the simulated nozzle was positioned 1.0 rather than 0.5 or 1.5 cm into the nostril, and (3) inspiratory airflow was present rather than absent. Simulations also predicted that delaying the appearance of normal inspiratory airflow more than 1 sec after the release of particles produced results equivalent to cases in which no inspiratory airflow was present. These predictions contribute to more effective design of drug delivery devices through a better understanding of the effects of nasal airflow and spray characteristics on particle transport in the nose.

  11. Unsteady flow characteristics through a human nasal airway.

    Science.gov (United States)

    Lee, Jong-Hoon; Na, Yang; Kim, Sung-Kyun; Chung, Seung-Kyu

    2010-07-31

    Time-dependent characteristics of the flow in a human nasal airway constructed from the CT image of a healthy volunteer were investigated using a computational fluid dynamics (CFD) technique. To capture the time-varying nature of the flow as well as pressure and temperature fields, the large eddy simulation (LES) technique instead of the RANS (Reynolds Averaged Navier-Stokes) approach was adopted. To make the present analysis more relevant to a real human breathing cycle, the flow was designed to be induced by the pressure difference and the time-varying pressure at the end of trachea was described to reproduce the flow rate data from the measurement. Comparison of the present results with those of typical steady simulations showed that the difference in flow characteristics is magnified in the expiration phase. This fact may suggest that the inertial effect associated with unsteady flow is more important during the expiration period. Also, the fact that the distribution of the flow rate in a given cross-section of the airway changes significantly with time implies the importance of unsteady data for clinical decision. The wall shear stress was found to have relatively high values at the locations near nasopharynx and larynx but the magnitude changes with time during the whole respiratory cycle. Analysis of the temperature field showed that most of the temperature change occurs in the nasal cavity when the air is incoming and thus, the nasal cavity acts as a very efficient heat exchanger during an inspiration period. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    DEFF Research Database (Denmark)

    Moore, Aimee M.; Munck, Christian; Sommer, Morten Otto Alexander

    2011-01-01

    The human intestinal microbiota encode multiple critical functions impacting human health, including metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity...... microorganisms, but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community, independent of identity to known genes, by subjecting the metagenome to functional assays in a genetically tractable host....... Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex...

  13. Human nasal rhinosporidiosis: a case report from Malawi | Sefu ...

    African Journals Online (AJOL)

    Patient presented with long standing history of nasal obstruction and intermittent epistaxis for three years. Diagnosis was confirmed by histopathological examination and he was successfully treated by complete surgical excision. This was a very unusual cause of nasal masses in our setting. Nasal rhinosporidioss lesions ...

  14. Mining the Human Gut Microbiota for Immunomodulatory Organisms.

    Science.gov (United States)

    Geva-Zatorsky, Naama; Sefik, Esen; Kua, Lindsay; Pasman, Lesley; Tan, Tze Guan; Ortiz-Lopez, Adriana; Yanortsang, Tsering Bakto; Yang, Liang; Jupp, Ray; Mathis, Diane; Benoist, Christophe; Kasper, Dennis L

    2017-02-23

    Within the human gut reside diverse microbes coexisting with the host in a mutually advantageous relationship. Evidence has revealed the pivotal role of the gut microbiota in shaping the immune system. To date, only a few of these microbes have been shown to modulate specific immune parameters. Herein, we broadly identify the immunomodulatory effects of phylogenetically diverse human gut microbes. We monocolonized mice with each of 53 individual bacterial species and systematically analyzed host immunologic adaptation to colonization. Most microbes exerted several specialized, complementary, and redundant transcriptional and immunomodulatory effects. Surprisingly, these were independent of microbial phylogeny. Microbial diversity in the gut ensures robustness of the microbiota's ability to generate a consistent immunomodulatory impact, serving as a highly important epigenetic system. This study provides a foundation for investigation of gut microbiota-host mutualism, highlighting key players that could identify important therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Zebrafish Axenic Larvae Colonization with Human Intestinal Microbiota.

    Science.gov (United States)

    Arias-Jayo, Nerea; Alonso-Saez, Laura; Ramirez-Garcia, Andoni; Pardo, Miguel A

    2018-04-01

    The human intestine hosts a vast and complex microbial community that is vital for maintaining several functions related with host health. The processes that determine the gut microbiome composition are poorly understood, being the interaction between species, the external environment, and the relationship with the host the most feasible. Animal models offer the opportunity to understand the interactions between the host and the microbiota. There are different gnotobiotic mice or rat models colonized with the human microbiota, however, to our knowledge, there are no reports on the colonization of germ-free zebrafish with a complex human intestinal microbiota. In the present study, we have successfully colonized 5 days postfertilization germ-free zebrafish larvae with the human intestinal microbiota previously extracted from a donor and analyzed by high-throughput sequencing the composition of the transferred microbial communities that established inside the zebrafish gut. Thus, we describe for first time which human bacteria phylotypes are able to colonize the zebrafish digestive tract. Species with relevant interest because of their linkage to dysbiosis in different human diseases, such as Akkermansia muciniphila, Eubacterium rectale, Faecalibacterium prausnitzii, Prevotella spp., or Roseburia spp. have been successfully transferred inside the zebrafish digestive tract.

  16. Soy and Gut Microbiota: Interaction and Implication for Human Health.

    Science.gov (United States)

    Huang, Haiqiu; Krishnan, Hari B; Pham, Quynhchi; Yu, Liangli Lucy; Wang, Thomas T Y

    2016-11-23

    Soy (Glycine max) is a major commodity in the United States, and soy foods are gaining popularity due to their reported health-promoting effects. In the past two decades, soy and soy bioactive components have been studied for their health-promoting/disease-preventing activities and potential mechanisms of action. Recent studies have identified gut microbiota as an important component in the human body ecosystem and possibly a critical modulator of human health. Soy foods' interaction with the gut microbiota may critically influence many aspects of human development, physiology, immunity, and nutrition at different stages of life. This review summarizes current knowledge on the effects of soy foods and soy components on gut microbiota population and composition. It was found, although results vary in different studies, in general, both animal and human studies have shown that consumption of soy foods can increase the levels of bifidobacteria and lactobacilli and alter the ratio between Firmicutes and Bacteroidetes. These changes in microbiota are consistent with reported reductions in pathogenic bacteria populations in the gut, thereby lowering the risk of diseases and leading to beneficial effects on human health.

  17. Challenges of metabolomics in human gut microbiota research.

    Science.gov (United States)

    Smirnov, Kirill S; Maier, Tanja V; Walker, Alesia; Heinzmann, Silke S; Forcisi, Sara; Martinez, Inés; Walter, Jens; Schmitt-Kopplin, Philippe

    2016-08-01

    The review highlights the role of metabolomics in studying human gut microbial metabolism. Microbial communities in our gut exert a multitude of functions with huge impact on human health and disease. Within the meta-omics discipline, gut microbiome is studied by (meta)genomics, (meta)transcriptomics, (meta)proteomics and metabolomics. The goal of metabolomics research applied to fecal samples is to perform their metabolic profiling, to quantify compounds and classes of interest, to characterize small molecules produced by gut microbes. Nuclear magnetic resonance spectroscopy and mass spectrometry are main technologies that are applied in fecal metabolomics. Metabolomics studies have been increasingly used in gut microbiota related research regarding health and disease with main focus on understanding inflammatory bowel diseases. The elucidated metabolites in this field are summarized in this review. We also addressed the main challenges of metabolomics in current and future gut microbiota research. The first challenge reflects the need of adequate analytical tools and pipelines, including sample handling, selection of appropriate equipment, and statistical evaluation to enable meaningful biological interpretation. The second challenge is related to the choice of the right animal model for studies on gut microbiota. We exemplified this using NMR spectroscopy for the investigation of cross-species comparison of fecal metabolite profiles. Finally, we present the problem of variability of human gut microbiota and metabolome that has important consequences on the concepts of personalized nutrition and medicine. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Induction of farnesoid X receptor signaling in germ-free mice colonized with a human microbiota

    DEFF Research Database (Denmark)

    Wahlström, Annika; Kovatcheva-Datchary, Petia; Ståhlman, Marcus

    2017-01-01

    The gut microbiota influences the development and progression of metabolic diseases partly by metabolism of bile acids (BAs) and modified signaling through the farnesoid X receptor (FXR). In this study, we aimed to determine how the human gut microbiota metabolizes murine BAs and affects FXR...... signaling in colonized mice. We colonized germ-free mice with cecal content from a mouse donor or feces from a human donor and euthanized the mice after short-term (2 weeks) or long-term (15 weeks) colonization. We analyzed the gut microbiota and BA composition and expression of FXR target genes in ileum...... and liver. We found that cecal microbiota composition differed between mice colonized with mouse and human microbiota and was stable over time. Human and mouse microbiota reduced total BA levels similarly, but the humanized mice produced less secondary BAs. The human microbiota was able to reduce the levels...

  19. Herpes viruses and human papilloma virus in nasal polyposis and controls

    Directory of Open Access Journals (Sweden)

    Dimitrios Ioannidis

    2015-12-01

    Full Text Available ABSTRACT INTRODUCTION: Chronic rhinosinusitis with nasal polyps is a multifactorial disease entity with an unclear pathogenesis. Contradictory data exist in the literature on the potential implication of viral elements in adult patients with chronic rhinosinusitis. OBJECTIVE: To compare the prevalence of human herpes viruses (1-6 and Human Papilloma Virus in adult patients with chronic rhinosinusitis with nasal polyps and healthy controls. METHODS: Viral DNA presence was evaluated by real-time polymerase chain reaction application to nasal polyps specimens from 91 chronic rhinosinusitis with nasal polyps patients and nasal turbinate mucosa from 38 healthy controls. RESULTS: Epstein-Barr virus positivity was higher in nasal polyps (24/91; 26.4% versus controls (4/38; 10.5%, but the difference did not reach significance (p = 0.06. Human herpes virus-6 positivity was lower in nasal polyps (13/91; 14.29% versus controls (10/38; 26.32%,p = 0.13. In chronic rhinosinusitis with nasal polyps group, 1 sample was herpes simplex virus-1-positive (1/91; 1.1%, and another was cytomegalovirus-positive (1/91; 1.1%, versus none in controls. No sample was positive for herpes simplex virus-2, varicella-zoster virus, high-risk-human papilloma viruses (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and low-risk-human papilloma viruses (6, 11. CONCLUSION: Differences in Epstein-Barr virus and human herpes virus-6 positivity among patients with chronic rhinosinusitis with nasal polyps and healthy controls are not statistically significant, weakening the likelihood of their implication in chronic rhinosinusitis with nasal polyps pathogenesis.

  20. Herpes viruses and human papilloma virus in nasal polyposis and controls.

    Science.gov (United States)

    Ioannidis, Dimitrios; Lachanas, Vasileios A; Florou, Zoe; Bizakis, John G; Petinaki, Efthymia; Skoulakis, Charalampos E

    2015-01-01

    Chronic rhinosinusitis with nasal polyps is a multifactorial disease entity with an unclear pathogenesis. Contradictory data exist in the literature on the potential implication of viral elements in adult patients with chronic rhinosinusitis. To compare the prevalence of human herpes viruses (1-6) and Human Papilloma Virus in adult patients with chronic rhinosinusitis with nasal polyps and healthy controls. Viral DNA presence was evaluated by real-time polymerase chain reaction application to nasal polyps specimens from 91 chronic rhinosinusitis with nasal polyps patients and nasal turbinate mucosa from 38 healthy controls. Epstein-Barr virus positivity was higher in nasal polyps (24/91; 26.4%) versus controls (4/38; 10.5%), but the difference did not reach significance (p=0.06). Human herpes virus-6 positivity was lower in nasal polyps (13/91; 14.29%) versus controls (10/38; 26.32%, p=0.13). In chronic rhinosinusitis with nasal polyps group, 1 sample was herpes simplex virus-1-positive (1/91; 1.1%), and another was cytomegalovirus-positive (1/91; 1.1%), versus none in controls. No sample was positive for herpes simplex virus-2, varicella-zoster virus, high-risk-human papilloma viruses (16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59) and low-risk-human papilloma viruses (6, 11). Differences in Epstein-Barr virus and human herpes virus-6 positivity among patients with chronic rhinosinusitis with nasal polyps and healthy controls are not statistically significant, weakening the likelihood of their implication in chronic rhinosinusitis with nasal polyps pathogenesis. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  1. In vivo deposition of ultrafine aerosols in human nasal and oral airways

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Hsu-Chi; Swift, D.L. [John Hopkins Univ., Baltimore, MD (United States); Simpson, S.Q. [Univ. of New Mexico, Albuquerque, NM (United States)] [and others

    1995-12-01

    The extrathoracic airways, including the nasal passage, oral passage, pharynx, and larynx, are the first targets for inhaled particles and provide an important defense for the lung. Understanding the deposition efficiency of the nasal and oral passages is therefore crucial for assessing doses of inhaled particles to the extrathoracic airways and the lung. Significant inter-subject variability in nasal deposition has been shown in recent studies by Rasmussen, T.R. et al, using 2.6 {mu}m particles in 10 human subjects and in our preliminary studies using 0.004-0.15 {mu}m particles in four adult volunteers. No oral deposition was reported in either of these studies. Reasons for the intersubject variations have been frequently attributed to the geometry of the nasal passages. The aims of the present study were to measure in vivo the nasal airway dimensions and the deposition of ultrafine aerosols in both the nasal and oral passages, and to determine the relationship between nasal airway dimensions and aerosol deposition. A statistical procedure incorporated with the diffusion theory was used to model the dimensional features of the nasal airways which may be responsible for the biological variability in particle deposition. In summary, we have correlated deposition of particles in the size range of 0.004 to 0.15 {mu}m with the nasal dimensions of each subject.

  2. In vivo deposition of ultrafine aerosols in human nasal and oral airways

    International Nuclear Information System (INIS)

    Yeh, Hsu-Chi; Swift, D.L.; Simpson, S.Q.

    1995-01-01

    The extrathoracic airways, including the nasal passage, oral passage, pharynx, and larynx, are the first targets for inhaled particles and provide an important defense for the lung. Understanding the deposition efficiency of the nasal and oral passages is therefore crucial for assessing doses of inhaled particles to the extrathoracic airways and the lung. Significant inter-subject variability in nasal deposition has been shown in recent studies by Rasmussen, T.R. et al, using 2.6 μm particles in 10 human subjects and in our preliminary studies using 0.004-0.15 μm particles in four adult volunteers. No oral deposition was reported in either of these studies. Reasons for the intersubject variations have been frequently attributed to the geometry of the nasal passages. The aims of the present study were to measure in vivo the nasal airway dimensions and the deposition of ultrafine aerosols in both the nasal and oral passages, and to determine the relationship between nasal airway dimensions and aerosol deposition. A statistical procedure incorporated with the diffusion theory was used to model the dimensional features of the nasal airways which may be responsible for the biological variability in particle deposition. In summary, we have correlated deposition of particles in the size range of 0.004 to 0.15 μm with the nasal dimensions of each subject

  3. Incorporating the gut microbiota into models of human and non-human primate ecology and evolution.

    Science.gov (United States)

    Amato, Katherine R

    2016-01-01

    The mammalian gut is home to a diverse community of microbes. Advances in technology over the past two decades have allowed us to examine this community, the gut microbiota, in more detail, revealing a wide range of influences on host nutrition, health, and behavior. These host-gut microbe interactions appear to shape host plasticity and fitness in a variety of contexts, and therefore represent a key factor missing from existing models of human and non-human primate ecology and evolution. However, current studies of the gut microbiota tend to include limited contextual data or are clinical, making it difficult to directly test broad anthropological hypotheses. Here, I review what is known about the animal gut microbiota and provide examples of how gut microbiota research can be integrated into the study of human and non-human primate ecology and evolution with targeted data collection. Specifically, I examine how the gut microbiota may impact primate diet, energetics, disease resistance, and cognition. While gut microbiota research is proliferating rapidly, especially in the context of humans, there remain important gaps in our understanding of host-gut microbe interactions that will require an anthropological perspective to fill. Likewise, gut microbiota research will be an important tool for filling remaining gaps in anthropological research. © 2016 Wiley Periodicals, Inc.

  4. Functional Metagenomic Investigations of the Human Intestinal Microbiota

    Directory of Open Access Journals (Sweden)

    Aimee Marguerite Moore

    2011-10-01

    Full Text Available The human intestinal microbiota encode multiple critical functions impacting human health, including, metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity of this microbial community, its recalcitrance to standard cultivation and the immense diversity of its encoded genes has necessitated the development of novel molecular, microbiological, and genomic tools. Functional metagenomics is one such culture-independent technique used for decades to study environmental microorganisms but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community independent of identity to known genes by subjecting the metagenome to functional assays in a genetically tractable host. Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex community and its human host.

  5. Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition

    NARCIS (Netherlands)

    Miot, Sylvie; Woodfield, T.B.F.; Daniels, Alma U.; Suetterlin, Rosemarie; Peterschmitt, Iman; Heberer, Michael; van Blitterswijk, Clemens; Riesle, J.U.; Martin, Ivan

    2005-01-01

    We investigated whether the post-expansion redifferentiation and cartilage tissue formation capacity of adult human nasal chondrocytes can be regulated by controlled modifications of scaffold composition and architecture. As a model system, we used poly(ethylene

  6. Demonstration of carboxylesterase in cytology samples of human nasal respiratory epithelium

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, D.A.; Nikula, K.J.; Avila, K. [and others

    1995-12-01

    The epithelial lining of the nasal airways is a target for responses induced by a variety of toxicant exposures. The high metabolic capacity of this tissue has been suggested to play a role in both protection of the airways through detoxication of certain toxicants, as well as in activation of other compounds to more toxic metabolites. Specifically, nasal carboxylesterase (CE) has been shown to mediate the toxicity of inhaled esters and acrylates by converting them to more toxic acid and alcohol metabolites which can be cytotoxic and/or carcinogenic to the nasal mucosa. Due to difficulties in extrapolating rodent models to human, new paradigms using human cells and tissues are essential to understanding and evaluating the metabolic processes in human nasal epithelium.

  7. Human vaginal pH and microbiota: an update.

    Science.gov (United States)

    Godha, Keshav; Tucker, Kelly M; Biehl, Colton; Archer, David F; Mirkin, Sebastian

    2018-06-01

    A woman's vaginal pH has many implications on her health and it can be a useful tool in disease diagnosis and prevention. For that reason, the further examination of the relationship between the human vaginal pH and microbiota is imperative. In the past several decades, much has been learned about the physiological mechanisms modulating the vaginal pH, and exogenous/genetic factors that may influence it. A unified, coherent understanding of these concepts is presented to comprehend their interrelationships and their cumulative effect on a woman's health. In this review, we explore research on vaginal pH and microbiota throughout a woman's life, vaginal intermediate cell anaerobic metabolism and net proton secretion by the vaginal epithelial, and the way these factors interact to acidify the vaginal pH. This review provides foundational information about what a microbiota is and its relationship with human physiology and vaginal pH. We then evaluate the influence of physiological mechanisms, demographic factors, and propose ideas for the mechanisms behind their action on the vaginal pH.

  8. The role of human papilloma virus and herpes viruses in the etiology of nasal polyposis.

    Science.gov (United States)

    Koçoğlu, Mücahide Esra; Mengeloğlu, Fırat Zafer; Apuhan, Tayfun; Özsoy, Şeyda; Yilmaz, Beyhan

    2016-02-17

    The aim of this study was to investigate the etiological role of human papilloma virus (HPV), herpes simplex virus (HSV), varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), and human herpes virus-6 (HHV-6) and -7 (HHV-7) in the occurrence of nasal polyposis. Nasal polyp samples from 30 patients with nasal polyposis and normal nasal mucosa from 10 patients without nasal polyps were obtained. DNA was extracted from tissues. Real-time polymerase chain reaction was performed for all runs. No HSV-1, HSV-2, or VZV was detected in the samples. Among the patient samples, EBV and HHV-7 DNA were detected in 18 (60%), HHV-6 was detected in 20 (66.7%), and HPV was detected in 4 (13.3%) samples. Among the controls, CMV DNA was positive in one (10%). EBV was positive in 5 (50%), HHV-6 and HHV-7 were positive in 7 (70%), and HPV was positive in 2 (20%) samples. No significant difference was found among the groups with any test in terms of positivity. The association of Herpesviridae and HPV with the pathogenesis of nasal polyps was investigated in this study and no relationship was found. Thus, these viruses do not play a significant role in the formation of nasal polyps.

  9. Patient-specific three-dimensional explant spheroids derived from human nasal airway epithelium

    DEFF Research Database (Denmark)

    Marthin, June Kehlet; Stevens, Elizabeth Munkebjerg; Larsen, Lars Allan

    2017-01-01

    BACKGROUND: Three-dimensional explant spheroid formation is an ex vivo technique previously used in studies of airway epithelial ion and water transport. Explanted cells and sheets of nasal epithelium form fully differentiated spheroids enclosing a partly fluid-filled lumen with the ciliated apical...... surface facing the outside and accessible for analysis of ciliary function. METHODS: We performed a two-group comparison study of ciliary beat pattern and ciliary beat frequency in spheroids derived from nasal airway epithelium in patients with primary ciliary dyskinesia (PCD) and in healthy controls...... in the investigation of pathophysiological aspects and drug effects in human nasal airway epithelium....

  10. Health risks associated with inhaled nasal toxicants

    NARCIS (Netherlands)

    Feron, VJ; Arts, JHE; Kuper, CF; Slootweg, PJ; Woutersen, RA

    2001-01-01

    Health risks of inhaled nasal toxicants were reviewed with emphasis on chemically induced nasal lesions in humans, sensory irritation, olfactory and trigeminal nerve toxicity, nasal immunopathology and carcinogenesis, nasal responses to chemical mixtures, in vitro models, and nasal dosimetry- and

  11. Impact of a vegan diet on the human salivary microbiota.

    Science.gov (United States)

    Hansen, Tue H; Kern, Timo; Bak, Emilie G; Kashani, Alireza; Allin, Kristine H; Nielsen, Trine; Hansen, Torben; Pedersen, Oluf

    2018-04-11

    Little is known about the effect of long-term diet patterns on the composition and functional potential of the human salivary microbiota. In the present study, we sought to contribute to the ongoing elucidation of dietary effects on the oral microbial community by examining the diversity, composition and functional potential of the salivary microbiota in 160 healthy vegans and omnivores using 16S rRNA gene amplicon sequencing. We further sought to identify bacterial taxa in saliva associated with host inflammatory markers. We show that compositional differences in the salivary microbiota of vegans and omnivores is present at all taxonomic levels below phylum level and includes upper respiratory tract commensals (e.g. Neisseria subflava, Haemophilus parainfluenzae, and Rothia mucilaginosa) and species associated with periodontal disease (e.g. Campylobacter rectus and Porphyromonas endodontalis). Dietary intake of medium chain fatty acids, piscine mono- and polyunsaturated fatty acids, and dietary fibre was associated with bacterial diversity, community structure, as well as relative abundance of several species-level operational taxonomic units. Analysis of imputed genomic potential revealed several metabolic pathways differentially abundant in vegans and omnivores indicating possible effects of macro- and micro-nutrient intake. We also show that certain oral bacteria are associated with the systemic inflammatory state of the host.

  12. Short-term effect of antibiotics on human gut microbiota.

    Directory of Open Access Journals (Sweden)

    Suchita Panda

    Full Text Available From birth onwards, the human gut microbiota rapidly increases in diversity and reaches an adult-like stage at three years of age. After this age, the composition may fluctuate in response to external factors such as antibiotics. Previous studies have shown that resilience is not complete months after cessation of the antibiotic intake. However, little is known about the short-term effects of antibiotic intake on the gut microbial community. Here we examined the load and composition of the fecal microbiota immediately after treatment in 21 patients, who received broad-spectrum antibiotics such as fluoroquinolones and β-lactams. A fecal sample was collected from all participants before treatment and one week after for microbial load and community composition analyses by quantitative PCR and pyrosequencing of the 16S rRNA gene, respectively. Fluoroquinolones and β-lactams significantly decreased microbial diversity by 25% and reduced the core phylogenetic microbiota from 29 to 12 taxa. However, at the phylum level, these antibiotics increased the Bacteroidetes/Firmicutes ratio (p = 0.0007, FDR = 0.002. At the species level, our findings unexpectedly revealed that both antibiotic types increased the proportion of several unknown taxa belonging to the Bacteroides genus, a Gram-negative group of bacteria (p = 0.0003, FDR<0.016. Furthermore, the average microbial load was affected by the treatment. Indeed, the β-lactams increased it significantly by two-fold (p = 0.04. The maintenance of or possible increase detected in microbial load and the selection of Gram-negative over Gram-positive bacteria breaks the idea generally held about the effect of broad-spectrum antibiotics on gut microbiota.

  13. Temporal and spatial variation of the human microbiota during pregnancy.

    Science.gov (United States)

    DiGiulio, Daniel B; Callahan, Benjamin J; McMurdie, Paul J; Costello, Elizabeth K; Lyell, Deirdre J; Robaczewska, Anna; Sun, Christine L; Goltsman, Daniela S A; Wong, Ronald J; Shaw, Gary; Stevenson, David K; Holmes, Susan P; Relman, David A

    2015-09-01

    Despite the critical role of the human microbiota in health, our understanding of microbiota compositional dynamics during and after pregnancy is incomplete. We conducted a case-control study of 49 pregnant women, 15 of whom delivered preterm. From 40 of these women, we analyzed bacterial taxonomic composition of 3,767 specimens collected prospectively and weekly during gestation and monthly after delivery from the vagina, distal gut, saliva, and tooth/gum. Linear mixed-effects modeling, medoid-based clustering, and Markov chain modeling were used to analyze community temporal trends, community structure, and vaginal community state transitions. Microbiota community taxonomic composition and diversity remained remarkably stable at all four body sites during pregnancy (P > 0.05 for trends over time). Prevalence of a Lactobacillus-poor vaginal community state type (CST 4) was inversely correlated with gestational age at delivery (P = 0.0039). Risk for preterm birth was more pronounced for subjects with CST 4 accompanied by elevated Gardnerella or Ureaplasma abundances. This finding was validated with a set of 246 vaginal specimens from nine women (four of whom delivered preterm). Most women experienced a postdelivery disturbance in the vaginal community characterized by a decrease in Lactobacillus species and an increase in diverse anaerobes such as Peptoniphilus, Prevotella, and Anaerococcus species. This disturbance was unrelated to gestational age at delivery and persisted for up to 1 y. These findings have important implications for predicting premature labor, a major global health problem, and for understanding the potential impact of a persistent, altered postpartum microbiota on maternal health, including outcomes of pregnancies following short interpregnancy intervals.

  14. Archaea: Essential inhabitants of the human digestive microbiota

    Directory of Open Access Journals (Sweden)

    Vanessa Demonfort Nkamga

    2017-03-01

    Full Text Available Prokaryotes forming the domain of Archaea, named after their first discovery in extreme environments, are acknowledged but still neglected members of the human digestive tract microbiota. In this microbiota, cultured archaea comprise anaerobic methanogens: Methanobrevibacter smithii, Methanobrevibacter oralis, Methanobrevibacter massiliense, Methanosphaera stadtmanae, Methanobrevibacter arboriphilus, Methanobrevibacter millerae and Methanomassiliicoccus luminyensis; along with the non-methanogen halophilic Archaea Halopherax massiliense. Metagenomic analyses detected DNA sequences indicative of the presence of additional methanogenic and non-methanogenic halophilic Archaea in the human intestinal tract and oral cavity. Methanogens specifically metabolize hydrogen produced by anaerobic fermentation of carbohydrates into methane; further transforming heavy metals and metalloids into methylated derivatives, such as trimethylbismuth which is toxic for both human and bacterial cells. However, the role of Archaea as pathogens remains to be established. Future researches will aim to increase the repertoire of the human digestive tract Archaea and to understand their possible association with intestinal and extra-intestinal infections and diseases including weight regulation abnormalities. Keywords: Human-associated Archaea, Methanogens, Halophiles, Oral cavity, Intestinal tract

  15. Nasal Physiology

    Science.gov (United States)

    ... Caregivers Contact ARS HOME ANATOMY Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ... Patient Education About this Website Font Size + - Home > ANATOMY > Nasal Physiology Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy ...

  16. Nasal Anatomy

    Science.gov (United States)

    ... Caregivers Contact ARS HOME ANATOMY Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ... Size + - Home > ANATOMY > Nasal Anatomy Nasal Anatomy Sinus Anatomy Nasal Physiology Nasal Endoscopy Skull Base Anatomy Virtual Anatomy Disclosure ...

  17. Stable engraftment of human microbiota into mice with a single oral gavage following antibiotic conditioning.

    Science.gov (United States)

    Staley, Christopher; Kaiser, Thomas; Beura, Lalit K; Hamilton, Matthew J; Weingarden, Alexa R; Bobr, Aleh; Kang, Johnthomas; Masopust, David; Sadowsky, Michael J; Khoruts, Alexander

    2017-08-01

    Human microbiota-associated (HMA) animal models relying on germ-free recipient mice are being used to study the relationship between intestinal microbiota and human disease. However, transfer of microbiota into germ-free animals also triggers global developmental changes in the recipient intestine, which can mask disease-specific attributes of the donor material. Therefore, a simple model of replacing microbiota into a developmentally mature intestinal environment remains highly desirable. Here we report on the development of a sequential, three-course antibiotic conditioning regimen that allows sustained engraftment of intestinal microorganisms following a single oral gavage with human donor microbiota. SourceTracker, a Bayesian, OTU-based algorithm, indicated that 59.3 ± 3.0% of the fecal bacterial communities in treated mice were attributable to the donor source. This overall degree of microbiota engraftment was similar in mice conditioned with antibiotics and germ-free mice. Limited surveys of systemic and mucosal immune sites did not show evidence of immune activation following introduction of human microbiota. The antibiotic treatment protocol described here followed by a single gavage of human microbiota may provide a useful, complimentary HMA model to that established in germ-free facilities. The model has the potential for further in-depth translational investigations of microbiota in a variety of human disease states.

  18. Prevalence of human papilloma virus and human herpes virus types 1-7 in human nasal polyposis.

    Science.gov (United States)

    Zaravinos, Apostolos; Bizakis, John; Spandidos, Demetrios A

    2009-09-01

    This study aimed to investigate the prevalence of human papilloma virus (HPV), herpes simplex virus-1/-2 (HSV-1/-2), varicella-zoster virus (VZV), Epstein-Barr virus (EBV), cytomegalovirus (CMV), and human herpes virus-6/-7 (HHV-6/-7) in 23 human nasal polyps by applying PCR. Two types of control tissues were used: adjacent inferior/middle turbinates from the patients and inferior/middle turbinates from 13 patients undergoing nasal corrective surgery. EBV was the virus most frequently detected (35%), followed by HPV (13%), HSV-1 (9%), and CMV (4%). The CMV-positive polyp was simultaneously positive for HSV-1. HPV was also detected in the adjacent turbinates (4%) and the adjacent middle turbinate (4%) of one of the HPV-positive patients. EBV, HSV, and CMV were not detected in the adjacent turbinates of the EBV-, HSV- or CMV-positive patients. All mucosae were negative for the VZV, HHV-6, and HHV-7. This is the first study to deal with the involvement of a comparable group of viruses in human nasal polyposis. The findings support the theory that the presence of viral EBV markedly influences the pathogenesis of these benign nasal tumors. The low incidence of HPV detected confirms the hypothesis that HPV is correlated with infectious mucosal lesions to a lesser extent than it is with proliferative lesions, such as inverted papilloma. The low incidence of HSV-1 and CMV confirms that these two herpes viruses may play a minor role in the development of nasal polyposis. Double infection with HSV-1 and CMV may also play a minor, though causative, role in nasal polyp development. VZV and HHV-6/-7 do not appear to be involved in the pathogenesis of these mucosal lesions.

  19. IL-13 regulates human nasal epithelial cell differentiation via H3K4me3 modification

    Directory of Open Access Journals (Sweden)

    Yu L

    2018-01-01

    Full Text Available Lei Yu,1 Na Li,1 Jisheng Zhang,2 Yan Jiang1 1Department of Otorhinolaryngology, 2Key Laboratory of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Qingdao University, Qingdao, China Introduction: Epigenetic regulation has been shown to play an important role in the development of inflammatory diseases, including chronic rhinosinusitis and nasal polyps. The latter are characterized by epithelial mis-differentiation and infiltration of inflammatory cytokines. H3K4me3 has been shown to be involved in regulating lineage commitment. However, the underlying mechanisms, especially in human nasal epithelial cells (HNEpC, remain underexplored. The objective of this study was to investigate the role of H3K4me3 in HNEpC differentiation treated with the Th2 cytokine IL-13. Patients and methods: The expression levels of mRNA and proteins were investigated using reverse transcription-polymerase chain reaction (RT-PCR assays and Western blot in nasal polyp tissues and human nasal epithelial cells respectively. We measured these levels of H3K4me3, MLL1 and targeted genes compared with control subjects.Results: We demonstrate that expression of H3K4me3 and its methyltransferase MLL1 was significantly upregulated in IL-13-treated HNEpC. This elevation was also observed in nasal polyps. Expression of cilia-related transcription factors FOXJ1 and DNAI2 decreased, while goblet cell-derived genes CLCA1 and MUC5a increased upon IL-13 treatment. Mechanistically, knockdown of MLL1 restored expression of these four genes induced by IL-13. Conclusion: These findings suggest that H3K4me3 is a critical regulator in control of nasal epithelial cell differentiation. MLL1 may be a potential therapeutic target for nasal inflammatory diseases. Keywords: IL-13, H3K4me3 modification, nasal epithelial cell, differentiation 

  20. Advanced approaches to characterize the human intestinal microbiota by computational meta-analysis

    NARCIS (Netherlands)

    Nikkilä, J.; Vos, de W.M.

    2010-01-01

    GOALS: We describe advanced approaches for the computational meta-analysis of a collection of independent studies, including over 1000 phylogenetic array datasets, as a means to characterize the variability of human intestinal microbiota. BACKGROUND: The human intestinal microbiota is a complex

  1. Is the human nasal cavity at risk from inhaled radionuclides?

    International Nuclear Information System (INIS)

    Boecker, B.B.; Hahn, F.F.; Cuddihy, R.G.; Snipes, M.B.; McClellan, R.O.

    1986-01-01

    In a series of three life-span studies in which beagle dogs inhaled relatively soluble forms of beta-emitting radionuclides, a number of cancers of the nasal cavity have arisen at long times after the inhalation exposure. No such cancers were observed in the control dogs. Data obtained in other studies involving serial sacrifice of dogs that received these radionuclides in similar forms have shown that high local concentrations of the radionuclides can persist in nasal turbinates for long periods of time, depending on the physical half-life of the radionuclide inhaled. Several nasal carcinomas have also been observed in dogs injected with 137 CsCl in which the relative concentrations of beta activity in the turbinate region were not as pronounced as in the above studies. Similar risks of sinonasal cancer were calculated for dogs in each of these studies regardless of differences in radionuclide, dosimetry, and route of administration. Since sinonasal cancers have occurred in people exposed to alpha-emitting radionuclides, it is reasonable to assume this could occur with beta emitters as well. Radiation protection guidelines should account for the sinonasal region being at risk. 23 refs., 1 fig., 6 tabs

  2. Microbiota dysbiosis in select human cancers: Evidence of association and causality.

    Science.gov (United States)

    Chen, Jie; Domingue, Jada C; Sears, Cynthia L

    2017-08-01

    The human microbiota is a complex ecosystem of diverse microorganisms consisting of bacteria, viruses, and fungi residing predominantly in epidermal and mucosal habitats across the body, such as skin, oral cavity, lung, intestine and vagina. These symbiotic communities in health, or dysbiotic communities in disease, display tremendous interaction with the local environment and systemic responses, playing a critical role in the host's nutrition, immunity, metabolism and diseases including cancers. While the profiling of normal microbiota in healthy populations is useful and necessary, more recent studies have focused on the microbiota associated with disease, particularly cancers. In this paper, we review current evidence on the role of the human microbiota in four cancer types (colorectal cancer, head and neck cancer, pancreatic cancer, and lung cancer) proposed as affected by both the oral and gut microbiota, and provide a perspective on current gaps in the knowledge of the microbiota and cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Impact of a vegan diet on the human salivary microbiota

    DEFF Research Database (Denmark)

    Hansen, Tue H; Kern, Timo; Bak, Emilie G

    2018-01-01

    Little is known about the effect of long-term diet patterns on the composition and functional potential of the human salivary microbiota. In the present study, we sought to contribute to the ongoing elucidation of dietary effects on the oral microbial community by examining the diversity, composi......Little is known about the effect of long-term diet patterns on the composition and functional potential of the human salivary microbiota. In the present study, we sought to contribute to the ongoing elucidation of dietary effects on the oral microbial community by examining the diversity...... of vegans and omnivores is present at all taxonomic levels below phylum level and includes upper respiratory tract commensals (e.g. Neisseria subflava, Haemophilus parainfluenzae, and Rothia mucilaginosa) and species associated with periodontal disease (e.g. Campylobacter rectus and Porphyromonas...... endodontalis). Dietary intake of medium chain fatty acids, piscine mono- and polyunsaturated fatty acids, and dietary fibre was associated with bacterial diversity, community structure, as well as relative abundance of several species-level operational taxonomic units. Analysis of imputed genomic potential...

  4. [Oral microbiota: a promising predictor of human oral and systemic diseases].

    Science.gov (United States)

    Xin, Xu; Junzhi, He; Xuedong, Zhou

    2015-12-01

    A human oral microbiota is the ecological community of commensal, symbiotic, and pathogenic microorganisms found in human oral cavity. Oral microbiota exists mostly in the form of a biofilm and maintains a dynamic ecological equilibrium with the host body. However, the disturbance of this ecological balance inevitably causes oral infectious diseases, such as dental caries, apical periodontitis, periodontal diseases, pericoronitis, and craniofacial bone osteomyelitis. Oral microbiota is also correlated with many systemic diseases, including cancer, diabetes mellitus, rheumatoid arthritis, cardiovascular diseases, and preterm birth. Hence, oral microbiota has been considered as a potential biomarker of human diseases. The "Human Microbiome Project" and other metagenomic projects worldwide have advanced our knowledge of the human oral microbiota. The integration of these metadata has been the frontier of oral microbiology to improve clinical translation. By reviewing recent progress on studies involving oral microbiota-related oral and systemic diseases, we aimed to propose the essential role of oral microbiota in the prediction of the onset, progression, and prognosis of oral and systemic diseases. An oral microbiota-based prediction model helps develop a new paradigm of personalized medicine and benefits the human health in the post-metagenomics era.

  5. Gut Protozoa: Friends or Foes of the Human Gut Microbiota?

    Science.gov (United States)

    Chabé, Magali; Lokmer, Ana; Ségurel, Laure

    2017-12-01

    The importance of the gut microbiota for human health has sparked a strong interest in the study of the factors that shape its composition and diversity. Despite the growing evidence suggesting that helminths and protozoa significantly interact with gut bacteria, gut microbiome studies remain mostly focused on prokaryotes and on populations living in industrialized countries that typically have a low parasite burden. We argue that protozoa, like helminths, represent an important factor to take into account when studying the gut microbiome, and that their presence - especially considering their long coevolutionary history with humans - may be beneficial. From this perspective, we examine the relationship between the protozoa and their hosts, as well as their relevance for public health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Yield Strength Testing in Human Cadaver Nasal Septal Cartilage and L-Strut Constructs.

    Science.gov (United States)

    Liu, Yuan F; Messinger, Kelton; Inman, Jared C

    2017-01-01

    To our knowledge, yield strength testing in human nasal septal cartilage has not been reported to date. An understanding of the basic mechanics of the nasal septum may help surgeons decide how much of an L-strut to preserve and how much grafting is needed. To determine the factors correlated with yield strength of the cartilaginous nasal septum and to explore the association between L-strut width and thickness in determining yield strength. In an anatomy laboratory, yield strength of rectangular pieces of fresh cadaver nasal septal cartilage was measured, and regression was performed to identify the factors correlated with yield strength. To measure yield strength in L-shaped models, 4 bonded paper L-struts models were constructed for every possible combination of the width and thickness, for a total of 240 models. Mathematical modeling using the resultant data with trend lines and surface fitting was performed to quantify the associations among L-strut width, thickness, and yield strength. The study dates were November 1, 2015, to April 1, 2016. The factors correlated with nasal cartilage yield strength and the associations among L-strut width, thickness, and yield strength in L-shaped models. Among 95 cartilage pieces from 12 human cadavers (mean [SD] age, 67.7 [12.6] years) and 240 constructed L-strut models, L-strut thickness was the only factor correlated with nasal septal cartilage yield strength (coefficient for thickness, 5.54; 95% CI, 4.08-7.00; P cadaver nasal septal cartilage, L-strut thickness was significantly associated with yield strength. In a bonded paper L-strut model, L-strut thickness had a more important role in determining yield strength than L-strut width. Surgeons should consider the thickness of potential L-struts when determining the amount of cartilaginous septum to harvest and graft. NA.

  7. Relationship between Human Gut Microbiota and Interleukin 6 Levels in Overweight and Obese Adults

    Science.gov (United States)

    Background: Gut microbial diversity and abundance can profoundly impact human health. Research has shown that obese individuals are likely to have altered microbiota compared to lean individuals. Obesity is often considered a pro-inflammatory state, however the relationship between microbiota and i...

  8. Human colorectal mucosal microbiota correlates with its host niche physiology revealed by endomicroscopy.

    Science.gov (United States)

    Wang, Ai-Hua; Li, Ming; Li, Chang-Qing; Kou, Guan-Jun; Zuo, Xiu-Li; Li, Yan-Qing

    2016-02-26

    The human gut microbiota plays a pivotal role in the maintenance of health, but how the microbiota interacts with the host at the colorectal mucosa is poorly understood. We proposed that confocal laser endomicroscopy (CLE) might help to untangle this relationship by providing in vivo physiological information of the mucosa. We used CLE to evaluate the in vivo physiology of human colorectal mucosa, and the mucosal microbiota was quantified using 16 s rDNA pyrosequencing. The human mucosal microbiota agglomerated to three major clusters dominated by Prevotella, Bacteroides and Lactococcus. The mucosal microbiota clusters did not significantly correlate with the disease status or biopsy sites but closely correlated with the mucosal niche physiology, which was non-invasively revealed by CLE. Inflammation tilted two subnetworks within the mucosal microbiota. Infiltration of inflammatory cells significantly correlated with multiple components in the predicted metagenome, such as the VirD2 component of the type IV secretory pathway. Our data suggest that a close correlation exists between the mucosal microbiota and the colorectal mucosal physiology, and CLE is a clinically available tool that can be used to facilitate the study of the in vivo correlation between colorectal mucosal physiology and the mucosal microbiota.

  9. Association of the vaginal microbiota with human papillomavirus infection in a Korean twin cohort.

    Science.gov (United States)

    Lee, Jung Eun; Lee, Sunghee; Lee, Heetae; Song, Yun-Mi; Lee, Kayoung; Han, Min Ji; Sung, Joohon; Ko, GwangPyo

    2013-01-01

    Human papillomavirus (HPV) is the most important causative agent of cervical cancers worldwide. However, our understanding of how the vaginal microbiota might be associated with HPV infection is limited. In addition, the influence of human genetic and physiological factors on the vaginal microbiota is unclear. Studies on twins and their families provide the ideal settings to investigate the complicated nature of human microbiota. This study investigated the vaginal microbiota of 68 HPV-infected or uninfected female twins and their families using 454-pyrosequencing analysis targeting the variable region (V2-V3) of the bacterial 16S rRNA gene. Analysis of the vaginal microbiota from both premenopausal women and HPV-discordant twins indicated that HPV-positive women had significantly higher microbial diversity with a lower proportion of Lactobacillus spp. than HPV-negative women. Fusobacteria, including Sneathia spp., were identified as a possible microbiological marker associated with HPV infection. The vaginal microbiotas of twin pairs were significantly more similar to each other than to those from unrelated individuals. In addition, there were marked significant differences from those of their mother, possibly due to differences in menopausal status. Postmenopausal women had a lower proportion of Lactobacillus spp. and a significantly higher microbiota diversity. This study indicated that HPV infection was associated with the composition of the vaginal microbiota, which is influenced by multiple host factors such as genetics and menopause. The potential biological markers identified in this study could provide insight into HPV pathogenesis and may represent biological targets for diagnostics.

  10. Shotgun metaproteomics of the human distal gut microbiota

    Energy Technology Data Exchange (ETDEWEB)

    VerBerkmoes, N.C.; Russell, A.L.; Shah, M.; Godzik, A.; Rosenquist, M.; Halfvarsson, J.; Lefsrud, M.G.; Apajalahti, J.; Tysk, C.; Hettich, R.L.; Jansson, Janet K.

    2008-10-15

    The human gut contains a dense, complex and diverse microbial community, comprising the gut microbiome. Metagenomics has recently revealed the composition of genes in the gut microbiome, but provides no direct information about which genes are expressed or functioning. Therefore, our goal was to develop a novel approach to directly identify microbial proteins in fecal samples to gain information about the genes expressed and about key microbial functions in the human gut. We used a non-targeted, shotgun mass spectrometry-based whole community proteomics, or metaproteomics, approach for the first deep proteome measurements of thousands of proteins in human fecal samples, thus demonstrating this approach on the most complex sample type to date. The resulting metaproteomes had a skewed distribution relative to the metagenome, with more proteins for translation, energy production and carbohydrate metabolism when compared to what was earlier predicted from metagenomics. Human proteins, including antimicrobial peptides, were also identified, providing a non-targeted glimpse of the host response to the microbiota. Several unknown proteins represented previously undescribed microbial pathways or host immune responses, revealing a novel complex interplay between the human host and its associated microbes.

  11. Sodium transport and intracellular sodium activity in cultured human nasal epithelium

    DEFF Research Database (Denmark)

    Willumsen, Niels J.; Boucher, Richard C.

    1991-01-01

     human nasal epithelium (HNE). Under control conditions, intracellular Na+ activity (acNa) was 23 +/- 1 mM (n = 44 preparations, 393 impalements).Amiloride (10(-4) M) hyperpolarized the apical membrane and increased the fractional apical membrane resistance but did not affect acNa. Exposure to...

  12. Bacterial growth, flow, and mixing shape human gut microbiota density and composition.

    Science.gov (United States)

    Arnoldini, Markus; Cremer, Jonas; Hwa, Terence

    2018-03-13

    The human gut microbiota is highly dynamic, and host physiology and diet exert major influences on its composition. In our recent study, we integrated new quantitative measurements on bacterial growth physiology with a reanalysis of published data on human physiology to build a comprehensive modeling framework. This can generate predictions of how changes in different host factors influence microbiota composition. For instance, hydrodynamic forces in the colon, along with colonic water absorption that manifests as transit time, exert a major impact on microbiota density and composition. This can be mechanistically explained by their effect on colonic pH which directly affects microbiota competition for food. In this addendum, we describe the underlying analysis in more detail. In particular, we discuss the mixing dynamics of luminal content by wall contractions and its implications for bacterial growth and density, as well as the broader implications of our insights for the field of gut microbiota research.

  13. Time for food: The impact of diet on gut microbiota and human health.

    Science.gov (United States)

    Zhang, Na; Ju, Zhongjie; Zuo, Tao

    There is growing recognition of the role of diet on modulating the composition and metabolic activity of the human gut microbiota, which in turn influence health. Dietary ingredients and food additives have a substantial impact on the gut microbiota and hence affect human health. Updates on current understanding of the gut microbiota in diseases and metabolic disorders are addressed in this review, providing insights into how this can be transferred from bench to bench side as gut microbes are integrated with food. The potency of microbiota-targeted biomarkers as a state-of-art tool for diagnosis of diseases was also discussed, and it would instruct individuals with healthy dietary consumption. Herein, recent advances in understanding the effect of diet on gut microbiota from an ecological perspective, and how these insights might promote health by guiding development of prebiotic and probiotic strategies and functional foods, were explored. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Geographic variation in nasal cavity form among three human groups from the Japanese Archipelago: Ecogeographic and functional implications.

    Science.gov (United States)

    Fukase, Hitoshi; Ito, Tsuyoshi; Ishida, Hajime

    2016-05-01

    Geographic variation in human nasal form has often been interpreted as a climatic adaptation, owing to the nasal air-conditioning function. The aim of this study was to further address morphofunctional issues of the nasal cavity, using three human groups from subarctic, temperate, and subtropical regions of the Japanese Archipelago: prehistoric Okhotsk, early-modern Honshu and Okinawa groups. Using three-dimensional coordinates of craniometric landmarks surrounding the nasal cavity, we compared linear measurements regarding nasal cavity form among the three groups and also conducted 3D geometric morphometrics. Both linear measurements and morphometric analyses corroborate the previously reported covariation pattern of nasal cavity shape with climate, where humans from a cold/dry climate tend to possess a relatively tall, narrow, and deep nasal cavity compared with those from a warm/humid environment. The northern Okhotsk group had overall larger cranial airways, which may be attributable to their large facial skeleton. However, the ratio of nasal/bimaxillary breadth was significantly lower in the Okhotsk group, indicating that maxillary size does not necessarily constrain the nasal breadth. In addition, despite the presence of obvious geographic clines in anterior nasal shape, posterior choanal shape lacked the north-south geographic cline. This suggests a certain level of morphofunctional independence between the anterior and posterior nasal openings. The observed geographic variations must, however, be partly considered as a reflection of different ancestral traits and population histories of the three groups. Nevertheless, the results indicate that intergroup variations in nasal cavity morphology can be largely explained by climatic conditions. Am. J. Hum. Biol. 28:343-351, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. Quinones are growth factors for the human gut microbiota.

    Science.gov (United States)

    Fenn, Kathrin; Strandwitz, Philip; Stewart, Eric J; Dimise, Eric; Rubin, Sarah; Gurubacharya, Shreya; Clardy, Jon; Lewis, Kim

    2017-12-20

    from the human gut microbiome. These organisms are taxonomically diverse, including members of the genus Faecalibacterium, Bacteroides, Bilophila, Gordonibacter, and Sutterella. This suggests that loss of quinone biosynthesis happened independently in many lineages of the human microbiota. Quinones can be used to improve existing bacterial growth media or modulate the human gut microbiota by encouraging the growth of important symbionts, such as Faecalibacterium species.

  16. Contribution of diet to the composition of the human gut microbiota.

    Science.gov (United States)

    Graf, Daniela; Di Cagno, Raffaella; Fåk, Frida; Flint, Harry J; Nyman, Margareta; Saarela, Maria; Watzl, Bernhard

    2015-01-01

    In the human gut, millions of bacteria contribute to the microbiota, whose composition is specific for every individual. Although we are just at the very beginning of understanding the microbiota concept, we already know that the composition of the microbiota has a profound impact on human health. A key factor in determining gut microbiota composition is diet. Preliminary evidence suggests that dietary patterns are associated with distinct combinations of bacteria in the intestine, also called enterotypes. Western diets result in significantly different microbiota compositions than traditional diets. It is currently unknown which food constituents specifically promote growth and functionality of beneficial bacteria in the intestine. The aim of this review is to summarize the recently published evidence from human in vivo studies on the gut microbiota-modulating effects of diet. It includes sections on dietary patterns (e.g. Western diet), whole foods, food constituents, as wells as food-associated microbes and their influence on the composition of human gut microbiota. The conclusions highlight the problems faced by scientists in this fast-developing field of research, and the need for high-quality, large-scale human dietary intervention studies.

  17. Composition of human skin microbiota affects attractiveness to malaria mosquitoes.

    Directory of Open Access Journals (Sweden)

    Niels O Verhulst

    Full Text Available The African malaria mosquito Anopheles gambiae sensu stricto continues to play an important role in malaria transmission, which is aggravated by its high degree of anthropophily, making it among the foremost vectors of this disease. In the current study we set out to unravel the strong association between this mosquito species and human beings, as it is determined by odorant cues derived from the human skin. Microbial communities on the skin play key roles in the production of human body odour. We demonstrate that the composition of the skin microbiota affects the degree of attractiveness of human beings to this mosquito species. Bacterial plate counts and 16S rRNA sequencing revealed that individuals that are highly attractive to An. gambiae s.s. have a significantly higher abundance, but lower diversity of bacteria on their skin than individuals that are poorly attractive. Bacterial genera that are correlated with the relative degree of attractiveness to mosquitoes were identified. The discovery of the connection between skin microbial populations and attractiveness to mosquitoes may lead to the development of new mosquito attractants and personalized methods for protection against vectors of malaria and other infectious diseases.

  18. Decellularization of Human Nasal Septal Cartilage for the Novel Filler Material of Vocal Fold Augmentation.

    Science.gov (United States)

    Kang, Dae-Woon; Shin, Sung-Chan; Jang, Jeon-Yeob; Park, Hee-Young; Lee, Jin-Choon; Wang, Soo-Geun; Lee, Byung-Joo

    2017-01-01

    The clinical application of allogenic and/or xenogenic cartilage for vocal fold augmentation requires to remove the antigenic cellular component. The objective of this study was to assess the effect of cartilage decellularization and determine the change in immunogenicity after detergent treatment in human nasal septal cartilage flakes made by the freezing and grinding method. Human nasal septal cartilages were obtained from surgical cases. The harvested cartilages were treated by the freezing and grinding technique. The obtained cartilage flakes were treated with 1% Triton X-100 or 2% sodium dodecyl sulfate (SDS) for decellularization of the cartilage flakes. Hematoxylin and eosin stain (H&E stain), surface electric microscopy, immunohistochemical stain for major histocompatibility complex I and II, and ELISA for DNA contents were performed to assess the effect of cartilage decellularization after detergent treatment. A total of 10 nasal septal cartilages were obtained from surgical cases. After detergent treatment, the average size of the cartilage flakes was significantly decreased. With H&E staining, the cell nuclei of decellularized cartilage flakes were not observed. The expression of major histocompatibility complex (MHC)-I and II antigens was not identified in the decellularized cartilage flakes after treatment with detergent. DNA content was removed almost entirely from the decellularized cartilage flakes. Treatment with 2% SDS or 1% Triton X-100 for 1 hour appears to be a promising method for decellularization of human nasal septal cartilage for vocal fold augmentation. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  19. Timing of food intake impacts daily rhythms of human salivary microbiota: a randomized, crossover study.

    Science.gov (United States)

    Collado, María Carmen; Engen, Phillip A; Bandín, Cristina; Cabrera-Rubio, Raúl; Voigt, Robin M; Green, Stefan J; Naqib, Ankur; Keshavarzian, Ali; Scheer, Frank A J L; Garaulet, Marta

    2018-04-01

    The composition of the diet (what we eat) has been widely related to the microbiota profile. However, whether the timing of food consumption (when we eat) influences microbiota in humans is unknown. A randomized, crossover study was performed in 10 healthy normal-weight young women to test the effect of the timing of food intake on the human microbiota in the saliva and fecal samples. More specifically, to determine whether eating late alters daily rhythms of human salivary microbiota, we interrogated salivary microbiota in samples obtained at 4 specific time points over 24 h, to achieve a better understanding of the relationship between food timing and metabolic alterations in humans. Results revealed significant diurnal rhythms in salivary diversity and bacterial relative abundance ( i.e., TM7 and Fusobacteria) across both early and late eating conditions. More importantly, meal timing affected diurnal rhythms in diversity of salivary microbiota toward an inverted rhythm between the eating conditions, and eating late increased the number of putative proinflammatory taxa, showing a diurnal rhythm in the saliva. In a randomized, crossover study, we showed for the first time the impact of the timing of food intake on human salivary microbiota. Eating the main meal late inverts the daily rhythm of salivary microbiota diversity which may have a deleterious effect on the metabolism of the host.-Collado, M. C., Engen, P. A., Bandín, C., Cabrera-Rubio, R., Voigt, R. M., Green, S. J., Naqib, A., Keshavarzian, A., Scheer, F. A. J. L., Garaulet, M. Timing of food intake impacts daily rhythms of human salivary microbiota: a randomized, crossover study.

  20. Unsteady Particle Deposition in a Human Nasal Cavity during Inhalation

    Directory of Open Access Journals (Sweden)

    Camby M.K. Se

    2010-12-01

    Full Text Available The present study investigates the deposition efficiency during the unsteady inhalation cycle by using Computational Fluid Dynamics (CFD. The unsteady inhalation profile was applied at the outlet of nasopharynx, which had a maximum flow rate of 40.3L/min which corresponds to an equivalent steady inhalation tidal volume flow rate of 24.6L/min. Aerodynamic particle sizes of 5μm and 20μm were studied in order to reflect contrasting Stokes numbered particle behaviour. Two particle deposition efficiencies in the nasal cavity versus time are presented. In general, the deposition of 5μm particles was much less than 20μm particles. The first 0.2 second of the inhalation cycle was found to be significant to the particle transport, since the majority of particles were deposited during this period (i.e. its residence time. Comparisons were also made with its equivalent steady inhalation flow rate which found that the unsteady inhalation produced lower deposition efficiency for both particle sizes.

  1. Community and genomic analysis of the human small intestine microbiota

    NARCIS (Netherlands)

    Bogert, van den B.

    2013-01-01

    Our intestinal tract is densely populated by different microbes, collectively called microbiota, of which the majority are bacteria. Research focusing on the intestinal microbiota often use fecal samples as a representative of the bacteria that inhabit the end of the large intestine.

  2. The role of gut microbiota in human metabolism

    NARCIS (Netherlands)

    Vrieze, A.

    2013-01-01

    This thesis supports the hypothesis that gut microbiota can be viewed as an ‘exteriorised organ’ that contributes to energy metabolism and the modulation of our immune system. Following Koch’s postulates, it has now been shown that gut microbiota are associated with metabolic disease and that these

  3. Impact of Diet on Human Intestinal Microbiota and Health

    NARCIS (Netherlands)

    Salonen, A.; Vos, de W.M.

    2014-01-01

    Our intestinal microbiota is involved in the breakdown and bioconversion of dietary and host components that are not degraded and taken up by our own digestive system. The end products generated by our microbiota fuel our enterocytes and support growth but also have signaling functions that generate

  4. Microbiota restoration : natural and supplemented recovery of human microbial communities

    NARCIS (Netherlands)

    Reid, Gregor; Younes, Jessica A.; Van der Mei, Henny C.; Gloor, Gregory B.; Knight, Rob; Busscher, Henk J.

    In a healthy host, a balance exists between members of the microbiota, such that potential pathogenic and non-pathogenic organisms can be found in apparent harmony. During infection, this balance can become disturbed, leading to often dramatic changes in the composition of the microbiota. For most

  5. Diet-microbiota interactions as moderators of human metabolism

    DEFF Research Database (Denmark)

    Sonnenburg, Justin L; Bäckhed, Gert Fredrik

    2016-01-01

    It is widely accepted that obesity and associated metabolic diseases, including type 2 diabetes, are intimately linked to diet. However, the gut microbiota has also become a focus for research at the intersection of diet and metabolic health. Mechanisms that link the gut microbiota with obesity...

  6. Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria

    DEFF Research Database (Denmark)

    Rettedal, Elizabeth; Gumpert, Heidi; Sommer, Morten

    2014-01-01

    The human gut microbiota is linked to a variety of human health issues and implicated in antibiotic resistance gene dissemination. Most of these associations rely on culture-independent methods, since it is commonly believed that gut microbiota cannot be easily or sufficiently cultured. Here, we...... microbiota. Based on the phenotypic mapping, we tailor antibiotic combinations to specifically select for previously uncultivated bacteria. Utilizing this method we cultivate and sequence the genomes of four isolates, one of which apparently belongs to the genus Oscillibacter; uncultivated Oscillibacter...

  7. Immunomodulatory Properties of Streptococcus and Veillonella Isolates from the Human Small Intestine Microbiota

    NARCIS (Netherlands)

    Bogert, van den B.; Meijerink, M.; Zoetendal, E.G.; Wells, J.M.; Kleerebezem, M.

    2014-01-01

    The human small intestine is a key site for interactions between the intestinal microbiota and the mucosal immune system. Here we investigated the immunomodulatory properties of representative species of commonly dominant small-intestinal microbial communities, including six streptococcal strains

  8. Activated human nasal epithelial cells modulate specific antibody response against bacterial or viral antigens.

    Directory of Open Access Journals (Sweden)

    Chiou-Yueh Yeh

    Full Text Available Nasal mucosa is an immune responsive organ evidenced by eliciting both specific local secretory IgA and systemic IgG antibody responses with intra-nasal administration of antigens. Nevertheless, the role of nasal epithelial cells in modulating such responses is unclear. Human nasal epithelial cells (hNECs obtained from sinus mucosa of patients with chronic rhinosinusitis were cultured in vitro and firstly were stimulated by Lactococcus lactis bacterium-like particles (BLPs in order to examine their role on antibody production. Secondly, both antigens of immunodominant protein IDG60 from oral Streptococcus mutans and hemagglutinin (HA from influenza virus were tested to evaluate the specific antibody response. Stimulated hNECs by BLPs exhibited a significant increase in the production of interleukin-6 (IL-6, and thymic stromal lymphopoietin (TSLP. Conditioned medium of stimulated hNECs has effects on enhancing the proliferation of CD4+ T cells together with interferon-γ and IL-5 production, increasing the costimulatory molecules on dendritic cells and augmenting the production of IDG60 specific IgA, HA specific IgG, IgA by human peripheral blood lymphocytes. Such production of antigen specific IgG and IgA is significantly counteracted in the presence of IL-6 and TSLP neutralizing antibodies. In conclusion, properly stimulated hNECs may impart immuno-modulatory effects on the antigen-specific antibody response at least through the production of IL-6 and TSLP.

  9. How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans

    OpenAIRE

    Cartmell, Alan; Lowe, Elisabeth C.; Basl?, Arnaud; Firbank, Susan J.; Ndeh, Didier A.; Murray, Heath; Terrapon, Nicolas; Lombard, Vincent; Henrissat, Bernard; Turnbull, Jeremy E.; Czjzek, Mirjam; Gilbert, Harry J.; Bolam, David N.

    2017-01-01

    The human microbiota, which plays an important role in health and disease, uses complex carbohydrates as a major source of nutrients. Utilization hierarchy indicates that the host glycosaminoglycans heparin (Hep) and heparan sulfate (HS) are high-priority carbohydrates for Bacteroides thetaiotaomicron, a prominent member of the human microbiota. The sulfation patterns of these glycosaminoglycans are highly variable, which presents a significant enzymatic challenge to the polysaccharide lyases...

  10. Studies of blood flow in human nasal mucosa with /sup133/Xe washout technique and laser doppler flowmetry

    International Nuclear Information System (INIS)

    Olsson, P.

    1986-01-01

    The techniques were applied for studies of the influence of environmental temperature on the human nasal mucosa, for studies of mediators in nasal allergy and for studies of the sympathetic neurogenic control of blood flow in the nasal mucosa. The results show that the two techniques are complementary to one another. The /sup133/Xe washout technique is useful for semiquantitative estimations of blood flow in the deeper parts of the mucosa, while the laser doppler technique is especially suited for continuous recordings of relative blood flow changes in the superficial part of the mucosa. Vascular changes may take part in body temperature regulation changes may take part in body temperature regulation as well as in conditioning of respiratory air. The results support the theories that changes in nasal mucosal blood flow are related to body temperature control, while conditioning of inspiratory air may be more dependent on mucosal blood content. The observed dissociation between changes in the resistance and the capacitance vessels also illustrates that these vascular segments are regulated in different ways. The present results indicate that leukotriene D/sub4/ might contribute to an increased blood flow in the nasal mucosa and to blockage of the nasal airway in the acute allergic reaction. Vasomotion is demonstrated to be present in the nasal mucosa, and it appears to be partly dependent on sympathetic neurogenic activity. The development of the present techniques, means that vascular changes involved in normal nasal function and in nasal disease may be evaluated by a new approach. (author)

  11. Interleukin-33 induces mucin gene expression and goblet cell hyperplasia in human nasal epithelial cells.

    Science.gov (United States)

    Ishinaga, Hajime; Kitano, Masako; Toda, Masaaki; D'Alessandro-Gabazza, Corina N; Gabazza, Esteban C; Shah, Said Ahmad; Takeuchi, Kazuhiko

    2017-02-01

    We investigated whether IL-33 is involved in mucus overproduction and goblet cell hyperplasia in eosinophilic chronic rhinosinusitis (ECRS). IL-33 mRNA was significantly higher in the eosinophilic CRS group than in the non-eosinophilic CRS group from human nasal polyps. IL-33 induced MUC5AC mRNA and MUC5AC protein, and also goblet cell hyperplasia at air liquid interface culture in human nasal epithelial cells. In addition to that, IL-33 induced MUC5B and FOXA3, and reduces FOXJmRNA. In conclusion, our present study demonstrated that the direct evidence of IL-33 which lead to increase mucin gene and protein expression, as well as goblet cell hyperplasia. This study provides novel insights into the role of IL-33 on mucus overproduction in eosinophilic inflammation of human airways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Cytotoxicity of Different Excipients on RPMI 2650 Human Nasal Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Tamás Horváth

    2016-05-01

    Full Text Available The nasal route receives a great deal of attention as a non-invasive method for the systemic administration of drugs. For nasal delivery, specific formulations containing excipients are used. Because of the sensitive respiratory mucosa, not only the active ingredients, but also additives need to be tested in appropriate models for toxicity. The aim of the study was to measure the cytotoxicity of six pharmaceutical excipients, which could help to reach larger residence time, better permeability, and increased solubility dissolution rate. The following excipients were investigated on RPMI 2650 human nasal septum tumor epithelial cells: β-d-mannitol, sodium hyaluronate, α and β-cyclodextrin, polyvinyl alcohol and methylcellulose. 3-(4,5-dimethyltiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT dye conversion assay and real-time impedance analysis were used to investigate cytotoxicity. No excipient showed toxicity at 0.3% (w/v concentration or below while 1% concentration a significantly reduced metabolic activity was measured by MTT assay for methylcellulose and cyclodextrins. Using impedance measurements, only β-cyclodextrin (1% was toxic to cells. Mannitol at 1% concentration had a barrier opening effect on epithelial cells, but caused no cellular damage. Based on the results, all additives at 0.3%, sodium hyaluronate and polyvinyl alcohol at 1% concentrations can be safely used for nasal formulations.

  13. Influence of Camembert consumption on the composition and metabolism of intestinal microbiota: a study in human microbiota-associated rats.

    Science.gov (United States)

    Lay, Christophe; Sutren, Malène; Lepercq, Pascale; Juste, Catherine; Rigottier-Gois, Lionel; Lhoste, Evelyne; Lemée, Riwanon; Le Ruyet, Pascale; Doré, Joël; Andrieux, Claude

    2004-09-01

    The objective of the present study was to evaluate the consequence of Camembert consumption on the composition and metabolism of human intestinal microbiota. Camembert cheese was compared with milk fermented by yoghurt starters and Lactobacillus casei as a probiotic reference. The experimental model was the human microbiota-associated (HM) rat. HM rats were fed a basal diet (HMB group), a diet containing Camembert made from pasteurised milk (HMCp group) or a diet containing fermented milk (HMfm group). The level of micro-organisms from dairy products was measured in faeces using cultures on a specific medium and PCR-temporal temperature gradient gel electrophoresis. The metabolic characteristics of the caecal microbiota were also studied: SCFA, NH3, glycosidase and reductase activities, and bile acid degradations. The results showed that micro-organisms from cheese comprised 10(5)-10(8) bacteria/g faecal sample in the HMCp group. Lactobacillus species from fermented milk were detected in HMfm rats. Consumption of cheese and fermented milk led to similar changes in bacterial metabolism: a decrease in azoreductase activity and NH3 concentration and an increase in mucolytic activities. However, specific changes were observed: in HMCp rats, the proportion of ursodeoxycholic resulting from chenodeoxycholic epimerisation was higher; in HMfm rats, alpha and beta-galactosidases were higher than in other groups and both azoreductases and nitrate reductases were lower. The results show that, as for fermented milk, Camembert consumption did not greatly modify the microbiota profile or its major metabolic activities. Ingested micro-organisms were able to survive in part during intestinal transit. These dairy products exert a potentially beneficial influence on intestinal metabolism.

  14. Differential effects of antibiotic therapy on the structure and function of human gut microbiota.

    Directory of Open Access Journals (Sweden)

    Ana Elena Pérez-Cobas

    Full Text Available The human intestinal microbiota performs many essential functions for the host. Antimicrobial agents, such as antibiotics (AB, are also known to disturb microbial community equilibrium, thereby having an impact on human physiology. While an increasing number of studies investigate the effects of AB usage on changes in human gut microbiota biodiversity, its functional effects are still poorly understood. We performed a follow-up study to explore the effect of ABs with different modes of action on human gut microbiota composition and function. Four individuals were treated with different antibiotics and samples were taken before, during and after the AB course for all of them. Changes in the total and in the active (growing microbiota as well as the functional changes were addressed by 16S rRNA gene and metagenomic 454-based pyrosequencing approaches. We have found that the class of antibiotic, particularly its antimicrobial effect and mode of action, played an important role in modulating the gut microbiota composition and function. Furthermore, analysis of the resistome suggested that oscillatory dynamics are not only due to antibiotic-target resistance, but also to fluctuations in the surviving bacterial community. Our results indicated that the effect of AB on the human gut microbiota relates to the interaction of several factors, principally the properties of the antimicrobial agent, and the structure, functions and resistance genes of the microbial community.

  15. The human gastrointestinal microbiota - An unexplored frontier for pharmaceutical discovery

    NARCIS (Netherlands)

    Roeselers, G.; Bouwman, J.; Venema, K.; Montijn, R.

    2012-01-01

    The mammalian gastrointestinal tract (GIT) harbors microorganisms (the microbiota) of vast phylogentic, genomic, and metabolic diversity, and recent years have seen a rapid development in the techniques for studying these complex microbial ecosystems. It is increasingly apparent that the GIT

  16. Is the role of human female reproductive tract microbiota underestimated?

    Science.gov (United States)

    Kamińska, D; Gajecka, M

    2017-05-30

    An issue that is currently undergoing extensive study is the influence of human vaginal microbiota (VMB) on the health status of women and their neonates. Healthy women are mainly colonised with lactobacilli such as Lactobacillus crispatus, Lactobacillus jensenii, and Lactobacillus iners; however, other bacteria may be elements of the VMB, particularly in women with bacterial vaginosis. The implementation of culture-independent molecular methods in VMB characterisation, especially next-generation sequencing, have provided new information regarding bacterial diversity in the vagina, revealing a large number of novel, fastidious, and/or uncultivated bacterial species. These molecular studies have contributed new insights regarding the role of bacterial community composition. In this study, we discuss recent findings regarding the reproductive tract microbiome. Not only bacteria but also viruses and fungi constitute important components of the reproductive tract microbiome. We focus on aspects related to the impact of the maternal microbiome on foetal development, as well as the establishment of the neonatal microbiomes, including the placenta microbiome, and the haematogenous source of intrauterine infection. We also discuss whether the role of the vaginal microbiome is currently understood and appreciated.

  17. Common occurrence of antibacterial agents in human intestinal microbiota

    Directory of Open Access Journals (Sweden)

    Fatima eDrissi

    2015-05-01

    Full Text Available Laboratory experiments have revealed many active mechanisms by which bacteria can inhibit the growth of other organisms. Bacteriocins are a diverse group of natural ribosomally-synthesized antimicrobial peptides produced by a wide range of bacteria and which seem to play an important role in mediating competition within bacterial communities. In this study, we have identified and established the structural classification of putative bacteriocins encoded by 317 microbial genomes in the human intestine. On the basis of homologies to available bacteriocin sequences, mainly from lactic acid bacteria, we report the widespread occurrence of bacteriocins across the gut microbiota: 175 bacteriocins were found to be encoded in Firmicutes, 79 in Proteobacteria, 34 in Bacteroidetes and 25 in Actinobacteria. Bacteriocins from gut bacteria displayed wide differences among phyla with regard to class distribution, net positive charge, hydrophobicity and secondary structure, but the α-helix was the most abundant structure. The peptide structures and physiochemical properties of bacteriocins produced by the most abundant bacteria in the gut, the Firmicutes and the Bacteroidetes, seem to ensure low antibiotic activity and participate in permanent intestinal host defence against the proliferation of harmful bacteria. Meanwhile, the potentially harmful bacteria, including the Proteobacteria, displayed highly effective bacteriocins, probably supporting the virulent character of diseases. These findings highlight the eventual role played by bacteriocins in gut microbial competition and their potential place in antibiotic therapy.

  18. Gut microbiota modulate T cell trafficking into human colorectal cancer.

    Science.gov (United States)

    Cremonesi, Eleonora; Governa, Valeria; Garzon, Jesus Francisco Glaus; Mele, Valentina; Amicarella, Francesca; Muraro, Manuele Giuseppe; Trella, Emanuele; Galati-Fournier, Virginie; Oertli, Daniel; Däster, Silvio Raffael; Droeser, Raoul A; Weixler, Benjamin; Bolli, Martin; Rosso, Raffaele; Nitsche, Ulrich; Khanna, Nina; Egli, Adrian; Keck, Simone; Slotta-Huspenina, Julia; Terracciano, Luigi M; Zajac, Paul; Spagnoli, Giulio Cesare; Eppenberger-Castori, Serenella; Janssen, Klaus-Peter; Borsig, Lubor; Iezzi, Giandomenica

    2018-02-06

    Tumour-infiltrating lymphocytes (TILs) favour survival in human colorectal cancer (CRC). Chemotactic factors underlying their recruitment remain undefined. We investigated chemokines attracting T cells into human CRCs, their cellular sources and microenvironmental triggers. Expression of genes encoding immune cell markers, chemokines and bacterial 16S ribosomal RNA (16SrRNA) was assessed by quantitative reverse transcription-PCR in fresh CRC samples and corresponding tumour-free tissues. Chemokine receptor expression on TILs was evaluated by flow cytometry on cell suspensions from digested tissues. Chemokine production by CRC cells was evaluated in vitro and in vivo, on generation of intraperitoneal or intracecal tumour xenografts in immune-deficient mice. T cell trafficking was assessed on adoptive transfer of human TILs into tumour-bearing mice. Gut flora composition was analysed by 16SrRNA sequencing. CRC infiltration by distinct T cell subsets was associated with defined chemokine gene signatures, including CCL5, CXCL9 and CXCL10 for cytotoxic T lymphocytes and T-helper (Th)1 cells; CCL17, CCL22 and CXCL12 for Th1 and regulatory T cells; CXCL13 for follicular Th cells; and CCL20 and CCL17 for interleukin (IL)-17-producing Th cells. These chemokines were expressed by tumour cells on exposure to gut bacteria in vitro and in vivo. Their expression was significantly higher in intracecal than in intraperitoneal xenografts and was dramatically reduced by antibiotic treatment of tumour-bearing mice. In clinical samples, abundance of defined bacteria correlated with high chemokine expression, enhanced T cell infiltration and improved survival. Gut microbiota stimulate chemokine production by CRC cells, thus favouring recruitment of beneficial T cells into tumour tissues. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Human Parvovirus 4 in Nasal and Fecal Specimens from Children, Ghana

    Science.gov (United States)

    Drexler, Jan Felix; Reber, Ulrike; Muth, Doreen; Herzog, Petra; Annan, Augustina; Ebach, Fabian; Sarpong, Nimarko; Acquah, Samuel; Adlkofer, Julia; Adu-Sarkodie, Yaw; Panning, Marcus; Tannich, Egbert; May, Jürgen; Drosten, Christian

    2012-01-01

    Nonparenteral transmission might contribute to human parvovirus 4 (PARV4) infections in sub-Saharan Africa. PARV4 DNA was detected in 8 (0.83%) of 961 nasal samples and 5 (0.53%) of 943 fecal samples from 1,904 children in Ghana. Virus concentrations ≤6–7 log10 copies/mL suggest respiratory or fecal–oral modes of PARV4 transmission. PMID:23018024

  20. The commensal microbiota and the development of human disease - an introduction

    OpenAIRE

    Marsh, Philip D.

    2015-01-01

    Humans have co-evolved with microorganisms, and both exist in a symbiotic or mutualistic relationship. We are colonised by a diverse, resident microbiota, which develop into structurally and functionally organised biofilms. The resident microorganisms gain a secure, warm, nutritious habitat from the host and, in return, contribute to the development of many important host functions. The resident microbiota of each habitat is natural and provides important benefits for the host including immun...

  1. The commensal microbiota and the development of human disease - an introduction.

    Science.gov (United States)

    Marsh, Philip D

    2015-01-01

    Humans have co-evolved with microorganisms, and both exist in a symbiotic or mutualistic relationship. We are colonised by a diverse, resident microbiota, which develop into structurally and functionally organised biofilms. The resident microorganisms gain a secure, warm, nutritious habitat from the host and, in return, contribute to the development of many important host functions. The resident microbiota of each habitat is natural and provides important benefits for the host including immunological priming, down-regulation of excessive pro-inflammatory responses, regulation of gastrointestinal and cardiovascular systems, and prevention of colonisation by exogenous microbes. The biological properties of each habitat determine which microorganisms can colonise and grow, and dictate which will be major or minor components of the resident microbiota of a site. This results in different surfaces having distinct but characteristic microbiotas. This relationship between the resident microbiota and the host is dynamic and, on occasions, this symbiotic relationship breaks down due to, for example, changes in lifestyle, immune status or following broad spectrum antibiotic therapy. This 'dysbiosis' can result in previously minor components of the microbiota out-competing the normally dominant and beneficial bacteria, thereby increasing the risk of disease. Such perturbations have been associated with a number of clinical disorders such as obesity, allergy, and a variety of inflammatory diseases, including periodontal diseases. A better understanding of the delicate balance between the host and its resident microbiota could lead to novel approaches to the promotion of health and the prevention of dysbiosis.

  2. The commensal microbiota and the development of human disease – an introduction

    Directory of Open Access Journals (Sweden)

    Philip D. Marsh

    2015-09-01

    Full Text Available Humans have co-evolved with microorganisms, and both exist in a symbiotic or mutualistic relationship. We are colonised by a diverse, resident microbiota, which develop into structurally and functionally organised biofilms. The resident microorganisms gain a secure, warm, nutritious habitat from the host and, in return, contribute to the development of many important host functions. The resident microbiota of each habitat is natural and provides important benefits for the host including immunological priming, down-regulation of excessive pro-inflammatory responses, regulation of gastrointestinal and cardiovascular systems, and prevention of colonisation by exogenous microbes. The biological properties of each habitat determine which microorganisms can colonise and grow, and dictate which will be major or minor components of the resident microbiota of a site. This results in different surfaces having distinct but characteristic microbiotas. This relationship between the resident microbiota and the host is dynamic and, on occasions, this symbiotic relationship breaks down due to, for example, changes in lifestyle, immune status or following broad spectrum antibiotic therapy. This ‘dysbiosis’ can result in previously minor components of the microbiota out-competing the normally dominant and beneficial bacteria, thereby increasing the risk of disease. Such perturbations have been associated with a number of clinical disorders such as obesity, allergy, and a variety of inflammatory diseases, including periodontal diseases. A better understanding of the delicate balance between the host and its resident microbiota could lead to novel approaches to the promotion of health and the prevention of dysbiosis.

  3. Effects of Endogenous Formaldehyde in Nasal Tissues on Inhaled Formmaldehyde Dosimetry Predictions in the Rat, Monkey, and Human Nasal Passages

    Science.gov (United States)

    ABSTRACT Formaldehyde, a nasal carcinogen, is also an endogenous compound that is present in all living cells. Due to its high solubility and reactivity, quantitative risk estimates for inhaled formaldehyde rely on internal dose calculations in the upper respiratory tract which ...

  4. Vaginal microbiota in menopause

    OpenAIRE

    Martinus Tarina; Larisa Paramitha; Evita Halim Effendi; Shannaz Nadia Yusharyahya; Hanny Nilasari; Wresti Indriatmi

    2016-01-01

    The human vagina together with its resident, microbiota, comprise a dynamic ecosystem. Normal microbiota is dominated by Lactobacillus species, and pathogen microbiota such as Gardnerella species and Bacteroides species can occur due to decrease in Lactobacillus domination. Lactobacillus plays an essential role in keeping normal vaginal microbiota in balance. Vaginal microbiota adapts to pH change and hormonal value. Changes in the vaginal microbiota over a woman’s lifespan will influence the...

  5. Use of dietary indices to control for diet in human gut microbiota studies.

    Science.gov (United States)

    Bowyer, Ruth C E; Jackson, Matthew A; Pallister, Tess; Skinner, Jane; Spector, Tim D; Welch, Ailsa A; Steves, Claire J

    2018-04-25

    Environmental factors have a large influence on the composition of the human gut microbiota. One of the most influential and well-studied is host diet. To assess and interpret the impact of non-dietary factors on the gut microbiota, we endeavoured to determine the most appropriate method to summarise community variation attributable to dietary effects. Dietary habits are multidimensional with internal correlations. This complexity can be simplified by using dietary indices that quantify dietary variance in a single measure and offer a means of controlling for diet in microbiota studies. However, to date, the applicability of different dietary indices to gut microbiota studies has not been assessed. Here, we use food frequency questionnaire (FFQ) data from members of the TwinsUK cohort to create three different dietary measures applicable in western-diet populations: The Healthy Eating Index (HEI), the Mediterranean Diet Score (MDS) and the Healthy Food Diversity index (HFD-Index). We validate and compare these three indices to determine which best summarises dietary influences on gut microbiota composition. All three indices were independently validated using established measures of health, and all were significantly associated with microbiota measures; the HEI had the highest t values in models of alpha diversity measures, and had the highest number of associations with microbial taxa. Beta diversity analyses showed the HEI explained the greatest variance of microbiota composition. In paired tests between twins discordant for dietary index score, the HEI was associated with the greatest variation of taxa and twin dissimilarity. We find that the HEI explains the most variance in, and has the strongest association with, gut microbiota composition in a western (UK) population, suggesting that it may be the best summary measure to capture gut microbiota variance attributable to habitual diet in comparable populations.

  6. Food additives, contaminants and other minor components: effects on human gut microbiota-a review.

    Science.gov (United States)

    Roca-Saavedra, Paula; Mendez-Vilabrille, Veronica; Miranda, Jose Manuel; Nebot, Carolina; Cardelle-Cobas, Alejandra; Franco, Carlos M; Cepeda, Alberto

    2018-02-01

    Gut bacteria play an important role in several metabolic processes and human diseases, such as obesity and accompanying co-morbidities, such as fatty liver disease, insulin resistance/diabetes, and cardiovascular events. Among other factors, dietary patterns, probiotics, prebiotics, synbiotics, antibiotics, and non-dietary factors, such as stress, age, exercise, and climatic conditions, can dramatically impact the human gut microbiota equilibrium and diversity. However, the effect of minor food constituents, including food additives and trace contaminants, on human gut microbiota has received less attention. Consequently, the present review aimed to provide an objective perspective of the current knowledge regarding the impacts of minor food constituents on human gut microbiota and consequently, on human health.

  7. The food-gut human axis: the effects of diet on gut microbiota and metabolome.

    Science.gov (United States)

    De Angelis, Maria; Garruti, Gabriella; Minervini, Fabio; Bonfrate, Leonilde; Portincasa, Piero; Gobbetti, Marco

    2017-04-27

    Gut microbiota, the largest symbiont community hosted in human organism, is emerging as a pivotal player in the relationship between dietary habits and health. Oral and, especially, intestinal microbes metabolize dietary components, affecting human health by producing harmful or beneficial metabolites, which are involved in the incidence and progression of several intestinal related and non-related diseases. Habitual diet (Western, Agrarian and Mediterranean omnivore diets, vegetarian, vegan and gluten-free diets) drives the composition of the gut microbiota and metabolome. Within the dietary components, polymers (mainly fibers, proteins, fat and polyphenols) that are not hydrolyzed by human enzymes seem to be the main leads of the metabolic pathways of gut microbiota, which in turn directly influences the human metabolome. Specific relationships between diet and microbes, microbes and metabolites, microbes and immune functions and microbes and/or their metabolites and some human diseases are being established. Dietary treatments with fibers are the most effective to benefit the metabolome profile, by improving the synthesis of short chain fatty acids and decreasing the level of molecules, such as p-cresyl sulfate, indoxyl sulfate and trimethylamine N-oxide, involved in disease state. Based on the axis diet-microbiota-health, this review aims at describing the most recent knowledge oriented towards a profitable use of diet to provide benefits to human health, both directly and indirectly, through the activity of gut microbiota. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Gut Microbiota in Human Systemic Lupus Erythematosus and a Mouse Model of Lupus.

    Science.gov (United States)

    Luo, Xin M; Edwards, Michael R; Mu, Qinghui; Yu, Yang; Vieson, Miranda D; Reilly, Christopher M; Ahmed, S Ansar; Bankole, Adegbenga A

    2018-02-15

    Gut microbiota dysbiosis has been observed in a number of autoimmune diseases. However, the role of the gut microbiota in systemic lupus erythematosus (SLE), a prototypical autoimmune disease characterized by persistent inflammation in multiple organs of the body, remains elusive. Here we report the dynamics of the gut microbiota in a murine lupus model, NZB/W F1, as well as intestinal dysbiosis in a small group of SLE patients with active disease. The composition of the gut microbiota changed markedly before and after the onset of lupus disease in NZB/W F1 mice, with greater diversity and increased representation of several bacterial species as lupus progressed from the predisease stage to the diseased stage. However, we did not control for age and the cage effect. Using dexamethasone as an intervention to treat SLE-like signs, we also found that a greater abundance of a group of lactobacilli (for which a species assignment could not be made) in the gut microbiota might be correlated with more severe disease in NZB/W F1 mice. Results of the human study suggest that, compared to control subjects without immune-mediated diseases, SLE patients with active lupus disease possessed an altered gut microbiota that differed in several particular bacterial species (within the genera Odoribacter and Blautia and an unnamed genus in the family Rikenellaceae ) and was less diverse, with increased representation of Gram-negative bacteria. The Firmicutes / Bacteroidetes ratios did not differ between the SLE microbiota and the non-SLE microbiota in our human cohort. IMPORTANCE SLE is a complex autoimmune disease with no known cure. Dysbiosis of the gut microbiota has been reported for both mice and humans with SLE. In this emerging field, however, more studies are required to delineate the roles of the gut microbiota in different lupus-prone mouse models and people with diverse manifestations of SLE. Here, we report changes in the gut microbiota in NZB/W F1 lupus-prone mice and a

  9. Human gut microbiota and healthy aging: Recent developments and future prospective.

    Science.gov (United States)

    Kumar, Manish; Babaei, Parizad; Ji, Boyang; Nielsen, Jens

    2016-10-27

    The human gut microbiota alters with the aging process. In the first 2-3 years of life, the gut microbiota varies extensively in composition and metabolic functions. After this period, the gut microbiota demonstrates adult-like more stable and diverse microbial species. However, at old age, deterioration of physiological functions of the human body enforces the decrement in count of beneficial species (e.g. Bifidobacteria ) in the gut microbiota, which promotes various gut-related diseases (e.g. inflammatory bowel disease). Use of plant-based diets and probiotics/prebiotics may elevate the abundance of beneficial species and prevent gut-related diseases. Still, the connections between diet, microbes, and host are only partially known. To this end, genome-scale metabolic modeling can help to explore these connections as well as to expand the understanding of the metabolic capability of each species in the gut microbiota. This systems biology approach can also predict metabolic variations in the gut microbiota during ageing, and hereby help to design more effective probiotics/prebiotics.

  10. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species

    Directory of Open Access Journals (Sweden)

    Armstrong Dianna

    2004-12-01

    Full Text Available Abstract Background The parenchyma of the brain does not contain lymphatics. Consequently, it has been assumed that arachnoid projections into the cranial venous system are responsible for cerebrospinal fluid (CSF absorption. However, recent quantitative and qualitative evidence in sheep suggest that nasal lymphatics have the major role in CSF transport. Nonetheless, the applicability of this concept to other species, especially to humans has never been clarified. The purpose of this study was to compare the CSF and nasal lymph associations in human and non-human primates with those observed in other mammalian species. Methods Studies were performed in sheep, pigs, rabbits, rats, mice, monkeys and humans. Immediately after sacrifice (or up to 7 hours after death in humans, yellow Microfil was injected into the CSF compartment. The heads were cut in a sagittal plane. Results In the seven species examined, Microfil was observed primarily in the subarachnoid space around the olfactory bulbs and cribriform plate. The contrast agent followed the olfactory nerves and entered extensive lymphatic networks in the submucosa associated with the olfactory and respiratory epithelium. This is the first direct evidence of the association between the CSF and nasal lymph compartments in humans. Conclusions The fact that the pattern of Microfil distribution was similar in all species tested, suggested that CSF absorption into nasal lymphatics is a characteristic feature of all mammals including humans. It is tempting to speculate that some disorders of the CSF system (hydrocephalus and idiopathic intracranial hypertension for example may relate either directly or indirectly to a lymphatic CSF absorption deficit.

  11. From Network Analysis to Functional Metabolic Modeling of the Human Gut Microbiota.

    Science.gov (United States)

    Bauer, Eugen; Thiele, Ines

    2018-01-01

    An important hallmark of the human gut microbiota is its species diversity and complexity. Various diseases have been associated with a decreased diversity leading to reduced metabolic functionalities. Common approaches to investigate the human microbiota include high-throughput sequencing with subsequent correlative analyses. However, to understand the ecology of the human gut microbiota and consequently design novel treatments for diseases, it is important to represent the different interactions between microbes with their associated metabolites. Computational systems biology approaches can give further mechanistic insights by constructing data- or knowledge-driven networks that represent microbe interactions. In this minireview, we will discuss current approaches in systems biology to analyze the human gut microbiota, with a particular focus on constraint-based modeling. We will discuss various community modeling techniques with their advantages and differences, as well as their application to predict the metabolic mechanisms of intestinal microbial communities. Finally, we will discuss future perspectives and current challenges of simulating realistic and comprehensive models of the human gut microbiota.

  12. The human microbiota: the role of microbial communities in health and disease

    Directory of Open Access Journals (Sweden)

    Luz Elena Botero Palacio

    2016-01-01

    Full Text Available During the last decade, there has been increasing awareness of the massive number of microorganisms, collectively known as the human microbiota, that are associated with humans. This microbiota outnumbers the host cells by approximately a factor of ten and contains a large repertoire of microbial genome-encoded metabolic processes. The diverse human microbiota and its associated metabolic potential can provide the host with novel functions that can influence host health and disease status in ways that still need to be analyzed. The microbiota varies with age, with features that depend on the body site, host lifestyle and health status. The challenge is therefore to identify and characterize these microbial communities and use this information to learn how they function and how they can influence the host in terms of health and well-being. Here we provide an overview of some of the recent studies involving the human microbiota and about how these communities might affect host health and disease. A special emphasis is given to studies related to tuberculosis, a disease that claims over one million lives each year worldwide and still represents a challenge for control in many countries, including Colombia.

  13. In Vitro Culture Conditions for Maintaining a Complex Population of Human Gastrointestinal Tract Microbiota

    Directory of Open Access Journals (Sweden)

    Bong-Soo Kim

    2011-01-01

    Full Text Available A stable intestinal microbiota is important in maintaining human physiology and health. Although there have been a number of studies using in vitro and in vivo approaches to determine the impact of diet and xenobiotics on intestinal microbiota, there is no consensus for the best in vitro culture conditions for growth of the human gastrointestinal microbiota. To investigate the dynamics and activities of intestinal microbiota, it is important for the culture conditions to support the growth of a wide range of intestinal bacteria and maintain a complex microbial community representative of the human gastrointestinal tract. Here, we compared the bacterial community in three culture media: brain heart infusion broth and high- and low-carbohydrate medium with different growth supplements. The bacterial community was analyzed using denaturing gradient gel electrophoresis (DGGE, pyrosequencing and real-time PCR. Based on the molecular analysis, this study indicated that the 3% fecal inoculum in low-concentration carbohydrate medium with 1% autoclaved fecal supernatant provided enhanced growth conditions to conduct in vitro studies representative of the human intestinal microbiota.

  14. Human Gut Microbiota Predicts Susceptibility to Vibrio cholerae Infection.

    Science.gov (United States)

    Midani, Firas S; Weil, Ana A; Chowdhury, Fahima; Begum, Yasmin A; Khan, Ashraful I; Debela, Meti D; Durand, Heather K; Reese, Aspen T; Nimmagadda, Sai N; Silverman, Justin D; Ellis, Crystal N; Ryan, Edward T; Calderwood, Stephen B; Harris, Jason B; Qadri, Firdausi; David, Lawrence A; LaRocque, Regina C

    2018-04-12

    Cholera is a public health problem worldwide and the risk factors for infection are only partially understood. We prospectively studied household contacts of cholera patients to compare those who were infected with those who were not. We constructed predictive machine learning models of susceptibility using baseline gut microbiota data. We identified bacterial taxa associated with susceptibility to Vibrio cholerae infection and tested these taxa for interactions with V. cholerae in vitro. We found that machine learning models based on gut microbiota predicted V. cholerae infection as well as models based on known clinical and epidemiological risk factors. A 'predictive gut microbiota' of roughly 100 bacterial taxa discriminated between contacts who developed infection and those who did not. Susceptibility to cholera was associated with depleted levels of microbes from the phylum Bacteroidetes. By contrast, a microbe associated with cholera by our modeling framework, Paracoccus aminovorans, promoted the in vitro growth of V. cholerae. Gut microbiota structure, clinical outcome, and age were also linked. These findings support the hypothesis that abnormal gut microbial communities are a host factor related to V. cholerae susceptibility.

  15. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases.

    Science.gov (United States)

    Lin, Lan; Zhang, Jianqiong

    2017-01-06

    A vast diversity of microbes colonizes in the human gastrointestinal tract, referred to intestinal microbiota. Microbiota and products thereof are indispensable for shaping the development and function of host innate immune system, thereby exerting multifaceted impacts in gut health. This paper reviews the effects on immunity of gut microbe-derived nucleic acids, and gut microbial metabolites, as well as the involvement of commensals in the gut homeostasis. We focus on the recent findings with an intention to illuminate the mechanisms by which the microbiota and products thereof are interacting with host immunity, as well as to scrutinize imbalanced gut microbiota (dysbiosis) which lead to autoimmune disorders including inflammatory bowel disease (IBD), Type 1 diabetes (T1D) and systemic immune syndromes such as rheumatoid arthritis (RA). In addition to their well-recognized benefits in the gut such as occupation of ecological niches and competition with pathogens, commensal bacteria have been shown to strengthen the gut barrier and to exert immunomodulatory actions within the gut and beyond. It has been realized that impaired intestinal microbiota not only contribute to gut diseases but also are inextricably linked to metabolic disorders and even brain dysfunction. A better understanding of the mutual interactions of the microbiota and host immune system, would shed light on our endeavors of disease prevention and broaden the path to our discovery of immune intervention targets for disease treatment.

  16. Molecular Characterization of the Human Stomach Microbiota in Gastric Cancer Patients

    Directory of Open Access Journals (Sweden)

    Guoqin Yu

    2017-07-01

    Full Text Available Helicobacter pylori (Hp is the primary cause of gastric cancer but we know little of its relative abundance and other microbes in the stomach, especially at the time of gastric cancer diagnosis. Here we characterized the taxonomic and derived functional profiles of gastric microbiota in two different sets of gastric cancer patients, and compared them with microbial profiles in other body sites. Paired non-malignant and tumor tissues were sampled from 160 gastric cancer patients with 80 from China and 80 from Mexico. The 16S rRNA gene V3–V4 region was sequenced using MiSeq platform for taxonomic profiles. PICRUSt was used to predict functional profiles. Human Microbiome Project was used for comparison. We showed that Hp is the most abundant member of gastric microbiota in both Chinese and Mexican samples (51 and 24%, respectively, followed by oral-associated bacteria. Taxonomic (phylum-level profiles of stomach microbiota resembled oral microbiota, especially when the Helicobacter reads were removed. The functional profiles of stomach microbiota, however, were distinct from those found in other body sites and had higher inter-subject dissimilarity. Gastric microbiota composition did not differ by Hp colonization status or stomach anatomic sites, but did differ between paired non-malignant and tumor tissues in either Chinese or Mexican samples. Our study showed that Hp is the dominant member of the non-malignant gastric tissue microbiota in many gastric cancer patients. Our results provide insights on the gastric microbiota composition and function in gastric cancer patients, which may have important clinical implications.

  17. Synthetic Biology Approaches to Engineer Probiotics and Members of the Human Microbiota for Biomedical Applications.

    Science.gov (United States)

    Bober, Josef R; Beisel, Chase L; Nair, Nikhil U

    2018-03-12

    An increasing number of studies have strongly correlated the composition of the human microbiota with many human health conditions and, in several cases, have shown that manipulating the microbiota directly affects health. These insights have generated significant interest in engineering indigenous microbiota community members and nonresident probiotic bacteria as biotic diagnostics and therapeutics that can probe and improve human health. In this review, we discuss recent advances in synthetic biology to engineer commensal and probiotic lactic acid bacteria, bifidobacteria, and Bacteroides for these purposes, and we provide our perspective on the future potential of these technologies. 277 Expected final online publication date for the Annual Review of Biomedical Engineering Volume 20 is June 4, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  18. The role of gut microbiota in human obesity: recent findings and future perspectives.

    Science.gov (United States)

    Tagliabue, A; Elli, M

    2013-03-01

    In recent years, gut microbiota have gained a growing interest as an environmental factor that may affect the predisposition toward adiposity. In this review, we describe and discuss the research that has focused on the involvement of gut microbiota in human obesity. We also summarize the current knowledge concerning the health effects of the composition of gut microbiota, acquired using the most recent methodological approaches, and the potential influence of gut microbiota on adiposity, as revealed by animal studies. Original research studies that were published in English or French until December 2011 were selected through a computer-assisted literature search. The studies conducted to date show that there are differences in the gut microbiota between obese and normal-weight experimental animals. There is also evidence that a high-fat diet may induce changes in gut microbiota in animal models regardless of the presence of obesity. In humans, obesity has been associated with reduced bacterial diversity and an altered representation of bacterial species, but the identified differences are not homogeneous among the studies. The question remains as to whether changes in the intestinal microbial community are one of the environmental causes of overweight and obesity or if they are a consequence of obesity, specifically of the unbalanced diet that often accompanies the development of excess weight gain. In the future, larger studies on the potential role of intestinal microbiota in human obesity should be conducted at the species level using standardized analytical techniques and taking all of the possible confounding variables into account. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Metagenomic Characterization of the Human Intestinal Microbiota in Fecal Samples from STEC-Infected Patients

    NARCIS (Netherlands)

    Gigliucci, Federica; von Meijenfeldt, F A Bastiaan; Knijn, Arnold; Michelacci, Valeria; Scavia, Gaia; Minelli, Fabio; Dutilh, Bas E|info:eu-repo/dai/nl/304546313; Ahmad, Hamideh M; Raangs, Gerwin C; Friedrich, Alex W; Rossen, John W A; Morabito, Stefano

    2018-01-01

    The human intestinal microbiota is a homeostatic ecosystem with a remarkable impact on human health and the disruption of this equilibrium leads to an increased susceptibility to infection by numerous pathogens. In this study, we used shotgun metagenomic sequencing and two different bioinformatic

  20. Microbial metaproteomics for characterizing the range of metabolic functions and activities of human gut microbiota.

    Science.gov (United States)

    Xiong, Weili; Abraham, Paul E; Li, Zhou; Pan, Chongle; Hettich, Robert L

    2015-10-01

    The human gastrointestinal tract is a complex, dynamic ecosystem that consists of a carefully tuned balance of human host and microbiota membership. The microbiome is not merely a collection of opportunistic parasites, but rather provides important functions to the host that are absolutely critical to many aspects of health, including nutrient transformation and absorption, drug metabolism, pathogen defense, and immune system development. Microbial metaproteomics provides the ability to characterize the human gut microbiota functions and metabolic activities at a remarkably deep level, revealing information about microbiome development and stability as well as their interactions with their human host. Generally, microbial and human proteins can be extracted and then measured by high performance MS-based proteomics technology. Here, we review the field of human gut microbiome metaproteomics, with a focus on the experimental and informatics considerations involved in characterizing systems ranging from low-complexity model gut microbiota in gnotobiotic mice, to the emerging gut microbiome in the GI tract of newborn human infants, and finally to an established gut microbiota in human adults. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Intestinal microbiota in human health and disease: the impact of probiotics

    NARCIS (Netherlands)

    Gerritsen, J.; Smidt, H.; Rijkers, G.T.; Vos, de W.M.

    2011-01-01

    The complex communities of microorganisms that colonise the human gastrointestinal tract play an important role in human health. The development of culture-independent molecular techniques has provided new insights in the composition and diversity of the intestinal microbiota. Here, we summarise the

  2. Integrative Physiology: At the Crossroads of Nutrition, Microbiota, Animal Physiology, and Human Health.

    Science.gov (United States)

    Leulier, François; MacNeil, Lesley T; Lee, Won-Jae; Rawls, John F; Cani, Patrice D; Schwarzer, Martin; Zhao, Liping; Simpson, Stephen J

    2017-03-07

    Nutrition is paramount in shaping all aspects of animal biology. In addition, the influence of the intestinal microbiota on physiology is now widely recognized. Given that diet also shapes the intestinal microbiota, this raises the question of how the nutritional environment and microbial assemblages together influence animal physiology. This research field constitutes a new frontier in the field of organismal biology that needs to be addressed. Here we review recent studies using animal models and humans and propose an integrative framework within which to define the study of the diet-physiology-microbiota systems and ultimately link it to human health. Nutritional Geometry sits centrally in the proposed framework and offers means to define diet compositions that are optimal for individuals and populations. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults

    DEFF Research Database (Denmark)

    Larsen, Nadja; Vogensen, Finn Kvist; van der Berg, Franciscus Winfried J

    2010-01-01

    . Methods and Findings The study included 36 male adults with a broad range of age and body-mass indices (BMIs), among which 18 subjects were diagnosed with diabetes type 2. The fecal bacterial composition was investigated by real-time quantitative PCR (qPCR) and in a subgroup of subjects (N = 20) by tag...... = 0.04). Conclusions The results of this study indicate that type 2 diabetes in humans is associated with compositional changes in intestinal microbiota. The level of glucose tolerance should be considered when linking microbiota with metabolic diseases such as obesity and developing strategies......Background Recent evidence suggests that there is a link between metabolic diseases and bacterial populations in the gut. The aim of this study was to assess the differences between the composition of the intestinal microbiota in humans with type 2 diabetes and non-diabetic persons as control...

  4. Intestinal Microbiota Distinguish Gout Patients from Healthy Humans

    Science.gov (United States)

    Guo, Zhuang; Zhang, Jiachao; Wang, Zhanli; Ang, Kay Ying; Huang, Shi; Hou, Qiangchuan; Su, Xiaoquan; Qiao, Jianmin; Zheng, Yi; Wang, Lifeng; Koh, Eileen; Danliang, Ho; Xu, Jian; Lee, Yuan Kun; Zhang, Heping

    2016-01-01

    Current blood-based approach for gout diagnosis can be of low sensitivity and hysteretic. Here via a 68-member cohort of 33 healthy and 35 diseased individuals, we reported that the intestinal microbiota of gout patients are highly distinct from healthy individuals in both organismal and functional structures. In gout, Bacteroides caccae and Bacteroides xylanisolvens are enriched yet Faecalibacterium prausnitzii and Bifidobacterium pseudocatenulatum depleted. The established reference microbial gene catalogue for gout revealed disorder in purine degradation and butyric acid biosynthesis in gout patients. In an additional 15-member validation-group, a diagnosis model via 17 gout-associated bacteria reached 88.9% accuracy, higher than the blood-uric-acid based approach. Intestinal microbiota of gout are more similar to those of type-2 diabetes than to liver cirrhosis, whereas depletion of Faecalibacterium prausnitzii and reduced butyrate biosynthesis are shared in each of the metabolic syndromes. Thus the Microbial Index of Gout was proposed as a novel, sensitive and non-invasive strategy for diagnosing gout via fecal microbiota. PMID:26852926

  5. A model of human nasal epithelial cells adapted for direct and repeated exposure to airborne pollutants.

    Science.gov (United States)

    Bardet, Gaëlle; Achard, Sophie; Loret, Thomas; Desauziers, Valérie; Momas, Isabelle; Seta, Nathalie

    2014-08-17

    Airway epithelium lining the nasal cavity plays a pivotal role in respiratory tract defense and protection mechanisms. Air pollution induces alterations linked to airway diseases such as asthma. Only very few in vitro studies to date have succeeded in reproducing physiological conditions relevant to cellular type and chronic atmospheric pollution exposure. We therefore, set up an in vitro model of human Airway Epithelial Cells of Nasal origin (hAECN) close to real human cell functionality, specifically adapted to study the biological effects of exposure to indoor gaseous pollution at the environmental level. hAECN were exposed under air-liquid interface, one, two, or three-times at 24 h intervals for 1 h, to air or formaldehyde (200 μg/m(3)), an indoor air gaseous pollutant. All experiments were ended at day 4, when both cellular viability and cytokine production were assessed. Optimal adherence and confluence of cells were obtained 96 h after cell seeding onto collagen IV-precoated insert. Direct and repeated exposure to formaldehyde did not produce any cellular damage or IL-6 production change, although weak lower IL-8 production was observed only after the third exposure. Our model is significantly better than previous ones due to cell type and the repeated exposure protocol. Copyright © 2014. Published by Elsevier Ireland Ltd.

  6. Surfactant Proteins A, B, C and D in the Human Nasal Airway

    DEFF Research Database (Denmark)

    Gaunsbaek, Maria Q; Kjeldsen, Anette D; Svane-Knudsen, Viggo

    2014-01-01

    Aims: To investigate the presence of surfactant protein (SP) A, B, C and D in nasal airways and to determine whether the proteins exert their main functions in nasal secretions or in the deeper layers of the nasal mucosa. Methods: Volunteers were recruited from the Department of ENT Head and Neck...

  7. How mass spectrometric approaches applied to bacterial identification have revolutionized the study of human gut microbiota.

    Science.gov (United States)

    Grégory, Dubourg; Chaudet, Hervé; Lagier, Jean-Christophe; Raoult, Didier

    2018-03-01

    Describing the human hut gut microbiota is one the most exciting challenges of the 21 st century. Currently, high-throughput sequencing methods are considered as the gold standard for this purpose, however, they suffer from several drawbacks, including their inability to detect minority populations. The advent of mass-spectrometric (MS) approaches to identify cultured bacteria in clinical microbiology enabled the creation of the culturomics approach, which aims to establish a comprehensive repertoire of cultured prokaryotes from human specimens using extensive culture conditions. Areas covered: This review first underlines how mass spectrometric approaches have revolutionized clinical microbiology. It then highlights the contribution of MS-based methods to culturomics studies, paying particular attention to the extension of the human gut microbiota repertoire through the discovery of new bacterial species. Expert commentary: MS-based approaches have enabled cultivation methods to be resuscitated to study the human gut microbiota and thus to fill in the blanks left by high-throughput sequencing methods in terms of culturing minority populations. Continued efforts to recover new taxa using culture methods, combined with their rapid implementation in genomic databases, would allow for an exhaustive analysis of the gut microbiota through the use of a comprehensive approach.

  8. Impact of consumption of oligosaccharide-containing biscuits on the fecal microbiota of humans

    NARCIS (Netherlands)

    Tannock, G.W.; Munro, K.; Bibiloni, R.; Simon, M.A.; Hargreaves, P.; Gopal, P.; Harmsen, H.J.M.; Welling, Gjalt

    Human subjects consumed biscuits containing either galacto-oligosaccharides or fructo-oligosaccharides in a double-blinded, crossover study. The impact of supplementing the diet with three biscuits per day on the fecal microbiota was evaluated by selective culture of particular bacterial groups,

  9. Safety assessment of thiolated polymers: effect on ciliary beat frequency in human nasal epithelial cells.

    Science.gov (United States)

    Palmberger, Thomas F; Augustijns, Patrick; Vetter, Anja; Bernkop-Schnürch, Andreas

    2011-12-01

    The aim of this study was to investigate the nasal safety of gel formulations of thiolated polymers (thiomers) by assessing their effect on ciliary beat frequency (CBF) in human nasal epithelial cells. Poly(acrylic acid) 450 kDa-cysteine (PAA-cys) and alginate-cysteine (alg-cys) were synthesized by covalent attachment of L-cysteine to the polymeric backbone. The cationic polymer chitosan-thiobutylamidine (chito-TBA) was synthesized by attaching iminothiolane to chitosan. CBF using was measured by a photometric system. CBF was measured before incubating the cells with test gels, during incubation and after washing out the polymeric test gels to evaluate reversibility of cilio-inhibition. The influence of viscosity on CBF was determined by using hydroxyethylcellulose (HEC)-gels of various concentrations. Ciliary beating was observed to be affected by viscosity, but cilia were still beating in the presence of a HEC-gel displaying an apparent viscosity of 25 Pa.s. In case of thiolated polymers and their unmodified control, a concentration-dependent decrease in CBF could be observed. PAA-cys, alg-cys, chito-TBA and their corresponding unmodified controls exhibited a moderate cilio-inhibitory effect, followed by a partial recovery of CBF when used at a concentration of 1%. Alg-cys 2% and chito-TBA 2% (m/v) gels exhibited severe cilio-inhibition, which was partially reversible. L-cysteine and reduced glutathione led to mild cilio-inhibition at concentrations of 3% (m/v). Taking into account that dilution after application and cilio-modifying effects is usually more pronounced under in vitro conditions, thiomers can be considered as suitable excipients for nasal drug delivery systems.

  10. Effect of chito-oligosaccharides over human faecal microbiota during fermentation in batch cultures.

    Science.gov (United States)

    Mateos-Aparicio, Inmaculada; Mengíbar, Marian; Heras, Angeles

    2016-02-10

    Chitosan with high number of deacetylated units, its reacetylated derivative and COS obtained through an enzymatic treatment with chitosanase were tested in pH controlled batch cultures to investigate the ability of the human faecal microbiota to utilise them. Chitosan derivatives with high number of deacetylated units decreased the bacterial populations: Bifidobacterium spp., Eubacterium rectale/Clostridium coccoides, C. Histolyticum and Bacteroides/Prevotella. On the other hand, chitosan derivatives with high content of acetylated residues maintained the tested bacterial groups and could increase Lactobacillus/Enterococcus. Regarding short chain fatty acids (SCFA), only low Mw COS increased the production in similar levels than fructo-oligossacharides (FOS). The acetylated chitosans and their COS do not appear as potential prebiotics but did not affect negatively the faecal microbiota, while derivatives with high number of deacetylated units could induce a colonic microbiota imbalance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Nasal Oxytocin Treatment Biases Dogs’ Visual Attention and Emotional Response toward Positive Human Facial Expressions

    Directory of Open Access Journals (Sweden)

    Sanni Somppi

    2017-10-01

    Full Text Available The neuropeptide oxytocin plays a critical role in social behavior and emotion regulation in mammals. The aim of this study was to explore how nasal oxytocin administration affects gazing behavior during emotional perception in domestic dogs. Looking patterns of dogs, as a measure of voluntary attention, were recorded during the viewing of human facial expression photographs. The pupil diameters of dogs were also measured as a physiological index of emotional arousal. In a placebo-controlled within-subjects experimental design, 43 dogs, after having received either oxytocin or placebo (saline nasal spray treatment, were presented with pictures of unfamiliar male human faces displaying either a happy or an angry expression. We found that, depending on the facial expression, the dogs’ gaze patterns were affected selectively by oxytocin treatment. After receiving oxytocin, dogs fixated less often on the eye regions of angry faces and revisited (glanced back at more often the eye regions of smiling (happy faces than after the placebo treatment. Furthermore, following the oxytocin treatment dogs fixated and revisited the eyes of happy faces significantly more often than the eyes of angry faces. The analysis of dogs’ pupil diameters during viewing of human facial expressions indicated that oxytocin may also have a modulatory effect on dogs’ emotional arousal. While subjects’ pupil sizes were significantly larger when viewing angry faces than happy faces in the control (placebo treatment condition, oxytocin treatment not only eliminated this effect but caused an opposite pupil response. Overall, these findings suggest that nasal oxytocin administration selectively changes the allocation of attention and emotional arousal in domestic dogs. Oxytocin has the potential to decrease vigilance toward threatening social stimuli and increase the salience of positive social stimuli thus making eye gaze of friendly human faces more salient for dogs. Our

  12. Nasal application of HSV encoding human preproenkephalin blocks craniofacial pain in a rat model of traumatic brain injury

    DEFF Research Database (Denmark)

    Sørensen, Jens Christian Hedemann; Meidahl, Anders Christian Nørgaard; Tzabazis

    2017-01-01

    pain using nasal application of a herpes simplex virus (HSV)-based vector expressing human proenkephalin (SHPE) to target the trigeminal ganglia. Mild TBI was induced in rats by the use of a modified fluid percussion model. Two days after mild TBI, following the development of facial mechanical...... lasting at least 45 days. On the other hand, nasal SHPE application 2 days post-TBI attenuated facial allodynia, reaching significance by day 4–7 and maintaining this effect throughout the duration of the experiment. Immunohistochemical examination revealed strong expression of human proenkephalin...

  13. Antibiotic-induced gut microbiota disruption during human endotoxemia: a randomised controlled study.

    Science.gov (United States)

    Lankelma, Jacqueline M; Cranendonk, Duncan R; Belzer, Clara; de Vos, Alex F; de Vos, Willem M; van der Poll, Tom; Wiersinga, W Joost

    2017-09-01

    The gut microbiota is essential for the development of the intestinal immune system. Animal models have suggested that the gut microbiota also acts as a major modulator of systemic innate immunity during sepsis. Microbiota disruption by broad-spectrum antibiotics could thus have adverse effects on cellular responsiveness towards invading pathogens. As such, the use of antibiotics may attribute to immunosuppression as seen in sepsis. We aimed to test whether disruption of the gut microbiota affects systemic innate immune responses during endotoxemia in healthy subjects. In this proof-of-principle intervention trial, 16 healthy young men received either no treatment or broad-spectrum antibiotics (ciprofloxacin, vancomycin and metronidazole) for 7 days, after which all were administered lipopolysaccharide intravenously to induce a transient sepsis-like syndrome. At various time points, blood and faeces were sampled. Gut microbiota diversity was significantly lowered by the antibiotic treatment in all subjects. Clinical parameters, neutrophil influx, cytokine production, coagulation activation and endothelial activation during endotoxemia were not different between antibiotic-pretreated and control individuals. Antibiotic treatment had no impact on blood leucocyte responsiveness to various Toll-like receptor ligands and clinically relevant causative agents of sepsis ( Streptococcus pneumoniae, Klebsiella pneumoniae, Escherichia coli ) during endotoxemia. These findings suggest that gut microbiota disruption by broad-spectrum antibiotics does not affect systemic innate immune responses in healthy subjects during endotoxemia in humans, disproving our hypothesis. Further research is needed to test this hypothesis in critically ill patients. These data underline the importance of translating findings in mice to humans. ClinicalTrials.gov (NCT02127749; Pre-results). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a

  14. Exercise Alters Gut Microbiota Composition and Function in Lean and Obese Humans.

    Science.gov (United States)

    Allen, Jacob M; Mailing, Lucy J; Niemiro, Grace M; Moore, Rachel; Cook, Marc D; White, Bryan A; Holscher, Hannah D; Woods, Jeffrey A

    2018-04-01

    Exercise is associated with altered gut microbial composition, but studies have not investigated whether the gut microbiota and associated metabolites are modulated by exercise training in humans. We explored the impact of 6 wk of endurance exercise on the composition, functional capacity, and metabolic output of the gut microbiota in lean and obese adults with multiple-day dietary controls before outcome variable collection. Thirty-two lean (n = 18 [9 female]) and obese (n = 14 [11 female]), previously sedentary subjects participated in 6 wk of supervised, endurance-based exercise training (3 d·wk) that progressed from 30 to 60 min·d and from moderate (60% of HR reserve) to vigorous intensity (75% HR reserve). Subsequently, participants returned to a sedentary lifestyle activity for a 6-wk washout period. Fecal samples were collected before and after 6 wk of exercise, as well as after the sedentary washout period, with 3-d dietary controls in place before each collection. β-diversity analysis revealed that exercise-induced alterations of the gut microbiota were dependent on obesity status. Exercise increased fecal concentrations of short-chain fatty acids in lean, but not obese, participants. Exercise-induced shifts in metabolic output of the microbiota paralleled changes in bacterial genes and taxa capable of short-chain fatty acid production. Lastly, exercise-induced changes in the microbiota were largely reversed once exercise training ceased. These findings suggest that exercise training induces compositional and functional changes in the human gut microbiota that are dependent on obesity status, independent of diet and contingent on the sustainment of exercise.

  15. Human gut microbiota plays a role in the metabolism of drugs.

    Science.gov (United States)

    Jourova, Lenka; Anzenbacher, Pavel; Anzenbacherova, Eva

    2016-09-01

    The gut microbiome, an aggregate genome of trillions of microorganisms residing in the human gastrointestinal tract, is now known to play a critical role in human health and predisposition to disease. It is also involved in the biotransformation of xenobiotics and several recent studies have shown that the gut microbiota can affect the pharmacokinetics of orally taken drugs with implications for their oral bioavailability. Review of Pubmed, Web of Science and Science Direct databases for the years 1957-2016. Recent studies make it clear that the human gut microbiota can play a major role in the metabolism of xenobiotics and, the stability and oral bioavailability of drugs. Over the past 50 years, more than 30 drugs have been identified as a substrate for intestinal bacteria. Questions concerning the impact of the gut microbiota on drug metabolism, remain unanswered or only partially answered, namely (i) what are the molecular mechanisms and which bacterial species are involved? (ii) What is the impact of host genotype and environmental factors on the composition and function of the gut microbiota, (iii) To what extent is the composition of the intestinal microbiome stable, transmissible, and resilient to perturbation? (iv) Has past exposure to a given drug any impact on future microbial response, and, if so, for how long? Answering such questions should be an integral part of pharmaceutical research and personalised health care.

  16. Computational Modelling of Gas-Particle Flows with Different Particle Morphology in the Human Nasal Cavity

    Directory of Open Access Journals (Sweden)

    Kiao Inthavong

    2009-01-01

    Full Text Available This paper summarises current studies related to numerical gas-particle flows in the human nasal cavity. Of interest are the numerical modelling requirements to consider the effects of particle morphology for a variety of particle shapes and sizes such as very small particles sizes (nanoparticles, elongated shapes (asbestos fibres, rough shapes (pollen, and porous light density particles (drug particles are considered. It was shown that important physical phenomena needed to be addressed for different particle characteristics. This included the Brownian diffusion for submicron particles. Computational results for the nasal capture efficiency for nano-particles and various breathing rates in the laminar regime were found to correlate well with the ratio of particle diffusivity to the breathing rate. For micron particles, particle inertia is the most significant property and the need to use sufficient drag laws is important. Drag correlations for fibrous and rough surfaced particles were investigated to enable particle tracking. Based on the simulated results, semi-empirical correlations for particle deposition were fitted in terms of Peclet number and inertial parameter for nanoparticles and micron particles respectively.

  17. In vitro safety evaluation of human nasal epithelial cell monolayers exposed to carrageenan sinus wash.

    Science.gov (United States)

    Ramezanpour, Mahnaz; Murphy, Jae; Smith, Jason L P; Vreugde, Sarah; Psaltis, Alkis James

    2017-12-01

    Carrageenans have shown to reduce the viral load in nasal secretions and lower the incidence of secondary infections in children with common cold. Despite the widespread use of carrageenans in topical applications, the effect of carrageenans on the sinonasal epithelial barrier has not been elucidated. We investigate the effect of different carrageenans on the sinonasal epithelial barrier and inflammatory response in vitro. Iota and Kappa carrageenan delivered in saline irrigation solutions applied to air-liquid interface (ALI) cultures of primary human nasal epithelial cells from chronic rhinosinusitis patients and controls. Epithelial barrier structure was assessed by measuring the transepithelial electrical resistance (TEER) and immunolocalization of F actin. Ciliary beat frequency (CBF), toxicity, and inflammatory response was studied. Kappa or Iota carrageenan in the different solutions was not toxic, did not have detrimental effects on epithelial barrier structure and CBF. Rather, application of Kappa carrageenan significantly increased TEER and suppressed interleukin 6 (IL-6) secretion in ALI cultures from CRS patients. Kappa or Iota carrageenan solution was safe and did not negatively affect epithelial barrier function. Kappa carrageenan increased TEER and decreased IL-6 production in CRS patients, indicating positive effects on epithelial barrier function in vitro. © 2017 ARS-AAOA, LLC.

  18. Transport and Deposition of Welding Fume Agglomerates in a Realistic Human Nasal Airway.

    Science.gov (United States)

    Tian, Lin; Inthavong, Kiao; Lidén, Göran; Shang, Yidan; Tu, Jiyuan

    2016-07-01

    Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition

  19. Influence of food consumption patterns and Galician lifestyle on human gut microbiota.

    Science.gov (United States)

    Castro-Penalonga, María; Roca-Saavedra, Paula; Miranda, Jose Manuel; Porto-Arias, Jose Julio; Nebot, Carolina; Cardelle-Cobas, Alejandra; Franco, Carlos Manuel; Cepeda, Alberto

    2018-02-01

    The proportion of different microbial populations in the human gut is an important factor that in recent years has been linked to obesity and numerous metabolic diseases. Because there are many factors that can affect the composition of human gut microbiota, it is of interest to have information about what is the composition of the gut microbiota in different populations in order to better understand the possibilities for improving nutritional management. A group of 31 volunteers were selected according to established inclusion and exclusion criteria and were asked about their diet history, lifestyle patterns, and adherence to the Southern European Atlantic Diet. Fecal samples were taken and subsequently analyzed by real-time PCR. The results indicated different dietary patterns for subjects who consumed a higher amount of fruits, vegetables, legumes, and fish and a lower amount of bakery foods and precooked foods and snacks compared to Spanish consumption data. Most participants showed intermediate or high adherence to Southern European Atlantic Diet, and an analysis of gut microbiota showed high numbers of total bacteria and Actinobacteria, as well as high amounts of bacteria belonging to the genera Lactobacillus spp. and Bifidobacterium spp. A subsequent statistical comparison also revealed differences in gut microbiota depending on the subject's body weight, age, or degree of adherence to the Southern European Atlantic Diet.

  20. The human gut microbiota: metabolism and perspective in obesity.

    Science.gov (United States)

    Gomes, Aline Corado; Hoffmann, Christian; Mota, João Felipe

    2018-04-18

    The gut microbiota has been recognized as an important factor in the development of metabolic diseases such as obesity and is considered an endocrine organ involved in the maintenance of energy homeostasis and host immunity. Dysbiosis can change the functioning of the intestinal barrier and the gut-associated lymphoid tissues (GALT) by allowing the passage of structural components of bacteria, such as lipopolysaccharides (LPS), which activate inflammatory pathways that may contribute to the development of insulin resistance. Furthermore, intestinal dysbiosis can alter the production of gastrointestinal peptides related to satiety, resulting in an increased food intake. In obese people, this dysbiosis seems be related to increases of the phylum Firmicutes, the genus Clostridium, and the species Eubacterium rectale, Clostridium coccoides, Lactobacillus reuteri, Akkermansia muciniphila, Clostridium histolyticum, and Staphylococcus aureus.

  1. Comparison of the vaginal microbiota diversity of women with and without human papillomavirus infection: a cross-sectional study.

    Science.gov (United States)

    Gao, Weijiao; Weng, Jinlong; Gao, Yunong; Chen, Xiaochi

    2013-06-10

    The female genital tract is an important bacterial habitat of the human body, and vaginal microbiota plays a crucial role in vaginal health. The alteration of vaginal microbiota affects millions of women annually, and is associated with numerous adverse health outcomes, including human papillomavirus (HPV) infection. However, previous studies have primarily focused on the association between bacterial vaginosis and HPV infection. Little is known about the composition of vaginal microbial communities involved in HPV acquisition. The present study was performed to investigate whether HPV infection was associated with the diversity and composition of vaginal microbiota. A total of 70 healthy women (32 HPV-negative and 38 HPV-positive) with normal cervical cytology were enrolled in this study. Culture-independent polymerase chain reaction-denaturing gradient gel electrophoresis was used to measure the diversity and composition of vaginal microbiota of all subjects. We found significantly greater biological diversity in the vaginal microbiota of HPV-positive women (p vaginal microbiota from the two groups had different profiles. Our study is the first systematic evaluation of an association between vaginal microbiota and HPV infection, and we have demonstrated that compared with HPV-negative women, the bacterial diversity of HPV-positive women is more complex and the composition of vaginal microbiota is different.

  2. New bioreactor vessel for tissue engineering of human nasal septal chondrocytes

    Directory of Open Access Journals (Sweden)

    Princz Sascha

    2016-09-01

    Full Text Available Cultivation of human nasal septal chondrocytes in a self-established automated bioreactor system with a new designed reactor glass vessel and the results of a computational fluid dynamics model are presented. The first results show the effect of a homogeneous fluidic condition of the continuous medium flow and the resulting stresses on the scaffolds’ surface and their influence on the migration of the cells into the scaffold matrix under these conditions. For this purpose computational models, generated with the computational fluid dynamics software STAR-CCM+, and the results of alcian blue staining for newly synthesized sulphated glycosaminoglycans have been compared during cultivation in the new and a first version of the glass reactor vessel with inhomogeneous fluidic conditions, with the same automated bioreactor system and under similar cultivation conditions.

  3. Effect of N-acetylcysteine on the human nasal ciliary activity in vitro

    DEFF Research Database (Denmark)

    Stafanger, G; Bisgaard, H; Pedersen, M

    1987-01-01

    N-acetylcysteine (NAC) is widely used as a mucolytic agent, but the clinical and pharmacological effects of NAC are still unclear. It has recently been claimed in animal studies that NAC will stimulate ciliary beating frequency at low concentrations, while inhibiting beating at higher concentrati......N-acetylcysteine (NAC) is widely used as a mucolytic agent, but the clinical and pharmacological effects of NAC are still unclear. It has recently been claimed in animal studies that NAC will stimulate ciliary beating frequency at low concentrations, while inhibiting beating at higher...... concentrations. Using a microphoto-oscillographic method combined with microperfusion technique, we studied the direct effect of NAC on human nasal cilia. NAC caused a direct dose- and time-related decrease in ciliary beating frequency, which was detectable at 2 mg/ml and reached statistically significant levels...

  4. Dosimetry of nasal uptake of soluble and reactive gases: A first study of inter-human variability (Journal Article)

    Science.gov (United States)

    Anatomically accurate human child and adult nasal tract models will be used in concert with computationally simulated air flow information to investigate the influence of age-related differences in anatomy on inhalation dosimetry in the upper and lower airways. The findings of t...

  5. CriticalSorb: a novel efficient nasal delivery system for human growth hormone based on Solutol HS15.

    Science.gov (United States)

    Illum, Lisbeth; Jordan, Faron; Lewis, Andrew L

    2012-08-20

    The absorption enhancing efficiency of CriticalSorb for human growth hormone (MW 22 kDa) was investigated in the conscious rat model. The principle absorption enhancing component of CriticalSorb, Solutol HS15, comprises polyglycol mono- and di-esters of 12-hydroxystearic acid combined with free polyethylene glycol. When administering hGH nasally in rats with increasing concentrations of Solutol HS15, it was found that for a 10%w/v solution formulation a bioavailability of 49% was obtained in the first 2h after administration. Furthermore it was shown that the most effective ratio of Solutol HS15 to hGH was 4:1 on a mg to mg basis. Histopathology studies in rats after 5 days repeated nasal administration showed that Solutol HS15 had no toxic effect on the nasal mucosa. These results have been confirmed in a 6 month repeat nasal toxicity study in rats. It can be concluded that the principle absorption enhancing component of CriticalSorb - Solutol HS15 - is a potent and non- toxic nasal absorption enhancer that warrants further development. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Gut microbiota diversity and human diseases: should we reintroduce key predators in our ecosystem?

    Directory of Open Access Journals (Sweden)

    Alexis eMosca

    2016-03-01

    Full Text Available Most of the Human diseases affecting westernized countries are associated with dysbiosis and loss of microbial diversity in the gut microbiota. The Western way of life, with a wide use of antibiotics and other environmental triggers, may reduce the number of bacterial predators leading to a decrease in microbial diversity of the Human gut. We argue that this phenomenon is similar to the process of ecosystem impoverishment in macro ecology where human activity decreases ecological niches, the size of predator populations and finally the biodiversity. Such pauperization is fundamental since it reverses the evolution processes, drives life backward into diminished complexity, stability and adaptability. A simple therapeutic approach could thus be to reintroduce bacterial predators and restore a bacterial diversity of the host microbiota.

  7. Standard colonic lavage alters the natural state of mucosal-associated microbiota in the human colon.

    Directory of Open Access Journals (Sweden)

    Laura Harrell

    Full Text Available Past studies of the human intestinal microbiota are potentially confounded by the common practice of using bowel-cleansing preparations. We examined if colonic lavage changes the natural state of enteric mucosal-adherent microbes in healthy human subjects.Twelve healthy individuals were divided into three groups; experimental group, control group one, and control group two. Subjects in the experimental group underwent an un-prepped flexible sigmoidoscopy with biopsies. Within two weeks, subjects were given a standard polyethylene glycol-based bowel cleansing preparation followed by a second flexible sigmoidoscopy. Subjects in control group one underwent two un-prepped flexible sigmoidoscopies within one week. Subjects in the second control group underwent an un-prepped flexible sigmoidoscopy followed by a second flexible sigmoidoscopy after a 24-hour clear liquid diet within one week. The mucosa-associated microbial communities from the two procedures in each subject were compared using 16S rRNA gene based terminal restriction fragment length polymorphism (T-RFLP, and library cloning and sequencing.Clone library sequencing analysis showed that there were changes in the composition of the mucosa-associated microbiota in subjects after colonic lavage. These changes were not observed in our control groups. Standard bowel preparation altered the diversity of mucosa-associated microbiota. Taxonomic classification did not reveal significant changes at the phylum level, but there were differences observed at the genus level.Standard bowel cleansing preparation altered the mucosal-adherent microbiota in all of our subjects, although the degree of change was variable. These findings underscore the importance of considering the confounding effects of bowel preparation when designing experiments exploring the gut microbiota.

  8. The role of gut microbiota in health and disease : In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut

    NARCIS (Netherlands)

    von Martels, Julius Z. H.; Sadabad, Mehdi Sadaghian; Bourgonje, Arno R.; Blokzijl, Tjasso; Dijkstra, Gerard; Faber, Klaas Nico; Harmsen, Hermie J. M.

    The microbiota of the gut has many crucial functions in human health. Dysbiosis of the microbiota has been correlated to a large and still increasing number of diseases. Recent studies have mostly focused on analyzing the associations between disease and an aberrant microbiota composition.

  9. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health.

    Science.gov (United States)

    Vernocchi, Pamela; Del Chierico, Federica; Putignani, Lorenza

    2016-01-01

    The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies.

  10. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota.

    Science.gov (United States)

    Forslund, Kristoffer; Hildebrand, Falk; Nielsen, Trine; Falony, Gwen; Le Chatelier, Emmanuelle; Sunagawa, Shinichi; Prifti, Edi; Vieira-Silva, Sara; Gudmundsdottir, Valborg; Pedersen, Helle K; Arumugam, Manimozhiyan; Kristiansen, Karsten; Voigt, Anita Yvonne; Vestergaard, Henrik; Hercog, Rajna; Costea, Paul Igor; Kultima, Jens Roat; Li, Junhua; Jørgensen, Torben; Levenez, Florence; Dore, Joël; Nielsen, H Bjørn; Brunak, Søren; Raes, Jeroen; Hansen, Torben; Wang, Jun; Ehrlich, S Dusko; Bork, Peer; Pedersen, Oluf

    2015-12-10

    In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported. In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified for treatment yielded divergent conclusions regarding its associated gut microbial dysbiosis. Here we show, using 784 available human gut metagenomes, how antidiabetic medication confounds these results, and analyse in detail the effects of the most widely used antidiabetic drug metformin. We provide support for microbial mediation of the therapeutic effects of metformin through short-chain fatty acid production, as well as for potential microbiota-mediated mechanisms behind known intestinal adverse effects in the form of a relative increase in abundance of Escherichia species. Controlling for metformin treatment, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa. These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures of specific human diseases from those of medication.

  11. MALINA: a web service for visual analytics of human gut microbiota whole-genome metagenomic reads.

    Science.gov (United States)

    Tyakht, Alexander V; Popenko, Anna S; Belenikin, Maxim S; Altukhov, Ilya A; Pavlenko, Alexander V; Kostryukova, Elena S; Selezneva, Oksana V; Larin, Andrei K; Karpova, Irina Y; Alexeev, Dmitry G

    2012-12-07

    MALINA is a web service for bioinformatic analysis of whole-genome metagenomic data obtained from human gut microbiota sequencing. As input data, it accepts metagenomic reads of various sequencing technologies, including long reads (such as Sanger and 454 sequencing) and next-generation (including SOLiD and Illumina). It is the first metagenomic web service that is capable of processing SOLiD color-space reads, to authors' knowledge. The web service allows phylogenetic and functional profiling of metagenomic samples using coverage depth resulting from the alignment of the reads to the catalogue of reference sequences which are built into the pipeline and contain prevalent microbial genomes and genes of human gut microbiota. The obtained metagenomic composition vectors are processed by the statistical analysis and visualization module containing methods for clustering, dimension reduction and group comparison. Additionally, the MALINA database includes vectors of bacterial and functional composition for human gut microbiota samples from a large number of existing studies allowing their comparative analysis together with user samples, namely datasets from Russian Metagenome project, MetaHIT and Human Microbiome Project (downloaded from http://hmpdacc.org). MALINA is made freely available on the web at http://malina.metagenome.ru. The website is implemented in JavaScript (using Ext JS), Microsoft .NET Framework, MS SQL, Python, with all major browsers supported.

  12. Gut microbiota and obesity.

    Science.gov (United States)

    Gérard, Philippe

    2016-01-01

    The human intestine harbors a complex bacterial community called the gut microbiota. This microbiota is specific to each individual despite the existence of several bacterial species shared by the majority of adults. The influence of the gut microbiota in human health and disease has been revealed in the recent years. Particularly, the use of germ-free animals and microbiota transplant showed that the gut microbiota may play a causal role in the development of obesity and associated metabolic disorders, and lead to identification of several mechanisms. In humans, differences in microbiota composition, functional genes and metabolic activities are observed between obese and lean individuals suggesting a contribution of the gut microbiota to these phenotypes. Finally, the evidence linking gut bacteria to host metabolism could allow the development of new therapeutic strategies based on gut microbiota modulation to treat or prevent obesity.

  13. Emerging synbiotics and their effect on the composition and functionality of the human gut microbiota

    DEFF Research Database (Denmark)

    van Zanten, Gabriella Christina

    Research indicates that the gut microbiota (GM) plays an important role in the health of the host and during recent years the increase in the composition and functionality of the gut microbiota has become of increasing interest. Probiotics, prebiotics or combinations hereof, so-called synbiotics......, may be used to change the composition and activity of the human GM and thereby potentially affect the host health beneficially. In this PhD study it was hypothesized that emerging synbiotics have the potential of modulating the human GM composition as well as the functionality. To gain the beneficial...... substrates. These findings indicate that the selected emerging prebiotics are able to provide a competitive advantage for NCFM and Bl-04. All the emerging synbiotics were able to induce changes in the predominant bacteria, observed as a decrease in the modified ratio of Bacteroidetes/Firmicutes (calculated...

  14. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota

    DEFF Research Database (Denmark)

    Forslund, Kristoffer; Hildebrand, Falk ; Nielsen, Trine N.

    2015-01-01

    In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported1,2. In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs...... on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified......, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa3,4. These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures...

  15. MetaPro-IQ: a universal metaproteomic approach to studying human and mouse gut microbiota.

    Science.gov (United States)

    Zhang, Xu; Ning, Zhibin; Mayne, Janice; Moore, Jasmine I; Li, Jennifer; Butcher, James; Deeke, Shelley Ann; Chen, Rui; Chiang, Cheng-Kang; Wen, Ming; Mack, David; Stintzi, Alain; Figeys, Daniel

    2016-06-24

    The gut microbiota has been shown to be closely associated with human health and disease. While next-generation sequencing can be readily used to profile the microbiota taxonomy and metabolic potential, metaproteomics is better suited for deciphering microbial biological activities. However, the application of gut metaproteomics has largely been limited due to the low efficiency of protein identification. Thus, a high-performance and easy-to-implement gut metaproteomic approach is required. In this study, we developed a high-performance and universal workflow for gut metaproteome identification and quantification (named MetaPro-IQ) by using the close-to-complete human or mouse gut microbial gene catalog as database and an iterative database search strategy. An average of 38 and 33 % of the acquired tandem mass spectrometry (MS) spectra was confidently identified for the studied mouse stool and human mucosal-luminal interface samples, respectively. In total, we accurately quantified 30,749 protein groups for the mouse metaproteome and 19,011 protein groups for the human metaproteome. Moreover, the MetaPro-IQ approach enabled comparable identifications with the matched metagenome database search strategy that is widely used but needs prior metagenomic sequencing. The response of gut microbiota to high-fat diet in mice was then assessed, which showed distinct metaproteome patterns for high-fat-fed mice and identified 849 proteins as significant responders to high-fat feeding in comparison to low-fat feeding. We present MetaPro-IQ, a metaproteomic approach for highly efficient intestinal microbial protein identification and quantification, which functions as a universal workflow for metaproteomic studies, and will thus facilitate the application of metaproteomics for better understanding the functions of gut microbiota in health and disease.

  16. The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates

    DEFF Research Database (Denmark)

    Zoetendal, Erwin G; Raes, Jeroen; van den Bogert, Bartholomeus

    2012-01-01

    in parallel. Comparative functional analysis with fecal metagenomes identified functions that are overrepresented in the small intestine, including simple carbohydrate transport phosphotransferase systems (PTS), central metabolism and biotin production. Moreover, metatranscriptome analysis supported high...... level in-situ expression of PTS and carbohydrate metabolic genes, especially those belonging to Streptococcus sp. Overall, our findings suggest that rapid uptake and fermentation of available carbohydrates contribute to maintaining the microbiota in the human small intestine....

  17. Absolute humidity and the human nose: A reanalysis of climate zones and their influence on nasal form and function.

    Science.gov (United States)

    Maddux, Scott D; Yokley, Todd R; Svoma, Bohumil M; Franciscus, Robert G

    2016-10-01

    Investigations into the selective role of climate on human nasal variation commonly divide climates into four broad adaptive zones (hot-dry, hot-wet, cold-dry, and cold-wet) based on temperature and relative humidity. Yet, absolute humidity-not relative humidity-is physiologically more important during respiration. Here, we investigate the global distribution of absolute humidity to better clarify ecogeographic demands on nasal physiology. We use monthly observations from the Climatic Research Unit Timeseries 3 (CRU TS3) database to construct global maps of average annual temperature, relative humidity and absolute humidity. Further, using data collected by Thomson and Buxton (1923) for over 15,000 globally-distributed individuals, we calculate the actual amount of heat and water that must be transferred to inspired air in different climatic regimes to maintain homeostasis, and investigate the influence of these factors on the nasal index. Our results show that absolute humidity, like temperature, generally decreases with latitude. Furthermore, our results demonstrate that environments typically characterized as "cold-wet" actually exhibit low absolute humidities, with values virtually identical to cold-dry environments and significantly lower than hot-wet and even hot-dry environments. Our results also indicate that strong associations between the nasal index and absolute humidity are, potentially erroneously, predicated on individuals from hot-dry environments possessing intermediate (mesorrhine) nasal indices. We suggest that differentially allocating populations to cold-dry or cold-wet climates is unlikely to reflect different selective pressures on respiratory physiology and nasal morphology-it is cold-dry, and to a lesser degree hot-dry environments, that stress respiratory function. Our study also supports assertions that demands for inspiratory modification are reduced in hot-wet environments, and that expiratory heat elimination for thermoregulation is a

  18. Ecology and Evolution of the Human Microbiota: Fire, Farming and Antibiotics

    Directory of Open Access Journals (Sweden)

    Michael R. Gillings

    2015-09-01

    Full Text Available Human activities significantly affect all ecosystems on the planet, including the assemblages that comprise our own microbiota. Over the last five million years, various evolutionary and ecological drivers have altered the composition of the human microbiota, including the use of fire, the invention of agriculture, and the increasing availability of processed foods after the Industrial Revolution. However, no factor has had a faster or more direct effect than antimicrobial agents. Biocides, disinfectants and antibiotics select for individual cells that carry resistance genes, immediately reducing both overall microbial diversity and within-species genetic diversity. Treated individuals may never recover their original diversity, and repeated treatments lead to a series of genetic bottlenecks. The sequential introduction of diverse antimicrobial agents has selected for increasingly complex DNA elements that carry multiple resistance genes, and has fostered their spread through the human microbiota. Practices that interfere with microbial colonization, such as sanitation, Caesarian births and bottle-feeding, exacerbate the effects of antimicrobials, generating species-poor and less resilient microbial assemblages in the developed world. More and more evidence is accumulating that these perturbations to our internal ecosystems lie at the heart of many diseases whose frequency has shown a dramatic increase over the last half century.

  19. Impact of human milk bacteria and oligosaccharides on neonatal gut microbiota establishment and gut health.

    Science.gov (United States)

    Jost, Ted; Lacroix, Christophe; Braegger, Christian; Chassard, Christophe

    2015-07-01

    Neonatal gut microbiota establishment represents a crucial stage for gut maturation, metabolic and immunologic programming, and consequently short- and long-term health status. Human milk beneficially influences this process due to its dynamic profile of age-adapted nutrients and bioactive components and by providing commensal maternal bacteria to the neonatal gut. These include Lactobacillus spp., as well as obligate anaerobes such as Bifidobacterium spp., which may originate from the maternal gut via an enteromammary pathway as a novel form of mother-neonate communication. Additionally, human milk harbors a broad range of oligosaccharides that promote the growth and activity of specific bacterial populations, in particular, Bifidobacterium and Bacteroides spp. This review focuses on the diversity and origin of human milk bacteria, as well as on milk oligosaccharides that influence neonatal gut microbiota establishment. This knowledge can be used to develop infant formulae that more closely mimic nature's model and sustain a healthy gut microbiota. © The Author(s) 2015. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Ecology and Evolution of the Human Microbiota: Fire, Farming and Antibiotics.

    Science.gov (United States)

    Gillings, Michael R; Paulsen, Ian T; Tetu, Sasha G

    2015-09-08

    Human activities significantly affect all ecosystems on the planet, including the assemblages that comprise our own microbiota. Over the last five million years, various evolutionary and ecological drivers have altered the composition of the human microbiota, including the use of fire, the invention of agriculture, and the increasing availability of processed foods after the Industrial Revolution. However, no factor has had a faster or more direct effect than antimicrobial agents. Biocides, disinfectants and antibiotics select for individual cells that carry resistance genes, immediately reducing both overall microbial diversity and within-species genetic diversity. Treated individuals may never recover their original diversity, and repeated treatments lead to a series of genetic bottlenecks. The sequential introduction of diverse antimicrobial agents has selected for increasingly complex DNA elements that carry multiple resistance genes, and has fostered their spread through the human microbiota. Practices that interfere with microbial colonization, such as sanitation, Caesarian births and bottle-feeding, exacerbate the effects of antimicrobials, generating species-poor and less resilient microbial assemblages in the developed world. More and more evidence is accumulating that these perturbations to our internal ecosystems lie at the heart of many diseases whose frequency has shown a dramatic increase over the last half century.

  1. Smoking cessation alters intestinal microbiota: insights from quantitative investigations on human fecal samples using FISH.

    Science.gov (United States)

    Biedermann, Luc; Brülisauer, Karin; Zeitz, Jonas; Frei, Pascal; Scharl, Michael; Vavricka, Stephan R; Fried, Michael; Loessner, Martin J; Rogler, Gerhard; Schuppler, Markus

    2014-09-01

    There has been a dramatic increase in investigations on the potential mechanistic role of the intestinal microbiota in various diseases and factors modulating intestinal microbial composition. We recently reported on intestinal microbial shifts after smoking cessation in humans. In this study, we aimed to conduct further microbial analyses and verify our previous results obtained by pyrosequencing using a direct quantitative microbial approach. Stool samples of healthy smoking human subjects undergoing controlled smoking cessation during a 9-week observational period were analyzed and compared with 2 control groups, ongoing smoking and nonsmoking subjects. Fluorescence in situ hybridization was applied to quantify specific bacterial groups. Intestinal microbiota composition was substantially altered after smoking cessation as characterized by an increase in key representatives from the phyla of Firmicutes (Clostridium coccoides, Eubacterium rectale, and Clostridium leptum subgroup) and Actinobacteria (HGC bacteria and Bifidobacteria) as well as a decrease in Bacteroidetes (Prevotella spp. and Bacteroides spp.) and Proteobacteria (β- and γ-subgroup of Proteobacteria). As determined by fluorescence in situ hybridization, an independent direct quantitative microbial approach, we could confirm that intestinal microbiota composition in humans is influenced by smoking. The characteristics of observed microbial shifts suggest a potential mechanistic association to alterations in body weight subsequent to smoking cessation. More importantly, regarding previously described microbial hallmarks of dysbiosis in inflammatory bowel diseases, a variety of observed microbial alterations after smoking cessation deserve further consideration in view of the divergent effect of smoking on the clinical course of Crohn's disease and ulcerative colitis.

  2. Nasal Cancer

    Science.gov (United States)

    ... the way to your throat as you breathe. Cancer of the nasal cavity and paranasal sinuses is ... be like those of infections. Doctors diagnose nasal cancer with imaging tests, lighted tube-like instruments that ...

  3. Aspects of nitrogen dioxide toxicity in environmental urban concentrations in human nasal epithelium

    International Nuclear Information System (INIS)

    Koehler, C.; Ginzkey, C.; Friehs, G.; Hackenberg, S.; Froelich, K.; Scherzed, A.; Burghartz, M.; Kessler, M.; Kleinsasser, N.

    2010-01-01

    Cytotoxicity and genotoxicity of nitrogen dioxide (NO 2 ) as part of urban exhaust pollution are widely discussed as potential hazards to human health. This study focuses on toxic effects of NO 2 in realistic environmental concentrations with respect to the current limit values in a human target tissue of volatile xenobiotics, the epithelium of the upper aerodigestive tract. Nasal epithelial cells of 10 patients were cultured as an air-liquid interface and exposed to 0.01 ppm NO 2 , 0.1 ppm NO 2 , 1 ppm NO 2 , 10 ppm NO 2 and synthetic air for half an hour. After exposure, genotoxicity was evaluated by the alkaline single-cell microgel electophoresis (Comet) assay and by induction of micronuclei in the micronucleus test. Depression of proliferation and cytotoxic effects were determined using the micronucleus assay and trypan blue exclusion assay, respectively. The experiments revealed genotoxic effects by DNA fragmentation starting at 0.01 ppm NO 2 in the Comet assay, but no micronucleus inductions, no changes in proliferation, no signs of necrosis or apoptosis in the micronucleus assay, nor did the trypan blue exclusion assay show any changes in viability. The present data reveal a possible genotoxicity of NO 2 in urban concentrations in a screening test. However, permanent DNA damage as indicated by the induction of micronuclei was not observed. Further research should elucidate the effects of prolonged exposure.

  4. Integrated Metagenomics/Metaproteomics Reveals Human Host-Microbiota Signatures of Crohn's Disease

    Science.gov (United States)

    Darzi, Youssef; Mongodin, Emmanuel F.; Pan, Chongle; Shah, Manesh; Halfvarson, Jonas; Tysk, Curt; Henrissat, Bernard; Raes, Jeroen; Verberkmoes, Nathan C.; Jansson, Janet K.

    2012-01-01

    Crohn's disease (CD) is an inflammatory bowel disease of complex etiology, although dysbiosis of the gut microbiota has been implicated in chronic immune-mediated inflammation associated with CD. Here we combined shotgun metagenomic and metaproteomic approaches to identify potential functional signatures of CD in stool samples from six twin pairs that were either healthy, or that had CD in the ileum (ICD) or colon (CCD). Integration of these omics approaches revealed several genes, proteins, and pathways that primarily differentiated ICD from healthy subjects, including depletion of many proteins in ICD. In addition, the ICD phenotype was associated with alterations in bacterial carbohydrate metabolism, bacterial-host interactions, as well as human host-secreted enzymes. This eco-systems biology approach underscores the link between the gut microbiota and functional alterations in the pathophysiology of Crohn's disease and aids in identification of novel diagnostic targets and disease specific biomarkers. PMID:23209564

  5. Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn's disease.

    Directory of Open Access Journals (Sweden)

    Alison R Erickson

    Full Text Available Crohn's disease (CD is an inflammatory bowel disease of complex etiology, although dysbiosis of the gut microbiota has been implicated in chronic immune-mediated inflammation associated with CD. Here we combined shotgun metagenomic and metaproteomic approaches to identify potential functional signatures of CD in stool samples from six twin pairs that were either healthy, or that had CD in the ileum (ICD or colon (CCD. Integration of these omics approaches revealed several genes, proteins, and pathways that primarily differentiated ICD from healthy subjects, including depletion of many proteins in ICD. In addition, the ICD phenotype was associated with alterations in bacterial carbohydrate metabolism, bacterial-host interactions, as well as human host-secreted enzymes. This eco-systems biology approach underscores the link between the gut microbiota and functional alterations in the pathophysiology of Crohn's disease and aids in identification of novel diagnostic targets and disease specific biomarkers.

  6. Variations in the ultrastructure of human nasal cilia including abnormalities found in retinitis pigmentosa.

    OpenAIRE

    Fox, B; Bull, T B; Arden, G B

    1980-01-01

    The electron microscopic structure of cilia from the inferior turbinate of the nose was studied in 12 adults, four with chronic sinusitis, one with allergic rhinitis, two with bronchiectasis, three with deviated nasal septum, and two normals. The changes are compared with those found in nasal cilia in 14 patients with retinitis pigmentosa. There were compound cilia in the seven cases with chronic sinusitis, allergic rhinitis, and bronchiectasis but, apart from this, the structure of the cilia...

  7. Nasal Carriage of Staphylococcus intermedius in Humans in Contact with Dogs

    OpenAIRE

    Harvey, R. G.; Marples, R. R.; Noble, W. C.

    2011-01-01

    A study of staphylococci isolated from the anterior nares of 16 owners of dogs with atopic dermatitis and 13 veterinary practice staff in constant contact with dogs was conducted. There was one persistent nasal carrier and four transient nasal carriers of Staphylococcus intermedius. This carriage rate is higher than previously reported and presumably contributes to the presence of antibodies to S. intermedius in about 20 per cent of the normal population. Thus transfer of S. intermedius from ...

  8. A low percentage of autologous serum can replace bovine serum to engineer human nasal cartilage

    Directory of Open Access Journals (Sweden)

    F Wolf

    2008-02-01

    Full Text Available For the generation of cell-based therapeutic products, it would be preferable to avoid the use of animal-derived components. Our study thus aimed at investigating the possibility to replace foetal bovine serum (FBS with autologous serum (AS for the engineering of cartilage grafts using expanded human nasal chondrocytes (HNC. HNC isolated from 7 donors were expanded in medium containing 10% FBS or AS at different concentrations (2%, 5% and 10% and cultured in pellets using serum-free medium or in Hyaff®-11 meshes using medium containing FBS or AS. Tissue forming capacity was assessed histologically (Safranin O, immunohistochemically (type II collagen and biochemically (glycosaminoglycans -GAG- and DNA. Differences among experimental groups were assessed by Mann Whitney tests. HNC expanded under the different serum conditions proliferated at comparable rates and generated cartilaginous pellets with similar histological appearance and amounts of GAG. Tissues generated by HNC from different donors cultured in Hyaff®-11 had variable quality, but the accumulated GAG amounts were comparable among the different serum conditions. Staining intensity for collagen type II was consistent with GAG deposition. Among the different serum conditions tested, the use of 2% AS resulted in the lowest variability in the GAG contents of generated tissues. In conclusion, a low percentage of AS can replace FBS both during the expansion and differentiation of HNC and reduce the variability in the quality of the resulting engineered cartilage tissues.

  9. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection.

    Science.gov (United States)

    Brotman, Rebecca M; Shardell, Michelle D; Gajer, Pawel; Tracy, J Kathleen; Zenilman, Jonathan M; Ravel, Jacques; Gravitt, Patti E

    2014-12-01

    We sought to describe the temporal relationship between vaginal microbiota and human papillomavirus (HPV) detection. Thirty-two reproductive-age women self-collected midvaginal swabs twice weekly for 16 weeks (937 samples). Vaginal bacterial communities were characterized by pyrosequencing of barcoded 16S rRNA genes and clustered into 6 community state types (CSTs). Each swab was tested for 37 HPV types. The effects of CSTs on the rate of transition between HPV-negative and HPV-positive states were assessed using continuous-time Markov models. Participants had an average of 29 samples, with HPV point prevalence between 58%-77%. CST was associated with changes in HPV status (PVaginal microbiota dominated by L. gasseri was associated with increased clearance of detectable HPV. Frequent longitudinal sampling is necessary for evaluation of the association between HPV detection and dynamic microbiota. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota.

    Science.gov (United States)

    Zimmer, J; Lange, B; Frick, J-S; Sauer, H; Zimmermann, K; Schwiertz, A; Rusch, K; Klosterhalfen, S; Enck, P

    2012-01-01

    Consisting of ≈10(14) microbial cells, the intestinal microbiota represents the largest and the most complex microbial community inhabiting the human body. However, the influence of regular diets on the microbiota is widely unknown. We examined faecal samples of vegetarians (n=144), vegans (n=105) and an equal number of control subjects consuming ordinary omnivorous diet who were matched for age and gender. We used classical bacteriological isolation, identification and enumeration of the main anaerobic and aerobic bacterial genera and computed absolute and relative numbers that were compared between groups. Total counts of Bacteroides spp., Bifidobacterium spp., Escherichia coli and Enterobacteriaceae spp. were significantly lower (P=0.001, P=0.002, P=0.006 and P=0.008, respectively) in vegan samples than in controls, whereas others (E. coli biovars, Klebsiella spp., Enterobacter spp., other Enterobacteriaceae, Enterococcus spp., Lactobacillus spp., Citrobacter spp. and Clostridium spp.) were not. Subjects on a vegetarian diet ranked between vegans and controls. The total microbial count did not differ between the groups. In addition, subjects on a vegan or vegetarian diet showed significantly (P=0.0001) lower stool pH than did controls, and stool pH and counts of E. coli and Enterobacteriaceae were significantly correlated across all subgroups. Maintaining a strict vegan or vegetarian diet results in a significant shift in the microbiota while total cell numbers remain unaltered.

  11. HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats.

    Directory of Open Access Journals (Sweden)

    Phoebe Lin

    Full Text Available The HLA-B27 gene is a major risk factor for clinical diseases including ankylosing spondylitis, acute anterior uveitis, reactive arthritis, and psoriatic arthritis, but its mechanism of risk enhancement is not completely understood. The gut microbiome has recently been shown to influence several HLA-linked diseases. However, the role of HLA-B27 in shaping the gut microbiome has not been previously investigated. In this study, we characterize the differences in the gut microbiota mediated by the presence of the HLA-B27 gene. We identified differences in the cecal microbiota of Lewis rats transgenic for HLA-B27 and human β2-microglobulin (hβ2m, compared with wild-type Lewis rats, using biome representational in situ karyotyping (BRISK and 16S rRNA gene sequencing. 16S sequencing revealed significant differences between transgenic animals and wild type animals by principal coordinates analysis. Further analysis of the data set revealed an increase in Prevotella spp. and a decrease in Rikenellaceae relative abundance in the transgenic animals compared to the wild type animals. By BRISK analysis, species-specific differences included an increase in Bacteroides vulgatus abundance in HLA-B27/hβ2m and hβ2m compared to wild type rats. The finding that HLA-B27 is associated with altered cecal microbiota has not been shown before and can potentially provide a better understanding of the clinical diseases associated with this gene.

  12. Diversity of the human gastrointestinal tract microbiota revisited

    NARCIS (Netherlands)

    Rajilic-Stojanovic, M.; Smidt, H.; Vos, de W.M.

    2007-01-01

    Since the early days of microbiology, more than a century ago, representatives of over 400 different microbial species have been isolated and fully characterized from human gastrointestinal samples. However, during the past decade molecular ecological studies based on ribosomal RNA (rRNA) sequences

  13. Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study.

    Science.gov (United States)

    Ukhanova, Maria; Wang, Xiaoyu; Baer, David J; Novotny, Janet A; Fredborg, Marlene; Mai, Volker

    2014-06-28

    The modification of microbiota composition to a 'beneficial' one is a promising approach for improving intestinal as well as overall health. Natural fibres and phytochemicals that reach the proximal colon, such as those present in various nuts, provide substrates for the maintenance of healthy and diverse microbiota. The effects of increased consumption of specific nuts, which are rich in fibre as well as various phytonutrients, on human gut microbiota composition have not been investigated to date. The objective of the present study was to determine the effects of almond and pistachio consumption on human gut microbiota composition. We characterised microbiota in faecal samples collected from volunteers in two separate randomised, controlled, cross-over feeding studies (n 18 for the almond feeding study and n 16 for the pistachio feeding study) with 0, 1·5 or 3 servings/d of the respective nuts for 18 d. Gut microbiota composition was analysed using a 16S rRNA-based approach for bacteria and an internal transcribed spacer region sequencing approach for fungi. The 16S rRNA sequence analysis of 528 028 sequence reads, retained after removing low-quality and short-length reads, revealed various operational taxonomic units that appeared to be affected by nut consumption. The effect of pistachio consumption on gut microbiota composition was much stronger than that of almond consumption and included an increase in the number of potentially beneficial butyrate-producing bacteria. Although the numbers of bifidobacteria were not affected by the consumption of either nut, pistachio consumption appeared to decrease the number of lactic acid bacteria (Ppistachios appears to be an effective means of modifying gut microbiota composition.

  14. Resource conflict and cooperation between human host and gut microbiota: implications for nutrition and health.

    Science.gov (United States)

    Wasielewski, Helen; Alcock, Joe; Aktipis, Athena

    2016-05-01

    Diet has been known to play an important role in human health since at least the time period of the ancient Greek physician Hippocrates. In the last decade, research has revealed that microorganisms inhabiting the digestive tract, known as the gut microbiota, are critical factors in human health. This paper draws on concepts of cooperation and conflict from ecology and evolutionary biology to make predictions about host-microbiota interactions involving nutrients. To optimally extract energy from some resources (e.g., fiber), hosts require cooperation from microbes. Other nutrients can be utilized by both hosts and microbes (e.g., simple sugars, iron) in their ingested form, which may lead to greater conflict over these resources. This framework predicts that some negative health effects of foods are driven by the direct effects of these foods on human physiology and by indirect effects resulting from microbiome-host competition and conflict (e.g., increased invasiveness and inflammation). Similarly, beneficial effects of some foods on host health may be enhanced by resource sharing and other cooperative behaviors between host and microbes that may downregulate inflammation and virulence. Given that some foods cultivate cooperation between hosts and microbes while others agitate conflict, host-microbe interactions may be novel targets for interventions aimed at improving nutrition and human health. © 2016 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals, Inc. on behalf of New York Academy of Sciences.

  15. The First Microbial Colonizers of the Human Gut: Composition, Activities, and Health Implications of the Infant Gut Microbiota.

    Science.gov (United States)

    Milani, Christian; Duranti, Sabrina; Bottacini, Francesca; Casey, Eoghan; Turroni, Francesca; Mahony, Jennifer; Belzer, Clara; Delgado Palacio, Susana; Arboleya Montes, Silvia; Mancabelli, Leonardo; Lugli, Gabriele Andrea; Rodriguez, Juan Miguel; Bode, Lars; de Vos, Willem; Gueimonde, Miguel; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco

    2017-12-01

    The human gut microbiota is engaged in multiple interactions affecting host health during the host's entire life span. Microbes colonize the neonatal gut immediately following birth. The establishment and interactive development of this early gut microbiota are believed to be (at least partially) driven and modulated by specific compounds present in human milk. It has been shown that certain genomes of infant gut commensals, in particular those of bifidobacterial species, are genetically adapted to utilize specific glycans of this human secretory fluid, thus representing a very intriguing example of host-microbe coevolution, where both partners are believed to benefit. In recent years, various metagenomic studies have tried to dissect the composition and functionality of the infant gut microbiome and to explore the distribution across the different ecological niches of the infant gut biogeography of the corresponding microbial consortia, including those corresponding to bacteria and viruses, in healthy and ill subjects. Such analyses have linked certain features of the microbiota/microbiome, such as reduced diversity or aberrant composition, to intestinal illnesses in infants or disease states that are manifested at later stages of life, including asthma, inflammatory bowel disease, and metabolic disorders. Thus, a growing number of studies have reported on how the early human gut microbiota composition/development may affect risk factors related to adult health conditions. This concept has fueled the development of strategies to shape the infant microbiota composition based on various functional food products. In this review, we describe the infant microbiota, the mechanisms that drive its establishment and composition, and how microbial consortia may be molded by natural or artificial interventions. Finally, we discuss the relevance of key microbial players of the infant gut microbiota, in particular bifidobacteria, with respect to their role in health and

  16. Ancient acquisition of "alginate utilization loci" by human gut microbiota.

    Science.gov (United States)

    Mathieu, Sophie; Touvrey-Loiodice, Mélanie; Poulet, Laurent; Drouillard, Sophie; Vincentelli, Renaud; Henrissat, Bernard; Skjåk-Bræk, Gudmund; Helbert, William

    2018-05-23

    In bacteria from the phylum Bacteroidetes, the genes coding for enzymes involved in polysaccharide degradation are often colocalized and coregulated in so-called "polysaccharide utilization loci" (PULs). PULs dedicated to the degradation of marine polysaccharides (e.g. laminaran, ulvan, alginate and porphyran) have been characterized in marine bacteria. Interestingly, the gut microbiome of Japanese individuals acquired, by lateral transfer from marine bacteria, the genes involved in the breakdown of porphyran, the cell wall polysaccharide of the red seaweed used in maki. Sequence similarity analyses predict that the human gut microbiome also encodes enzymes for the degradation of alginate, the main cell wall polysaccharide of brown algae. We undertook the functional characterization of diverse polysaccharide lyases from family PL17, frequently found in marine bacteria as well as those of human gut bacteria. We demonstrate here that this family is polyspecific. Our phylogenetic analysis of family PL17 reveals that all alginate lyases, which have all the same specificity and mode of action, cluster together in a very distinct subfamily. The alginate lyases found in human gut bacteria group together in a single clade which is rooted deeply in the PL17 tree. These enzymes were found in PULs containing PL6 enzymes, which also clustered together in the phylogenetic tree of PL6. Together, biochemical and bioinformatics analyses suggest that acquisition of this system appears ancient and, because only traces of two successful transfers were detected upon inspection of PL6 and PL17 families, the pace of acquisition of marine polysaccharide degradation system is probably very slow.

  17. Impact of enrofloxacin on the human intestinal microbiota revealed by comparative molecular analysis.

    Science.gov (United States)

    Kim, Bong-Soo; Kim, Jong Nam; Yoon, Seok-Hwan; Chun, Jongsik; Cerniglia, Carl E

    2012-06-01

    The indigenous human intestinal microbiota could be disrupted by residues of antibiotics in foods as well as therapeutically administered antibiotics to humans. These disruptions may lead to adverse health outcomes. To observe the possible impact of residues of antibiotics at concentrations below therapeutic levels on human intestinal microbiota, we performed studies using in vitro cultures of fecal suspensions from three individuals with 10 different concentrations (0, 0.1, 0.5, 1, 5, 10, 15, 25, 50 and 150 μg/ml) of the fluoroquinolone, enrofloxacin. The bacterial communities of the control and enrofloxacin dosed fecal samples were analyzed by denaturing gradient gel electrophoresis (DGGE) and pyrosequencing. In addition, changes of functional gene expression were analyzed by a pyrosequencing-based random whole-community mRNA sequencing method. Although each individual had a unique microbial composition, the communities of all individuals were affected by enrofloxacin. The proportions of two phyla, namely, Bacteroidetes and Proteobacteria, were significantly reduced with increasing concentrations of enrofloxacin exposure, while the proportion of Firmicutes increased. Principal Coordinate Analysis (PCoA) using the Fast UniFrac indicated that the community structures of intestinal microbiota were shifted by enrofloxacin. Most of the mRNA transcripts and the anti-microbial drug resistance genes increased with increasing concentrations of enrofloxacin. 16S rRNA gene pyrosequencing of control and enrofloxacin treated fecal suspensions provided valuable information of affected bacterial taxa down to the species level, and the community transcriptomic analyses using mRNA revealed the functional gene expression responses of the changed bacterial communities by enrofloxacin. Published by Elsevier Ltd.

  18. Relationship between Milk Microbiota, Bacterial Load, Macronutrients, and Human Cells during Lactation.

    Science.gov (United States)

    Boix-Amorós, Alba; Collado, Maria C; Mira, Alex

    2016-01-01

    Human breast milk is considered the optimal nutrition for infants, providing essential nutrients and a broad range of bioactive compounds, as well as its own microbiota. However, the interaction among those components and the biological role of milk microorganisms is still uncovered. Thus, our aim was to identify the relationships between milk microbiota composition, bacterial load, macronutrients, and human cells during lactation. Bacterial load was estimated in milk samples from a total of 21 healthy mothers through lactation time by bacteria-specific qPCR targeted to the single-copy gene fusA. Milk microbiome composition and diversity was estimated by 16S-pyrosequencing and the structure of these bacteria in the fluid was studied by flow cytometry, qPCR, and microscopy. Fat, protein, lactose, and dry extract of milk as well as the number of somatic cells were also analyzed. We observed that milk bacterial communities were generally complex, and showed individual-specific profiles. Milk microbiota was dominated by Staphylococcus, Pseudomonas, Streptococcus, and Acinetobacter. Staphylococcus aureus was not detected in any of these samples from healthy mothers. There was high variability in composition and number of bacteria per milliliter among mothers and in some cases even within mothers at different time points. The median bacterial load was 10(6) bacterial cells/ml through time, higher than those numbers reported by 16S gene PCR and culture methods. Furthermore, milk bacteria were present in a free-living, "planktonic" state, but also in equal proportion associated to human immune cells. There was no correlation between bacterial load and the amount of immune cells in milk, strengthening the idea that milk bacteria are not sensed as an infection by the immune system.

  19. Immunoglobulins in nasal secretions of healthy humans: structural integrity of secretory immunoglobulin A1 (IgA1) and occurrence of neutralizing antibodies to IgA1 proteases of nasal bacteria

    DEFF Research Database (Denmark)

    Kirkeby, L; Rasmussen, TT; Reinholdt, Jesper

    2000-01-01

    Certain bacteria, including overt pathogens as well as commensals, produce immunoglobulin A1 (IgA1) proteases. By cleaving IgA1, including secretory IgA1, in the hinge region, these enzymes may interfere with the barrier functions of mucosal IgA antibodies, as indicated by experiments in vitro....... Previous studies have suggested that cleavage of IgA1 in nasal secretions may be associated with the development and perpetuation of atopic disease. To clarify the potential effect of IgA1 protease-producing bacteria in the nasal cavity, we have analyzed immunoglobulin isotypes in nasal secretions of 11...... healthy humans, with a focus on IgA, and at the same time have characterized and quantified IgA1 protease-producing bacteria in the nasal flora of the subjects. Samples in the form of nasal wash were collected by using a washing liquid that contained lithium as an internal reference. Dilution factors and...

  20. Consumption of Camembert cheese stimulates commensal enterococci in healthy human intestinal microbiota.

    Science.gov (United States)

    Firmesse, Olivier; Rabot, Sylvie; Bermúdez-Humarán, Luis G; Corthier, Gérard; Furet, Jean-Pierre

    2007-11-01

    Enterococci are natural inhabitants of the human gastrointestinal tract and the main Gram-positive and facultative anaerobic cocci recovered in human faeces. They are also present in a variety of fermented dairy and meat products, and some rare isolates are responsible for severe infections such as endocarditis and meningitis. The aim of the present study was to evaluate the effect of Camembert cheese consumption by healthy human volunteers on the faecal enterococcal population. A highly specific real-time quantitative PCR approach was designed and used to type enterococcal species in human faeces. Two species were found, Enterococcus faecalis and Enterococcus faecium, and only the Enterococcus faecalis population was significantly enhanced after Camembert cheese consumption, whereas Escherichia coli population and the dominant microbiota remained unaffected throughout the trial.

  1. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases

    Science.gov (United States)

    Opazo, Maria C.; Ortega-Rocha, Elizabeth M.; Coronado-Arrázola, Irenice; Bonifaz, Laura C.; Boudin, Helene; Neunlist, Michel; Bueno, Susan M.; Kalergis, Alexis M.; Riedel, Claudia A.

    2018-01-01

    The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases. PMID:29593681

  2. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Maria C. Opazo

    2018-03-01

    Full Text Available The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases.

  3. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans.

    Directory of Open Access Journals (Sweden)

    Luc Biedermann

    Full Text Available BACKGROUND: The human intestinal microbiota is a crucial factor in the pathogenesis of various diseases, such as metabolic syndrome or inflammatory bowel disease (IBD. Yet, knowledge about the role of environmental factors such as smoking (which is known to influence theses aforementioned disease states on the complex microbial composition is sparse. We aimed to investigate the role of smoking cessation on intestinal microbial composition in 10 healthy smoking subjects undergoing controlled smoking cessation. METHODS: During the observational period of 9 weeks repetitive stool samples were collected. Based on abundance of 16S rRNA genes bacterial composition was analysed and compared to 10 control subjects (5 continuing smokers and 5 non-smokers by means of Terminal Restriction Fragment Length Polymorphism analysis and high-throughput sequencing. RESULTS: Profound shifts in the microbial composition after smoking cessation were observed with an increase of Firmicutes and Actinobacteria and a lower proportion of Bacteroidetes and Proteobacteria on the phylum level. In addition, after smoking cessation there was an increase in microbial diversity. CONCLUSIONS: These results indicate that smoking is an environmental factor modulating the composition of human gut microbiota. The observed changes after smoking cessation revealed to be similar to the previously reported differences in obese compared to lean humans and mice respectively, suggesting a potential pathogenetic link between weight gain and smoking cessation. In addition they give rise to a potential association of smoking status and the course of IBD.

  4. How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans.

    Science.gov (United States)

    Cartmell, Alan; Lowe, Elisabeth C; Baslé, Arnaud; Firbank, Susan J; Ndeh, Didier A; Murray, Heath; Terrapon, Nicolas; Lombard, Vincent; Henrissat, Bernard; Turnbull, Jeremy E; Czjzek, Mirjam; Gilbert, Harry J; Bolam, David N

    2017-07-03

    The human microbiota, which plays an important role in health and disease, uses complex carbohydrates as a major source of nutrients. Utilization hierarchy indicates that the host glycosaminoglycans heparin (Hep) and heparan sulfate (HS) are high-priority carbohydrates for Bacteroides thetaiotaomicron , a prominent member of the human microbiota. The sulfation patterns of these glycosaminoglycans are highly variable, which presents a significant enzymatic challenge to the polysaccharide lyases and sulfatases that mediate degradation. It is possible that the bacterium recruits lyases with highly plastic specificities and expresses a repertoire of enzymes that target substructures of the glycosaminoglycans with variable sulfation or that the glycans are desulfated before cleavage by the lyases. To distinguish between these mechanisms, the components of the B. thetaiotaomicron Hep/HS degrading apparatus were analyzed. The data showed that the bacterium expressed a single-surface endo-acting lyase that cleaved HS, reflecting its higher molecular weight compared with Hep. Both Hep and HS oligosaccharides imported into the periplasm were degraded by a repertoire of lyases, with each enzyme displaying specificity for substructures within these glycosaminoglycans that display a different degree of sulfation. Furthermore, the crystal structures of a key surface glycan binding protein, which is able to bind both Hep and HS, and periplasmic sulfatases reveal the major specificity determinants for these proteins. The locus described here is highly conserved within the human gut Bacteroides , indicating that the model developed is of generic relevance to this important microbial community.

  5. High Frequency and Diversity of Antimicrobial Activities Produced by Nasal Staphylococcus Strains against Bacterial Competitors.

    Directory of Open Access Journals (Sweden)

    Daniela Janek

    2016-08-01

    Full Text Available The human nasal microbiota is highly variable and dynamic often enclosing major pathogens such as Staphylococcus aureus. The potential roles of bacteriocins or other mechanisms allowing certain bacterial clones to prevail in this nutrient-poor habitat have hardly been studied. Of 89 nasal Staphylococcus isolates, unexpectedly, the vast majority (84% was found to produce antimicrobial substances in particular under habitat-specific stress conditions, such as iron limitation or exposure to hydrogen peroxide. Activity spectra were generally narrow but highly variable with activities against certain nasal members of the Actinobacteria, Proteobacteria, Firmicutes, or several groups of bacteria. Staphylococcus species and many other Firmicutes were insusceptible to most of the compounds. A representative bacteriocin was identified as a nukacin-related peptide whose inactivation reduced the capacity of the producer Staphylococcus epidermidis IVK45 to limit growth of other nasal bacteria. Of note, the bacteriocin genes were found on mobile genetic elements exhibiting signs of extensive horizontal gene transfer and rearrangements. Thus, continuously evolving bacteriocins appear to govern bacterial competition in the human nose and specific bacteriocins may become important agents for eradication of notorious opportunistic pathogens from human microbiota.

  6. Gene expression profiling gut microbiota in different races of humans

    Science.gov (United States)

    Chen, Lei; Zhang, Yu-Hang; Huang, Tao; Cai, Yu-Dong

    2016-03-01

    The gut microbiome is shaped and modified by the polymorphisms of microorganisms in the intestinal tract. Its composition shows strong individual specificity and may play a crucial role in the human digestive system and metabolism. Several factors can affect the composition of the gut microbiome, such as eating habits, living environment, and antibiotic usage. Thus, various races are characterized by different gut microbiome characteristics. In this present study, we studied the gut microbiomes of three different races, including individuals of Asian, European and American races. The gut microbiome and the expression levels of gut microbiome genes were analyzed in these individuals. Advanced feature selection methods (minimum redundancy maximum relevance and incremental feature selection) and four machine-learning algorithms (random forest, nearest neighbor algorithm, sequential minimal optimization, Dagging) were employed to capture key differentially expressed genes. As a result, sequential minimal optimization was found to yield the best performance using the 454 genes, which could effectively distinguish the gut microbiomes of different races. Our analyses of extracted genes support the widely accepted hypotheses that eating habits, living environments and metabolic levels in different races can influence the characteristics of the gut microbiome.

  7. Genome-Wide Association Studies of the Human Gut Microbiota.

    Directory of Open Access Journals (Sweden)

    Emily R Davenport

    Full Text Available The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals collected in both. These individuals live and eat communally, minimizing variation due to environmental exposures, including diet, which could potentially mask small genetic effects. Using a GWAS approach that takes into account the relatedness between subjects, we identified at least 8 bacterial taxa whose abundances were associated with single nucleotide polymorphisms in the host genome in each season (at genome-wide FDR of 20%. For example, we identified an association between a taxon known to affect obesity (genus Akkermansia and a variant near PLD1, a gene previously associated with body mass index. Moreover, we replicate a previously reported association from a quantitative trait locus (QTL mapping study of fecal microbiome abundance in mice (genus Lactococcus, rs3747113, P = 3.13 x 10-7. Finally, based on the significance distribution of the associated microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified tissues in which host genetic variation may be acting to influence bacterial abundance in the gut.

  8. Metagenomic Characterization of the Human Intestinal Microbiota in Fecal Samples from STEC-Infected Patients

    Directory of Open Access Journals (Sweden)

    Federica Gigliucci

    2018-02-01

    Full Text Available The human intestinal microbiota is a homeostatic ecosystem with a remarkable impact on human health and the disruption of this equilibrium leads to an increased susceptibility to infection by numerous pathogens. In this study, we used shotgun metagenomic sequencing and two different bioinformatic approaches, based on mapping of the reads onto databases and on the reconstruction of putative draft genomes, to investigate possible changes in the composition of the intestinal microbiota in samples from patients with Shiga Toxin-producing E. coli (STEC infection compared to healthy and healed controls, collected during an outbreak caused by a STEC O26:H11 infection. Both the bioinformatic procedures used, produced similar result with a good resolution of the taxonomic profiles of the specimens. The stool samples collected from the STEC infected patients showed a lower abundance of the members of Bifidobacteriales and Clostridiales orders in comparison to controls where those microorganisms predominated. These differences seemed to correlate with the STEC infection although a flexion in the relative abundance of the Bifidobacterium genus, part of the Bifidobacteriales order, was observed also in samples from Crohn's disease patients, displaying a STEC-unrelated dysbiosis. The metagenomics also allowed to identify in the STEC positive samples, all the virulence traits present in the genomes of the STEC O26 that caused the outbreak as assessed through isolation of the epidemic strain and whole genome sequencing. The results shown represent a first evidence of the changes occurring in the intestinal microbiota of children in the course of STEC infection and indicate that metagenomics may be a promising tool for the culture-independent clinical diagnosis of the infection.

  9. Metagenomic Characterization of the Human Intestinal Microbiota in Fecal Samples from STEC-Infected Patients

    Science.gov (United States)

    Gigliucci, Federica; von Meijenfeldt, F. A. Bastiaan; Knijn, Arnold; Michelacci, Valeria; Scavia, Gaia; Minelli, Fabio; Dutilh, Bas E.; Ahmad, Hamideh M.; Raangs, Gerwin C.; Friedrich, Alex W.; Rossen, John W. A.; Morabito, Stefano

    2018-01-01

    The human intestinal microbiota is a homeostatic ecosystem with a remarkable impact on human health and the disruption of this equilibrium leads to an increased susceptibility to infection by numerous pathogens. In this study, we used shotgun metagenomic sequencing and two different bioinformatic approaches, based on mapping of the reads onto databases and on the reconstruction of putative draft genomes, to investigate possible changes in the composition of the intestinal microbiota in samples from patients with Shiga Toxin-producing E. coli (STEC) infection compared to healthy and healed controls, collected during an outbreak caused by a STEC O26:H11 infection. Both the bioinformatic procedures used, produced similar result with a good resolution of the taxonomic profiles of the specimens. The stool samples collected from the STEC infected patients showed a lower abundance of the members of Bifidobacteriales and Clostridiales orders in comparison to controls where those microorganisms predominated. These differences seemed to correlate with the STEC infection although a flexion in the relative abundance of the Bifidobacterium genus, part of the Bifidobacteriales order, was observed also in samples from Crohn's disease patients, displaying a STEC-unrelated dysbiosis. The metagenomics also allowed to identify in the STEC positive samples, all the virulence traits present in the genomes of the STEC O26 that caused the outbreak as assessed through isolation of the epidemic strain and whole genome sequencing. The results shown represent a first evidence of the changes occurring in the intestinal microbiota of children in the course of STEC infection and indicate that metagenomics may be a promising tool for the culture-independent clinical diagnosis of the infection. PMID:29468143

  10. Role of the Human Breast Milk-Associated Microbiota on the Newborns' Immune System: A Mini Review.

    Science.gov (United States)

    Toscano, Marco; De Grandi, Roberta; Grossi, Enzo; Drago, Lorenzo

    2017-01-01

    The human milk is fundamental for a correct development of newborns, as it is a source not only of vitamins and nutrients, but also of commensal bacteria. The microbiota associated to the human breast milk contributes to create the "initial" intestinal microbiota of infants, having also a pivotal role in modulating and influencing the newborns' immune system. Indeed, the transient gut microbiota is responsible for the initial change from an intrauterine Th2 prevailing response to a Th1/Th2 balanced one. Bacteria located in both colostrum and mature milk can stimulate the anti-inflammatory response, by stimulating the production of specific cytokines, reducing the risk of developing a broad range of inflammatory diseases and preventing the expression of immune-mediated pathologies, such as asthma and atopic dermatitis. The aim of the present Mini Review is to elucidate the specific immunologic role of the human milk-associated microbiota and its impact on the newborn's health and life, highlighting the importance to properly study the biological interactions in a bacterial population and between the microbiota and the host. The Auto Contractive Map, for instance, is a promising analytical methodology based on artificial neural network that can elucidate the specific role of bacteria contained in the breast milk in modulating the infants' immunological response.

  11. Role of the Human Breast Milk-Associated Microbiota on the Newborns’ Immune System: A Mini Review

    Directory of Open Access Journals (Sweden)

    Marco Toscano

    2017-10-01

    Full Text Available The human milk is fundamental for a correct development of newborns, as it is a source not only of vitamins and nutrients, but also of commensal bacteria. The microbiota associated to the human breast milk contributes to create the “initial” intestinal microbiota of infants, having also a pivotal role in modulating and influencing the newborns’ immune system. Indeed, the transient gut microbiota is responsible for the initial change from an intrauterine Th2 prevailing response to a Th1/Th2 balanced one. Bacteria located in both colostrum and mature milk can stimulate the anti-inflammatory response, by stimulating the production of specific cytokines, reducing the risk of developing a broad range of inflammatory diseases and preventing the expression of immune-mediated pathologies, such as asthma and atopic dermatitis. The aim of the present Mini Review is to elucidate the specific immunologic role of the human milk-associated microbiota and its impact on the newborn’s health and life, highlighting the importance to properly study the biological interactions in a bacterial population and between the microbiota and the host. The Auto Contractive Map, for instance, is a promising analytical methodology based on artificial neural network that can elucidate the specific role of bacteria contained in the breast milk in modulating the infants’ immunological response.

  12. Metabolism of azo dyes by human skin microbiota.

    Science.gov (United States)

    Stingley, Robin L; Zou, Wen; Heinze, Thomas M; Chen, Huizhong; Cerniglia, Carl E

    2010-01-01

    Reduction of Methyl Red (MR) and Orange II (Or II) by 26 human skin bacterial species was monitored by a rapid spectrophotometric assay. The analysis indicated that skin bacteria, representing the genera Staphylococcus, Corynebacterium, Micrococcus, Dermacoccus and Kocuria, were able to reduce MR by 74-100 % in 24 h, with only three species unable to reduce completely the dye in that time. Among the species tested, only Corynebacterium xerosis was unable to reduce Or II to any degree by 24 h, and only Staphylococcus delphini, Staphylococcus sciuri subsp. sciuri and Pseudomonas aeruginosa were able to reduce completely this dye within 24 h. MR reduction started with early-exponential growth in Staphylococcus aureus and Staphylococcus epidermidis, and around late-exponential/early-stationary growth in P. aeruginosa. Reduction of Or II, Ponceau S and Ponceau BS started during late-exponential/early-stationary growth for all three species. Using liquid chromatography/electrospray ionization mass spectrometry analyses, MR metabolites produced by Staph. aureus, Staph. epidermidis and P. aeruginosa were identified as N,N-dimethyl-p-phenylenediamine and 2-aminobenzoic acid. Searches of available genomic and proteomic data revealed that at least four of the staphylococci in this study, Staphylococcus haemolyticus, Staph. epidermidis, Staphylococcus cohnii and Staphylococcus saprophyticus, have hypothetical genes with 77, 76, 75 and 74 % sequence identity to azo1 encoding an azoreductase from Staph. aureus and hypothetical proteins with 82, 80, 72 and 74 % identity to Azo1, respectively. In addition, Staphylococcus capitis has a protein with 79 % identity to Azo1. Western analysis detected proteins similar to Azo1 in all the staphylococci tested, except Staph. delphini, Staph. sciuri subsp. sciuri and Staphylococcus auricularis. The data presented in this report will be useful in the risk assessment process for evaluation of public exposure to products containing these dyes.

  13. Cryptococcus lacticolor sp. nov. and Rhodotorula oligophaga sp. nov., novel yeasts isolated from the nasal smear microbiota of Queensland koalas kept in Japanese zoological parks.

    Science.gov (United States)

    Satoh, Kazuo; Maeda, Mari; Umeda, Yoshiko; Sugamata, Miho; Makimura, Koichi

    2013-07-01

    A total of 515 yeast strains were isolated from the nasal smears of Queensland koalas and their breeding environments in Japanese zoological parks between 2005 and 2012. The most frequent species in the basidiomycetous yeast biota isolated from koala nasal passages was Cryptococcus neoformans, followed by Rhodotorula minuta. R. minuta was the most frequent species in the breeding environments, while C. neoformans was rare. Seven strains representing two novel yeast species were identified. Analyses of the 26S rDNA (LSU) D1/D2 domain and nuclear ribosomal DNA internal transcribed spacer region sequences indicated that these strains represent new species with close phylogenetic relationships to Cryptococcus and Rhodotorula. A sexual state was not found for either of these two novel yeasts. Key phenotypic characters confirmed that these strains could be placed in Cryptococcus and Rhodotorula. The names Cryptococcus lacticolor sp. nov. (type strain TIMM 10013(T) = JCM 15449(T) = CBS 10915(T) = DSM 21093(T), DDBJ/EMBL/Genbank Accession No.; AB375774 (ITS) and AB375775 (26S rDNA D1/D2 region), MycoBank ID; MB 802688, Fungal Barcoding Database ID; 3174), and Rhodotorula oligophaga sp. nov. (type strain TIMM 10017(T) = JCM 18398(T) = CBS 12623(T) = DSM 25814(T), DDBJ/EMBL/Genbank Accession No.; AB702967 (ITS) and AB702967 (26S rDNA D1/D2 region), MycoBank ID; MB 802689, Fungal Barcoding Database ID; 3175) are proposed for these new species.

  14. Challenges in simulating the human gut for understanding the role of the microbiota in obesity.

    Science.gov (United States)

    Aguirre, M; Venema, K

    2017-02-07

    There is an elevated incidence of cases of obesity worldwide. Therefore, the development of strategies to tackle this condition is of vital importance. This review focuses on the necessity of optimising in vitro systems to model human colonic fermentation in obese subjects. This may allow to increase the resolution and the physiological relevance of the information obtained from this type of studies when evaluating the potential role that the human gut microbiota plays in obesity. In light of the parameters that are currently used for the in vitro simulation of the human gut (which are mostly based on information derived from healthy subjects) and the possible difference with an obese condition, we propose to revise and improve specific standard operating procedures.

  15. Identification of infectious microbiota from oral cavity environment of various population group patients as a preventive approach to human health risk factors

    OpenAIRE

    Paweł J. Zawadzki; Konrad Perkowski; Bohdan Starościak; Wanda Baltaza; Marcin Padzik; Krzysztof Pionkowski; Lidia Chomicz

    2016-01-01

    Introduction and objective This study presents the results of comparative investigations aimed to determine microbiota that can occur in the oral environment in different human populations. The objective of the research was to identify pathogenic oral microbiota, the potential cause of health complications in patients of different population groups. Material and Methods The study included 95 patients requiring dental or surgical treatment; their oral cavity environment microbiota as...

  16. Ability of human oral microbiota to produce wine odorant aglycones from odourless grape glycosidic aroma precursors.

    Science.gov (United States)

    Muñoz-González, Carolina; Cueva, Carolina; Ángeles Pozo-Bayón, M; Victoria Moreno-Arribas, M

    2015-11-15

    Grape aroma precursors are odourless glycosides that represent a natural reservoir of potential active odorant molecules in wines. Since the first step of wine consumption starts in the oral cavity, the processing of these compounds in the mouth could be an important factor in influencing aroma perception. Therefore, the objective of this work has been to evaluate the ability of human oral microbiota to produce wine odorant aglycones from odourless grape glycosidic aroma precursors previously isolated from white grapes. To do so, two methodological approaches involving the use of typical oral bacteria or the whole oral microbiota isolated from human saliva were followed. Odorant aglycones released in the culture mediums were isolated and analysed by HS-SPME-GC/MS. Results showed the ability of oral bacteria to hydrolyse grape aroma precursors, releasing different types of odorant molecules (terpenes, benzenic compounds and lipid derivatives). The hydrolytic activity seemed to be bacteria-dependent and was subject to large inter-individual variability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Dietary Fiber and the Human Gut Microbiota: Application of Evidence Mapping Methodology

    Directory of Open Access Journals (Sweden)

    Caleigh M. Sawicki

    2017-02-01

    Full Text Available Interest is rapidly growing around the role of the human gut microbiota in facilitating beneficial health effects associated with consumption of dietary fiber. An evidence map of current research activity in this area was created using a newly developed database of dietary fiber intervention studies in humans to identify studies with the following broad outcomes: (1 modulation of colonic microflora; and/or (2 colonic fermentation/short-chain fatty acid concentration. Study design characteristics, fiber exposures, and outcome categories were summarized. A sub-analysis described oligosaccharides and bacterial composition in greater detail. One hundred eighty-eight relevant studies were identified. The fiber categories represented by the most studies were oligosaccharides (20%, resistant starch (16%, and chemically synthesized fibers (15%. Short-chain fatty acid concentration (47% and bacterial composition (88% were the most frequently studied outcomes. Whole-diet interventions, measures of bacterial activity, and studies in metabolically at-risk subjects were identified as potential gaps in the evidence. This evidence map efficiently captured the variability in characteristics of expanding research on dietary fiber, gut microbiota, and physiological health benefits, and identified areas that may benefit from further research. We hope that this evidence map will provide a resource for researchers to direct new intervention studies and meta-analyses.

  18. Transcriptomic analysis across nasal, temporal, and macular regions of human neural retina and RPE/choroid by RNA-Seq

    Science.gov (United States)

    Whitmore, S. Scott; Wagner, Alex H.; DeLuca, Adam P.; Drack, Arlene V.; Stone, Edwin M.; Tucker, Budd A.; Zeng, Shemin; Braun, Terry A.; Mullins, Robert F.; Scheetz, Todd E.

    2014-01-01

    Proper spatial differentiation of retinal cell types is necessary for normal human vision. Many retinal diseases, such as Best disease and male germ cell associated kinase (MAK)-associated retinitis pigmentosa, preferentially affect distinct topographic regions of the retina. While much is known about the distribution of cell-types in the retina, the distribution of molecular components across the posterior pole of the eye has not been well-studied. To investigate regional difference in molecular composition of ocular tissues, we assessed differential gene expression across the temporal, macular, and nasal retina and retinal pigment epithelium (RPE)/choroid of human eyes using RNA-Seq. RNA from temporal, macular, and nasal retina and RPE/choroid from four human donor eyes was extracted, poly-A selected, fragmented, and sequenced as 100 bp read pairs. Digital read files were mapped to the human genome and analyzed for differential expression using the Tuxedo software suite. Retina and RPE/choroid samples were clearly distinguishable at the transcriptome level. Numerous transcription factors were differentially expressed between regions of the retina and RPE/choroid. Photoreceptor-specific genes were enriched in the peripheral samples, while ganglion cell and amacrine cell genes were enriched in the macula. Within the RPE/choroid, RPE-specific genes were upregulated at the periphery while endothelium associated genes were upregulated in the macula. Consistent with previous studies, BEST1 expression was lower in macular than extramacular regions. The MAK gene was expressed at lower levels in macula than in extramacular regions, but did not exhibit a significant difference between nasal and temporal retina. The regional molecular distinction is greatest between macula and periphery and decreases between different peripheral regions within a tissue. Datasets such as these can be used to prioritize candidate genes for possible involvement in retinal diseases with

  19. Transcriptomic analysis across nasal, temporal, and macular regions of human neural retina and RPE/choroid by RNA-Seq.

    Science.gov (United States)

    Whitmore, S Scott; Wagner, Alex H; DeLuca, Adam P; Drack, Arlene V; Stone, Edwin M; Tucker, Budd A; Zeng, Shemin; Braun, Terry A; Mullins, Robert F; Scheetz, Todd E

    2014-12-01

    Proper spatial differentiation of retinal cell types is necessary for normal human vision. Many retinal diseases, such as Best disease and male germ cell associated kinase (MAK)-associated retinitis pigmentosa, preferentially affect distinct topographic regions of the retina. While much is known about the distribution of cell types in the retina, the distribution of molecular components across the posterior pole of the eye has not been well-studied. To investigate regional difference in molecular composition of ocular tissues, we assessed differential gene expression across the temporal, macular, and nasal retina and retinal pigment epithelium (RPE)/choroid of human eyes using RNA-Seq. RNA from temporal, macular, and nasal retina and RPE/choroid from four human donor eyes was extracted, poly-A selected, fragmented, and sequenced as 100 bp read pairs. Digital read files were mapped to the human genome and analyzed for differential expression using the Tuxedo software suite. Retina and RPE/choroid samples were clearly distinguishable at the transcriptome level. Numerous transcription factors were differentially expressed between regions of the retina and RPE/choroid. Photoreceptor-specific genes were enriched in the peripheral samples, while ganglion cell and amacrine cell genes were enriched in the macula. Within the RPE/choroid, RPE-specific genes were upregulated at the periphery while endothelium associated genes were upregulated in the macula. Consistent with previous studies, BEST1 expression was lower in macular than extramacular regions. The MAK gene was expressed at lower levels in macula than in extramacular regions, but did not exhibit a significant difference between nasal and temporal retina. The regional molecular distinction is greatest between macula and periphery and decreases between different peripheral regions within a tissue. Datasets such as these can be used to prioritize candidate genes for possible involvement in retinal diseases with

  20. Digestibility of sulfated polysaccharide from the brown seaweed Ascophyllum nodosum and its effect on the human gut microbiota in vitro.

    Science.gov (United States)

    Chen, Ligen; Xu, Wei; Chen, Dan; Chen, Guijie; Liu, Junwei; Zeng, Xiaoxiong; Shao, Rong; Zhu, Hongjun

    2018-06-01

    Sulfated polysaccharides from marine algae exhibit various bioactivities with potential benefits for human health and well-being. In this study, the in vitro digestibility and fermentability of polysaccharides from the brown seaweed Ascophyllum nodosum (AnPs) were examined, and the effects of AnPs on gut microbiota were determined using high-throughput sequencing technology. Salivary amylase, artificial gastric juice, and intestinal juice had no effect on AnPs, but the molecular weight of AnPs and reducing sugar decreased significantly after fermentation by gut microbiota. AnPs significantly modulated the composition of the gut microbiota; in particular, they increased the relative abundance of Bacteroidetes and Firmicutes, suggesting the potential for AnPs to decrease the risk of obesity. Furthermore, the total SCFA content after fermentation increased significantly. These results suggest that AnPs have potential uses as functional food components to improve human gut health. Copyright © 2018. Published by Elsevier B.V.

  1. Modulation of the human gut microbiota by dietary fibres occurs at the species level.

    Science.gov (United States)

    Chung, Wing Sun Faith; Walker, Alan W; Louis, Petra; Parkhill, Julian; Vermeiren, Joan; Bosscher, Douwina; Duncan, Sylvia H; Flint, Harry J

    2016-01-11

    Dietary intake of specific non-digestible carbohydrates (including prebiotics) is increasingly seen as a highly effective approach for manipulating the composition and activities of the human gut microbiota to benefit health. Nevertheless, surprisingly little is known about the global response of the microbial community to particular carbohydrates. Recent in vivo dietary studies have demonstrated that the species composition of the human faecal microbiota is influenced by dietary intake. There is now potential to gain insights into the mechanisms involved by using in vitro systems that produce highly controlled conditions of pH and substrate supply. We supplied two alternative non-digestible polysaccharides as energy sources to three different human gut microbial communities in anaerobic, pH-controlled continuous-flow fermentors. Community analysis showed that supply of apple pectin or inulin resulted in the highly specific enrichment of particular bacterial operational taxonomic units (OTUs; based on 16S rRNA gene sequences). Of the eight most abundant Bacteroides OTUs detected, two were promoted specifically by inulin and six by pectin. Among the Firmicutes, Eubacterium eligens in particular was strongly promoted by pectin, while several species were stimulated by inulin. Responses were influenced by pH, which was stepped up, and down, between 5.5, 6.0, 6.4 and 6.9 in parallel vessels within each experiment. In particular, several experiments involving downshifts to pH 5.5 resulted in Faecalibacterium prausnitzii replacing Bacteroides spp. as the dominant sequences observed. Community diversity was greater in the pectin-fed than in the inulin-fed fermentors, presumably reflecting the differing complexity of the two substrates. We have shown that particular non-digestible dietary carbohydrates have enormous potential for modifying the gut microbiota, but these modifications occur at the level of individual strains and species and are not easily predicted a priori

  2. A Review of the Comparative Anatomy, Histology, Physiology and Pathology of the Nasal Cavity of Rats, Mice, Dogs and Non-human Primates. Relevance to Inhalation Toxicology and Human Health Risk Assessment.

    Science.gov (United States)

    Chamanza, R; Wright, J A

    2015-11-01

    There are many significant differences in the structural and functional anatomy of the nasal cavity of man and laboratory animals. Some of the differences may be responsible for the species-specific nasal lesions that are often observed in response to inhaled toxicants. This paper reviews the comparative anatomy, physiology and pathology of the nasal cavity of the rat, mouse, dog, monkey and man, highlighting factors that may influence the distribution of nasal lesions. Gross anatomical variations such as turbinate structure, folds or grooves on nasal walls, or presence or absence of accessory structures, may influence nasal airflow and species-specific uptake and deposition of inhaled material. In addition, interspecies variations in the morphological and biochemical composition and distribution of the nasal epithelium may affect the local tissue susceptibility and play a role in the development of species-specific nasal lesions. It is concluded that, while the nasal cavity of the monkey might be more similar to that of man, each laboratory animal species provides a model that responds in a characteristic and species-specific manner. Therefore for human risk assessment, careful consideration must be given to the anatomical differences between a given animal model and man. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Preliminary Comparison of Oral and Intestinal Human Microbiota in Patients with Colorectal Cancer: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Edda Russo

    2018-01-01

    Full Text Available In this study Next-Generation Sequencing (NGS was used to analyze and compare human microbiota from three different compartments, i.e., saliva, feces, and cancer tissue (CT, of a selected cohort of 10 Italian patients with colorectal cancer (CRC vs. 10 healthy controls (saliva and feces. Furthermore, the Fusobacterium nucleatum abundance in the same body site was investigated through real-time quantitative polymerase chain reaction (qPCR to assess the association with CRC. Differences in bacterial composition, F. nucleatum abundance in healthy controls vs. CRC patients, and the association of F. nucleatum with clinical parameters were observed. Taxonomic analysis based on 16S rRNA gene, revealed the presence of three main bacterial phyla, which includes about 80% of reads: Firmicutes (39.18%, Bacteroidetes (30.36%, and Proteobacteria (10.65%. The results highlighted the presence of different bacterial compositions; in particular, the fecal samples of CRC patients seemed to be enriched with Bacteroidetes, whereas in the fecal samples of healthy controls Firmicutes were one of the major phyla detected though these differences were not statistically significant. The CT samples showed the highest alpha diversity values. These results emphasize a different taxonomic composition of feces from CRC compared to healthy controls. Despite the low number of samples included in the study, these results suggest the importance of microbiota in the CRC progression and could pave the way to the development of therapeutic interventions and novel microbial-related diagnostic tools in CRC patients.

  4. Human skin microbiota and their volatiles as odour baits for the malaria mosquito Anopheles gambiae s.s

    NARCIS (Netherlands)

    Verhulst, N.O.; Mukabana, W.R.; Takken, W.; Smallegange, R.C.

    2011-01-01

    Host seeking by the malaria mosquito Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is mainly guided by volatile chemicals present in human odours. The skin microbiota plays an important role in the production of these volatiles, and skin bacteria grown on agar plates attract An. gambiae

  5. Biotransformation of 1-nitropyrene to 1-aminopyrene and N-formyl-1-aminopyrene by the human intestinal microbiota

    International Nuclear Information System (INIS)

    Manning, B.W.; Cerniglia, C.E.; Federle, T.W.

    1986-01-01

    The nitropolycyclic aromatic hydrocarbon 1-nitropyrene (1-NP) is an environmental pollutant, a potent bacterial and mammalian mutagen, and a carcinogen. The metabolism of 1-NP by the human intestinal microbiota was studied using a semicontinuous culture system that simulates the colonic lumen. [ 3 H]-1-Nitropyrene was metabolized by the intestinal microbiota to 1-aminopyrene (1-AP) and N-formyl-1-aminopyrene (FAP) as determined by high-performance liquid chromatography (HPLC) and mass spectrometry. Twenty-four hours after the addition of [ 3 H]-1-NP, the formylated compound and 1-AP accounted for 20 and 80% of the total metabolism respectively. This percentage increased to 66% for FAP after 24 h following 10 d of chronic exposure to unlabeled 1-NP, suggesting metabolic adaptation to 1-NP by the microbiota. Both 1-AP and FAP have been shown to be nonmutagenic towards Salmonella typhimurium TA98, which indicates that the intestinal microflora may potentially detoxify 1-NP

  6. Effects of Gut Microbiota Manipulation by Antibiotics on Host Metabolism in Obese Humans : A Randomized Double-Blind Placebo-Controlled Trial

    NARCIS (Netherlands)

    Reijnders, Dorien; Goossens, Gijs H.; Hermes, Gerben D. A.; Neis, Evelien P. J. G.; van der Beek, Christina M.; Most, Jasper; Holst, Jens J.; Lenaerts, Kaatje; Kootte, Ruud S.; Nieuwdorp, Max; Groen, Albert K.; Damink, Steven W. M. Olde; Boekschoten, Mark V.; Smidt, Hauke; Zoetendal, Erwin G.; Dejong, Cornelis H. C.; Blaak, Ellen E.

    2016-01-01

    The gut microbiota has been implicated in obesity and cardiometabolic diseases, although evidence in humans is scarce. We investigated how gut microbiota manipulation by antibiotics (7-day administration of amoxicillin, vancomycin, or placebo) affects host metabolism in 57 obese, prediabetic men.

  7. Effects of Gut Microbiota Manipulation by Antibiotics on Host Metabolism in Obese Humans: A Randomized Double-Blind Placebo-Controlled Trial

    NARCIS (Netherlands)

    Reijnders, Dorien; Goossens, Gijs H.; Hermes, Gerben D. A.; Neis, Evelien P. J. G.; van der Beek, Christina M.; Most, Jasper; Holst, Jens J.; Lenaerts, Kaatje; Kootte, Ruud S.; Nieuwdorp, Max; Groen, Albert K.; Olde Damink, Steven W. M.; Boekschoten, Mark V.; Smidt, Hauke; Zoetendal, Erwin G.; Dejong, Cornelis H. C.; Blaak, Ellen E.

    2016-01-01

    The gut microbiota has been implicated in obesity and cardiometabolic diseases, although evidence in humans is scarce. We investigated how gut microbiota manipulation by antibiotics (7-day administration of amoxicillin, vancomycin, or placebo) affects host metabolism in 57 obese, prediabetic men.

  8. Variations in the ultrastructure of human nasal cilia including abnormalities found in retinitis pigmentosa.

    Science.gov (United States)

    Fox, B; Bull, T B; Arden, G B

    1980-01-01

    The electron microscopic structure of cilia from the inferior turbinate of the nose was studied in 12 adults, four with chronic sinusitis, one with allergic rhinitis, two with bronchiectasis, three with deviated nasal septum, and two normals. The changes are compared with those found in nasal cilia in 14 patients with retinitis pigmentosa. There were compound cilia in the seven cases with chronic sinusitis, allergic rhinitis, and bronchiectasis but, apart from this, the structure of the cilia was similar in all 12 cases. There were variations in the microtubular pattern in about 4% of cilia, dynein arms were not seen in 4%, and in the rest an average of 5-6 dynein arms were seen in each cilium. The orientation of the cilia was 0 to 90 degrees. In the retinitis pigmentosa patients there was a highly significant increase in cilial abnormalities. The establishment on a quantitative basis of the variations in normal structure of nasal cilila facilitated the recognition of an association between cilial abnormalities and retinitis pigmentosa and should help in the identification of associations that may exist between cilial abnormalities and other diseases. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 7 Fig. 8 PMID:7400333

  9. Enhanced chondrogenesis of human nasal septum derived progenitors on nanofibrous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Shafiee, Abbas [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Stem Cell biology and Tissue Engineering Departments, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD (Australia); Seyedjafari, Ehsan [Department of Biotechnology, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Sadat Taherzadeh, Elham [Stem Cell biology and Tissue Engineering Departments, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); Dinarvand, Peyman [Stem Cell biology and Tissue Engineering Departments, Stem Cell Technology Research Center, Tehran (Iran, Islamic Republic of); The Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO (United States); Soleimani, Masoud [Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ai, Jafar, E-mail: jafar_ai@tums.ac.ir [Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Brain and Spinal Injury Research Center, Imam Hospital, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2014-07-01

    Topographical cues can be exploited to regulate stem cell attachment, proliferation, differentiation and function in vitro and in vivo. In this study, we aimed to investigate the influence of different nanofibrous topographies on the chondrogenic differentiation potential of nasal septum derived progenitors (NSP) in vitro. Aligned and randomly oriented Ploy (L-lactide) (PLLA)/Polycaprolactone (PCL) hybrid scaffolds were fabricated via electrospinning. First, scaffolds were fully characterized, and then NSP were seeded on them to study their capacity to support stem cell attachment, proliferation and chondrogenic differentiation. Compared to randomly oriented nanofibers, aligned scaffolds showed a high degree of nanofiber alignment with much better tensile strength properties. Both scaffolds supported NSP adhesion, proliferation and chondrogenic differentiation. Despite the higher rate of cell proliferation on random scaffolds, a better chondrogenic differentiation was observed on aligned nanofibers as deduced from higher expression of chondrogenic markers such as collagen type II and aggrecan on aligned scaffolds. These findings demonstrate that electrospun constructs maintain NSP proliferation and differentiation, and that the aligned nanofibrous scaffolds can significantly enhance chondrogenic differentiation of nasal septum derived progenitors. - Highlights: • Electrospun nanofiber scaffolds with different topographies were fabricated. • Aligned nanofiber scaffolds had better tensile strength properties. • Nasal septum derived progenitors were cultured on nanofibrous scaffolds. • Both topographies support proliferation and chondrogenic differentiation. • Better chondrogenic differentiation was observed on aligned nanofibers.

  10. Enhanced chondrogenesis of human nasal septum derived progenitors on nanofibrous scaffolds

    International Nuclear Information System (INIS)

    Shafiee, Abbas; Seyedjafari, Ehsan; Sadat Taherzadeh, Elham; Dinarvand, Peyman; Soleimani, Masoud; Ai, Jafar

    2014-01-01

    Topographical cues can be exploited to regulate stem cell attachment, proliferation, differentiation and function in vitro and in vivo. In this study, we aimed to investigate the influence of different nanofibrous topographies on the chondrogenic differentiation potential of nasal septum derived progenitors (NSP) in vitro. Aligned and randomly oriented Ploy (L-lactide) (PLLA)/Polycaprolactone (PCL) hybrid scaffolds were fabricated via electrospinning. First, scaffolds were fully characterized, and then NSP were seeded on them to study their capacity to support stem cell attachment, proliferation and chondrogenic differentiation. Compared to randomly oriented nanofibers, aligned scaffolds showed a high degree of nanofiber alignment with much better tensile strength properties. Both scaffolds supported NSP adhesion, proliferation and chondrogenic differentiation. Despite the higher rate of cell proliferation on random scaffolds, a better chondrogenic differentiation was observed on aligned nanofibers as deduced from higher expression of chondrogenic markers such as collagen type II and aggrecan on aligned scaffolds. These findings demonstrate that electrospun constructs maintain NSP proliferation and differentiation, and that the aligned nanofibrous scaffolds can significantly enhance chondrogenic differentiation of nasal septum derived progenitors. - Highlights: • Electrospun nanofiber scaffolds with different topographies were fabricated. • Aligned nanofiber scaffolds had better tensile strength properties. • Nasal septum derived progenitors were cultured on nanofibrous scaffolds. • Both topographies support proliferation and chondrogenic differentiation. • Better chondrogenic differentiation was observed on aligned nanofibers

  11. Nasal polyps

    Science.gov (United States)

    ... shrink polyps, and can reduce swelling and nasal congestion. The effect lasts a few months in most ... this procedure, your doctor uses a thin, lighted tube with instruments at the end. The tube is ...

  12. The Influence of Different Apple Based Supplements on the Intestinal Microbiota of Humans

    DEFF Research Database (Denmark)

    Bergström, Anders; Wilcks, Andrea; Ravn-Haren, Gitte

    2010-01-01

    Background and objective: The present project is part of the large ISAFRUIT project, where one of the objectives is to identify effects of apple and apple product on parameters related to gut health. In a previous rat study we observed changes in the intestinal microbiota of rats fed whole apples......, pomace or apple pectin ([1], and we were interested in finding out if the same effect can be observed in humans. Method: The study was conducted as a randomized, controlled 5 x 28 days cross-over study with 24 healthy persons of both genders. The persons were following a pectin- and polyphenol free......-free), 3) cloudy juice (apple juice with pulp), and 4) pomace (press cake from the cloudy juice production process). Fecal samples were taken before and after each diet period. After DNA extraction, Denaturing Gradient Gel Electrophoresis (DGGE) with universal primers and specific primers...

  13. ResistoMap-online visualization of human gut microbiota antibiotic resistome.

    Science.gov (United States)

    Yarygin, Konstantin S; Kovarsky, Boris A; Bibikova, Tatyana S; Melnikov, Damir S; Tyakht, Alexander V; Alexeev, Dmitry G

    2017-07-15

    We created ResistoMap—a Web-based interactive visualization of the presence of genetic determinants conferring resistance to antibiotics, biocides and heavy metals in human gut microbiota. ResistoMap displays the data on more than 1500 published gut metagenomes of world populations including both healthy subjects and patients. Multiparameter display filters allow visual assessment of the associations between the meta-data and proportions of resistome. The geographic map navigation layer allows to state hypotheses regarding the global trends of antibiotic resistance and correlates the gut resistome variations with the national clinical guidelines on antibiotics application. ResistoMap was implemented using AngularJS, CoffeeScript, D3.js and TopoJSON. The tool is publicly available at http://resistomap.rcpcm.org. yarygin@phystech.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  14. Nasal colonization of humans with methicillin-resistant Staphylococcus aureus (MRSA CC398 with and without exposure to pigs.

    Directory of Open Access Journals (Sweden)

    Christiane Cuny

    Full Text Available BACKGROUND: Studies in several European countries and in North America revealed a frequent nasal colonization of livestock with MRSA CC398 and also in humans with direct professional exposure to colonized animals. The study presented here addresses the question of further transmission to non exposed humans. METHODS: After selecting 47 farms with colonized pigs in different regions of Germany we sampled the nares of 113 humans working daily with pigs and of their 116 non exposed family members. The same was performed in 18 veterinarians attending pig farms and in 44 of their non exposed family members. For investigating transmission beyond families we samples the nares of 462 pupils attending a secondary school in a high density pig farming area. MRSA were detected by direct culture on selective agar. The isolates were typed by means of spa-sequence typing and classification of SCCmec elements. For attribution of spa sequence types to clonal lineages as defined by multi locus sequence typing we used the BURP algorithm. Antibiotic susceptibility testing was performed by microbroth dilution assay. RESULTS: At the farms investigated 86% of humans exposed and only 4.3% of their family members were found to carry MRSA exhibiting spa-types corresponding to clonal complex CC398. Nasal colonization was also found in 45% of veterinarians caring for pig farms and in 9% of their non exposed family members. Multivariate analysis revealed that antibiotic usage prior to sampling beard no risk with respect to colonization. From 462 pupils only 3 were found colonized, all 3 were living on pig farms. CONCLUSION: These results indicate that so far the dissemination of MRSA CC398 to non exposed humans is infrequent and probably does not reach beyond familial communities.

  15. Characterization of the human predominant fecal microbiota - With special focus on the Clostridial clusters IV and XIVa

    OpenAIRE

    Maukonen, Johanna

    2012-01-01

    The human gut microbiota is considered to be a complex fermentor with a metabolic potential rivaling that of the liver. In addition to its primary function in digestion, it affects the human host in numerous ways: maturation and modulation of the immune system, production of short-chain fatty acids and gases, transformation of bile acids, formation of vitamins, and also potential formation of mutagenic, toxic, and carcinogenic substances. Commensal bacteria are able to modulate the expression...

  16. The threats for human health induced by food pests of Plodia interpunctella as reservoirs of infectious microbiota

    Science.gov (United States)

    Zawadzki, Paweł J.; Starościak, Bohdan; Baltaza, Wanda; Dybicz, Monika; Pionkowski, Krzysztof; Pawłowski, Witold; Kłyś, Małgorzata; Chomicz, Lidia

    World-wide distributed pests of Plodia interpunctella occur with increasing frequency also in Poland, in areas where food is prepared and stored, in dwellings, buildings of public use, hospitals. Larvae damage various products causing economic losses. There were no data about microbiota transmission by pests. The aim of our systematic studies firstly conducted in Poland was to explain a role of pests as reservoirs of microbiota and assess health risk induced by them in human environments. 300 adults and 200 larvae, collected in households and health facilities by traps and directly from products, were examined by light microscopy, in vitro cultivations, molecular techniques; the susceptibility /resistance of microbiota to chemicals was also assessed. Gram+ bacteriae of genera Enterococcus, Micrococcus, Bacillus, Gram-: Klebsiella, Escherichia, mold fungi: Aspergillus, Penicillium and yeast-like fungi were identified, including strains potentially pathogenic for humans. In the European Union countries, the food circulation is audited by the law; chemicals are applied to eliminate P.interpunctella pests causing economic losses. Our successive studies showed that pyralids may generate health problems as food pests and as reservoirs of microbiota. Sources of the pathogenic, drug-resistant strains revealed by us, not identified earlier, may be particularly dangerous for elder persons, with weakened immune system, persons from groups of high risk of infections. The increased awareness of the problem is necessary for more efficacy of preventive measures. A monitoring of consequences of the health risk induced by the pests may supply data useful for adequate practical approach.

  17. Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota.

    Directory of Open Access Journals (Sweden)

    Shaofeng Bai

    Full Text Available Alginates pertain to organic polysaccharides that have been extensively used in food- and medicine-related industries. The present study obtained alginates from an alginate overproducing Pseudomonas aeruginosa PAO1 mutant by screening transposon mutagenesis libraries. The interaction between bacterial and seaweed alginates and gut microbiota were further studied by using an in vitro batch fermentation system. Thin-layer chromatography (TLC analysis indicated that both bacterial and seaweed alginates can be completely degraded by fecal bacteria isolated from study volunteers, indicating that a minor structural difference between bacterial and seaweed alginates (O-acetylation and lack of G-G blocks didn't affect the digestion of alginates by human microbiota. Although, the digestion of bacterial and seaweed alginates was attributed to different Bacteroides xylanisolvens strains, they harbored similar alginate lyase genes. Genus Bacteroides with alginate-degrading capability were enriched in growth medium containing bacterial or seaweed alginates after in vitro fermentation. Short-chain fatty acid (SCFA production in both bacterial and seaweed alginates was also comparable, but was significantly higher than the same medium using starch. In summary, the present study has isolated an alginate-overproducing P. aeruginosa mutant strain. Both seaweed and bacterial alginates were degraded by human gut microbiota, and their regulatory function on gut microbiota was similar.

  18. Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota.

    Science.gov (United States)

    Bai, Shaofeng; Chen, Huahai; Zhu, Liying; Liu, Wei; Yu, Hongwei D; Wang, Xin; Yin, Yeshi

    2017-01-01

    Alginates pertain to organic polysaccharides that have been extensively used in food- and medicine-related industries. The present study obtained alginates from an alginate overproducing Pseudomonas aeruginosa PAO1 mutant by screening transposon mutagenesis libraries. The interaction between bacterial and seaweed alginates and gut microbiota were further studied by using an in vitro batch fermentation system. Thin-layer chromatography (TLC) analysis indicated that both bacterial and seaweed alginates can be completely degraded by fecal bacteria isolated from study volunteers, indicating that a minor structural difference between bacterial and seaweed alginates (O-acetylation and lack of G-G blocks) didn't affect the digestion of alginates by human microbiota. Although, the digestion of bacterial and seaweed alginates was attributed to different Bacteroides xylanisolvens strains, they harbored similar alginate lyase genes. Genus Bacteroides with alginate-degrading capability were enriched in growth medium containing bacterial or seaweed alginates after in vitro fermentation. Short-chain fatty acid (SCFA) production in both bacterial and seaweed alginates was also comparable, but was significantly higher than the same medium using starch. In summary, the present study has isolated an alginate-overproducing P. aeruginosa mutant strain. Both seaweed and bacterial alginates were degraded by human gut microbiota, and their regulatory function on gut microbiota was similar.

  19. In vitro fermentation of alginate and its derivatives by human gut microbiota.

    Science.gov (United States)

    Li, Miaomiao; Li, Guangsheng; Shang, Qingsen; Chen, Xiuxia; Liu, Wei; Pi, Xiong'e; Zhu, Liying; Yin, Yeshi; Yu, Guangli; Wang, Xin

    2016-06-01

    Alginate (Alg) has a long history as a food ingredient in East Asia. However, the human gut microbes responsible for the degradation of alginate and its derivatives have not been fully understood yet. Here, we report that alginate and the low molecular polymer derivatives of mannuronic acid oligosaccharides (MO) and guluronic acid oligosaccharides (GO) can be completely degraded and utilized at various rates by fecal microbiota obtained from six Chinese individuals. However, the derivative of propylene glycol alginate sodium sulfate (PSS) was not hydrolyzed. The bacteria having a pronounced ability to degrade Alg, MO and GO were isolated from human fecal samples and were identified as Bacteroides ovatus, Bacteroides xylanisolvens, and Bacteroides thetaiotaomicron. Alg, MO and GO can increase the production level of short chain fatty acids (SCFA), but GO generates the highest level of SCFA. Our data suggest that alginate and its derivatives could be degraded by specific bacteria in the human gut, providing the basis for the impacts of alginate and its derivates as special food additives on human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. On the relation of nasal cycling with nasal airway dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Guilmette, R A; Wolff, R K

    1988-12-01

    The size and configuration of the nasal airways of humans change with time as a result of the normal process of congestion/decongestion of the erectile tissue of the nasal mucosa. To determine the extent to which airway areas change in vivo, we used magnetic resonance imaging (MRI) to quantitate both the cross-sectional area and perimeter of coronal sections of the entire nasal airway of a human subject. Changes in airway size or patency were indexed to measured changes in unilateral nasal airway resistance determined by posterior rhino manometry. The results of this study in which two MRI scans were performed for presumed left-side patency and two for right-side patency, showed that changes in nasal airway resistance were difficult to ascribe to systematic changes In the sizes of the airways. (author)

  1. On the relation of nasal cycling with nasal airway dimensions

    International Nuclear Information System (INIS)

    Guilmette, R.A.; Wolff, R.K.

    1988-01-01

    The size and configuration of the nasal airways of humans change with time as a result of the normal process of congestion/decongestion of the erectile tissue of the nasal mucosa. To determine the extent to which airway areas change in vivo, we used magnetic resonance imaging (MRI) to quantitate both the cross-sectional area and perimeter of coronal sections of the entire nasal airway of a human subject. Changes in airway size or patency were indexed to measured changes in unilateral nasal airway resistance determined by posterior rhino manometry. The results of this study in which two MRI scans were performed for presumed left-side patency and two for right-side patency, showed that changes in nasal airway resistance were difficult to ascribe to systematic changes In the sizes of the airways. (author)

  2. Influence of essential and fatty oils on ciliary beat frequency of human nasal epithelial cells.

    Science.gov (United States)

    Neher, Andreas; Gstöttner, Michaela; Thaurer, Michael; Augustijns, Patrick; Reinelt, Monika; Schobersberger, Wolfgang

    2008-01-01

    In alternative and complementary medicine, the use of essential and fatty oils has become more and more popular. In addition to conventional medical therapies, self-medication is showing increasing popularity, using agents with unclear compounds and poorly controlled dosages. Among other disorders, these alternative treatments are used in bronchitis and rhinitis, including some topical applications. Thus, the influence on ciliated epithelia should be evaluated, because a disturbance of the ciliary function can lead to recurrent sinusitis and chronic rhinosinusitis. The aim of this study was to test the influence of fatty and essential oils on the ciliary beat frequency (CBF) of nasal mucosa in vivo. The influence of sesame oil, soy oil, peanut oil, Miglyol 840, thyme oil, lavender oil, eucalyptus oil, and menthol on the ciliary activity of nasal brushings was evaluated by digital high-speed imaging. The presence of most fatty oils resulted in an increase in CBF, the effect being highest for peanut oil. Miglyol 840 had no significant influence on CBF. The essential oils were tested at a concentration of 0.2 and 2%. Thyme oil did not affect CBF, whereas the presence of all other essentials oils resulted in an increase in CBF; the effect was higher at 0.2% than at 2%. Except thyme oil and Miglyol 840, all tested oils caused an increase in CBF. Interestingly, the 0.2% concentrations of essential oils resulted in stronger effects when compared with the 2% concentrations.

  3. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota

    Energy Technology Data Exchange (ETDEWEB)

    Hibberd, Matthew C. [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology, Center for Gut Microbiome and Nutrition Research; Wu, Meng [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology; Rodionov, Dmitry A. [Russian Academy of Sciences (RAS), Moscow (Russian Federation). A.A. Kharkevich Inst. for Information Transmission Problems; Sanford Burnham Prebys Medical Discovery Inst., La Jolla, CA (United States); Li, Xiaoqing [Sanford Burnham Prebys Medical Discovery Inst., La Jolla, CA (United States); Cheng, Jiye [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology, Center for Gut Microbiome and Nutrition Researc; Griffin, Nicholas W. [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology, Center for Gut Microbiome and Nutrition Researc; Barratt, Michael J. [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology, Center for Gut Microbiome and Nutrition Researc; Giannone, Richard J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Hettich, Robert L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Osterman, Andrei L. [Sanford Burnham Prebys Medical Discovery Inst., La Jolla, CA (United States); Gordon, Jeffrey I. [Washington Univ. School of Medicine, St. Louis, MO (United States). Center for Genome Sciences and Systems Biology, Center for Gut Microbiome and Nutrition Researc

    2017-05-17

    Micronutrient deficiencies afflict two billion people. And while the impact of these imbalances on host biology has been studied extensively, much less is known about their effects on the developing or adult gut microbiota. Thus, we established a community of 44 cultured, sequenced human gut-derived bacterial species in gnotobiotic mice and fed the animals a defined, micronutrient-sufficient diet, followed by a derivative diet devoid of vitamin A, folate, iron or zinc, followed by return to the sufficient diet. Acute vitamin A deficiency had the largest effect on community structure and meta-transcriptome, with Bacteroides vulgatus, a prominent responder, increasing its abundance in the absence of vitamin A, and manifesting transcriptional changes involving various metabolic pathways. Applying retinol selection to a library of 30,300 B. vulgatus transposon mutants revealed that disruption of acrR abrogated retinol sensitivity. Genetic complementation studies, microbial RNA-Seq, and transcription factor binding assays disclosed that AcrR functions as a repressor of an adjacent AcrAB-TolC efflux system plus other members of its regulon. Retinol efflux measurements in wild-type, acrR-mutant, and complemented acrR mutant strains, plus treatment with a pharmacologic inhibitor of the efflux system, revealed that AcrAB-TolC is a determinant of retinol and bile acid sensitivity. We associated acute vitamin A deficiency with altered bile acid metabolism in vivo, raising the possibility that retinol, bile acid metabolites, and AcrAB-TolC interact to influence the fitness of B. vulgatus and perhaps other microbiota members. This type of preclinical model can help develop mechanistic insights about and more effective treatment strategies for micronutrient deficiencies.

  4. Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice.

    Directory of Open Access Journals (Sweden)

    Markus M Heimesaat

    Full Text Available BACKGROUND: Postmortem microbiological examinations are performed in forensic and medical pathology for defining uncertain causes of deaths and for screening of deceased tissue donors. Interpretation of bacteriological data, however, is hampered by false-positive results due to agonal spread of microorganisms, postmortem bacterial translocation, and environmental contamination. METHODOLOGY/PRINCIPAL FINDINGS: We performed a kinetic survey of naturally occurring postmortem gut flora changes in the small and large intestines of conventional and gnotobiotic mice associated with a human microbiota (hfa applying cultural and molecular methods. Sacrificed mice were kept under ambient conditions for up to 72 hours postmortem. Intestinal microbiota changes were most pronounced in the ileal lumen where enterobacteria and enterococci increased by 3-5 orders of magnitude in conventional and hfa mice. Interestingly, comparable intestinal overgrowth was shown in acute and chronic intestinal inflammation in mice and men. In hfa mice, ileal overgrowth with enterococci and enterobacteria started 3 and 24 hours postmortem, respectively. Strikingly, intestinal bacteria translocated to extra-intestinal compartments such as mesenteric lymphnodes, spleen, liver, kidney, and cardiac blood as early as 5 min after death. Furthermore, intestinal tissue destruction was characterized by increased numbers of apoptotic cells and neutrophils within 3 hours postmortem, whereas counts of proliferative cells as well as T- and B-lymphocytes and regulatory T-cells decreased between 3 and 12 hours postmortem. CONCLUSIONS/SIGNIFICANCE: We conclude that kinetics of ileal overgrowth with enterobacteria and enterococci in hfa mice can be used as an indicator for compromized intestinal functionality and for more precisely defining the time point of death under defined ambient conditions. The rapid translocation of intestinal bacteria starting within a few minutes after death will help

  5. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production.

    Science.gov (United States)

    Bhattarai, Yogesh; Schmidt, Bradley A; Linden, David R; Larson, Eric D; Grover, Madhusudan; Beyder, Arthur; Farrugia, Gianrico; Kashyap, Purna C

    2017-07-01

    Serotonin [5-hydroxytryptamine (5-HT)], an important neurotransmitter and a paracrine messenger in the gastrointestinal tract, regulates intestinal secretion by its action primarily on 5-HT 3 and 5-HT 4 receptors. Recent studies highlight the role of gut microbiota in 5-HT biosynthesis. In this study, we determine whether human-derived gut microbiota affects host secretory response to 5-HT and 5-HT receptor expression. We used proximal colonic mucosa-submucosa preparation from age-matched Swiss Webster germ-free (GF) and humanized (HM; ex-GF colonized with human gut microbiota) mice. 5-HT evoked a significantly greater increase in short-circuit current (Δ I sc ) in GF compared with HM mice. Additionally, 5-HT 3 receptor mRNA and protein expression was significantly higher in GF compared with HM mice. Ondansetron, a 5-HT 3 receptor antagonist, inhibited 5-HT-evoked Δ I sc in GF mice but not in HM mice. Furthermore, a 5-HT 3 receptor-selective agonist, 2-methyl-5-hydroxytryptamine hydrochloride, evoked a significantly higher Δ I sc in GF compared with HM mice. Immunohistochemistry in 5-HT 3A -green fluorescent protein mice localized 5-HT 3 receptor expression to enterochromaffin cells in addition to nerve fibers. The significant difference in 5-HT-evoked Δ I sc between GF and HM mice persisted in the presence of tetrodotoxin (TTX) but was lost after ondansetron application in the presence of TTX. Application of acetate (10 mM) significantly lowered 5-HT 3 receptor mRNA in GF mouse colonoids. We conclude that host secretory response to 5-HT may be modulated by gut microbiota regulation of 5-HT 3 receptor expression via acetate production. Epithelial 5-HT 3 receptor may function as a mediator of gut microbiota-driven change in intestinal secretion. NEW & NOTEWORTHY We found that gut microbiota alters serotonin (5-HT)-evoked intestinal secretion in a 5-HT 3 receptor-dependent mechanism and gut microbiota metabolite acetate alters 5-HT 3 receptor expression in

  6. ANTHROPOMETRIC STUDY OF NASAL INDEX OF EGYPTIANS

    OpenAIRE

    Abdelmonem Awad Hegazy

    2014-01-01

    Background: The nasal index determination is one of the most commonly used anthropometric parameters in classifying human races. There are few reports in medical literature concerning nasal index that specifically address particular Egyptian populations. The objective of this study was to determine the normal parameters of external nose (width, height and nasal index) in Egyptians. Methods: The study was conducted randomly on healthy Egyptian subjects of both sexes. Nasal height and width ...

  7. Mining the human intestinal microbiota for biomarkers associated with metabolic disorders

    NARCIS (Netherlands)

    Hermes, Gerben

    2016-01-01

    After birth, our gastrointestinal (GI) tract is colonized by a highly complex assemblage of microbes, collectively termed the GI microbiota, that develop intimate interactions with our body. Recent evidence indicates that the GI microbiota and its products may contribute to the development of

  8. The human microbiota: novel targets for hospital-acquired infections and antibiotic resistance.

    Science.gov (United States)

    Pettigrew, Melinda M; Johnson, J Kristie; Harris, Anthony D

    2016-05-01

    Hospital-acquired infections are increasing in frequency due to multidrug resistant organisms (MDROs), and the spread of MDROs has eroded our ability to treat infections. Health care professionals cannot rely solely on traditional infection control measures and antimicrobial stewardship to prevent MDRO transmission. We review research on the microbiota as a target for infection control interventions. We performed a literature review of key research findings related to the microbiota as a target for infection control interventions. These data are summarized and used to outline challenges, opportunities, and unanswered questions in the field. The healthy microbiota provides protective functions including colonization resistance, which refers to the microbiota's ability to prevent colonization and/or expansion of pathogens. Antibiotic use and other exposures in hospitalized patients are associated with disruptions of the microbiota that may reduce colonization resistance and select for antibiotic resistance. Novel methods to exploit protective mechanisms provided by an intact microbiota may provide the key to preventing the spread of MDROs in the health care setting. Research on the microbiota as a target for infection control has been limited. Epidemiologic studies will facilitate progress toward the goal of manipulating the microbiota for control of MDROs in the health care setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Alteration of a human intestinal microbiota under extreme life environment in the Antarctica.

    Science.gov (United States)

    Jin, Jong-Sik; Touyama, Mutsumi; Yamada, Shin; Yamazaki, Takashi; Benno, Yoshimi

    2014-01-01

    The human intestinal microbiota (HIM) settles from birth and continues to change phenotype by some factors (e.g. host's diet) throughout life. However, the effect of extreme life environment on human HIM composition is not well known. To understand HIM fluctuation under extreme life environment in humans, fecal samples were collected from six Japanese men on a long Antarctic expedition. They explored Antarctica for 3 months and collected their fecal samples at once-monthly intervals. Using terminal restriction fragment length polymorphism (T-RFLP) and real time polymerase chain reaction (PCR) analysis, the composition of HIM in six subjects was investigated. Three subjects presented restoration of HIM after the expedition compared versus before and during the expedition. Two thirds samples collected during the expedition belonged to the same cluster in dendrogram. However, all through the expedition, T-RFLP patterns showed interindividual variability. Especially, Bifidobacterium spp. showed a tendency to decrease during and restore after the expedition. A reduction of Bifidobacterium spp. was observed in five subjects the first 1 month of the expedition. Bacteroides thetaiotaomicron, which is thought to proliferate during emotional stress, significantly decreased in one subject, indicating that other factors in addition to emotional stress may affect the composition of HIM in this study. These findings could be helpful to understand the effect of extreme life environment on HIM.

  10. Use of denaturing gradient gel electrophoresis to detect Actinobacteria associated with the human faecal microbiota.

    Science.gov (United States)

    Hoyles, Lesley; Clear, Jessica A; McCartney, Anne L

    2013-08-01

    With the exceptions of the bifidobacteria, propionibacteria and coriobacteria, the Actinobacteria associated with the human gastrointestinal tract have received little attention. This has been due to the seeming absence of these bacteria from most clone libraries. In addition, many of these bacteria have fastidious growth and atmospheric requirements. A recent cultivation-based study has shown that the Actinobacteria of the human gut may be more diverse than previously thought. The aim of this study was to develop a denaturing gradient gel electrophoresis (DGGE) approach for characterizing Actinobacteria present in faecal samples. Amount of DNA added to the Actinobacteria-specific PCR used to generate strong PCR products of equal intensity from faecal samples of five infants, nine adults and eight elderly adults was anti-correlated with counts of bacteria obtained using fluorescence in situ hybridization probe HGC69A. A nested PCR using Actinobacteria-specific and universal PCR-DGGE primers was used to generate profiles for the Actinobacteria. Cloning of sequences from the DGGE bands confirmed the specificity of the Actinobacteria-specific primers. In addition to members of the genus Bifidobacterium, species belonging to the genera Propionibacterium, Microbacterium, Brevibacterium, Actinomyces and Corynebacterium were found to be part of the faecal microbiota of healthy humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. A Western diet ecological module identified from the 'humanized' mouse microbiota predicts diet in adults and formula feeding in children.

    Science.gov (United States)

    Siddharth, Jay; Holway, Nicholas; Parkinson, Scott J

    2013-01-01

    The interplay between diet and the microbiota has been implicated in the growing frequency of chronic diseases associated with the Western lifestyle. However, the complexity and variability of microbial ecology in humans and preclinical models has hampered identification of the molecular mechanisms underlying the association of the microbiota in this context. We sought to address two key questions. Can the microbial ecology of preclinical models predict human populations? And can we identify underlying principles that surpass the plasticity of microbial ecology in humans? To do this, we focused our study on diet; perhaps the most influential factor determining the composition of the gut microbiota. Beginning with a study in 'humanized' mice we identified an interactive module of 9 genera allied with Western diet intake. This module was applied to a controlled dietary study in humans. The abundance of the Western ecological module correctly predicted the dietary intake of 19/21 top and 21/21 of the bottom quartile samples inclusive of all 5 Western and 'low-fat' diet subjects, respectively. In 98 volunteers the abundance of the Western module correlated appropriately with dietary intake of saturated fatty acids, fat-soluble vitamins and fiber. Furthermore, it correlated with the geographical location and dietary habits of healthy adults from the Western, developing and third world. The module was also coupled to dietary intake in children (and piglets) correlating with formula (vs breast) feeding and associated with a precipitous development of the ecological module in young children. Our study provides a conceptual platform to translate microbial ecology from preclinical models to humans and identifies an ecological network module underlying the association of the gut microbiota with Western dietary habits.

  12. A Western diet ecological module identified from the 'humanized' mouse microbiota predicts diet in adults and formula feeding in children.

    Directory of Open Access Journals (Sweden)

    Jay Siddharth

    Full Text Available The interplay between diet and the microbiota has been implicated in the growing frequency of chronic diseases associated with the Western lifestyle. However, the complexity and variability of microbial ecology in humans and preclinical models has hampered identification of the molecular mechanisms underlying the association of the microbiota in this context. We sought to address two key questions. Can the microbial ecology of preclinical models predict human populations? And can we identify underlying principles that surpass the plasticity of microbial ecology in humans? To do this, we focused our study on diet; perhaps the most influential factor determining the composition of the gut microbiota. Beginning with a study in 'humanized' mice we identified an interactive module of 9 genera allied with Western diet intake. This module was applied to a controlled dietary study in humans. The abundance of the Western ecological module correctly predicted the dietary intake of 19/21 top and 21/21 of the bottom quartile samples inclusive of all 5 Western and 'low-fat' diet subjects, respectively. In 98 volunteers the abundance of the Western module correlated appropriately with dietary intake of saturated fatty acids, fat-soluble vitamins and fiber. Furthermore, it correlated with the geographical location and dietary habits of healthy adults from the Western, developing and third world. The module was also coupled to dietary intake in children (and piglets correlating with formula (vs breast feeding and associated with a precipitous development of the ecological module in young children. Our study provides a conceptual platform to translate microbial ecology from preclinical models to humans and identifies an ecological network module underlying the association of the gut microbiota with Western dietary habits.

  13. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic:a randomised, double-blind, placebo-controlled, cross-over, human intervention study

    OpenAIRE

    Healey, Genelle; Murphy, Rinki; Butts, Chrissie; Brough, Louise; Whelan, Kevin; Coad, Jane

    2018-01-01

    Dysbiotic gut microbiota have been implicated in human disease. Diet-based therapeutic strategies have been used to manipulate the gut microbiota towards a more favourable profile. However, it has been demonstrated that large inter-individual variability exists in gut microbiota response to a dietary intervention. The primary objective of this study was to investigate whether habitually low dietary fibre (LDF) v. high dietary fibre (HDF) intakes influence gut microbiota response to an inulin-...

  14. Nitric oxide in exhaled and aspirated nasal air as an objective measure of human response to indoor air pollution

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Lagercrantz, L.; Sundell, Jan

    2009-01-01

    The concentration of nitric oxide (NO) in exhaled and aspirated nasal air was used to objectively assess human response to indoor air pollutants in a climate chamber exposure experiment. The concentration of NO was measured before exposure, after 2, and 4.5 h of exposure, using a chemiluminescence...... by the exposures. The results may indicate an association between polluted indoor air and subclinical inflammation.Measurement of nitric oxide in exhaled air is a possible objective marker of subclinical inflammation in healthy adults....... NO analyzer. Sixteen healthy female subjects were exposed to two indoor air pollutants and to a clean reference condition for 4.5 h. Subjective assessments of the environment were obtained by questionnaires. After exposure (4.5 h) to the two polluted conditions a small increase in NO concentration in exhaled...

  15. In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth.

    Science.gov (United States)

    Mills, Charlotte E; Tzounis, Xenofon; Oruna-Concha, Maria-Jose; Mottram, Don S; Gibson, Glenn R; Spencer, Jeremy P E

    2015-04-28

    Coffee is a relatively rich source of chlorogenic acids (CGA), which, as other polyphenols, have been postulated to exert preventive effects against CVD and type 2 diabetes. As a considerable proportion of ingested CGA reaches the large intestine, CGA may be capable of exerting beneficial effects in the large gut. Here, we utilise a stirred, anaerobic, pH-controlled, batch culture fermentation model of the distal region of the colon in order to investigate the impact of coffee and CGA on the growth of the human faecal microbiota. Incubation of coffee samples with the human faecal microbiota led to the rapid metabolism of CGA (4 h) and the production of dihydrocaffeic acid and dihydroferulic acid, while caffeine remained unmetabolised. The coffee with the highest levels of CGA (Pspp. relative to the control vessel at 10 h after exposure (Pspp. (PEubacterium rectale group (P<0·05). This selective metabolism and subsequent amplification of specific bacterial populations could be beneficial to host health.

  16. A human volunteer study to assess the impact of confectionery sweeteners on the gut microbiota composition.

    Science.gov (United States)

    Beards, Emma; Tuohy, Kieran; Gibson, Glenn

    2010-09-01

    Sweeteners are being sourced to lower the energetic value of confectionery including chocolates. Some, especially non-digestible carbohydrates, may possess other benefits for human health upon their fermentation by the colonic microbiota. The present study assessed non-digestible carbohydrate sweeteners, selected for use in low-energy chocolates, for their ability to beneficially modulate faecal bacterial profiles in human volunteers. Forty volunteers consumed a test chocolate (low-energy or experimental chocolate) containing 22.8 g of maltitol (MTL), MTL and polydextrose (PDX), or MTL and resistant starch for fourteen consecutive days. The dose of the test chocolates was doubled every 2 weeks over a 6-week period. Numbers of faecal bifidobacteria significantly increased with all the three test treatments. Chocolate containing the PDX blend also significantly increased faecal lactobacilli (P = 0.00 001) after the 6 weeks. The PDX blend also showed significant increases in faecal propionate and butyrate (P = 0.002 and 0.006, respectively). All the test chocolates were well tolerated with no significant change in bowel habit or intestinal symptoms even at a daily dose of 45.6 g of non-digestible carbohydrate sweetener. This is of importance not only for giving manufacturers a sugar replacement that can reduce energetic content, but also for providing a well-tolerated means of delivering high levels of non-digestible carbohydrates into the colon, bringing about improvements in the biomarkers of gut health.

  17. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation

    Science.gov (United States)

    Tailford, Louise E.; Owen, C. David; Walshaw, John; Crost, Emmanuelle H.; Hardy-Goddard, Jemma; Le Gall, Gwenaelle; de Vos, Willem M.; Taylor, Garry L.; Juge, Nathalie

    2015-07-01

    The gastrointestinal mucus layer is colonized by a dense community of microbes catabolizing dietary and host carbohydrates during their expansion in the gut. Alterations in mucosal carbohydrate availability impact on the composition of microbial species. Ruminococcus gnavus is a commensal anaerobe present in the gastrointestinal tract of >90% of humans and overrepresented in inflammatory bowel diseases (IBD). Using a combination of genomics, enzymology and crystallography, we show that the mucin-degrader R. gnavus ATCC 29149 strain produces an intramolecular trans-sialidase (IT-sialidase) that cleaves off terminal α2-3-linked sialic acid from glycoproteins, releasing 2,7-anhydro-Neu5Ac instead of sialic acid. Evidence of IT-sialidases in human metagenomes indicates that this enzyme occurs in healthy subjects but is more prevalent in IBD metagenomes. Our results uncover a previously unrecognized enzymatic activity in the gut microbiota, which may contribute to the adaptation of intestinal bacteria to the mucosal environment in health and disease.

  18. Does the maternal vaginal microbiota play a role in seeding the microbiota of neonatal gut and nose?

    Science.gov (United States)

    Sakwinska, O; Foata, F; Berger, B; Brüssow, H; Combremont, S; Mercenier, A; Dogra, S; Soh, S-E; Yen, J C K; Heong, G Y S; Lee, Y S; Yap, F; Meaney, M J; Chong, Y-S; Godfrey, K M; Holbrook, J D

    2017-10-13

    The acquisition and early maturation of infant microbiota is not well understood despite its likely influence on later health. We investigated the contribution of the maternal microbiota to the microbiota of infant gut and nose in the context of mode of delivery and feeding. Using 16S rRNA sequencing and specific qPCR, we profiled microbiota of 42 mother-infant pairs from the GUSTO birth cohort, at body sites including maternal vagina, rectum and skin; and infant stool and nose. In our study, overlap between maternal vaginal microbiota and infant faecal microbiota was minimal, while the similarity between maternal rectal microbiota and infant microbiota was more pronounced. However, an infant's nasal and gut microbiota were no more similar to that of its own mother, than to that of unrelated mothers. These findings were independent of delivery mode. We conclude that the transfer of maternal vaginal microbes play a minor role in seeding infant stool microbiota. Transfer of maternal rectal microbiota could play a larger role in seeding infant stool microbiota, but approaches other than the generally used analyses of community similarity measures are likely to be needed to quantify bacterial transmission. We confirmed the clear difference between microbiota of infants born by Caesarean section compared to vaginally delivered infants and the impact of feeding mode on infant gut microbiota. Only vaginally delivered, fully breastfed infants had gut microbiota dominated by Bifidobacteria. Our data suggest that reduced transfer of maternal vaginal microbial is not the main mechanism underlying the differential infant microbiota composition associated with Caesarean delivery. The sources of a large proportion of infant microbiota could not be identified in maternal microbiota, and the sources of seeding of infant gut and nasal microbiota remain to be elucidated.

  19. Impact of the gut microbiota on rodent models of human disease.

    Science.gov (United States)

    Hansen, Axel Kornerup; Hansen, Camilla Hartmann Friis; Krych, Lukasz; Nielsen, Dennis Sandris

    2014-12-21

    Traditionally bacteria have been considered as either pathogens, commensals or symbionts. The mammal gut harbors 10(14) organisms dispersed on approximately 1000 different species. Today, diagnostics, in contrast to previous cultivation techniques, allow the identification of close to 100% of bacterial species. This has revealed that a range of animal models within different research areas, such as diabetes, obesity, cancer, allergy, behavior and colitis, are affected by their gut microbiota. Correlation studies may for some diseases show correlation between gut microbiota composition and disease parameters higher than 70%. Some disease phenotypes may be transferred when recolonizing germ free mice. The mechanistic aspects are not clear, but some examples on how gut bacteria stimulate receptors, metabolism, and immune responses are discussed. A more deeper understanding of the impact of microbiota has its origin in the overall composition of the microbiota and in some newly recognized species, such as Akkermansia muciniphila, Segmented filamentous bacteria and Faecalibacterium prausnitzii, which seem to have an impact on more or less severe disease in specific models. Thus, the impact of the microbiota on animal models is of a magnitude that cannot be ignored in future research. Therefore, either models with specific microbiota must be developed, or the microbiota must be characterized in individual studies and incorporated into data evaluation.

  20. Assessing the Influence of Vegan, Vegetarian and Omnivore Oriented Westernized Dietary Styles on Human Gut Microbiota: A Cross Sectional Study.

    Science.gov (United States)

    Losasso, Carmen; Eckert, Ester M; Mastrorilli, Eleonora; Villiger, Jorg; Mancin, Marzia; Patuzzi, Ilaria; Di Cesare, Andrea; Cibin, Veronica; Barrucci, Federica; Pernthaler, Jakob; Corno, Gianluca; Ricci, Antonia

    2018-01-01

    Diet and lifestyle have a strong influence on gut microbiota, which in turn has important implications on a variety of health-related aspects. Despite great advances in the field, it remains unclear to which extent the composition of the gut microbiota is modulated by the intake of animal derived products, compared to a vegetable based diet. Here the specific impact of vegan, vegetarian, and omnivore feeding type on the composition of gut microbiota of 101 adults was investigated among groups homogeneous for variables known to have a role in modulating gut microbial composition such as age, anthropometric variables, ethnicity, and geographic area. The results displayed a picture where the three different dietetic profiles could be well distinguished on the basis of participant's dietetic regimen. Regarding the gut microbiota; vegetarians had a significantly greater richness compared to omnivorous. Moreover, counts of Bacteroidetes related operational taxonomic units (OTUs) were greater in vegans and vegetarians compared to omnivores. Interestingly considering the whole bacterial community composition the three cohorts were unexpectedly similar, which is probably due to their common intake in terms of nutrients rather than food, e.g., high fat content and reduced protein and carbohydrate intake. This finding suggests that fundamental nutritional choices such as vegan, vegetarian, or omnivore do influence the microbiota but do not allow to infer conclusions on gut microbial composition, and suggested the possibility for a preferential impact of other variables, probably related to the general life style on shaping human gut microbial community in spite of dietary influence. Consequently, research were individuals are categorized on the basis of their claimed feeding types is of limited use for scientific studies, since it appears to be oversimplified.

  1. Assessing the Influence of Vegan, Vegetarian and Omnivore Oriented Westernized Dietary Styles on Human Gut Microbiota: A Cross Sectional Study

    Directory of Open Access Journals (Sweden)

    Carmen Losasso

    2018-03-01

    Full Text Available Diet and lifestyle have a strong influence on gut microbiota, which in turn has important implications on a variety of health-related aspects. Despite great advances in the field, it remains unclear to which extent the composition of the gut microbiota is modulated by the intake of animal derived products, compared to a vegetable based diet. Here the specific impact of vegan, vegetarian, and omnivore feeding type on the composition of gut microbiota of 101 adults was investigated among groups homogeneous for variables known to have a role in modulating gut microbial composition such as age, anthropometric variables, ethnicity, and geographic area. The results displayed a picture where the three different dietetic profiles could be well distinguished on the basis of participant’s dietetic regimen. Regarding the gut microbiota; vegetarians had a significantly greater richness compared to omnivorous. Moreover, counts of Bacteroidetes related operational taxonomic units (OTUs were greater in vegans and vegetarians compared to omnivores. Interestingly considering the whole bacterial community composition the three cohorts were unexpectedly similar, which is probably due to their common intake in terms of nutrients rather than food, e.g., high fat content and reduced protein and carbohydrate intake. This finding suggests that fundamental nutritional choices such as vegan, vegetarian, or omnivore do influence the microbiota but do not allow to infer conclusions on gut microbial composition, and suggested the possibility for a preferential impact of other variables, probably related to the general life style on shaping human gut microbial community in spite of dietary influence. Consequently, research were individuals are categorized on the basis of their claimed feeding types is of limited use for scientific studies, since it appears to be oversimplified.

  2. Nasal encephaloceles

    NARCIS (Netherlands)

    Hoving, Eelco W.

    2000-01-01

    Nasal encephaloceles can be divided into frontoethmoidal and basal encephaloceles. Both conditions are very rare, but frontoethmoidal encephaloceles show a relatively high incidence (1:5,000) in Southeast Asia. The pathogenesis of encephaloceles may be explained by a disturbance in separation of

  3. Environmental Pollutant Benzo[a]Pyrene Impacts the Volatile Metabolome and Transcriptome of the Human Gut Microbiota.

    Science.gov (United States)

    Defois, Clémence; Ratel, Jérémy; Denis, Sylvain; Batut, Bérénice; Beugnot, Réjane; Peyretaillade, Eric; Engel, Erwan; Peyret, Pierre

    2017-01-01

    Benzo[ a ]pyrene (B[ a ]P) is a ubiquitous, persistent, and carcinogenic pollutant that belongs to the large family of polycyclic aromatic hydrocarbons. Population exposure primarily occurs via contaminated food products, which introduces the pollutant to the digestive tract. Although the metabolism of B[ a ]P by host cells is well known, its impacts on the human gut microbiota, which plays a key role in health and disease, remain unexplored. We performed an in vitro assay using 16S barcoding, metatranscriptomics and volatile metabolomics to study the impact of B[ a ]P on two distinct human fecal microbiota. B[ a ]P exposure did not induce a significant change in the microbial structure; however, it altered the microbial volatolome in a dose-dependent manner. The transcript levels related to several metabolic pathways, such as vitamin and cofactor metabolism, cell wall compound metabolism, DNA repair and replication systems, and aromatic compound metabolism, were upregulated, whereas the transcript levels related to the glycolysis-gluconeogenesis pathway and bacterial chemotaxis toward simple carbohydrates were downregulated. These primary findings show that food pollutants, such as B[ a ]P, alter human gut microbiota activity. The observed shift in the volatolome demonstrates that B[ a ]P induces a specific deviation in the microbial metabolism.

  4. Characteristics of nasal-associated lymphoid tissue (NALT) and nasal absorption capacity in chicken.

    Science.gov (United States)

    Kang, Haihong; Yan, Mengfei; Yu, Qinghua; Yang, Qian

    2013-01-01

    As the main mucosal immune inductive site of nasal cavity, nasal-associated lymphoid tissue (NALT) plays an important role in both antigen recognition and immune activation after intranasal immunization. However, the efficiency of intranasal vaccines is commonly restricted by the insufficient intake of antigen by the nasal mucosa, resulting from the nasal mucosal barrier and the nasal mucociliary clearance. The distribution of NALT and the characteristic of nasal cavity have already been described in humans and many laboratory rodents, while data about poultry are scarce. For this purpose, histological sections of the chicken nasal cavities were used to examine the anatomical structure and histological characteristics of nasal cavity. Besides, the absorptive capacity of chicken nasal mucosa was also studied using the materials with different particle size. Results showed that the NALT of chicken was located on the bottom of nasal septum and both sides of choanal cleft, which mainly consisted of second lymphoid follicle. A large number of lymphocytes were distributed under the mucosal epithelium of inferior nasal meatus. In addition, there were also diffuse lymphoid tissues located under the epithelium of the concha nasalis media and the walls of nasal cavity. The results of absorption experiment showed that the chicken nasal mucosa was capable to absorb trypan blue, OVA, and fluorescent latex particles. Inactivated avian influenza virus (IAIV) could be taken up by chicken nasal mucosa except for the stratified squamous epithelium sites located on the forepart of nasal cavity. The intake of IAIV by NALT was greater than that of the nasal mucosa covering on non-lymphoid tissue, which could be further enhanced after intranasal inoculation combined with sodium cholate or CpG DNA. The study on NALT and nasal absorptive capacity will be benefit for further understanding of immune mechanisms after nasal vaccination and development of nasal vaccines for poultry.

  5. Responses of primary human nasal epithelial cells to EDIII-DENV stimulation: the first step to intranasal dengue vaccination.

    Science.gov (United States)

    Nantachit, Nattika; Sunintaboon, Panya; Ubol, Sukathida

    2016-08-18

    About half of the world's population are living in the endemic area of dengue viruses implying that a rapid-mass vaccination may be required. In addition, a major target of dengue vaccine are children, thus, a needle-free administration is more attractive. These problems may be overcome by the alternative route of vaccination such as topical, oral and intranasal vaccination. Here, we investigated the possibility to deliver a dengue immunogen intranasally, a painless route of vaccination. The tested immunogen was the domain III of dengue serotype-3 E protein (EDIII-D3) loaded into trimethyl chitosan nanoparticles (EDIII-D3 TMC NPs). The primary human nasal epithelial cells, HNEpCs, were used as an in vitro model for nasal responses. At tested concentrations, EDIII-D3 TMC NPs not only exerted no detectable toxicity toward HNEpC cultures but also efficiently delivered EDIII-D3 immunogens into HNEpCs. Moreover, HNEpCs quickly and strongly produced proinflammatory cytokines (IL-1β, IL-6, TNF-α), type-I IFN, the growth factors (GM-CSF, IL-7), the chemokines (MCP-1, MIP-1β, IL-8), Th1-related cytokines (IL-2, IL-12p70, IL-17, IFN-γ) and Th2-related cytokine (IL-4) in response to EDIII-D3 TMC NPs treatment. A potential mucosal delivery system for dengue immunogens was revealed and found to stimulate a strong local innate antiviral response which possibly leading to a systemic adaptive immunity.

  6. ‘Lachnoclostridium massiliosenegalense’, a new bacterial species isolated from the human gut microbiota

    Directory of Open Access Journals (Sweden)

    M. Tidjani Alou

    2016-11-01

    Full Text Available We report the main characteristics of ‘Lachnoclostridium massiliosenegalense’ strain mt23T (=CSUR P299 =DSM 102084, a new bacterial species isolated from the gut microbiota of a healthy young girl from Senegal.

  7. A newly isolated probiotic Enterococcus faecalis strain from vagina microbiota enhances apoptosis of human cancer cells.

    Science.gov (United States)

    Nami, Y; Abdullah, N; Haghshenas, B; Radiah, D; Rosli, R; Yari Khosroushahi, A

    2014-08-01

    This study aimed to describe probiotic properties and bio-therapeutic effects of newly isolated Enterococcus faecalis from the human vaginal tract. The Enterococcus faecalis strain was originally isolated from the vaginal microbiota of Iranian women and was molecularly identified using 16SrDNA gene sequencing. Some biochemical methodologies were preliminarily used to characterize the probiotic potential of Ent. faecalis, including antibiotic susceptibility, antimicrobial activity, as well as acid and bile resistance. The bio-therapeutic effects of this strain's secreted metabolites on four human cancer cell lines (AGS, HeLa, MCF-7 and HT-29) and one normal cell line (HUVEC) were evaluated by cytotoxicity assay and apoptosis scrutiny. The characterization results demonstrated into the isolated bacteria strain revealed probiotic properties, such as antibiotic susceptibility, antimicrobial activity and resistance under conditions similar to those in the gastrointestinal tract. Results of bio-therapeutic efficacy assessments illustrated acceptable apoptotic effects on four human cancer cell lines and negligible side effects on assayed normal cell line. Our findings revealed that the apoptotic effect of secreted metabolites mainly depended on proteins secreted by Ent. faecalis on different cancer cells. These proteins can induce the apoptosis of cancer cells. The metabolites produced by this vaginal Ent. faecalis strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. Accordingly, the physicochemical, structural and functional properties of the secreted anticancer substances should be further investigated before using them as anticancer therapeutics. This study aim to screen total bacterial secreted metabolites as a wealthy source to find the new active compounds to introduce as anticancer therapeutics in the future. © 2014 The Society for Applied Microbiology.

  8. Fecal Microbiota and Metabolome in a Mouse Model of Spontaneous Chronic Colitis: Relevance to Human Inflammatory Bowel Disease.

    Science.gov (United States)

    Robinson, Ainsley M; Gondalia, Shakuntla V; Karpe, Avinash V; Eri, Rajaraman; Beale, David J; Morrison, Paul D; Palombo, Enzo A; Nurgali, Kulmira

    2016-12-01

    Dysbiosis of the gut microbiota may be involved in the pathogenesis of inflammatory bowel disease (IBD). However, the mechanisms underlying the role of the intestinal microbiome and metabolome in IBD onset and its alteration during active treatment and recovery remain unknown. Animal models of chronic intestinal inflammation with similar microbial and metabolomic profiles would enable investigation of these mechanisms and development of more effective treatments. Recently, the Winnie mouse model of colitis closely representing the clinical symptoms and characteristics of human IBD has been developed. In this study, we have analyzed fecal microbial and metabolomic profiles in Winnie mice and discussed their relevance to human IBD. The 16S rRNA gene was sequenced from fecal DNA of Winnie and C57BL/6 mice to define operational taxonomic units at ≥97% similarity threshold. Metabolomic profiling of the same fecal samples was performed by gas chromatography-mass spectrometry. Composition of the dominant microbiota was disturbed, and prominent differences were evident at all levels of the intestinal microbiome in fecal samples from Winnie mice, similar to observations in patients with IBD. Metabolomic profiling revealed that chronic colitis in Winnie mice upregulated production of metabolites and altered several metabolic pathways, mostly affecting amino acid synthesis and breakdown of monosaccharides to short chain fatty acids. Significant dysbiosis in the Winnie mouse gut replicates many changes observed in patients with IBD. These results provide justification for the suitability of this model to investigate mechanisms underlying the role of intestinal microbiota and metabolome in the pathophysiology of IBD.

  9. Changes in Composition and Function of Human Intestinal Microbiota Exposed to Chlorpyrifos in Oil as Assessed by the SHIME® Model

    Directory of Open Access Journals (Sweden)

    Julie Reygner

    2016-11-01

    Full Text Available The presence of pesticide residues in food is a public health problem. Exposure to these substances in daily life could have serious effects on the intestine—the first organ to come into contact with food contaminants. The present study investigated the impact of a low dose (1 mg/day in oil of the pesticide chlorpyrifos (CPF on the community structure, diversity and metabolic response of the human gut microbiota using the SHIME® model (six reactors, representing the different parts of the gastrointestinal tract. The last three reactors (representing the colon were inoculated with a mixture of feces from human adults. Three time points were studied: immediately before the first dose of CPF, and then after 15 and 30 days of CPF-oil administration. By using conventional bacterial culture and molecular biology methods, we showed that CPF in oil can affect the gut microbiota. It had the greatest effects on counts of culturable bacteria (with an increase in Enterobacteria, Bacteroides spp. and clostridia counts, and a decrease in bifidobacterial counts and fermentative activity, which were colon-segment-dependent. Our results suggest that: (i CPF in oil treatment affects the gut microbiota (although there was some discordance between the culture-dependent and culture-independent analyses; (ii the changes are “SHIME®-compartment” specific; and (iii the changes are associated with minor alterations in the production of short-chain fatty acids and lactate.

  10. Changes in Composition and Function of Human Intestinal Microbiota Exposed to Chlorpyrifos in Oil as Assessed by the SHIME® Model

    Science.gov (United States)

    Reygner, Julie; Joly Condette, Claire; Bruneau, Aurélia; Delanaud, Stéphane; Rhazi, Larbi; Depeint, Flore; Abdennebi-Najar, Latifa; Bach, Veronique; Mayeur, Camille; Khorsi-Cauet, Hafida

    2016-01-01

    The presence of pesticide residues in food is a public health problem. Exposure to these substances in daily life could have serious effects on the intestine—the first organ to come into contact with food contaminants. The present study investigated the impact of a low dose (1 mg/day in oil) of the pesticide chlorpyrifos (CPF) on the community structure, diversity and metabolic response of the human gut microbiota using the SHIME® model (six reactors, representing the different parts of the gastrointestinal tract). The last three reactors (representing the colon) were inoculated with a mixture of feces from human adults. Three time points were studied: immediately before the first dose of CPF, and then after 15 and 30 days of CPF-oil administration. By using conventional bacterial culture and molecular biology methods, we showed that CPF in oil can affect the gut microbiota. It had the greatest effects on counts of culturable bacteria (with an increase in Enterobacteria, Bacteroides spp. and clostridia counts, and a decrease in bifidobacterial counts) and fermentative activity, which were colon-segment-dependent. Our results suggest that: (i) CPF in oil treatment affects the gut microbiota (although there was some discordance between the culture-dependent and culture-independent analyses); (ii) the changes are “SHIME®-compartment” specific; and (iii) the changes are associated with minor alterations in the production of short-chain fatty acids and lactate. PMID:27827942

  11. Targeting the ecology within: The role of the gut-brain axis and human microbiota in drug addiction.

    Science.gov (United States)

    Skosnik, Patrick D; Cortes-Briones, Jose A

    2016-08-01

    Despite major advances in our understanding of the brain using traditional neuroscience, reliable and efficacious treatments for drug addiction have remained elusive. Hence, the time has come to utilize novel approaches, particularly those drawing upon contemporary advances in fields outside of established neuroscience and psychiatry. Put another way, the time has come for a paradigm shift in the addiction sciences. Apropos, a revolution in the area of human health is underway, which is occurring at the nexus between enteric microbiology and neuroscience. It has become increasingly clear that the human microbiota (the vast ecology of bacteria residing within the human organism), plays an important role in health and disease. This is not surprising, as it has been estimated that bacteria living in the human body (approximately 1kg of mass, roughly equivalent to that of the human brain) outnumber human cells 10 to 1. While advances in the understanding of the role of microbiota in other areas of human health have yielded intriguing results (e.g., Clostridium difficile, irritable bowel syndrome, autism, etc.), to date, no systematic programs of research have examined the role of microbiota in drug addiction. The current hypothesis, therefore, is that gut dysbiosis plays a key role in addictive disorders. In the context of this hypothesis, this paper provides a rationale for future research to target the "gut-brain axis" in addiction. A brief background of the gut-brain axis is provided, along with a series of hypothesis-driven ideas outlining potential treatments for addiction via manipulations of the "ecology within." Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Absorption and Clearance of Pharmaceutical Aerosols in the Human Nose: Effects of Nasal Spray Suspension Particle Size and Properties.

    Science.gov (United States)

    Rygg, Alex; Hindle, Michael; Longest, P Worth

    2016-04-01

    The objective of this study was to use a recently developed nasal dissolution, absorption, and clearance (DAC) model to evaluate the extent to which suspended drug particle size influences nasal epithelial drug absorption for a spray product. Computational fluid dynamics (CFD) simulations of mucociliary clearance and drug dissolution were used to calculate total and microscale epithelial absorption of drug delivered with a nasal spray pump. Ranges of suspended particle sizes, drug solubilities, and partition coefficients were evaluated. Considering mometasone furoate as an example, suspended drug particle sizes in the range of 1-5 μm did not affect the total nasal epithelial uptake. However, the microscale absorption of suspended drug particles with low solubilities was affected by particle size and this controlled the extent to which the drug penetrated into the distal nasal regions. The nasal-DAC model was demonstrated to be a useful tool in determining the nasal exposure of spray formulations with different drug particle sizes and solubilities. Furthermore, the model illustrated a new strategy for topical nasal drug delivery in which drug particle size is selected to increase the region of epithelial surface exposure using mucociliary clearance while minimizing the drug dose exiting the nasopharynx.

  13. Production of α-galactosylceramide by a prominent member of the human gut microbiota.

    Directory of Open Access Journals (Sweden)

    Laura C Wieland Brown

    2013-07-01

    Full Text Available While the human gut microbiota are suspected to produce diffusible small molecules that modulate host signaling pathways, few of these molecules have been identified. Species of Bacteroides and their relatives, which often comprise >50% of the gut community, are unusual among bacteria in that their membrane is rich in sphingolipids, a class of signaling molecules that play a key role in inducing apoptosis and modulating the host immune response. Although known for more than three decades, the full repertoire of Bacteroides sphingolipids has not been defined. Here, we use a combination of genetics and chemistry to identify the sphingolipids produced by Bacteroides fragilis NCTC 9343. We constructed a deletion mutant of BF2461, a putative serine palmitoyltransferase whose yeast homolog catalyzes the committed step in sphingolipid biosynthesis. We show that the Δ2461 mutant is sphingolipid deficient, enabling us to purify and solve the structures of three alkaline-stable lipids present in the wild-type strain but absent from the mutant. The first compound was the known sphingolipid ceramide phosphorylethanolamine, and the second was its corresponding dihydroceramide base. Unexpectedly, the third compound was the glycosphingolipid α-galactosylceramide (α-GalCer(Bf, which is structurally related to a sponge-derived sphingolipid (α-GalCer, KRN7000 that is the prototypical agonist of CD1d-restricted natural killer T (iNKT cells. We demonstrate that α-GalCer(Bf has similar immunological properties to KRN7000: it binds to CD1d and activates both mouse and human iNKT cells both in vitro and in vivo. Thus, our study reveals BF2461 as the first known member of the Bacteroides sphingolipid pathway, and it indicates that the committed steps of the Bacteroides and eukaryotic sphingolipid pathways are identical. Moreover, our data suggest that some Bacteroides sphingolipids might influence host immune homeostasis.

  14. Integrity of the Human Faecal Microbiota following Long-Term Sample Storage.

    Directory of Open Access Journals (Sweden)

    Elahe Kia

    Full Text Available In studies of the human microbiome, faecal samples are frequently used as a non-invasive proxy for the study of the intestinal microbiota. To obtain reliable insights, the need for bacterial DNA of high quality and integrity following appropriate faecal sample collection and preservation steps is paramount. In a study of dietary mineral balance in the context of type 2 diabetes (T2D, faecal samples were collected from healthy and T2D individuals throughout a 13-day residential trial. These samples were freeze-dried, then stored mostly at -20°C from the trial date in 2000/2001 until the current research in 2014. Given the relative antiquity of these samples (~14 years, we sought to evaluate DNA quality and comparability to freshly collected human faecal samples. Following the extraction of bacterial DNA, gel electrophoresis indicated that our DNA extracts were more sheared than extracts made from freshly collected faecal samples, but still of sufficiently high molecular weight to support amplicon-based studies. Likewise, spectrophotometric assessment of extracts revealed that they were of high quality and quantity. A subset of bacterial 16S rRNA gene amplicons were sequenced using Illumina MiSeq and compared against publicly available sequence data representing a similar cohort analysed by the American Gut Project (AGP. Notably, our bacterial community profiles were highly consistent with those from the AGP data. Our results suggest that when faecal specimens are stored appropriately, the microbial profiles are preserved and robust to extended storage periods.

  15. Comparative analyses of the bacterial microbiota of the human nostril and oropharynx.

    Science.gov (United States)

    Lemon, Katherine P; Klepac-Ceraj, Vanja; Schiffer, Hilary K; Brodie, Eoin L; Lynch, Susan V; Kolter, Roberto

    2010-06-22

    The nose and throat are important sites of pathogen colonization, yet the microbiota of both is relatively unexplored by culture-independent approaches. We examined the bacterial microbiota of the nostril and posterior wall of the oropharynx from seven healthy adults using two culture-independent methods, a 16S rRNA gene microarray (PhyloChip) and 16S rRNA gene clone libraries. While the bacterial microbiota of the oropharynx was richer than that of the nostril, the oropharyngeal microbiota varied less among participants than did nostril microbiota. A few phyla accounted for the majority of the bacteria detected at each site: Firmicutes and Actinobacteria in the nostril and Firmicutes, Proteobacteria, and Bacteroidetes in the oropharynx. Compared to culture-independent surveys of microbiota from other body sites, the microbiota of the nostril and oropharynx show distinct phylum-level distribution patterns, supporting niche-specific colonization at discrete anatomical sites. In the nostril, the distribution of Actinobacteria and Firmicutes was reminiscent of that of skin, though Proteobacteria were much less prevalent. The distribution of Firmicutes, Proteobacteria, and Bacteroidetes in the oropharynx was most similar to that in saliva, with more Proteobacteria than in the distal esophagus or mouth. While Firmicutes were prevalent at both sites, distinct families within this phylum dominated numerically in each. At both sites there was an inverse correlation between the prevalences of Firmicutes and another phylum: in the oropharynx, Firmicutes and Proteobacteria, and in the nostril, Firmicutes and Actinobacteria. In the nostril, this inverse correlation existed between the Firmicutes family Staphylococcaceae and Actinobacteria families, suggesting potential antagonism between these groups.

  16. Composition and Predicted Metabolic Capacity of Upper and Lower Airway Microbiota of Healthy Dogs in Relation to the Fecal Microbiota.

    Directory of Open Access Journals (Sweden)

    Aaron C Ericsson

    Full Text Available The upper and lower airways of healthy humans are reported to harbor stable and consistent bacterial populations, and the composition of these communities is altered in individuals affected with several respiratory diseases. Data regarding the presence of airway microbiota in other animals are scant and a better understanding of the composition and metabolic function of such bacterial populations is essential for the development of novel therapeutic and diagnostic modalities for use in both veterinary and human medicine. Based on targeted next-generation sequencing of feces and samples collected at multiple levels of the airways from 16 healthy female dogs, we demonstrate that canine airways harbor a topographically continuous microbiota with increasing relative abundance of proteobacterial species from the upper to lower airways. The lung-associated microbiota, as assessed via bronchoalveolar lavage fluid (BALF, was the most consistent between dogs and was dominated by three distinct taxa, two of which were resolved to the species level and one to the level of family. The gene content of the nasal, oropharyngeal, and lung-associated microbiota, predicted using the Phylogenetic Investigations into Communities by Reconstruction of Unobserved States (PICRUSt software, provided information regarding the glyoxylate and citrate cycle metabolic pathways utilized by these bacterial populations to colonize such nutrient-poor, low-throughput environments. These data generated in healthy subjects provide context for future analysis of diseased canine airways. Moreover, as dogs have similar respiratory anatomy, physiology, and immune systems as humans, are exposed to many of the same environmental stimuli, and spontaneously develop similar respiratory diseases, these data support the use of dogs as a model species for prospective studies of the airway microbiota, with findings translatable to the human condition.

  17. Composition and Predicted Metabolic Capacity of Upper and Lower Airway Microbiota of Healthy Dogs in Relation to the Fecal Microbiota.

    Science.gov (United States)

    Ericsson, Aaron C; Personett, Alexa R; Grobman, Megan E; Rindt, Hansjorg; Reinero, Carol R

    2016-01-01

    The upper and lower airways of healthy humans are reported to harbor stable and consistent bacterial populations, and the composition of these communities is altered in individuals affected with several respiratory diseases. Data regarding the presence of airway microbiota in other animals are scant and a better understanding of the composition and metabolic function of such bacterial populations is essential for the development of novel therapeutic and diagnostic modalities for use in both veterinary and human medicine. Based on targeted next-generation sequencing of feces and samples collected at multiple levels of the airways from 16 healthy female dogs, we demonstrate that canine airways harbor a topographically continuous microbiota with increasing relative abundance of proteobacterial species from the upper to lower airways. The lung-associated microbiota, as assessed via bronchoalveolar lavage fluid (BALF), was the most consistent between dogs and was dominated by three distinct taxa, two of which were resolved to the species level and one to the level of family. The gene content of the nasal, oropharyngeal, and lung-associated microbiota, predicted using the Phylogenetic Investigations into Communities by Reconstruction of Unobserved States (PICRUSt) software, provided information regarding the glyoxylate and citrate cycle metabolic pathways utilized by these bacterial populations to colonize such nutrient-poor, low-throughput environments. These data generated in healthy subjects provide context for future analysis of diseased canine airways. Moreover, as dogs have similar respiratory anatomy, physiology, and immune systems as humans, are exposed to many of the same environmental stimuli, and spontaneously develop similar respiratory diseases, these data support the use of dogs as a model species for prospective studies of the airway microbiota, with findings translatable to the human condition.

  18. Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota.

    Science.gov (United States)

    Trinchese, Giovanna; Cavaliere, Gina; Canani, Roberto Berni; Matamoros, Sebastien; Bergamo, Paolo; De Filippo, Chiara; Aceto, Serena; Gaita, Marcello; Cerino, Pellegrino; Negri, Rossella; Greco, Luigi; Cani, Patrice D; Mollica, Maria Pina

    2015-11-01

    Different nutritional components are able, by modulating mitochondrial function and gut microbiota composition, to influence body composition, metabolic homeostasis and inflammatory state. In this study, we aimed to evaluate the effects produced by the supplementation of different milks on energy balance, inflammatory state, oxidative stress and antioxidant/detoxifying enzyme activities and to investigate the role of the mitochondrial efficiency and the gut microbiota in the regulation of metabolic functions in an animal model. We compared the intake of human milk, gold standard for infant nutrition, with equicaloric supplementation of donkey milk, the best substitute for newborns due to its nutritional properties, and cow milk, the primary marketed product. The results showed a hypolipidemic effect produced by donkey and human milk intake in parallel with enhanced mitochondrial activity/proton leakage. Reduced mitochondrial energy efficiency and proinflammatory signals (tumor necrosis factor α, interleukin-1 and lipopolysaccharide levels) were associated with a significant increase of antioxidants (total thiols) and detoxifying enzyme activities (glutathione-S-transferase, NADH quinone oxidoreductase) in donkey- and human milk-treated animals. The beneficial effects were attributable, at least in part, to the activation of the nuclear factor erythroid-2-related factor-2 pathway. Moreover, the metabolic benefits induced by human and donkey milk may be related to the modulation of gut microbiota. In fact, milk treatments uniquely affected the proportions of bacterial phyla and genera, and we hypothesized that the increased concentration of fecal butyrate in human and donkey milk-treated rats was related to the improved lipid and glucose metabolism and detoxifying activities. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Assessment of nasal spray deposition pattern in a silicone human nose model using a color-based method.

    Science.gov (United States)

    Kundoor, Vipra; Dalby, Richard N

    2010-01-01

    To develop a simple and inexpensive method to visualize and quantify droplet deposition patterns. Deposition pattern was determined by uniformly coating the nose model with Sar-Gel (a paste that changes from white to purple on contact with water) and subsequently discharging sprays into the nose model. The color change was captured using a digital camera and analyzed using Adobe Photoshop. Several tests were conducted to validate the method. Deposition patterns of different nasal sprays (Ayr, Afrin, and Zicam) and different nasal drug delivery devices (Afrin nasal spray and PARI Sinustar nasal nebulizer) were compared. We also used the method to evaluate the effect of inhaled flow rate on nasal spray deposition. There was a significant difference in the deposition area for Ayr, Afrin, and Zicam. The deposition areas of Afrin nasal spray and PARI Sinustar nasal nebulizer (2 min and 5 min) were significantly different. Inhaled flow rate did not have a significant effect on the deposition pattern. Lower viscosity formulations (Ayr, Afrin) provided greater coverage than the higher viscosity formulation (Zicam). The nebulizer covered a greater surface area than the spray pump we evaluated. Aerosol deposition in the nose model was not affected by air flow conditions.

  20. Ecophysiological consequences of alcoholism on human gut microbiota: implications for ethanol-related pathogenesis of colon cancer.

    Science.gov (United States)

    Tsuruya, Atsuki; Kuwahara, Akika; Saito, Yuta; Yamaguchi, Haruhiko; Tsubo, Takahisa; Suga, Shogo; Inai, Makoto; Aoki, Yuichi; Takahashi, Seiji; Tsutsumi, Eri; Suwa, Yoshihide; Morita, Hidetoshi; Kinoshita, Kenji; Totsuka, Yukari; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Mizukami, Takeshi; Yokoyama, Akira; Shimoyama, Takefumi; Nakayama, Toru

    2016-06-13

    Chronic consumption of excess ethanol increases the risk of colorectal cancer. The pathogenesis of ethanol-related colorectal cancer (ER-CRC) is thought to be partly mediated by gut microbes. Specifically, bacteria in the colon and rectum convert ethanol to acetaldehyde (AcH), which is carcinogenic. However, the effects of chronic ethanol consumption on the human gut microbiome are poorly understood, and the role of gut microbes in the proposed AcH-mediated pathogenesis of ER-CRC remains to be elaborated. Here we analyse and compare the gut microbiota structures of non-alcoholics and alcoholics. The gut microbiotas of alcoholics were diminished in dominant obligate anaerobes (e.g., Bacteroides and Ruminococcus) and enriched in Streptococcus and other minor species. This alteration might be exacerbated by habitual smoking. These observations could at least partly be explained by the susceptibility of obligate anaerobes to reactive oxygen species, which are increased by chronic exposure of the gut mucosa to ethanol. The AcH productivity from ethanol was much lower in the faeces of alcoholic patients than in faeces of non-alcoholic subjects. The faecal phenotype of the alcoholics could be rationalised based on their gut microbiota structures and the ability of gut bacteria to accumulate AcH from ethanol.

  1. The vaginal microbiota, human papillomavirus infection and cervical intraepithelial neoplasia: what do we know and where are we going next?

    Science.gov (United States)

    Mitra, Anita; MacIntyre, David A; Marchesi, Julian R; Lee, Yun S; Bennett, Phillip R; Kyrgiou, Maria

    2016-11-01

    The vaginal microbiota plays a significant role in health and disease of the female reproductive tract. Next-generation sequencing techniques based upon the analysis of bacterial 16S rRNA genes permit in-depth study of vaginal microbial community structure to a level of detail not possible with standard culture-based microbiological techniques. The human papillomavirus (HPV) causes both cervical intraepithelial neoplasia (CIN) and cervical cancer. Although the virus is highly prevalent, only a small number of women have a persistent HPV infection and subsequently develop clinically significant disease. There is emerging evidence which leads us to conclude that increased diversity of vaginal microbiota combined with reduced relative abundance of Lactobacillus spp. is involved in HPV acquisition and persistence and the development of cervical precancer and cancer. In this review, we summarise the current literature and discuss potential mechanisms for the involvement of vaginal microbiota in the evolution of CIN and cervical cancer. The concept of manipulation of vaginal bacterial communities using pre- and probiotics is also discussed as an exciting prospect for the field of cervical pathology.

  2. Prevalence of human papillomavirus, Epstein-Barr virus, p21, and p53 expression in sinonasal inverted papilloma, nasal polyp, and hypertrophied turbinate in Hong Kong patients.

    Science.gov (United States)

    Sham, C L; To, K F; Chan, Paul K S; Lee, Dennis L Y; Tong, Michael C F; van Hasselt, C Andrew

    2012-04-01

    The purpose of this study of human papillomavirus (HPV), Epstein-Barr virus (EBV), p21, and p53 in sinonasal inverted papilloma (IP) was to help elucidate its pathogenesis. Seventy-three IPs, 48 nasal polyps, and 85 hypertrophied turbinates were subjected to HPV polymerase chain reaction (PCR) study. Seventy-three IPs, 30 nasal polyps, and 32 hypertrophied turbinates were subjected to EBV in situ hybridization (ISH), p21, and p53 immunohistochemical (IHC) studies. HPV was positive in 3 of 73 IPs (4.1%). All specimens were EBV negative. In all, 99% of IPs showed strong and diffuse p21 nuclear reactivity. Most nasal polyps and hypertrophied turbinates showed weak to moderate immunoreactivity of the basal and parabasal cells. Only focal p53 immunoreactivity of the basal and parabasal cells was found in 19% of IPs and 40% of nasal polyps. HPV prevalence of our IP is low. EBV is not present in IP. High p21 and low p53 expression in IP suggests a non-p53-dependent regulation pathway. Copyright © 2011 Wiley Periodicals, Inc.

  3. Identification of infectious microbiota from oral cavity environment of various population group patients as a preventive approach to human health risk factors.

    Science.gov (United States)

    Zawadzki, Paweł J; Perkowski, Konrad; Starościak, Bohdan; Baltaza, Wanda; Padzik, Marcin; Pionkowski, Krzysztof; Chomicz, Lidia

    2016-12-23

    This study presents the results of comparative investigations aimed to determine microbiota that can occur in the oral environment in different human populations. The objective of the research was to identify pathogenic oral microbiota, the potential cause of health complications in patients of different population groups. The study included 95 patients requiring dental or surgical treatment; their oral cavity environment microbiota as risk factors of local and general infections were assessed. In clinical assessment, differences occurred in oral cavity conditions between patients with malformations of the masticatory system, kidney allograft recipients and individuals without indications for surgical procedures. The presence of various pathogenic and opportunistic bacterial strains in oral cavities were revealed by direct microscopic and in vitro culture techniques. Colonization of oral cavities of patients requiring surgical treatment by the potentially pathogenic bacteria constitutes the threat of their spread, and development of general infections. Assessment of oral cavity infectious microbiota should be performed as a preventive measure against peri-surgical complications.

  4. Impact of the gut microbiota, prebiotics, and probiotics on human health and disease

    Directory of Open Access Journals (Sweden)

    Chuan-Sheng Lin

    2014-10-01

    Full Text Available Recent studies have revealed that the gut microbiota regulates many physiological functions, ranging from energy regulation and cognitive processes to toxin neutralization and immunity against pathogens. Accordingly, alterations in the composition of the gut microbiota have been shown to contribute to the development of various chronic diseases. The main objectives of this review are to present recent breakthroughs in the study of the gut microbiota and show that intestinal bacteria play a critical role in the development of different disease conditions, including obesity, fatty liver disease, and lung infection. We also highlight the potential application of prebiotics and probiotics in maintaining optimal health and treating chronic inflammatory and immunity-related diseases.

  5. Nasal Wash Treatment

    Science.gov (United States)

    ... Medications Alternative Therapies Nasal Wash Treatment Nasal Wash Treatment Make an Appointment Ask a Question Refer Patient The Centers for Disease Control (CDC) guidelines for preparing water used in a nasal wash are listed below. Many ...

  6. Persistence of nasal colonization with human pathogenic bacteria and associated antimicrobial resistance in the German general population

    NARCIS (Netherlands)

    Köck, R; Werner, P; Friedrich, A W; Fegeler, C; Becker, K

    The nares represent an important bacterial reservoir for endogenous infections. This study aimed to assess the prevalence of nasal colonization by different important pathogens, the associated antimicrobial susceptibility and risk factors. We performed a prospective cohort study among 1878

  7. Linking Spatial Structure and Community-Level Biotic Interactions through Cooccurrence and Time Series Modeling of the Human Intestinal Microbiota.

    Science.gov (United States)

    de Muinck, Eric J; Lundin, Knut E A; Trosvik, Pål

    2017-01-01

    The gastrointestinal (GI) microbiome is a densely populated ecosystem where dynamics are determined by interactions between microbial community members, as well as host factors. The spatial organization of this system is thought to be important in human health, yet this aspect of our resident microbiome is still poorly understood. In this study, we report significant spatial structure of the GI microbiota, and we identify general categories of spatial patterning in the distribution of microbial taxa along a healthy human GI tract. We further estimate the biotic interaction structure in the GI microbiota, both through time series and cooccurrence modeling of microbial community data derived from a large number of sequentially collected fecal samples. Comparison of these two approaches showed that species pairs involved in significant negative interactions had strong positive contemporaneous correlations and vice versa, while for species pairs without significant interactions, contemporaneous correlations were distributed around zero. We observed similar patterns when comparing these models to the spatial correlations between taxa identified in the adherent microbiota. This suggests that colocalization of microbial taxon pairs, and thus the spatial organization of the GI microbiota, is driven, at least in part, by direct or indirect biotic interactions. Thus, our study can provide a basis for an ecological interpretation of the biogeography of the human gut. IMPORTANCE The human gut microbiome is the subject of intense study due to its importance in health and disease. The majority of these studies have been based on the analysis of feces. However, little is known about how the microbial composition in fecal samples relates to the spatial distribution of microbial taxa along the gastrointestinal tract. By characterizing the microbial content both in intestinal tissue samples and in fecal samples obtained daily, we provide a conceptual framework for how the spatial

  8. The transmission of masticatory forces and nasal septum: structural comparison of the human skull and Gothic cathedral.

    Science.gov (United States)

    Hilloowala, Rumy; Kanth, Hrishi

    2007-07-01

    This study extrapolates the transmission of masticatory forces to the cranium based on the architectural principles of Gothic cathedrals. The most significant finding of the study, obtained by analysis of coronal CT scans, is the role of the hard palate, and especially the vomer and the perpendicular plate of the ethmoid in masticatory force transmission. The study also confirms, experimentally, the paths of masticatory forces, cited in literature but based purely on morphological observations. Human skulls and Gothic cathedrals have similar morphological and functional characteristics. The load exerted by the roof of the cathedral is transmitted to the ground by piers and buttresses. These structures also resist the shearing forces exerted by high winds. Similarly, the mid-facial bones of the skull transmit the vertical as well as the lateral masticatory forces from the maxillary dentition to the skull base. The nonload bearing walls and stained glass windows of the cathedral correspond to the translucent wall of the maxilla. The passageway between the aisle and the nave of the cathedral is equivalent to the meatal openings in the lateral wall of the nasal cavity.

  9. Role of the Akt/mTOR signaling pathway in human papillomavirus-associated nasal and sinonasal inverted papilloma.

    Science.gov (United States)

    Liu, Yongliang; Duan, Lihua; Tian, Jie; Song, Daoliang; Zhang, Min; Zhao, Shenlin; Yin, Zhaofu; Xiang, Xinxin; Li, Xuezhong

    2017-12-01

    Nasal and sinonasal inverted papilloma (NSIP) is a benign tumor in which surface epithelial cells grow downward into the underlying supportive tissue with varying degrees of metaplasia. Human papillomavirus (HPV) has been proposed as the causal agent in the pathogenesis of this disease. Many studies have shown that HPV can activate the Akt/mechanistic target of rapamycin (mTOR) signaling pathway, but the role of this pathway in HPV-associated NSIP is largely unknown. In this study, we enrolled 40 control tissue samples and 80 NSIP tissue samples. HPV genotyping showed that 47 of the 80 examined cases of NSIP were HPV-positive (58.8%), and the most common subtype was HPV11 (20/53, 37.7%). The immunohistochemistry showed statistically significant differences in phosphorylated Akt and phosphorylated S6 ribosomal protein staining among control samples, HPV-positive NSIP and HPV-negative NSIP. The HPV11 L1-L2 plasmid increased the proliferation of normal human nasopharyngeal epithelial NP69-SV40T cells and human nasopharyngeal cancer CNE1 cells. Meanwhile, rapamycin, an mTOR inhibitor, reversed the increased cell proliferation induced by the HPV11 L1-L2 plasmid. Western blot analysis showed that Akt/mTOR/S6 were overexpressed in NP69-SV40T cells and CNE1 cells infected with the HPV11 L1-L2 plasmid. These data demonstrate that HPV promotes cell proliferation through the Akt/mTOR signaling pathway in NSIP. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. The Effect of Menstrual Cycle on Nasal Resonance Characteristics in Females

    Science.gov (United States)

    Kumar, Suman; Basu, Shriya; Sinha, Anisha; Chatterjee, Indranil

    2012-01-01

    The purpose of this study was to analyze resonance characteristics (nasality and nasalance values) during the menstrual cycle. Previous studies indicate changes in voice quality and nasal mucosa due to temporary falling estrogen levels in human females during their menstrual cycle. The present study compared the nasality and "nasalance scores"…

  11. Vaginal microbiota in menopause

    Directory of Open Access Journals (Sweden)

    Martinus Tarina

    2016-12-01

    Full Text Available The human vagina together with its resident, microbiota, comprise a dynamic ecosystem. Normal microbiota is dominated by Lactobacillus species, and pathogen microbiota such as Gardnerella species and Bacteroides species can occur due to decrease in Lactobacillus domination. Lactobacillus plays an essential role in keeping normal vaginal microbiota in balance. Vaginal microbiota adapts to pH change and hormonal value. Changes in the vaginal microbiota over a woman’s lifespan will influence the colonization of pathogenic microbes. They include changes in child, puberty, reproductive state, menopause, and postmenopause. Estrogen levels change will affect the colonization of pathogenic microbium, leading to genitourinary syndrome of menopause. Vulvovaginal atrophy is often found in postmenopausal women, and dominated by L. iners, Anaerococcus sp, Peptoniphilus sp, Prevotella sp, and Streptococcus sp. The normal vaginal microbiota’s imbalance in menopause will cause diseases such as bacterial vaginosis, and recurrent vulvovaginal candidiasis due to hormonal therapies. Changes in the vaginal microbiota due to bacterial vaginosis are characterized by decrease in H2O2-producing Lactobacillus. They are also caused by the increase in numbers and concentration of Gardnerella vaginalis, Mycoplasma hominis, and other anaerob species such as Peptostreptococci, Prevotella spp, and Mobiluncus spp.

  12. Role of human gut microbiota metabolism in the anti-inflammatory effect of traditionally used ellagitannin-rich plant materials.

    Science.gov (United States)

    Piwowarski, Jakub P; Granica, Sebastian; Zwierzyńska, Marta; Stefańska, Joanna; Schopohl, Patrick; Melzig, Matthias F; Kiss, Anna K

    2014-08-08

    Ellagitannin-rich plant materials are widely used in traditional medicine as effective, internally used anti-inflammatory agents. Due to the not well-established bioavailability of ellagitannins, the mechanisms of observed therapeutic effects following oral administration still remain unclear. The aim of the study was to evaluate if selected ellagitannin-rich plant materials could be the source of bioavailable gut microbiota metabolites, i.e. urolithins, together with determination of the anti-inflammatory activity of the metabolites produced on the THP-1 cell line derived macrophages model. The formation of urolithins was determined by ex vivo incubation of human fecal samples with aqueous extracts from selected plant materials. The anti-inflammatory activity study of metabolites was determined on PMA differentiated, IFN-γ and LPS stimulated, human THP-1 cell line-derived macrophages. The formation of urolithin A, B and C by human gut microbiota was established for aqueous extracts from Filipendula ulmaria (L.) Maxim. herb (Ph. Eur.), Geranium pratense L. herb, Geranium robertianum L. herb, Geum urbanum L. root and rhizome, Lythrum salicaria L. herb (Ph. Eur.), Potentilla anserina L. herb, Potentilla erecta (L.) Raeusch rhizome (Ph. Eur.), Quercus robur L. bark (Ph. Eur.), Rubus idaeus L. leaf, Rubus fruticosus L. and pure ellagitannin vescalagin. Significant inhibition of TNF-α production was determined for all urolithins, while for the most potent urolithin A inhibition was observed at nanomolar concentrations (at 0.625 μM 29.2±6.4% of inhibition). Urolithin C was the only compound inhibiting IL-6 production (at 0.625 μM 13.9±2.2% of inhibition). The data obtained clearly indicate that in the case of peroral use of the examined ellagitannin-rich plant materials the bioactivity of gut microbiota metabolites, i.e. urolithins, has to be taken under consideration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. “Lachnoclostridium touaregense,” a new bacterial species isolated from the human gut microbiota

    Directory of Open Access Journals (Sweden)

    M. Tidjani Alou

    2016-11-01

    Full Text Available We report the main characteristics of “Lachnoclostridium touaregense” strain Marseille-P2415T (= CSUR P2415 = DSM 102219, a new bacterial species isolated from the gut microbiota of a healthy young girl from Niger.

  14. Detection of stable community structures within gut microbiota co-occurrence networks from different human populations.

    Science.gov (United States)

    Jackson, Matthew A; Bonder, Marc Jan; Kuncheva, Zhana; Zierer, Jonas; Fu, Jingyuan; Kurilshikov, Alexander; Wijmenga, Cisca; Zhernakova, Alexandra; Bell, Jordana T; Spector, Tim D; Steves, Claire J

    2018-01-01

    Microbes in the gut microbiome form sub-communities based on shared niche specialisations and specific interactions between individual taxa. The inter-microbial relationships that define these communities can be inferred from the co-occurrence of taxa across multiple samples. Here, we present an approach to identify comparable communities within different gut microbiota co-occurrence networks, and demonstrate its use by comparing the gut microbiota community structures of three geographically diverse populations. We combine gut microbiota profiles from 2,764 British, 1,023 Dutch, and 639 Israeli individuals, derive co-occurrence networks between their operational taxonomic units, and detect comparable communities within them. Comparing populations we find that community structure is significantly more similar between datasets than expected by chance. Mapping communities across the datasets, we also show that communities can have similar associations to host phenotypes in different populations. This study shows that the community structure within the gut microbiota is stable across populations, and describes a novel approach that facilitates comparative community-centric microbiome analyses.

  15. "Evaluating Causality of Gut Microbiota in Obesity and Diabetes in Humans"

    NARCIS (Netherlands)

    Meijnikman, Abraham S.; Gerdes, Victor E.; Nieuwdorp, Max; Herrema, Hilde

    2017-01-01

    The pathophysiology of obesity and obesity-related diseases such as type 2 diabetes mellitus (T2DM) is complex and driven by many factors. One of the most recently identified factors in development of these metabolic pathologies is the gut microbiota. The introduction of affordable, high-throughput

  16. Interplay between gut microbiota, its metabolites and human metabolism: Dissecting cause from consequence

    NARCIS (Netherlands)

    Hartstra, A. V.; Nieuwdorp, M.; Herrema, H.

    2016-01-01

    Background: Alterations in gut microbiota composition and bacterial metabolites have been increasingly recognized to affect host metabolism and are at the basis of metabolic diseases such as obesity and type 2 diabetes (DM2). Intestinal enteroendocrine cells (EEC's) sense gut luminal content and

  17. A Single-Batch Fermentation System to Simulate Human Colonic Microbiota for High-Throughput Evaluation of Prebiotics

    Science.gov (United States)

    Sasaki, Daisuke; Fukuda, Itsuko; Tanaka, Kosei; Yoshida, Ken-ichi; Kondo, Akihiko; Osawa, Ro

    2016-01-01

    We devised a single-batch fermentation system to simulate human colonic microbiota from fecal samples, enabling the complex mixture of microorganisms to achieve densities of up to 1011 cells/mL in 24 h. 16S rRNA gene sequence analysis of bacteria grown in the system revealed that representatives of the major phyla, including Bacteroidetes, Firmicutes, and Actinobacteria, as well as overall species diversity, were consistent with those of the original feces. On the earlier stages of fermentation (up to 9 h), trace mixtures of acetate, lactate, and succinate were detectable; on the later stages (after 24 h), larger amounts of acetate accumulated along with some of propionate and butyrate. These patterns were similar to those observed in the original feces. Thus, this system could serve as a simple model to simulate the diversity as well as the metabolism of human colonic microbiota. Supplementation of the system with several prebiotic oligosaccharides (including fructo-, galacto-, isomalto-, and xylo-oligosaccharides; lactulose; and lactosucrose) resulted in an increased population in genus Bifidobacterium, concomitant with significant increases in acetate production. The results suggested that this fermentation system may be useful for in vitro, pre-clinical evaluation of the effects of prebiotics prior to testing in humans. PMID:27483470

  18. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota.

    Science.gov (United States)

    Vandeputte, Doris; Falony, Gwen; Vieira-Silva, Sara; Wang, Jun; Sailer, Manuela; Theis, Stephan; Verbeke, Kristin; Raes, Jeroen

    2017-11-01

    Contrary to the long-standing prerequisite of inducing selective (ie, bifidogenic) effects, recent findings suggest that prebiotic interventions lead to ecosystem-wide microbiota shifts. Yet, a comprehensive characterisation of this process is still lacking. Here, we apply 16S rDNA microbiota profiling and matching (gas chromatography mass spectrometry) metabolomics to assess the consequences of inulin fermentation both on the composition of the colon bacterial ecosystem and faecal metabolites profiles. Faecal samples collected during a double-blind, randomised, cross-over intervention study set up to assess the effect of inulin consumption on stool frequency in healthy adults with mild constipation were analysed. Faecal microbiota composition and metabolite profiles were linked to the study's clinical outcome as well as to quality-of-life measurements recorded. While faecal metabolite profiles were not significantly altered by inulin consumption, our analyses did detect a modest effect on global microbiota composition and specific inulin-induced changes in relative abundances of Anaerostipes , Bilophila and Bifidobacterium were identified. The observed decrease in Bilophila abundances following inulin consumption was associated with both softer stools and a favourable change in constipation-specific quality-of-life measures. Ecosystem-wide analysis of the effect of a dietary intervention with prebiotic inulin-type fructans on the colon microbiota revealed that this effect is specifically associated with three genera, one of which ( Bilophila ) representing a promising novel target for mechanistic research. NCT02548247. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model.

    Science.gov (United States)

    Yu, Yueyue; Lu, Lei; Sun, Jun; Petrof, Elaine O; Claud, Erika C

    2016-09-01

    Development of the infant small intestine is influenced by bacterial colonization. To promote establishment of optimal microbial communities in preterm infants, knowledge of the beneficial functions of the early gut microbiota on intestinal development is needed. The purpose of this study was to investigate the impact of early preterm infant microbiota on host gut development using a gnotobiotic mouse model. Histological assessment of intestinal development was performed. The differentiation of four epithelial cell lineages (enterocytes, goblet cells, Paneth cells, enteroendocrine cells) and tight junction (TJ) formation was examined. Using weight gain as a surrogate marker for health, we found that early microbiota from a preterm infant with normal weight gain (MPI-H) induced increased villus height and crypt depth, increased cell proliferation, increased numbers of goblet cells and Paneth cells, and enhanced TJs compared with the changes induced by early microbiota from a poor weight gain preterm infant (MPI-L). Laser capture microdissection (LCM) plus qRT-PCR further revealed, in MPI-H mice, a higher expression of stem cell marker Lgr5 and Paneth cell markers Lyz1 and Cryptdin5 in crypt populations, along with higher expression of the goblet cell and mature enterocyte marker Muc3 in villus populations. In contrast, MPI-L microbiota failed to induce the aforementioned changes and presented intestinal characteristics comparable to a germ-free host. Our data demonstrate that microbial communities have differential effects on intestinal development. Future studies to identify pioneer settlers in neonatal microbial communities necessary to induce maturation may provide new insights for preterm infant microbial ecosystem therapeutics. Copyright © 2016 the American Physiological Society.

  20. Distinct patterns in human milk microbiota and fatty acid profiles across specific geographic locations

    Directory of Open Access Journals (Sweden)

    Himanshu Kumar

    2016-10-01

    Full Text Available Breast feeding results in long term health benefits in the prevention of communicable and non-communicable diseases at both individual and population levels. Geographical location directly impacts the composition of breast milk including microbiota and lipids. The aim of this study was to investigate the influence of geographical location, i.e., Europe (Spain and Finland, Africa (South Africa and Asia (China, on breast milk microbiota and lipid composition in samples obtained from healthy mothers after the first month of lactation. Altogether, 80 women (20 from each country participated in the study, with equal number of women who delivered by vaginal or caesarean section from each country. Lipid composition particularly that of polyunsaturated fatty acids differed between the countries, with the highest amount of n-6 PUFA (25.6% observed in the milk of Chinese women. Milk microbiota composition also differed significantly between the countries (p=0.002. Among vaginally delivered women, Spanish women had highest amount of Bacteroidetes whereas Chinese women had highest amount of Actinobacteria. Women who had had a caesarean section had higher amount of Proteobacteria as observed in the milk of the Spanish and South African women. Interestingly, the Spanish and South African women had significantly higher bacterial genes mapped to lipid, amino acid and carbohydrate metabolism (p<0.05. Association of the lipid profile with the microbiota revealed that monounsaturated fatty acids were negatively associated with Proteobacteria (r= -0.43, p<0.05, while Lactobacillus genus was associated with monounsaturated fatty acids (r= -0.23, p=0.04. These findings reveal that the milk microbiota and lipid composition exhibit differences based on geographical locations in addition to the differences observed due to the mode of delivery.

  1. Relative position and extent of the nasal and orbital openings in Gorilla, Pan and the human species from the study of their areas and centres of area.

    Science.gov (United States)

    Schmittbuhl, M; Le Minor, J M; Schaaf, A

    1996-01-01

    In order to quantify the relative position and extent of the nasal and orbital openings in hominoid primates, a new methodology based on image analysis was developed and applied to a series of 134 hominoid skulls (52 Gorilla gorilla; 30 Pan troglodytes; 44 Homo sapiens, and, as comparison material, 8 Pongo pygmaeus). The areas and the centres of area of the orbital and nasal openings were determined automatically. The orbitonasal triangle connecting these three centres of area was then constructed. This triangle was used to quantify the elongation of the face. It was most elongated in gorilla, shortest in the human species and intermediate in Pan; the elongation in Pongo was close to that in Gorilla. The proportions of the areas of the orbital and nasal openings in the face were related to the extent of the bony structures of the midface and were thus used to quantify the facial robustness. A robust face was demonstrated in Gorilla, but a gracile face in the human species. Robusticity in Pan was intermediate.

  2. Pilot study to establish a nasal tip prediction method from unknown human skeletal remains for facial reconstruction and skull photo superimposition as applied to a Japanese male populations.

    Science.gov (United States)

    Utsuno, Hajime; Kageyama, Toru; Uchida, Keiichi; Kibayashi, Kazuhiko; Sakurada, Koichi; Uemura, Koichi

    2016-02-01

    Skull-photo superimposition is a technique used to identify the relationship between the skull and a photograph of a target person: and facial reconstruction reproduces antemortem facial features from an unknown human skull, or identifies the facial features of unknown human skeletal remains. These techniques are based on soft tissue thickness and the relationships between soft tissue and the skull, i.e., the position of the ear and external acoustic meatus, pupil and orbit, nose and nasal aperture, and lips and teeth. However, the ear and nose region are relatively difficult to identify because of their structure, as the soft tissues of these regions are lined with cartilage. We attempted to establish a more accurate method to determine the position of the nasal tip from the skull. We measured the height of the maxilla and mid-lower facial region in 55 Japanese men and generated a regression equation from the collected data. We obtained a result that was 2.0±0.99mm (mean±SD) distant from the true nasal tip, when applied to a validation set consisting of another 12 Japanese men. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  3. Low Prevalence of Oral and Nasal Human Papillomavirus in Employees Performing CO2-laser Evaporation of Genital Warts or Loop Electrode Excision Procedure of Cervical Dysplasia

    DEFF Research Database (Denmark)

    Kofoed, Kristian; Norrbom, Christina; Forslund, Ola

    2014-01-01

    Risk of human papillomavirus (HPV) transmission during laser vaporisation of genital warts or loop electrode excision procedure is controversial. An oral rinse, a nasal swabs, history of HPV related diseases and data on HPV exposure were collected from 287 employees at departments of dermato......, or loop electrode excision procedure compared with those who did not. HPV 6 or 11 were not detected in any samples. Hand warts after the age of 24 years was more common among dermatology than among non-dermatology personnel (18% vs. 8.0%, p = 0.03). Mucosal HPV types are infrequent in the oral and nasal...... cavity of health care personnel, however, employees at departments of dermato-venereology are at risk of acquiring hand warts....

  4. Nitric oxide in exhaled and aspirated nasal air as an objective measure of human response to isopropanol oxidation products and pthtalate esters in indoor air

    DEFF Research Database (Denmark)

    Lagercrantz, Love Per; Famula, Basia; Sundell, Jan

    2005-01-01

    The use of Nitric Oxide (NO) concentration in exhaled and aspirated nasal air to assess human response to indoor air pollution was tested in a climate chamber exposure experiment. The concentration of NO was measured using a chemiluminescence NO analyser. Sixteen healthy female subjects were...... exposed to 2 commonly occurring indoor air pollutants and to a clean reference condition for 4.5 hours. Assessments of the environment were obtained using questionnaires. The polluted conditions were perceived as worse than the reference condition. After exposure to the two polluted conditions a small...... increase in NO concentration (+2.7% and +7.2%) in exhaled air was observed. After exposure to the reference condition the mean NO concentration was significantly reduced (-14.3%) compared to before exposure. NO in nasal air was unaffected by the exposures. The results indicate an association between...

  5. Human Breast Milk and Infant Formulas Differentially Modify the Intestinal Microbiota in Human Infants and Host Physiology in Rats.

    Science.gov (United States)

    Liu, Zhenmin; Roy, Nicole C; Guo, Yanhong; Jia, Hongxin; Ryan, Leigh; Samuelsson, Linda; Thomas, Ancy; Plowman, Jeff; Clerens, Stefan; Day, Li; Young, Wayne

    2016-02-01

    In the absence of human breast milk, infant and follow-on formulas can still promote efficient growth and development. However, infant formulas can differ in their nutritional value. The objective of this study was to compare the effects of human milk (HM) and infant formulas in human infants and a weanling rat model. In a 3 wk clinical randomized controlled trial, babies (7- to 90-d-old, male-to-female ratio 1:1) were exclusively breastfed (BF), exclusively fed Synlait Pure Canterbury Stage 1 infant formula (SPCF), or fed assorted standard formulas (SFs) purchased by their parents. We also compared feeding HM or SPCF in weanling male Sprague-Dawley rats for 28 d. We examined the effects of HM and infant formulas on fecal short chain fatty acids (SCFAs) and bacterial composition in human infants, and intestinal SCFAs, the microbiota, and host physiology in weanling rats. Fecal Bifidobacterium concentrations (mean log copy number ± SEM) were higher (P = 0.003) in BF (8.17 ± 0.3) and SPCF-fed infants (8.29 ± 0.3) compared with those fed the SFs (6.94 ± 0.3). Fecal acetic acid (mean ± SEM) was also higher (P = 0.007) in the BF (5.5 ± 0.2 mg/g) and SPCF (5.3 ± 2.4 mg/g) groups compared with SF-fed babies (4.3 ± 0.2 mg/g). Colonic SCFAs did not differ between HM- and SPCF-fed rats. However, cecal acetic acid concentrations were higher (P = 0.001) in rats fed HM (42.6 ± 2.6 mg/g) than in those fed SPCF (30.6 ± 0.8 mg/g). Cecal transcriptome, proteome, and plasma metabolite analyses indicated that the growth and maturation of intestinal tissue was more highly promoted by HM than SPCF. Fecal bacterial composition and SCFA concentrations were similar in babies fed SPCF or HM. However, results from the rat study showed substantial differences in host physiology between rats fed HM and SPCF. This trial was registered at Shanghai Jiào tong University School of Medicine as XHEC-C-2012-024. © 2016 American Society for Nutrition.

  6. Esthetic rhinoplasty as an adjunctive technique in nasal oncoplastic ...

    African Journals Online (AJOL)

    Adham Farouk

    2016-01-15

    Jan 15, 2016 ... Esthetic rhinoplasty;. Oncoplastic surgery nose;. Basal cell carcinoma;. Squamous cell carcinoma;. Nonmelanoma skin cancer;. Nasal reconstruction ... Conclusions: Esthetic rhinoplasty is a useful adjunctive technique in nasal oncoplastic surgery. .... All procedures performed in the study involving human.

  7. Modulation of epithelial sodium channel trafficking and function by sodium 4-phenylbutyrate in human nasal epithelial cells.

    Science.gov (United States)

    Prulière-Escabasse, Virginie; Planès, Carole; Escudier, Estelle; Fanen, Pascale; Coste, André; Clerici, Christine

    2007-11-23

    Sodium 4-phenylbutyrate (4-PBA) has been shown to correct the cellular trafficking of several mutant or nonmutant plasma membrane proteins such as cystic fibrosis transmembrane conductance regulator through the expression of 70-kDa heat shock proteins. The objective of the study was to determine whether 4-PBA may influence the functional expression of epithelial sodium channels (ENaC) in human nasal epithelial cells (HNEC). Using primary cultures of HNEC, we demonstrate that 4-PBA (5 mm for 6 h) markedly stimulated amiloride-sensitive sodium channel activity and that this was related to an increased abundance of alpha-, beta-, and gamma-ENaC subunits in the apical membrane. The increase in ENaC cell surface expression (i) was due to insertion of newly ENaC subunits as determined by brefeldin A experiments and (ii) was not associated with cell surface retention of ENaC subunits because endocytosis of ENaC subunits was unchanged. In addition, we find that ENaC co-immunoprecipitated with the heat shock protein constitutively expressed Hsc70, that has been reported to modulate ENaC trafficking, and that 4-PBA decreased Hsc70 protein level. Finally, we report that in cystic fibrosis HNEC obtained from two cystic fibrosis patients, 4-PBA increased functional expression of ENaC as demonstrated by the increase in amiloride-sensitive sodium transport and in alpha-, beta-, and gamma-ENaC subunit expression in the apical membrane. Our results suggest that in HNEC, 4-PBA increases the functional expression of ENaC through the insertion of new alpha-, beta-, and gamma-ENaC subunits into the apical membrane and also suggest that 4-PBA could modify ENaC trafficking by reducing Hsc70 protein expression.

  8. The Ability of Human Nasal Inferior Turbinate-Derived Mesenchymal Stem Cells to Repair Vocal Fold Injuries.

    Science.gov (United States)

    Kim, Choung-Soo; Choi, Hyunsu; Park, Ki Cheol; Kim, Sung Won; Sun, Dong-Il

    2018-03-01

    Objective This study investigated the ability of implanted human nasal inferior turbinate-derived mesenchymal stem cells (hTMSCs) to repair injured vocal folds. To this end, we used quantitative real-time polymerase chain reaction (PCR) to analyze the early phase of wound healing and histopathological analysis to explore the late phase of wound healing in xenograft animal models. Study Design Prospective animal study. Setting Research laboratory. Subjects and Methods The right-side lamina propria of the vocal fold was injured in 20 rabbits and 30 rats. Next, hTMSCs were implanted into half of the injured vocal folds (hTMSC groups). As a control, phosphate-buffered saline (PBS) was injected into the other half of the injured vocal folds (PBS groups). Rat vocal folds were harvested for polymerase chain reaction (PCR) at 1 week after injury. Rabbit vocal folds were evaluated endoscopically and the larynges harvested for histological and immunohistochemical examination at 2 and 8 weeks after injury. Results In the hTMSC group, PCR showed that hyaluronan synthase ( HAS) 1, HAS 2, and transforming growth factor ( TGF)-β1 were significantly upregulated compared with the PBS group. Procollagen type III ( COL III) messenger RNA expression was significantly upregulated in the PBS group compared with the normal group. Histological analyses showed that hTMSC administration afforded more favorable collagen and hyaluronic acid deposition than was evident in the controls. Implanted hTMSCs were observed in injured vocal folds 2 weeks after implantation. Conclusions Our results show that hTMSCs implantation into injured vocal folds facilitated vocal fold regeneration, with presenting antifibrotic effects.

  9. Effects of tobacco smoke and electronic cigarette vapor exposure on the oral and gut microbiota in humans: a pilot study.

    Science.gov (United States)

    Stewart, Christopher J; Auchtung, Thomas A; Ajami, Nadim J; Velasquez, Kenia; Smith, Daniel P; De La Garza, Richard; Salas, Ramiro; Petrosino, Joseph F

    2018-01-01

    The use of electronic cigarettes (ECs) has increased drastically over the past five years, primarily as an alternative to smoking tobacco cigarettes. However, the adverse effects of acute and long-term use of ECs on the microbiota have not been explored. In this pilot study, we sought to determine if ECs or tobacco smoking alter the oral and gut microbiota in comparison to non-smoking controls. We examined a human cohort consisting of 30 individuals: 10 EC users, 10 tobacco smokers, and 10 controls. We collected cross-sectional fecal, buccal swabs, and saliva samples from each participant. All samples underwent V4 16S rRNA gene sequencing. Tobacco smoking had a significant effect on the bacterial profiles in all sample types when compared to controls, and in feces and buccal swabs when compared to EC users. The most significant associations were found in the gut, with an increased relative abundance of Prevotella ( P = 0.006) and decreased Bacteroides ( P = 0.036) in tobacco smokers. The Shannon diversity was also significantly reduced ( P = 0.009) in fecal samples collected from tobacco smokers compared to controls. No significant difference was found in the alpha diversity, beta-diversity or taxonomic relative abundances between EC users and controls. From a microbial ecology perspective, the current pilot data demonstrate that the use of ECs may represent a safer alternative compared to tobacco smoking. However, validation in larger cohorts and greater understanding of the short and long-term impact of EC use on microbiota composition and function is warranted.

  10. Effects of tobacco smoke and electronic cigarette vapor exposure on the oral and gut microbiota in humans: a pilot study

    Directory of Open Access Journals (Sweden)

    Christopher J. Stewart

    2018-04-01

    Full Text Available Background The use of electronic cigarettes (ECs has increased drastically over the past five years, primarily as an alternative to smoking tobacco cigarettes. However, the adverse effects of acute and long-term use of ECs on the microbiota have not been explored. In this pilot study, we sought to determine if ECs or tobacco smoking alter the oral and gut microbiota in comparison to non-smoking controls. Methods We examined a human cohort consisting of 30 individuals: 10 EC users, 10 tobacco smokers, and 10 controls. We collected cross-sectional fecal, buccal swabs, and saliva samples from each participant. All samples underwent V4 16S rRNA gene sequencing. Results Tobacco smoking had a significant effect on the bacterial profiles in all sample types when compared to controls, and in feces and buccal swabs when compared to EC users. The most significant associations were found in the gut, with an increased relative abundance of Prevotella (P = 0.006 and decreased Bacteroides (P = 0.036 in tobacco smokers. The Shannon diversity was also significantly reduced (P = 0.009 in fecal samples collected from tobacco smokers compared to controls. No significant difference was found in the alpha diversity, beta-diversity or taxonomic relative abundances between EC users and controls. Discussion From a microbial ecology perspective, the current pilot data demonstrate that the use of ECs may represent a safer alternative compared to tobacco smoking. However, validation in larger cohorts and greater understanding of the short and long-term impact of EC use on microbiota composition and function is warranted.

  11. Diet, gut microbiota and cognition.

    Science.gov (United States)

    Proctor, Cicely; Thiennimitr, Parameth; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-02-01

    The consumption of a diet high in fat and sugar can lead to the development of obesity, type 2 diabetes mellitus (T2DM), cardiovascular disease and cognitive decline. In the human gut, the trillions of harmless microorganisms harboured in the host's gastrointestinal tract are called the 'gut microbiota'. Consumption of a diet high in fat and sugar changes the healthy microbiota composition which leads to an imbalanced microbial population in the gut, a phenomenon known as "gut dysbiosis". It has been shown that certain types of gut microbiota are linked to the pathogenesis of obesity. In addition, long-term consumption of a high fat diet is associated with cognitive decline. It has recently been proposed that the gut microbiota is part of a mechanistic link between the consumption of a high fat diet and the impaired cognition of an individual, termed "microbiota-gut-brain axis". In this complex relationship between the gut, the brain and the gut microbiota, there are several types of gut microbiota and host mechanisms involved. Most of these mechanisms are still poorly understood. Therefore, this review comprehensively summarizes the current evidence from mainly in vivo (rodent and human) studies of the relationship between diet, gut microbiota and cognition. The possible mechanisms that the diet and the gut microbiota have on cognition are also presented and discussed.

  12. Time of day and eating behaviors are associated with the composition and function of the human gastrointestinal microbiota.

    Science.gov (United States)

    Kaczmarek, Jennifer L; Musaad, Salma Ma; Holscher, Hannah D

    2017-11-01

    Background: Preclinical research has shown that the gastrointestinal microbiota exhibits circadian rhythms and that the timing of food consumption can affect the composition and function of gut microbes. However, there is a dearth of knowledge on these relations in humans. Objective: We aimed to determine whether human gastrointestinal microbes and bacterial metabolites were associated with time of day or behavioral factors, including eating frequency, percentage of energy consumed early in the day, and overnight-fast duration. Design: We analyzed 77 fecal samples collected from 28 healthy men and women. Fecal DNA was extracted and sequenced to determine the relative abundances of bacterial operational taxonomic units (OTUs). Gas chromatography-mass spectroscopy was used to assess short-chain fatty acid concentrations. Eating frequency, percentage of energy consumed before 1400, and overnight-fast duration were determined from dietary records. Data were analyzed by linear mixed models or generalized linear mixed models, which controlled for fiber intake, sex, age, body mass index, and repeated sampling within each participant. Each OTU and metabolite were tested as the outcome in a separate model. Results: Acetate, propionate, and butyrate concentrations decreased throughout the day ( P = 0.006, 0.04, and 0.002, respectively). Thirty-five percent of bacterial OTUs were associated with time. In addition, relations were observed between gut microbes and eating behaviors, including eating frequency, early energy consumption, and overnight-fast duration. Conclusions: These results indicate that the human gastrointestinal microbiota composition and function vary throughout the day, which may be related to the circadian biology of the human body, the microbial community itself, or human eating behaviors. Behavioral factors, including timing of eating and overnight-fast duration, were also predictive of bacterial abundances. Longitudinal intervention studies are needed to

  13. Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia

    International Nuclear Information System (INIS)

    Jumat, Muhammad Raihan; Yan, Yan; Ravi, Laxmi Iyer; Wong, Puisan; Huong, Tra Nguyen; Li, Chunwei; Tan, Boon Huan; Wang, De Yun; Sugrue, Richard J.

    2015-01-01

    The distribution of cilia and the respiratory syncytial virus (RSV) nucleocapsid (N) protein, fusion (F) protein, attachment (G) protein, and M2-1 protein in human ciliated nasal epithelial cells was examined at between 1 and 5 days post-infection (dpi). All virus structural proteins were localized at cell surface projections that were distinct from cilia. The F protein was also trafficked into the cilia, and while its presence increased as the infection proceeded, the N protein was not detected in the cilia at any time of infection. The presence of the F protein in the cilia correlated with cellular changes in the cilia and reduced cilia function. At 5 dpi extensive cilia loss and further reduced cilia function was noted. These data suggested that although RSV morphogenesis occurs at non-cilia locations on ciliated nasal epithelial cells, RSV infection induces changes in the cilia body that leads to extensive cilia loss. - Highlights: • Respiratory syncytial virus (RSV) infects nasal ciliated epithelial cells. • Virus morphogenesis occurs within filamentous projections distinct from cilia. • The RSV N protein was not detected in the cilia at any time during infection. • Trafficking of the F protein into the cilia occurred early in infection. • Presence of the F protein in cilia correlated with impaired cilia function

  14. Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia

    Energy Technology Data Exchange (ETDEWEB)

    Jumat, Muhammad Raihan [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Yan, Yan [Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228 (Singapore); Ravi, Laxmi Iyer [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Wong, Puisan [Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510 (Singapore); Huong, Tra Nguyen [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Li, Chunwei [Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228 (Singapore); Tan, Boon Huan [Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510 (Singapore); Wang, De Yun [Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore 119228 (Singapore); Sugrue, Richard J., E-mail: rjsugrue@ntu.edu.sg [School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore)

    2015-10-15

    The distribution of cilia and the respiratory syncytial virus (RSV) nucleocapsid (N) protein, fusion (F) protein, attachment (G) protein, and M2-1 protein in human ciliated nasal epithelial cells was examined at between 1 and 5 days post-infection (dpi). All virus structural proteins were localized at cell surface projections that were distinct from cilia. The F protein was also trafficked into the cilia, and while its presence increased as the infection proceeded, the N protein was not detected in the cilia at any time of infection. The presence of the F protein in the cilia correlated with cellular changes in the cilia and reduced cilia function. At 5 dpi extensive cilia loss and further reduced cilia function was noted. These data suggested that although RSV morphogenesis occurs at non-cilia locations on ciliated nasal epithelial cells, RSV infection induces changes in the cilia body that leads to extensive cilia loss. - Highlights: • Respiratory syncytial virus (RSV) infects nasal ciliated epithelial cells. • Virus morphogenesis occurs within filamentous projections distinct from cilia. • The RSV N protein was not detected in the cilia at any time during infection. • Trafficking of the F protein into the cilia occurred early in infection. • Presence of the F protein in cilia correlated with impaired cilia function.

  15. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota

    NARCIS (Netherlands)

    Larsen, J.M.; Steen-Jensen, D.B.; Laursen, J.M.; Sondergaard, J.N.; Musavian, H.S.; Butt, T.M.; Brix, S.

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties

  16. Changes in human fecal microbiota due to chemotherapy analyzed by TaqMan-PCR, 454 sequencing and PCR-DGGE fingerprinting.

    Directory of Open Access Journals (Sweden)

    Jutta Zwielehner

    Full Text Available BACKGROUND: We investigated whether chemotherapy with the presence or absence of antibiotics against different kinds of cancer changed the gastrointestinal microbiota. METHODOLOGY/PRINCIPAL FINDINGS: Feces of 17 ambulant patients receiving chemotherapy with or without concomitant antibiotics were analyzed before and after the chemotherapy cycle at four time points in comparison to 17 gender-, age- and lifestyle-matched healthy controls. We targeted 16S rRNA genes of all bacteria, Bacteroides, bifidobacteria, Clostridium cluster IV and XIVa as well as C. difficile with TaqMan qPCR, denaturing gradient gel electrophoresis (DGGE fingerprinting and high-throughput sequencing. After a significant drop in the abundance of microbiota (p = 0.037 following a single treatment the microbiota recovered within a few days. The chemotherapeutical treatment marginally affected the Bacteroides while the Clostridium cluster IV and XIVa were significantly more sensitive to chemotherapy and antibiotic treatment. DGGE fingerprinting showed decreased diversity of Clostridium cluster IV and XIVa in response to chemotherapy with cluster IV diversity being particularly affected by antibiotics. The occurrence of C. difficile in three out of seventeen subjects was accompanied by a decrease in the genera Bifidobacterium, Lactobacillus, Veillonella and Faecalibacterium prausnitzii. Enterococcus faecium increased following chemotherapy. CONCLUSIONS/SIGNIFICANCE: Despite high individual variations, these results suggest that the observed changes in the human gut microbiota may favor colonization with C. difficile and Enterococcus faecium. Perturbed microbiota may be a target for specific mitigation with safe pre- and probiotics.

  17. The small intestine microbiota, nutritional modulation and relevance for health

    NARCIS (Netherlands)

    El Aidy, Sahar; van den Bogert, Bartholomeus; Kleerebezem, Michiel

    The intestinal microbiota plays a profound role in human health and extensive research has been dedicated to identify microbiota aberrations that are associated with disease. Most of this work has been targeting the large intestine and fecal microbiota, while the small intestine microbiota may also

  18. Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota.

    Science.gov (United States)

    Klinder, Annett; Shen, Qing; Heppel, Susanne; Lovegrove, Julie A; Rowland, Ian; Tuohy, Kieran M

    2016-04-01

    Epidemiological studies have shown protective effects of fruits and vegetables (F&V) in lowering the risk of developing cardiovascular diseases (CVD) and cancers. Plant-derived dietary fibre (non-digestible polysaccharides) and/or flavonoids may mediate the observed protective effects particularly through their interaction with the gut microbiota. The aim of this study was to assess the impact of fruit and vegetable (F&V) intake on gut microbiota, with an emphasis on the role of flavonoids, and further to explore relationships between microbiota and factors associated with CVD risk. In the study, a parallel design with 3 study groups, participants in the two intervention groups representing high-flavonoid (HF) and low flavonoid (LF) intakes were asked to increase their daily F&V intake by 2, 4 and 6 portions for a duration of 6 weeks each, while a third (control) group continued with their habitual diet. Faecal samples were collected at baseline and after each dose from 122 subjects. Faecal bacteria enumeration was performed by fluorescence in situ hybridisation (FISH). Correlations of dietary components, flavonoid intake and markers of CVD with bacterial numbers were also performed. A significant dose X treatment interaction was only found for Clostidium leptum-Ruminococcus bromii/flavefaciens with a significant increase after intake of 6 additional portions in the LF group. Correlation analysis of the data from all 122 subjects independent from dietary intervention indicated an inhibitory role of F&V intake, flavonoid content and sugars against the growth of potentially pathogenic clostridia. Additionally, we observed associations between certain bacterial populations and CVD risk factors including plasma TNF-α, plasma lipids and BMI/waist circumference.

  19. Nasal chondromesenchymal hamartoma with no nasal symptoms.

    LENUS (Irish Health Repository)

    Uzomefuna, Vincent

    2012-01-01

    The authors present a case of nasal chondromesenchymal hamartoma (NCMH) in an 8-year-old boy with a 4-month history of frontal headache and no symptoms of nasal obstruction, rhinorrhoea or postnasal drip. An ENT examination as well as ophthalmology assessment presented normal results. CT scan showed a lesion involving the sphenoid and ethmoid sinuses. The patient had an endoscopic resection of the lesion that was confirmed histologically to be a NCMH. Though NCMH is known to present usually in infants with obstructing nasal mass, an unusual presentation of a patient with throbbing headache without any nasal symptoms is reported here.

  20. Nasal chondrocyte-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial.

    Science.gov (United States)

    Mumme, Marcus; Barbero, Andrea; Miot, Sylvie; Wixmerten, Anke; Feliciano, Sandra; Wolf, Francine; Asnaghi, Adelaide M; Baumhoer, Daniel; Bieri, Oliver; Kretzschmar, Martin; Pagenstert, Geert; Haug, Martin; Schaefer, Dirk J; Martin, Ivan; Jakob, Marcel

    2016-10-22

    Articular cartilage injuries have poor repair capacity, leading to progressive joint damage, and cannot be restored predictably by either conventional treatments or advanced therapies based on implantation of articular chondrocytes. Compared with articular chondrocytes, chondrocytes derived from the nasal septum have superior and more reproducible capacity to generate hyaline-like cartilage tissues, with the plasticity to adapt to a joint environment. We aimed to assess whether engineered autologous nasal chondrocyte-based cartilage grafts allow safe and functional restoration of knee cartilage defects. In a first-in-human trial, ten patients with symptomatic, post-traumatic, full-thickness cartilage lesions (2-6 cm 2 ) on the femoral condyle or trochlea were treated at University Hospital Basel in Switzerland. Chondrocytes isolated from a 6 mm nasal septum biopsy specimen were expanded and cultured onto collagen membranes to engineer cartilage grafts (30 × 40 × 2 mm). The engineered tissues were implanted into the femoral defects via mini-arthrotomy and assessed up to 24 months after surgery. Primary outcomes were feasibility and safety of the procedure. Secondary outcomes included self-assessed clinical scores and MRI-based estimation of morphological and compositional quality of the repair tissue. This study is registered with ClinicalTrials.gov, number NCT01605201. The study is ongoing, with an approved extension to 25 patients. For every patient, it was feasible to manufacture cartilaginous grafts with nasal chondrocytes embedded in an extracellular matrix rich in glycosaminoglycan and type II collagen. Engineered tissues were stable through handling with forceps and could be secured in the injured joints. No adverse reactions were recorded and self-assessed clinical scores for pain, knee function, and quality of life were improved significantly from before surgery to 24 months after surgery. Radiological assessments indicated variable degrees of

  1. Impact of palm date consumption on microbiota growth and large intestinal health: a randomised, controlled, cross-over, human intervention study.

    Science.gov (United States)

    Eid, Noura; Osmanova, Hristina; Natchez, Cecile; Walton, Gemma; Costabile, Adele; Gibson, Glenn; Rowland, Ian; Spencer, Jeremy P E

    2015-10-28

    The reported inverse association between the intake of plant-based foods and a reduction in the prevalence of colorectal cancer may be partly mediated by interactions between insoluble fibre and (poly)phenols and the intestinal microbiota. In the present study, we assessed the impact of palm date consumption, rich in both polyphenols and fibre, on the growth of colonic microbiota and markers of colon cancer risk in a randomised, controlled, cross-over human intervention study. A total of twenty-two healthy human volunteers were randomly assigned to either a control group (maltodextrin-dextrose, 37·1 g) or an intervention group (seven dates, approximately 50 g). Each arm was of 21 d duration and was separated by a 14-d washout period in a cross-over manner. Changes in the growth of microbiota were assessed by fluorescence in situ hybridisation analysis, whereas SCFA levels were assessed using HPLC. Further, ammonia concentrations, faecal water genotoxicity and anti-proliferation ability were also assessed using different assays, which included cell work and the Comet assay. Accordingly, dietary intakes, anthropometric measurements and bowel movement assessment were also carried out. Although the consumption of dates did not induce significant changes in the growth of select bacterial groups or SCFA, there were significant increases in bowel movements and stool frequency (Pfruit intake significantly reduced genotoxicity in human faecal water relative to control (Pfruit may reduce colon cancer risk without inducing changes in the microbiota.

  2. In vitro fermentation of mulberry fruit polysaccharides by human fecal inocula and impact on microbiota.

    Science.gov (United States)

    Chen, Chun; Huang, Qiang; Fu, Xiong; Liu, Rui Hai

    2016-11-09

    This study investigated the in vitro fermentation of polysaccharides from Morus alba L., the contribution of its carbohydrates to the fermentation, and the effect on the composition of gut microbiota. Over 48 h of fermentation, the pH value in the fecal culture decreased from 7.12 to 6.14, and the total short chain fatty acids (SCFA) and acetic, propionic, and butyric acids all significantly increased. After 48 h of fermentation, 45.36 ± 1.36% of the total carbohydrates in the polysaccharide, including 35.72 ± 1.51% of arabinose, 23.1 ± 1.19% of galactose, 41.43 ± 1.52% of glucose, 26.36 ± 1.93% of rhamnose and 65.57 ± 1.07% of galacturic acid, were consumed. The increase in acetic and butyric acids was primarily due to the fermentation of galactose and galacturonic acid in the polysaccharide, while the increase in propionic acid resulted mainly from the fermentation of arabinose and glucose. In addition, the polysaccharide could modulate the gut microbiota composition by increasing the Bacteroidetes population and decreasing the Firmicutes population. The results may facilitate the development of food products known as prebiotics, aimed at improving gastrointestinal health.

  3. Molecular Monitoring of the Fecal Microbiota of Healthy Human Subjects during Administration of Lactulose and Saccharomyces boulardii

    Science.gov (United States)

    Vanhoutte, Tom; De Preter, Vicky; De Brandt, Evie; Verbeke, Kristin; Swings, Jean; Huys, Geert

    2006-01-01

    Diet is a major factor in maintaining a healthy human gastrointestinal tract, and this has triggered the development of functional foods containing a probiotic and/or prebiotic component intended to improve the host's health via modulation of the intestinal microbiota. In this study, a long-term placebo-controlled crossover feeding study in which each subject received several treatments was performed to monitor the effect of a prebiotic substrate (i.e., lactulose), a probiotic organism (i.e., Saccharomyces boulardii), and their synbiotic combination on the fecal microbiota of three groups of 10 healthy human subjects differing in prebiotic dose and/or intake of placebo versus synbiotic. For this purpose, denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene amplicons was used to detect possible changes in the overall bacterial composition using the universal V3 primer and to detect possible changes at the subpopulation level using group-specific primers targeting the Bacteroides fragilis subgroup, the genus Bifidobacterium, the Clostridium lituseburense group (cluster XI), and the Clostridium coccoides-Eubacterium rectale group (cluster XIVa). Although these populations remained fairly stable based on DGGE profiling, one pronounced change was observed in the universal fingerprint profiles after lactulose ingestion. Band position analysis and band sequencing revealed that a band appearing or intensifying following lactulose administration could be assigned to the species Bifidobacterium adolescentis. Subsequent analysis with real-time PCR (RT-PCR) indicated a statistically significant increase (P < 0.05) in total bifidobacteria in one of the three subject groups after lactulose administration, whereas a similar but nonsignificant trend was observed in the other two groups. Combined RT-PCR results from two subject groups indicated a borderline significant increase (P = 0.074) of B. adolescentis following lactulose intake. The probiotic yeast S

  4. Human nasal turbinates as a viable source of respiratory epithelial cells using co-culture system versus dispase-dissociation technique.

    Science.gov (United States)

    Noruddin, Nur Adelina Ahmad; Saim, Aminuddin B; Chua, Kien Hui; Idrus, Ruszymah

    2007-12-01

    To compare a co-culture system with a conventional dispase-dissociation method for obtaining functional human respiratory epithelial cells from the nasal turbinates for tissue engineering application. Human respiratory epithelial cells were serially passaged using a co-culture system and a conventional dispase-dissociation technique. The growth kinetics and gene expression levels of the cultured respiratory epithelial cells were compared. Four genes were investigated, namely cytokeratin-18, a marker for ciliated and secretory epithelial cells; cytokeratin-14, a marker for basal epithelial cells; MKI67, a proliferation marker; and MUC5B, a marker for mucin secretion. Immunocytochemical analysis was performed using monoclonal antibodies against the high molecular-weight cytokeratin 34 beta E12, cytokeratin 18, and MUC5A to investigate the protein expression from cultured respiratory epithelial cells. Respiratory epithelial cells cultured using both methods maintained polygonal morphology throughout the passages. At passage 1, co-cultured respiratory epithelial showed a 2.6-times higher growth rate compared to conventional dispase dissociation technique, and 7.8 times higher at passage 2. Better basal gene expression was observed by co-cultured respiratory epithelial cells compared to dispase dissociated cells. Immunocytochemical analyses were positive for the respiratory epithelial cells cultured using both techniques. Co-culture system produced superior quality of cultured human respiratory epithelial cells from the nasal turbinates as compared to dispase dissociation technique.

  5. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences.

    Science.gov (United States)

    Wagner Mackenzie, Brett; Waite, David W; Taylor, Michael W

    2015-01-01

    The human gut contains dense and diverse microbial communities which have profound influences on human health. Gaining meaningful insights into these communities requires provision of high quality microbial nucleic acids from human fecal samples, as well as an understanding of the sources of variation and their impacts on the experimental model. We present here a systematic analysis of commonly used microbial DNA extraction methods, and identify significant sources of variation. Five extraction methods (Human Microbiome Project protocol, MoBio PowerSoil DNA Isolation Kit, QIAamp DNA Stool Mini Kit, ZR Fecal DNA MiniPrep, phenol:chloroform-based DNA isolation) were evaluated based on the following criteria: DNA yield, quality and integrity, and microbial community structure based on Illumina amplicon sequencing of the V4 region of bacterial and archaeal 16S rRNA genes. Our results indicate that the largest portion of variation within the model was attributed to differences between subjects (biological variation), with a smaller proportion of variation associated with DNA extraction method (technical variation) and intra-subject variation. A comprehensive understanding of the potential impact of technical variation on the human gut microbiota will help limit preventable bias, enabling more accurate diversity estimates.

  6. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences

    Directory of Open Access Journals (Sweden)

    Brett eWagner Mackenzie

    2015-02-01

    Full Text Available The human gut contains dense and diverse microbial communities which have profound influences on human health. Gaining meaningful insights into these communities requires provision of high quality microbial nucleic acids from human fecal samples, as well as an understanding of the sources of variation and their impacts on the experimental model. We present here a systematic analysis of commonly used microbial DNA extraction methods, and identify significant sources of variation. Five extraction methods (Human Microbiome Project protocol, MoBio PowerSoil DNA Isolation Kit, QIAamp DNA Stool Mini Kit, ZR Fecal DNA MiniPrep, phenol:chloroform-based DNA isolation were evaluated based on the following criteria: DNA yield, quality and integrity, and microbial community structure based on Illumina amplicon sequencing of the V4 region of bacterial and archaeal 16S rRNA genes. Our results indicate that the largest portion of variation within the model was attributed to differences between subjects (biological variation, with a smaller proportion of variation associated with DNA extraction method (technical variation and intra-subject variation. A comprehensive understanding of the potential impact of technical variation on the human gut microbiota will help limit preventable bias, enabling more accurate diversity estimates.

  7. The Cervicovaginal Microbiota and Its Associations With Human Papillomavirus Detection in HIV-Infected and HIV-Uninfected Women.

    Science.gov (United States)

    Reimers, Laura L; Mehta, Supriya D; Massad, L Stewart; Burk, Robert D; Xie, Xianhong; Ravel, Jacques; Cohen, Mardge H; Palefsky, Joel M; Weber, Kathleen M; Xue, Xiaonan; Anastos, Kathryn; Minkoff, Howard; Atrio, Jessica; D'Souza, Gypsyamber; Ye, Qian; Colie, Christine; Zolnik, Christine P; Spear, Gregory T; Strickler, Howard D

    2016-11-01

     Bacterial vaginosis (BV) is characterized by low abundance of Lactobacillus species, high pH, and immune cell infiltration and has been associated with an increased risk of human papillomavirus (HPV) infection. We molecularly assessed the cervicovaginal microbiota over time in human immunodeficiency virus (HIV)-infected and HIV-uninfected women to more comprehensively study the HPV-microbiota relationship, controlling for immune status.  16S ribosomal RNA gene amplicon pyrosequencing and HPV DNA testing were conducted annually in serial cervicovaginal lavage specimens obtained over 8-10 years from African American women from Chicago, of whom 22 were HIV uninfected, 22 were HIV infected with a stable CD4 + T-cell count of > 500 cells/mm 3 , and 20 were HIV infected with progressive immunosuppression. Vaginal pH was serially measured.  The relative abundances of Lactobacillus crispatus and other Lactobacillus species were inversely associated with vaginal pH (all P < .001). High (vs low) L. crispatus relative abundance was associated with decreased HPV detection (odds ratio, 0.48; 95% confidence interval, .24-.96; P trend = .03) after adjustment for repeated observation and multiple covariates, including pH and study group. However, there were no associations between HPV and the relative abundance of Lactobacillus species as a group, nor with Lactobacillus gasseri, Lactobacillus iners, and Lactobacillus jensenii individually.  L. crispatus may have a beneficial effect on the burden of HPV in both HIV-infected and HIV-uninfected women (independent of pH). © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  8. Nasal septal hematoma

    Science.gov (United States)

    ... medlineplus.gov/ency/article/001292.htm Nasal septal hematoma To use the sharing features on this page, please enable JavaScript. A nasal septal hematoma is a collection of blood within the septum ...

  9. Persistence of nasal colonization with human pathogenic bacteria and associated antimicrobial resistance in the German general population

    Directory of Open Access Journals (Sweden)

    R. Köck

    2016-01-01

    Full Text Available The nares represent an important bacterial reservoir for endogenous infections. This study aimed to assess the prevalence of nasal colonization by different important pathogens, the associated antimicrobial susceptibility and risk factors. We performed a prospective cohort study among 1878 nonhospitalized volunteers recruited from the general population in Germany. Participants provided nasal swabs at three time points (each separated by 4–6 months. Staphylococcus aureus, Enterobacteriaceae and important nonfermenters were cultured and subjected to susceptibility testing. Factors potentially influencing bacterial colonization patterns were assessed. The overall prevalence of S. aureus, Enterobacteriaceae and nonfermenters was 41.0, 33.4 and 3.7%, respectively. Thirteen participants (0.7% were colonized with methicillin-resistant S. aureus. Enterobacteriaceae were mostly (>99% susceptible against ciprofloxacin and carbapenems (100%. Extended-spectrum β-lactamase–producing isolates were not detected among Klebsiella oxytoca, Klebsiella pneumoniae and Escherichia coli. Several lifestyle- and health-related factors (e.g. household size, travel, livestock density of the residential area or occupational livestock contact, atopic dermatitis, antidepressant or anti-infective drugs were associated with colonization by different microorganisms. This study unexpectedly demonstrated high nasal colonization rates with Enterobacteriaceae in the German general population, but rates of antibiotic resistance were low. Methicillin-resistant S. aureus carriage was rare but highly associated with occupational livestock contact.

  10. The vaginal microbiota and its association with Human Papillomavirus, Chlamydia trachomatis, Neisseria gonorrhea and Mycoplasma genitalium infections: a systematic review and meta-analysis.

    Science.gov (United States)

    Tamarelle, Jeanne; Thiébaut, Anne C M; de Barbeyrac, Bertille; Bébéar, Cécile; Ravel, Jacques; Delarocque-Astagneau, Elisabeth

    2018-05-02

    The vaginal microbiota may modulate susceptibility to Human papillomavirus, Chlamydia trachomatis, Neisseria gonorrhea and Mycoplasma genitalium infections. The objective of this meta-analysis was to evaluate the association between these infections and the vaginal microbiota. The search (2000-2016) yielded 1054 articles, of which 39 articles meeting the inclusion criteria were analyzed. The vaginal microbiota was dichotomized into high-Lactobacillus vaginal microbiota (HL-VMB) and low-Lactobacillus vaginal microbiota (LL-VMB), using either Nugent score, Amsel's criteria, presence of clue cells or gene sequencing. Measures of association with LL-VMB ranged from 0.6 (95% Confidence Interval 0.3, 1.2) to 2.8 (0.3, 28.0), 0.7 (0.4, 1.2) to 5.2 (1.9, 14.8), 0.8 (0.5, 1.4) to 3.8 (0.4, 36.2), and 0.4 (0.1, 1.5) to 6.1 (2.0, 18.5) for HPV, C. trachomatis, N. gonorrhea and M. genitalium infections respectively. While no clear trend for N. gonorrhea and M. genitalium infections could be detected, our results support a protective role of HL-VMB for HPV and C. trachomatis. Overall, these findings advocate for the use of high-resolution characterization methods for the vaginal microbiota to lay the foundation for its integration in prevention and treatment strategies. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  11. Impact of Gluten-Friendly Bread on the Metabolism and Function of In Vitro Gut Microbiota in Healthy Human and Coeliac Subjects

    Science.gov (United States)

    Bevilacqua, Antonio; Costabile, Adele; Bergillos-Meca, Triana; Gonzalez, Isidro; Landriscina, Loretta; Ciuffreda, Emanuela; D’Agnello, Paola; Corbo, Maria Rosaria; Sinigaglia, Milena; Lamacchia, Carmela

    2016-01-01

    The main aim of this paper was to assess the in vitro response of healthy and coeliac human faecal microbiota to gluten-friendly bread (GFB). Thus, GFB and control bread (CB) were fermented with faecal microbiota in pH-controlled batch cultures. The effects on the major groups of microbiota were monitored over 48 h incubations by fluorescence in situ hybridisation. Short-chain fatty acids (SCFAs) were measured by high-performance liquid chromatography (HPLC). Furthermore, the death kinetics of Lactobacillus acidophilus, Bifidobacterium animalis subsp. lactis, Staphylococcus aureus, and Salmonella Typhimurium in a saline solution supplemented with GFB or CB were also assessed. The experiments in saline solution pinpointed that GFB prolonged the survival of L. acidophilus and exerted an antibacterial effect towards S. aureus and S. Typhimurium. Moreover, GFB modulated the intestinal microbiota in vitro, promoting changes in lactobacilli and bifidobacteria members in coeliac subjects. A final multivariate approach combining both viable counts and metabolites suggested that GFB could beneficially modulate the coeliac gut microbiome; however, human studies are needed to prove its efficacy. PMID:27632361

  12. Factors affecting the conversion of apple polyphenols to phenolic acids and fruit matrix to short-chain fatty acids by human faecal microbiota in vitro.

    Science.gov (United States)

    Bazzocco, Sarah; Mattila, Ismo; Guyot, Sylvain; Renard, Catherine M G C; Aura, Anna-Marja

    2008-12-01

    Proanthocyanidins (PAs) in apples are condensed tannins comprised mostly of (-)-epicatechin units with some terminal (+)-catechins. PAs, especially those having a long chain-length, are absorbed in the upper intestine only to a small extent and are passed to the colon. In the colon they are subjected to microbial metabolism by colonic microbiota. In the present article, the ability of human microbiota to ferment apple PAs is studied. Freeze-dried fruit preparations (apple, enzymatically digested apple, isolated cell-walls, isolated PAs or ciders) from two varieties, Marie Ménard and Avrolles, containing PAs of different chain lengths, were compared. Fermentation studies were performed in an in vitro colon model using human faecal microbiota as an inoculum. The maximal extent of conversion to known microbial metabolites, was observed at late time point for Marie Ménard cider, having short PAs. In this case, the initial dose also contributed to the extent of conversion. Long-chain PAs were able to inhibit the in vitro microbial metabolism of PAs shown as low maxima at early time points. Presence of isolated PAs also suppressed SCFA formation from carbohydrates as compared with that from apple cell wall or faecal suspension without substrates. The low maximal extents at early time points suggest that there is a competition between the inhibitory effect of the PAs on microbial activity, and the ability to convert PAs by the microbiota.

  13. Mycoplasma hominis and Mycoplasma genitalium in the Vaginal Microbiota and Persistent High-Risk Human Papillomavirus Infection

    Directory of Open Access Journals (Sweden)

    Sally N. Adebamowo

    2017-06-01

    Full Text Available BackgroundRecent studies have suggested that the vaginal microenvironment plays a role in persistence of high-risk human papillomavirus (hrHPV infection and thus cervical carcinogenesis. Furthermore, it has been shown that some mycoplasmas are efficient methylators and may facilitate carcinogenesis through methylation of hrHPV and cervical somatic cells. We examined associations between prevalence and persistence of Mycoplasma spp. in the vaginal microbiota, and prevalent as well as persistent hrHPV infections.MethodsWe examined 194 Nigerian women who were tested for hrHPV infection using SPF25/LiPA10 and we identified Mycoplasma genitalium and Mycoplasma hominis in their vaginal microbiota established by sequencing the V3–V4 hypervariable regions of the 16S rRNA gene. We defined the prevalence of M. genitalium, M. hominis, and hrHPV based on positive result of baseline tests, while persistence was defined as positive results from two consecutive tests. We used exact logistic regression models to estimate associations between Mycoplasma spp. and hrHPV infections.ResultsThe mean (SD age of the study participants was 38 (8 years, 71% were HIV positive, 30% M. genitalium positive, 45% M. hominis positive, and 40% hrHPV positive at baseline. At follow-up, 16% of the women remained positive for M. genitalium, 30% for M. hominis, and 31% for hrHPV. There was a significant association between persistent M. hominis and persistent hrHPV (OR 8.78, 95% CI 1.49–51.6, p 0.01. Women who were positive for HIV and had persistent M. hominis had threefold increase in the odds of having persistent hrHPV infection (OR 3.28, 95% CI 1.31–8.74, p 0.008, compared to women who were negative for both.ConclusionWe found significant association between persistent M. hominis in the vaginal microbiota and persistent hrHPV in this study, but we could not rule out reverse causation. Our findings need to be replicated in larger, longitudinal studies and if confirmed

  14. The Gut Microbiota, Food Science, and Human Nutrition: A Timely Marriage.

    Science.gov (United States)

    Barratt, Michael J; Lebrilla, Carlito; Shapiro, Howard-Yana; Gordon, Jeffrey I

    2017-08-09

    Analytic advances are enabling more precise definitions of the molecular composition of key food staples incorporated into contemporary diets and how the nutrient landscapes of these staples vary as a function of cultivar and food processing methods. This knowledge, combined with insights about the interrelationship between consumer microbiota configurations and biotransformation of food ingredients, should have a number of effects on agriculture, food production, and strategies for improving the nutritional value of foods and health status. These effects include decision-making about which cultivars of current or future food staples to incorporate into existing and future food systems, and which components of waste streams from current or future food manufacturing processes have nutritional value that is worth capturing. They can also guide which technologies should be applied, or need to be developed, to produce foods that support efficient microbial biotransformation of their ingredients into metabolic products that sustain health. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Nasal Lobular Capillary Hemangioma

    Directory of Open Access Journals (Sweden)

    Prashant Patil

    2013-01-01

    Full Text Available Nasal lobular capillary hemangioma is a rare benign tumor of the paranasal sinuses. This lesion is believed to grow rapidly in size over time. The exact etiopathogenesis is still a dilemma. We discuss a case of nasal lobular capillary hemangioma presenting with a history of epistaxis. Contrast enhanced computed tomography of paranasal sinuses revealed an intensely enhancing soft-tissue mass in the left nasal cavity and left middle and inferior meati with no obvious bony remodeling or destruction. We present imaging and pathologic features of nasal lobular capillary hemangioma and differentiate it from other entities like nasal angiofibroma.

  16. Differential Analysis of the Nasal Microbiome of Pig Carriers or Non-Carriers of Staphylococcus aureus

    DEFF Research Database (Denmark)

    Espinosa-Gongora, Carmen; Larsen, Niels; Schonning, Kristian

    2016-01-01

    pathogen in animal carriers. The aim of this study was to determine whether the nasal microbiome of pig S. aureus carriers differs from that of non-carriers. The V3-V5 region of the 16S rRNA gene was sequenced from nasal swabs of 44 S. aureus carriers and 56 non-carriers using the 454 GS FLX titanium...... microbiome of pigs that are not colonized with S. aureus harbours several species/taxa that are significantly less abundant in pig carriers, suggesting that the nasal microbiota may play a role in the individual predisposition to S. aureus nasal carriage in pigs. Further research is warranted to isolate...

  17. Wheat bran promotes enrichment within the human colonic microbiota of butyrate-producing bacteria that release ferulic acid.

    Science.gov (United States)

    Duncan, Sylvia H; Russell, Wendy R; Quartieri, Andrea; Rossi, Maddalena; Parkhill, Julian; Walker, Alan W; Flint, Harry J

    2016-07-01

    Cereal fibres such as wheat bran are considered to offer human health benefits via their impact on the intestinal microbiota. We show here by 16S rRNA gene-based community analysis that providing amylase-pretreated wheat bran as the sole added energy source to human intestinal microbial communities in anaerobic fermentors leads to the selective and progressive enrichment of a small number of bacterial species. In particular, OTUs corresponding to uncultured Lachnospiraceae (Firmicutes) related to Eubacterium xylanophilum and Butyrivibrio spp. were strongly enriched (by five to 160 fold) over 48 h in four independent experiments performed with different faecal inocula, while nine other Firmicutes OTUs showed > 5-fold enrichment in at least one experiment. Ferulic acid was released from the wheat bran during degradation but was rapidly converted to phenylpropionic acid derivatives via hydrogenation, demethylation and dehydroxylation to give metabolites that are detected in human faecal samples. Pure culture work using bacterial isolates related to the enriched OTUs, including several butyrate-producers, demonstrated that the strains caused substrate weight loss and released ferulic acid, but with limited further conversion. We conclude that breakdown of wheat bran involves specialist primary degraders while the conversion of released ferulic acid is likely to involve a multi-species pathway. © 2015 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Expression and functional activity of P-glycoprotein in passaged primary human nasal epithelial cell monolayers cultured by the air-liquid interface method for nasal drug transport study.

    Science.gov (United States)

    Cho, Hyun-Jong; Choi, Min-Koo; Lin, Hongxia; Kim, Jung Sun; Chung, Suk-Jae; Shim, Chang-Koo; Kim, Dae-Duk

    2011-03-01

    P-glycoprotein (P-gp) is an efflux transporter encoded by the multidrug resistance gene (MDR1), which is also known as the human ABCB1 gene (ATP-binding cassette, subfamily-B). The objectives of this study were to investigate the expression of P-gp in passaged primary human nasal epithelial (HNE) cell monolayer, cultured by the air-liquid interface (ALI) method, and to evaluate its feasibility as an in-vitro model for cellular uptake and transport studies of P-gp substrates. Reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to verify the expression of the MDR1 gene. Transport and cellular uptake studies with P-gp substrate (rhodamine123) and P-gp inhibitors (verapamil and cyclosporin A) were conducted to assess the functional activity of P-gp in HNE cell monolayers cultured by the ALI method. MDR1 gene expression in primary HNE cell monolayers cultured by ALI method was confirmed by RT-PCR. The apparent permeability coefficient (P(app) ) of the P-gp substrate (rhodamine123) in the basolateral to apical (B to A) direction was 6.9 times higher than that in the apical to basolateral (A to B) direction. B to A transport was saturated at high rhodamine123 concentration, and the treatment of P-gp inhibitors increased cellular uptake of rhodamine123 in a time- and concentration-dependent manner. These results support the MDR1 gene expression and the functional activity of P-gp in primary HNE cell monolayers cultured by the ALI method. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.

  19. The gut microbiota in type 2 diabetes

    DEFF Research Database (Denmark)

    Nielsen, Trine; Allin, Kristine Højgaard; Pedersen, Oluf

    2016-01-01

    The exploration of the gut microbiota has intensified within the past decade with the introduction of cultivation-independent methods. By investigation of the gut bacterial genes, our understanding of the compositional and functional capability of the gut microbiome has increased. It is now widely...... recognized that the gut microbiota has profound effect on host metabolism and recently changes in the gut microbiota have been associated with type 2 diabetes. Animal models and human studies have linked changes in the gut microbiota to the induction of low-grade inflammation, altered immune response......, and changes in lipid and glucose metabolism. Several factors have been identified that might affect the healthy microbiota, potentially inducing a dysbiotic microbiota associated with a disease state. This increased understanding of the gut microbiota might potentially contribute to targeted intervention...

  20. Modulation of Gut Microbiota in Pathological States

    DEFF Research Database (Denmark)

    Wang, Yulan; Wang, Baohong; Wu, Junfang

    2017-01-01

    The human microbiota is an aggregate of microorganisms residing in the human body, mostly in the gastrointestinal tract (GIT). Our gut microbiota evolves with us and plays a pivotal role in human health and disease. In recent years, the microbiota has gained increasing attention due to its impact...... on host metabolism, physiology, and immune system development, but also because the perturbation of the microbiota may result in a number of diseases. The gut microbiota may be linked to malignancies such as gastric cancer and colorectal cancer. It may also be linked to disorders such as nonalcoholic...... fatty liver disease (NAFLD); obesity and diabetes, which are characterized as “lifestyle diseases” of the industrialized world; coronary heart disease; and neurological disorders. Although the revolution in molecular technologies has provided us with the necessary tools to study the gut microbiota more...

  1. The gut microbiota and metabolic disease

    DEFF Research Database (Denmark)

    Arora, T; Bäckhed, Gert Fredrik

    2016-01-01

    The human gut microbiota has been studied for more than a century. However, of nonculture-based techniques exploiting next-generation sequencing for analysing the microbiota, development has renewed research within the field during the past decade. The observation that the gut microbiota......, as an environmental factor, contributes to adiposity has further increased interest in the field. The human microbiota is affected by the diet, and macronutrients serve as substrates for many microbially produced metabolites, such as short-chain fatty acids and bile acids, that may modulate host metabolism. Obesity......-producing bacteria might be causally linked to type 2 diabetes. Bariatric surgery, which promotes long-term weight loss and diabetes remission, alters the gut microbiota in both mice and humans. Furthermore, by transferring the microbiota from postbariatric surgery patients to mice, it has been demonstrated...

  2. Enterotypes influence temporal changes in gut microbiota

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Licht, Tine Rask; Kellebjerg Poulsen, Sanne

    The human gut microbiota plays an important role for human health. The question is whether we can modulate the gut microbiota by changing diet. During a 6-month, randomised, controlled dietary intervention, the effect of consuming a diet following the New Nordic Diet recommendations (NND......) as opposed to Average Danish Diet (ADD) on the gut microbiota in humans (n=62) was investigated. Quantitative PCR analysis showed that the microbiota did not change significantly by the intervention. Nevertheless, by stratifying subjects into two enterotypes, distinguished by the Prevotella/Bacteroides ratio...... (P/B), we were able to detect significant changes in the gut microbiota composition resulting from the interventions. Subjects with a high-P/B experienced more pronounced changes in the gut microbiota composition than subjects with a low-P/B. The study is the first to indicate that enterotypes...

  3. Antibiotic resistome in a large-scale healthy human gut microbiota deciphered by metagenomic and network analyses.

    Science.gov (United States)

    Feng, Jie; Li, Bing; Jiang, Xiaotao; Yang, Ying; Wells, George F; Zhang, Tong; Li, Xiaoyan

    2018-01-01

    The human gut microbiota is an important reservoir of antibiotic resistance genes (ARGs). A metagenomic approach and network analysis were used to establish a comprehensive antibiotic resistome catalog and to obtain co-occurrence patterns between ARGs and microbial taxa in fecal samples from 180 healthy individuals from 11 different countries. In total, 507 ARG subtypes belonging to 20 ARG types were detected with abundances ranging from 7.12 × 10 -7 to 2.72 × 10 -1 copy of ARG/copy of 16S-rRNA gene. Tetracycline, multidrug, macrolide-lincosamide-streptogramin, bacitracin, vancomycin, beta-lactam and aminoglycoside resistance genes were the top seven most abundant ARG types. The multidrug ABC transporter, aadE, bacA, acrB, tetM, tetW, vanR and vanS were shared by all 180 individuals, suggesting their common occurrence in the human gut. Compared to populations from the other 10 countries, the Chinese population harboured the most abundant ARGs. Moreover, LEfSe analysis suggested that the MLS resistance type and its subtype 'ermF' were representative ARGs of the Chinese population. Antibiotic inactivation, antibiotic target alteration and antibiotic efflux were the dominant resistance mechanism categories in all populations. Procrustes analysis revealed that microbial phylogeny structured the antibiotic resistome. Co-occurrence patterns obtained via network analysis implied that 12 species might be potential hosts of 58 ARG subtypes. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Non-digestible carbohydrates in infant formula as substitution for human milk oligosaccharide functions: Effects on microbiota and gut maturation.

    Science.gov (United States)

    Akkerman, Renate; Faas, Marijke M; de Vos, Paul

    2018-01-15

    Human milk (HM) is the golden standard for nutrition of newborn infants. Human milk oligosaccharides (HMOs) are abundantly present in HM and exert multiple beneficial functions, such as support of colonization of the gut microbiota, reduction of pathogenic infections and support of immune development. HMO-composition is during lactation continuously adapted by the mother to accommodate the needs of the neonate. Unfortunately, for many valid reasons not all neonates can be fed with HM and are either totally or partly fed with cow-milk derived infant formulas, which do not contain HMOs. These cow-milk formulas are supplemented with non-digestible carbohydrates (NDCs) that have functional effects similar to that of some HMOs, since production of synthetic HMOs is challenging and still very expensive. However, NDCs cannot substitute all HMO functions. More efficacious NDCs may be developed and customized for specific groups of neonates such as pre-matures and allergy prone infants. Here current knowledge of HMO functions in the neonate in view of possible replacement of HMOs by NDCs in infant formulas is reviewed. Furthermore, methods to expedite identification of suitable NDCs and structure/function relationships are reviewed as in vivo studies in babies are impossible.

  5. Risk Factors for Nasal Colonization by Methicillin-Resistant Staphylococci in Healthy Humans in Professional Daily Contact with Companion Animals in Portugal.

    Science.gov (United States)

    Rodrigues, Ana Catarina; Belas, Adriana; Marques, Cátia; Cruz, Luís; Gama, Luís T; Pomba, Constança

    2018-05-01

    Methicillin-resistant staphylococci (MRS), namely Staphylococcus aureus (MRSA) and Staphylococcus pseudintermedius (MRSP), are opportunistic agents of great importance in human and veterinary medicine. The aims of this study were to investigate the frequency, persistence, and risk factors associated with nasal colonization by MRS in people in daily contact with animals in Portugal. Seventy-nine out of 129 (61.2%) participants were found to be colonized by, at least, one methicillin-resistant (MR) staphylococci species (MR Staphylococcus epidermidis [n = 68], MRSA [n = 19], MR Staphylococcus haemolyticus [n = 7], MRSP [n = 2], and other coagulase-negative staphylococci [n = 4]). Three lineages were identified among the MRSA isolates (n = 7): the major human healthcare clone in Portugal (ST22-t032-IV, n = 3), the livestock-associated MRSA (ST398-t108-V, n = 3), and the New York-/Japan-related clone (ST105-t002-II, n = 1). MRSP isolates belonged to the European clone ST71-II-III. We identified two risk factors for nasal colonization by MRS in healthy humans: (i) being a veterinary professional (veterinarian and veterinary nurse) (p < 0.0001, odds ratio [OR] = 6.369, 95% confidence interval [CI, 2.683-15.122]) and (ii) have contacted with one MRSA- or MRSP-positive animal (p = 0.0361, OR = 2.742, 95% CI [1.067-7.045]). The follow-up study revealed that the majority (85%) remain colonized. This study shows that MRS in veterinary clinical practice is a professional hazard and highlights the need to implement preventive measures to minimize spread.

  6. Nasal Glioma: Case report

    Directory of Open Access Journals (Sweden)

    Ozgur Surmelioglu

    2011-02-01

    Full Text Available Nasal gliomas are rare, benign, congenital tumors that are thought to be result of abnormality in embryonic development. Three types of clinical presentations have been recognized; extranasal, intranasal and combined. Clinically, these masses are non-pulsatile, gray or purple lesions that obstruct the nasal cavity and cause deformity extranasaly. Histologically, they are made up of astrocytic cells, fibrous and vascular connective tissue that is covered with nasal respiratory mucosa. Treatment of the nasal glioma requires a multidisciplinary approach including an radiologist, neurosurgeon and otorhinolaryngologist. Radiological investigation should be performed to describe intracranial extension. In this case, a 2 years old boy with nasal mass that was diagnosed as nasal glioma is reported. . [Cukurova Med J 2011; 36(1.000: 34-36

  7. Nasal Glioma: Case report

    Directory of Open Access Journals (Sweden)

    Ozgur Surmelioglu

    2011-03-01

    Full Text Available Nasal gliomas are rare, benign, congenital tumors that are thought to be result of abnormality in embryonic development. Three types of clinical presentations have been recognized; extranasal, intranasal and combined. Clinically, these masses are non-pulsatile, gray or purple lesions that obstruct the nasal cavity and cause deformity extranasaly. Histologically, they are made up of astrocytic cells, fibrous and vascular connective tissue that is covered with nasal respiratory mucosa. Treatment of the nasal glioma requires a multidisciplinary approach including an radiologist, neurosurgeon and otorhinolaryngologist. Radiological investigation should be performed to describe intracranial extension. In this case, a 2 years old boy with nasal mass that was diagnosed as nasal glioma is reported. . [Cukurova Med J 2011; 36(1: 34-36

  8. Gut bacterial microbiota and obesity.

    Science.gov (United States)

    Million, M; Lagier, J-C; Yahav, D; Paul, M

    2013-04-01

    Although probiotics and antibiotics have been used for decades as growth promoters in animals, attention has only recently been drawn to the association between the gut microbiota composition, its manipulation, and obesity. Studies in mice have associated the phylum Firmicutes with obesity and the phylum Bacteroidetes with weight loss. Proposed mechanisms linking the microbiota to fat content and weight include differential effects of bacteria on the efficiency of energy extraction from the diet, and changes in host metabolism of absorbed calories. The independent effect of the microbiota on fat accumulation has been demonstrated in mice, where transplantation of microbiota from obese mice or mice fed western diets to lean or germ-free mice produced fat accumulation among recipients. The microbiota can be manipulated by prebiotics, probiotics, and antibiotics. Probiotics affect the microbiota directly by modulating its bacterial content, and indirectly through bacteriocins produced by the probiotic bacteria. Interestingly, certain probiotics are associated with weight gain both in animals and in humans. The effects are dependent on the probiotic strain, the host, and specific host characteristics, such as age and baseline nutritional status. Attention has recently been drawn to the association between antibiotic use and weight gain in children and adults. We herein review the studies describing the associations between the microbiota composition, its manipulation, and obesity. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  9. Taurine does not affect the composition, diversity, or metabolism of human colonic microbiota simulated in a single-batch fermentation system.

    Science.gov (United States)

    Sasaki, Kengo; Sasaki, Daisuke; Okai, Naoko; Tanaka, Kosei; Nomoto, Ryohei; Fukuda, Itsuko; Yoshida, Ken-Ichi; Kondo, Akihiko; Osawa, Ro

    2017-01-01

    Accumulating evidence suggests that dietary taurine (2-aminoethanesulfonic acid) exerts beneficial anti-inflammatory effects in the large intestine. In this study, we investigated the possible impact of taurine on human colonic microbiota using our single-batch fermentation system (Kobe University Human Intestinal Microbiota Model; KUHIMM). Fecal samples from eight humans were individually cultivated with and without taurine in the KUHIMM. The results showed that taurine remained largely undegraded after 30 h of culturing in the absence of oxygen, although some 83% of the taurine was degraded after 30 h of culturing under aerobic conditions. Diversity in bacterial species in the cultures was analyzed by 16S rRNA gene sequencing, revealing that taurine caused no significant change in the diversity of the microbiota; both operational taxonomic unit and Shannon-Wiener index of the cultures were comparable to those of the respective source fecal samples. In addition, principal coordinate analysis indicated that taurine did not alter the composition of bacterial species, since the 16S rRNA gene profile of bacterial species in the original fecal sample was maintained in each of the cultures with and without taurine. Furthermore, metabolomic analysis revealed that taurine did not affect the composition of short-chain fatty acids produced in the cultures. These results, under these controlled but artificial conditions, suggested that the beneficial anti-inflammatory effects of dietary taurine in the large intestine are independent of the intestinal microbiota. We infer that dietary taurine may act directly in the large intestine to exert anti-inflammatory effects.

  10. Gut microbiota in health and disease

    Directory of Open Access Journals (Sweden)

    M.E. Icaza-Chávez

    2013-10-01

    Full Text Available Gut microbiota is the community of live microorganisms residing in the digestive tract. There are many groups of researchers worldwide that are working at deciphering the collective genome of the human microbiota. Modern techniques for studying the microbiota have made us aware of an important number of nonculturable bacteria and of the relation between the microorganisms that live inside us and our homeostasis. The microbiota is essential for correct body growth, the development of immunity, and nutrition. Certain epidemics affecting humanity such as asthma and obesity may possibly be explained, at least partially, by alterations in the microbiota. Dysbiosis has been associated with a series of gastrointestinal disorders that include non-alcoholic fatty liver disease, celiac disease, and irritable bowel syndrome. The present article deals with the nomenclature, modern study techniques, and functions of gut microbiota, and its relation to health and disease.

  11. The human jejunum has an endogenous microbiota that differs from those in the oral cavity and colon.

    Science.gov (United States)

    Sundin, Olof H; Mendoza-Ladd, Antonio; Zeng, Mingtao; Diaz-Arévalo, Diana; Morales, Elisa; Fagan, B Matthew; Ordoñez, Javier; Velez, Philip; Antony, Nishaal; McCallum, Richard W

    2017-07-17

    The upper half of the human small intestine, known as the jejunum, is the primary site for absorption of nutrient-derived carbohydrates, amino acids, small peptides, and vitamins. In contrast to the colon, which contains 10 11 -10 12 colony forming units of bacteria per ml (CFU/ml), the normal jejunum generally ranges from 10 3 to 10 5  CFU per ml. Because invasive procedures are required to access the jejunum, much less is known about its bacterial microbiota. Bacteria inhabiting the jejunal lumen have been investigated by classical culture techniques, but not by culture-independent metagenomics. The lumen of the upper jejunum was sampled during enteroscopy of 20 research subjects. Culture on aerobic and anaerobic media gave live bacterial counts ranging from 5.8 × 10 3 CFU/ml to 8.0 × 10 6 CFU/ml. DNA from the same samples was analyzed by 16S rRNA gene-specific quantitative PCR, yielding values from 1.5 × 10 5 to 3.1 × 10 7 bacterial genomes per ml. When calculated for each sample, estimated bacterial viability ranged from effectively 100% to a low of 0.3%. 16S rRNA metagenomic analysis of uncultured bacteria by Illumina MiSeq sequencing gave detailed microbial composition by phylum, genus and species. The genera Streptococcus, Prevotella, Veillonella and Fusobacterium, were especially abundant, as well as non-oral genera including Escherichia, Klebsiella, and Citrobacter. The jejunum was devoid of the genera Alistipes, Ruminococcus, Faecalibacterium, and other extreme anaerobes abundant in the colon. In patients with higher bacterial loads, there was no significant change in microbial species composition. The jejunal lumen contains a distinctive bacterial population consisting primarily of facultative anaerobes and oxygen-tolerant obligate anaerobes similar to those found in the oral cavity. However, the frequent abundance of Enterobacteriaceae represents a major difference from oral microbiota. Although a few genera are shared with the colon, we

  12. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients.

    Directory of Open Access Journals (Sweden)

    Fabrice Armougom

    Full Text Available BACKGROUND: Studies of the bacterial communities of the gut microbiota have revealed a shift in the ratio of Firmicutes and Bacteroidetes in obese patients. Determining the variations of microbial communities in feces may be beneficial for the identification of specific profiles in patients with abnormal weights. The roles of the archaeon Methanobrevibacter smithii and Lactobacillus species have not been described in these studies. METHODS AND FINDINGS: We developed an efficient and robust real-time PCR tool that includes a plasmid-based internal control and allows for quantification of the bacterial divisions Bacteroidetes, Firmicutes, and Lactobacillus as well as the methanogen M. smithii. We applied this technique to the feces of 20 obese subjects, 9 patients with anorexia nervosa, and 20 normal-weight healthy controls. Our results confirmed a reduction in the Bacteroidetes community in obese patients (p<0.01. We found a significantly higher Lactobacillus species concentration in obese patients than in lean controls (p=0.0197 or anorexic patients (p=0.0332. The M. smithii concentration was much higher in anorexic patients than in the lean population (p=0.0171. CONCLUSIONS: Lactobacillus species are widely used as growth promoters in the farm industry and are now linked to obesity in humans. The study of the bacterial flora in anorexic patients revealed an increase in M. smithii. This increase might represent an adaptive use of nutrients in this population.

  13. Lactobacillus rhamnosus R11 consumed in a food supplement survived human digestive transit without modifying microbiota equilibrium as assessed by real-time polymerase chain reaction.

    Science.gov (United States)

    Firmesse, Olivier; Mogenet, Agnès; Bresson, Jean-Louis; Corthier, Gérard; Furet, Jean-Pierre

    2008-01-01

    The aim of this study was to evaluate the survival of Lactobacillus rhamnosus R11 and Lactobacillus acidophilus R52 in the human digestive tract and their effects on the microbiota homeostasis. We designed an open human trial including 14 healthy volunteers. A 3-week exclusion period of fermented products was followed by a 12-day consumption period of 4 capsules daily containing 2 x 10(9)L. rhamnosus R11 and 1 x 10(8)L. acidophilus R52, and a 12-day wash-out period. The 2 strains and dominant bacterial groups of the microbiota were quantified by real-time polymerase chain reaction. At the end of the capsule consumption period, high levels of L. rhamnosus R11 were detected in faecal samples from all volunteers, reaching a mean value of 7.1 log(10) colony-forming unit (CFU) equivalents/g of stool. L. acidophilus R52 was detected in the stools of only 1 volunteer, reaching a maximum level of 6.1 log(10) CFU equivalents/g of stool. Dilution plating enumerations performed in parallel provided less consistent and generally lower levels. No significant effect of capsule consumption was observed on microbiota homeostasis for the dominant faecal populations. Mean values of 8.8, 9.2, 9.9 and 10.6 log(10) CFU equivalents/g of stool were obtained for the Clostridium coccoides, Bifidobacterium sp., Bacteroides sp. and Clostridium leptum groups, respectively.

  14. Habitual dietary fibre intake influences gut microbiota response to an inulin-type fructan prebiotic: a randomised, double-blind, placebo-controlled, cross-over, human intervention study.

    Science.gov (United States)

    Healey, Genelle; Murphy, Rinki; Butts, Christine; Brough, Louise; Whelan, Kevin; Coad, Jane

    2018-01-01

    Dysbiotic gut microbiota have been implicated in human disease. Diet-based therapeutic strategies have been used to manipulate the gut microbiota towards a more favourable profile. However, it has been demonstrated that large inter-individual variability exists in gut microbiota response to a dietary intervention. The primary objective of this study was to investigate whether habitually low dietary fibre (LDF) v. high dietary fibre (HDF) intakes influence gut microbiota response to an inulin-type fructan prebiotic. In this randomised, double-blind, placebo-controlled, cross-over study, thirty-four healthy participants were classified as LDF or HDF consumers. Gut microbiota composition (16S rRNA bacterial gene sequencing) and SCFA concentrations were assessed following 3 weeks of daily prebiotic supplementation (Orafti® Synergy 1; 16 g/d) or placebo (Glucidex® 29 Premium; 16 g/d), as well as after 3 weeks of the alternative intervention, following a 3-week washout period. In the LDF group, the prebiotic intervention led to an increase in Bifidobacterium (P=0·001). In the HDF group, the prebiotic intervention led to an increase in Bifidobacterium (Pgut microbiota response and are therefore more likely to benefit from an inulin-type fructan prebiotic than those with LDF intakes. Future studies aiming to modulate the gut microbiota and improve host health, using an inulin-type fructan prebiotic, should take habitual dietary fibre intake into account.

  15. Improvement of a synthetic lure for Anopheles gambiae using compounds produced by human skin microbiota

    NARCIS (Netherlands)

    Verhulst, N.O.; Mbadi, P.A.; Bukovinszkine-Kiss, G.; Mukabana, W.R.; Loon, van J.J.A.; Takken, W.; Smallegange, R.C.

    2011-01-01

    Background - Anopheles gambiae sensu stricto is considered to be highly anthropophilic and volatiles of human origin provide essential cues during its host-seeking behaviour. A synthetic blend of three human-derived volatiles, ammonia, lactic acid and tetradecanoic acid, attracts A. gambiae. In

  16. Analyzing the functionality of the human intestinal microbiota by stable isotope probing

    NARCIS (Netherlands)

    Kovatcheva, P.P.

    2010-01-01

    Key words: gut bacteria, dietary carbohydrates, digestion, RNA-SIP, TIM-2, HITChip, human trial

    The human gastro-intestinal (GI) tract comprises a series of complex and dynamic organs ranging from the stomach to the distal colon, which harbor immense microbial assemblages, with

  17. Metagenomics Study on the Polymorphism of Gut Microbiota and Their Function on Human Health

    DEFF Research Database (Denmark)

    Feng, Qiang

    diversity and functional complexity of the gut microbiome. Facilitated by the Next Generation Sequencing (NGS) technologies and the progress of bioinformatics in the past decade, we have acquired substantial achievements in metagenomic studies on human gut microbiome and established the fundamentals of our...... understanding of the interactions between gut microbes and human body, and also the importance of this interaction on human health. As one of the milestones, the first integrated gene catalog in the human gut microbiome was constructed in 2010 in the scheme of the Metagenomics of Human Intestinal Tract (Meta......’ are shared in the population. These microorganisms participate in various metabolic pathways and activities of the immune system and the nervous system of our bodies,and have fundamental impacts on our health. For example, an association study between gut microbiome and type 2 diabetes (T2D) highlighted...

  18. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota.

    Science.gov (United States)

    Yunes, R A; Poluektova, E U; Dyachkova, M S; Klimina, K M; Kovtun, A S; Averina, O V; Orlova, V S; Danilenko, V N

    2016-12-01

    Gamma-amino butyric acid (GABA) is an active biogenic substance synthesized in plants, fungi, vertebrate animals and bacteria. Lactic acid bacteria are considered the main producers of GABA among bacteria. GABA-producing lactobacilli are isolated from food products such as cheese, yogurt, sourdough, etc. and are the source of bioactive properties assigned to those foods. The ability of human-derived lactobacilli and bifidobacteria to synthesize GABA remains poorly characterized. In this paper, we screened our collection of 135 human-derived Lactobacillus and Bifidobacterium strains for their ability to produce GABA from its precursor monosodium glutamate. Fifty eight strains were able to produce GABA. The most efficient GABA-producers were Bifidobacterium strains (up to 6 g/L). Time profiles of cell growth and GABA production as well as the influence of pyridoxal phosphate on GABA production were studied for L. plantarum 90sk, L. brevis 15f, B. adolescentis 150 and B. angulatum GT102. DNA of these strains was sequenced; the gadB and gadC genes were identified. The presence of these genes was analyzed in 14 metagenomes of healthy individuals. The genes were found in the following genera of bacteria: Bacteroidetes (Bacteroides, Parabacteroides, Alistipes, Odoribacter, Prevotella), Proteobacterium (Esherichia), Firmicutes (Enterococcus), Actinobacteria (Bifidobacterium). These data indicate that gad genes as well as the ability to produce GABA are widely distributed among lactobacilli and bifidobacteria (mainly in L. plantarum, L. brevis, B. adolescentis, B. angulatum, B. dentium) and other gut-derived bacterial species. Perhaps, GABA is involved in the interaction of gut microbiota with the macroorganism and the ability to synthesize GABA may be an important feature in the selection of bacterial strains - psychobiotics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Cyanocobalamin Nasal Gel

    Science.gov (United States)

    ... to supply extra vitamin B12 to people who need unusually large amounts of this vitamin because they are pregnant or have certain diseases. ... Cyanocobalamin nasal gel will supply you with enough vitamin B12 only as ... it regularly. You may need to use cyanocobalamin nasal gel every week for ...

  20. Nasal dermoid sinus cyst.

    Science.gov (United States)

    Cauchois, R; Laccourreye, O; Bremond, D; Testud, R; Küffer, R; Monteil, J P

    1994-08-01

    Nasal dermoid sinus cyst is one of the diagnoses of midline nasal masses in children. This retrospective study analyzes the various theories regarding the origin of this congenital abnormality, the differential diagnosis, and the value of magnetic resonance imaging, as well as the various surgical options available.

  1. The effects of gas humidification with high-flow nasal cannula on cultured human airway epithelial cells.

    Science.gov (United States)

    Chidekel, Aaron; Zhu, Yan; Wang, Jordan; Mosko, John J; Rodriguez, Elena; Shaffer, Thomas H

    2012-01-01

    Humidification of inspired gas is important for patients receiving respiratory support. High-flow nasal cannula (HFNC) effectively provides temperature and humidity-controlled gas to the airway. We hypothesized that various levels of gas humidification would have differential effects on airway epithelial monolayers. Calu-3 monolayers were placed in environmental chambers at 37°C with relative humidity (RH) 90% (HFNC) for 4 and 8 hours with 10 L/min of room air. At 4 and 8 hours, cell viability and transepithelial resistance measurements were performed, apical surface fluid was collected and assayed for indices of cell inflammation and function, and cells were harvested for histology (n = 6/condition). Transepithelial resistance and cell viability decreased over time (P < 0.001) between HFNC and dry groups (P < 0.001). Total protein secretion increased at 8 hours in the dry group (P < 0.001). Secretion of interleukin (IL)-6 and IL-8 in the dry group was greater than the other groups at 8 hours (P < 0.001). Histological analysis showed increasing injury over time for the dry group. These data demonstrate that exposure to low humidity results in reduced epithelial cell function and increased inflammation.

  2. The Effects of Gas Humidification with High-Flow Nasal Cannula on Cultured Human Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Aaron Chidekel

    2012-01-01

    Full Text Available Humidification of inspired gas is important for patients receiving respiratory support. High-flow nasal cannula (HFNC effectively provides temperature and humidity-controlled gas to the airway. We hypothesized that various levels of gas humidification would have differential effects on airway epithelial monolayers. Calu-3 monolayers were placed in environmental chambers at 37°C with relative humidity (RH 90% (HFNC for 4 and 8 hours with 10 L/min of room air. At 4 and 8 hours, cell viability and transepithelial resistance measurements were performed, apical surface fluid was collected and assayed for indices of cell inflammation and function, and cells were harvested for histology (n=6/condition. Transepithelial resistance and cell viability decreased over time (P<0.001 between HFNC and dry groups (P<0.001. Total protein secretion increased at 8 hours in the dry group (P<0.001. Secretion of interleukin (IL-6 and IL-8 in the dry group was greater than the other groups at 8 hours (P<0.001. Histological analysis showed increasing injury over time for the dry group. These data demonstrate that exposure to low humidity results in reduced epithelial cell function and increased inflammation.

  3. The Nasal Route as a Potential Pathway for Delivery of Erythropoietin in the Treatment of Acute Ischemic Stroke in Humans

    Directory of Open Access Journals (Sweden)

    Julio Cesar García-Rodríguez

    2009-01-01

    Full Text Available Intranasal delivery provides a practical, noninvasive method of bypassing the blood-brain barrier (BBB in order to deliver therapeutic agents to the brain. This method allows drugs that do not cross the BBB to be delivered to the central nervous system in a few minutes. With this technology, it will be possible to eliminate systemic administration and its potential side effects. Using the intranasal delivery system, researchers have demonstrated neuroprotective effects in different animal models of stroke using erythropoietin (EPO as a neuroprotector or other different types of EPO without erythropoiesis-stimulating activity. These new molecules retain their ability to protect neural tissue against injury and they include Asialoerythropoietin (asialoEPO carbamylated EPO (CEPO, and rHu-EPO with low sialic acid content (Neuro-EPO. Contrary to the other EPO variants, Neuro-EPO is not chemically modified, making it biologically similar to endogenous EPO, with the advantage of less adverse reactions when this molecule is applied chronically. This constitutes a potential benefit of Neuro-EPO over other variants of EPO for the chronic treatment of neurodegenerative illnesses. Nasal administration of EPO is a potential, novel, neurotherapeutic approach. However, it will be necessary to initiate clinical trials in stroke patients using intranasal delivery in order to obtain the clinical evidence of its neuroprotectant capacity in the treatment of patients with acute stroke and other neurodegenerative disorders. This new therapeutic approach could revolutionize the treatment of neurodegenerative disorders in the 21st century.

  4. Use of pyrosequencing and DNA barcodes to monitor variations in Firmicutes and Bacteroidetes communities in the gut microbiota of obese humans

    Directory of Open Access Journals (Sweden)

    Raoult Didier

    2008-12-01

    Full Text Available Abstract Background Recent studies of 16S rRNA genes in the mammalian gut microbiota distinguished a higher Firmicutes/Bacteroidetes ratio in obese individuals compared to lean individuals. This ratio was estimated using a clonal Sanger sequencing approach which is time-consuming and requires laborious data analysis. In contrast, new high-throughput pyrosequencing technology offers an inexpensive alternative to clonal Sanger sequencing and would significantly advance our understanding of obesity via the development of a clinical diagnostic method. Here we present a cost-effective method that combines 16S rRNA pyrosequencing and DNA barcodes of the Firmicutes and Bacteroidetes 16S rRNA genes to determine the Firmicutes/Bacteroidetes ratio in the gut microbiota of obese humans. Results The main result was the identification of DNA barcodes targeting the Firmicutes and Bacteroidetes phyla. These barcodes were validated using previously published 16S rRNA gut microbiota clone libraries. In addition, an accurate F/B ratio was found when the DNA barcodes were applied to short pyrosequencing reads of published gut metagenomes. Finally, the barcodes were utilized to define the F/B ratio of 16S rRNA pyrosequencing data generated from brain abscess pus and cystic fibrosis sputum. Conclusion Using DNA barcodes of Bacteroidetes and Firmicutes 16S rRNA genes combined with pyrosequencing is a cost-effective method for monitoring relevant changes in the relative abundance of Firmicutes and Bacteroidetes bacterial communities in microbial ecosystems.

  5. Gastrointestinal Simulation Model TWIN-SHIME Shows Differences between Human Urolithin-Metabotypes in Gut Microbiota Composition, Pomegranate Polyphenol Metabolism, and Transport along the Intestinal Tract.

    Science.gov (United States)

    García-Villalba, Rocío; Vissenaekens, Hanne; Pitart, Judit; Romo-Vaquero, María; Espín, Juan C; Grootaert, Charlotte; Selma, María V; Raes, Katleen; Smagghe, Guy; Possemiers, Sam; Van Camp, John; Tomas-Barberan, Francisco A

    2017-07-12

    A TWIN-SHIME system was used to compare the metabolism of pomegranate polyphenols by the gut microbiota from two individuals with different urolithin metabotypes. Gut microbiota, ellagitannin metabolism, short-chain fatty acids (SCFA), transport of metabolites, and phase II metabolism using Caco-2 cells were explored. The simulation reproduced the in vivo metabolic profiles for each metabotype. The study shows for the first time that microbial composition, metabolism of ellagitannins, and SCFA differ between metabotypes and along the large intestine. The assay also showed that pomegranate phenolics preserved intestinal cell integrity. Pomegranate polyphenols enhanced urolithin and propionate production, as well as Akkermansia and Gordonibacter prevalence with the highest effect in the descending colon. The system provides an insight into the mechanisms of pomegranate polyphenol gut microbiota metabolism and absorption through intestinal cells. The results obtained by the combined SHIME/Caco-2 cell system are consistent with previous human and animal studies and show that although urolithin metabolites are present along the gastrointestinal tract due to enterohepatic circulation, they are predominantly produced in the distal colon region.

  6. Enhanced Trapping of HIV-1 by Human Cervicovaginal Mucus Is Associated with Lactobacillus crispatus-Dominant Microbiota

    Science.gov (United States)

    Nunn, Kenetta L.; Wang, Ying-Ying; Harit, Dimple; Humphrys, Michael S.; Ma, Bing; Cone, Richard; Ravel, Jacques

    2015-01-01

    ABSTRACT Cervicovaginal mucus (CVM) can provide a barrier that precludes HIV and other sexually transmitted virions from reaching target cells in the vaginal epithelium, thereby preventing or reducing infections. However, the barrier properties of CVM differ from woman to woman, and the causes of these variations are not yet well understood. Using high-resolution particle tracking of fluorescent HIV-1 pseudoviruses, we found that neither pH nor Nugent scores nor total lactic acid levels correlated significantly with virus trapping in unmodified CVM from diverse donors. Surprisingly, HIV-1 was generally trapped in CVM with relatively high concentrations of d-lactic acid and a Lactobacillus crispatus-dominant microbiota. In contrast, a substantial fraction of HIV-1 virions diffused rapidly through CVM with low concentrations of d-lactic acid that had a Lactobacillus iners-dominant microbiota or significant amounts of Gardnerella vaginalis, a bacterium associated with bacterial vaginosis. Our results demonstrate that the vaginal microbiota, including specific species of Lactobacillus, can alter the diffusional barrier properties of CVM against HIV and likely other sexually transmitted viruses and that these microbiota-associated changes may account in part for the elevated risks of HIV acquisition linked to bacterial vaginosis or intermediate vaginal microbiota. PMID:26443453

  7. Moisture content during extrusion of oats impacts the initial fermentation metabolites and probiotic bacteria during extended fermentation by human fecal microbiota.

    Science.gov (United States)

    Brahma, Sandrayee; Weier, Steven A; Rose, Devin J

    2017-07-01

    Extrusion exposes flour components to high pressure and shear during processing, which may affect the dietary fiber fermentability by human fecal microbiota. The objective of this study was to determine the effect of flour moisture content during extrusion on in vitro fermentation properties of whole grain oats. Extrudates were processed at three moisture levels (15%, 18%, and 21%) at fixed screw speed (300rpm) and temperature (130°C). The extrudates were then subjected to in vitro digestion and fermentation. Extrusion moisture significantly affected water-extractable β-glucan (WE-BG) in the extrudates, with samples processed at 15% moisture (lowest) and 21% moisture (highest) having the highest concentration of WE-BG. After the first 8h of fermentation, more WE-BG remained in fermentation media in samples processed at 15% moisture compared with the other conditions. Also, extrusion moisture significantly affected the production of acetate, butyrate, and total SCFA by the microbiota during the first 8h of fermentation. Microbiota grown on extrudates processed at 18% moisture had the highest production of acetate and total SCFA, whereas bacteria grown on extrudates processed at 15% and 18% moisture had the highest butyrate production. After 24h of fermentation, samples processed at 15% moisture supported lower Bifidobacterium counts than those produced at other conditions, but had among the highest Lactobacillus counts. Thus, moisture content during extrusion significantly affects production of fermentation metabolites by the gut microbiota during the initial stages of fermentation, while also affecting probiotic bacteria counts during extended fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Vaginal Microbiota.

    Science.gov (United States)

    Mendling, Werner

    2016-01-01

    The knowledge about the normal and abnormal vaginal microbiome has changed over the last years. Culturing techniques are not suitable any more for determination of a normal or abnormal vaginal microbiota. Non culture-based modern technologies revealed a complex and dynamic system mainly dominated by lactobacilli.The normal and the abnormal vaginal microbiota are complex ecosystems of more than 200 bacterial species influenced by genes, ethnic background and environmental and behavioral factors. Several species of lactobacilli per individuum dominate the healthy vagina. They support a defense system together with antibacterial substances, cytokines, defensins and others against dysbiosis, infections and care for an normal pregnancy without preterm birth.The numbers of Lactobacillus (L.) iners increase in the case of dysbiosis.Bacterial vaginosis (BV) - associated bacteria (BVAB), Atopobium vaginae and Clostridiales and one or two of four Gardnerella vaginalis - strains develop in different mixtures and numbers polymicrobial biofilms on the vaginal epithelium, which are not dissolved by antibiotic therapies according to guidelines and, thus, provoke recurrences.Aerobic vaginitis seems to be an immunological disorder of the vagina with influence on the microbiota, which is here dominated by aerobic bacteria (Streptococcus agalactiae, Escherichia coli). Their role in AV is unknown.Vaginal or oral application of lactobacilli is obviously able to improve therapeutic results of BV and dysbiosis.

  9. When the Nose Doesn’t Know: Canine Olfactory Function Associated With Health, Management, and Potential Links to Microbiota

    Science.gov (United States)

    Jenkins, Eileen K.; DeChant, Mallory T.; Perry, Erin B.

    2018-01-01

    The impact of health, management, and microbiota on olfactory function in canines has not been examined in review. The most important characteristic of the detection canine is its sense of smell. Olfactory receptors are primarily located on the ethmoturbinates of the nasal cavity. The vomeronasal organ is an additional site of odor detection that detects chemical signals that stimulate behavioral and/or physiological changes. Recent advances in the genetics of olfaction suggest that genetic changes, along with the unique anatomy and airflow of the canine nose, are responsible for the macrosmia of the species. Inflammation, alterations in blood flow and hydration, and systemic diseases alter olfaction and may impact working efficiency of detection canines. The scientific literature contains abundant information on the potential impact of pharmaceuticals on olfaction in humans, but only steroids, antibiotics, and anesthetic agents have been studied in the canine. Physical stressors including exercise, lack of conditioning, and high ambient temperature impact olfaction directly or indirectly in the canine. Dietary fat content, amount of food per meal, and timing of meals have been demonstrated to impact olfaction in mice and dogs. Gastrointestinal (GI) microbiota likely impacts olfaction via bidirectional communication between the GI tract and brain, and the microbiota is impacted by exercise, diet, and stress. The objective of this literature review is to discuss the specific effects of health, management, and microbiota shifts on olfactory performance in working canines. PMID:29651421

  10. When the Nose Doesn’t Know: Canine Olfactory Function Associated With Health, Management, and Potential Links to Microbiota

    Directory of Open Access Journals (Sweden)

    Eileen K. Jenkins

    2018-03-01

    Full Text Available The impact of health, management, and microbiota on olfactory function in canines has not been examined in review. The most important characteristic of the detection canine is its sense of smell. Olfactory receptors are primarily located on the ethmoturbinates of the nasal cavity. The vomeronasal organ is an additional site of odor detection that detects chemical signals that stimulate behavioral and/or physiological changes. Recent advances in the genetics of olfaction suggest that genetic changes, along with the unique anatomy and airflow of the canine nose, are responsible for the macrosmia of the species. Inflammation, alterations in blood flow and hydration, and systemic diseases alter olfaction and may impact working efficiency of detection canines. The scientific literature contains abundant information on the potential impact of pharmaceuticals on olfaction in humans, but only steroids, antibiotics, and anesthetic agents have been studied in the canine. Physical stressors including exercise, lack of conditioning, and high ambient temperature impact olfaction directly or indirectly in the canine. Dietary fat content, amount of food per meal, and timing of meals have been demonstrated to impact olfaction in mice and dogs. Gastrointestinal (GI microbiota likely impacts olfaction via bidirectional communication between the GI tract and brain, and the microbiota is impacted by exercise, diet, and stress. The objective of this literature review is to discuss the specific effects of health, management, and microbiota shifts on olfactory performance in working canines.

  11. When the Nose Doesn't Know: Canine Olfactory Function Associated With Health, Management, and Potential Links to Microbiota.

    Science.gov (United States)

    Jenkins, Eileen K; DeChant, Mallory T; Perry, Erin B

    2018-01-01

    The impact of health, management, and microbiota on olfactory function in canines has not been examined in review. The most important characteristic of the detection canine is its sense of smell. Olfactory receptors are primarily located on the ethmoturbinates of the nasal cavity. The vomeronasal organ is an additional site of odor detection that detects chemical signals that stimulate behavioral and/or physiological changes. Recent advances in the genetics of olfaction suggest that genetic changes, along with the unique anatomy and airflow of the canine nose, are responsible for the macrosmia of the species. Inflammation, alterations in blood flow and hydration, and systemic diseases alter olfaction and may impact working efficiency of detection canines. The scientific literature contains abundant information on the potential impact of pharmaceuticals on olfaction in humans, but only steroids, antibiotics, and anesthetic agents have been studied in the canine. Physical stressors including exercise, lack of conditioning, and high ambient temperature impact olfaction directly or indirectly in the canine. Dietary fat content, amount of food per meal, and timing of meals have been demonstrated to impact olfaction in mice and dogs. Gastrointestinal (GI) microbiota likely impacts olfaction via bidirectional communication between the GI tract and brain, and the microbiota is impacted by exercise, diet, and stress. The objective of this literature review is to discuss the specific effects of health, management, and microbiota shifts on olfactory performance in working canines.

  12. Objective Measure of Nasal Air Emission Using Nasal Accelerometry

    Science.gov (United States)

    Cler, Meredith J.; Lien, Yu-An, S.; Braden, Maia N.; Mittleman, Talia; Downing, Kerri; Stepp, Cara, E.

    2016-01-01

    Purpose: This article describes the development and initial validation of an objective measure of nasal air emission (NAE) using nasal accelerometry. Method: Nasal acceleration and nasal airflow signals were simultaneously recorded while an expert speech language pathologist modeled NAEs at a variety of severity levels. In addition, microphone and…

  13. Omics approaches to study host-microbiota interactions

    NARCIS (Netherlands)

    Baarlen, van P.; Kleerebezem, M.; Wells, J.

    2013-01-01

    The intestinal microbiota has profound effects on our physiology and immune system and disturbances in the equilibrium between microbiota and host have been observed in many disorders. Here we discuss the possibilities to further our understanding of how microbiota impacts on human health and

  14. Molecular biological methods for studying the gut microbiota : the EU human gut flora project

    NARCIS (Netherlands)

    Blaut, M; Collins, MD; Welling, GW; Dore, J; van Loo, J; de Vos, W

    Seven European laboratories co-operated in a joint project (FAIR CT97-3035) to develop, refine and apply molecular methods towards facilitating elucidation of the complex composition of the human intestinal microflora and to devise robust methodologies for monitoring the gut flora in response to

  15. Challenges in simulating the human gut for understanding the role of the microbiota in obesity

    NARCIS (Netherlands)

    Aguirre, M.; Venema, K.

    2017-01-01

    There is an elevated incidence of cases of obesity worldwide. Therefore, the development of strategies to tackle this condition is of vital importance. This review focuses on the necessity of optimising in vitro systems to model human colonic fermentation in obese subjects. This may allow to

  16. The human gut microbiota as a reservoir for antimicrobial resistance genes

    NARCIS (Netherlands)

    Bülow, E.

    2015-01-01

    In the last decades, the emergence and spread of resistant opportunistic pathogens is compromising the effectiveness of antimicrobial therapies. Understanding the emergence and global spread of drug-resistant microorganisms is thus crucial to combat antimicrobial resistance. The human gut harbors a

  17. Gut Microbiota: Impact of probiotics, prebiotics, synbiotics, pharmabiotics and postbiotics on human health

    Science.gov (United States)

    Multidisciplinary approaches enabled a better understanding of the connection between human gut microbes and health. This knowledge is rapidly changing how we think about probiotics and related –biotics (prebiotics, synbiotics, pharmabiotics and postbiotics). Functional –omics approaches are very im...

  18. Fungal Diversity of Human Gut Microbiota Among Eutrophic, Overweight, and Obese Individuals Based on Aerobic Culture-Dependent Approach.

    Science.gov (United States)

    Borges, Francis M; de Paula, Thaís O; Sarmiento, Marjorie R A; de Oliveira, Maycon G; Pereira, Maria L M; Toledo, Isabela V; Nascimento, Thiago C; Ferreira-Machado, Alessandra B; Silva, Vânia L; Diniz, Cláudio G

    2018-06-01

    Fungi have a complex role in the intestinal tract, influencing health and disease, with dysbiosis contributing to obesity. Our objectives were to investigate fungal diversity in human gut microbiota among eutrophic, overweight, and obese. Epidemiological and nutritional information were collected from adult individuals, as well as stool samples processed for selective fungi isolation and identification by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (yeasts) or microculture (filamentous fungi). Further 18S rDNA sequencing was performed to confirm identification. The mean count of fungi was 241 CFU/g of feces. Differences in the population level of the filamentous fungi were observed within eutrophic and obese groups. Overall, 34 genera were identified. The predominant phylum was Ascomycota with 20 different genera, followed by Basidiomycota and Zygomycota. As for Ascomycota, the most prevalent species were Paecilomyces sp., Penicillium sp., Candida sp., Aspergillus sp., Fonsecaea sp., and Geotrichum sp. (76.39, 65.28, 59.72, 58.33, 12.50, and 9.72%, respectively). As for Basidiomycota, Trichosporon sp. and Rhodotorula sp. were the most prevalent (30.56 and 15.28%, respectively), and for Zygomycota, Rhizopus sp. and Mucor sp. were the most numerous (15.28 and 9.72%, respectively). As expected there is a mycobiota shift towards obesity, with slightly higher diversity associated to eutrophic individuals. This mycobiota shift seems also to be related to the nutritional behavior of the individuals, as observed that the macronutrients intake may be positively related to the different fungi occurrences. Other studies are needed to better understand relationships between mycobiota and obesity, which could be used in future obesity treatments.

  19. Improvement of a synthetic lure for Anopheles gambiae using compounds produced by human skin microbiota.

    Science.gov (United States)

    Verhulst, Niels O; Mbadi, Phoebe A; Kiss, Gabriella Bukovinszkiné; Mukabana, Wolfgang R; van Loon, Joop J A; Takken, Willem; Smallegange, Renate C

    2011-02-08

    Anopheles gambiae sensu stricto is considered to be highly anthropophilic and volatiles of human origin provide essential cues during its host-seeking behaviour. A synthetic blend of three human-derived volatiles, ammonia, lactic acid and tetradecanoic acid, attracts A. gambiae. In addition, volatiles produced by human skin bacteria are attractive to this mosquito species. The purpose of the current study was to test the effect of ten compounds present in the headspace of human bacteria on the host-seeking process of A. gambiae. The effect of each of the ten compounds on the attractiveness of a basic blend of ammonia, lactic and tetradecanoic acid to A. gambiae was examined. The host-seeking response of A. gambiae was evaluated in a laboratory set-up using a dual-port olfactometer and in a semi-field facility in Kenya using MM-X traps. Odorants were released from LDPE sachets and placed inside the olfactometer as well as in the MM-X traps. Carbon dioxide was added in the semi-field experiments, provided from pressurized cylinders or fermenting yeast. The olfactometer and semi-field set-up allowed for high-throughput testing of the compounds in blends and in multiple concentrations. Compounds with an attractive or inhibitory effect were identified in both bioassays. 3-Methyl-1-butanol was the best attractant in both set-ups and increased the attractiveness of the basic blend up to three times. 2-Phenylethanol reduced the attractiveness of the basic blend in both bioassays by more than 50%. Identification of volatiles released by human skin bacteria led to the discovery of compounds that have an impact on the host-seeking behaviour of A. gambiae. 3-Methyl-1-butanol may be used to increase mosquito trap catches, whereas 2-phenylethanol has potential as a spatial repellent. These two compounds could be applied in push-pull strategies to reduce mosquito numbers in malaria endemic areas.

  20. The role of gut microbiota in health and disease: In vitro modeling of host-microbe interactions at the aerobe-anaerobe interphase of the human gut.

    Science.gov (United States)

    von Martels, Julius Z H; Sadaghian Sadabad, Mehdi; Bourgonje, Arno R; Blokzijl, Tjasso; Dijkstra, Gerard; Faber, Klaas Nico; Harmsen, Hermie J M

    2017-04-01

    The microbiota of the gut has many crucial functions in human health. Dysbiosis of the microbiota has been correlated to a large and still increasing number of diseases. Recent studies have mostly focused on analyzing the associations between disease and an aberrant microbiota composition. Functional studies using (in vitro) gut models are required to investigate the precise interactions that occur between specific bacteria (or bacterial mixtures) and gut epithelial cells. As most gut bacteria are obligate or facultative anaerobes, studying their effect on oxygen-requiring human gut epithelial cells is technically challenging. Still, several (anaerobic) bacterial-epithelial co-culture systems have recently been developed that mimic host-microbe interactions occurring in the human gut, including 1) the Transwell "apical anaerobic model of the intestinal epithelial barrier", 2) the Host-Microbiota Interaction (HMI) module, 3) the "Human oxygen-Bacteria anaerobic" (HoxBan) system, 4) the human gut-on-a-chip and 5) the HuMiX model. This review discusses the role of gut microbiota in health and disease and gives an overview of the characteristics and applications of these novel host-microbe co-culture systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The gut microbiota, obesity and insulin resistance

    Science.gov (United States)

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflam...

  2. Interplay between gut microbiota and antibiotics

    NARCIS (Netherlands)

    Jesus Bello Gonzalez, de Teresita

    2016-01-01

    The human body is colonized by a vast number of microorganisms collectively defined as the microbiota. In the gut, the microbiota has important roles in health and disease, and can serve as a host of antibiotic resistance genes. Disturbances in the ecological balance, e.g. by antibiotics, can

  3. Intestinal colonisation, microbiota and future probiotics

    NARCIS (Netherlands)

    Salminen, S.; Benno, Y.; Vos, de W.M.

    2006-01-01

    The human intestine is colonized by a large number of microorganisms, collectively termed microbiota, which support a variety of physiological functions. As the major part of the microbiota has not yet been cultured, molecular methods are required to determine microbial composition and the impact of

  4. A Rare Nasal Bone Fracture: Anterior Nasal Spine Fracture

    Directory of Open Access Journals (Sweden)

    Egemen Kucuk

    2014-04-01

    Full Text Available Anterior nasal spine fractures are a quite rare type of nasal bone fractures. Associated cervical spine injuries are more dangerous than the nasal bone fracture. A case of the anterior nasal spine fracture, in a 18-year-old male was presented. Fracture of the anterior nasal spine, should be considered in the differential diagnosis of the midface injuries and also accompanying cervical spine injury should not be ignored.

  5. In vivo microvascular imaging of human oral and nasal cavities using swept-source optical coherence tomography with a single forward/side viewing probe

    Science.gov (United States)

    Choi, Woo June; Wang, Ruikang K.

    2015-03-01

    We report three-dimensional (3D) imaging of microcirculation within human cavity tissues in vivo using a high-speed swept-source optical coherence tomography (SS-OCT) at 1.3 μm with a modified probe interface. Volumetric structural OCT images of the inner tissues of oral and nasal cavities are acquired with a field of view of 2 mm x 2 mm. Two types of disposable and detachable probe attachments are devised and applied to the port of the imaging probe of OCT system, enabling forward and side imaging scans for selective and easy access to specific cavity tissue sites. Blood perfusion is mapped with OCT-based microangiography from 3D structural OCT images, in which a novel vessel extraction algorithm is used to decouple dynamic light scattering signals, due to moving blood cells, from the background scattering signals due to static tissue elements. Characteristic tissue anatomy and microvessel architectures of various cavity tissue regions of a healthy human volunteer are identified with the 3D OCT images and the corresponding 3D vascular perfusion maps at a level approaching capillary resolution. The initial finding suggests that the proposed method may be engineered into a promising tool for evaluating and monitoring tissue microcirculation and its alteration within a wide-range of cavity tissues in the patients with various pathological conditions.

  6. Nasal capillariasis in a dog

    International Nuclear Information System (INIS)

    King, R.R.; Greiner, E.C.; Ackerman, N.; Woodard, J.C.

    1990-01-01

    A five-year-old dog was evaluated for chronic nasal discharge. Nasal infection caused by Capillaria aerophila was diagnosed by identification of adult nematodes and eggs in the nasal flush sediment and by nasal biopsy samples and eggs in faecal flotations. Reinfection occurred following treatment with fenbendazole and ivermectin, probably because of a contaminated housing area

  7. Characterization of nasal cavity-associated lymphoid tissue in ducks.

    Science.gov (United States)

    Kang, Haihong; Yan, Mengfei; Yu, Qinghua; Yang, Qian

    2014-05-01

    The nasal mucosa is involved in immune defense, as it is the first barrier for pathogens entering the body through the respiratory tract. The nasal cavity-associated lymphoid tissue (NALT), which is found in the mucosa of the nasal cavity, is considered to be the main mucosal immune inductive site in the upper respiratory tract. NALT has been found in humans and many mammals, which contributes to local and systemic immune responses after intranasal vaccination. However, there are very few data on NALT in avian species, especially waterfowl. For this study, histological sections of the nasal cavities of Cherry Valley ducks were used to examine the anatomical location and histological characteristics of NALT. The results showed that several lymphoid aggregates are present in the ventral wall of the nasal cavity near the choanal cleft, whereas several more lymphoid aggregates were located on both sides of the nasal septum. In addition, randomly distributed intraepithelial lymphocytes and isolated lymphoid follicles were observed in the regio respiratoria of the nasal cavity. There were also a few lymphoid aggregates located in the lamina propria of the regio vestibularis, which was covered with a stratified squamous epithelium. This study focused on the anatomic and histological characteristics of the nasal cavity of the duck and performed a systemic overview of NALT. This will be beneficial for further understanding of immune mechanisms after nasal vaccination and the development of effective nasal vaccines for waterfowls. Copyright © 2014 Wiley Periodicals, Inc.

  8. Effect of almond and pistachio consumption on gut microbiota composition in a randomized cross-over human feeding study

    DEFF Research Database (Denmark)

    Ukhanova, M; Wang, X; Baer, D J

    2014-01-01

    for 18 d. Gut microbiota composition was analysed using a 16S rRNA-based approach for bacteria and an internal transcribed spacer region sequencing approach for fungi. The 16S rRNA sequence analysis of 528 028 sequence reads, retained after removing low-quality and short-length reads, revealed various...

  9. Nicotine Nasal Spray

    Science.gov (United States)

    ... with a smoking cessation program, which may include support groups, counseling, or specific behavior change techniques. Nicotine nasal ... and pharmacist what prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking or ...

  10. Examination of Oral Microbiota Diversity in Adults and Older Adults as an Approach to Prevent Spread of Risk Factors for Human Infections.

    Science.gov (United States)

    Zawadzki, Paweł J; Perkowski, Konrad; Padzik, Marcin; Mierzwińska-Nastalska, Elżbieta; Szaflik, Jacek P; Conn, David Bruce; Chomicz, Lidia

    2017-01-01

    The oral cavity environment may be colonized by polymicrobial communities with complex, poorly known interrelations. The aim of this study was to determine oral microbiota diversity in order to prevent the spread of infectious microorganisms that are risk factors for human health complications in patients requiring treatment due to various disabilities. The study examined Polish adults aged between 40 and 70 years; parasitological, microbiological, and mycological data collected before treatment were analyzed. The diversity of oral microbiota, including relatively high prevalences of some opportunistic, potentially pathogenic strains of bacteria, protozoans, and fungi detected in the patients analyzed, may result in increasing risk of disseminated infections from the oral cavity to neighboring structures and other organs. Increasing ageing of human populations is noted in recent decades in many countries, including Poland. The growing number of older adults with different oral health disabilities, who are more prone to development of oral and systemic pathology, is an increasing medical problem. Results of this retrospective study showed the urgent need to pay more attention to the pretreatment examination of components of the oral microbiome, especially to the strains, which are etiological agents of human opportunistic infections and are particularly dangerous for older adults.

  11. Examination of Oral Microbiota Diversity in Adults and Older Adults as an Approach to Prevent Spread of Risk Factors for Human Infections

    Directory of Open Access Journals (Sweden)

    Paweł J. Zawadzki

    2017-01-01

    Full Text Available The oral cavity environment may be colonized by polymicrobial communities with complex, poorly known interrelations. The aim of this study was to determine oral microbiota diversity in order to prevent the spread of infectious microorganisms that are risk factors for human health complications in patients requiring treatment due to various disabilities. The study examined Polish adults aged between 40 and 70 years; parasitological, microbiological, and mycological data collected before treatment were analyzed. The diversity of oral microbiota, including relatively high prevalences of some opportunistic, potentially pathogenic strains of bacteria, protozoans, and fungi detected in the patients analyzed, may result in increasing risk of disseminated infections from the oral cavity to neighboring structures and other organs. Increasing ageing of human populations is noted in recent decades in many countries, including Poland. The growing number of older adults with different oral health disabilities, who are more prone to development of oral and systemic pathology, is an increasing medical problem. Results of this retrospective study showed the urgent need to pay more attention to the pretreatment examination of components of the oral microbiome, especially to the strains, which are etiological agents of human opportunistic infections and are particularly dangerous for older adults.

  12. Bioautography to assess antibacterial activity of Ottonia martiana Miq. (Piperaceae on the human oral microbiota

    Directory of Open Access Journals (Sweden)

    Miriam Machado Cunico

    2012-12-01

    Full Text Available Ottonia martiana Miq. (Piperaceae, a plant known popularly in southern Brazil as “anestésia” and used in the treatment of odontalgia for its anesthetic action on the oral mucosa, was investigated for antibacterial activity by paper disc agar diffusion and bioautographic methods, against microorganisms present in the human oral cavity [Streptococcus mutans (ATCC 25175, Streptococcus mitis (ATCC 49456, Streptococcus pyogenes (ATCC 19615, Streptococcus salivarius (ATCC 25975, Escherichia coli (ATCC 11229 and 25922, Pseudomonas aeruginosa (ATCC 27853 and Enterobacter aerogenes(ATCC 27853.The crude extract of O. martiana (32.9 mg mL-1 had antibacterial potential against all Gram-positive bacteria tested. Analysis of the bioautograms led to the detection of bioactive substances, among which it was possible to identify piperovatine (Rf 0.35, piperlonguminine (Rf 0.52 and isopiperlonguminine (Rf 0.52. The piperovatine and isopiperlonguminine were isolated from the roots of O. martiana, guided by a bioautographic antibacterial bioassay.

  13. Influence of gut microbiota on neuropsychiatric disorders.

    Science.gov (United States)

    Cenit, María Carmen; Sanz, Yolanda; Codoñer-Franch, Pilar

    2017-08-14

    The last decade has witnessed a growing appreciation of the fundamental role played by an early assembly of a diverse and balanced gut microbiota and its subsequent maintenance for future health of the host. Gut microbiota is currently viewed as a key regulator of a fluent bidirectional dialogue between the gut and the brain (gut-brain axis). A number of preclinical studies have suggested that the microbiota and its genome (microbiome) may play a key role in neurodevelopmental and neurodegenerative disorders. Furthermore, alterations in the gut microbiota composition in humans have also been linked to a variety of neuropsychiatric conditions, including depression, autism and Parkinson's disease. However, it is not yet clear whether these changes in the microbiome are causally related to such diseases or are secondary effects thereof. In this respect, recent studies in animals have indicated that gut microbiota transplantation can transfer a behavioral phenotype, suggesting that the gut microbiota may be a modifiable factor modulating the development or pathogenesis of neuropsychiatric conditions. Further studies are warranted to establish whether or not the findings of preclinical animal experiments can be generalized to humans. Moreover, although different communication routes between the microbiota and brain have been identified, further studies must elucidate all the underlying mechanisms involved. Such research is expected to contribute to the design of strategies to modulate the gut microbiota and its functions with a view to improving mental health, and thus provide opportunities to improve the management of psychiatric diseases. Here, we review the evidence supporting a role of the gut microbiota in neuropsychiatric disorders and the state of the art regarding the mechanisms underlying its contribution to mental illness and health. We also consider the stages of life where the gut microbiota is more susceptible to the effects of environmental stressors, and

  14. Divergent pro-inflammatory profile of human dendritic cells in response to commensal and pathogenic bacteria associated with the airway microbiota.

    Science.gov (United States)

    Larsen, Jeppe Madura; Steen-Jensen, Daniel Bisgaard; Laursen, Janne Marie; Søndergaard, Jonas Nørskov; Musavian, Hanieh Sadat; Butt, Tariq Mahmood; Brix, Susanne

    2012-01-01

    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3-5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp.) reflecting their pro-inflammatory effects on DCs. Co-culture experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating properties of bacteria associated with the airway microbiota.

  15. Anti-Infective Activities of Lactobacillus Strains in the Human Intestinal Microbiota: from Probiotics to Gastrointestinal Anti-Infectious Biotherapeutic Agents

    Science.gov (United States)

    Liévin-Le Moal, Vanessa

    2014-01-01

    SUMMARY A vast and diverse array of microbial species displaying great phylogenic, genomic, and metabolic diversity have colonized the gastrointestinal tract. Resident microbes play a beneficial role by regulating the intestinal immune system, stimulating the maturation of host tissues, and playing a variety of roles in nutrition and in host resistance to gastric and enteric bacterial pathogens. The mechanisms by which the resident microbial species combat gastrointestinal pathogens are complex and include competitive metabolic interactions and the production of antimicrobial molecules. The human intestinal microbiota is a source from which Lactobacillus probiotic strains have often been isolated. Only six probiotic Lactobacillus strains isolated from human intestinal microbiota, i.e., L. rhamnosus GG, L. casei Shirota YIT9029, L. casei DN-114 001, L. johnsonii NCC 533, L. acidophilus LB, and L. reuteri DSM 17938, have been well characterized with regard to their potential antimicrobial effects against the major gastric and enteric bacterial pathogens and rotavirus. In this review, we describe the current knowledge concerning the experimental antibacterial activities, including antibiotic-like and cell-regulating activities, and therapeutic effects demonstrated in well-conducted, placebo-controlled, randomized clinical trials of these probiotic Lactobacillus strains. What is known about the antimicrobial activities supported by the molecules secreted by such probiotic Lactobacillus strains suggests that they constitute a promising new source for the development of innovative anti-infectious agents that act luminally and intracellularly in the gastrointestinal tract. PMID:24696432

  16. Nasal carriage of methicillin-resistant coagulase-negative staphylococci in healthy humans is associated with occupational pig contact in a dose-response manner.

    Science.gov (United States)

    Li, Ling; Chen, Zhiyao; Guo, Dan; Li, Shunming; Huang, Jingya; Wang, Xiaolin; Yao, Zhenjiang; Chen, Sidong; Ye, Xiaohua

    2017-09-01

    This study aimed to explore the association between occupational pig contact and human methicillin-resistant coagulase-negative staphylococci (MRCoNS) carriage. We conducted a cross-sectional study of pig exposed participants and controls in Guangdong, China, using a multi-stage sampling design. Participants provided a nasal swab for MRCoNS analysis and resulting isolates were tested for antibiotic susceptibility. The dose-response relation was examined using log binomial regression or Poisson regression models. The adjusted prevalence of MRCoNS carriage in pig exposed participants was 1.67 times (95% CI: 1.32-2.11) higher than in controls. The adjusted average number of resistance to different antibiotic classes of MRCoNS isolates from pig exposed participants was 1.67 times (95% CI: 1.46-1.91) higher than those from controls. Notably, we found the frequency and duration of occupational pig contact was associated with increased prevalence and increased number of resistance to different antibiotic classes of MRCoNS in a dose-response manner. When examining these relations by MRCoNS species, there was still evidence of similar exposure-response relations. Additionally, the proportion of tetracycline-resistant and tet(M)-containing MRCoNS isolates was significantly higher in pig exposed participants than in controls. These findings suggested a potential transmission of MRCoNS from livestock to humans by occupational livestock contact, and the presence of phenotypic and genotypic tetracycline resistance may aid in the differentiation of animal origins of MRCoNS isolates. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The Gut Microbiota in Host Metabolism and Pathogen Challenges

    DEFF Research Database (Denmark)

    Holm, Jacob Bak

    The human microbiota consists of a complex community of microbial cells that live on and inside each person in a close relationship with their host. The majority of the microbial cells are harboured by the gastro intestinal tract where 10-100 trillion bacteria reside. The microbiota is a dynamic...... community where both composition and function can be affected by changes in the local environment. With the microbiota containing ~150 times more genes than the human host, the microbiota provides a large modifiable “secondary genome” (metagenome). Within the last decade, changes in the gut microbiota...... composition has indeed been established as a factor contributing to the health of the host. Therefore, being able to understand, control and modify the gut microbiota is a promising way of improving health. The following thesis is based on four different projects investigating the murine gut microbiota...

  18. Disposition of nasal, intravenous, and oral methadone in healthy volunteers.

    Science.gov (United States)

    Dale, Ola; Hoffer, Christine; Sheffels, Pamela; Kharasch, Evan D

    2002-11-01

    Nasal administration of many opioids demonstrates rapid uptake and fast onset of action. Nasal administration may be an alternative to intravenous and oral administration of methadone and was therefore studied in human volunteers. The study was approved by the Institutional Review Board of the University of Washington, Seattle. Eight healthy volunteers (6 men and 2 women) aged 19 to 33 years were enrolled after informed written consent was obtained. Subjects received 10 mg methadone hydrochloride nasally, orally, or intravenously on 3 separate occasions in a crossover design. Nasal methadone (50 mg/mL in aqueous solution) was given as a 100-microL spray in each nostril (Pfeiffer BiDose sprayer). Blood samples for liquid chromatography-mass spectrometry analyses of methadone and the metabolite 2-ethyl-1,5-dimethyl-3,3-diphenylpyrrolinium were drawn for up to 96 hours. The methadone effect was measured by noninvasive infrared pupilometry coincident with blood sampling. Nasal uptake of methadone was rapid, with maximum plasma concentrations occurring within 7 minutes. The maximum effects of intravenous, nasal, and oral methadone, on the basis of dark-adapted pupil diameter, were reached in about 15 minutes, 30 minutes, and 2 hours, respectively. The respective durations were 24, 10, and 8 hours. Both nasal and oral bioavailabilities were 0.85. Subjects reported that nasal methadone caused a burning sensation. Nasal administration of methadone results in rapid absorption and onset of effect and high bioavailability, which was greater than that reported for other nasal opioids, with a similar duration of effect. Nasal administration may be an alternative route of methadone administration; however, improved formulations are desirable to reduce nasal irritation.

  19. Nasal septum extramedullary plasmacytoma

    Directory of Open Access Journals (Sweden)

    Belić Branislav

    2013-01-01

    Full Text Available Introduction. Plasmacytomas are malignant tumors characterized by abnormal monoclonal proliferation of plasma cells. They originate in either bone - solitary osseous plasmacytoma, or in soft tissue - extramedullary plasmacytoma (EMP. EMP represents less than 1% of all head and neck malignancies. Case report. We presented a case of EMP of the nasal septum in a 44-year-old male who had progressive difficulty in breathing through the nose and frequent heavy epistaxis on the right side. Nasal endoscopy showed dark red, soft, polypoid tumor in the last third of the right nasal cavity arising from the nasal septum. The biopsy showed that it was plasmacytoma. Bence Jones protein in the urine, serum electrophoresis, bone marrow biopsy, skeletal survey and other screening tests failed to detect multiple myeloma. This confirmed the diagnosis of EMP. The mass was completely removed via an endoscopic approach, and then, 4 week later, radiotherapy was conducted with a radiation dose of 50 Gray. No recurrence was noted in a 3-year follow- up period. Conclusion. EMP of the nasal cavity, being rare and having long natural history, represents a diagnostic and therapeutic challenge for any ear, nose and throat surgeon. Depending on the resectability of the lesion, a combined therapy is the accepted treatment.

  20. Modulation of Gut Microbiota in Pathological States

    Directory of Open Access Journals (Sweden)

    Yulan Wang

    2017-02-01

    Full Text Available The human microbiota is an aggregate of microorganisms residing in the human body, mostly in the gastrointestinal tract (GIT. Our gut microbiota evolves with us and plays a pivotal role in human health and disease. In recent years, the microbiota has gained increasing attention due to its impact on host metabolism, physiology, and immune system development, but also because the perturbation of the microbiota may result in a number of diseases. The gut microbiota may be linked to malignancies such as gastric cancer and colorectal cancer. It may also be linked to disorders such as nonalcoholic fatty liver disease (NAFLD; obesity and diabetes, which are characterized as “lifestyle diseases” of the industrialized world; coronary heart disease; and neurological disorders. Although the revolution in molecular technologies has provided us with the necessary tools to study the gut microbiota more accurately, we need to elucidate the relationships between the gut microbiota and several human pathologies more precisely, as understanding the impact that the microbiota plays in various diseases is fundamental for the development of novel therapeutic strategies. Therefore, the aim of this review is to provide the reader with an updated overview of the importance of the gut microbiota for human health and the potential to manipulate gut microbial composition for purposes such as the treatment of antibiotic-resistant Clostridium difficile (C. difficile infections. The concept of altering the gut community by microbial intervention in an effort to improve health is currently in its infancy. However, the therapeutic implications appear to be very great. Thus, the removal of harmful organisms and the enrichment of beneficial microbes may protect our health, and such efforts will pave the way for the development of more rational treatment options in the future.

  1. The microbiota revolution: Excitement and caution.

    Science.gov (United States)

    Rescigno, Maria

    2017-09-01

    Scientific progress is characterized by important technological advances. Next-generation DNA sequencing has, in the past few years, led to a major scientific revolution: the microbiome revolution. It has become possible to generate a fingerprint of the whole microbiota of any given environment. As it becomes clear that the microbiota affects several aspects of our lives, each new scientific finding should ideally be analyzed in light of these communities. For instance, animal experimentation should consider animal sources and husbandry; human experimentation should include analysis of microenvironmental cues that might affect the microbiota, including diet, antibiotic, and drug use, genetics. When analyzing the activity of a drug, we should remember that, according to the microbiota of the host, different drug activities might be observed, either due to modification or degradation by the microbiota, or because the microbiota changes the immune system of the host in a way that makes that drug more or less effective. This minireview will not be a comprehensive review on the interaction between the host and microbiota, but it will aim at creating awareness on why we should not forget the contribution of the microbiota in any single aspect of biology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. [Nasal septal abscess].

    Science.gov (United States)

    Barril, María F; Ferolla, Fausto M; José, Pablo; Echave, Cecilia; Tomezzoli, Silvana; Fiorini, Sandra; López, Eduardo Luis

    2008-12-01

    A nasal septal abscess (NA) is defined as a collection of pus between the cartilage or bony septum and its normally applied mucoperichondrium or mucoperiostium. It is an uncommon disease which should be suspected in a patient with acute onset of nasal obstruction and recent history of nasal trauma, periodontal infection or an inflammatory process of the rhinosinusal region. We report a case of an 8-year-old boy with bilateral NA caused by community-acquired methicillin-resistant Staphylococcus aureus(MR-CO) in order to emphasize the importance of prompt diagnosis and adequate treatment to prevent the potentially dangerous spread of infection and the development of severe functional and cosmetic sequelae.

  3. The role of the intestinal microbiota in pneumonia and sepsis

    NARCIS (Netherlands)

    Lankelma, J.M.

    2017-01-01

    Humans carry with them trillions of bacteria, viruses and fungi that are collectively called the human microbiota. The intestinal microbiota fulfills essential functions in human physiology and has recently been suggested as a potential therapeutic target for several diseases. This thesis focuses on

  4. Characterization of the human nasal embryonic LHRH factor gene, NELF, and a mutation screening among 65 patients with idiopathic hypogonadotropic hypogonadism (IHH).

    Science.gov (United States)

    Miura, Kiyonori; Acierno, James S; Seminara, Stephanie B

    2004-01-01

    As the mouse nasal embryonic LHRH factor gene (Nelf) encodes a guidance molecule for the migration of the olfactory axon and gonadotropin-releasing hormone neurons, its human homolog, NELF, is a candidate gene for Kallmann syndrome, a disease of idiopathic hypogonadotropic hypogonadism (IHH) with anosmia or hyposmia. We report here characterization of NELF and results of mutation analysis in 65 IHH patients. Assembling EST clones, RACE, and sequencing showed that NELF mapped to 9q34.3 is composed of 16 exons and 15 introns with a 1,590-bp ORF encoding 530 amino acids. RT-PCR on a fetal brain cDNA library revealed five alternatively spliced variants. Among them, NELF-v1 has 93-94% identity at the amino acid level to mouse/rat Nelf, and four other transcripts are also highly conserved among the three species. A 3.0-kb transcript is expressed most highly in the adult and fetal brain, testis, and kidney, indicating that NELF plays a role in the function of these tissues. Mutation screening detected in a patient with IHH one novel heterozygous missense mutation (1438A>G, T480A) at the donor-splice site in exon 15 of NELF. As this mutation was not found in 100 normal control individuals, T480A may be associated with IHH. Four other novel SNPs (102C > T and 1029C > T within the coding region, and two IVS14+47C > T and IVS15+41G > A) were also identified in NELF.

  5. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease

    Science.gov (United States)

    Wang, Zi-Kai; Yang, Yun-Sheng; Chen, Ye; Yuan, Jing; Sun, Gang; Peng, Li-Hua

    2014-01-01

    The intestinal microbiota plays an important role in inflammatory bowel disease (IBD). The pathogenesis of IBD involves inappropriate ongoing activation of the mucosal immune system driven by abnormal intestinal microbiota in genetically predisposed individuals. However, there are still no definitive microbial pathogens linked to the onset of IBD. The composition and function of the intestinal microbiota and their metabolites are indeed disturbed in IBD patients. The special alterations of gut microbiota associated with IBD remain to be evaluated. The microbial interactions and host-microbe immune interactions are still not clarified. Limitations of present probiotic products in IBD are mainly due to modest clinical efficacy, few available strains and no standardized administration. Fecal microbiota transplantation (FMT) may restore intestinal microbial homeostasis, and preliminary data have shown the clinical efficacy of FMT on refractory IBD or IBD combined with Clostridium difficile infection. Additionally, synthetic microbiota transplantation with the defined composition of fecal microbiota is also a promising therapeutic approach for IBD. However, FMT-related barriers, including the mechanism of restoring gut microbiota, standardized donor screening, fecal material preparation and administration, and long-term safety should be resolved. The role of intestinal microbiota and FMT in IBD should be further investigated by metagenomic and metatranscriptomic analyses combined with germ-free/human flora-associated animals and chemostat gut models. PMID:25356041

  6. Impact of airborne particle size, acoustic airflow and breathing pattern on delivery of nebulized antibiotic into the maxillary sinuses using a realistic human nasal replica.

    Science.gov (United States)

    Leclerc, Lara; Pourchez, Jérémie; Aubert, Gérald; Leguellec, Sandrine; Vecellio, Laurent; Cottier, Michèle; Durand, Marc

    2014-09-01

    Improvement of clinical outcome in patients with sinuses disorders involves targeting delivery of nebulized drug into the maxillary sinuses. We investigated the impact of nebulization conditions (with and without 100 Hz acoustic airflow), particle size (9.9 μm, 2.8 μm, 550 nm and 230 nm) and breathing pattern (nasal vs. no nasal breathing) on enhancement of aerosol delivery into the sinuses using a realistic nasal replica developed by our team. After segmentation of the airways by means of high-resolution computed tomography scans, a well-characterized nasal replica was created using a rapid prototyping technology. A total of 168 intrasinus aerosol depositions were performed with changes of aerosol particle size and breathing patterns under different nebulization conditions using gentamicin as a marker. The results demonstrate that the fraction of aerosol deposited in the maxillary sinuses is enhanced by use of submicrometric aerosols, e.g. 8.155 ± 1.476 mg/L of gentamicin in the left maxillary sinus for the 2.8 μm particles vs. 2.056 ± 0.0474 for the 550 nm particles. Utilization of 100-Hz acoustic airflow nebulization also produced a 2- to 3-fold increase in drug deposition in the maxillary sinuses (e.g. 8.155 ± 1.476 vs. 3.990 ± 1.690 for the 2.8 μm particles). Our study clearly shows that optimum deposition was achieved using submicrometric particles and 100-Hz acoustic airflow nebulization with no nasal breathing. It is hoped that our new respiratory nasal replica will greatly facilitate the development of more effective delivery systems in the future.

  7. Cosmetic and Functional Nasal Deformities

    Science.gov (United States)

    ... nasal complaints. Nasal deformity can be categorized as “cosmetic” or “functional.” Cosmetic deformity of the nose results in a less ... taste , nose bleeds and/or recurrent sinusitis . A cosmetic or functional nasal deformity may occur secondary to ...

  8. The gut microbiota and obesity: from correlation to causality.

    Science.gov (United States)

    Zhao, Liping

    2013-09-01

    The gut microbiota has been linked with chronic diseases such as obesity in humans. However, the demonstration of causality between constituents of the microbiota and specific diseases remains an important challenge in the field. In this Opinion article, using Koch's postulates as a conceptual framework, I explore the chain of causation from alterations in the gut microbiota, particularly of the endotoxin-producing members, to the development of obesity in both rodents and humans. I then propose a strategy for identifying the causative agents of obesity in the human microbiota through a combination of microbiome-wide association studies, mechanistic analysis of host responses and the reproduction of diseases in gnotobiotic animals.

  9. Fecal microbiota transplant

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/007703.htm Fecal microbiota transplant To use the sharing features on this page, please enable JavaScript. Fecal microbiota transplantation (FMT) helps to replace some of the " ...

  10. Nasal insulin changes peripheral insulin sensitivity simultaneously with altered activity in homeostatic and reward-related human brain regions.

    Science.gov (United States)

    Heni, M; Kullmann, S; Ketterer, C; Guthoff, M; Linder, K; Wagner, R; Stingl, K T; Veit, R; Staiger, H; Häring, H-U; Preissl, H; Fritsche, A

    2012-06-01

    Impaired insulin sensitivity is a major factor leading to type 2 diabetes. Animal studies suggest that the brain is involved in the regulation of insulin sensitivity. We investigated whether insulin action in the human brain regulates peripheral insulin sensitivity and examined which brain areas are involved. Insulin and placebo were given intranasally. Plasma glucose, insulin and C-peptide were measured in 103 participants at 0, 30 and 60 min. A subgroup (n = 12) was also studied with functional MRI, and blood sampling at 0, 30 and 120 min. For each time-point, the HOMA of insulin resistance (HOMA-IR) was calculated as an inverse estimate of peripheral insulin sensitivity. Plasma insulin increased and subsequently decreased. This excursion was accompanied by slightly decreased plasma glucose, resulting in an initially increased HOMA-IR. At 1 h after insulin spray, the HOMA-IR subsequently decreased and remained lower up to 120 min. An increase in hypothalamic activity was observed, which correlated with the increased HOMA-IR at 30 min post-spray. Activity in the putamen, right insula and orbitofrontal cortex correlated with the decreased HOMA-IR at 120 min post-spray. Central insulin action in specific brain areas, including the hypothalamus, may time-dependently regulate peripheral insulin sensitivity. This introduces a potential novel mechanism for the regulation of peripheral insulin sensitivity and underlines the importance of cerebral insulin action for the whole organism.

  11. Probiotic Lactobacillus rhamnosus GG enhanced Th1 cellular immunity but did not affect antibody responses in a human gut microbiota transplanted neonatal gnotobiotic pig model.

    Directory of Open Access Journals (Sweden)

    Ke Wen

    Full Text Available This study aims to establish a human gut microbiota (HGM transplanted gnotobiotic (Gn pig model of human rotavirus (HRV infection and diarrhea, and to verify the dose-effects of probiotics on HRV vaccine-induced immune responses. Our previous studies using the Gn pig model found that probiotics dose-dependently regulated both T cell and B cell immune responses induced by rotavirus vaccines. We generated the HGM transplanted neonatal Gn pigs through daily feeding of neonatal human fecal suspension to germ-free pigs for 3 days starting at 12 hours after birth. We found that attenuated HRV (AttHRV vaccination conferred similar overall protection against rotavirus diarrhea and virus shedding in Gn pigs and HGM transplanted Gn pigs. HGM promoted the development of the neonatal immune system, as evidenced by the significantly enhanced IFN-γ producing T cell responses and reduction of regulatory T cells and their cytokine production in the AttHRV-vaccinated pigs. The higher dose Lactobacillus rhamnosus GG (LGG feeding (14 doses, up to 109 colony-forming-unit [CFU]/dose effectively increased the LGG counts in the HGM Gn pig intestinal contents and significantly enhanced HRV-specific IFN-γ producing T cell responses to the AttHRV vaccine. Lower dose LGG (9 doses, up to 106 CFU/dose was ineffective. Neither doses of LGG significantly improved the protection rate, HRV-specific IgA and IgG antibody titers in serum, or IgA antibody titers in intestinal contents compared to the AttHRV vaccine alone, suggesting that an even higher dose of LGG is needed to overcome the influence of the microbiota to achieve the immunostimulatory effect in the HGM pigs. This study demonstrated that HGM Gn pig is an applicable animal model for studying immune responses to rotavirus vaccines and can be used for studying interventions (i.e., probiotics and prebiotics that may enhance the immunogenicity and protective efficacy of vaccines through improving the gut microbiota.

  12. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment.

    Science.gov (United States)

    Guerrero-Preston, Rafael; Godoy-Vitorino, Filipa; Jedlicka, Anne; Rodríguez-Hilario, Arnold; González, Herminio; Bondy, Jessica; Lawson, Fahcina; Folawiyo, Oluwasina; Michailidi, Christina; Dziedzic, Amanda; Thangavel, Rajagowthamee; Hadar, Tal; Noordhuis, Maartje G; Westra, William; Koch, Wayne; Sidransky, David

    2016-08-09

    Systemic inflammatory events and localized disease, mediated by the microbiome, may be measured in saliva as head and neck squamous cell carcinoma (HNSCC) diagnostic and prognostic biomonitors. We used a 16S rRNA V3-V5 marker gene approach to compare the saliva microbiome in DNA isolated from Oropharyngeal (OPSCC), Oral Cavity Squamous Cell Carcinoma (OCSCC) patients and normal epithelium controls, to characterize the HNSCC saliva microbiota and examine their abundance before and after surgical resection.The analyses identified a predominance of Firmicutes, Proteobacteria and Bacteroidetes, with less frequent presence of Actinobacteria and Fusobacteria before surgery. At lower taxonomic levels, the most abundant genera were Streptococcus, Prevotella, Haemophilus, Lactobacillus and Veillonella, with lower numbers of Citrobacter and Neisseraceae genus Kingella. HNSCC patients had a significant loss in richness and diversity of microbiota species (p<0.05) compared to the controls. Overall, the Operational Taxonomic Units network shows that the relative abundance of OTU's within genus Streptococcus, Dialister, and Veillonella can be used to discriminate tumor from control samples (p<0.05). Tumor samples lost Neisseria, Aggregatibacter (Proteobacteria), Haemophillus (Firmicutes) and Leptotrichia (Fusobacteria). Paired taxa within family Enterobacteriaceae, together with genus Oribacterium, distinguish OCSCC samples from OPSCC and normal samples (p<0.05). Similarly, only HPV positive samples have an abundance of genus Gemellaceae and Leuconostoc (p<0.05). Longitudinal analyses of samples taken before and after surgery, revealed a reduction in the alpha diversity measure after surgery, together with an increase of this measure in patients that recurred (p<0.05). These results suggest that microbiota may be used as HNSCC diagnostic and prognostic biomonitors.

  13. The gut microbiota and its relationship to diet and obesity

    Science.gov (United States)

    Clarke, Siobhan F.; Murphy, Eileen F.; Nilaweera, Kanishka; Ross, Paul R.; Shanahan, Fergus; O’Toole, Paul W.; Cotter, Paul D.

    2012-01-01

    Obesity develops from a prolonged imbalance of energy intake and energy expenditure. However, the relatively recent discovery that the composition and function of the gut microbiota impacts on obesity has lead to an explosion of interest in what is now a distinct research field. Here, research relating to the links between the gut microbiota, diet and obesity will be reviewed under five major headings: (1) the gut microbiota of lean and obese animals, (2) the composition of the gut microbiota of lean and obese humans, (3) the impact of diet on the gut microbiota, (4) manipulating the gut microbiota and (5) the mechanisms by which the gut microbiota can impact on weight gain. PMID:22572830

  14. Gut microbiota and the development of obesity.

    Science.gov (United States)

    Boroni Moreira, A P; Fiche Salles Teixeira, T; do C Gouveia Peluzio, M; de Cássia Gonçalves Alfenas, R

    2012-01-01

    Advances in tools for molecular investigations have allowed deeper understanding of how microbes can influence host physiology. A very interesting field of research that has gained attention recently is the possible role of gut microbiota in the development of obesity and metabolic disorders. The aim of this review is to discuss mechanisms that explain the influence of gut microbiota on host metabolism. The gut microbiota is important for normal physiology of the host. However, differences in their composition may have different impacts on host metabolism. It has been shown that obese and lean subjects present different microbiota composition profile. These differences in microbiota composition may contribute to weight imbalance and impaired metabolism. The evidences from animal models suggest that it is possible that the microbiota of obese subjects has higher capacity to harvest energy from the diet providing substrates that can activate lipogenic pathways. In addition, microorganisms can also influence the activity of lipoprotein lipase interfering in the accumulation of triglycerides in the adipose tissue. The interaction of gut microbiota with the endocannabinoid system provides a route through which intestinal permeability can be altered. Increased intestinal permeability allows the entrance of endotoxins to the circulation, which are related to the induction of inflammation and insulin resistance in mice. The impact of the proposed mechanisms for humans still needs further investigations. However, the fact that gut microbiota can be modulated through dietary components highlights the importance to study how fatty acids, carbohydrates, micronutrients, prebiotics, and probiotics can influence gut microbiota composition and the management of obesity. Gut microbiota seems to be an important and promising target in the prevention and treatment of obesity and its related metabolic disturbances in future studies and in clinical practice.

  15. Expression profiling and functional analysis of Toll-like receptors in primary healthy human nasal epithelial cells shows no correlation and a refractory LPS response

    NARCIS (Netherlands)

    van Tongeren, J.; Röschmann, K. I. L.; Reinartz, S. M.; Luiten, S.; Fokkens, W. J.; de Jong, E. C.; van Drunen, C. M.

    2015-01-01

    Background: Innate immune recognition via Toll-like receptors (TLRs) on barrier cells like epithelial cells has been shown to influence the regulation of local immune responses. Here we determine expression level variations and functionality of TLRs in nasal epithelial cells from healthy donors.

  16. Nasalance norms in Greek adults.

    Science.gov (United States)

    Okalidou, Areti; Karathanasi, Asimina; Grigoraki, Eleni

    2011-08-01

    The purposes of this study were to derive nasalance norms for monolingual Greek speakers, to examine nasalance scores as a function of gender and to draw cross-linguistic comparisons based on normative data. Participants read aloud a corpus of linguistic material, consisting of (1) a nasal text, an oral text and a balanced text; (2) a set of nasal sentences and four sets of oral sentences and (3) repetitions of each of 12 syllable types (8 oral and 4 nasal). The last two sets of material corpus were based on an adaptation of the Simplified Nasometric Assessment Procedures Test (SNAP test) test ( MacKay and Kummer, 1994 ) in Greek, called the G-SNAP test. Eighty monolingual healthy young adult speakers of Greek, 40 males (mean age = 21 years) and 40 females (mean age = 20.5 years), with normal hearing and speech characteristics and unremarkable history were included in the study. The Nasometer (model 6200-3) was used to derive nasalance scores. Mean normative nasalance for spoken Greek was 25.50%, based on the G-oronasal text (with 8.6% nasals). Nasalance scores did not differ significantly with respect to gender. Finally, spoken Greek consistently yielded lower nasalance scores than other languages examined in past work. The aforementioned normative data on nasalance of young adult speakers of Greek are valid across gender and have direct clinical utility as they provide valuable reference information for the diagnosis and management of Greek adults with resonance disorders caused by velar dysfunction.

  17. Surgical management of nasal obstruction.

    Science.gov (United States)

    Moche, Jason A; Palmer, Orville

    2012-05-01

    The proper evaluation of the patient with nasal obstruction relies on a comprehensive history and physical examination. Once the site of obstruction is accurately identified, the patient may benefit from a trial of medical management. At times however, the definitive treatment of nasal obstruction relies on surgical management. Recognizing the nasal septum, nasal valve, and turbinates as possible sites of obstruction and addressing them accordingly can dramatically improve a patient's nasal breathing. Conservative resection of septal cartilage, submucous reduction of the inferior turbinate, and structural grafting of the nasal valve when appropriate will provide the optimal improvement in nasal airflow and allow for the most stable results. Copyright © 2012. Published by Elsevier Inc.

  18. The gut microbiota, obesity and insulin resistance.

    Science.gov (United States)

    Shen, Jian; Obin, Martin S; Zhao, Liping

    2013-02-01

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflammation and insulin resistance. In this review we discuss molecular and cell biological mechanisms by which the microbiota participate in host functions that impact the development and maintenance of the obese state, including host ingestive behavior, energy harvest, energy expenditure and fat storage. We additionally explore the diverse signaling pathways that regulate gut permeability and bacterial translocation to the host and how these are altered in the obese state to promote the systemic inflammation ("metabolic endotoxemia") that is a hallmark of obesity and its complications. Fundamental to our discussions is the concept of "crosstalk", i.e., the biochemical exchange between host and microbiota that maintains the metabolic health of the superorganism and whose dysregulation is a hallmark of the obese state. Differences in community composition, functional genes and metabolic activities of the gut microbiota appear to distinguish lean vs obese individuals, suggesting that gut 'dysbiosis' contributes to the development of obesity and/or its complications. The current challenge is to determine the relative importance of obesity-associated compositional and functional changes in the microbiota and to identify the relevant taxa and functional gene modules that promote leanness and metabolic health. As diet appears to play a predominant role in shaping the microbiota and promoting obesity-associated dysbiosis, parallel initiatives are required to elucidate dietary patterns and diet components (e.g., prebiotics, probiotics) that promote healthy gut microbiota. How the microbiota promotes human health and disease is a rich area of investigation that is likely to generate

  19. Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome.

    Directory of Open Access Journals (Sweden)

    Nathan P McNulty

    Full Text Available The human gut microbiota is an important metabolic organ, yet little is known about how its individual species interact, establish dominant positions, and respond to changes in environmental factors such as diet. In this study, gnotobiotic mice were colonized with an artificial microbiota comprising 12 sequenced human gut bacterial species and fed oscillating diets of disparate composition. Rapid, reproducible, and reversible changes in the structure of this assemblage were observed. Time-series microbial RNA-Seq analyses revealed staggered functional responses to diet shifts throughout the assemblage that were heavily focused on carbohydrate and amino acid metabolism. High-resolution shotgun metaproteomics confirmed many of these responses at a protein level. One member, Bacteroides cellulosilyticus WH2, proved exceptionally fit regardless of diet. Its genome encoded more carbohydrate active enzymes than any previously sequenced member of the Bacteroidetes. Transcriptional profiling indicated that B. cellulosilyticus WH2 is an adaptive forager that tailors its versatile carbohydrate utilization strategy to available dietary polysaccharides, with a strong emphasis on plant-derived xylans abundant in dietary staples like cereal grains. Two highly expressed, diet-specific polysaccharide utilization loci (PULs in B. cellulosilyticus WH2 were identified, one with characteristics of xylan utilization systems. Introduction of a B. cellulosilyticus WH2 library comprising >90,000 isogenic transposon mutants into gnotobiotic mice, along with the other artificial community members, confirmed that these loci represent critical diet-specific fitness determinants. Carbohydrates that trigger dramatic increases in expression of these two loci and many of the organism's 111 other predicted PULs were identified by RNA-Seq during in vitro growth on 31 distinct carbohydrate substrates, allowing us to better interpret in vivo RNA-Seq and proteomics data. These

  20. Specific substrate-driven changes in human faecal microbiota composition contrast with functional redundancy in short-chain fatty acid production.

    Science.gov (United States)

    Reichardt, Nicole; Vollmer, Maren; Holtrop, Grietje; Farquharson, Freda M; Wefers, Daniel; Bunzel, Mirko; Duncan, Sylvia H; Drew, Janice E; Williams, Lynda M; Milligan, Graeme; Preston, Thomas; Morrison, Douglas; Flint, Harry J; Louis, Petra

    2018-02-01

    The diet provides carbohydrates that are non-digestible in the upper gut and are major carbon and energy sources for the microbial community in the lower intestine, supporting a complex metabolic network. Fermentation produces the short-chain fatty acids (SCFAs) acetate, propionate and butyrate, which have health-promoting effects for the human host. Here we investigated microbial community changes and SCFA production during in vitro batch incubations of 15 different non-digestible carbohydrates, at two initial pH values with faecal microbiota from three different human donors. To investigate temporal stability and reproducibility, a further experiment was performed 1 year later with four of the carbohydrates. The lower pH (5.5) led to higher butyrate and the higher pH (6.5) to more propionate production. The strongest propionigenic effect was found with rhamnose, followed by galactomannans, whereas fructans and several α- and β-glucans led to higher butyrate production. 16S ribosomal RNA gene-based quantitative PCR analysis of 22 different microbial groups together with 454 sequencing revealed significant stimulation of specific bacteria in response to particular carbohydrates. Some changes were ascribed to metabolite cross-feeding, for example, utilisation by Eubacterium hallii of 1,2-propanediol produced from fermentation of rhamnose by Blautia spp. Despite marked inter-individual differences in microbiota composition, SCFA production was surprisingly reproducible for different carbohydrates, indicating a level of functional redundancy. Interestingly, butyrate formation was influenced not only by the overall % butyrate-producing bacteria in the community but also by the initial pH, consistent with a pH-dependent shift in the stoichiometry of butyrate production.

  1. The Oral Microbiota.

    Science.gov (United States)

    Arweiler, Nicole B; Netuschil, Lutz

    2016-01-01

    The oral microbiota represents an important part of the human microbiota, and includes several hundred to several thousand diverse species. It is a normal part of the oral cavity and has an important function to protect against colonization of extrinsic bacteria which could affect systemic health. On the other hand, the most common oral diseases caries, gingivitis and periodontitis are based on microorganisms. While (medical) research focused on the planktonic phase of bacteria over the last 100 years, it is nowadays generally known, that oral microorganisms are organised as biofilms. On any non-shedding surfaces of the oral cavity dental plaque starts to form, which meets all criteria for a microbial biofilm and is subject to the so-called succession. When the sensitive ecosystem turns out of balance - either by overload or weak immune system - it becomes a challenge for local or systemic health. Therefore, the most common strategy and the golden standard for the prevention of caries, gingivitis and periodontitis is the mechanical removal of this biofilms from teeth, restorations or dental prosthesis by regular toothbrushing.

  2. Nasal packing with ventilated nasal packs; a comparison with traditional vaseline nasal pack

    International Nuclear Information System (INIS)

    Alam, J.; Siddiqui, M.W.; Abbas, A.; Sami, M.; Ayub, Z.

    2017-01-01

    To compare the benefits of ventilated nasal packing with traditional vaseline guaze nasal packing. Study Design: Randomized controlled trial. Place and Duration of Study: This study was conducted at CMH Multan, from Jun 2014 to Dec 2014. Material and Methods: In this study, sample size of 80 patients was calculated using WHO calculator. Patients were divided in two groups using lottery method endotracheal tube and piece of surgical glove filled with ribbon guaze was utilized for fabricated ventilated nasal pack and compared with traditional nasal packs. Nasal obstruction and sleep disturbance were studied at eight hours and twenty-four hours following surgery using visual analog scale. Results: Mean nasal obstruction with ventilated nasal pack was 45.62 +- 6.17 and with Vaseline nasal pack was 77.67 +- 4.85 which was statistically significant (p=0.001) in both the groups. Mean sleep disturbance in both the groups was 46.32 +- 5.23 and 68.75 +- 2.70 respectively which was statistically significant (p=0.001) in both the groups. Conclusion: Patients with ventilated nasal packs were found to have better tolerance to nasal packs due to less nasal obstruction and sleep disturbance

  3. The Influence of Social Conditions Across the Life Course on the Human Gut Microbiota: A Pilot Project With the Wisconsin Longitudinal Study.

    Science.gov (United States)

    Herd, Pamela; Schaeffer, Nora Cate; DiLoreto, Kerryann; Jacques, Karen; Stevenson, John; Rey, Federico; Roan, Carol

    2017-12-15

    To test the feasibility of collecting and integrating data on the gut microbiome into one of the most comprehensive longitudinal studies of aging and health, the Wisconsin Longitudinal Study (WLS). The long-term goal of this integration is to clarify the contribution of social conditions in shaping the composition of the gut microbiota late in life. Research on the microbiome, which is considered to be of parallel importance to human health as the human genome, has been hindered by human studies with nonrandomly selected samples and with limited data on social conditions over the life course. No existing population-based longitudinal study had collected fecal specimens. Consequently, we created an in-person protocol to collect stool specimens from a subgroup of WLS participants. We collected 429 stool specimens, yielding a 74% response rate and one of the largest human samples to date. The addition of data on the gut microbiome to the WLS-and to other population based longitudinal studies of aging-is feasible, under the right conditions, and can generate innovative research on the relationship between social conditions and the gut microbiome. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. [Gut microbiota: Description, role and pathophysiologic implications].

    Science.gov (United States)

    Landman, C; Quévrain, E

    2016-06-01

    The human gut contains 10(14) bacteria and many other micro-organisms such as Archaea, viruses and fungi. Studying the gut microbiota showed how this entity participates to gut physiology and beyond this to human health, as a real "hidden organ". In this review, we aimed to bring information about gut microbiota, its structure, its roles and its implication in human pathology. After bacterial colonization in infant, intestinal microbial composition is unique for each individual although more than 95% can be assigned to four major phyla. The use of culture independent methods and more recently the development of high throughput sequencing allowed to depict precisely gut microbiota structure and diversity as well as its alteration in diseases. Gut microbiota is implicated in the maturation of the host immune system and in many fundamental metabolic pathways including sugars and proteins fermentation and metabolism of bile acids and xenobiotics. Imbalance of gut microbial populations or dysbiosis has important functional consequences and is implicated in many digestive diseases (inflammatory bowel diseases, colorectal cancer, etc.) but also in obesity and autism. These observations have led to a surge of studies exploring therapeutics which aims to restore gut microbiota equilibrium such as probiotics or fecal microbiota transplantation. But recent research also investigates biological activity of microbial products which could lead to interesting therapeutics leads. Copyright © 2015 Société Nationale Française de Médecine Interne (SNFMI). Published by Elsevier SAS. All rights reserved.

  5. Gut Microbiota in Cardiovascular Health and Disease

    Science.gov (United States)

    Tang, W.H. Wilson; Kitai, Takeshi; Hazen, Stanley L

    2017-01-01

    Significant interest in recent years has focused on gut microbiota-host interaction because accumulating evidence has revealed that intestinal microbiota play an important role in human health and disease, including cardiovascular diseases. Changes in the composition of gut microbiota associated with disease, referred to as dysbiosis, have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity and type 2 diabetes mellitus. In addition to alterations in gut microbiota composition, the metabolic potential of gut microbiota has been identified as a contributing factor in the development of diseases. Recent studies revealed that gut microbiota can elicit a variety of effects on the host. Indeed, the gut microbiome functions like an endocrine organ, generating bioactive metabolites, that can impact host physiology. Microbiota interact with the host through a number of pathways, including the trimethylamine (TMA)/ trimethylamine N-oxide (TMAO) pathway, short-chain fatty acids pathway, and primary and secondary bile acids pathways. In addition to these “metabolism dependent” pathways, metabolism independent processes are suggested to also potentially contribute to CVD pathogenesis. For example, heart failure associated splanchnic circulation congestion, bowel wall edema and impaired intestinal barrier function are thought to result in bacterial translocation, the presence of bacterial products in the systemic circulation and heightened inflammatory state. These are believed to also contribute to further progression of heart failure and atherosclerosis. The purpose of the current review is to highlight the complex interplay between microbiota, their metabolites and the development and progression of cardiovascular diseases. We will also discuss the roles of gut microbiota in normal physiology and the potential of modulating intestinal microbial inhabitants as novel therapeutic targets. PMID:28360349

  6. Links between Dietary Protein Sources, the Gut Microbiota, and Obesity

    OpenAIRE

    Lise Madsen; Lise Madsen; Lise Madsen; Lene S. Myrmel; Even Fjære; Bjørn Liaset; Karsten Kristiansen; Karsten Kristiansen

    2017-01-01

    The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal stu...

  7. Links between dietary protein sources, the gut microbiota, and obesity

    OpenAIRE

    Madsen, Lise; Myrmel, Lene S.; Fjære, Even; Liaset, Bjørn; Kristiansen, Karsten

    2017-01-01

    The association between the gut microbiota and obesity is well documented in both humans and in animal models. It is also demonstrated that dietary factors can change the gut microbiota composition and obesity development. However, knowledge of how diet, metabolism and gut microbiota mutually interact and modulate energy metabolism and obesity development is still limited. Epidemiological studies indicate an association between intake of certain dietary protein sources and obesity. Animal stu...

  8. Interactions between the microbiota and pathogenic bacteria in the gut

    OpenAIRE

    Bäumler, Andreas J.; Sperandio, Vanessa

    2016-01-01

    The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, thes...

  9. The microbiota-gut-brain axis as a key regulator of neural function and the stress response: Implications for human and animal health.

    Science.gov (United States)

    Wiley, N C; Dinan, T G; Ross, R P; Stanton, C; Clarke, G; Cryan, J F

    2017-07-01

    The brain-gut-microbiota axis comprises an extensive communication network between the brain, the gut, and the microbiota residing there. Development of a diverse gut microbiota is vital for multiple features of behavior and physiology, as well as many fundamental aspects of brain structure and function. Appropriate early-life assembly of the gut microbiota is also believed to play a role in subsequent emotional and cognitive development. If the composition, diversity, or assembly of the gut microbiota is impaired, this impairment can have a negative impact on host health and lead to disorders such as obesity, diabetes, inflammatory diseases, and even potentially neuropsychiatric illnesses, including anxiety and depression. Therefore, much research effort in recent years has focused on understanding the potential of targeting the intestinal microbiota to prevent and treat such disorders. This review aims to explore the influence of the gut microbiota on host neural function and behavior, particularly those of relevance to stress-related disorders. The involvement of microbiota in diverse neural functions such as myelination, microglia function, neuronal morphology, and blood-brain barrier integrity across the life span, from early life to adolescence to old age, will also be discussed. Nurturing an optimal gut microbiome may also prove beneficial in animal science as a means to manage stressful situations and to increase productivity of farm animals. The implications of these observations are manifold, and researchers are hopeful that this promising body of preclinical work can be successfully translated to the clinic and beyond.

  10. Nasal deposition of ciclesonide nasal aerosol and mometasone aqueous nasal spray in allergic rhinitis patients.

    Science.gov (United States)

    Emanuel, Ivor A; Blaiss, Michael S; Meltzer, Eli O; Evans, Philip; Connor, Alyson

    2014-01-01

    Sensory attributes of intranasal corticosteroids, such as rundown to the back of the throat, may influence patient treatment preferences. This study compares the nasal deposition and nasal retention of a radiolabeled solution of ciclesonide nasal aerosol (CIC-hydrofluoroalkane [HFA]) with a radiolabeled suspension of mometasone furoate monohydrate aqueous nasal spray (MFNS) in subjects with either perennial allergic rhinitis (AR) or seasonal AR. In this open-label, single-dose, randomized, crossover scintigraphy study, 14 subjects with symptomatic AR received a single dose of radiolabeled 74-μg CIC-HFA (37 μg/spray, 1 spray/each nostril) via a nasal metered-dose inhaler or a single dose of radiolabeled 200-μg MFNS (50 μg/spray, 2 sprays/each nostril), with a minimum 5-day washout period between treatments. Initial deposition (2 minutes postdose) of radiolabeled CIC-HFA and MFNS in the nasal cavity, nasopharynx, and on nasal wipes, and retention of radioactivity in the nasal cavity and nasal run-out on nasal wipes at 2, 4, 6, 8, and 10 minutes postdose were quantified with scintigraphy. At 2 and 10 minutes postdose, deposition of radiolabeled CIC-HFA was significantly higher in the nasal cavity versus radiolabeled MFNS (99.42% versus 86.50% at 2 minutes, p = 0.0046; and 81.10% versus 54.31% at 10 minutes, p Deposition of radioactivity on nasal wipes was significantly higher with MFNS versus CIC-HFA at all five time points, and posterior losses of radiolabeled formulation were significantly higher with MFNS at 6, 8, and 10 minutes postdose. In this scintigraphic study, significantly higher nasal deposition and retention of radiolabeled aerosol CIC-HFA were observed versus radiolabeled aqueous MFNS in subjects with AR.

  11. The Gut Microbiota of Marine Fish

    Science.gov (United States)

    Egerton, Sian; Culloty, Sarah; Whooley, Jason; Stanton, Catherine; Ross, R. Paul

    2018-01-01

    The body of work relating to the gut microbiota of fish is dwarfed by that on humans and mammals. However, it is a field that has had historical interest and has grown significantly along with the expansion of the aquaculture industry and developments in microbiome research. Research is now moving quickly in this field. Much recent focus has been on nutritional manipulation and modification of the gut microbiota to meet the needs of fish farming, while trying to maintain host health and welfare. However, the diversity amongst fish means that baseline data from wild fish and a clear understanding of the role that specific gut microbiota play is still lacking. We review here the factors shaping marine fish gut microbiota and highlight gaps in the research. PMID:29780377

  12. [Gut microbiota in health and disease].

    Science.gov (United States)

    Icaza-Chávez, M E

    2013-01-01

    Gut microbiota is the community of live microorganisms residing in the digestive tract. There are many groups of researchers worldwide that are working at deciphering the collective genome of the human microbiota. Modern techniques for studying the microbiota have made us aware of an important number of nonculturable bacteria and of the relation between the microorganisms that live inside us and our homeostasis. The microbiota is essential for correct body growth, the development of immunity, and nutrition. Certain epidemics affecting humanity such as asthma and obesity may possibly be explained, at least partially, by alterations in the microbiota. Dysbiosis has been associated with a series of gastrointestinal disorders that include non-alcoholic fatty liver disease, celiac disease, and irritable bowel syndrome. The present article deals with the nomenclature, modern study techniques, and functions of gut microbiota, and its relation to health and disease. Copyright © 2013 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  13. Role of the normal gut microbiota.

    Science.gov (United States)

    Jandhyala, Sai Manasa; Talukdar, Rupjyoti; Subramanyam, Chivkula; Vuyyuru, Harish; Sasikala, Mitnala; Nageshwar Reddy, D

    2015-08-07

    Relation between the gut microbiota and human health is being increasingly recognised. It is now well established that a healthy gut flora is largely responsible for overall health of the host. The normal human gut microbiota comprises of two major phyla, namely Bacteroidetes and Firmicutes. Though the gut microbiota in an infant appears haphazard, it starts resembling the adult flora by the age of 3 years. Nevertheless, there exist temporal and spatial variations in the microbial distribution from esophagus to the rectum all along the individual's life span. Developments in genome sequencing technologies and bioinformatics have now enabled scientists to study these microorganisms and their function and microbe-host interactions in an elaborate manner both in health and disease. The normal gut microbiota imparts specific function in host nutrient metabolism, xenobiotic and drug metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation, and protection against pathogens. Several factors play a role in shaping the normal gut microbiota. They include (1) the mode of delivery (vaginal or caesarean); (2) diet during infancy (breast milk or formula feeds) and adulthood (vegan based or meat based); and (3) use of antibiotics or antibiotic like molecules that are derived from the environment or the gut commensal community. A major concern of antibiotic use is the long-term alteration of the normal healthy gut microbiota and horizontal transfer of resistance genes that could result in reservoir of organisms with a multidrug resistant gene pool.

  14. The developing hypopharyngeal microbiota in early life

    DEFF Research Database (Denmark)

    Mortensen, Martin Steen; Brejnrod, Asker Daniel; Roggenbuck, Michael

    2016-01-01

    BACKGROUND: The airways of healthy humans harbor a distinct microbial community. Perturbations in the microbial community have been associated with disease, yet little is known about the formation and development of a healthy airway microbiota in early life. Our goal was to understand the establi......BACKGROUND: The airways of healthy humans harbor a distinct microbial community. Perturbations in the microbial community have been associated with disease, yet little is known about the formation and development of a healthy airway microbiota in early life. Our goal was to understand...... the establishment of the airway microbiota within the first 3 months of life. We investigated the hypopharyngeal microbiota in the unselected COPSAC2010 cohort of 700 infants, using 16S rRNA gene sequencing of hypopharyngeal aspirates from 1 week, 1 month, and 3 months of age. RESULTS: Our analysis shows...... that majority of the hypopharyngeal microbiota of healthy infants belong to each individual's core microbiota and we demonstrate five distinct community pneumotypes. Four of these pneumotypes are dominated by the genera Staphylococcus, Streptococcus, Moraxella, and Corynebacterium, respectively. Furthermore, we...

  15. Nutrition meets the microbiome: micronutrients and the microbiota.

    Science.gov (United States)

    Biesalski, Hans K

    2016-05-01

    There is increasing evidence that food is an important factor that influences and shapes the composition and configuration of the gut microbiota. Most studies have focused on macronutrients (fat, carbohydrate, protein) in particular and their effects on the gut microbiota. Although the microbiota can synthesize different water-soluble vitamins, the effects of vitamins synthesized within the microbiota on systemic vitamin status are unclear. Few studies exist on the shuttling of vitamins between the microbiota and intestine and the impact of luminal vitamins on the microbiota. Studying the interactions between vitamins and the microbiota may help to understand the effects of vitamins on the barrier function and immune system of the intestinal tract. Furthermore, understanding the impact of malnutrition, particularly low micronutrient supply, on microbiota development, composition, and metabolism may help in implementing new strategies to overcome the deleterious effects of malnutrition on child development. This article reviews data on the synthesis of different micronutrients and their effects on the human microbiota, and further discusses the consequences of malnutrition on microbiota composition. © 2016 New York Academy of Sciences.

  16. The lung tissue microbiota of mild and moderate chronic obstructive pulmonary disease.

    Science.gov (United States)

    Pragman, Alexa A; Lyu, Tianmeng; Baller, Joshua A; Gould, Trevor J; Kelly, Rosemary F; Reilly, Cavan S; Isaacson, Richard E; Wendt, Chris H

    2018-01-09

    Oral taxa are often found in the chronic obstructive pulmonary disease (COPD) lung microbiota, but it is not clear if this is due to a physiologic process such as aspiration or experimental contamination at the time of specimen collection. Microbiota samples were obtained from nine subjects with mild or moderate COPD by swabbing lung tissue and upper airway sites during lung lobectomy. Lung specimens were not contaminated with upper airway taxa since they were obtained surgically. The microbiota were analyzed with 16S rRNA gene qPCR and 16S rRNA gene hypervariable region 3 (V3) sequencing. Data analyses were performed using QIIME, SourceTracker, and R. Streptococcus was the most common genus in the oral, bronchial, and lung tissue samples, and multiple other taxa were present in both the upper and lower airways. Each subject's own bronchial and lung tissue microbiota were more similar to each other than were the bronchial and lung tissue microbiota of two different subjects (permutation test, p = 0.0139), indicating more within-subject similarity than between-subject similarity at these two lung sites. Principal coordinate analysis of all subject samples revealed clustering by anatomic sampling site (PERMANOVA, p = 0.001), but not by subject. SourceTracker analysis found that the sources of the lung tissue microbiota were 21.1% (mean) oral microbiota, 8.7% nasal microbiota, and 70.1% unknown. An analysis using the neutral theory of community ecology revealed that the lung tissue microbiota closely reflects the bronchial, oral, and nasal microbiota (immigration parameter estimates 0.69, 0.62, and 0.74, respectively), with some evidence of ecologic drift occurring in the lung tissue. This is the first study to evaluate the mild-moderate COPD lung tissue microbiota without potential for upper airway contamination of the lung samples. In our small study of subjects with COPD, we found oral and nasal bacteria in the lung tissue microbiota, confirming that

  17. Neuropeptides, Microbiota, and Behavior.

    Science.gov (United States)

    Holzer, P

    2016-01-01

    The gut microbiota and the brain interact with each other through multiple bidirectional signaling pathways in which neuropeptides and neuroactive peptide messengers play potentially important mediator roles. Currently, six particular modes of a neuropeptide link are emerging. (i) Neuropeptides and neurotransmitters contribute to the mutual microbiota-host interaction. (ii) The synthesis of neuroactive peptides is influenced by microbial control of the availability of amino acids. (iii) The activity of neuropeptides is tempered by microbiota-dependent autoantibodies. (iv) Peptide signaling between periphery and brain is modified by a regulatory action of the gut microbiota on the blood-brain barrier. (v) Within the brain, gut hormones released under the influence of the gut microbiota turn into neuropeptides that regulate multiple aspects of brain activity. (vi) Cerebral neuropeptides participate in the molecular, behavioral, and autonomic alterations which the brain undergoes in response to signals from the gut microbiota. © 2016 Elsevier Inc. All rights reserved.

  18. Is there any relationship between right and left hand dominance and right and left nasal airflow dominance?

    Science.gov (United States)

    Price, A; Eccles, R

    2017-10-01

    Left- or right-handedness is a common human trait, and it has been previously reported that human nasal airflow dominance correlates with hand dominance. Any relationship between hand dominance and nasal airflow dominance would be unusual. This study aimed to measure nasal airflow and look for any relationship to handedness. The modified Glatzel mirror was used to record the dominant nasal passage at 15-minute intervals over a 6-hour period in 29 healthy participants consisting of 15 left-handers and 14 right-handers. In left-handers, the percentage of time that the left nasal passage was dominant ranged from 0 to 100 per cent. In right-handers, the percentage of time that the right nasal passage was dominant ranged from 4.2 to 95.8 per cent. No correlation between nasal airflow dominance and hand dominance was identified. The results do not support the hypothesis that nasal airflow and handedness are related.

  19. Evaluation on prebiotic properties of β-glucan and oligo-β-glucan from mushrooms by human fecal microbiota in fecal batch culture

    Directory of Open Access Journals (Sweden)

    Chiraphon Chaikliang

    2015-11-01

    Full Text Available Background: β-glucan is dietary fiber, a structural polysaccharide, β-linked linear chains of D-glucose polymers with variable frequency of branches. β-glucan is isolated from different sources such as cell walls of baker’s yeast (Saccharomyces cerevisiae, cereals (oat and barley and various species of mushrooms. Among 8 mushrooms in the study, Schizophylum commune Fr and Auricularia auricula Judae had the highest in β-glucan contents and the cheapest cost of mushroom per content of β-glucan, respectively. Even the function of β-glucan on immune modulation has been known however no report on interaction between β-glucan and human gut microbiota. Gut microbiota is thought to have health effects by interaction with non-digestible component particular fermentable dietary fiber. It is important to correlate the specific groups of the microbial communities associated with β-glucan fermentation and the consequential SCFA profiles. β-glucan from mushroom may has potential prebiotic function similar to those from commercial yeast (Saccharomyces cerevisiae β-glucan. Objective: To evaluate on prebiotic properties of soluble β-glucans and oligo-β-glucans from Schizophylum commune Fr and Auricularia auricula Judae by fecal fermentation in batch culture. Methods: In vitro fecal fermentation in anaerobic batch cultures under simulated conditions similar to human colon with human faecal samples from three donors were performed. Comparison on 3 β-glucans and 2 oligo-β-glucans have been studied. Sample was taken at 0 h, 24 h and 48 h to analyze the numbers of bacterial changes by fluorescent in situ hybridization (FISH technique. Short chain fatty acids (SCFA were analyzed by HPLC. The prebiotic index (PI was calculated according to the change of 5 specific bacterial genus within 48 h fermentation. Results: Soluble β-glucan from Auricularia auricula Judae increased numbers of bifidobacteria and lactobacillus significantly (P<0.05. The PI of

  20. Fate and effects of Camembert cheese micro-organisms in the human colonic microbiota of healthy volunteers after regular Camembert consumption.

    Science.gov (United States)

    Firmesse, Olivier; Alvaro, Elise; Mogenet, Agnès; Bresson, Jean-Louis; Lemée, Riwanon; Le Ruyet, Pascale; Bonhomme, Cécile; Lambert, Denis; Andrieux, Claude; Doré, Joël; Corthier, Gérard; Furet, Jean-Pierre; Rigottier-Gois, Lionel

    2008-07-15

    The objective of this study was to determine i) if Camembert cheese micro-organisms could be detected in fecal samples after regular consumption by human subjects and ii) the consequence of this consumption on global metabolic activities of the host colonic microbiota. An open human protocol was designed where 12 healthy volunteers were included: a 2-week period of fermented products exclusion followed by a 4-weeks Camembert ingestion period where 2x40 g/day of Camembert cheese was consumed. Stools were collected from the volunteers before consumption, twice during the ingestion period (2nd and 4th week) and once after a wash out period of 2 weeks. During the consumption of Camembert cheese, high levels of Lactococcus lactis and Leuconostoc mesenteroides were measured in fecal samples using real-time quantitative PCR, reaching median values of 8.2 and 7.5 Log(10) genome equivalents/g of stool. For Ln. mesenteroides, persistence was observed 15 days after the end of Camembert consumption. The survival of Geotrichum candidum was also assessed and the fecal concentration reached a median level of 7.1 Log(10) CFU/g in stools. Except a decreasing trend of the nitrate reductase activity, no significant modification was shown in the metabolic activities during this study.

  1. Effect of diet on the intestinal microbiota and its activity

    NARCIS (Netherlands)

    Zoetendal, E.G.; Vos, de W.M.

    2014-01-01

    AB Purpose of review: To summarize and discuss recent findings concerning diet-microbiota-health relations. Recent findings: Mouse and other model animal studies have provided detailed insight into host-microbiota interactions, but cannot be extrapolated easily to humans that have different dietary

  2. Microbiome/microbiota and allergies.

    Science.gov (United States)

    Inoue, Yuzaburo; Shimojo, Naoki

    2015-01-01

    Allergies are characterized by a hypersensitive immune reaction to originally harmless antigens. In recent decades, the incidence of allergic diseases has markedly increased, especially in developed countries. The increase in the frequency of allergic diseases is thought to be primarily due to environmental changes related to a westernized lifestyle, which affects the commensal microbes in the human body. The human gut is the largest organ colonized by bacteria and contains more than 1000 bacterial species, called the "gut microbiota." The recent development of sequencing technology has enabled researchers to genetically investigate and clarify the diversity of all species of commensal microbes. The collective genomes of commensal microbes are together called the "microbiome." Although the detailed mechanisms remain unclear, it has been proposed that the microbiota/microbiome, especially that in the gut, impacts the systemic immunity and metabolism, thus affecting the development of various immunological diseases, including allergies. In this review, we summarize the recent findings regarding the importance of the microbiome/microbiota in the development of allergic diseases and also the results of interventional studies using probiotics or prebiotics to prevent allergies.

  3. INTESTINAL MICROBIOTA IN DIGESTIVE DISEASES

    Directory of Open Access Journals (Sweden)

    Maria do Carmo Friche PASSOS

    2017-07-01

    Full Text Available ABSTRACT BACKGROUND In recent years, especially after the development of sophisticated metagenomic studies, research on the intestinal microbiota has increased, radically transforming our knowledge about the microbiome and its association with health maintenance and disease development in humans. Increasing evidence has shown that a permanent alteration in microbiota composition or function (dysbiosis can alter immune responses, metabolism, intestinal permeability, and digestive motility, thereby promoting a proinflammatory state. Such alterations can mainly impair the host’s immune and metabolic functions, thus favoring the onset of diseases such as diabetes, obesity, digestive, neurological, autoimmune, and neoplastic diseases. This comprehensive review is a compilation of the available literature on the formation of the complex intestinal ecosystem and its impact on the incidence of diseases such as obesity, non-alcoholic steatohepatitis, irritable bowel syndrome, inflammatory bowel disease, celiac disease, and digestive neoplasms. CONCLUSION: Alterations in the composition and function of the gastrointestinal microbiota (dysbiosis have a direct impact on human health and seem to have an important role in the pathogenesis of several gastrointestinal diseases, whether inflammatory, metabolic, or neoplastic ones.

  4. Enzootic Nasal Adenocarcinoma: Cytological and ...

    African Journals Online (AJOL)

    Enzootic nasal adenocarcinoma (ENA), a contagious retroviral disease of sheep and goats, characterized by neoplastic growth of the ethmoidal mucosa in the nasal cavity is described in a West African Dwarf goat (WAD). A two-year old WAD goat, weighing approximately 20kg was observed in the Teaching and Research ...

  5. The gut microbiota and inflammatory noncommunicable diseases

    DEFF Research Database (Denmark)

    West, Christina E; Renz, Harald; Jenmalm, Maria C

    2015-01-01

    Rapid environmental transition and modern lifestyles are likely driving changes in the biodiversity of the human gut microbiota. With clear effects on physiologic, immunologic, and metabolic processes in human health, aberrations in the gut microbiome and intestinal homeostasis have the capacity...... for neurodevelopment and mental health. These diverse multisystem influences have sparked interest in strategies that might favorably modulate the gut microbiota to reduce the risk of many NCDs. For example, specific prebiotics promote favorable intestinal colonization, and their fermented products have anti....... In human subjects it has been successfully used in cases of Clostridium difficile infection and IBD, although controlled trials are lacking for IBD. Here we discuss relationships between gut colonization and inflammatory NCDs and gut microbiota modulation strategies for their treatment and prevention....

  6. Cultured skin microbiota attracts malaria mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Beijleveld, H.; Knols, B.G.J.; Takken, W.; Schraa, G.; Bouwmeester, H.J.; Smallegange, R.C.

    2009-01-01

    Background - Host-seeking of the African malaria mosquito, Anopheles gambiae sensu stricto, is guided by human odours. The precise nature of the odours, and the composition of attractive blends of volatiles, remains largely unknown. Skin microbiota plays an important role in the production of human

  7. Cultured skin microbiota attracts malaria mosquitoes

    NARCIS (Netherlands)

    Verhulst, Niels O.; Beijleveld, Hans; Knols, Bart Gj; Takken, Willem; Schraa, Gosse; Bouwmeester, Harro J.; Smallegange, Renate C.

    2009-01-01

    Host-seeking of the African malaria mosquito, Anopheles gambiae sensu stricto, is guided by human odours. The precise nature of the odours, and the composition of attractive blends of volatiles, remains largely unknown. Skin microbiota plays an important role in the production of human body odours.

  8. Cultured skin microbiota attracts malaria mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Beijleveld, H.; Knols, B.G.J.; Takken, W.; Schraa, G.; Bouwmeester, H.J.; Smallegange, R.C.

    2009-01-01

    Background: Host-seeking of the African malaria mosquito, Anopheles gambiae sensu stricto, is guided by human odours. The precise nature of the odours, and the composition of attractive blends of volatiles, remains largely unknown. Skin microbiota plays an important role in the production of human

  9. The role of microbiota in retinal disease

    Science.gov (United States)

    The ten years since the first publications on the human microbiome project have brought enormous attention and insight into the role of the human microbiome in health and disease. Connections between populations of microbiota and ocular disease are now being established, and increased accessibility ...

  10. A randomised trial of the effect of omega-3 polyunsaturated fatty acid supplements on the human intestinal microbiota.

    Science.gov (United States)

    Watson, Henry; Mitra, Suparna; Croden, Fiona C; Taylor, Morag; Wood, Henry M; Perry, Sarah L; Spencer, Jade A; Quirke, Phil; Toogood, Giles J; Lawton, Clare L; Dye, Louise; Loadman, Paul M; Hull, Mark A

    2017-09-26

    Omega-3 polyunsaturated fatty acids (PUFAs) have anticolorectal cancer (CRC) activity. The intestinal microbiota has been implicated in colorectal carcinogenesis. Dietary omega-3 PUFAs alter the mouse intestinal microbiome compatible with antineoplastic activity. Therefore, we investigated the effect of omega-3 PUFA supplements on the faecal microbiome in middle-aged, healthy volunteers (n=22). A randomised, open-label, cross-over trial of 8 weeks' treatment with 4 g mixed eicosapentaenoic acid/docosahexaenoic acid in two formulations (soft-gel capsules and Smartfish drinks), separated by a 12-week 'washout' period. Faecal samples were collected at five time-points for microbiome analysis by 16S ribosomal RNA PCR and Illumina MiSeq sequencing. Red blood cell (RBC) fatty acid analysis was performed by liquid chromatography tandem mass spectrometry. Both omega-3 PUFA formulations induced similar changes in RBC fatty acid content, except that drinks were associated with a larger, and more prolonged, decrease in omega-6 PUFA arachidonic acid than the capsule intervention (p=0.02). There were no significant changes in α or β diversity, or phyla composition, associated with omega-3 PUFA supplementation. However, a reversible increased abundance of several genera, including Bifidobacterium , Roseburia and Lactobacillus was observed with one or both omega-3 PUFA interventions. Microbiome changes did not correlate with RBC omega-3 PUFA incorporation or development of omega-3 PUFA-induced diarrhoea. There were no treatment order effects. Omega-3 PUFA supplementation induces a reversible increase in several short-chain fatty acid-producing bacteria, independently of the method of administration. There is no simple relationship between the intestinal microbiome and systemic omega-3 PUFA exposure. ISRCTN18662143. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless

  11. Development of Human Breast Milk Microbiota-Associated Mice as a Method to Identify Breast Milk Bacteria Capable of Colonizing Gut.

    Science.gov (United States)

    Wang, Xiaoxin; Lu, Huifang; Feng, Zhou; Cao, Jie; Fang, Chao; Xu, Xianming; Zhao, Liping; Shen, Jian

    2017-01-01

    Human breast milk is recognized as one of multiple important sources of commensal bacteria for infant gut. Previous studies searched for the bacterial strains shared between breast milk and infant feces by isolating bacteria and performing strain-level bacterial genotyping, but only limited number of milk bacteria were identified to colonize infant gut, including bacteria from Bifidobacterium , Staphylococcus , Lactobacillus , and Escherichia / Shigella . Here, to identify the breast milk bacteria capable of colonizing gut without the interference of bacteria of origins other than the milk or the necessity to analyze infant feces, normal chow-fed germ-free mice were orally inoculated with the breast milk collected from a mother 2 days after vaginal delivery. According to 16S rRNA gene-based denaturant gradient gel electrophoresis and Illumina sequencing, bacteria at >1% abundance in the milk inoculum were only Streptococcus (56.0%) and Staphylococcus (37.4%), but in the feces of recipient mice were Streptococcus (80.3 ± 2.3%), Corynebacterium (10.0 ± 2.6 %), Staphylococcus (7.6 ± 1.6%), and Propionibacterium (2.1 ± 0.5%) that were previously shown as dominant bacterial genera in the meconium of C-section-delivered human babies; the abundance of anaerobic gut-associated bacteria, Faecalibacterium , Prevotella , Roseburia , Ruminococcus , and Bacteroides , was 0.01-1% in the milk inoculum and 0.003-0.01% in mouse feces; the abundance of Bifidobacterium spp. was below the detection limit of Illumina sequencing in the milk but at 0.003-0.01% in mouse feces. The human breast milk microbiota-associated mouse model may be used to identify additional breast milk bacteria that potentially colonize infant gut.

  12. Case report: Detection of the Middle East respiratory syndrome corona virus (MERS-CoV in nasal secretions of a dead human

    Directory of Open Access Journals (Sweden)

    Waleed H. Mahallawi, PhD

    2018-06-01

    Full Text Available الملخص: يُعرف فيروس ”كورونا“ المسبب لمتلازمة الشرق الأوسط التنفسية على أنه فيروس شديد العدوى يصيب الجهاز التنفسي مع معدلات مرتفعة في المضاعفات والوفيات. يُحمِّل فيروس كورونا المسبب لمتلازمة الشرق الأوسط التنفسية عبئا كبيرا على مرافق الرعاية الصحية في المملكة العربية السعودية بنسبة وفيات تقارب الـ ٤٠٪. ولا يزال انتقال الفيروس غير مفهوم بشكل جيد. ولذلك، فإن منع أي طريق للانتقال هو أفضل وسيلة لمنع انتشار هذا المرض. تم باستخدام تفاعل البوليميرايز المتسلسل الآني، الكشف عن فيروس كورونا المسبب لمتلازمة الشرق الأوسط التنفسية في الافرازات الأنفية لجثة. لذا ينبغي تطبيق الاحتياطات الكاملة ومتابعتها لمنع انتقال الفيروس، خاصة بين العاملين في مجال الرعاية الصحية. Abstract: The Middle East respiratory syndrome coronavirus (MERS-CoV has been recognized as a highly pathogenic virus that infects the human respiratory tract and has high morbidity and mortality. The MERS-CoV is a huge burden on Saudi Arabian health-care facilities, causing approximately 40% mortality. The transmission mechanism of the virus is still not well understood. Therefore, the prevention of any route of transmission is the best measure to arrest the spread of this disease. Using the real time polymerase chain reaction (RT-PCR, MERS-CoV was detected in the nasal secretions of a human cadaver. Full precautions should be applied and carefully followed to prevent the transmission of the virus, especially among health care workers. الكلمات

  13. Impact of nasopharyngeal microbiota on the development of respiratory tract diseases.

    Science.gov (United States)

    Esposito, S; Principi, N

    2018-01-01

    Knowledge of whether and how respiratory microbiota composition can prime the immune system and provide colonisation resistance, limiting consecutive pathobiont overgrowth and infections, is essential to improving the prevention and therapy of respiratory disorders. Modulation of dysbiotic ecosystems or reconstitution of missing microbes might be a possible measure to reduce respiratory diseases. The aim of this review is to analyse the role of nasopharyngeal microbiota in the development of respiratory tract disease in paediatric-age subjects. PubMed was used to search for all studies published over the last 15 years using the following key words: "microbiota" or "microbioma" and "nasopharyngeal" or "respiratory" or "nasal" and "children" or "paediatric" or "infant". Analysis of the literature showed that respiratory microbiota can regulate health and disease development in the respiratory tract. Like the gut microbiota, the respiratory microbiota is established at birth, and early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children. Protective and dangerous bacteria have been identified, and this can be considered the base for developing new approaches to diseases that respond poorly to traditional interventions. Reconstitution of missing microbes can be achieved by the administration of pre- and probiotics. Modulation of respiratory microbiota by favouring colonisation of the upper respiratory tract by beneficial commensals can interfere with the proliferation and activity of resident pathobionts and is a possible new measure to reduce the risk of disease. However, further studies are needed because a deeper understanding of these and related issues can be transferred to clinical practice.

  14. Chondrosarcoma of the nasal septum

    International Nuclear Information System (INIS)

    Yamamoto, Seiji; Motoori, Ken; Ueda, Takuya; Osaka, Iwao; Takano, Hideyuki; Nagata, Hiroshi

    2002-01-01

    The nasal septum is a particularly rare site of origin of chondrosarcoma. Cranial base invasion may be at hand, with such lesions making complete tumor removal difficult. MRI techniques allow precise definition of tumor extent. In the described case, CT and Dynamic MR imaging were performed in a case of chondrosarcoma of the nasal septum. Imaging clearly illustrated size and extent of the mass with central regions of internal calcification. Dynamic MRI was additionally performed, which helped to define the presumed origin of the lesion from the nasal septum. (orig.)

  15. Nasal Glial Heterotopia with Cleft Palate.

    Science.gov (United States)

    Chandna, Sudhir; Mehta, Milind A; Kulkarni, Abhishek Kishore

    2018-01-01

    Congenital midline nasal masses are rare anomalies of which nasal glial heterotopia represents an even rarer subset. We report a case of a 25-day-old male child with nasal glial heterotopia along with cleft palate suggesting embryonic fusion anomaly which was treated with excision and primary closure for nasal mass followed by palatal repair at later date.

  16. Nasal glial heterotopia with cleft palate

    Directory of Open Access Journals (Sweden)

    Sudhir Chandna

    2018-01-01

    Full Text Available Congenital midline nasal masses are rare anomalies of which nasal glial heterotopia represents an even rarer subset. We report a case of a 25-day-old male child with nasal glial heterotopia along with cleft palate suggesting embryonic fusion anomaly which was treated with excision and primary closure for nasal mass followed by palatal repair at later date.

  17. Localized nasal cavity, sinus, and massive bilateral orbital involvement by human T cell leukemia virus 1 adult T cell lymphoma, with epidermal hypertrophy due to mite infestation

    Directory of Open Access Journals (Sweden)

    Kathleen Laveaux

    2010-10-01

    Full Text Available HTLV1 adult T cell lymphoma occurs tends to be widely disseminated and aggressive, with only brief responses to chemotherapy. Aside from cervical adenopathy, involvement of head and neck structures is uncommon and orbital involvement rare. We report a case of nasal cavity HTLV lymphoma with massive bilateral orbital involvement and proptosis, resulting in complete left and partial right eye amaurosis. No other sites of disease were found. Response to chemotherapy was rapid and complete, with almost complete restoration of vision and oculo-motor function; the patient has remained in remission for one year. An associated problem was striking bilateral hypertrophic, hyperkeratotic eyelid and breast lesions due to mite infestation. 

  18. Intranasal administration of a proteosome-influenza vaccine is well-tolerated and induces serum and nasal secretion influenza antibodies in healthy human subjects.

    Science.gov (United States)

    Treanor, John; Nolan, Carrie; O'Brien, Diane; Burt, David; Lowell, George; Linden, Janine; Fries, Louis

    2006-01-16

    Two randomized, blinded, active comparator-controlled trials of a prototype monovalent A/Beijing/262/95 (H1N1) - proteosome vaccine delivered by intranasal spray were performed in healthy adults. Overall, the intranasal proteosome-adjuvanted vaccine was well-tolerated with only mild stuffy nose and rhinorrhea seen more frequently in recipients of vaccine than in recipients of intranasal saline, and there were no serious adverse events. The intranasal proteosome-adjuvanted vaccine induced serum hemagglutination inhibiting (HAI) and nasal secretory IgA (sIgA) responses specific for the influenza antigen. Serum HAI responses were most influenced by the dosage level, whereas mucosal sIgA responses, although demonstrable with both single-dose and two-dose vaccine regimens, appeared to be greater in response to two-dose regimens (regardless of dose level). Further evaluation of mucosal influenza immunization using the proteosome adjuvant/delivery system is clearly warranted.

  19. Metabolism of rutin and poncirin by human intestinal microbiota and cloning of their metabolizing α-L-rhamnosidase from Bifidobacterium dentium.

    Science.gov (United States)

    Bang, Seo-Hyeon; Hyun, Yang-Jin; Shim, Juwon; Hong, Sung-Woon; Kim, Dong-Hyun

    2015-01-01

    To understand the metabolism of flavonoid rhamnoglycosides by human intestinal microbiota, we measured the metabolic activity of rutin and poncirin (distributed in many functional foods and herbal medicine) by 100 human stool specimens. The average α-Lrhamnosidase activities on the p-nitrophenyl-α-L-rhamnopyranoside, rutin, and poncirin subtrates were 0.10 ± 0.07, 0.25 ± 0.08, and 0.15 ± 0.09 pmol/min/mg, respectively. To investigate the enzymatic properties, α-L-rhamnosidase-producing bacteria were isolated from the specimens, and the α-L-rhamnosidase gene was cloned from a selected organism, Bifidobacterium dentium, and expressed in E. coli. The cloned α-L-rhamnosidase gene contained a 2,673 bp sequcence encoding 890 amino acid residues. The cloned gene was expressed using the pET 26b(+) vector in E. coli BL21, and the expressed enzyme was purified using Ni(2+)-NTA and Q-HP column chromatography. The specific activity of the purified α-L-rhamnosidase was 23.3 μmol/min/mg. Of the tested natural product constituents, the cloned α-L-rhamnosidase hydrolyzed rutin most potently, followed by poncirin, naringin, and ginsenoside Re. However, it was unable to hydrolyze quercitrin. This is the first report describing the cloning, expression, and characterization of α-L-rhamnosidase, a flavonoid rhamnoglycosidemetabolizing enzyme, from bifidobacteria. Based on these findings, the α-L-rhamnosidase of intestinal bacteria such as B. dentium seem to be more effective in hydrolyzing (1-->6) bonds than (1-->2) bonds of rhamnoglycosides, and may play an important role in the metabolism and pharmacological effect of rhamnoglycosides.

  20. In Vitro Bioaccessibility, Human Gut Microbiota Metabolites and Hepatoprotective Potential of Chebulic Ellagitannins: A Case of Padma Hepaten® Formulation

    Directory of Open Access Journals (Sweden)

    Daniil N. Olennikov

    2015-10-01

    Full Text Available Chebulic ellagitannins (ChET are plant-derived polyphenols containing chebulic acid subunits, possessing a wide spectrum of biological activities that might contribute to health benefits in humans. The herbal formulation Padma Hepaten containing ChETs as the main phenolics, is used as a hepatoprotective remedy. In the present study, an in vitro dynamic model simulating gastrointestinal digestion, including dialysability, was applied to estimate the bioaccessibility of the main phenolics of Padma Hepaten. Results indicated that phenolic release was mainly achieved during the gastric phase (recovery 59.38%–97.04%, with a slight further release during intestinal digestion. Dialysis experiments showed that dialysable phenolics were 64.11% and 22.93%–26.05% of their native concentrations, respectively, for gallic acid/simple gallate esters and ellagitanins/ellagic acid, in contrast to 20.67% and 28.37%–55.35% for the same groups in the non-dialyzed part of the intestinal media. Investigation of human gut microbiota metabolites of Padma Hepaten and pure ChETs (chebulinic, chebulagic acids established the formation of bioactive urolithins (A, B, C, D, M5. The fact of urolithin formation during microbial transformation from ChETs and ChET-containing plant material was revealed for the first time. Evaluation of the protective effect of ChETs colonic metabolites and urolithins on tert-butyl hydroperoxide (t-BHP-induced oxidative injury in cultured rat primary hepatocytes demonstrated their significant reversion of the t-BHP-induced cell cytotoxicity, malonic dialdehyde production and lactate dehydrogenase leakage. The most potent compound was urolithin C with close values of hepatoprotection to gallic acid. The data obtained indicate that in the case of Padma Hepaten, we speculate that urolithins have the potential to play a role in the hepatic prevention against oxidative damage.

  1. Poly(I:C) reduces expression of JAM-A and induces secretion of IL-8 and TNF-α via distinct NF-κB pathways in human nasal epithelial cells

    International Nuclear Information System (INIS)

    Ohkuni, Tsuyoshi; Kojima, Takashi; Ogasawara, Noriko; Masaki, Tomoyuki; Fuchimoto, Jun; Kamekura, Ryuta; Koizumi, Jun-ichi; Ichimiya, Shingo; Murata, Masaki; Tanaka, Satoshi; Himi, Tetsuo; Sawada, Norimasa

    2011-01-01

    Human nasal epithelium is an important physical barrier and innate immune defense protecting against inhaled substances and pathogens. Toll-like receptor (TLR) signaling, which plays a key role in the innate immune response, has not been well characterized in human nasal epithelial cells (HNECs), including the epithelial tight junctional barrier. In the present study, mRNAs of TLR1-10 were detected in hTERT-transfected HNECs, which can be used as an indispensable and stable model of normal HNECs, similar to primary cultured HNECs. To investigate the changes of tight junction proteins and the signal transduction pathways via TLRs in HNECs in vitro, hTERT-transfected HNECs were treated with TLR2 ligand P 3 CSK 4 , TLR3 ligand poly(I:C), TLR4 ligand LPS, TLR7/8 ligand CL097, TLR8 ligand ssRNA40/LyoVec, and TLR9 ligand ODN2006. In hTERT-transfected HNECs, treatment with poly(I:C) significantly reduced expression of the tight junction protein JAM-A and induced secretion of proinflammatory cytokines IL-8 and TNF-α. Both the reduction of JAM-A expression and the induction of secretion of IL-8 and TNF-α after treatment with poly(I:C) were modulated by distinct signal transduction pathways via EGFR, PI3K, and p38 MAPK and finally regulated by a TLR3-mediated NF-κB pathway. The control of TLR3-mediated signaling pathways in HNECs may be important not only in infection by viral dsRNA but also in autoimmune diseases caused by endogenous dsRNA released from necrotic cells.

  2. Nasal Foreign Bodies: A Sweet Experiment.

    Science.gov (United States)

    Leopard, D C; Williams, R G

    2015-10-01

    It is generally accepted that paediatric intranasal foreign bodies should be removed in the emergency setting. In the case of a difficult to access dissolvable foreign body in an uncooperative child, the question must be raised regarding whether or not a watch and wait strategy is more appropriate. We ask: How long does it take for popular sweets (candy) to dissolve in the human nose? Five popular UK sweets were placed in the right nasal cavity of a 29-year-old male (the author) with no sino-nasal disease. Time taken to dissolve was recorded. All five sweets were completely dissolved in under one hour. A watch and wait strategy in favour of examination under anaesthetic may be a viable option in some cases. Limitations of the study include the age of the participant and size of the sweets. It is also important in practice that the clinician is able to elicit an accurate history regarding the exact nature of the foreign body. It remains prudent to perform an examination under anaesthetic of an uncooperative child with a solid or unknown nasal foreign body. However, if the clinician can be certain the foreign body is a small sugar or chocolate based sweet only, a watch and wait strategy may be a reasonable choice. © 2015 John Wiley & Sons Ltd.

  3. Automated method for structural segmentation of nasal airways based on cone beam computed tomography

    Science.gov (United States)

    Tymkovych, Maksym Yu.; Avrunin, Oleg G.; Paliy, Victor G.; Filzow, Maksim; Gryshkov, Oleksandr; Glasmacher, Birgit; Omiotek, Zbigniew; DzierŻak, RóŻa; Smailova, Saule; Kozbekova, Ainur

    2017-08-01

    The work is dedicated to the segmentation problem of human nasal airways using Cone Beam Computed Tomography. During research, we propose a specialized approach of structured segmentation of nasal airways. That approach use spatial information, symmetrisation of the structures. The proposed stages can be used for construction a virtual three dimensional model of nasal airways and for production full-scale personalized atlases. During research we build the virtual model of nasal airways, which can be used for construction specialized medical atlases and aerodynamics researches.

  4. Metabolic Interaction of Helicobacter pylori Infection and Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Yao-Jong Yang

    2016-02-01

    Full Text Available As a barrier, gut commensal microbiota can protect against potential pathogenic microbes in the gastrointestinal tract. Crosstalk between gut microbes and immune cells promotes human intestinal homeostasis. Dysbiosis of gut microbiota has been implicated in the development of many human metabolic disorders like obesity, hepatic steatohepatitis, and insulin resistance in type 2 diabetes (T2D. Certain microbes, such as butyrate-producing bacteria, are lower in T2D patients. The transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome, but the exact pathogenesis remains unclear. H. pylori in the human stomach cause chronic gastritis, peptic ulcers, and gastric cancers. H. pylori infection also induces insulin resistance and has been defined as a predisposing factor to T2D development. Gastric and fecal microbiota may have been changed in H. pylori-infected persons and mice to promote gastric inflammation and specific diseases. However, the interaction of H. pylori and gut microbiota in regulating host metabolism also remains unknown. Further studies aim to identify the H. pylori-microbiota-host metabolism axis and to test if H. pylori eradication or modification of gut microbiota can improve the control of human metabolic disorders.

  5. The gut microbiota, environment and diseases of modern society.

    Science.gov (United States)

    Kelsen, Judith R; Wu, Gary D

    2012-01-01

    The human gut microbiota is a complex community that provides important metabolic functions to the host. Consequently, alterations in the gut microbiota have been associated with the pathogenesis of several human diseases associated with a disturbance in metabolism, particularly those that have been increasing in incidence over the last several decades including obesity, diabetes and atherosclerosis. In this review, we explore how advances in deep DNA sequencing technology have provided us a greater understanding of the factors that influence that composition of the gut microbiota and its possible links to the pathogenesis of these diseases.

  6. The gut microbiota and host health

    NARCIS (Netherlands)

    Marchesi, Julian R.; Adams, David H.; Fava, Francesca; Hermes, Gerben D.A.; Hirschfield, Gideon M.; Hold, Georgina; Quraishi, Mohammed N.; Kinross, James; Smidt, Hauke; Tuohy, Kieran M.; Thomas, Linda V.; Zoetendal, Erwin G.; Hart, Ailsa

    2016-01-01

    Over the last 10-15 years, our understanding of the composition and functions of the human gut microbiota has increased exponentially. To a large extent, this has been due to new 'omic' technologies that have facilitated large-scale analysis of the genetic and metabolic profile of this microbial

  7. Interactions between the microbiota and pathogenic bacteria in the gut.

    Science.gov (United States)

    Bäumler, Andreas J; Sperandio, Vanessa

    2016-07-07

    The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, these bacteria alter the intestinal environment and use unique systems for respiration and metal acquisition to drive their expansion. Unravelling the interactions between the microbiota, the host and pathogenic bacteria will produce strategies for manipulating the microbiota against infectious diseases.

  8. Interactions between the microbiota and pathogenic bacteria in the gut

    Science.gov (United States)

    Bäumler, Andreas J.; Sperandio, Vanessa

    2016-01-01

    The microbiome has an important role in human health. Changes in the microbiota can confer resistance to or promote infection by pathogenic bacteria. Antibiotics have a profound impact on the microbiota that alters the nutritional landscape of the gut and can lead to the expansion of pathogenic populations. Pathogenic bacteria exploit microbiota-derived sources of carbon and nitrogen as nutrients and regulatory signals to promote their own growth and virulence. By eliciting inflammation, these bacteria alter the intestinal environment and use unique systems for respiration and metal acquisition to drive their expansion. Unravelling the interactions between the microbiota, the host and pathogenic bacteria will produce strategies for manipulating the microbiota against infectious diseases. PMID:27383983

  9. Cultivating Healthy Growth and Nutrition through the Gut Microbiota

    Science.gov (United States)

    Subramanian, Sathish; Blanton, Laura; Frese, Steven A.; Charbonneau, Mark; Mills, David A.; Gordon, Jeffrey I.

    2015-01-01

    Microbiota assembly is perturbed in children with undernutrition, resulting in persistent microbiota immaturity that is not rescued by current nutritional interventions. Evidence is accumulating that this immaturity is causally related to the pathogenesis of undernutrition and its lingering sequelae. Preclinical models in which human gut communities are replicated in gnotobiotic mice have provided an opportunity to identify and predict the effects of different dietary ingredients on microbiota structure, expressed functions, and host biology. This capacity sets the stage for proof-of-concept tests designed to deliberately shape the developmental trajectory and configurations of microbiota in children representing different geographies, cultural traditions, and states of health. Developing these capabilities for microbial stewardship is timely given the global health burden of childhood undernutrition, the effects of changing eating practices brought about by globalization, and the realization that affordable nutritious foods need to be developed to enhance our capacity to cultivate healthier microbiota in populations at risk for poor nutrition. PMID:25815983

  10. The role of skin microbiota in the attractiveness of humans to the malaria mosquito Anopheles gambiae Giles

    NARCIS (Netherlands)

    Verhulst, N.O.

    2010-01-01

    Malaria is one of the most serious infectious diseases in the world. The African mosquito Anopheles gambiae sensu stricto (henceforth termed An. gambiae) is highly competent for malaria parasites and preferably feeds on humans inside houses, which make it one of the most effective vectors of the

  11. Faecal microbiota transplantation

    DEFF Research Database (Denmark)

    Jørgensen, Simon M D; Hansen, Mette Mejlby; Erikstrup, Christian

    2017-01-01

    BACKGROUND: Faecal microbiota transplantation (FMT) is currently being established as a second-line treatment for recurrent Clostridium difficile infection. FMT is further being considered for other infectious and inflammatory conditions. Safe and reproducible methods for donor screening, laborat......BACKGROUND: Faecal microbiota transplantation (FMT) is currently being established as a second-line treatment for recurrent Clostridium difficile infection. FMT is further being considered for other infectious and inflammatory conditions. Safe and reproducible methods for donor screening...

  12. Inferring Aggregated Functional Traits from Metagenomic Data Using Constrained Non-negative Matrix Factorization: Application to Fiber Degradation in the Human Gut Microbiota.

    Science.gov (United States)

    Raguideau, Sébastien; Plancade, Sandra; Pons, Nicolas; Leclerc, Marion; Laroche, Béatrice

    2016-12-01

    Whole Genome Shotgun (WGS) metagenomics is increasingly used to study the structure and functions of complex microbial ecosystems, both from the taxonomic and functional point of view. Gene inventories of otherwise uncultured microbial communities make the direct functional profiling of microbial communities possible. The concept of community aggregated trait has been adapted from environmental and plant functional ecology to the framework of microbial ecology. Community aggregated traits are quantified from WGS data by computing the abundance of relevant marker genes. They can be used to study key processes at the ecosystem level and correlate environmental factors and ecosystem functions. In this paper we propose a novel model based approach to infer combinations of aggregated traits characterizing specific ecosystemic metabolic processes. We formulate a model of these Combined Aggregated Functional Traits (CAFTs) accounting for a hierarchical structure of genes, which are associated on microbial genomes, further linked at the ecosystem level by complex co-occurrences or interactions. The model is completed with constraints specifically designed to exploit available genomic information, in order to favor biologically relevant CAFTs. The CAFTs structure, as well as their intensity in the ecosystem, is obtained by solving a constrained Non-negative Matrix Factorization (NMF) problem. We developed a multicriteria selection procedure for the number of CAFTs. We illustrated our method on the modelling of ecosystemic functional traits of fiber degradation by the human gut microbiota. We used 1408 samples of gene abundances from several high-throughput sequencing projects and found that four CAFTs only were needed to represent the fiber degradation potential. This data reduction highlighted biologically consistent functional patterns while providing a high quality preservation of the original data. Our method is generic and can be applied to other metabolic processes in

  13. Inferring Aggregated Functional Traits from Metagenomic Data Using Constrained Non-negative Matrix Factorization: Application to Fiber Degradation in the Human Gut Microbiota.

    Directory of Open Access Journals (Sweden)

    Sébastien Raguideau

    2016-12-01

    Full Text Available Whole Genome Shotgun (WGS metagenomics is increasingly used to study the structure and functions of complex microbial ecosystems, both from the taxonomic and functional point of view. Gene inventories of otherwise uncultured microbial communities make the direct functional profiling of microbial communities possible. The concept of community aggregated trait has been adapted from environmental and plant functional ecology to the framework of microbial ecology. Community aggregated traits are quantified from WGS data by computing the abundance of relevant marker genes. They can be used to study key processes at the ecosystem level and correlate environmental factors and ecosystem functions. In this paper we propose a novel model based approach to infer combinations of aggregated traits characterizing specific ecosystemic metabolic processes. We formulate a model of these Combined Aggregated Functional Traits (CAFTs accounting for a hierarchical structure of genes, which are associated on microbial genomes, further linked at the ecosystem level by complex co-occurrences or interactions. The model is completed with constraints specifically designed to exploit available genomic information, in order to favor biologically relevant CAFTs. The CAFTs structure, as well as their intensity in the ecosystem, is obtained by solving a constrained Non-negative Matrix Factorization (NMF problem. We developed a multicriteria selection procedure for the number of CAFTs. We illustrated our method on the modelling of ecosystemic functional traits of fiber degradation by the human gut microbiota. We used 1408 samples of gene abundances from several high-throughput sequencing projects and found that four CAFTs only were needed to represent the fiber degradation potential. This data reduction highlighted biologically consistent functional patterns while providing a high quality preservation of the original data. Our method is generic and can be applied to other

  14. Impact of Periodontal Therapy on the Subgingival Microbiota of Severe Periodontitis: Comparison between Good Responders and “Refractory” Subjects by the Human Oral Microbe Identification Microarray (HOMIM)

    Science.gov (United States)

    Colombo, Ana Paula V.; Bennet, Susan; Cotton, Sean L.; Goodson, J. Max; Kent, Ralph; Haffajee, Anne D.; Socransky, Sigmund S.; Hasturk, Hatice; Van Dyke, Thomas E.; Dewhirst, Floyd E.; Paster, Bruce J.

    2014-01-01

    Aim This study compared the changes on the subgingival microbiota of subjects with “refractory” periodontitis (RP) or treatable periodontitis (GR) before and after periodontal therapy by using the Human Oral Microbe Identification Microarray (HOMIM). Methods Individuals with chronic periodontitis were classified as RP (n=17) based on mean attachment loss (AL) and/or >3 sites with AL ≥2.5 mm after scaling and root planing, surgery and systemically administered amoxicillin and metronidazole or as GR (n=30) based on mean attachment gain and no sites with AL ≥2.5 mm after treatment. Subgingival plaque samples were taken at baseline and 15 months after treatment and analyzed for the presence of 300 species by HOMIM analysis. Significant differences in taxa before and after therapy were sought using the Wilcoxon test. Results The majority of species evaluated decreased in prevalence in both groups after treatment; however, only a small subset of organisms was significantly affected. Species that increased or persisted in high frequency in RP but were significantly reduced in GR included Bacteroidetes sp., Porphyromonas endodontalis, Porphyromonas gingivalis, Prevotella spp., Tannerella forsythia, Dialister spp., Selenomonas spp., Catonella morbi, Eubacterium spp., Filifactor alocis, Parvimonas micra, Peptostreptococcus sp. OT113, Fusobacterium sp. OT203, Pseudoramibacter alactolyticus, Streptococcus intermedius or Streptococcus constellatus and Shuttlesworthia satelles. In contrast, Capnocytophaga sputigena, Cardiobacterium hominis, Gemella haemolysans, Haemophilus parainfluenzae, Kingella oralis, Lautropia mirabilis, Neisseria elongata, Rothia dentocariosa, Streptococcus australis and Veillonella spp. were more associated with therapeutic success. Conclusion Persistence of putative and novel periodontal pathogens, as well as low prevalence of beneficial species was associated with chronic “refractory” periodontitis. PMID:22324467

  15. Impact of periodontal therapy on the subgingival microbiota of severe periodontitis: comparison between good responders and individuals with refractory periodontitis using the human oral microbe identification microarray.

    Science.gov (United States)

    Colombo, Ana Paula V; Bennet, Susan; Cotton, Sean L; Goodson, J Max; Kent, Ralph; Haffajee, Anne D; Socransky, Sigmund S; Hasturk, Hatice; Van Dyke, Thomas E; Dewhirst, Floyd E; Paster, Bruce J

    2012-10-01

    This study compares the changes to the subgingival microbiota of individuals with "refractory" periodontitis (RP) or treatable periodontitis (good responders [GR]) before and after periodontal therapy by using the Human Oral Microbe Identification Microarray (HOMIM) analysis. Individuals with chronic periodontitis were classified as RP (n = 17) based on mean attachment loss (AL) and/or >3 sites with AL ≥2.5 mm after scaling and root planing, surgery, and systemically administered amoxicillin and metronidazole or as GR (n = 30) based on mean attachment gain and no sites with AL ≥2.5 mm after treatment. Subgingival plaque samples were taken at baseline and 15 months after treatment and analyzed for the presence of 300 species by HOMIM analysis. Significant differences in taxa before and post-therapy were sought using the Wilcoxon test. The majority of species evaluated decreased in prevalence in both groups after treatment; however, only a small subset of organisms was significantly affected. Species that increased or persisted in high frequency in RP but were significantly reduced in GR included Bacteroidetes sp., Porphyromonas endodontalis, Porphyromonas gingivalis, Prevotella spp., Tannerella forsythia, Dialister spp., Selenomonas spp., Catonella morbi, Eubacterium spp., Filifactor alocis, Parvimonas micra, Peptostreptococcus sp. OT113, Fusobacterium sp. OT203, Pseudoramibacter alactolyticus, Streptococcus intermedius or Streptococcus constellatus, and Shuttlesworthia satelles. In contrast, Capnocytophaga sputigena, Cardiobacterium hominis, Gemella haemolysans, Haemophilus parainfluenzae, Kingella oralis, Lautropia mirabilis, Neisseria elongata, Rothia dentocariosa, Streptococcus australis, and Veillonella spp. were more associated with therapeutic success. Persistence of putative and novel periodontal pathogens, as well as low prevalence of beneficial species was associated with chronic refractory periodontitis.

  16. Internal nasal floor configuration in Homo with special reference to the evolution of Neandertal facial form.

    Science.gov (United States)

    Franciscus, Robert G

    2003-06-01

    The presence of a steeply sloping or depressed nasal floor within the nasal cavity of Neandertals is frequently mentioned as a likely specialization or autapomorphy. The depressed nasal floor has also been seen as contributing to a relatively more capacious nasal cavity in Neandertals, which is tied to cold-climate respiratory adaptation and energetics. These observations have been limited largely to a relatively few intact crania, and the character states associated with this trait have not been as precisely codified or analyzed as those published for Plio-Pleistocene hominins (McCollum et al., 1993, J. Hum. Evol. 24, 87; McCollum, 2000, Am. J. Phys. Anthrop. 112, 275). This study examines the internal nasal floor topography in complete crania and isolated maxillae in European, west Asian, and African fossil Homo (n=158) including 25 Neandertals, and a wide range of recent humans from Europe, the Near East, and Africa (n=522). The configuration of the internal nasal floor relative to the nasal cavity entrance is codified as: 1) level, forming a smooth continuous plane; 2) sloped or mildly stepped; or 3) bilevel with a pronounced vertical depression. The frequency of these nasal floor configurations, and their relationship to both nasal margin cresting patterning and a comprehensive set of nasofacial metrics is examined. Neandertals show a high frequency of the bilevel (depressed) configuration in both adults and subadults (80%), but this configuration is also present in lower frequencies in Middle Pleistocene African, Late Pleistocene non-Neandertal (Skhul, Qafzeh), and European Later Upper Paleolithic samples (15%-50%). The bilevel configuration is also present in lower frequencies (ca. 10%) in all recent human samples, but attains nearly 20% in some sub-Saharan African samples. Across extinct and extant Homo (excluding Neandertals), internal nasal floor configuration is not associated with piriform aperture nasal margin patterning, but the two are strongly

  17. Rectal swabs for analysis of the intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Andries E Budding

    Full Text Available The composition of the gut microbiota is associated with various disease states, most notably inflammatory bowel disease, obesity and malnutrition. This underlines that analysis of intestinal microbiota is potentially an interesting target for clinical diagnostics. Currently, the most commonly used sample types are feces and mucosal biopsy specimens. Because sampling method, storage and processing of samples impact microbiota analysis, each sample type has its own limitations. An ideal sample type for use in routine diagnostics should be easy to obtain in a standardized fashion without perturbation of the microbiota. Rectal swabs may satisfy these criteria, but little is known about microbiota analysis on these sample types. In this study we investigated the characteristics and applicability of rectal swabs for gut microbiota profiling in a clinical routine setting in patients presenting with various gastro-intestinal disorders. We found that rectal swabs appeared to be a convenient means of sampling the human gut microbiota. Swabs can be performed on demand, whenever a patient presents; swab-derived microbiota profiles are reproducible, whether they are gathered at home by patients or by medical professionals in an outpatient setting and may be ideally suited for clinical diagnostics and large-scale studies.

  18. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome

    Science.gov (United States)

    Lee, Kang Nyeong; Lee, Oh Young

    2014-01-01

    Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 1014 cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS. PMID:25083061

  19. Intestinal microbiota in pathophysiology and management of irritable bowel syndrome.

    Science.gov (United States)

    Lee, Kang Nyeong; Lee, Oh Young

    2014-07-21

    Irritable bowel syndrome (IBS) is a functional bowel disorder without any structural or metabolic abnormalities that sufficiently explain the symptoms, which include abdominal pain and discomfort, and bowel habit changes such as diarrhea and constipation. Its pathogenesis is multifactorial: visceral hypersensitivity, dysmotility, psychosocial factors, genetic or environmental factors, dysregulation of the brain-gut axis, and altered intestinal microbiota have all been proposed as possible causes. The human intestinal microbiota are composed of more than 1000 different bacterial species and 10(14) cells, and are essential for the development, function, and homeostasis of the intestine, and for individual health. The putative mechanisms that explain the role of microbiota in the development of IBS include altered composition or metabolic activity of the microbiota, mucosal immune activation and inflammation, increased intestinal permeability and impaired mucosal barrier function, sensory-motor disturbances provoked by the microbiota, and a disturbed gut-microbiota-brain axis. Therefore, modulation of the intestinal microbiota through dietary changes, and use of antibiotics, probiotics, and anti-inflammatory agents has been suggested as strategies for managing IBS symptoms. This review summarizes and discusses the accumulating evidence that intestinal microbiota play a role in the pathophysiology and management of IBS.

  20. The Integrated Impact of Diet on Human Immune Response, the Gut Microbiota, and Nutritional Status During Adaptation to a Spaceflight Analog

    Science.gov (United States)

    Douglas, G. L.; Zwart, S. R.; Young, M.; Kloeris, V.; Crucian, B.; Smith, S. M.; Lorenzi, H.

    2018-01-01

    Spaceflight impacts human physiology, including well documented immune system dysregulation. Diet, immune function, and the microbiome are interlinked, but diet is the only one of these factors that we have the ability to easily, and significantly, alter on Earth or during flight. As we understand dietary impacts on physiology more thoroughly, we may then improve the spaceflight diet to improve crew health and potentially reduce spaceflight-associated physiological alterations. It is expected that increasing the consumption of fruits and vegetables and bioactive compounds (e.g., omega-3 fatty acids, lycopene, flavonoids) and therefore enhancing overall nutritional intake from the nominal shelf-stable, fully-processed space food system could serve as a countermeasure to improve human immunological profiles, the taxonomic profile of the gut microbiota, and nutritional status, especially where currently dysregulated during spaceflight. This interdisciplinary study will