WorldWideScience

Sample records for human mutated thymidylate

  1. Studies on engineering crystallizability by mutation of surface residues of human thymidylate synthase

    Science.gov (United States)

    McElroy, H. E.; Sisson, G. W.; Schoettlin, W. E.; Aust, R. M.; Villafranca, J. E.

    1992-08-01

    A study was made to determine the efficacy of altering a protein's intrinsic solvation properties to improve its crystallization properties. In order to change its solubility properties, twelve mutants of thymidylate synthase (TS) were made altering single amino acids at eleven different positions on the protein surface. The mutations changed either the charge or polarity of the wild-type amino acid. Wild-type TS and each of the mutants were subjected to a matrix of crystallization conditions varying pH, precipitant, and salt. After two weeks, each crystallization attempt was examined and scored for protein solubility and crystallization. Accordingly, the parameters of each condition were adjusted then repeated to drive the protein toward saturation without precipitating nonspecific aggregation. It was found that single amino acid changes on the surface of TS could have a dramatic effect on solubility while not decreasing stability. Furthermore, crystals of some mutant TSs were found to occur in conditions where wildtype TS did not crystallize and some mutant TSs showed enhanced crystallizability. The space groups of resulting crystals found in unique conditions or having unique morphologies were determined. Several of the mutant crystals were of different space groups than wild-type TS.

  2. Hotspots in an obligate homodimeric anticancer target. Structural and functional effects of interfacial mutations in human thymidylate synthase.

    Science.gov (United States)

    Salo-Ahen, Outi M H; Tochowicz, Anna; Pozzi, Cecilia; Cardinale, Daniela; Ferrari, Stefania; Boum, Yap; Mangani, Stefano; Stroud, Robert M; Saxena, Puneet; Myllykallio, Hannu; Costi, Maria Paola; Ponterini, Glauco; Wade, Rebecca C

    2015-04-23

    Human thymidylate synthase (hTS), a target for antiproliferative drugs, is an obligate homodimer. Single-point mutations to alanine at the monomer-monomer interface may enable the identification of specific residues that delineate sites for drugs aimed at perturbing the protein-protein interactions critical for activity. We computationally identified putative hotspot residues at the interface and designed mutants to perturb the intersubunit interaction. Dimer dissociation constants measured by a FRET-based assay range from 60 nM for wild-type hTS up to about 1 mM for single-point mutants and agree with computational predictions of the effects of these mutations. Mutations that are remote from the active site retain full or partial activity, although the substrate KM values were generally higher and the dimer was less stable. The lower dimer stability of the mutants can facilitate access to the dimer interface by small molecules and thereby aid the design of inhibitors that bind at the dimer interface.

  3. Substrate channeling between the human dihydrofolate reductase and thymidylate synthase.

    Science.gov (United States)

    Wang, Nuo; McCammon, J Andrew

    2016-01-01

    In vivo, as an advanced catalytic strategy, transient non-covalently bound multi-enzyme complexes can be formed to facilitate the relay of substrates, i. e. substrate channeling, between sequential enzymatic reactions and to enhance the throughput of multi-step enzymatic pathways. The human thymidylate synthase and dihydrofolate reductase catalyze two consecutive reactions in the folate metabolism pathway, and experiments have shown that they are very likely to bind in the same multi-enzyme complex in vivo. While reports on the protozoa thymidylate synthase-dihydrofolate reductase bifunctional enzyme give substantial evidences of substrate channeling along a surface "electrostatic highway," attention has not been paid to whether the human thymidylate synthase and dihydrofolate reductase, if they are in contact with each other in the multi-enzyme complex, are capable of substrate channeling employing surface electrostatics. This work utilizes protein-protein docking, electrostatics calculations, and Brownian dynamics to explore the existence and mechanism of the substrate channeling between the human thymidylate synthase and dihydrofolate reductase. The results show that the bound human thymidylate synthase and dihydrofolate reductase are capable of substrate channeling and the formation of the surface "electrostatic highway." The substrate channeling efficiency between the two can be reasonably high and comparable to that of the protozoa. © 2015 The Protein Society.

  4. Role of cysteine amino acid residues on the RNA binding activity of human thymidylate synthase

    OpenAIRE

    Lin, Xiukun; Liu, Jun; Maley, Frank; Chu, Edward

    2003-01-01

    The role of cysteine sulfhydryl residues on the RNA binding activity of human thymidylate synthase (TS) was investigated by mutating each cysteine residue on human TS to a corresponding alanine residue. Enzymatic activities of TS:C43A and TS:C210A mutant proteins were nearly identical to wild-type TS, while TS:C180A and TS:C199A mutants expressed >80% of wild-type enzyme activity. In contrast, TS:C195A was completely inactive. Mutant proteins, TS:C195A, TS:C199A and TS:C210A, retained RNA bin...

  5. A transgenic Neospora caninum strain based on mutations of the dihydrofolate reductase-thymidylate synthase gene.

    Science.gov (United States)

    Pereira, Luiz Miguel; Baroni, Luciana; Yatsuda, Ana Patrícia

    2014-03-01

    Neospora caninum is an Apicomplexa parasite related to abortion and losses of fertility in cattle. The amenability of Toxoplasma gondii and Plasmodium to genetic manipulation offers several tools to determine the invasion and replication processes, which support posterior strategies related to the combat of these diseases. For Plasmodium the use of pyrimethamine as an auxiliary drug on malaria treatment has been affected by the rise of resistant strains and the analyses on Dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene indicated several point mutations. In this work we developed a method for stable insertion of genes based on resistance to pyrimethamine. For that, the coding sequence of NcDHFR-TS (Dihydrofolate reductase-thymidylate synthase) was point mutated in two amino acids, generating DHFRM2M3. The DHFRM2M3 flanked by the promoter and 3'UTR of Ncdhfr-ts (Ncdhfr-DHFRM2M3) conferred resistance to pyrimethamine after transfection. For illustration of stability and expression, the cassette Ncdhfr-DHFRM2M3 was ligated to the reporter gene Lac-Z (β-galactosidase enzyme) controlled by the N. caninum tubulin promoter and was transfected and selected in N. caninum. The cassette was integrated into the genome and the selected tachyzoites expressed Lac-Z, allowing the detection of tachyzoites by the CPRG reaction and X-gal precipitation. The obtainment of transgenic N. caninum resistant to pyrimethamine confirms the effects on DHFR-TS among the Apicomplexa members and will support future approaches on pholate inhibitors for N. caninum prophylaxis. The construction of stable tachyzoites based on vectors with N. caninum promoters initiates the molecular manipulation of this parasite independently of T. gondii. Copyright © 2014. Published by Elsevier Inc.

  6. Analysis of mRNA recognition by human thymidylate synthase.

    Science.gov (United States)

    Brunn, Nicholas D; Dibrov, Sergey M; Kao, Melody B; Ghassemian, Majid; Hermann, Thomas

    2014-12-23

    Expression of hTS (human thymidylate synthase), a key enzyme in thymidine biosynthesis, is regulated on the translational level through a feedback mechanism that is rarely found in eukaryotes. At low substrate concentrations, the ligand-free enzyme binds to its own mRNA and stabilizes a hairpin structure that sequesters the start codon. When in complex with dUMP (2'-deoxyuridine-5'-monophosphate) and a THF (tetrahydrofolate) cofactor, the enzyme adopts a conformation that is unable to bind and repress expression of mRNA. Here, we have used a combination of X-ray crystallography, RNA mutagenesis and site-specific cross-linking studies to investigate the molecular recognition of TS mRNA by the hTS enzyme. The interacting mRNA region was narrowed to the start codon and immediately flanking sequences. In the hTS enzyme, a helix-loop-helix domain on the protein surface was identified as the putative RNA-binding site.

  7. Mutants of human colon adenocarcinoma, selected for thymidylate synthase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, P.J.; Germain, G.S.; Hazelton, B.J.; Pennington, J.W.; Houghton, J.A. (Saint Jude Children' s Research Hospital, Memphis, TN (USA))

    1989-02-01

    GC{sub 3}/c1 human colon adenocarcinoma cells were treated with the mutagen ethyl methane sulfonate, and three clones deficient in thymidylate synthase activity were selected and characterized. Growth in medium deficient in thymidine caused cell death in two clones (TS{sup {minus}}c{sub 1} and TS{sup {minus}}c{sub 3}), whereas one clone (TS{sup {minus}}c{sub 2}) showed limited growth. Growth correlated with thymidine synthase activity and 5-fluoro-2{prime}-deoxyuridine 5{prime}-monophosphate-binding capacity and with incorporation of 2{prime}-deoxy(6-{sup 3}H)uridine into DNA. In the presence of optimal thymidine, growth rates were only 5-18% that of the parental clone (GC{sub 3}/c1), which grew equally well in thymidine-deficient or -replete medium. Analysis of poly(A){sup +} RNA showed normal levels of a 1.6-kilobase transcript in TS{sup {minus}}c{sub 1} and TS{sup minus}c{sub 2} but decreased levels in TS{sup {minus}}c{sub 3}. Clone TS{sup minus}c{sub 3} was 32-, 750-, and >100,000-fold more resistant than the parental clone to 5-fluorouracil, 5-fluoro-2{prime}-deoxyuridine, and methotrexate, respectively. When inoculated into athymic nude mice, each TS{sup {minus}} clone produced tumors, demonstrating continued ability to proliferate in vivo.

  8. Elevated expression of thymidylate synthase cycle genes in cisplatin-resistant human ovarian carcinoma A2780 cells

    Energy Technology Data Exchange (ETDEWEB)

    Scanlon, K.J.; Kashani-Sabet, M.

    1988-02-01

    Activity of the thymidylate synthase cycle was compared in the human ovarian carcinoma cell line A2780 and a subline that is resistant to cisplatin by a factor of 3. Resistant cells exhibited a 3-fold increase in mRNA for both dihydrofolate reductase and thymidylate synthase when compared with the parent line. Resistance to cisplatin also resulted in a 2.5-fold increase in enzyme activity for dihydrofolate reductase and thymidylate synthase; however, this increase did not result from amplification of the genes for these two enzymes. These data suggest that the initial step of cisplatin resistance in A2780 cells is a consequence of enhanced expression of the thymidylate synthase cycle.

  9. Variants of human thymidylate synthase with loop 181-197 stabilized in the inactive conformation.

    Energy Technology Data Exchange (ETDEWEB)

    Lovelace, Leslie L.; Johnson, Saphronia R.; Gibson, Lydia M.; Bell, Brittnaie J.; Berger, Sondra H.; Lebioda, Lukasz; (SC)

    2009-08-31

    Loop 181-197 of human thymidylate synthase (hTS) populates two major conformations, essentially corresponding to the loop flipped by 180{sup o}. In one of the conformations, the catalytic Cys195 residue lies distant from the active site making the enzyme inactive. Ligands stabilizing this inactive conformation may function as allosteric inhibitors. To facilitate the search for such inhibitors, we have expressed and characterized several mutants designed to shift the equilibrium toward the inactive conformer. In most cases, the catalytic efficiency of the mutants was only somewhat impaired with values of k{sub cat}/K{sub m} reduced by factors in a 2-12 range. One of the mutants, M190K, is however unique in having the value of k{sub cat}/K{sub m} smaller by a factor of {approx}7500 than the wild type. The crystal structure of this mutant is similar to that of the wt hTS with loop 181-197 in the inactive conformation. However, the direct vicinity of the mutation, residues 188-194 of this loop, assumes a different conformation with the positions of C{sub {alpha}} shifted up to 7.2 {angstrom}. This affects region 116-128, which became ordered in M190K while it is disordered in wt. The conformation of 116-128 is however different than that observed in hTS in the active conformation. The side chain of Lys190 does not form contacts and is in solvent region. The very low activity of M190K as compared to another mutant with a charged residue in this position, M190E, suggests that the protein is trapped in an inactive state that does not equilibrate easily with the active conformer.

  10. Structure of an RNA dimer of a regulatory element from human thymidylate synthase mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Dibrov, Sergey; McLean, Jaime; Hermann, Thomas (UCSD)

    2011-09-27

    A sequence around the start codon of the mRNA of human thymidylate synthase (TS) folds into a secondary-structure motif in which the initiation site is sequestered in a metastable hairpin. Binding of the protein to its own mRNA at the hairpin prevents the production of TS through a translation-repression feedback mechanism. Stabilization of the mRNA hairpin by other ligands has been proposed as a strategy to reduce TS levels in anticancer therapy. Rapidly proliferating cells require high TS activity to maintain the production of thymidine as a building block for DNA synthesis. The crystal structure of a model oligonucleotide (TS1) that represents the TS-binding site of the mRNA has been determined. While fluorescence studies showed that the TS1 RNA preferentially adopts a hairpin structure in solution, even at high RNA concentrations, an asymmetric dimer of two hybridized TS1 strands was obtained in the crystal. The TS1 dimer contains an unusual S-turn motif that also occurs in the 'off' state of the human ribosomal decoding site RNA.

  11. Dynamic modulation of thymidylate synthase gene expression and fluorouracil sensitivity in human colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Kentaro Wakasa

    Full Text Available Biomarkers have revolutionized cancer chemotherapy. However, many biomarker candidates are still in debate. In addition to clinical studies, a priori experimental approaches are needed. Thymidylate synthase (TS expression is a long-standing candidate as a biomarker for 5-fluorouracil (5-FU treatment of cancer patients. Using the Tet-OFF system and a human colorectal cancer cell line, DLD-1, we first constructed an in vitro system in which TS expression is dynamically controllable. Quantitative assays have elucidated that TS expression in the transformant was widely modulated, and that the dynamic range covered 15-fold of the basal level. 5-FU sensitivity of the transformant cells significantly increased in response to downregulated TS expression, although being not examined in the full dynamic range because of the doxycycline toxicity. Intriguingly, our in vitro data suggest that there is a linear relationship between TS expression and the 5-FU sensitivity in cells. Data obtained in a mouse model using transformant xenografts were highly parallel to those obtained in vitro. Thus, our in vitro and in vivo observations suggest that TS expression is a determinant of 5-FU sensitivity in cells, at least in this specific genetic background, and, therefore, support the possibility of TS expression as a biomarker for 5-FU-based cancer chemotherapy.

  12. Enhanced anti-hyperproliferative activity of human thymidylate synthase inhibitor peptide by solid lipid nanoparticle delivery.

    Science.gov (United States)

    Sacchetti, Francesca; Marraccini, Chiara; D'Arca, Domenico; Pelà, Michela; Pinetti, Diego; Maretti, Eleonora; Hanuskova, Miriam; Iannuccelli, Valentina; Costi, Maria Paola; Leo, Eliana

    2015-12-01

    Recently, octapeptide LSCQLYQR (LRp), reducing growth of cis-platinum (cDDP) resistant ovarian carcinoma cells by inhibiting the monomer-monomer interface of the human enzyme thymidylate synthase, has been identified. As the peptide is not able to cross the cell membrane it requires an appropriate delivery system. In this work the application of SLNs, biocompatible and efficient tools for the intracellular drug transport, applied especially for lipophilic drugs, was exploited for the delivery of the hydrophilic peptide LRp. SLNs formulated in the absence/presence of small amount of squalene showed dimensions below 150 nm, negative zeta potential and good stability to the freeze-drying process. Even though the particles formulated with squalene exhibited a less ordered crystal lattice and a lower surface hydrophobicity, a rapid drug release from these nanocarriers occurred as a result of the relevant expulsion of the drug from the lipid core during lipid crystallization. On the contrary, SLNs formulated in the absence of squalene were able to incorporate more stably the peptide showing considerable cytotoxic effect on cDDP resistant C13* ovarian carcinoma cell line at concentration 50 times lower than that used previously with a marketed delivery system. From the cell cycle analysis by the propidium iodide test in SLNs-peptide treated cancer cells an increase of apoptosis percentage was observed, indicating that SLNs were able to carry efficiently the peptide until its enzymatic target. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Human dihydrofolate reductase and thymidylate synthase form a complex in vitro and co-localize in normal and cancer cells.

    Science.gov (United States)

    Antosiewicz, Anna; Jarmuła, Adam; Przybylska, Dorota; Mosieniak, Grażyna; Szczepanowska, Joanna; Kowalkowska, Anna; Rode, Wojciech; Cieśla, Joanna

    2017-05-01

    Enzymes involved in thymidylate biosynthesis, thymidylate synthase (TS), and dihydrofolate reductase (DHFR) are well-known targets in cancer chemotherapy. In this study, we demonstrated for the first time, that human TS and DHFR form a strong complex in vitro and co-localize in human normal and colon cancer cell cytoplasm and nucleus. Treatment of cancer cells with methotrexate or 5-fluorouracil did not affect the distribution of either enzyme within the cells. However, 5-FU, but not MTX, lowered the presence of DHFR-TS complex in the nucleus by 2.5-fold. The results may suggest the sequestering of TS by FdUMP in the cytoplasm and thereby affecting the translocation of DHFR-TS complex to the nucleus. Providing a strong likelihood of DHFR-TS complex formation in vivo, the latter complex is a potential new drug target in cancer therapy. In this paper, known 3D structures of human TS and human DHFR, and some protozoan bifunctional DHFR-TS structures as templates, are used to build an in silico model of human DHFR-TS complex structure, consisting of one TS dimer and two DHFR monomers. This complex structure may serve as an initial 3D drug target model for prospective inhibitors targeting interfaces between the DHFR and TS enzymes.

  14. Alanine mutants of the interface residues of human thymidylate synthase decode key features of the binding mode of allosteric anticancer peptides.

    Science.gov (United States)

    Tochowicz, Anna; Santucci, Matteo; Saxena, Puneet; Guaitoli, Giambattista; Trande, Matteo; Finer-Moore, Janet; Stroud, Robert M; Costi, Maria P

    2015-01-22

    Allosteric peptide inhibitors of thymidylate synthase (hTS) bind to the dimer interface and stabilize the inactive form of the protein. Four interface residues were mutated to alanine, and interaction studies were employed to decode the key role of these residues in the peptide molecular recognition. This led to the identification of three crucial interface residues F59, L198, and Y202 that impart activity to the peptide inhibitors and suggest the binding area for further inhibitor design.

  15. Replacement of Val3 in Human Thymidylate Synthase Affects Its Kinetic Properties and Intracellular Stability

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xiao; Gibson, Lydia M.; Bell, Brittnaie J.; Lovelace, Leslie L.; Pea, Maria Marjorette O.; Berger, Franklin G.; Berger, Sondra H.; Lebioda, Lukasz (SC)

    2010-11-03

    Human and other mammalian thymidylate synthase (TS) enzymes have an N-terminal extension of {approx}27 amino acids that is not present in bacterial TSs. The extension, which is disordered in all reported crystal structures of TSs, has been considered to play a primary role in protein turnover but not in catalytic activity. In mammalian cells, the variant V3A has a half-life similar to that of wild-type human TS (wt hTS) while V3T is much more stable; V3L, V3F, and V3Y have half-lives approximately half of that for wt hTS. Catalytic turnover rates for most Val3 mutants are only slightly diminished, as expected. However, two mutants, V3L and V3F, have strongly compromised dUMP binding, with K{sub m,app} values increased by factors of 47 and 58, respectively. For V3L, this observation can be explained by stabilization of the inactive conformation of the loop of residues 181-197, which prevents substrate binding. In the crystal structure of V3L, electron density corresponding to a leucine residue is present in a position that stabilizes the loop of residues 181-197 in the inactive conformation. Since this density is not observed in other mutants and all other leucine residues are ordered in this structure, it is likely that this density represents Leu3. In the crystal structure of a V3F {center_dot} FdUMP binary complex, the nucleotide is bound in an alternative mode to that proposed for the catalytic complex, indicating that the high K{sub m,app} value is caused not by stabilization of the inactive conformer but by substrate binding in a nonproductive, inhibitory site. These observations show that the N-terminal extension affects the conformational state of the hTS catalytic region. Each of the mechanisms leading to the high K{sub m,app} values can be exploited to facilitate design of compounds acting as allosteric inhibitors of hTS.

  16. Structural analyses of human thymidylate synthase reveal a site that may control conformational switching between active and inactive states.

    Science.gov (United States)

    Chen, Dan; Jansson, Anna; Sim, Daniel; Larsson, Andreas; Nordlund, Pär

    2017-08-11

    Thymidylate synthase (TS) is the sole enzyme responsible for de novo biosynthesis of thymidylate (TMP) and is essential for cell proliferation and survival. Inhibition of human TS (hTS) has been extensively investigated for cancer chemotherapy, but several aspects of its activity and regulation are still uncertain. In this study, we performed comprehensive structural and biophysical studies of hTS using crystallography and thermal shift assay and provided the first detailed structural information on the conformational changes induced by ligand binding to the hTS active site. We found that upon binding of the antifolate agents raltitrexed and nolatrexed, the two insert regions in hTS, the functions of which are unclear, undergo positional shifts toward the catalytic center. We investigated the inactive conformation of hTS and found that the two insert regions are also involved in the conformational transition between the active and inactive state of hTS. Moreover, we identified a ligand-binding site in the dimer interface, suggesting that the cavity in the dimer interface could serve as an allosteric site of hTS to regulate the conformational switching between the active and inactive states. On the basis of these findings, we propose a regulatory mechanism of hTS activity that involves allosteric regulation of interactions of hTS with its own mRNA depending on cellular demands for TMP. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Properties of phosphorylated thymidylate synthase

    DEFF Research Database (Denmark)

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr

    2015-01-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat...

  18. Analysis of polymorphisms and haplotype structure of the human thymidylate synthase genetic region: a tool for pharmacogenetic studies.

    Directory of Open Access Journals (Sweden)

    Soma Ghosh

    Full Text Available 5-Fluorouracil (5FU, a widely used chemotherapeutic drug, inhibits the DNA replicative enzyme, thymidylate synthase (Tyms. Prior studies implicated a VNTR (variable numbers of tandem repeats polymorphism in the 5'-untranslated region (5'-UTR of the TYMS gene as a determinant of Tyms expression in tumors and normal tissues and proposed that these VNTR genotypes could help decide fluoropyrimidine dosing. Clinical associations between 5FU-related toxicity and the TYMS VNTR were reported, however, results were inconsistent, suggesting that additional genetic variation in the TYMS gene might influence Tyms expression. We thus conducted a detailed genetic analysis of this region, defining new polymorphisms in this gene including mononucleotide (poly A:T repeats and novel single nucleotide polymorphisms (SNPs flanking the VNTR in the TYMS genetic region. Our haplotype analysis of this region used data from both established and novel genetic variants and found nine SNP haplotypes accounting for more than 90% of the studied population. We observed non-exclusive relationships between the VNTR and adjacent SNP haplotypes, such that each type of VNTR commonly occurred on several haplotype backgrounds. Our results confirmed the expectation that the VNTR alleles exhibit homoplasy and lack the common ancestry required for a reliable marker of a linked adjacent locus that might govern toxicity. We propose that it may be necessary in a clinical trial to assay multiple types of genetic polymorphisms in the TYMS region to meaningfully model linkage of genetic markers to 5FU-related toxicity. The presence of multiple long (up to 26 nt, polymorphic monothymidine repeats in the promoter region of the sole human thymidylate synthetic enzyme is intriguing.

  19. Septin mutations in human cancers

    Directory of Open Access Journals (Sweden)

    Elias T Spiliotis

    2016-11-01

    Full Text Available Septins are GTP-binding proteins that are evolutionarily and structurally related to the RAS oncogenes. Septin expression levels are altered in many cancers and new advances point to how abnormal septin expression may contribute to the progression of cancer. In contrast to the RAS GTPases, which are frequently mutated and actively promote tumorigenesis, little is known about the occurrence and role of septin mutations in human cancers. Here, we review septin missense mutations that are currently in the Catalog of Somatic Mutations in Cancer (COSMIC database. The majority of septin mutations occur in tumors of the large intestine, skin, endometrium and stomach. Over 25% of the annotated mutations in SEPT2, SEPT4 and SEPT9 belong to large intestine tumors. From all septins, SEPT9 and SEPT14 exhibit the highest mutation frequencies in skin, stomach and large intestine cancers. While septin mutations occur with frequencies lower than 3%, recurring mutations in several invariant and highly conserved amino acids are found across different septin paralogs and tumor types. Interestingly, a significant number of these mutations occur in the GTP-binding pocket and septin dimerization interfaces. Future studies may determine how these somatic mutations affect septin structure and function, whether they contribute to the progression of specific cancers and if they could serve as tumor-specific biomarkers.

  20. Crystal structure of the active form of native human thymidylate synthase in the absence of bound substrates.

    Science.gov (United States)

    Deschamps, P; Réty, S; Bareille, J; Leulliot, N

    2017-06-01

    Human thymidylate synthase (hTS) provides the sole de novo intracellular source of thymidine 5'-monophosphate (dTMP). hTS is required for DNA replication prior to cell division, making it an attractive target for anticancer chemotherapy and drug discovery. hTS binds 2'-deoxyuridine 5'-monophosphate (dUMP) and the folate co-substrate N 5 ,N 10 -methylenetetrahydrofolate (meTHF) in a pocket near the catalytic residue Cys195. The catalytic loop, which is composed of amino-acid residues 181-197, can adopt two distinct conformations related by a 180° rotation. In the active conformation Cys195 is close to the active site, while in the inactive conformation it is rotated and Cys195 is too distant from the active site for catalysis. Several hTS structures, either native or engineered, have been solved in the active conformation in complex with ligands or inhibitors and at different salt concentrations. However, apo hTS structures have been solved in an inactive conformation in high-salt and low-salt conditions (PDB entries 1ypv, 4h1i, 4gyh, 3egy and 3ehi). Here, the structure of apo hTS crystallized in the active form with sulfate ions coordinated by the arginine residue that binds dUMP is reported.

  1. Role of Mutations in Dihydrofolate Reductase DfrA (Rv2763c) and Thymidylate Synthase ThyA (Rv2764c) in Mycobacterium tuberculosis Drug Resistance

    KAUST Repository

    Koser, C. U.

    2010-09-17

    We would like to comment on a number of recent reports in this journal (6, 8, 12, 18) concerning Mycobacterium tuberculosis dihydrofolate reductase (DHFR), encoded by dfrA (Rv2763c). Around 36% of phenotypically para-aminosalicylic acid (PAS)-resistant M. tuberculosis strains harbor mutations in thyA (Rv2764c), which encodes a thymidylate synthase (20). In their effort to elucidate the remaining unknown resistance mechanism(s), Mathys et al. extended their sequence analysis to a number of additional genes, including dfrA (12). It was unclear whether the three dfrA mutations they identified in the PAS-resistant strains P-693 and P-3158 could contribute to PAS resistance on their own. Nonetheless, these findings are notable for two reasons. First, isoniazid (INH) has been shown to inhibit M. tuberculosis DHFR in vitro (1). Whether the same holds true for ethionamide, which shares a number of common resistance mechanisms with INH, was not tested (J. Blanchard, personal communication). In any case, the clinical relevance of DHFR-mediated INH resistance remains enigmatic. To date, only Ho et al. have addressed this question, but they did not identify any dfrA mutations in a screen of 127 INH-resistant clinical isolates (8). Consequently, Mathys et al. remain the first to describe mutations in this target (12). However, given that isolates with mutated DHFR are members of a cluster with baseline INH resistance, the importance of these mutations with respect to INH resistance remains unclear. Irrespective of their relevance in INH resistance, these dfrA mutations are noteworthy for a second reason. Contrary to previous wisdom, Forgacs et al. recently showed that M. tuberculosis is sensitive to the drug combination trimethoprim-sulfamethoxazole (TMP-SMX) (6, 18). DHFR is competitively inhibited by TMP, and consequently, mutations therein lead to resistance in a variety of organisms (9, 16, 19). The crystal structures of the wild-type M. tuberculosis DHFR in complex with

  2. Astaxanthin enhances pemetrexed-induced cytotoxicity by downregulation of thymidylate synthase expression in human lung cancer cells.

    Science.gov (United States)

    Liao, Kai-Sheng; Wei, Chia-Li; Chen, Jyh-Cheng; Zheng, Hao-Yu; Chen, Wen-Ching; Wu, Chia-Hung; Wang, Tai-Jing; Peng, Yi-Shuan; Chang, Po-Yuan; Lin, Yun-Wei

    2016-11-01

    Pemetrexed, a multitargeted antifolate agent, has demonstrated clinical activity in non-small cell lung cancer (NSCLC) cells. Increased expression of thymidylate synthase (TS) is thought to be associated with resistance to pemetrexed. Astaxanthin exhibits a wide range of beneficial effects including anti-cancer and anti-inflammatory properties. In this study, we showed that down-regulating of TS expression in two NSCLC cell lines, human lung adenocarcinoma H1650 and squamous cell carcinoma H1703 cells, with astaxanthin were associated with decreased MKK1/2-ERK1/2 activity. Enforced expression of constitutively active MKK1 (MKK1-CA) vector significantly rescued the decreased TS mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with a MKK1/2 inhibitor (U0126 or PD98059) further decreased the TS expression in astaxanthin-exposed NSCLC cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting ERK1/2 activity enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Combination of pemetrexed and astaxanthin resulted in synergistic enhancing cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced activation of phospho-MKK1/2, phopho-ERK1/2, and TS expression. Overexpression of MKK1/2-CA reversed the astaxanthin and pemetrexed-induced synergistic cytotoxicity. Our findings suggested that the down-regulation of MKK1/2-ERK1/2-mediated TS expression by astaxanthin is an important regulator of enhancing the pemetrexed-induced cytotoxicity in NSCLC cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Pronounced between‐subject and circadian variability in thymidylate synthase and dihydropyrimidine dehydrogenase enzyme activity in human volunteers

    Science.gov (United States)

    Jacobs, Bart A. W.; Deenen, Maarten J.; Pluim, Dick; van Hasselt, J. G. Coen; Krähenbühl, Martin D.; van Geel, Robin M. J. M.; de Vries, Niels; Rosing, Hilde; Meulendijks, Didier; Burylo, Artur M.; Cats, Annemieke; Beijnen, Jos H.; Huitema, Alwin D. R.

    2016-01-01

    Abstract Aims The enzymatic activity of dihydropyrimidine dehydrogenase (DPD) and thymidylate synthase (TS) are important for the tolerability and efficacy of the fluoropyrimidine drugs. In the present study, we explored between‐subject variability (BSV) and circadian rhythmicity in DPD and TS activity in human volunteers. Methods The BSVs in DPD activity (n = 20) in peripheral blood mononuclear cells (PBMCs) and in plasma, measured by means of the dihydrouracil (DHU) and uracil (U) plasma levels and DHU : U ratio (n = 40), and TS activity in PBMCs (n = 19), were examined. Samples were collected every 4 h throughout 1 day for assessment of circadian rhythmicity in DPD and TS activity in PBMCs (n = 12) and DHU : U plasma ratios (n = 23). In addition, the effects of genetic polymorphisms and gene expression on DPD and TS activity were explored. Results Population mean (± standard deviation) DPD activity in PBMCs and DHU : U plasma ratio were 9.2 (±2.1) nmol mg−1 h−1 and 10.6 (±2.4), respectively. Individual TS activity in PBMCs ranged from 0.024 nmol mg−1 h−1 to 0.596 nmol mg−1 h−1. Circadian rhythmicity was demonstrated for all phenotype markers. Between 00:30 h and 02:00 h, DPD activity in PBMCs peaked, while the DHU : U plasma ratio and TS activity in PBMCs showed trough activity. Peak‐to‐trough ratios for DPD and TS activity in PBMCs were 1.69 and 1.62, respectively. For the DHU : U plasma ratio, the peak‐to‐trough ratio was 1.43. Conclusions BSV and circadian variability in DPD and TS activity were demonstrated. Circadian rhythmicity in DPD might be tissue dependent. The results suggested an influence of circadian rhythms on phenotype‐guided fluoropyrimidine dosing and supported implications for chronotherapy with high‐dose fluoropyrimidine administration during the night. PMID:27161955

  4. Pronounced between-subject and circadian variability in thymidylate synthase and dihydropyrimidine dehydrogenase enzyme activity in human volunteers.

    Science.gov (United States)

    Jacobs, Bart A W; Deenen, Maarten J; Pluim, Dick; van Hasselt, J G Coen; Krähenbühl, Martin D; van Geel, Robin M J M; de Vries, Niels; Rosing, Hilde; Meulendijks, Didier; Burylo, Artur M; Cats, Annemieke; Beijnen, Jos H; Huitema, Alwin D R; Schellens, Jan H M

    2016-09-01

    The enzymatic activity of dihydropyrimidine dehydrogenase (DPD) and thymidylate synthase (TS) are important for the tolerability and efficacy of the fluoropyrimidine drugs. In the present study, we explored between-subject variability (BSV) and circadian rhythmicity in DPD and TS activity in human volunteers. The BSVs in DPD activity (n = 20) in peripheral blood mononuclear cells (PBMCs) and in plasma, measured by means of the dihydrouracil (DHU) and uracil (U) plasma levels and DHU : U ratio (n = 40), and TS activity in PBMCs (n = 19), were examined. Samples were collected every 4 h throughout 1 day for assessment of circadian rhythmicity in DPD and TS activity in PBMCs (n = 12) and DHU : U plasma ratios (n = 23). In addition, the effects of genetic polymorphisms and gene expression on DPD and TS activity were explored. Population mean (± standard deviation) DPD activity in PBMCs and DHU : U plasma ratio were 9.2 (±2.1) nmol mg(-1) h(-1) and 10.6 (±2.4), respectively. Individual TS activity in PBMCs ranged from 0.024 nmol mg(-1) h(-1) to 0.596 nmol mg(-1) h(-1) . Circadian rhythmicity was demonstrated for all phenotype markers. Between 00:30 h and 02:00 h, DPD activity in PBMCs peaked, while the DHU : U plasma ratio and TS activity in PBMCs showed trough activity. Peak-to-trough ratios for DPD and TS activity in PBMCs were 1.69 and 1.62, respectively. For the DHU : U plasma ratio, the peak-to-trough ratio was 1.43. BSV and circadian variability in DPD and TS activity were demonstrated. Circadian rhythmicity in DPD might be tissue dependent. The results suggested an influence of circadian rhythms on phenotype-guided fluoropyrimidine dosing and supported implications for chronotherapy with high-dose fluoropyrimidine administration during the night. © 2016 The British Pharmacological Society.

  5. Structural Analysis of Thymidylate Synthase from Kaposi's Sarcoma-Associated Herpesvirus with the Anticancer Drug Raltitrexed.

    Directory of Open Access Journals (Sweden)

    Yong Mi Choi

    Full Text Available Kaposi's sarcoma-associated herpesvirus (KSHV is a highly infectious human herpesvirus that causes Kaposi's sarcoma. KSHV encodes functional thymidylate synthase, which is a target for anticancer drugs such as raltitrexed or 5-fluorouracil. Thymidylate synthase catalyzes the conversion of 2'-deoxyuridine-5'-monophosphate (dUMP to thymidine-5'-monophosphate (dTMP using 5,10-methylenetetrahydrofolate (mTHF as a co-substrate. The crystal structures of thymidylate synthase from KSHV (apo, complexes with dUMP (binary, and complexes with both dUMP and raltitrexed (ternary were determined at 1.7 Å, 2.0 Å, and 2.4 Å, respectively. While the ternary complex structures of human thymidylate synthase and E. coli thymidylate synthase had a closed conformation, the ternary complex structure of KSHV thymidylate synthase was observed in an open conformation, similar to that of rat thymidylate synthase. The complex structures of KSHV thymidylate synthase did not have a covalent bond between the sulfhydryl group of Cys219 and C6 atom of dUMP, unlike the human thymidylate synthase. The catalytic Cys residue demonstrated a dual conformation in the apo structure, and its sulfhydryl group was oriented toward the C6 atom of dUMP with no covalent bond upon ligand binding in the complex structures. These structural data provide the potential use of antifolates such as raltitrexed as a viral induced anticancer drug and structural basis to design drugs for targeting the thymidylate synthase of KSHV.

  6. Structural Analysis of Thymidylate Synthase from Kaposi's Sarcoma-Associated Herpesvirus with the Anticancer Drug Raltitrexed.

    Science.gov (United States)

    Choi, Yong Mi; Yeo, Hyun Ku; Park, Young Woo; Lee, Jae Young

    2016-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a highly infectious human herpesvirus that causes Kaposi's sarcoma. KSHV encodes functional thymidylate synthase, which is a target for anticancer drugs such as raltitrexed or 5-fluorouracil. Thymidylate synthase catalyzes the conversion of 2'-deoxyuridine-5'-monophosphate (dUMP) to thymidine-5'-monophosphate (dTMP) using 5,10-methylenetetrahydrofolate (mTHF) as a co-substrate. The crystal structures of thymidylate synthase from KSHV (apo), complexes with dUMP (binary), and complexes with both dUMP and raltitrexed (ternary) were determined at 1.7 Å, 2.0 Å, and 2.4 Å, respectively. While the ternary complex structures of human thymidylate synthase and E. coli thymidylate synthase had a closed conformation, the ternary complex structure of KSHV thymidylate synthase was observed in an open conformation, similar to that of rat thymidylate synthase. The complex structures of KSHV thymidylate synthase did not have a covalent bond between the sulfhydryl group of Cys219 and C6 atom of dUMP, unlike the human thymidylate synthase. The catalytic Cys residue demonstrated a dual conformation in the apo structure, and its sulfhydryl group was oriented toward the C6 atom of dUMP with no covalent bond upon ligand binding in the complex structures. These structural data provide the potential use of antifolates such as raltitrexed as a viral induced anticancer drug and structural basis to design drugs for targeting the thymidylate synthase of KSHV.

  7. Gossypol sensitizes the antitumor activity of 5-FU through down-regulation of thymidylate synthase in human colon carcinoma cells.

    Science.gov (United States)

    Yang, Dan; Qu, Jinglei; Qu, Xiujuan; Cao, Yubo; Xu, Ling; Hou, Kezuo; Feng, Wanyu; Liu, Yunpeng

    2015-09-01

    5-Fluorouracil (5-FU) is the basic chemotherapeutic agent used to treat colon cancer. However, the sensitivity of colon cancer cells to 5-FU is limited. Gossypol is a polyphenolic extract of cottonseeds. The purpose of this study was to investigate the activities and related mechanism of gossypol alone or in combination with 5-FU against human colon carcinoma cells. The IC50 of gossypol or/and 5-FU in vitro was tested by 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and the drug interaction was analyzed using the CalcuSyn method. Cell apoptosis was determined using presidium iodide staining and flow cytometric analysis. Western blotting was used to determine the expression of proteins. Transient transfection method was used to silence protein. The IC₅₀ at 48 h of gossypol in colon cancer cells was 26.11 ± 1.04 μmol/L in HT-29 cells, 14.11 ± 1.08 μmol/L in HCT116 cells, and 21.83 ± 1.05 μmol/L in RKO cells. When gossypol was combined with 5-FU, a synergistic cytotoxic effect was observed in HT-29 cells, HCT116 cells, and RKO cells compared with treatment with gossypol or 5-FU alone. The Western blotting results indicated that gossypol down-regulated thymidylate synthase (TS) rather than thymidine phosphorylase protein expression. Furthermore, the mTOR/p70S6K1 signaling pathway was inhibited in gossypol-treated colon cancer cells, and consequently, cyclin D1 expression was decreased, suggesting an additional mechanism of the observed antiproliferative synergistic interactions. All the observation was confirmed by silencing TS and inactivating the mTOR/p70S6K1 signaling pathway by rapamycin, both of which increased the chemo-sensitizing efficacy of 5-FU. These findings suggest that gossypol-mediated down-regulation of TS, cyclin D1, and the mTOR/p70S6K1 signaling pathways enhances the anti-tumor effect of 5-FU. Ultimately, our data exposed a new action for gossypol as an enhancer of 5-FU-induced cell growth suppression.

  8. Flavin-dependent thymidylate synthase: N5 of flavin as a Methylene carrier.

    Science.gov (United States)

    Karunaratne, Kalani; Luedtke, Nicholas; Quinn, Daniel M; Kohen, Amnon

    2017-10-15

    Thymidylate is synthesized de novo in all living organisms for replication of genomes. The chemical transformation is reductive methylation of deoxyuridylate at C5 to form deoxythymidylate. All eukaryotes including humans complete this well-understood transformation with thymidylate synthase utilizing 6R-N 5 -N 10 -methylene-5,6,7,8-tetrahydrofolate as both a source of methylene and a reducing hydride. In 2002, flavin-dependent thymidylate synthase was discovered as a new pathway for de novo thymidylate synthesis. The flavin-dependent catalytic mechanism is different than thymidylate synthase because it requires flavin as a reducing agent and methylene transporter. This catalytic mechanism is not well-understood, but since it is known to be very different from thymidylate synthase, there is potential for mechanism-based inhibitors that can selectively inhibit the flavin-dependent enzyme to target many human pathogens with low host toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Rapid evolution of the human mutation spectrum.

    Science.gov (United States)

    Harris, Kelley; Pritchard, Jonathan K

    2017-04-25

    DNA is a remarkably precise medium for copying and storing biological information. This high fidelity results from the action of hundreds of genes involved in replication, proofreading, and damage repair. Evolutionary theory suggests that in such a system, selection has limited ability to remove genetic variants that change mutation rates by small amounts or in specific sequence contexts. Consistent with this, using SNV variation as a proxy for mutational input, we report here that mutational spectra differ substantially among species, human continental groups and even some closely related populations. Close examination of one signal, an increased TCC→TTC mutation rate in Europeans, indicates a burst of mutations from about 15,000 to 2000 years ago, perhaps due to the appearance, drift, and ultimate elimination of a genetic modifier of mutation rate. Our results suggest that mutation rates can evolve markedly over short evolutionary timescales and suggest the possibility of mapping mutational modifiers.

  10. Folate binding site of flavin-dependent thymidylate synthase.

    Science.gov (United States)

    Koehn, Eric M; Perissinotti, Laura L; Moghram, Salah; Prabhakar, Arjun; Lesley, Scott A; Mathews, Irimpan I; Kohen, Amnon

    2012-09-25

    The DNA nucleotide thymidylate is synthesized by the enzyme thymidylate synthase, which catalyzes the reductive methylation of deoxyuridylate using the cofactor methylene-tetrahydrofolate (CH(2)H(4)folate). Most organisms, including humans, rely on the thyA- or TYMS-encoded classic thymidylate synthase, whereas, certain microorganisms, including all Rickettsia and other pathogens, use an alternative thyX-encoded flavin-dependent thymidylate synthase (FDTS). Although several crystal structures of FDTSs have been reported, the absence of a structure with folates limits understanding of the molecular mechanism and the scope of drug design for these enzymes. Here we present X-ray crystal structures of FDTS with several folate derivatives, which together with mutagenesis, kinetic analysis, and computer modeling shed light on the cofactor binding and function. The unique structural data will likely facilitate further elucidation of FDTSs' mechanism and the design of structure-based inhibitors as potential leads to new antimicrobial drugs.

  11. Mutation of human cells by kerosene soot

    Energy Technology Data Exchange (ETDEWEB)

    Skopek, T.R. (Massachusetts Inst. of Tech., Cambridge, MA); Liber, H.L.; Kaden, D.A.; Hites, R.A.; Thilly, W.G.

    1979-08-01

    The polycyclic aromatic hydrocarbon fraction of a kerosene soot induced forward mutation in human diploid lymphoblasts when coincubated with coincubated with Sprague-Dawley rat liver postmitochondrial supematant. Two components of the kerosene soot extract, benzo(a)pyrene (BP) and cyclopenta(cd)pyrene (CP), were also tested. BP was not mutagenic at the concentration found in the soot extract, although it was active at higher concentrations. The amount of CP present could account for approximately 8% of the total mutation observed with the soot. The results were compared to data obtained previously in a similar mutation assay in Salmonella typhimurium. the protocol described permits the facile assay of mutation at the hgprt locus in human lymphoblasts; such mutation is induced by compounds or complex mixtures requiring mixed-function oxygenase activity for metabolism to genetically active derivatives.

  12. Transcriptional activation and cell cycle block are the keys for 5-fluorouracil induced up-regulation of human thymidylate synthase expression.

    Directory of Open Access Journals (Sweden)

    Alessio Ligabue

    Full Text Available BACKGROUND: 5-fluorouracil, a commonly used chemotherapeutic agent, up-regulates expression of human thymidylate synthase (hTS. Several different regulatory mechanisms have been proposed to mediate this up-regulation in distinct cell lines, but their specific contributions in a single cell line have not been investigated to date. We have established the relative contributions of these previously proposed regulatory mechanisms in the ovarian cancer cell line 2008 and the corresponding cisplatin-resistant and 5-FU cross-resistant-subline C13*. METHODOLOGY/PRINCIPAL FINDINGS: Using RNA polymerase II inhibitor DRB treated cell cultures, we showed that 70-80% of up-regulation of hTS results from transcriptional activation of TYMS mRNA. Moreover, we report that 5-FU compromises the cell cycle by blocking the 2008 and C13* cell lines in the S phase. As previous work has established that TYMS mRNA is synthesized in the S and G(1 phase and hTS is localized in the nuclei during S and G(2-M phase, the observed cell cycle changes are also expected to affect the intracellular regulation of hTS. Our data also suggest that the inhibition of the catalytic activity of hTS and the up-regulation of the hTS protein level are not causally linked, as the inactivated ternary complex, formed by hTS, deoxyuridine monophosphate and methylenetetrahydrofolate, was detected already 3 hours after 5-FU exposure, whereas substantial increase in global TS levels was detected only after 24 hours. CONCLUSIONS/SIGNIFICANCE: Altogether, our data indicate that constitutive TYMS mRNA transcription, cell cycle-induced hTS regulation and hTS enzyme stability are the three key mechanisms responsible for 5-fluorouracil induced up-regulation of human thymidylate synthase expression in the two ovarian cancer cell lines studied. As these three independent regulatory phenomena occur in a precise order, our work provides a feasible rationale for earlier observed synergistic combinations of 5

  13. Salinomycin enhances cisplatin-induced cytotoxicity in human lung cancer cells via down-regulation of AKT-dependent thymidylate synthase expression.

    Science.gov (United States)

    Ko, Jen-Chung; Zheng, Hao-Yu; Chen, Wen-Ching; Peng, Yi-Shuan; Wu, Chia-Hung; Wei, Chia-Li; Chen, Jyh-Cheng; Lin, Yun-Wei

    2016-12-15

    Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore and has anticancer activity on various cancer cell lines. Cisplatin has been proved as chemotherapy drug for advanced human non-small cell lung cancer (NSCLC). Thymidylate synthase (TS) is a key enzyme in the pyrimidine salvage pathway, and increased expression of TS is thought to be associated with resistance to cisplatin. In this study, we showed that salinomycin (0.5-2μg/mL) treatment down-regulating of TS expression in an AKT inactivation manner in two NSCLC cell lines, human lung adenocarcinoma A549 and squamous cell carcinoma H1703 cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting AKT activity with PI3K inhibitor LY294002 enhanced the cytotoxicity and cell growth inhibition of salinomycin. A combination of cisplatin and salinomycin resulted in synergistic enhancement of cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced activation of phospho-AKT, and TS expression. Overexpression of a constitutive active AKT (AKT-CA) expression vector reversed the salinomycin and cisplatin-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in salinomycin and cisplatin cotreated cells. Our findings suggested that the down-regulation of AKT-mediated TS expression by salinomycin enhanced the cisplatin-induced cytotoxicity in NSCLC cells. These results may provide a rationale to combine salinomycin with cisplatin for lung cancer treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Salinomycin acts through reducing AKT-dependent thymidylate synthase expression to enhance erlotinib-induced cytotoxicity in human lung cancer cells.

    Science.gov (United States)

    Tung, Chun-Liang; Chen, Jyh-Cheng; Wu, Chia-Hung; Peng, Yi-Shuan; Chen, Wen-Ching; Zheng, Hao-Yu; Jian, Yi-Jun; Wei, Chia-Li; Cheng, Ya-Ting; Lin, Yun-Wei

    2017-08-01

    Erlotinib (Tarceva R ) is a selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor in the treatment of human non-small cell lung cancer (NSCLC). Salinomycin, a polyether antibiotic, has been promising a novel therapeutic agent for lung cancer, and down-regulated the expression of thymidylate synthase (TS) in NSCLC cell lines. Previous study showed that against EGFR and TS was strongly synergistic cytotoxicity in NSCLC cells. In this study, we showed that erlotinib (1.25-10μM) treatment down-regulating of TS expression in an AKT inactivation manner in two NSCLC cell lines, human lung squamous cell carcinoma H1703 and adenocarcinoma H1975 cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting AKT activity with PI3K inhibitor LY294002 enhanced the cytotoxicity and cell growth inhibition of erlotinib. A combination of erlotinib and salinomycin resulted in synergistic enhancement of cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced protein levels of phospho-AKT(Ser473), phospho-AKT(Thr308), and TS. Overexpression of a constitutive active AKT (AKT-CA) or Flag-TS expression vector reversed the salinomycin and erlotinib-induced synergistic cytotoxicity. Our findings suggested that the down-regulation of AKT-mediated TS expression by salinomycin enhanced the erlotinib-induced cytotoxicity in NSCLC cells. These results may provide a rationale to combine salinomycin with erlotinib for lung cancer treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Flavin-Dependent Thymidylate Synthase as a New Antibiotic Target

    Directory of Open Access Journals (Sweden)

    Michael Choi

    2016-05-01

    Full Text Available In humans de novo synthesis of 2′-deoxythymidine-5′-monophosphate (dTMP, an essential building block of DNA, utilizes an enzymatic pathway requiring thymidylate synthase (TSase and dihydrofolate reductase (DHFR. The enzyme flavin-dependent thymidylate synthase (FDTS represents an alternative enzymatic pathway to synthesize dTMP, which is not present in human cells. A number of pathogenic bacteria, however, depend on this enzyme in lieu of or in conjunction with the analogous human pathway. Thus, inhibitors of this enzyme may serve as antibiotics. Here, we review the similarities and differences of FDTS vs. TSase including aspects of their structure and chemical mechanism. In addition, we review current progress in the search for inhibitors of flavin dependent thymidylate synthase as potential novel therapeutics.

  16. Flavin-Dependent Thymidylate Synthase as a New Antibiotic Target.

    Science.gov (United States)

    Choi, Michael; Karunaratne, Kalani; Kohen, Amnon

    2016-05-20

    In humans de novo synthesis of 2'-deoxythymidine-5'-monophosphate (dTMP), an essential building block of DNA, utilizes an enzymatic pathway requiring thymidylate synthase (TSase) and dihydrofolate reductase (DHFR). The enzyme flavin-dependent thymidylate synthase (FDTS) represents an alternative enzymatic pathway to synthesize dTMP, which is not present in human cells. A number of pathogenic bacteria, however, depend on this enzyme in lieu of or in conjunction with the analogous human pathway. Thus, inhibitors of this enzyme may serve as antibiotics. Here, we review the similarities and differences of FDTS vs. TSase including aspects of their structure and chemical mechanism. In addition, we review current progress in the search for inhibitors of flavin dependent thymidylate synthase as potential novel therapeutics.

  17. Structural Analysis of Thymidylate Synthase from Kaposi?s Sarcoma-Associated Herpesvirus with the Anticancer Drug Raltitrexed

    OpenAIRE

    Choi, Yong Mi; Yeo, Hyun Ku; Park, Young Woo; Lee, Jae Young

    2016-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a highly infectious human herpesvirus that causes Kaposi's sarcoma. KSHV encodes functional thymidylate synthase, which is a target for anticancer drugs such as raltitrexed or 5-fluorouracil. Thymidylate synthase catalyzes the conversion of 2'-deoxyuridine-5'-monophosphate (dUMP) to thymidine-5'-monophosphate (dTMP) using 5,10-methylenetetrahydrofolate (mTHF) as a co-substrate. The crystal structures of thymidylate synthase from KSHV (apo), co...

  18. Structures of human thymidylate synthase R163K with dUMP, FdUMP and glutathione show asymmetric ligand binding

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Lydia M.; Celeste, Lesa R.; Lovelace, Leslie L.; Lebioda, Lukasz (SC)

    2012-02-21

    Thymidylate synthase (TS) is a well validated target in cancer chemotherapy. Here, a new crystal form of the R163K variant of human TS (hTS) with five subunits per asymmetric part of the unit cell, all with loop 181-197 in the active conformation, is reported. This form allows binding studies by soaking crystals in artificial mother liquors containing ligands that bind in the active site. Using this approach, crystal structures of hTS complexes with FdUMP and dUMP were obtained, indicating that this form should facilitate high-throughput analysis of hTS complexes with drug candidates. Crystal soaking experiments using oxidized glutathione revealed that hTS binds this ligand. Interestingly, the two types of binding observed are both asymmetric. In one subunit of the physiological dimer covalent modification of the catalytic nucleophile Cys195 takes place, while in another dimer a noncovalent adduct with reduced glutathione is formed in one of the active sites.

  19. Conveying a newly designed hydrophilic anti-human thymidylate synthase peptide to cisplatin resistant cancer cells: are pH-sensitive liposomes more effective than conventional ones?

    Science.gov (United States)

    Sacchetti, Francesca; D'Arca, Domenico; Genovese, Filippo; Pacifico, Salvatore; Maretti, Eleonora; Hanuskova, Miriam; Iannuccelli, Valentina; Costi, Maria Paola; Leo, Eliana

    2017-03-01

    LR-peptide, a novel hydrophilic peptide synthetized and characterized in previous work, is able to reduce the multi-drug resistance response in cisplatin (cDPP) resistant cancer cells by inhibiting human thymidylate synthase (hTS) overexpressed in several tumors, including ovarian and colon-rectal cancers, but it is unable to enter the cells spontaneously. The aim of this work was to design and characterize liposomal vesicles as drug delivery systems for the LR peptide, evaluating the possible benefits of the pH-responsive feature in improving intracellular delivery. For this purpose, conventional and pH-sensitive liposomes were formulated, compared regarding their physical-chemical properties (size, PDI, morphology, in vitro stability and drug release) and studied for in vitro cytotoxicity against a cDDP-resistant cancer cells. Results indicated that LR peptide was successfully encapsulated in both liposomal formulations but at short incubation time only LR loaded pH-sensitive liposomes showed cell inhibition activity while for long incubation time the two kinds of liposomes demonstrated the same efficacy. Data provide evidence that acidic pH-triggered liposomal delivery is able to significantly reduce the time required by the systems to deliver the drug to the cells without inducing an enhancement of the efficacy of the drug.

  20. The R163K Mutant of Human Thymidylate Synthase Is Stabilized in an Active Conformation: Structural Asymmetry and Reactivity of Cysteine 195

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Lydia M.; Lovelace, Leslie L.; Lebioda, Lukasz (SC)

    2008-06-16

    Loop 181-197 of human thymidylate synthase (hTS) populates two conformational states. In the first state, Cys195, a residue crucial for catalytic activity, is in the active site (active conformer); in the other conformation, it is about 10 {angstrom} away, outside the active site (inactive conformer). We have designed and expressed an hTS variant, R163K, in which the inactive conformation is destabilized. The activity of this mutant is 33% higher than that of wt hTS, suggesting that at least one-third of hTS populates the inactive conformer. Crystal structures of R163K in two different crystal forms, with six and two subunits per asymmetric part of the unit cells, have been determined. All subunits of this mutant are in the active conformation while wt hTS crystallizes as the inactive conformer in similar mother liquors. The structures show differences in the environment of catalytic Cys195, which correlate with Cys195 thiol reactivity, as judged by its oxidation state. Calculations show that the molecular electrostatic potential at Cys195 differs between the subunits of the dimer. One of the dimers is asymmetric with a phosphate ion bound in only one of the subunits. In the absence of the phosphate ion, that is in the inhibitor-free enzyme, the tip of loop 47-53 is about 11 {angstrom} away from the active site.

  1. Deprotonations in the Reaction of Flavin-Dependent Thymidylate Synthase.

    Science.gov (United States)

    Stull, Frederick W; Bernard, Steffen M; Sapra, Aparna; Smith, Janet L; Zuiderweg, Erik R P; Palfey, Bruce A

    2016-06-14

    Many microorganisms use flavin-dependent thymidylate synthase (FDTS) to synthesize the essential nucleotide 2'-deoxythymidine 5'-monophosphate (dTMP) from 2'-deoxyuridine 5'-monophosphate (dUMP), 5,10-methylenetetrahydrofolate (CH2THF), and NADPH. FDTSs have a structure that is unrelated to the thymidylate synthase used by humans and a very different mechanism. Here we report nuclear magnetic resonance evidence that FDTS ionizes N3 of dUMP using an active-site arginine. The ionized form of dUMP is largely responsible for the changes in the flavin absorbance spectrum of FDTS upon dUMP binding. dUMP analogues also suggest that the phosphate of dUMP acts as the base that removes the proton from C5 of the dUMP-methylene intermediate in the FDTS-catalyzed reaction. These findings establish additional differences between the mechanisms of FDTS and human thymidylate synthase.

  2. Studies of human mutation rates

    Energy Technology Data Exchange (ETDEWEB)

    Neel, J.V.

    1990-01-01

    November 1989, marked the beginning of a new three-year cycle of DOE grant support, in connection with which the program underwent a major reorganization. This document presents the progress on the three objectives of the present program which are: to isolate by the technique of two-dimensional polyacrylamide gel electrophoresis (2-D PAGE), proteins of special interest because of the relative mutability of the corresponding gene, establish the identity of the protein, and, for selected proteins, move to a characterization of the corresponding gene; to develop a more efficient approach, based on 2-D PAGE, for the detection of variants in DNA, with special reference to the identification of mutations in the parents of the individual whose DNA is being examined; and, to continue an effective interface with the genetic studies on the children of atomic bomb survivors in Japan, with reference to both the planning and implementation of new studies at the molecular level.

  3. Targeting Nuclear Thymidylate Biosynthesis

    Science.gov (United States)

    Chon, James; Stover, Patrick J.; Field, Martha S.

    2016-01-01

    Thymidylate (dTMP) biosynthesis plays an essential and exclusive function in DNA synthesis and proper cell division, and therefore has been an attractive therapeutic target. Folate analogues, known as antifolates, and nucleotide analogs that inhibit the enzymatic action of the de novo thymidylate biosynthesis pathway and are commonly used in cancer treatment. In this review, we examine the mechanisms by which the antifolate 5-fluorouracil, as well as other dTMP synthesis inhibitors, function in cancer treatment in light of emerging evidence that dTMP synthesis occurs in the nucleus. Nuclear localization of the de novo dTMP synthesis pathway requires modification of the pathway enzymes by the small ubiquitin-like modifier (SUMO) protein. SUMOylation is required for nuclear localization of the de novo dTMP biosynthesis pathway, and disruption in the SUMO pathway inhibits cell proliferation in several cancer models. We summarize evidence that the nuclear localization of the dTMP biosynthesis pathway is a critical factor in the efficacy of antifolate-based therapies that target dTMP synthesis. PMID:27876557

  4. An innovative strategy for dual inhibitor design and its application in dual inhibition of human thymidylate synthase and dihydrofolate reductase enzymes.

    Directory of Open Access Journals (Sweden)

    Mahreen Arooj

    Full Text Available Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS and human dihydrofolate reductase (hDHFR. These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs.

  5. Structure of the Varicella Zoster Virus Thymidylate Synthase Establishes Functional and Structural Similarities as the Human Enzyme and Potentiates Itself as a Target of Brivudine.

    Science.gov (United States)

    Hew, Kelly; Dahlroth, Sue-Li; Veerappan, Saranya; Pan, Lucy Xin; Cornvik, Tobias; Nordlund, Pär

    2015-01-01

    Varicella zoster virus (VZV) is a highly infectious human herpesvirus that is the causative agent for chicken pox and shingles. VZV encodes a functional thymidylate synthase (TS), which is the sole enzyme that produces dTMP from dUMP de novo. To study substrate binding, the complex structure of TSVZV with dUMP was determined to a resolution of 2.9 Å. In the absence of a folate co-substrate, dUMP binds in the conserved TS active site and is coordinated similarly as in the human encoded TS (TSHS) in an open conformation. The interactions between TSVZV with dUMP and a cofactor analog, raltitrexed, were also studied using differential scanning fluorimetry (DSF), suggesting that TSVZV binds dUMP and raltitrexed in a sequential binding mode like other TS. The DSF also revealed interactions between TSVZV and in vitro phosphorylated brivudine (BVDUP), a highly potent anti-herpesvirus drug against VZV infections. The binding of BVDUP to TSVZV was further confirmed by the complex structure of TSVZV and BVDUP solved at a resolution of 2.9 Å. BVDUP binds similarly as dUMP in the TSHS but it induces a closed conformation of the active site. The structure supports that the 5-bromovinyl substituent on BVDUP is likely to inhibit TSVZV by preventing the transfer of a methylene group from its cofactor and the subsequent formation of dTMP. The interactions between TSVZV and BVDUP are consistent with that TSVZV is indeed a target of brivudine in vivo. The work also provided the structural basis for rational design of more specific TSVZV inhibitors.

  6. Structure of the Varicella Zoster Virus Thymidylate Synthase Establishes Functional and Structural Similarities as the Human Enzyme and Potentiates Itself as a Target of Brivudine.

    Directory of Open Access Journals (Sweden)

    Kelly Hew

    Full Text Available Varicella zoster virus (VZV is a highly infectious human herpesvirus that is the causative agent for chicken pox and shingles. VZV encodes a functional thymidylate synthase (TS, which is the sole enzyme that produces dTMP from dUMP de novo. To study substrate binding, the complex structure of TSVZV with dUMP was determined to a resolution of 2.9 Å. In the absence of a folate co-substrate, dUMP binds in the conserved TS active site and is coordinated similarly as in the human encoded TS (TSHS in an open conformation. The interactions between TSVZV with dUMP and a cofactor analog, raltitrexed, were also studied using differential scanning fluorimetry (DSF, suggesting that TSVZV binds dUMP and raltitrexed in a sequential binding mode like other TS. The DSF also revealed interactions between TSVZV and in vitro phosphorylated brivudine (BVDUP, a highly potent anti-herpesvirus drug against VZV infections. The binding of BVDUP to TSVZV was further confirmed by the complex structure of TSVZV and BVDUP solved at a resolution of 2.9 Å. BVDUP binds similarly as dUMP in the TSHS but it induces a closed conformation of the active site. The structure supports that the 5-bromovinyl substituent on BVDUP is likely to inhibit TSVZV by preventing the transfer of a methylene group from its cofactor and the subsequent formation of dTMP. The interactions between TSVZV and BVDUP are consistent with that TSVZV is indeed a target of brivudine in vivo. The work also provided the structural basis for rational design of more specific TSVZV inhibitors.

  7. Thymidylate synthase expression and molecular alterations in adenosquamous carcinoma of the lung.

    Science.gov (United States)

    Shu, Catherine; Cheng, Haiying; Wang, Antai; Mansukhani, Mahesh M; Powell, Charles A; Halmos, Balazs; Borczuk, Alain C

    2013-02-01

    Thymidylate synthase expression is known to be higher in squamous cell carcinoma than in adenocarcinoma of the lung. It is thought that this is the reason for the poor efficacy of pemetrexed in squamous cell carcinoma. However, there is limited data on thymidylate synthase expression in adenosquamous carcinoma, a distinct subtype of lung cancer containing both squamous and glandular differentiation. Furthermore, molecular alterations like epidermal growth factor receptor and Kirsten rat sarcoma 2 viral oncogene homolog mutations, which are seen in adenocarcinomas, are not well understood in mixed histology tumors such as adenosquamous carcinoma. In our study, we sought to better characterize adenosquamous tumors of the lung. Using immunohistochemistry to evaluate thymidylate synthase protein levels, we found that the expression of thymidylate synthase in these mixed tumors roughly parallel that of squamous cell carcinoma, instead of falling in between squamous cell and adenocarcinoma. Of note, in adenosquamous samples, the expression of thymidylate synthase was more closely correlated within the two components than would be expected by random chance alone. Also, we had a relatively high rate of epidermal growth factor receptor (11%) and Kirsten rat sarcoma 2 viral oncogene homolog (33%) mutations in these specimens, with the mutations showing convergence in both the glandular and squamous components upon microdissection. Our results indicate that adenosquamous carcinomas are not simple mixtures of their two histological components; they rather behave as their own entity, and it is important to further understand their behavior. Given the similarity of thymidylate synthase expression between squamous cell and adenosquamous carcinoma, and that thymidylate synthase is the main target of pemetrexed, we extrapolate that pemetrexed may also have inferior clinical activity in adenosquamous carcinoma.

  8. Human diseases associated with GPR54 mutations.

    Science.gov (United States)

    Teles, Milena Gurgel; Silveira, Leticia Ferreira Gontijo; Bianco, Suzy; Latronico, Ana Claudia

    2009-01-01

    G protein-coupled receptor 54 (GPR54) was first described as an orphan receptor in the rat brain one decade ago. At that time, all we knew about this receptor was that it had a high homology with other G protein-coupled receptors, like galanin receptors. Later, its endogenous ligand, kisspeptin, was identified and the kisspeptin-GPR54 system became one of the most important excitatory neuroendocrine regulators of puberty initiation. Several loss-of-function mutations in GPR54 gene were described to be associated with sporadic and familial normosmic isolated hypogonadotropic hypogonadism phenotype in humans. Consistent with this fact, knockout mice for gpr54(-/-) recapitulated the human phenotype of the lack of reproductive maturation. On the other hand, a unique activating mutation (R386P) was recently described in this receptor in a girl with central precocious puberty. This missense mutation located at carboxy-terminal tail of the GPR54 leads to prolonged activation of intracellular signaling pathways in response to kisspeptin, suggesting an uncommon model of G protein-coupled receptor activation. This chapter will describe the kisspeptin-GPR54 complex physiology and its current role in human diseases. Copyright © 2009 Elsevier Inc. All rights reserved.

  9. Properties of phosphorylated thymidylate synthase.

    Science.gov (United States)

    Frączyk, Tomasz; Ruman, Tomasz; Wilk, Piotr; Palmowski, Paweł; Rogowska-Wrzesinska, Adelina; Cieśla, Joanna; Zieliński, Zbigniew; Nizioł, Joanna; Jarmuła, Adam; Maj, Piotr; Gołos, Barbara; Wińska, Patrycja; Ostafil, Sylwia; Wałajtys-Rode, Elżbieta; Shugar, David; Rode, Wojciech

    2015-12-01

    Thymidylate synthase (TS) may undergo phosphorylation endogenously in mammalian cells, and as a recombinant protein expressed in bacterial cells, as indicated by the reaction of purified enzyme protein with Pro-Q® Diamond Phosphoprotein Gel Stain (PGS). With recombinant human, mouse, rat, Trichinella spiralis and Caenorhabditis elegans TSs, expressed in Escherichia coli, the phosphorylated, compared to non-phosphorylated recombinant enzyme forms, showed a decrease in Vmax(app), bound their cognate mRNA (only rat enzyme studied), and repressed translation of their own and several heterologous mRNAs (human, rat and mouse enzymes studied). However, attempts to determine the modification site(s), whether endogenously expressed in mammalian cells, or recombinant proteins, did not lead to unequivocal results. Comparative ESI-MS/analysis of IEF fractions of TS preparations from parental and FdUrd-resistant mouse leukemia L1210 cells, differing in sensitivity to inactivation by FdUMP, demonstrated phosphorylation of Ser(10) and Ser(16) in the resistant enzyme only, although PGS staining pointed to the modification of both L1210 TS proteins. The TS proteins phosphorylated in bacterial cells were shown by (31)P NMR to be modified only on histidine residues, like potassium phosphoramidate (KPA)-phosphorylated TS proteins. NanoLC-MS/MS, enabling the use of CID and ETD peptide fragmentation methods, identified several phosphohistidine residues, but certain phosphoserine and phosphothreonine residues were also implicated. Molecular dynamics studies, based on the mouse TS crystal structure, allowed one to assess potential of several phosphorylated histidine residues to affect catalytic activity, the effect being phosphorylation site dependent. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effect of nitrous oxide on folate coenzyme distribution and de novo synthesis of thymidylate in human bone marrow cells

    NARCIS (Netherlands)

    A.A.M. Ermens (Anton); M. Schoester (Martijn); J. Lindemans (Jan); J. Abels

    1992-01-01

    markdownabstractAbstract The effect of nitrous oxide on intracellular folate metabolism of the human bone marrow was studied in vitro. Bone marrow cells, obtained from healthy volunteers, were incubated with 5 × 10−8m-[3H]5-formyltetrahydrofolate (5-formylTHF) for 18 hr to label intracellular

  11. Prospects for cellular mutational assays in human populations

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.L.

    1984-06-29

    Practical, sensitive, and effective human cellular assays for detecting somatic and germinal mutations would have great value in environmental mutagenesis and carcinogenesis studies. Such assays would fill the void between human mutagenicity and the data that exist from short-term tests and from mutagenicity in other species. This paper discusses the following possible human cellular assays: (1) HPRT (hypoxanthine phosphoribosyltransferase) somatic cell mutation based on 6-thioguanine resistance; (2) hemoglobin somatic cell mutation assay; (3) glycophorin somatic cell mutation assay; and (4) LDH-X sperm cell mutation assay. 18 references.

  12. Effect of nitrous oxide on folate coenzyme distribution and de novo synthesis of thymidylate in human bone marrow cells

    OpenAIRE

    Ermens, Anton; Schoester, Martijn; Lindemans, Jan; Abels, J.

    1992-01-01

    markdownabstractAbstract The effect of nitrous oxide on intracellular folate metabolism of the human bone marrow was studied in vitro. Bone marrow cells, obtained from healthy volunteers, were incubated with 5 × 10−8m-[3H]5-formyltetrahydrofolate (5-formylTHF) for 18 hr to label intracellular folate pools. Subsequently the cells were exposed to nitrous oxide for up to 10 hr, and the intracellular folate coenzyme levels were quantitated by HPLC. The dU suppression test was carried out on part ...

  13. Markov chain for estimating human mitochondrial DNA mutation pattern

    Science.gov (United States)

    Vantika, Sandy; Pasaribu, Udjianna S.

    2015-12-01

    The Markov chain was proposed to estimate the human mitochondrial DNA mutation pattern. One DNA sequence was taken randomly from 100 sequences in Genbank. The nucleotide transition matrix and mutation transition matrix were estimated from this sequence. We determined whether the states (mutation/normal) are recurrent or transient. The results showed that both of them are recurrent.

  14. Deciphering Signatures of Mutational Processes Operative in Human Cancer

    Science.gov (United States)

    Alexandrov, Ludmil B.; Nik-Zainal, Serena; Wedge, David C.; Campbell, Peter J.; Stratton, Michael R.

    2013-01-01

    Summary The genome of a cancer cell carries somatic mutations that are the cumulative consequences of the DNA damage and repair processes operative during the cellular lineage between the fertilized egg and the cancer cell. Remarkably, these mutational processes are poorly characterized. Global sequencing initiatives are yielding catalogs of somatic mutations from thousands of cancers, thus providing the unique opportunity to decipher the signatures of mutational processes operative in human cancer. However, until now there have been no theoretical models describing the signatures of mutational processes operative in cancer genomes and no systematic computational approaches are available to decipher these mutational signatures. Here, by modeling mutational processes as a blind source separation problem, we introduce a computational framework that effectively addresses these questions. Our approach provides a basis for characterizing mutational signatures from cancer-derived somatic mutational catalogs, paving the way to insights into the pathogenetic mechanism underlying all cancers. PMID:23318258

  15. HPMV: human protein mutation viewer - relating sequence mutations to protein sequence architecture and function changes.

    Science.gov (United States)

    Sherman, Westley Arthur; Kuchibhatla, Durga Bhavani; Limviphuvadh, Vachiranee; Maurer-Stroh, Sebastian; Eisenhaber, Birgit; Eisenhaber, Frank

    2015-10-01

    Next-generation sequencing advances are rapidly expanding the number of human mutations to be analyzed for causative roles in genetic disorders. Our Human Protein Mutation Viewer (HPMV) is intended to explore the biomolecular mechanistic significance of non-synonymous human mutations in protein-coding genomic regions. The tool helps to assess whether protein mutations affect the occurrence of sequence-architectural features (globular domains, targeting signals, post-translational modification sites, etc.). As input, HPMV accepts protein mutations - as UniProt accessions with mutations (e.g. HGVS nomenclature), genome coordinates, or FASTA sequences. As output, HPMV provides an interactive cartoon showing the mutations in relation to elements of the sequence architecture. A large variety of protein sequence architectural features were selected for their particular relevance to mutation interpretation. Clicking a sequence feature in the cartoon expands a tree view of additional information including multiple sequence alignments of conserved domains and a simple 3D viewer mapping the mutation to known PDB structures, if available. The cartoon is also correlated with a multiple sequence alignment of similar sequences from other organisms. In cases where a mutation is likely to have a straightforward interpretation (e.g. a point mutation disrupting a well-understood targeting signal), this interpretation is suggested. The interactive cartoon can be downloaded as standalone viewer in Java jar format to be saved and viewed later with only a standard Java runtime environment. The HPMV website is: http://hpmv.bii.a-star.edu.sg/ .

  16. Thymidylate synthase inhibition induces p53-dependent and p53-independent apoptotic responses in human urinary bladder cancer cells.

    Science.gov (United States)

    Stravopodis, Dimitrios J; Karkoulis, Panagiotis K; Konstantakou, Eumorphia G; Melachroinou, Sophia; Thanasopoulou, Angeliki; Aravantinos, Gerasimos; Margaritis, Lukas H; Anastasiadou, Ema; Voutsinas, Gerassimos E

    2011-02-01

    In search for more effective clinical protocols, the antimetabolite drug 5-fluorouracil (5-FU) has been successfully included in new regimens of bladder cancer combination chemotherapy. In the present study, we have investigated the effects of 5-FU treatment on apoptosis induction in wild-type and mutant p53 urinary bladder cancer cells. We have used MTT-based assays, FACS analysis, Western blotting and semi-quantitative RT-PCR in RT4 and RT112 (grade I, wild-type p53), as well as in T24 (grade III, mutant p53) and TCCSUP (grade IV, mutant p53) human urinary bladder cancer cell lines. In the urothelial bladder cancer cell lines RT4 and T24, 5-FU-induced TS inhibition proved to be associated with cell type-dependent (a) sensitivity to the drug, (b) Caspase-mediated apoptosis, (c) p53 stabilization and activation, as well as Rb phosphorylation and E2F1 expression and (d) transcriptional regulation of p53 target genes and their cognate proteins, while an E2F-dependent transcriptional network did not seem to be critically engaged in such type of responses. We have shown that in the wild-type p53 context of RT4 cells, 5-FU-triggered apoptosis was prominently efficient and mainly regulated by p53-dependent mechanisms, whereas the mutant p53 environment of T24 cells was able to provide notable levels of resistance to apoptosis, basically ascribed to E2F-independent, and still unidentified, pathways. Nevertheless, the differential vulnerability of RT4 and T24 cells to 5-FU administration could also be associated with cell-type-specific transcriptional expression patterns of certain genes critically involved in 5-FU metabolism.

  17. Structure of the Mycobacterium tuberculosis Flavin Dependent Thymidylate Synthase (MtbThyX) at 2.0 Å Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Sampathkumar, Parthasarathy; Turley, Stewart; Ulmer, Jonathan E.; Rhie, Ho Gun; Hopkins Sibley, Carol; Hol, Wim G.J. (Kyunghee); (UWASH)

    2010-07-20

    A novel flavin-dependent thymidylate synthase was identified recently as an essential gene in many archaebacteria and some pathogenic eubacteria. This enzyme, ThyX, is a potential antibacterial drug target, since humans and most eukaryotes lack the thyX gene and depend upon the conventional thymidylate synthase (TS) for their dTMP requirements. We have cloned and overexpressed the thyX gene (Rv2754c) from Mycobacterium tuberculosis in Escherichia coli. The M. tuberculosis ThyX (MtbThyX) enzyme complements the E. coli {chi}2913 strain that lacks its conventional TS activity. The crystal structure of the homotetrameric MtbThyX was determined in the presence of the cofactor FAD and the substrate analog, 5-bromo-2'-deoxyuridine-5'-monophosphate (BrdUMP). In the active site, which is formed by three monomers, FAD is bound in an extended conformation with the adenosine ring in a deep pocket and BrdUMP in a closed conformation near the isoalloxazine ring. Structure-based mutational studies have revealed a critical role played by residues Lys165 and Arg168 in ThyX activity, possibly by governing access to the carbon atom to be methylated of a totally buried substrate dUMP.

  18. De novo mutations in human genetic disease

    NARCIS (Netherlands)

    Veltman, J.A.; Brunner, H.G.

    2012-01-01

    New mutations have long been known to cause genetic disease, but their true contribution to the disease burden can only now be determined using family-based whole-genome or whole-exome sequencing approaches. In this Review we discuss recent findings suggesting that de novo mutations play a prominent

  19. Mutation at the Human D1S80 Minisatellite Locus

    Directory of Open Access Journals (Sweden)

    Kuppareddi Balamurugan

    2012-01-01

    Full Text Available Little is known about the general biology of minisatellites. The purpose of this study is to examine repeat mutations from the D1S80 minisatellite locus by sequence analysis to elucidate the mutational process at this locus. This is a highly polymorphic minisatellite locus, located in the subtelomeric region of chromosome 1. We have analyzed 90,000 human germline transmission events and found seven (7 mutations at this locus. The D1S80 alleles of the parentage trio, the child, mother, and the alleged father were sequenced and the origin of the mutation was determined. Using American Association of Blood Banks (AABB guidelines, we found a male mutation rate of 1.04×10-4 and a female mutation rate of 5.18×10-5 with an overall mutation rate of approximately 7.77×10-5. Also, in this study, we found that the identified mutations are in close proximity to the center of the repeat array rather than at the ends of the repeat array. Several studies have examined the mutational mechanisms of the minisatellites according to infinite allele model (IAM and the one-step stepwise mutation model (SMM. In this study, we found that this locus fits into the one-step mutation model (SMM mechanism in six out of seven instances similar to STR loci.

  20. Geneticists Repair Mutation in Human Embryo

    Science.gov (United States)

    ... broke the mutated gene using a technology called CRISPR-Cas9. Essentially, the process uses genetic techniques to target ... like a pair of molecular scissors. Until now, CRISPR-Cas9 has been used as a lab tool to ...

  1. Mechanistic and structural basis for inhibition of thymidylate synthase ThyX.

    Science.gov (United States)

    Basta, Tamara; Boum, Yap; Briffotaux, Julien; Becker, Hubert F; Lamarre-Jouenne, Isabelle; Lambry, Jean-Christophe; Skouloubris, Stephane; Liebl, Ursula; Graille, Marc; van Tilbeurgh, Herman; Myllykallio, Hannu

    2012-10-01

    Nature has established two mechanistically and structurally unrelated families of thymidylate synthases that produce de novo thymidylate or dTMP, an essential DNA precursor. Representatives of the alternative flavin-dependent thymidylate synthase family, ThyX, are found in a large number of microbial genomes, but are absent in humans. We have exploited the nucleotide binding pocket of ThyX proteins to identify non-substrate-based tight-binding ThyX inhibitors that inhibited growth of genetically modified Escherichia coli cells dependent on thyX in a manner mimicking a genetic knockout of thymidylate synthase. We also solved the crystal structure of a viral ThyX bound to 2-hydroxy-3-(4-methoxybenzyl)-1,4-naphthoquinone at a resolution of 2.6 Å. This inhibitor was found to bind within the conserved active site of the tetrameric ThyX enzyme, at the interface of two monomers, partially overlapping with the dUMP binding pocket. Our studies provide new chemical tools for investigating the ThyX reaction mechanism and establish a novel mechanistic and structural basis for inhibition of thymidylate synthesis. As essential ThyX proteins are found e.g. in Mycobacterium tuberculosis and Helicobacter pylori, our studies have also potential to pave the way towards the development of new anti-microbial compounds.

  2. Mutations of the BRAF gene in human cancer

    OpenAIRE

    Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; Davis, N.; Dicks, E.; Ewing, R.; Floyd, Y.; Gray, K.

    2002-01-01

    Cancers arise owing to the accumulation of mutations in critical genes that alter normal programmes of cell proliferation, differentiation and death. As the first stage of a systematic genome-wide screen for these genes, we have prioritized for analysis signalling pathways in which at least one gene is mutated in human cancer. The RAS RAF MEK ERK MAP kinase pathway mediates cellular responses to growth signals. RAS is mutated to an oncogenic form in about 15% of human cancer. The three RAF ge...

  3. How much do we know about spontaneous human mutation rates

    Energy Technology Data Exchange (ETDEWEB)

    Crow, J.F. (Univ. of Wisconsin, Madison, WI (United States))

    1993-01-01

    The much larger number of cell divisions between zygote and sperm than between zygote and egg, the increased age of fathers of children with new dominant mutations, and the greater evolution rate of pseudogenes on the Y chromosome than of those on autosomes all point to a much higher mutation rate in human males than in females, as first pointed out by Haldane in his classical study of X-linked hemophilia. The age of the father is the main factor determining the human spontaneous mutation rate, and probably the total mutation rate. The total mutation rate in Drosophila males of genes causing minor reduction in viability is at least 0.4 per sperm and may be considerably higher. The great mutation load implied by a rate of [approx] 1 per zygote can be greatly ameliorated by quasi-transition selection. Corresponding data are not available for the human population. The evolution rate of pseudogenes in primates suggests some 10[sup 2] new mutations per zygote. Presumably the overwhelming majority of these are neutral, but even the approximate fraction is not known. Statistical evidence in Drosophilia shows that mutations with minor effects cause about the same heterozygous impairment of fitness as those that are lethal when homozygous. The magnitude of heterozygous effect is such that almost all mutant genes are eliminated as heterozygotes before ever becoming homozygous. Although quantitative data in the human species are lacking, anecdotal information supports the conclusion that partial dominance is the rule here as well. This suggests that if the human mutation rate were increased or decreased, the effects would be spread over a period of 50-100 generations. 31 refs., 3 figs., 2 tabs.

  4. Inhibitor-bound complexes of dihydrofolate reductase-thymidylate synthase from Babesia bovis.

    Science.gov (United States)

    Begley, Darren W; Edwards, Thomas E; Raymond, Amy C; Smith, Eric R; Hartley, Robert C; Abendroth, Jan; Sankaran, Banumathi; Lorimer, Donald D; Myler, Peter J; Staker, Bart L; Stewart, Lance J

    2011-09-01

    Babesiosis is a tick-borne disease caused by eukaryotic Babesia parasites which are morphologically similar to Plasmodium falciparum, the causative agent of malaria in humans. Like Plasmodium, different species of Babesia are tuned to infect different mammalian hosts, including rats, dogs, horses and cattle. Most species of Plasmodium and Babesia possess an essential bifunctional enzyme for nucleotide synthesis and folate metabolism: dihydrofolate reductase-thymidylate synthase. Although thymidylate synthase is highly conserved across organisms, the bifunctional form of this enzyme is relatively uncommon in nature. The structural characterization of dihydrofolate reductase-thymidylate synthase in Babesia bovis, the causative agent of babesiosis in livestock cattle, is reported here. The apo state is compared with structures that contain dUMP, NADP and two different antifolate inhibitors: pemetrexed and raltitrexed. The complexes reveal modes of binding similar to that seen in drug-resistant malaria strains and point to the utility of applying structural studies with proven cancer chemotherapies towards infectious disease research.

  5. Multi-nucleotide de novo Mutations in Humans.

    Directory of Open Access Journals (Sweden)

    Søren Besenbacher

    2016-11-01

    Full Text Available Mutation of the DNA molecule is one of the most fundamental processes in biology. In this study, we use 283 parent-offspring trios to estimate the rate of mutation for both single nucleotide variants (SNVs and short length variants (indels in humans and examine the mutation process. We found 17812 SNVs, corresponding to a mutation rate of 1.29 × 10-8 per position per generation (PPPG and 1282 indels corresponding to a rate of 9.29 × 10-10 PPPG. We estimate that around 3% of human de novo SNVs are part of a multi-nucleotide mutation (MNM, with 558 (3.1% of mutations positioned less than 20kb from another mutation in the same individual (median distance of 525bp. The rate of de novo mutations is greater in late replicating regions (p = 8.29 × 10-19 and nearer recombination events (p = 0.0038 than elsewhere in the genome.

  6. Functional characterization of human cancer-derived TRKB mutations.

    Directory of Open Access Journals (Sweden)

    Thomas R Geiger

    Full Text Available Cancer originates from cells that have acquired mutations in genes critical for controlling cell proliferation, survival and differentiation. Often, tumors continue to depend on these so-called driver mutations, providing the rationale for targeted anticancer therapies. To date, large-scale sequencing analyses have revealed hundreds of mutations in human tumors. However, without their functional validation it remains unclear which mutations correspond to driver, or rather bystander, mutations and, therefore, whether the mutated gene represents a target for therapeutic intervention. In human colorectal tumors, the neurotrophic receptor TRKB has been found mutated on two different sites in its kinase domain (TRKB(T695I and TRKB(D751N. Another site, in the extracellular part of TRKB, is mutated in a human lung adenocarcinoma cell line (TRKB(L138F. Lastly, our own analysis has identified one additional TRKB point mutation proximal to the kinase domain (TRKB(P507L in a human melanoma cell line. The functional consequences of all these point mutations, however, have so far remained elusive. Previously, we have shown that TRKB is a potent suppressor of anoikis and that TRKB-expressing cells form highly invasive and metastatic tumors in nude mice. To assess the functional consequences of these four TRKB mutations, we determined their potential to suppress anoikis and to form tumors in nude mice. Unexpectedly, both colon cancer-derived mutants, TRKB(T695I and TRKB(D751N, displayed reduced activity compared to that of wild-type TRKB. Consistently, upon stimulation with the TRKB ligand BDNF, these mutants were impaired in activating TRKB and its downstream effectors AKT and ERK. The two mutants derived from human tumor cell lines (TRKB(L138F and TRKB(P507L were functionally indistinguishable from wild-type TRKB in both in-vitro and in-vivo assays. In conclusion, we fail to detect any gain-of-function of four cancer-derived TRKB point mutations.

  7. Mutations and binding sites of human transcription factors

    KAUST Repository

    Kamanu, Frederick Kinyua

    2012-06-01

    Mutations in any genome may lead to phenotype characteristics that determine ability of an individual to cope with adaptation to environmental challenges. In studies of human biology, among the most interesting ones are phenotype characteristics that determine responses to drug treatments, response to infections, or predisposition to specific inherited diseases. Most of the research in this field has been focused on the studies of mutation effects on the final gene products, peptides, and their alterations. Considerably less attention was given to the mutations that may affect regulatory mechanism(s) of gene expression, although these may also affect the phenotype characteristics. In this study we make a pilot analysis of mutations observed in the regulatory regions of 24,667 human RefSeq genes. Our study reveals that out of eight studied mutation types, insertions are the only one that in a statistically significant manner alters predicted transcription factor binding sites (TFBSs). We also find that 25 families of TFBSs have been altered by mutations in a statistically significant manner in the promoter regions we considered. Moreover, we find that the related transcription factors are, for example, prominent in processes related to intracellular signaling; cell fate; morphogenesis of organs and epithelium; development of urogenital system, epithelium, and tube; neuron fate commitment. Our study highlights the significance of studying mutations within the genes regulatory regions and opens way for further detailed investigations on this topic, particularly on the downstream affected pathways. 2012 Kamanu, Medvedeva, Schaefer, Jankovic, Archer and Bajic.

  8. DRUMS: a human disease related unique gene mutation search engine.

    Science.gov (United States)

    Li, Zuofeng; Liu, Xingnan; Wen, Jingran; Xu, Ye; Zhao, Xin; Li, Xuan; Liu, Lei; Zhang, Xiaoyan

    2011-10-01

    With the completion of the human genome project and the development of new methods for gene variant detection, the integration of mutation data and its phenotypic consequences has become more important than ever. Among all available resources, locus-specific databases (LSDBs) curate one or more specific genes' mutation data along with high-quality phenotypes. Although some genotype-phenotype data from LSDB have been integrated into central databases little effort has been made to integrate all these data by a search engine approach. In this work, we have developed disease related unique gene mutation search engine (DRUMS), a search engine for human disease related unique gene mutation as a convenient tool for biologists or physicians to retrieve gene variant and related phenotype information. Gene variant and phenotype information were stored in a gene-centred relational database. Moreover, the relationships between mutations and diseases were indexed by the uniform resource identifier from LSDB, or another central database. By querying DRUMS, users can access the most popular mutation databases under one interface. DRUMS could be treated as a domain specific search engine. By using web crawling, indexing, and searching technologies, it provides a competitively efficient interface for searching and retrieving mutation data and their relationships to diseases. The present system is freely accessible at http://www.scbit.org/glif/new/drums/index.html. © 2011 Wiley-Liss, Inc.

  9. Error-prone polymerase activity causes multinucleotide mutations in humans.

    Science.gov (United States)

    Harris, Kelley; Nielsen, Rasmus

    2014-09-01

    About 2% of human genetic polymorphisms have been hypothesized to arise via multinucleotide mutations (MNMs), complex events that generate SNPs at multiple sites in a single generation. MNMs have the potential to accelerate the pace at which single genes evolve and to confound studies of demography and selection that assume all SNPs arise independently. In this paper, we examine clustered mutations that are segregating in a set of 1092 human genomes, demonstrating that the signature of MNM becomes enriched as large numbers of individuals are sampled. We estimate the percentage of linked SNP pairs that were generated by simultaneous mutation as a function of the distance between affected sites and show that MNMs exhibit a high percentage of transversions relative to transitions, findings that are reproducible in data from multiple sequencing platforms and cannot be attributed to sequencing error. Among tandem mutations that occur simultaneously at adjacent sites, we find an especially skewed distribution of ancestral and derived alleles, with GC → AA, GA → TT, and their reverse complements making up 27% of the total. These mutations have been previously shown to dominate the spectrum of the error-prone polymerase Pol ζ, suggesting that low-fidelity DNA replication by Pol ζ is at least partly responsible for the MNMs that are segregating in the human population. We develop statistical estimates of MNM prevalence that can be used to correct phylogenetic and population genetic inferences for the presence of complex mutations. © 2014 Harris and Nielsen; Published by Cold Spring Harbor Laboratory Press.

  10. Mutation of miRNA target sequences during human evolution

    DEFF Research Database (Denmark)

    Gardner, Paul P; Vinther, Jeppe

    2008-01-01

    It has long-been hypothesized that changes in non-protein-coding genes and the regulatory sequences controlling expression could undergo positive selection. Here we identify 402 putative microRNA (miRNA) target sequences that have been mutated specifically in the human lineage and show that genes...... containing such deletions are more highly expressed than their mouse orthologs. Our findings indicate that some miRNA target mutations are fixed by positive selection and might have been involved in the evolution of human-specific traits....

  11. Haldane and the first estimates of the human mutation rate

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 83; Issue 3. Haldane and the first estimates of the human mutation rate. Michael W. Nachman. Commentary on J. Genet. Classic Volume 83 Issue 3 December 2004 pp 231-233. Fulltext. Click here to view fulltext PDF. Permanent link:

  12. Mutation assay in diploid human lymphoblasts: methodological aspects

    Energy Technology Data Exchange (ETDEWEB)

    Thilly, W.G.; DeLuca, J.G.; Hoppe, H. IV; Liber, H.L.; Penman, B.W.

    1977-01-01

    The protocol for a recently developed quantitative assay for mutation at the hgprt locus of human lymphoblasts is presented. Practical problems affecting ease of performance and reliability are discussed with the aim of making the assay available for assessment and possible use in other laboratories.

  13. Mutational landscape of the human Y chromosome-linked genes ...

    Indian Academy of Sciences (India)

    Mutational landscape of the human Y chromosome-linked genes and loci in patients with hypogonadism. Deepali Pathak, Sandeep Kumar Yadav, Leena Rawal and Sher Ali. J. Genet. 94, 677–687. Table 1. Details showing age, sex, karyotype, clinical features and diagnosis results of the patients with H. Hormone profile.

  14. Molecular Dynamics and Bioactivity of a Novel Mutated Human ...

    African Journals Online (AJOL)

    Purpose: To design and evaluate a novel human parathyroid hormone (hPTH) analog. Methods: Mutation stability prediction was processed on hPTH, docked the mutant hPTH with its receptor, and then proceeded with molecular dynamics using Discovery Studio 3.5 software package for the complex. The bioactivity of the ...

  15. Combination of 5-fluorouracil and irinotecan on modulation of thymidylate synthase and topoisomerase I expression and cell cycle regulation in human colon cancer LoVo cells: clinical relevance.

    Science.gov (United States)

    Xu, Jian-Ming; Azzariti, Amalia; Tommasi, Stefania; Lacalamita, Rosanna; Colucci, Giuseppe; Johnston, Patrick G; Church, Stewart W; Paradiso, Angelo

    2002-11-01

    This study was designed to explore the possible interaction of 5-fluorouracil (5-FU) and 7-ethyl-10-hydroxycamptothecin (SN-38) in vitro. Human colon cancer LoVo cells were treated in both a dose- and time-dependent manner using clinically relevant concentrations of and exposure to 5-FU and/or SN-38. The expression of thymidylate synthase (TS), topoisomerase I, and cell cycle kinetics were evaluated by Western blot analysis and flow cytometry, respectively. Cytotoxicity was evaluated by MTT (3-[4,5-dimethylthiazol-2yl]-2,5-diphenyl tetrazolium bromide) assay. The cytotoxic effects of combination treatment were determined by median effect analysis. Topoisomerase I expression was downregulated following 12 hours of exposure to treatment, and topoisomerase I expression recovered 8 hours after SN-38 was removed. The TS expression was decreased following 24 hours of 5-FU and it remained at reduced levels for > 24 hours after removal of 5-FU. SN-38 induced an arrest at S/G2/M phase, reaching its maximum effect at 12 hours. This cell cycle arrest was reversed 24 hours after SN-38 was removed. 5-FU induced an arrest at the S phase, and maximum arrest occurred at 12 hours and lasted for > 48 hours. After 12 hours of sequential SN-38, LoVo cells were arrested in S phase, thereby potentiating the effect of 5-FU. Cytotoxicity studies confirmed the synergistic interaction between 5-FU and irinotecan. These findings suggest that the proper sequencing of 5-FU/irinotecan depends on regulation of topoisomerase I, and cell cycle kinetics

  16. Trichinella pseudospiralis vs. T. spiralis thymidylate synthase gene structure and T. pseudospiralis thymidylate synthase retrogene sequence

    Science.gov (United States)

    2014-01-01

    Background Thymidylate synthase is a housekeeping gene, designated ancient due to its role in DNA synthesis and ubiquitous phyletic distribution. The genomic sequences were characterized coding for thymidylate synthase in two species of the genus Trichinella, an encapsulating T. spiralis and a non-encapsulating T. pseudospiralis. Methods Based on the sequence of parasitic nematode Trichinella spiralis thymidylate synthase cDNA, PCR techniques were employed. Results Each of the respective gene structures encompassed 6 exons and 5 introns located in conserved sites. Comparison with the corresponding gene structures of other eukaryotic species revealed lack of common introns that would be shared among selected fungi, nematodes, mammals and plants. The two deduced amino acid sequences were 96% identical. In addition to the thymidylate synthase gene, the intron-less retrocopy, i.e. a processed pseudogene, with sequence identical to the T. spiralis gene coding region, was found to be present within the T. pseudospiralis genome. This pseudogene, instead of the gene, was confirmed by RT-PCR to be expressed in the parasite muscle larvae. Conclusions Intron load, as well as distribution of exon and intron phases in thymidylate synthase genes from various sources, point against the theory of gene assembly by the primordial exon shuffling and support the theory of evolutionary late intron insertion into spliceosomal genes. Thymidylate synthase pseudogene expressed in T. pseudospiralis muscle larvae is designated a retrogene. PMID:24716800

  17. Trichinella pseudospiralis vs. T. spiralis thymidylate synthase gene structure and T. pseudospiralis thymidylate synthase retrogene sequence.

    Science.gov (United States)

    Jagielska, Elżbieta; Płucienniczak, Andrzej; Dąbrowska, Magdalena; Dowierciał, Anna; Rode, Wojciech

    2014-04-09

    Thymidylate synthase is a housekeeping gene, designated ancient due to its role in DNA synthesis and ubiquitous phyletic distribution. The genomic sequences were characterized coding for thymidylate synthase in two species of the genus Trichinella, an encapsulating T. spiralis and a non-encapsulating T. pseudospiralis. Based on the sequence of parasitic nematode Trichinella spiralis thymidylate synthase cDNA, PCR techniques were employed. Each of the respective gene structures encompassed 6 exons and 5 introns located in conserved sites. Comparison with the corresponding gene structures of other eukaryotic species revealed lack of common introns that would be shared among selected fungi, nematodes, mammals and plants. The two deduced amino acid sequences were 96% identical. In addition to the thymidylate synthase gene, the intron-less retrocopy, i.e. a processed pseudogene, with sequence identical to the T. spiralis gene coding region, was found to be present within the T. pseudospiralis genome. This pseudogene, instead of the gene, was confirmed by RT-PCR to be expressed in the parasite muscle larvae. Intron load, as well as distribution of exon and intron phases in thymidylate synthase genes from various sources, point against the theory of gene assembly by the primordial exon shuffling and support the theory of evolutionary late intron insertion into spliceosomal genes. Thymidylate synthase pseudogene expressed in T. pseudospiralis muscle larvae is designated a retrogene.

  18. Clonal mutations in primary human glial tumors: evidence in support of the mutator hypothesis

    Directory of Open Access Journals (Sweden)

    Sarkar Chitra

    2007-10-01

    Full Text Available Abstract Background A verifiable consequence of the mutator hypothesis is that even low grade neoplasms would accumulate a large number of mutations that do not influence the tumor phenotype (clonal mutations. In this study, we have attempted to quantify the number of clonal mutations in primary human gliomas of astrocytic cell origin. These alterations were identified in tumor tissue, microscopically confirmed to have over 70% neoplastic cells. Methods Random Amplified Polymorphic DNA (RAPD analysis was performed using a set of fifteen 10-mer primers of arbitrary but definite sequences in 17 WHO grade II astrocytomas (low grade diffuse astrocytoma or DA and 16 WHO grade IV astrocytomas (Glioblastoma Multiforme or GBM. The RAPD profile of the tumor tissue was compared with that of the leucocyte DNA of the same patient and alteration(s scored. A quantitative estimate of the overall genomic changes in these tumors was obtained by 2 different modes of calculation. Results The overall change in the tumors was estimated to be 4.24% in DA and 2.29% in GBM by one method and 11.96% and 6.03% in DA and GBM respectively by the other. The difference between high and lower grade tumors was statistically significant by both methods. Conclusion This study demonstrates the presence of extensive clonal mutations in gliomas, more in lower grade. This is consistent with our earlier work demonstrating that technique like RAPD analysis, unbiased for locus, is able to demonstrate more intra-tumor genetic heterogeneity in lower grade gliomas compared to higher grade. The results support the mutator hypothesis proposed by Loeb.

  19. The rate of spontaneous mutations in human myeloid cells

    Energy Technology Data Exchange (ETDEWEB)

    Araten, David J., E-mail: david.araten@nyumc.org [Division of Hematology, Department of Veterans Affairs New York Harbor Healthcare System (United States); Division of Hematology, Department of Medicine, NYU School of Medicine and the NYU Langone Cancer Center (United States); Krejci, Ondrej [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); DiTata, Kimberly [Division of Hematology, Department of Medicine, NYU School of Medicine and the NYU Langone Cancer Center (United States); Wunderlich, Mark [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States); Sanders, Katie J.; Zamechek, Leah [Division of Hematology, Department of Medicine, NYU School of Medicine and the NYU Langone Cancer Center (United States); Mulloy, James C. [Division of Experimental Hematology and Cancer Biology, Cincinnati Children' s Hospital Medical Center, Cincinnati, OH (United States)

    2013-09-15

    Highlights: • We provide the first measurement of the mutation rate (μ) in human myeloid cells. • μ is measured to be 3.6–23 × 10{sup −7} per cell division. • The AML-ETO and MLL-AF9 fusions do not seem to increase μ. • Cooperating mutations in NRAS, FLT3 and p53 not seem to increase μ. • Hypermutability may be required to explain leukemogenesis. - Abstract: The mutation rate (μ) is likely to be a key parameter in leukemogenesis, but historically, it has been difficult to measure in humans. The PIG-A gene has some advantages for the detection of spontaneous mutations because it is X-linked, and therefore only one mutation is required to disrupt its function. Furthermore, the PIG-A-null phenotype is readily detected by flow cytometry. Using PIG-A, we have now provided the first in vitro measurement of μ in myeloid cells, using cultures of CD34+ cells that are transduced with either the AML-ETO or the MLL-AF9 fusion genes and expanded with cytokines. For the AML-ETO cultures, the median μ value was ∼9.4 × 10{sup −7} (range ∼3.6–23 × 10{sup −7}) per cell division. In contrast, few spontaneous mutations were observed in the MLL-AF9 cultures. Knockdown of p53 or introduction of mutant NRAS or FLT3 alleles did not have much of an effect on μ. Based on these data, we provide a model to predict whether hypermutability must occur in the process of leukemogenesis.

  20. Mutations in Human Accelerated Regions Disrupt Cognition and Social Behavior.

    Science.gov (United States)

    Doan, Ryan N; Bae, Byoung-Il; Cubelos, Beatriz; Chang, Cindy; Hossain, Amer A; Al-Saad, Samira; Mukaddes, Nahit M; Oner, Ozgur; Al-Saffar, Muna; Balkhy, Soher; Gascon, Generoso G; Nieto, Marta; Walsh, Christopher A

    2016-10-06

    Comparative analyses have identified genomic regions potentially involved in human evolution but do not directly assess function. Human accelerated regions (HARs) represent conserved genomic loci with elevated divergence in humans. If some HARs regulate human-specific social and behavioral traits, then mutations would likely impact cognitive and social disorders. Strikingly, rare biallelic point mutations-identified by whole-genome and targeted "HAR-ome" sequencing-showed a significant excess in individuals with ASD whose parents share common ancestry compared to familial controls, suggesting a contribution in 5% of consanguineous ASD cases. Using chromatin interaction sequencing, massively parallel reporter assays (MPRA), and transgenic mice, we identified disease-linked, biallelic HAR mutations in active enhancers for CUX1, PTBP2, GPC4, CDKL5, and other genes implicated in neural function, ASD, or both. Our data provide genetic evidence that specific HARs are essential for normal development, consistent with suggestions that their evolutionary changes may have altered social and/or cognitive behavior. PAPERCLIP. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Holes influence the mutation spectrum of human mitochondrial DNA

    Science.gov (United States)

    Villagran, Martha; Miller, John

    Mutations drive evolution and disease, showing highly non-random patterns of variant frequency vs. nucleotide position. We use computational DNA hole spectroscopy [M.Y. Suarez-Villagran & J.H. Miller, Sci. Rep. 5, 13571 (2015)] to reveal sites of enhanced hole probability in selected regions of human mitochondrial DNA. A hole is a mobile site of positive charge created when an electron is removed, for example by radiation or contact with a mutagenic agent. The hole spectra are quantum mechanically computed using a two-stranded tight binding model of DNA. We observe significant correlation between spectra of hole probabilities and of genetic variation frequencies from the MITOMAP database. These results suggest that hole-enhanced mutation mechanisms exert a substantial, perhaps dominant, influence on mutation patterns in DNA. One example is where a trapped hole induces a hydrogen bond shift, known as tautomerization, which then triggers a base-pair mismatch during replication. Our results deepen overall understanding of sequence specific mutation rates, encompassing both hotspots and cold spots, which drive molecular evolution.

  2. Hypomorphic PCNA mutation underlies a human DNA repair disorder.

    Science.gov (United States)

    Baple, Emma L; Chambers, Helen; Cross, Harold E; Fawcett, Heather; Nakazawa, Yuka; Chioza, Barry A; Harlalka, Gaurav V; Mansour, Sahar; Sreekantan-Nair, Ajith; Patton, Michael A; Muggenthaler, Martina; Rich, Phillip; Wagner, Karin; Coblentz, Roselyn; Stein, Constance K; Last, James I; Taylor, A Malcolm R; Jackson, Andrew P; Ogi, Tomoo; Lehmann, Alan R; Green, Catherine M; Crosby, Andrew H

    2014-07-01

    Numerous human disorders, including Cockayne syndrome, UV-sensitive syndrome, xeroderma pigmentosum, and trichothiodystrophy, result from the mutation of genes encoding molecules important for nucleotide excision repair. Here, we describe a syndrome in which the cardinal clinical features include short stature, hearing loss, premature aging, telangiectasia, neurodegeneration, and photosensitivity, resulting from a homozygous missense (p.Ser228Ile) sequence alteration of the proliferating cell nuclear antigen (PCNA). PCNA is a highly conserved sliding clamp protein essential for DNA replication and repair. Due to this fundamental role, mutations in PCNA that profoundly impair protein function would be incompatible with life. Interestingly, while the p.Ser228Ile alteration appeared to have no effect on protein levels or DNA replication, patient cells exhibited marked abnormalities in response to UV irradiation, displaying substantial reductions in both UV survival and RNA synthesis recovery. The p.Ser228Ile change also profoundly altered PCNA's interaction with Flap endonuclease 1 and DNA Ligase 1, DNA metabolism enzymes. Together, our findings detail a mutation of PCNA in humans associated with a neurodegenerative phenotype, displaying clinical and molecular features common to other DNA repair disorders, which we showed to be attributable to a hypomorphic amino acid alteration.

  3. Human Metabolic Enzymes Deficiency: A Genetic Mutation Based Approach

    Directory of Open Access Journals (Sweden)

    Swati Chaturvedi

    2016-01-01

    Full Text Available One of the extreme challenges in biology is to ameliorate the understanding of the mechanisms which emphasize metabolic enzyme deficiency (MED and how these pretend to have influence on human health. However, it has been manifested that MED could be either inherited as inborn error of metabolism (IEM or acquired, which carries a high risk of interrupted biochemical reactions. Enzyme deficiency results in accumulation of toxic compounds that may disrupt normal organ functions and cause failure in producing crucial biological compounds and other intermediates. The MED related disorders cover widespread clinical presentations and can involve almost any organ system. To sum up the causal factors of almost all the MED-associated disorders, we decided to embark on a less traveled but nonetheless relevant direction, by focusing our attention on associated gene family products, regulation of their expression, genetic mutation, and mutation types. In addition, the review also outlines the clinical presentations as well as diagnostic and therapeutic approaches.

  4. Determination of somatic mutations in human erythrocytes by cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R.H.; Langlois, R.G.; Bigbee, W.L.

    1985-06-21

    Flow cytometric assays of human erythrocytes labeled with monoclonal antibodies specific for glycophorin A were used to enumerate variant cells that appear in peripheral blood as a result of somatic gene-loss mutations in erythrocyte precursor cells. The assay was performed on erythrocytes from 10 oncology patients who had received at least one treatment from radiation or mutagenic chemotherapy at least 3 weeks before being assayed. The patients were suffering from many different malignancies (e.g., breast, renal, bone, colon and lung), and were treated with several different mutagenic therapeutics (e.g., cisplatinum, adriamycin, daunomycin, or cyclophosphamide). The frequency of these variant cells is an indication of the amount of mutagenic damage accumulated in the individual's erythropoietic cell population. Comparing these results to HPRT clonogenic assays, we find similar baseline frequencies of somatic mutation as well as similar correlation with mutagenic exposures. 9 refs., 3 figs., 1 tab.

  5. [Thymidylate synthase-catalyzed reaction mechanism].

    Science.gov (United States)

    Rode, Wojciech; Jarmuńa, Adam

    2015-01-01

    Thymidylate synthase ThyA (EC 2.1.1.45;-encoded by the Tyms gene), having been for 60 years a molecular target in chemotherapy, catalyses the dUMP pyrimidine ring C(5) methylation reaction, encompassing a transfer of one-carbon group (the methylene one, thus at the formaldehyde oxidation level) from 6R-N5,10-methylenetetrahydrofolate, coupled with a reduction of this group to the methyl one, with concomitant generation of 7,8-dihydrofolate and thymidylate. New facts are presented, concerning (i) molecular mechanism of the catalyzed reaction, including the substrate selectivity mechanism, (ii) mechanism of inhibition by a particular inhibitor, N4-hydroxy-dCMP, (iii) structural properties of the enzyme, (iv) cellular localization, (v) potential posttranslational modifications of the enzyme protein and their influence on the catalytic properties and (vi) non-catalytic activities of the enzyme.

  6. Prognostic significance of numeric aberrations of genes for thymidylate synthase, thymidine phosphorylase and dihydrofolate reductase in colorectal cancer

    DEFF Research Database (Denmark)

    Jensen, Søren Astrup; Vainer, B.; Witton, C.J.

    2008-01-01

    BACKGROUND: Most human cancer cells have structural aberrations of chromosomal regions leading to loss or gain of gene specific alleles. This study aimed to assess the range of gene copies per nucleus of thymidylate synthase (TYMS), thymidine phosphorylase (TP) and dihydrofolate reductase (DHFR...

  7. Structure of the Y94F mutant of Escherichia coli thymidylate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Sue A.; Hyatt, David C. [Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 (United States); Honts, Jerry E. [Department of Biology, Drake University, Des Moines, IA 50311 (United States); Changchien, Liming; Maley, Gladys F.; Maley, Frank [Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509 (United States); Montfort, William R., E-mail: montfort@email.arizona.edu [Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721 (United States)

    2006-09-01

    Mutation of Tyr94 of E. coli thymidylate synthase to phenylalanine leads to a protein with k{sub cat} reduced by a factor of 400. The Y94F structure is essentially identical to the wild-type structure, which is consistent with a catalytic role for the phenolic OH. Tyr94 of Escherichia coli thymidylate synthase is thought to be involved, either directly or by activation of a water molecule, in the abstraction of a proton from C5 of the 2′-deoxyuridine 5′-monophosphate (dUMP) substrate. Mutation of Tyr94 leads to a 400-fold loss in catalytic activity. The structure of the Y94F mutant has been determined in the native state and as a ternary complex with thymidine 5′-monophosphate (dTMP) and 10-propargyl 5,8-dideazafolate (PDDF). There are no structural changes ascribable to the mutation other than loss of a water molecule hydrogen bonded to the tyrosine OH, which is consistent with a catalytic role for the phenolic OH.

  8. Nucleotide selectivity defect and mutator phenotype conferred by a colon cancer-associated DNA polymerase δ mutation in human cells.

    Science.gov (United States)

    Mertz, T M; Baranovskiy, A G; Wang, J; Tahirov, T H; Shcherbakova, P V

    2017-08-01

    Mutations in the POLD1 and POLE genes encoding DNA polymerases δ (Polδ) and ɛ (Polɛ) cause hereditary colorectal cancer (CRC) and have been found in many sporadic colorectal and endometrial tumors. Much attention has been focused on POLE exonuclease domain mutations, which occur frequently in hypermutated DNA mismatch repair (MMR)-proficient tumors and appear to be responsible for the bulk of genomic instability in these tumors. In contrast, somatic POLD1 mutations are seen less frequently and typically occur in MMR-deficient tumors. Their functional significance is often unclear. Here we demonstrate that expression of the cancer-associated POLD1-R689W allele is strongly mutagenic in human cells. The mutation rate increased synergistically when the POLD1-R689W expression was combined with a MMR defect, indicating that the mutator effect of POLD1-R689W results from a high rate of replication errors. Purified human Polδ-R689W has normal exonuclease activity, but the nucleotide selectivity of the enzyme is severely impaired, providing a mechanistic explanation for the increased mutation rate in the POLD1-R689W-expressing cells. The vast majority of mutations induced by the POLD1-R689W are GC→︀TA transversions and GC→︀AT transitions, with transversions showing a strong strand bias and a remarkable preference for polypurine/polypyrimidine sequences. The mutational specificity of the Polδ variant matches that of the hypermutated CRC cell line, HCT15, in which this variant was first identified. The results provide compelling evidence for the pathogenic role of the POLD1-R689W mutation in the development of the human tumor and emphasize the need to experimentally determine the significance of Polδ variants present in sporadic tumors.

  9. First three-dimensional structure of Toxoplasma gondii thymidylate synthase-dihydrofolate reductase: insights for catalysis, interdomain interactions, and substrate channeling.

    Science.gov (United States)

    Sharma, Hitesh; Landau, Mark J; Vargo, Melissa A; Spasov, Krasimir A; Anderson, Karen S

    2013-10-15

    Most species, such as humans, have monofunctional forms of thymidylate synthase (TS) and dihydrofolate reductase (DHFR) that are key folate metabolism enzymes making critical folate components required for DNA synthesis. In contrast, several parasitic protozoa, including Toxoplasma gondii , contain a unique bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) having the catalytic activities contained on a single polypeptide chain. The prevalence of T. gondii infections across the world, especially for those immunocompromised, underscores the need to understand TS-DHFR enzyme function and to find new avenues to exploit for the design of novel antiparasitic drugs. As a first step, we have solved the first three-dimensional structures of T. gondii TS-DHFR at 3.7 Å and of a loop truncated TS-DHFR, removing several flexible surface loops in the DHFR domain, improving resolution to 2.2 Å. Distinct structural features of the TS-DHFR homodimer include a junctional region containing a kinked crossover helix between the DHFR domains of the two adjacent monomers, a long linker connecting the TS and DHFR domains, and a DHFR domain that is positively charged. The roles of these unique structural features were probed by site-directed mutagenesis coupled with presteady state and steady state kinetics. Mutational analysis of the crossover helix region combined with kinetic characterization established the importance of this region not only in DHFR catalysis but also in modulating the distal TS activity, suggesting a role for TS-DHFR interdomain interactions. Additional kinetic studies revealed that substrate channeling occurs in which dihydrofolate is directly transferred from the TS to DHFR active site without entering bulk solution. The crystal structure suggests that the positively charged DHFR domain governs this electrostatically mediated movement of dihydrofolate, preventing release from the enzyme. Taken together, these structural and kinetic studies reveal

  10. Conservation and Role of Electrostatics in Thymidylate Synthase

    Science.gov (United States)

    Garg, Divita; Skouloubris, Stephane; Briffotaux, Julien; Myllykallio, Hannu; Wade, Rebecca C.

    2015-11-01

    Conservation of function across families of orthologous enzymes is generally accompanied by conservation of their active site electrostatic potentials. To study the electrostatic conservation in the highly conserved essential enzyme, thymidylate synthase (TS), we conducted a systematic species-based comparison of the electrostatic potential in the vicinity of its active site. Whereas the electrostatics of the active site of TS are generally well conserved, the TSs from minimal organisms do not conform to the overall trend. Since the genomes of minimal organisms have a high thymidine content compared to other organisms, the observation of non-conserved electrostatics was surprising. Analysis of the symbiotic relationship between minimal organisms and their hosts, and the genetic completeness of the thymidine synthesis pathway suggested that TS from the minimal organism Wigglesworthia glossinidia (W.g.b.) must be active. Four residues in the vicinity of the active site of Escherichia coli TS were mutated individually and simultaneously to mimic the electrostatics of W.g.b TS. The measured activities of the E. coli TS mutants imply that conservation of electrostatics in the region of the active site is important for the activity of TS, and suggest that the W.g.b. TS has the minimal activity necessary to support replication of its reduced genome.

  11. Conservation and Role of Electrostatics in Thymidylate Synthase.

    Science.gov (United States)

    Garg, Divita; Skouloubris, Stephane; Briffotaux, Julien; Myllykallio, Hannu; Wade, Rebecca C

    2015-11-27

    Conservation of function across families of orthologous enzymes is generally accompanied by conservation of their active site electrostatic potentials. To study the electrostatic conservation in the highly conserved essential enzyme, thymidylate synthase (TS), we conducted a systematic species-based comparison of the electrostatic potential in the vicinity of its active site. Whereas the electrostatics of the active site of TS are generally well conserved, the TSs from minimal organisms do not conform to the overall trend. Since the genomes of minimal organisms have a high thymidine content compared to other organisms, the observation of non-conserved electrostatics was surprising. Analysis of the symbiotic relationship between minimal organisms and their hosts, and the genetic completeness of the thymidine synthesis pathway suggested that TS from the minimal organism Wigglesworthia glossinidia (W.g.b.) must be active. Four residues in the vicinity of the active site of Escherichia coli TS were mutated individually and simultaneously to mimic the electrostatics of W.g.b TS. The measured activities of the E. coli TS mutants imply that conservation of electrostatics in the region of the active site is important for the activity of TS, and suggest that the W.g.b. TS has the minimal activity necessary to support replication of its reduced genome.

  12. Concerted versus stepwise mechanism in thymidylate synthase.

    Science.gov (United States)

    Islam, Zahidul; Strutzenberg, Timothy S; Gurevic, Ilya; Kohen, Amnon

    2014-07-16

    Thymidylate synthase (TSase) catalyzes the intracellular de novo formation of thymidylate (a DNA building block) in most living organisms, making it a common target for chemotherapeutic and antibiotic drugs. Two mechanisms have been proposed for the rate-limiting hydride transfer step in TSase catalysis: a stepwise mechanism in which the hydride transfer precedes the cleavage of the covalent bond between the enzymatic cysteine and the product and a mechanism where both happen concertedly. Striking similarities between the enzyme-bound enolate intermediates formed in the initial and final step of the reaction supported the first mechanism, while QM/MM calculations favored the concerted mechanism. Here, we experimentally test these two possibilities using secondary kinetic isotope effect (KIE), mutagenesis study, and primary KIEs. The findings support the concerted mechanism and demonstrate the critical role of an active site arginine in substrate binding, activation of enzymatic nucleophile, and the hydride transfer studied here. The elucidation of this reduction/substitution sheds light on the critical catalytic step in TSase and may aid future drug or biomimetic catalyst design.

  13. An ancient founder mutation in PROKR2 impairs human reproduction.

    Science.gov (United States)

    Avbelj Stefanija, Magdalena; Jeanpierre, Marc; Sykiotis, Gerasimos P; Young, Jacques; Quinton, Richard; Abreu, Ana Paula; Plummer, Lacey; Au, Margaret G; Balasubramanian, Ravikumar; Dwyer, Andrew A; Florez, Jose C; Cheetham, Timothy; Pearce, Simon H; Purushothaman, Radhika; Schinzel, Albert; Pugeat, Michel; Jacobson-Dickman, Elka E; Ten, Svetlana; Latronico, Ana Claudia; Gusella, James F; Dode, Catherine; Crowley, William F; Pitteloud, Nelly

    2012-10-01

    Congenital gonadotropin-releasing hormone (GnRH) deficiency manifests as absent or incomplete sexual maturation and infertility. Although the disease exhibits marked locus and allelic heterogeneity, with the causal mutations being both rare and private, one causal mutation in the prokineticin receptor, PROKR2 L173R, appears unusually prevalent among GnRH-deficient patients of diverse geographic and ethnic origins. To track the genetic ancestry of PROKR2 L173R, haplotype mapping was performed in 22 unrelated patients with GnRH deficiency carrying L173R and their 30 first-degree relatives. The mutation's age was estimated using a haplotype-decay model. Thirteen subjects were informative and in all of them the mutation was present on the same ~123 kb haplotype whose population frequency is ≤10%. Thus, PROKR2 L173R represents a founder mutation whose age is estimated at approximately 9000 years. Inheritance of PROKR2 L173R-associated GnRH deficiency was complex with highly variable penetrance among carriers, influenced by additional mutations in the other PROKR2 allele (recessive inheritance) or another gene (digenicity). The paradoxical identification of an ancient founder mutation that impairs reproduction has intriguing implications for the inheritance mechanisms of PROKR2 L173R-associated GnRH deficiency and for the relevant processes of evolutionary selection, including potential selective advantages of mutation carriers in genes affecting reproduction.

  14. Haldane and the first estimates of the human mutation rate

    Indian Academy of Sciences (India)

    Unknown

    quency of an allele could be measured and if the strength of selection could be estimated, it should be possible to calculate the mutation rate. Since most mutations in .... no formal training in biology (Provine 1971, p. 168). Among his many contributions to the field was the fact that he edited this journal for quite a few years; ...

  15. Different mutations of the human c-mpl gene indicate distinct haematopoietic diseases

    Directory of Open Access Journals (Sweden)

    He Xin

    2013-01-01

    Full Text Available Abstract The human c-mpl gene (MPL plays an important role in the development of megakaryocytes and platelets as well as the self-renewal of haematopoietic stem cells. However, numerous MPL mutations have been identified in haematopoietic diseases. These mutations alter the normal regulatory mechanisms and lead to autonomous activation or signalling deficiencies. In this review, we summarise 59 different MPL mutations and classify these mutations into four different groups according to the associated diseases and mutation rates. Using this classification, we clearly distinguish four diverse types of MPL mutations and obtain a deep understand of their clinical significance. This will prove to be useful for both disease diagnosis and the design of individual therapy regimens based on the type of MPL mutations.

  16. The IARC TP53 mutation database: a resource for studying the significance of TP53 mutations in human cancers

    Directory of Open Access Journals (Sweden)

    Magali Olivier

    2007-02-01

    Full Text Available

    The tumor suppressor gene TP53 is frequently inactivated by gene mutations in many types of human sporadic cancers, and inherited TP53 mutations predispose to a wide spectrum of early-onset tumors (Li-Fraumeni et Li-Fraumenilike Syndromes. All TP53 gene variations (somatic and germline mutations, as well as polymorphisms that are reported in the scientific literature or in SNP databases are compiled in the IARC TP53 Database. This database provides structured data and analysis tools to study mutation patterns in human cancers and cell-lines and to investigate the clinical impact of mutations. It contains annotations related to the clinical and pathological characteristics of tumors, as well as the demographics and carcinogen exposure of patients. The IARC TP53 web site (http://www-p53.iarc.fr/ provides a search interface for the core database and includes a comprehensive user guide, a slideshow on TP53 mutations in human cancer, protocols and references for sequencing TP53 gene, and links to relevant publications and bioinformatics databases. The database interface allows download of entire data sets and propose various tools for the selection, analysis and downloads of specific sets of data according to user's query.

    Recently, new annotations on the functional properties of mutant p53 proteins have been integrated in this database. Indeed, the most frequent TP53 alterations observed in cancers (75% are missense mutations that result in the production of a mutant protein that differ from the wildtype by one single amino-acid. The characterization of the biological activities of these mutant proteins is thus very important. Over the last ten years, a great amount of systematic data has been generated from experimental assays performed in

  17. The NF1 somatic mutational landscape in sporadic human cancers.

    Science.gov (United States)

    Philpott, Charlotte; Tovell, Hannah; Frayling, Ian M; Cooper, David N; Upadhyaya, Meena

    2017-06-21

    Neurofibromatosis type 1 (NF1: Online Mendelian Inheritance in Man (OMIM) #162200) is an autosomal dominantly inherited tumour predisposition syndrome. Heritable constitutional mutations in the NF1 gene result in dysregulation of the RAS/MAPK pathway and are causative of NF1. The major known function of the NF1 gene product neurofibromin is to downregulate RAS. NF1 exhibits variable clinical expression and is characterized by benign cutaneous lesions including neurofibromas and café-au-lait macules, as well as a predisposition to various types of malignancy, such as breast cancer and leukaemia. However, acquired somatic mutations in NF1 are also found in a wide variety of malignant neoplasms that are not associated with NF1. Capitalizing upon the availability of next-generation sequencing data from cancer genomes and exomes, we review current knowledge of somatic NF1 mutations in a wide variety of tumours occurring at a number of different sites: breast, colorectum, urothelium, lung, ovary, skin, brain and neuroendocrine tissues, as well as leukaemias, in an attempt to understand their broader role and significance, and with a view ultimately to exploiting this in a diagnostic and therapeutic context. As neurofibromin activity is a key to regulating the RAS/MAPK pathway, NF1 mutations are important in the acquisition of drug resistance, to BRAF, EGFR inhibitors, tamoxifen and retinoic acid in melanoma, lung and breast cancers and neuroblastoma. Other curiosities are observed, such as a high rate of somatic NF1 mutation in cutaneous melanoma, lung cancer, ovarian carcinoma and glioblastoma which are not usually associated with neurofibromatosis type 1. Somatic NF1 mutations may be critical drivers in multiple cancers. The mutational landscape of somatic NF1 mutations should provide novel insights into our understanding of the pathophysiology of cancer. The identification of high frequency of somatic NF1 mutations in sporadic tumours indicates that neurofibromin is

  18. Mutation Rate Variation is a Primary Determinant of the Distribution of Allele Frequencies in Humans.

    Directory of Open Access Journals (Sweden)

    Arbel Harpak

    2016-12-01

    Full Text Available The site frequency spectrum (SFS has long been used to study demographic history and natural selection. Here, we extend this summary by examining the SFS conditional on the alleles found at the same site in other species. We refer to this extension as the "phylogenetically-conditioned SFS" or cSFS. Using recent large-sample data from the Exome Aggregation Consortium (ExAC, combined with primate genome sequences, we find that human variants that occurred independently in closely related primate lineages are at higher frequencies in humans than variants with parallel substitutions in more distant primates. We show that this effect is largely due to sites with elevated mutation rates causing significant departures from the widely-used infinite sites mutation model. Our analysis also suggests substantial variation in mutation rates even among mutations involving the same nucleotide changes. In summary, we show that variable mutation rates are key determinants of the SFS in humans.

  19. Leveraging Distant Relatedness to Quantify Human Mutation and Gene-Conversion Rates

    NARCIS (Netherlands)

    Palamara, Pier Francesco; Francioli, Laurent C; Wilton, Peter R; Genovese, Giulio; Gusev, Alexander; Finucane, Hilary K; Sankararaman, Sriram; Sunyaev, Shamil R; de Bakker, Paul I W; Wakeley, John; Pe'er, Itsik; Price, Alkes L

    2015-01-01

    The rate at which human genomes mutate is a central biological parameter that has many implications for our ability to understand demographic and evolutionary phenomena. We present a method for inferring mutation and gene-conversion rates by using the number of sequence differences observed in

  20. Induction of a mutant phenotype in human repair proficient cells after overexpression of a mutated human DNA repair gene.

    NARCIS (Netherlands)

    P.B.G.M. Belt; M.F. van Oostenrijk; H. Odijk (Hanny); J.H.J. Hoeijmakers (Jan); C.M.P. Backendorf (Claude)

    1991-01-01

    textabstractAntisense and mutated cDNA of the human excision repair gene ERCC-1 were overexpressed in repair efficient HeLa cells by means of an Epstein-Barr-virus derived CDNA expression vector. Whereas antisense RNA did not influence the survival of the transfected cells, a mutated cDNA generating

  1. Mutation@A Glance : an integrative web application for analysing mutations from human genetic diseases

    NARCIS (Netherlands)

    Hijikata, A.; Raju, R.; Keerthikumar, S.; Ramabadran, S.; Balakrishnan, L.; Ramadoss, S.K.; Pandey, A.; Mohan, S.; Ohara, O.

    2010-01-01

    Although mutation analysis serves as a key part in making a definitive diagnosis about a genetic disease, it still remains a time-consuming step to interpret their biological implications through integration of various lines of archived information about genes in question. To expedite this

  2. The population genetics of human disease: The case of recessive, lethal mutations.

    Science.gov (United States)

    Amorim, Carlos Eduardo G; Gao, Ziyue; Baker, Zachary; Diesel, José Francisco; Simons, Yuval B; Haque, Imran S; Pickrell, Joseph; Przeworski, Molly

    2017-09-01

    Do the frequencies of disease mutations in human populations reflect a simple balance between mutation and purifying selection? What other factors shape the prevalence of disease mutations? To begin to answer these questions, we focused on one of the simplest cases: recessive mutations that alone cause lethal diseases or complete sterility. To this end, we generated a hand-curated set of 417 Mendelian mutations in 32 genes reported to cause a recessive, lethal Mendelian disease. We then considered analytic models of mutation-selection balance in infinite and finite populations of constant sizes and simulations of purifying selection in a more realistic demographic setting, and tested how well these models fit allele frequencies estimated from 33,370 individuals of European ancestry. In doing so, we distinguished between CpG transitions, which occur at a substantially elevated rate, and three other mutation types. Intriguingly, the observed frequency for CpG transitions is slightly higher than expectation but close, whereas the frequencies observed for the three other mutation types are an order of magnitude higher than expected, with a bigger deviation from expectation seen for less mutable types. This discrepancy is even larger when subtle fitness effects in heterozygotes or lethal compound heterozygotes are taken into account. In principle, higher than expected frequencies of disease mutations could be due to widespread errors in reporting causal variants, compensation by other mutations, or balancing selection. It is unclear why these factors would have a greater impact on disease mutations that occur at lower rates, however. We argue instead that the unexpectedly high frequency of disease mutations and the relationship to the mutation rate likely reflect an ascertainment bias: of all the mutations that cause recessive lethal diseases, those that by chance have reached higher frequencies are more likely to have been identified and thus to have been included in

  3. The population genetics of human disease: The case of recessive, lethal mutations

    Science.gov (United States)

    Gao, Ziyue; Baker, Zachary; Diesel, José Francisco; Simons, Yuval B.; Haque, Imran S.; Pickrell, Joseph; Przeworski, Molly

    2017-01-01

    Do the frequencies of disease mutations in human populations reflect a simple balance between mutation and purifying selection? What other factors shape the prevalence of disease mutations? To begin to answer these questions, we focused on one of the simplest cases: recessive mutations that alone cause lethal diseases or complete sterility. To this end, we generated a hand-curated set of 417 Mendelian mutations in 32 genes reported to cause a recessive, lethal Mendelian disease. We then considered analytic models of mutation-selection balance in infinite and finite populations of constant sizes and simulations of purifying selection in a more realistic demographic setting, and tested how well these models fit allele frequencies estimated from 33,370 individuals of European ancestry. In doing so, we distinguished between CpG transitions, which occur at a substantially elevated rate, and three other mutation types. Intriguingly, the observed frequency for CpG transitions is slightly higher than expectation but close, whereas the frequencies observed for the three other mutation types are an order of magnitude higher than expected, with a bigger deviation from expectation seen for less mutable types. This discrepancy is even larger when subtle fitness effects in heterozygotes or lethal compound heterozygotes are taken into account. In principle, higher than expected frequencies of disease mutations could be due to widespread errors in reporting causal variants, compensation by other mutations, or balancing selection. It is unclear why these factors would have a greater impact on disease mutations that occur at lower rates, however. We argue instead that the unexpectedly high frequency of disease mutations and the relationship to the mutation rate likely reflect an ascertainment bias: of all the mutations that cause recessive lethal diseases, those that by chance have reached higher frequencies are more likely to have been identified and thus to have been included in

  4. Tumor cell responses to inhibition of thymidylate synthase

    Energy Technology Data Exchange (ETDEWEB)

    Keyomarsi, K.

    1989-01-01

    The cellular, biochemical and molecular events that occur in tumor cells treated with inhibitors of thymidylate synthase (TS) were studied. 5-Fluorouracil (5-FUra) and fluorodeoxyuridine (FdUrd) are more growth inhibitory to mouse and human tumor cells when grown in medium containing folinate. L1210 cells exposed to folinate and noncytotoxic concentrations of 5-FUra or FdUrd, resulted in a 98% to 99.98% cell kill. Exposure of L1210 cells to folinate resulted in expansion of intracellular pools of 5,10-methylenetetrahydrofolate, delayed the reappearance of catalytically active TS following FdUrd exposure, and stabilized inactive TS complexes over the same concentration range that augmented the cytotoxic effect of FdUrd and 5-FUra. In intact L1210 cells, fluorodeoxyuridylate (FdUMP) behaved as an inhibitor whose complexes with TS dissociate with a biologically significant rate. However, these complexes become functionally irreversible in cells incubated with high levels of folinate. CB 3717 eliminated TS activity in L1210 cells, yet the inactive enzyme retained the ability to bind ({sup 3}H)-FdUMP covalently, suggesting that the binding of one subunit of TS inactivates the catalytic activity of both subunits.

  5. Mutations that Cause Human Disease: A Computational/Experimental Approach

    Energy Technology Data Exchange (ETDEWEB)

    Beernink, P; Barsky, D; Pesavento, B

    2006-01-11

    International genome sequencing projects have produced billions of nucleotides (letters) of DNA sequence data, including the complete genome sequences of 74 organisms. These genome sequences have created many new scientific opportunities, including the ability to identify sequence variations among individuals within a species. These genetic differences, which are known as single nucleotide polymorphisms (SNPs), are particularly important in understanding the genetic basis for disease susceptibility. Since the report of the complete human genome sequence, over two million human SNPs have been identified, including a large-scale comparison of an entire chromosome from twenty individuals. Of the protein coding SNPs (cSNPs), approximately half leads to a single amino acid change in the encoded protein (non-synonymous coding SNPs). Most of these changes are functionally silent, while the remainder negatively impact the protein and sometimes cause human disease. To date, over 550 SNPs have been found to cause single locus (monogenic) diseases and many others have been associated with polygenic diseases. SNPs have been linked to specific human diseases, including late-onset Parkinson disease, autism, rheumatoid arthritis and cancer. The ability to predict accurately the effects of these SNPs on protein function would represent a major advance toward understanding these diseases. To date several attempts have been made toward predicting the effects of such mutations. The most successful of these is a computational approach called ''Sorting Intolerant From Tolerant'' (SIFT). This method uses sequence conservation among many similar proteins to predict which residues in a protein are functionally important. However, this method suffers from several limitations. First, a query sequence must have a sufficient number of relatives to infer sequence conservation. Second, this method does not make use of or provide any information on protein structure, which

  6. Rare mutations of the DMBT1 gene in human astrocytic gliomas

    DEFF Research Database (Denmark)

    Mueller, Wolf; Mollenhauer, Jan; Stockhammer, Florian

    2002-01-01

    The Deleted in Malignant Brain Tumors 1 gene (DMBT1) has been proposed as a tumor suppressor gene candidate in human brain tumors, based on the observation of homozygous deletions affecting the DMBT1 region or part of the gene. In order to support this hypothesis, we performed a mutational analysis...... of the entire coding region of DMBT1, employing SSCP analysis and direct DNA sequencing in a series of 79 astrocytic gliomas. Five somatic mutations were detected. Two mutations, one of which resulted in an amino acid exchange, occurred in glioblastomas. One pilocytic astrocytoma carried two missense mutations...... and another pilocytic astrocytoma contained a somatic mutation, not affecting the presumed protein. In addition, 21 of the 27 single nucleotide polymorphisms identified in this study have not been recognized previously. The data indicate, that small mutations are not a frequent finding in gliomas....

  7. Comparison of mitochondrial mutation spectra in ageing human colonic epithelium and disease: absence of evidence for purifying selection in somatic mitochondrial DNA point mutations.

    Directory of Open Access Journals (Sweden)

    Laura C Greaves

    Full Text Available Human ageing has been predicted to be caused by the accumulation of molecular damage in cells and tissues. Somatic mitochondrial DNA (mtDNA mutations have been documented in a number of ageing tissues and have been shown to be associated with cellular mitochondrial dysfunction. It is unknown whether there are selective constraints, which have been shown to occur in the germline, on the occurrence and expansion of these mtDNA mutations within individual somatic cells. Here we compared the pattern and spectrum of mutations observed in ageing human colon to those observed in the general population (germline variants and those associated with primary mtDNA disease. The pathogenicity of the protein encoding mutations was predicted using a computational programme, MutPred, and the scores obtained for the three groups compared. We show that the mutations associated with ageing are randomly distributed throughout the genome, are more frequently non-synonymous or frameshift mutations than the general population, and are significantly more pathogenic than population variants. Mutations associated with primary mtDNA disease were significantly more pathogenic than ageing or population mutations. These data provide little evidence for any selective constraints on the occurrence and expansion of mtDNA mutations in somatic cells of the human colon during human ageing in contrast to germline mutations seen in the general population.

  8. Comparison of mitochondrial mutation spectra in ageing human colonic epithelium and disease: absence of evidence for purifying selection in somatic mitochondrial DNA point mutations.

    Science.gov (United States)

    Greaves, Laura C; Elson, Joanna L; Nooteboom, Marco; Grady, John P; Taylor, Geoffrey A; Taylor, Robert W; Mathers, John C; Kirkwood, Thomas B L; Turnbull, Doug M

    2012-01-01

    Human ageing has been predicted to be caused by the accumulation of molecular damage in cells and tissues. Somatic mitochondrial DNA (mtDNA) mutations have been documented in a number of ageing tissues and have been shown to be associated with cellular mitochondrial dysfunction. It is unknown whether there are selective constraints, which have been shown to occur in the germline, on the occurrence and expansion of these mtDNA mutations within individual somatic cells. Here we compared the pattern and spectrum of mutations observed in ageing human colon to those observed in the general population (germline variants) and those associated with primary mtDNA disease. The pathogenicity of the protein encoding mutations was predicted using a computational programme, MutPred, and the scores obtained for the three groups compared. We show that the mutations associated with ageing are randomly distributed throughout the genome, are more frequently non-synonymous or frameshift mutations than the general population, and are significantly more pathogenic than population variants. Mutations associated with primary mtDNA disease were significantly more pathogenic than ageing or population mutations. These data provide little evidence for any selective constraints on the occurrence and expansion of mtDNA mutations in somatic cells of the human colon during human ageing in contrast to germline mutations seen in the general population.

  9. In vivo mutations in human blood cells: Biomarkers for molecular epidemiology

    Energy Technology Data Exchange (ETDEWEB)

    Albertini, R.J.; Branda, R.F.; O' Neill, J.P. (Univ. of Vermont, Burlington (United States)); Nicklas, J.A.; Fuscoe, J.C. (Environmental Health Research and Testing, Inc., Research Triangle Park, NC (United States)); Skopek, T.R. (Univ. of North Carolina, Chapel Hill (United States))

    1993-03-01

    Mutations arising in vivo in recorder genes of human blood cells provide biomarkers for molecular epidemiology by serving as surrogates for cancer-causing genetic changes. Current markers include mutations of the glycophorin-A (GPA) or hemoglobin (Hb) genes, measured in red blood cells, or mutations of the hypoxanthine-guanine phosphoribosyltransferase (hprt) or HLA genes, measured in T-lymphocytes. Mean mutant frequencies (variant frequencies) for normal young adults are approximately: Hb (4 [times] 10[sup [minus]8]) < hprt (5 [times] 10[sup [minus]6]) = GPA (10 [times] 10[sup [minus]6]) < HLA (30 [times] 10[sup [minus]6]). Mutagen-exposed individuals show decided elevations. Molecular mutational spectra are also being defined. For the hprt marker system, about 15% of background mutations are gross structural alterations of the hprt gene (e.g., deletions); the remainder are point mutations (e.g., base substitutions or frameshifts). Ionizing radiations result in dose-related increases in total gene deletions. Large deletions may encompass several megabases as shown by co-deletions of linked markers. Possible hprt spectra for defining radiation and chemical exposures are being sought. In addition to their responsiveness to environmental mutagens/carcinogens, three additional findings suggest that the in vivo recorder mutations are relevant in vivo surrogates for cancer mutations. First, a large fraction of GPA and HLA mutations show exchanges due to homologous recombination, an important mutational event in cancer. Second, hprt mutations arise preferentially in dividing T-cells, which can accumulate additional mutations in the same clone, reminiscent of the multiple hits required in the evolution of malignancy. Finally, fetal hprt mutations frequently have characteristic deletions of hprt exons 2 and 3, which appear to be mediated by the VDJ recombinase that rearranges the T-cell receptor genes during thymic ontogeny. 60 refs., 3 tabs.

  10. Human triosephosphate isomerase deficiency resulting from mutation of Phe-240

    Energy Technology Data Exchange (ETDEWEB)

    Minling Chang; Xiaoyun Wu; Maquat, L.E. (Roswell Park Cancer Inst., Buffalo, NY (United States)); Artymiuk, P.J. (Univ. of Sheffield (United Kingdom)); Hollan, S. (National Inst. of Hematology and Blood Transfusion, Budapest (Hungary)); Lammi, A. (Children' s Hospital, Sydney (Australia))

    1993-06-01

    Triosephosphate isomerase (TPI; D-glyceraldehyde-3-phosphate ketolisomerase [E.C.5.3.1.1]) deficiency is an autosomal recessive disorder that typically results in chronic, nonspherocytic hemolytic anemia and in neuromuscular impairment. The molecular basis of this disease was analyzed for one Hungarian family and for two Australian families by localizing the defects in TPI cDNA and by determining how each defect affects TPI gene expression. The Hungarian family is noteworthy in having the first reported case of an individual, A. Jo., who harbors two defective TPI alleles but who does not manifest neuromuscular disabilities. This family was characterized by two mutations that have never been described. One is a missense mutation within codon 240 (TTC [Phe][r arrow]CTC [Leu]), which creates a thermolabile protein, as indicated by the results of enzyme activity assays using cell extracts. This substitution, which changes a phylogenetically conserved amino acid, may affect enzyme activity by dusrupting intersubunit contacts or substrate binding, as deduced from enzyme structural studies. The other mutation has yet to be localized but reduces the abundance of TPI mRNA 10--20-fold. Each of the Australian families was characterized by a previously described mutation within codon 104 (GAG [Glu][r arrow]GAC [Asp]), which also results in thermolabile protein. 49 refs., 6 figs., 1 tab.

  11. P53 MUTATIONS IN HUMAN LUNG-TUMORS

    NARCIS (Netherlands)

    MILLER, CW; ASLO, A; KOK, K; YOKOTA, J; BUYS, CHCM; TERADA, M; KOEFFLER, HP; Simon, K.

    1992-01-01

    Mutation of one p53 allele and loss of the normal p53 allele [loss of heterozygosity (LOH)] occur in many tumors including lung cancers. These alterations apparently contribute to development of cancer by interfering with the tumor suppressor activity of p53. We directly sequenced amplified DNA in

  12. Mutational History of a Human Cell Lineage from Somatic to Induced Pluripotent Stem Cells.

    Directory of Open Access Journals (Sweden)

    Foad J Rouhani

    2016-04-01

    Full Text Available The accuracy of replicating the genetic code is fundamental. DNA repair mechanisms protect the fidelity of the genome ensuring a low error rate between generations. This sustains the similarity of individuals whilst providing a repertoire of variants for evolution. The mutation rate in the human genome has recently been measured to be 50-70 de novo single nucleotide variants (SNVs between generations. During development mutations accumulate in somatic cells so that an organism is a mosaic. However, variation within a tissue and between tissues has not been analysed. By reprogramming somatic cells into induced pluripotent stem cells (iPSCs, their genomes and the associated mutational history are captured. By sequencing the genomes of polyclonal and monoclonal somatic cells and derived iPSCs we have determined the mutation rates and show how the patterns change from a somatic lineage in vivo through to iPSCs. Somatic cells have a mutation rate of 14 SNVs per cell per generation while iPSCs exhibited a ten-fold lower rate. Analyses of mutational signatures suggested that deamination of methylated cytosine may be the major mutagenic source in vivo, whilst oxidative DNA damage becomes dominant in vitro. Our results provide insights for better understanding of mutational processes and lineage relationships between human somatic cells. Furthermore it provides a foundation for interpretation of elevated mutation rates and patterns in cancer.

  13. A bacterial model for expression of mutations in the human ornithine transcarbamylase (OTC) gene

    Energy Technology Data Exchange (ETDEWEB)

    Tuchman, M.; McCann, M.T.; Qureshi, A.A. [Univ. of Minnesota, Mineapolis (United States)

    1994-09-01

    OTC is a mitochondrial enzyme catalyzing the formation of citrulline from carbamyl phosphate and ornithine. X-linked deficiency of OTC is the most prevalent genetic defect of ureagenesis. Mutations and polymorphisms in the OTC gene identified in deficient patients have indicated the occurrence of many family-specific, unique alleles. Due to the low frequency of recurrent mutations, distinguishing between deleterious mutations and polymorphisms is difficult. Using a human OTC gene containing plasmid driven by a tac promoter, we have devised a simple and efficient method for expressing mutations in the mature human OTC enzyme. To demonstrate this method, PCR engineered site-directed mutagenesis was employed to generated cDNA fragments which contained either the R151Q or R277W known mutations found in patients with neonatal and late-onset OTC deficiency, respectively. The normal allele for each mutation was also generated by an identical PCR procedure. Digestion with Bgl II- and Sty I-generated mutant and normal replacement cassettes containing the respective mutant and wild type sequences. Upon transformation of JM109 E.coli cells, OTC enzymatic activity was measured at log and stationary phases of growth using a radiochromatographic method. The R141Q mutation abolished enzymatic activity (<0.02% of normal), whereas the R277W mutation expressed partial activity (2.3% of normal). In addition, a PCR-generated mutation, A280V, resulted in 73% loss of catalytic activity. This OTC expression system is clinically applicable for distinguishing between mutations and polymorphisms, and it can be used to investigate the effects of mutations on various domains of the OTC gene.

  14. Mutations in the human GlyT2 gene define a presynaptic component of human startle disease

    Science.gov (United States)

    Rees, Mark I.; Harvey, Kirsten; Pearce, Brian R.; Chung, Seo-Kyung; Duguid, Ian C.; Thomas, Philip; Beatty, Sarah; Graham, Gail E.; Armstrong, Linlea; Shiang, Rita; Abbott, Kim J.; Zuberi, Sameer M.; Stephenson, John B.P.; Owen, Michael J.; Tijssen, Marina A.J.; van den Maagdenberg, Arn M.J.M.; Smart, Trevor G.; Supplisson, Stéphane; Harvey, Robert J.

    2011-01-01

    Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) α1 subunit (GLRA1)1-3. Genetic heterogeneity has been confirmed in isolated sporadic cases with mutations in other postsynaptic glycinergic proteins including the GlyR β subunit (GLRB)4, gephyrin (GPHN)5 and RhoGEF collybistin (ARHGEF9)6. However, many sporadic patients diagnosed with hyperekplexia do not carry mutations in these genes2-7. Here we reveal that missense, nonsense and frameshift mutations in the presynaptic glycine transporter 2 (GlyT2) gene (SLC6A5)8 also cause hyperekplexia. Patients harbouring mutations in SLC6A5 presented with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnoea episodes. GlyT2 mutations result in defective subcellular localisation and/or decreased glycine uptake, with selected mutations affecting predicted glycine and Na+ binding sites. Our results demonstrate that SLC6A5 is a major gene for hyperekplexia and define the first neurological disorder linked to mutations in a Na+/Cl−-dependent transporter for a classical fast neurotransmitter. By analogy, we suggest that in other human disorders where defects in postsynaptic receptors have been identified, similar symptoms could result from defects in the cognate presynaptic neurotransmitter transporter. PMID:16751771

  15. The spectrum of SWI/SNF mutations, ubiquitous in human cancers.

    Directory of Open Access Journals (Sweden)

    A Hunter Shain

    Full Text Available SWI/SNF is a multi-subunit chromatin remodeling complex that uses the energy of ATP hydrolysis to reposition nucleosomes, thereby modulating gene expression. Accumulating evidence suggests that SWI/SNF functions as a tumor suppressor in some cancers. However, the spectrum of SWI/SNF mutations across human cancers has not been systematically investigated. Here, we mined whole-exome sequencing data from 24 published studies representing 669 cases from 18 neoplastic diagnoses. SWI/SNF mutations were widespread across diverse human cancers, with an excess of deleterious mutations, and an overall frequency approaching TP53 mutation. Mutations occurred most commonly in the SMARCA4 enzymatic subunit, and in subunits thought to confer functional specificity (ARID1A, ARID1B, PBRM1, and ARID2. SWI/SNF mutations were not mutually-exclusive of other mutated cancer genes, including TP53 and EZH2 (both previously linked to SWI/SNF. Our findings implicate SWI/SNF as an important but under-recognized tumor suppressor in diverse human cancers, and provide a key resource to guide future investigations.

  16. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis.

    Science.gov (United States)

    Ang, Yen-Sin; Rivas, Renee N; Ribeiro, Alexandre J S; Srivas, Rohith; Rivera, Janell; Stone, Nicole R; Pratt, Karishma; Mohamed, Tamer M A; Fu, Ji-Dong; Spencer, C Ian; Tippens, Nathaniel D; Li, Molong; Narasimha, Anil; Radzinsky, Ethan; Moon-Grady, Anita J; Yu, Haiyuan; Pruitt, Beth L; Snyder, Michael P; Srivastava, Deepak

    2016-12-15

    Mutation of highly conserved residues in transcription factors may affect protein-protein or protein-DNA interactions, leading to gene network dysregulation and human disease. Human mutations in GATA4, a cardiogenic transcription factor, cause cardiac septal defects and cardiomyopathy. Here, iPS-derived cardiomyocytes from subjects with a heterozygous GATA4-G296S missense mutation showed impaired contractility, calcium handling, and metabolic activity. In human cardiomyocytes, GATA4 broadly co-occupied cardiac enhancers with TBX5, another transcription factor that causes septal defects when mutated. The GATA4-G296S mutation disrupted TBX5 recruitment, particularly to cardiac super-enhancers, concomitant with dysregulation of genes related to the phenotypic abnormalities, including cardiac septation. Conversely, the GATA4-G296S mutation led to failure of GATA4 and TBX5-mediated repression at non-cardiac genes and enhanced open chromatin states at endothelial/endocardial promoters. These results reveal how disease-causing missense mutations can disrupt transcriptional cooperativity, leading to aberrant chromatin states and cellular dysfunction, including those related to morphogenetic defects. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Three mutations switch H7N9 influenza to human-type receptor specificity

    Energy Technology Data Exchange (ETDEWEB)

    de Vries, Robert P.; Peng, Wenjie; Grant, Oliver C.; Thompson, Andrew J.; Zhu, Xueyong; Bouwman, Kim M.; de la Pena, Alba T. Torrents; van Breemen, Marielle J.; Ambepitiya Wickramasinghe, Iresha N.; de Haan, Cornelis A. M.; Yu, Wenli; McBride, Ryan; Sanders, Rogier W.; Woods, Robert J.; Verheije, Monique H.; Wilson, Ian A.; Paulson, James C.; Fernandez-Sesma, Ana

    2017-06-15

    The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.

  18. Interaction between thymidylate synthase and its cognate mRNA in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Yuyan Zhang

    Full Text Available Thymidylate synthase (TS, which catalyzes the de novo synthesis of dUMP, is an important target for cancer therapy. In this report, the effects of 5-fluorouracil (5-FU and ZD1694 on the regulation of TS gene expression were evaluated in zebrafish embryos. Our results revealed that the expression of TS was increased by about six-fold when embryos were treated with 1.0 microM 5-FU and there was a greater than 10-fold increase in the TS protein level after treatment with 0.4 microM ZD1694. Northern blot analysis confirmed that expression of TS mRNA was identical in treated or untreated embryos. Gel shift and immunoprecipitation assays revealed that zebrafish TS was specifically bound with its cognate mRNA in vitro and in vivo. We identified a 20 nt RNA sequence, TS:N20, localized to the 5'-UTR of TS mRNA, which corresponded to nt 13-32; TS:N20 bound to the TS protein with an affinity similar to that of the full-length TS mRNA. The MFold program predicted that TS:N20 formed a stable stem-loop structure similar to that of the cis-acting element found in human TS mRNA. Variant RNAs with either a deletion or mutation in the core motif of TS:N20 were unable to bind to the TS protein. In vitro translation experiments, using the rabbit lysate system, confirmed that zebrafish TS mRNA translation was significantly repressed when an excess amount of TS protein was included in the system. Additionally, a TS stability experiment confirmed that treatment of zebrafish embryos with 5-FU could increase the TS stability significantly, and the half life of TS protein was about 2.7 times longer than in untreated embryos. Our study revealed a structural requirement for the interaction of TS RNA with TS protein. These findings also demonstrated that the increase in TS protein induced by 5-FU occurs at the post-transcriptional level and that increased stability and translation efficiency both contributed to the increase in TS protein levels induced by TS inhibitors.

  19. Structural studies provide clues for analog design of specific inhibitors of Cryptosporidium hominis thymidylate synthase-dihydrofolate reductase.

    Science.gov (United States)

    Kumar, Vidya P; Cisneros, Jose A; Frey, Kathleen M; Castellanos-Gonzalez, Alejandro; Wang, Yiqiang; Gangjee, Aleem; White, A Clinton; Jorgensen, William L; Anderson, Karen S

    2014-09-01

    Cryptosporidium is the causative agent of a gastrointestinal disease, cryptosporidiosis, which is often fatal in immunocompromised individuals and children. Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) are essential enzymes in the folate biosynthesis pathway and are well established as drug targets in cancer, bacterial infections, and malaria. Cryptosporidium hominis has a bifunctional thymidylate synthase and dihydrofolate reductase enzyme, compared to separate enzymes in the host. We evaluated lead compound 1 from a novel series of antifolates, 2-amino-4-oxo-5-substituted pyrrolo[2,3-d]pyrimidines as an inhibitor of Cryptosporidium hominis thymidylate synthase with selectivity over the human enzyme. Complementing the enzyme inhibition compound 1 also has anti-cryptosporidial activity in cell culture. A crystal structure with compound 1 bound to the TS active site is discussed in terms of several van der Waals, hydrophobic and hydrogen bond interactions with the protein residues and the substrate analog 5-fluorodeoxyuridine monophosphate (TS), cofactor NADPH and inhibitor methotrexate (DHFR). Another crystal structure in complex with compound 1 bound in both the TS and DHFR active sites is also reported here. The crystal structures provide clues for analog design and for the design of ChTS-DHFR specific inhibitors. Copyright © 2014. Published by Elsevier Ltd.

  20. Analysis of the Thymidylate Synthase Gene Structure in Colorectal Cancer Patients and Its Possible Relation with the 5-Fluorouracil Drug Response

    Directory of Open Access Journals (Sweden)

    A. Calascibetta

    2010-01-01

    Full Text Available Thymidylate synthase (TS catalyzes methylation of dUMP to dTMP and it is the target for the 5-Fluorouracil (5-FU activity. Barbour et al. showed that variant structural forms of TS in tumour cell lines confer resistance to fluoropyrimidines. We planned to perform the whole TS gene structure by means of sequencing techniques in human colorectal cancer (CRC samples to try to identify the presence of any possible TS variant form that could be responsible of fluoropyrimidines drug resistance and of the worse prognosis. We performed the TS-DNA gene sequence in 68 CRC from patients of A, B, and C Dukes' stages and different histological grade, but we did not find any mutation in the TS-DNA structure. In the future we intend to widen the TS structure analysis to the metastatic CRCs, because due to their higher genomic instability, they could present a TS variant form responsible of the fluoropyrimidines drug resistance and the worse prognosis.

  1. The Arctic Alzheimer mutation enhances sensitivity to toxic stress in human neuroblastoma cells

    DEFF Research Database (Denmark)

    Sennvik, Kristina; Nilsberth, Camilla; Stenh, Charlotte

    2002-01-01

    The E693G (Arctic) mutation of the amyloid precursor protein was recently found to lead to early-onset Alzheimer's disease in a Swedish family. In the present study, we report that the Arctic mutation decreases cell viability in human neuroblastoma cells. The cell viability, as measured by the MTT...... their secretion of beta-secretase cleaved amyloid precursor protein. The enhanced sensitivity to toxic stress in cells with the Arctic mutation most likely contributes to the pathogenic pathway leading to Alzheimer's disease....

  2. Human cell line sensitive to mutation by particle-borne chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, C.L.; Liber, H.L.; Behymer, T.D.; Hites, R.A.; Thilly, W.G.

    1985-07-01

    A human lymphoblastoid cell line with ability to perform oxidative metabolism of various chemicals is mutated by the direct addition of an intact particulate soot. This experiment demonstrates that materials associated with combustion-generated particulates are biologically available and able to cause genetic changes in metabolically competent human cells.

  3. Isolation and expression of the Pneumocystis carinii thymidylate synthase gene

    DEFF Research Database (Denmark)

    Edman, U; Edman, J C; Lundgren, B

    1989-01-01

    The thymidylate synthase (TS) gene from Pneumocystis carinii has been isolated from complementary and genomic DNA libraries and expressed in Escherichia coli. The coding sequence of TS is 891 nucleotides, encoding a 297-amino acid protein of Mr 34,269. The deduced amino acid sequence is similar...

  4. Mutation analysis of the MCHR1 gene in human obesity

    DEFF Research Database (Denmark)

    Wermter, Anne-Kathrin; Reichwald, Kathrin; Büch, Thomas

    2005-01-01

    The importance of the melanin-concentrating hormone (MCH) system for regulation of energy homeostasis and body weight has been demonstrated in rodents. We analysed the human MCH receptor 1 gene (MCHR1) with respect to human obesity.......The importance of the melanin-concentrating hormone (MCH) system for regulation of energy homeostasis and body weight has been demonstrated in rodents. We analysed the human MCH receptor 1 gene (MCHR1) with respect to human obesity....

  5. Emerging targets in human lymphoma: targeting the MYD88 mutation

    Directory of Open Access Journals (Sweden)

    Wang JQ

    2013-08-01

    Full Text Available James Q Wang,* Yogesh S Jeelall,* Keisuke Horikawa* Department of Immunology, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia *All authors contributed equally to this manuscript Abstract: B cell neoplasms co-opt the molecular machinery of normal B cells for their survival. Technological advances in cancer genomics has significantly contributed to uncovering the root cause of aggressive lymphomas, revealing a previously unknown link between TLR signaling and B cell neoplasm. Recurrent oncogenic mutations in MYD88 have been found in 39% of the activated B cell-like subtype of diffuse large B cell lymphoma (ABC DLBCL. Interestingly, 29% of ABC DLBCL have a single amino acid substitution of proline for the leucine at position 265 (L265P, and the exact same variant has also been identified in a number of lymphoid malignancies. The MYD88 L265P variant was recently identified in 90% of Wadenstrom's macroglobulinemia patients. These recent developments warrant the need for novel diagnostic tools as well as targeted therapeutics. In this review, we discuss the physiological functions of MYD88 and focus on its role in B cell lymphomas, evaluating the potential for targeting oncogenic MYD88 in lymphoma. Keywords: MYD88, L265P mutation, lymphoma, targeted therapy

  6. Human mobility networks and persistence of rapidly mutating pathogens.

    Science.gov (United States)

    Aleta, Alberto; Hisi, Andreia N S; Meloni, Sandro; Poletto, Chiara; Colizza, Vittoria; Moreno, Yamir

    2017-03-01

    Rapidly mutating pathogens may be able to persist in the population and reach an endemic equilibrium by escaping hosts' acquired immunity. For such diseases, multiple biological, environmental and population-level mechanisms determine the dynamics of the outbreak, including pathogen's epidemiological traits (e.g. transmissibility, infectious period and duration of immunity), seasonality, interaction with other circulating strains and hosts' mixing and spatial fragmentation. Here, we study a susceptible-infected-recovered-susceptible model on a metapopulation where individuals are distributed in sub-populations connected via a network of mobility flows. Through extensive numerical simulations, we explore the phase space of pathogen's persistence and map the dynamical regimes of the pathogen following emergence. Our results show that spatial fragmentation and mobility play a key role in the persistence of the disease whose maximum is reached at intermediate mobility values. We describe the occurrence of different phenomena including local extinction and emergence of epidemic waves, and assess the conditions for large-scale spreading. Findings are highlighted in reference to previous studies and to real scenarios. Our work uncovers the crucial role of hosts' mobility on the ecological dynamics of rapidly mutating pathogens, opening the path for further studies on disease ecology in the presence of a complex and heterogeneous environment.

  7. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes.

    Science.gov (United States)

    Petitjean, A; Achatz, M I W; Borresen-Dale, A L; Hainaut, P; Olivier, M

    2007-04-02

    A large amount of data is available on the functional impact of missense mutations in TP53 and on mutation patterns in many different cancers. New data on mutant p53 protein function, cancer phenotype and prognosis have recently been integrated in the International Agency for Research on Cancer TP53 database (http://www-p53.iarc.fr/). Based on these data, we summarize here current knowledge on the respective roles of mutagenesis and biological selection of mutations with specific functional characteristic in shaping the patterns and phenotypes of mutations observed in human cancers. The main conclusion is that intrinsic mutagenicity rates, loss of transactivation activities, and to a lesser extent, dominant-negative activities are the main driving forces that determine TP53 mutation patterns and influence tumor phenotype. In contrast, current experimental data on the acquisition of oncogenic activities (gain of function) by p53 mutants are too scarce and heterogenous to assess whether this property has an impact on tumor development and outcome. In the case of inherited TP53 mutations causing Li-Fraumeni and related syndromes, the age at onset of some tumor types is in direct relation with the degree of loss of transactivation capacity of missense mutations. Finally, studies on large case series demonstrate that TP53 mutations are independent markers of bad prognosis in breast and several other cancers, and that the exact type and position of the mutation influences disease outcome. Further studies are needed to determine how TP53 haplotypes or loss of alleles interact with mutations to modulate their impact on cancer development and prognosis.

  8. The population genetics of human disease: The case of recessive, lethal mutations.

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo G Amorim

    2017-09-01

    Full Text Available Do the frequencies of disease mutations in human populations reflect a simple balance between mutation and purifying selection? What other factors shape the prevalence of disease mutations? To begin to answer these questions, we focused on one of the simplest cases: recessive mutations that alone cause lethal diseases or complete sterility. To this end, we generated a hand-curated set of 417 Mendelian mutations in 32 genes reported to cause a recessive, lethal Mendelian disease. We then considered analytic models of mutation-selection balance in infinite and finite populations of constant sizes and simulations of purifying selection in a more realistic demographic setting, and tested how well these models fit allele frequencies estimated from 33,370 individuals of European ancestry. In doing so, we distinguished between CpG transitions, which occur at a substantially elevated rate, and three other mutation types. Intriguingly, the observed frequency for CpG transitions is slightly higher than expectation but close, whereas the frequencies observed for the three other mutation types are an order of magnitude higher than expected, with a bigger deviation from expectation seen for less mutable types. This discrepancy is even larger when subtle fitness effects in heterozygotes or lethal compound heterozygotes are taken into account. In principle, higher than expected frequencies of disease mutations could be due to widespread errors in reporting causal variants, compensation by other mutations, or balancing selection. It is unclear why these factors would have a greater impact on disease mutations that occur at lower rates, however. We argue instead that the unexpectedly high frequency of disease mutations and the relationship to the mutation rate likely reflect an ascertainment bias: of all the mutations that cause recessive lethal diseases, those that by chance have reached higher frequencies are more likely to have been identified and thus to

  9. Mutational spectra of aflatoxin B1in vivo establish biomarkers of exposure for human hepatocellular carcinoma.

    Science.gov (United States)

    Chawanthayatham, Supawadee; Valentine, Charles C; Fedeles, Bogdan I; Fox, Edward J; Loeb, Lawrence A; Levine, Stuart S; Slocum, Stephen L; Wogan, Gerald N; Croy, Robert G; Essigmann, John M

    2017-04-11

    Aflatoxin B 1 (AFB 1 ) and/or hepatitis B and C viruses are risk factors for human hepatocellular carcinoma (HCC). Available evidence supports the interpretation that formation of AFB 1 -DNA adducts in hepatocytes seeds a population of mutations, mainly G:C→T:A, and viral processes synergize to accelerate tumorigenesis, perhaps via inflammation. Responding to a need for early-onset evidence predicting disease development, highly accurate duplex sequencing was used to monitor acquisition of high-resolution mutational spectra (HRMS) during the process of hepatocarcinogenesis. Four-day-old male mice were treated with AFB 1 using a regimen that induced HCC within 72 wk. For analysis, livers were separated into tumor and adjacent cellular fractions. HRMS of cells surrounding the tumors revealed predominantly G:C→T:A mutations characteristic of AFB 1 exposure. Importantly, 25% of all mutations were G→T in one trinucleotide context (C G C; the underlined G is the position of the mutation), which is also a hotspot mutation in human liver tumors whose incidence correlates with AFB 1 exposure. The technology proved sufficiently sensitive that the same distinctive spectrum was detected as early as 10 wk after dosing, well before evidence of neoplasia. Additionally, analysis of tumor tissue revealed a more complex pattern than observed in surrounding hepatocytes; tumor HRMS were a composite of the 10-wk spectrum and a more heterogeneous set of mutations that emerged during tumor outgrowth. We propose that the 10-wk HRMS reflects a short-term mutational response to AFB 1 , and, as such, is an early detection metric for AFB 1 -induced liver cancer in this mouse model that will be a useful tool to reconstruct the molecular etiology of human hepatocarcinogenesis.

  10. The mouse rumpshaker mutation of the proteolipid protein in human X-linked recessive spastic paraplegia

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, H.; Hoffman, E.P.; Matise, T.C. [and others

    1994-09-01

    X-linked recessive spastic paraplegia is a rare neurodegenerative disorder characterized by slowly progressive weakness and spasticity of the lower extremities. We have recently genetically analyzed the original X-linked recessive spastic paraplegia family reported by Johnston and McKusick in 1962. We employed a fluorescent multiplex CA repeat strategy using a 22 locus, 10 cM framework map of the human X chromosome and localized the gene within a 36 cM region of Xq2l.3-q24 which includes the PLP locus. Saugier-Veber et al. recently reported a point mutation (His139Tyr) in exon 3B of the PLP gene in an X-linked recessive spastic paraplegia family (SPG2). This family shows no optic atrophy, in contrast to the family we have studied. This data showed that SPG2 and Pelizaeus-Merzbacher disease were allelic disorders. We investigated the PLP gene as a candidate gene for the original X-linked recessive spastic paraplegia family using SSCP and direct sequencing methods. We found a point mutation (T to C) in exon 4 of affected males which alters the amino-acid (Ile to Thr) at residue 186. This change was absent in the unaffected males of the family and in 40 unrelated control females (80 X chromosomes). Surprisingly, this mutation is identical to the mutation previously identified in the rumpshaker mouse model. The complete homology between both the mouse and human PLP sequence, and the mouse rumpshaker mutation and human spastic paraplegia mutation in our family, permit direct parallels to be drawn with regards to pathophysiology. Our data indicates that the well-documented and striking clinical differences between Pelizaeus-Merzbacher disease and X-linked recessive spastic paraplegia is due to the specific effect of different mutations of the human PLP gene on oligodendrocyte differentiation and development and on later myelin production and maintenance.

  11. Human mobility networks and persistence of rapidly mutating pathogens

    CERN Document Server

    Aleta, Alberto; Meloni, Sandro; Poletto, Chiara; Colizza, Vittoria; Moreno, Yamir

    2016-01-01

    Rapidly mutating pathogens may be able to persist in the population and reach an endemic equilibrium by escaping hosts' acquired immunity. For such diseases, multiple biological, environmental and population-level mechanisms determine the dynamics of the outbreak, including pathogen's epidemiological traits (e.g. transmissibility, infectious period and duration of immunity), seasonality, interaction with other circulating strains and hosts' mixing and spatial fragmentation. Here, we study a susceptible-infected-recovered-susceptible model on a metapopulation where individuals are distributed in subpopulations connected via a network of mobility flows. Through extensive numerical simulations, we explore the phase space of pathogen's persistence and map the dynamical regimes of the pathogen following emergence. Our results show that spatial fragmentation and mobility play a key role in the persistence of the disease whose maximum is reached at intermediate mobility values. We describe the occurrence of differen...

  12. Computing Stability Effects of Mutations in Human Superoxide Dismutase 1

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2014-01-01

    Protein stability is affected in several diseases and is of substantial interest in efforts to correlate genotypes to phenotypes. Superoxide dismutase 1 (SOD1) is a suitable test case for such correlations due to its abundance, stability, available crystal structures and thermochemical data......, and physiological importance. In this work, stability changes of SOD1 mutations were computed with five methods, CUPSAT, I-Mutant2.0, I-Mutant3.0, PoPMuSiC, and SDM, with emphasis on structural sensitivity as a potential issue in structure-based protein calculation. The large correlation between experimental...... displayed less structural sensitivity, with the standard deviation from different high-resolution structures down to ∼0.2 kcal/mol. Structures of variable resolution and number of protein copies locally affected specific sites, emphasizing the use of state-relevant crystal structures when such sites...

  13. Molecular basis of human CD36 gene mutations.

    Science.gov (United States)

    Rać, Monika Ewa; Safranow, Krzysztof; Poncyljusz, Wojciech

    2007-01-01

    CD36 is a transmembrane glycoprotein of the class B scavenger receptor family. The CD36 gene is located on chromosome 7 q11.2 and is encoded by 15 exons. Defective CD36 is a likely candidate gene for impaired fatty acid metabolism, glucose intolerance, atherosclerosis, arterial hypertension, diabetes, cardiomyopathy, Alzheimer disease, and modification of the clinical course of malaria. Contradictory data concerning the effects of antiatherosclerotic drugs on CD36 expression indicate that further investigation of the role of CD36 in the development of atherosclerosis may be important for the prevention and treatment of this disease. This review summarizes current knowledge of CD36 gene structure, splicing, and mutations and the molecular, metabolic, and clinical consequences of these phenomena.

  14. Identification of a Novel GJA8 (Cx50) Point Mutation Causes Human Dominant Congenital Cataracts

    Science.gov (United States)

    Ge, Xiang-Lian; Zhang, Yilan; Wu, Yaming; Lv, Jineng; Zhang, Wei; Jin, Zi-Bing; Qu, Jia; Gu, Feng

    2014-02-01

    Hereditary cataracts are clinically and genetically heterogeneous lens diseases that cause a significant proportion of visual impairment and blindness in children. Human cataracts have been linked with mutations in two genes, GJA3 and GJA8, respectively. To identify the causative mutation in a family with hereditary cataracts, family members were screened for mutations by PCR for both genes. Sequencing the coding regions of GJA8, coding for connexin 50, revealed a C > A transversion at nucleotide 264, which caused p.P88T mutation. To dissect the molecular consequences of this mutation, plasmids carrying wild-type and mutant mouse ORFs of Gja8 were generated and ectopically expressed in HEK293 cells and human lens epithelial cells, respectively. The recombinant proteins were assessed by confocal microscopy and Western blotting. The results demonstrate that the molecular consequences of the p.P88T mutation in GJA8 include changes in connexin 50 protein localization patterns, accumulation of mutant protein, and increased cell growth.

  15. Molecular Characterization of Dihydrofolate Reductase-Thymidylate Synthase Gene Concerning Antifulate Resistance of Plasmodium vivax

    Directory of Open Access Journals (Sweden)

    N Hosseinzadeh

    2009-12-01

    Full Text Available "nBackground: The recently reported resistance to antimalarials contributes to making the control of ma­laria more difficult. There is a need to evaluate the current antimalaria regimens to prevent this emerging problem. The aim of this study was to determine dihydrofolate reductase-thymidylate synthase gene mu­tation (pvdhfr regarding antifulate resistance in Plasmodium vivax. "nMethods: From 2007 to 2009, 117 P. vivax infected blood samples collected from two regions of Hor­mozgan Province, south of Iran were analyzed using PCR, semi-nested-PCR and RFLP methods. "nResults: Eighty four isolates (71.8 % showed no mutation in pvdhfr gene of P. vivax known as wild type and 33 (28.2% of the samples revealed nine single (7.7%, twenty two double (18.8% and two (1.7% triple mutations. "nConclusion: Genetic diversity was observed by molecular methods in pvdhfr gene of p. vivax in Hor­mozgan Province suggests that the antifolate falciparum malaria drug (fansidar is proportionally affecting P. vivax dhfr mutation. Therefore, more studies to evaluate antimalarial drugs that should preferably be effective against both P. vivax and P. falciparum are recommended.

  16. Comparative active-site mutation study of human and Caenorhabditis elegans thymidine kinase 1

    DEFF Research Database (Denmark)

    Skovgaard, Tine; Uhlin, Ulla; Munch-Petersen, Birgitte

    2012-01-01

    The first step for the intracellular retention of several anticancer or antiviral nucleoside analogues is the addition of a phosphate group catalysed by a deoxyribonucleoside kinase such as thymidine kinase 1 (TK1). Recently, human TK1 (HuTK1) has been crystallized and characterized using different...... ligands. To improve our understanding of TK1 substrate specificity, we performed a detailed, mutation-based comparative structure-function study of the active sites of two thymidine kinases: HuTK1 and Caenorhabditis elegans TK1 (CeTK1). Specifically, mutations were introduced into the hydrophobic pocket...... surrounding the substrate base. In CeTK1, some of these mutations led to increased activity with deoxycytidine and deoxyguanosine, two unusual substrates for TK1-like kinases. In HuTK1, mutation of T163 to S resulted in a kinase with a 140-fold lower K(m) for the antiviral nucleoside analogue 3'-azido-3...

  17. Seven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus

    DEFF Research Database (Denmark)

    Colombo, Carlo; Porzio, Ottavia; Liu, Ming

    2008-01-01

    Permanent neonatal diabetes mellitus (PNDM) is a rare disorder usually presenting within 6 months of birth. Although several genes have been linked to this disorder, in almost half the cases documented in Italy, the genetic cause remains unknown. Because the Akita mouse bearing a mutation...... in the Ins2 gene exhibits PNDM associated with pancreatic beta cell apoptosis, we sequenced the human insulin gene in PNDM subjects with unidentified mutations. We discovered 7 heterozygous mutations in 10 unrelated probands. In 8 of these patients, insulin secretion was detectable at diabetes onset...... of endoplasmic reticulum stress, and with increased apoptosis. Similarly transfected INS-1E insulinoma cells had diminished viability compared with those expressing WT proinsulin. In conclusion, we find that mutations in the insulin gene that promote proinsulin misfolding may cause PNDM....

  18. Microsatellite instability in colorectal cancer and association with thymidylate synthase and dihydropyrimidine dehydrogenase expression

    Directory of Open Access Journals (Sweden)

    Kruhøffer Mogens

    2009-01-01

    Full Text Available Abstract Background Microsatellite instability (MSI refers to mutations in short motifs of tandemly repeated nucleotides resulting from replication errors and deficient mismatch repair (MMR. Colorectal cancer with MSI has characteristic biology and chemosensitivity, however the molecular basis remains unclarified. The association of MSI and MMR status with outcome and with thymidylate synthase (TS and dihydropyrimidine dehydrogenase (DPD expression in colorectal cancer were evaluated. Methods MSI in five reference loci, MMR enzymes (hMSH2, hMSH6, hMLH1 and hPMS2, thymidylate synthase (TS and dihydropyrimidine dehydrogenase (DPD expression were assessed in paraffin embedded tumor specimens, and associated with outcome in 340 consecutive patients completely resected for colorectal cancer stages II-IV and subsequently receiving adjuvant 5-fluorouracil therapy. Results MSI was found in 43 (13.8% tumors. Absence of repair protein expression was assessed in 52 (17.0% tumors, which had primarily lost hMLH1 in 39 (12.7%, hMSH2 in 5 (1.6%, and hMSH6 in 8 (2.6% tumors. In multivariate analysis MSI (instable compared to MSS (stable tumors were significantly associated with lower risk of recurrence (hazard ratio (HR = 0.3; 95% CI: 0.2–0.7; P = 0.0007 and death (HR = 0.4; 95% CI: 0.2–0.9; P = 0.02 independently of the TS and DPD expressions. A direct relationship between MSI and TS intensity (P = 0.001 was found, while there was no significant association with DPD intensity (P = 0.1. Conclusion The favourable outcome of MSI colorectal carcinomas is ascribed mainly to the tumor biology and to a lesser extent to antitumor response to 5-fluorouracil therapy. There is no evidence that differential TS or DPD expression may account for these outcome characteristics.

  19. Frequency and phenotypic implications of mitochondrial DNA mutations in human squamous cell cancers of the head and neck.

    Science.gov (United States)

    Zhou, Shaoyu; Kachhap, Sushant; Sun, Wenyue; Wu, Guojun; Chuang, Alice; Poeta, Luana; Grumbine, Lawson; Mithani, Suhail K; Chatterjee, Aditi; Koch, Wayne; Westra, William H; Maitra, Anirban; Glazer, Chad; Carducci, Michael; Sidransky, David; McFate, Thomas; Verma, Ajay; Califano, Joseph A

    2007-05-01

    Mitochondrial genomic mutations are found in a variety of human cancers; however, the frequency of mitochondrial DNA (mtDNA) mutations in coding regions remains poorly defined, and the functional effects of mitochondrial mutations found in primary human cancers are not well described. Using MitoChip, we sequenced the whole mitochondrial genome in 83 head and neck squamous cell carcinomas. Forty-one of 83 (49%) tumors contained mtDNA mutations. Mutations occurred within noncoding (D-loop) and coding regions. A nonrandom distribution of mutations was found throughout the mitochondrial enzyme complex components. Sequencing of margins with dysplasia demonstrated an identical nonconservative mitochondrial mutation (A76T in ND4L) as the tumor, suggesting a role of mtDNA mutation in tumor progression. Analysis of p53 status showed that mtDNA mutations correlated positively with p53 mutations (P < 0.002). To characterize biological function of the mtDNA mutations, we cloned NADH dehydrogenase subunit 2 (ND2) mutants based on primary tumor mutations. Expression of the nuclear-transcribed, mitochondrial-targeted ND2 mutants resulted in increased anchorage-dependent and -independent growth, which was accompanied by increased reactive oxygen species production and an aerobic glycolytic metabolic phenotype with hypoxia-inducible factor (HIF)-1alpha induction that is reversible by ascorbate. Cancer-specific mitochondrial mutations may contribute to development of a malignant phenotype by direct genotoxic effects from increased reactive oxygen species production as well as induction of aerobic glycolysis and growth promotion.

  20. Molecular analysis of formaldehyde-induced mutations in human lymphoblasts and E. coli

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, R.M.; Richardson, K.K.; Craft, T.R.; Benforado, K.B.; Liber, H.L.; Skopek, T.R.

    1988-01-01

    The molecular nature of formaldehyde (HCHO)-induced mutations was studied in both human lymphoblasts and E. coli. Thirty HPRT/sup -/ human lymphoblast colonies induced by eight repetitive 150 ..mu..M HCHO treatments were characterized by Southern blot analysis. Fourteen of these mutants (47%) had visible deletions of some or all of the X-linked HPRT bands, indicating that HCHO can induce large losses of DNA in human lymphoblasts. In E. coli., DNA alterations induced by HCHO were characterized with use of the xanthine guanine phosphoribosyl transferase (gpt) gene as the genetic target. Exposure of E. coli to 4 mM HCHO for 1 hr induced large insertions (41%), large deletions (18%), and point mutations (41%). Dideoxy DNA sequencing revealed that most of the point mutations were transversions at GC base pairs. In contrast, exposure of E. coli to 40 mM HCHO for 1 hr produced 92% point mutations, 62% of which were transitions at a single AT base pair in the gene. Therefore, HCHO is capable of producing different genetic alterations in E. coli at different concentrations, suggesting fundamental differences in the mutagenic mechanisms operating at the two concentrations used. Naked pSV2gpt plasmid DNA was exposed to 3.3 or 10 mM HCHO and transformed into E. coli. Most of the resulting mutations were frameshifts, again suggesting a different mutagenic mechanism.

  1. Genetic mutation analysis of human gastric adenocarcinomas using ion torrent sequencing platform.

    Directory of Open Access Journals (Sweden)

    Zhi Xu

    Full Text Available Gastric cancer is the one of the major causes of cancer-related death, especially in Asia. Gastric adenocarcinoma, the most common type of gastric cancer, is heterogeneous and its incidence and cause varies widely with geographical regions, gender, ethnicity, and diet. Since unique mutations have been observed in individual human cancer samples, identification and characterization of the molecular alterations underlying individual gastric adenocarcinomas is a critical step for developing more effective, personalized therapies. Until recently, identifying genetic mutations on an individual basis by DNA sequencing remained a daunting task. Recent advances in new next-generation DNA sequencing technologies, such as the semiconductor-based Ion Torrent sequencing platform, makes DNA sequencing cheaper, faster, and more reliable. In this study, we aim to identify genetic mutations in the genes which are targeted by drugs in clinical use or are under development in individual human gastric adenocarcinoma samples using Ion Torrent sequencing. We sequenced 737 loci from 45 cancer-related genes in 238 human gastric adenocarcinoma samples using the Ion Torrent Ampliseq Cancer Panel. The sequencing analysis revealed a high occurrence of mutations along the TP53 locus (9.7% in our sample set. Thus, this study indicates the utility of a cost and time efficient tool such as Ion Torrent sequencing to screen cancer mutations for the development of personalized cancer therapy.

  2. Genetic mutation analysis of human gastric adenocarcinomas using ion torrent sequencing platform.

    Science.gov (United States)

    Xu, Zhi; Huo, Xinying; Ye, Hua; Tang, Chuanning; Nandakumar, Vijayalakshmi; Lou, Feng; Zhang, Dandan; Dong, Haichao; Sun, Hong; Jiang, Shouwen; Zhang, Guangchun; Liu, Zhiyuan; Dong, Zhishou; Guo, Baishuai; He, Yan; Yan, Chaowei; Wang, Lu; Su, Ziyi; Li, Yangyang; Gu, Dongying; Zhang, Xiaojing; Wu, Xiaomin; Wei, Xiaowei; Hong, Lingzhi; Zhang, Yangmei; Yang, Jinsong; Gong, Yonglin; Tang, Cuiju; Jones, Lindsey; Huang, Xue F; Chen, Si-Yi; Chen, Jinfei

    2014-01-01

    Gastric cancer is the one of the major causes of cancer-related death, especially in Asia. Gastric adenocarcinoma, the most common type of gastric cancer, is heterogeneous and its incidence and cause varies widely with geographical regions, gender, ethnicity, and diet. Since unique mutations have been observed in individual human cancer samples, identification and characterization of the molecular alterations underlying individual gastric adenocarcinomas is a critical step for developing more effective, personalized therapies. Until recently, identifying genetic mutations on an individual basis by DNA sequencing remained a daunting task. Recent advances in new next-generation DNA sequencing technologies, such as the semiconductor-based Ion Torrent sequencing platform, makes DNA sequencing cheaper, faster, and more reliable. In this study, we aim to identify genetic mutations in the genes which are targeted by drugs in clinical use or are under development in individual human gastric adenocarcinoma samples using Ion Torrent sequencing. We sequenced 737 loci from 45 cancer-related genes in 238 human gastric adenocarcinoma samples using the Ion Torrent Ampliseq Cancer Panel. The sequencing analysis revealed a high occurrence of mutations along the TP53 locus (9.7%) in our sample set. Thus, this study indicates the utility of a cost and time efficient tool such as Ion Torrent sequencing to screen cancer mutations for the development of personalized cancer therapy.

  3. Mutational dynamics of the SARS coronavirus in cell culture and human populations isolated in 2003

    Directory of Open Access Journals (Sweden)

    Ooi Eng

    2004-09-01

    Full Text Available Abstract Background The SARS coronavirus is the etiologic agent for the epidemic of the Severe Acute Respiratory Syndrome. The recent emergence of this new pathogen, the careful tracing of its transmission patterns, and the ability to propagate in culture allows the exploration of the mutational dynamics of the SARS-CoV in human populations. Methods We sequenced complete SARS-CoV genomes taken from primary human tissues (SIN3408, SIN3725V, SIN3765V, cultured isolates (SIN848, SIN846, SIN842, SIN845, SIN847, SIN849, SIN850, SIN852, SIN3408L, and five consecutive Vero cell passages (SIN2774_P1, SIN2774_P2, SIN2774_P3, SIN2774_P4, SIN2774_P5 arising from SIN2774 isolate. These represented individual patient samples, serial in vitro passages in cell culture, and paired human and cell culture isolates. Employing a refined mutation filtering scheme and constant mutation rate model, the mutation rates were estimated and the possible date of emergence was calculated. Phylogenetic analysis was used to uncover molecular relationships between the isolates. Results Close examination of whole genome sequence of 54 SARS-CoV isolates identified before 14th October 2003, including 22 from patients in Singapore, revealed the mutations engendered during human-to-Vero and Vero-to-human transmission as well as in multiple Vero cell passages in order to refine our analysis of human-to-human transmission. Though co-infection by different quasipecies in individual tissue samples is observed, the in vitro mutation rate of the SARS-CoV in Vero cell passage is negligible. The in vivo mutation rate, however, is consistent with estimates of other RNA viruses at approximately 5.7 × 10-6 nucleotide substitutions per site per day (0.17 mutations per genome per day, or two mutations per human passage (adjusted R-square = 0.4014. Using the immediate Hotel M contact isolates as roots, we observed that the SARS epidemic has generated four major genetic groups that are

  4. Preventing the return of smallpox: molecular modeling studies on thymidylate kinase from Variola virus.

    Science.gov (United States)

    Guimarães, Ana Paula; Ramalho, Teodorico Castro; França, Tanos Celmar Costa

    2014-01-01

    Smallpox was one of the most devastating diseases in the human history and still represents a serious menace today due to its potential use by bioterrorists. Considering this threat and the non-existence of effective chemotherapy, we propose the enzyme thymidylate kinase from Variola virus (VarTMPK) as a potential target to the drug design against smallpox. We first built a homology model for VarTMPK and performed molecular docking studies on it in order to investigate the interactions with inhibitors of Vaccinia virus TMPK (VacTMPK). Subsequently, molecular dynamics (MD) simulations of these compounds inside VarTMPK and human TMPK (HssTMPK) were carried out in order to select the most promising and selective compounds as leads for the design of potential VarTMPK inhibitors. Results of the docking and MD simulations corroborated to each other, suggesting selectivity towards VarTMPK and, also, a good correlation with the experimental data.

  5. Mutations in SULT2B1 Cause Autosomal-Recessive Congenital Ichthyosis in Humans.

    Science.gov (United States)

    Heinz, Lisa; Kim, Gwang-Jin; Marrakchi, Slaheddine; Christiansen, Julie; Turki, Hamida; Rauschendorf, Marc-Alexander; Lathrop, Mark; Hausser, Ingrid; Zimmer, Andreas D; Fischer, Judith

    2017-06-01

    Ichthyoses are a clinically and genetically heterogeneous group of genodermatoses associated with abnormal scaling of the skin over the whole body. Mutations in nine genes are known to cause non-syndromic forms of autosomal-recessive congenital ichthyosis (ARCI). However, not all genetic causes for ARCI have been discovered to date. Using whole-exome sequencing (WES) and multigene panel screening, we identified 6 ARCI-affected individuals from three unrelated families with mutations in Sulfotransferase family 2B member 1 (SULT2B1), showing their causative association with ARCI. Cytosolic sulfotransferases form a large family of enzymes that are involved in the synthesis and metabolism of several steroids in humans. We identified four distinct mutations including missense, nonsense, and splice site mutations. We demonstrated the loss of SULT2B1 expression at RNA and protein levels in keratinocytes from individuals with ARCI by functional analyses. Furthermore, we succeeded in reconstructing the morphologic skin alterations in a 3D organotypic tissue culture model with SULT2B1-deficient keratinocytes and fibroblasts. By thin layer chromatography (TLC) of extracts from these organotypic cultures, we could show the absence of cholesterol sulfate, the metabolite of SULT2B1, and an increased level of cholesterol, indicating a disturbed cholesterol metabolism of the skin upon loss-of-function mutation in SULT2B1. In conclusion, our study reveals an essential role for SULT2B1 in the proper development of healthy human skin. Mutation in SULT2B1 leads to an ARCI phenotype via increased proliferation of human keratinocytes, thickening of epithelial layers, and altered epidermal cholesterol metabolism. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Normal human adipose tissue functions and differentiation in patients with biallelic LPIN1 inactivating mutations.

    Science.gov (United States)

    Pelosi, Michele; Testet, Eric; Le Lay, Soazig; Dugail, Isabelle; Tang, Xiaoyun; Mabilleau, Guillaume; Hamel, Yamina; Madrange, Marine; Blanc, Thomas; Odent, Thierry; McMullen, Todd P W; Alfò, Marco; Brindley, David N; de Lonlay, Pascale

    2017-12-01

    Lipin-1 is a Mg2+-dependent phosphatidic acid phosphatase (PAP) that in mice is necessary for normal glycerolipid biosynthesis, controlling adipocyte metabolism, and adipogenic differentiation. Mice carrying inactivating mutations in the Lpin1 gene display the characteristic features of human familial lipodystrophy. Very little is known about the roles of lipin-1 in human adipocyte physiology. Apparently, fat distribution and weight is normal in humans carrying LPIN1 inactivating mutations, but a detailed analysis of adipose tissue appearance and functions in these patients has not been available so far. In this study, we performed a systematic histopathological, biochemical, and gene expression analysis of adipose tissue biopsies from human patients harboring LPIN1 biallelic inactivating mutations and affected by recurrent episodes of severe rhabdomyolysis. We also explored the adipogenic differentiation potential of human mesenchymal cell populations derived from lipin-1 defective patients. White adipose tissue from human LPIN1 mutant patients displayed a dramatic decrease in lipin-1 protein levels and PAP activity, with a concomitant moderate reduction of adipocyte size. Nevertheless, the adipose tissue develops without obvious histological signs of lipodystrophy and with normal qualitative composition of storage lipids. The increased expression of key adipogenic determinants such as SREBP1, PPARG, and PGC1A shows that specific compensatory phenomena can be activated in vivo in human adipocytes with deficiency of functional lipin-1. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  7. Human APOBEC3 induced mutation of human immunodeficiency virus type-1 contributes to adaptation and evolution in natural infection.

    Directory of Open Access Journals (Sweden)

    Eun-Young Kim

    2014-07-01

    Full Text Available Human APOBEC3 proteins are cytidine deaminases that contribute broadly to innate immunity through the control of exogenous retrovirus replication and endogenous retroelement retrotransposition. As an intrinsic antiretroviral defense mechanism, APOBEC3 proteins induce extensive guanosine-to-adenosine (G-to-A mutagenesis and inhibit synthesis of nascent human immunodeficiency virus-type 1 (HIV-1 cDNA. Human APOBEC3 proteins have additionally been proposed to induce infrequent, potentially non-lethal G-to-A mutations that make subtle contributions to sequence diversification of the viral genome and adaptation though acquisition of beneficial mutations. Using single-cycle HIV-1 infections in culture and highly parallel DNA sequencing, we defined trinucleotide contexts of the edited sites for APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H. We then compared these APOBEC3 editing contexts with the patterns of G-to-A mutations in HIV-1 DNA in cells obtained sequentially from ten patients with primary HIV-1 infection. Viral substitutions were highest in the preferred trinucleotide contexts of the edited sites for the APOBEC3 deaminases. Consistent with the effects of immune selection, amino acid changes accumulated at the APOBEC3 editing contexts located within human leukocyte antigen (HLA-appropriate epitopes that are known or predicted to enable peptide binding. Thus, APOBEC3 activity may induce mutations that influence the genetic diversity and adaptation of the HIV-1 population in natural infection.

  8. Mutational analysis of the extracellular Ca{sup 2+}-sensing receptor gene in human parathyroid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Yoshitaka; Arnold, A. [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Pollak, M.R.; Brown, E.M. [Brigham and Women`s Hospital, Boston, MA (United States)

    1995-10-01

    Despite recent progress, such as the identification of PRAD1/cyclin D1 as a parathyroid oncogene, it is likely that many genes involved in the molecular pathogenesis of parathyroid tumors remain unknown. Individuals heterozygous for inherited mutations in the extracellular Ca{sup 2+}-sensing receptor gene that reduce its biological activity exhibit a disorder termed familial hypocalciuric hypercalcemia or familial benign hypercalcemia, which is characterized by reduced responsiveness of parathyroid and kidney to calcium and by PTH-dependent hypercalcemia. Those who are homozygous for such mutations present with neonatal severe hyperparathyroidism and have marked parathroid hypercellularity. Thus, the Ca{sup 2+}-sensing receptor gene is a candidate parathyroid tumor suppressor gene, with inactivating mutations plausibly explaining set-point abnormalities in the regulation of both parathyroid cellular proliferation and PTH secretion by extracellular Ca{sup 2+} similar to those seen in hyperparathyroidism. Using a ribonuclease A protection assay that has detected multiple mutations in the Ca{sup 2+}-sensing receptor gene in familial hypocalciuric hypercalcemia and covers more than 90% of its coding region, we sought somatic mutations in this gene in a total of 44 human parathyroid tumors (23 adenomas, 4 carcinomas, 5 primary hyperplasias, and 12 secondary hyperplasias). No such mutations were detected in these 44 tumors. Thus, our studies suggest that somatic mutation of the Ca{sup 2+}-sensing receptor gene does not commonly contribute to the pathogenesis of sporadic parathyroid tumors. As such, PTH set-point dysfunction in parathroid tumors may well be secondary to other clonal proliferative defects and/or mutations in other components of the extracellular Ca{sup 2+}-sensing pathway. 29 refs., 2 figs.

  9. Mutations in the Motile Cilia Gene DNAAF1 Are Associated with Neural Tube Defects in Humans.

    Science.gov (United States)

    Miao, Chunyue; Jiang, Qian; Li, Huili; Zhang, Qin; Bai, Baoling; Bao, Yihua; Zhang, Ting

    2016-10-13

    Neural tube defects (NTDs) are severe malformations of the central nervous system caused by complex genetic and environmental factors. Among genes involved in NTD, cilia-related genes have been well defined and found to be essential for the completion of neural tube closure (NTC). We have carried out next-generation sequencing on target genes in 373 NTDs and 222 healthy controls, and discovered eight disease-specific rare mutations in cilia-related gene DNAAF1 DNAAF1 plays a central role in cytoplasmic preassembly of distinct dynein-arm complexes, and is expressed in some key tissues involved in neural system development, such as neural tube, floor plate, embryonic node, and brain ependyma epithelial cells in zebrafish and mouse. Therefore, we evaluated the expression and functions of mutations in DNAAF1 in transfected cells to analyze the potential correlation of these mutants to NTDs in humans. One rare frameshift mutation (p.Gln341Argfs*10) resulted in significantly diminished DNAAF1 protein expression, compared to the wild type. Another mutation, p.Lys231Gln, disrupted cytoplasmic preassembly of the dynein-arm complexes in cellular assay. Furthermore, results from NanoString assay on mRNA from NTD samples indicated that DNAAF1 mutants altered the expression level of NTC-related genes. Altogether, these findings suggest that the rare mutations in DNAAF1 may contribute to the susceptibility for NTDs in humans. Copyright © 2016 Miao et al.

  10. Mutations in the Motile Cilia Gene DNAAF1 Are Associated with Neural Tube Defects in Humans

    Directory of Open Access Journals (Sweden)

    Chunyue Miao

    2016-10-01

    Full Text Available Neural tube defects (NTDs are severe malformations of the central nervous system caused by complex genetic and environmental factors. Among genes involved in NTD, cilia-related genes have been well defined and found to be essential for the completion of neural tube closure (NTC. We have carried out next-generation sequencing on target genes in 373 NTDs and 222 healthy controls, and discovered eight disease-specific rare mutations in cilia-related gene DNAAF1. DNAAF1 plays a central role in cytoplasmic preassembly of distinct dynein-arm complexes, and is expressed in some key tissues involved in neural system development, such as neural tube, floor plate, embryonic node, and brain ependyma epithelial cells in zebrafish and mouse. Therefore, we evaluated the expression and functions of mutations in DNAAF1 in transfected cells to analyze the potential correlation of these mutants to NTDs in humans. One rare frameshift mutation (p.Gln341Argfs*10 resulted in significantly diminished DNAAF1 protein expression, compared to the wild type. Another mutation, p.Lys231Gln, disrupted cytoplasmic preassembly of the dynein-arm complexes in cellular assay. Furthermore, results from NanoString assay on mRNA from NTD samples indicated that DNAAF1 mutants altered the expression level of NTC-related genes. Altogether, these findings suggest that the rare mutations in DNAAF1 may contribute to the susceptibility for NTDs in humans.

  11. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos.

    Science.gov (United States)

    Tu, Zhuchi; Yang, Weili; Yan, Sen; Yin, An; Gao, Jinquan; Liu, Xudong; Zheng, Yinghui; Zheng, Jiezhao; Li, Zhujun; Yang, Su; Li, Shihua; Guo, Xiangyu; Li, Xiao-Jiang

    2017-02-03

    CRISPR-Cas9 is a powerful new tool for genome editing, but this technique creates mosaic mutations that affect the efficiency and precision of its ability to edit the genome. Reducing mosaic mutations is particularly important for gene therapy and precision genome editing. Although the mechanisms underlying the CRSIPR/Cas9-mediated mosaic mutations remain elusive, the prolonged expression and activity of Cas9 in embryos could contribute to mosaicism in DNA mutations. Here we report that tagging Cas9 with ubiquitin-proteasomal degradation signals can facilitate the degradation of Cas9 in non-human primate embryos. Using embryo-splitting approach, we found that shortening the half-life of Cas9 in fertilized zygotes reduces mosaic mutations and increases its ability to modify genomes in non-human primate embryos. Also, injection of modified Cas9 in one-cell embryos leads to live monkeys with the targeted gene modifications. Our findings suggest that modifying Cas9 activity can be an effective strategy to enhance precision genome editing.

  12. Promoting Cas9 degradation reduces mosaic mutations in non-human primate embryos

    Science.gov (United States)

    Tu, Zhuchi; Yang, Weili; Yan, Sen; Yin, An; Gao, Jinquan; Liu, Xudong; Zheng, Yinghui; Zheng, Jiezhao; Li, Zhujun; Yang, Su; Li, Shihua; Guo, Xiangyu; Li, Xiao-Jiang

    2017-01-01

    CRISPR-Cas9 is a powerful new tool for genome editing, but this technique creates mosaic mutations that affect the efficiency and precision of its ability to edit the genome. Reducing mosaic mutations is particularly important for gene therapy and precision genome editing. Although the mechanisms underlying the CRSIPR/Cas9-mediated mosaic mutations remain elusive, the prolonged expression and activity of Cas9 in embryos could contribute to mosaicism in DNA mutations. Here we report that tagging Cas9 with ubiquitin-proteasomal degradation signals can facilitate the degradation of Cas9 in non-human primate embryos. Using embryo-splitting approach, we found that shortening the half-life of Cas9 in fertilized zygotes reduces mosaic mutations and increases its ability to modify genomes in non-human primate embryos. Also, injection of modified Cas9 in one-cell embryos leads to live monkeys with the targeted gene modifications. Our findings suggest that modifying Cas9 activity can be an effective strategy to enhance precision genome editing. PMID:28155910

  13. Germline mutation in BRAF codon 600 is compatible with human development: de novo p.V600G mutation identified in a patient with CFC syndrome.

    Science.gov (United States)

    Champion, K J; Bunag, C; Estep, A L; Jones, J R; Bolt, C H; Rogers, R C; Rauen, K A; Everman, D B

    2011-05-01

    BRAF, the protein product of BRAF, is a serine/threonine protein kinase and one of the direct downstream effectors of Ras. Somatic mutations in BRAF occur in numerous human cancers, whereas germline BRAF mutations cause cardio-facio-cutaneous (CFC) syndrome. One recurrent somatic mutation, p.V600E, is frequently found in several tumor types, such as melanoma, papillary thyroid carcinoma, colon cancer, and ovarian cancer. However, a germline mutation affecting codon 600 has never been described. Here, we present a patient with CFC syndrome and a de novo germline mutation involving codon 600 of BRAF, thus providing the first evidence that a pathogenic germline mutation involving this critical codon is not only compatible with development but can also cause the CFC phenotype. In vitro functional analysis shows that this mutation, which replaces a valine with a glycine at codon 600 (p.V600G), leads to increased ERK and ELK phosphorylation compared to wild-type BRAF but is less strongly activating than the cancer-associated p.V600E mutation. © 2010 John Wiley & Sons A/S.

  14. Functional analysis of human mutations in homeodomain transcription factor PITX3

    Directory of Open Access Journals (Sweden)

    Sorokina Elena

    2007-09-01

    Full Text Available Abstract Background The homeodomain-containing transcription factor PITX3 was shown to be essential for normal eye development in vertebrates. Human patients with point mutations in PITX3 demonstrate congenital cataracts along with anterior segment defects in some cases when one allele is affected and microphthalmia with brain malformations when both copies are mutated. The functional consequences of these human mutations remain unknown. Results We studied the PITX3 mutant proteins S13N and G219fs to determine the type and severity of functional defects. Our results demonstrate alterations in DNA-binding profiles and/or transactivation activities and suggest a partial loss-of-function in both mutants with the G219fs form being more severely affected. No anomalies in cellular distribution and no dominant-negative effects were discovered for these mutants. Interestingly, the impairment of the G219fs activity varied between different ocular cell lines. Conclusion The G219fs mutation was found in multiple families affected with congenital cataracts along with anterior segment malformations in many members. Our data suggest that the presence/severity of anterior segment defects in families affected with G219fs may be determined by secondary factors that are expressed in the developing anterior segment structures and may modify the effect(s of this mutation. The S13N mutant showed only minor alteration of transactivation ability and DNA binding pattern and may represent a rare polymorphism in the PITX3 gene. A possible contribution of this mutation to human disease needs to be further investigated.

  15. Prediction of phenotypes of missense mutations in human proteins from biological assemblies.

    Science.gov (United States)

    Wei, Qiong; Xu, Qifang; Dunbrack, Roland L

    2013-02-01

    Single nucleotide polymorphisms (SNPs) are the most frequent variation in the human genome. Nonsynonymous SNPs that lead to missense mutations can be neutral or deleterious, and several computational methods have been presented that predict the phenotype of human missense mutations. These methods use sequence-based and structure-based features in various combinations, relying on different statistical distributions of these features for deleterious and neutral mutations. One structure-based feature that has not been studied significantly is the accessible surface area within biologically relevant oligomeric assemblies. These assemblies are different from the crystallographic asymmetric unit for more than half of X-ray crystal structures. We find that mutations in the core of proteins or in the interfaces in biological assemblies are significantly more likely to be disease-associated than those on the surface of the biological assemblies. For structures with more than one protein in the biological assembly (whether the same sequence or different), we find the accessible surface area from biological assemblies provides a statistically significant improvement in prediction over the accessible surface area of monomers from protein crystal structures (P = 6e-5). When adding this information to sequence-based features such as the difference between wildtype and mutant position-specific profile scores, the improvement from biological assemblies is statistically significant but much smaller (P = 0.018). Combining this information with sequence-based features in a support vector machine leads to 82% accuracy on a balanced dataset of 50% disease-associated mutations from SwissVar and 50% neutral mutations from human/primate sequence differences in orthologous proteins. Copyright © 2012 Wiley Periodicals, Inc.

  16. Structural basis of the substrate preference towards CMP for a thymidylate synthase MilA involved in mildiomycin biosynthesis.

    Science.gov (United States)

    Zhao, Gong; Chen, Cheng; Xiong, Wei; Gao, Tuling; Deng, Zixin; Wu, Geng; He, Xinyi

    2016-12-21

    Modified pyrimidine monophosphates such as methyl dCMP (mdCMP), hydroxymethyl dUMP (hmdUMP) and hmdCMP in some phages are synthesized by a large group of enzymes termed as thymidylate synthases (TS). Thymidylate is a nucleotide required for DNA synthesis and thus TS is an important drug target. In the biosynthetic pathway of the nucleoside fungicide mildiomycin isolated from Streptomyces rimofaciens ZJU5119, a cytidylate (CMP) hydroxymethylase, MilA, catalyzes the conversion of CMP into 5'-hydroxymethyl CMP (hmCMP) with an efficiency (kcat/KM) of 5-fold faster than for deoxycytidylate (dCMP). MilA is thus the first enzyme of the TS superfamily preferring CMP to dCMP. Here, we determined the crystal structures of MilA and its complexes with various substrates including CMP, dCMP and hmCMP. Comparing these structures to those of dCMP hydroxymethylase (CH) from T4 phage and TS from Escherichia coli revealed that two residues in the active site of CH and TS, a serine and an arginine, are respectively replaced by an alanine and a lysine, Ala176 and Lys133, in MilA. Mutation of A176S/K133R of MilA resulted in a reversal of substrate preference from CMP to dCMP. This is the first study reporting the evolution of the conserved TS in substrate selection from DNA metabolism to secondary nucleoside biosynthesis.

  17. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition

    DEFF Research Database (Denmark)

    Ropero, S; Fraga, MF; Ballestar, E

    2006-01-01

    Disruption of histone acetylation patterns is a common feature of cancer cells, but very little is known about its genetic basis. We have identified truncating mutations in one of the primary human histone deacetylases, HDAC2, in sporadic carcinomas with microsatellite instability and in tumors...... arising in individuals with hereditary nonpolyposis colorectal cancer syndrome. The presence of the HDAC2 frameshift mutation causes a loss of HDAC2 protein expression and enzymatic activity and renders these cells more resistant to the usual antiproliferative and proapoptotic effects of histone...

  18. Mutational analysis of the active site of human insulin-regulated aminopeptidase

    DEFF Research Database (Denmark)

    Laustsen, P G; Vang, S; Kristensen, T

    2001-01-01

    -length transmembrane form of human IRAP was expressed in HEK293 cells and recombinant wild-type IRAP was shown to have biochemical and enzymatic properties similar to those reported for native IRAP and the soluble serum form of IRAP. Mutational analysis using single amino-acid substitutions in the GAMEN motif (G428A...... acids N-terminal to the Zn(2+)-coordination sequence element distinguishes the gluzincin aminopeptidases from other gluzincins. To investigate the importance of the G428AMEN and H464ELAH-(18X)-E487 motifs for the activity of IRAP, mutational analysis was carried out. cDNA encoding the full...

  19. Structure-based assessment of disease-related mutations in human voltage-gated sodium channels

    Directory of Open Access Journals (Sweden)

    Weiyun Huang

    2017-02-01

    Full Text Available ABSTRACT Voltage-gated sodium (Nav channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Nav channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Nav channels, with Nav1.1 and Nav1.5 each harboring more than 400 mutations. Nav channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Nav channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Cav channel Cav1.1 provides a template for homology-based structural modeling of the evolutionarily related Nav channels. In this Resource article, we summarized all the reported disease-related mutations in human Nav channels, generated a homologous model of human Nav1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Nav channels, the analysis presented here serves as the base framework for mechanistic investigation of Nav channelopathies and for potential structure-based drug discovery.

  20. Structure-based assessment of disease-related mutations in human voltage-gated sodium channels.

    Science.gov (United States)

    Huang, Weiyun; Liu, Minhao; Yan, S Frank; Yan, Nieng

    2017-06-01

    Voltage-gated sodium (Na v ) channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Na v channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Na v channels, with Na v 1.1 and Na v 1.5 each harboring more than 400 mutations. Na v channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Na v channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Ca v ) channel Ca v 1.1 provides a template for homology-based structural modeling of the evolutionarily related Na v channels. In this Resource article, we summarized all the reported disease-related mutations in human Na v channels, generated a homologous model of human Na v 1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Na v channels, the analysis presented here serves as the base framework for mechanistic investigation of Na v channelopathies and for potential structure-based drug discovery.

  1. Computational prediction of proarrhythmogenic effect of the V241F KCNQ1 mutation in human atrium.

    Science.gov (United States)

    Imaniastuti, Riski; Lee, Hyun Seung; Kim, Nari; Youm, Jae Boum; Shim, Eun Bo; Lim, Ki Moo

    2014-09-01

    Genetic factors play an important role in the pathogenesis of atrial flutter (AF). Although mutation in KCNQ1 has been widely correlated with AF, the mechanism by which mutation promotes AF remains poorly understood. The purpose of this study was to investigate the proarrhythmic effect of V241F KCNQ1 mutation in human atrium using the electrophysiological model of human atrium. Using 2D and 3D cardiac electrophysiological models that incorporate the Courtemanche human atrial model, we simulated electrical conduction through atrial tissue and compared spiral wave dynamics under the wild-type and V241F KCNQ1 conditions. In 2D and 3D simulation, V241F KCNQ1 showed a stable and persistent wave without spiral break-up, whereas the wild-type wave was less stable, resulting in early self-termination. According to the results, we concluded that compared to the wild type, the electrical activity of the V241F KCNQ1 mutation is more likely to sustain spiral wave. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Single genome retrieval of context-dependent variability in mutation rates for human germline.

    Science.gov (United States)

    Sahakyan, Aleksandr B; Balasubramanian, Shankar

    2017-01-13

    Accurate knowledge of the core components of substitution rates is of vital importance to understand genome evolution and dynamics. By performing a single-genome and direct analysis of 39,894 retrotransposon remnants, we reveal sequence context-dependent germline nucleotide substitution rates for the human genome. The rates are characterised through rate constants in a time-domain, and are made available through a dedicated program (Trek) and a stand-alone database. Due to the nature of the method design and the imposed stringency criteria, we expect our rate constants to be good estimates for the rates of spontaneous mutations. Benefiting from such data, we study the short-range nucleotide (up to 7-mer) organisation and the germline basal substitution propensity (BSP) profile of the human genome; characterise novel, CpG-independent, substitution prone and resistant motifs; confirm a decreased tendency of moieties with low BSP to undergo somatic mutations in a number of cancer types; and, produce a Trek-based estimate of the overall mutation rate in human. The extended set of rate constants we report may enrich our resources and help advance our understanding of genome dynamics and evolution, with possible implications for the role of spontaneous mutations in the emergence of pathological genotypes and neutral evolution of proteomes.

  3. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil

    Science.gov (United States)

    Almqvist, Helena; Axelsson, Hanna; Jafari, Rozbeh; Dan, Chen; Mateus, André; Haraldsson, Martin; Larsson, Andreas; Molina, Daniel Martinez; Artursson, Per; Lundbäck, Thomas; Nordlund, Pär

    2016-03-01

    Target engagement is a critical factor for therapeutic efficacy. Assessment of compound binding to native target proteins in live cells is therefore highly desirable in all stages of drug discovery. We report here the first compound library screen based on biophysical measurements of intracellular target binding, exemplified by human thymidylate synthase (TS). The screen selected accurately for all the tested known drugs acting on TS. We also identified TS inhibitors with novel chemistry and marketed drugs that were not previously known to target TS, including the DNA methyltransferase inhibitor decitabine. By following the cellular uptake and enzymatic conversion of known drugs we correlated the appearance of active metabolites over time with intracellular target engagement. These data distinguished a much slower activation of 5-fluorouracil when compared with nucleoside-based drugs. The approach establishes efficient means to associate drug uptake and activation with target binding during drug discovery.

  4. Design of inhibitors of thymidylate kinase from Variola virus as new selective drugs against smallpox.

    Science.gov (United States)

    Guimarães, Ana P; de Souza, Felipe R; Oliveira, Aline A; Gonçalves, Arlan S; de Alencastro, Ricardo B; Ramalho, Teodorico C; França, Tanos C C

    2015-02-16

    Recently we constructed a homology model of the enzyme thymidylate kinase from Variola virus (VarTMPK) and proposed it as a new target to the drug design against smallpox. In the present work, we used the antivirals cidofovir and acyclovir as reference compounds to choose eleven compounds as leads to the drug design of inhibitors for VarTMPK. Docking and molecular dynamics (MD) studies of the interactions of these compounds inside VarTMPK and human TMPK (HssTMPK) suggest that they compete for the binding region of the substrate and were used to propose the structures of ten new inhibitors for VarTMPK. Further docking and MD simulations of these compounds, inside VarTMPK and HssTMPK, suggest that nine among ten are potential selective inhibitors of VarTMPK. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Molecular effects of novel mutations in Hesx1/HESX1 associated with human pituitary disorders

    DEFF Research Database (Denmark)

    Brickman, J M; Clements, M; Tyrell, R

    2001-01-01

    resulting in a single amino acid substitution, Arg160Cys (R160C), is associated with a heritable form of the human condition of septo-optic dysplasia (SOD). We have examined the phenotype of affected members in this pedigree in more detail and demonstrate for the first time a genetic basis for midline...... defects associated with an undescended or ectopic posterior pituitary. A similar structural pituitary abnormality was observed in a second patient heterozygous for another mutation in HESX1, Ser170Leu (S170L). Association of S170L with a pituitary phenotype may be a direct consequence of the HESX1...... mutation since S170L is also associated with a dominant familial form of pituitary disease. However, a third mutation in HESX1, Asn125Ser (N125S), occurs at a high frequency in the Afro-Caribbean population and may therefore reflect a population-specific polymorphism. To investigate the molecular basis...

  6. Human CHN1 mutations hyperactivate α2-chimaerin and cause Duane’s retraction syndrome

    Science.gov (United States)

    Miyake, Noriko; Chilton, John; Psatha, Maria; Cheng, Long; Andrews, Caroline; Chan, Wai-Man; Law, Krystal; Crosier, Moira; Lindsay, Susan; Cheung, Michelle; Allen, James; Gutowski, Nick J; Ellard, Sian; Young, Elizabeth; Iannaccone, Alessandro; Appukuttan, Binoy; Stout, J. Timothy; Christiansen, Stephen; Ciccarelli, Maria Laura; Baldi, Alfonso; Campioni, Mara; Zenteno, Juan C.; Davenport, Dominic; Mariani, Laura E.; Sahin, Mustafa; Guthrie, Sarah; Engle, Elizabeth C.

    2008-01-01

    The RacGAP molecule α2-chimaerin is implicated in neuronal signaling pathways required for precise guidance of developing corticospinal axons. We now demonstrate that a variant of Duane’s retraction syndrome, a congenital eye movement disorder in which affected individuals show aberrant development of axon projections to the extraocular muscles, can result from gain-of-function heterozygous missense mutations in CHN1 that increase α2-chimaerin RacGAP activity in vitro. A subset of mutations enhances α2-chimaerin membrane translocation and/or α2-chimaerin’s previously unrecognized ability to form a complex with itself. In ovo expression of mutant CHN1 alters the development of ocular motor axons. These data demonstrate that human CHN1 mutations can hyperactivate α2-chimaerin and result in aberrant cranial motor neuron development. PMID:18653847

  7. Aku, a mutation of the mouse homologous to human alkaptonuria, maps to chromosome 16

    Energy Technology Data Exchange (ETDEWEB)

    Montagutelli, X.; Lalouette, A.; Guenet, J.L. (Institut Pasteur, Paris (France)); Coude, M.; Kamoun, P. (Hopital Necker, Paris (France)); Forest, M. (Hopital Cochin, Paris (France))

    1994-01-01

    Alkaptonuria is a human hereditary metabolic disease characterized by a very high urinary excretion of homogentisic acid, an intermediary product in the metabolism of tyrosine, in association with ochronosis and arthritis. This disease is due to a deficiency in the enzyme homogentisic acid oxidase and is inherited as an autosomal recessive condition. The authors have found a new recessive mutation (aku) in the mouse that is homologous to human alkaptonuria, during a mutagenesis program with ethylnitrosourea. Affected mice show high levels of urinary homogentisic acid without signs of ochronosis or arthritis. This mutation has been mapped to Chr 16 close to the D16Mit4 locus, in a region of synteny with human 3q. 22 refs., 1 fig., 1 tab.

  8. Biallelic mutations in IRF8 impair human NK cell maturation and function

    Science.gov (United States)

    Mace, Emily M.; Gunesch, Justin T.; Chinn, Ivan K.; Angelo, Laura S.; Maisuria, Sheetal; Keller, Michael D.; Togi, Sumihito; Watkin, Levi B.; LaRosa, David F.; Jhangiani, Shalini N.; Muzny, Donna M.; Stray-Pedersen, Asbjørg; Coban Akdemir, Zeynep; Smith, Jansen B.; Hernández-Sanabria, Mayra; Le, Duy T.; Hogg, Graham D.; Cao, Tram N.; Freud, Aharon G.; Szymanski, Eva P.; Collin, Matthew; Cant, Andrew J.; Gibbs, Richard A.; Holland, Steven M.; Caligiuri, Michael A.; Ozato, Keiko; Paust, Silke; Doody, Gina M.; Lupski, James R.; Orange, Jordan S.

    2016-01-01

    Human NK cell deficiencies are rare yet result in severe and often fatal disease, particularly as a result of viral susceptibility. NK cells develop from hematopoietic stem cells, and few monogenic errors that specifically interrupt NK cell development have been reported. Here we have described biallelic mutations in IRF8, which encodes an interferon regulatory factor, as a cause of familial NK cell deficiency that results in fatal and severe viral disease. Compound heterozygous or homozygous mutations in IRF8 in 3 unrelated families resulted in a paucity of mature CD56dim NK cells and an increase in the frequency of the immature CD56bright NK cells, and this impairment in terminal maturation was also observed in Irf8–/–, but not Irf8+/–, mice. We then determined that impaired maturation was NK cell intrinsic, and gene expression analysis of human NK cell developmental subsets showed that multiple genes were dysregulated by IRF8 mutation. The phenotype was accompanied by deficient NK cell function and was stable over time. Together, these data indicate that human NK cells require IRF8 for development and functional maturation and that dysregulation of this function results in severe human disease, thereby emphasizing a critical role for NK cells in human antiviral defense. PMID:27893462

  9. Mutations in human CPO gene predict clinical expression of either hepatic hereditary coproporphyria or erythropoietic harderoporphyria.

    Science.gov (United States)

    Schmitt, Caroline; Gouya, Laurent; Malonova, Eva; Lamoril, Jérôme; Camadro, Jean-Michel; Flamme, Magali; Rose, Christian; Lyoumi, Said; Da Silva, Vasco; Boileau, Catherine; Grandchamp, Bernard; Beaumont, Carole; Deybach, Jean-Charles; Puy, Hervé

    2005-10-15

    Hereditary coproporphyria (HCP), an autosomal dominant acute hepatic porphyria, results from mutations in the gene that encodes coproporphyrinogen III oxidase (CPO). HCP (heterozygous or rarely homozygous) patients present with an acute neurovisceral crisis, sometimes associated with skin lesions. Four patients (two families) have been reported with a clinically distinct variant form of HCP. In such patients, the presence of a specific mutation (K404E) on both alleles or associated with a null allele, produces a unifying syndrome in which hematological disorders predominate: 'harderoporphyria'. Here, we report the fifth case (from a third family) with harderoporphyria. In addition, we show that harderoporphyric patients exhibit iron overload secondary to dyserythropoiesis. To investigate the molecular basis of this peculiar phenotype, we first studied the secondary structure of the human CPO by a predictive method, the hydrophobic cluster analysis (HCA) which allowed us to focus on a region of the enzyme. We then expressed mutant enzymes for each amino acid of the region of interest, as well as all missense mutations reported so far in HCP patients and evaluated the amount of harderoporphyrin in each mutant. Our results strongly suggest that only a few missense mutations, restricted to five amino acids encoded by exon 6, may accumulate significant amounts of harderoporphyrin: D400-K404. Moreover, all other type of mutations or missense mutations mapped elsewhere throughout the CPO gene, lead to coproporphyrin accumulation and subsequently typical HCP. Our findings, reinforced by recent crystallographic results of yeast CPO, shed new light on the genetic predisposition to HCP. It represents a first monogenic metabolic disorder where clinical expression of overt disease is dependent upon the location and type of mutation, resulting either in acute hepatic or in erythropoietic porphyria.

  10. Structural analysis of mitochondrial mutations reveals a role for bigenomic protein interactions in human disease.

    Directory of Open Access Journals (Sweden)

    Rhiannon E Lloyd

    Full Text Available Mitochondria are the energy producing organelles of the cell, and mutations within their genome can cause numerous and often severe human diseases. At the heart of every mitochondrion is a set of five large multi-protein machines collectively known as the mitochondrial respiratory chain (MRC. This cellular machinery is central to several processes important for maintaining homeostasis within cells, including the production of ATP. The MRC is unique due to the bigenomic origin of its interacting proteins, which are encoded in the nucleus and mitochondria. It is this, in combination with the sheer number of protein-protein interactions that occur both within and between the MRC complexes, which makes the prediction of function and pathological outcome from primary sequence mutation data extremely challenging. Here we demonstrate how 3D structural analysis can be employed to predict the functional importance of mutations in mtDNA protein-coding genes. We mined the MITOMAP database and, utilizing the latest structural data, classified mutation sites based on their location within the MRC complexes III and IV. Using this approach, four structural classes of mutation were identified, including one underexplored class that interferes with nuclear-mitochondrial protein interactions. We demonstrate that this class currently eludes existing predictive approaches that do not take into account the quaternary structural organization inherent within and between the MRC complexes. The systematic and detailed structural analysis of disease-associated mutations in the mitochondrial Complex III and IV genes significantly enhances the predictive power of existing approaches and our understanding of how such mutations contribute to various pathologies. Given the general lack of any successful therapeutic approaches for disorders of the MRC, these findings may inform the development of new diagnostic and prognostic biomarkers, as well as new drugs and targets for

  11. Serine Hydroxymethyltransferase Anchors de Novo Thymidylate Synthesis Pathway to Nuclear Lamina for DNA Synthesis*

    Science.gov (United States)

    Anderson, Donald D.; Woeller, Collynn F.; Chiang, En-Pei; Shane, Barry; Stover, Patrick J.

    2012-01-01

    The de novo thymidylate biosynthetic pathway in mammalian cells translocates to the nucleus for DNA replication and repair and consists of the enzymes serine hydroxymethyltransferase 1 and 2α (SHMT1 and SHMT2α), thymidylate synthase, and dihydrofolate reductase. In this study, we demonstrate that this pathway forms a multienzyme complex that is associated with the nuclear lamina. SHMT1 or SHMT2α is required for co-localization of dihydrofolate reductase, SHMT, and thymidylate synthase to the nuclear lamina, indicating that SHMT serves as scaffold protein that is essential for complex formation. The metabolic complex is enriched at sites of DNA replication initiation and associated with proliferating cell nuclear antigen and other components of the DNA replication machinery. These data provide a mechanism for previous studies demonstrating that SHMT expression is rate-limiting for de novo thymidylate synthesis and indicate that de novo thymidylate biosynthesis occurs at replication forks. PMID:22235121

  12. Keratin Gene Mutations in Disorders of Human Skin and its Appendages

    Science.gov (United States)

    Chamcheu, Jean Christopher; Siddiqui, Imtiaz A.; Syed, Deeba N.; Adhami, Vaqar M.; Liovic, Mirjana; Mukhtar, Hasan

    2011-01-01

    Keratins, the major structural protein of all epithelia, are a diverse group of cytoskeletal scaffolding proteins that form intermediate filament networks, providing structural support to keratinocytes that maintain the integrity of the skin. Expression of keratin genes is usually regulated by differentiation of the epidermal cells within the stratifying squamous epithelium. Amongst the 54 known functional keratin genes in humans, about 21 different genes including hair and hair follicle-specific keratins have been associated with diverse hereditary disorders. The exact phenotype of each disease mostly reflects the spatial level of expression and types of the mutated keratin genes, the positions of the mutations as well as their consequences at sub-cellular levels. The identification of specific mutations in keratin disorders is the basis of our understanding that lead to reclassification, improved diagnosis with prognostic implications, prenatal testing and genetic counseling in severe cutaneous keratin genodermatoses. A disturbance in cutaneous keratins as a result of mutation(s) in the gene(s) that encode keratin intermediate filaments (KIF) causes keratinocytes and cutaneous tissue fragility, accounting for a large number of genetic disorders in human skin and its appendages. These diseases are characterized by a loss of structural integrity in keratinocytes expressing mutated keratins in vivo, often manifested as keratinocytes fragility (cytolysis), intra-epidermal blistering, hyperkeratosis, and keratin filament aggregation in severely affected tissues. Examples include epidermolysis bullosa simplex (EBS), keratinopathic ichthyosis (KPI), pachyonychia congenital (PC), monilethrix, steatocystoma multiplex and ichthyosis bullosa of Siemens (IBS). These keratins also have been identified to have roles in cell growth, apoptosis, tissue polarity, wound healing and tissue remodeling. PMID:21176769

  13. Cellular and molecular effects for mutation induction in normal human cells irradiated with accelerated neon ions.

    Science.gov (United States)

    Suzuki, Masao; Tsuruoka, Chizuru; Kanai, Tatsuaki; Kato, Takeshi; Yatagai, Fumio; Watanabe, Masami

    2006-02-22

    We investigated the linear energy transfer (LET) dependence of mutation induction on the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus in normal human fibroblast-like cells irradiated with accelerated neon-ion beams. The cells were irradiated with neon-ion beams at various LETs ranging from 63 to 335 keV/microm. Neon-ion beams were accelerated by the Riken Ring Cyclotron at the Institute of Physical and Chemical Research in Japan. Mutation induction at the HPRT locus was detected to measure 6-thioguanine-resistant clones. The mutation spectrum of the deletion pattern of exons of mutants was analyzed using the multiplex polymerase chain reaction (PCR). The dose-response curves increased steeply up to 0.5 Gy and leveled off or decreased between 0.5 and 1.0 Gy, compared to the response to (137)Cs gamma-rays. The mutation frequency increased up to 105 keV/microm and then there was a downward trend with increasing LET values. The deletion pattern of exons was non-specific. About 75-100% of the mutants produced using LETs ranging from 63 to 335 keV/mum showed all or partial deletions of exons, while among gamma-ray-induced mutants 30% showed no deletions, 30% partial deletions and 40% complete deletions. These results suggested that the dose-response curves of neon-ion-induced mutations were dependent upon LET values, but the deletion pattern of DNA was not.

  14. Disheveled hair and ear (Dhe, a spontaneous mouse Lmna mutation modeling human laminopathies.

    Directory of Open Access Journals (Sweden)

    Paul R Odgren

    Full Text Available BACKGROUND: Investigations of naturally-occurring mutations in animal models provide important insights and valuable disease models. Lamins A and C, along with lamin B, are type V intermediate filament proteins which constitute the proteinaceous boundary of the nucleus. LMNA mutations in humans cause a wide range of phenotypes, collectively termed laminopathies. To identify the mutation and investigate the phenotype of a spontaneous, semi-dominant mutation that we have named Disheveled hair and ear (Dhe, which causes a sparse coat and small external ears in heterozygotes and lethality in homozygotes by postnatal day 10. FINDINGS: Genetic mapping identified a point mutation in the Lmna gene, causing a single amino acid change, L52R, in the coiled coil rod domain of lamin A and C proteins. Cranial sutures in Dhe/+ mice failed to close. Gene expression for collagen types I and III in sutures was deficient. Skulls were small and disproportionate. Skeletons of Dhe/+ mice were hypomineralized and total body fat was deficient in males. In homozygotes, skin and oral mucosae were dysplastic and ulcerated. Nuclear morphometry of cultured cells revealed gene dose-dependent blebbing and wrinkling. CONCLUSION: Dhe mice should provide a useful new model for investigations of the pathogenesis of laminopathies.

  15. Mutational analysis of leucine 47 in human epidermal growth factor.

    Science.gov (United States)

    Matsunami, R K; Yette, M L; Stevens, A; Niyogi, S K

    1991-07-01

    Seven site-specific mutants (including changes to other hydrophobic, charged, and heterocyclic amino acids) of leucine 47 of human epidermal growth factor (EGF) were generated by protein engineering and characterized for their activity in three assays: radioreceptor competition binding in membrane fractions, the stimulation of the EGF receptor's tyrosine kinase activity, and the stimulation of thymidine uptake in tissue culture cells. K1/2 (concentration required for half maximum response) values for each of the mutants are reported in the three assays. The results show that the native leucine residue is quite important for EGF activity. Substitutions are tolerated to different degrees, depending upon hydrophobicity and size of the side chain. Substitution with ionic residues led to the most drastic reduction in activity. One-dimensional nuclear magnetic resonance spectroscopy, at physiological pH, of several of the mutants did not detect any major structural perturbations which would account for the loss of activity. The results suggest that the side chain of leucine 47, because of its charge neutrality, size, and hydrophobicity, is highly important, although not absolutely essential for the interaction of EGF with its receptor. A striking finding was the lower (compared with wild type) Vmax values of the mutants in the tyrosine kinase reaction, but these low Vmax mutants, in cell culture experiments, were able to stimulate at high concentrations a growth response equivalent to wild type EGF.

  16. Interlocus gene conversion events introduce deleterious mutations into at least 1% of human genes associated with inherited disease.

    Science.gov (United States)

    Casola, Claudio; Zekonyte, Ugne; Phillips, Andrew D; Cooper, David N; Hahn, Matthew W

    2012-03-01

    Establishing the molecular basis of DNA mutations that cause inherited disease is of fundamental importance to understanding the origin, nature, and clinical sequelae of genetic disorders in humans. The majority of disease-associated mutations constitute single-base substitutions and short deletions and/or insertions resulting from DNA replication errors and the repair of damaged bases. However, pathological mutations can also be introduced by nonreciprocal recombination events between paralogous sequences, a phenomenon known as interlocus gene conversion (IGC). IGC events have thus far been linked to pathology in more than 20 human genes. However, the large number of duplicated gene sequences in the human genome implies that many more disease-associated mutations could originate via IGC. Here, we have used a genome-wide computational approach to identify disease-associated mutations derived from IGC events. Our approach revealed hundreds of known pathological mutations that could have been caused by IGC. Further, we identified several dozen high-confidence cases of inherited disease mutations resulting from IGC in ∼1% of all genes analyzed. About half of the donor sequences associated with such mutations are functional paralogous genes, suggesting that epistatic interactions or differential expression patterns will determine the impact upon fitness of specific substitutions between duplicated genes. In addition, we identified thousands of hitherto undescribed and potentially deleterious mutations that could arise via IGC. Our findings reveal the extent of the impact of interlocus gene conversion upon the spectrum of human inherited disease.

  17. Distinct Contributions of Replication and Transcription to Mutation Rate Variation of Human Genomes

    KAUST Repository

    Cui, Peng

    2012-03-23

    Here, we evaluate the contribution of two major biological processes—DNA replication and transcription—to mutation rate variation in human genomes. Based on analysis of the public human tissue transcriptomics data, high-resolution replicating map of Hela cells and dbSNP data, we present significant correlations between expression breadth, replication time in local regions and SNP density. SNP density of tissue-specific (TS) genes is significantly higher than that of housekeeping (HK) genes. TS genes tend to locate in late-replicating genomic regions and genes in such regions have a higher SNP density compared to those in early-replication regions. In addition, SNP density is found to be positively correlated with expression level among HK genes. We conclude that the process of DNA replication generates stronger mutational pressure than transcription-associated biological processes do, resulting in an increase of mutation rate in TS genes while having weaker effects on HK genes. In contrast, transcription-associated processes are mainly responsible for the accumulation of mutations in highly-expressed HK genes.

  18. The F309S mutation increases factor VIII secretion in human cell line

    Directory of Open Access Journals (Sweden)

    Daianne Maciely Carvalho Fantacini

    2016-06-01

    Full Text Available ABSTRACT OBJECTIVES: The capacity of a human cell line to secrete recombinant factor VIII with a F309S point mutation was investigated, as was the effect of the addition of chemical chaperones (betaine and sodium-4-phenylbutyrate on the secretion of factor VIII. METHODS: This work used a vector with a F309S mutation in the A1 domain to investigate FVIII production in the HEK 293 human cell line. Factor VIII activity was measured by chromogenic assay. Furthermore, the effects of chemical drugs on the culture were evaluated. RESULTS: The addition of the F309S mutation to a previously described FVIII variant increased FVIII secretion by 4.5 fold. Moreover, the addition of betaine or sodium-4-phenylbutyrate increased the secretion rate of FVIIIΔB proteins in HEK 293 cells, but the same effect was not seen for FVIIIΔB-F309S indicating that all the recombinant protein produced had been efficiently secreted. CONCLUSION: Bioengineering factor VIII expressed in human cells may lead to an efficient production of recombinant factor VIII and contribute toward low-cost coagulation factor replacement therapy for hemophilia A. FVIII-F309S produced in human cells can be effective in vivo.

  19. The role of the prokineticin 2 pathway in human reproduction: evidence from the study of human and murine gene mutations.

    Science.gov (United States)

    Martin, Cecilia; Balasubramanian, Ravikumar; Dwyer, Andrew A; Au, Margaret G; Sidis, Yisrael; Kaiser, Ursula B; Seminara, Stephanie B; Pitteloud, Nelly; Zhou, Qun-Yong; Crowley, William F

    2011-04-01

    A widely dispersed network of hypothalamic GnRH neurons controls the reproductive axis in mammals. Genetic investigation of the human disease model of isolated GnRH deficiency has revealed several key genes crucial for GnRH neuronal ontogeny and GnRH secretion. Among these genes, prokineticin 2 (PROK2), and PROK2 receptor (PROKR2) have recently emerged as critical regulators of reproduction in both mice and humans. Both prok2- and prokr2-deficient mice recapitulate the human Kallmann syndrome phenotype. Additionally, PROK2 and PROKR2 mutations are seen in humans with Kallmann syndrome, thus implicating this pathway in GnRH neuronal migration. However, PROK2/PROKR2 mutations are also seen in normosmic GnRH deficiency, suggesting a role for the prokineticin signaling system in GnRH biology that is beyond neuronal migration. This observation is particularly surprising because mature GnRH neurons do not express PROKR2. Moreover, mutations in both PROK2 and PROKR2 are predominantly detected in the heterozygous state with incomplete penetrance or variable expressivity frequently seen within and across pedigrees. In some of these pedigrees, a "second hit" or oligogenicity has been documented. Besides reproduction, a pleiotropic physiological role for PROK2 is now recognized, including regulation of pain perception, circadian rhythms, hematopoiesis, and immune response. Therefore, further detailed clinical studies of patients with PROK2/PROKR2 mutations will help to map the broader biological role of the PROK2/PROKR2 pathway and identify other interacting genes/proteins that mediate its molecular effects in humans.

  20. A protein domain-centric approach for the comparative analysis of human and yeast phenotypically relevant mutations

    Science.gov (United States)

    2013-01-01

    Background The body of disease mutations with known phenotypic relevance continues to increase and is expected to do so even faster with the advent of new experimental techniques such as whole-genome sequencing coupled with disease association studies. However, genomic association studies are limited by the molecular complexity of the phenotype being studied and the population size needed to have adequate statistical power. One way to circumvent this problem, which is critical for the study of rare diseases, is to study the molecular patterns emerging from functional studies of existing disease mutations. Current gene-centric analyses to study mutations in coding regions are limited by their inability to account for the functional modularity of the protein. Previous studies of the functional patterns of known human disease mutations have shown a significant tendency to cluster at protein domain positions, namely position-based domain hotspots of disease mutations. However, the limited number of known disease mutations remains the main factor hindering the advancement of mutation studies at a functional level. In this paper, we address this problem by incorporating mutations known to be disruptive of phenotypes in other species. Focusing on two evolutionarily distant organisms, human and yeast, we describe the first inter-species analysis of mutations of phenotypic relevance at the protein domain level. Results The results of this analysis reveal that phenotypic mutations from yeast cluster at specific positions on protein domains, a characteristic previously revealed to be displayed by human disease mutations. We found over one hundred domain hotspots in yeast with approximately 50% in the exact same domain position as known human disease mutations. Conclusions We describe an analysis using protein domains as a framework for transferring functional information by studying domain hotspots in human and yeast and relating phenotypic changes in yeast to diseases in

  1. Human Prolactin Point Mutations and Their Projected Effect on Vasoinhibin Generation and Vasoinhibin-Related Diseases

    Directory of Open Access Journals (Sweden)

    Jakob Triebel

    2017-11-01

    Full Text Available BackgroundA dysregulation of the generation of vasoinhibin hormones by proteolytic cleavage of prolactin (PRL has been brought into context with diabetic retinopathy, retinopathy of prematurity, preeclampsia, pregnancy-induced hypertension, and peripartum cardiomyopathy. Factors governing vasoinhibin generation are incompletely characterized, and the composition of vasoinhibin isoforms in human tissues or compartments, such as the circulation, is unknown. The aim of this study was to determine the possible contribution of PRL point mutations to the generation of vasoinhibins as well as to project their role in vasoinhibin-related diseases.MethodsProlactin sequences, point mutations, and substrate specificity information about the PRL cleaving enzymes cathepsin D, matrix metalloproteinases 8 and 13, and bone-morphogenetic protein 1 were retrieved from public databases. The consequences of point mutations in regard to their possible effect on vasoinhibin levels were projected on the basis of a score indicating the suitability of a particular sequence for enzymatic cleavage that result in vasoinhibin generation. The relative abundance and type of vasoinhibin isoforms were estimated by comparing the relative cleavage efficiency of vasoinhibin-generating enzymes.ResultsSix point mutations leading to amino acid substitutions in vasoinhibin-generating cleavage sites were found and projected to either facilitate or inhibit vasoinhibin generation. Four mutations affecting vasoinhibin generation in cancer tissues were found. The most likely composition of the relative abundance of vasoinhibin isoforms is projected to be 15 > 17.2 > 16.8 > 17.7 > 18 kDa vasoinhibin.ConclusionProlactin point mutations are likely to influence vasoinhibin levels by affecting the proteolysis efficiency of vasoinhibin-generating enzymes and should be monitored in patients with vasoinhibin-related diseases. Attempts to characterize vasoinhibin-related diseases

  2. Discovery of a new Mycobacterium tuberculosis thymidylate synthase X inhibitor with a unique inhibition profile.

    Science.gov (United States)

    Abu El Asrar, Rania; Margamuljana, Lia; Klaassen, Hugo; Nijs, Marnik; Marchand, Arnaud; Chaltin, Patrick; Myllykallio, Hannu; Becker, Hubert F; De Jonghe, Steven; Herdewijn, Piet; Lescrinier, Eveline

    2017-07-01

    Tuberculosis (TB), mainly caused by Mycobacterium tuberculosis (Mtb), is an infection that is responsible for roughly 1.5 million deaths per year. The situation is further complicated by the wide-spread resistance to the existing first- and second-line drugs. As a result of this, it is urgent to develop new drugs to combat the resistant bacteria as well as have lower side effects, which can promote adherence to the treatment regimens. Targeting the de novo synthesis of thymidylate (dTMP) is an important pathway to develop drugs for TB. Although Mtb carries genes for two families of thymidylate synthases (TS), ThyA and ThyX, only ThyX is essential for its normal growth. Both enzymes catalyze the conversion of uridylate (dUMP) to dTMP but employ a different catalytic approach and have different structures. Also, ThyA is the only TS found in humans. This is the rationale for identifying selective inhibitors against ThyX. We exploited the NADPH oxidation to NADP + step, catalyzed by ThyX, to develop a spectrophotometric biochemical assay. Success of the assay was demonstrated by its effectiveness (average Z'=0.77) and identification of selective ThyX inhibitors. The most potent compound is a tight-binding inhibitor with an IC 50 of 710nM. Its mechanism of inhibition is analyzed in relation to the latest findings of ThyX mechanism and substrate and cofactor binding order. Copyright © 2017. Published by Elsevier Inc.

  3. Quantitative assay for mutation in diploid human lymphoblasts using microtiter plates

    Energy Technology Data Exchange (ETDEWEB)

    Furth, E.A.; Thilly, W.G.; Penman, B.W.; Liber, H.L.; Rand, W.M.

    1981-01-01

    A microtiter plating technique which eliminates the need for soft agar and fibroblast feeder layers to determine the colony-forming ability of diploid human lymphoblast lines was described. The calculation of cloning efficiency is based on the Poisson distribution, and a statistical method for calculating confidence intervals is presented. This technique has been applied to the comcomitant examination of induced mutation at the putative loci for hypoxanthine guanine phosphoribosyl transferase, thymidine, kinase, and Na/sup +//K/sup +/ adenosine triphosphatase.

  4. Does aerobic exercises induce mtDNA mutation in human blood ...

    African Journals Online (AJOL)

    The aim of this study was to determine the effect of eight weeks aerobic training on mitochondrial DNA (mtDNA) mutation in human blood leucocytes. Twenty untrained healthy students (training group: n =10, age = 20.7±1.5 yrs, weight = 67.7±10 kg, BF% = 17.5±7.35 & control group: n =10, age = 21±1.3 yrs, weight ...

  5. The Impact of Environmental and Endogenous Damage on Somatic Mutation Load in Human Skin Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Natalie Saini

    2016-10-01

    Full Text Available Accumulation of somatic changes, due to environmental and endogenous lesions, in the human genome is associated with aging and cancer. Understanding the impacts of these processes on mutagenesis is fundamental to understanding the etiology, and improving the prognosis and prevention of cancers and other genetic diseases. Previous methods relying on either the generation of induced pluripotent stem cells, or sequencing of single-cell genomes were inherently error-prone and did not allow independent validation of the mutations. In the current study we eliminated these potential sources of error by high coverage genome sequencing of single-cell derived clonal fibroblast lineages, obtained after minimal propagation in culture, prepared from skin biopsies of two healthy adult humans. We report here accurate measurement of genome-wide magnitude and spectra of mutations accrued in skin fibroblasts of healthy adult humans. We found that every cell contains at least one chromosomal rearrangement and 600–13,000 base substitutions. The spectra and correlation of base substitutions with epigenomic features resemble many cancers. Moreover, because biopsies were taken from body parts differing by sun exposure, we can delineate the precise contributions of environmental and endogenous factors to the accrual of genetic changes within the same individual. We show here that UV-induced and endogenous DNA damage can have a comparable impact on the somatic mutation loads in skin fibroblasts. Trial Registration: ClinicalTrials.gov NCT01087307.

  6. TP53 mutation and human papilloma virus status of oral squamous cell carcinomas in young adult patients

    NARCIS (Netherlands)

    Braakhuis, B.J.M.; Rietbergen, M.M.; Buijze, M.; Snijders, P.J.F.; Bloemena, E.; Brakenhoff, R.H.; Leemans, C.R.

    2014-01-01

    Objective Little is known about the molecular carcinogenesis of oral squamous cell carcinoma (OSCC) in young adult patients. The aim of this study was to investigate the detailed TP53 mutation and human papilloma virus (HPV) status of OSCC in patients, younger than 45 years. Methods TP53 mutations

  7. Human Y chromosome base-substitution mutation rate measured by direct sequencing in a deep-rooting pedigree.

    Science.gov (United States)

    Xue, Yali; Wang, Qiuju; Long, Quan; Ng, Bee Ling; Swerdlow, Harold; Burton, John; Skuce, Carl; Taylor, Ruth; Abdellah, Zahra; Zhao, Yali; MacArthur, Daniel G; Quail, Michael A; Carter, Nigel P; Yang, Huanming; Tyler-Smith, Chris

    2009-09-15

    Understanding the key process of human mutation is important for many aspects of medical genetics and human evolution. In the past, estimates of mutation rates have generally been inferred from phenotypic observations or comparisons of homologous sequences among closely related species. Here, we apply new sequencing technology to measure directly one mutation rate, that of base substitutions on the human Y chromosome. The Y chromosomes of two individuals separated by 13 generations were flow sorted and sequenced by Illumina (Solexa) paired-end sequencing to an average depth of 11x or 20x, respectively. Candidate mutations were further examined by capillary sequencing in cell-line and blood DNA from the donors and additional family members. Twelve mutations were confirmed in approximately 10.15 Mb; eight of these had occurred in vitro and four in vivo. The latter could be placed in different positions on the pedigree and led to a mutation-rate measurement of 3.0 x 10(-8) mutations/nucleotide/generation (95% CI: 8.9 x 10(-9)-7.0 x 10(-8)), consistent with estimates of 2.3 x 10(-8)-6.3 x 10(-8) mutations/nucleotide/generation for the same Y-chromosomal region from published human-chimpanzee comparisons depending on the generation and split times assumed.

  8. Exome-wide Mutation Profile in Benzo[a]pyrene-derived Post-stasis and Immortal Human Mammary Epithelial Cells

    Science.gov (United States)

    Severson, Paul L.; Vrba, Lukas; Stampfer, Martha R.; Futscher, Bernard W.

    2014-01-01

    Genetic mutations are known to drive cancer progression and certain tumors have mutation signatures that reflect exposures to environmental carcinogens. Benzo[a]pyrene (BaP) has a known mutation signature and has proven capable of inducing changes to DNA sequence that drives normal pre-stasis human mammary epithelial cells (HMEC) past a first tumor suppressor barrier (stasis) and towards immortality. We analyzed normal, pre-stasis HMEC, three independent BaP-derived post-stasis HMEC strains (184Aa, 184Be, 184Ce) and two of their immortal derivatives(184A1 and 184BE1) by whole exome sequencing. The independent post-stasis strains exhibited between 93 and 233 BaP-induced mutations in exons. Seventy percent of the mutations were C:G>A:T transversions, consistent with the known mutation spectrum of BaP. Mutations predicted to impact protein function occurred in several known and putative cancer drivers including p16, PLCG1, MED12, TAF1 in 184Aa; PIK3CG, HSP90AB1, WHSC1L1, LCP1 in 184Be and FANCA, LPP in 184Ce. Biological processes that typically harbor cancer driver mutations such as cell cycle, regulation of cell death and proliferation, RNA processing, chromatin modification and DNA repair were found to have mutations predicted to impact function in each of the post-stasis strains. Spontaneously immortalized HMEC lines derived from two of the BaP-derived post-stasis strains shared greater than 95% of their BaP-induced mutations with their precursor cells. These immortal HMEC had 10 or fewer additional point mutations relative to their post-stasis precursors, but acquired chromosomal anomalies during immortalization that arose independent of BaP. The results of this study indicate that acute exposures of HMEC to high dose BaP recapitulate mutation patterns of human tumors and can induce mutations in a number of cancer driver genes. PMID:25435355

  9. Oncogenic PIK3CA Mutation and Dysregulation in Human Salivary Duct Carcinoma

    Directory of Open Access Journals (Sweden)

    Wanglong Qiu

    2014-01-01

    Full Text Available Salivary duct carcinoma (SDC is an aggressive malignant tumor with a high mortality, which resembles high-grade breast ductal carcinoma in morphology. The parotid gland is the most common location. Its molecular genetic characteristics remain largely unknown. We have previously reported high incidence of PIK3CA somatic mutations in head and neck squamous cell carcinoma, particularly in pharyngeal cancers. Here we examined the PIK3CA gene expression status and hotspot mutations in six cases of SDC by immunohistochemistry and genomic DNA sequencing. Immunohistochemistry showed that PIK3CA expression was elevated in all six patients with SDC. By DNA sequencing, two hotspot mutations of the PIK3CA gene, E545K (exon 9 and H1047R (exon 20, were identified in two of the six cases. Our results support that oncogenic PIK3CA is upregulated and frequently mutated in human SDC, adding evidence that PIK3CA oncogenic pathway is critical in the tumorigenesis of SDC, and may be a plausible drug target for this rare disease.

  10. Familial hypocalciuric hypercalcemia associated with mutation in the human Ca{sup 2+}-sensing receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Aida, Kaoru; Koishi, Sawako; Inoue, Masaharu [Univ. of Yamanashi Medical School, Yamanashi (Japan)] [and others

    1995-09-01

    Familial hypocalciuric hypercalcemia (FHH) is generally characterized by lifelong hypercalcemia without hypercalciuria and is inherited in an autosomal dominant manner. Affected individuals show abnormal parathyroid and renal responses to changes in the extracellular calcium concentration. A Japanese FHH family was screened for mutations in the Ca{sup 2+} -sensing receptor gene by the polymerase chain reaction and single strand conformation polymorphism. The proband with hypercalcemia showed an abnormal pattern in exon 1 of the gene, whereas her two sisters with normocalcemia showed a normal pattern. The consanguineous parents with borderline serum calcium concentrations showed both patterns. Nucleotide sequence analysis identified a G{yields}C point mutation at nucleotide 118 that resulted in the conversion of the normal codon for proline into a codon for alanine at amino acid 40 (numbered according to the bovine complementary DNA). The proband was homozygous for the mutation, and the parents were heterozygous. These results imply that this mutation in the human Ca{sup 2+}-sensing receptor gene causes FHH and that the dosage of the gene defect determines disease phenotype. 33 refs., 4 figs., 1 tab.

  11. The observed human sperm mutation frequency cannot explain the achondroplasia paternal age effect

    Science.gov (United States)

    Tiemann-Boege, Irene; Navidi, William; Grewal, Raji; Cohn, Dan; Eskenazi, Brenda; Wyrobek, Andrew J.; Arnheim, Norman

    2002-01-01

    The lifelong spermatogonial stem cell divisions unique to male germ cell production are thought to contribute to a higher mutation frequency in males. The fact that certain de novo human genetic conditions (e.g., achondroplasia) increase in incidence with the age of the father is consistent with this idea. Although it is assumed that the paternal age effect is the result of an increasing frequency of mutant sperm as a man grows older, no direct molecular measurement of the germ-line mutation frequency has been made to confirm this hypothesis. Using sperm DNA from donors of different ages, we determined the frequency of the nucleotide substitution in the fibroblast growth factor receptor 3 (FGFR3) gene that causes achondroplasia. Surprisingly, the magnitude of the increase in mutation frequency with age appears insufficient to explain why older fathers have a greater chance of having a child with this condition. A number of alternatives may explain this discrepancy, including selection for sperm that carry the mutation or an age-dependent increase in premutagenic lesions that remain unrepaired in sperm and are inefficiently detected by the PCR assay. PMID:12397172

  12. Comparison of mitochondrial mutation spectra in ageing human colonic epithelium and disease: absence of evidence for purifying selection in somatic mitochondrial DNA point mutations

    NARCIS (Netherlands)

    Greaves, L.C.; Elson, J.L.; Nooteboom, M.; Grady, J.P.; Taylor, G.A.; Taylor, R.W.; Mathers, J.C.; Kirkwood, T.B.; Turnbull, D.M.

    2012-01-01

    Human ageing has been predicted to be caused by the accumulation of molecular damage in cells and tissues. Somatic mitochondrial DNA (mtDNA) mutations have been documented in a number of ageing tissues and have been shown to be associated with cellular mitochondrial dysfunction. It is unknown

  13. WDR62 is associated with the spindle pole and is mutated in human microcephaly

    OpenAIRE

    Nicholas, Adeline K; Khurshid, Maryam; Désir, Julie; Carvalho, Ofélia P; Cox, James J; Thornton, Gemma; Kausar, Rizwana; Ansar, Muhammad; Ahmad, Wasim; Verloes, Alain; Passemard, Sandrine; Misson, Jean-Paul; Lindsay, Susan; Gergely, Fanni; Dobyns, William B

    2010-01-01

    Autosomal recessive primary microcephaly (MCPH) is a disorder of neurodevelopment resulting in a small brain1,2. We identified WDR62 as the second most common cause of MCPH after finding homozygous missense and frame-shifting mutations in seven MCPH families. In human cell lines, we found that WDR62 is a spindle pole protein, as are ASPM and STIL, the MCPH7 and MCHP7 proteins3–5. Mutant WDR62 proteins failed to localize to the mitotic spindle pole. In human and mouse embryonic brain, we found...

  14. SysPIMP: the web-based systematical platform for identifying human disease-related mutated sequences from mass spectrometry.

    Science.gov (United States)

    Xi, Hong; Park, Jongsun; Ding, Guohui; Lee, Yong-Hwan; Li, Yixue

    2009-01-01

    Some mutations resulting in protein sequence change might be tightly related to certain human diseases by affecting its roles, such as sickle cell anemia. Until now several databases, such as PMD, OMIM and HGMD, have been developed, providing useful information about human disease-related mutation. Tandem mass spectrometry (MS) has been used for characterizing proteins in various conditions; however, there is no system in place for finding disease-related mutated proteins within the MS results. Here, a Systematical Platform for Identifying Mutated Proteins (SysPIMP; http://pimp.starflr.info/) was developed to efficiently identify human disease-related mutated proteins within MS results. SysPIMP comprises of three layers: (i) a standardized data warehouse, (ii) a pipeline layer for maintaining human disease databases and X!Tandem and BLAST and (iii) a web-based interface. From OMIM AV part, PMD and SwissProt databases, 35,497 non-redundant human disease-related mutated sequences were collected with disease information described by OMIM terms. With the interfaces to browse sequences archived in SysPIMP, X!Tandem, an open source database-search engine used to identify proteins within MS data, was integrated into SysPIMP to help support the detection of potential human disease-related mutants in MS results. In addition, together with non-redundant disease-related mutated sequences, original non-mutated sequences are also provided in SysPIMP for comparative research. Based on this system, SysPIMP will be the platform for efficiently and intensively studying human diseases caused by mutation.

  15. Mutations in the Human Ca{sup 2+}-sensing-receptor gene that cause familial hypocalciuric hypercalcemia

    Energy Technology Data Exchange (ETDEWEB)

    Yah-Huei Wu Chou [Chang Gung Memorial Hospital, Taoyuan (Taiwan, Province of China); Pollak, M.R.; Brown, E.M.; Seidman, J.G.; Seidman, C.E. [Harvard Univ., Boston, MA (United States); Brandi, M.L. [Univ. Florence (Italy); Toss, G.; Arnqvist, H. [Linkoping Univ. (Sweden)

    1995-05-01

    We report five novel mutations in the human Ca{sup 2+}-sensing-receptor gene that cause familial hypocalciuric hypercalcemia (FHH) or neonatal severe hyperparathyroidism. Each gene defect is a missense mutation that encodes a nonconservative amino acid alteration. These mutations are each predicted to be in the Ca{sup 2+}-sensing receptor`s large extracellular domain. In three families with FHH linked to the Ca{sup 2+}-sensing-receptor gene on chromosome 3 and in unrelated individuals probands with FHH, mutations were not detected in protein-coding sequences. On the basis of these data and previous analyses, we suggest that there are a wide range of mutations that cause FHH. Mutations that perturb the structure and function of the extracellular or transmembrane domains of the receptor and those that affect noncoding sequences of the Ca{sup 2+}-sensing-receptor gene can cause FHH. 23 refs., 2 figs., 1 tab.

  16. Microsatellite instability and the association with plasma homocysteine and thymidylate synthase in colorectal cancer

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Lindebjerg, Jan; Crüger, Dorthe G.

    2008-01-01

    The possible associations between microsatellite instability, homocysteine and thymidylate synthase were investigated in tumors and plasma from 130 patients with colorectal cancer. Other analyses included thymidylate synthase and 5,10-methylene-tetrahydrofolate reductase gene polymorphisms......, carcinoembryonic antigen, vitamin B12, and folate. Microsatellite instability of tumors was associated with higher levels of plasma homocysteine (p = 0.008) and higher protein expression of thymidylate synthase (p ... factors. CEA was not associated with neither homocysteine nor microsatellite instability. The data suggests that there is a more pronounced methyl unit deficiency in microsatellite instable tumors....

  17. Mutation rates of TGFBR2 and ACVR2 coding microsatellites in human cells with defective DNA mismatch repair.

    Directory of Open Access Journals (Sweden)

    Heekyung Chung

    Full Text Available Microsatellite instability promotes colonic tumorigenesis through generating frameshift mutations at coding microsatellites of tumor suppressor genes, such as TGFBR2 and ACVR2. As a consequence, signaling through these TGFbeta family receptors is abrogated in DNA Mismatch repair (MMR-deficient tumors. How these mutations occur in real time and mutational rates of these human coding sequences have not previously been studied. We utilized cell lines with different MMR deficiencies (hMLH1-/-, hMSH6-/-, hMSH3-/-, and MMR-proficient to determine mutation rates. Plasmids were constructed in which exon 3 of TGFBR2 and exon 10 of ACVR2 were cloned +1 bp out of frame, immediately after the translation initiation codon of an enhanced GFP (EGFP gene, allowing a -1 bp frameshift mutation to drive EGFP expression. Mutation-resistant plasmids were constructed by interrupting the coding microsatellite sequences, preventing frameshift mutation. Stable cell lines were established containing portions of TGFBR2 and ACVR2, and nonfluorescent cells were sorted, cultured for 7-35 days, and harvested for flow cytometric mutation detection and DNA sequencing at specific time points. DNA sequencing revealed a -1 bp frameshift mutation (A9 in TGFBR2 and A7 in ACVR2 in the fluorescent cells. Two distinct fluorescent populations, M1 (dim, representing heteroduplexes and M2 (bright, representing full mutants were identified, with the M2 fraction accumulating over time. hMLH1 deficiency revealed 11 (5.91 x 10(-4 and 15 (2.18 x 10(-4 times higher mutation rates for the TGFBR2 and ACVR2 microsatellites compared to hMSH6 deficiency, respectively. The mutation rate of the TGFBR2 microsatellite was approximately 3 times higher in both hMLH1 and hMSH6 deficiencies than the ACVR2 microsatellite. The -1 bp frameshift mutation rates of TGFBR2 and ACVR2 microsatellite sequences are dependent upon the human MMR background.

  18. Differential effects of radical scavengers on X-ray-induced mutation and cytotoxicity in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Corn, B.W.; Liber, H.L.; Little, J.B.

    1987-01-01

    The cytotoxic and mutagenic effects of X irradiation on a human lymphoblast cell line were examined in the presence of two radioprotective agents which modulate damage to DNA. The cells were treated with X rays alone or in the presence of either dimethyl sulfoxide or cysteamine. Surviving fraction and mutation to trifluorothymidine resistance (tk locus) and to 6-thioguanine resistance (hgprt locus) were measured. Survival was enhanced when the cells were irradiated in the presence of dimethyl sulfoxide; the D0 rose from 58 to 107 rad. However, at both genetic loci the induced mutant fractions were identical in the presence or absence of dimethyl sulfoxide. Survival was enhanced to a greater degree when the cells were irradiated in the presence of cysteamine; the D0 rose from 58 to 200 rad. Cysteamine also protected the cells from X-ray-induced mutation; the frequencies of X-ray-induced mutation at both the tk and hgprt loci were reduced by 50-75%. No protective effects were observed unless dimethyl sulfoxide or cysteamine was present during irradiation. These findings are discussed in terms of the hypothesis that, unlike for cell killing, radiation-induced mutagenesis in human lymphoblast cells is not mediated by the actions of aqueous free radicals, but rather by the direct effects of ionizing radiation.

  19. Mutations in CERS3 cause autosomal recessive congenital ichthyosis in humans.

    Directory of Open Access Journals (Sweden)

    Franz P W Radner

    2013-06-01

    Full Text Available Autosomal recessive congenital ichthyosis (ARCI is a rare genetic disorder of the skin characterized by abnormal desquamation over the whole body. In this study we report four patients from three consanguineous Tunisian families with skin, eye, heart, and skeletal anomalies, who harbor a homozygous contiguous gene deletion syndrome on chromosome 15q26.3. Genome-wide SNP-genotyping revealed a homozygous region in all affected individuals, including the same microdeletion that partially affects two coding genes (ADAMTS17, CERS3 and abolishes a sequence for a long non-coding RNA (FLJ42289. Whereas mutations in ADAMTS17 have recently been identified in autosomal recessive Weill-Marchesani-like syndrome in humans and dogs presenting with ophthalmologic, cardiac, and skeletal abnormalities, no disease associations have been described for CERS3 (ceramide synthase 3 and FLJ42289 so far. However, analysis of additional patients with non-syndromic ARCI revealed a splice site mutation in CERS3 indicating that a defect in ceramide synthesis is causative for the present skin phenotype of our patients. Functional analysis of patient skin and in vitro differentiated keratinocytes demonstrated that mutations in CERS3 lead to a disturbed sphingolipid profile with reduced levels of epidermis-specific very long-chain ceramides that interferes with epidermal differentiation. Taken together, these data present a novel pathway involved in ARCI development and, moreover, provide the first evidence that CERS3 plays an essential role in human sphingolipid metabolism for the maintenance of epidermal lipid homeostasis.

  20. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human.

    Science.gov (United States)

    Kielar, Michel; Tuy, Françoise Phan Dinh; Bizzotto, Sara; Lebrand, Cécile; de Juan Romero, Camino; Poirier, Karine; Oegema, Renske; Mancini, Grazia Maria; Bahi-Buisson, Nadia; Olaso, Robert; Le Moing, Anne-Gaëlle; Boutourlinsky, Katia; Boucher, Dominique; Carpentier, Wassila; Berquin, Patrick; Deleuze, Jean-François; Belvindrah, Richard; Borrell, Victor; Welker, Egbert; Chelly, Jamel; Croquelois, Alexandre; Francis, Fiona

    2014-07-01

    Neuronal migration disorders such as lissencephaly and subcortical band heterotopia are associated with epilepsy and intellectual disability. DCX, PAFAH1B1 and TUBA1A are mutated in these disorders; however, corresponding mouse mutants do not show heterotopic neurons in the neocortex. In contrast, spontaneously arisen HeCo mice display this phenotype, and our study revealed that misplaced apical progenitors contribute to heterotopia formation. While HeCo neurons migrated at the same speed as wild type, abnormally distributed dividing progenitors were found throughout the cortical wall from embryonic day 13. We identified Eml1, encoding a microtubule-associated protein, as the gene mutated in HeCo mice. Full-length transcripts were lacking as a result of a retrotransposon insertion in an intron. Eml1 knockdown mimicked the HeCo progenitor phenotype and reexpression rescued it. We further found EML1 to be mutated in ribbon-like heterotopia in humans. Our data link abnormal spindle orientations, ectopic progenitors and severe heterotopia in mouse and human.

  1. Mutations Associated with Functional Disorder of Xanthine Oxidoreductase and Hereditary Xanthinuria in Humans

    Directory of Open Access Journals (Sweden)

    Takeshi Nishino

    2012-11-01

    Full Text Available Xanthine oxidoreductase (XOR catalyzes the conversion of hypoxanthine to xanthine and xanthine to uric acid with concomitant reduction of either NAD+ or O2. The enzyme is a target of drugs to treat hyperuricemia, gout and reactive oxygen-related diseases. Human diseases associated with genetically determined dysfunction of XOR are termed xanthinuria, because of the excretion of xanthine in urine. Xanthinuria is classified into two subtypes, type I and type II. Type I xanthinuria involves XOR deficiency due to genetic defect of XOR, whereas type II xanthinuria involves dual deficiency of XOR and aldehyde oxidase (AO, a molybdoflavo enzyme similar to XOR due to genetic defect in the molybdenum cofactor sulfurase. Molybdenum cofactor deficiency is associated with triple deficiency of XOR, AO and sulfite oxidase, due to defective synthesis of molybdopterin, which is a precursor of molybdenum cofactor for all three enzymes. The present review focuses on mutation or chemical modification studies of mammalian XOR, as well as on XOR mutations identified in humans, aimed at understanding the reaction mechanism of XOR and the relevance of mutated XORs as models to estimate the possible side effects of clinical application of XOR inhibitors.

  2. Mutations associated with functional disorder of xanthine oxidoreductase and hereditary xanthinuria in humans.

    Science.gov (United States)

    Ichida, Kimiyoshi; Amaya, Yoshihiro; Okamoto, Ken; Nishino, Takeshi

    2012-11-21

    Xanthine oxidoreductase (XOR) catalyzes the conversion of hypoxanthine to xanthine and xanthine to uric acid with concomitant reduction of either NAD+ or O(2). The enzyme is a target of drugs to treat hyperuricemia, gout and reactive oxygen-related diseases. Human diseases associated with genetically determined dysfunction of XOR are termed xanthinuria, because of the excretion of xanthine in urine. Xanthinuria is classified into two subtypes, type I and type II. Type I xanthinuria involves XOR deficiency due to genetic defect of XOR, whereas type II xanthinuria involves dual deficiency of XOR and aldehyde oxidase (AO, a molybdoflavo enzyme similar to XOR) due to genetic defect in the molybdenum cofactor sulfurase. Molybdenum cofactor deficiency is associated with triple deficiency of XOR, AO and sulfite oxidase, due to defective synthesis of molybdopterin, which is a precursor of molybdenum cofactor for all three enzymes. The present review focuses on mutation or chemical modification studies of mammalian XOR, as well as on XOR mutations identified in humans, aimed at understanding the reaction mechanism of XOR and the relevance of mutated XORs as models to estimate the possible side effects of clinical application of XOR inhibitors.

  3. Screening for mutations in human alpha-globin genes by nonradioactive single-strand conformation polymorphism

    Directory of Open Access Journals (Sweden)

    Jorge S.B.

    2003-01-01

    Full Text Available Point mutations and small insertions or deletions in the human alpha-globin genes may produce alpha-chain structural variants and alpha-thalassemia. Mutations can be detected either by direct DNA sequencing or by screening methods, which select the mutated exon for sequencing. Although small (about 1 kb, 3 exons and 2 introns, the alpha-globin genes are duplicate (alpha2 and alpha1 and highy G-C rich, which makes them difficult to denature, reducing sequencing efficiency and causing frequent artifacts. We modified some conditions for PCR and electrophoresis in order to detect mutations in these genes employing nonradioactive single-strand conformation polymorphism (SSCP. Primers previously described by other authors for radioactive SSCP and phast-SSCP plus denaturing gradient gel electrophoresis were here combined and the resultant fragments (6 new besides 6 original per alpha-gene submitted to silver staining SSCP. Nine structural and one thalassemic mutations were tested, under different conditions including two electrophoretic apparatus (PhastSystem(TM and GenePhor(TM, Amersham Biosciences, different polyacrylamide gel concentrations, run temperatures and denaturing agents, and entire and restriction enzyme cut fragments. One hundred percent of sensitivity was achieved with four of the new fragments formed, using the PhastSystem(TM and 20% gels at 15ºC, without the need of restriction enzymes. This nonradioactive PCR-SSCP approach showed to be simple, rapid and sensitive, reducing the costs involved in frequent sequencing repetitions and increasing the reliability of the results. It can be especially useful for laboratories which do not have an automated sequencer.

  4. Analysis of naturally occurring mutations in the human lipodystrophy protein seipin reveals multiple potential pathogenic mechanisms.

    Science.gov (United States)

    Sim, M F Michelle; Talukder, M Mesbah Uddin; Dennis, Rowena J; O'Rahilly, Stephen; Edwardson, J Michael; Rochford, Justin J

    2013-11-01

    In humans, disruption of the gene BSCL2, encoding the protein seipin, causes congenital generalised lipodystrophy (CGL) with severe insulin resistance and dyslipidaemia. While the causative gene has been known for over a decade, the molecular functions of seipin are only now being uncovered. Most pathogenic mutations in BSCL2 represent substantial disruptions including significant deletions and frameshifts. However, several more subtle mutations have been reported that cause premature stop codons or single amino acid substitutions. Here we have examined these mutant forms of seipin to gain insight into how they may cause CGL. We generated constructs expressing mutant seipin proteins and determined their expression and localisation. We also assessed their capacity to recruit the key adipogenic phosphatidic acid phosphatase lipin 1, a recently identified molecular role of seipin in developing adipocytes. Finally, we used atomic force microscopy to define the oligomeric structure of seipin and to determine whether this is affected by the mutations. We show that the R275X mutant of seipin is not expressed in pre-adipocytes. While the other premature stop mutant forms fail to bind lipin 1 appropriately, the point mutants T78A, L91P and A212P all retain this capacity. We demonstrate that wild-type human seipin forms oligomers of 12 subunits in a circular configuration but that the L91P and A212P mutants of seipin do not. Our study represents the most comprehensive analysis so far of mutants of seipin causing lipodystrophy and reveals several different molecular mechanisms by which these mutations may cause disease.

  5. Human Ovarian Cancer Stroma Contains Luteinized Theca Cells Harboring Tumor Suppressor Gene GT198 Mutations*

    Science.gov (United States)

    Peng, Min; Zhang, Hao; Jaafar, Lahcen; Risinger, John I.; Huang, Shuang; Mivechi, Nahid F.; Ko, Lan

    2013-01-01

    Ovarian cancer is a highly lethal gynecological cancer, and its causes remain to be understood. Using a recently identified tumor suppressor gene, GT198 (PSMC3IP), as a unique marker, we searched for the identity of GT198 mutant cells in ovarian cancer. GT198 has germ line mutations in familial and early onset breast and ovarian cancers and recurrent somatic mutations in sporadic fallopian tube cancers. GT198 protein has been shown as a steroid hormone receptor coregulator and also as a crucial factor in DNA repair. In this study, using GT198 as a marker for microdissection, we find that ovarian tumor stromal cells harboring GT198 mutations are present in various types of ovarian cancer including high and low grade serous, endometrioid, mucinous, clear cell, and granulosa cell carcinomas and in precursor lesions such as inclusion cysts. The mutant stromal cells consist of a luteinized theca cell lineage at various differentiation stages including CD133+, CD44+, and CD34+ cells, although the vast majority of them are differentiated overexpressing steroidogenic enzyme CYP17, a theca cell-specific marker. In addition, wild type GT198 suppresses whereas mutant GT198 protein stimulates CYP17 expression. The chromatin-bound GT198 on the human CYP17 promoter is decreased by overexpressing mutant GT198 protein, implicating the loss of wild type suppression in mutant cells. Together, our results suggest that GT198 mutant luteinized theca cells overexpressing CYP17 are common in ovarian cancer stroma. Because first hit cancer gene mutations would specifically mark cancer-inducing cells, the identification of mutant luteinized theca cells may add crucial evidence in understanding the cause of human ovarian cancer. PMID:24097974

  6. Human ovarian cancer stroma contains luteinized theca cells harboring tumor suppressor gene GT198 mutations.

    Science.gov (United States)

    Peng, Min; Zhang, Hao; Jaafar, Lahcen; Risinger, John I; Huang, Shuang; Mivechi, Nahid F; Ko, Lan

    2013-11-15

    Ovarian cancer is a highly lethal gynecological cancer, and its causes remain to be understood. Using a recently identified tumor suppressor gene, GT198 (PSMC3IP), as a unique marker, we searched for the identity of GT198 mutant cells in ovarian cancer. GT198 has germ line mutations in familial and early onset breast and ovarian cancers and recurrent somatic mutations in sporadic fallopian tube cancers. GT198 protein has been shown as a steroid hormone receptor coregulator and also as a crucial factor in DNA repair. In this study, using GT198 as a marker for microdissection, we find that ovarian tumor stromal cells harboring GT198 mutations are present in various types of ovarian cancer including high and low grade serous, endometrioid, mucinous, clear cell, and granulosa cell carcinomas and in precursor lesions such as inclusion cysts. The mutant stromal cells consist of a luteinized theca cell lineage at various differentiation stages including CD133(+), CD44(+), and CD34(+) cells, although the vast majority of them are differentiated overexpressing steroidogenic enzyme CYP17, a theca cell-specific marker. In addition, wild type GT198 suppresses whereas mutant GT198 protein stimulates CYP17 expression. The chromatin-bound GT198 on the human CYP17 promoter is decreased by overexpressing mutant GT198 protein, implicating the loss of wild type suppression in mutant cells. Together, our results suggest that GT198 mutant luteinized theca cells overexpressing CYP17 are common in ovarian cancer stroma. Because first hit cancer gene mutations would specifically mark cancer-inducing cells, the identification of mutant luteinized theca cells may add crucial evidence in understanding the cause of human ovarian cancer.

  7. Age-associated mitochondrial DNA mutations lead to small but significant changes in cell proliferation and apoptosis in human colonic crypts.

    NARCIS (Netherlands)

    Nooteboom, M.; Johnson, R.; Taylor, R.W.; Wright, N.A.; Lightowlers, R.N.; Kirkwood, T.B.; Mathers, J.C.; Turnbull, D.M.; Greaves, L.C.

    2010-01-01

    Mitochondrial DNA (mtDNA) mutations are a cause of human disease and are proposed to have a role in human aging. Clonally expanded mtDNA point mutations have been detected in replicating tissues and have been shown to cause respiratory chain (RC) defects. The effect of these mutations on other

  8. Clinical and pathological characterization of HER2 mutations in human breast cancer: a systematic review of the literature.

    Science.gov (United States)

    Petrelli, Fausto; Tomasello, Gianluca; Barni, Sandro; Lonati, Veronica; Passalacqua, Rodolfo; Ghidini, Michele

    2017-11-01

    HER2 gene is a member of the epidermal growth factor receptor (EGFR) family. Across different malignancies, aberrations of HER2 gene commonly correspond to gain-of-function alterations leading to increased receptor signaling. We have reviewed the literature currently available on HER2 mutations in human breast cancer (BC) evaluating type and frequency of such mutations. The primary objective was to determine the frequency and the number of patients with HER2-mut in the series analyzed. The secondary objectives were to assess characteristics of mutated cases (ER and HER2 status and stage of disease, type of mutations, and finally the clinical outcome if reported). We retrieved 31 published papers, and the pooled rate of HER2 mutations across 12,905 BC patients was calculated. Overall, the frequency of HER2 mutations was 2.7% with most involving the intracellular domain. About 4% of patients were finally mutated. The predictive role was not described. Only 30% of these patients were simultaneously HER2 positive and 63% were ER positive. We have found that the prevalence of HER2 mutations is about 3%. These genic alterations are independently associated with HER2 amplification status, occurring in both ER-positive/HER2-negative diseases or HER2-enriched cancers. Ongoing trials are investigating small molecules tyrosine kinase inhibitors in patients harboring these mutations.

  9. Thymidylate synthase enhancer region: Novel allele in Indians.

    Science.gov (United States)

    Dhawan, Dipali; Padh, Harish

    2017-02-01

    Thymidylate synthase (TS) is the major target for fluoropyrimidine drugs like 5-Fluorouracil (5-FU). There are polymorphic tandem repeats in the TYMS gene enhancer region (TSER). The number of tandem repeats varies in different populations. The aim of this study was to determine the frequencies of the TSER tandem repeats (rs34743033) and compare the observed frequencies with those of other populations. This study genotyped 350 healthy individuals by Polymerase Chain Reaction (PCR). A novel allele *1 (only a single repeat) was observed in four individuals, the individuals were heterozygous (TSER*1/*2) for TYMS. Another variant rs2853542 affecting the expression of Thymidylate synthase was also analysed. The observed genotype frequencies were compared with frequencies observed in other populations for understanding differences between various population groups. There was a statistically significant difference between Indians and Chinese, Kenyans, Ghanians, African-Americans, Americans of European Ancestry, British, Hungarians, Turkish, Australians and Brazilians. This study identified a novel single repeat in the TYMS gene which might have an impact on the expression of this gene, which needs to be confirmed by functional studies.

  10. Cross-comparison of the genome sequences from human, chimpanzee, Neanderthal and a Denisovan hominin identifies novel potentially compensated mutations

    Directory of Open Access Journals (Sweden)

    Zhang Guojie

    2011-07-01

    Full Text Available Abstract The recent publication of the draft genome sequences of the Neanderthal and a ~50,000-year-old archaic hominin from Denisova Cave in southern Siberia has ushered in a new age in molecular archaeology. We previously cross-compared the human, chimpanzee and Neanderthal genome sequences with respect to a set of disease-causing/disease-associated missense and regulatory mutations (Human Gene Mutation Database and succeeded in identifying genetic variants which, although apparently pathogenic in humans, may represent a 'compensated' wild-type state in at least one of the other two species. Here, in an attempt to identify further 'potentially compensated mutations' (PCMs of interest, we have compared our dataset of disease-causing/disease-associated mutations with their corresponding nucleotide positions in the Denisovan hominin, Neanderthal and chimpanzee genomes. Of the 15 human putatively disease-causing mutations that were found to be compensated in chimpanzee, Denisovan or Neanderthal, only a solitary F5 variant (Val1736Met was specific to the Denisovan. In humans, this missense mutation is associated with activated protein C resistance and an increased risk of thromboembolism and recurrent miscarriage. It is unclear at this juncture whether this variant was indeed a PCM in the Denisovan or whether it could instead have been associated with disease in this ancient hominin.

  11. Cross-comparison of the genome sequences from human, chimpanzee, Neanderthal and a Denisovan hominin identifies novel potentially compensated mutations.

    Science.gov (United States)

    Zhang, Guojie; Pei, Zhang; Ball, Edward V; Mort, Matthew; Kehrer-Sawatzki, Hildegard; Cooper, David N

    2011-07-01

    The recent publication of the draft genome sequences of the Neanderthal and a ∼50,000-year-old archaic hominin from Denisova Cave in southern Siberia has ushered in a new age in molecular archaeology. We previously cross-compared the human, chimpanzee and Neanderthal genome sequences with respect to a set of disease-causing/disease-associated missense and regulatory mutations (Human Gene Mutation Database) and succeeded in identifying genetic variants which, although apparently pathogenic in humans, may represent a 'compensated' wild-type state in at least one of the other two species. Here, in an attempt to identify further 'potentially compensated mutations' (PCMs) of interest, we have compared our dataset of disease-causing/disease-associated mutations with their corresponding nucleotide positions in the Denisovan hominin, Neanderthal and chimpanzee genomes. Of the 15 human putatively disease-causing mutations that were found to be compensated in chimpanzee, Denisovan or Neanderthal, only a solitary F5 variant (Val1736Met) was specific to the Denisovan. In humans, this missense mutation is associated with activated protein C resistance and an increased risk of thromboembolism and recurrent miscarriage. It is unclear at this juncture whether this variant was indeed a PCM in the Denisovan or whether it could instead have been associated with disease in this ancient hominin.

  12. WDR62 is associated with the spindle pole and is mutated in human microcephaly.

    Science.gov (United States)

    Nicholas, Adeline K; Khurshid, Maryam; Désir, Julie; Carvalho, Ofélia P; Cox, James J; Thornton, Gemma; Kausar, Rizwana; Ansar, Muhammad; Ahmad, Wasim; Verloes, Alain; Passemard, Sandrine; Misson, Jean-Paul; Lindsay, Susan; Gergely, Fanni; Dobyns, William B; Roberts, Emma; Abramowicz, Marc; Woods, C Geoffrey

    2010-11-01

    Autosomal recessive primary microcephaly (MCPH) is a disorder of neurodevelopment resulting in a small brain. We identified WDR62 as the second most common cause of MCPH after finding homozygous missense and frame-shifting mutations in seven MCPH families. In human cell lines, we found that WDR62 is a spindle pole protein, as are ASPM and STIL, the MCPH7 and MCHP7 proteins. Mutant WDR62 proteins failed to localize to the mitotic spindle pole. In human and mouse embryonic brain, we found that WDR62 expression was restricted to neural precursors undergoing mitosis. These data lend support to the hypothesis that the exquisite control of the cleavage furrow orientation in mammalian neural precursor cell mitosis, controlled in great part by the centrosomes and spindle poles, is critical both in causing MCPH when perturbed and, when modulated, generating the evolutionarily enlarged human brain.

  13. Hypomorphic mutation of ZAP70 in human results in a late onset immunodeficiency and no autoimmunity.

    Science.gov (United States)

    Picard, Capucine; Dogniaux, Stéphanie; Chemin, Karine; Maciorowski, Zofia; Lim, Annick; Mazerolles, Fabienne; Rieux-Laucat, Frédéric; Stolzenberg, Marie-Claude; Debre, Marianne; Magny, Jean-Paul; Le Deist, Françoise; Fischer, Alain; Hivroz, Claire

    2009-07-01

    Complete lack of function of the tyrosine kinase ZAP70 in humans results in a severe immunodeficiency, characterized by a lack of mature CD8(+) T cells and non-functional CD4(+) T cells. We report herein an immunodeficiency with an inherited hypomorphic mutation of ZAP70 due to a single G-to-A substitution in a non-coding intron. This mutation introduces a new acceptor splice site and allows low levels of normal alternative splicing and of WT ZAP70 expression. This partial deficiency results in a compromised TCR signaling that was totally restored by increased expression of ZAP70, demonstrating that defective activation of the patient T cells was indeed caused by the low level of ZAP70 expression. This partial ZAP70 deficiency was associated with an attenuated clinical and immunological phenotype as compared with complete ZAP70 deficiency. CD4(+) helper T-cell populations including, follicular helper T cells, Th1, Th17 and Treg were detected in the blood. Finally, the patient had no manifestation of autoimmunity suggesting that the T-cell tolerogenic functions were not compromised, in contrast to what has been observed in mice carrying hypomorphic mutations of Zap70. This report extends the phenotype spectrum of ZAP70 deficiency with a residual function of ZAP70.

  14. Mutations in the dopamine beta-hydroxylase gene are associated with human norepinephrine deficiency

    Science.gov (United States)

    Kim, Chun-Hyung; Zabetian, Cyrus P.; Cubells, Joseph F.; Cho, Sonhae; Biaggioni, Italo; Cohen, Bruce M.; Robertson, David; Kim, Kwang-Soo

    2002-01-01

    Norepinephrine (NE), a key neurotransmitter of the central and peripheral nervous systems, is synthesized by dopamine beta-hydroxylase (DBH) that catalyzes oxidation of dopamine (DA) to NE. NE deficiency is a congenital disorder of unknown etiology, in which affected patients suffer profound autonomic failure. Biochemical features of the syndrome include undetectable tissue and circulating levels of NE and epinephrine, elevated levels of DA, and undetectable levels of DBH. Here, we report identification of seven novel variants including four potentially pathogenic mutations in the human DBH gene (OMIM 223360) from analysis of two unrelated patients and their families. Both patients are compound heterozygotes for variants affecting expression of DBH protein. Each carries one copy of a T-->C transversion in the splice donor site of DBH intron 1, creating a premature stop codon. In patient 1, there is a missense mutation in DBH exon 2. Patient 2 carries missense mutations in exons 1 and 6 residing in cis. We propose that NE deficiency is an autosomal recessive disorder resulting from heterogeneous molecular lesions at DBH. Copyright 2002 Wiley-Liss, Inc.

  15. Physiology of SLC12 transporters: lessons from inherited human genetic mutations and genetically engineered mouse knockouts.

    Science.gov (United States)

    Gagnon, Kenneth B; Delpire, Eric

    2013-04-15

    Among the over 300 members of the solute carrier (SLC) group of integral plasma membrane transport proteins are the nine electroneutral cation-chloride cotransporters belonging to the SLC12 gene family. Seven of these transporters have been functionally described as coupling the electrically silent movement of chloride with sodium and/or potassium. Although in silico analysis has identified two additional SLC12 family members, no physiological role has been ascribed to the proteins encoded by either the SLC12A8 or the SLC12A9 genes. Evolutionary conservation of this gene family from protists to humans confirms their importance. A wealth of physiological, immunohistochemical, and biochemical studies have revealed a great deal of information regarding the importance of this gene family to human health and disease. The sequencing of the human genome has provided investigators with the capability to link several human diseases with mutations in the genes encoding these plasma membrane proteins. The availability of bacterial artificial chromosomes, recombination engineering techniques, and the mouse genome sequence has simplified the creation of targeting constructs to manipulate the expression/function of these cation-chloride cotransporters in the mouse in an attempt to recapitulate some of these human pathologies. This review will summarize the three human disorders that have been linked to the mutation/dysfunction of the Na-Cl, Na-K-2Cl, and K-Cl cotransporters (i.e., Bartter's, Gitleman's, and Andermann's syndromes), examine some additional pathologies arising from genetically modified mouse models of these cotransporters including deafness, blood pressure, hyperexcitability, and epithelial transport deficit phenotypes.

  16. Short Tandem Repeats in Human Exons: A Target for Disease Mutations

    Directory of Open Access Journals (Sweden)

    Villesen Palle

    2008-09-01

    Full Text Available Abstract Background In recent years it has been demonstrated that structural variations, such as indels (insertions and deletions, are common throughout the genome, but the implications of structural variations are still not clearly understood. Long tandem repeats (e.g. microsatellites or simple repeats are known to be hypermutable (indel-rich, but are rare in exons and only occasionally associated with diseases. Here we focus on short (imperfect tandem repeats (STRs which fall below the radar of conventional tandem repeat detection, and investigate whether STRs are targets for disease-related mutations in human exons. In particular, we test whether they share the hypermutability of the longer tandem repeats and whether disease-related genes have a higher STR content than non-disease-related genes. Results We show that validated human indels are extremely common in STR regions compared to non-STR regions. In contrast to longer tandem repeats, our definition of STRs found them to be present in exons of most known human genes (92%, 99% of all STR sequences in exons are shorter than 33 base pairs and 62% of all STR sequences are imperfect repeats. We also demonstrate that STRs are significantly overrepresented in disease-related genes in both human and mouse. These results are preserved when we limit the analysis to STRs outside known longer tandem repeats. Conclusion Based on our findings we conclude that STRs represent hypermutable regions in the human genome that are linked to human disease. In addition, STRs constitute an obvious target when screening for rare mutations, because of the relatively low amount of STRs in exons (1,973,844 bp and the limited length of STR regions.

  17. Paternal age effect mutations and selfish spermatogonial selection: causes and consequences for human disease.

    Science.gov (United States)

    Goriely, Anne; Wilkie, Andrew O M

    2012-02-10

    Advanced paternal age has been associated with an increased risk for spontaneous congenital disorders and common complex diseases (such as some cancers, schizophrenia, and autism), but the mechanisms that mediate this effect have been poorly understood. A small group of disorders, including Apert syndrome (caused by FGFR2 mutations), achondroplasia, and thanatophoric dysplasia (FGFR3), and Costello syndrome (HRAS), which we collectively term "paternal age effect" (PAE) disorders, provides a good model to study the biological and molecular basis of this phenomenon. Recent evidence from direct quantification of PAE mutations in sperm and testes suggests that the common factor in the paternal age effect lies in the dysregulation of spermatogonial cell behavior, an effect mediated molecularly through the growth factor receptor-RAS signal transduction pathway. The data show that PAE mutations, although arising rarely, are positively selected and expand clonally in normal testes through a process akin to oncogenesis. This clonal expansion, which is likely to take place in the testes of all men, leads to the relative enrichment of mutant sperm over time-explaining the observed paternal age effect associated with these disorders-and in rare cases to the formation of testicular tumors. As regulation of RAS and other mediators of cellular proliferation and survival is important in many different biological contexts, for example during tumorigenesis, organ homeostasis and neurogenesis, the consequences of selfish mutations that hijack this process within the testis are likely to extend far beyond congenital skeletal disorders to include complex diseases, such as neurocognitive disorders and cancer predisposition. Copyright © 2012 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. Computational analysis of the human sinus node action potential: model development and effects of mutations.

    Science.gov (United States)

    Fabbri, Alan; Fantini, Matteo; Wilders, Ronald; Severi, Stefano

    2017-04-01

    We constructed a comprehensive mathematical model of the spontaneous electrical activity of a human sinoatrial node (SAN) pacemaker cell, starting from the recent Severi-DiFrancesco model of rabbit SAN cells. Our model is based on electrophysiological data from isolated human SAN pacemaker cells and closely matches the action potentials and calcium transient that were recorded experimentally. Simulated ion channelopathies explain the clinically observed changes in heart rate in corresponding mutation carriers, providing an independent qualitative validation of the model. The model shows that the modulatory role of the 'funny current' (I f ) in the pacing rate of human SAN pacemaker cells is highly similar to that of rabbit SAN cells, despite its considerably lower amplitude. The model may prove useful in the design of experiments and the development of heart-rate modulating drugs. The sinoatrial node (SAN) is the normal pacemaker of the mammalian heart.  Over several decades, a large amount of data on the ionic mechanisms underlying the spontaneous electrical activity of SAN pacemaker cells has been obtained, mostly in experiments on single cells isolated from rabbit SAN. This wealth of data has allowed the development of mathematical models of the electrical activity of rabbit SAN pacemaker cells. The present study aimed to construct a comprehensive model of the electrical activity of a human SAN pacemaker cell using recently obtained electrophysiological data from human SAN pacemaker cells.  We based our model on the recent Severi-DiFrancesco model of a rabbit SAN pacemaker cell. The action potential and calcium transient of the resulting model are close to the experimentally recorded values. The model has a much smaller 'funny current' (I f ) than do rabbit cells, although its modulatory role is highly similar. Changes in pacing rate upon the implementation of mutations associated with sinus node dysfunction agree with the clinical observations. This agreement

  19. The impact of recent population history on the deleterious mutation load in humans and close evolutionary relatives.

    Science.gov (United States)

    Simons, Yuval B; Sella, Guy

    2016-12-01

    Over the past decade, there has been both great interest and confusion about whether recent demographic events-notably the Out-of-Africa-bottleneck and recent population growth-have led to differences in mutation load among human populations. The confusion can be traced to the use of different summary statistics to measure load, which lead to apparently conflicting results. We argue, however, that when statistics more directly related to load are used, the results of different studies and data sets consistently reveal little or no difference in the load of non-synonymous mutations among human populations. Theory helps to understand why no such differences are seen, as well as to predict in what settings they are to be expected. In particular, as predicted by modeling, there is evidence for changes in the load of recessive loss of function mutations in founder and inbred human populations. Also as predicted, eastern subspecies of gorilla, Neanderthals and Denisovans, who are thought to have undergone reductions in population sizes that exceed the human Out-of-Africa bottleneck in duration and severity, show evidence for increased load of non-synonymous mutations (relative to western subspecies of gorillas and modern humans, respectively). A coherent picture is thus starting to emerge about the effects of demographic history on the mutation load in populations of humans and close evolutionary relatives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease.

    Science.gov (United States)

    Cooper, David N; Bacolla, Albino; Férec, Claude; Vasquez, Karen M; Kehrer-Sawatzki, Hildegard; Chen, Jian-Min

    2011-10-01

    Different types of human gene mutation may vary in size, from structural variants (SVs) to single base-pair substitutions, but what they all have in common is that their nature, size and location are often determined either by specific characteristics of the local DNA sequence environment or by higher order features of the genomic architecture. The human genome is now recognized to contain "pervasive architectural flaws" in that certain DNA sequences are inherently mutation prone by virtue of their base composition, sequence repetitivity and/or epigenetic modification. Here, we explore how the nature, location and frequency of different types of mutation causing inherited disease are shaped in large part, and often in remarkably predictable ways, by the local DNA sequence environment. The mutability of a given gene or genomic region may also be influenced indirectly by a variety of noncanonical (non-B) secondary structures whose formation is facilitated by the underlying DNA sequence. Since these non-B DNA structures can interfere with subsequent DNA replication and repair and may serve to increase mutation frequencies in generalized fashion (i.e., both in the context of subtle mutations and SVs), they have the potential to serve as a unifying concept in studies of mutational mechanisms underlying human inherited disease. © 2011 Wiley-Liss, Inc.

  1. The role of human demographic history in determining the distribution and frequency of transferase-deficient galactosaemia mutations.

    LENUS (Irish Health Repository)

    Flanagan, J M

    2010-02-01

    Classical or transferase-deficient galactosaemia is an inherited metabolic disorder caused by mutation in the human Galactose-1-phosphate uridyl transferase (GALT) gene. Of some 170 causative mutations reported, fewer than 10% are observed in more than one geographic region or ethnic group. To better understand the population history of the common GALT mutations, we have established a haplotyping system for the GALT locus incorporating eight single nucleotide polymorphisms and three short tandem repeat markers. We analysed haplotypes associated with the three most frequent GALT gene mutations, Q188R, K285N and Duarte-2 (D2), and estimated their age. Haplotype diversity, in conjunction with measures of genetic diversity and of linkage disequilibrium, indicated that Q188R and K285N are European mutations. The Q188R mutation arose in central Europe within the last 20 000 years, with its observed east-west cline of increasing relative allele frequency possibly being due to population expansion during the re-colonization of Europe by Homo sapiens in the Mesolithic age. K285N was found to be a younger mutation that originated in Eastern Europe and is probably more geographically restricted as it arose after all major European population expansions. The D2 variant was found to be an ancient mutation that originated before the expansion of Homo sapiens out of Africa.

  2. Two mutational hotspots in the interleukin-2 receptor {gamma} chain gene causing human X-linked severe combined immunodeficiency

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, A.E.; Puck, J.M. [National Institutes of Health, Bethesda, MD (United States); Buckley, R.H. [and others

    1995-09-01

    Human severe combined immunodeficiency (SCID), a syndrome of profoundly impaired cellular and humoral immunity, is most commonly caused by mutations in the X-linked gene for interleukin-2 (IL-2) receptor {gamma} chain (IL2RG). For mutational analysis of IL2RG in males with SCID, SSCP screening was followed by DNA sequencing. Of 40 IL2RG mutations found in unrelated SCID patients, 6 were point mutations at the CpG dinucleotide at cDNA 690-691, encoding amino acid R226. This residue lies in the extracellular domain of the protein in a region not previously recognized to be significantly conserved in the cytokine receptor gene family, 11 amino acids upstream from the highly conserved WSXWS motif. Three additional instances of mutation at another CpG dinucleotide at cDNA 879 produced a premature termination signal in the intracellular domain of IL2RG, resulting in loss of the SH2-homologous intracellular domain known to be essential for signaling from the IL-2 receptor complex. Mutations at these two hotspots constitute >20% of the X-linked SCID mutations found by our group and a similar proportion of all reported IL2RG mutations. 41 refs., 5 figs., 1 tab.

  3. Disruption of Dopamine Neuron Activity Pattern Regulation through Selective Expression of a Human KCNN3 Mutation

    Science.gov (United States)

    Soden, Marta E.; Jones, Graham L.; Sanford, Christina A.; Chung, Amanda S.; Güler, Ali D.; Chavkin, Charles; Luján, Rafael; Zweifel, Larry S.

    2013-01-01

    Summary The calcium-activated small conductance potassium channel, SK3, plays an essential role in the regulation of dopamine neuron activity patterns. Here we demonstrate that expression of a human disease-related SK3 mutation (hSK3Δ) in dopamine neurons of mice disrupts the balance between tonic and phasic dopamine neuron activity. Expression of hSK3Δ suppressed endogenous SK currents, reducing coupling between SK channels and NMDA receptors (NMDARs) and increasing permissiveness for burst firing. Consistent with enhanced excitability of dopamine neurons, hSK3Δ increased evoked calcium signals in dopamine neurons in vivo and potentiated evoked dopamine release. Specific expression of hSK3Δ led to deficits in attention and sensory gating and heightened sensitivity to a psychomimetic drug. Sensory-motor alterations and psychomimetic sensitivity were recapitulated in a mouse model of transient, reversible dopamine neuron activation. These results demonstrate the cell-autonomous effects of a human ion channel mutation on dopamine neuron physiology and the impact of activity pattern disruption on behavior. PMID:24206670

  4. Myogenic Differentiation from MYOGENIN-Mutated Human iPS Cells by CRISPR/Cas9

    Directory of Open Access Journals (Sweden)

    Koki Higashioka

    2017-01-01

    Full Text Available It is well known that myogenic regulatory factors encoded by the Myod1 family of genes have pivotal roles in myogenesis, with partially overlapping functions, as demonstrated for the mouse embryo. Myogenin-mutant mice, however, exhibit severe myogenic defects without compensation by other myogenic factors. MYOGENIN might be expected to have an analogous function in human myogenic cells. To verify this hypothesis, we generated MYOGENIN-mutated human iPS cells by using CRISPR/Cas9 genome-editing technology. Our results suggest that MYOD1-independent or MYOD1-dependent mechanisms can compensate for the loss of MYOGENIN and that these mechanisms are likely to be crucial for regulating skeletal muscle differentiation and formation.

  5. Assessing the evolutionary impact of amino acid mutations in the human genome

    DEFF Research Database (Denmark)

    Boyko, Adam R; Williamson, Scott H; Indap, Amit R

    2008-01-01

    with non-stationary demographic history (such as that of modern humans). Application of our method to 47,576 coding SNPs found by direct resequencing of 11,404 protein coding-genes in 35 individuals (20 European Americans and 15 African Americans) allows us to assess the relative contribution......Quantifying the distribution of fitness effects among newly arising mutations in the human genome is key to resolving important debates in medical and evolutionary genetics. Here, we present a method for inferring this distribution using Single Nucleotide Polymorphism (SNP) data from a population...... genetic variation affecting disease phenotype may be missed by this widely used approach for mapping genes underlying complex traits....

  6. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity.

    Science.gov (United States)

    Dolinska, Monika B; Kovaleva, Elena; Backlund, Peter; Wingfield, Paul T; Brooks, Brian P; Sergeev, Yuri V

    2014-01-01

    Tyrosinase (TYR) catalyzes the rate-limiting, first step in melanin production and its gene (TYR) is mutated in many cases of oculocutaneous albinism (OCA1), an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes. The intra-melanosomal domain of human tyrosinase (residues 19-469) and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure. The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure - function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.

  7. Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity.

    Directory of Open Access Journals (Sweden)

    Monika B Dolinska

    Full Text Available Tyrosinase (TYR catalyzes the rate-limiting, first step in melanin production and its gene (TYR is mutated in many cases of oculocutaneous albinism (OCA1, an autosomal recessive cause of childhood blindness. Patients with reduced TYR activity are classified as OCA1B; some OCA1B mutations are temperature-sensitive. Therapeutic research for OCA1 has been hampered, in part, by the absence of purified, active, recombinant wild-type and mutant human enzymes.The intra-melanosomal domain of human tyrosinase (residues 19-469 and two OCA1B related temperature-sensitive mutants, R422Q and R422W were expressed in insect cells and produced in T. ni larvae. The short trans-membrane fragment was deleted to avoid potential protein insolubility, while preserving all other functional features of the enzymes. Purified tyrosinase was obtained with a yield of >1 mg per 10 g of larval biomass. The protein was a monomeric glycoenzyme with maximum enzyme activity at 37°C and neutral pH. The two purified mutants when compared to the wild-type protein were less active and temperature sensitive. These differences are associated with conformational perturbations in secondary structure.The intramelanosomal domains of recombinant wild-type and mutant human tyrosinases are soluble monomeric glycoproteins with activities which mirror their in vivo function. This advance allows for the structure - function analyses of different mutant TYR proteins and correlation with their corresponding human phenotypes; it also provides an important tool to discover drugs that may improve tyrosinase activity and treat OCA1.

  8. Targeting of Helicobacter pylori thymidylate synthase ThyX by non-mitotoxic hydroxy-naphthoquinones.

    Science.gov (United States)

    Skouloubris, Stéphane; Djaout, Kamel; Lamarre, Isabelle; Lambry, Jean-Christophe; Anger, Karine; Briffotaux, Julien; Liebl, Ursula; de Reuse, Hilde; Myllykallio, Hannu

    2015-06-01

    ThyX is an essential thymidylate synthase that is mechanistically and structurally unrelated to the functionally analogous human enzyme, thus providing means for selective inhibition of bacterial growth. To identify novel compounds with anti-bacterial activity against the human pathogenic bacterium Helicobacter pylori, based on our earlier biochemical and structural analyses, we designed a series of eighteen 2-hydroxy-1,4-naphthoquinones (2-OH-1,4-NQs) that target HpThyX. Our lead-like molecules markedly inhibited the NADPH oxidation and 2'-deoxythymidine-5'-monophosphate-forming activities of HpThyX enzyme in vitro, with inhibitory constants in the low nanomolar range. The identification of non-cytotoxic and non-mitotoxic 2-OH-1,4-NQ inhibitors permitted testing their in vivo efficacy in a mouse model for H. pylori infections. Despite the widely assumed toxicity of naphthoquinones (NQs), we identified tight-binding ThyX inhibitors that were tolerated in mice and can be associated with a modest effect in reducing the number of colonizing bacteria. Our results thus provide proof-of-concept that targeting ThyX enzymes is a highly feasible strategy for the development of therapies against H. pylori and a high number of other ThyX-dependent pathogenic bacteria. We also demonstrate that chemical reactivity of NQs does not prevent their exploitation as anti-microbial compounds, particularly when mitotoxicity screening is used to prioritize these compounds for further experimentation.

  9. Altered heme catabolism by heme oxygenase-1 caused by mutations in human NADPH cytochrome P450 reductase

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Amit V., E-mail: amit@pandeylab.org [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH-3004 Bern (Switzerland); Flueck, Christa E.; Mullis, Primus E. [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH-3004 Bern (Switzerland)

    2010-09-24

    Research highlights: {yields} Mutations in POR identified from patients lead to reduced HO-1 activities. {yields} POR mutation Y181D affecting FMN binding results in total loss of HO-1 activity. {yields} POR mutations A287P, C569Y and V608F, lost 50-70% activity. {yields} Mutations in FAD binding domain, R457H, Y459H and V492E lost all HO-1 activity. {yields} POR polymorphisms P228L, R316W, G413S, A503V and G504R have normal activity. -- Abstract: Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare form of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.

  10. Distinct pattern of TP53 mutations in human immunodeficiency virus-related head and neck squamous cell carcinoma.

    Science.gov (United States)

    Gleber-Netto, Frederico O; Zhao, Mei; Trivedi, Sanchit; Wang, Jiping; Jasser, Samar; McDowell, Christina; Kadara, Humam; Zhang, Jiexin; Wang, Jing; William, William N; Lee, J Jack; Nguyen, Minh Ly; Pai, Sara I; Walline, Heather M; Shin, Dong M; Ferris, Robert L; Carey, Thomas E; Myers, Jeffrey N; Pickering, Curtis R

    2018-01-01

    Human immunodeficiency virus-infected individuals (HIVIIs) have a higher incidence of head and neck squamous cell carcinoma (HNSCC), and clinical and histopathological differences have been observed in their tumors in comparison with those of HNSCC patients without a human immunodeficiency virus (HIV) infection. The reasons for these differences are not clear, and molecular differences between HIV-related HNSCC and non-HIV-related HNSCC may exist. This study compared the mutational patterns of HIV-related HNSCC and non-HIV-related HNSCC. The DNA of 20 samples of HIV-related HNSCCs and 32 samples of non-HIV-related HNSCCs was sequenced. DNA libraries covering exons of 18 genes frequently mutated in HNSCC (AJUBA, CASP8, CCND1, CDKN2A, EGFR, FAT1, FBXW7, HLA-A, HRAS, KEAP1, NFE2L2, NOTCH1, NOTCH2, NSD1, PIK3CA, TGFBR2, TP53, and TP63) were prepared and sequenced on an Ion Personal Genome Machine sequencer. DNA sequencing data were analyzed with Ion Reporter software. The human papillomavirus (HPV) status of the tumor samples was assessed with in situ hybridization, the MassARRAY HPV multiplex polymerase chain reaction assay, and p16 immunostaining. Mutation calls were compared among the studied groups. HIV-related HNSCC revealed a distinct pattern of mutations in comparison with non-HIV-related HNSCC. TP53 mutation frequencies were significantly lower in HIV-related HNSCC. Mutations in HIV+ patients tended to be TpC>T nucleotide changes for all mutated genes but especially for TP53. HNSCC in HIVIIs presents a distinct pattern of genetic mutations, particularly in the TP53 gene. HIV-related HNSCC may have a distinct biology, and an effect of the HIV virus on the pathogenesis of these tumors should not be ruled out. Cancer 2018;124:84-94. © 2017 American Cancer Society. © 2017 American Cancer Society.

  11. Transformation of Bacillus Subtilis with cloned thymidylate synthetases

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Edward M. [Univ. of Rochester, NY (United States). Dept. of Radiation Biology and Biophysics

    1980-01-01

    Bacillus subtilis carries two genes, thyA and thyB, each encoding different protein products, with thymidylate synthetase (TSase) activity. Either of these genes alone is sufficient for thymidine independence in B. subtilis. In addition there exist two B. subtilis temperate bacteriophages which upon infection of thymine requiring auxotrophs results in conversion of the organism to thymine independence. Chimeric plasmids selected for Thy+ transforming activity in E. coli were constructed and then used as a source of defined highly enriched DNA with which to transform competent B. subtilis. These plasmids were studied for their: (1) abiility to transform B. subtilis to thymine independence; (2) site of integration within the B. subtilis chromosome upon transformation; (3) phenotype of Thy+ plasmid generated transformants; and (4) nucleotide sequence homology among the cloned DNA fragments conferring thymine independence. Plasmids containing the two bacteriophage thy genes displayed the phenotype associated with thyA, whereas the plasmids containing the cloned B. subtilis chromosomal genes displayed the phenotype associated with thyB. Utilizing similar technology, the ability of an entirely foreign hybred bacterial plasmiid to transform B. subtilis was examined. In this case the gene from E. coli encoding thymidylate synthetase was cloned in the plasmid pBR322. The resulting chimeric plasmid was effective in transforming both E. coli and B. subtilis to thymine prototrophy. Uncloned linear E. coli chromosomal DNA was unable to transform thymine requiring strains of B. subtilis to thymine independence. Although the Thy/sup +/ transformants of E. coli contained plasmid DNA, the Thy+ transformants derived from the transformation of B. subtilis did not contain detectable extrachromosomal DNA. Instead the DNA from the chimeric plasmid was integrated into the chromosome of B. subtilis. (ERB)

  12. Keratin Hypersumoylation Alters Filament Dynamics and Is a Marker for Human Liver Disease and Keratin Mutation*

    Science.gov (United States)

    Snider, Natasha T.; Weerasinghe, Sujith V. W.; Iñiguez-Lluhí, Jorge A.; Herrmann, Harald; Omary, M. Bishr

    2011-01-01

    Keratin polypeptide 8 (K8) associates noncovalently with its partners K18 and/or K19 to form the intermediate filament cytoskeleton of hepatocytes and other simple-type epithelial cells. Human K8, K18, and K19 variants predispose to liver disease, whereas site-specific keratin phosphorylation confers hepatoprotection. Because stress-induced protein phosphorylation regulates sumoylation, we hypothesized that keratins are sumoylated in an injury-dependent manner and that keratin sumoylation is an important regulatory modification. We demonstrate that K8/K18/K19, epidermal keratins, and vimentin are sumoylated in vitro. Upon transfection, K8, K18, and K19 are modified by poly-SUMO-2/3 chains on Lys-285/Lys-364 (K8), Lys-207/Lys-372 (K18), and Lys-208 (K19). Sumoylation affects filament organization and stimulus-induced keratin solubility and is partially inhibited upon mutation of one of three known K8 phosphorylation sites. Extensive sumoylation occurs in cells transfected with individual K8, K18, or K19 but is limited upon heterodimerization (K8/K18 or K8/K19) in the absence of stress. In contrast, keratin sumoylation is significantly augmented in cells and tissues during apoptosis, oxidative stress, and phosphatase inhibition. Poly-SUMO-2/3 conjugates are present in chronically injured but not normal, human, and mouse livers along with polyubiquitinated and large insoluble keratin-containing complexes. Notably, common human K8 liver disease-associated variants trigger keratin hypersumoylation with consequent diminished solubility. In contrast, modest sumoylation of wild type K8 promotes solubility. Hence, conformational changes induced by keratin natural mutations and extensive tissue injury result in K8/K18/K19 hypersumoylation, which retains keratins in an insoluble compartment, thereby limiting their cytoprotective function. PMID:21062750

  13. Keratin hypersumoylation alters filament dynamics and is a marker for human liver disease and keratin mutation.

    Science.gov (United States)

    Snider, Natasha T; Weerasinghe, Sujith V W; Iñiguez-Lluhí, Jorge A; Herrmann, Harald; Omary, M Bishr

    2011-01-21

    Keratin polypeptide 8 (K8) associates noncovalently with its partners K18 and/or K19 to form the intermediate filament cytoskeleton of hepatocytes and other simple-type epithelial cells. Human K8, K18, and K19 variants predispose to liver disease, whereas site-specific keratin phosphorylation confers hepatoprotection. Because stress-induced protein phosphorylation regulates sumoylation, we hypothesized that keratins are sumoylated in an injury-dependent manner and that keratin sumoylation is an important regulatory modification. We demonstrate that K8/K18/K19, epidermal keratins, and vimentin are sumoylated in vitro. Upon transfection, K8, K18, and K19 are modified by poly-SUMO-2/3 chains on Lys-285/Lys-364 (K8), Lys-207/Lys-372 (K18), and Lys-208 (K19). Sumoylation affects filament organization and stimulus-induced keratin solubility and is partially inhibited upon mutation of one of three known K8 phosphorylation sites. Extensive sumoylation occurs in cells transfected with individual K8, K18, or K19 but is limited upon heterodimerization (K8/K18 or K8/K19) in the absence of stress. In contrast, keratin sumoylation is significantly augmented in cells and tissues during apoptosis, oxidative stress, and phosphatase inhibition. Poly-SUMO-2/3 conjugates are present in chronically injured but not normal, human, and mouse livers along with polyubiquitinated and large insoluble keratin-containing complexes. Notably, common human K8 liver disease-associated variants trigger keratin hypersumoylation with consequent diminished solubility. In contrast, modest sumoylation of wild type K8 promotes solubility. Hence, conformational changes induced by keratin natural mutations and extensive tissue injury result in K8/K18/K19 hypersumoylation, which retains keratins in an insoluble compartment, thereby limiting their cytoprotective function.

  14. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene.

    Science.gov (United States)

    Meindl, Alfons; Hellebrand, Heide; Wiek, Constanze; Erven, Verena; Wappenschmidt, Barbara; Niederacher, Dieter; Freund, Marcel; Lichtner, Peter; Hartmann, Linda; Schaal, Heiner; Ramser, Juliane; Honisch, Ellen; Kubisch, Christian; Wichmann, Hans E; Kast, Karin; Deissler, Helmut; Engel, Christoph; Müller-Myhsok, Bertram; Neveling, Kornelia; Kiechle, Marion; Mathew, Christopher G; Schindler, Detlev; Schmutzler, Rita K; Hanenberg, Helmut

    2010-05-01

    Germline mutations in a number of genes involved in the recombinational repair of DNA double-strand breaks are associated with predisposition to breast and ovarian cancer. RAD51C is essential for homologous recombination repair, and a biallelic missense mutation can cause a Fanconi anemia-like phenotype. In index cases from 1,100 German families with gynecological malignancies, we identified six monoallelic pathogenic mutations in RAD51C that confer an increased risk for breast and ovarian cancer. These include two frameshift-causing insertions, two splice-site mutations and two nonfunctional missense mutations. The mutations were found exclusively within 480 pedigrees with the occurrence of both breast and ovarian tumors (BC/OC; 1.3%) and not in 620 pedigrees with breast cancer only or in 2,912 healthy German controls. These results provide the first unambiguous evidence of highly penetrant mutations associated with human cancer in a RAD51 paralog and support the 'common disease, rare allele' hypothesis.

  15. Pleiotropic effects of coat colour-associated mutations in humans, mice and other mammals.

    Science.gov (United States)

    Reissmann, Monika; Ludwig, Arne

    2013-01-01

    The characterisation of the pleiotropic effects of coat colour-associated mutations in mammals illustrates that sensory organs and nerves are particularly affected by disorders because of the shared origin of melanocytes and neurocytes in the neural crest; e.g. the eye-colour is a valuable indicator of disorders in pigment production and eye dysfunctions. Disorders related to coat colour-associated alleles also occur in the skin (melanoma), reproductive tract and immune system. Additionally, the coat colour phenotype of an individual influences its general behaviour and fitness. Mutations in the same genes often produce similar coat colours and pleiotropic effects in different species (e.g., KIT [reproductive disorders, lethality], EDNRB [megacolon] and LYST [CHS]). Whereas similar disorders and similar-looking coat colour phenotypes sometimes have a different genetic background (e.g., deafness [EDN3/EDNRB, MITF, PAX and SNAI2] and visual diseases [OCA2, RAB38, SLC24A5, SLC45A2, TRPM1 and TYR]). The human predilection for fancy phenotypes that ignore disorders and genetic defects is a major driving force for the increase of pleiotropic effects in domestic species and laboratory subjects since domestication has commenced approximately 18,000 years ago. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. A novel point mutation in the human insulin gene giving rise to hyperproinsulinemia (proinsulin Kyoto).

    Science.gov (United States)

    Yano, H; Kitano, N; Morimoto, M; Polonsky, K S; Imura, H; Seino, Y

    1992-06-01

    We have identified a 65-yr-old nonobese Japanese man with diabetes mellitus, fasting hyperinsulinemia (150-300 pM), and a reduced fasting C-peptide/insulin molar ratio of 2.5-3.0. Fasting hyperinsulinemia was also found in his son and daughter. Analysis of insulin isolated from the serum of the proband and his son by reverse-phase high performance liquid chromatography revealed a minor peak coeluting with human insulin and a major peak of proinsulin-like materials. The insulin gene of the patient was amplified by the polymerase chain reaction and the products were sequenced. A novel point mutation was identified in which guanine was replaced by thymine. The substitution gives rise to a new HindIII recognition site and results in the amino acid replacement of leucine for arginine at position 65. These results indicate that the amino-acid replacement prevents recognition of the C-peptide-A chain dibasic protease and results in an elevation of proinsulin-like materials in the circulation. Furthermore, in this family the proinsulin-like materials is due to a biosynthetic defect, inherited as an autosomal dominant trait. Rapid detection of this mutation can be accomplished by HindIII restriction enzyme mapping of polymerase chain reaction-generated DNA, which enables us to facilitate the diagnosis and screening.

  17. Aging and neurodegeneration are associated with increased mutations in single human neurons.

    Science.gov (United States)

    Lodato, Michael A; Rodin, Rachel E; Bohrson, Craig L; Coulter, Michael E; Barton, Alison R; Kwon, Minseok; Sherman, Maxwell A; Vitzthum, Carl M; Luquette, Lovelace J; Yandava, Chandri N; Yang, Pengwei; Chittenden, Thomas W; Hatem, Nicole E; Ryu, Steven C; Woodworth, Mollie B; Park, Peter J; Walsh, Christopher A

    2018-02-02

    It has long been hypothesized that aging and neurodegeneration are associated with somatic mutation in neurons; however, methodological hurdles have prevented testing this hypothesis directly. We used single-cell whole-genome sequencing to perform genome-wide somatic single-nucleotide variant (sSNV) identification on DNA from 161 single neurons from the prefrontal cortex and hippocampus of 15 normal individuals (aged 4 months to 82 years), as well as 9 individuals affected by early-onset neurodegeneration due to genetic disorders of DNA repair (Cockayne syndrome and xeroderma pigmentosum). sSNVs increased approximately linearly with age in both areas (with a higher rate in hippocampus) and were more abundant in neurodegenerative disease. The accumulation of somatic mutations with age-which we term genosenium-shows age-related, region-related, and disease-related molecular signatures and may be important in other human age-associated conditions. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. A digenic human immunodeficiency characterized by IFNAR1 and IFNGR2 mutations.

    Science.gov (United States)

    Hoyos-Bachiloglu, Rodrigo; Chou, Janet; Sodroski, Catherine N; Beano, Abdallah; Bainter, Wayne; Angelova, Magdalena; Al Idrissi, Eman; Habazi, Murad K; Alghamdi, Hamza Ali; Almanjomi, Fahd; Al Shehri, Mohamed; Elsidig, Nagi; Alaa Eldin, Morsi; Knipe, David M; AlZahrani, Mofareh; Geha, Raif S

    2017-11-06

    Primary immunodeficiencies are often monogenic disorders characterized by vulnerability to specific infectious pathogens. Here, we performed whole-exome sequencing of a patient with disseminated Mycobacterium tuberculosis, Streptococcus viridians bacteremia, and cytomegalovirus (CMV) viremia and identified mutations in 2 genes that regulate distinct IFN pathways. The patient had a homozygous frameshift deletion in IFNGR2, which encodes the signal transducing chain of the IFN-γ receptor, that resulted in minimal protein expression and abolished downstream signaling. The patient also harbored a homozygous deletion in IFNAR1 (IFNAR1*557Gluext*46), which encodes the IFN-α receptor signaling subunit. The IFNAR1*557Gluext*46 resulted in replacement of the stop codon with 46 additional codons at the C-terminus. The level of IFNAR1*557Gluext*46 mutant protein expressed in patient fibroblasts was comparable to levels of WT IFNAR1 in control fibroblasts. IFN-α-induced signaling was impaired in the patient fibroblasts, as evidenced by decreased STAT1/STAT2 phosphorylation, nuclear translocation of STAT1, and expression of IFN-α-stimulated genes critical for CMV immunity. Pretreatment with IFN-α failed to suppress CMV protein expression in patient fibroblasts, whereas expression of WT IFNAR1 restored IFN-α-mediated suppression of CMV. This study identifies a human IFNAR1 mutation and describes a digenic immunodeficiency specific to type I and type II IFNs.

  19. GeMSTONE: orchestrated prioritization of human germline mutations in the cloud.

    Science.gov (United States)

    Chen, Siwei; Beltrán, Juan F; Esteban-Jurado, Clara; Franch-Expósito, Sebastià; Castellví-Bel, Sergi; Lipkin, Steven; Wei, Xiaomu; Yu, Haiyuan

    2017-05-18

    Integrative analysis of whole-genome/exome-sequencing data has been challenging, especially for the non-programming research community, as it requires simultaneously managing a large number of computational tools. Even computational biologists find it unexpectedly difficult to reproduce results from others or optimize their strategies in an end-to-end workflow. We introduce Germline Mutation Scoring Tool fOr Next-generation sEquencing data (GeMSTONE), a cloud-based variant prioritization tool with high-level customization and a comprehensive collection of bioinformatics tools and data libraries (http://gemstone.yulab.org/). GeMSTONE generates and readily accepts a shareable 'recipe' file for each run to either replicate previous results or analyze new data with identical parameters and provides a centralized workflow for prioritizing germline mutations in human disease within a streamlined workflow rather than a pool of program executions. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Point mutations in the murine fumarylacetoacetate hydrolase gene: Animalmodels for the human genetic disorder hereditary tyrosinemia type 1

    Energy Technology Data Exchange (ETDEWEB)

    Aponte, Jennifer [University of Tennessee, Knoxville (UTK); Sega, Gary A [ORNL; Hauser, Loren John [ORNL; Dhar, Madhu [University of Tennessee, Knoxville (UTK); Withrow, Catherine [ORNL; Carpenter, D A [ORNL; Rinchik, Eugene M. [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Culiat, Cymbeline T [ORNL; Johnson, Dabney K [ORNL

    2001-01-01

    Hereditary tyrosinemia type 1 (HT1) is a severe autosomal recessive metabolic disease associated with point mutations in the human fumarylacetoacetate hydrolase (FAH) gene that disrupt tyrosine catabolism. An acute form of HT1 results in death during the first months of life because of hepatic failure, whereas a chronic form leads to gradual development of liver disease often accompanied by renal dysfunction, childhood rickets, neurological crisis, and hepatocellular carcinoma. Mice homozygous for certain chromosome 7 deletions of the albino Tyr; c locus that also include Fah die perinatally as a result of liver dysfunction and exhibit a complex syndrome characterized by structural abnormalities and alterations in gene expression in the liver and kidney. Here we report that two independent, postnatally lethal mutations induced by N-ethyl-N-nitrosourea and mapped near Tyr are alleles of Fah. The Fah6287SB allele is a missense mutation in exon 6, and Fah5961SB is a splice mutation causing loss of exon 7, a subsequent frameshift in the resulting mRNA, and a severe reduction of Fah mRNA levels. Increased levels of the diagnostic metabolite succinylacetone in the urine of the Fah6287SB and Fah5961SB mutants indicate that these mutations cause a decrease in Fah enzymatic activity. Thus, the neonatal phenotype present in both mutants is due to a deficiency in Fah caused by a point mutation, and we propose Fah5961SB and Fah6287SB as mouse models for acute and chronic forms of human HT1, respectively.

  1. PIK3CA and TP53 gene mutations in human breast cancer tumors frequently detected by ion torrent DNA sequencing.

    Science.gov (United States)

    Bai, Xusheng; Zhang, Enke; Ye, Hua; Nandakumar, Vijayalakshmi; Wang, Zhuo; Chen, Lihong; Tang, Chuanning; Li, Jianhui; Li, Huijin; Zhang, Wei; Han, Wei; Lou, Feng; Zhang, Dandan; Sun, Hong; Dong, Haichao; Zhang, Guangchun; Liu, Zhiyuan; Dong, Zhishou; Guo, Baishuai; Yan, He; Yan, Chaowei; Wang, Lu; Su, Ziyi; Li, Yangyang; Jones, Lindsey; Huang, Xue F; Chen, Si-Yi; Gao, Jinglong

    2014-01-01

    Breast cancer is the most common malignancy and the leading cause of cancer deaths in women worldwide. While specific genetic mutations have been linked to 5-10% of breast cancer cases, other environmental and epigenetic factors influence the development and progression of the cancer. Since unique mutations patterns have been observed in individual cancer samples, identification and characterization of the distinctive breast cancer molecular profile is needed to develop more effective target therapies. Until recently, identifying genetic cancer mutations via personalized DNA sequencing was impractical and expensive. The recent technological advancements in next-generation DNA sequencing, such as the semiconductor-based Ion Torrent sequencing platform, has made DNA sequencing cost and time effective with more reliable results. Using the Ion Torrent Ampliseq Cancer Panel, we sequenced 737 loci from 45 cancer-related genes to identify genetic mutations in 105 human breast cancer samples. The sequencing analysis revealed missense mutations in PIK3CA, and TP53 genes in the breast cancer samples of various histologic types. Thus, this study demonstrates the necessity of sequencing individual human cancers in order to develop personalized drugs or combination therapies to effectively target individual, breast cancer-specific mutations.

  2. Generation of KCL025 research grade human embryonic stem cell line carrying a mutation in NF1 gene

    Directory of Open Access Journals (Sweden)

    Heema Hewitson

    2016-03-01

    Full Text Available The KCL025 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation in the NF1 gene encoding neurofibromin (c.3739–3742 ΔTTTG. Mutations in this gene have been linked to neurofibromatosis type 1, juvenile myelomonocytic leukemia and Watson syndrome. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays.

  3. Canine and human visual cortex intact and responsive despite early retinal blindness from RPE65 mutation.

    Directory of Open Access Journals (Sweden)

    Geoffrey K Aguirre

    2007-06-01

    Full Text Available RPE65 is an essential molecule in the retinoid-visual cycle, and RPE65 gene mutations cause the congenital human blindness known as Leber congenital amaurosis (LCA. Somatic gene therapy delivered to the retina of blind dogs with an RPE65 mutation dramatically restores retinal physiology and has sparked international interest in human treatment trials for this incurable disease. An unanswered question is how the visual cortex responds after prolonged sensory deprivation from retinal dysfunction. We therefore studied the cortex of RPE65-mutant dogs before and after retinal gene therapy. Then, we inquired whether there is visual pathway integrity and responsivity in adult humans with LCA due to RPE65 mutations (RPE65-LCA.RPE65-mutant dogs were studied with fMRI. Prior to therapy, retinal and subcortical responses to light were markedly diminished, and there were minimal cortical responses within the primary visual areas of the lateral gyrus (activation amplitude mean +/- standard deviation [SD] = 0.07% +/- 0.06% and volume = 1.3 +/- 0.6 cm(3. Following therapy, retinal and subcortical response restoration was accompanied by increased amplitude (0.18% +/- 0.06% and volume (8.2 +/- 0.8 cm(3 of activation within the lateral gyrus (p < 0.005 for both. Cortical recovery occurred rapidly (within a month of treatment and was persistent (as long as 2.5 y after treatment. Recovery was present even when treatment was provided as late as 1-4 y of age. Human RPE65-LCA patients (ages 18-23 y were studied with structural magnetic resonance imaging. Optic nerve diameter (3.2 +/- 0.5 mm was within the normal range (3.2 +/- 0.3 mm, and occipital cortical white matter density as judged by voxel-based morphometry was slightly but significantly altered (1.3 SD below control average, p = 0.005. Functional magnetic resonance imaging in human RPE65-LCA patients revealed cortical responses with a markedly diminished activation volume (8.8 +/- 1.2 cm(3 compared to controls

  4. A transgenic rat expressing human APP with the Swedish Alzheimer's disease mutation

    DEFF Research Database (Denmark)

    Folkesson, Ronnie; Malkiewicz, Katarzyna; Kloskowska, Ewa

    2007-01-01

    In recent years, transgenic mice have become valuable tools for studying mechanisms of Alzheimer's disease (AD). With the aim of developing an animal model better for memory and neurobehavioural testing, we have generated a transgenic rat model of AD. These animals express human amyloid precursor...... protein (APP) containing the Swedish AD mutation. The highest level of expression in the brain is found in the cortex, hippocampus, and cerebellum. Starting after the age of 15 months, the rats show increased tau phosphorylation and extracellular Abeta staining. The Abeta is found predominantly...... in cerebrovascular blood vessels with very rare diffuse plaques. We believe that crossing these animals with mutant PS1 transgenic rats will result in accelerated plaque formation similar to that seen in transgenic mice....

  5. 2'-Deoxyuridine 5'-monophosphate substrate displacement in thymidylate synthase through 6-hydroxy-2H-naphtho[1,8-bc]furan-2-one derivatives.

    Science.gov (United States)

    Ferrari, Stefania; Calò, Samuele; Leone, Rosalida; Luciani, Rosaria; Costantino, Luca; Sammak, Susan; Di Pisa, Flavio; Pozzi, Cecilia; Mangani, Stefano; Costi, M Paola

    2013-11-27

    Thymidylate synthase (TS) is a target for antifolate-based chemotherapies of microbial and human diseases. Here, ligand-based, synthetic, and X-ray crystallography studies led to the discovery of 6-(3-cyanobenzoyloxy)-2-oxo-2H-naphto[1,8-bc]furan, a novel inhibitor with a Ki of 310 nM against Pneumocystis carinii TS. The X-ray ternary complex with Escherichia coli TS revealed, for the first time, displacement of the substrate toward the dimeric protein interface, thus providing new opportunities for further design of specific inhibitors of microbial pathogens.

  6. Mice with missense and nonsense NF1 mutations display divergent phenotypes compared with human neurofibromatosis type I

    Directory of Open Access Journals (Sweden)

    Kairong Li

    2016-07-01

    Full Text Available Neurofibromatosis type 1 (NF1 is a common genetic disorder characterized by the occurrence of nerve sheath tumors and considerable clinical heterogeneity. Some translational studies have been limited by the lack of animal models available for assessing patient-specific mutations. In order to test therapeutic approaches that might restore function to the mutated gene or gene product, we developed mice harboring NF1 patient-specific mutations including a nonsense mutation (c.2041C>T; p.Arg681* and a missense mutation (c.2542G>C; p.Gly848Arg. The latter is associated with the development of multiple plexiform neurofibromas along spinal nerve roots. We demonstrate that the human nonsense NF1Arg681* and missense NF1Gly848Arg mutations have different effects on neurofibromin expression in the mouse and each recapitulates unique aspects of the NF1 phenotype, depending upon the genetic context when assessed in the homozygous state or when paired with a conditional knockout allele. Whereas the missense Nf1Gly848Arg mutation fails to produce an overt phenotype in the mouse, animals homozygous for the nonsense Nf1Arg681* mutation are not viable. Mice with one Nf1Arg681* allele in combination with a conditional floxed Nf1 allele and the DhhCre transgene (Nf14F/Arg681*; DhhCre display disorganized nonmyelinating axons and neurofibromas along the spinal column, which leads to compression of the spinal cord and paralysis. This model will be valuable for preclinical testing of novel nonsense suppression therapies using drugs to target in-frame point mutations that create premature termination codons in individuals with NF1.

  7. Two novel mutations in the glycine-rich region of human PAX6 gene: Implications for an association of cataracts and anosmia with aniridia

    Energy Technology Data Exchange (ETDEWEB)

    Martha, A.; Ferrel, R.E.; Hittner, H.M.; Saunders, G.F. [Univ. of Texas M.D. Anderson Cancer Center, Houston, TX (United States)

    1994-09-01

    Aniridia (iris hyplasia) is a autosomal dominant congenital disorder of the eye. Mutations in the human aniridia (PAX6) gene have now been identified in many patients from various ethnic groups. In the present study we describe new mutations in this gene. Out of four mutations found, three were novel mutations; the fourth one is identical to the previously reported mutations (C{yields}T transition at nt 240). The three novel mutations analyzed were in the glycine-rich region (two) and in the proline/serine/threonine-rich (PST) region (one). Previously no mutations were reported for the glycine-rich region in humans. One of the mutations found in this region is associated with cataracts in an aniridia family. The other splice mutation found in the PST domain is associated with anosmia (lack of sensation to smell) in a sporadic aniridia case. Two of the mutations presented here, one in the glycine-rich region and the other in the PST domain, were not detected by SSCR. These mutations could be detected by using MDE gel and heteroduplex information. All mutations found in the present study are similar in that 32 of 33 PAX6 mutations result in protein truncation and haploinsufficiency.

  8. Modeling functional changes to Escherichia coli thymidylate synthase upon single residue replacements: a structure-based approach

    Directory of Open Access Journals (Sweden)

    Majid Masso

    2015-01-01

    Full Text Available Escherichia coli thymidylate synthase (TS is an enzyme that is indispensable to DNA synthesis and cell division, as it provides the only de novo source of dTMP by catalyzing the reductive methylation of dUMP, thus making it a key target for chemotherapeutic agents. High resolution X-ray crystallographic structures are available for TS and, owing to its relatively small size, successful experimental mutagenesis studies have been conducted on the enzyme. In this study, an in silico mutagenesis technique is used to investigate the effects of single amino acid substitutions in TS on enzymatic activity, one that employs the TS protein structure as well as a knowledge-based, four-body statistical potential. For every single residue TS variant, this approach yields both a global structural perturbation score and a set of local environmental perturbation scores that characterize the mutated position as well as all structurally neighboring residues. Global scores for the TS variants are capable of uniquely characterizing groups of residue positions in the enzyme according to their physicochemical, functional, or structural properties. Additionally, these global scores elucidate a statistically significant structure–function relationship among a collection of 372 single residue TS variants whose activity levels have been experimentally determined. Predictive models of TS variant activity are subsequently trained on this dataset of experimental mutants, whose respective feature vectors encode information regarding the mutated position as well as its six nearest residue neighbors in the TS structure, including their environmental perturbation scores.

  9. Mutation of Growth Arrest Specific 8 Reveals a Role in Motile Cilia Function and Human Disease.

    Directory of Open Access Journals (Sweden)

    Wesley R Lewis

    2016-07-01

    Full Text Available Ciliopathies are genetic disorders arising from dysfunction of microtubule-based cellular appendages called cilia. Different cilia types possess distinct stereotypic microtubule doublet arrangements with non-motile or 'primary' cilia having a 9+0 and motile cilia have a 9+2 array of microtubule doublets. Primary cilia are critical sensory and signaling centers needed for normal mammalian development. Defects in their structure/function result in a spectrum of clinical and developmental pathologies including abnormal neural tube and limb patterning. Altered patterning phenotypes in the limb and neural tube are due to perturbations in the hedgehog (Hh signaling pathway. Motile cilia are important in fluid movement and defects in motility result in chronic respiratory infections, altered left-right asymmetry, and infertility. These features are the hallmarks of Primary Ciliary Dyskinesia (PCD, OMIM 244400. While mutations in several genes are associated with PCD in patients and animal models, the genetic lesion in many cases is unknown. We assessed the in vivo functions of Growth Arrest Specific 8 (GAS8. GAS8 shares strong sequence similarity with the Chlamydomonas Nexin-Dynein Regulatory Complex (NDRC protein 4 (DRC4 where it is needed for proper flagella motility. In mammalian cells, the GAS8 protein localizes not only to the microtubule axoneme of motile cilia, but also to the base of non-motile cilia. Gas8 was recently implicated in the Hh signaling pathway as a regulator of Smoothened trafficking into the cilium. Here, we generate the first mouse with a Gas8 mutation and show that it causes severe PCD phenotypes; however, there were no overt Hh pathway phenotypes. In addition, we identified two human patients with missense variants in Gas8. Rescue experiments in Chlamydomonas revealed a subtle defect in swim velocity compared to controls. Further experiments using CRISPR/Cas9 homology driven repair (HDR to generate one of these human missense

  10. Mutation of Growth Arrest Specific 8 Reveals a Role in Motile Cilia Function and Human Disease.

    Science.gov (United States)

    Lewis, Wesley R; Malarkey, Erik B; Tritschler, Douglas; Bower, Raqual; Pasek, Raymond C; Porath, Jonathan D; Birket, Susan E; Saunier, Sophie; Antignac, Corinne; Knowles, Michael R; Leigh, Margaret W; Zariwala, Maimoona A; Challa, Anil K; Kesterson, Robert A; Rowe, Steven M; Drummond, Iain A; Parant, John M; Hildebrandt, Friedhelm; Porter, Mary E; Yoder, Bradley K; Berbari, Nicolas F

    2016-07-01

    Ciliopathies are genetic disorders arising from dysfunction of microtubule-based cellular appendages called cilia. Different cilia types possess distinct stereotypic microtubule doublet arrangements with non-motile or 'primary' cilia having a 9+0 and motile cilia have a 9+2 array of microtubule doublets. Primary cilia are critical sensory and signaling centers needed for normal mammalian development. Defects in their structure/function result in a spectrum of clinical and developmental pathologies including abnormal neural tube and limb patterning. Altered patterning phenotypes in the limb and neural tube are due to perturbations in the hedgehog (Hh) signaling pathway. Motile cilia are important in fluid movement and defects in motility result in chronic respiratory infections, altered left-right asymmetry, and infertility. These features are the hallmarks of Primary Ciliary Dyskinesia (PCD, OMIM 244400). While mutations in several genes are associated with PCD in patients and animal models, the genetic lesion in many cases is unknown. We assessed the in vivo functions of Growth Arrest Specific 8 (GAS8). GAS8 shares strong sequence similarity with the Chlamydomonas Nexin-Dynein Regulatory Complex (NDRC) protein 4 (DRC4) where it is needed for proper flagella motility. In mammalian cells, the GAS8 protein localizes not only to the microtubule axoneme of motile cilia, but also to the base of non-motile cilia. Gas8 was recently implicated in the Hh signaling pathway as a regulator of Smoothened trafficking into the cilium. Here, we generate the first mouse with a Gas8 mutation and show that it causes severe PCD phenotypes; however, there were no overt Hh pathway phenotypes. In addition, we identified two human patients with missense variants in Gas8. Rescue experiments in Chlamydomonas revealed a subtle defect in swim velocity compared to controls. Further experiments using CRISPR/Cas9 homology driven repair (HDR) to generate one of these human missense variants in

  11. Chromosomal reassignment: YACs containing both YES1 and thymidylate synthase map to the short arm of chromosome 18

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, G.A. (Harvard Medical School, Boston, MA (United States)); Wenlin Kuo; Gray, J.W. (Univ. of California, San Francisco (United States)); Taillon-Miller, P. (Washington Univ. School of Medicine, St. Louis, MO (United States))

    1993-02-01

    The YES1 proto-oncogene was mapped previously to human chromosome band 18q21.3 by using isotopic in situ hybridization. Using yeast artificial chromosomes (YACs) as probes and fluorescence in situ hybridization, a strong signal was detected in the region corresponding to 18p11.3. Restriction digests confirmed that the YACs contained the YES1 gene and not other cross-hybridizing, protein-tyrosine kinases. In addition, these YACs were found to contain another 18p11.32 gene, thymidylate synthase. These genes were less than 50 kb apart. Collectively, these data suggest that YES1 maps to 18p11.32 rather than to 18p21.3. 18 refs., 3 figs.

  12. Comparing Drug Images and Repurposing Drugs with BioGPS and FLAPdock: The Thymidylate Synthase Case.

    Science.gov (United States)

    Siragusa, Lydia; Luciani, Rosaria; Borsari, Chiara; Ferrari, Stefania; Costi, Maria Paola; Cruciani, Gabriele; Spyrakis, Francesca

    2016-08-05

    Repurposing and repositioning drugs has become a frequently pursued and successful strategy in the current era, as new chemical entities are increasingly difficult to find and get approved. Herein we report an integrated BioGPS/FLAPdock pipeline for rapid and effective off-target identification and drug repurposing. Our method is based on the structural and chemical properties of protein binding sites, that is, the ligand image, encoded in the GRID molecular interaction fields (MIFs). Protein similarity is disclosed through the BioGPS algorithm by measuring the pockets' overlap according to which pockets are clustered. Co-crystallized and known ligands can be cross-docked among similar targets, selected for subsequent in vitro binding experiments, and possibly improved for inhibitory potency. We used human thymidylate synthase (TS) as a test case and searched the entire RCSB Protein Data Bank (PDB) for similar target pockets. We chose casein kinase IIα as a control and tested a series of its inhibitors against the TS template. Ellagic acid and apigenin were identified as TS inhibitors, and various flavonoids were selected and synthesized in a second-round selection. The compounds were demonstrated to be active in the low-micromolar range. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. X-ray crystal structures of Enterococcus faecalis thymidylate synthase with folate binding site inhibitors.

    Science.gov (United States)

    Catalano, Alessia; Luciani, Rosaria; Carocci, Alessia; Cortesi, Debora; Pozzi, Cecilia; Borsari, Chiara; Ferrari, Stefania; Mangani, Stefano

    2016-11-10

    Infections caused by Enterococcus faecalis (Ef) represent nowadays a relevant health problem. We selected Thymidylate synthase (TS) from this organism as a potential specific target for antibacterial therapy. We have previously demonstrated that species-specific inhibition of the protein can be achieved despite the relatively high structural similarity among bacterial TSs and human TS. We had previously obtained the EfTS crystal structure of the protein in complex with the metabolite 5-formyl-tetrahydrofolate (5-FTHF) suggesting the protein role as metabolite reservoir; however, protein-inhibitors complexes were still missing. In the present work we identified some inhibitors bearing the phthalimidic core from our in-house library and we performed crystallographic screening towards EfTS. We obtained two X-ray crystallographic structures: the first with a weak phthalimidic inhibitor bound in one subunit and 5-hydroxymethylene-6-hydrofolic acid (5-HMHF) in the other subunit; a second X-ray structure complex with methotrexate. The structural information achieved confirm the role of EfTS as an enzyme involved in the folate pool system and provide a structural basis for structure-based drug design. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Simultaneous DNA and RNA mapping of somatic mitochondrial mutations across diverse human cancers

    DEFF Research Database (Denmark)

    Stewart, James B.; Alaei-Mahabadi, Babak; Radhakrishnan, Sabarinathan

    2015-01-01

    Somatic mutations in the nuclear genome are required for tumor formation, but the functional consequences of somatic mitochondrial DNA (mtDNA) mutations are less understood. Here we identify somatic mtDNA mutations across 527 tumors and 14 cancer types, using an approach that takes advantage of e...

  15. Widespread Perturbation of Function, Structure, and Dynamics by a Conservative Single-Atom Substitution in Thymidylate Synthase.

    Science.gov (United States)

    Sapienza, Paul J; Lee, Andrew L

    2016-10-11

    Thymidylate synthase (TSase) is responsible for synthesizing the sole de novo source of dTMP in all organisms. TSase is a drug target, and as such, it has been well studied in terms of both structure and reaction mechanism. Cysteine 146 in Escherichia coli TSase is universally conserved because it serves as the nucleophile in the enzyme mechanism. Here we use the C146S mutation to probe the role of the sulfur atom in early events in the catalytic cycle beyond serving as the nucleophile. Surprisingly, the single-atom substitution severely decreases substrate binding affinity, and the unfavorable ΔΔG° bind is comprised of roughly equal enthalpic and entropic components at 25 °C. Chemical shifts in the free and dUMP-bound states show the mutation causes perturbations throughout TSase, including regions important for complex stability, in agreement with a less favorable enthalpy change. We measured the nuclear magnetic resonance methyl symmetry axis order parameter (S 2 axis ), a proxy for conformational entropy, for TSase at all vertices of the dUMP binding/C146S mutation thermodynamic cycle and found that the calculated TΔΔS° conf is similar in sign and magnitude to the calorimetric TΔΔS°. Further, we ascribed minor resonances in wild-type-dUMP spectra to a state with a covalent bond between Sγ of C146 and C6 of dUMP and find S 2 axis values are unaffected by covalent bond formation, indicating this reaction step is neutral with respect to ΔS° conf . Lastly, the C146S mutation allowed us to measure cofactor analog binding by isothermal titration calorimetry without the confounding heat signature of covalent bond formation. Raltitrexed binds free and singly bound TSase with similar affinities, yet the two binding events have different enthalpy changes, providing further evidence of communication between the two active sites.

  16. A common mutation A1298C in human methylenetetrahydrofolate reductase gene: association with plasma total homocysteine and folate concentrations.

    Science.gov (United States)

    Friedman, G; Goldschmidt, N; Friedlander, Y; Ben-Yehuda, A; Selhub, J; Babaey, S; Mendel, M; Kidron, M; Bar-On, H

    1999-09-01

    Methylenetetrahydrofolate reductase (MTHFR) is one of the main regulatory enzymes of homocysteine metabolism. Previous studies revealed that a common mutation in MTHFR gene C677T is related to hyperhomocysteinemia and occlusive vascular pathology. In the current study, we determined the prevalence of a newly described mutation in the human MTHFR gene A1298C, and the already known C677T mutation, and related them to plasma total homocysteine and folate concentrations. We studied 377 Jewish subjects, including 190 men and 186 women aged 56.8 +/- 13 y (range 32-95 y). The frequency of the homozygotes for the A1298C and the C677T MTHFR mutations was common in the Jewish Israeli population (0.34 and 0.37, respectively). Subjects homozygous (TT) for the C677T mutation had significantly greater plasma total homocysteine concentrations (P A1298C mutation did not have elevated plasma total homocysteine concentrations. Our study indicated that subjects with the 677CC/1298CC genotype had significantly lower concentrations (P A1298C and the C677T) was associated with established cardiovascular risk factors such as hypertension, elevated total cholesterol or body mass index.

  17. Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data

    Science.gov (United States)

    Sinha, Subarna; Thomas, Daniel; Chan, Steven; Gao, Yang; Brunen, Diede; Torabi, Damoun; Reinisch, Andreas; Hernandez, David; Chan, Andy; Rankin, Erinn B.; Bernards, Rene; Majeti, Ravindra; Dill, David L.

    2017-05-01

    Two genes are synthetically lethal (SL) when defects in both are lethal to a cell but a single defect is non-lethal. SL partners of cancer mutations are of great interest as pharmacological targets; however, identifying them by cell line-based methods is challenging. Here we develop MiSL (Mining Synthetic Lethals), an algorithm that mines pan-cancer human primary tumour data to identify mutation-specific SL partners for specific cancers. We apply MiSL to 12 different cancers and predict 145,891 SL partners for 3,120 mutations, including known mutation-specific SL partners. Comparisons with functional screens show that MiSL predictions are enriched for SLs in multiple cancers. We extensively validate a SL interaction identified by MiSL between the IDH1 mutation and ACACA in leukaemia using gene targeting and patient-derived xenografts. Furthermore, we apply MiSL to pinpoint genetic biomarkers for drug sensitivity. These results demonstrate that MiSL can accelerate precision oncology by identifying mutation-specific targets and biomarkers.

  18. SNPDelScore: combining multiple methods to score deleterious effects of noncoding mutations in the human genome.

    Science.gov (United States)

    Vera Alvarez, Roberto; Li, Shan; Landsman, David; Ovcharenko, Ivan

    2017-09-14

    Addressing deleterious effects of noncoding mutations is an essential step towards the identification of disease-causal mutations of gene regulatory elements. Several methods for quantifying the deleteriousness of noncoding mutations using artificial intelligence, deep learning, and other approaches have been recently proposed. Although the majority of the proposed methods have demonstrated excellent accuracy on different test sets, there is rarely a consensus. In addition, advanced statistical and artificial learning approaches used by these methods make it difficult porting these methods outside of the labs that have developed them. To address these challenges and to transform the methodological advances in predicting deleterious noncoding mutations into a practical resource available for the broader functional genomics and population genetics communities, we developed SNPDelScore, which uses a panel of proposed methods for quantifying deleterious effects of noncoding mutations to precompute and compare the deleteriousness scores of all common SNPs in the human genome in 44 cell lines. The panel of deleteriousness scores of a SNP computed using different methods is supplemented by functional information from the GWAS Catalog, libraries of transcription factor binding sites, and genic characteristics of mutations. SNPDelScore comes with a genome browser capable of displaying and comparing large sets of SNPs in a genomic locus and rapidly identifying consensus SNPs with the highest deleteriousness scores making those prime candidates for phenotype-causal polymorphisms. https://www.ncbi.nlm.nih.gov/research/snpdelscore/. Supplementary data are available at Bioinformatics online.

  19. Lack of TERT Promoter Mutations in Human B-Cell Non-Hodgkin Lymphoma

    Directory of Open Access Journals (Sweden)

    Gary Lam

    2016-10-01

    Full Text Available Non-Hodgkin lymphomas (NHL are a heterogeneous group of immune cell neoplasms that comprise molecularly distinct lymphoma subtypes. Recent work has identified high frequency promoter point mutations in the telomerase reverse transcriptase (TERT gene of different cancer types, including melanoma, glioma, liver and bladder cancer. TERT promoter mutations appear to correlate with increased TERT expression and telomerase activity in these cancers. In contrast, breast, pancreatic, and prostate cancer rarely demonstrate mutations in this region of the gene. TERT promoter mutation prevalence in NHL has not been thoroughly tested thus far. We screened 105 B-cell lymphoid malignancies encompassing nine NHL subtypes and acute lymphoblastic leukemia, for TERT promoter mutations. Our results suggest that TERT promoter mutations are rare or absent in most NHL. Thus, the classical TERT promoter mutations may not play a major oncogenic role in TERT expression and telomerase activation in NHL.

  20. Human papillomavirus type 16 and TP53 mutation in oral cancer: matched analysis of the IARC multicenter study.

    NARCIS (Netherlands)

    Dai, M; Clifford, GM; Calvez, F le; Castellsague, X; Snijders, P.J.F.; Pawlita, M; Herrero, R; Hainaut, P; Franceschi, S

    2004-01-01

    TP53 mutations were analyzed in 35 human papillomavirus (HPV) type 16 DNA-positive cancers of the oral cavity and oropharynx and in 35 HPV DNA-negative cancers matched by subsite, country, sex, age, and tobacco and alcohol consumption. Wild-type TP53 was found more frequently in cancer specimens

  1. A new human NHERF1 mutation decreases renal phosphate transporter NPT2a expression by a PTH-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Marie Courbebaisse

    Full Text Available BACKGROUND: The sodium-hydrogen exchanger regulatory factor 1 (NHERF1 binds to the main renal phosphate transporter NPT2a and to the parathyroid hormone (PTH receptor. We have recently identified mutations in NHERF1 that decrease renal phosphate reabsorption by increasing PTH-induced cAMP production in the renal proximal tubule. METHODS: We compared relevant parameters of phosphate homeostasis in a patient with a previously undescribed mutation in NHERF1 and in control subjects. We expressed the mutant NHERF1 protein in Xenopus Oocytes and in cultured cells to study its effects on phosphate transport and PTH-induced cAMP production. RESULTS: We identified in a patient with inappropriate renal phosphate reabsorption a previously unidentified mutation (E68A located in the PDZ1 domain of NHERF1.We report the consequences of this mutation on NHERF1 function. E68A mutation did not modify cAMP production in the patient. PTH-induced cAMP synthesis and PKC activity were not altered by E68A mutation in renal cells in culture. In contrast to wild-type NHERF1, expression of the E68A mutant in Xenopus oocytes and in human cells failed to increase phosphate transport. Pull down experiments showed that E68A mutant did not interact with NPT2a, which robustly interacted with wild type NHERF1 and previously identified mutants. Biotinylation studies revealed that E68A mutant was unable to increase cell surface expression of NPT2a. CONCLUSIONS: Our results indicate that the PDZ1 domain is critical for NHERF1-NPT2a interaction in humans and for the control of NPT2a expression at the plasma membrane. Thus we have identified a new mechanism of renal phosphate loss and shown that different mutations in NHERF1 can alter renal phosphate reabsorption via distinct mechanisms.

  2. Histopathology of the Human Inner Ear in the p.L114P COCH Mutation (DFNA9).

    Science.gov (United States)

    Burgess, Barbara J; O'Malley, Jennifer T; Kamakura, Takefumi; Kristiansen, Kris; Robertson, Nahid G; Morton, Cynthia C; Nadol, Joseph B

    2016-01-01

    The histopathology of the inner ear in a patient with hearing loss caused by the p.L114P COCH mutation and its correlation with the clinical phenotype are presented. To date, 23 COCH mutations causative of DFNA9 autosomal dominant sensorineural hearing loss and vestibular disorder have been reported, and the histopathology of the human inner ear has been described in 4 of these. The p.L114P COCH mutation was first described in a Korean family. We have identified the same mutation in a family of non-Asian ancestry in the USA, and the temporal bone histopathology and clinical findings are presented herein. The histopathology found in the inner ear was similar to that shown in the 4 other COCH mutations and included degeneration of the spiral ligament with deposition of an eosinophilic acellular material, which was also found in the distal osseous spiral lamina, at the base of the spiral limbus, and in mesenchymal tissue at the base of the vestibular neuroepithelium. This is the first description of human otopathology of the COCH p.L114P mutation. In addition, it is the only case with otopathology characterization in an individual with any COCH mutation and residual hearing, thus allowing assessment of primary histopathological events in DFNA9, before progression to more profound hearing loss. A quantitative cytologic analysis of atrophy in this specimen and immunostaining using anti-neurofilament and anti-myelin protein zero antibodies confirmed that the principal histopathologic correlate of hearing loss was degeneration of the dendritic fibers of spiral ganglion cells in the osseous spiral lamina. The implications for cochlear implantation in this disorder are discussed. © 2016 S. Karger AG, Basel.

  3. BRaf signaling principles unveiled by large-scale human mutation analysis with a rapid lentivirus-based gene replacement method.

    Science.gov (United States)

    Lim, Chae-Seok; Kang, Xi; Mirabella, Vincent; Zhang, Huaye; Bu, Qian; Araki, Yoichi; Hoang, Elizabeth T; Wang, Shiqiang; Shen, Ying; Choi, Sukwoo; Kaang, Bong-Kiun; Chang, Qiang; Pang, Zhiping P; Huganir, Richard L; Zhu, J Julius

    2017-03-15

    Rapid advances in genetics are linking mutations on genes to diseases at an exponential rate, yet characterizing the gene mutation-cell behavior relationships essential for precision medicine remains a daunting task. More than 350 mutations on small GTPase BRaf are associated with various tumors, and ∼40 mutations are associated with the neurodevelopmental disorder cardio-facio-cutaneous syndrome (CFC). We developed a fast cost-effective lentivirus-based rapid gene replacement method to interrogate the physiopathology of BRaf and ∼50 disease-linked BRaf mutants, including all CFC-linked mutants. Analysis of simultaneous multiple patch-clamp recordings from 6068 pairs of rat neurons with validation in additional mouse and human neurons and multiple learning tests from 1486 rats identified BRaf as the key missing signaling effector in the common synaptic NMDA-R-CaMKII-SynGap-Ras-BRaf-MEK-ERK transduction cascade. Moreover, the analysis creates the original big data unveiling three general features of BRaf signaling. This study establishes the first efficient procedure that permits large-scale functional analysis of human disease-linked mutations essential for precision medicine. © 2017 Lim et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Frequent mutations in EGFR, KRAS and TP53 genes in human lung cancer tumors detected by ion torrent DNA sequencing.

    Directory of Open Access Journals (Sweden)

    Xin Cai

    Full Text Available Lung cancer is the most common malignancy and the leading cause of cancer deaths worldwide. While smoking is by far the leading cause of lung cancer, other environmental and genetic factors influence the development and progression of the cancer. Since unique mutations patterns have been observed in individual cancer samples, identification and characterization of the distinctive lung cancer molecular profile is essential for developing more effective, tailored therapies. Until recently, personalized DNA sequencing to identify genetic mutations in cancer was impractical and expensive. The recent technological advancements in next-generation DNA sequencing, such as the semiconductor-based Ion Torrent sequencing platform, has made DNA sequencing cost and time effective with more reliable results. Using the Ion Torrent Ampliseq Cancer Panel, we sequenced 737 loci from 45 cancer-related genes to identify genetic mutations in 76 human lung cancer samples. The sequencing analysis revealed missense mutations in KRAS, EGFR, and TP53 genes in the breast cancer samples of various histologic types. Thus, this study demonstrates the necessity of sequencing individual human cancers in order to develop personalized drugs or combination therapies to effectively target individual, breast cancer-specific mutations.

  5. Frequent mutations in EGFR, KRAS and TP53 genes in human lung cancer tumors detected by ion torrent DNA sequencing.

    Science.gov (United States)

    Cai, Xin; Sheng, Jianhui; Tang, Chuanning; Nandakumar, Vijayalakshmi; Ye, Hua; Ji, Hong; Tang, Haiying; Qin, Yu; Guan, Hongwei; Lou, Feng; Zhang, Dandan; Sun, Hong; Dong, Haichao; Zhang, Guangchun; Liu, Zhiyuan; Dong, Zhishou; Guo, Baishuai; Yan, He; Yan, Chaowei; Wang, Lu; Su, Ziyi; Li, Yangyang; Jones, Lindsey; Huang, Xue F; Chen, Si-Yi; Wu, Taihua; Lin, Hongli

    2014-01-01

    Lung cancer is the most common malignancy and the leading cause of cancer deaths worldwide. While smoking is by far the leading cause of lung cancer, other environmental and genetic factors influence the development and progression of the cancer. Since unique mutations patterns have been observed in individual cancer samples, identification and characterization of the distinctive lung cancer molecular profile is essential for developing more effective, tailored therapies. Until recently, personalized DNA sequencing to identify genetic mutations in cancer was impractical and expensive. The recent technological advancements in next-generation DNA sequencing, such as the semiconductor-based Ion Torrent sequencing platform, has made DNA sequencing cost and time effective with more reliable results. Using the Ion Torrent Ampliseq Cancer Panel, we sequenced 737 loci from 45 cancer-related genes to identify genetic mutations in 76 human lung cancer samples. The sequencing analysis revealed missense mutations in KRAS, EGFR, and TP53 genes in the breast cancer samples of various histologic types. Thus, this study demonstrates the necessity of sequencing individual human cancers in order to develop personalized drugs or combination therapies to effectively target individual, breast cancer-specific mutations.

  6. Amyotrophic lateral sclerosis models derived from human embryonic stem cells with different superoxide dismutase 1 mutations exhibit differential drug responses

    Directory of Open Access Journals (Sweden)

    Takehisa Isobe

    2015-11-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a neurodegenerative motor neuron (MN disease. The gene encoding superoxide dismutase 1 (SOD1 is a causative element of familial ALS. Animal ALS models involving SOD1 gene mutations are widely used to study the underlying mechanisms of disease and facilitate drug discovery. Unfortunately, most drug candidates have failed in clinical trials, potentially due to species differences among rodents and humans. It is unclear, however, whether there are different responses to drugs among the causative genes of ALS or their associated mutations. In this study, to evaluate different SOD1 mutations, we generated SOD1-ALS models derived from human embryonic stem cells with identical genetic backgrounds, except for the overexpression of mutant variants of SOD1. The overexpression of mutant SOD1 did not affect pluripotency or MN differentiation. However, mutation-dependent reductions in neurite length were observed in MNs. Moreover, experiments investigating the effects of specific compounds revealed that each ALS model displayed different responses with respect to MN neurite length. These results suggest that SOD1 mutations could be classified based the response of MNs to drug treatment. This classification could be useful for the development of mutant-specific strategies for drug discovery and clinical trials.

  7. Canine CNGA3 Gene Mutations Provide Novel Insights into Human Achromatopsia-Associated Channelopathies and Treatment.

    Directory of Open Access Journals (Sweden)

    Naoto Tanaka

    Full Text Available Cyclic nucleotide-gated (CNG ion channels are key mediators underlying signal transduction in retinal and olfactory receptors. Genetic defects in CNGA3 and CNGB3, encoding two structurally related subunits of cone CNG channels, lead to achromatopsia (ACHM. ACHM is a congenital, autosomal recessive retinal disorder that manifests by cone photoreceptor dysfunction, severely reduced visual acuity, impaired or complete color blindness and photophobia. Here, we report the first canine models for CNGA3-associated channelopathy caused by R424W or V644del mutations in the canine CNGA3 ortholog that accurately mimic the clinical and molecular features of human CNGA3-associated ACHM. These two spontaneous mutations exposed CNGA3 residues essential for the preservation of channel function and biogenesis. The CNGA3-R424W results in complete loss of cone function in vivo and channel activity confirmed by in vitro electrophysiology. Structural modeling and molecular dynamics (MD simulations revealed R424-E306 salt bridge formation and its disruption with the R424W mutant. Reversal of charges in a CNGA3-R424E-E306R double mutant channel rescued cGMP-activated currents uncovering new insights into channel gating. The CNGA3-V644del affects the C-terminal leucine zipper (CLZ domain destabilizing intersubunit interactions of the coiled-coil complex in the MD simulations; the in vitro experiments showed incompetent trimeric CNGA3 subunit assembly consistent with abnormal biogenesis of in vivo channels. These newly characterized large animal models not only provide a valuable system for studying cone-specific CNG channel function in health and disease, but also represent prime candidates for proof-of-concept studies of CNGA3 gene replacement therapy for ACHM patients.

  8. Aberrantly methylated genes in human papillary thyroid cancer and their association with BRAF/RAS mutation.

    Directory of Open Access Journals (Sweden)

    Yasuko eKikuchi

    2013-12-01

    Full Text Available Cancer arises through accumulation of epigenetic and genetic alteration. Aberrant promoter methylation is a common epigenetic mechanism of gene silencing in cancer cells. We here performed genome-wide analysis of DNA methylation of promoter regions by Infinium HumanMethylation27 BeadChip, using 14 clinical papillary thyroid cancer samples and 10 normal thyroid samples. Among the 14 papillary cancer cases, 11 showed frequent aberrant methylation, but the other three cases showed no aberrant methylation at all. Distribution of the hypermethylation among cancer samples was non-random, which implied existence of a subset of preferentially methylated papillary thyroid cancer. Among 25 frequently methylated genes, methylation status of six genes (HIST1H3J, POU4F2, SHOX2, PHKG2, TLX3, HOXA7 was validated quantitatively by pyrosequencing. Epigenetic silencing of these genes in methylated papillary thyroid cancer cell lines was confirmed by gene re-expression following treatment with 5-aza-2'-deoxycytidine and trichostatin A, and detected by real-time RT-PCR. Methylation of these six genes was validated by analysis of additional 20 papillary thyroid cancer and 10 normal samples. Among the 34 cancer samples in total, 26 cancer samples with preferential methylation were significantly associated with mutation of BRAF/RAS oncogene (P=0.04, Fisher’s exact test. Thus we identified new genes with frequent epigenetic hypermethylation in papillary thyroid cancer, two subsets of either preferentially methylated or hardly methylated papillary thyroid cancer, with a concomitant occurrence of oncogene mutation and gene methylation. These hypermethylated genes may constitute potential biomarkers for papillary thyroid cancer.

  9. Rhabdomyolysis-Associated Mutations in Human LPIN1 Lead to Loss of Phosphatidic Acid Phosphohydrolase Activity.

    Science.gov (United States)

    Schweitzer, George G; Collier, Sara L; Chen, Zhouji; Eaton, James M; Connolly, Anne M; Bucelli, Robert C; Pestronk, Alan; Harris, Thurl E; Finck, Brian N

    2015-01-01

    Rhabdomyolysis is an acute syndrome due to extensive injury of skeletal muscle. Recurrent rhabdomyolysis is often caused by inborn errors in intermediary metabolism, and recent work has suggested that mutations in the human gene encoding lipin 1 (LPIN1) may be a common cause of recurrent rhabdomyolysis in children. Lipin 1 dephosphorylates phosphatidic acid to form diacylglycerol (phosphatidic acid phosphohydrolase; PAP) and acts as a transcriptional regulatory protein to control metabolic gene expression. Herein, a 3-year-old boy with severe recurrent rhabdomyolysis was determined to be a compound heterozygote for a novel c.1904T>C (p.Leu635Pro) substitution and a previously reported genomic deletion of exons 18-19 (E766-S838_del) in LPIN1. Western blotting with patient muscle biopsy lysates demonstrated a marked reduction in lipin 1 protein, while immunohistochemical staining for lipin 1 showed abnormal subcellular localization. We cloned cDNAs to express recombinant lipin 1 proteins harboring pathogenic mutations and showed that the E766-S838_del allele was not expressed at the RNA or protein level. Lipin 1 p.Leu635Pro was expressed, but the protein was less stable, was aggregated in the cytosol, and was targeted for proteosomal degradation. Another pathogenic single amino acid substitution, lipin 1 p.Arg725His, was well expressed and retained its transcriptional regulatory function. However, both p.Leu635Pro and p.Arg725His proteins were found to be deficient in PAP activity. Kinetic analyses demonstrated a loss of catalysis rather than diminished substrate binding. These data suggest that loss of lipin 1-mediated PAP activity may be involved in the pathogenesis of rhabdomyolysis in lipin 1 deficiency.

  10. Local DNA dynamics shape mutational patterns of mononucleotide repeats in human genomes

    Science.gov (United States)

    Bacolla, Albino; Zhu, Xiao; Chen, Hanning; Howells, Katy; Cooper, David N.; Vasquez, Karen M.

    2015-01-01

    Single base substitutions (SBSs) and insertions/deletions are critical for generating population diversity and can lead both to inherited disease and cancer. Whereas on a genome-wide scale SBSs are influenced by cellular factors, on a fine scale SBSs are influenced by the local DNA sequence-context, although the role of flanking sequence is often unclear. Herein, we used bioinformatics, molecular dynamics and hybrid quantum mechanics/molecular mechanics to analyze sequence context-dependent mutagenesis at mononucleotide repeats (A-tracts and G-tracts) in human population variation and in cancer genomes. SBSs and insertions/deletions occur predominantly at the first and last base-pairs of A-tracts, whereas they are concentrated at the second and third base-pairs in G-tracts. These positions correspond to the most flexible sites along A-tracts, and to sites where a ‘hole’, generated by the loss of an electron through oxidation, is most likely to be localized in G-tracts. For A-tracts, most SBSs occur in the direction of the base-pair flanking the tracts. We conclude that intrinsic features of local DNA structure, i.e. base-pair flexibility and charge transfer, render specific nucleotides along mononucleotide runs susceptible to base modification, which then yields mutations. Thus, local DNA dynamics contributes to phenotypic variation and disease in the human population. PMID:25897114

  11. Mutation of human molybdenum cofactor sulfurase gene is responsible for classical xanthinuria type II.

    Science.gov (United States)

    Ichida, K; Matsumura, T; Sakuma, R; Hosoya, T; Nishino, T

    2001-04-20

    Drosophila ma-l gene was suggested to encode an enzyme for sulfuration of the desulfo molybdenum cofactor for xanthine dehydrogenase (XDH) and aldehyde oxidase (AO). The human molybdenum cofactor sulfurase (HMCS) gene, the human ma-l homologue, is therefore a candidate gene responsible for classical xanthinuria type II, which involves both XDH and AO deficiencies. However, HMCS has not been identified as yet. In this study, we cloned the HMCS gene from a cDNA library prepared from liver. In two independent patients with classical xanthinuria type II, we identified a C to T base substitution at nucleotide 1255 in the HMCS gene that should cause a CGA (Arg) to TGA (Ter) nonsense substitution at codon 419. A classical xanthinuria type I patient and healthy volunteers lacked this mutation. These results indicate that a functional defect of the HMCS gene is responsible for classical xanthinuria type II, and that HMCS protein functions to provide a sulfur atom for the molybdenum cofactor of XDH and AO. Copyright 2001 Academic Press.

  12. Generation of KCL035 research grade human embryonic stem cell line carrying a mutation in HBB gene

    Directory of Open Access Journals (Sweden)

    Heema Hewitson

    2016-03-01

    Full Text Available The KCL035 human embryonic stem cell line was derived from an embryo donated for research that carried a mutation in the HBB gene, which is linked to the β-thalassemia syndrome. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays.

  13. Mutations in H5N1 influenza virus hemagglutinin that confer binding to human tracheal airway epithelium.

    Directory of Open Access Journals (Sweden)

    Guadalupe Ayora-Talavera

    2009-11-01

    Full Text Available The emergence in 2009 of a swine-origin H1N1 influenza virus as the first pandemic of the 21st Century is a timely reminder of the international public health impact of influenza viruses, even those associated with mild disease. The widespread distribution of highly pathogenic H5N1 influenza virus in the avian population has spawned concern that it may give rise to a human influenza pandemic. The mortality rate associated with occasional human infection by H5N1 virus approximates 60%, suggesting that an H5N1 pandemic would be devastating to global health and economy. To date, the H5N1 virus has not acquired the propensity to transmit efficiently between humans. The reasons behind this are unclear, especially given the high mutation rate associated with influenza virus replication. Here we used a panel of recombinant H5 hemagglutinin (HA variants to demonstrate the potential for H5 HA to bind human airway epithelium, the predominant target tissue for influenza virus infection and spread. While parental H5 HA exhibited limited binding to human tracheal epithelium, introduction of selected mutations converted the binding profile to that of a current human influenza strain HA. Strikingly, these amino-acid changes required multiple simultaneous mutations in the genomes of naturally occurring H5 isolates. Moreover, H5 HAs bearing intermediate sequences failed to bind airway tissues and likely represent mutations that are an evolutionary "dead end." We conclude that, although genetic changes that adapt H5 to human airways can be demonstrated, they may not readily arise during natural virus replication. This genetic barrier limits the likelihood that current H5 viruses will originate a human pandemic.

  14. Published sequences do not support transfer of oseltamivir resistance mutations from avian to human influenza A virus strains.

    Science.gov (United States)

    Norberg, Peter; Lindh, Magnus; Olofsson, Sigvard

    2015-03-28

    Tamiflu (oseltamivir phosphate ester, OE) is a widely used antiviral active against influenza A virus. Its active metabolite, oseltamivir carboxylate (OC), is chemically stable and secreted into wastewater treatment plants. OC contamination of natural habitats of waterfowl might induce OC resistance in influenza viruses persistently infecting waterfowl, and lead to transfer of OC-resistance from avian to human influenza. The aim of this study was to evaluate whether such has occurred. A genomics approach including phylogenetic analysis and probability calculations for homologous recombination was applied on altogether 19,755 neuraminidase (N1 and N2) genes from virus sampled in humans and birds, with and without resistance mutations. No evidence for transfer of OE resistance mutations from avian to human N genes was obtained, and events suggesting recombination between human and avian influenza virus variants could not be traced in the sequence material studied. The results indicate that resistance in influenza viruses infecting humans is due to the selection pressure posed by the global OE administration in humans rather than transfer from avian influenza A virus strains carrying mutations induced by environmental exposure to OC.

  15. NT5E mutations that cause human disease are associated with intracellular mistrafficking of NT5E protein.

    Directory of Open Access Journals (Sweden)

    Michel Fausther

    Full Text Available Ecto-5'-nucleotidase/CD73/NT5E, the product of the NT5E gene, is the dominant enzyme in the generation of adenosine from degradation of AMP in the extracellular environment. Nonsense (c.662C→A, p.S221X designated F1, c.1609dupA, p.V537fsX7 designated F3 and missense (c.1073G→A, p.C358Y designated F2 NT5E gene mutations in three distinct families have been shown recently to cause premature arterial calcification disease in human patients. However, the underlying mechanisms by which loss-of-function NT5E mutations cause human disease are unknown. We hypothesized that human NT5E gene mutations cause mistrafficking of the defective proteins within cells, ultimately blocking NT5E catalytic function. To test this hypothesis, plasmids encoding cDNAs of wild type and mutant human NT5E tagged with the fluorescent probe DsRed were generated and used for transfection and heterologous expression in immortalized monkey COS-7 kidney cells that lack native NT5E protein. Enzyme histochemistry and Malachite green assays were performed to assess the biochemical activities of wild type and mutant fusion NT5E proteins. Subcellular trafficking of fusion NT5E proteins was monitored by confocal microscopy and western blot analysis of fractionated cell constituents. All 3 F1, F2, and F3 mutations result in a protein with significantly reduced trafficking to the plasma membrane and reduced ER retention as compared to wild type protein. Confocal immunofluorescence demonstrates vesicles containing DsRed-tagged NT5E proteins (F1, F2 and F3 in the cell synthetic apparatus. All 3 mutations resulted in absent NT5E enzymatic activity at the cell surface. In conclusion, three familial NT5E mutations (F1, F2, F3 result in novel trafficking defects associated with human disease. These novel genetic causes of human disease suggest that the syndrome of premature arterial calcification due to NT5E mutations may also involve a novel "trafficking-opathy".

  16. Mutational Mapping and Modeling of the Binding Site for (S)-Citalopram in the Human Serotonin Transporter

    DEFF Research Database (Denmark)

    Andersen, Jacob; Olsen, Lars; Hansen, Kasper B.

    2010-01-01

    , and (S)-citalopram, which are competitive inhibitors of the transport function. Knowledge of the molecular details of the antidepressant binding sites in SERT has been limited due to lack of structural data on SERT. Here, we present a characterization of the (S)-citalopram binding pocket in human SERT (h...... is functionally relevant from studying the effects of 64 point mutations around the putative substrate binding site. The mutational mapping also identify novel hSERT residues that are crucial for (S)-citalopram binding. The model defines the molecular determinants for (S)-citalopram binding to h...

  17. Mutations in the carboxyl-terminal hydrophobic sequence of human cytomegalovirus glycoprotein B alter transport and protein chaperone binding.

    OpenAIRE

    Zheng, Z.; Maidji, E; Tugizov, S; Pereira, L

    1996-01-01

    Human cytomegalovirus glycoprotein B (gB) plays a role in the fusion of the virion envelope with the host cell membrane and in syncytium formation in infected cells. Hydrophobic sequences at the carboxyl terminus, amino acids (aa) 714 to 771, anchor gB in the lipid bilayer, but the unusual length of this domain suggests that it may serve another role in gB structure. To explore the function(s) of this region, we deleted aa 717 to 747 (gB deltaI mutation), aa 751 to 771 (gB deltaII mutation), ...

  18. Multi-level gene expression profiles affected by thymidylate synthase and 5-fluorouracil in colon cancer

    Directory of Open Access Journals (Sweden)

    Chu Edward

    2006-04-01

    Full Text Available Abstract Background Thymidylate synthase (TS is a critical target for cancer chemotherapy and is one of the most extensively studied biomarkers for fluoropyrimidine-based chemotherapy. In addition to its critical role in enzyme catalysis, TS functions as an RNA binding protein to regulate the expression of its own mRNA translation and other cellular mRNAs, such as p53, at the translational level. In this study, a comprehensive gene expression analysis at the levels of both transcriptional and post-transcriptional regulation was conducted to identify response markers using human genome array with TS-depleted human colon cancer HCT-C18 (TS- cells and HCT-C18 (TS+ cells stably transfected with the human TS cDNA expression plasmid. Results A total of 38 genes were found to be significantly affected by TS based on the expression profiles of steady state mRNA transcripts. However, based on the expression profiles of polysome associated mRNA transcripts, over 149 genes were affected by TS overexpression. This indicates that additional post-transcriptionally controlled genes can be captured with profiling polysome associated mRNA population. This unique approach provides a comprehensive overview of genes affected by TS. Additional novel post-transcriptionally regulated genes affected by 5-fluorouracil (5-FU treatment were also discovered via similar approach. Conclusion To our knowledge, this is the first time that a comprehensive gene expression profile regulated by TS and 5-FU was analyzed at the multiple steps of gene regulation. This study will provide candidate markers that can be potentially used for predicting therapeutic outcomes for fluoropyrimidine-based cancer chemotherapy.

  19. Rapid In Vitro Evolution of Human Cytomegalovirus UL56 Mutations That Confer Letermovir Resistance

    OpenAIRE

    Chou, Sunwen

    2015-01-01

    Letermovir (LMV) is an experimental cytomegalovirus terminase inhibitor undergoing phase 3 clinical trials. Viral mutations have been described at UL56 codons 231 to 369 that confer widely variable levels of LMV resistance. In this study, 15 independent experiments propagating an exonuclease mutant viral strain in escalating LMV concentrations replicated 6 of the 7 published UL56 mutations and commonly elicited additional resistance-conferring mutations at UL56 codons 231, 236, 237, 244, 257,...

  20. Short Hairpin RNA Suppression of Thymidylate Synthase Produces DNA Mismatches and Results in Excellent Radiosensitization

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Sheryl A., E-mail: sflan@umich.edu [Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Cooper, Kristin S. [Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Mannava, Sudha; Nikiforov, Mikhail A. [Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York (United States); Shewach, Donna S. [Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, Michigan (United States)

    2012-12-01

    Purpose: To determine the effect of short hairpin ribonucleic acid (shRNA)-mediated suppression of thymidylate synthase (TS) on cytotoxicity and radiosensitization and the mechanism by which these events occur. Methods and Materials: shRNA suppression of TS was compared with 5-fluoro-2 Prime -deoxyuridine (FdUrd) inactivation of TS with or without ionizing radiation in HCT116 and HT29 colon cancer cells. Cytotoxicity and radiosensitization were measured by clonogenic assay. Cell cycle effects were measured by flow cytometry. The effects of FdUrd or shRNA suppression of TS on dNTP deoxynucleotide triphosphate imbalances and consequent nucleotide misincorporations into deoxyribonucleic acid (DNA) were analyzed by high-pressure liquid chromatography and as pSP189 plasmid mutations, respectively. Results: TS shRNA produced profound ({>=}90%) and prolonged ({>=}8 days) suppression of TS in HCT116 and HT29 cells, whereas FdUrd increased TS expression. TS shRNA also produced more specific and prolonged effects on dNTPs deoxynucleotide triphosphates compared with FdUrd. TS shRNA suppression allowed accumulation of cells in S-phase, although its effects were not as long-lasting as those of FdUrd. Both treatments resulted in phosphorylation of Chk1. TS shRNA alone was less cytotoxic than FdUrd but was equally effective as FdUrd in eliciting radiosensitization (radiation enhancement ratio: TS shRNA, 1.5-1.7; FdUrd, 1.4-1.6). TS shRNA and FdUrd produced a similar increase in the number and type of pSP189 mutations. Conclusions: TS shRNA produced less cytotoxicity than FdUrd but was equally effective at radiosensitizing tumor cells. Thus, the inhibitory effect of FdUrd on TS alone is sufficient to elicit radiosensitization with FdUrd, but it only partially explains FdUrd-mediated cytotoxicity and cell cycle inhibition. The increase in DNA mismatches after TS shRNA or FdUrd supports a causal and sufficient role for the depletion of dTTP thymidine triphosphate and consequent DNA

  1. Structure-Based Discovery of Inhibitors of Thymidylate Synthase

    Science.gov (United States)

    Shoichet, Brian K.; Stroud, Robert M.; Santi, Daniel V.; Kuntz, Irwin D.; Perry, Kathy M.

    1993-03-01

    A molecular docking computer program (DOCK) was used to screen the Fine Chemical Directory, a database of commercially available compounds, for molecules that are complementary to thymidylate synthase (TS), a chemotherapeutic target. Besides retrieving the substrate and several known inhibitors, DOCK proposed putative inhibitors previously unknown to bind to the enzyme. Three of these compounds inhibited Lactobacillus caser TS at submillimolar concentrations. One of these inhibitors, sulisobenzone, crystallized with TS in two configurations that differed from the DOCK-favored geometry: a counterion was bound in the substrate site, which resulted in a 6 to 9 angstrom displacement of the inhibitor. The structure of the complexes suggested another binding region in the active site that could be exploited. This region was probed with molecules sterically similar to sulisobenzone, which led to the identification of a family of phenolphthalein analogs that inhibit TS in the 1 to 30 micromolar range. These inhibitors do not resemble the substrates of the enzyme. A crystal structure of phenolphthalein with TS shows that it binds in the target site in a configuration that resembles the one suggested by DOCK.

  2. Oxidative Stress and Response to Thymidylate Synthase-Targeted Antimetabolites.

    Science.gov (United States)

    Ozer, Ufuk; Barbour, Karen W; Clinton, Sarah A; Berger, Franklin G

    2015-12-01

    Thymidylate synthase (TYMS; EC 2.1.1.15) catalyzes the reductive methylation of 2'-deoxyuridine-5'-monophosphate (dUMP) by N(5),N(10)-methyhlenetetrahydrofolate, forming dTMP for the maintenance of DNA replication and repair. Inhibitors of TYMS have been widely used in the treatment of neoplastic disease. A number of fluoropyrimidine and folate analogs have been developed that lead to inhibition of the enzyme, resulting in dTMP deficiency and cell death. In the current study, we have examined the role of oxidative stress in response to TYMS inhibitors. We observed that intracellular reactive oxygen species (ROS) concentrations are induced by these inhibitors and promote apoptosis. Activation of the enzyme NADPH oxidase (NOX), which catalyzes one-electron reduction of O2 to generate superoxide (O2 (●-)), is a significant source of increased ROS levels in drug-treated cells. However, gene expression profiling revealed a number of other redox-related genes that may contribute to ROS generation. TYMS inhibitors also induce a protective response, including activation of the transcription factor nuclear factor E2-related factor 2 (NRF2), a critical mediator of defense against oxidative and electrophilic stress. Our results show that exposure to TYMS inhibitors induces oxidative stress that leads to cell death, while simultaneously generating a protective response that may underlie resistance against such death. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Tumour procurement, DNA extraction, coverage analysis and optimisation of mutation-detection algorithms for human melanoma genomes.

    Science.gov (United States)

    Wilmott, James S; Field, Matthew A; Johansson, Peter A; Kakavand, Hojabr; Shang, Ping; De Paoli-Iseppi, Ricardo; Vilain, Ricardo E; Pupo, Gulietta M; Tembe, Varsha; Jakrot, Valerie; Shang, Catherine A; Cebon, Jonathan; Shackleton, Mark; Fitzgerald, Anna; Thompson, John F; Hayward, Nicholas K; Mann, Graham J; Scolyer, Richard A

    2015-12-01

    Whole genome sequencing (WGS) of cancer patients' tumours offers the most comprehensive method of identifying both novel and known clinically-actionable genomic targets. However, the practicalities of performing WGS on clinical samples are poorly defined.This study was designed to test sample preparation, sequencing specifications and bioinformatic algorithms for their effect on accuracy and cost-efficiency in a large WGS analysis of human melanoma samples.WGS was performed on melanoma cell lines (n = 15) and melanoma fresh frozen tumours (n = 222). The appropriate level of coverage and the optimal mutation detection algorithm for the project pipeline were determined.An incremental increase in sequencing coverage from 36X to 132X in melanoma tissue samples and 30X to 103X for cell lines only resulted in a small increase (1-2%) in the number of mutations detected, and the quality scores of the additional mutations indicated a low probability that the mutations were real. The results suggest that 60X coverage for melanoma tissue and 40X for melanoma cell lines empower the detection of 98-99% of informative single nucleotide variants (SNVs), a sensitivity level at which clinical decision making or landscape research projects can be carried out with a high degree of confidence in the results. Likewise the bioinformatic mutation analysis methodology strongly influenced the number and quality of SNVs detected. Detecting mutations in the blood genomes separate to the tumour genomes generated 41% more SNVs than if the blood and melanoma tissue genomes were analysed simultaneously. Therefore, simultaneous analysis should be employed on matched melanoma tissue and blood genomes to reduce errors in mutation detection.This study provided valuable insights into the accuracy of SNV with WGS at various coverage levels in human clinical cancer specimens. Additionally, we investigated the accuracy of the publicly available mutation detection algorithms to detect cancer

  4. Mitochondrial dysfunction in a transgenic mouse model expressing human amyloid precursor protein (APP) with the Arctic mutation.

    Science.gov (United States)

    Rönnbäck, Annica; Pavlov, Pavel F; Mansory, Mansorah; Gonze, Prisca; Marlière, Nicolas; Winblad, Bengt; Graff, Caroline; Behbahani, Homira

    2016-02-01

    Accumulation of amyloid β-peptide (Aβ) in the brain is an important event in the pathogenesis of Alzheimer disease. We have used a transgenic mouse model expressing human amyloid precursor protein (APP) with the Arctic mutation to investigate whether Aβ deposition is correlated with mitochondrial functions in these animals. We found evidence of mitochondrial dysfunction (i.e., decreased mitochondrial membrane potential, increased production of reactive oxygen species and oxidative DNA damage) at 6 months of age, when the mice showed very mild Aβ deposition. More pronounced mitochondrial abnormalities were present in 24-month-old TgAPParc mice with more extensive Aβ pathology. This study demonstrates for the first time mitochondrial dysfunction in transgenic mice with a mutation within the Aβ peptide (the Arctic APP mutation), and confirms previous studies suggesting that mitochondrial dysfunction and oxidative stress is an early event in the pathogenesis of Alzheimer disease. This study demonstrates mitochondrial dysfunction in transgenic mice with a mutation within the amyloid beta (Aβ) peptide (the Arctic amyloid precursor protein (APP) mutation). We found evidence of mitochondrial dysfunction (i.e. decreased mitochondrial membrane potential (MMP), increased production of reactive oxygen species (ROS) and oxidative DNA damage) at 6 months of age, when very mild Aβ deposition is present in the mice. Also, the cytochrome c (COX) activity was significantly decreased in mitochondria from transgenic mice at 24 months of age. © 2015 International Society for Neurochemistry.

  5. Experimental Evolution of Mycobacterium tuberculosis in Human Macrophages Results in Low-Frequency Mutations Not Associated with Selective Advantage.

    Directory of Open Access Journals (Sweden)

    Valentina Guerrini

    Full Text Available Isolates of the human pathogen Mycobacterium tuberculosis recovered from clinical samples exhibit genetic heterogeneity. Such variation may result from the stressful environment encountered by the pathogen inside the macrophage, which is the host cell tubercle bacilli parasitize. To study the evolution of the M. tuberculosis genome during growth inside macrophages, we developed a model of intracellular culture in which bacteria were serially passaged in macrophage-like THP-1 cells for about 80 bacterial generations. Genome sequencing of single bacterial colonies isolated before and after the infection cycles revealed that M. tuberculosis developed mutations at a rate of about 5.7 × 10-9 / bp/ generation, consistent with mutation rates calculated during in vivo infection. Analysis of mutant growth in macrophages and in mice showed that the mutations identified after the cyclic infection conferred no advantage to the mutants relative to wild-type. Furthermore, activity testing of the recombinant protein harboring one of these mutations showed that the presence of the mutation did not affect the enzymatic activity. The serial infection protocol developed in this work to study M. tuberculosis genome microevolution can be applied to exposure to stressors to determine their effect on genome remodeling during intra-macrophage growth.

  6. Computational simulations of the effects of the G229D KCNQ1 mutation on human atrial fibrillation.

    Science.gov (United States)

    Zulfa, Indana; Shim, Eun Bo; Song, Kwang-Soup; Lim, Ki Moo

    2016-09-01

    Atrial fibrillation (AF) is related to mutations at the genetic level. This includes mutations in genes that encode KCNQ1, a subunit of the I Ks channel. Here, we investigate the mechanism of gain-of-function in I Ks towards the occurrence of AF. We used the Courtemanche-Ramirez-Nattel (CRN) human atrial cell model (Am J Physiol Heart Circ Physiol 275:H301-H321, 1998) and applied the modification proposed by Hasegawa et al. (Heart Rhythm 11:67-75, 2014) to fit the behavior of I Ks due to the G229D mutation in KCNQ1 under a heterozygous mutant form. This was incorporated into two-(2D) and three-dimensional (3D) tissue models, where the mutation sustained a reentrant wave. However, under the wild-type condition, the reentrant wave terminated before the end of our simulations (in 2D, the spiral wave terminated before 10 s, while in 3D, the spiral wave terminated before 13 s). Sustained reentry under the mutation conditions also resulted in a spiral wave breakup in the 3D model, which was sustained until the end of the simulation (20 s), indicating AF.

  7. Structural Basis for a Human Glycosylation Disorder Caused by Mutation of the COG4 Gene

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, B.; Smith, R; Ungar, D; Nakamura, A; Jeffrey, P; Lupashin, V; Hughson, F

    2009-01-01

    The proper glycosylation of proteins trafficking through the Golgi apparatus depends upon the conserved oligomeric Golgi (COG) complex. Defects in COG can cause fatal congenital disorders of glycosylation (CDGs) in humans. The recent discovery of a form of CDG, caused in part by a COG4 missense mutation changing Arg 729 to Trp, prompted us to determine the 1.9 A crystal structure of a Cog4 C-terminal fragment. Arg 729 is found to occupy a key position at the center of a salt bridge network, thereby stabilizing Cog4's small C-terminal domain. Studies in HeLa cells reveal that this C-terminal domain, while not needed for the incorporation of Cog4 into COG complexes, is essential for the proper glycosylation of cell surface proteins. We also find that Cog4 bears a strong structural resemblance to exocyst and Dsl1p complex subunits. These complexes and others have been proposed to function by mediating the initial tethering between transport vesicles and their membrane targets; the emerging structural similarities provide strong evidence of a common evolutionary origin and may reflect shared mechanisms of action.

  8. Identification of a prevalent founder mutation in an Israeli Muslim Arab village confirms the role of PRCD in the aetiology of retinitis pigmentosa in humans.

    Science.gov (United States)

    Nevet, M J; Shalev, S A; Zlotogora, J; Mazzawi, N; Ben-Yosef, T

    2010-08-01

    Retinitis pigmentosa (RP) is the most common form of hereditary retinal degeneration. At least 32 genes and loci have been implicated in non-syndromic autosomal recessive RP. Progressive rod-cone degeneration is a canine form of autosomal recessive retinal degeneration, which serves as an animal model for human RP, and is caused by a missense mutation of the PRCD gene. The same homozygous PRCD mutation has been previously identified in a single human RP patient from Bangladesh. To date, this is the only RP-causing mutation of PRCD reported in humans. The cause of the high incidence rate of autosomal recessive RP in an isolated Muslim Arab village in Northern Israel was investigated by haplotype analysis in affected families. The underlying mutation was detected by direct sequencing of the causative gene, and its prevalence in affected and unaffected individuals from the village was determined. Patients who were homozygotes for this mutation underwent ophthalmic evaluation, including funduscopy and electroretinography. The identification of a novel pathogenic nonsense mutation of PRCD is reported. This founder mutation was found in a homozygous state in 18 patients from nine families, and its carrier frequency in the investigated village is 10%. The mutation is associated with a typical RP phenotype, including bone spicule-type pigment deposits and non-recordable electroretinograms. Additional findings include signs of macular degeneration and cataract. The identification of a second pathogenic mutation of PRCD in multiple RP patients confirms the role of PRCD in the aetiology of RP in humans.

  9. A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans

    National Research Council Canada - National Science Library

    Kitamura, Akiko; Maekawa, Yoichi; Uehara, Hisanori; Izumi, Keisuke; Kawachi, Izumi; Nishizawa, Masatoyo; Toyoshima, Yasuko; Takahashi, Hitoshi; Standley, Daron M; Tanaka, Keiji; Hamazaki, Jun; Murata, Shigeo; Obara, Koji; Toyoshima, Itaru; Yasutomo, Koji

    2011-01-01

    ... bearing this mutation suffered from autoinflammatory responses that included recurrent fever and nodular erythema together with lipodystrophy. This mutation increased assembly intermediates of immunoproteasomes, resulting in decreased proteasome function and ubiquitin-coupled protein accumulation in the patient's tissues. In the pati...

  10. N-ras mutations in human cutaneous melanoma from sun-exposed body sites

    NARCIS (Netherlands)

    van 't Veer, L. J.; Burgering, B. M.; Versteeg, R.; Boot, A. J.; Ruiter, D. J.; Osanto, S.; Schrier, P. I.; Bos, J. L.

    1989-01-01

    In 7 of 37 patients with cutaneous melanoma, mutations in the N-ras gene were found. The primary tumors of these seven patients were exclusively localized on body sites continuously exposed to sunlight. Moreover, the ras mutations were all at or near dipyrimidine sites known to be targets of UV

  11. Pathoadaptation of a Human Pathogen Through Non-Coding Intergenic Mutations

    DEFF Research Database (Denmark)

    Khademi, Seyed Mohammad Hossein

    Most knowledge gained from evolutionary studies of bacteria in natural and experimental settings center around contribution of intragenic mutations on bacterial evolution. While cases of adaptive intergenic mutations have sometimes been reported or explored, none of these studies consider...... intergenic mutations in broader context as key players in evolutionary adaptation of bacteria. The focus of this thesis has been to provide novel insights on contributions of non-coding intergenic mutations in natural evolution of bacteria. The model system used for these investigations is adaptation...... of opportunistic pathogen Pseudomonas aeruginosa in long-term chronic airway infections of Cystic fibrosis (CF) patients. Using sequenced genomes of P. aeruginosa isolated from this setting, 88 intergenic regions under positive selection for adaptive mutations within and across isolates of different P. aeruginosa...

  12. Immunofluorescent localization of thymidylate synthase in the development of Trichinella spiralis and Caenorhabditis elegans.

    Science.gov (United States)

    Gołos, Barbara; Dąbrowska, Magdalena; Wałajtys-Rode, Elżbieta; Zieliński, Zbigniew; Wińska, Patrycja; Cieśla, Joanna; Jagielska, Elżbieta; Moczoń, Tadeusz; Rode, Wojciech

    2012-05-01

    Localization of thymidylate synthase protein in Trichinella spiralis and Caenorhabditis elegans development was followed with the use of confocal microscopy, revealing similar expression patterns in both nematode species. In T. spiralis premature muscle larvae and C. elegans dauer, L3 and L4 larvae, thymidylate synthase was detected in the nerve ring and gonad primordia, as well as T. spiralis stichosome and C. elegans pharyngeal glandular cells. In developmentally arrested T. spiralis muscle larvae, the enzyme was found localized to the gonad primordia and stichosome. High enzyme level was also observed in the embryos developing in uteri of T. spiralis female adult and C. elegans hermaphrodite forms. In the case of T. spiralis adult forms, thymidylate synthase was detected in stichosome, along esophagus wall, as well as in egg and sperm cells. While the enzyme protein present in the embryos remains in accord with its known association with proliferating systems, thymidylate synthase presence in the nerve ring, and reproductive and secretory (T. spiralis stichosomal and C. elegans pharyngeal glandular cells) systems, points to a state of cell cycle-arrest, also known to preserve the enzyme protein. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. THYMIDYLATE SYNTHASE LEVELS IN TUMOR-BIOPSIES FROM PATIENTS WITH COLORECTAL-CANCER

    NARCIS (Netherlands)

    MULDER, NH; TIMMERBOSSCHA, H; MEERSMA, GJ; VERSCHUEREN, RCJ

    1994-01-01

    Catalytic activity and FdUMP binding characteristics of thymidylate synthase (TS) were determined in 22 rumor biopsies of patients to be treated (15) or just treated (7) for colorectal cancer with 5-fluorouracil and leucovorin. In 19 samples both parameters could be determined and were found to

  14. The HIV mutation browser: a resource for human immunodeficiency virus mutagenesis and polymorphism data.

    Directory of Open Access Journals (Sweden)

    Norman E Davey

    2014-12-01

    Full Text Available Huge research effort has been invested over many years to determine the phenotypes of natural or artificial mutations in HIV proteins--interpretation of mutation phenotypes is an invaluable source of new knowledge. The results of this research effort are recorded in the scientific literature, but it is difficult for virologists to rapidly find it. Manually locating data on phenotypic variation within the approximately 270,000 available HIV-related research articles, or the further 1,500 articles that are published each month is a daunting task. Accordingly, the HIV research community would benefit from a resource cataloguing the available HIV mutation literature. We have applied computational text-mining techniques to parse and map mutagenesis and polymorphism information from the HIV literature, have enriched the data with ancillary information and have developed a public, web-based interface through which it can be intuitively explored: the HIV mutation browser. The current release of the HIV mutation browser describes the phenotypes of 7,608 unique mutations at 2,520 sites in the HIV proteome, resulting from the analysis of 120,899 papers. The mutation information for each protein is organised in a residue-centric manner and each residue is linked to the relevant experimental literature. The importance of HIV as a global health burden advocates extensive effort to maximise the efficiency of HIV research. The HIV mutation browser provides a valuable new resource for the research community. The HIV mutation browser is available at: http://hivmut.org.

  15. Structural organization and mutational analysis of the human uncoupling protein-2 (hUCP2) gene.

    Science.gov (United States)

    Tu, N; Chen, H; Winnikes, U; Reinert, I; Marmann, G; Pirke, K M; Lentes, K U

    1999-01-01

    Uncoupling proteins (UCPs) are mitochondrial membrane transporters which are involved in dissipating the proton electrochemical gradient thereby releasing stored energy as heat. This implies a major role of UCPs in energy metabolism and thermogenesis which when deregulated are key risk factors for the development of obesity and other eating disorders. From the three different human UCPs identified so far by gene cloning both UCP2 and UCP3 were mapped in close proximity (75-150 kb) to regions of human chromosome 11 (11q13) that have been linked to obesity and hyperinsulinaemia. At the amino acid level hUCP2 has about 55% identity to hUCP1 while hUCP3 is 71% identical to hUCP2. In this study we have deduced the genomic structure of the human UCP2 gene by PCR and direct sequence analysis. The hUCP2 gene spans over 8.7 kb distributed on 8 exons. The localization of the exon/intron boundaries within the coding region matches precisely that of the hUCP1 gene and is almost conserved in the recently discovered hUCP3 gene as well. The high degree of homology at the nucleotide level and the conservation of the exon /intron boundaries among the three UCP genes suggests that they may have evolved from a common ancestor or are the result from gene duplication events. Mutational analysis of the hUCP2 gene in a cohort of 172 children (aged 7 - 13) of Caucasian origin revealed a polymorphism in exon 4 (C to T transition at position 164 of the cDNA resulting in the substitution of an alanine by a valine at codon 55) and an insertion polymorphism in exon 8. The insertion polymorphism consists of a 45 bp repeat located 150 bp downstream of the stop codon in the 3'-UTR. The allele frequencies were 0.63 and 0.37 for the alanine and valine encoded alleles, respectively, and 0.71 versus 0.29 for the insertion polymorphism. The allele frequencies of both polymorphisms were not significantly elevated in a subgroup of 25 children characterized by low Resting Metabolic Rates (RMR). So far a

  16. De novo digenic mutations of telomere-associated proteins and inflammasomes initiate many chronic human diseases: a hypothesis.

    Science.gov (United States)

    Marchesi, Vincent T

    2017-09-01

    Many age-related human diseases have inflammatory components of uncertain causes. It has been proposed that some may be initiated or sustained by doubly mutated immune cells that have both inappropriately activated inflammasomes and enhanced replicative potential. Genes of cells that express mutant TERT and NLRP3 proteins are presumed to be at increased risk for mutagenesis because they reside in subtelomeric regions of chromatin that are deficient in DNA repair mechanisms. Expanded clones of proinflammatory cells can occur throughout one's lifetime and could represent an alternative explanation for some forms of pathologic scarring that are now attributed to truncated telomeres.-Marchesi, V. T. De novo digenic mutations of telomere-associated proteins and inflammasomes initiate many chronic human diseases: a hypothesis. © FASEB.

  17. Rules of co-occurring mutations characterize the antigenic evolution of human influenza A/H3N2, A/H1N1 and B viruses.

    Science.gov (United States)

    Chen, Haifen; Zhou, Xinrui; Zheng, Jie; Kwoh, Chee-Keong

    2016-12-05

    The human influenza viruses undergo rapid evolution (especially in hemagglutinin (HA), a glycoprotein on the surface of the virus), which enables the virus population to constantly evade the human immune system. Therefore, the vaccine has to be updated every year to stay effective. There is a need to characterize the evolution of influenza viruses for better selection of vaccine candidates and the prediction of pandemic strains. Studies have shown that the influenza hemagglutinin evolution is driven by the simultaneous mutations at antigenic sites. Here, we analyze simultaneous or co-occurring mutations in the HA protein of human influenza A/H3N2, A/H1N1 and B viruses to predict potential mutations, characterizing the antigenic evolution. We obtain the rules of mutation co-occurrence using association rule mining after extracting HA1 sequences and detect co-mutation sites under strong selective pressure. Then we predict the potential drifts with specific mutations of the viruses based on the rules and compare the results with the "observed" mutations in different years. The sites under frequent mutations are in antigenic regions (epitopes) or receptor binding sites. Our study demonstrates the co-occurring site mutations obtained by rule mining can capture the evolution of influenza viruses, and confirms that cooperative interactions among sites of HA1 protein drive the influenza antigenic evolution.

  18. Association of thymidylate synthase and hypoxia inducible factor-1alpha DNA polymorphisms with pancreatic cancer.

    Science.gov (United States)

    Ruiz-Tovar, Jaime; Fernandez-Contreras, Maria Encarnación; Martín-Perez, Elena; Gamallo, Carlos

    2012-01-01

    Thymidylate synthase and hypoxia inducible factor-1α play a central role in the control of tumor progression. In the present study, we investigated the effect of three DNA polymorphisms within the thymidylate synthase gene and two within hypoxia inducible factor-1α on the prognosis of pancreatic cancer. A retrospective study was performed in 59 patients diagnosed with invasive ductal adenocarcinoma of the pancreas and 159 healthy volunteers. The studied DNA polymorphisms were a variable tandem repeat of 28 bp (rs45445694), a G/C single nucleotide polymorphism (rs34743033), and a deletion of 6 bp (ins1494del 6bp; rs34489327) within the thymidylate synthase gene and C1772T and G1790A single nucleotide polymorphisms within hypoxia inducible factor-1α (rs11549465 and rs11549467, respectively) . Variable tandem repeats were determined by specific polymerase chain reaction, whereas thymidylate synthase single nucleotide polymorphism G/C, ins1494del 6pb, and hypoxia inducible factor-1α polymorphisms were identified by polymerase chain reaction and RFLP. Thymidylate synthase and hypoxia inducible factor-1α genotype distributions in patients and healthy volunteers were determined. The impact of the polymorphisms on clinico-pathological variables, including survival, was also studied. The frequency of carriers of the variant del6bp allele was significantly higher among patients (70.0% vs 51.0% of healthy donors, P = 0.02); 42% of male patients were homozygous 2R/2R vs 13.6% of females (P = 0.03), but differences regarding gender were not observed among healthy volunteers. Concerning hypoxia inducible factor-1α C1772T and G1790A single nucleotide polymorphisms, the rates of variant T/T and A/A homozygous genotypes were significantly elevated among patients (18.6% vs 5.3%, P = 0.001, and 5.1% vs none, P = 0.021 respectively). In our study, the variant del14946bp allele within the thymidylate synthase gene, and TT and AA genotypes of C1772T and G1790A hypoxia inducible

  19. Topoisomerase 2α and thymidylate synthase expression in adrenocortical cancer.

    Science.gov (United States)

    Roca, Elisa; Berruti, Alfredo; Sbiera, Silviu; Rapa, Ida; Oneda, Ester; Sperone, Paola; Ronchi, Cristina L; Ferrari, Laura; Grisanti, Salvatore; Germano, Antonina; Zaggia, Barbara; Scagliotti, Giorgio Vittorio; Fassnacht, Martin; Volante, Marco; Terzolo, Massimo; Papotti, Mauro

    2017-07-01

    Topoisomerase II alpha (TOP2A) and thymidylate synthase (TS) are known prognostic parameters in several tumors and also predictors of efficacy of anthracyclines, topoisomerase inhibitors and fluoropirimidines, respectively. Expression of TOP2A and TS mRNA was assessed in 98 patients with adrenocortical carcinoma (ACC) and protein expression was assessed by immunohistochemistry in a subset of 39 tumors. Ninety-two patients were radically resected for stage II-III disease and 38 of them received adjuvant mitotane. Twenty-six patients with metastatic disease received the EDP-M (etoposide, doxorubicin, Adriamycin, cisplatin plus mitotane). TOP2A and TS expression in ACC tissue was directly correlated with the clinical data. Both markers were not associated with either disease free survival (DFS) or overall survival (OS) in multivariate analyses and failed to be associated to mitotane efficacy. Disease response or stabilization to EDP-M treatment was observed in 12/17 (71%) and 1/9 (11%) patients with high and low TOP2A expressing tumors (P = 0.0039) and 9/13 (69%) and 4/13 (31%) patients with high and low TS expressing ACC, respectively (P = 0.049). High TOP2A expression was significantly associated with longer time to progression (TTP) after EDP-M. TOP2A and TS proteins assessed by immunohistochemistry significantly correlated with mRNA expression. Immunohistochemical TOP2A expression was associated with a non-significant better response and longer TTP after EDP-M. TOP2A and TS were neither prognostic nor predictive of mitotane efficacy in ACC patients. The predictive role of TOP2A expression of EDP-M activity suggests a significant contribution of Adriamycin and etoposide for the efficacy of the EDP scheme. © 2017 Society for Endocrinology.

  20. Identifying antimalarial compounds targeting dihydrofolate reductase-thymidylate synthase (DHFR-TS) by chemogenomic profiling.

    Science.gov (United States)

    Aroonsri, Aiyada; Akinola, Olugbenga; Posayapisit, Navaporn; Songsungthong, Warangkhana; Uthaipibull, Chairat; Kamchonwongpaisan, Sumalee; Gbotosho, Grace O; Yuthavong, Yongyuth; Shaw, Philip J

    2016-07-01

    The mode of action of many antimalarial drugs is unknown. Chemogenomic profiling is a powerful method to address this issue. This experimental approach entails disruption of gene function and phenotypic screening for changes in sensitivity to bioactive compounds. Here, we describe the application of reverse genetics for chemogenomic profiling in Plasmodium. Plasmodium falciparum parasites harbouring a transgenic insertion of the glmS ribozyme downstream of the dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene were used for chemogenomic profiling of antimalarial compounds to identify those which target DHFR-TS. DHFR-TS expression can be attenuated by exposing parasites to glucosamine. Parasites with attenuated DHFR-TS expression were significantly more sensitive to antifolate drugs known to target DHFR-TS. In contrast, no change in sensitivity to other antimalarial drugs with different modes of action was observed. Chemogenomic profiling was performed using the Medicines for Malaria Venture (Switzerland) Malaria Box compound library, and two compounds were identified as novel DHFR-TS inhibitors. We also tested the glmS ribozyme in Plasmodium berghei, a rodent malaria parasite. The expression of reporter genes with downstream glmS ribozyme could be attenuated in transgenic parasites comparable with that obtained in P. falciparum. The chemogenomic profiling method was applied in a P. berghei line expressing a pyrimethamine-resistant Toxoplasma gondii DHFR-TS reporter gene under glmS ribozyme control. Parasites with attenuated expression of this gene were significantly sensitised to antifolates targeting DHFR-TS, but not other drugs with different modes of action. In conclusion, these data show that the glmS ribozyme reverse genetic tool can be applied for identifying primary targets of antimalarial compounds in human and rodent malaria parasites. Copyright © 2016 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  1. Dihydrofolate Reductase and Thymidylate Synthase Transgenes Resistant to Methotrexate Interact to Permit Novel Transgene Regulation.

    Science.gov (United States)

    Rushworth, David; Mathews, Amber; Alpert, Amir; Cooper, Laurence J N

    2015-09-18

    Methotrexate (MTX) is an anti-folate that inhibits de novo purine and thymidine nucleotide synthesis. MTX induces death in rapidly replicating cells and is used in the treatment of multiple cancers. MTX inhibits thymidine synthesis by targeting dihydrofolate reductase (DHFR) and thymidylate synthase (TYMS). The use of MTX to treat cancer also causes bone marrow suppression and inhibits the immune system. This has led to the development of an MTX-resistant DHFR, DHFR L22F, F31S (DHFR(FS)), to rescue healthy cells. 5-Fluorouracil-resistant TYMS T51S, G52S (TYMS(SS)) is resistant to MTX and improves MTX resistance of DHFR(FS) in primary T cells. Here we find that a known mechanism of MTX-induced increase in DHFR expression persists with DHFR(FS) and cis-expressed transgenes. We also find that TYMS(SS) expression of cis-expressed transgenes is similarly decreased in an MTX-inducible manner. MTX-inducible changes in DHFR(FS) and TYMS(SS) expression changes are lost when both genes are expressed together. In fact, expression of the DHFR(FS) and TYMS(SS) cis-expressed transgenes becomes correlated. These findings provide the basis for an unrecognized post-transcriptional mechanism that functionally links expression of DHFR and TYMS. These findings were made in genetically modified primary human T cells and have a clear potential for use in clinical applications where gene expression needs to be regulated by drug or maintained at a specific expression level. We demonstrate a potential application of this system in the controlled expression of systemically toxic cytokine IL-12. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Folate rescues vitamin B12 depletion-induced inhibition of nuclear thymidylate biosynthesis and genome instability.

    Science.gov (United States)

    Palmer, Ashley M; Kamynina, Elena; Field, Martha S; Stover, Patrick J

    2017-05-16

    Clinical vitamin B12 deficiency can result in megaloblastic anemia, which results from the inhibition of DNA synthesis by trapping folate cofactors in the form of 5-methyltetrahydrofolate (5-methylTHF) and subsequent inhibition of de novo thymidylate (dTMP) biosynthesis. In the cytosol, vitamin B12 functions in the remethylation of homocysteine to methionine, which regenerates THF from 5-methylTHF. In the nucleus, THF is required for de novo dTMP biosynthesis, but it is not understood how 5-methylTHF accumulation in the cytosol impairs nuclear dTMP biosynthesis. The impact of vitamin B12 depletion on nuclear de novo dTMP biosynthesis was investigated in methionine synthase-null human fibroblast and nitrous oxide-treated HeLa cell models. The nucleus was the most sensitive cellular compartment to 5-methylTHF accumulation, with levels increasing greater than fourfold. Vitamin B12 depletion decreased de novo dTMP biosynthesis capacity by 5-35%, whereas de novo purine synthesis, which occurs in the cytosol, was not affected. Phosphorylated histone H2AX (γH2AX), a marker of DNA double-strand breaks, was increased in vitamin B12 depletion, and this effect was exacerbated by folate depletion. These studies also revealed that 5-formylTHF, a slow, tight-binding inhibitor of serine hydroxymethyltransferase (SHMT), was enriched in nuclei, accounting for 35% of folate cofactors, explaining previous observations that nuclear SHMT is not a robust source of one-carbons for de novo dTMP biosynthesis. These findings indicate that a nuclear 5-methylTHF trap occurs in vitamin B12 depletion, which suppresses de novo dTMP biosynthesis and causes DNA damage, accounting for the pathophysiology of megaloblastic anemia observed in vitamin B12 and folate deficiency.

  3. Development of a Transgenic Mouse with R124H Human TGFBI Mutation Associated with Granular Corneal Dystrophy Type 2.

    Science.gov (United States)

    Yamazoe, Katsuya; Yoshida, Satoru; Yasuda, Miyuki; Hatou, Shin; Inagaki, Emi; Ogawa, Yoko; Tsubota, Kazuo; Shimmura, Shigeto

    2015-01-01

    To investigate the phenotype and predisposing factors of a granular corneal dystrophy type 2 transgenic mouse model. Human TGFBI cDNA with R124H mutation was used to make a transgenic mouse expressing human protein (TGFBIR124H mouse). Reverse transcription PCR (RT-PCR) was performed to analyze TGFBIR124H expression. A total of 226 mice including 23 homozygotes, 106 heterozygotes and 97 wild-type mice were examined for phenotype. Affected mice were also examined by histology, immunohistochemistry and electron microcopy. RT-PCR confirmed the expression of TGFBIR124H in transgenic mice. Corneal opacity defined as granular and lattice deposits was observed in 45.0% of homozygotes, 19.4% of heterozygotes. The incidence of corneal opacity was significantly higher in homozygotes than in heterozygotes (p = 0.02). Histology of affected mice was similar to histology of human disease. Lesions were Congo red and Masson Trichrome positive, and were observed as a deposit of amorphous material by electron microscopy. Subepithelial stroma was also stained with thioflavin T and LC3, a marker of autophagy activation. The incidence of corneal opacity was higher in aged mice in each group. Homozygotes were not necessarily more severe than heterozygotes, which deffers from human cases. We established a granular corneal dystrophy type 2 mouse model caused by R124H mutation of human TGFBI. Although the phenotype of this mouse model is not equivalent to that in humans, further studies using this model may help elucidate the pathophysiology of this disease.

  4. Structural and functional analysis of rare missense mutations in human chorionic gonadotrophin β-subunit

    DEFF Research Database (Denmark)

    Nagirnaja, Liina; Venclovas, Česlovas; Rull, Kristiina

    2012-01-01

    Heterodimeric hCG is one of the key hormones determining early pregnancy success. We have previously identified rare missense mutations in hCGβ genes with potential pathophysiological importance. The present study assessed the impact of these mutations on the structure and function of hCG...... into secreted intact hCG was only 10% compared with the wild-type, a stronger signaling response was triggered upon binding to its receptor, thus compensating the effect of poor dimerization. The mutation CGB8 p.Pro73Arg (rs72556345) was found in five heterozygotes (three RM cases and two control individuals...... of intact hCG as also supported by an in silico analysis. In summary, the accumulated data indicate that only mutations with neutral or mild functional consequences might be tolerated in the major hCGβ genes CGB5 and CGB8....

  5. Human Slack Potassium Channel Mutations Increase Positive Cooperativity between Individual Channels

    Directory of Open Access Journals (Sweden)

    Grace E. Kim

    2014-12-01

    Full Text Available Disease-causing mutations in ion channels generally alter intrinsic gating properties such as activation, inactivation, and voltage dependence. We examined nine different mutations of the KCNT1 (Slack Na+-activated K+ channel that give rise to three distinct forms of epilepsy. All produced many-fold increases in current amplitude compared to the wild-type channel. This could not be accounted for by increases in the intrinsic open probability of individual channels. Rather, greatly increased opening was a consequence of cooperative interactions between multiple channels in a patch. The degree of cooperative gating was much greater for all of the mutant channels than for the wild-type channel, and could explain increases in current even in a mutant with reduced unitary conductance. We also found that the same mutation gave rise to different forms of epilepsy in different individuals. Our findings indicate that a major consequence of these mutations is to alter channel-channel interactions.

  6. Identification and characterization of retinoblastoma gene mutations disturbing apoptosis in human breast cancers

    Directory of Open Access Journals (Sweden)

    Berge Elisabet

    2010-07-01

    Full Text Available Abstract Background The tumor suppressor pRb plays a key role regulating cell cycle arrest, and disturbances in the RB1 gene have been reported in different cancer forms. However, the literature reports contradictory findings with respect to a pro - versus anti - apoptotic role of pRb, and the consequence of alterations in RB1 to chemotherapy sensitivity remains unclear. This study is part of a project investigating alterations in pivotal genes as predictive factors to chemotherapy sensitivity in breast cancer. Results Analyzing 73 locally advanced (stage III breast cancers, we identified two somatic and one germline single nucleotide changes, each leading to amino acid substitution in the pRb protein (Leu607Ile, Arg698Trp, and Arg621Cys, respectively. This is the first study reporting point mutations affecting RB1 in breast cancer tissue. In addition, MLPA analysis revealed two large multiexon deletions (exons 13 to 27 and exons 21 to 23 with the exons 21-23 deletion occurring in the tumor also harboring the Leu607Ile mutation. Interestingly, Leu607Ile and Arg621Cys point mutations both localize to the spacer region of the pRb protein, a region previously shown to harbor somatic and germline mutations. Multiple sequence alignment across species indicates the spacer to be evolutionary conserved. All three RB1 point mutations encoded nuclear proteins with impaired ability to induce apoptosis compared to wild-type pRb in vitro. Notably, three out of four tumors harboring RB1 mutations displayed primary resistance to treatment with either 5-FU/mitomycin or doxorubicin while only 14 out of 64 tumors without mutations were resistant (p = 0.046. Conclusions Although rare, our findings suggest RB1 mutations to be of pathological importance potentially affecting sensitivity to mitomycin/anthracycline treatment in breast cancer.

  7. Somatic mutations of the histone H3K27 demethylase, UTX, in human cancer

    OpenAIRE

    van Haaften, Gijs; Dalgliesh, Gillian L; Davies, Helen; Chen, Lina; Bignell, Graham; Greenman, Chris; Edkins, Sarah; Hardy, Claire; O?Meara, Sarah; Teague, Jon; Butler, Adam; Hinton, Jonathan; Latimer, Calli; Andrews, Jenny; Barthorpe, Syd

    2009-01-01

    Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase, UTX, pointing to histone H3 lysine methylation deregulation in multiple tumour types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX a...

  8. Stabilization of the third fibronectin type III domain of human tenascin-C through minimal mutation and rational design.

    Science.gov (United States)

    Gilbreth, R N; Chacko, B M; Grinberg, L; Swers, J S; Baca, M

    2014-10-01

    Non-antibody scaffolds are increasingly used to generate novel binding proteins for both research and therapeutic applications. Our group has developed the tenth fibronectin type III domain of human tenascin-C (TNfn3) as one such scaffold. As a scaffold, TNfn3 must tolerate extensive mutation to introduce novel binding sites. However, TNfn3's marginal stability (T(m) ∼ 59°C, ΔG(unfolding) = 5.7 kcal/mol) stands as a potential obstacle to this process. To address this issue, we sought to engineer highly stable TNfn3 variants. We used two parallel strategies. Using insights gained from structural analysis of other FN3 family members, we (1) rationally designed stabilizing point mutations or (2) introduced novel stabilizing disulfide bonds. Both strategies yielded highly stable TNfn3 variants with T(m) values as high as 83°C and ΔG(unfolding) values as high as 9.4 kcal/mol. Notably, only three or four mutations were required to achieve this level of stability with either approach. These results validate our rational design strategies and illustrate that substantial stability increases can be achieved with minimal mutation. One TNfn3 variant reported here has now been successfully used as a scaffold to develop two promising therapeutic molecules. We anticipate that other variants described will exhibit similar utility. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Assessing the residual CFTR gene expression in human nasal epithelium cells bearing CFTR splicing mutations causing cystic fibrosis.

    Science.gov (United States)

    Masvidal, Laia; Igreja, Susana; Ramos, Maria D; Alvarez, Antoni; de Gracia, Javier; Ramalho, Anabela; Amaral, Margarida D; Larriba, Sara; Casals, Teresa

    2014-06-01

    The major purpose of the present study was to quantify correctly spliced CFTR transcripts in human nasal epithelial cells from cystic fibrosis (CF) patients carrying the splicing mutations c.580-1G>T (712-1G>T) and c.2657+5G>A (2789+5G>A) and to assess the applicability of this model in CFTR therapeutic approaches. We performed the relative quantification of CFTR mRNA by reverse transcription quantitative PCR (RT-qPCR) of these splicing mutations in four groups (wild type, CF-F508del controls, CF patients and CF carriers) of individuals. In addition, in vitro assays using minigene constructs were performed to evaluate the effect of a new CF complex allele c.[2657+5G>A; 2562T>G]. Ex vivo qPCR data show that the primary consequence of both mutations at the RNA level is the skipping of their neighboring exon (6 and 16, respectively). The CFTR minigenes results mimicked the ex vivo data, as exon 16 skipping is the main aberrant transcript, and the correctly spliced transcript level was observed in a similar proportion when the c.2657+5G>A mutation is present. In summary, we provide evidence that ex vivo quantitative transcripts analysis using RT/qPCR is a robust technology that could be useful for measuring the efficacy of therapeutic approaches that attempt to achieve an increase in CFTR gene expression.

  10. Patient-specific mutations impair BESTROPHIN1's essential role in mediating Ca(2+)-dependent Cl(-) currents in human RPE.

    Science.gov (United States)

    Li, Yao; Zhang, Yu; Xu, Yu; Kittredge, Alec; Ward, Nancy; Chen, Shoudeng; Tsang, Stephen H; Yang, Tingting

    2017-10-24

    Mutations in the human BEST1 gene lead to retinal degenerative diseases displaying progressive vision loss and even blindness. BESTROPHIN1, encoded by BEST1, is predominantly expressed in retinal pigment epithelium (RPE), but its physiological role has been a mystery for the last two decades. Using a patient-specific iPSC-based disease model and interdisciplinary approaches, we comprehensively analyzed two distinct BEST1 patient mutations, and discovered mechanistic correlations between patient clinical phenotypes, electrophysiology in their RPEs, and the structure and function of BESTROPHIN1 mutant channels. Our results revealed that the disease-causing mechanism of BEST1 mutations is centered on the indispensable role of BESTROPHIN1 in mediating the long speculated Ca(2+)-dependent Cl(-) current in RPE, and demonstrate that the pathological potential of BEST1 mutations can be evaluated and predicted with our iPSC-based 'disease-in-a-dish' approach. Moreover, we demonstrated that patient RPE is rescuable with viral gene supplementation, providing a proof-of-concept for curing BEST1-associated diseases.

  11. Positive selection for new disease mutations in the human germline: evidence from the heritable cancer syndrome multiple endocrine neoplasia type 2B.

    Directory of Open Access Journals (Sweden)

    Soo-Kyung Choi

    Full Text Available Multiple endocrine neoplasia type 2B (MEN2B is a highly aggressive thyroid cancer syndrome. Since almost all sporadic cases are caused by the same nucleotide substitution in the RET proto-oncogene, the calculated disease incidence is 100-200 times greater than would be expected based on the genome average mutation frequency. In order to determine whether this increased incidence is due to an elevated mutation rate at this position (true mutation hot spot or a selective advantage conferred on mutated spermatogonial stem cells, we studied the spatial distribution of the mutation in 14 human testes. In donors aged 36-68, mutations were clustered with small regions of each testis having mutation frequencies several orders of magnitude greater than the rest of the testis. In donors aged 19-23 mutations were almost non-existent, demonstrating that clusters in middle-aged donors grew during adulthood. Computational analysis showed that germline selection is the only plausible explanation. Testes of men aged 75-80 were heterogeneous with some like middle-aged and others like younger testes. Incorporating data on age-dependent death of spermatogonial stem cells explains the results from all age groups. Germline selection also explains MEN2B's male mutation bias and paternal age effect. Our discovery focuses attention on MEN2B as a model for understanding the genetic and biochemical basis of germline selection. Since RET function in mouse spermatogonial stem cells has been extensively studied, we are able to suggest that the MEN2B mutation provides a selective advantage by altering the PI3K/AKT and SFK signaling pathways. Mutations that are preferred in the germline but reduce the fitness of offspring increase the population's mutational load. Our approach is useful for studying other disease mutations with similar characteristics and could uncover additional germline selection pathways or identify true mutation hot spots.

  12. Dihydrofolate-Reductase Mutations in Plasmodium knowlesi Appear Unrelated to Selective Drug Pressure from Putative Human-To-Human Transmission in Sabah, Malaysia.

    Directory of Open Access Journals (Sweden)

    Matthew J Grigg

    Full Text Available Malaria caused by zoonotic Plasmodium knowlesi is an emerging threat in Eastern Malaysia. Despite demonstrated vector competency, it is unknown whether human-to-human (H-H transmission is occurring naturally. We sought evidence of drug selection pressure from the antimalarial sulfadoxine-pyrimethamine (SP as a potential marker of H-H transmission.The P. knowlesi dihdyrofolate-reductase (pkdhfr gene was sequenced from 449 P. knowlesi malaria cases from Sabah (Malaysian Borneo and genotypes evaluated for association with clinical and epidemiological factors. Homology modelling using the pvdhfr template was used to assess the effect of pkdhfr mutations on the pyrimethamine binding pocket.Fourteen non-synonymous mutations were detected, with the most common being at codon T91P (10.2% and R34L (10.0%, resulting in 21 different genotypes, including the wild-type, 14 single mutants, and six double mutants. One third of the P. knowlesi infections were with pkdhfr mutants; 145 (32% patients had single mutants and 14 (3% had double-mutants. In contrast, among the 47 P. falciparum isolates sequenced, three pfdhfr genotypes were found, with the double mutant 108N+59R being fixed and the triple mutants 108N+59R+51I and 108N+59R+164L occurring with frequencies of 4% and 8%, respectively. Two non-random spatio-temporal clusters were identified with pkdhfr genotypes. There was no association between pkdhfr mutations and hyperparasitaemia or malaria severity, both hypothesized to be indicators of H-H transmission. The orthologous loci associated with resistance in P. falciparum were not mutated in pkdhfr. Subsequent homology modelling of pkdhfr revealed gene loci 13, 53, 120, and 173 as being critical for pyrimethamine binding, however, there were no mutations at these sites among the 449 P. knowlesi isolates.Although moderate diversity was observed in pkdhfr in Sabah, there was no evidence this reflected selective antifolate drug pressure in humans.

  13. Generation of KCL035 research grade human embryonic stem cell line carrying a mutation in HBB gene.

    Science.gov (United States)

    Hewitson, Heema; Wood, Victoria; Kadeva, Neli; Cornwell, Glenda; Codognotto, Stefano; Stephenson, Emma; Ilic, Dusko

    2016-03-01

    The KCL035 human embryonic stem cell line was derived from an embryo donated for research that carried a mutation in the HBB gene, which is linked to the β-thalassemia syndrome. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays. Copyright © 2016 University of Texas at Austin Dell Medical School. Published by Elsevier B.V. All rights reserved.

  14. Generation of KCL028 research grade human embryonic stem cell line carrying a mutation in the HTT gene

    Directory of Open Access Journals (Sweden)

    Laureen Jacquet

    2016-03-01

    Full Text Available The KCL028 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting one allele of the HTT gene encoding huntingtin (43 trinucleotide repeats; 21 for the normal allele. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro and in vivo assays.

  15. Generation of KCL018 research grade human embryonic stem cell line carrying a mutation in the DMPK gene

    Directory of Open Access Journals (Sweden)

    Cristian Miere

    2016-03-01

    Full Text Available The KCL018 human embryonic stem cell line was derived from an embryo donated for research that carried an autosomal dominant mutation affecting one allele of the DMPK gene encoding the dystrophia myotonica protein kinase (2200 trinucleotide repeats; 14 for the normal allele. The ICM was isolated using laser microsurgery and plated on γ-irradiated human foreskin fibroblasts. Both the derivation and cell line propagation were performed in an animal product-free environment. Pluripotent state and differentiation potential were confirmed by in vitro assays.

  16. Epidermal Growth Factor Receptor, Excision-Repair Cross-Complementation Group 1 Protein, and Thymidylate Synthase Expression in Penile Cancer.

    Science.gov (United States)

    Dorff, Tanya B; Schuckman, Anne K; Schwartz, Rachel; Rashad, Sadaf; Bulbul, Ajaz; Cai, Jie; Pinski, Jacek; Ma, Yanling; Danenberg, Kathleen; Skinner, Eila; Quinn, David I

    2016-10-01

    To describe the expression of tissue epidermal growth factor receptor (EGFR), excision-repair cross-complementation group 1 protein (ERCC1), and thymidylate synthase (TS) in patients with penile cancer and explore their association with stage and outcome. A total of 52 patients with penile squamous cell cancer who were treated at the University of Southern California from 1995 to 2010 were identified. Paraffin-embedded tissue underwent mRNA quantitation and immunohistochemistry for expression of EGFR, ERCC1, and TS. KRAS mutations were evaluated using polymerase chain reaction-based sequencing. EGFR overexpression was common by mRNA (median, 5.09; range, 1.92-104.5) and immunohistochemistry. EGFR expression > 7 was associated with advanced stage and poor differentiation (P = .01 and .034 respectively) but not with survival in multivariate analysis. ERCC1 mRNA expression was a median of 0.65 (range, 0.21-1.87). TS expression was a median of 1.88 (range, 0.54-6.47). ERCC1 and TS expression were not associated with grade, stage, or survival. There were no KRAS mutations identified. A total of 17 men received chemotherapy; 8 (47%) had an objective response, including 1 with a pathologic complete response. There was a trend for lower expression of EGFR corresponding to a higher likelihood of response (response rate [RR]) to chemotherapy: 67% RR in EGFR mRNA  7 (P = .31). High expression of EGFR mRNA in squamous cell carcinoma of the penis is associated with advanced stage and poor differentiation, but not survival. In our small heterogeneous subset, molecular marker expression did not show a correlation with the likelihood of chemotherapy response. A prospective evaluation of the role of the EGFR pathway and its regulatory environment in penile cancer is warranted. Given the rarity of this cancer, collaborative prospective cohort evaluations and trials need to be encouraged. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. The p62 P392L mutation linked to Paget's disease induces activation of human osteoclasts.

    Science.gov (United States)

    Chamoux, Estelle; Couture, Julie; Bisson, Martine; Morissette, Jean; Brown, Jacques P; Roux, Sophie

    2009-10-01

    Mutations of the gene encoding p62/SQSTM1 have been described in Paget's disease of bone (PDB), identifying p62 as an important player in osteoclast signaling. We investigated the phenotype of osteoclasts differentiated from peripheral blood monocytes obtained from healthy donors or PDB patients, all genotyped for the presence of a mutation in the p62 ubiquitin-associated domain. The cohort included PDB patients carrying or not the p62 P392L mutation and healthy donors carrying or not this mutation. Osteoclasts from PDB patients were more numerous, contained more nuclei, were more resistant to apoptosis, and had a greater ability to resorb bone than their normal counterparts, regardless of whether the p62 mutation was present or not. A strong increase in p62 expression was observed in PDB osteoclasts. The presence of the p62(P392L) gene in cells from healthy carriers conferred a unique, intermediate osteoclast phenotype. In addition, we report that two survival-promoting kinases, protein kinase Czeta and phosphoinositide-dependent protein kinase 1, were associated with p62 in response to receptor activator of NF-kappaB ligand (RANKL) stimulation in controls and before RANKL was added in PDB osteoclasts. In transfected osteoclasts derived from cord blood monocytes, the p62 P392L mutation contributed to increased activation of kinases protein kinase Czeta/lambda and phosphoinositide-dependent protein kinase 1, along with basal activation of NF-kappaB, independently of RANKL stimulation. These findings clearly indicate that the overexpression of p62 in PDB patients induces important shifts in the pathways activated by RANKL and up-regulates osteoclast functions. Moreover, the most-commonly reported p62 mutation, P392L, certainly contributes to the overactive state of osteoclasts in PDB.

  18. Exon Skipping and Gene Transfer Restore Dystrophin Expression in Human Induced Pluripotent Stem Cells-Cardiomyocytes Harboring DMD Mutations

    Science.gov (United States)

    Dick, Emily; Kalra, Spandan; Anderson, David; George, Vinoj; Ritso, Morten; Laval, Steven H.; Barresi, Rita; Aartsma-Rus, Annemieke; Lochmüller, Hanns

    2013-01-01

    With an incidence of ∼1:3,500 to 5,000 in male children, Duchenne muscular dystrophy (DMD) is an X-linked disorder in which progressive muscle degeneration occurs and affected boys usually die in their twenties or thirties. Cardiac involvement occurs in 90% of patients and heart failure accounts for up to 40% of deaths. To enable new therapeutics such as gene therapy and exon skipping to be tested in human cardiomyocytes, we produced human induced pluripotent stem cells (hiPSC) from seven patients harboring mutations across the DMD gene. Mutations were retained during differentiation and analysis indicated the cardiomyocytes showed a dystrophic gene expression profile. Antisense oligonucleotide-mediated skipping of exon 51 restored dystrophin expression to ∼30% of normal levels in hiPSC-cardiomyocytes carrying exon 47–50 or 48–50 deletions. Alternatively, delivery of a dystrophin minigene to cardiomyocytes with a deletion in exon 35 or a point mutation in exon 70 allowed expression levels similar to those seen in healthy cells. This demonstrates that DMD hiPSC-cardiomyocytes provide a novel tool to evaluate whether new therapeutics can restore dystrophin expression in the heart. PMID:23829870

  19. A Foxp2 mutation implicated in human speech deficits alters sequencing of ultrasonic vocalizations in adult male mice

    Directory of Open Access Journals (Sweden)

    Jonathan Chabout

    2016-10-01

    Full Text Available Development of proficient spoken language skills is disrupted by mutations of the FOXP2 transcription factor. A heterozygous missense mutation in the KE family causes speech apraxia, involving difficulty producing words with complex learned sequences of syllables. Manipulations in songbirds have helped to elucidate the role of this gene in vocal learning, but findings in non-human mammals have been limited or inconclusive. Here we performed a systematic study of ultrasonic vocalizations (USVs of adult male mice carrying the KE family mutation. Using novel statistical tools, we found that Foxp2 heterozygous mice did not have detectable changes in USV syllable acoustic structure, but produced shorter sequences and did not shift to more complex syntax in social contexts where wildtype animals did. Heterozygous mice also displayed a shift in the position of their rudimentary laryngeal motor cortex layer-5 neurons. Our findings indicate that although mouse USVs are mostly innate, the underlying contributions of FoxP2 to sequencing of vocalizations are conserved with humans.

  20. Origins and functional consequences of somatic mitochondrial DNA mutations in human cancer.

    Science.gov (United States)

    Ju, Young Seok; Alexandrov, Ludmil B; Gerstung, Moritz; Martincorena, Inigo; Nik-Zainal, Serena; Ramakrishna, Manasa; Davies, Helen R; Papaemmanuil, Elli; Gundem, Gunes; Shlien, Adam; Bolli, Niccolo; Behjati, Sam; Tarpey, Patrick S; Nangalia, Jyoti; Massie, Charles E; Butler, Adam P; Teague, Jon W; Vassiliou, George S; Green, Anthony R; Du, Ming-Qing; Unnikrishnan, Ashwin; Pimanda, John E; Teh, Bin Tean; Munshi, Nikhil; Greaves, Mel; Vyas, Paresh; El-Naggar, Adel K; Santarius, Tom; Collins, V Peter; Grundy, Richard; Taylor, Jack A; Hayes, D Neil; Malkin, David; Foster, Christopher S; Warren, Anne Y; Whitaker, Hayley C; Brewer, Daniel; Eeles, Rosalind; Cooper, Colin; Neal, David; Visakorpi, Tapio; Isaacs, William B; Bova, G Steven; Flanagan, Adrienne M; Futreal, P Andrew; Lynch, Andy G; Chinnery, Patrick F; McDermott, Ultan; Stratton, Michael R; Campbell, Peter J

    2014-10-01

    Recent sequencing studies have extensively explored the somatic alterations present in the nuclear genomes of cancers. Although mitochondria control energy metabolism and apoptosis, the origins and impact of cancer-associated mutations in mtDNA are unclear. In this study, we analyzed somatic alterations in mtDNA from 1675 tumors. We identified 1907 somatic substitutions, which exhibited dramatic replicative strand bias, predominantly C > T and A > G on the mitochondrial heavy strand. This strand-asymmetric signature differs from those found in nuclear cancer genomes but matches the inferred germline process shaping primate mtDNA sequence content. A number of mtDNA mutations showed considerable heterogeneity across tumor types. Missense mutations were selectively neutral and often gradually drifted towards homoplasmy over time. In contrast, mutations resulting in protein truncation undergo negative selection and were almost exclusively heteroplasmic. Our findings indicate that the endogenous mutational mechanism has far greater impact than any other external mutagens in mitochondria and is fundamentally linked to mtDNA replication.

  1. Structural and functional characterization of pathogenic non- synonymous genetic mutations of human insulin-degrading enzyme by in silico methods.

    Science.gov (United States)

    Shaik, Noor A; Kaleemuddin, Mohammed; Banaganapalli, Babajan; Khan, Fazal; Shaik, Nazia S; Ajabnoor, Ghada; Al-Harthi, Sameer E; Bondagji, Nabeel; Al-Aama, Jumana Y; Elango, Ramu

    2014-04-01

    Insulin-degrading enzyme (IDE) is a key protease involved in degrading insulin and amyloid peptides in human body. Several non-synonymous genetic mutations of IDE gene have been recently associated with susceptibility to both diabetes and Alzheimer's diseases. However, the consequence of these mutations on the structure of IDE protein and its substrate binding characteristics is not well elucidated. The computational investigation of genetic mutation consequences on structural level of protein is recently found to be an effective alternate to traditional in vivo and in vitro approaches. Hence, by using a combination of empirical rule and support vector machine based in silico algorithms, this study was able to identify that the pathogenic nonsynonymous genetic mutations corresponding to p.I54F, p.P122T, p.T533R, p.P581A and p.Y609A have more potential role in structural and functional deviations of IDE activity. Moreover, molecular modeling and secondary structure analysis have also confirmed their impact on the stability and secondary properties of IDE protein. The molecular docking analysis of IDE with combinational substrates has revealed that peptide inhibitors compared to small non-peptide inhibitor molecules possess good inhibitory activity towards mutant IDE. This finding may pave a way to design novel potential small peptide inhibitors for mutant IDE. Additionally by un-translated region (UTR) scanning analysis, two regulatory pathogenic genetic mutations i.e., rs5786997 (3' UTR) and rs4646954 (5' UTR), which can influence the translation pattern of IDE gene through sequence alteration of upstream-Open Reading Frame and Internal Ribosome Entry Site elements were identified. Our findings are expected to help in narrowing down the number of IDE genetic variants to be screened for disease association studies and also to select better competitive inhibitors for IDE related diseases.

  2. Effects of carbonic anhydrase-related protein VIII on human cells harbouring an A8344G mitochondrial DNA mutation.

    Science.gov (United States)

    Wang, Tze-Kai; Cheng, Che-Kun; Chi, Tang-Hao; Ma, Yi-Shing; Wu, Shi-Bei; Wei, Yau-Huei; Hsieh, Mingli

    2014-04-01

    MERRF (myoclonus epilepsy associated with ragged-red fibres) is a maternally inherited mitochondrial encephalomyopathy with various syndromes involving both muscular and nervous systems. The most common mutation in MERRF syndrome, the A8344G mutation in mtDNA, has been associated with severe defects in the respiratory function of mitochondria. In the present study, we show that there is a significant decrease in CA8 (carbonic anhydrase-related protein VIII) in cybrids harbouring the MERRF A8344G mutation. CA8 deficiency and mutations were found to be associated with a distinctive lifelong gait disorder in wdl (Waddles) mice and novel syndromes characterized by cerebellar ataxia and mental retardation in humans. The results of the present study showed that overexpression of CA8 in MERRF cybrids significantly decreased cell death induced by STS (staurosporine) treatment, suggesting a protective function of CA8 in cells harbouring the A8344G mutation of mtDNA. Interestingly, an increase in the formation of LC3-II (microtubule-associated protein 1 light chain 3-II) was found in the cybrids with down-regulated CA8 expression, suggesting that reduced expression of CA8 leads to autophagy activation. Furthermore, cybrids exhibiting down-regulated CA8 showed increased cytosolic Ca2+ signals and reduced levels of phospho-Akt compared with those in the cybrids with overexpressed CA8, indicating that phospho-Akt is involved in the protection of cells by CA8. Our findings suggest that CA8 is involved in the autophagic pathway and may have a protective role in cultured cells from patients with MERRF. Targeting CA8 and the downstream autophagic pathway might help develop therapeutic agents for treatment of MERRF syndrome in the future.

  3. Probing the role of parasite-specific, distant structural regions on communication and catalysis in the bifunctional thymidylate synthase-dihydrofolate reductase from Plasmodium falciparum.

    Science.gov (United States)

    Dasgupta, Tina; Anderson, Karen S

    2008-02-05

    Plasmodium falciparum thymidylate synthase-dihydrofolate reductase (TS-DHFR) is an essential enzyme in nucleotide biosynthesis and a validated molecular drug target in malaria. Because P. falciparum TS and DHFR are highly homologous to their human counterparts, existing active-site antifolate drugs can have dose-limiting toxicities. In humans, TS and DHFR are two separate proteins. In P. falciparum, however, TS-DHFR is bifunctional, with both TS and DHFR active sites on a single polypeptide chain of the enzyme. Consequently, P. falciparum TS-DHFR contains unique distant or nonactive regions that might modulate catalysis: (1) an N-terminal tail and (2) a linker region tethering DHFR to TS, and encoding a crossover helix that forms critical electrostatic interactions with the DHFR active site. The role of these nonactive sites in the bifunctional P. falciparum TS-DHFR is unknown. We report the first in-depth, pre-steady-state kinetic characterization of the full-length, wild-type (WT) P. falciparum TS-DHFR enzyme and probe the role of distant, nonactive regions through mutational analysis. We show that the overall rate-limiting step in the WT P. falciparum TS-DHFR enzyme is TS catalysis. We further show that if TS is in an activated (liganded) conformation, the DHFR rate is 2-fold activated, from 60 s-1 to 130 s-1 in the WT enzyme. The TS rate is also reciprocally activated by approximately 1.5-fold if DHFR is in an activated, ligand-bound conformation. Mutations to the linker region affect neither catalytic rate nor domain-domain communication. Deletion of the N-terminal tail, although in a location remote from the active site, decreases the DHFR single rate and the bifunctional TS-DHFR rate by a factor of 2. The 2-fold activation of the DHFR rate by TS ligands remains intact, although even the activated N-terminal mutant has just half the DHFR activity of the WT enzyme. However, the reciprocal communication between TS active site and DHFR ligands is impaired in N

  4. Self-catalytic DNA depurination underlies human β-globin gene mutations at codon 6 that cause anemias and thalassemias.

    Science.gov (United States)

    Alvarez-Dominguez, Juan R; Amosova, Olga; Fresco, Jacques R

    2013-04-19

    The human β-globin gene contains an 18-nucleotide coding strand sequence centered at codon 6 and capable of forming a stem-loop structure that can self-catalyze depurination of the 5'G residue of that codon. The resultant apurinic lesion is subject to error-prone repair, consistent with the occurrence about this codon of mutations responsible for 6 anemias and β-thalassemias and additional substitutions without clinical consequences. The 4-residue loop of this stem-loop-forming sequence shows the highest incidence of mutation across the gene. The loop and first stem base pair-forming residues appeared early in the mammalian clade. The other stem-forming segments evolved more recently among primates, thereby conferring self-depurination capacity at codon 6. These observations indicate a conserved molecular mechanism leading to β-globin variants underlying phenotypic diversity and disease.

  5. Enhanced Reconstitution of Human Erythropoiesis and Thrombopoiesis in an Immunodeficient Mouse Model with KitWv Mutations

    Directory of Open Access Journals (Sweden)

    Ayano Yurino

    2016-09-01

    Full Text Available In human-to-mouse xenograft models, reconstitution of human hematopoiesis is usually B-lymphoid dominant. Here we show that the introduction of homozygous KitWv mutations into C57BL/6.Rag2nullIl2rgnull mice with NOD-Sirpa (BRGS strongly promoted human multi-lineage reconstitution. After xenotransplantation of human CD34+CD38− cord blood cells, these newly generated C57BL/6.Rag2nullIl2rgnullNOD-Sirpa KitWv/Wv (BRGSKWv/Wv mice showed significantly higher levels of human cell chimerism and long-term multi-lineage reconstitution compared with BRGS mice. Strikingly, this mouse displayed a robust reconstitution of human erythropoiesis and thrombopoiesis with terminal maturation in the bone marrow. Furthermore, depletion of host macrophages by clodronate administration resulted in the presence of human erythrocytes and platelets in the circulation. Thus, attenuation of mouse KIT signaling greatly enhances the multi-lineage differentiation of human hematopoietic stem and progenitor cells (HSPCs in mouse bone marrow, presumably by outcompeting mouse HSPCs to occupy suitable microenvironments. The BRGSKWv/Wv mouse model is a useful tool to study human multi-lineage hematopoiesis.

  6. A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors

    Energy Technology Data Exchange (ETDEWEB)

    de Vries, Robert P.; Tzarum, Netanel; Peng, Wenjie; Thompson, Andrew J.; Ambepitiya Wickramasinghe, Iresha N.; de la Pena, Alba T. Torrents; van Breemen, Marielle J.; Bouwman, Kim M.; Zhu, Xueyong; McBride, Ryan; Yu, Wenli; Sanders, Rogier W.; Verheije, Monique H.; Wilson, Ian A.; Paulson, James C.

    2017-07-10

    In June 2013, the first case of human infection with an avian H6N1 virus was reported in a Taiwanese woman. Although this was a single non-fatal case, the virus continues to circulate in Taiwanese poultry. As with any emerging avian virus that infects humans, there is concern that acquisition of human-type receptor specificity could enable transmission in the human population. Despite mutations in the receptor-binding pocket of the human H6N1 isolate, it has retained avian-type (NeuAcα2-3Gal) receptor specificity. However, we show here that a single nucleotide substitution, resulting in a change from Gly to Asp at position 225 (G225D), completely switches specificity to human-type (NeuAcα2-6Gal) receptors. Significantly, G225D H6 loses binding to chicken trachea epithelium and is now able to bind to human tracheal tissue. Structural analysis reveals that Asp225 directly interacts with the penultimate Gal of the human-type receptor, stabilizing human receptor binding.

  7. Mutations in MYH7 reduce the force generating capacity of sarcomeres in human familial hypertrophic cardiomyopathy.

    Science.gov (United States)

    Witjas-Paalberends, E Rosalie; Piroddi, Nicoletta; Stam, Kelly; van Dijk, Sabine J; Oliviera, Vasco Sequeira; Ferrara, Claudia; Scellini, Beatrice; Hazebroek, Mark; ten Cate, Folkert J; van Slegtenhorst, Marjon; dos Remedios, Cris; Niessen, Hans W M; Tesi, Chiara; Stienen, Ger J M; Heymans, Stephane; Michels, Michelle; Poggesi, Corrado; van der Velden, Jolanda

    2013-08-01

    Familial hypertrophic cardiomyopathy (HCM), frequently caused by sarcomeric gene mutations, is characterized by cellular dysfunction and asymmetric left-ventricular (LV) hypertrophy. We studied whether cellular dysfunction is due to an intrinsic sarcomere defect or cardiomyocyte remodelling. Cardiac samples from 43 sarcomere mutation-positive patients (HCMmut: mutations in thick (MYBPC3, MYH7) and thin (TPM1, TNNI3, TNNT2) myofilament genes) were compared with 14 sarcomere mutation-negative patients (HCMsmn), eight patients with secondary LV hypertrophy due to aortic stenosis (LVHao) and 13 donors. Force measurements in single membrane-permeabilized cardiomyocytes revealed significantly lower maximal force generating capacity (Fmax) in HCMmut (21 ± 1 kN/m²) and HCMsmn (26 ± 3 kN/m²) compared with donor (36 ± 2 kN/m²). Cardiomyocyte remodelling was more severe in HCMmut compared with HCMsmn based on significantly lower myofibril density (49 ± 2 vs. 63 ± 5%) and significantly higher cardiomyocyte area (915 ± 15 vs. 612 ± 11 μm²). Low Fmax in MYBPC3mut, TNNI3mut, HCMsmn, and LVHao was normalized to donor values after correction for myofibril density. However, Fmax was significantly lower in MYH7mut, TPM1mut, and TNNT2mut even after correction for myofibril density. In accordance, measurements in single myofibrils showed very low Fmax in MYH7mut, TPM1mut, and TNNT2mut compared with donor (respectively, 73 ± 3, 70 ± 7, 83 ± 6, and 113 ± 5 kN/m²). In addition, force was lower in MYH7mut cardiomyocytes compared with MYBPC3mut, HCMsmn, and donor at submaximal [Ca²⁺]. Low cardiomyocyte Fmax in HCM patients is largely explained by hypertrophy and reduced myofibril density. MYH7 mutations reduce force generating capacity of sarcomeres at maximal and submaximal [Ca²⁺]. These hypocontractile sarcomeres may represent the primary abnormality in patients with MYH7 mutations.

  8. Rapid In Vitro Evolution of Human Cytomegalovirus UL56 Mutations That Confer Letermovir Resistance.

    Science.gov (United States)

    Chou, Sunwen

    2015-10-01

    Letermovir (LMV) is an experimental cytomegalovirus terminase inhibitor undergoing phase 3 clinical trials. Viral mutations have been described at UL56 codons 231 to 369 that confer widely variable levels of LMV resistance. In this study, 15 independent experiments propagating an exonuclease mutant viral strain in escalating LMV concentrations replicated 6 of the 7 published UL56 mutations and commonly elicited additional resistance-conferring mutations at UL56 codons 231, 236, 237, 244, 257, 261, 325, and 329. Mutations were first detected earlier in LMV (median, 3 passages) than in 8 parallel experiments with foscarnet (median, 15 passages). As LMV concentrations increased, the typical initial UL56 change F261L, which confers low-grade resistance, combined or was replaced with mutations conferring higher-grade resistance, eventually enabling normal viral growth in 30 μM LMV (>5,000-fold the 50% effective concentration [EC50] for the wild type). At high LMV concentrations, the UL56 changes C325F/R were commonly detected, as well as a combination of changes at codons 236, 257, 329, and/or 369. Recombinant viruses containing individual UL56 mutations and combinations were constructed to confirm their resistance phenotypes and normal growth in cell culture. Several double and triple mutants showed much higher LMV resistance than the respective single mutants, particularly those including changes at both codons 236 and 257. The multiplicity of pathways to high-grade LMV resistance with minimal viral growth impact suggests a low viral genetic barrier and the need for close monitoring during treatment of active infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. The Frequency of Granulocytes with Spontaneous Somatic Mutations: A Wide Distribution in a Normal Human Population

    Science.gov (United States)

    Peruzzi, Benedetta; Boni, Luca; Caporale, Roberto; Dolara, Piero; Notaro, Rosario; Luzzatto, Lucio

    2013-01-01

    Germ-line mutation rate has been regarded classically as a fundamental biological parameter, as it affects the prevalence of genetic disorders and the rate of evolution. Somatic mutation rate is also an important biological parameter, as it may influence the development and/or the course of acquired diseases, particularly of cancer. Estimates of this parameter have been previously obtained in few instances from dermal fibroblasts and lymphoblastoid cells. However, the methodology required has been laborious and did not lend itself to the analysis of large numbers of samples. We have previously shown that the X-linked gene PIG-A, since its product is required for glycosyl-phosphatidylinositol-anchored proteins to become surface bound, is a good sentinel gene for studying somatic mutations. We now show that by this approach we can accurately measure the proportion of PIG-A mutant peripheral blood granulocytes, which we call mutant frequency, ƒ. We found that the results are reproducible, with a variation coefficient (CV) of 45%. Repeat samples from 32 subjects also had a CV of 44%, indicating that ƒ is a relatively stable individual characteristic. From a study of 142 normal subjects we found that log ƒ is a normally distributed variable; ƒ variability spans a 80-fold range, from less than 1×10−6 to 37.5×10−6, with a median of 4.9×10−6. Unlike other techniques commonly employed in population studies, such as comet assay, this method can detect any kind of mutation, including point mutation, as long as it causes functional inactivation of PIG-A gene. Since the test is rapid and requires only a small sample of peripheral blood, this methodology will lend itself to investigating genetic factors that underlie the variation in the somatic mutation rate, as well as environmental factors that may affect it. It will be also possible to test whether ƒ is a determinant of the risk of cancer. PMID:23342069

  10. Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes, including the gene DMRT1.

    Science.gov (United States)

    Lopes, Alexandra M; Aston, Kenneth I; Thompson, Emma; Carvalho, Filipa; Gonçalves, João; Huang, Ni; Matthiesen, Rune; Noordam, Michiel J; Quintela, Inés; Ramu, Avinash; Seabra, Catarina; Wilfert, Amy B; Dai, Juncheng; Downie, Jonathan M; Fernandes, Susana; Guo, Xuejiang; Sha, Jiahao; Amorim, António; Barros, Alberto; Carracedo, Angel; Hu, Zhibin; Hurles, Matthew E; Moskovtsev, Sergey; Ober, Carole; Paduch, Darius A; Schiffman, Joshua D; Schlegel, Peter N; Sousa, Mário; Carrell, Douglas T; Conrad, Donald F

    2013-03-01

    Gonadal failure, along with early pregnancy loss and perinatal death, may be an important filter that limits the propagation of harmful mutations in the human population. We hypothesized that men with spermatogenic impairment, a disease with unknown genetic architecture and a common cause of male infertility, are enriched for rare deleterious mutations compared to men with normal spermatogenesis. After assaying genomewide SNPs and CNVs in 323 Caucasian men with idiopathic spermatogenic impairment and more than 1,100 controls, we estimate that each rare autosomal deletion detected in our study multiplicatively changes a man's risk of disease by 10% (OR 1.10 [1.04-1.16], pautism, schizophrenia, bipolar disorder, and intellectual disability, we propose that the CNV burden in spermatogenic impairment is distinct from the burden of large, dominant mutations described for neurodevelopmental disorders. We identified two patients with deletions of DMRT1, a gene on chromosome 9p24.3 orthologous to the putative sex determination locus of the avian ZW chromosome system. In an independent sample of Han Chinese men, we identified 3 more DMRT1 deletions in 979 cases of idiopathic azoospermia and none in 1,734 controls, and found none in an additional 4,519 controls from public databases. The combined results indicate that DMRT1 loss-of-function mutations are a risk factor and potential genetic cause of human spermatogenic failure (frequency of 0.38% in 1306 cases and 0% in 7,754 controls, p = 6.2 × 10(-5)). Our study identifies other recurrent CNVs as potential causes of idiopathic azoospermia and generates hypotheses for directing future studies on the genetic basis of male infertility and IVF outcomes.

  11. Using Next-Generation Sequencing to Identify a Mutation in Human MCSU that is Responsible for Type II Xanthinuria

    Directory of Open Access Journals (Sweden)

    Yunan Zhou

    2015-04-01

    Full Text Available Background: Hypouricemia is caused by various diseases and disorders, such as hepatic failure, Fanconi renotubular syndrome, nutritional deficiencies and genetic defects. Genetic defects of the molybdoflavoprotein enzymes induce hypouricemia and xanthinuria. Here, we identified a patient whose plasma and urine uric acid levels were both extremely low and aimed to identify the pathogenic gene and verify its mechanism. Methods: Using next-generation sequencing (NGS, we detected a mutation in the human molybdenum cofactor sulfurase (MCSU gene that may cause hypouricemia. We cultured L02 cells, knocked down MCSU with RNAi, and then detected the uric acid and MCSU concentrations, xanthine oxidase (XOD and xanthine dehydrogenase (XDH activity levels, and xanthine/hypoxanthine concentrations in cell lysates and culture supernatants. Results: The NGS results showed that the patient had a mutation in the human MCSU gene. The in vitro study showed that RNAi of MCSU caused the uric acid, human MCSU concentrations, the XOD and XDH activity levels among cellular proteins and culture supernatants to be extremely low relative to those of the control. However, the xanthine/hypoxanthine concentrations were much higher than those of the control. Conclusions: We strongly confirmed the pathogenicity of the human MCSU gene.

  12. Using Next-Generation Sequencing to Identify a Mutation in Human MCSU that is Responsible for Type II Xanthinuria.

    Science.gov (United States)

    Zhou, Yunan; Zhang, Xueguang; Ding, Rui; Li, Zuoxiang; Hong, Quan; Wang, Yan; Zheng, Wei; Geng, Xiaodong; Fan, Meng; Cai, Guangyan; Chen, Xiangmei; Wu, Di

    2015-01-01

    Hypouricemia is caused by various diseases and disorders, such as hepatic failure, Fanconi renotubular syndrome, nutritional deficiencies and genetic defects. Genetic defects of the molybdoflavoprotein enzymes induce hypouricemia and xanthinuria. Here, we identified a patient whose plasma and urine uric acid levels were both extremely low and aimed to identify the pathogenic gene and verify its mechanism. Using next-generation sequencing (NGS), we detected a mutation in the human molybdenum cofactor sulfurase (MCSU) gene that may cause hypouricemia. We cultured L02 cells, knocked down MCSU with RNAi, and then detected the uric acid and MCSU concentrations, xanthine oxidase (XOD) and xanthine dehydrogenase (XDH) activity levels, and xanthine/hypoxanthine concentrations in cell lysates and culture supernatants. The NGS results showed that the patient had a mutation in the human MCSU gene. The in vitro study showed that RNAi of MCSU caused the uric acid, human MCSU concentrations, the XOD and XDH activity levels among cellular proteins and culture supernatants to be extremely low relative to those of the control. However, the xanthine/hypoxanthine concentrations were much higher than those of the control. We strongly confirmed the pathogenicity of the human MCSU gene. © 2015 S. Karger AG, Basel.

  13. Mutation in West Nile Virus Structural Protein prM during Human Infection.

    Science.gov (United States)

    Lustig, Yaniv; Lanciotti, Robert S; Hindiyeh, Musa; Keller, Nathan; Milo, Ron; Mayan, Shlomo; Mendelson, Ella

    2016-09-01

    A mutation leading to substitution of a key amino acid in the prM protein of West Nile virus (WNV) occurred during persistent infection of an immunocompetent patient. WNV RNA persisted in the patient's urine and serum in the presence of low-level neutralizing antibodies. This case demonstrates active replication of WNV during persistent infection.

  14. A massively parallel pipeline to clone DNA variants and examine molecular phenotypes of human disease mutations.

    Directory of Open Access Journals (Sweden)

    Xiaomu Wei

    2014-12-01

    Full Text Available Understanding the functional relevance of DNA variants is essential for all exome and genome sequencing projects. However, current mutagenesis cloning protocols require Sanger sequencing, and thus are prohibitively costly and labor-intensive. We describe a massively-parallel site-directed mutagenesis approach, "Clone-seq", leveraging next-generation sequencing to rapidly and cost-effectively generate a large number of mutant alleles. Using Clone-seq, we further develop a comparative interactome-scanning pipeline integrating high-throughput GFP, yeast two-hybrid (Y2H, and mass spectrometry assays to systematically evaluate the functional impact of mutations on protein stability and interactions. We use this pipeline to show that disease mutations on protein-protein interaction interfaces are significantly more likely than those away from interfaces to disrupt corresponding interactions. We also find that mutation pairs with similar molecular phenotypes in terms of both protein stability and interactions are significantly more likely to cause the same disease than those with different molecular phenotypes, validating the in vivo biological relevance of our high-throughput GFP and Y2H assays, and indicating that both assays can be used to determine candidate disease mutations in the future. The general scheme of our experimental pipeline can be readily expanded to other types of interactome-mapping methods to comprehensively evaluate the functional relevance of all DNA variants, including those in non-coding regions.

  15. Polymorphisms and mutations of human TMPRSS6 in iron deficiency anemia.

    NARCIS (Netherlands)

    Beutler, E.; Geet, C. Van; Loo, D.M.W.M. te; Gelbart, T.; Crain, K.; Truksa, J.; Lee, P.L.

    2010-01-01

    Male subjects with iron deficiency from the general population were examined for polymorphisms or sporadic mutations in TMPRSS6 to identify genetic risk factors for iron deficiency anemia. Three uncommon non-synonymous polymorphisms were identified, G228D, R446W, and V795I (allele frequencies

  16. Somatic mtDNA mutation spectra in the aging human putamen.

    Directory of Open Access Journals (Sweden)

    Siôn L Williams

    Full Text Available The accumulation of heteroplasmic mitochondrial DNA (mtDNA deletions and single nucleotide variants (SNVs is a well-accepted facet of the biology of aging, yet comprehensive mutation spectra have not been described. To address this, we have used next generation sequencing of mtDNA-enriched libraries (Mito-Seq to investigate mtDNA mutation spectra of putamen from young and aged donors. Frequencies of the "common" deletion and other "major arc" deletions were significantly increased in the aged cohort with the fold increase in the frequency of the common deletion exceeding that of major arc deletions. SNVs also increased with age with the highest rate of accumulation in the non-coding control region which contains elements necessary for translation and replication. Examination of predicted amino acid changes revealed a skew towards pathogenic SNVs in the coding region driven by mutation bias. Levels of the pathogenic m.3243A>G tRNA mutation were also found to increase with age. Novel multimeric tandem duplications that resemble murine control region multimers and yeast ρ(- mtDNAs, were identified in both young and aged specimens. Clonal ∼50 bp deletions in the control region were found at high frequencies in aged specimens. Our results reveal the complex manner in which the mitochondrial genome alters with age and provides a foundation for studies of other tissues and disease states.

  17. A novel dysfunctional p53 mutation in the human neuroblastoma cell line TGW.

    Science.gov (United States)

    Sugiyama, Hisahiko; Arita, Michitsune; Min, Zhenghua; Zhong, Xioling; Iwasaki, Iwao; Hirano, Keihachiro; Shimatake, Hiroyuki; Hemmi, Hiromichi

    2003-12-01

    Mutations of p53 are rare in primary and advanced neuroblastomas. The p53 gene was studied in a TGW cell line established from a TNB1 xenograft, derived from metastasized neuroblastoma. The p53 protein level in TGW was elevated at baseline. Treatment with doxorubicin to induce genotoxic stress neither altered the p53 protein level nor induced p21 protein within 24 hours. DNA sequencing analysis revealed a novel triplet deletion mutation at codon 282 (R282del) of the p53 gene, a mutation also found in TNB1, indicating that the mutation occurred in the relapsed tumor. The mutant was incapable of transactivation and had no effect on the transactivational activity of the wild-type p53 gene product in reporter assays using a plasmid possessing a p53 responsive element of p21, bax or mdm2. These results suggest that the mutant p53R282del found in TGW is a non-functional mutant and has no dominant negative nature.

  18. Spectra of spontaneous and X-ray-induced mutations at the hprt locus in related human lymphoblast cell lines that express wild-type or mutant p53

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, E.N.; Xia, F.; Kelsey, K.T.; Liber, H.L. [Harvard School of Public Health, Boston, MA (United States)

    1995-09-01

    Previous work showed that WTK1 human lymphoblastoid cells are radioresistant but more sensitive to X-ray-induced mutation than the closely related line TK6. In addition, WTK1 cells contain a mutant p53 while in TK6 cells p53 is wild-type. In this work, we examined the spectra of 68 X-ray-induced and 56 spontaneous mutants at the hemizygous hprt locus in WTK1 cells. The induced spectra were classified by Southern blot and multiplex polymerase chain reaction (PCR); there were 19 point mutations (28%) with an unaltered Southern blot or PCR pattern, 26 (38%) partial deletions or rearrangements and 23 (34%) complete gene deletions. The spontaneous spectrum included 25 (45%) point mutations, 22 (39%) partial deletions and 9 (16%) complete gene deletions. These spectra of mutations were compared to those of TK6 cells. Although distinct differences in the spectra of mutations at the tk locus were reported previously, overall there is no significant difference in the spectra of X-ray-induced or spontaneous mutations at the hprt locus in these two cell lines. While there was an increase in the proportion of large-scale changes that occurred at tk after X irradiation, the spectrum of mutations at the hprt locus shows all classes of mutations increasing proportionately in WTK1 cells. However, the proportion of internal partial deletion mutations at the hprt locus was about 2 times more frequent in WTK1 than in TK6 cells. 39 refs., 2 figs., 2 tabs.

  19. 4-Chloropropofol enhances chloride currents in human hyperekplexic and artificial mutated glycine receptors

    Directory of Open Access Journals (Sweden)

    de la Roche Jeanne

    2012-09-01

    Full Text Available Abstract Background The mammalian neurological disorder hereditary hyperekplexia can be attributed to various mutations of strychnine sensitive glycine receptors. The clinical symptoms of “startle disease” predominantly occur in the newborn leading to convulsive hypertonia and an exaggerated startle response to unexpected mild stimuli. Amongst others, point mutations R271Q and R271L in the α1-subunit of strychnine sensitive glycine receptors show reduced glycine sensitivity and cause the clinical symptoms of hyperekplexia. Halogenation has been shown to be a crucial structural determinant for the potency of a phenolic compound to positively modulate glycine receptor function. The aim of this in vitro study was to characterize the effects of 4-chloropropofol (4-chloro-2,6-dimethylphenol at four glycine receptor mutations. Methods Glycine receptor subunits were expressed in HEK 293 cells and experiments were performed using the whole-cell patch-clamp technique. Results 4-chloropropofol exerted a positive allosteric modulatory effect in a low sub-nanomolar concentration range at the wild type receptor (EC50 value of 0.08 ± 0.02 nM and in a micromolar concentration range at the mutations (1.3 ± 0.6 μM, 0.1 ± 0.2 μM, 6.0 ± 2.3 μM and 55 ± 28 μM for R271Q, L, K and S267I, respectively. Conclusions 4-chloropropofol might be an effective compound for the activation of mutated glycine receptors in experimental models of startle disease.

  20. Crystal Structure of Human Dihydrolipoamide Dehydrogenase: NAD[superscript +]/NADH Binding and the Structural Basis of Disease-causing Mutations

    Energy Technology Data Exchange (ETDEWEB)

    Brautigam, Chad A.; Chuang, Jacinta L.; Tomchick, Diana R.; Machius, Mischa; Chuang, David T. (U. of Texas-SMED)

    2010-07-13

    Human dihydrolipoamide dehydrogenase (hE3) is an enzymatic component common to the mitochondrial {alpha}-ketoacid dehydrogenase and glycine decarboxylase complexes. Mutations to this homodimeric flavoprotein cause the often-fatal human disease known as E3 deficiency. To catalyze the oxidation of dihydrolipoamide, hE3 uses two molecules: noncovalently bound FAD and a transiently bound substrate, NAD{sup +}. To address the catalytic mechanism of hE3 and the structural basis for E3 deficiency, the crystal structures of hE3 in the presence of NAD{sup +} or NADH have been determined at resolutions of 2.5 {angstrom} and 2.1 {angstrom}, respectively. Although the overall fold of the enzyme is similar to that of yeast E3, these two structures differ at two loops that protrude from the proteins and at their FAD-binding sites. The structure of oxidized hE3 with NAD{sup +} bound demonstrates that the nicotinamide moiety is not proximal to the FAD. When NADH is present, however, the nicotinamide base stacks directly on the isoalloxazine ring system of the FAD. This is the first time that this mechanistically requisite conformation of NAD{sup +} or NADH has been observed in E3 from any species. Because E3 structures were previously available only from unicellular organisms, speculations regarding the molecular mechanisms of E3 deficiency were based on homology models. The current hE3 structures show directly that the disease-causing mutations occur at three locations in the human enzyme: the dimer interface, the active site, and the FAD and NAD{sup +}-binding sites. The mechanisms by which these mutations impede the function of hE3 are discussed.

  1. Parkinson disease-linked GBA mutation effects reversed by molecular chaperones in human cell and fly models

    Science.gov (United States)

    Sanchez-Martinez, Alvaro; Beavan, Michelle; Gegg, Matthew E.; Chau, Kai-Yin; Whitworth, Alexander J.; Schapira, Anthony H. V.

    2016-01-01

    GBA gene mutations are the greatest cause of Parkinson disease (PD). GBA encodes the lysosomal enzyme glucocerebrosidase (GCase) but the mechanisms by which loss of GCase contributes to PD remain unclear. Inhibition of autophagy and the generation of endoplasmic reticulum (ER) stress are both implicated. Mutant GCase can unfold in the ER and be degraded via the unfolded protein response, activating ER stress and reducing lysosomal GCase. Small molecule chaperones that cross the blood brain barrier help mutant GCase refold and traffic correctly to lysosomes are putative treatments for PD. We treated fibroblast cells from PD patients with heterozygous GBA mutations and Drosophila expressing human wild-type, N370S and L444P GBA with the molecular chaperones ambroxol and isofagomine. Both chaperones increased GCase levels and activity, but also GBA mRNA, in control and mutant GBA fibroblasts. Expression of mutated GBA in Drosophila resulted in dopaminergic neuronal loss, a progressive locomotor defect, abnormal aggregates in the ER and increased levels of the ER stress reporter Xbp1-EGFP. Treatment with both chaperones lowered ER stress and prevented the loss of motor function, providing proof of principle that small molecule chaperones can reverse mutant GBA-mediated ER stress in vivo and might prove effective for treating PD. PMID:27539639

  2. The mouse mutation sarcosinemia (sar) maps to chromosome 2 in a region homologous to human 9q33-q34

    Energy Technology Data Exchange (ETDEWEB)

    Brunialti, A.L.B.; Guenet, J.L. [Institut Pasteur a Paris (France); Harding, C.O.; Wolff, J.A. [Univ. of Wisconsin, Madison, WI (United States)

    1996-08-15

    The autosomal recessive mouse mutation sarcosinemia (sar), which was discovered segregating in the progeny of a male whose premeiotic germ cells had been treated with the mutagen ethylnitrosourea, is characterized by a deficiency in sarcosine dehydrogenase activity. Using an intersubspecific cross, we mapped the sar locus to mouse chromosome 2, approximately 15-18 cM from the centromere. The genetic localization of this locus in the mouse allows the identification of a candidate region in human (9q33-q34) where the homologous disease should map. 15 refs., 2 figs.

  3. The helicase and ATPase activities of RECQL4 are compromised by mutations reported in three human patients

    DEFF Research Database (Denmark)

    Jensen, Martin Borch; Dunn, Christopher A; Keijzers, Guido

    2012-01-01

    RECQL4 is one of five members of the human RecQ helicase family, and is implicated in three syndromes displaying accelerating aging, developmental abnormalities and a predisposition to cancer. In this study, we purified three variants of RECQL4 carrying previously reported patient mutations....... These three mutant proteins were analyzed for the known biochemical activities of RECQL4: DNA binding, unwinding of duplex DNA, ATP hydrolysis and annealing of simplex DNA. Further, the mutant proteins were evaluated for stability and recruitment to sites of laser-induced DNA damage. One mutant was helicase...

  4. Presenilin-1 mutations alter K+ currents in the human neuroblastoma cell line, SH-SY5Y

    DEFF Research Database (Denmark)

    Plant, Leigh D; Boyle, John P; Thomas, Natasha M

    2002-01-01

    Mutations in presenilin 1 (PS1) are the major cause of autosomal dominant Alzheimer's disease. We have measured the voltage-gated K+ current in the human neuroblastoma cell line SH-SY5Y using whole-cell patch-clamp. When cells were stably transfected to over-express PS1, no change in K+ current...... membrane distribution when the deltaE9 over-expressing cells were compared to control cells. Intracellular retention of Kv3.1 is consistent with the notion that PS1 can modulate the activity and trafficking of ion channels in central neurones and implicates a compromise in electrical signalling...

  5. Tyrosine agonists reverse the molecular defects associated with dominant-negative mutations in human peroxisome proliferator-activated receptor gamma.

    Science.gov (United States)

    Agostini, Maura; Gurnell, Mark; Savage, David B; Wood, Emily M; Smith, Aaron G; Rajanayagam, Odelia; Garnes, Keith T; Levinson, Sidney H; Xu, H Eric; Schwabe, John W R; Willson, Timothy M; O'Rahilly, Stephen; Chatterjee, V Krishna

    2004-04-01

    Loss-of-function mutations in the ligand-binding domain of human peroxisome proliferator-activated receptor gamma (PPARgamma) are associated with a novel syndrome characterized by partial lipodystrophy and severe insulin resistance. Here we have further characterized the properties of natural dominant-negative PPARgamma mutants (P467L, V290M) and evaluated the efficacy of putative natural ligands and synthetic thiazolidinedione (TZD) or tyrosine-based (TA) receptor agonists in rescuing mutant receptor function. A range of natural ligands failed to activate the PPARgamma mutants and their transcriptional responses to TZDs (e.g. pioglitazone, rosiglitazone) were markedly attenuated, whereas TAs (e.g. farglitazar) corrected defects in ligand binding and coactivator recruitment by the PPARgamma mutants, restoring transcriptional function comparable with wild-type receptor. Transcriptional silencing via recruitment of corepressor contributes to dominant-negative inhibition of wild type by the P467L and V290M mutants and the introduction of an artificial mutation (L318A) disrupting corepressor interaction abrogated their dominant-negative activity. More complete ligand-dependent corepressor release and reversal of dominant-negative inhibition was achieved with TA than TZD agonists. Modeling suggests a structural basis for these observations: both mutations destabilize helix 12 to favor receptor-corepressor interaction; conversely, farglitazar makes more extensive contacts than rosiglitazone within the ligand-binding pocket, to stabilize helix 12, facilitating corepressor release and transcriptional activation. Farglitazar was a more potent inducer of PPARgamma target gene (aP2) expression in peripheral blood mononuclear cells with the P467L mutation. Having shown that rosiglitazone is of variable and limited efficacy in these subjects, we suggest that TAs may represent a more rational therapeutic approach.

  6. Human prion disease with a G114V mutation and epidemiological studies in a Chinese family: a case series

    Directory of Open Access Journals (Sweden)

    Ye Jing

    2008-10-01

    Full Text Available Abstract Introduction Transmissible spongiform encephalopathies are a group of neurodegenerative diseases of humans and animals. Genetic Creutzfeldt-Jakob diseases, in which mutations in the PRNP gene predispose to disease by causing the expression of abnormal PrP protein, include familial Creutzfeldt-Jakob disease, Gerstmann-Straussler-Scheinker syndrome and fatal familial insomnia. Case presentation A 47-year-old Han-Chinese woman was hospitalized with a 2-year history of progressive dementia, tiredness, lethargy and mild difficulty in falling asleep. On neurological examination, there was severe apathy, spontaneous myoclonus of the lower limbs, generalized hyperreflexia and bilateral Babinski signs. A missense mutation (T to G was identified at the position of nt 341 in one PRNP allele, leading to a change from glycine (Gly to valine (Val at codon 114. PK-resistant PrPSc was detected in brain tissues by Western blotting and immunohistochemical assays. Information on pedigree was collected notably by interviews with family members. A further four suspected patients in five consecutive generations of the family have been identified. One of them was hospitalized for progressive memory impairment at the age of 32. On examination, he had impairment of memory, calculation and comprehension, mild ataxia of the limbs, tremor and a left Babinski sign. He is still alive. Conclusion This family with G114V inherited prion disease is the first to be described in China and represents the second family worldwide in which this mutation has been identified. Three other suspected cases have been retrospectively identified in this family, and a further case with suggestive clinical manifestations has been shown by gene sequencing to have the causal mutation.

  7. Mutations in the gene of human type IIb sodium-phosphate cotransporter SLC34A2

    Directory of Open Access Journals (Sweden)

    Kiyamova R. G.

    2010-02-01

    Full Text Available Type IIb sodium-phosphate cotransporter (NaPi2b provides phosphate intake in the cells of some epithelial tissues, osteoblasts and odontoblasts. Abnormal expression of NaPi2b has been detected in some types of epithelial tumors. An alteration in NaPi2b activity, caused by mutations in transporter gene SLC34A2, has been recently revealed in patients with pulmonary alveolar microlithiasis, an autosomal recessively inherited disease, characterized by deposition of calcium-phosphate precipitates in the lungs. In the present study we have combined the information about all mutations found to date in the coding sequence of SLC34A2 and its transcript, compiled their map, and analysed their relevance to the function of NaPi2b.

  8. Gene Therapy for Retinitis Pigmentosa Caused by MFRP Mutations: Human Phenotype and Preliminary Proof of Concept

    Science.gov (United States)

    Dinculescu, Astra; Estreicher, Jackie; Zenteno, Juan C.; Aleman, Tomas S.; Schwartz, Sharon B.; Huang, Wei Chieh; Roman, Alejandro J.; Sumaroka, Alexander; Li, Qiuhong; Deng, Wen-Tao; Min, Seok-Hong; Chiodo, Vince A.; Neeley, Andy; Liu, Xuan; Shu, Xinhua; Matias-Florentino, Margarita; Buentello-Volante, Beatriz; Boye, Sanford L.; Cideciyan, Artur V.

    2011-01-01

    Abstract Autosomal recessive retinitis pigmentosa (RP), a heterogeneous group of degenerations of the retina, can be due to mutations in the MFRP (membrane-type frizzled-related protein) gene. A patient with RP with MFRP mutations, one of which is novel and the first splice site mutation reported, was characterized by noninvasive retinal and visual studies. The phenotype, albeit complex, suggested that this retinal degeneration may be a candidate for gene-based therapy. Proof-of-concept studies were performed in the rd6 Mfrp mutant mouse model. The fast-acting tyrosine-capsid mutant AAV8 (Y733F) vector containing the small chicken β-actin promoter driving the wild-type mouse Mfrp gene was used. Subretinal vector delivery on postnatal day 14 prevented retinal degeneration. Treatment rescued rod and cone photoreceptors, as assessed by electroretinography and retinal histology at 2 months of age. This AAV-mediated gene delivery also resulted in robust MFRP expression predominantly in its normal location within the retinal pigment epithelium apical membrane and its microvilli. The clinical features of MFRP-RP and our preliminary data indicating a response to gene therapy in the rd6 mouse suggest that this form of RP is a potential target for gene-based therapy. PMID:22142163

  9. Identification of two mutations in human xanthine dehydrogenase gene responsible for classical type I xanthinuria.

    Science.gov (United States)

    Ichida, K; Amaya, Y; Kamatani, N; Nishino, T; Hosoya, T; Sakai, O

    1997-05-15

    Hereditary xanthinuria is classified into three categories. Classical xanthinuria type I lacks only xanthine dehydrogenase activity, while type II and molybdenum cofactor deficiency also lack one or two additional enzyme activities. In the present study, we examined four individuals with classical xanthinuria to discover the cause of the enzyme deficiency at the molecular level. One subject had a C to T base substitution at nucleotide 682 that should cause a CGA (Arg) to TGA (Ter) nonsense substitution at codon 228. The duodenal mucosa from the subject had no xanthine dehydrogenase protein while the mRNA level was not reduced. The two subjects who were siblings with type I xanthinuria were homozygous concerning this mutation, while another subject was found to contain the same mutation in a heterozygous state. The last subject who was also with type I xanthinuria had a deletion of C at nucleotide 2567 in cDNA that should generate a termination codon from nucleotide 2783. This subject was homozygous for the mutation and the level of mRNA in the duodenal mucosa from the subject was not reduced. Thus, in three subjects with type I xanthinuria, the primary genetic defects were confirmed to be in the xanthine dehydrogenase gene.

  10. A Universal Approach to Correct Various HBB Gene Mutations in Human Stem Cells for Gene Therapy of Beta-Thalassemia and Sickle Cell Disease.

    Science.gov (United States)

    Cai, Liuhong; Bai, Hao; Mahairaki, Vasiliki; Gao, Yongxing; He, Chaoxia; Wen, Yanfei; Jin, You-Chuan; Wang, You; Pan, Rachel L; Qasba, Armaan; Ye, Zhaohui; Cheng, Linzhao

    2017-11-21

    Beta-thalassemia is one of the most common recessive genetic diseases, caused by mutations in the HBB gene. Over 200 different types of mutations in the HBB gene containing three exons have been identified in patients with β-thalassemia (β-thal) whereas a homozygous mutation in exon 1 causes sickle cell disease (SCD). Novel therapeutic strategies to permanently correct the HBB mutation in stem cells that are able to expand and differentiate into erythrocytes producing corrected HBB proteins are highly desirable. Genome editing aided by CRISPR/Cas9 and other site-specific engineered nucleases offers promise to precisely correct a genetic mutation in the native genome without alterations in other parts of the human genome. Although making a sequence-specific nuclease to enhance correction of a specific HBB mutation by homology-directed repair (HDR) is becoming straightforward, targeting various HBB mutations of β-thal is still challenging because individual guide RNA as well as a donor DNA template for HDR of each type of HBB gene mutation have to be selected and validated. Using human induced pluripotent stem cells (iPSCs) from two β-thal patients with different HBB gene mutations, we devised and tested a universal strategy to achieve targeted insertion of the HBB cDNA in exon 1 of HBB gene using Cas9 and two validated guide RNAs. We observed that HBB protein production was restored in erythrocytes derived from iPSCs of two patients. This strategy of restoring functional HBB gene expression will be able to correct most types of HBB gene mutations in β-thal and SCD. Stem Cells Translational Medicine 2017. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  11. Efficient Generation of Gene-Modified Pigs Harboring Precise Orthologous Human Mutation via CRISPR/Cas9-Induced Homology-Directed Repair in Zygotes.

    Science.gov (United States)

    Zhou, Xiaoyang; Wang, Lulu; Du, Yinan; Xie, Fei; Li, Liang; Liu, Yu; Liu, Chuanhong; Wang, Shiqiang; Zhang, Shibing; Huang, Xingxu; Wang, Yong; Wei, Hong

    2016-01-01

    Precise genetic mutation of model animals is highly valuable for functional investigation of human mutations. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-induced homology-directed repair (HDR) is usually used for precise genetic mutation, being limited by the relatively low efficiency compared with that of non-homologous end joining (NHEJ). Although inhibition of NHEJ was shown to enhance HDR-derived mutation, in this work, without inhibition of NHEJ, we first generated gene-modified pigs harboring precise orthologous human mutation (Sox10 c.A325>T) via CRISPR/Cas9-induced HDR in zygotes using single-strand oligo DNA (ssODN) as template with an efficiency as high as 80%, indicating that pig zygotes exhibited high activities of HDR relative to NHEJ and were highly amendable to genetic mutation via CIRSPR/Cas9-induced HDR. Besides, we found a higher concentration of ssODN remarkably reduced HDR-derived mutation in pig zygotes, suggesting a possible balance for optimal HDR-derived mutation in zygotes between the excessive accessibility to HDR templates and the activities of HDR relative to NHEJ which appeared to be negatively correlated to ssODN concentration. In addition, the HDR-derived mutation, as well as those from NHEJ, extensively integrated into various tissues including gonad of founder pig without detected off-targeting, suggesting CRISPR/Cas9-induced HDR in zygotes is a reliable approach for precise genetic mutation in pigs. © 2015 WILEY PERIODICALS, INC.

  12. Evolutionary anatomies of positions and types of disease-associated and neutral amino acid mutations in the human genome

    Directory of Open Access Journals (Sweden)

    Subramanian Sankar

    2006-12-01

    Full Text Available Abstract Background Amino acid mutations in a large number of human proteins are known to be associated with heritable genetic disease. These disease-associated mutations (DAMs are known to occur predominantly in positions essential to the structure and function of the proteins. Here, we examine how the relative perpetuation and conservation of amino acid positions modulate the genome-wide patterns of 8,627 human disease-associated mutations (DAMs reported in 541 genes. We compare these patterns with 5,308 non-synonymous Single Nucleotide Polymorphisms (nSNPs in 2,592 genes from primary SNP resources. Results The abundance of DAMs shows a negative relationship with the evolutionary rate of the amino acid positions harboring them. An opposite trend describes the distribution of nSNPs. DAMs are also preferentially found in the amino acid positions that are retained (or present in multiple vertebrate species, whereas the nSNPs are over-abundant in the positions that have been lost (or absent in the non-human vertebrates. These observations are consistent with the effect of purifying selection on natural variation, which also explains the existence of lower minor nSNP allele frequencies at highly-conserved amino acid positions. The biochemical severity of the inter-specific amino acid changes is also modulated by natural selection, with the fast-evolving positions containing more radical amino acid differences among species. Similarly, DAMs associated with early-onset diseases are more radical than those associated with the late-onset diseases. A small fraction of DAMs (10% overlap with the amino acid differences between species within the same position, but are biochemically the most conservative group of amino acid differences in our datasets. Overlapping DAMs are found disproportionately in fast-evolving amino acid positions, which, along with the conservative nature of the amino acid changes, may have allowed some of them to escape natural

  13. Gene-Targeted Mice with the Human Troponin T R141W Mutation Develop Dilated Cardiomyopathy with Calcium Desensitization.

    Directory of Open Access Journals (Sweden)

    Mohun Ramratnam

    Full Text Available Most studies of the mechanisms leading to hereditary dilated cardiomyopathy (DCM have been performed in reconstituted in vitro systems. Genetically engineered murine models offer the opportunity to dissect these mechanisms in vivo. We generated a gene-targeted knock-in murine model of the autosomal dominant Arg141Trp (R141W mutation in Tnnt2, which was first described in a human family with DCM. Mice heterozygous for the mutation (Tnnt2R141W/+ recapitulated the human phenotype, developing left ventricular dilation and reduced contractility. There was a gene dosage effect, so that the phenotype in Tnnt2R141W/+mice was attenuated by transgenic overexpression of wildtype Tnnt2 mRNA transcript. Male mice exhibited poorer survival than females. Biomechanical studies on skinned fibers from Tnnt2R141W/+ hearts showed a significant decrease in pCa50 (-log[Ca2+] required for generation of 50% of maximal force relative to wildtype hearts, indicating Ca2+ desensitization. Optical mapping studies of Langendorff-perfused Tnnt2R141W/+ hearts showed marked increases in diastolic and peak systolic intracellular Ca2+ ([Ca2+]i, and prolonged systolic rise and diastolic fall of [Ca2+]i. Perfused Tnnt2R141W/+ hearts had slower intrinsic rates in sinus rhythm and reduced peak heart rates in response to isoproterenol. Tnnt2R141W/+ hearts exhibited a reduction in phosphorylated phospholamban relative to wildtype mice. However, crossing Tnnt2R141W/+ mice with phospholamban knockout (Pln-/- mice, which exhibit increased Ca2+ transients and contractility, had no effect on the DCM phenotype. We conclude that the Tnnt2 R141W mutation causes a Ca2+ desensitization and mice adapt by increasing Ca2+-transient amplitudes, which impairs Ca2+ handling dynamics, metabolism and responses to β-adrenergic activation.

  14. Thymidylate synthase genetic polymorphisms and cancer risk:a meta-analysis of 37 case-control studies

    Institute of Scientific and Technical Information of China (English)

    TANG Jian; WANG Pei-pei; ZHUANG Yan-yan; CHEN Wen-jie; HUANG Feng-ting; ZHANG Shi-neng

    2012-01-01

    Background Several studies have evaluated the association between polymorphisms of thymidylate synthase (TS)and cancer risk in diverse populations but with conflicting results.By pooling the relatively small samples in each study,it is possible to evaluate the association using a meta-analysis.Methods A comprehensive search was conducted to identify all case-control studies on TS on a 28-bp tandem repeats in 5′untranslated region (5′UTR) and a 6-bp insertion (ins) and deletion (del) mutation in 3′UTR of the gene and cancer risk.Meta-analysis was conducted using a fixed and random effect model.Results Our meta-analysis on a total of 13307 cancer cases and 18226 control subjects from 37 published case-control studies showed no significant association between the risk of cancer and the 5′UTR 28-bp tandem repeats polymorphism (3R/3R vs.2R/2R:OR=1.06,95% CI,0.93-1.20) or the 3′UTR 6-bp ins/del polymorphism (del6/del6 vs.ins6/ins6:0R=0.93,95% CI,0.81-1.08) with significant between-study heterogeneity.In the cancer type- and ethnic subgroup-stratification analyses,we did not find any association between TS polymorphisms and cancer risk either.Conclusion TS 5′UTR 28-bp tandem repeats and 3′UTR 6-bp ins/del polymorphisms may not be associated with cancer risk.

  15. Mutations at the mouse ichthyosis locus are within the lamin B receptor gene: a single gene model for human Pelger-Huët anomaly.

    Science.gov (United States)

    Shultz, Leonard D; Lyons, Bonnie L; Burzenski, Lisa M; Gott, Bruce; Samuels, Rebecca; Schweitzer, Peter A; Dreger, Christine; Herrmann, Harald; Kalscheuer, Vera; Olins, Ada L; Olins, Donald E; Sperling, Karl; Hoffmann, Katrin

    2003-01-01

    The nature of the wild-type gene product at the mouse ichthyosis (ic) locus has been of great interest because mutations at this locus cause marked abnormalities in nuclear heterochromatin, similar to those observed in Pelger-Huët anomaly (PHA). We recently found that human PHA is caused by mutations in the gene (LBR) encoding lamin B receptor, an evolutionarily conserved inner nuclear membrane protein involved in nuclear assembly and chromatin binding. Mice homozygous for deleterious alleles at the ichthyosis (ic) locus present with a blood phenotype similar to PHA, and develop other phenotypic abnormalities, including alopecia, variable expression of syndactyly and hydrocephalus. The ic locus on mouse chromosome 1 shares conserved synteny with the chromosomal location of the human LBR locus on human chromosome 1. In this study, we identified one nonsense (815ins) and two frameshift mutations (1088insCC and 1884insGGAA) within the Lbr gene of mice homozygous for either of three independent mutations (ic, ic(J) and ic(4J), respectively) at the ichthyosis locus. These allelic mutations are predicted to result in truncated or severely impaired LBR protein. Our studies of mice homozygous for the ic(J) mutation revealed a complete loss of LBR protein as shown by immunofluorescence microscopy and immunoblotting. The findings provide the molecular basis for the heterochromatin clumping and other distinct phenotypes caused by ic mutations. These spontaneous Lbr mutations confirm the molecular basis of human PHA and provide a small animal model for determination of the precise function of LBR in normal and pathological states.

  16. Adaptive mutations in the nuclear export protein of human-derived H5N1 strains facilitate a polymerase activity-enhancing conformation

    NARCIS (Netherlands)

    P. Reuther (Peter); S. Giese (Sebastian); H.M. Götz (Hannelore); N. Kilb (Normann); B. Mänz (Benjamin); L. Brunotte (Linda); M. Schwemmle (Martin)

    2014-01-01

    textabstractThe nuclear export protein (NEP) (NS2) of the highly pathogenic human-derived H5N1 strain A/Thailand/1(KAN-1)/2004 with the adaptive mutation M16I greatly enhances the polymerase activity in human cells in a concentration-dependent manner. While low NEP levels enhance the polymerase

  17. Flavin-Dependent Thymidylate Synthase ThyX Activity: Implications for the Folate Cycle in Bacteria▿ †

    Science.gov (United States)

    Leduc, Damien; Escartin, Frédéric; Nijhout, H. Frederik; Reed, Michael C.; Liebl, Ursula; Skouloubris, Stéphane; Myllykallio, Hannu

    2007-01-01

    Although flavin-dependent ThyX proteins show thymidylate synthase activity in vitro and functionally complement thyA defects in heterologous systems, direct proof of their cellular functions is missing. Using insertional mutagenesis of Rhodobacter capsulatus thyX, we constructed the first defined thyX inactivation mutant. Phenotypic analyses of the obtained mutant strain confirmed that R. capsulatus ThyX is required for de novo thymidylate synthesis. Full complementation of the R. capsulatus thyX::spec strain to thymidine prototrophy required not only the canonical thymidylate synthase ThyA but also the dihydrofolate reductase FolA. Strikingly, we also found that addition of exogenous methylenetetrahydrofolate transiently inhibited the growth of the different Rhodobacter strains used in this work. To rationalize these experimental results, we used a mathematical model of bacterial folate metabolism. This model suggests that a very low dihydrofolate reductase activity is enough to rescue significant thymidylate synthesis in the presence of ThyX proteins and is in agreement with the notion that intracellular accumulation of folates results in growth inhibition. In addition, our observations suggest that the presence of flavin-dependent thymidylate synthase X provides growth benefits under conditions in which the level of reduced folate derivatives is compromised. PMID:17890305

  18. Multifunctional adaptive NS1 mutations are selected upon human influenza virus evolution in the mouse.

    Directory of Open Access Journals (Sweden)

    Nicole E Forbes

    Full Text Available The role of the NS1 protein in modulating influenza A virulence and host range was assessed by adapting A/Hong Kong/1/1968 (H3N2 (HK-wt to increased virulence in the mouse. Sequencing the NS genome segment of mouse-adapted variants revealed 11 mutations in the NS1 gene and 4 in the overlapping NEP gene. Using the HK-wt virus and reverse genetics to incorporate mutant NS gene segments, we demonstrated that all NS1 mutations were adaptive and enhanced virus replication (up to 100 fold in mouse cells and/or lungs. All but one NS1 mutant was associated with increased virulence measured by survival and weight loss in the mouse. Ten of twelve NS1 mutants significantly enhanced IFN-β antagonism to reduce the level of IFN β production relative to HK-wt in infected mouse lungs at 1 day post infection, where 9 mutants induced viral yields in the lung that were equivalent to or significantly greater than HK-wt (up to 16 fold increase. Eight of 12 NS1 mutants had reduced or lost the ability to bind the 30 kDa cleavage and polyadenylation specificity factor (CPSF30 thus demonstrating a lack of correlation with reduced IFN β production. Mutant NS1 genes resulted in increased viral mRNA transcription (10 of 12 mutants, and protein production (6 of 12 mutants in mouse cells. Increased transcription activity was demonstrated in the influenza mini-genome assay for 7 of 11 NS1 mutants. Although we have shown gain-of-function properties for all mutant NS genes, the contribution of the NEP mutations to phenotypic changes remains to be assessed. This study demonstrates that NS1 is a multifunctional virulence factor subject to adaptive evolution.

  19. A mouse model of the human Fragile X syndrome I304N mutation.

    Directory of Open Access Journals (Sweden)

    Julie B Zang

    2009-12-01

    Full Text Available The mental retardation, autistic features, and behavioral abnormalities characteristic of the Fragile X mental retardation syndrome result from the loss of function of the RNA-binding protein FMRP. The disease is usually caused by a triplet repeat expansion in the 5'UTR of the FMR1 gene. This leads to loss of function through transcriptional gene silencing, pointing to a key function for FMRP, but precluding genetic identification of critical activities within the protein. Moreover, antisense transcripts (FMR4, ASFMR1 in the same locus have been reported to be silenced by the repeat expansion. Missense mutations offer one means of confirming a central role for FMRP in the disease, but to date, only a single such patient has been described. This patient harbors an isoleucine to asparagine mutation (I304N in the second FMRP KH-type RNA-binding domain, however, this single case report was complicated because the patient harbored a superimposed familial liver disease. To address these issues, we have generated a new Fragile X Syndrome mouse model in which the endogenous Fmr1 gene harbors the I304N mutation. These mice phenocopy the symptoms of Fragile X Syndrome in the existing Fmr1-null mouse, as assessed by testicular size, behavioral phenotyping, and electrophysiological assays of synaptic plasticity. I304N FMRP retains some functions, but has specifically lost RNA binding and polyribosome association; moreover, levels of the mutant protein are markedly reduced in the brain specifically at a time when synapses are forming postnatally. These data suggest that loss of FMRP function, particularly in KH2-mediated RNA binding and in synaptic plasticity, play critical roles in pathogenesis of the Fragile X Syndrome and establish a new model for studying the disorder.

  20. Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes, including the gene DMRT1.

    Directory of Open Access Journals (Sweden)

    Alexandra M Lopes

    2013-03-01

    Full Text Available Gonadal failure, along with early pregnancy loss and perinatal death, may be an important filter that limits the propagation of harmful mutations in the human population. We hypothesized that men with spermatogenic impairment, a disease with unknown genetic architecture and a common cause of male infertility, are enriched for rare deleterious mutations compared to men with normal spermatogenesis. After assaying genomewide SNPs and CNVs in 323 Caucasian men with idiopathic spermatogenic impairment and more than 1,100 controls, we estimate that each rare autosomal deletion detected in our study multiplicatively changes a man's risk of disease by 10% (OR 1.10 [1.04-1.16], p<2 × 10(-3, rare X-linked CNVs by 29%, (OR 1.29 [1.11-1.50], p<1 × 10(-3, and rare Y-linked duplications by 88% (OR 1.88 [1.13-3.13], p<0.03. By contrasting the properties of our case-specific CNVs with those of CNV callsets from cases of autism, schizophrenia, bipolar disorder, and intellectual disability, we propose that the CNV burden in spermatogenic impairment is distinct from the burden of large, dominant mutations described for neurodevelopmental disorders. We identified two patients with deletions of DMRT1, a gene on chromosome 9p24.3 orthologous to the putative sex determination locus of the avian ZW chromosome system. In an independent sample of Han Chinese men, we identified 3 more DMRT1 deletions in 979 cases of idiopathic azoospermia and none in 1,734 controls, and found none in an additional 4,519 controls from public databases. The combined results indicate that DMRT1 loss-of-function mutations are a risk factor and potential genetic cause of human spermatogenic failure (frequency of 0.38% in 1306 cases and 0% in 7,754 controls, p = 6.2 × 10(-5. Our study identifies other recurrent CNVs as potential causes of idiopathic azoospermia and generates hypotheses for directing future studies on the genetic basis of male infertility and IVF outcomes.

  1. Human mutations affect the epigenetic/bookmarking function of HNF1B.

    Science.gov (United States)

    Lerner, Jonathan; Bagattin, Alessia; Verdeguer, Francisco; Makinistoglu, Munevver P; Garbay, Serge; Felix, Tristan; Heidet, Laurence; Pontoglio, Marco

    2016-09-30

    Bookmarking factors are transcriptional regulators involved in the mitotic transmission of epigenetic information via their ability to remain associated with mitotic chromatin. The mechanisms through which bookmarking factors bind to mitotic chromatin remain poorly understood. HNF1β is a bookmarking transcription factor that is frequently mutated in patients suffering from renal multicystic dysplasia and diabetes. Here, we show that HNF1β bookmarking activity is impaired by naturally occurring mutations found in patients. Interestingly, this defect in HNF1β mitotic chromatin association is rescued by an abrupt decrease in temperature. The rapid relocalization to mitotic chromatin is reversible and driven by a specific switch in DNA-binding ability of HNF1β mutants. Furthermore, we demonstrate that importin-β is involved in the maintenance of the mitotic retention of HNF1β, suggesting a functional link between the nuclear import system and the mitotic localization/translocation of bookmarking factors. Altogether, our studies have disclosed novel aspects on the mechanisms and the genetic programs that account for the mitotic association of HNF1β, a bookmarking factor that plays crucial roles in the epigenetic transmission of information through the cell cycle. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Sox2 cooperates with Chd7 to regulate genes that are mutated in human syndromes.

    Science.gov (United States)

    Engelen, Erik; Akinci, Umut; Bryne, Jan Christian; Hou, Jun; Gontan, Cristina; Moen, Maaike; Szumska, Dorota; Kockx, Christel; van Ijcken, Wilfred; Dekkers, Dick H W; Demmers, Jeroen; Rijkers, Erik-Jan; Bhattacharya, Shoumo; Philipsen, Sjaak; Pevny, Larysa H; Grosveld, Frank G; Rottier, Robbert J; Lenhard, Boris; Poot, Raymond A

    2011-06-01

    The HMG-box transcription factor Sox2 plays a role throughout neurogenesis and also acts at other stages of development, as illustrated by the multiple organs affected in the anophthalmia syndrome caused by SOX2 mutations. Here we combined proteomic and genomic approaches to characterize gene regulation by Sox2 in neural stem cells. Chd7, a chromatin remodeling ATPase associated with CHARGE syndrome, was identified as a Sox2 transcriptional cofactor. Sox2 and Chd7 physically interact, have overlapping genome-wide binding sites and regulate a set of common target genes including Jag1, Gli3 and Mycn, genes mutated in Alagille, Pallister-Hall and Feingold syndromes, which show malformations also associated with SOX2 anophthalmia syndrome or CHARGE syndrome. Regulation of disease-associated genes by a Sox2-Chd7 complex provides a plausible explanation for several malformations associated with SOX2 anophthalmia syndrome or CHARGE syndrome. Indeed, we found that Chd7-haploinsufficient embryos showed severely reduced expression of Jag1 in the developing inner ear.

  3. Discovery of potential drugs for human-infecting H7N9 virus containing R294K mutation

    Directory of Open Access Journals (Sweden)

    He JY

    2014-12-01

    Full Text Available Jiao-Yu He,1,* Cheng Li,2,* Guo Wu3 1College of Life Sciences and Key Laboratory for Bio-resources of Ministry of Education, Sichuan University, 2College of Agronomy, Sichuan Agricultural University, 3College of Life Sciences, Sichuan Normal University, Chengdu, People’s Republic of China *These authors contributed equally to this work Background: After the first epidemic wave from February through May 2013, the influenza A (H7N9 virus emerged and has followed a second epidemic wave since June 2013. As of June 27, 2014, the outbreak of H7N9 had caused 450 confirmed cases of human infection, with 165 deaths included. The case-fatality rate of all confirmed cases is about 36%, making the H7N9 virus a significant threat to people’s health. At present, neuraminidase inhibitors are the only licensed antiviral medications available to treat H7N9 infections in humans. Oseltamivir is the most commonly used inhibitor, and it is also a front-line drug for the threatening H7N9. Unfortunately, it has been reported that patients treated with oseltamivir can induce R294K (Arg294Lys substitution in the H7N9 virus, which is a rare mutation and can reduce the antiviral efficacy of inhibitors. Even worse, deaths caused by such mutation after oseltamivir treatment have already been reported, indicating that the need to find substitutive neuraminidase inhibitors for currently available drugs to treat drug-resistant H7N9 is really pressing.Materials and methods: First, the structure of H7N9 containing the R294K substitution was downloaded from the Protein Data Bank, and structural information of approved drugs was downloaded from the ZINC (ZINC Is Not Commercial database. Taking oseltamivir carboxylate as a reference drug, we then filtered these molecules through virtual screening to find out potential inhibitors targeting the mutated H7N9 virus. For further evaluation, we carried out a 14 ns molecular dynamic simulation for each H7N9–drug complex and

  4. Direct Measurements of Human Colon Crypt Stem Cell Niche Genetic Fidelity: The Role of Chance in Non-Darwinian Mutation Selection

    Directory of Open Access Journals (Sweden)

    Haeyoun eKang

    2013-10-01

    Full Text Available Perfect human stem cell genetic fidelity would prevent aging and cancer. However, perfection would be difficult to achieve, and aging is universal and cancers common. A hypothesis is that because mutations are inevitable over a human lifetime, downstream mechanisms have evolved to manage the deleterious effects of beneficial and lethal mutations. In the colon, a crypt stem cell architecture reduces the number of mitotic cells at risk for mutation accumulation, and multiple niche stem cells ensure that a lethal mutation within any single stem cell does not lead to crypt death. In addition, the architecture of the colon crypt stem cell niche may harness probability or chance to randomly discard many beneficial mutations that might lead to cancer. An analysis of somatic chromosome copy number alterations (CNAs reveals a lack of perfect fidelity in individual normal human crypts, with age-related increases and higher frequencies in ulcerative colitis, a proliferative, inflammatory disease. The age-related increase in somatic CNAs appears consistent with relatively normal replication error and cell division rates. Surprisingly, and similar to point mutations in cancer genomes, the types of crypt mutations were more consistent with random fixation rather than selection. In theory, a simple non-Darwinian way to nullify selection is to reduce the size of the reproducing population. Fates are more determined by chance rather than selection in very small populations, and therefore selection may be minimized within small crypt niches. The desired effect is that many beneficial mutations that might lead to cancer are randomly lost by drift rather than fixed by selection. The subdivision of the colon into multiple very small stem cell niches may trade Darwinian evolution for non-Darwinian somatic cell evolution, capitulating to aging but reducing cancer risks.

  5. Direct measurements of human colon crypt stem cell niche genetic fidelity: the role of chance in non-darwinian mutation selection.

    Science.gov (United States)

    Kang, Haeyoun; Shibata, Darryl

    2013-10-14

    Perfect human stem cell genetic fidelity would prevent aging and cancer. However, perfection would be difficult to achieve, and aging is universal and cancers common. A hypothesis is that because mutations are inevitable over a human lifetime, downstream mechanisms have evolved to manage the deleterious effects of beneficial and lethal mutations. In the colon, a crypt stem cell architecture reduces the number of mitotic cells at risk for mutation accumulation, and multiple niche stem cells ensure that a lethal mutation within any single stem cell does not lead to crypt death. In addition, the architecture of the colon crypt stem cell niche may harness probability or chance to randomly discard many beneficial mutations that might lead to cancer. An analysis of somatic chromosome copy number alterations (CNAs) reveals a lack of perfect fidelity in individual normal human crypts, with age-related increases and higher frequencies in ulcerative colitis, a proliferative, inflammatory disease. The age-related increase in somatic CNAs appears consistent with relatively normal replication error and cell division rates. Surprisingly, and similar to point mutations in cancer genomes, the types of crypt mutations were more consistent with random fixation rather than selection. In theory, a simple "non-Darwinian" way to nullify selection is to reduce the size of the reproducing population. Fates are more determined by chance rather than selection in very small populations, and therefore selection may be minimized within small crypt niches. The desired effect is that many beneficial mutations that might lead to cancer are randomly lost by drift rather than fixed by selection. The subdivision of the colon into multiple very small stem cell niches may trade Darwinian evolution for non-Darwinian somatic cell evolution, capitulating to aging but reducing cancer risks.

  6. A Study of Thymidylate Synthase Expression as a Biomarker for Resectable Colon Cancer: Alliance (Cancer and Leukemia Group B) 9581 and 89803.

    Science.gov (United States)

    Niedzwiecki, Donna; Hasson, Rian M; Lenz, Heinz-Josef; Ye, Cynthia; Redston, Mark; Ogino, Shuji; Fuchs, Charles S; Compton, Carolyn C; Mayer, Robert J; Goldberg, Richard M; Colacchio, Thomas A; Saltz, Leonard B; Warren, Robert S; Bertagnolli, Monica M

    2017-01-01

    Tumor levels of thymidylate synthase (TS), a target of 5-fluorouracil (5-FU)-based chemotherapy for colorectal cancer, have been studied as a predictive or prognostic biomarker with mixed results. Tumor TS levels were prospectively evaluated in two adjuvant therapy trials for patients with resected stage II or III colon cancer. TS expression was determined by standard immunohistochemistry and by automated quantitative analysis. Tumor mismatch repair deficiency (MMR-D) and BRAF c.1799T > A (p.V600E) mutation status were also examined. Relationships between tumor TS, MMR-D, and BRAF mutation status, overall survival (OS), and disease-free survival (DFS) were investigated in the subset of stage III patients. Patients whose tumors demonstrated high TS expression experienced better treatment outcomes, with DFS hazard ratio (HR) = 0.67, 95% confidence interval (CI) = 0.53, 0.84; and OS HR = 0.68, 95% CI = 0.53, 0.88, for high versus low TS expression, respectively. No significant interaction between TS expression and stage was observed (DFS: interaction HR = 0.94; OS: interaction HR = 0.94). Tumors with high TS expression were more likely to demonstrate MMR-D (22.2% vs. 12.8%; p =  .0003). Patients whose tumors demonstrated both high TS and MMR-D had a 7-year DFS of 77%, compared with 58% for those whose tumors had low TS and were non-MMR-D (log-rank p =  .0006). Tumor TS expression did not predict benefit of a particular therapeutic regimen. This large prospective analysis showed that high tumor TS levels were associated with improved DFS and OS following adjuvant therapy for colon cancer, although tumor TS expression did not predict benefit of 5-FU-based chemotherapy. The Oncologist 2017;22:107-114Implications for Practice: This study finds that measurement of tumor levels of thymidylate synthase is not helpful in assigning specific adjuvant treatment for colorectal cancer. It also highlights the importance of using prospective

  7. A Study of Thymidylate Synthase Expression as a Biomarker for Resectable Colon Cancer: Alliance (Cancer and Leukemia Group B) 9581 and 89803

    Science.gov (United States)

    Niedzwiecki, Donna; Hasson, Rian M.; Lenz, Heinz‐Josef; Ye, Cynthia; Redston, Mark; Ogino, Shuji; Fuchs, Charles S.; Compton, Carolyn C.; Mayer, Robert J.; Goldberg, Richard M.; Colacchio, Thomas A.; Saltz, Leonard B.; Warren, Robert S.

    2016-01-01

    Abstract Purpose. Tumor levels of thymidylate synthase (TS), a target of 5‐fluorouracil (5‐FU)‐based chemotherapy for colorectal cancer, have been studied as a predictive or prognostic biomarker with mixed results. Patients and Methods. Tumor TS levels were prospectively evaluated in two adjuvant therapy trials for patients with resected stage II or III colon cancer. TS expression was determined by standard immunohistochemistry and by automated quantitative analysis. Tumor mismatch repair deficiency (MMR‐D) and BRAF c.1799T > A (p.V600E) mutation status were also examined. Relationships between tumor TS, MMR‐D, and BRAF mutation status, overall survival (OS), and disease‐free survival (DFS) were investigated in the subset of stage III patients. Results. Patients whose tumors demonstrated high TS expression experienced better treatment outcomes, with DFS hazard ratio (HR) = 0.67, 95% confidence interval (CI) = 0.53, 0.84; and OS HR = 0.68, 95% CI = 0.53, 0.88, for high versus low TS expression, respectively. No significant interaction between TS expression and stage was observed (DFS: interaction HR = 0.94; OS: interaction HR = 0.94). Tumors with high TS expression were more likely to demonstrate MMR‐D (22.2% vs. 12.8%; p =  .0003). Patients whose tumors demonstrated both high TS and MMR‐D had a 7‐year DFS of 77%, compared with 58% for those whose tumors had low TS and were non‐MMR‐D (log‐rank p =  .0006). Tumor TS expression did not predict benefit of a particular therapeutic regimen. Conclusion. This large prospective analysis showed that high tumor TS levels were associated with improved DFS and OS following adjuvant therapy for colon cancer, although tumor TS expression did not predict benefit of 5‐FU‐based chemotherapy. Implications for Practice. This study finds that measurement of tumor levels of thymidylate synthase is not helpful in assigning specific adjuvant treatment for colorectal cancer

  8. Mutation of a single amino acid converts the human water channel aquaporin 5 into an anion channel.

    Science.gov (United States)

    Qin, Xue; Boron, Walter F

    2013-09-15

    Aquaporin 6 (AQP6) is unique among mammalian AQPs in being an anion channel with negligible water permeability. However, the point mutation Asn60Gly converts AQP6 from an anion channel into a water channel. In the present study of human AQP5, we mutated Leu51 (corresponding to residue 61 in AQP6), the side chain of which faces the central pore. We evaluated function in Xenopus oocytes by two-electrode voltage clamp, video measurements of osmotic H2O permeability (Pf), microelectrode measurements of surface pH (pHS) to assess CO2 permeability, and surface biotinylation. We found that AQP5-L51R does not exhibit the H2O or CO2 permeability of the wild-type protein but instead has a novel p-chloromercuribenzene sulfonate (pCMBS)-sensitive current. The double mutant AQP5-L51R/C182S renders the conductance insensitive to pCMBS, demonstrating that the current is intrinsic to AQP5. AQP5-L51R has the anion permeability sequence I(-) > NO3(-) ≅ NO2(-) > Br(-) > Cl(-) > HCO3(-) > gluconate. Of the other L51 mutants, L51T (polar uncharged) and L51V (nonpolar) retain H2O and CO2 permeability and do not exhibit anion conductance. L51D and L51E (negatively charged) have no H2O or CO2 permeability. L51K (positively charged) has an intermediate H2O and CO2 permeability and anion conductance. L51H is unusual in having a relatively low CO2 permeability and anion conductance, but a moderate Pf. Thus, positively charged mutations of L51 can convert AQP5 from a H2O/CO2 channel into an anion channel. However, the paradoxical effect of L51H is consistent with the hypothesis that CO2, in part, takes a pathway different from H2O through AQP5.

  9. Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease.

    Science.gov (United States)

    Rees, Mark I; Harvey, Kirsten; Pearce, Brian R; Chung, Seo-Kyung; Duguid, Ian C; Thomas, Philip; Beatty, Sarah; Graham, Gail E; Armstrong, Linlea; Shiang, Rita; Abbott, Kim J; Zuberi, Sameer M; Stephenson, John B P; Owen, Michael J; Tijssen, Marina A J; van den Maagdenberg, Arn M J M; Smart, Trevor G; Supplisson, Stéphane; Harvey, Robert J

    2006-07-01

    Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) alpha1 subunit (GLRA1). Genetic heterogeneity has been confirmed in rare sporadic cases, with mutations affecting other postsynaptic glycinergic proteins including the GlyR beta subunit (GLRB), gephyrin (GPHN) and RhoGEF collybistin (ARHGEF9). However, many individuals diagnosed with sporadic hyperekplexia do not carry mutations in these genes. Here we show that missense, nonsense and frameshift mutations in SLC6A5 (ref. 8), encoding the presynaptic glycine transporter 2 (GlyT2), also cause hyperekplexia. Individuals with mutations in SLC6A5 present with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnea episodes. SLC6A5 mutations result in defective subcellular GlyT2 localization, decreased glycine uptake or both, with selected mutations affecting predicted glycine and Na+ binding sites.

  10. Efficient CRISPR-Cas9-Mediated Generation of Knockin Human Pluripotent Stem Cells Lacking Undesired Mutations at the Targeted Locus

    Directory of Open Access Journals (Sweden)

    Florian T. Merkle

    2015-05-01

    Full Text Available The CRISPR-Cas9 system has the potential to revolutionize genome editing in human pluripotent stem cells (hPSCs, but its advantages and pitfalls are still poorly understood. We systematically tested the ability of CRISPR-Cas9 to mediate reporter gene knockin at 16 distinct genomic sites in hPSCs. We observed efficient gene targeting but found that targeted clones carried an unexpectedly high frequency of insertion and deletion (indel mutations at both alleles of the targeted gene. These indels were induced by Cas9 nuclease, as well as Cas9-D10A single or dual nickases, and often disrupted gene function. To overcome this problem, we designed strategies to physically destroy or separate CRISPR target sites at the targeted allele and developed a bioinformatic pipeline to identify and eliminate clones harboring deleterious indels at the other allele. This two-pronged approach enables the reliable generation of knockin hPSC reporter cell lines free of unwanted mutations at the targeted locus.

  11. Novel missense mutations in the human lysosomal sialidase gene in sialidosis patients and prediction of structural alterations of mutant enzymes.

    Science.gov (United States)

    Itoh, Kohji; Naganawa, Yasunori; Matsuzawa, Fumiko; Aikawa, Seiichi; Doi, Hirofumi; Sasagasako, Naokazu; Yamada, Takeshi; Kira, Jun-ichi; Kobayashi, Takuro; Pshezhetsky, Alexey V; Sakuraba, Hitoshi

    2002-01-01

    Three novel missense mutations in the human lysosomal sialidase gene causing amino acid substitutions (P80L, W240R. and P316S) in the coding region were identified in two Japanese sialidosis patients. One patient with a severe, congenital form of type 2 sialidosis was a compound heterozygote for 239C-to-T (P80L) and 718T-to-C (W240R). The other patient with a mild juvenile-onset phenotype (type 1) was a homozygote for the base substitution of 946C-to-T (P316S). None of these mutant cDNA products showed enzymatic activity toward an artificial substrate when coexpressed in galactosialidosis fibroblastic cells together with protective protein/cathepsin A (PPCA). All mutants showed a reticular immunofluorescence distribution when coexpressed with the PPCA gene in COS-1 cells, suggesting that the gene products were retained in the endoplasmic reticulum/Golgi area or rapidly degraded in the lysosomes. Homology modeling of the structural changes introduced by the mutations predicted that the P80L and P316S transversions cause large conformational changes including the active site residues responsible for binding the sialic acid carboxylate group. The W240R substitution was deduced to influence the molecular surface structure of a limited region of the constructed models, which was also influenced by previously identified V217M and G243R transversions.

  12. Antibody neutralization escape mediated by point mutations in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41.

    Science.gov (United States)

    Kalia, Vandana; Sarkar, Surojit; Gupta, Phalguni; Montelaro, Ronald C

    2005-02-01

    The persistence of human immunodeficiency virus type 1 (HIV-1) infection in the presence of robust host immunity has been associated in part with variation in viral envelope proteins leading to antigenic variation and escape from neutralizing antibodies. Previous studies of natural neutralization escape mutants have predominantly focused on gp120 and gp41 ectodomain sequence variations that alter antibody binding via changes in conformation or glycosylation pattern of the Env, likely due to the immune pressure exerted on the exposed ectodomain component of the glycoprotein. Here, we show for the first time a novel mechanism by which point mutations in the intracytoplasmic tail of the transmembrane component (gp41) of envelope can render the virus resistant to neutralization by monoclonal antibodies and broadly neutralizing polyclonal serum antibodies. Point mutations in a highly conserved structural motif within the intracytoplasmic tail resulted in decreased binding of neutralizing antibodies to the Env ectodomain, evidently due to allosteric changes both in the gp41 ectodomain and in gp120. While receptor binding and infectivity of the mutant virus remained unaltered, the changes in Env antigenicity were associated with an increase in neutralization resistance of the mutant virus. These studies demonstrate the structurally integrated nature of gp120 and gp41 and underscore a previously unrecognized potentially critical role for even minor sequence variation of the intracytoplasmic tail in modulating the antigenicity of the ectodomain of HIV-1 envelope glycoprotein complex.

  13. Mutation in the human homeobox gene NKX5-3 causes an oculo-auricular syndrome.

    Science.gov (United States)

    Schorderet, Daniel F; Nichini, Olivia; Boisset, Gaëlle; Polok, Bozena; Tiab, Leila; Mayeur, Hélène; Raji, Bahija; de la Houssaye, Gauillaume; Abitbol, Marc M; Munier, Francis L

    2008-05-01

    Several dysmorphic syndromes affect the development of both the eye and the ear, but only a few are restricted to the eye and the external ear. We describe a developmental defect affecting the eye and the external ear in three members of a consanguineous family. This syndrome is characterized by ophthalmic anomalies (microcornea, microphthalmia, anterior-segment dysgenesis, cataract, coloboma of various parts of the eye, abnormalities of the retinal pigment epithelium, and rod-cone dystrophy) and a particular cleft ear lobule. Linkage analysis and mutation screening revealed in the first exon of the NKX5-3 gene a homozygous 26 nucleotide deletion, generating a truncating protein that lacked the complete homeodomain. Morpholino knockdown expression of the zebrafish nkx5-3 induced microphthalmia and disorganization of the developing retina, thus confirming that this gene represents an additional member implicated in axial patterning of the retina.

  14. An Exon-Based Comparative Variant Analysis Pipeline to Study the Scale and Role of Frameshift and Nonsense Mutation in the Human-Chimpanzee Divergence

    OpenAIRE

    Yu, GongXin

    2009-01-01

    Chimpanzees and humans are closely related but differ in many deadly human diseases and other characteristics in physiology, anatomy, and pathology. In spite of decades of extensive research, crucial questions about the molecular mechanisms behind the differences are yet to be understood. Here I report ExonVar, a novel computational pipeline for Exon-based human-chimpanzee comparative Variant analysis. The objective is to comparatively analyze mutations specifically those that caused th...

  15. Computational analysis of the human sinus node action potential: model development and effects of mutations

    NARCIS (Netherlands)

    Fabbri, Alan; Fantini, Matteo; Wilders, Ronald; Severi, Stefano

    2017-01-01

    We constructed a comprehensive mathematical model of the spontaneous electrical activity of a human sinoatrial node (SAN) pacemaker cell, starting from the recent Severi-DiFrancesco model of rabbit SAN cells. Our model is based on electrophysiological data from isolated human SAN pacemaker cells and

  16. Competitive Binding Between Id1 and E2F1 to Cdc20 Regulates E2F1 Degradation and Thymidylate Synthase Expression to Promote Esophageal Cancer Chemoresistance.

    Science.gov (United States)

    Li, Bin; Xu, Wen Wen; Guan, Xin Yuan; Qin, Yan Ru; Law, Simon; Lee, Nikki Pui Yue; Chan, Kin Tak; Tam, Pui Ying; Li, Yuk Yin; Chan, Kwok Wah; Yuen, Hiu Fung; Tsao, Sai Wah; He, Qing Yu; Cheung, Annie L M

    2016-03-01

    Chemoresistance is a major obstacle in cancer therapy. We found that fluorouracil (5-FU)-resistant esophageal squamous cell carcinoma cell lines, established through exposure to increasing concentrations of 5-FU, showed upregulation of Id1, IGF2, and E2F1. We hypothesized that these genes may play an important role in cancer chemoresistance. In vitro and in vivo functional assays were performed to study the effects of Id1-E2F1-IGF2 signaling in chemoresistance. Quantitative real-time PCR, Western blotting, immunoprecipitation, chromatin immunoprecipitation, and dual-luciferase reporter assays were used to investigate the molecular mechanisms by which Id1 regulates E2F1 and by which E2F1 regulates IGF2. Clinical specimens, tumor tissue microarray, and Gene Expression Omnibus datasets were used to analyze the correlations between gene expressions and the relationships between expression profiles and patient survival outcomes. Id1 conferred 5-FU chemoresistance through E2F1-dependent induction of thymidylate synthase expression in esophageal cancer cells and tumor xenografts. Mechanistically, Id1 protects E2F1 protein from degradation and increases its expression by binding competitively to Cdc20, whereas E2F1 mediates Id1-induced upregulation of IGF2 by binding directly to the IGF2 promoter and activating its transcription. The expression level of E2F1 was positively correlated with that of Id1 and IGF2 in human cancers. More importantly, concurrent high expression of Id1 and IGF2 was associated with unfavorable patient survival in multiple cancer types. Our findings define an intricate E2F1-dependent mechanism by which Id1 increases thymidylate synthase and IGF2 expressions to promote cancer chemoresistance. The Id1-E2F1-IGF2 regulatory axis has important implications for cancer prognosis and treatment. ©2015 American Association for Cancer Research.

  17. Gain-of-function R225W mutation in human AMPKgamma(3 causing increased glycogen and decreased triglyceride in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Sheila R Costford

    Full Text Available BACKGROUND: AMP-activated protein kinase (AMPK is a heterotrimeric enzyme that is evolutionarily conserved from yeast to mammals and functions to maintain cellular and whole body energy homeostasis. Studies in experimental animals demonstrate that activation of AMPK in skeletal muscle protects against insulin resistance, type 2 diabetes and obesity. The regulatory gamma(3 subunit of AMPK is expressed exclusively in skeletal muscle; however, its importance in controlling overall AMPK activity is unknown. While evidence is emerging that gamma subunit mutations interfere specifically with AMP activation, there remains some controversy regarding the impact of gamma subunit mutations. Here we report the first gain-of-function mutation in the muscle-specific regulatory gamma(3 subunit in humans. METHODS AND FINDINGS: We sequenced the exons and splice junctions of the AMPK gamma(3 gene (PRKAG3 in 761 obese and 759 lean individuals, identifying 87 sequence variants including a novel R225W mutation in subjects from two unrelated families. The gamma(3 R225W mutation is homologous in location to the gamma(2R302Q mutation in patients with Wolf-Parkinson-White syndrome and to the gamma(3R225Q mutation originally linked to an increase in muscle glycogen content in purebred Hampshire Rendement Napole (RN- pigs. We demonstrate in differentiated muscle satellite cells obtained from the vastus lateralis of R225W carriers that the mutation is associated with an approximate doubling of both basal and AMP-activated AMPK activities. Moreover, subjects bearing the R225W mutation exhibit a approximately 90% increase of skeletal muscle glycogen content and a approximately 30% decrease in intramuscular triglyceride (IMTG. CONCLUSIONS: We have identified for the first time a mutation in the skeletal muscle-specific regulatory gamma(3 subunit of AMPK in humans. The gamma(3R225W mutation has significant functional effects as demonstrated by increases in basal and AMP

  18. Balancing reversion of cytotoxic T-lymphocyte and neutralizing antibody escape mutations within human immunodeficiency virus type 1 Env upon transmission.

    Science.gov (United States)

    Peut, Viv; Campbell, Shahan; Gaeguta, Adriana; Center, Rob J; Wilson, Kim; Alcantara, Sheilajen; Fernandez, Caroline S; Purcell, Damian F J; Kent, Stephen J

    2009-09-01

    Human immunodeficiency virus type 1 (HIV-1) envelope protein (Env) is subject to both neutralizing antibody (NAb) and CD8 T-cell (cytotoxic T-lymphocyte [CTL]) immune pressure. We studied the reversion of the Env CTL escape mutant virus to the wild type and the relationship between the reversion of CTL mutations with N-linked glycosylation site (NLGS)-driven NAb escape in pigtailed macaques. Env CTL mutations either did not revert to the wild type or only transiently reverted 5 to 7 weeks after infection. The CTL escape mutant reversion was coincident, for the same viral clones, with the loss of NLGS mutations. At one site studied, both CTL and NLGS mutations were needed to confer NAb escape. We conclude that CTL and NAb escape within Env can be tightly linked, suggesting opportunities to induce effective multicomponent anti-Env immunity.

  19. Structural basis of the substrate preference towards CMP for a thymidylate synthase MilA involved in mildiomycin biosynthesis

    OpenAIRE

    Gong Zhao; Cheng Chen; Wei Xiong; Tuling Gao; Zixin Deng; Geng Wu; Xinyi He

    2016-01-01

    Modified pyrimidine monophosphates such as methyl dCMP (mdCMP), hydroxymethyl dUMP (hmdUMP) and hmdCMP in some phages are synthesized by a large group of enzymes termed as thymidylate synthases (TS). Thymidylate is a nucleotide required for DNA synthesis and thus TS is an important drug target. In the biosynthetic pathway of the nucleoside fungicide mildiomycin isolated from Streptomyces rimofaciens ZJU5119, a cytidylate (CMP) hydroxymethylase, MilA, catalyzes the conversion of CMP into 5?-hy...

  20. Genetic and epigenetic mutations affect the DNA binding capability of human ZFP57 in transient neonatal diabetes type 1.

    Science.gov (United States)

    Baglivo, Ilaria; Esposito, Sabrina; De Cesare, Lucia; Sparago, Angela; Anvar, Zahra; Riso, Vincenzo; Cammisa, Marco; Fattorusso, Roberto; Grimaldi, Giovanna; Riccio, Andrea; Pedone, Paolo V

    2013-05-21

    In the mouse, ZFP57 contains three classical Cys2His2 zinc finger domains (ZF) and recognizes the methylated TGC(met)CGC target sequence using the first and the second ZFs. In this study, we demonstrate that the human ZFP57 (hZFP57) containing six Cys2His2 ZFs, binds the same methylated sequence through the third and the fourth ZFs, and identify the aminoacids critical for DNA interaction. In addition, we present evidences indicating that hZFP57 mutations and hypomethylation of the TNDM1 ICR both associated with Transient Neonatal Diabetes Mellitus type 1 result in loss of hZFP57 binding to the TNDM1 locus, likely causing PLAGL1 activation. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Generation of an Abcc8 heterozygous mutation human embryonic stem cell line using CRISPR/Cas9.

    Science.gov (United States)

    Guo, Dongsheng; Liu, Haikun; Gao, Ge; Ruzi, Aynisahan; Wang, Kepin; Wu, Han; Lai, Keyu; Liu, Yanli; Yang, Fan; Lai, Liangxue; Li, Yin-Xiong

    2016-11-01

    The gene of ATP-binding cassette subfamily C member 8 (Abcc8) is cytogenetically located at 11p15.1 and encodes the sulfonylurea receptor (SUR1). SUR1 is a subunit of ATP-sensitive potassium channel (KAPT) in the β-cell regulating insulin secretion. Mutations of ABCC8 are responsible for congenital hyperinsulinism (CHI). Here we reported that an Abcc8 heterozygous mutant cell line was generated by CRISPR/Cas9 technique with 1bp insertion resulting in abnormal splicing on human embryonic stem cell line H1. The phenotypic characteristics of this cell line reveal defective KATP channel and diazoxide-responsive that provides ideal model for molecular pathology research and drug screening for CHI. Copyright © 2016 Michael Boutros, German Cancer Research Center, Heidelberg, Germany. Published by Elsevier B.V. All rights reserved.

  2. Generation of an Abcc8 homozygous mutation human embryonic stem cell line using CRISPR/Cas9.

    Science.gov (United States)

    Guo, Dongsheng; Liu, Haikun; Gao, Ge; Ruzi, Aynisahan; Wang, Kepin; Wu, Han; Lai, Keyu; Liu, Yanli; Yang, Fan; Lai, Liangxue; Li, Yin-Xiong

    2016-11-01

    The gene of ATP-binding cassette subfamily C member 8 (Abcc8) is cytogenetically located at 11p15.1 and encodes the sulfonylurea receptor (SUR1). SUR1 is a subunit of ATP-sensitive potassium channel (KAPT) in the β-cell regulating insulin secretion. Mutations of ABCC8 are responsible for congenital hyperinsulinism (CHI). Here we generated an Abcc8 homozygous mutant cell line by CRISPR/Cas9 technique with 22bp deletion resulting in abnormal splicing on human embryonic stem cell line H1. The phenotypic characteristics of this cell line reveal defective KATP channel and diazoxide-unresponsive that provides an ideal model for molecular pathology research and drug screening for CHI. Copyright © 2016 Michael Boutros, German Cancer Research Center, Heidelberg, Germany. Published by Elsevier B.V. All rights reserved.

  3. A Novel Domain-Specific Mutation in a Sclerosteosis Patient Suggests a Role of LRP4 as an Anchor for Sclerostin in Human Bone.

    Science.gov (United States)

    Fijalkowski, Igor; Geets, Ellen; Steenackers, Ellen; Van Hoof, Viviane; Ramos, Feliciano J; Mortier, Geert; Fortuna, Ana Maria; Van Hul, Wim; Boudin, Eveline

    2016-04-01

    Mutations in the LRP4 gene, coding for a Wnt signaling coreceptor, have been found to cause several allelic conditions. Among these, two are characterized by a strong skeletal involvement, namely sclerosteosis and Cenani-Lenz syndrome. In this work, we evaluated the role of LRP4 in the pathophysiology of these diseases. First, we report a novel LRP4 mutation, leading to the substitution of arginine at position 1170 in glutamine, identified in a patient with sclerosteosis. This mutation is located in the central cavity of the third β-propeller domain, which is in line with two other sclerosteosis mutations we previously described. Reporter assays demonstrate that this mutation leads to impaired sclerostin inhibition of Wnt signaling. Moreover, we compared the effect of this novel variant to mutations causing Cenani-Lenz syndrome and show that impaired membrane trafficking of the LRP4 protein is the likely mechanism underlying Cenani-Lenz syndrome. This is in contrast to sclerosteosis mutations, previously shown to impair the binding between LRP4 and sclerostin. In addition, to better understand the biology of LRP4, we investigated the circulating sclerostin levels in the serum of a patient suffering from sclerosteosis owing to a LRP4 mutation. We demonstrate that impaired sclerostin binding to the mutated LRP4 protein leads to dramatic increase in circulating sclerostin in this patient. With this study, we provide the first evidence suggesting that LRP4 is responsible for the retention of sclerostin in the bone environment in humans. These findings raise potential concerns about the utility of determining circulating sclerostin levels as a marker for other bone-related parameters. Although more studies are needed to fully understand the mechanism whereby LRP4 facilitates sclerostin action, it is clear that this protein represents a potent target for future osteoporosis therapies and an interesting alternative for the antisclerostin treatment currently under study

  4. Positive selection pressure introduces secondary mutations at Gag cleavage sites in human immunodeficiency virus type 1 harboring major protease resistance mutations

    DEFF Research Database (Denmark)

    Banke, S.; Lillemark, M.R.; Gerstoft, J.

    2009-01-01

    resistance. We analyzed gag and pol sequence data from the following 313 HIV-1-infected patients: 160 treatment-naive patients, 93 patients failing antiretroviral treatment that included a PI (with no major PI mutations), and 60 patients failing antiretroviral treatment that included a PI (with major PI...

  5. Structure of human POFUT1, its requirement in ligand-independent oncogenic Notch signaling, and functional effects of Dowling-Degos mutations

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, Brian J.; Zimmerman, Brandon; Egan, Emily D.; Lofgren, Michael; Xu, Xiang; Hesser, Anthony; Blacklow, Stephen C.

    2017-03-17

    Protein O-fucosyltransferase-1 (POFUT1), which transfers fucose residues to acceptor sites on serine and threonine residues of epidermal growth factor-like repeats of recipient proteins, is essential for Notch signal transduction in mammals. Here, we examine the consequences of POFUT1 loss on the oncogenic signaling associated with certain leukemia-associated mutations of human Notch1, report the structures of human POFUT1 in free and GDP-fucose bound states, and assess the effects of Dowling-Degos mutations on human POFUT1 function. CRISPR-mediated knockout of POFUT1 in U2OS cells suppresses both normal Notch1 signaling, and the ligand-independent signaling associated with leukemogenic mutations of Notch1. Normal and oncogenic signaling are rescued by wild-type POFUT1 but rescue is impaired by an active-site R240A mutation. The overall structure of the human enzyme closely resembles that of the Caenorhabditis elegans protein, with an overall backbone RMSD of 0.93 Å, despite primary sequence identity of only 39% in the mature protein. GDP-fucose binding to the human enzyme induces limited backbone conformational movement, though the side chains of R43 and D244 reorient to make direct contact with the fucose moiety in the complex. The reported Dowling-Degos mutations of POFUT1, except for M262T, fail to rescue Notch1 signaling efficiently in the CRISPR-engineered POFUT1-/- background. Together, these studies identify POFUT1 as a potential target for cancers driven by Notch1 mutations and provide a structural roadmap for its inhibition.

  6. Generation and Characterization of a Transgenic Mouse Carrying a Functional Human β-Globin Gene with the IVSI-6 Thalassemia Mutation

    Directory of Open Access Journals (Sweden)

    Giulia Breveglieri

    2015-01-01

    Full Text Available Mouse models that carry mutations causing thalassemia represent a suitable tool to test in vivo new mutation-specific therapeutic approaches. Transgenic mice carrying the β-globin IVSI-6 mutation (the most frequent in Middle-Eastern regions and recurrent in Italy and Greece are, at present, not available. We report the production and characterization of a transgenic mouse line (TG-β-IVSI-6 carrying the IVSI-6 thalassemia point mutation within the human β-globin gene. In the TG-β-IVSI-6 mouse (a the transgenic integration region is located in mouse chromosome 7; (b the expression of the transgene is tissue specific; (c as expected, normally spliced human β-globin mRNA is produced, giving rise to β-globin production and formation of a human-mouse tetrameric chimeric hemoglobin αmu-globin2/βhu-globin2 and, more importantly, (d the aberrant β-globin-IVSI-6 RNAs are present in blood cells. The TG-β-IVSI-6 mouse reproduces the molecular features of IVSI-6 β-thalassemia and might be used as an in vivo model to characterize the effects of antisense oligodeoxynucleotides targeting the cryptic sites responsible for the generation of aberrantly spliced β-globin RNA sequences, caused by the IVSI-6 mutation. These experiments are expected to be crucial for the development of a personalized therapy for β-thalassemia.

  7. MiSynPat: An integrated knowledge base linking clinical, genetic, and structural data for disease-causing mutations in human mitochondrial aminoacyl-tRNA synthetases.

    Science.gov (United States)

    Moulinier, Luc; Ripp, Raymond; Castillo, Gaston; Poch, Olivier; Sissler, Marie

    2017-10-01

    Numerous mutations in each of the mitochondrial aminoacyl-tRNA synthetases (aaRSs) have been implicated in human diseases. The mutations are autosomal and recessive and lead mainly to neurological disorders, although with pleiotropic effects. The processes and interactions that drive the etiology of the disorders associated with mitochondrial aaRSs (mt-aaRSs) are far from understood. The complexity of the clinical, genetic, and structural data requires concerted, interdisciplinary efforts to understand the molecular biology of these disorders. Toward this goal, we designed MiSynPat, a comprehensive knowledge base together with an ergonomic Web server designed to organize and access all pertinent information (sequences, multiple sequence alignments, structures, disease descriptions, mutation characteristics, original literature) on the disease-linked human mt-aaRSs. With MiSynPat, a user can also evaluate the impact of a possible mutation on sequence-conservation-structure in order to foster the links between basic and clinical researchers and to facilitate future diagnosis. The proposed integrated view, coupled with research on disease-related mt-aaRSs, will help to reveal new functions for these enzymes and to open new vistas in the molecular biology of the cell. The purpose of MiSynPat, freely available at http://misynpat.org, is to constitute a reference and a converging resource for scientists and clinicians. © 2017 The Authors. Human Mutation published by Wiley Periodicals, Inc.

  8. Machine learning classifier for identification of damaging missense mutations exclusive to human mitochondrial DNA-encoded polypeptides.

    Science.gov (United States)

    Martín-Navarro, Antonio; Gaudioso-Simón, Andrés; Álvarez-Jarreta, Jorge; Montoya, Julio; Mayordomo, Elvira; Ruiz-Pesini, Eduardo

    2017-03-07

    Several methods have been developed to predict the pathogenicity of missense mutations but none has been specifically designed for classification of variants in mtDNA-encoded polypeptides. Moreover, there is not available curated dataset of neutral and damaging mtDNA missense variants to test the accuracy of predictors. Because mtDNA sequencing of patients suffering mitochondrial diseases is revealing many missense mutations, it is needed to prioritize candidate substitutions for further confirmation. Predictors can be useful as screening tools but their performance must be improved. We have developed a SVM classifier (Mitoclass.1) specific for mtDNA missense variants. Training and validation of the model was executed with 2,835 mtDNA damaging and neutral amino acid substitutions, previously curated by a set of rigorous pathogenicity criteria with high specificity. Each instance is described by a set of three attributes based on evolutionary conservation in Eukaryota of wildtype and mutant amino acids as well as coevolution and a novel evolutionary analysis of specific substitutions belonging to the same domain of mitochondrial polypeptides. Our classifier has performed better than other web-available tested predictors. We checked performance of three broadly used predictors with the total mutations of our curated dataset. PolyPhen-2 showed the best results for a screening proposal with a good sensitivity. Nevertheless, the number of false positive predictions was too high. Our method has an improved sensitivity and better specificity in relation to PolyPhen-2. We also publish predictions for the complete set of 24,201 possible missense variants in the 13 human mtDNA-encoded polypeptides. Mitoclass.1 allows a better selection of candidate damaging missense variants from mtDNA. A careful search of discriminatory attributes and a training step based on a curated dataset of amino acid substitutions belonging exclusively to human mtDNA genes allows an improved

  9. Updates of the HbVar database of human hemoglobin variants and thalassemia mutations.

    Science.gov (United States)

    Giardine, Belinda; Borg, Joseph; Viennas, Emmanouil; Pavlidis, Cristiana; Moradkhani, Kamran; Joly, Philippe; Bartsakoulia, Marina; Riemer, Cathy; Miller, Webb; Tzimas, Giannis; Wajcman, Henri; Hardison, Ross C; Patrinos, George P

    2014-01-01

    HbVar (http://globin.bx.psu.edu/hbvar) is one of the oldest and most appreciated locus-specific databases launched in 2001 by a multi-center academic effort to provide timely information on the genomic alterations leading to hemoglobin variants and all types of thalassemia and hemoglobinopathies. Database records include extensive phenotypic descriptions, biochemical and hematological effects, associated pathology and ethnic occurrence, accompanied by mutation frequencies and references. Here, we report updates to >600 HbVar entries, inclusion of population-specific data for 28 populations and 27 ethnic groups for α-, and β-thalassemias and additional querying options in the HbVar query page. HbVar content was also inter-connected with two other established genetic databases, namely FINDbase (http://www.findbase.org) and Leiden Open-Access Variation database (http://www.lovd.nl), which allows comparative data querying and analysis. HbVar data content has contributed to the realization of two collaborative projects to identify genomic variants that lie on different globin paralogs. Most importantly, HbVar data content has contributed to demonstrate the microattribution concept in practice. These updates significantly enriched the database content and querying potential, enhanced the database profile and data quality and broadened the inter-relation of HbVar with other databases, which should increase the already high impact of this resource to the globin and genetic database community.

  10. Mutations and polymorphisms in FSH receptor: functional implications in human reproduction.

    Science.gov (United States)

    Desai, Swapna S; Roy, Binita Sur; Mahale, Smita D

    2013-12-01

    FSH brings about its physiological actions by activating a specific receptor located on target cells. Normal functioning of the FSH receptor (FSHR) is crucial for follicular development and estradiol production in females and for the regulation of Sertoli cell function and spermatogenesis in males. In the last two decades, the number of inactivating and activating mutations, single nucleotide polymorphisms, and spliced variants of FSHR gene has been identified in selected infertile cases. Information on genotype-phenotype correlation and in vitro functional characterization of the mutants has helped in understanding the possible genetic cause for female infertility in affected individuals. The information is also being used to dissect various extracellular and intracellular events involved in hormone-receptor interaction by studying the differences in the properties of the mutant receptor when compared with WT receptor. Studies on polymorphisms in the FSHR gene have shown variability in clinical outcome among women treated with FSH. These observations are being explored to develop molecular markers to predict the optimum dose of FSH required for controlled ovarian hyperstimulation. Pharmacogenetics is an emerging field in this area that aims at designing individual treatment protocols for reproductive abnormalities based on FSHR gene polymorphisms. The present review discusses the current knowledge of various genetic alterations in FSHR and their impact on receptor function in the female reproductive system.

  11. The history of mutation pattern in human: A statistical analysis of repetitive sequences

    Science.gov (United States)

    Arndt, Peter

    2003-03-01

    Different regions of the human genome show large variation in GC-content (from 30% to 60%) at scales exceeding hundreds of kilobases. The origin, timing and implications of this so called ``human isochore structure'' is still controversial, primarily due to a number of technical issues that have made it difficult to reconstruct the history of the substitutional process. To gain more insight into these questions, we utilize the vast amount of repetitive elements in the human genome to estimate substitution patterns at different evolutionary times going back approximately 250 Myr. We demonstrate that the large-scale variation in GC-content in the human genome has been generated through substitutional biases prior to the radiation of eutherian mammals. While the eutherian substitution pattern allows the formation and maintenance of isochores, the substitution patterns changed abruptly at approximately the time of the mammalian radiation. The newly evolved mammalian pattern of substitution is expected to largely homogenize GC content across the human genome over time. Eutherian mammals are also predicted to share a newly evolved high rate of methylation-induced cytosine transition in CpG pairs, with a 4- to 8-fold increase in rate compared to that of the reptilian ancestor.

  12. A new look at an old virus: patterns of mutation accumulation in the human H1N1 influenza virus since 1918

    Directory of Open Access Journals (Sweden)

    Carter Robert W

    2012-10-01

    Full Text Available Abstract Background The H1N1 influenza A virus has been circulating in the human population for over 95 years, first manifesting itself in the pandemic of 1917–1918. Initial mortality was extremely high, but dropped exponentially over time. Influenza viruses have high mutation rates, and H1N1 has undergone significant genetic changes since 1918. The exact nature of H1N1 mutation accumulation over time has not been fully explored. Methods We have made a comprehensive historical analysis of mutational changes within H1N1 by examining over 4100 fully-sequenced H1N1 genomes. This has allowed us to examine the genetic changes arising within H1N1 from 1918 to the present. Results We document multiple extinction events, including the previously known extinction of the human H1N1 lineage in the 1950s, and an apparent second extinction of the human H1N1 lineage in 2009. These extinctions appear to be due to a continuous accumulation of mutations. At the time of its disappearance in 2009, the human H1N1 lineage had accumulated over 1400 point mutations (more than 10% of the genome, including approximately 330 non-synonymous changes (7.4% of all codons. The accumulation of both point mutations and non-synonymous amino acid changes occurred at constant rates (μ = 14.4 and 2.4 new mutations/year, respectively, and mutations accumulated uniformly across the entire influenza genome. We observed a continuous erosion over time of codon-specificity in H1N1, including a shift away from host (human, swine, and bird [duck] codon preference patterns. Conclusions While there have been numerous adaptations within the H1N1 genome, most of the genetic changes we document here appear to be non-adaptive, and much of the change appears to be degenerative. We suggest H1N1 has been undergoing natural genetic attenuation, and that significant attenuation may even occur during a single pandemic. This process may play a role in natural pandemic cessation and has apparently

  13. Hypertrophic cardiomyopathy-linked mutation in troponin T causes myofibrillar disarray and pro-arrhythmic action potential changes in human iPSC cardiomyocytes.

    Science.gov (United States)

    Wang, Lili; Kim, Kyungsoo; Parikh, Shan; Cadar, Adrian Gabriel; Bersell, Kevin R; He, Huan; Pinto, Jose R; Kryshtal, Dmytro O; Knollmann, Bjorn C

    2018-01-01

    Mutations in cardiac troponin T (TnT) are linked to increased risk of ventricular arrhythmia and sudden death despite causing little to no cardiac hypertrophy. Studies in mice suggest that the hypertrophic cardiomyopathy (HCM)-associated TnT-I79N mutation increases myofilament Ca sensitivity and is arrhythmogenic, but whether findings from mice translate to human cardiomyocyte electrophysiology is not known. To study the effects of the TnT-I79N mutation in human cardiomyocytes. Using CRISPR/Cas9, the TnT-I79N mutation was introduced into human induced pluripotent stem cells (hiPSCs). We then used the matrigel mattress method to generate single rod-shaped cardiomyocytes (CMs) and studied contractility, Ca handling and electrophysiology. Compared to isogenic control hiPSC-CMs, TnT-I79N hiPSC-CMs exhibited sarcomere disorganization, increased systolic function and impaired relaxation. The Ca-dependence of contractility was leftward shifted in mutation containing cardiomyocytes, demonstrating increased myofilament Ca sensitivity. In voltage-clamped hiPSC-CMs, TnT-I79N reduced intracellular Ca transients by enhancing cytosolic Ca buffering. These changes in Ca handling resulted in beat-to-beat instability and triangulation of the cardiac action potential, which are predictors of arrhythmia risk. The myofilament Ca sensitizer EMD57033 produced similar action potential triangulation in control hiPSC-CMs. The TnT-I79N hiPSC-CM model not only reproduces key cellular features of TnT-linked HCM such as myofilament disarray, hypercontractility and diastolic dysfunction, but also suggests that this TnT mutation causes pro-arrhythmic changes of the human ventricular action potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Virtual screening reveals allosteric inhibitors of the Toxoplasma gondii thymidylate synthase-dihydrofolate reductase.

    Science.gov (United States)

    Sharma, Hitesh; Landau, Mark J; Sullivan, Todd J; Kumar, Vidya P; Dahlgren, Markus K; Jorgensen, William L; Anderson, Karen S

    2014-02-15

    The parasite Toxoplasma gondii can lead to toxoplasmosis in those who are immunocompromised. To combat the infection, the enzyme responsible for nucleotide synthesis thymidylate synthase-dihydrofolate reductase (TS-DHFR) is a suitable drug target. We have used virtual screening to determine novel allosteric inhibitors at the interface between the two TS domains. Selected compounds from virtual screening inhibited TS activity. Thus, these results show that allosteric inhibition by small drug-like molecules can occur in T. gondii TS-DHFR and pave the way for new and potent species-specific inhibitors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Development of a human live attenuated West Nile infectious DNA vaccine: Suitability of attenuating mutations found in SA14-14-2 for WN vaccine design

    Energy Technology Data Exchange (ETDEWEB)

    Yamshchikov, Vladimir, E-mail: yaximik@gmail.com; Manuvakhova, Marina; Rodriguez, Efrain

    2016-01-15

    Direct attenuation of West Nile (WN) virus strain NY99 for the purpose of vaccine development is not feasible due to its high virulence and pathogenicity. Instead, we created highly attenuated chimeric virus W1806 with the serological identity of NY99. To further attenuate W1806, we investigated effects of mutations found in Japanese encephalitis virus vaccine SA14-14-2. WN viruses carrying all attenuating mutations lost infectivity in mammalian, but not in mosquito cells. No single reversion restored infectivity in mammalian cells, although increased infectivity in mosquito cells was observed. To identify a subset of mutations suitable for further attenuation of W1806, we analyzed effects of E{sub 138}K and K{sub 279}M changes on virulence, growth properties, and immunogenicity of derivatized W956, from which chimeric W1806 inherited its biological properties and attenuation profile. Despite strong dominant attenuating effect, introduction of only two mutations was not sufficient for attenuating W1806 to the safety level acceptable for human use. - Highlights: • Further attenuation of a WN vaccine precursor is outlined. • Effect of SA14-14-2 attenuating mutations is tested. • Mechanism of attenuation is proposed and illustrated. • The need for additional attenuating mutations is justified.

  16. Activation of mutated TRPA1 ion channel by resveratrol in human prostate cancer associated fibroblasts (CAF).

    Science.gov (United States)

    Vancauwenberghe, Eric; Noyer, Lucile; Derouiche, Sandra; Lemonnier, Loïc; Gosset, Pierre; Sadofsky, Laura R; Mariot, Pascal; Warnier, Marine; Bokhobza, Alexandre; Slomianny, Christian; Mauroy, Brigitte; Bonnal, Jean-Louis; Dewailly, Etienne; Delcourt, Philippe; Allart, Laurent; Desruelles, Emilie; Prevarskaya, Natalia; Roudbaraki, Morad

    2017-08-01

    Previous studies showed the effects of resveratrol (RES) on several cancer cells, including prostate cancer (PCa) cell apoptosis without taking into consideration the impact of the tumor microenvironment (TME). The TME is composed of cancer cells, endothelial cells, blood cells, and cancer-associated fibroblasts (CAF), the main source of growth factors. The latter cells might modify in the TME the impact of RES on tumor cells via secreted factors. Recent data clearly show the impact of CAF on cancer cells apoptosis resistance via secreted factors. However, the effects of RES on PCa CAF have not been studied so far. We have investigated here for the first time the effects of RES on the physiology of PCa CAF in the context of TME. Using a prostate cancer CAF cell line and primary cultures of CAF from prostate cancers, we show that RES activates the N-terminal mutated Transient Receptor Potential Ankyrin 1 (TRPA1) channel leading to an increase in intracellular calcium concentration and the expression and secretion of growth factors (HGF and VEGF) without inducing apoptosis in these cells. Interestingly, in the present work, we also show that when the prostate cancer cells were co-cultured with CAF, the RES-induced cancer cell apoptosis was reduced by 40%, an apoptosis reduction canceled in the presence of the TRPA1 channel inhibitors. The present work highlights CAF TRPA1 ion channels as a target for RES and the importance of the channel in the epithelial-stromal crosstalk in the TME leading to resistance to the RES-induced apoptosis. © 2017 Wiley Periodicals, Inc.

  17. A second-site mutation that restores replication of a Tat-defective human immunodeficiency virus

    NARCIS (Netherlands)

    Verhoef, K.; Berkhout, B.

    1999-01-01

    We previously constructed a large set of mutants of the human immunodeficiency virus type 1 (HIV-1) regulatory protein Tat with conservative amino acid substitutions in the activation domain. These Tat variants were analyzed in the context of the infectious virus, and several mutants were found to

  18. Aging Effects of Caenorhabditis elegans Ryanodine Receptor Variants Corresponding to Human Myopathic Mutations

    Directory of Open Access Journals (Sweden)

    Katie Nicoll Baines

    2017-05-01

    Full Text Available Delaying the decline in skeletal muscle function will be critical to better maintenance of an active lifestyle in old age. The skeletal muscle ryanodine receptor, the major intracellular membrane channel through which calcium ions pass to elicit muscle contraction, is central to calcium ion balance and is hypothesized to be a significant factor for age-related decline in muscle function. The nematode Caenorhabditis elegans is a key model system for the study of human aging, and strains were generated with modified C. elegans ryanodine receptors corresponding to human myopathic variants linked with malignant hyperthermia and related conditions. The altered response of these strains to pharmacological agents reflected results of human diagnostic tests for individuals with these pathogenic variants. Involvement of nerve cells in the C. elegans responses may relate to rare medical symptoms concerning the central nervous system that have been associated with ryanodine receptor variants. These single amino acid modifications in C. elegans also conferred a reduction in lifespan and an accelerated decline in muscle integrity with age, supporting the significance of ryanodine receptor function for human aging.

  19. Mutations in the paralogous human α-globin genes yielding identical hemoglobin variants

    NARCIS (Netherlands)

    K. Moradkhani (Kamran); C. Prehu (Claude); J. Old (John); S. Henderson (Shirley); V. Balamitsa (Vera); H-Y. Luo; M-C. Poon (Man-Chiu); D.H. Chui (David); H. Wajcman (Henri); G.P. Patrinos (George)

    2009-01-01

    textabstractThe human α-globin genes are paralogues, sharing a high degree of DNA sequence similarity and producing an identical α-globin chain. Over half of the α-globin structural variants reported to date are only characterized at the amino acid level. It is likely that a fraction of these

  20. Restricted 12p amplification and RAS mutation in human germ cell tumors of the adult testis

    NARCIS (Netherlands)

    H. Roelofs; J.W. Oosterhuis (Wolter); L.H.J. Looijenga (Leendert); C. Bokemeyer; M.C. Mostert (Marijke); K. Pompe; G. Zafarana (Gaetano); M. van Oorschot; R.J.H.L.M. van Gurp (Ruud); A.J.M. Gillis (Ad); J.A. Stoop (Hans); H.B. Beverloo (Berna)

    2000-01-01

    textabstractHuman testicular germ-cell tumors of young adults (TGCTs), both seminomas and nonseminomas, are characterized by 12p overrepresentation, mostly as isochromosomes, of which the biological and clinical significance is still unclear. A limited number of TGCTs has been

  1. Environmentally sensitive molecular probes reveal mutations and epigenetic 5-methyl cytosine in human oncogenes

    DEFF Research Database (Denmark)

    Taskova, M.; Barducci, M. C.; Astakhova, K.

    2017-01-01

    , bisulfite treatment of DNA is applied for the analysis, which often leads to poor specificity and reproducibility of the results. Herein we describe a simple approach that specifically detects clinically significant modifications in the human oncogenes BRAF and KRAS. We prove that this can be done using...

  2. Mutational analysis of the integrase protein of human immunodeficiency virus type 2

    NARCIS (Netherlands)

    D.C. van Gent (Dik); A.A. Groeneger; A.A. Plassterk

    1992-01-01

    textabstractPurified integrase protein (IN) can nick linear viral DNA at a specific site near the ends and integrate nicked viral DNA into target DNA. We have made a series of 43 site-directed point mutants of human immunodeficiency virus type 2 IN and assayed purified mutant

  3. Mutational analysis of the human nucleotide excision repair gene ERCC1.

    NARCIS (Netherlands)

    A.M. Sijbers (Anneke); P.J. van der Spek (Peter); H. Odijk (Hanny); J.H. van den Berg (Jan); M. van Duin (Mark); A. Westerveld (Andries); N.G.J. Jaspers (Nicolaas); D. Bootsma (Dirk); J.H.J. Hoeijmakers (Jan)

    1996-01-01

    textabstractThe human DNA repair protein ERCC1 resides in a complex together with the ERCC4, ERCC11 and XP-F correcting activities, thought to perform the 5' strand incision during nucleotide excision repair (NER). Its yeast counterpart, RAD1-RAD10, has an additional engagement in a mitotic

  4. Isolation of a human lymphoblastoid line heterozygous at the thymidine kinase locus: possibility for a rapid human cell mutation assay

    Energy Technology Data Exchange (ETDEWEB)

    Skopek, T.R.; Liber, H.L.; Penman, B.W.; Thilly, W.G.

    1978-09-29

    A thymidine kinase heterozygote designated H2BT has been isolated from the human lymphoblast line HH4. Significant increase in the trifluorothymidine-resistant fraction was observed in the new cell line following treatment with the mutagens ICR-191 and butylmethansulfonate. Phenotypic expression was complete forty-eight hours after treatment.

  5. PIK3CA mutations are associated with decreased benefit to neoadjuvant human epidermal growth factor receptor 2-targeted therapies in breast cancer

    NARCIS (Netherlands)

    Majewski, Ian J; Nuciforo, Paolo; Mittempergher, Lorenza; Bosma, Astrid J; Eidtmann, Holger; Holmes, Eileen; Sotiriou, Christos; Fumagalli, Debora; Jimenez, Jose; Aura, Claudia; Prudkin, Ludmila; Díaz-Delgado, Maria Carmen; de la Peña, Lorena; Loi, Sherene; Ellis, Catherine; Schultz, Nikolaus; de Azambuja, Evandro; Harbeck, Nadia; Piccart-Gebhart, Martine; Bernards, René|info:eu-repo/dai/nl/070416990; Baselga, José

    2015-01-01

    PURPOSE: We investigated whether mutations in the gene encoding the phosphatidylinositol 3-kinase (PI3K) catalytic subunit (PIK3CA) correlates with response to neoadjuvant human epidermal growth factor receptor 2 (HER2) -targeted therapies in patients with breast cancer. PATIENTS AND METHODS:

  6. Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease

    NARCIS (Netherlands)

    Rees, Mark I.; Harvey, Kirsten; Pearce, Brian R.; Chung, Seo-Kyung; Duguid, Ian C.; Thomas, Philip; Beatty, Sarah; Graham, Gail E.; Armstrong, Linlea; Shiang, Rita; Abbott, Kim J.; Zuberi, Sameer M.; Stephenson, John B. P.; Owen, Michael J.; Tijssen, Marina A. J.; van den Maagdenberg, Arn M. J. M.; Smart, Trevor G.; Supplisson, Stephane; Harvey, Robert J.

    Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) alpha 1 subunit (GLRA1)(1-3). Genetic heterogeneity has been confirmed in rare sporadic

  7. A novel, diffusely infiltrative xenograft model of human anaplastic oligodendroglioma with mutations in FUBP1, CIC, and IDH1.

    Directory of Open Access Journals (Sweden)

    Barbara Klink

    Full Text Available Oligodendroglioma poses a biological conundrum for malignant adult human gliomas: it is a tumor type that is universally incurable for patients, and yet, only a few of the human tumors have been established as cell populations in vitro or as intracranial xenografts in vivo. Their survival, thus, may emerge only within a specific environmental context. To determine the fate of human oligodendroglioma in an experimental model, we studied the development of an anaplastic tumor after intracranial implantation into enhanced green fluorescent protein (eGFP positive NOD/SCID mice. Remarkably after nearly nine months, the tumor not only engrafted, but it also retained classic histological and genetic features of human oligodendroglioma, in particular cells with a clear cytoplasm, showing an infiltrative growth pattern, and harboring mutations of IDH1 (R132H and of the tumor suppressor genes, FUBP1 and CIC. The xenografts were highly invasive, exhibiting a distinct migration and growth pattern around neurons, especially in the hippocampus, and following white matter tracts of the corpus callosum with tumor cells accumulating around established vasculature. Although tumors exhibited a high growth fraction in vivo, neither cells from the original patient tumor nor the xenograft exhibited significant growth in vitro over a six-month period. This glioma xenograft is the first to display a pure oligodendroglioma histology and expression of R132H. The unexpected property, that the cells fail to grow in vitro even after passage through the mouse, allows us to uniquely investigate the relationship of this oligodendroglioma with the in vivo microenvironment.

  8. Identification and functional analysis of three distinct mutations in the human galactose-1-phosphate uridyltransferase gene associated with galactosemia in a single family

    Energy Technology Data Exchange (ETDEWEB)

    Fridovich-Keil, J.L.; Langley, S.D.; Mazur, L.A.; Lennon, J.C.; Dembure, P.O.; Elsas, L.J. II [Emory Univ. School of Medicine, Atlanta, GA (United States)

    1995-03-01

    We have identified three mutations associated with transferase-deficiency galactosemia in a three-generation family including affected members in two generations and have modeled all three mutations in a yeast-expression system. A sequence of pedigree, biochemical, and molecular analyses of the galactose-1-phosphate uridyltransferase (GALT) enzyme and genetic locus in both affected and carrier individuals revealed three distinct base substitutions in this family, two (Q188R and S135L) that had been reported previously and one (V151A) that was novel. Biochemical analyses of red-blood-cell lysates from the relevant family members suggested that each of these mutations was associated with dramatic impairment of GALT activity in these cells. While this observation was consistent with our previous findings concerning the Q188R mutation expressed both in humans and in a yeast-model system, it was at odds with a report by Reichardt and colleagues, indicating that in their COS cell-expression system the S135L substitution behaved as a neutral polymorphism. To address this apparent paradox, as well as to investigate the functional significance of the newly identified V151A substitution, all three mutations were recreated by site-directed mutagenesis of the otherwise wild-type human GALT sequence and were expressed both individually and in the appropriate allelic combinations in a GALT-deficient strain of the yeast Saccharomyces cerevisiae. The results of these yeast-modeling studies were fully consistent with the patient data, leading us to conclude that, at least within the context of the cell types studied, in the homozygous state Q188R is a mutation that eliminates GALT activity, and S135L and V151A are both mutations that impair GALT activity to <6% of wild-type values. 22 refs., 5 figs.

  9. Mutations in Human Tubulin Proximal to the Kinesin-Binding Site Alter Dynamic Instability at Microtubule Plus- and Minus-Ends

    Energy Technology Data Exchange (ETDEWEB)

    Ti, Shih-Chieh; Pamula, Melissa C.; Howes, Stuart C.; Duellberg, Christian; Cade, Nicholas I.; Kleiner, Ralph E.; Forth, Scott; Surrey, Thomas; Nogales, Eva; Kapoor, Tarun M.

    2016-04-01

    The assembly of microtubule-based cellular structures depends on regulated tubulin polymerization and directional transport. In this research, we have purified and characterized tubulin heterodimers that have human β-tubulin isotype III (TUBB3), as well as heterodimers with one of two β-tubulin mutations (D417H or R262H). Both point mutations are proximal to the kinesin-binding site and have been linked to an ocular motility disorder in humans. Compared to wild-type, microtubules with these mutations have decreased catastrophe frequencies and increased average lifetimes of plus- and minus-end-stabilizing caps. Importantly, the D417H mutation does not alter microtubule lattice structure or Mal3 binding to growing filaments. Instead, this mutation reduces the affinity of tubulin for TOG domains and colchicine, suggesting that the distribution of tubulin heterodimer conformations is changed. Together, our findings reveal how residues on the surface of microtubules, distal from the GTP-hydrolysis site and inter-subunit contacts, can alter polymerization dynamics at the plus- and minus-ends of microtubules.

  10. [Antimicrobial Susceptibility and Resistance Mutations in Campylobacter jejuni and C. coli Isolates from Human and Meat Sources].

    Science.gov (United States)

    Oishi, Akira; Murakami, Koichi; Etoh, Yoshiki; Sera, Nobuyuki; Horikawa, Kazumi

    2015-03-01

    Recently, there has been a marked increase in the number of reports of fluoroquinolone-resistant Campylobacter jejuni and Campylobacter coli. The aim of this study was to evaluate the prevalence of antimicrobial resistance and its genetic determinants in Campylobacter species isolated from meat and human subjects in Fukuoka Prefecture, Japan. Between 2011 and 2013, 55 and 64 isolates were collected from meat (chicken meat and beef liver) and humans, respectively, in this prefecture. Antimicrobial susceptibility tests were conducted using the agar dilution method in accordance with the Clinical and Laboratory Standards Institute guidelines, using the following 11 antimicrobial agents : cephalexin, cefoxitin, nalidixic acid, ciprofloxacin, levofloxacin, tetracycline, minocycline, ampicillin, streptomycin, kanamycin and erythromycin. The susceptibility rates of the isolates to three quinolones (nalidixic acid, ciprofloxacin, levofloxacin) were 43.7%, 41.2%, 40.3%, respectively. All the isolates were multidrug resistant. Whereas 46.9%-51.6% of the human isolates were resistant to one or more of the quinolones, only 32.7%-34.5% of the meat isolates were resistant to one or more of the drugs. DNA sequencing showed that of the 50 quinolone resistant isolates 44 had position 86 isoleucine (Ile) substituted for threonine (Thr) in the GyrA protein (Thr86Ile). This amino acid substitution resulted from ACA to ATA and ACT to ATT mutations of codon 86 in C. jejuni and C. coli, respectively. Furthermore, two of the four C. jejuni isolates lacking the Thr86Ile mutation had combined Ser22Gly-Asn203Ser substitutions, while the remaining two isolates had combined Ser22Gly-Asn203Ser-Ala 206Val substitutions. These four isolates also had cmeABC sequences that differed from the quinolone sensitive C. jejuni ATCC33560(T) strain. In conclusion, C. jejuni and C. coli have relatively high quinolone resistance, and are resistant to other antibiotics. The new combination of amino acid

  11. A silent mutation in human alpha-A crystallin gene in patients with age-related nuclear or cortical cataract

    Directory of Open Access Journals (Sweden)

    Bharani K Mynampati

    2017-05-01

    Full Text Available A cataract is a complex multifactorial disease that results from alterations in the cellular architecture, i.e. lens proteins. Genes associated with the development of lens include crystallin genes. Although crystallins are highly conserved proteins among vertebrates, a significant number of polymorphisms exist in human population. In this study, we screened for polymorphisms in crystallin alpha A (CRYAA and alpha B (CRYAB genes in 200 patients over 40 years of age, diagnosed with age-related cataract (ARC; nuclear and cortical cataracts. Genomic DNA was extracted from the peripheral blood. The coding regions of the CRYAA and CRYAB gene were amplified using polymerase chain reaction and subjected to restriction digestion. Restriction fragment length polymorphism (RFLP was performed using known restriction enzymes for CRYAA and CRYAB genes. Denaturing high performance liquid chromatography and direct sequencing were performed to detect sequence variation in CRYAA gene. In silico analysis of secondary CRYAA mRNA structure was performed using CLC RNA Workbench. RFLP analysis did not show any changes in the restriction sites of CRYAA and CRYAB genes. In 6 patients (4 patients with nuclear cataract and 2 with cortical cataract, sequence analysis of the exon 1 in the CRYAA gene showed a silent single nucleotide polymorphism [D2D] (CRYAA: C to T transition. One of the patients with nuclear cataract was homozygous for this allele. The in silico analysis revealed that D2D mutation results in a compact CRYAA mRNA secondary structure, while the wild type CRYAA mRNA has a weak or loose secondary structure. D2D mutation in the CRYAA gene may be an additional risk factor for progression of ARC.

  12. Effect of oncogene activating mutations and kinase inhibitors on amino acid metabolism of human isogenic breast cancer cells.

    Science.gov (United States)

    Kim, Eung-Sam; Samanta, Animesh; Cheng, Hui Shan; Ding, Zhaobing; Han, Weiping; Toschi, Luisella; Chang, Young Tae

    2015-12-01

    We investigated the changes in amino acid (AA) metabolism induced in MCF10A, a human mammary epithelial cell line, by the sequential knock-in of K-Ras and PI3K mutant oncogenes. Differentially regulated genes associated to AA pathways were identified on comparing gene expression patterns in the isogenic cell lines. Additionally, we monitored the changes in the levels of AAs and transcripts in the cell lines treated with kinase inhibitors (REGO: a multi-kinase inhibitor, PI3K-i: a PI3K inhibitor, and MEK-i: a MEK inhibitor). In total, 19 AAs and 58 AA-associated transcripts were found to be differentially regulated by oncogene knock-in and by drug treatment. In particular, the multi-kinase and MEK inhibitor affected pathways in K-Ras mutant cells, whereas the PI3K inhibitor showed a major impact in the K-Ras/PI3K double mutant cells. These findings may indicate the dependency of AA metabolism on the oncogene mutation pattern in human cancer. Thus, future therapy might include combinations of kinase inhibitors and drug targeting enzymes of AA pathways.

  13. Mutations Associated with Functional Disorder of Xanthine Oxidoreductase and Hereditary Xanthinuria in Humans

    OpenAIRE

    Ichida, Kimiyoshi; Amaya, Yoshihiro; Okamoto, Ken; Nishino, Takeshi

    2012-01-01

    Xanthine oxidoreductase (XOR) catalyzes the conversion of hypoxanthine to xanthine and xanthine to uric acid with concomitant reduction of either NAD+ or O2. The enzyme is a target of drugs to treat hyperuricemia, gout and reactive oxygen-related diseases. Human diseases associated with genetically determined dysfunction of XOR are termed xanthinuria, because of the excretion of xanthine in urine. Xanthinuria is classified into two subtypes, type I and type II. Type I xanthinuria involves XOR...

  14. Thymidylate synthase protein expression levels remain stable during paclitaxel and carboplatin treatment in non-small cell lung cancer

    DEFF Research Database (Denmark)

    Jakobsen, Jan Nyrop; Santoni-Rugiu, Eric; Sørensen, Jens Benn

    2014-01-01

    BACKGROUND: Thymidylate synthase (TS) is a potential predictive marker for efficacy of treatment with pemetrexed. The current study aimed at investigating whether TS expression changes during non-pemetrexed chemotherapy of non-small cell lung cancer (NSCLC), thus making rebiopsy necessary...

  15. Generation of a human induced pluripotent stem cell line via CRISPR-Cas9 mediated integration of a site-specific homozygous mutation in CHMP2B

    DEFF Research Database (Denmark)

    Zhang, Yu; Schmid, Benjamin; Nielsen, Troels T

    2016-01-01

    Frontotemporal dementia (FTD) is an early onset neurodegenerative disease. Mutations in several genes cause familial FTD and one of them is charged multivesicular body protein 2B (CHMP2B) on chromosome 3 (FTD3), a component of the endosomal sorting complex required for transport III (ESCRT-III). We...... have generated an induced pluripotent stem cell (iPSC) line of a healthy individual and inserted the CHMP2B IVS5AS G-C gene mutation into both alleles, resulting in aberrant splicing. This human iPSC line provides an ideal model to study CHMP2B-dependent phenotypes of FTD3....

  16. Generation of a human induced pluripotent stem cell line via CRISPR-Cas9 mediated integration of a site-specific homozygous mutation in CHMP2B

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2016-07-01

    Full Text Available Frontotemporal dementia (FTD is an early onset neurodegenerative disease. Mutations in several genes cause familial FTD and one of them is charged multivesicular body protein 2B (CHMP2B on chromosome 3 (FTD3, a component of the endosomal sorting complex required for transport III (ESCRT-III. We have generated an induced pluripotent stem cell (iPSC line of a healthy individual and inserted the CHMP2B IVS5AS G-C gene mutation into both alleles, resulting in aberrant splicing. This human iPSC line provides an ideal model to study CHMP2B-dependent phenotypes of FTD3.

  17. Drug Susceptibility and Replicative Capacity of Multi-Drug Resistant Recombinant Human Cytomegalovirus Harboring Mutations in UL56 and UL54 Genes.

    Science.gov (United States)

    Piret, Jocelyne; Goyette, Nathalie; Boivin, Guy

    2017-08-14

    Letermovir is an investigational antiviral agent with a novel mechanism of action involving the viral terminase (pUL56). We evaluated the impact of V236M mutation in UL56 gene alone and combined with E756K mutation in UL54 gene on drug susceptibility and viral replicative capacity of recombinant human cytomegalovirus. The double mutant exhibited at least borderline resistance to all antivirals tested (ganciclovir, foscarnet, cidofovir, brincidofovir and letermovir) and replicated less efficiently than the wild-type virus in vitro. Copyright © 2017 American Society for Microbiology.

  18. Trypanosoma brucei DHFR-TS Revisited: Characterisation of a Bifunctional and Highly Unstable Recombinant Dihydrofolate Reductase-Thymidylate Synthase.

    Directory of Open Access Journals (Sweden)

    Marc W Gibson

    2016-05-01

    Full Text Available Bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS is a chemically and genetically validated target in African trypanosomes, causative agents of sleeping sickness in humans and nagana in cattle. Here we report the kinetic properties and sensitivity of recombinant enzyme to a range of lipophilic and classical antifolate drugs. The purified recombinant enzyme, expressed as a fusion protein with elongation factor Ts (Tsf in ThyA- Escherichia coli, retains DHFR activity, but lacks any TS activity. TS activity was found to be extremely unstable (half-life of 28 s following desalting of clarified bacterial lysates to remove small molecules. Stability could be improved 700-fold by inclusion of dUMP, but not by other pyrimidine or purine (deoxy-nucleosides or nucleotides. Inclusion of dUMP during purification proved insufficient to prevent inactivation during the purification procedure. Methotrexate and trimetrexate were the most potent inhibitors of DHFR (Ki 0.1 and 0.6 nM, respectively and FdUMP and nolatrexed of TS (Ki 14 and 39 nM, respectively. All inhibitors showed a marked drop-off in potency of 100- to 1,000-fold against trypanosomes grown in low folate medium lacking thymidine. The most potent inhibitors possessed a terminal glutamate moiety suggesting that transport or subsequent retention by polyglutamylation was important for biological activity. Supplementation of culture medium with folate markedly antagonised the potency of these folate-like inhibitors, as did thymidine in the case of the TS inhibitors raltitrexed and pemetrexed.

  19. Metronomic S-1 dosing and thymidylate synthase silencing have synergistic antitumor efficacy in a colorectal cancer xenograft model.

    Science.gov (United States)

    Abu Lila, Amr S; Moriyoshi, Naoto; Fukushima, Masakazu; Huang, Cheng-Long; Wada, Hiromi; Ishida, Tatsuhiro

    2017-08-01

    Metronomic chemotherapy is currently considered an emerging therapeutic option in clinical oncology. S-1, an oral formulation of Tegafur (TF), a prodrug of 5-fluorouracil (5-FU), is designed to improve the antitumor activity of 5-FU in tandem with reducing its toxicity. Clinically, metronomic S-1 dosing has been approved for the standard first- and second-line treatment of metastatic or advanced stage of colorectal (CRC). However, expression of intratumor thymidylate synthase (TS), a significant gene in cellular proliferation, is associated with poor outcome to 5-FU-based chemotherapeutic regimens. In this study, therefore, we examined the effect of a combination of TS silencing by an RNA interfering molecule, chemically synthesized short hairpin RNA against TS (shTS), and 5-FU on the growth of human colorectal cancer cell (DLD-1) both in vitro and in vivo. The combined treatment of both shTS with 5-FU substantially inhibited cell proliferation in vitro. For in vivo treatments, the combined treatment of metronomic S-1 dosing with intravenously injected polyethylene glycol (PEG)-coated shTS-lipoplex significantly suppressed tumor growth, compared to a single treatment of either S-1 or PEG-coated shTS-lipoplex. In addition, the combined treatment increased the proportion of apoptotic cells in the DLD-1 tumor tissue. Our results suggest that metronomic S-1 dosing combined with TS silencing might represent an emerging therapeutic strategy for the treatment of patients with advanced CRC. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  20. The Impact of Thymidylate Synthase and Methylenetetrahydrofolate Reductase Genotypes on Sensitivity to 5-Fluorouracil Treatment in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Fakhraddin Naghibalhossaini

    2018-01-01

    Full Text Available 5-fluorouracil (5-FU is one of the major components of many standard regimens for chemotherapy of colorectal cancer (CRC and some other malignancies. Given the known relationship between thymidylate synthase (TS and methylenetetrahydrofolate reductase (MTHFR activity and 5-FU metabolism, this study investigated the impact of selected functional polymorphisms of the TS and MTHFR genes on chemotherapy resistance in 5 human CRC cell lines. HCT116, SW1116, HT29/219, LS180, and Caco-2 CRC cells were cultured as monolayer and their chemosensitivity to 5-FU, oxaliplatin, and irinotecan was determined by MTT assay. Genomic DNA was extracted from the cultured cells, and a 6-bp insertion or deletion (6-bp ins/del polymorphism in 3´-UTR of the TS gene was determined by the PCR-RFLP method. Genotyping of MTHFR 677 C/T and 1298A/C single nucleotide polymorphism (SNP was also performed by MS-PCR and PCR-RFLP, respectively. Caco-2 with the homozygous TS 6-bp ins/ins and MTHFR 677 T/T and 1298 C/C genotype, was the most 5-FU resistant cell line. HCT116 with the homozygous TS 6-bp del/del and MTHFR 1298 A/A and heterozygous MTHFR 677 C/T genotype was the least 5-FU resistant cell. LS180, the second most 5-FU resistant cell line, was heterozygous for all three polymorphic sits. HT29/219 and SW1116 cells with homozygous TS 6-bp ins/ins and heterozygous MTHFR 677 C/T and 1298 A/C genotypes had intermediate 5-FU sensitivity. The results indicate that TS 3´-UTR 6-bp insertion and MTHFR 677T and 1298C alleles increase 5-FU resistance in CRC cells. No relationship was observed between TS and MTHFR genotypes and oxaliplatin or irinotecan sensitivity in these cells.

  1. Trypanosoma brucei DHFR-TS Revisited: Characterisation of a Bifunctional and Highly Unstable Recombinant Dihydrofolate Reductase-Thymidylate Synthase.

    Science.gov (United States)

    Gibson, Marc W; Dewar, Simon; Ong, Han B; Sienkiewicz, Natasha; Fairlamb, Alan H

    2016-05-01

    Bifunctional dihydrofolate reductase-thymidylate synthase (DHFR-TS) is a chemically and genetically validated target in African trypanosomes, causative agents of sleeping sickness in humans and nagana in cattle. Here we report the kinetic properties and sensitivity of recombinant enzyme to a range of lipophilic and classical antifolate drugs. The purified recombinant enzyme, expressed as a fusion protein with elongation factor Ts (Tsf) in ThyA- Escherichia coli, retains DHFR activity, but lacks any TS activity. TS activity was found to be extremely unstable (half-life of 28 s) following desalting of clarified bacterial lysates to remove small molecules. Stability could be improved 700-fold by inclusion of dUMP, but not by other pyrimidine or purine (deoxy)-nucleosides or nucleotides. Inclusion of dUMP during purification proved insufficient to prevent inactivation during the purification procedure. Methotrexate and trimetrexate were the most potent inhibitors of DHFR (Ki 0.1 and 0.6 nM, respectively) and FdUMP and nolatrexed of TS (Ki 14 and 39 nM, respectively). All inhibitors showed a marked drop-off in potency of 100- to 1,000-fold against trypanosomes grown in low folate medium lacking thymidine. The most potent inhibitors possessed a terminal glutamate moiety suggesting that transport or subsequent retention by polyglutamylation was important for biological activity. Supplementation of culture medium with folate markedly antagonised the potency of these folate-like inhibitors, as did thymidine in the case of the TS inhibitors raltitrexed and pemetrexed.

  2. Suberoylanilide hydroxamic acid enhances chemosensitivity to 5-fluorouracil in hepatocellular carcinoma via inhibition of thymidylate synthase.

    Science.gov (United States)

    Liao, Bo; Liang, Huifang; Chen, Jin; Liu, Qiumeng; Zhang, Bixiang; Chen, Xiaoping

    2015-12-01

    Hepatocellular carcinoma (HCC) is associated with a high rate of mortality worldwide. Here, we investigated the effect of combination treatment with suberoylanilide hydroxamic acid (SAHA) and 5-fluorouracil (5-FU) on HCC cells. HepG2, SMMC7721, and BEL7402 cells were treated with SAHA and/or 5-FU and subjected to cell viability, colony formation, and soft agarose assays; cell cycle, apoptosis, and reverse transcription-PCR analyses; western blotting; immunohistochemistry; and xenograft tumorigenicity assay. SAHA and 5-FU inhibited the proliferation of the three cell lines, and combination treatment with SAHA and 5-FU resulted in a combination index 1, indicating a synergistic effect. Co-treatment with SAHA and 5-FU caused G0/G1 phase arrest and induced caspase-dependent apoptosis, inhibiting tumorigenicity in vitro and in vivo. 5-FU upregulated thymidylate synthase, whereas SAHA downregulated its expression. Our results indicate that SAHA and 5-FU act synergistically to inhibit cell growth and tumorigenicity in HCC via the induction of cell-cycle arrest and apoptosis through a mechanism involving the inhibition of thymidylate synthase, suggesting that combination treatment with 5-FU and SAHA may be beneficial for the treatment of inoperable HCC.

  3. Substituted pyrrolo[2,3-d]pyrimidines as Cryptosporidium hominis thymidylate synthase inhibitors.

    Science.gov (United States)

    Kumar, Vidya P; Frey, Kathleen M; Wang, Yiqiang; Jain, Hitesh K; Gangjee, Aleem; Anderson, Karen S

    2013-10-01

    Cryptosporidiosis, a gastrointestinal disease caused by a protozoan Cryptosporidium hominis is often fatal in immunocompromised individuals. There is little clinical data to show that the existing treatment by nitazoxanide and paromomycin is effective in immunocompromised individuals. Thymidylate synthase (TS) and dihydrofolate reductase (DHFR) are essential enzymes in the folate biosynthesis pathway and are well established as drug targets in cancer and malaria. A novel series of classical antifolates, 2-amino-4-oxo-5-substituted pyrrolo[2,3-d]pyrimidines have been evaluated as Cryptosporidium hominis thymidylate synthase (ChTS) inhibitors. Crystal structure in complex with the most potent compound, a 2'-chlorophenyl with a sulfur bridge with a Ki of 8.83±0.67 nM is discussed in terms of several Van der Waals, hydrophobic and hydrogen bond interactions with the protein residues and the substrate analog 5-fluorodeoxyuridine monophosphate. Of these interactions, two interactions with the non-conserved residues (A287 and S290) offer an opportunity to develop ChTS specific inhibitors. Compound 6 serves as a lead compound for analog design and its crystal structure provides clues for the design of ChTS specific inhibitors. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Mutation of Gly717Phe in human topoisomerase 1B has an effect on enzymatic function, reactivity to the camptothecin anticancer drug and on the linker domain orientation

    DEFF Research Database (Denmark)

    Wang, Zhenxing; D'Annessa, Ilda; Tesauro, Cinzia

    2015-01-01

    Human topoisomerase 1B controls the topological state of supercoiled DNA allowing the progression of fundamental cellular processes. The enzyme, which is the unique molecular target of the natural anticancer compound camptothecin, acts by cleaving one DNA strand and forming a transient protein......–DNA covalent adduct. In this work the role of the Gly717 residue, located in a α-helix structure bridging the active site and the linker domain, has been investigated mutating it in Phe. The mutation gives rise to drug resistance in vivo as observed through a viability assay of yeast cells. In vitro activity...... interaction with the DNA substrate, likely affecting the strand rotation and religation rate. The mutation also causes a slight rearrangement of the active site and of the drug binding site, providing an additional explanation for the lowered effect of camptothecin toward the mutant....

  5. Detection of up to 65% of Precancerous Lesions of the Human Colon and Rectum by Mutation Analysis of APC, K-Ras, B-Raf and CTNNB1

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Mandy; Scholtka, Bettina, E-mail: scholtka@uni-potsdam.de [Chair of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur- Scheunert-Allee 114-116, 14558 Nuthetal (Germany); Gottschalk, Uwe [Maria Heimsuchung Caritas-Klinik Pankow, Breite Straße 46/47, 13187 Berlin (Germany); Faiss, Siegbert [III. Medizinische Abteilung - Gastroenterologie und Hepatologie, Asklepios Klinik Barmbek, Rubenkamp 220, 22291 Hamburg (Germany); Schatz, Daniela; Berghof-Jäger, Kornelia [BIOTECON Diagnostics GmbH, Hermannswerder Haus 17, 14473 Potsdam (Germany); Steinberg, Pablo, E-mail: scholtka@uni-potsdam.de [Chair of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, Arthur- Scheunert-Allee 114-116, 14558 Nuthetal (Germany); Institute for Food Toxicology and Analytical Chemistry, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover (Germany)

    2010-12-29

    In the present study a recently conceived 4-gene marker panel covering the Wnt and Ras-Raf-MEK-MAPK signaling pathways was used to analyze 20 colorectal serrated lesions and 41 colorectal adenoma samples and to determine the percentage of each of the above-mentioned potentially precancerous lesions carrying at least one of the four above-mentioned genes in a mutated form. CTNNB1 and B-Raf were screened by PCR-single-strand conformation polymorphism analysis, K-Ras by restriction fragment length polymorphism analysis and the APC gene mutation cluster region (codons 1243–1567) by direct DNA sequencing. APC mutations were only detected in 10% of the serrated lesions but in 34% of the adenomas. Twenty percent of the serrated lesions and 14% of the adenomas carried a mutated K-Ras. B-Raf was found to be mutated in 50% of the serrated lesions and in 22% of the adenomas. CTNNB1 was altered in 12% of the adenomas, but not in serrated lesions. By using the above gene marker panel it could be shown that 65% of the serrated lesions and 61% of the adenomas carried at least one of the four genes in a mutated form. Based on its excellent performance in detecting mutations in sporadic preneoplastic (in this study) and neoplastic lesions (in a previous study) of the human colon and rectum, this primer combination might also be suited to efficiently and non-invasively detect genetic alterations in stool DNA of patients with early colorectal cancer.

  6. Faster cross-bridge detachment and increased tension cost in human hypertrophic cardiomyopathy with the R403Q MYH7 mutation.

    Science.gov (United States)

    Witjas-Paalberends, E Rosalie; Ferrara, Claudia; Scellini, Beatrice; Piroddi, Nicoletta; Montag, Judith; Tesi, Chiara; Stienen, Ger J M; Michels, Michelle; Ho, Carolyn Y; Kraft, Theresia; Poggesi, Corrado; van der Velden, Jolanda

    2014-08-01

    The first mutation associated with hypertrophic cardiomyopathy (HCM) is the R403Q mutation in the gene encoding β-myosin heavy chain (β-MyHC). R403Q locates in the globular head of myosin (S1), responsible for interaction with actin, and thus motor function of myosin. Increased cross-bridge relaxation kinetics caused by the R403Q mutation might underlie increased energetic cost of tension generation; however, direct evidence is absent. Here we studied to what extent cross-bridge kinetics and energetics are related in single cardiac myofibrils and multicellular cardiac muscle strips of three HCM patients with the R403Q mutation and nine sarcomere mutation-negative HCM patients (HCMsmn). Expression of R403Q was on average 41 ± 4% of total MYH7 mRNA. Cross-bridge slow relaxation kinetics in single R403Q myofibrils was significantly higher (P < 0.0001) than in HCMsmn myofibrils (0.47 ± 0.02 and 0.30 ± 0.02 s(-1), respectively). Moreover, compared to HCMsmn, tension cost was significantly higher in the muscle strips of the three R403Q patients (2.93 ± 0.25 and 1.78 ± 0.10 μmol l(-1) s(-1) kN(-1) m(-2), respectively) which showed a positive linear correlation with relaxation kinetics in the corresponding myofibril preparations. This correlation suggests that faster cross-bridge relaxation kinetics results in an increase in energetic cost of tension generation in human HCM with the R403Q mutation compared to HCMsmn. Therefore, increased tension cost might contribute to HCM disease in patients carrying the R403Q mutation. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  7. Thymidylate synthase polymorphism in sporadic colorectal and gastric cancer in Tunisian population: a predictive role in 5-fluorouracil based chemotherapy treatment.

    Science.gov (United States)

    Baroudi, Olfa; Baroudi, Thouraya; Omrane, Ines; Moussa, Amel; Mezlini, Amel; Ayari, Hajer; Guermazi, Sami; Bahloul, Abdesslem; Bouzaienne, Hassen; Uhrhammer, Nancy; Bignon, Yves Jean; El-Gaaied, Amel Benammar; Bougatef, Karim

    2014-02-01

    In our study, we investigate the possible association of thymidylate synthase polymorphism, 28 bp tandem repeat in 5'-UTR (transcription enhancer element) with susceptibility of colorectal and gastric cancer in Tunisian population. Because thymidylate synthase provides an effective prediction of chemotherapy treatment based on 5-fluorouracil, our interest in this study was focused on finding an eventual interaction between thymidylate synthase polymorphism and treatment of sporadic colorectal and gastric cancer. Whole blood was collected into EDTA tube, after centrifugation for 15 min, the buffy coat was isolated, and genotyping of TS 5'-UTR polymorphism was carried by polymerase chain reaction method using appropriate primers. Determination of the different genotypes was done directly on the stained agarose gel. Our finding showed that the 5'tandem repeat polymorphism of the thymidylate synthase gene is associated with risk of colorectal cancer; thus, LL (3R/3R) genotype is significantly high in patients with colorectal cancer compared to controls (P = 0.002; OR 2.7; 95 % CI 1.4-5.2). In addition, we found a positive association between SL (2R/3R) genotype in the thymidylate synthase 5'-UTR and gastric cancer risk (P = 0.015; OR 4.46; 95 % CI 1.08-19.64). Furthermore, we found a correlation of thymidylate synthase polymorphism with the fluorouracil-based therapy regimes and also with preoperatory radiation in patients with colorectal cancer. Thymidylate synthase is associated with risk of colorectal cancer but not with gastric cancer; however, heterozygous SL (2R/3R) polymorphism is associated with risk of gastric cancer; moreover, the 5' tandem repeat polymorphism of thymidylate synthase gene was an independent predictor of the clinical treatment.

  8. FSHbeta gene mutation in a female with delayed puberty and hypogonadism: response to recombinant human FSH.

    Directory of Open Access Journals (Sweden)

    S Alain

    2010-01-01

    Full Text Available We report a woman with primary amenorrhoea and infertility associated with an isolated deficiency of pituitary FSH that does not respond to GnRH administration. Serum inhibin B was undetectable and antimullerian hormone (AMH was within the normal range. Ultra sound examination revealed a small uterus and small ovaries with few small follicles. We identified an homozygous 1-bp (G deletion at codon 79 in FSHbeta gene suggesting a complete loss of function. The patient underwent studies of ovarian responsiveness to recombinant human FSH according to the following protocol: 150UI/d for five days following by 75 UI/d for 10 days. Estradiol plasma level started to increase from day 5 associated to a sharp increase of inhibine B and a decrease of LH. During the same time, we observed an excessive development of multiple follicles resulting in an arrest of the treatment to avoid hyperstimulation. The present study confirm that follicles up to 5 mm in diameter had developed in the absence of FSH and that FSH is required for the growth of follicles beyond the two-layer granulose stage.

  9. Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain

    KAUST Repository

    Coluccio, M. L.

    2015-09-04

    Control of the architecture and electromagnetic behavior of nanostructures offers the possibility of designing and fabricating sensors that, owing to their intrinsic behavior, provide solutions to new problems in various fields. We show detection of peptides in multicomponent mixtures derived from human samples for early diagnosis of breast cancer. The architecture of sensors is based on a matrix array where pixels constitute a plasmonic device showing a strong electric field enhancement localized in an area of a few square nanometers. The method allows detection of single point mutations in peptides composing the BRCA1 protein. The sensitivity demonstrated falls in the picomolar (10−12 M) range. The success of this approach is a result of accurate design and fabrication control. The residual roughness introduced by fabrication was taken into account in optical modeling and was a further contributing factor in plasmon localization, increasing the sensitivity and selectivity of the sensors. This methodology developed for breast cancer detection can be considered a general strategy that is applicable to various pathologies and other chemical analytical cases where complex mixtures have to be resolved in their constitutive components.

  10. Human iPSC-derived motoneurons harbouring TARDBP or C9ORF72 ALS mutations are dysfunctional despite maintaining viability

    Science.gov (United States)

    Devlin, Anna-Claire; Burr, Karen; Borooah, Shyamanga; Foster, Joshua D.; Cleary, Elaine M.; Geti, Imbisaat; Vallier, Ludovic; Shaw, Christopher E.; Chandran, Siddharthan; Miles, Gareth B.

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease for which a greater understanding of early disease mechanisms is needed to reveal novel therapeutic targets. We report the use of human induced pluripotent stem cell (iPSC)-derived motoneurons (MNs) to study the pathophysiology of ALS. We demonstrate that MNs derived from iPSCs obtained from healthy individuals or patients harbouring TARDBP or C9ORF72 ALS-causing mutations are able to develop appropriate physiological properties. However, patient iPSC-derived MNs, independent of genotype, display an initial hyperexcitability followed by progressive loss of action potential output and synaptic activity. This loss of functional output reflects a progressive decrease in voltage-activated Na+ and K+ currents, which occurs in the absence of overt changes in cell viability. These data implicate early dysfunction or loss of ion channels as a convergent point that may contribute to the initiation of downstream degenerative pathways that ultimately lead to MN loss in ALS. PMID:25580746

  11. Surface structure characterization of Aspergillus fumigatus conidia mutated in the melanin synthesis pathway and their human cellular immune response.

    Science.gov (United States)

    Bayry, Jagadeesh; Beaussart, Audrey; Dufrêne, Yves F; Sharma, Meenu; Bansal, Kushagra; Kniemeyer, Olaf; Aimanianda, Vishukumar; Brakhage, Axel A; Kaveri, Srini V; Kwon-Chung, Kyung J; Latgé, Jean-Paul; Beauvais, Anne

    2014-08-01

    In Aspergillus fumigatus, the conidial surface contains dihydroxynaphthalene (DHN)-melanin. Six-clustered gene products have been identified that mediate sequential catalysis of DHN-melanin biosynthesis. Melanin thus produced is known to be a virulence factor, protecting the fungus from the host defense mechanisms. In the present study, individual deletion of the genes involved in the initial three steps of melanin biosynthesis resulted in an altered conidial surface with masked surface rodlet layer, leaky cell wall allowing the deposition of proteins on the cell surface and exposing the otherwise-masked cell wall polysaccharides at the surface. Melanin as such was immunologically inert; however, deletion mutant conidia with modified surfaces could activate human dendritic cells and the subsequent cytokine production in contrast to the wild-type conidia. Cell surface defects were rectified in the conidia mutated in downstream melanin biosynthetic pathway, and maximum immune inertness was observed upon synthesis of vermelone onward. These observations suggest that although melanin as such is an immunologically inert material, it confers virulence by facilitating proper formation of the A. fumigatus conidial surface. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Escape Mutations, Ganciclovir Resistance, and Teratoma Formation in Human iPSCs Expressing an HSVtk Suicide Gene

    Directory of Open Access Journals (Sweden)

    Andriana G Kotini

    2016-01-01

    Full Text Available Human pluripotent stem cells (hPSCs hold great promise for cell therapy. However, a major concern is the risk of tumor formation by residual undifferentiated cells contaminating the hPSC-derived cell product. Suicide genes could safeguard against such adverse events by enabling elimination of cells gone astray, but the efficacy of this approach has not yet been thoroughly tested. Here, we engineered a lentivirally encoded herpes simplex virus thymidine kinase (HSVtk with expression restricted to undifferentiated hPSCs through regulation by the let7 family of miRNAs. We show that induced pluripotent stem cells (iPSCs expressing a let7-regulated HSVtk transgene are selectively killed by ganciclovir (GCV, whereas differentiated cells are fully protected. However, in contrast to previous studies, we find that in vivo GCV administration results in longer latency but does not prevent teratoma formation by iPSCs expressing either a constitutive or a let7-regulated HSVtk, without evidence of silencing of the HSVtk. Clonal analyses of iPSCs expressing HSVtk revealed frequent emergence of GCV resistance which, at least in some cases, could be attributed to preexisting inactivating mutations in the HSVtk coding sequence, selected for upon GCV treatment. Our findings have important consequences for the future use of suicide genes in hPSC-based cell therapies.

  13. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer

    NARCIS (Netherlands)

    Drost, J.; Boxtel, R. van; Blokzijl, F.; Mizutani, T.; Sasaki, N.; Sasselli, V.; Ligt, J. de; Behjati, S.; Grolleman, J.E.; Wezel, T. van; Nik-Zainal, S.; Kuiper, R.P.; Cuppen, E.; Clevers, H.

    2017-01-01

    Mutational processes underlie cancer initiation and progression. Signatures of these processes in cancer genomes may explain cancer etiology and could hold diagnostic and prognostic value. We developed a strategy that can be used to explore the origin of cancer-associated mutational signatures. We

  14. Human aging and somatic point mutations in mtDNA: a comparative study of generational differences (grandparents and grandchildren

    Directory of Open Access Journals (Sweden)

    Anderson Nonato do Rosário Marinho

    2011-01-01

    Full Text Available The accumulation of somatic mutations in mtDNA is correlated with aging. In this work, we sought to identify somatic mutations in the HVS-1 region (D-loop of mtDNA that might be associated with aging. For this, we compared 31 grandmothers (mean age: 63 ± 2.3 years and their 62 grandchildren (mean age: 15 ± 4.1 years, the offspring of their daughters. Direct DNA sequencing showed that mutations absent in the grandchildren were detected in a presumably homoplasmic state in three grandmothers and in a heteroplasmic state in an additional 13 grandmothers; no mutations were detected in the remaining 15 grandmothers. However, cloning followed by DNA sequencing in 12 grandmothers confirmed homoplasia in only one of the three mutations previously considered to be homoplasmic and did not confirm heteroplasmy in three out of nine grandmothers found to be heteroplasmic by direct sequencing. Thus, of 12 grandmothers in whom mtDNA was analyzed by cloning, eight were heteroplasmic for mutations not detected in their grandchildren. In this study, the use of genetically related subjects allowed us to demonstrate the occurrence of age-related (> 60 years old mutations (homoplasia and heteroplasmy. It is possible that both of these situations (homoplasia and heteroplasmy were a long-term consequence of mitochondrial oxidative phosphorylation that can lead to the accumulation of mtDNA mutations throughout life.

  15. Human aging and somatic point mutations in mtDNA: A comparative study of generational differences (grandparents and grandchildren).

    Science.gov (United States)

    do Rosário Marinho, Anderson Nonato; de Moraes, Milene Raiol; Santos, Sidney; Ribeiro-Dos-Santos, Andrea

    2011-01-01

    The accumulation of somatic mutations in mtDNA is correlated with aging. In this work, we sought to identify somatic mutations in the HVS-1 region (D-loop) of mtDNA that might be associated with aging. For this, we compared 31 grandmothers (mean age: 63 ± 2.3 years) and their 62 grandchildren (mean age: 15 ± 4.1 years), the offspring of their daughters. Direct DNA sequencing showed that mutations absent in the grandchildren were detected in a presumably homoplasmic state in three grandmothers and in a heteroplasmic state in an additional 13 grandmothers; no mutations were detected in the remaining 15 grandmothers. However, cloning followed by DNA sequencing in 12 grandmothers confirmed homoplasia in only one of the three mutations previously considered to be homoplasmic and did not confirm heteroplasmy in three out of nine grandmothers found to be heteroplasmic by direct sequencing. Thus, of 12 grandmothers in whom mtDNA was analyzed by cloning, eight were heteroplasmic for mutations not detected in their grandchildren. In this study, the use of genetically related subjects allowed us to demonstrate the occurrence of age-related (> 60 years old) mutations (homoplasia and heteroplasmy). It is possible that both of these situations (homoplasia and heteroplasmy) were a long-term consequence of mitochondrial oxidative phosphorylation that can lead to the accumulation of mtDNA mutations throughout life.

  16. An Exon-Based Comparative Variant Analysis Pipeline to Study the Scale and Role of Frameshift and Nonsense Mutation in the Human-Chimpanzee Divergence

    Directory of Open Access Journals (Sweden)

    GongXin Yu

    2009-01-01

    important biological processes such as T cell lineage development, the pathogenesis of inflammatory diseases, and antigen induced cell death. A “less-is-more” model was previously established to illustrate the role of the gene inactivation and disruptions during human evolution. Here this analysis suggested a different model where the chimpanzee-specific exon-disrupting mutations may act as additional evolutionary force that drove the human-chimpanzee divergence. Finally, the analysis revealed a number of sequencing errors in the chimpanzee and human genome sequences and further illustrated that they could be corrected without resequencing.

  17. The familial hypertrophic cardiomyopathy-associated myosin mutation R403Q accelerates tension generation and relaxation of human cardiac myofibrils.

    Science.gov (United States)

    Belus, Alexandra; Piroddi, Nicoletta; Scellini, Beatrice; Tesi, Chiara; D'Amati, Giulia; Girolami, Francesca; Yacoub, Magdi; Cecchi, Franco; Olivotto, Iacopo; Poggesi, Corrado

    2008-08-01

    The R403Q mutation in beta-myosin heavy chain was the first mutation to be identified as responsible for familial hypertrophic cardiomyopathy (FHC). In spite of extensive work on the functional sequelae of this mutation, the mechanism by which the mutant protein causes the disease has not been definitely identified. Here we directly compare contraction and relaxation mechanics of single myofibrils from left ventricular samples of one patient carrying the R403Q mutation to those from a healthy control heart. Tension generation and relaxation following sudden increase and decrease in [Ca(2+)] were much faster in the R403Q myofibrils with relaxation rates being the most affected parameters. The results show that the R403Q mutation leads to an apparent gain of protein function but a greater energetic cost of tension generation. Increased energy cost of tension generation may be central to the FHC disease process, help explain some unresolved clinical observations, and carry significant therapeutic implications.

  18. Cross-species comparison of aCGH data from mouse and human BRCA1- and BRCA2-mutated breast cancers.

    Science.gov (United States)

    Holstege, Henne; van Beers, Erik; Velds, Arno; Liu, Xiaoling; Joosse, Simon A; Klarenbeek, Sjoerd; Schut, Eva; Kerkhoven, Ron; Klijn, Christiaan N; Wessels, Lodewyk F A; Nederlof, Petra M; Jonkers, Jos

    2010-08-24

    Genomic gains and losses are a result of genomic instability in many types of cancers. BRCA1- and BRCA2-mutated breast cancers are associated with increased amounts of chromosomal aberrations, presumably due their functions in genome repair. Some of these genomic aberrations may harbor genes whose absence or overexpression may give rise to cellular growth advantage. So far, it has not been easy to identify the driver genes underlying gains and losses. A powerful approach to identify these driver genes could be a cross-species comparison of array comparative genomic hybridization (aCGH) data from cognate mouse and human tumors. Orthologous regions of mouse and human tumors that are commonly gained or lost might represent essential genomic regions selected for gain or loss during tumor development. To identify genomic regions that are associated with BRCA1- and BRCA2-mutated breast cancers we compared aCGH data from 130 mouse Brca1Δ/Δ;p53Δ/Δ, Brca2Δ/Δ;p53Δ/Δ and p53Δ/Δ mammary tumor groups with 103 human BRCA1-mutated, BRCA2-mutated and non-hereditary breast cancers. Our genome-wide cross-species analysis yielded a complete collection of loci and genes that are commonly gained or lost in mouse and human breast cancer. Principal common CNAs were the well known MYC-associated gain and RB1/INTS6-associated loss that occurred in all mouse and human tumor groups, and the AURKA-associated gain occurred in BRCA2-related tumors from both species. However, there were also important differences between tumor profiles of both species, such as the prominent gain on chromosome 10 in mouse Brca2Δ/Δ;p53Δ/Δ tumors and the PIK3CA associated 3q gain in human BRCA1-mutated tumors, which occurred in tumors from one species but not in tumors from the other species. This disparity in recurrent aberrations in mouse and human tumors might be due to differences in tumor cell type or genomic organization between both species. The selection of the oncogenome during mouse and

  19. Cross-species comparison of aCGH data from mouse and human BRCA1- and BRCA2-mutated breast cancers

    Directory of Open Access Journals (Sweden)

    Holstege Henne

    2010-08-01

    Full Text Available Abstract Background Genomic gains and losses are a result of genomic instability in many types of cancers. BRCA1- and BRCA2-mutated breast cancers are associated with increased amounts of chromosomal aberrations, presumably due their functions in genome repair. Some of these genomic aberrations may harbor genes whose absence or overexpression may give rise to cellular growth advantage. So far, it has not been easy to identify the driver genes underlying gains and losses. A powerful approach to identify these driver genes could be a cross-species comparison of array comparative genomic hybridization (aCGH data from cognate mouse and human tumors. Orthologous regions of mouse and human tumors that are commonly gained or lost might represent essential genomic regions selected for gain or loss during tumor development. Methods To identify genomic regions that are associated with BRCA1- and BRCA2-mutated breast cancers we compared aCGH data from 130 mouse Brca1Δ/Δ;p53Δ/Δ, Brca2Δ/Δ;p53Δ/Δ and p53Δ/Δ mammary tumor groups with 103 human BRCA1-mutated, BRCA2-mutated and non-hereditary breast cancers. Results Our genome-wide cross-species analysis yielded a complete collection of loci and genes that are commonly gained or lost in mouse and human breast cancer. Principal common CNAs were the well known MYC-associated gain and RB1/INTS6-associated loss that occurred in all mouse and human tumor groups, and the AURKA-associated gain occurred in BRCA2-related tumors from both species. However, there were also important differences between tumor profiles of both species, such as the prominent gain on chromosome 10 in mouse Brca2Δ/Δ;p53Δ/Δ tumors and the PIK3CA associated 3q gain in human BRCA1-mutated tumors, which occurred in tumors from one species but not in tumors from the other species. This disparity in recurrent aberrations in mouse and human tumors might be due to differences in tumor cell type or genomic organization between both species

  20. Mutations within Four Distinct Gag Proteins Are Required To Restore Replication of Human Immunodeficiency Virus Type 1 after Deletion Mutagenesis within the Dimerization Initiation Site

    Science.gov (United States)

    Liang, Chen; Rong, Liwei; Quan, Yudong; Laughrea, Michael; Kleiman, Lawrence; Wainberg, Mark A.

    1999-01-01

    Human immunodeficiency virus type 1 (HIV-1) genomic RNA segments at nucleotide (nt) positions +240 to +274 are thought to form a stem-loop secondary structure, termed SL1, that serves as a dimerization initiation site for viral genomic RNA. We have generated two distinct deletion mutations within this region, termed BH10-LD3 and BH10-LD4, involving nt positions +238 to +253 and +261 to +274, respectively, and have shown that each of these resulted in significant diminutions in levels of viral infectiousness. However, long-term culture of each of these viruses in MT-2 cells resulted in a restoration of infectiousness, due to a series of compensatory point mutations within four distinct proteins that are normally cleaved from the Gag precursor. In the case of BH10-LD3, these four mutations were MA1, CA1, MP2, and MNC, and they involved changes of amino acid Val-35 to Ile within the matrix protein (MA), Ile-91 to Thr within the capsid (CA), Thr-12 to Ile within p2, and Thr-24 to Ile within the nucleocapsid (NC). The order in which these mutations were acquired by the mutated BH10-LD3 was MNC > CA1 > MP2 > MA1. The results of site-directed mutagenesis studies confirmed that each of these four substitutions contributed to the increased viability of the mutated BH10-LD3 viruses and that the MNC substitution, which was acquired first, played the most important role in this regard. Three point mutations, MP2, MNC, and MA2, were also shown to be sequentially acquired by viruses that had emerged in culture from the BH10-LD4 deletion. The first two of these were identical to those described above, while the last involved a change of Val-35 to Leu. All three of these substitutions were necessary to restore the infectiousness of mutated BH10-LD4 viruses to wild-type levels, although the MP2 mutation alone, but neither of the other two substitutions, was able to confer some viability on BH10-LD4 viruses. Studies of viral RNA packaging showed that the BH10-LD4 deletion only

  1. Mitochondrial mutations in cancer.

    Science.gov (United States)

    Brandon, M; Baldi, P; Wallace, D C

    2006-08-07

    The metabolism of solid tumors is associated with high lactate production while growing in oxygen (aerobic glycolysis) suggesting that tumors may have defects in mitochondrial function. The mitochondria produce cellular energy by oxidative phosphorylation (OXPHOS), generate reactive oxygen species (ROS) as a by-product, and regulate apoptosis via the mitochondrial permeability transition pore (mtPTP). The mitochondria are assembled from both nuclear DNA (nDNA) and mitochondrial DNA (mtDNA) genes. The mtDNA codes for 37 genes essential of OXPHOS, is present in thousands of copies per cell, and has a very high mutations rate. In humans, severe mtDNA mutations result in multisystem disease, while some functional population-specific polymorphisms appear to have permitted humans to adapt to new environments. Mutations in the nDNA-encoded mitochondrial genes for fumarate hydratase and succinate dehydrogenase have been linked to uterine leiomyomas and paragangliomas, and cancer cells have been shown to induce hexokinase II which harnesses OXPHOS adenosine triphosphate (ATP) production to drive glycolysis. Germline mtDNA mutations at nucleotides 10398 and 16189 have been associated with breast cancer and endometrial cancer. Tumor mtDNA somatic mutations range from severe insertion-deletion and chain termination mutations to mild missense mutations. Surprisingly, of the 190 tumor-specific somatic mtDNA mutations reported, 72% are also mtDNA sequence variants found in the general population. These include 52% of the tumor somatic mRNA missense mutations, 83% of the tRNA mutations, 38% of the rRNA mutations, and 85% of the control region mutations. Some associations might reflect mtDNA sequencing errors, but analysis of several of the tumor-specific somatic missense mutations with population counterparts appear legitimate. Therefore, mtDNA mutations in tumors may fall into two main classes: (1) severe mutations that inhibit OXPHOS, increase ROS production and promote tumor

  2. N-ethyl-N-nitrosourea-induced null mutation at the mouse Car-2 locus: An animal model for human carbonic anhydrase II deficiency syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, S.E.; Barnett, L.B. (Research Triangle Institute, Research Triangle Park, NC (USA)); Erickson, R.P.; Venta, P.J.; Tashian, R.E. (Univ. of Michigan Medical School, Ann Arbor (USA))

    1988-03-01

    Electrophoretic screening of (C57BL/6J x DBA/2J)F{sub 1} progeny of male mice treated with N-ethyl-N-nitrosourea revealed a mouse that lacked the paternal carbonic anhydrase II (Ca II). Breeding tests showed that this trait was heritable and due to a null mutation at the Car-2 locus on chromosome 3. Like humans with the same inherited enzyme defect, animals homozygous for the new null allele are runted and have renal tubular acidosis. However, the prominent osteopetrosis found in humans with CA II deficiency could be detected even in very old homozygous null mice. A molecular analysis of the deficient mice shows that the mutant gene is not deleted and is transcribed. The CA II protein, which is normally expressed in most tissues, could not be detected by immunodiffusion analysis in any tissues of the CA II-deficient mice, suggesting a nonsense or a missense mutation at the Car-2 locus.

  3. Cloning of the human type XVII collagen gene (COL17A1), and detection of novel mutations in generalized atrophic benign epidermolysis bullosa

    Energy Technology Data Exchange (ETDEWEB)

    Gatalica, B.; Pulkkinen, L.; Li, K. [Thomas Jefferson Univ., Philadelphia, PA (United States)] [and others

    1997-02-01

    Generalized atrophic benign epidermolysis bullosa (GABEB) is a nonlethal variant of junctional epidermolysis bullosa (JEB). Previous findings have suggested that type XVII collagen is the candidate gene for mutations in this disease. We now have cloned the entire human type XVII collagen gene (COL17A1) and have elucidated its intron-exon organization. The gene comprises 56 distinct exons, which span {approximately}52 kb of the genome, on the long arm of chromosome 10. It encodes a polypeptide, the {alpha}1(XVII) chain, consisting of an intracellular globular domain, a transmembrane segment, and an extracellular domain that contains 15 separate collagenous subdomains, the largest consisting of 242 amino acids. We also have developed a strategy to identify mutations in COL17A1 by use of PCR amplification of genomic DNA, using primers placed on the flanking introns. The PCR products are scanned for sequence variants by heteroduplex analysis using conformation-sensitive gel electrophoresis and then are subjected to direct automated sequencing. We have identified several intragenic polymorphisms in COL17A1, as well as mutations, in both alleles, in two Finnish families with GABEB. The probands in both families showed negative immunofluorescence staining with an anti-type XVII collagen antibody. In one family, the proband was homozygous for a 5-bp deletion, 2944del5, which resulted in frameshift and a premature termination codon of translation. The proband in the other family was a compound heterozygote, with one allele containing the 2944del5 mutation and the other containing a nonsense mutation, Q1023X. These results expand the mutation database in different variants of JEB, and they attest to the functional importance of type XVII collagen as a transmembrane component of the hemidesmosomes at the dermal/epidermal junction. 48 refs., 9 figs., 3 tabs.

  4. Expression of R132H mutational IDH1 in human U87 glioblastoma cells affects the SREBP1a pathway and induces cellular proliferation.

    Science.gov (United States)

    Zhu, Jian; Cui, Gang; Chen, Ming; Xu, Qinian; Wang, Xiuyun; Zhou, Dai; Lv, Shengxiang; Fu, Linshan; Wang, Zhong; Zuo, Jianling

    2013-05-01

    Sterol regulatory element-binding protein-1a (SREBP1a) is a member of the SREBP family of transcription factors, which mainly controls homeostasis of lipids. SREBP1a can also activate the transcription of isocitrate dehydrogenase 1 (IDH1) by binding to its promoter region. IDH1 mutations, especially R132H mutation of IDH1, are a common feature of a major subset of human gliomas. There are few data available on the relationship between mutational IDH1 expression and SREBP1a pathway. In this study, we investigated cellular effects and SREBP1a pathway alterations caused by R132H mutational IDH1 expression in U87 cells. Two glioma cell lines, stably expressing mutational (U87/R132H) or wild type (U87/wt) IDH1, were established. A cell line, stably transfected with pcDNA3.1(+) (U87/vector), was generated as a control. Click-iT EdU assay, sulforhodamine B assay, and wound healing assay respectively showed that the expression of R132H induced cellular proliferation, cell growth, and cell migration. Western blot revealed that SREBP1 was increased in U87/R132H compared with that in U87/wt. Elevated SREBP1a and several its target genes, but not SREBP1c, were detected by real-time polymerase chain reaction in U87/R132H. All these findings indicated that R132H mutational IDH1 is involved in the regulation of proliferation, growth, and migration of glioma cells. These effects may partially be mediated by SREBP1a pathway.

  5. Human Connexin43E42K mutation from a sudden infant death victim leads to impaired ventricular activation and neonatal death in mice.

    Science.gov (United States)

    Lübkemeier, Indra; Bosen, Felicitas; Kim, Jung-Sun; Sasse, Philipp; Malan, Daniela; Fleischmann, Bernd K; Willecke, Klaus

    2015-02-01

    Sudden infant death syndrome (SIDS) describes the sudden, unexplained death of a baby during its first year of age and is the third leading cause of infant mortality. It is assumed that ≤20% of all SIDS cases are because of cardiac arrhythmias resulting from mutations in ion channel proteins. Besides ion channels also cardiac gap junction channels are important for proper conduction of cardiac electric activation. In the mammalian heart Connexin43 (Cx43) is the major gap junction protein expressed in ventricular cardiomyocytes. Recently, a novel Connexin43 loss-of-function mutation (Cx43E42K) was identified in a 2-month-old SIDS victim. We have generated Cx43E42K-expressing mice as a model for SIDS. Heterozygous cardiac-restricted Cx43E42K-mutated mice die neonatally without major cardiac morphological defects. Electrocardiographic recordings of embryonic Cx43+/E42K mice reveal severely disturbed ventricular activation, whereas immunohistochemical analyses show normal localization and expression patterns of gap junctional Connexin43 protein in the Cx43E42K-mutated newborn mouse heart. Because we did not find heterogeneous gap junction loss in Cx43E42K mouse hearts, we conclude that the Cx43E42K gap junction channel creates an arrhythmogenic substrate leading to lethal ventricular arrhythmias. The strong cardiac phenotype of Cx43E42K expressing mice supports the association between the human Cx43E42K mutation and SIDS and indicates that Connexin43 mutations should be considered in future studies when SIDS cases are to be molecularly explained. © 2014 American Heart Association, Inc.

  6. Analysis of p53 gene mutations in human gliomas by polymerase chain reaction-based single-strand conformation polymorphism and DNA sequencing.

    Science.gov (United States)

    Sarkar, F H; Kupsky, W J; Li, Y W; Sreepathi, P

    1994-03-01

    Mutations in the p53 gene have been recognized in brain tumors, and clonal expansion of p53 mutant cells has been shown to be associated with glioma progression. However, studies on the p53 gene have been limited by the need for frozen tissues. We have developed a method utilizing polymerase chain reaction (PCR) for the direct analysis of p53 mutation by single-strand conformation polymorphism (SSCP) and by direct DNA sequencing of the p53 gene using a single 10-microns paraffin-embedded tissue section. We applied this method to screen for p53 gene mutations in exons 5-8 in human gliomas utilizing paraffin-embedded tissues. Twenty paraffin blocks containing tumor were selected from surgical specimens from 17 different adult patients. Tumors included six anaplastic astrocytomas (AAs), nine glioblastomas (GBs), and two mixed malignant gliomas (MMGs). The tissue section on the stained glass slide was used to guide microdissection of an unstained adjacent tissue section to ensure > 90% of the tumor cell population for p53 mutational analysis. Simultaneously, microdissection of the tissue was also carried out to obtain normal tissue from adjacent areas as a control. Mutations in the p53 gene were identified in 3 of 17 (18%) patients by PCR-SSCP analysis and subsequently confirmed by PCR-based DNA sequencing. Mutations in exon 5 resulting in amino acid substitution were found in one thalamic AA (codon 158, CGC > CTT: Arg > Leu) and one cerebral hemispheric GB (codon 151, CCG > CTG: Pro > Leu).(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Two mutations in mitochondrial ATP6 gene of ATP synthase, related to human cancer, affect ROS, calcium homeostasis and mitochondrial permeability transition in yeast.

    Science.gov (United States)

    Niedzwiecka, Katarzyna; Tisi, Renata; Penna, Sara; Lichocka, Malgorzata; Plochocka, Danuta; Kucharczyk, Roza

    2018-01-01

    The relevance of mitochondrial DNA (mtDNA) mutations in cancer process is still unknown. Since the mutagenesis of mitochondrial genome in mammals is not possible yet, we have exploited budding yeast S. cerevisiae as a model to study the effects of tumor-associated mutations in the mitochondrial MTATP6 gene, encoding subunit 6 of ATP synthase, on the energy metabolism. We previously reported that four mutations in this gene have a limited impact on the production of cellular energy. Here we show that two mutations, Atp6-P163S and Atp6-K90E (human MTATP6-P136S and MTATP6-K64E, found in prostate and thyroid cancer samples, respectively), increase sensitivity of yeast cells both to compounds inducing oxidative stress and to high concentrations of calcium ions in the medium, when Om45p, the component of porin complex in outer mitochondrial membrane (OM), was fused to GFP. In OM45-GFP background, these mutations affect the activation of yeast permeability transition pore (yPTP, also called YMUC, yeast mitochondrial unspecific channel) upon calcium induction. Moreover, we show that calcium addition to isolated mitochondria heavily induced the formation of ATP synthase dimers and oligomers, recently proposed to form the core of PTP, which was slower in the mutants. We show the genetic evidence for involvement of mitochondrial ATP synthase in calcium homeostasis and permeability transition in yeast. This paper is a first to show, although in yeast model organism, that mitochondrial ATP synthase mutations, which accumulate during carcinogenesis process, may be significant for cancer cell escape from apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Substantial molecular evolution and mutation rates in prolonged latent Mycobacterium tuberculosis infection in humans

    DEFF Research Database (Denmark)

    Lillebaek, Troels; Norman, Anders; Rasmussen, Erik Michael

    2016-01-01

    The genome of Mycobacterium tuberculosis (Mtb) of latently infected individuals may hold the key to understanding the processes that lead to reactivation and progression to clinical disease. We report here analysis of pairs of Mtb isolates from putative prolonged latent TB cases. We identified two...... confirmed cases, and used whole genome sequencing to investigate the mutational processes that occur over decades in latent Mtb. We found an estimated mutation rate between 0.2 and 0.3 over 33 years, suggesting that latent Mtb accumulates mutations at rates similar to observations from cases of active...

  9. Tissue-specific expression of the human laminin alpha5-chain, and mapping of the gene to human chromosome 20q13.2-13.3 and to distal mouse chromosome 2 near the locus for the ragged (Ra) mutation

    DEFF Research Database (Denmark)

    Durkin, M E; Loechel, F; Mattei, M G

    1997-01-01

    , heart, lung, skeletal muscle, kidney, and pancreas. The human laminin alpha5-chain gene (LAMA5) was assigned to chromosome 20q13.2-q13.3 by in situ hybridization, and the mouse gene (Lama5) was mapped by linkage analysis to a syntonic region of distal chromosome 2, close to the locus for the ragged (Ra......) mutation....

  10. Chromosomal mutations and chromosome loss measured in a new human-hamster hybrid cell line, ALC: studies with colcemid, ultraviolet irradiation, and 137Cs gamma-rays

    Science.gov (United States)

    Kraemer, S. M.; Waldren, C. A.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    Small mutations, megabase deletions, and aneuploidy are involved in carcinogenesis and genetic defects, so it is important to be able to quantify these mutations and understand mechanisms of their creation. We have previously quantified a spectrum of mutations, including megabase deletions, in human chromosome 11, the sole human chromosome in a hamster-human hybrid cell line AL. S1- mutants have lost expression of a human cell surface antigen, S1, which is encoded by the M1C1 gene at 11p13 so that mutants can be detected via a complement-mediated cytotoxicity assay in which S1+ cells are killed and S1- cells survive. But loss of genes located on the tip of the short arm of 11 (11p15.5) is lethal to the AL hybrid, so that mutants that have lost the entire chromosome 11 die and escape detection. To circumvent this, we fused AL with Chinese hamster ovary (CHO) cells to produce a new hybrid, ALC, in which the requirement for maintaining 11p15.5 is relieved, allowing us to detect mutations events involving loss of 11p15.5. We evaluated the usefulness of this hybrid by conducting mutagenesis studies with colcemid, 137Cs gamma-radiation and UV 254 nm light. Colcemid induced 1000 more S1- mutants per unit dose in ALC than in AL; the increase for UV 254 nm light was only two-fold; and the increase for 137Cs gamma-rays was 12-fold. The increase in S1- mutant fraction in ALC cells treated with colcemid and 137Cs gamma-rays were largely due to chromosome loss and 11p deletions often containing a breakpoint within the centromeric region.

  11. Mutations in human homologue of chicken talpid3 gene (KIAA0586) cause a hybrid ciliopathy with overlapping features of Jeune and Joubert syndromes.

    Science.gov (United States)

    Malicdan, May Christine V; Vilboux, Thierry; Stephen, Joshi; Maglic, Dino; Mian, Luhe; Konzman, Daniel; Guo, Jennifer; Yildirimli, Deniz; Bryant, Joy; Fischer, Roxanne; Zein, Wadih M; Snow, Joseph; Vemulapalli, Meghana; Mullikin, James C; Toro, Camilo; Solomon, Benjamin D; Niederhuber, John E; Gahl, William A; Gunay-Aygun, Meral

    2015-12-01

    In chicken, loss of TALPID3 results in non-functional cilia and short-rib polydactyly syndrome. This phenotype is caused by a frameshift mutation in the chicken ortholog of the human KIAA0586 gene, which encodes a novel coiled-coil domain protein essential for primary ciliogenesis, suggesting that KIAA0586 can be associated with ciliopathy in human beings. In our patients with ciliopathy (http://www.clinicaltrials.gov: NCT00068224), we have collected extensive clinical and neuroimaging data from affected individuals, and performed whole exome sequencing on DNA from affected individuals and their parents. We analysed gene expression on fibroblast cell line, and determined the effect of gene mutation on ciliogenesis in cells derived from patients. We identified biallelic mutations in the human TALPID3 ortholog, KIAA0586, in six children with findings of overlapping Jeune and Joubert syndromes. Fibroblasts cultured from one of the patients with Jeune-Joubert syndrome exhibited more severe cilia defects than fibroblasts from patients with only Joubert syndrome; this difference was reflected in KIAA0586 RNA expression levels. Rescue of the cilia defect with full-length wild type KIAA0586 indicated a causal link between cilia formation and KIAA0586 function. Our results show that biallelic deleterious mutations in KIAA0586 lead to Joubert syndrome with or without Jeune asphyxiating thoracic dystrophy. Furthermore, our results confirm that KIAA0586/TALPID3 is essential in cilia formation in human beings, expand the KIAA0586 phenotype to include features of Jeune syndrome and provide a pathogenetic connection between Joubert and Jeune syndromes, based on aberrant ciliogenesis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Identification of Rare PB2-D701N Mutation from a Patient with Severe Influenza: Contribution of the PB2-D701N Mutation to the Pathogenicity of Human Influenza.

    Science.gov (United States)

    Nieto, Amelia; Pozo, Francisco; Vidal-García, Matxalen; Omeñaca, Manuel; Casas, Inmaculada; Falcón, Ana

    2017-01-01

    Several amino acid changes have been previously implicated in adaptation of avian influenza viruses to human hosts, among them the D701N change in the PB2 polymerase subunit that also is the main determinant of avian virus pathogenesis in animal models. However, previous studies using recombinant viruses did not provide conclusive information of the contribution of this PB2 residue to pathogenicity in human influenza virus strains. We identified this mutation in an A(H1N1)pdm09-like human influenza virus isolated from an infected patient with pneumonia and acute respiratory failure, admitted to the intensive care unit. An exhaustive search has revealed PB2-D701 as a highly conserved position in all available H1N1 human virus sequences in NCBI database, showing a very low prevalence of PB2-D701N change. Presence of PB2-701N amino acid correlates with severe or fatal outcome in those scarce cases with known disease outcome of the infection. In these patients, the residue PB2-701N may contribute to pathogenicity as it was previously reported in humans infected with avian viruses. This study helps to clarify a debate that has arisen regarding the role of PB2-D701N in human influenza virus pathogenicity.

  13. Human SOD1 ALS Mutations in a Drosophila Knock-In Model Cause Severe Phenotypes and Reveal Dosage-Sensitive Gain- and Loss-of-Function Components.

    Science.gov (United States)

    Şahin, Aslı; Held, Aaron; Bredvik, Kirsten; Major, Paxton; Achilli, Toni-Marie; Kerson, Abigail G; Wharton, Kristi; Stilwell, Geoff; Reenan, Robert

    2017-02-01

    Amyotrophic Lateral Sclerosis (ALS) is the most common adult-onset motor neuron disease and familial forms can be caused by numerous dominant mutations of the copper-zinc superoxide dismutase 1 (SOD1) gene. Substantial efforts have been invested in studying SOD1-ALS transgenic animal models; yet, the molecular mechanisms by which ALS-mutant SOD1 protein acquires toxicity are not well understood. ALS-like phenotypes in animal models are highly dependent on transgene dosage. Thus, issues of whether the ALS-like phenotypes of these models stem from overexpression of mutant alleles or from aspects of the SOD1 mutation itself are not easily deconvolved. To address concerns about levels of mutant SOD1 in disease pathogenesis, we have genetically engineered four human ALS-causing SOD1 point mutations (G37R, H48R, H71Y, and G85R) into the endogenous locus of Drosophila SOD1 (dsod) via ends-out homologous recombination and analyzed the resulting molecular, biochemical, and behavioral phenotypes. Contrary to previous transgenic models, we have recapitulated ALS-like phenotypes without overexpression of the mutant protein. Drosophila carrying homozygous mutations rendering SOD1 protein enzymatically inactive (G85R, H48R, and H71Y) exhibited neurodegeneration, locomotor deficits, and shortened life span. The mutation retaining enzymatic activity (G37R) was phenotypically indistinguishable from controls. While the observed mutant dsod phenotypes were recessive, a gain-of-function component was uncovered through dosage studies and comparisons with age-matched dsod null animals, which failed to show severe locomotor defects or nerve degeneration. We conclude that the Drosophila knock-in model captures important aspects of human SOD1-based ALS and provides a powerful and useful tool for further genetic studies. Copyright © 2017 by the Genetics Society of America.

  14. Human LRRK2 G2019S mutation represses post-synaptic protein PSD95 and causes cognitive impairment in transgenic mice.

    Science.gov (United States)

    Adeosun, Samuel O; Hou, Xu; Zheng, Baoying; Melrose, Heather L; Mosley, Thomas; Wang, Jun Ming

    2017-07-01

    LRRK2 G2019S mutation is associated with increased kinase activity and is the most common mutation associated with late-onset PD. However, the transgenic mouse model has not recapitulated cardinal PD-related motor phenotypes. Non-motor symptoms of PD including cognitive impairments are very common and may appear earlier than the motor symptoms. The objective of this study was to determine whether human LRRK2 with G2019S mutation causes hippocampus-dependent cognitive deficits in mice. Male (LRRK2-G2019S) LRRK2-Tg mice showed impairments in the early portion of the Two-day radial arm water maze acquisition trial as well as in the reversal learning on the third day. However, their performance was similar to Non-Tg controls in the probe trial. LRRK2-Tg mice also displayed impairments in the novel arm discrimination test but not in the spontaneous alternation test in Y-maze. Interestingly, there was no statistically significant locomotor impairment during any of these cognitive test, nor in the locomotor tests including open field, accelerating rotarod and pole tests. Expression of the postsynaptic protein PSD-95 but not the presynaptic protein synaptophysin was lower in hippocampal homogenates of LRRK2-Tg mice. Consistent with previous reports in human LRRK2 G2019S carriers, the current data suggests that cognitive dysfunctions are present in LRRK2-Tg mice even in the absence of locomotor impairment. LRRK2 G2019S mutation represses the postsynaptic protein PSD-95 but not the presynaptic protein synaptophysin. This study also suggests that mild cognitive impairment may appear earlier than motor dysfunctions in LRRK2-G2019S mutation carriers. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Positive Selection in Bone Morphogenetic Protein 15 Targets a Natural Mutation Associated with Primary Ovarian Insufficiency in Human

    Science.gov (United States)

    Meslin, Camille; Monestier, Olivier; Di Pasquale, Elisa; Pascal, Géraldine; Persani, Luca; Fabre, Stéphane

    2013-01-01

    Bone Morphogenetic Protein 15 (BMP15) is a TGFβ-like oocyte-derived growth factor involved in ovarian folliculogenesis as a critical regulator of many granulosa cell processes. Alterations of the BMP15 gene have been found associated with different ovarian phenotypic effects depending on the species, from sterility to increased prolificacy in sheep, slight subfertility in mouse or associated with primary ovarian insufficiency (POI) in women. To investigate the evolving role of BMP15, a phylogenetic analysis of this particular TGFβ family member was performed. A maximum likelihood phylogenetic tree of several TGFβ/BMP family members expressed by the ovary showed that BMP15 has a very strong divergence and a rapid evolution compared to others. Moreover, among 24 mammalian species, we detected signals of positive selection in the hominidae clade corresponding to F146, L189 and Y235 residues in human BMP15. The biological importance of these residues was tested functionally after site directed-mutagenesis in a COV434 cells luciferase assay. By replacing the positively selected amino acid either by alanine or the most represented residue in other studied species, only L189A, Y235A and Y235C mutants showed a significant increase of BMP15 signaling when compared to wild type. Additionally, the Y235C mutant was more potent than wild type in inhibiting progesterone secretion of ovine granulosa cells in primary culture. Interestingly, the Y235C mutation was previously identified in association with POI in women. In conclusion, this study evidences that the BMP15 gene has evolved faster than other members of the TGFß family and was submitted to a positive selection pressure in the hominidae clade. Some residues under positive selection are of great importance for the normal function of the protein and thus for female fertility. Y235 represents a critical residue in the determination of BMP15 biological activity, thus indirectly confirming its role in the onset of POI in

  16. Hairless mutation: a driving force of humanization from a human–ape common ancestor by enforcing upright walking while holding a baby with both hands

    Science.gov (United States)

    Sutou, Shizuyo

    2012-01-01

    Three major characteristics distinguish humans from other primates: bipedality, practical nakedness, and the family as a social unit. A hairless mutation introduced into the chimpanzee/human last common ancestor (CLCA) 6 million years ago (Mya) diverged hairless human and hairy chimpanzee lineages. All primates except humans can carry their babies without using their hands. A hairless mother would be forced to stand and walk upright. Her activities would be markedly limited. The male partner would have to collect food and carry it to her by hand to keep her and their baby from starving; irresponsible and selfish males could not have left their offspring. The mother would have sexually accepted her partner at any time as a reward for food. Sexual relations irrespective of estrus cycles might have strengthened the pair bond. Molecular and paleontological dating indicates that CLCA existed 6 Mya, and early hominin fossils show that they were bipeds, indicating that humanization from CLCA occurred rapidly. A single mutation in animals with scalp hair is known to induce hairless phenotype (ectodermal dysplasia). Bipedalism and hairlessness are disadvantageous traits; only those who could survive trials and tribulations in cooperation with family members must have been able to evolve as humans. PMID:22404045

  17. Mutations at protein-protein interfaces: Small changes over big surfaces have large impacts on human health.

    Science.gov (United States)

    Jubb, Harry C; Pandurangan, Arun P; Turner, Meghan A; Ochoa-Montaño, Bernardo; Blundell, Tom L; Ascher, David B

    2017-09-01

    Many essential biological processes including cell regulation and signalling are mediated through the assembly of protein complexes. Changes to protein-protein interaction (PPI) interfaces can affect the formation of multiprotein complexes, and consequently lead to disruptions in interconnected networks of PPIs within and between cells, further leading to phenotypic changes as functional interactions are created or disrupted. Mutations altering PPIs have been linked to the development of genetic diseases including cancer and rare Mendelian diseases, and to the development of drug resistance. The importance of these protein mutations has led to the development of many resources for understanding and predicting their effects. We propose that a better understanding of how these mutations affect the structure, function, and formation of multiprotein complexes provides novel opportunities for tackling them, including the development of small-molecule drugs targeted specifically to mutated PPIs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Two crystal structures of dihydrofolate reductase-thymidylate synthase from Cryptosporidium hominis reveal protein–ligand interactions including a structural basis for observed antifolate resistance

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Amy C., E-mail: aca@dartmouth.edu [Dartmouth College, Department of Chemistry, Burke Laboratories, Hanover, NH 03755 (Un