WorldWideScience

Sample records for human multidrug resistance-associated

  1. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump

    NARCIS (Netherlands)

    Zaman, G. J.; Flens, M. J.; van Leusden, M. R.; de Haas, M.; Mülder, H. S.; Lankelma, J.; Pinedo, H. M.; Scheper, R. J.; Baas, F.; Broxterman, H. J.

    1994-01-01

    The multidrug-resistance associated protein MRP is a 180- to 195-kDa membrane protein associated with resistance of human tumor cells to cytotoxic drugs. We have investigated how MRP confers drug resistance in SW-1573 human lung carcinoma cells by generating a subline stably transfected with an

  2. Contribution of aquaporin 9 and multidrug resistance-associated protein 2 to differential sensitivity to arsenite between primary cultured chorion and amnion cells prepared from human fetal membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, Yuta [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Yuan, Bo, E-mail: yuanbo@toyaku.ac.jp [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th St, RH584E Box 2911 San Francisco, CA 94158-2911 (United States); Kaise, Toshikazu [Laboratory of Environmental Chemodynamics, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Takeichi, Makoto [Yoneyama Maternity Hospital, 2-12 Shin-machi, Hachioji, Tokyo 192-0065 (Japan); Tanaka, Sachiko; Hirano, Toshihiko [Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan); Kroetz, Deanna L. [Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, 1550 4th St, RH584E Box 2911 San Francisco, CA 94158-2911 (United States); Toyoda, Hiroo [Department of Clinical Molecular Genetics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 (Japan)

    2011-12-15

    Arsenic trioxide (arsenite, As{sup III}) has shown a remarkable clinical efficacy, whereas its side effects are still a serious concern. Therefore, it is critical to understand the effects of As{sup III} on human-derived normal cells for revealing the mechanisms underlying these side effects. We examined the effects of As{sup III} on primary cultured chorion (C) and amnion (A) cells prepared from human fetal membranes. A significant dose-dependent As{sup III}-mediated cytotoxicity was observed in the C-cells accompanied with an increase of lactate dehydrogenase (LDH) release. Higher concentrations of As{sup III} were required for the A-cells to show cytotoxicity and LDH release, suggesting that the C-cells were more sensitive to As{sup III} than the A-cells. The expression levels of aquaporin 9 (AQP9) were approximately 2 times higher in the C-cells than those in the A-cells. Both intracellular arsenic accumulation and its cytotoxicity in the C-cells were significantly abrogated by sorbitol, a competitive AQP9 inhibitor, in a dose-dependent manner. The protein expression levels of multidrug resistance-associated protein (MRP) 2 were downregulated by As{sup III} in the C-cells, but not in the A-cells. No significant differences in the expression levels of MRP1 were observed between C- and A-cells. The protein expression of P-glycoprotein (P-gp) was hardly detected in both cells, although a detectable amount of its mRNA was observed. Cyclosporine A, a broad-spectrum inhibitor for ABC transporters, and MK571, a MRP inhibitor, but not PGP-4008, a P-gp specific inhibitor, potently sensitized both cells to As{sup III}-mediated cytotoxicity. These results suggest that AQP9 and MRP2 are involved in controlling arsenic accumulation in these normal cells, which then contribute to differential sensitivity to As{sup III} cytotoxicity between these cells. -- Highlights: Black-Right-Pointing-Pointer Examination of effect of As{sup III} on primary cultured chorion (C) and amnion

  3. Contribution of aquaporin 9 and multidrug resistance-associated protein 2 to differential sensitivity to arsenite between primary cultured chorion and amnion cells prepared from human fetal membranes

    International Nuclear Information System (INIS)

    Yoshino, Yuta; Yuan, Bo; Kaise, Toshikazu; Takeichi, Makoto; Tanaka, Sachiko; Hirano, Toshihiko; Kroetz, Deanna L.; Toyoda, Hiroo

    2011-01-01

    Arsenic trioxide (arsenite, As III ) has shown a remarkable clinical efficacy, whereas its side effects are still a serious concern. Therefore, it is critical to understand the effects of As III on human-derived normal cells for revealing the mechanisms underlying these side effects. We examined the effects of As III on primary cultured chorion (C) and amnion (A) cells prepared from human fetal membranes. A significant dose-dependent As III -mediated cytotoxicity was observed in the C-cells accompanied with an increase of lactate dehydrogenase (LDH) release. Higher concentrations of As III were required for the A-cells to show cytotoxicity and LDH release, suggesting that the C-cells were more sensitive to As III than the A-cells. The expression levels of aquaporin 9 (AQP9) were approximately 2 times higher in the C-cells than those in the A-cells. Both intracellular arsenic accumulation and its cytotoxicity in the C-cells were significantly abrogated by sorbitol, a competitive AQP9 inhibitor, in a dose-dependent manner. The protein expression levels of multidrug resistance-associated protein (MRP) 2 were downregulated by As III in the C-cells, but not in the A-cells. No significant differences in the expression levels of MRP1 were observed between C- and A-cells. The protein expression of P-glycoprotein (P-gp) was hardly detected in both cells, although a detectable amount of its mRNA was observed. Cyclosporine A, a broad-spectrum inhibitor for ABC transporters, and MK571, a MRP inhibitor, but not PGP-4008, a P-gp specific inhibitor, potently sensitized both cells to As III -mediated cytotoxicity. These results suggest that AQP9 and MRP2 are involved in controlling arsenic accumulation in these normal cells, which then contribute to differential sensitivity to As III cytotoxicity between these cells. -- Highlights: ► Examination of effect of As III on primary cultured chorion (C) and amnion (A) cells. ► Dose-dependent As III -mediated cytotoxicity in C

  4. Interaction of hepatocyte nuclear factors in transcriptional regulation of tissue specific hormonal expression of human multidrug resistance-associated protein 2 (abcc2)

    International Nuclear Information System (INIS)

    Qadri, Ishtiaq; Hu, L.-J.; Iwahashi, Mieko; Al-Zuabi, Subhi; Quattrochi, Linda C.; Simon, Francis R.

    2009-01-01

    Multidrug resistance-associated protein 2 (MRP2) (ABCC2) is an ATP-binding cassette membrane protein located primarily on apical surface of hepatocytes that mediates transport of conjugated xenobiotics and endogenous compounds into bile. MRP2 is highly expressed in hepatocytes, and at lower levels in small intestines, stomach and kidney. Previous reports have characterized mammalian MRP2 promoters, but none have established the molecular mechanism(s) involved in liver enriched expression. This study aims to investigate the mechanism of hepatic MRP2 regulation. A 2130 bp of MRP2 promoter was cloned from PAC-1 clone P108G1-7, to identify putative liver specific/hormone responsive functional DNA binding sites. Using deletion analysis, site specific mutagenesis and co-transfection studies, liver specific expression was determined. MRP2 promoter-LUC constructs were highly expressed in liver cell lines compared to non-liver cells. The region extending from - 3 to+ 458 bp of MRP2 promoter starting from AUG contained the potential binding sites for CAAATT box enhancer binding protein (C/EBP), hepatocytes nuclear factor 1, 3 and 4 (HNF1, HNF3, and HNF4. Only HNF1 and HNF4 co-transfection with MRP2 luciferase increased expression. Site specific mutational analysis of HNF1 binding site indicated an important role for HNF1α. HNF4α induction of MRP2 was independent of HNF1 binding site. C/EBP, HNF3, and HNF6 inhibited HNF1α while HNF4α induced MRP2 luciferase expression and glucocorticoids stimulated MRP2 expression. This study emphasizes the complex regulation of MRP2 with HNF1α and HNF4α playing a central role. The coordinated regulation of xenobiotic transporters and oxidative conjugation may determine the adaptive responses to cellular detoxification processes

  5. R-Flurbiprofen Traps Prostaglandins within Cells by Inhibition of Multidrug Resistance-Associated Protein-4.

    Science.gov (United States)

    Wobst, Ivonne; Ebert, Lisa; Birod, Kerstin; Wegner, Marthe-Susanna; Hoffmann, Marika; Thomas, Dominique; Angioni, Carlo; Parnham, Michael J; Steinhilber, Dieter; Tegeder, Irmgard; Geisslinger, Gerd; Grösch, Sabine

    2016-12-30

    R -flurbiprofen is the non-COX-inhibiting enantiomer of flurbiprofen and is not converted to S -flurbiprofen in human cells. Nevertheless, it reduces extracellular prostaglandin E₂ (PGE₂) in cancer or immune cell cultures and human extracellular fluid. Here, we show that R -flurbiprofen acts through a dual mechanism: (i) it inhibits the translocation of cPLA 2α to the plasma membrane and thereby curtails the availability of arachidonic acid and (ii) R -flurbiprofen traps PGE₂ inside of the cells by inhibiting multidrug resistance-associated protein 4 (MRP4, ABCC4), which acts as an outward transporter for prostaglandins. Consequently, the effects of R -flurbiprofen were mimicked by RNAi-mediated knockdown of MRP4. Our data show a novel mechanism by which R -flurbiprofen reduces extracellular PGs at physiological concentrations, particularly in cancers with high levels of MRP4, but the mechanism may also contribute to its anti-inflammatory and immune-modulating properties and suggests that it reduces PGs in a site- and context-dependent manner.

  6. Localization of multidrug resistance-associated protein 2 in the nonpigmented ciliary epithelium of the eye.

    Science.gov (United States)

    Pelis, Ryan M; Shahidullah, Mohammad; Ghosh, Sikha; Coca-Prados, Miguel; Wright, Stephen H; Delamere, Nicholas A

    2009-05-01

    The nonpigmented epithelium (NPE) of the ciliary body represents an important component of the blood-aqueous barrier of the eye. Many therapeutic drugs penetrate poorly across the NPE into the aqueous humor of the eye interior. Several of these therapeutic drugs, such as methotrexate, vincristine, and etoposide, are substrates of the multidrug resistance-associated protein 2 (MRP2). Abundant MRP2 protein was detected by Western blot in homogenates of human ciliary body and freshly dissected porcine NPE. In cultured porcine NPE, the intracellular accumulation of the MRP2 substrates calcein (1.8-fold), 5-(and-6)-carboxy-2',7'-dichlorofluorescein (22.1-fold), and doxorubicin (1.9-fold) was significantly increased in the presence of 50 microM MK571 ((E)-3-[[[3-[2-(7-chloro-2-quinolinyl)-ethenyl]phenyl]-[[3-dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid), an MRP inhibitor. In addition, the intracellular accumulation of the MRP2 substrate glutathione methylfluorescein was increased by 50 microM MK571 (4.3-fold), 500 microM indomethacin (2.6-fold), and 50 microM cyclosporin A (2.1-fold) but not by 500 microM sulfinpyrazone. These data are consistent with MRP2-mediated transport activity in cultured NPE, and MRP2 mRNA (reverse transcriptase-polymerase chain reaction) and protein (Western blot) were detected in the cultured cells. Immunolocalization studies in native human and porcine eyes showed MRP2 protein at the apical interface of the NPE and pigmented cell layers. Close examination of MRP2 immunoreactivity supported the conclusion that MRP2 is localized in the apical membrane of the NPE. MRP2 at the apical membrane of NPE cells may be involved in protecting intraocular tissues from exposure to potentially harmful toxins.

  7. Isolation and Cloning of cDNA Fragment of Gene Encoding for Multidrug Resistance Associated Protein from M. affine.

    Directory of Open Access Journals (Sweden)

    Utut Widyastuti Suharsono

    2008-11-01

    Full Text Available Isolation and Cloning of cDNA Fragment of Gene Encoding for Multidrug Resistance Associated Protein from M. affine. M. affine can grow well in acid soil with high level of soluble aluminum. One of the important proteins in the detoxifying xenobiotic stress including acid and Al stresses is a multidrug resistance associated protein (MRP encoded by mrp gene. The objective of this research is to isolate and clone the cDNA fragment of MaMrp encoding MRP from M. affine. By reverse transcription, total cDNA had been synthesized from the total RNA as template. The fragment of cDNA MaMrp had been successfully isolated by PCR by using total cDNA as template and mrp primer designed from A. thaliana, yeast, and human. This fragment was successfully inserted into pGEM-T Easy and the recombinant plasmid was successfully introduced into E. coli DH5α. Nucleotide sequence analysis showed that the lenght of MaMrp fragment is 633 bp encoding 208 amino acids. Local alignment analysis based on nucleotide of mRNA showed that MaMrp fragment is 69% identical to AtMrp1 and 63% to AtMrp from A. thaliana. Based on deduced amino acid sequence, MaMRP is 84% identical to part of AtMRP13, 77% to AtMRP12, and 73% to AtMRP1 from A. thaliana respectively. Alignment analysis with AtMRP1 showed that MaMRP fragment is located in TM1 and NBF1 domains and has a specific amino acid sequence QCKAQLQNMEEE.

  8. Functional analysis of P-glycoprotein and multidrug resistance associated protein related multidrug resistance in AML-blasts.

    Science.gov (United States)

    Brügger, D; Herbart, H; Gekeler, V; Seitz, G; Liu, C; Klingebiel, T; Orlikowsky, T; Einsele, H; Denzlinger, C; Bader, P; Niethammer, D; Beck, J F

    1999-05-01

    Despite the high effectiveness of various P-glycoprotein (P-gp) modulating substances in vitro their clinical value e.g. for combination treatment of acute myelogenous leukemias (AML) remains still unclear. This might be explainable by recent findings that other factors than P-gp (e.g. the multidrug resistance associated protein (MRP)) may also be involved in clinical occurring drug resistance. To study P-gp and MRP mediated MDR in AML blasts from patients with relapses at the functional level we measured rhodamine 123 (RHO) efflux in combination with a P-gp specific (SDZ PSC 833) or a MRP specific (MK571) modulator, respectively. Furthermore, direct antineoplastic drug action was monitored by determination of damaged cell fraction of a blast population using flow cytometry. We generally found strongly modulated RHO efflux by SDZ PSC 833 but slight RHO-efflux modulation by MK571 in blasts from relapsed states of AML expressing MDR1 or MRP mRNA at various levels. We could not demonstrate, though, significant PSC 833 or MK571 mediated modulation of the cytotoxic effects of etoposide. The results point to the possibility that combination of etoposide and a modulator might not improve responses to chemotherapy by targeting P-gp or MRP exclusively.

  9. Molecular evidence and functional expression of multidrug resistance associated protein (MRP) in rabbit corneal epithelial cells.

    Science.gov (United States)

    Karla, Pradeep K; Pal, Dananjay; Mitra, Ashim K

    2007-01-01

    Multidrug resistance associated protein (MRP) is a major family of efflux transporters involved in drug efflux leading to drug resistance. The objective of this study was to explore physical barriers for ocular drug absorption and to verify if the role of efflux transporters. MRP-2 is a major homologue of MRP family and found to express on the apical side of cell membrane. Cultured Rabbit Corneal Epithelial Cells (rCEC) were selected as an in vitro model for corneal epithelium. [14C]-erythromycin which is a proven substrate for MRP-2 was selected as a model drug for functional expression studies. MK-571, a known specific and potent inhibitor for MRP-2 was added to inhibit MRP mediated efflux. Membrane fraction of rCEC was used for western blot analysis. Polarized transport of [14C]-erythromycin was observed in rCEC and transport from B-->A was significantly high than from A-->B. Permeability's increased significantly from A-->B in the presence of MK-571 and ketoconozole. Uptake of [14C]-erythromycin in the presence of MK-571 was significantly higher than control in rCEC. RT-PCR analysis indicated a unique and distinct band at approximately 498 bp corresponding to MRP-2 in rCEC and MDCK11-MRP-2 cells. Immunoprecipitation followed by Western Blot analysis indicated a specific band at approximately 190 kDa in membrane fraction of rCEC and MDCK11-MRP-2 cells. For the first time we have demonstrated high expression of MRP-2 in rabbit corneal epithelium and its functional activity causing drug efflux. RT-PCR, immunoprecipitation followed by Western blot analysis further confirms the result.

  10. Surveillance of multidrug resistance-associated genes in Acinetobacter baumannii isolates from elderly patients

    Directory of Open Access Journals (Sweden)

    Zhe DONG

    2012-03-01

    Full Text Available Objective To understand the status of multidrug resistance-associated genes carried by Acinetobacter baumannii isolates from elderly patients in our hospital in order to provide a basis for surveillance of drug-resistance and inflection control. Methods One hundred and twenty A. baumannii isolates were collected from elderly patients between 2008 and 2010. The mean age of the patients was 85 (65 to 95 years. Whonet 5.6 software was used to analyze the resistance rate of 16 antimicrobial agents. Polymerase chain reaction (PCR and the sequencing method were adopted to detect 10 kinds of resistance genes (blaOXA-51-like, blaOXA- 23-like, blaOXA-24-like, blaOXA-58-like, blaTEM, blaampC, armA, ISAba1, intI 1, and intI 2. The corresponding resistance gene profiling(RGP was analyzed and designated according to the status of resistance genes. Results The resistance rates to the remaining 15 kinds of antibiotics varied between 70.8% and 97.5%, with the exception of the sensitivity rate to polymyxin B by up to more than 90%. The positivity rates of blaOXA-51-like, blaOXA-23-like, blaOXA-58-like, blaTEM, blaampC, armA, ISAba1 and intI 1 were 100%, 81.7%, 0.8%, 10.8%, 91.7%, 81.7%, 86.7%, and 83.3% respectively. A total of 18 kinds of drug-resistant gene maps were found, but blaOXA-24-like and intI 2 were not detected. Among these gene maps, the rate of RGP1 (blaOXA-23-like+blaampC+armA+ISAba1+ intI 1 was as high as 60.8%. Conclusions A. baumannii isolates from elderly patients have a higher carrying rate of drug-resistant genes, resulting in severe multidrugresistant conditions. Therefore, full-time infection control personnel and clinical physicians should actively participate in the surveillance, prevention, and control of infections caused by A. baumannii in the elderly.

  11. Modulation of expression and activity of intestinal multidrug resistance-associated protein 2 by xenobiotics

    Energy Technology Data Exchange (ETDEWEB)

    Tocchetti, Guillermo Nicolás [Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 570, 2000 Rosario (Argentina); Rigalli, Juan Pablo [Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 570, 2000 Rosario (Argentina); Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg (Germany); Arana, Maite Rocío; Villanueva, Silvina Stella Maris [Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 570, 2000 Rosario (Argentina); Mottino, Aldo Domingo, E-mail: amottino@unr.edu.ar [Instituto de Fisiología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 570, 2000 Rosario (Argentina)

    2016-07-15

    The multidrug resistance-associated protein 2 (MRP2/ABCC2) is a transporter that belongs to the ATP-binding cassette (ABC) superfamily. In the intestine, it is localized to the apical membrane of the enterocyte and plays a key role in limiting the absorption of xenobiotics incorporated orally. MRP2 may also play a role in systemic clearance of xenobiotics available from the serosal side of the intestine. MRP2 transports a wide range of substrates, mainly organic anions conjugated with glucuronic acid, glutathione and sulfate and its expression can be modulated by xenobiotics at transcriptional- and post-transcriptional levels. Transcriptional regulation is usually mediated by a group of nuclear receptors. The pregnane X receptor (PXR) is a major member of this group. Relevant drugs described to up-regulate intestinal MRP2 via PXR are rifampicin, spironolactone and carbamazepine, among others. The constitutive androstane receptor (CAR, NR1I3) was also reported to modulate MRP2 expression, phenobarbital being a typical activator. Dietary compounds, including micronutrients and other natural products, are also capable of regulating intestinal MRP2 expression transcriptionally. We have given them particular attention since the composition of the food ingested daily is not necessarily supervised and may result in interactions with therapeutic drugs. Post-transcriptional regulation of MRP2 activity by xenobiotics, e.g. as a consequence of inhibitory actions, is also described in this review. Unfortunately, only few studies report on drug-drug or nutrient-drug interactions as a consequence of modulation of intestinal MRP2 activity by xenobiotics. Future clinical studies are expected to identify additional interactions resulting in changes in efficacy or safety of therapeutic drugs. - Highlights: • Intestinal MRP2 (ABCC2) expression and activity can be regulated by xenobiotics. • PXR and CAR are major MRP2 modulators through a transcriptional mechanism. • Rifampicin

  12. R-Flurbiprofen Traps Prostaglandins within Cells by Inhibition of Multidrug Resistance-Associated Protein-4

    Directory of Open Access Journals (Sweden)

    Ivonne Wobst

    2016-12-01

    Full Text Available R-flurbiprofen is the non-COX-inhibiting enantiomer of flurbiprofen and is not converted to S-flurbiprofen in human cells. Nevertheless, it reduces extracellular prostaglandin E2 (PGE2 in cancer or immune cell cultures and human extracellular fluid. Here, we show that R-flurbiprofen acts through a dual mechanism: (i it inhibits the translocation of cPLA2α to the plasma membrane and thereby curtails the availability of arachidonic acid and (ii R-flurbiprofen traps PGE2 inside of the cells by inhibiting multidrug resistance–associated protein 4 (MRP4, ABCC4, which acts as an outward transporter for prostaglandins. Consequently, the effects of R-flurbiprofen were mimicked by RNAi-mediated knockdown of MRP4. Our data show a novel mechanism by which R-flurbiprofen reduces extracellular PGs at physiological concentrations, particularly in cancers with high levels of MRP4, but the mechanism may also contribute to its anti-inflammatory and immune-modulating properties and suggests that it reduces PGs in a site- and context-dependent manner.

  13. Expression of multidrug resistance associated protein 5 (MRP5) on cornea and its role in drug efflux.

    Science.gov (United States)

    Karla, Pradeep K; Quinn, Tim L; Herndon, Betty L; Thomas, Priscilla; Pal, Dhananjay; Mitra, Ashim

    2009-04-01

    The purpose of this manuscript is to investigate the presence of nucleoside/nucleotide efflux transporter in cornea and to evaluate the role in ocular drug efflux. RT-PCR, immunoprecipitation followed by Western blot analysis and immunostaining were employed to establish molecular presence of multidrug resistance associated protein 5 (MRP5) on cornea. Corneal efflux by MRP5 was studied with bis(POM)-PMEA and acyclovir using rabbit and human corneal epithelial cells along with MRP5 over expressing cells (MDCKII-MRP5). Ex vivo studies using excised rabbit cornea and in vivo ocular microdialysis in male New Zealand white rabbits were used to further evaluate the role of MRP5 in conferring ocular drug resistance. RT-PCR confirms the expression of MRP5 in both rabbit and human corneal epithelial cells along with MDCKII-MRP5 cells. Immunoprecipitation followed by Western blot analysis using a rat (M511-54) monoclonal antibody that reacts with human epitope confirms the expression of MRP5 protein in human corneal epithelial cells and MDCKII-MRP5 cells. Immunostaining performed on human cornea indicates the localization of this efflux pump on both epithelium and endothelium. Efflux studies reveal that depletion of ATP decreased PMEA efflux significantly. MRP5 inhibitors also diminished PMEA and acyclovir efflux. However, depletion of glutathione did not alter efflux. MDR1 and MRP2 did not contribute to PMEA efflux. However, MRP2 is involved in acyclovir efflux while MDR1 do not participate in this process. TLC/autoradiography suggested the conversion of bis(POM)-PMEA to PMEA in rabbit and human corneal epithelial cells. Two well known antiglaucoma drugs, bimatoprost and latanoprost were rapidly effluxed by MRP5. Ex vivo study on intact rabbit corneas demonstrated accumulation of PMEA in cornea in the presence of ATP-depleting medium. In vivo ocular pharmacokinetics also revealed a significant increase in maximum aqueous humor concentration (C(max)) and area under the

  14. Expression of P-glycoprotein and multidrug resistance associated protein in Ehrlich ascites tumor cells after fractionated irradiation

    DEFF Research Database (Denmark)

    Nielsen, D; Maare, C; Eriksen, J

    2001-01-01

    PURPOSE: To characterize irradiated murine tumor cells with respect to drug resistance, drug kinetics, and ATPase activity, and to evaluate the possible role of P-glycoprotein (PGP) and murine multidrug resistance associated protein (Mrp1) in the drug-resistant phenotype of these cells. METHODS...... AND MATERIALS: Sensitive Ehrlich ascites tumor cells (EHR2) were in vitro exposed to fractionated irradiation (60 Gy). Western blot analysis was performed for determination of PGP and Mrp1, reverse transcriptase-polymerase chain reaction (RT-PCR) for determination of mdr1a + b mRNA, and semiquantitative RT......-PCR for Mrp1 mRNA. The clonogenic assay was applied to investigate sensitivity, whereas the steady-state drug accumulation of daunorubicin (DNR), 3H-vincristine (VCR), and 3H-etoposide (VP16) was measured by spectrofluorometry and scintillation counting, respectively. For determining of ATPase activity...

  15. The expression and significance of P-glycoprotein, lung resistance protein and multidrug resistance-associated protein in gastric cancer

    Directory of Open Access Journals (Sweden)

    Li Yan

    2009-11-01

    Full Text Available Abstract Background To detect the expression of multidrug resistance molecules P-glycoprotein (P-gp, Lung resistnce protein (LRP and Multidrug resistance-associated protein (MRP and analyze the relationship between them and the clinico-pathological features. Methods The expressions of P-gp, LRP and MRP in formalin-fixed paraffin-embedded tissue sections from 59 gastric cancer patients were determined by a labbelled Streptavidin-Peroxidase (SP immunohistochemical technique, and the results were analyzed in correlation with clinicopathological data. None of these patients received chemotherapy prior to surgery. Results The positive rates of P-gp, LRP, MRP were 86.4%, 84.7% and 27.1%, respectively. The difference between the positive rate of P-gp and MRP was significant statistically, as well as the difference between the expression of MRP and LRP. No significant difference was observed between P-gp and LRP, but the positively correlation between the expression of P-gp and LRP had been found. No significant correlation between the expression of P-gp, LRP, MRP and the grade of differentiation were observed. The expression of P-gp was correlated with clinical stages positively (r = 0.742, but the difference with the expression of P-gp in different stages was not significant. Conclusion The expressions of P-gp, LRP and MRP in patients with gastric cancer without prior chemotherapy are high, indicating that innate drug resistance may exist in gastric cancer.

  16. THE ROLE OF MULTIDRUG RESISTANCE ASSOCIATED PROTEIN (MRP) IN THE BLOOD-BRAIN BARRIER AND OPIOID ANALGESIA

    Science.gov (United States)

    Su, Wendy; Pasternak, Gavril W.

    2013-01-01

    The blood brain barrier protects the brain from circulating compounds and drugs. The ATP-binding cassette (ABC) transporter P-glycoprotein (Pgp) is involved with the barrier, both preventing the influx of agent from the blood into the brain and facilitating the efflux of compounds from the brain into the blood, raising the possibility of a similar role for other transporters. Multidrug resistance associated protein (MRP), a 190 kDa protein similar to Pgp is also ABC transport that has been implicated in the blood brain barrier. The current study explores its role in opioid action. Immunohistochemically, it is localized in the choroid plexus in ratsand can be selectively downregulated by antisense treatment at both the level of mRNA, as shown by RT-PCR, and protein, as demonstrated immunohistochemically. Behaviorally, downregulation of MRP significantly enhances the analgesic potency of systemic morphine in MRP knockout mice and in antisense-treated rats by lowering the blood brain barrier. Following intracerebroventricular administration, a number of compounds, including some opioids, are rapidly secreted from the brain into the blood where they contribute to the overall analgesic effects by activating peripheral systems. MRP plays a role in this efflux. Downregulating MRP expression leads to a corresponding decrease in the transport and a diminished analgesic response from opioids administered intracerebroventricularly. Thus, the transporter protein MRP plays a role in maintaining the blood-brain barrier and modulates the activity of opioids. PMID:23508590

  17. Multidrug resistance-associated protein-1 (MRP1 genetic variants, MRP1 protein levels and severity of COPD

    Directory of Open Access Journals (Sweden)

    Rutgers Bea

    2010-05-01

    Full Text Available Abstract Background Multidrug resistance-associated protein-1 (MRP1 protects against oxidative stress and toxic compounds generated by cigarette smoking, which is the main risk factor for chronic obstructive pulmonary disease (COPD. We have previously shown that single nucleotide polymorphisms (SNPs in MRP1 significantly associate with level of FEV1 in two independent population based cohorts. The aim of our study was to assess the associations of MRP1 SNPs with FEV1 level, MRP1 protein levels and inflammatory markers in bronchial biopsies and sputum of COPD patients. Methods Five SNPs (rs212093, rs4148382, rs504348, rs4781699, rs35621 in MRP1 were genotyped in 110 COPD patients. The effects of MRP1 SNPs were analyzed using linear regression models. Results One SNP, rs212093 was significantly associated with a higher FEV1 level and less airway wall inflammation. Another SNP, rs4148382 was significantly associated with a lower FEV1 level, higher number of inflammatory cells in induced sputum and with a higher MRP1 protein level in bronchial biopsies. Conclusions This is the first study linking MRP1 SNPs with lung function and inflammatory markers in COPD patients, suggesting a role of MRP1 SNPs in the severity of COPD in addition to their association with MRP1 protein level in bronchial biopsies.

  18. Expression of P-glycoprotein and multidrug resistance associated protein in Ehrlich ascites tumor cells after fractionated irradiation

    International Nuclear Information System (INIS)

    Nielsen, Dorte; Maare, Christian; Eriksen, Jens; Litman, Thomas; Skovsgaard, Torben

    2001-01-01

    Purpose: To characterize irradiated murine tumor cells with respect to drug resistance, drug kinetics, and ATPase activity, and to evaluate the possible role of P-glycoprotein (PGP) and murine multidrug resistance associated protein (Mrp1) in the drug-resistant phenotype of these cells. Methods and Materials: Sensitive Ehrlich ascites tumor cells (EHR2) were in vitro exposed to fractionated irradiation (60 Gy). Western blot analysis was performed for determination of PGP and Mrp1, reverse transcriptase-polymerase chain reaction (RT-PCR) for determination of mdr1a + b mRNA, and semiquantitative RT-PCR for Mrp1 mRNA. The clonogenic assay was applied to investigate sensitivity, whereas the steady-state drug accumulation of daunorubicin (DNR), 3 H-vincristine (VCR), and 3 H-etoposide (VP16) was measured by spectrofluorometry and scintillation counting, respectively. For determining of ATPase activity, the release of inorganic phosphate from ATP was quantified using a colorimetric method. Results: Compared with EHR2, the irradiated cell line EHR2/irr showed increased expression of PGP (threefold), Mrp1 (eightfold), and Mrp1 mRNA (sixfold), and a slight reduction of mdr1b mRNA, whereas mdr1a was present in EHR2 but could not be detected in EHR2/irr. EHR2/irr developed sixfold resistance to VP16, twofold resistance to vincristine, but remained sensitive to DNR. Addition of the PGP inhibitor, verapamil (VER) or depletion of glutathione by buthionine sulfoximine (BSO) partly reversed the resistance in EHR2/irr. In EHR2/irr, the steady-state accumulation of 3 H-VCR and 3 H-VP16 was significantly decreased as compared with EHR2, whereas the accumulation of DNR was unchanged. The ATPase activity of plasma membrane vesicles prepared from EHR2/irr cells was similar to that of wild-type EHR2 cells. The ATPase activity was neither stimulated by vinblastine nor VER. Conclusion: Irradiation induced a multidrug-resistant phenotype in sensitive tumor cells. This phenotype was

  19. Modulation of trabectedin (ET-743) hepatobiliary disposition by multidrug resistance-associated proteins (Mrps) may prevent hepatotoxicity

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Leslie, Elaine M.; Zamek-Gliszczynski, Maciej J.; Brouwer, Kim L.R.

    2008-01-01

    Trabectedin is a promising anticancer agent, but dose-limiting hepatotoxicity was observed during phase I/II clinical trials. Dexamethasone (DEX) has been shown to significantly reduce trabectedin-mediated hepatotoxicity. The current study was designed to assess the capability of sandwich-cultured primary rat hepatocytes (SCRH) to predict the hepato-protective effect of DEX against trabectedin-mediated cytotoxicity. The role of multidrug resistance-associated protein 2 (Mrp2; Abcc2) in trabectedin hepatic disposition also was examined. In SCRH from wild-type Wistar rats, cytotoxicity was observed after 24-h continuous exposure to trabectedin. SCRH pretreated with additional DEX (1 μM) exhibited a 2- to 3-fold decrease in toxicity at 100 nM and 1000 nM trabectedin. Unexpectedly, toxicity in SCRH from Mrp2-deficient (TR - ) compared to wild-type Wistar rats was markedly reduced. Depletion of glutathione from SCRH using buthionine sulfoximine (BSO) mitigated trabectedin toxicity associated with 100 nM and 1000 nM trabectedin. Western blot analysis demonstrated increased levels of CYP3A1/2 and Mrp2 in SCRH pretreated with DEX; interestingly, Mrp4 expression was increased in SCRH after BSO exposure. Trabectedin biliary recovery in isolated perfused livers from TR - rats was decreased by ∼ 75% compared to wild-type livers. In conclusion, SCRH represent a useful in vitro model to predict the hepatotoxicity of trabectedin observed in vivo. The protection by DEX against trabectedin-mediated cytotoxicity may be attributed, in part, to enhanced Mrp2 biliary excretion and increased metabolism by CYP3A1/2. Decreased trabectedin toxicity in SCRH from TR - rats, and in SCRH pretreated with BSO, may be due to increased basolateral excretion of trabectedin by Mrp3 and/or Mrp4

  20. Multidrug-resistance-associated protein plays a protective role in menadione-induced oxidative stress in endothelial cells.

    Science.gov (United States)

    Takahashi, Kyohei; Shibata, Tomohito; Oba, Tatsuya; Ishikawa, Tetsuya; Yoshikawa, Masahito; Tatsunami, Ryosuke; Takahashi, Kazuhiko; Tampo, Yoshiko

    2009-02-13

    Menadione, a redox-cycling quinone known to cause oxidative stress, binds to reduced glutathione (GSH) to form glutathione S-conjugate. Glutathione S-conjugates efflux is often mediated by multidrug-resistance-associated protein (MRP). We investigated the effect of a transporter inhibitor, MK571 (3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid), on menadione-induced oxidative stress in bovine aortic endothelial cells (BAECs). BAECs were treated with menadione and MK571, and cell viability was measured. Modulation of intracellular GSH levels was performed with buthionine sulfoximine and GSH ethyl ester treatments. Intracellular superoxide was estimated by dihydroethidium oxidation using fluorescence microscopy or flow cytometry. Expression of MRP was determined by flow cytometry using phycoerythrin-conjugated anti-MRP monoclonal antibody. Intracellular GSH depletion by buthionine sulfoximine promoted the loss of viability of BAECs exposed to menadione. Exogenous GSH, which does not permeate the cell membrane, or GSH ethyl ester protected BAECs against the loss of viability induced by menadione. The results suggest that GSH binds to menadione outside the cells as well as inside. Pretreatment of BAECs with MK571 dramatically increased intracellular levels of superoxide generated from menadione, indicating that menadione may accumulate in the intracellular milieu. Finally, we found that MK571 aggravated menadione-induced toxicity in BAECs and that MRP levels were increased in menadione-treated cells. We conclude that MRP plays a vital role in protecting BAECs against menadione-induced oxidative stress, presumably due to its ability to transport glutathione S-conjugate.

  1. Multidrug resistance-associated protein 4 is a bile transporter of Clonorchis sinensis simulated by in silico docking.

    Science.gov (United States)

    Dai, Fuhong; Yoo, Won Gi; Lee, Ji-Yun; Lu, Yanyan; Pak, Jhang Ho; Sohn, Woon-Mok; Hong, Sung-Jong

    2017-11-21

    Multidrug resistance-associated protein 4 (MRP4) is a member of the C subfamily of the ABC family of ATP-binding cassette (ABC) transporters. MRP4 regulates ATP-dependent efflux of various organic anionic substrates and bile acids out of cells. Since Clonorchis sinensis lives in host's bile duct, accumulation of bile juice can be toxic to the worm's tissues and cells. Therefore, C. sinensis needs bile transporters to reduce accumulation of bile acids within its body. We cloned MRP4 (CsMRP4) from C. sinensis and obtained a cDNA encoding an open reading frame of 1469 amino acids. Phylogenetic analysis revealed that CsMRP4 belonged to the MRP/SUR/CFTR subfamily. A tertiary structure of CsMRP4 was generated by homology modeling based on multiple structures of MRP1 and P-glycoprotein. CsMRP4 had two membrane-spanning domains (MSD1 & 2) and two nucleotide-binding domains (NBD1 & 2) as common structural folds. Docking simulation with nine bile acids showed that CsMRP4 transports bile acids through the inner cavity. Moreover, it was found that CsMRP4 mRNA was more abundant in the metacercariae than in the adults. Mouse immune serum, generated against the CsMRP4-NBD1 (24.9 kDa) fragment, localized CsMRP4 mainly in mesenchymal tissues and oral and ventral suckers of the metacercariae and the adults. Our findings shed new light on MRPs and their homologs and provide a platform for further structural and functional investigations on the bile transporters and parasites' survival.

  2. Multidrug resistance-associated protein 4 is a bile transporter of Clonorchis sinensis simulated by in silico docking

    Directory of Open Access Journals (Sweden)

    Fuhong Dai

    2017-11-01

    Full Text Available Abstract Background Multidrug resistance-associated protein 4 (MRP4 is a member of the C subfamily of the ABC family of ATP-binding cassette (ABC transporters. MRP4 regulates ATP-dependent efflux of various organic anionic substrates and bile acids out of cells. Since Clonorchis sinensis lives in host’s bile duct, accumulation of bile juice can be toxic to the worm’s tissues and cells. Therefore, C. sinensis needs bile transporters to reduce accumulation of bile acids within its body. Results We cloned MRP4 (CsMRP4 from C. sinensis and obtained a cDNA encoding an open reading frame of 1469 amino acids. Phylogenetic analysis revealed that CsMRP4 belonged to the MRP/SUR/CFTR subfamily. A tertiary structure of CsMRP4 was generated by homology modeling based on multiple structures of MRP1 and P-glycoprotein. CsMRP4 had two membrane-spanning domains (MSD1 & 2 and two nucleotide-binding domains (NBD1 & 2 as common structural folds. Docking simulation with nine bile acids showed that CsMRP4 transports bile acids through the inner cavity. Moreover, it was found that CsMRP4 mRNA was more abundant in the metacercariae than in the adults. Mouse immune serum, generated against the CsMRP4-NBD1 (24.9 kDa fragment, localized CsMRP4 mainly in mesenchymal tissues and oral and ventral suckers of the metacercariae and the adults. Conclusions Our findings shed new light on MRPs and their homologs and provide a platform for further structural and functional investigations on the bile transporters and parasites’ survival.

  3. Comparative uptake of Tc-99m sestamibi and Tc-99m tetrofosmin in cancer cells and tissue expressing P-Glycoprotein or multidrug resistance associated protein

    International Nuclear Information System (INIS)

    Cho, Jung Ah; Lee, Jae Tae; Yoo, Jung Ah

    2005-01-01

    99m Tc-sestamibi(MIBI) and 99m Tc-tetrofosmin have been used as substrates for P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP), which are closely associated with multidrug resistance of the tumors. To understand different handling of radiotracers in cancer cell lines expressing Pgp and MRP, we compared cellular uptakes of 99m Tc-MIBI and 99m Tc-tetrofosmin. The effects of cyclosporin A (CsA), well-known multidrug resistant reversing agent, on the uptake of both tracers were also compared. HCT15/CL02 human colorectal cancer cells for Pgp expressing cells, and human non-small cell lung cancer A549 cells for MRP expressing cells, were used for in vitro and in vivo studies. RT-PCR, western blot analysis and immunohistochemistry were used for detection of Pgp and MRP. MDR-reversal effect with CsA was evaluated at different drug concentrations after incubation with MIBI or tetrofosmin. Radioactivities of supernatant and pellet were measured with gamma well counter. Tumoral uptake of the tracers were measured from tumor bearing nude mice treated with or without CsA. RT-PCR, western blot analysis of the cells and immunochemical staining revealed selective expression of Pgp and MRP for HCT15/CL02 and A549 cells, respectively. There were no significant difference in cellular uptakes of both tracers in HCT15/CL02 cells, but MIBI uptake was slightly higher than that of tetrofosmin in A549 cells. Co-incubation with CsA resulted in a increase in cellular uptakes of MIBI and tetrofosmin. Uptake of MIBI or tetrofosmin in HCT15/CL02 cells was increased by 10-and 2.4-fold, and by 7.5 and 6.3-fold in A549 cells, respectively. Percentage increase of MIBI was higher than that of tetrofosmin with CsA for both cells (ρ < 0.05). In vivo biodistribution study showed that MIBI (114% at 10 min, 257% at 60 min, 396% at 24C min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively increased by the time, up to 240 min with CsA. But

  4. Comparative uptake of Tc-99m sestamibi and Tc-99m tetrofosmin in cancer cells and tissue expressing P-Glycoprotein or multidrug resistance associated protein

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ah; Lee, Jae Tae; Yoo, Jung Ah [School of Medicine, Kyungpook National University, Daegu (Korea, Republic of)] (and others)

    2005-02-15

    {sup 99m}Tc-sestamibi(MIBI) and {sup 99m}Tc-tetrofosmin have been used as substrates for P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP), which are closely associated with multidrug resistance of the tumors. To understand different handling of radiotracers in cancer cell lines expressing Pgp and MRP, we compared cellular uptakes of {sup 99m}Tc-MIBI and {sup 99m}Tc-tetrofosmin. The effects of cyclosporin A (CsA), well-known multidrug resistant reversing agent, on the uptake of both tracers were also compared. HCT15/CL02 human colorectal cancer cells for Pgp expressing cells, and human non-small cell lung cancer A549 cells for MRP expressing cells, were used for in vitro and in vivo studies. RT-PCR, western blot analysis and immunohistochemistry were used for detection of Pgp and MRP. MDR-reversal effect with CsA was evaluated at different drug concentrations after incubation with MIBI or tetrofosmin. Radioactivities of supernatant and pellet were measured with gamma well counter. Tumoral uptake of the tracers were measured from tumor bearing nude mice treated with or without CsA. RT-PCR, western blot analysis of the cells and immunochemical staining revealed selective expression of Pgp and MRP for HCT15/CL02 and A549 cells, respectively. There were no significant difference in cellular uptakes of both tracers in HCT15/CL02 cells, but MIBI uptake was slightly higher than that of tetrofosmin in A549 cells. Co-incubation with CsA resulted in a increase in cellular uptakes of MIBI and tetrofosmin. Uptake of MIBI or tetrofosmin in HCT15/CL02 cells was increased by 10-and 2.4-fold, and by 7.5 and 6.3-fold in A549 cells, respectively. Percentage increase of MIBI was higher than that of tetrofosmin with CsA for both cells ({rho} < 0.05). In vivo biodistribution study showed that MIBI (114% at 10 min, 257% at 60 min, 396% at 24C min) and tetrofosmin uptake (110% at 10 min, 205% at 60 min, 410% at 240 min) were progressively increased by the time, up to

  5. Molecular and structural characteristics of multidrug resistance-associated protein 7 in Chinese liver fluke Clonorchis sinensis.

    Science.gov (United States)

    Dai, Fuhong; Yoo, Won Gi; Lee, Ji-Yun; Lu, Yanyan; Pak, Jhang Ho; Sohn, Woon-Mok; Hong, Sung-Jong

    2017-03-01

    Multidrug resistance-associated protein 7 (MRP7, ABCC10) is a C subfamily member of the ATP-binding cassette (ABC) superfamily. MRP7 is a lipophilic anion transporter that pumps endogenous and xenobiotic substrates from the cytoplasm to the extracellular milieu. Here, we cloned and characterized CsMRP7 as a novel ABC transporter from the Chinese liver fluke, Clonorchis sinensis. Full-length cDNA of CsMRP7 was 5174 nt, encoded 1636 amino acids (aa), and harbored a 147-bp 5'-untranslated region (5'-UTR) and 116-bp 3'-UTR. Phylogenetic analysis confirmed that CsMRP7 was closer to the ABCC subfamily than the ABCB subfamily. Tertiary structures of the N-terminal region (1-322 aa) and core region (323-1621 aa) of CsMRP7 were generated by homology modeling using glucagon receptor (PDB ID: 5ee7_A) and P-glycoprotein (PDB ID: 4f4c_A) as templates, respectively. CsMRP7 nucleotide-binding domain 2 (NBD2) was conserved more than NBD1, which was the sites of ATP binding and hydrolysis. Like typical long MRPs, CsMRP7 has an additional membrane-spanning domain 0 (MSD0) and cytoplasmic loop, along with a common structural fold consisting of MSD1-NBD1-MSD2-NBD2 as a single polypeptide assembly. MSD0, MSD1, and MSD2 consisted of TM1-7, TM8-13, and TM14-19, respectively. The CsMRP7 transcript was more abundant in the metacercariae than in the adult worms. Truncated NBD1 (39 kDa) and NBD2 (44 kDa) were produced in bacteria and mouse immune sera were raised. CsMRP7 was localized in the apical side of the intestinal epithelium, sperm in the testes and seminal receptacle, receptacle membrane, and mesenchymal tissue around intestine in the adult worm. These results provide molecular information and insights into structural and functional characteristics of CsMRP7 and homologs of flukes.

  6. Multidrug Resistance-Associated Protein 3 (Mrp3/Abcc3/Moat-D) Is Expressed in the SAE Squalus acanthias Shark Embryo–Derived Cell Line

    Science.gov (United States)

    Kobayashi, Hiroshi; Parton, Angela; Czechanski, Anne; Durkin, Christopher; Kong, Chi-Chon; Barnes, David

    2008-01-01

    The multidrug resistance-associated protein 3 (MRP3/Mrp3) is a member of the ATP-binding cassette (ABC) protein family of membrane transporters and related proteins that act on a variety of xenobiotic and anionic molecules to transfer these substrates in an ATP-dependent manner. In recent years, useful comparative information regarding evolutionarily conserved structure and transport functions of these proteins has accrued through the use of primitive marine animals such as cartilaginous fish. Until recently, one missing tool in comparative studies with cartilaginous fish was cell culture. We have derived from the embryo of Squalus acanthias, the spiny dogfish shark, the S. acanthias embryo (SAE) mesenchymal stem cell line. This is the first continuously proliferating cell line from a cartilaginous fish. We identified expression of Mrp3 in this cell line, cloned the molecule, and examined molecular and cellular physiological aspects of the protein. Shark Mrp3 is characterized by three membrane-spanning domains and two nucleotide-binding domains. Multiple alignments with other species showed that the shark Mrp3 amino acid sequence was well conserved. The shark sequence was overall 64% identical to human MRP3, 72% identical to chicken Mrp3, and 71% identical to frog and stickleback Mrp3. Highest identity between shark and human amino acid sequence (82%) was seen in the carboxyl-terminal nucleotide-binding domain of the proteins. Cell culture experiments showed that mRNA for the protein was induced as much as 25-fold by peptide growth factors, fetal bovine serum, and lipid nutritional components, with the largest effect mediated by a combination of lipids including unsaturated and saturated fatty acids, cholesterol, and vitamin E. PMID:18284333

  7. Multidrug resistance-associated protein 3 (Mrp3/Abcc3/Moat-D) is expressed in the SAE Squalus acanthias shark embryo-derived cell line.

    Science.gov (United States)

    Kobayashi, Hiroshi; Parton, Angela; Czechanski, Anne; Durkin, Christopher; Kong, Chi-Chon; Barnes, David

    2007-01-01

    The multidrug resistance-associated protein 3 (MRP3/Mrp3) is a member of the ATP-binding cassette (ABC) protein family of membrane transporters and related proteins that act on a variety of xenobiotic and anionic molecules to transfer these substrates in an ATP-dependent manner. In recent years, useful comparative information regarding evolutionarily conserved structure and transport functions of these proteins has accrued through the use of primitive marine animals such as cartilaginous fish. Until recently, one missing tool in comparative studies with cartilaginous fish was cell culture. We have derived from the embryo of Squalus acanthias, the spiny dogfish shark, the S. acanthias embryo (SAE) mesenchymal stem cell line. This is the first continuously proliferating cell line from a cartilaginous fish. We identified expression of Mrp3 in this cell line, cloned the molecule, and examined molecular and cellular physiological aspects of the protein. Shark Mrp3 is characterized by three membrane-spanning domains and two nucleotide-binding domains. Multiple alignments with other species showed that the shark Mrp3 amino acid sequence was well conserved. The shark sequence was overall 64% identical to human MRP3, 72% identical to chicken Mrp3, and 71% identical to frog and stickleback Mrp3. Highest identity between shark and human amino acid sequence (82%) was seen in the carboxyl-terminal nucleotide-binding domain of the proteins. Cell culture experiments showed that mRNA for the protein was induced as much as 25-fold by peptide growth factors, fetal bovine serum, and lipid nutritional components, with the largest effect mediated by a combination of lipids including unsaturated and saturated fatty acids, cholesterol, and vitamin E.

  8. Lack of Contribution of Multidrug Resistance-associated Protein and Organic Anion-transporting Polypeptide to Pharmacokinetics of Regorafenib, a Novel Multi-Kinase Inhibitor, in Rats.

    Science.gov (United States)

    Hotta, Kazuo; Ueyama, Jun; Tatsumi, Yasuaki; Tsukiyama, Ikuto; Sugiura, Yuka; Saito, Hiroko; Matsuura, Katsuhiko; Hasegawa, Takaaki

    2015-09-01

    We investigated whether hepatic multidrug resistance-associated protein 2 (ABCC2) is involved in the hepatobiliary excretion of regorafenib, a novel multi-kinase inhibitor, using Sprague-Dawley (SD) rats and Eisai hyperbilirubinemic rats (EHBR) lacking the efflux transporter ABCC2. The involvement of organic anion-transporting polypeptide 1 (OATP1; OATP in humans) and OATP2 in the hepatic uptake of regorafenib and their protein levels in the liver were also investigated in the two rat groups. When regorafenib (5 mg/kg) was administered intravenously, the plasma concentrations of regorafenib were higher in EHBR than those in SD rats. However, the slope of the plasma concentration-time curves was the same for the two groups. Although the apparent biliary clearance of regorafenib in EHBR was lower than that of SD rats, no significant difference in the biliary excretion rate was observed between them, suggesting that regorafenib is not a substrate for ABCC2 and is not excreted into bile by ABCC2. It was also found that the contribution of biliary excretion to the systemic elimination of regorafenib is small. The protein-binding profiles of regorafenib were found to be linear in both rat groups. The binding potency, which was very high in both rat groups (>99.5%), was significantly higher in EHBR than that in SD rats. No significant differences in the plasma concentrations of unbound regorafenib were observed between the two rat groups, suggesting that the differences observed in the pharmacokinetic behaviors of regorafenib between the two rat groups were due to differences in protein-binding. When the protein levels of hepatic OATP1 and OATP2 were measured by immunoblot analysis, the expression of both transporters in EHBR was less than 40% of that in SD rats. The present results suggest that regorafenib is not a substrate for OATP1 and OATP2. These findings suggest the possibility that ABCC2-mediated hepatobiliary excretion and OATP1/OATP2-mediated hepatic uptake do

  9. Expression of P-glycoprotein, multidrug resistance-associated protein, glutathione-S-transferase pi and p53 in canine transmissible venereal tumor

    Directory of Open Access Journals (Sweden)

    Daniel G. Gerardi

    2014-01-01

    Full Text Available The overexpression of proteins P-glycoprotein (P-gp, multidrug resistance-associated protein (MRP1, mutant p53, and the enzyme glutathione-S-transferase (GSTpi are related to resistance to chemotherapy in neoplasms. This study evaluated the expression of these markers by immunohistochemistry in two groups of canine TVT, without history of prior chemotherapy (TVT1, n=9 and in TVTs presented unsatisfactory clinical response to vincristine sulfate (TVT2, n=5. The percentage of specimens positively stained for P-gp, MRP1, GSTpi and p53 were, respectively 88.8%, 0%, 44.5% and 22.2% in TVT1 and 80%, 0%, 80% and 0% in TVT2. In TVT1, one specimen presented positive expression for three markers and four specimens for two markers. In TVT2, three specimens expressed P-gp and GSTpi. In conclusion, the canine TVTs studied expressed the four markers evaluated, but just P-gp and GSTpi were significantly expressed, mainly at cytoplasm and cytoplasm and nuclei, respectively, either before chemotherapy as after vincristine sulfate exposure. Future studies are needed to demonstrate the function of these two markers in conferring multidrug resistance (MDR or predict the response to chemotherapy in canine TVT.

  10. [Establishment of human multidrug-resistant lung carcinoma cell line (D6/MVP)].

    Science.gov (United States)

    Ma, Sheng-lin; Feng, Jian-guo; Gu, Lin-hui; Ling, Yu-tian

    2003-03-01

    To establish human multidrug-resistant lung carcinoma cell line (D6/MVP) with its characteristics studied. Intermittent administration of high-dose MMC, VDS and DDP (MVP) was used to induce human lung carcinoma cell line (D6) to a multidrug-resistant variety (D6/MVP). MTT assay was used to study the multidrug resistance of D6/MVP to multianticarcinogen. Flow cytometry was used to study the cell cycle distribution and the expression of P-gp, multidrug resistance-associated protein (MRP) and GSH/GST. 1. D6/MVP was resistant to many anti-tumor agents, with the IC(50) 13.3 times higher and the drug resistance 2 - 6 times higher than D6, 2. The multiplication time of D6/MVP was prolonged and the cell number of S-phase decreased while that of G1- and G(2)-phase increased and 3. The expression of P-gp and MRP was enhanced significantly (96.2% vs 51.7%), but the expression of GSH/GST kept stable. D6/MVP is a multidrug-resistant cell line possessing the basic characteristics of drug-resistance.

  11. Transport of the coumarin metabolite 7-hydroxycoumarin glucuronide is mediated via multidrug resistance-associated proteins 3 and 4.

    NARCIS (Netherlands)

    Wittgen, H.G.M.; Heuvel, J.J.M.W. van den; Broek, P.H.H. van den; Siissalo, S.; Groothuis, G.M.; Graaf, I.A. de; Koenderink, J.B.; Russel, F.G.M.

    2012-01-01

    Coumarin (1,2-benzopyrone) is a natural compound that has been used as a fragrance in the food and perfume industry and could have therapeutic usefulness in the treatment of lymphedema and different types of cancer. Several previous pharmacokinetic studies of coumarin have been performed in humans,

  12. Transport of the Coumarin Metabolite 7-Hydroxycoumarin Glucuronide Is Mediated via Multidrug Resistance-Associated Proteins 3 and 4

    NARCIS (Netherlands)

    Wittgen, Hanneke G. M.; van den Heuvel, Jeroen J. M. W.; van den Broek, Petra H. H.; Siissalo, Sanna; Groothuis, Geny M. M.; de Graaf, Inge A. M.; Koenderink, Jan B.; Russel, Frans G. M.

    Coumarin (1,2-benzopyrone) is a natural compound that has been used as a fragrance in the food and perfume industry and could have therapeutic usefulness in the treatment of lymphedema and different types of cancer. Several previous pharmacokinetic studies of coumarin have been performed in humans,

  13. Multidrug Resistance-associated Protein-1 (MRP-1)-dependent Glutathione Disulfide (GSSG) Efflux as a Critical Survival Factor for Oxidant-enriched Tumorigenic Endothelial Cells.

    Science.gov (United States)

    Gordillo, Gayle M; Biswas, Ayan; Khanna, Savita; Spieldenner, James M; Pan, Xueliang; Sen, Chandan K

    2016-05-06

    Endothelial cell tumors are the most common soft tissue tumors in infants. Tumor-forming endothelial (EOMA) cells are able to escape cell death fate despite excessive nuclear oxidant burden. Our previous work recognized perinuclear Nox-4 as a key contributor to EOMA growth. The objective of this work was to characterize the mechanisms by which EOMA cells evade oxidant toxicity and thrive. In EOMA cells, compared with in the cytosol, the nuclear GSSG/GSH ratio was 5-fold higher. Compared to the ratio observed in healthy murine aortic endothelial (MAE) cells, GSSG/GSH was over twice as high in EOMA cells. Multidrug resistance-associated protein-1 (MRP-1), an active GSSG efflux mechanism, showed 2-fold increased activity in EOMA compared with MAE cells. Hyperactive YB-1 and Ape/Ref-1 were responsible for high MRP-1 expression in EOMA. Proximity ligand assay demonstrated MRP-1 and YB-1 binding. Such binding enabled the nuclear targeting of MRP-1 in EOMA in a leptomycin-B-sensitive manner. MRP-1 inhibition as well as knockdown trapped nuclear GSSG, causing cell death of EOMA. Disulfide loading of cells by inhibition of GSSG reductase (bischoloronitrosourea) or thioredoxin reductase (auranofin) was effective in causing EOMA death as well. In sum, EOMA cells survive a heavy oxidant burden by rapid efflux of GSSG, which is lethal if trapped within the cell. A hyperactive MRP-1 system for GSSG efflux acts as a critical survival factor for these cells, making it a potential target for EOMA therapeutics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for the intestinal disposition and poor bioavailability of emodin

    International Nuclear Information System (INIS)

    Liu, Wei; Feng, Qian; Li, Ye; Ye, Ling; Hu, Ming; Liu, Zhongqiu

    2012-01-01

    Emodin is a poorly bioavailable but promising plant-derived anticancer drug candidate. The low oral bioavailability of emodin is due to its extensive glucuronidation in the intestine and liver. Caco-2 cell culture model was used to investigate the interplay between UDP-glucuronosyltransferases (UGTs) and efflux transporters in the intestinal disposition of emodin. Bidirectional transport assays of emodin at different concentrations were performed in the Caco-2 monolayers with or without multidrug resistance-associated protein (MRP) and breast cancer resistance protein (BCRP) efflux transporter chemical inhibitors. The bidirectional permeability of emodin and its glucuronide in the Caco-2 monolayers was determined. Emodin was rapidly metabolized to emodin glucuronide in Caco-2 cells. LTC4, a potent inhibitor of MRP2, decreased the efflux of emodin glucuronide and also substantially increased the intracellular glucuronide level in the basolateral-to-apical (B–A) direction. MK-571, chemical inhibitor of MRP2, MRP3, and MRP4, significantly reduced the efflux of glucuronide in the apical-to-basolateral (A–B) and B–A directions in a dose-dependent manner. However, dipyridamole, a BCRP chemical inhibitor demonstrated no effect on formation and efflux of emodin glucuronide in Caco-2 cells. In conclusion, UGT is a main metabolic pathway for emodin in the intestine, and the MRP family is composed of major efflux transporters responsible for the excretion of emodin glucuronide in the intestine. The coupling of UGTs and MRP efflux transporters causes the extensive metabolism, excretion, and low bioavailability of emodin. -- Highlights: ► Glucuronidation is the main reason for the poor oral bioavailability of emodin. ► Efflux transporters are involved in the excretion of emodin glucuronide. ► The intestine is the main organ for metabolism of emodin.

  15. Multidrug Resistance-associated Protein-1 (MRP-1)-dependent Glutathione Disulfide (GSSG) Efflux as a Critical Survival Factor for Oxidant-enriched Tumorigenic Endothelial Cells*

    Science.gov (United States)

    Gordillo, Gayle M.; Biswas, Ayan; Khanna, Savita; Spieldenner, James M.; Pan, Xueliang; Sen, Chandan K.

    2016-01-01

    Endothelial cell tumors are the most common soft tissue tumors in infants. Tumor-forming endothelial (EOMA) cells are able to escape cell death fate despite excessive nuclear oxidant burden. Our previous work recognized perinuclear Nox-4 as a key contributor to EOMA growth. The objective of this work was to characterize the mechanisms by which EOMA cells evade oxidant toxicity and thrive. In EOMA cells, compared with in the cytosol, the nuclear GSSG/GSH ratio was 5-fold higher. Compared to the ratio observed in healthy murine aortic endothelial (MAE) cells, GSSG/GSH was over twice as high in EOMA cells. Multidrug resistance-associated protein-1 (MRP-1), an active GSSG efflux mechanism, showed 2-fold increased activity in EOMA compared with MAE cells. Hyperactive YB-1 and Ape/Ref-1 were responsible for high MRP-1 expression in EOMA. Proximity ligand assay demonstrated MRP-1 and YB-1 binding. Such binding enabled the nuclear targeting of MRP-1 in EOMA in a leptomycin-B-sensitive manner. MRP-1 inhibition as well as knockdown trapped nuclear GSSG, causing cell death of EOMA. Disulfide loading of cells by inhibition of GSSG reductase (bischoloronitrosourea) or thioredoxin reductase (auranofin) was effective in causing EOMA death as well. In sum, EOMA cells survive a heavy oxidant burden by rapid efflux of GSSG, which is lethal if trapped within the cell. A hyperactive MRP-1 system for GSSG efflux acts as a critical survival factor for these cells, making it a potential target for EOMA therapeutics. PMID:26961872

  16. Investigating the Role of the Host Multidrug Resistance Associated Protein Transporter Family in Burkholderia cepacia Complex Pathogenicity Using a Caenorhabditis elegans Infection Model.

    Science.gov (United States)

    Tedesco, Pietro; Visone, Marco; Parrilli, Ermenegilda; Tutino, Maria Luisa; Perrin, Elena; Maida, Isabel; Fani, Renato; Ballestriero, Francesco; Santos, Radleigh; Pinilla, Clemencia; Di Schiavi, Elia; Tegos, George; de Pascale, Donatella

    2015-01-01

    This study investigated the relationship between host efflux system of the non-vertebrate nematode Caenorhabditis elegans and Burkholderia cepacia complex (Bcc) strain virulence. This is the first comprehensive effort to profile host-transporters within the context of Bcc infection. With this aim, two different toxicity tests were performed: a slow killing assay that monitors mortality of the host by intestinal colonization and a fast killing assay that assesses production of toxins. A Virulence Ranking scheme was defined, that expressed the toxicity of the Bcc panel members, based on the percentage of surviving worms. According to this ranking the 18 Bcc strains were divided in 4 distinct groups. Only the Cystic Fibrosis isolated strains possessed profound nematode killing ability to accumulate in worms' intestines. For the transporter analysis a complete set of isogenic nematode single Multidrug Resistance associated Protein (MRP) efflux mutants and a number of efflux inhibitors were interrogated in the host toxicity assays. The Bcc pathogenicity profile of the 7 isogenic C. elegans MRP knock-out strains functionality was classified in two distinct groups. Disabling host transporters enhanced nematode mortality more than 50% in 5 out of 7 mutants when compared to wild type. In particular mrp-2 was the most susceptible phenotype with increased mortality for 13 out 18 Bcc strains, whereas mrp-3 and mrp-4 knock-outs had lower mortality rates, suggesting a different role in toxin-substrate recognition. The use of MRP efflux inhibitors in the assays resulted in substantially increased (>40% on average) mortality of wild-type worms.

  17. Coupling of UDP-glucuronosyltransferases and multidrug resistance-associated proteins is responsible for the intestinal disposition and poor bioavailability of emodin

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Feng, Qian; Li, Ye; Ye, Ling [Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong (China); Hu, Ming, E-mail: mhu@uh.edu [Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong (China); Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, 1441 Moursund Street, Houston, TX 77030 (United States); Liu, Zhongqiu, E-mail: liuzq@smu.edu.cn [Department of Pharmaceutics, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong (China)

    2012-12-15

    Emodin is a poorly bioavailable but promising plant-derived anticancer drug candidate. The low oral bioavailability of emodin is due to its extensive glucuronidation in the intestine and liver. Caco-2 cell culture model was used to investigate the interplay between UDP-glucuronosyltransferases (UGTs) and efflux transporters in the intestinal disposition of emodin. Bidirectional transport assays of emodin at different concentrations were performed in the Caco-2 monolayers with or without multidrug resistance-associated protein (MRP) and breast cancer resistance protein (BCRP) efflux transporter chemical inhibitors. The bidirectional permeability of emodin and its glucuronide in the Caco-2 monolayers was determined. Emodin was rapidly metabolized to emodin glucuronide in Caco-2 cells. LTC4, a potent inhibitor of MRP2, decreased the efflux of emodin glucuronide and also substantially increased the intracellular glucuronide level in the basolateral-to-apical (B–A) direction. MK-571, chemical inhibitor of MRP2, MRP3, and MRP4, significantly reduced the efflux of glucuronide in the apical-to-basolateral (A–B) and B–A directions in a dose-dependent manner. However, dipyridamole, a BCRP chemical inhibitor demonstrated no effect on formation and efflux of emodin glucuronide in Caco-2 cells. In conclusion, UGT is a main metabolic pathway for emodin in the intestine, and the MRP family is composed of major efflux transporters responsible for the excretion of emodin glucuronide in the intestine. The coupling of UGTs and MRP efflux transporters causes the extensive metabolism, excretion, and low bioavailability of emodin. -- Highlights: ► Glucuronidation is the main reason for the poor oral bioavailability of emodin. ► Efflux transporters are involved in the excretion of emodin glucuronide. ► The intestine is the main organ for metabolism of emodin.

  18. Tyrosine and aurora kinase inhibitors diminish transport function of multidrug resistance-associated protein (MRP 4 and breast cancer resistance protein (BCRP

    Directory of Open Access Journals (Sweden)

    Rhiannon N. Hardwick

    2016-12-01

    Full Text Available Tyrosine and aurora kinases are important effectors in signal transduction pathways that are often involved in aberrant cancer cell growth. Tyrosine (TKI and aurora (AKI kinase inhibitors are anti-cancer agents specifically designed to target such signaling pathways through TKI/AKI binding to the ATP-binding pocket of kinases thereby leading to diminished kinase activity. Some TKIs have been identified as inhibitors of ATP-binding cassette (ABC transporters such as P-glycoprotein and breast cancer resistance protein (BCRP, which are commonly upregulated in malignant cells. TKI/AKIs have been investigated as ABC transporter inhibitors in order to facilitate the accumulation of concomitantly administered chemo-therapeutics within cancer cells. However, ABC transporters are prominently expressed in the liver and other eliminating organs, and their inhibition has been linked to intracellular accumulation of drugs, altered disposition, and toxicity. The potential for TKIs/AKIs to inhibit other important hepatic efflux transporters, particularly multidrug resistance-associated proteins (MRPs, remains unknown. The aim of the current study was to compare the inhibitory potency of 20 selected TKI/AKIs against MRP4 and BCRP through the use of inverted membrane vesicle assays. Relative IC50 values were estimated by determining TKI/AKI inhibition of MRP4-mediated [3H]-dehydroepiandrosterone sulfate uptake and BCRP-mediated [3H]-estrone sulfate uptake. To provide insight to the clinical relevance of TKI/AKI inhibition of ABC efflux transporters, the ratio of the steady-state maximum total plasma concentration (Css to the IC50 for each compound was calculated with Css/IC50 ratio >0.1 deemed potentially clinically relevant. Such analysis identified several potentially clinically relevant inhibitors of MRP4: alisertib, danusertib, erlotinib, lapatinib, neratinib, nilotinib, pazopanib, sorafenib, and tozasertib. The potentially clinically relevant inhibition of

  19. The trypanocidal benznidazole promotes adaptive response to oxidative injury: Involvement of the nuclear factor-erythroid 2-related factor-2 (Nrf2) and multidrug resistance associated protein 2 (MRP2)

    International Nuclear Information System (INIS)

    Rigalli, Juan Pablo; Perdomo, Virginia Gabriela; Ciriaci, Nadia; Francés, Daniel Eleazar Antonio; Ronco, María Teresa; Bataille, Amy Michele; Ghanem, Carolina Inés; Ruiz, María Laura; Manautou, José Enrique; Catania, Viviana Alicia

    2016-01-01

    Oxidative stress is a frequent cause underlying drug-induced hepatotoxicity. Benznidazole (BZL) is the only trypanocidal agent available for treatment of Chagas disease in endemic areas. Its use is associated with side effects, including increases in biomarkers of hepatotoxicity. However, BZL potential to cause oxidative stress has been poorly investigated. Here, we evaluated the effect of a pharmacologically relevant BZL concentration (200 μM) at different time points on redox status and the counteracting mechanisms in the human hepatic cell line HepG2. BZL increased reactive oxygen species (ROS) after 1 and 3 h of exposure, returning to normality at 24 h. Additionally, BZL increased glutathione peroxidase activity at 12 h and the oxidized glutathione/total glutathione (GSSG/GSSG + GSH) ratio that reached a peak at 24 h. Thus, an enhanced detoxification of peroxide and GSSG formation could account for ROS normalization. GSSG/GSSG + GSH returned to control values at 48 h. Expression of the multidrug resistance-associated protein 2 (MRP2) and GSSG efflux via MRP2 were induced by BZL at 24 and 48 h, explaining normalization of GSSG/GSSG + GSH. BZL activated the nuclear erythroid 2-related factor 2 (Nrf2), already shown to modulate MRP2 expression in response to oxidative stress. Nrf2 participation was confirmed using Nrf2-knockout mice in which MRP2 mRNA expression was not affected by BZL. In summary, we demonstrated a ROS increase by BZL in HepG2 cells and a glutathione peroxidase- and MRP2 driven counteracting mechanism, being Nrf2 a key modulator of this response. Our results could explain hepatic alterations associated with BZL therapy. - Highlights: • BZL triggers a redox imbalance in the human hepatic cell line HepG2. • Concomitantly BZL triggers compensatory mechanisms to alleviate the redox injury. • Response mechanisms comprise an enhanced glutathione peroxidase and MRP2 activity. • Transcription factor Nrf2 plays a key role orchestrating

  20. The trypanocidal benznidazole promotes adaptive response to oxidative injury: Involvement of the nuclear factor-erythroid 2-related factor-2 (Nrf2) and multidrug resistance associated protein 2 (MRP2)

    Energy Technology Data Exchange (ETDEWEB)

    Rigalli, Juan Pablo [Institute of Experimental Physiology (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina); Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg (Germany); Perdomo, Virginia Gabriela; Ciriaci, Nadia; Francés, Daniel Eleazar Antonio; Ronco, María Teresa [Institute of Experimental Physiology (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina); Bataille, Amy Michele [University of Connecticut, School of Pharmacy, Department of Pharmaceutical Sciences, Storrs, CT (United States); Ghanem, Carolina Inés [Institute of Pharmacological Investigations (ININFA-CONICET), University of Buenos Aires, Buenos Aires (Argentina); Ruiz, María Laura [Institute of Experimental Physiology (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina); Manautou, José Enrique [University of Connecticut, School of Pharmacy, Department of Pharmaceutical Sciences, Storrs, CT (United States); Catania, Viviana Alicia, E-mail: vcatania@fbioyf.unr.edu.ar [Institute of Experimental Physiology (IFISE-CONICET), Suipacha 570, 2000 Rosario (Argentina)

    2016-08-01

    Oxidative stress is a frequent cause underlying drug-induced hepatotoxicity. Benznidazole (BZL) is the only trypanocidal agent available for treatment of Chagas disease in endemic areas. Its use is associated with side effects, including increases in biomarkers of hepatotoxicity. However, BZL potential to cause oxidative stress has been poorly investigated. Here, we evaluated the effect of a pharmacologically relevant BZL concentration (200 μM) at different time points on redox status and the counteracting mechanisms in the human hepatic cell line HepG2. BZL increased reactive oxygen species (ROS) after 1 and 3 h of exposure, returning to normality at 24 h. Additionally, BZL increased glutathione peroxidase activity at 12 h and the oxidized glutathione/total glutathione (GSSG/GSSG + GSH) ratio that reached a peak at 24 h. Thus, an enhanced detoxification of peroxide and GSSG formation could account for ROS normalization. GSSG/GSSG + GSH returned to control values at 48 h. Expression of the multidrug resistance-associated protein 2 (MRP2) and GSSG efflux via MRP2 were induced by BZL at 24 and 48 h, explaining normalization of GSSG/GSSG + GSH. BZL activated the nuclear erythroid 2-related factor 2 (Nrf2), already shown to modulate MRP2 expression in response to oxidative stress. Nrf2 participation was confirmed using Nrf2-knockout mice in which MRP2 mRNA expression was not affected by BZL. In summary, we demonstrated a ROS increase by BZL in HepG2 cells and a glutathione peroxidase- and MRP2 driven counteracting mechanism, being Nrf2 a key modulator of this response. Our results could explain hepatic alterations associated with BZL therapy. - Highlights: • BZL triggers a redox imbalance in the human hepatic cell line HepG2. • Concomitantly BZL triggers compensatory mechanisms to alleviate the redox injury. • Response mechanisms comprise an enhanced glutathione peroxidase and MRP2 activity. • Transcription factor Nrf2 plays a key role orchestrating

  1. Usefulness of technetium-99m tetrofosmin liver imaging to detect hepatocellular carcinoma and related to expression of P-glycoprotein or multidrug resistance associated protein-a preliminary report

    International Nuclear Information System (INIS)

    Ding, H.J.; Huang, W.T.; Tsai, C.S.; Chang, C.S.; Kao, A.

    2003-01-01

    Technetium-99m Tetrofsomin (Tc-TF) has been shown to be useful in identifying several types of tumors, such as breast, lung, and thyroid cancers. There was no report in the literature for Tc-TF uptake in hepatocellular carcinoma (HCC). The aim of this study was to evaluate the usefulness of Tc-TF liver imaging to detect HCC and investigate the relationship between Tc-TF liver imaging findings and P-glycoprotein (Pgp) and multidrug resistance associated protein (MRP) expression. Before any therapy, 22 patients with HCC were enrolled in this study. Tc-TF liver images were performed l0 minutes after intravenous injection of 20mCi Tc-TF. All patients had liver biopsy or surgery within l week after Tc-TF liver imaging. Immunohistochemical study of the biopsy or resected HCC specimens was performed using anti-human Pgp and MRP antibodies. Twenty of the 22 (90.9%) patients showed negative Tc-TF liver imaging results without significant Tc-TF uptake in HCC, whereas only the remaining 2 (9.1%) patients showed positive Tc-TF liver imaging results with significant Tc-TF uptake in HCC. Positive Pgp expression was observed in 13 of 20 patients with negative Tc-TF liver imaging results, whereas positive MRP expression was observed in 6 of the remaining 7 patients with negative both Tc-TF liver imaging results and Pgp expression. However, negative Pgp expression but positive MRP expression was observed in all of the remaining 2 patients with positive Tc-TF liver imaging results. The correlation between Tc-TF liver imaging findings and Pgp expression was significant and better than between Tc-TF liver imaging findings and MRP expression. Pgp or MRP expression in HCC may induce no significant Tc-TF uptake in HCC resulting in negative Tc-TF liver imaging findings. Therefore, Tc-TF liver imaging is potential to be a non-invasive method to predict Pgp or MRP expression in HCC. However, further studies with a larger series of patients and longer follow-up time are necessary to confirm

  2. Involvement of P-glycoprotein and multidrug resistance associated protein 1 in the transport of tanshinone IIB, a primary active diterpenoid quinone from the roots of Salvia miltiorrhiza, across the blood-brain barrier.

    Science.gov (United States)

    Zhou, Zhi-Wei; Chen, Xiao; Liang, Jun; Yu, Xi-Yong; Wen, Jing-Yuan; Zhou, Shu-Feng

    2007-08-01

    Tanshinone IIB (TSB) is a major constituent of Salvia miltiorrhiza, which is widely used in treatment of cardiovascular and central nervous system (CNS) diseases such as coronary heart disease and stroke. This study aimed to investigate the role of various drug transporters in the brain penetration of TSB using several in vitro and in vivo mouse and rat models. The uptake and efflux of TSB in rat primary microvascular endothelial cells (RBMVECs) were ATP-dependent and significantly altered in the presence of a P-glycoprotein (P-gp) or multidrug resistance associated protein (Mrp1/2) inhibitor. A polarized transport of TSB was found in RBMVEC monolayers with facilitated efflux from the abluminal to luminal side. Addition of a P-gp inhibitor (e.g. verapamil) in both abluminal and luminal sides attenuated the polarized transport. In an in situ rat brain perfusion model, TSB crossed the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier at a greater rate than that for sucrose, and the brain penetration was increased in the presence of a P-gp or Mrp1/2 inhibitor. The brain levels of TSB were only about 30% of that in the plasma and it could be increased to up to 72% of plasma levels when verapamil, quinidine, or probenecid was co-administered in rats. The entry of TSB to CNS increased by 67-97% in rats subjected to middle cerebral artery occlusion or treatment with the neurotoxin, quinolinic acid, compared to normal rats. Furthermore, The brain levels of TSB in mdr1a(-/-) and mrp1(-/-) mice were 28- to 2.6-fold higher than those in the wild-type mice. TSB has limited brain penetration through the BBB due to the contribution of P-gp and to a lesser extent of Mrp1 in rodents. Further studies are needed to confirm whether these corresponding transporters in humans are involved in limiting the penetration of TSB across the BBB and the clinical relevance.

  3. Expression of the human multidrug transporter in insect cells by a recombinant baculovirus

    International Nuclear Information System (INIS)

    Germann, U.A.; Willingham, M.C.; Pastan, I.; Gottesman, M.M.

    1990-01-01

    The plasma membrane associated human multidrug resistance (MDR1) gene product, known as the 170-kDa P-glycoprotein or the multidrug transporter, acts as an ATP-dependent efflux pump for various cytotoxic agents. The authors expressed recombinant human multidrug transporter in a baculovirus expression system to obtain large quantities and further investigate its structure and mechanism of action. MDR1 cDNA was inserted into the genome of the Autographa californica nuclear polyhedrosis virus under the control of the polyhedrin promoter. Spodoptera frugiperda insect cells synthesized high levels of recombinant multidrug transporter 2-3 days after infection. The transporter was localized by immunocytochemical methods on the external surface of the plasma membranes, in the Golgi apparatus, and within the nuclear envelope. The human multidrug transporter expressed in insect cells is not susceptible to endoglycosidase F treatment and has a lower apparent molecular weight of 140,000, corresponding to the nonglycosylated precursor of its authentic counterpart expressed in multidrug-resistant cells. Labeling experiments showed that the recombinant multidrug transporter is phosphorylated and can be photoaffinity labeled by [ 3 H]azidopine, presumably at the same two sites as the native protein. Various drugs and reversing agents compete with the [ 3 H]azidopine binding reaction when added in excess, indicating that the recombinant human multidrug transporter expressed in insect cells is functionally similar to its authentic counterpart

  4. Structural elucidation of transmembrane domain zero (TMD0) of EcdL: A multidrug resistance-associated protein (MRP) family of ATP-binding cassette transporter protein revealed by atomistic simulation.

    Science.gov (United States)

    Bera, Krishnendu; Rani, Priyanka; Kishor, Gaurav; Agarwal, Shikha; Kumar, Antresh; Singh, Durg Vijay

    2017-09-20

    ATP-Binding cassette (ABC) transporters play an extensive role in the translocation of diverse sets of biologically important molecules across membrane. EchnocandinB (antifungal) and EcdL protein of Aspergillus rugulosus are encoded by the same cluster of genes. Co-expression of EcdL and echinocandinB reflects tightly linked biological functions. EcdL belongs to Multidrug Resistance associated Protein (MRP) subfamily of ABC transporters with an extra transmembrane domain zero (TMD0). Complete structure of MRP subfamily comprising of TMD0 domain, at atomic resolution is not known. We hypothesized that the transportation of echonocandinB is mediated via EcdL protein. Henceforth, it is pertinent to know the topological arrangement of TMD0, with other domains of protein and its possible role in transportation of echinocandinB. Absence of effective template for TMD0 domain lead us to model by I-TASSER, further structure has been refined by multiple template modelling using homologous templates of remaining domains (TMD1, NBD1, TMD2, NBD2). The modelled structure has been validated for packing, folding and stereochemical properties. MD simulation for 0.1 μs has been carried out in the biphasic environment for refinement of modelled protein. Non-redundant structures have been excavated by clustering of MD trajectory. The structural alignment of modelled structure has shown Z-score -37.9; 31.6, 31.5 with RMSD; 2.4, 4.2, 4.8 with ABC transporters; PDB ID 4F4C, 4M1 M, 4M2T, respectively, reflecting the correctness of structure. EchinocandinB has been docked to the modelled as well as to the clustered structures, which reveals interaction of echinocandinB with TMD0 and other TM helices in the translocation path build of TMDs.

  5. Multiple efflux pumps are involved in the transepithelial transport of colchicine: combined effect of p-glycoprotein and multidrug resistance-associated protein 2 leads to decreased intestinal absorption throughout the entire small intestine.

    Science.gov (United States)

    Dahan, Arik; Sabit, Hairat; Amidon, Gordon L

    2009-10-01

    The purpose of this study was to thoroughly characterize the efflux transporters involved in the intestinal permeability of the oral microtubule polymerization inhibitor colchicine and to evaluate the role of these transporters in limiting its oral absorption. The effects of P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP) inhibitors on colchicine bidirectional permeability were studied across Caco-2 cell monolayers, inhibiting one versus multiple transporters simultaneously. Colchicine permeability was then investigated in different regions of the rat small intestine by in situ single-pass perfusion. Correlation with the P-gp/MRP2 expression level throughout different intestinal segments was investigated by immunoblotting. P-gp inhibitors [N-(4-[2-(1,2,3,4-tetrahydro-6,7-dimethoxy-2-isoquinolinyl)ethyl]-phenyl)-9,10-dihydro-5-methoxy-9-oxo-4-acridine carboxamide (GF120918), verapamil, and quinidine], and MRP2 inhibitors [3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsulfanyl)methylsulfanyl] propionic acid (MK571), indomethacin, and p-aminohippuric acid (p-AH)] significantly increased apical (AP)-basolateral (BL) and decreased BL-AP Caco-2 transport in a concentration-dependent manner. No effect was obtained by the BCRP inhibitors fumitremorgin C (FTC) and pantoprazole. P-gp/MRP2 inhibitors combinations greatly reduced colchicine mucosal secretion, including complete abolishment of efflux (GF120918/MK571). Colchicine displayed low (versus metoprolol) and constant permeability along the rat small-intestine. GF120918 significantly increased colchicine permeability in the ileum with no effect in the jejunum, whereas MK571 augmented jejunal permeability without changing the ileal transport. The GF120918/MK571 combination caused an effect similar to that of MK571 alone in the jejunum and to that of GF120918 alone in the ileum. P-gp expression followed a gradient increasing from

  6. Structural basis of small-molecule inhibition of human multidrug transporter ABCG2

    DEFF Research Database (Denmark)

    Jackson, Scott M; Manolaridis, Ioannis; Kowal, Julia

    2018-01-01

    requires high-resolution structural insight. Here, we present cryo-EM structures of human ABCG2 bound to synthetic derivatives of the fumitremorgin C-related inhibitor Ko143 or the multidrug resistance modulator tariquidar. Both compounds are bound to the central, inward-facing cavity of ABCG2, blocking...

  7. Management of multidrug-resistant tuberculosis in human immunodeficiency virus patients

    Science.gov (United States)

    Jamil, K. F.

    2018-03-01

    Tuberculosis (TB) is a chronic infectious disease mainly caused by Mycobacterium tuberculosis(MTB). 10.4 million new TB cases will appear in 2015 worldwide. There were an estimated 1.4 million TB deaths in 2015, and an additional 0.4 million deaths resulting from TB disease among people living with human immunodeficiency virus (HIV). Multidrug- resistant and extensively drug-resistant tuberculosis (MDR and XDR-TB) are major public health concerns worldwide. 480.000 new cases of MDR-TB will appear in 2015 and an additional 100,000 people with rifampicin-resistant TB (RR-TB) who were also newly eligible for MDR-TB treatment. Their association with HIV infection has contributed to the slowing down of TB incidence decline over the last two decades, therefore representing one important barrier to reach TB elimination. Patients infected with MDR-TB require more expensive treatment regimens than drug-susceptible TB, with poor treatment.Patients with multidrug- resistant tuberculosis do not receive rifampin; drug interactions risk is markedly reduced. However, overlapping toxicities may limit options for co-treatment of HIV and multidrug- resistant tuberculosis.

  8. Detection and characterisation of multi-drug resistance protein 1 (MRP-1) in human mitochondria.

    Science.gov (United States)

    Roundhill, E A; Burchill, S A

    2012-03-13

    Overexpression of plasma membrane multi-drug resistance protein 1 (MRP-1) can lead to multidrug resistance. In this study, we describe for the first time the expression of mitochondrial MRP-1 in untreated human normal and cancer cells and tissues. MRP-1 expression and subcellular localisation in normal and cancer cells and tissues was examined by differential centrifugation and western blotting, and immunofluorescence microscopy. Viable mitochondria were isolated and MRP-1 efflux activity measured using the calcein-AM functional assay. MRP-1 expression was increased using retroviral infection and specific overexpression confirmed by RNA array. Cell viability was determined by trypan blue exclusion and annexin V-propidium iodide labelling of cells. MRP-1 was detected in the mitochondria of cancer and normal cells and tissues. The efflux activity of mitochondrial MRP-1 was more efficient (55-64%) than that of plasma membrane MRP-1 (11-22%; PMRP-1 expression resulted in a preferential increase in mitochondrial MRP-1, suggesting selective targeting to this organelle. Treatment with a non-lethal concentration of doxorubicin (0.85 nM, 8 h) increased mitochondrial and plasma membrane MRP-1, increasing resistance to MRP-1 substrates. For the first time, we have identified MRP-1 with efflux activity in human mitochondria. Mitochondrial MRP-1 may be an exciting new therapeutic target where historically MRP-1 inhibitor strategies have limited clinical success.

  9. Expression of multidrug resistance proteins in retinoblastoma

    Directory of Open Access Journals (Sweden)

    Swati Shukla

    2017-11-01

    Full Text Available AIM: To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. METHODS: Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. RESULTS: Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1 expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp was observed in the drug resistant Y79 cells as well as in PCNC. CONCLUSION: Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy.

  10. Expression of multidrug resistance proteins in retinoblastoma.

    Science.gov (United States)

    Shukla, Swati; Srivastava, Arpna; Kumar, Sunil; Singh, Usha; Goswami, Sandeep; Chawla, Bhavna; Bajaj, Mandeep Singh; Kashyap, Seema; Kaur, Jasbir

    2017-01-01

    To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC) were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin) were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp) was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1) expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp) was observed in the drug resistant Y79 cells as well as in PCNC. Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy.

  11. Expression of multidrug resistance proteins in retinoblastoma

    Science.gov (United States)

    Shukla, Swati; Srivastava, Arpna; Kumar, Sunil; Singh, Usha; Goswami, Sandeep; Chawla, Bhavna; Bajaj, Mandeep Singh; Kashyap, Seema; Kaur, Jasbir

    2017-01-01

    AIM To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. METHODS Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC) were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin) were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. RESULTS Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp) was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1) expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp) was observed in the drug resistant Y79 cells as well as in PCNC. CONCLUSION Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy. PMID:29181307

  12. Structure-activity relationships of diverse xanthones against multidrug resistant human tumor cells.

    Science.gov (United States)

    Wang, Qiwen; Ma, Chenyao; Ma, Yun; Li, Xiang; Chen, Yong; Chen, Jianwei

    2017-02-01

    Thirteen xanthones were isolated naturally from the stem of Securidaca inappendiculata Hassk, and structure-activity relationships (SARs) of these compounds were comparatively predicted for their cytotoxic activity against three human multidrug resistant (MDR) cell lines MCF-7/ADR, SMMC-7721/Taxol, and A549/Taxol cells. The results showed that the selected xanthones exhibited different potent cytotoxic activity against the growth of different human tumor cell lines, and most of the xanthones exhibited selective cytotoxicity against SMMC-7721/Taxol cells. Furthermore, some tested xanthones showed stronger cytotoxicity than Cisplatin, which has been used in clinical application extensively. The SARs analysis revealed that the cytotoxic activities of diverse xanthones were affected mostly by the number and position of methoxyl and hydroxyl groups. Xanthones with more free hydroxyl and methoxyl groups increased the cytotoxic activity significantly, especially for those with the presence of C-3 hydroxyl and C-4 methoxyl groups. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids

    Directory of Open Access Journals (Sweden)

    Buddhasukh Duang

    2004-04-01

    Full Text Available Abstract Background Multidrug resistance (MDR is a phenomenon that is often associated with decreased intracellular drug accumulation in patient's tumor cells resulting from enhanced drug efflux. It is related to the overexpression of a membrane protein, P-glycoprotein (Pgp-170, thereby reducing drug cytotoxicity. A variety of studies have tried to find MDR modulators which increase drug accumulation in cancer cells. Methods In this study, natural curcuminoids, pure curcumin, demethoxycurcumin and bisdemethoxycurcumin, isolated from turmeric (Curcuma longa Linn, were compared for their potential ability to modulate the human MDR-1 gene expression in multidrug resistant human cervical carcinoma cell line, KB-V1 by Western blot analysis and RT-PCR. Results Western blot analysis and RT-PCR showed that all the three curcuminoids inhibited MDR-1 gene expression, and bisdemethoxycurcumin produced maximum effect. In additional studies we found that commercial grade curcuminoid (approximately 77% curcumin, 17% demethoxycurcumin and 3% bisdemthoxycurcumin decreased MDR-1 gene expression in a dose dependent manner and had about the same potent inhibitory effect on MDR-1 gene expression as our natural curcuminoid mixtures. Conclusion These results indicate that bisdemethoxycurcumin is the most active of the curcuminoids present in turmeric for modulation of MDR-1 gene. Treatment of drug resistant KB-V1 cells with curcumin increased their sensitivity to vinblastine, which was consistent with a decreased MDR-1 gene product, a P-glycoprotein, on the cell plasma membrane. Although many drugs that prevent the P-glycoprotein function have been reported, this report describes the inhibition of MDR-1 expression by a phytochemical. The modulation of MDR-1 expression may be an attractive target for new chemosensitizing agents.

  14. Modulation of human multidrug-resistance MDR-1 gene by natural curcuminoids

    International Nuclear Information System (INIS)

    Limtrakul, Pornngarm; Anuchapreeda, Songyot; Buddhasukh, Duang

    2004-01-01

    Multidrug resistance (MDR) is a phenomenon that is often associated with decreased intracellular drug accumulation in patient's tumor cells resulting from enhanced drug efflux. It is related to the overexpression of a membrane protein, P-glycoprotein (Pgp-170), thereby reducing drug cytotoxicity. A variety of studies have tried to find MDR modulators which increase drug accumulation in cancer cells. In this study, natural curcuminoids, pure curcumin, demethoxycurcumin and bisdemethoxycurcumin, isolated from turmeric (Curcuma longa Linn), were compared for their potential ability to modulate the human MDR-1 gene expression in multidrug resistant human cervical carcinoma cell line, KB-V1 by Western blot analysis and RT-PCR. Western blot analysis and RT-PCR showed that all the three curcuminoids inhibited MDR-1 gene expression, and bisdemethoxycurcumin produced maximum effect. In additional studies we found that commercial grade curcuminoid (approximately 77% curcumin, 17% demethoxycurcumin and 3% bisdemthoxycurcumin) decreased MDR-1 gene expression in a dose dependent manner and had about the same potent inhibitory effect on MDR-1 gene expression as our natural curcuminoid mixtures. These results indicate that bisdemethoxycurcumin is the most active of the curcuminoids present in turmeric for modulation of MDR-1 gene. Treatment of drug resistant KB-V1 cells with curcumin increased their sensitivity to vinblastine, which was consistent with a decreased MDR-1 gene product, a P-glycoprotein, on the cell plasma membrane. Although many drugs that prevent the P-glycoprotein function have been reported, this report describes the inhibition of MDR-1 expression by a phytochemical. The modulation of MDR-1 expression may be an attractive target for new chemosensitizing agents

  15. Alkanna tinctoria leaves extracts: a prospective remedy against multidrug resistant human pathogenic bacteria.

    Science.gov (United States)

    Khan, Usman Ali; Rahman, Hazir; Qasim, Muhammad; Hussain, Anwar; Azizllah, Azizullah; Murad, Waheed; Khan, Zakir; Anees, Muhammad; Adnan, Muhammad

    2015-04-23

    Plants are rich source of chemical compounds that are used to accomplish biological activity. Indigenously crude extracts of plants are widely used as herbal medicine for the treatment of infections by people of different ethnic groups. The present investigation was carried out to evaluate the biological potential of Alkanna tinctoria leaves extract from district Charsadda, Pakistan against multidrug resistant human pathogenic bacteria including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Anti-multi-drug resistant bacterial activity of aqueous, chloroform, ethanol and hexane extracts of Alkanna tinctoria leaves were evaluated by well diffusion method. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of different extracts were determined. Moreover qualitative phytochemicals screening of the studied extracts was performed. All four selected bacteria including A. baumannii, E. coli, P. aeruginosa and S. aureus were categorized as multi-drug resistant (MDR) as they were found to be resistant to 13, 10, 19 and 22 antibiotics belonging to different groups respectively. All the four extract showed potential activity against S. aureus as compare to positive control antibiotic (Imipenem). Similarly among the four extracts of Alkanna tinctoria leaves, aqueous extract showed best activity against A. baumannii (10±03 mm), P. aeruginosa (12±0.5 mm), and S. aureus (14±0.5 mm) as compare to Imipenem. The MICs and MBCs results also showed quantitative concentration of plant extracts to inhibit or kill MDR bacteria. When phytochemicals analysis was performed it was observed that aqueous and ethanol extracts showed phytochemicals with large number as well as volume, especially Alkaloides, Flavonoides and Charbohydrates. The undertaken study demonstrated that all the four extracts of Alkanna tinctoria leaves exhibited considerable antibacterial activity against MDR isolates. Finding from the

  16. Bypassing multidrug resistance in human breast cancer cells with lipid/polymer particle assemblies

    Directory of Open Access Journals (Sweden)

    Li B

    2012-01-01

    Full Text Available Bo Li1, Hui Xu2, Zhen Li1, Mingfei Yao1, Meng Xie1, Haijun Shen1, Song Shen1, Xinshi Wang1, Yi Jin11College of Pharmaceutical sciences, Zhejiang University, Hangzhou, 2No. 202 Hospital of People's Liberation Army, Shenyang, ChinaBackground: Multidrug resistance (MDR mediated by the overexpression of adenosine triphosphate (ATP-binding cassette (ABC transporters, such as P-glycoprotein (P-gp, remains one of the major obstacles to effective cancer chemotherapy. In this study, lipid/particle assemblies named LipoParticles (LNPs, consisting of a dimethyldidodecylammonium bromide (DMAB-modified poly(lactic-co-glycolic acid (PLGA nanoparticle core surrounded by a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC shell, were specially designed for anticancer drugs to bypass MDR in human breast cancer cells that overexpress P-gp.Methods: Doxorubicin (DOX, a chemotherapy drug that is a P-gp substrate, was conjugated to PLGA and encapsulated in the self-assembled LNP structure. Physiochemical properties of the DOX-loaded LNPs were characterized in vitro. Cellular uptake, intracellular accumulation, and cytotoxicity were compared in parental Michigan Cancer Foundation (MCF-7 cells and P-gp-overexpressing, resistant MCF-7/adriamycin (MCF-7/ADR cells.Results: This study found that the DOX formulated in LNPs showed a significantly increased accumulation in the nuclei of drug-resistant cells relative to the free drug, indicating that LNPs could alter intracellular traffic and bypass drug efflux. The cytotoxicity of DOX loaded-LNPs had a 30-fold lower half maximal inhibitory concentration (IC50 value than free DOX in MCF-7/ADR, measured by the colorimetric cell viability (MTT assay, correlated with the strong nuclear retention of the drug.Conclusion: The results show that this core-shell lipid/particle structure could be a promising strategy to bypass MDR.Keywords: chemotherapy, drug delivery, polymeric nanoparticles, multidrug resistance

  17. Mechanisms of MRP over-expression in four human lung-cancer cell lines and analysis of the MRP amplicon

    NARCIS (Netherlands)

    Eijdems, E. W.; de Haas, M.; Coco-Martin, J. M.; Ottenheim, C. P.; Zaman, G. J.; Dauwerse, H. G.; Breuning, M. H.; Twentyman, P. R.; Borst, P.; Baas, F.

    1995-01-01

    Some multidrug resistant cell lines over-express the gene encoding the multidrug-resistance-associated protein (MRP). In all cell lines reported thus far, over-expression is associated with gene amplification. We have studied the predominant mechanisms of MRP over-expression in 4 human lung-cancer

  18. Expression and localization of p-glycoprotein, multidrug resistance protein 4, and breast cancer resistance protein in the female lower genital tract of human and pigtailed macaque.

    Science.gov (United States)

    Zhou, Tian; Hu, Minlu; Pearlman, Andrew; Patton, Dorothy; Rohan, Lisa

    2014-11-01

    Antiretroviral drug absorption and disposition in cervicovaginal tissue is important for the effectiveness of vaginally or orally administered drug products in preexposure prophylaxis (PrEP) of HIV-1 sexual transmission to women. Therefore, it is imperative to understand critical determinants of cervicovaginal tissue pharmacokinetics. This study aimed to examine the mRNA expression and protein localization of three efflux transporters, P-glycoprotein (P-gp), multidrug resistance-associated protein 4 (MRP4), and breast cancer resistance protein (BCRP), in the lower genital tract of premenopausal women and pigtailed macaques. Along the human lower genital tract, the three transporters were moderately to highly expressed compared to colorectal tissue and liver, as revealed by real-time reverse transcriptase polymerase chain reaction (RT-PCR). In a given genital tract segment, the transporter with the highest expression level was either BCRP or P-gp, while MRP4 was always expressed at the lowest level among the three transporters tested. The immunohistochemical staining showed that P-gp and MRP4 were localized in multiple cell types including epithelial cells and vascular endothelial cells. BCRP was predominantly localized in the vascular endothelial cells. Differences in transporter mRNA level and localization were observed among endocervix, ectocervix, and vagina. Compared to human tissues, the macaque cervicovaginal tissues displayed comparable expression and localization patterns of the three transporters, although subtle differences were observed between the two species. The role of these cervicovaginal transporters in drug absorption and disposition warrants further studies. The resemblance between human and pigtailed macaque in transporter expression and localization suggests the utility of the macaque model in the studies of human cervicovaginal transporters.

  19. Hepatic Warm Ischemia-Reperfusion-Induced Increase in Pulmonary Capillary Filtration Is Ameliorated by Administration of a Multidrug Resistance-Associated Protein 1 Inhibitor and Leukotriene D4 Antagonist (MK-571) Through Reducing Neutrophil Infiltration and Pulmonary Inflammation and Oxidative Stress in Rats.

    Science.gov (United States)

    Yeh, D Y-W; Yang, Y-C; Wang, J-J

    2015-05-01

    Hepatopulmonary syndrome (HPS) is the major complication subsequent to liver ischemia and reperfusion (I/R) injury after resection or transplantation of liver. Hallmarks of HPS include increases in pulmonary leukotrienes and neutrophil recruitment and infiltrating across capillaries. We aimed to investigate the protective efficacy of MK-571, a multidrug resistance-associated protein 1 inhibitor and leukotriene D4 agonist, against hepatic I/R injury-associated change in capillary filtration. Eighteen Sprague-Dawley male rats were evenly divided into a sham-operated group, a hepatic I/R group, and an MK-571-treated I/R group. MK-571 was administered intraperitoneally 15 min before hepatic ischemia and every 12 hours during reperfusion. Ischemia was conducted by occluding the hepatic artery and portal vein for 30 min, followed by removing the clamps and closing the incision. Forty-eight hours after hepatic ischemia, we assessed the pulmonary capillary filtration coefficient (Kfc) through the use of in vitro-isolated, perfused rat lung preparation. We also measured the lung wet-to-dry weight ratio (W/D) and protein concentration in broncho-alveolar lavage fluid (PCBAL). Lung inflammation and oxidative stress were evaluated by use of tissue tumor necrosis factor (TNF)-α and malondialdehyde levels and lavage differential macrophage and neutrophil cell count. Hepatic I/R injury markedly increased Kfc, W/D, PCBAL, tissue TNF-α level, and differential neutrophil cell count (P < .05). MK-571 treatment reduced neutrophil infiltration and lung inflammation and improved pulmonary capillary filtration, collectively suggesting lung protection. Treatment with MK-571 before and during hepatic ischemia and reperfusion protects lung against pulmonary capillary barrier function impairment through decreasing pulmonary lung inflammation and lavage neutrophils. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. MECHANISMS OF MRP OVER-EXPRESSION IN 4 HUMAN LUNG-CANCER CELL-LINES AND ANALYSIS OF THE MRP AMPLICON

    NARCIS (Netherlands)

    EIJDEMS, EWHM; DEHAAS, M; COCOMARTIN, JM; OTTENHEIM, CPE; ZAMAN, GJR; DAUWERSE, HG; BREUNING, MH; TWENTYMAN, PR; BORST, P; BAAS, F

    1995-01-01

    Some multidrug resistant cell lines over-express the gene encoding the multidrug-resistance-associated protein (MRP). In all cell lines reported thus far, over-expression is associated with gene amplification. We have studied the predominant mechanisms of MRP over-expression in 4 human lung-cancer

  1. Multidrug Resistance Protein-4 Influences Aspirin Toxicity in Human Cell Line

    Directory of Open Access Journals (Sweden)

    Isabella Massimi

    2015-01-01

    Full Text Available Overexpression of efflux transporters, in human cells, is a mechanism of resistance to drug and also to chemotherapy. We found that multidrug resistance protein-4 (MRP4 overexpression has a role in reducing aspirin action in patients after bypass surgery and, very recently, we found that aspirin enhances platelet MRP4 levels through peroxisome proliferator activated receptor-α (PPARα. In the present paper, we verified whether exposure of human embryonic kidney-293 cells (Hek-293 to aspirin modifies MRP4 gene expression and its correlation with drug elimination and cell toxicity. We first investigated the effect of high-dose aspirin in Hek-293 and we showed that aspirin is able to increase cell toxicity dose-dependently. Furthermore, aspirin effects, induced at low dose, already enhance MRP4 gene expression. Based on these findings, we compared cell viability in Hek-293, after high-dose aspirin treatment, in MRP4 overexpressing cells, either after aspirin pretreatment or in MRP4 transfected cells; in both cases, a decrease of selective aspirin cell growth inhibition was observed, in comparison with the control cultures. Altogether, these data suggest that exposing cells to low nontoxic aspirin dosages can induce gene expression alterations that may lead to the efflux transporter protein overexpression, thus increasing cellular detoxification of aspirin.

  2. Quantitative analysis of MDR1 (multidrug resistance) gene expression in human tumors by polymerase chain reaction

    International Nuclear Information System (INIS)

    Noonan, K.E.; Beck, C.; Holzmayer, T.A.; Chin, J.E.; Roninson, I.B.; Wunder, J.S.; Andrulis, I.L.; Gazdar, A.F.; Willman, C.L.; Griffith, B.; Von Hoff, D.D.

    1990-01-01

    The resistance of tumor cells ot chemotheraprutic drugs is a major obstacle to successful cancer chemotherapy. In human cells, expression of the MDR1 gene, encoding a transmembrane efflux pump (P-glycoprotein), leads to decreased intracellular accumulation and resistance to a variety of lipophilic drugs (multidrug resistance; MDR). The levels of MDR in cell lines selected in bitro have been shown to correlate with the steady-state levels of MDR1 mRNA and P-glycoprotein. In cells with a severalfold increase in cellular drug resistance, MDR1 expression levels are close to the limits of detection by conventional assays. MDR1 expression has been frequently observed in human tumors after chemotherapy and in some but not all types of clinically refactory tumors untreated with chemotherapeutic drugs. The authors have devised a highly sensitive, specific, and quantitative protocol for measuring the levels of MDR1 mRNA in clincal samples, based on the polymerase chain reaction. They have used this assay to measure MDR1 gene expression in MDR cell lines and >300 normal tissues, tumor-derived cell lines, and clinical specimens of untreated tumors of the types in which MDR1 expression was rarely observed by standard assays. Low levels of MDR1 expression were found by polymerase chain reaction in most solid tumors and leukemias tested. The frequency of samples without detectable MDR1 expression varied among different types of tumors; MDR1-negative samples were ost common among tumor types known to be relatively responsive to chemotherapy

  3. Double Standards in Global Health: Medicine, Human Rights Law and Multidrug-Resistant TB Treatment Policy.

    Science.gov (United States)

    Nicholson, Thomas; Admay, Catherine; Shakow, Aaron; Keshavjee, Salmaan

    2016-06-01

    The human rights arguments that underpinned the fight against HIV over the last three decades were poised, but ultimately failed, to provide a similar foundation for success against multidrug-resistant TB (MDR-TB) and other diseases of the poor. With more than 1.5 million deaths since 2000 attributed to strains of MDR-TB, and with half a million new, and mostly untreated, MDR-TB cases in the world each year, the stakes could not be higher. The World Health Organization (WHO), whose mandate is to champion the attainment by all peoples of the highest possible level of health, recommended unsound medical treatment for MDR-TB patients in resource-poor settings from 1993-2002. Citing cost considerations, WHO did not recommend the available standard of care that had been successfully used to contain and defeat MDR-TB in rich countries. By acting as a strategic gatekeeper in its technical advisory role to donor agencies and countries, it also facilitated the global implementation of a double standard for TB care in low- and middle-income countries (LMICs), upending important legal and scientific priorities. This raises serious questions about whether the organization violated international human rights standards and those established in its own constitution. While calling for additional analysis and discussion on this topic, the authors propose that policymakers should reject double standards of this kind and instead embrace the challenge of implementing the highest standard of care on a global level.

  4. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium

    DEFF Research Database (Denmark)

    Bryant, Josephine M; Grogono, Dorothy M; Rodriguez-Rincon, Daniela

    2016-01-01

    Lung infections with Mycobacterium abscessus, a species of multidrug-resistant nontuberculous mycobacteria, are emerging as an important global threat to individuals with cystic fibrosis (CF), in whom M. abscessus accelerates inflammatory lung damage, leading to increased morbidity and mortality....

  5. Multidrug-Resistant Salmonella enterica Serovar Muenchen from Pigs and Humans and Potential Interserovar Transfer of Antimicrobial Resistance

    OpenAIRE

    Gebreyes, Wondwossen A.; Thakur, Siddhartha

    2005-01-01

    Salmonella serovars are important reservoirs of antimicrobial resistance. Recently, we reported on multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium strains among pigs with resistance to ampicillin, kanamycin, streptomycin, sulfamethoxazole, and tetracycline (resistance [R] type AKSSuT) and resistance to amoxicillin-clavulanic acid, ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline (R type AxACSSuT). In the present study, 67 isolates (39 from humans...

  6. Effect of fractionated radiation on multidrug resistance in human ovarian cancer

    International Nuclear Information System (INIS)

    Kong Dejuan; Liu Xiaodong; Liang Bing; Jia Lili; Ma Shumei

    2012-01-01

    Objective: To investigate the effect of different subtypes of fractionated doses on multidrug resistance in ovarian cancer cells. Methods: The human ovarian cancer cell lines SKOV3 and its drug-resistant subtype SKVCR were divided into four groups i.e., sham-irradiated, single dose (10 Gy), fractionated dose (2 Gy × 5) and multi-fractionated dose (1 Gy × 2 × 5). Cell sensitivity to vincristine (VCR), etoposide (VP-16), pirarubicin (THP) and cisplatin (DDP) was measured by MTT assay. Western blot was applied to detect the expression of P-gp after irradiation. Results: The doubling time of SKVCR was about 1.8-fold of that of SKOV3 cells. P-gp was expressed in SKVCR but not in SKOV3. IC 50 values of SKVCR were higher than those of SKOV3. To SKOV3 cells, single dose irradiation decreased cell sensitivity to THP and DDP and fractionated irradiation decreased cell sensitivity to VCR, THP and VP-16. Multi-fractionated irradiation decreased cell sensitivity to VP-16. In SKVCR cells, all these irradiation treatments increased cell sensitivity to VCR and VP-16 but not to DDP. In addition, single and fractionated irradiation decreased P-gp expression in SKVCR cells. Conclusions: Single, fractionated and multi-fractionated radiation induced chemotherapy resistance in SKOV3 cells, while reversed drug resistance to VCR and VP-16 in SKVCR cells. (authors)

  7. Antibacterial activities of Rhazya stricta leaf extracts against multidrug-resistant human pathogens

    Directory of Open Access Journals (Sweden)

    Raziuddin Khan

    2016-09-01

    Full Text Available Bacterial resistance to antibiotics, first a major concern in the 1960s, has re-emerged worldwide over the last 20 years. The World Health Organization (WHO and other health organizations have, therefore, declared ‘war’ against human microbial pathogens, particularly hospital-acquired infections, and have made drug discovery a top priority for these diseases. Because these bacteria are refractory to conventional chemotherapy, medicinal and herbal plants used in various countries should be assessed for their therapeutic potential; these valuable bio-resources are a reservoir of complex bioactive molecules. Earlier studies from our laboratory on Rhazya stricta, a native herbal shrub of Asia, have shown that this plant has a number of therapeutic properties. In this study, we evaluated the antimicrobial activities of various concentrations of five solvent extracts (aqueous alkaloid, aqueous non-alkaloid, organic alkaloid, organic non-alkaloid and whole aqueous extracts derived from R. stricta leaves against several multidrug-resistant, human-pathogenic bacteria, including methicillin-resistant Staphylococcus aureus (MRSA and extended-spectrum beta-lactamase-positive Escherichia coli. In vitro, molecular and electron microscopy analyses conclusively demonstrated the antimicrobial effects of these extracts against a panel of Gram-negative and Gram-positive bacteria. The organic alkaloid extract was the most effective against E. coli and MRSA, resulting in cell membrane disruption visible with transmission electron microscopy. In the near future, we intend to further focus and delineate the molecular mechanism-of-action for specific alkaloids of R. stricta, particularly against MRSA.

  8. Functional characterization of the human multidrug transporter, ABCG2, expressed in insect cells

    DEFF Research Database (Denmark)

    Ozvegy, C.; Litman, Thomas; Szakacs, G.

    2001-01-01

    ABCG2 (also called MXR (3), BCRP (4), or ABCP (5) is a recently-identified ABC half-transporter, which causes multidrug resistance in cancer. Here we report that the expression of the ABCG2 protein in Sf9 insect cells resulted in a high-capacity, vanadate-sensitive ATPase activity in isolated...

  9. Comparison of the multi-drug resistant human hepatocellular carcinoma cell line Bel-7402/ADM model established by three methods

    Directory of Open Access Journals (Sweden)

    Zhong Xingguo

    2010-08-01

    Full Text Available Abstract Background To compare the biological characteristics of three types of human hepatocellular carcinoma multi-drug resistant cell sub-lines Bel-7402/ADM models established by three methods. Methods Established human hepatocellular carcinoma adriamycin (ADM multi-drug resistant cell sub-lines models Bel-7402/ADMV, Bel-7402/ADML and Bel-7402/ADMS by three methods of in vitro concentration gradient increased induction, nude mice liver-implanted induction and subcutaneous-implanted induction respectively. Phase contrast microscopy was used to observe the cells and the MTT (methyl thiazolyl tetrazolium method was used to detect drug resistance of the three different sub-lines of cells. Results The three groups of drug resistant cells, Bel-7402/ADMV, Bel-7402/ADML and Bel-7402/ADMS generated cross-resistance to ADM and CDDP (cis-Diaminedichloroplatinum, but showed a significant difference in resistance to Bel-7402 IC50 value (P V, 46 h (Bel-7402/ADML, and 45 h (Bel-7402/ADMS. The excretion rates of ADM were significantly increased compared with the parent cell (34.14% line and were 81.06% (Bel-7402/ADMV, 66.56% (Bel-7402/ADML and 61.56% (Bel-7402/ADMS. Expression of P-gp and MRP in the three groups of resistant cells was significantly enhanced (P P > 0.05. Conclusions Stable resistance was involved in the resistant cell line model established by the above three methods. Liver implantation was a good simulation of human hepatocellular and proved to be an ideal model with characteristics similar to human hepatocellular biology and the pharmacokinetics of anticancer drugs.

  10. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    Multidrug resistance (MDR) remains a major problem in the successful treatment of small cell lung cancer (SCLC). New treatment strategies are needed, such as gene therapy specifically targeting the MDR cells in the tumor. Retroviral LacZ gene-containing vectors that were either pseudotyped...... for the gibbon ape leukemia virus (GALV-1) receptor or had specificity for the amphotropic murine leukemia virus (MLV-A) receptor were used for transduction of five SCLC cell lines differing by a range of MDR mechanisms. Transduction efficiencies in these cell lines were compared by calculating the percentage...... of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  11. Identification of microRNAs and mRNAs associated with multidrug resistance of human laryngeal cancer Hep-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Wanzhong; Wang, Ping; Wang, Xin [Department of Otorhinolaryngology, Head and Neck Surgery, The First Clinical Hospital, Norman Bethune College of Medicine, Jilin University, Changchun (China); Song, Wenzhi [Department of Stomatology, China-Japan Friendship Hospital, Jilin University, Changchun (China); Cui, Xiangyan; Yu, Hong; Zhu, Wei [Department of Otorhinolaryngology, Head and Neck Surgery, The First Clinical Hospital, Norman Bethune College of Medicine, Jilin University, Changchun (China)

    2013-06-12

    Multidrug resistance (MDR) poses a serious impediment to the success of chemotherapy for laryngeal cancer. To identify microRNAs and mRNAs associated with MDR of human laryngeal cancer Hep-2 cells, we developed a multidrug-resistant human laryngeal cancer subline, designated Hep-2/v, by exposing Hep-2 cells to stepwise increasing concentrations of vincristine (0.02-0.96'µM). Microarray assays were performed to compare the microRNA and mRNA expression profiles of Hep-2 and Hep-2/v cells. Compared to Hep-2 cells, Hep-2/v cells were more resistant to chemotherapy drugs (∼45-fold more resistant to vincristine, 5.1-fold more resistant to cisplatin, and 5.6-fold more resistant to 5-fluorouracil) and had a longer doubling time (42.33±1.76 vs 28.75±1.12'h, P<0.05), higher percentage of cells in G0/G1 phase (80.98±0.52 vs 69.14±0.89, P<0.05), increased efflux of rhodamine 123 (95.97±0.56 vs 12.40±0.44%, P<0.01), and up-regulated MDR1 expression. A total of 7 microRNAs and 605 mRNAs were differentially expressed between the two cell types. Of the differentially expressed mRNAs identified, regulator of G-protein signaling 10, high-temperature requirement protein A1, and nuclear protein 1 were found to be the putative targets of the differentially expressed microRNAs identified. These findings may open a new avenue for clarifying the mechanisms responsible for MDR in laryngeal cancer.

  12. Identification of microRNAs and mRNAs associated with multidrug resistance of human laryngeal cancer Hep-2 cells

    International Nuclear Information System (INIS)

    Yin, Wanzhong; Wang, Ping; Wang, Xin; Song, Wenzhi; Cui, Xiangyan; Yu, Hong; Zhu, Wei

    2013-01-01

    Multidrug resistance (MDR) poses a serious impediment to the success of chemotherapy for laryngeal cancer. To identify microRNAs and mRNAs associated with MDR of human laryngeal cancer Hep-2 cells, we developed a multidrug-resistant human laryngeal cancer subline, designated Hep-2/v, by exposing Hep-2 cells to stepwise increasing concentrations of vincristine (0.02-0.96'µM). Microarray assays were performed to compare the microRNA and mRNA expression profiles of Hep-2 and Hep-2/v cells. Compared to Hep-2 cells, Hep-2/v cells were more resistant to chemotherapy drugs (∼45-fold more resistant to vincristine, 5.1-fold more resistant to cisplatin, and 5.6-fold more resistant to 5-fluorouracil) and had a longer doubling time (42.33±1.76 vs 28.75±1.12'h, P<0.05), higher percentage of cells in G0/G1 phase (80.98±0.52 vs 69.14±0.89, P<0.05), increased efflux of rhodamine 123 (95.97±0.56 vs 12.40±0.44%, P<0.01), and up-regulated MDR1 expression. A total of 7 microRNAs and 605 mRNAs were differentially expressed between the two cell types. Of the differentially expressed mRNAs identified, regulator of G-protein signaling 10, high-temperature requirement protein A1, and nuclear protein 1 were found to be the putative targets of the differentially expressed microRNAs identified. These findings may open a new avenue for clarifying the mechanisms responsible for MDR in laryngeal cancer

  13. Kaempferol increases apoptosis in human acute promyelocytic leukemia cells and inhibits multidrug resistance genes.

    Science.gov (United States)

    Moradzadeh, Maliheh; Tabarraei, Alijan; Sadeghnia, Hamid Reza; Ghorbani, Ahmad; Mohamadkhani, Ashraf; Erfanian, Saiedeh; Sahebkar, Amirhossein

    2018-02-01

    Acute promyelocytic leukemia (APL) is one of the most life-threatening hematological malignancies. Defects in the cell growth and apoptotic pathways are responsible for both disease pathogenesis and treatment resistance. Therefore, pro-apoptotic agents are potential candidates for APL treatment. Kaempferol is a flavonoid with antioxidant and anti-tumor properties. This study was designed to investigate the cytotoxic, pro-apoptotic, and differentiation-inducing effects of kaempferol on HL-60 and NB4 leukemia cells. Resazurin assay was used to determine cell viability following treatment with kaempferol (12.5-100 μM) and all-trans retinoic acid (ATRA; 10 μM; used as a positive control). Apoptosis and differentiation were also detected using propidium iodide and NBT staining techniques, respectively. Furthermore, the expression levels of genes involved in apoptosis (PI3 K, AKT, BCL2, BAX, p53, p21, PTEN, CASP3, CASP8, and CASP9), differentiation (PML-RAR and HDAC1), and multi-drug resistance (ABCB1 and ABCC1) were determined using quantitative real-time PCR. The protein expressions of Bax/Bcl2 and casp3 were confirmed using Western blot. The results showed that kaempferol decreased cell viability and increased subG1 population in the tested leukemic cells. This effect was associated with decreased expression of Akt, BCL2, ABCB1, and ABCC1 genes, while the expression of CASP3 and BAX/BCL-2 ratio were significantly increased at both gene and protein levels. Kaempferol promoted apoptosis and inhibited multidrug resistance in a concentration-dependent manner, without any differential effect on leukemic cells. In conclusion, this study suggested that kaempferol may be utilized as an appropriate alternative for ATRA in APL patients. © 2017 Wiley Periodicals, Inc.

  14. Whole genome sequencing of multidrug-resistant Salmonella enterica serovar Typhimurium isolated from humans and poultry in Burkina Faso.

    Science.gov (United States)

    Kagambèga, Assèta; Lienemann, Taru; Frye, Jonathan G; Barro, Nicolas; Haukka, Kaisa

    2018-01-01

    for all the isolates . The poultry and human isolates were genetically similar showing a potential food safety risk for consumers. Our finding of multidrug-resistant S. Typhimurium ST313 in poultry feces calls for further studies to clarify the potential reservoirs of this emerging pathogen.

  15. Sensitization of multidrug-resistant human cancer cells to Hsp90 inhibitors by down-regulation of SIRT1

    Science.gov (United States)

    Kim, Hak-Bong; Lee, Su-Hoon; Um, Jee-Hyun; Oh, Won Keun; Kim, Dong-Wan; Kang, Chi-Dug; Kim, Sun-Hee

    2015-01-01

    The effectiveness of Hsp90 inhibitors as anticancer agents was limited in multidrug-resistant (MDR) human cancer cells due to induction of heat shock proteins (Hsps) such as Hsp70/Hsp27 and P-glycoprotein (P-gp)-mediated efflux. In the present study, we showed that resistance to Hsp90 inhibitors of MDR human cancer cells could be overcome with SIRT1 inhibition. SIRT1 knock-down or SIRT1 inhibitors (amurensin G and EX527) effectively suppressed the resistance to Hsp90 inhibitors (17-AAG and AUY922) in several MDR variants of human lymphoblastic leukemia and human breast cancer cell lines. SIRT1 inhibition down-regulated the expression of heat shock factor 1 (HSF1) and subsequently Hsps and facilitated Hsp90 multichaperone complex disruption via hyperacetylation of Hsp90/Hsp70. These findings were followed by acceleration of ubiquitin ligase CHIP-mediated mutant p53 (mut p53) degradation and subsequent down-regulation of P-gp in 17-AAG-treated MDR cancer cells expressing P-gp and mut p53 after inhibition of SIRT1. Therefore, combined treatment with Hsp90 inhibitor and SIRT1 inhibitor could be a more effective therapeutic approach for Hsp90 inhibitor-resistant MDR cells via down-regulation of HSF1/Hsps, mut p53 and P-gp. PMID:26416354

  16. Identification of the Interaction between P-Glycoprotein and Anxa2 in Multidrug-resistant Human Breast Cancer Cells

    International Nuclear Information System (INIS)

    Zhang, Hai-chang; Zhang, Fei; Wu, Bing; Han, Jing-hua; Ji, Wei; Zhou, Yan; Niu, Rui-fang

    2012-01-01

    To explore the interaction of Anxa2 with P-Glycoprotein (P-gp) in the migration and invasion of the multidrug-resistant (MDR) human breast cancer cell line MCF-7/ADR. A pair of short hairpin RNA (shRNA) targeting P-gp was transfected into MCF-7/ADR cells, and monoclonal cell strains were screened. The expression of P-gp was detected by Western blot. Transwell chambers were used to observe the cell migration capacity and invasion ability. The interaction between P-gp and Anxa2 was examined by immunoprecipitation and immunofluorescence confocal microscopy analyses. P-gp expression was significantly knocked down, and there were notable decreasing trends in the migration and invasion capability of MDR breast cancer cells (P<0.05). There was a close interaction between Anxa2 and P-gp. MCF-7/ADR is an MDR human breast cancer cell line with high migration and invasion abilities. The knockdown of P-gp notably impaired the migration and invasion abilities of the tumor cells. The interaction of Anxa2 with P-pg may play an important role in the enhanced invasiveness of MDR human breast cancer cells

  17. The multidrug resistance 1 gene Abcb1 in brain and placenta: comparative analysis in human and guinea pig.

    Science.gov (United States)

    Pappas, Jane J; Petropoulos, Sophie; Suderman, Matthew; Iqbal, Majid; Moisiadis, Vasilis; Turecki, Gustavo; Matthews, Stephen G; Szyf, Moshe

    2014-01-01

    The Multidrug Resistance 1 (MDR1; alternatively ABCB1) gene product P-glycoprotein (P-gp), an ATP binding cassette transporter, extrudes multiple endogenous and exogenous substrates from the cell, playing an important role in normal physiology and xenobiotic distribution and bioavailability. To date, the predominant animal models used to investigate the role of P-gp have been the mouse and rat, which have two distinct genes, Abcb1a and Abcb1b. In contrast, the human has a single gene, ABCB1, for which only a single isoform has been validated. We and others have previously shown important differences between Abcb1a and Abcb1b, limiting the extrapolation from rodent findings to the human. Since the guinea pig has a relatively long gestation, hemomonochorial placentation and neuroanatomically mature offspring, it is more similar to the human, and may provide a more comparable model for investigating the regulation of P-gp in the brain and placenta, however, to date, the Abcb1 gene in the guinea pig remains to be characterized. The placenta and fetal brain are barrier sites that express P-gp and that play a critical role of protection of the fetus and the fetal brain from maternally administered drugs and other xenobiotics. Using RNA sequencing (RNA-seq), reverse transcription-polymerase chain reaction (RT-PCR) and quantitative PCR (QPCR) to sequence the expressed isoforms of guinea pig Abcb1, we demonstrate that like the human, the guinea pig genome contains one gene for Abcb1 but that it is expressed as at least three different isoforms via alternative splicing and alternate exon usage. Further, we demonstrate that these isoforms are more closely related to human than to rat or mouse isoforms. This striking, overall similarity and evolutionary relatedness between guinea pig Abcb1 and human ABCB1 indicate that the guinea pig represents a relevant animal model for investigating the function and regulation of P-gp in the placenta and brain.

  18. Membrane vesicles from multidrug-resistant human carcinoma cells contain a specific 150,000-170,000 dalton protein detected by photoaffinity labeling

    International Nuclear Information System (INIS)

    Cornwell, M.M.; Safa, A.R.; Felsted, R.L.; Gottesman, M.M.; Pastan, I.

    1986-01-01

    The authors have selected multidrug-resistant human KB carcinoma cells in high levels of colchicine (KB-C4) or vinblastine (KB-V1) which are cross-resistant to many other structurally unrelated chemotheraputic agents. To determine the mechanism of reduced drug accumulation, they measured 3 H-vinblastine ( 3 H-VBL) association with membrane vesicles made from parental drug sensitive, drug-resistant and revertant cells. Membrane vesicles from highly multidrug resistant cells exhibited increased specific and saturable binding of vinblastine, (Kd = 1 μM) that was temperature dependent and trypsin sensitive. To identify the molecules which bind vinblastine, membrane vesicles were exposed to two photo-activatable analogs of vinblastine, (N-P-(azido-3,5,-[ 3 H]-benzoyl)-N'-β-aminoethylvindisine ( 3 H-NAB) and N-P-(azido-3-[ 125 I]-solicyl)-N'-β-aminoethylvindesine ( 125 I-NASV). The specific labeling of a 150,000-170,000 dalton protein in membrane vesicles from multidrug-resistant KB-C4 and KB-V1 cells was found. 125 I-NASV labeling was inhibited by vinblastine, vincrinstine and verapamil but not by colchicine or dexamethasone. The 150,000-170,000 dalton protein may have an important role in the multidrug resistance phenotype

  19. Heterologously expressed bacterial and human multidrug resistance proteins confer cadmium resistance to Escherichia coli

    NARCIS (Netherlands)

    Achard-Joris, M; van Saparoea, HBV; Driessen, AJM; Bourdineaud, JP; Bourdineaud, Jean-Paul

    2005-01-01

    The human MDR1 gene is induced by cadmium exposure although no resistance to this metal is observed in human cells overexpressing hMDR1. To access the role of MDR proteins in cadmium resistance, human MDR1, Lactococcus lactis lmrA, and Oenococcus oeni omrA were expressed in an Escherichia coli tolC

  20. The Reversal Effect and Its Mechanisms of Tetramethylpyrazine on Multidrug Resistance in Human Bladder Cancer.

    Directory of Open Access Journals (Sweden)

    Shanshan Wang

    Full Text Available Chemotherapy is an important strategy for the treatment of bladder cancer. However, the main problem limiting the success of chemotherapy is the development of multidrug resistance (MDR. To improve the management of bladder cancer, it is an urgent matter to search for strategies to reverse MDR. We chose three kinds of herbal medicines including ginsenoside Rh2, (--Epigallocatechin gallate (EGCG and Tetramethylpyrazine (TMP to detect their effects on bladder cancer. Reversal effects of these three herbal medicines for drug resistance in adriamycin (ADM-resistant Pumc-91 cells (Pumc-91/ADM were assessed by Cell Counting Kit-8 (CCK-8 cell proliferation assay system. The mechanisms of reversal effect for TMP were explored in Pumc-91/ADM and T24/DDP cells. After Pumc-91/ADM and T24/DDP cells were treated with TMP, cell cycle distribution analysis was performed by flow cytometry. The expression of MRP1, GST, BCL-2, LRP and TOPO-II was evaluated using quantitative real-time polymerase chain reaction (qRT-PCR, immunefluorescence assay and western blot. It was observed that TMP was capable of enhancing the cytotoxicity of anticancer agents on Pumc-91/ADM cells in response to ADM, however Rh2 and EGCG were unable to. The reversal effect of TMP was also demonstrated in T24/DDP cells. Moreover, the treatment with TMP in Pumc-91/ADM and T24/DDP cells led to an increased of G1 phase accompanied with a concomitant decrease of cell numbers in S phase. Compared to the control group, an obvious decrease of MRP1, GST, BCL-2 and an increase of TOPO-II were shown in TMP groups with a dose-dependency in mRNA and protein levels. However, there was no difference on LRP expression between TMP groups and the control group. TMP could effectively reverse MDR of Pumc-91/ADM and T24/DDP cells and its mechanisms might be correlated with the alteration of MRP1, GST, BCL-2 and TOPO-II. TMP might be a potential candidate for reversing drug resistance in bladder cancer

  1. miR-297 modulates multidrug resistance in human colorectal carcinoma by down-regulating MRP-2.

    Science.gov (United States)

    Xu, Ke; Liang, Xin; Shen, Ke; Cui, Daling; Zheng, Yuanhong; Xu, Jianhua; Fan, Zhongze; Qiu, Yanyan; Li, Qi; Ni, Lei; Liu, Jianwen

    2012-09-01

    Colorectal carcinoma is a frequent cause of cancer-related death in men and women. miRNAs (microRNAs) are endogenous small non-coding RNAs that regulate gene expression negatively at the post-transcriptional level. In the present study we investigated the possible role of microRNAs in the development of MDR (multidrug resistance) in colorectal carcinoma cells. We analysed miRNA expression levels between MDR colorectal carcinoma cell line HCT116/L-OHP cells and their parent cell line HCT116 using a miRNA microarray. miR-297 showed lower expression in HCT116/L-OHP cells compared with its parental cells. MRP-2 (MDR-associated protein 2) is an important MDR protein in platinum-drug-resistance cells and is a predicted target of miR-297. Additionally miR-297 was down-regulated in a panel of human colorectal carcinoma tissues and negatively correlated with expression levels of MRP-2. Furthermore, we found that ectopic expression of miR-297 in MDR colorectal carcinoma cells reduced MRP-2 protein level and sensitized these cells to anti-cancer drugs in vitro and in vivo. Taken together, our findings suggest that miR-297 could play a role in the development of MDR in colorectal carcinoma cells, at least in part by modulation of MRP-2.

  2. Human Intestinal Cells Modulate Conjugational Transfer of Multidrug Resistance Plasmids between Clinical Escherichia coli Isolates

    DEFF Research Database (Denmark)

    Machado, Ana Manuel; Sommer, Morten

    2014-01-01

    Bacterial conjugation in the human gut microbiota is believed to play a major role in the dissemination of antibiotic resistance genes and virulence plasmids. However, the modulation of bacterial conjugation by the human host remains poorly understood and there is a need for controlled systems...... to study this process. We established an in vitro co-culture system to study the interaction between human intestinal cells and bacteria. We show that the conjugation efficiency of a plasmid encoding an extended spectrum beta-lactamase is reduced when clinical isolates of Escherichia coli are co...... of the intestinal cells exposed to bacteria leading to a two-fold reduction in conjugation efficiency. These results show that human gut epithelial cells can modulate bacterial conjugation and may have relevance to gene exchange in the gut....

  3. A bacterial antibiotic-resistance gene that complements the human multidrug-resistance P-glycoprotein gene

    NARCIS (Netherlands)

    van Veen, HW; Callaghan, R; Soceneantu, L; Sardini, A; Konings, WN; Higgins, CF

    1998-01-01

    Bacteria have developed many fascinating antibiotic-resistance mechanisms(1,2). A protein in Lactococcus lactis, LmrA, mediates antibiotic resistance by extruding amphiphilic compounds from the inner leaflet of the cytoplasmic membrane(3,4). Unlike other known bacterial multidrug-resistance

  4. The reversal effects of 3-bromopyruvate on multidrug resistance in vitro and in vivo derived from human breast MCF-7/ADR cells.

    Directory of Open Access Journals (Sweden)

    Long Wu

    Full Text Available P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in vitro and in vivo modulatory activity of this compound.The in vitro and in vivo activity was determined using the MTT assay and human breast cancer xenograft models. The gene and protein expression of P-glycoprotein were determined using real-time polymerase chain reaction and the Western blotting technique, respectively. ABCB-1 bioactivity was tested by fluorescence microscopy, multi-mode microplate reader, and flow cytometry. The intracellular levels of ATP, HK-II, and ATPase activity were based on an assay kit according to the manufacturer's instructions.3-Bromopyruvate treatment led to marked decreases in the IC50 values of selected chemotherapeutic drugs [e.g., doxorubicin (283 folds, paclitaxel (85 folds, daunorubicin (201 folds, and epirubicin (171 folds] in MCF-7/ADR cells. 3-Bromopyruvate was found also to potentiate significantly the antitumor activity of epirubicin against MCF-7/ADR xenografts. The intracellular level of ATP decreased 44%, 46% in the presence of 12.5.25 µM 3-Bromopyruvate, whereas the accumulation of rhodamine 123 and epirubicin (two typical P-glycoprotein substrates in cells was significantly increased. Furthermore, we found that the mRNA and the total protein level of P-glycoprotein were slightly altered by 3-Bromopyruvate. Moreover, the ATPase activity was significantly inhibited when 3-Bromopyruvate was applied.We demonstrated that 3-Bromopyruvate can reverse P-glycoprotein-mediated efflux in MCF-7/ADR cells. Multidrug resistance reversal by 3-Bromopyruvate occurred through at least three approaches, namely, a decrease in the

  5. The reversal effects of 3-bromopyruvate on multidrug resistance in vitro and in vivo derived from human breast MCF-7/ADR cells.

    Science.gov (United States)

    Wu, Long; Xu, Jun; Yuan, Weiqi; Wu, Baojian; Wang, Hao; Liu, Guangquan; Wang, Xiaoxiong; Du, Jun; Cai, Shaohui

    2014-01-01

    P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in vitro and in vivo modulatory activity of this compound. The in vitro and in vivo activity was determined using the MTT assay and human breast cancer xenograft models. The gene and protein expression of P-glycoprotein were determined using real-time polymerase chain reaction and the Western blotting technique, respectively. ABCB-1 bioactivity was tested by fluorescence microscopy, multi-mode microplate reader, and flow cytometry. The intracellular levels of ATP, HK-II, and ATPase activity were based on an assay kit according to the manufacturer's instructions. 3-Bromopyruvate treatment led to marked decreases in the IC50 values of selected chemotherapeutic drugs [e.g., doxorubicin (283 folds), paclitaxel (85 folds), daunorubicin (201 folds), and epirubicin (171 folds)] in MCF-7/ADR cells. 3-Bromopyruvate was found also to potentiate significantly the antitumor activity of epirubicin against MCF-7/ADR xenografts. The intracellular level of ATP decreased 44%, 46% in the presence of 12.5.25 µM 3-Bromopyruvate, whereas the accumulation of rhodamine 123 and epirubicin (two typical P-glycoprotein substrates) in cells was significantly increased. Furthermore, we found that the mRNA and the total protein level of P-glycoprotein were slightly altered by 3-Bromopyruvate. Moreover, the ATPase activity was significantly inhibited when 3-Bromopyruvate was applied. We demonstrated that 3-Bromopyruvate can reverse P-glycoprotein-mediated efflux in MCF-7/ADR cells. Multidrug resistance reversal by 3-Bromopyruvate occurred through at least three approaches, namely, a decrease in the intracellular

  6. Multidrug resistance in Lactococcus lactis

    NARCIS (Netherlands)

    Bolhuis, Hendrik

    1996-01-01

    Multidrug resistance (MDR) was initially recongnized as the major cause of the failure of the drug-based treatment of human cancers. It has become increasingly clear that MDR occurs in mammalian cells but also in lower eukaryotes and bacteria. The appearance of multiple antibiotic resistant

  7. Emergence of a Clonal Lineage of Multidrug-Resistant ESBL-Producing Salmonella Infantis Transmitted from Broilers and Broiler Meat to Humans in Italy between 2011 and 2014

    DEFF Research Database (Denmark)

    Franco, Alessia; Leekitcharoenphon, Pimlapas; Feltrin, Fabiola

    2015-01-01

    We report the spread of a clone of multidrug-resistant (MDR), ESBL-producing (blaCTX-M-1) Salmonella enterica subsp. enterica serovar Infantis, in the Italian broiler chicken industry and along the food-chain. This was first detected in Italy in 2011 and led to human infection in Italy in 2013....... This megaplasmid carried the ESBL gene blaCTX-M-1, and additional genes [tet(A), sul1, dfrA1 and dfrA14] mediating cefotaxime, tetracycline, sulfonamide, and trimethoprim resistance. It also contained genes conferring enhanced colonization capability, virulence (fimbriae, yersiniabactin), resistance and fitness...

  8. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    International Nuclear Information System (INIS)

    Fuchs, Dominik; Daniel, Volker; Sadeghi, Mahmoud; Opelz, Gerhard; Naujokat, Cord

    2010-01-01

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity of P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.

  9. Small-molecule synthetic compound norcantharidin reverses multi-drug resistance by regulating Sonic hedgehog signaling in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    Full Text Available Multi-drug resistance (MDR, an unfavorable factor compromising treatment efficacy of anticancer drugs, involves upregulated ATP binding cassette (ABC transporters and activated Sonic hedgehog (Shh signaling. By preparing human breast cancer MCF-7 cells resistant to doxorubicin (DOX, we examined the effect and mechanism of norcantharidin (NCTD, a small-molecule synthetic compound, on reversing multidrug resistance. The DOX-prepared MCF-7R cells also possessed resistance to vinorelbine, characteristic of MDR. At suboptimal concentration, NCTD significantly inhibited the viability of DOX-sensitive (MCF-7S and DOX-resistant (MCF-7R cells and reversed the resistance to DOX and vinorelbine. NCTD increased the intracellular accumulation of DOX in MCF-7R cells and suppressed the upregulated the mdr-1 mRNA, P-gp and BCRP protein expression, but not the MRP-1. The role of P-gp was strengthened by partial reversal of the DOX and vinorelbine resistance by cyclosporine A. NCTD treatment suppressed the upregulation of Shh expression and nuclear translocation of Gli-1, a hallmark of Shh signaling activation in the resistant clone. Furthermore, the Shh ligand upregulated the expression of P-gp and attenuated the growth inhibitory effect of NCTD. The knockdown of mdr-1 mRNA had not altered the expression of Shh and Smoothened in both MCF-7S and MCF-7R cells. This indicates that the role of Shh signaling in MDR might be upstream to mdr-1/P-gp, and similar effect was shown in breast cancer MDA-MB-231 and BT-474 cells. This study demonstrated that NCTD may overcome multidrug resistance through inhibiting Shh signaling and expression of its downstream mdr-1/P-gp expression in human breast cancer cells.

  10. Celastraceae sesquiterpenes as a new class of modulators that bind specifically to human P-glycoprotein and reverse cellular multidrug resistance.

    Science.gov (United States)

    Muñoz-Martínez, Francisco; Lu, Peihua; Cortés-Selva, Fernando; Pérez-Victoria, José María; Jiménez, Ignacio A; Ravelo, Angel G; Sharom, Frances J; Gamarro, Francisco; Castanys, Santiago

    2004-10-01

    Overexpression of ABCB1 (MDR1) P-glycoprotein, a multidrug efflux pump, is one mechanism by which tumor cells may develop multidrug resistance (MDR), preventing the successful chemotherapeutic treatment of cancer. Sesquiterpenes from Celastraceae family are natural compounds shown previously to reverse MDR in several human cancer cell lines and Leishmania strains. However, their molecular mechanism of reversion has not been characterized. In the present work, we have studied the ability of 28 dihydro-beta-agarofuran sesquiterpenes to reverse the P-glycoprotein-dependent MDR phenotype and elucidated their molecular mechanism of action. Cytotoxicity assays using human MDR1-transfected NIH-3T3 cells allowed us to select the most potent sesquiterpenes reversing the in vitro resistance to daunomycin and vinblastine. Flow cytometry experiments showed that the above active compounds specifically inhibited drug transport activity of P-glycoprotein in a saturable, concentration-dependent manner (K(i) down to 0.24 +/- 0.01 micromol/L) but not that of ABCC1 (multidrug resistance protein 1; MRP1), ABCC2 (MRP2), and ABCG2 (breast cancer resistance protein; BCRP) transporters. Moreover, sesquiterpenes inhibited at submicromolar concentrations the P-glycoprotein-mediated transport of [(3)H]colchicine and tetramethylrosamine in plasma membrane from CH(R)B30 cells and P-glycoprotein-enriched proteoliposomes, supporting that P-glycoprotein is their molecular target. Photoaffinity labeling in plasma membrane and fluorescence spectroscopy experiments with purified protein suggested that sesquiterpenes interact with transmembrane domains of P-glycoprotein. Finally, sesquiterpenes modulated P-glycoprotein ATPase-activity in a biphasic, concentration-dependent manner: they stimulated at very low concentrations but inhibited ATPase activity as noncompetitive inhibitors at higher concentrations. Sesquiterpenes from Celastraceae are promising P-glycoprotein modulators with potential

  11. The Reversal Effects of 3-Bromopyruvate on Multidrug Resistance In Vitro and In Vivo Derived from Human Breast MCF-7/ADR Cells

    OpenAIRE

    Wu, Long; Xu, Jun; Yuan, Weiqi; Wu, Baojian; Wang, Hao; Liu, Guangquan; Wang, Xiaoxiong; Du, Jun; Cai, Shaohui

    2014-01-01

    Purpose P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in vitro and in vivo modulatory activity of this compound. Methods The in vitro and in vivo activity wa...

  12. Knockdown of HOXA10 reverses the multidrug resistance of human chronic mylogenous leukemia K562/ADM cells by downregulating P-gp and MRP-1.

    Science.gov (United States)

    Yi, Ying-Jie; Jia, Xiu-Hong; Wang, Jian-Yong; Li, You-Jie; Wang, Hong; Xie, Shu-Yang

    2016-05-01

    Multidrug resistance (MDR) of leukemia cells is a major obstacle in chemotherapeutic treatment. The high expression and constitutive activation of P-glycoprotein (P-gp) and multidrug resistance protein-1 (MRP-1) have been reported to play a vital role in enhancing cell resistance to anticancer drugs in many tumors. The present study aimed to investigate the reversal of MDR by silencing homeobox A10 (HOXA10) in adriamycin (ADR)-resistant human chronic myelogenous leukemia (CML) K562/ADM cells by modulating the expression of P-gp and MRP-1. K562/ADM cells were stably transfected with HOXA10-targeted short hairpin RNA (shRNA). The results of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis showed that the mRNA and protein expression of HOXA10 was markedly suppressed following transfection with a shRNA-containing vector. The sensitivity of the K562/ADM cells to ADR was enhanced by the silencing of HOXA10, due to the increased intracellular accumulation of ADR. The accumulation of ADR induced by the silencing of HOXA10 may be due to the downregulation of P-gp and MRP-1. Western blot analysis revealed that downregulating HOXA10 inhibited the protein expression of P-gp and MRP-1. Taken together, these results suggest that knockdown of HOXA10 combats resistance and that HOXA10 is a potential target for resistant human CML.

  13. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian, E-mail: zhangjian197011@yahoo.com [Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Zhang, Tao [Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi' an 710038 (China); Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling [Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Yin, Hong, E-mail: yinnhong@yahoo.com [The Medical Image Center, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China)

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  14. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    International Nuclear Information System (INIS)

    Zhang, Jian; Zhang, Tao; Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling; Yin, Hong

    2010-01-01

    Research highlights: → Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells → Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway → Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* → miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  15. Mutations of the central tyrosines of putative cholesterol recognition amino acid consensus (CRAC) sequences modify folding, activity, and sterol-sensing of the human ABCG2 multidrug transporter.

    Science.gov (United States)

    Gál, Zita; Hegedüs, Csilla; Szakács, Gergely; Váradi, András; Sarkadi, Balázs; Özvegy-Laczka, Csilla

    2015-02-01

    Human ABCG2 is a plasma membrane glycoprotein causing multidrug resistance in cancer. Membrane cholesterol and bile acids are efficient regulators of ABCG2 function, while the molecular nature of the sterol-sensing sites has not been elucidated. The cholesterol recognition amino acid consensus (CRAC, L/V-(X)(1-5)-Y-(X)(1-5)-R/K) sequence is one of the conserved motifs involved in cholesterol binding in several proteins. We have identified five potential CRAC motifs in the transmembrane domain of the human ABCG2 protein. In order to define their roles in sterol-sensing, the central tyrosines of these CRACs (Y413, 459, 469, 570 and 645) were mutated to S or F and the mutants were expressed both in insect and mammalian cells. We found that mutation in Y459 prevented protein expression; the Y469S and Y645S mutants lost their activity; while the Y570S, Y469F, and Y645F mutants retained function as well as cholesterol and bile acid sensitivity. We found that in the case of the Y413S mutant, drug transport was efficient, while modulation of the ATPase activity by cholesterol and bile acids was significantly altered. We suggest that the Y413 residue within a putative CRAC motif has a role in sterol-sensing and the ATPase/drug transport coupling in the ABCG2 multidrug transporter. Copyright © 2014. Published by Elsevier B.V.

  16. Population-level genomics identifies the emergence and global spread of a human transmissible multidrug-resistant nontuberculous mycobacterium

    Science.gov (United States)

    Rodriguez-Rincon, Daniela; Everall, Isobel; Brown, Karen P; Moreno, Pablo; Verma, Deepshikha; Hill, Emily; Drijkoningen, Judith; Gilligan, Peter; Esther, Charles R; Noone, Peadar G; Giddings, Olivia; Bell, Scott C.; Thomson, Rachel; Wainwright, Claire E.; Coulter, Chris; Pandey, Sushil; Wood, Michelle E; Stockwell, Rebecca E; Ramsay, Kay A; Sherrard, Laura J; Kidd, Timothy J; Jabbour, Nassib; Johnson, Graham R; Knibbs, Luke D; Morawska, Lidia; Sly, Peter D; Jones, Andrew; Bilton, Diana; Laurenson, Ian; Ruddy, Michael; Bourke, Stephen; Bowler, Ian CJW; Chapman, Stephen J; Clayton, Andrew; Cullen, Mairi; Daniels, Thomas; Dempsey, Owen; Denton, Miles; Desai, Maya; Drew, Richard J; Edenborough, Frank; Evans, Jason; Folb, Jonathan; Humphrey, Helen; Isalska, Barbara; Jensen-Fangel, Søren; Jönsson, Bodil; Jones, Andrew M.; Katzenstein, Terese L; Lillebaek, Troels; MacGregor, Gordon; Mayell, Sarah; Millar, Michael; Modha, Deborah; Nash, Edward F; O’Brien, Christopher; O’Brien, Deirdre; Ohri, Chandra; Pao, Caroline S; Peckham, Daniel; Perrin, Felicity; Perry, Audrey; Pressler, Tania; Prtak, Laura; Qvist, Tavs; Robb, Ali; Rodgers, Helen; Schaffer, Kirsten; Shafi, Nadia; van Ingen, Jakko; Walshaw, Martin; Watson, Danie; West, Noreen; Whitehouse, Joanna; Haworth, Charles S; Harris, Simon R; Ordway, Diane; Parkhill, Julian; Floto, R. Andres

    2016-01-01

    Lung infections with Mycobacterium abscessus, a species of multidrug resistant nontuberculous mycobacteria, are emerging as an important global threat to individuals with cystic fibrosis (CF) where they accelerate inflammatory lung damage leading to increased morbidity and mortality. Previously, M. abscessus was thought to be independently acquired by susceptible individuals from the environment. However, using whole genome analysis of a global collection of clinical isolates, we show that the majority of M. abscessus infections are acquired through transmission, potentially via fomites and aerosols, of recently emerged dominant circulating clones that have spread globally. We demonstrate that these clones are associated with worse clinical outcomes, show increased virulence in cell-based and mouse infection models, and thus represent an urgent international infection challenge. PMID:27846606

  17. Technetium-99m-hexakis-2-methoxyisobutylisonitrile scintigraphy and multidrug resistance-related protein expression in human primary lung cancer

    International Nuclear Information System (INIS)

    Duan Xiaoyi; Wang Jiansheng; Liu Min; Guo Youmin

    2008-01-01

    The occurrence of multidrug resistance (MDR) is a major cause of resistance to chemotherapeutic agents in patients with lung cancer, in part owing to the overexpression of MDR-related proteins. Technetium-99m-hexakis-2-methoxyisobutylisonitrile ( 99m Tc-MIBI) has been shown to be a substrate for some MDR-related proteins. The aim of this study is to evaluate the role of 99m Tc-MIBI scintigraphy for functional imaging of MDR-related protein phenotypes. To determine the correlation between 99m Tc-MIBI scintigraphy and the expression level of P-glycoprotein (Pgp), multidrug-resistance protein (MRP), and glutathione-S-transferase Pi (GSTπ), 26 patients (17 men and 9 women, median age 57.5 years) with primary lung cancer were investigated. Following intravenous administration of 925 MBq 99m Tc-MIBI, single-photon emission computed tomography (SPECT) and computed tomography (CT) were performed at 15 min and 2 h. On the basis of the fused images, tumor to background (T/B) ratio of both early and delayed images, and washout rate (WR%) of 99m Tc-MIBI were calculated. The immunohistochemical staining of Pgp, MRP, and GSTπ was performed, and the expression level was semiquantitated using a pathoimage analysis system. The imaging results were compared with the status of Pgp, MRP, and GSTπ expression. The WR% of 99m Tc-MIBI showed a significant positive correlation with Pgp expression (r=0.560, P=0.003), as no correlation was observed between WR% and MRP or GSTπ (r=0.354, P=0.076; r=0.324, P=0.106). Neither early T/B nor delayed T/B correlated with the expression level of Pgp, MRP, and GSTπ. WR%, Pgp, and GSTπ expression showed significant differences between squamous cell carcinoma (group A) and adenocarcinoma (group B). There was no significant difference among Pgp, MRP, and GSTπ expression levels in any cases (P>0.05). Our data confirmed that 99m Tc-MIBI scintigraphy is useful for determining the MDR caused by Pgp in patients with primary lung cancer. (author)

  18. Multidrug resistance-associated proteins are crucial for the viability of activated rat hepatic stellate cells

    NARCIS (Netherlands)

    Hannivoort, Rebekka A.; Dunning, Sandra; Borght, Sara Vander; Schroyen, Ben; Woudenberg, Jannes; Oakley, Fiona; Buist-Homan, Manon; van den Heuvel, Fiona A. J.; Geuken, Mariska; Geerts, Albert; Roskams, Tania; Faber, Klaas Nico; Moshage, Han

    Hepatic stellate cells (HSCs) survive and proliferate in the chronically injured liver. ATP-binding cassette (ABC) transporters play a crucial role in cell viability by transporting toxic metabolites or xenobiotics out of the cell. ABC transporter expression in HSCs and its relevance to cell

  19. Multidrug efflux pumps in Staphylococcus aureus and their clinical implications.

    Science.gov (United States)

    Jang, Soojin

    2016-01-01

    Antibiotic resistance is rapidly spreading among bacteria such as Staphylococcus aureus, an opportunistic bacterial pathogen that causes a variety of diseases in humans. For the last two decades, bacterial multidrug efflux pumps have drawn attention due to their potential association with clinical multidrug resistance. Numerous researchers have demonstrated efflux-mediated resistance in vitro and in vivo and found novel multidrug transporters using advanced genomic information about bacteria. This article aims to provide a concise summary of multidrug efflux pumps and their important clinical implications, focusing on recent findings concerning S. aureus efflux pumps.

  20. Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient

    Science.gov (United States)

    2012-01-01

    Background Corynebacterium resistens was initially recovered from human infections and recognized as a new coryneform species that is highly resistant to antimicrobial agents. Bacteremia associated with this organism in immunocompromised patients was rapidly fatal as standard minocycline therapies failed. C. resistens DSM 45100 was isolated from a blood culture of samples taken from a patient with acute myelocytic leukemia. The complete genome sequence of C. resistens DSM 45100 was determined by pyrosequencing to identify genes contributing to multi-drug resistance, virulence, and the lipophilic lifestyle of this newly described human pathogen. Results The genome of C. resistens DSM 45100 consists of a circular chromosome of 2,601,311 bp in size and the 28,312-bp plasmid pJA144188. Metabolic analysis showed that the genome of C. resistens DSM 45100 lacks genes for typical sugar uptake systems, anaplerotic functions, and a fatty acid synthase, explaining the strict lipophilic lifestyle of this species. The genome encodes a broad spectrum of enzymes ensuring the availability of exogenous fatty acids for growth, including predicted virulence factors that probably contribute to fatty acid metabolism by damaging host tissue. C. resistens DSM 45100 is able to use external L-histidine as a combined carbon and nitrogen source, presumably as a result of adaptation to the hitherto unknown habitat on the human skin. Plasmid pJA144188 harbors several genes contributing to antibiotic resistance of C. resistens DSM 45100, including a tetracycline resistance region of the Tet W type known from Lactobacillus reuteri and Streptococcus suis. The tet(W) gene of pJA144188 was cloned in Corynebacterium glutamicum and was shown to confer high levels of resistance to tetracycline, doxycycline, and minocycline in vitro. Conclusions The detected gene repertoire of C. resistens DSM 45100 provides insights into the lipophilic lifestyle and virulence functions of this newly recognized

  1. Surveillance for Travel and Domestically Acquired Multidrug-Resistant Human Shigella Infections-Pennsylvania, 2006-2014.

    Science.gov (United States)

    Li, Yu Lung; Tewari, Deepanker; Yealy, Courtney C; Fardig, David; M'ikanatha, Nkuchia M

    2016-01-01

    Shigellosis is a leading cause of enteric infections in the United States. We compared antimicrobial resistance in Shigella infections related to overseas travel (travel-associated) and in those acquired domestically by analyzing antimicrobial resistance patterns, geographic distributions, and pulsed-field gel electrophoresis (PFGE) patterns. We tested samples (n = 204) from a collection of isolates recovered from patients in Pennsylvania between 2006 and 2014. Isolates were grouped into travel- and non-travel-associated categories. Eighty-one (79.4%) of the Shigella isolates acquired during international travel were resistant to multiple antibiotics compared to 53 (52.1%) of the infections transmitted in domestic settings. A majority (79.4%) of isolates associated with international travel demonstrated resistance to aminoglycosides and tetracyclines, whereas 47 (46.1%) of the infections acquired domestically were resistant to tetracycline. Almost all isolates (92.2%) transmitted in domestic settings were resistant to aminoglycosides, and 5 isolates from adult male patients were resistant to azithromycin, a drug often used for empiric treatment of severe shigellosis. Twenty (19.6%) isolates associated with illnesses acquired during overseas travel in 4 countries were resistant to quinolones. One S. sonnei PFGE pattern was traced to a multidrug-resistant isolate acquired overseas that had caused a multistate outbreak of shigellosis, suggesting global dissemination of a drug-resistant species. Resistance to certain drugs-for example, tetracycline-increased in both overseas- and domestic-acquired infections during the study period. The prevalence of resistance to macrolides (azithromycin) and third-generation cephalosporins (ceftriaxone) was less than 1%; however, efforts to better monitor changes in drug resistance over time combined with increased antimicrobial stewardship are essential at the local, national, and global levels.

  2. Tamoxifen reduces P-gp-mediated multidrug resistance via inhibiting the PI3K/Akt signaling pathway in ER-negative human gastric cancer cells.

    Science.gov (United States)

    Mao, Zonglei; Zhou, Jin; Luan, Junwei; Sheng, Weihua; Shen, Xiaochun; Dong, Xiaoqiang

    2014-03-01

    Multidrug resistance (MDR), mediated by overexpression of drug efflux transporters such as P-glycoprotein (P-gp), is a major problem limiting successful chemotherapy of gastric cancer. Tamoxifen (TAM), a triphenylethylene nonsteroidal antiestrogen agent, shows broad-spectrum antitumor properties. Emerging studies demonstrated that TAM could significantly reduce the MDR in a variety of human cancers. Here we investigated the effects and possible underlying mechanisms of action of TAM on the reversion of MDR in ER-negative human gastric cancer cells. Our results demonstrated that in MDR phenotype SGC7901/CDDP gastric cancer cells TAM dramatically lowered the IC50 of CDDP, 5-FU and ADM, increased the intracellular Rhodamine123 accumulation and induced G0/G1 phase arrest, while G2/M phase decreased accordingly. Furthermore, at the molecular level, TAM substantially decreased the expression of P-gp, p-Akt and the Akt-regulated downstream effectors such as p-GSK-3β, p-BAD, Bcl-XL and cyclinD1 proteins without affecting the expression of t-Akt, t-GSK-3β, t-BAD proteins in SGC7901/CDDP cells. Thus, our findings demonstrate that TAM reverses P-gp-mediated gastric cancer cell MDR via inhibiting the PI3K/Akt signaling pathway. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Crystal structure of the antigen-binding fragment of a monoclonal antibody specific for the multidrug-resistance-linked ABC transporter human P-glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Esser, Lothar; Shukla, Suneet; Zhou, Fei; Ambudkar, Suresh V.; Xia, Di

    2016-07-27

    P-glycoprotein (P-gp) is a polyspecific ATP-dependent transporter linked to multidrug resistance in cancers that plays important roles in the pharmacokinetics of a large number of drugs. The drug-resistance phenotype of P-gp can be modulated by the monoclonal antibody UIC2, which specifically recognizes human P-gp in a conformation-dependent manner. Here, the purification, sequence determination and high-resolution structure of the Fab fragment of UIC2 (UIC2/Fab) are reported. Purified UIC2/Fab binds human P-gp with a 1:1 stoichiometry. Crystals of UIC2/Fab are triclinic (space groupP1), with unit-cell parametersa= 40.67,b= 44.91,c= 58.09 Å, α = 97.62, β = 99.10, γ = 94.09°, and diffracted X-rays to 1.6 Å resolution. The structure was determined by molecular replacement and refined to 1.65 Å resolution. The asymmetric unit contains one molecule of UIC2/Fab, which exhibits a positively charged antigen-binding surface, suggesting that it might recognize an oppositely charged extracellular epitope of P-gp.

  4. pH-Dependent doxorubicin release from terpolymer of starch, polymethacrylic acid and polysorbate 80 nanoparticles for overcoming multi-drug resistance in human breast cancer cells.

    Science.gov (United States)

    Shalviri, Alireza; Raval, Gaurav; Prasad, Preethy; Chan, Carol; Liu, Qiang; Heerklotz, Heiko; Rauth, Andrew Michael; Wu, Xiao Yu

    2012-11-01

    This work investigated the capability of a new nanoparticulate system, based on terpolymer of starch, polymethacrylic acid and polysorbate 80, to load and release doxorubicin (Dox) as a function of pH and to evaluate the anticancer activity of Dox-loaded nanoparticles (Dox-NPs) to overcome multidrug resistance (MDR) in human breast cancer cells in vitro. The Dox-NPs were characterized by Fourier transform infrared spectroscopy (FTIR), isothermal titration calorimetry (ITC), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The cellular uptake and cytotoxicity of the Dox-loaded nanoparticles were investigated using fluorescence microscopy, flow cytometry, and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. The nanoparticles were able to load up to 49.7±0.3% of Dox with a high loading efficiency of 99.9±0.1%, while maintaining good colloidal stability. The nanoparticles released Dox at a higher rate at acidic pH attributable to weaker Dox-polymer molecular interactions evidenced by ITC. The Dox-NPs were taken up by the cancer cells in vitro and significantly enhanced the cytotoxicity of Dox against human MDR1 cells with up to a 20-fold decrease in the IC50 values. The results suggest that the new terpolymeric nanoparticles are a promising vehicle for the controlled delivery of Dox for treatment of drug resistant breast cancer. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Multidrug ATP-binding cassette transporters are essential for hepatic development of Plasmodium sporozoites

    NARCIS (Netherlands)

    Rijpma, S.R.; Velden, M. van der; Gonzalez-Pons, M.; Annoura, T.; Schaijk, B.C.L. van; Gemert, G.J.A. van; Heuvel, J.M.W. van den; Ramesar, J.; Chevalley-Maurel, S.; Ploemen, I.H.; Khan, S.M.; Franetich, J.F.; Mazier, D.; Wilt, J.H.W. de; Serrano, A.E.; Russel, F.G.; Janse, C.J.; Sauerwein, R.W.; Koenderink, J.B.; Franke-Fayard, B.M.

    2016-01-01

    Multidrug resistance-associated proteins (MRPs) belong to the C-family of ATP-binding cassette (ABC) transport proteins and are known to transport a variety of physiologically important compounds and to be involved in the extrusion of pharmaceuticals. Rodent malaria parasites encode a single ABC

  6. Impact of Infection Control Measures to Control an Outbreak of Multidrug-Resistant Tuberculosis in a Human Immunodeficiency Virus Ward, Peru

    Science.gov (United States)

    Ticona, Eduardo; Huaroto, Luz; Kirwan, Daniela E.; Chumpitaz, Milagros; Munayco, César V.; Maguiña, Mónica; Tovar, Marco A.; Evans, Carlton A.; Escombe, Roderick; Gilman, Robert H.

    2016-01-01

    Multidrug-resistant tuberculosis (MDRTB) rates in a human immunodeficiency virus (HIV) care facility increased by the year 2000—56% of TB cases, eight times the national MDRTB rate. We reported the effect of tuberculosis infection control measures that were introduced in 2001 and that consisted of 1) building a respiratory isolation ward with mechanical ventilation, 2) triage segregation of patients, 3) relocation of waiting room to outdoors, 4) rapid sputum smear microscopy, and 5) culture/drug–susceptibility testing with the microscopic-observation drug-susceptibility assay. Records pertaining to patients attending the study site between 1997 and 2004 were reviewed. Six hundred and fifty five HIV/TB–coinfected patients (mean age 33 years, 79% male) who attended the service during the study period were included. After the intervention, MDRTB rates declined to 20% of TB cases by the year 2004 (P = 0.01). Extremely limited access to antiretroviral therapy and specific MDRTB therapy did not change during this period, and concurrently, national MDRTB prevalence increased, implying that the infection control measures caused the fall in MDRTB rates. The infection control measures were estimated to have cost US$91,031 while preventing 97 MDRTB cases, potentially saving US$1,430,026. Thus, this intervention significantly reduced MDRTB within an HIV care facility in this resource-constrained setting and should be cost-effective. PMID:27621303

  7. Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yue-Ming; Lin, Wenwei; Chai, Sergio C.; Wu, Jing; Ong, Su Sien [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States); Schuetz, Erin G. [Department of Pharmaceutical Sciences, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States); Chen, Taosheng, E-mail: taosheng.chen@stjude.org [Department of Chemical Biology and Therapeutics, St. Jude Children' s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 (United States)

    2013-10-01

    Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotic detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet–drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that caution should be taken in PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies. - Highlights: • Piperine induces PXR-mediated CYP3A4 and MDR1 expression. • Piperine activates PXR by binding to PXR and recruiting coactivator SRC-1. • Piperine induces PXR activation in vivo. • Caution should be taken in piperine consumption during drug treatment.

  8. Assessment of vandetanib as an inhibitor of various human renal transporters: inhibition of multidrug and toxin extrusion as a possible mechanism leading to decreased cisplatin and creatinine clearance.

    Science.gov (United States)

    Shen, Hong; Yang, Zheng; Zhao, Weiping; Zhang, Yueping; Rodrigues, A David

    2013-12-01

    Vandetanib was evaluated as an inhibitor of human organic anion transporter 1 (OAT1), OAT3, organic cation transporter 2 (OCT2), and multidrug and toxin extrusion (MATE1 and MATE2K) transfected (individually) into human embryonic kidney 293 cells (HEK293). Although no inhibition of OAT1 and OAT3 was observed, inhibition of OCT2-mediated uptake of 1-methyl-4-phenylpyridinium (MPP(+)) and metformin was evident (IC(50) of 73.4 ± 14.8 and 8.8 ± 1.9 µM, respectively). However, vandetanib was an even more potent inhibitor of MATE1- and MATE2K-mediated uptake of MPP(+) (IC(50) of 1.23 ± 0.05 and 1.26 ± 0.06 µM, respectively) and metformin (IC(50) of 0.16 ± 0.05 and 0.30 ± 0.09 µM, respectively). Subsequent cytotoxicity studies demonstrated that transport inhibition by vandetanib (2.5 µM) significantly decreased the sensitivity [right shift in concentration of cisplatin giving rise to 50% cell death; IC(50(CN))] of MATE1-HEK and MATE2K-HEK cells to cisplatin [IC(50(CN)) of 1.12 ± 0.13 versus 2.39 ± 0.44 µM; 0.85 ± 0.09 versus 1.99 ± 0.16 µM; P cisplatin nephrotoxicity (reduced cisplatin clearance), in some subjects receiving vandetanib therapy.

  9. Nano-hole induction by nanodiamond and nanoplatinum liquid, DPV576, reverses multidrug resistance in human myeloid leukemia (HL60/AR

    Directory of Open Access Journals (Sweden)

    Ghoneum A

    2013-07-01

    Full Text Available Alia Ghoneum,1,2 Shivani Sharma,1,3 James Gimzewsk1,3 1Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, 2Department of Otalaryngology, Drew University of Medicine and Science, Los Angeles, 3California Nanosystems Institute (CNSI at University of California, Los Angeles, Los Angeles, CA, USA Abstract: Recently nanoparticles have been extensively studied and have proven to be a promising candidate for cancer treatment and diagnosis. In the current study, we examined the chemo-sensitizing activity of a mixture of nanodiamond (ND and nanoplatinum (NP solution known as DPV576, against multidrug-resistant (MDR human myeloid leukemia (HL60/AR and MDR-sensitive cells (HL60. Cancer cells were cultured with different concentrations of daunorubicin (DNR (1 × 10-9–1 × 10-6 M in the presence of selected concentrations of DPV576 (2.5%–10% v/v. Cancer cell survival was determined by MTT assay, drug accumulation by flow cytometry and confocal laser scanning microscopy (CLSM, and holes and structural changes by atomic force microscopy (AFM. Co-treatment of HL60/AR cells with DNR plus DPV576 resulted in the reduction of the IC50 to 1/4th. This was associated with increased incidences of holes inside the cells as compared with control untreated cells. On the other hand, HL60 cells did not show changes in their drug accumulation post-treatment with DPV576 and DNR. We conclude that DPV576 is an effective chemo-sensitizer as indicated by the reversal of HL60/AR cells to DNR and may represent a potential novel adjuvant for the treatment of chemo-resistant human myeloid leukemia. Keywords: nanodiamond, nanoplatinum, daunorubicin, flow cytometry, AFM

  10. Multidrug-Resistant Tuberculosis

    Centers for Disease Control (CDC) Podcasts

    In this podcast, Dr. Oeltmann discusses multidrug-resistant tuberculosis. An outbreak occurred in Thailand, which led to 45 cases in the U.S. This serious illness can take up to 2 years to treat. MDR TB is a real threat and a serious condition.

  11. Imaging recognition of inhibition of multidrug resistance in human breast cancer xenografts using 99mTc-labeled sestamibi and tetrofosmin

    International Nuclear Information System (INIS)

    Liu Zhonglin; Stevenson, Gail D.; Barrett, Harrison H.; Furenlid, Lars R.; Wilson, Donald W.; Kastis, George A.; Bettan, Michael; Woolfenden, James M.

    2005-01-01

    Background: 99m Tc-sestamibi (MIBI) and 99m Tc-tetrofosmin (TF) are avid transport substrates recognized by the multidrug resistance (MDR) P-glycoprotein (Pgp). This study was designed to compare the properties of MIBI and TF in assessing the inhibition of Pgp by PSC833 in severe combined immunodeficient mice bearing MCF7 human breast tumors using SPECT imaging. Methods: Animals with drug-sensitive (MCF/WT) and drug-resistant (MCF7/AdrR) tumors were treated by PSC833 and by carrier vehicle 1 h before imaging, respectively. Dynamic images were acquired for 30 min after intravenous injection of MIBI/TF using a SPECT system, FastSPECT. The biodistribution of MIBI and TF was determined at the end of the imaging session. Results: MCF7/WT in the absence and presence of PSC833 could be visualized by MIBI and TF imaging within 5 min and remained detectable for 30 min postinjection. MCF7/AdrR could be visualized only 2-5 min without PSC833 treatment but could be detected for 30 min with PSC833, very similar to MCF7/WT. MCF7/AdrR without PSC833 showed significantly greater radioactive washout than MCF7/WT and MCF7/AdrR with PSC833 treatment. PSC833 increased the accumulation (%ID/g) in MCF7/AdrR 3.0-fold (1.62±0.15 vs. 0.55±0.05, P<.05) for TF and 1.9-fold (1.21±0.04 vs. 0.64±0.05, P<.05) for MIBI but did not affect MCF7/WT. Conclusions: The feasibility of MIBI and TF for assessment of MDR expression and inhibition was demonstrated in mice through FastSPECT imaging. The results indicate that TF may be at least comparable with MIBI in recognizing Pgp expression and modulation

  12. Improved Survival and Cure Rates With Concurrent Treatment for Multidrug-Resistant Tuberculosis-Human Immunodeficiency Virus Coinfection in South Africa.

    Science.gov (United States)

    Brust, James C M; Shah, N Sarita; Mlisana, Koleka; Moodley, Pravi; Allana, Salim; Campbell, Angela; Johnson, Brent A; Master, Iqbal; Mthiyane, Thuli; Lachman, Simlatha; Larkan, Lee-Megan; Ning, Yuming; Malik, Amyn; Smith, Jonathan P; Gandhi, Neel R

    2018-04-03

    Mortality in multidrug-resistant (MDR) tuberculosis-human immunodeficiency virus (HIV) coinfection has historically been high, but most studies predated the availability of antiretroviral therapy (ART). We prospectively compared survival and treatment outcomes in MDR tuberculosis-HIV-coinfected patients on ART to those in patients with MDR tuberculosis alone. This observational study enrolled culture-confirmed MDR tuberculosis patients with and without HIV in South Africa between 2011 and 2013. Participants received standardized MDR tuberculosis and HIV regimens and were followed monthly for treatment response, adverse events, and adherence. The primary outcome was survival. Among 206 participants, 150 were HIV infected, 131 (64%) were female, and the median age was 33 years (interquartile range [IQR], 26-41). Of the 191 participants with a final MDR tuberculosis outcome, 130 (73%) were cured or completed treatment, which did not differ by HIV status (P = .50). After 2 years, CD4 count increased a median of 140 cells/mm3 (P = .005), and 64% had an undetectable HIV viral load. HIV-infected and HIV-uninfected participants had high rates of survival (86% and 94%, respectively; P = .34). The strongest risk factor for mortality was having a CD4 count ≤100 cells/mm3 (adjusted hazards ratio, 15.6; 95% confidence interval, 4.4-55.6). Survival and treatment outcomes among MDR tuberculosis-HIV individuals receiving concurrent ART approached those of HIV-uninfected patients. The greatest risk of death was among HIV-infected individuals with CD4 counts ≤100 cells/mm3. These findings provide critical evidence to support concurrent treatment of MDR tuberculosis and HIV.

  13. Epithelial-Mesenchymal Transitions and the Expression of Twist in MCF-7/ADR,Human Multidrug-Resistant Breast Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    Fei Zhang; Yurong Shi; Lin Zhang; Bin Zhang; Xiyin Wei; Yi Yang; RUi Wang; Ruifang Niu

    2007-01-01

    OBJECTIVE To study the expression levels of Twist and epithelialmesenchymal transitions in multidrug-resistant MCF-7/ADR breast cancer cells,and to study the relationship between multidrug resistance (MDR) and metastatic potential of the cells.METHODS RT-PCR,immunohislochemical and Western blotting methods were used to examine the changes of expression levels of the transcription factor Twist.E-cadherin and N-cadherin in the MCF-7 breast cancer cell line and its multidrug-resistant variant.MCF-7/ADR.RESULTS In MCF-7 cells,the expression of E-cadherin can be detected,but there is no expression of Twisl or N-cadherin.In MCF-7/ADR cells,E-cadherin expression is lost.bul the expression of two other genes was significantly positive.CONCLUSION Epithelial-mesenchymal transitions induced by Twist,may have a relationship with enhanced invasion and metastatic potential during the development of multidrug-resistant MCF-7/ADR breast cancer cells.

  14. Occurrence of Multidrug Resistant Extended Spectrum Beta-Lactamase-Producing Bacteria on Iceberg Lettuce Retailed for Human Consumption

    Directory of Open Access Journals (Sweden)

    Natasha Bhutani

    2015-01-01

    Full Text Available Antibiotic resistance in bacteria is a global problem exacerbated by the dissemination of resistant bacteria via uncooked food, such as green leafy vegetables. New strains of bacteria are emerging on a daily basis with novel expanded antibiotic resistance profiles. In this pilot study, we examined the occurrence of antibiotic resistant bacteria against five classes of antibiotics on iceberg lettuce retailed in local convenience stores in Rochester, Michigan. In this study, 138 morphologically distinct bacterial colonies from 9 iceberg lettuce samples were randomly picked and tested for antibiotic resistance. Among these isolates, the vast majority (86% demonstrated resistance to cefotaxime, and among the resistant bacteria, the majority showed multiple drug resistance, particularly against cefotaxime, chloramphenicol, and tetracycline. Three bacterial isolates (2.17% out of 138 were extended spectrum beta-lactamase (ESBL producers. Two ESBL producers (T1 and T5 were identified as Klebsiella pneumoniae, an opportunistic pathogen with transferable sulfhydryl variable- (SHV- and TEM-type ESBLs, respectively. The DNA sequence analysis of the blaSHV detected in K. pneumoniae isolate T1 revealed 99% relatedness to blaSHV genes found in clinical isolates. This implies that iceberg lettuce is a potential reservoir of newly emerging and evolving antibiotic resistant bacteria and its consumption poses serious threat to human health.

  15. Multidrug-Resistant Candida

    DEFF Research Database (Denmark)

    Arendrup, Maiken Cavling; Patterson, Thomas F

    2017-01-01

    Invasive Candida infections remain an important cause of morbidity and mortality, especially in hospitalized and immunocompromised or critically ill patients. A limited number of antifungal agents from only a few drug classes are available to treat patients with these serious infections. Resistance...... can be either intrinsic or acquired. Resistance mechanisms are not exchanged between Candida; thus, acquired resistance either emerges in response to an antifungal selection pressure in the individual patient or, more rarely, occur due to horizontal transmission of resistant strains between patients....... Although multidrug resistance is uncommon, increasing reports of multidrug resistance to the azoles, echinocandins, and polyenes have occurred in several Candida species, most notably Candida glabrata and more recently Candida auris. Drivers are overall antifungal use, subtherapeutic drug levels at sites...

  16. Multidrug-Resistant Tuberculosis

    Centers for Disease Control (CDC) Podcasts

    2008-10-28

    In this podcast, Dr. Oeltmann discusses multidrug-resistant tuberculosis. An outbreak occurred in Thailand, which led to 45 cases in the U.S. This serious illness can take up to 2 years to treat. MDR TB is a real threat and a serious condition.  Created: 10/28/2008 by Emerging Infectious Diseases.   Date Released: 10/28/2008.

  17. Asiatic Acid (AA) Sensitizes Multidrug-Resistant Human Lung Adenocarcinoma A549/DDP Cells to Cisplatin (DDP) via Downregulation of P-Glycoprotein (MDR1) and Its Targets.

    Science.gov (United States)

    Cheng, Qilai; Liao, Meixiang; Hu, Haibo; Li, Hongliang; Wu, Longhuo

    2018-01-01

    P-glycoprotein (P-gp, i.e., MDR1) is associated with the phenotype of multidrug resistance (MDR) and causes chemotherapy failure in the management of cancers. Searching for effective MDR modulators and combining them with anticancer drugs is a promising strategy against MDR. Asiatic acid (AA), a natural triterpene isolated from the plant Centella asiatica, may have an antitumor activity. The present study assessed the reversing effect of AA on MDR and possible molecular mechanisms of AA action in MDR1-overexpressing cisplatin (DDP)-resistant lung cancer cells, A549/DDP. Human lung adenocarcinoma A549/DDP cells were either exposed to different concentrations of AA or treated with DDP, and their viability was measured by the MTT assay. A Rhodamine 123 efflux assay, immunofluorescent staining, ATPase assay, reverse-transcription PCR (RT-PCR), and western blot analysis were conducted to elucidate the mechanisms of action of AA on MDR. Our results showed that AA significantly enhanced the cytotoxicity of DDP toward A549/DDP cells but not its parental A549 cells. Furthermore, AA strongly inhibited P-gp expression by blocking MDR1 gene transcription and increased the intracellular accumulation of the P-gp substrate Rhodamine 123 in A549/DDP cells. Nuclear factor (NF)-kB (p65) activity, IkB degradation, and NF-kB/p65 nuclear translocation were markedly inhibited by pretreatment with AA. Additionally, AA inhibited the MAPK-ERK pathway, as indicated by decreased phosphorylation of ERK1 and -2, AKT, p38, and JNK, thus resulting in reduced activity of the Y-box binding protein 1 (YB1) via blockage of its nuclear translocation. AA reversed P-gp-mediated MDR by inhibition of P-gp expression. This effect was likely related to downregulation of YB1, and this effect was mediated by the NF-kB and MAPK-ERK pathways. AA may be useful as an MDR reversal agent for combination therapy in clinical trials. © 2018 The Author(s). Published by S. Karger AG, Basel.

  18. Regulation of Multidrug Resistance Proteins by Genistein in a Hepatocarcinoma Cell Line: Impact on Sorafenib Cytotoxicity

    OpenAIRE

    Rigalli, Juan Pablo; Ciriaci, Nadia; Arias, Agostina; Ceballos, Mar?a Paula; Villanueva, Silvina Stella Maris; Luquita, Marcelo Gabriel; Mottino, Aldo Domingo; Ghanem, Carolina In?s; Catania, Viviana Alicia; Ruiz, Mar?a Laura

    2015-01-01

    Hepatocellular carcinoma (HCC) is the fifth most frequent cancer worldwide. Sorafenib is the only drug available that improves the overall survival of HCC patients. P-glycoprotein (P-gp), Multidrug resistance-associated proteins 2 and 3 (MRP2 and 3) and Breast cancer resistance protein (BCRP) are efflux pumps that play a key role in cancer chemoresistance. Their modulation by dietary compounds may affect the intracellular accumulation and therapeutic efficacy of drugs that are substrates of t...

  19. Multidrug ATP-binding cassette transporters are essential for hepatic development of Plasmodium sporozoites.

    Science.gov (United States)

    Rijpma, Sanna R; van der Velden, Maarten; González-Pons, Maria; Annoura, Takeshi; van Schaijk, Ben C L; van Gemert, Geert-Jan; van den Heuvel, Jeroen J M W; Ramesar, Jai; Chevalley-Maurel, Severine; Ploemen, Ivo H; Khan, Shahid M; Franetich, Jean-Francois; Mazier, Dominique; de Wilt, Johannes H W; Serrano, Adelfa E; Russel, Frans G M; Janse, Chris J; Sauerwein, Robert W; Koenderink, Jan B; Franke-Fayard, Blandine M

    2016-03-01

    Multidrug resistance-associated proteins (MRPs) belong to the C-family of ATP-binding cassette (ABC) transport proteins and are known to transport a variety of physiologically important compounds and to be involved in the extrusion of pharmaceuticals. Rodent malaria parasites encode a single ABC transporter subfamily C protein, whereas human parasites encode two: MRP1 and MRP2. Although associated with drug resistance, their biological function and substrates remain unknown. To elucidate the role of MRP throughout the parasite life cycle, Plasmodium berghei and Plasmodium falciparum mutants lacking MRP expression were generated. P. berghei mutants lacking expression of the single MRP as well as P. falciparum mutants lacking MRP1, MRP2 or both proteins have similar blood stage growth kinetics and drug-sensitivity profiles as wild type parasites. We show that MRP1-deficient parasites readily invade primary human hepatocytes and develop into mature liver stages. In contrast, both P. falciparum MRP2-deficient parasites and P. berghei mutants lacking MRP protein expression abort in mid to late liver stage development, failing to produce mature liver stages. The combined P. berghei and P. falciparum data are the first demonstration of a critical role of an ABC transporter during Plasmodium liver stage development. © 2015 John Wiley & Sons Ltd.

  20. Drug resistance associated genetic polymorphisms in Plasmodium falciparum and Plasmodium vivax collected in Honduras, Central America.

    Science.gov (United States)

    Jovel, Irina T; Mejía, Rosa E; Banegas, Engels; Piedade, Rita; Alger, Jackeline; Fontecha, Gustavo; Ferreira, Pedro E; Veiga, Maria I; Enamorado, Irma G; Bjorkman, Anders; Ursing, Johan

    2011-12-19

    In Honduras, chloroquine and primaquine are recommended and still appear to be effective for treatment of Plasmodium falciparum and Plasmodium vivax malaria. The aim of this study was to determine the proportion of resistance associated genetic polymorphisms in P. falciparum and P. vivax collected in Honduras. Blood samples were collected from patients seeking medical attention at the Hospital Escuela in Tegucigalpa from 2004 to 2006 as well as three regional hospitals, two health centres and one regional laboratory during 2009. Single nucleotide polymorphisms in P. falciparum chloroquine resistance transporter (pfcrt), multidrug resistance 1 (pfmdr1), dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genes and in P. vivax multidrug resistance 1 (pvmdr1) and dihydrofolate reductase (pvdhfr) genes were detected using PCR based methods. Thirty seven P. falciparum and 64 P. vivax samples were collected. All P. falciparum infections acquired in Honduras carried pfcrt, pfmdr1, pfdhps and pfdhfr alleles associated with chloroquine, amodiaquine and sulphadoxine-pyrimethamine sensitivity only. One patient with parasites acquired on a Pacific Island had pfcrt 76 T and pfmdr1 86Y alleles. That patient and a patient infected in West Africa had pfdhfr 51I, 59 R and 108 N alleles. Pvmdr1 976 F was found in 7/37 and two copies of pvmdr1 were found in 1/37 samples. Pvdhfr 57 L + 58 R was observed in 2/57 samples. The results indicate that P. falciparum from Honduras remain sensitive to chloroquine and sulphadoxine-pyrimethamine. This suggests that chloroquine and sulphadoxine-pyrimethamine should be efficacious for treatment of uncomplicated P. falciparum malaria, supporting current national treatment guidelines. However, genetic polymorphisms associated with chloroquine and sulphadoxine-pyrimethamine tolerance were detected in local P. vivax and imported P. falciparum infections. Continuous monitoring of the prevalence of drug resistant/tolerant P

  1. Bacterial Multidrug Efflux Pumps of the Major Facilitator Superfamily as Targets for Modulation.

    Science.gov (United States)

    Kumar, Sanath; He, Guixin; Kakarla, Prathusha; Shrestha, Ugina; Ranjana, K C; Ranaweera, Indrika; Willmon, T Mark; Barr, Sharla R; Hernandez, Alberto J; Varela, Manuel F

    2016-01-01

    Causative agents of infectious disease that are multidrug resistant bacterial pathogens represent a serious public health concern due to the increasingly difficult nature of achieving efficacious clinical treatments. Of the various acquired and intrinsic antimicrobial agent resistance determinants, integral-membrane multidrug efflux pumps of the major facilitator superfamily constitute a major mechanism of bacterial resistance. The major facilitator superfamily (MFS) encompasses thousands of known related secondary active and passive solute transporters, including multidrug efflux pumps, from bacteria to humans. This review article addresses recent developments involving the targeting by various modulators of bacterial multidrug efflux pumps from the major facilitator superfamily. It is currently of tremendous interest to modulate bacterial multidrug efflux pumps in order to eventually restore the clinical efficacy of therapeutic agents against recalcitrant bacterial infections. Such MFS multidrug efflux pumps are good targets for modulation.

  2. Immunological circumvention of multiple organ metastases of multidrug resistant human small cell lung cancer cells by mouse-human chimeric anti-ganglioside GM2 antibody KM966.

    Science.gov (United States)

    Hanibuchi, M; Yano, S; Nishioka, Y; Yanagawa, H; Miki, T; Sone, S

    2000-01-01

    serum against SBC-3/DOX cells to a similar extent compared with parental SBC-3 cells. Pretreatment of human effector cells with various cytokines induced further enhancement of the KM966-dependent ADCC against SBC-3/DOX cells. Intravenous injection of SBC-3 or SBC-3/DOX cells into natural killer (NK) cell-depleted severe combined immunodeficient (SCID) mice developed metastases in multiple organs (liver, kidneys and lymph nodes). Interestingly, SBC-3/DOX cells produced metastases more rapidly than SBC-3 cells, suggesting more aggressive phenotype of SBC-3/DOX cells than their parental cells in vivo. Systemic treatment with KM966, given on days 2 and 7, drastically inhibited the formation of multiple-organ metastases produced by both SBC-3 and SBC-3/DOX cells, indicating that KM966 can eradicate metastasis by SCLC cells irrespective of MDR phenotype. These findings suggest that the mouse-human chimeric KM966 targets the GM2 antigen, and might be useful for the immunological circumvention of multiple-organ metastases of refractory SCLC.

  3. P-glycoprotein binds to ezrin at amino acid residues 149-242 in the FERM domain and plays a key role in the multidrug resistance of human osteosarcoma.

    Science.gov (United States)

    Brambilla, Daria; Zamboni, Silvia; Federici, Cristina; Lugini, Luana; Lozupone, Francesco; De Milito, Angelo; Cecchetti, Serena; Cianfriglia, Maurizio; Fais, Stefano

    2012-06-15

    Overexpression of the mdr1 gene encoding P-glycoprotein (Pgp) exerts a major role in reducing the effectiveness of cytotoxic therapy in osteosarcoma. The interaction between actin and Pgp has been shown to be instrumental in the establishment of multidrug resistance (MDR) in human tumor cells. The cytoskeleton linker ezrin exerts a pivotal role in maintaining the functional connection between actin and Pgp. We investigated the role of ezrin in a human multidrug-resistant osteosarcoma cell line overexpressing Pgp and compared it to its counterpart that overexpresses an ezrin deletion mutant. The results showed that Pgp binds at amino acid residues 149-242 of the N-terminal domain of ezrin. The interaction between ezrin and Pgp occurs in the plasma membrane of MDR cells, where they also co-localize with the ganglioside G(M1) located in lipid rafts. The overexpression of the ezrin deletion mutant entirely restored drug susceptibility of osteosarcoma cells, consistent with Pgp dislocation to cytoplasmic compartments and abrogation of G(M1) /Pgp co-localization at the plasma membrane. Our study provides evidence that ezrin exerts a key role in MDR of human osteosarcoma cells through a Pgp-ezrin-actin connection that is instrumental for the permanence of Pgp into plasma membrane lipid rafts. We also show for the first time that Pgp-binding site is localized to amino acid residues 149-242 of the ezrin Band 4.1, Ezrin/Radixin/Moesin (FERM) domain, thus proposing a specific target for future molecular therapy aimed at counteracting MDR in osteosarcoma patients. Copyright © 2011 UICC.

  4. The overexpression of MRP4 is related to multidrug resistance in osteosarcoma cells

    Directory of Open Access Journals (Sweden)

    Zhonghui He

    2015-01-01

    Full Text Available Doxorubicin (Adriamycin, ADM is an antimitotic drug used in the treatment of a wide range of malignant tumors, including acute leukemia, lymphoma, osteosarcoma, breast cancer, and lung cancer. Multidrug resistance-associated proteins (MRPs are members of a superfamily of ATP-binding cassette (ABC transporters, which can transport various molecules across extra- and intra-cellular membranes. The aim of this study was to investigate whether there was a correlation between MRP4 and primary ADM resistance in osteosarcoma cells. In this paper, we chose the human osteosarcoma cell line MG63, ADM resistant cell line MG63/DOX, and the patient′s primary cell GSF-0686. We checked the ADM sensitivity and cytotoxicity of all the three cells by cell proliferation assay. The intracellular drug concentrations were measured by using LC-MS/MS. We also examined MRP4 gene expression by RT-PCR and Western Blot. We found that the intracellular ADM concentration of the parent osteosarcoma cell line MG63 was higher than the ADM resistant osteosarcoma MG63/DOX cell line or the GSF-0686 cell after ADM treatment (P < 0.05. In addition, MRP4 mRNA and protein levels in ADM resistant osteosarcoma cells were higher than in MG63 cell (P < 0.05. Taking together, this work suggests that overexpression of MRP4 may confer ADM resistance in osteosarcoma cells.

  5. Factors influencing [F-18]2-fluoro-2-deoxy-D-glucose (F-18 FDG) accumulation in melanoma cells. Is FDG a substrate of multidrug resistance (MDR)?

    International Nuclear Information System (INIS)

    Yamada, Kiyoshi; Brink, I.; Engelhardt, R.

    2005-01-01

    In order to specify the influence of multidrug-resistance (MDR) on the accumulation of the PET tracer, F-18 FDG ([Fluorine-18]2-fluoro-2-deoxy-D-glucose, in melanoma cells, both the MDR function and expression of two human melanoma cell lines SK-MEL 23 and 24, were evaluated. The effects of MDR modulators on FDG accumulation and efflux were also investigated. A functional analysis using representative MDR fluorescent substrates and inhibitors clarified the following characteristics: SK-MEL 23 possesses a highly active function of multidrug resistance-associated protein (MRP), but not P-gp. SK-MEL 24 possesses weak functions of both MRP and P-gp. Western blot analysis using monoclonal antibodies for MDR expression demonstrated an exceedingly high MRP expression of SK-MEL 23 and only slight P-gp and MRP expression of SK-MEL 24, corresponding to the functional data. The efflux inhibition assay using F-18 FDG revealed a considerable retention of FDG in SK-MEL 23 in the presence of the MRP inhibitor probenecid. It was also found that the P-gp inhibitor verapamil depressed the FDG efflux of SK-MEL 24. Our present in vitro study suggests that FDG may be a substrate of MDR in some melanoma cells and further MDR may be one of the important factors affecting FDG-PET melanoma imaging. (author)

  6. Anticancer Effects of the Nitric Oxide-Modified Saquinavir Derivative Saquinavir-NO against Multidrug-Resistant Cancer Cells

    Directory of Open Access Journals (Sweden)

    Florian Rothweiler

    2010-12-01

    Full Text Available The human immunodeficiency virus (HIV protease inhibitor saquinavir shows anticancer activity. Although its nitric oxide-modified derivative saquinavir-NO (saq-NO was less toxic to normal cells, it exerted stronger inhibition of B16 melanoma growth in syngeneic C57BL/6 mice than saquinavir did. Saq-NO has been shown to block proliferation, upregulate p53 expression, and promote differentiation of C6 glioma and B16 cells. The anticancer activity of substances is frequently hampered by cancer cell chemoresistance mechanisms. Therefore, we here investigated the roles of p53 and the ATP-binding cassette (ABC transporters P-glycoprotein (P-gp, multidrug resistance-associated protein 1 (MRP1, and breast cancer resistance protein 1 (BCRP1 in cancer cell sensitivity to saq-NO to get more information about the potential of saq-NO as anticancer drug. Saq-NO exerted anticancer effects in lower concentrations than saquinavir in a panel of human cancer cell lines. Neither p53 mutation or depletion nor expression of P-gp, MRP1, or BCRP1 affected anticancer activity of saq-NO or saquinavir. Moreover, saq-NO sensitized P-gp-, MRP1-, or BCRP1-expressing cancer cells to chemotherapy. Saq-NO induced enhanced sensitization of P-gp- or MRP1-expressing cancer cells to chemotherapy compared with saquinavir, whereas both substances similarly sensitized BCRP1-expressing cells. Washout kinetics and ABC transporter ATPase activities demonstrated that saq-NO is a substrate of P-gp as well as of MRP1. These data support the further investigation of saq-NO as an anticancer drug, especially in multidrug-resistant tumors.

  7. Anticancer Effects of the Nitric Oxide-Modified Saquinavir Derivative Saquinavir-NO against Multidrug-Resistant Cancer Cells12

    Science.gov (United States)

    Rothweiler, Florian; Michaelis, Martin; Brauer, Peter; Otte, Jürgen; Weber, Kristoffer; Fehse, Boris; Doerr, Hans Wilhelm; Wiese, Michael; Kreuter, Jörg; Al-Abed, Yousef; Nicoletti, Ferdinando; Cinatl, Jindrich

    2010-01-01

    The human immunodeficiency virus (HIV) protease inhibitor saquinavir shows anticancer activity. Although its nitric oxide-modified derivative saquinavir-NO (saq-NO) was less toxic to normal cells, it exerted stronger inhibition of B16 melanoma growth in syngeneic C57BL/6 mice than saquinavir did. Saq-NO has been shown to block proliferation, upregulate p53 expression, and promote differentiation of C6 glioma and B16 cells. The anticancer activity of substances is frequently hampered by cancer cell chemoresistance mechanisms. Therefore, we here investigated the roles of p53 and the ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1), and breast cancer resistance protein 1 (BCRP1) in cancer cell sensitivity to saq-NO to get more information about the potential of saq-NO as anticancer drug. Saq-NO exerted anticancer effects in lower concentrations than saquinavir in a panel of human cancer cell lines. Neither p53 mutation or depletion nor expression of P-gp, MRP1, or BCRP1 affected anticancer activity of saq-NO or saquinavir. Moreover, saq-NO sensitized P-gp-, MRP1-, or BCRP1-expressing cancer cells to chemotherapy. Saq-NO induced enhanced sensitization of P-gp- or MRP1-expressing cancer cells to chemotherapy compared with saquinavir, whereas both substances similarly sensitized BCRP1-expressing cells. Washout kinetics and ABC transporter ATPase activities demonstrated that saq-NO is a substrate of P-gp as well as of MRP1. These data support the further investigation of saq-NO as an anticancer drug, especially in multidrug-resistant tumors. PMID:21170266

  8. Impact of BCRP/MXR, MRP1 and MDR1/P-Glycoprotein on thermoresistant variants of atypical and classical multidrug resistant cancer cells

    DEFF Research Database (Denmark)

    Stein, Ulrike; Lage, Hermann; Jordan, Andreas

    2002-01-01

    The impact of the ABC transporters breast cancer resistance protein/mitoxantrone resistance associated transporter (BCRP/MXR), multidrug resistance-associated protein 1 (MRP1) and multidrug resistance gene-1/P-glycoprotein (MDR1/PGP) on the multidrug resistance (MDR) phenotype in chemoresistance...... expression of BCRP/MXR and of MRP1 were clearly enhanced (vs. parental and classical MDR lines). MDR1/PGP expression was distinctly elevated in the classical MDR subline EPG85-257RDB (vs. parental and atypical MDR sublines). In all thermoresistant counterparts basal expression of BCRP/MXR, MRP1 and MDR1/PGP...... was increased relative to thermosensitive sublines. Although it could be shown that the overexpressed ABC transporters were functionally active, however, no decreased drug accumulations of doxorubicin, mitoxantrone and rhodamine 123 were observed. Thus, expression of BCRP/MXR, MRP1 and MDR1/PGP was found...

  9. Expression of Multidrug Resistance-Associated Markers, Their Relation to Quantitative Pathologic Tumour Characteristics and Prognosis in Advanced Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Mariël Brinkhuis

    2002-01-01

    Full Text Available Mean nuclear area has been consistently shown by different researchers to be a strong and independent prognostic factor in advanced ovarian carcinoma. However, the biological background of the prognostic value of nuclear area remains unclear. Others have found that the multidrug‐resistance (MDR related protein LRP has strong prognostic value. In the present study we have analysed whether the mean nuclear area and LRP are related in tumour tissue of the ovary obtained at the debulking operation before the administration of chemotherapy in 40 patients. The mitotic activity index, volume percentage epithelium, standard deviation of nuclear area and the other MDR‐related proteins P‐glycoprotein (JSB‐1, MRK‐16 and MRP have been investigated additionally for correlations and prognostic value. No correlations were found between the morphometrical features and MDR‐related proteins. Mean nuclear area tended to be larger in LRP positive tumours, but the correlation was not significant. In multivariate analysis LRP‐protein expression and mean nuclear area had independent prognostic value. Further studies are required to elucidate the biological background of the strong prognostic value of mean nuclear area in advanced ovarian cancer.

  10. Resistance-associated polymorphisms in Dutch hepatitis C genotype 1a patients with and without HIV infection

    NARCIS (Netherlands)

    Lieveld, Faydra I.; Swaans, Niels; Newsum, Astrid M.; Ho, Cynthia K. Y.; Schinkel, Janke; Molenkamp, Richard; van der Meer, Jan T. M.; Arends, Joop E.; Hoepelman, Andy I. M.; Wensing, Anne M. J.; Siersema, Peter D.; van Erpecum, Karel J.; Boland, Greet J.

    2016-01-01

    Background and aim. Resistance-associated variants (RAVs) on the NS3 region of the hepatitis C virus (HCV) may be relevant for antiviral therapy, but data in human immunodeficiency virus (HIV) coinfected patients are scarce. We assessed frequencies of NS3 RAVs in patients infected with HCV genotype

  11. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants.

    Science.gov (United States)

    Blanco, Paula; Hernando-Amado, Sara; Reales-Calderon, Jose Antonio; Corona, Fernando; Lira, Felipe; Alcalde-Rico, Manuel; Bernardini, Alejandra; Sanchez, Maria Blanca; Martinez, Jose Luis

    2016-02-16

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.

  12. Visualization of multidrug resistance in vivo

    International Nuclear Information System (INIS)

    Hendrikse, N.H.; Franssen, E.J.F.; Graaf, W.T.A. van der; Vries, E.G.E. de; Vaalburg, W.

    1999-01-01

    Various mechanisms are involved in multidrug resistance (MDR) for chemotherapeutic drugs, such as the drug efflux pumps, P-glycoprotein (Pgp) and multidrug resistance-associated protein (MRP). In this review the mechanisms involved in MDR are described and results are reviewed with particular attention to the in vivo imaging of Pgp and MRP. Various detection assays provide information about the presence of drug efflux pumps at the mRNA and protein levels. However, these methods do not yield information about the dynamic function of Pgp and MRP in vivo. For the study of Pgp- and MRP-mediated transport, single-photon emission tomography (SPET) and positron emission tomography (PET) are available. Technetium-99m sestamibi is a substrate for Pgp and MRP, and has been used in clinical studies for tumour imaging, and to visualize blockade of Pgp-mediated transport after modulation of the Pgp pump. Other 99m Tc radiopharmaceuticals, such as 99m Tc-tetrofosmin and several 99 Tc-Q complexes, are also substrates for Pgp, but to date only results from in vitro and animal studies are available for these compounds. Several agents, including [ 11 C]colchicine, [ 11 C]verapamil and [ 11 C]daunorubicin, have been evaluated for the quantification of Pgp-mediated transport with PET in vivo. The results suggest that radiolabelled colchicine, verapamil and daunorubicin are feasible substrates with which to image Pgp function in tumours. Uptake of [ 11 C]colchicine and [ 11 C]verapamil is relatively high in the chest area, reducing the value of both tracers for monitoring Pgp-mediated drug transport in tumours located in this region. In addition, it has to be borne in mind that only comparison of Pgp-mediated transport of radioalabelled substrates in the absence and in the presence of Pgp blockade gives quantitative information on Pgp-mediated pharmacokinetics. Leukotrienes are specific substrates for MRP. Therefore, N-[ 11 C]acetyl-leukotriene E 4 provides an opportunity to study MRP

  13. Multidrug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    McNerney Ruth

    2008-01-01

    Full Text Available Abstract Background With almost 9 million new cases each year, tuberculosis remains one of the most feared diseases on the planet. Led by the STOP-TB Partnership and WHO, recent efforts to combat the disease have made considerable progress in a number of countries. However, the emergence of mutated strains of Mycobacterium tuberculosis that are resistant to the major anti-tuberculosis drugs poses a deadly threat to control efforts. Multidrug-resistant tuberculosis (MDR-TB has been reported in all regions of the world. More recently, extensively drug resistant-tuberculosis (XDR-TB that is also resistant to second line drugs has emerged in a number of countries. To ensure that adequate resources are allocated to prevent the emergence and spread of drug resistance it is important to understand the scale of the problem. In this article we propose that current methods of describing the epidemiology of drug resistant tuberculosis are not adequate for this purpose and argue for the inclusion of population based statistics in global surveillance data. Discussion Whereas the prevalence of tuberculosis is presented as the proportion of individuals within a defined population having disease, the prevalence of drug resistant tuberculosis is usually presented as the proportion of tuberculosis cases exhibiting resistance to anti-tuberculosis drugs. Global surveillance activities have identified countries in Eastern Europe, the former Soviet Union and regions of China as having a high proportion of MDR-TB cases and international commentary has focused primarily on the urgent need to improve control in these settings. Other regions, such as sub-Saharan Africa have been observed as having a low proportion of drug resistant cases. However, if one considers the incidence of new tuberculosis cases with drug resistant disease in terms of the population then countries of sub-Saharan Africa have amongst the highest rates of transmitted MDR-TB in the world. We propose

  14. Functional imaging of the multidrug resistance in vivo

    International Nuclear Information System (INIS)

    Lee, Jae Tae

    2001-01-01

    Although diverse mechanisms are involved in multidrug resistance for chemotherapeutic drugs, the development of cellular P-glycoprotein(Pgp) and multidrug-resistance associated protein (MRP) are improtant factors in the chemotherapy failure to cancer. Various detection assays provide information about the presence of drug efflux pumps at the mRNA and protein levels. However these methods do not yield information about dynamic function of Pgp and MRP in vivo. Single photon emission tomograpy (SPECT) and positron emission tomograpy (PET) are available for the detection of Pgp and MRP-mediated transport. 99m Tc-sestaMIBI and other 99m Tc-radiopharmaceuticals are substrates for Pgp and MRP, and have been used in clinical studies of tumor imaging, and to visualize blockade of Pgp-mediated transport after modulation of Pgp pump. Colchicine, verapamil and daunorubicin labeled with 11 C have been evaluated for the quantification of Pgp-mediated transport with PET in vivo and reported to be feasible substrates with which to image Pgp function in tumors. Leukotrienes are specific substrates for MRP and N- (11 C]acetyl-leukotriene E4 provides an opportunity to study MRP function non-invasively in vivo. Results obtained from recent publications are reviewed to confirm the feasibility of using SPECT and PET to study the functionality of MDR transportes in vivo

  15. Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer

    Directory of Open Access Journals (Sweden)

    Lv Y

    2015-07-01

    Full Text Available Yingqian Lv, Shan Zhao, Jinzhu Han, Likang Zheng, Zixin Yang, Li Zhao Department of Oncology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China Abstract: Multidrug resistance is the major cause of chemotherapy failure in many solid tumors, including colon cancer. Hypoxic environment is a feature for all solid tumors and is important for the development of tumor resistance to chemotherapy. Hypoxia-inducible factor (HIF-1α is the key transcription factor that mediates cellular response to hypoxia. HIF-1α has been shown to play an important role in tumor resistance; however, the mechanism is still not fully understood. Here, we found that HIF-1α and the drug resistance-associated gene multidrug resistance associated protein 1 (MRP1 were induced by treatment of colon cancer cells with the hypoxia-mimetic agent cobalt chloride. Inhibition of HIF-1α by RNA interference and dominant-negative protein can significantly reduce the induction of MRP1 by hypoxia. Bioinformatics analysis showed that a hypoxia response element is located at -378 to -373 bp upstream of the transcription start site of MRP1 gene. Luciferase reporter assay combined with mutation analysis confirmed that this element is essential for hypoxia-mediated activation of MRP gene. Furthermore, RNA interference revealed that HIF-1α is necessary for this hypoxia-driven activation of MRP1 promoter. Importantly, chromatin immunoprecipitation analysis demonstrated that HIF-1α could directly bind to this HRE site in vivo. Together, these data suggest that MRP1 is a downstream target gene of HIF-1α, which provides a potential novel mechanism for HIF-1α-mediated drug resistance in colon cancer and maybe other solid tumors as well. Keywords: hypoxia, hypoxia-inducible factor-1α, multidrug resistance associated protein, transcriptional regulation, chemotherapy tolerance

  16. Spectroscopic and nano-molecular modeling investigation on the binary and ternary bindings of colchicine and lomefloxacin to Human serum albumin with the viewpoint of multi-drug therapy

    International Nuclear Information System (INIS)

    Chamani, J.; Asoodeh, A.; Homayoni-Tabrizi, M.; Amiri Tehranizadeh, Z.; Baratian, A.; Saberi, M.R.; Gharanfoli, M.

    2010-01-01

    Combination of several drugs is often necessary especially during long-term therapy. The competitive binding drugs can cause a decrease in the amount of drug bound to protein and increase the biological active fraction of the drug. The aim of this study is to analyze the interactions of Lomefloxacin (LMF) and Colchicine (COL) with human serum albumin (HSA) and to evaluate the mechanism of simultaneous binding of LMF and COL to protein. Fluorescence analysis was used to estimate the effect of drugs on the protein fluorescence and to define the binding and quenching properties of drugs-HSA complexes. The binding sites for LMF and COL were identified in tertiary structure of HSA with the use of spectrofluorescence analysis. The analysis of fluorescence quenching of HSA in the binary and ternary systems show that LMF does not affect the complex formed between COL and HSA. On the contrary, COL decreases the interaction between LMF and HSA. The results of synchronous fluorescence, resonance light scattering and circular dichroism spectra of binary and ternary systems show that binding of LMF and COL to HSA can induce micro-environmental and conformational changes in HSA. The simultaneous presence of LMF and COL in binding to HSA should be taken into account in the multi-drug therapy, and necessity of using a monitoring therapy owning to the possible increase of the uncontrolled toxic effects. Molecular modeling of the possible binding sites of LMF and COL in binary and ternary systems to HSA confirms the spectroscopic results.

  17. Survey of multidrug resistance integrative mobilizable elements SGI1 and PGI1 in Proteus mirabilis in humans and dogs in France, 2010-13.

    Science.gov (United States)

    Schultz, Eliette; Haenni, Marisa; Mereghetti, Laurent; Siebor, Eliane; Neuwirth, Catherine; Madec, Jean-Yves; Cloeckaert, Axel; Doublet, Benoît

    2015-09-01

    To characterize MDR genomic islands related to Salmonella genomic island 1 (SGI1) and Proteus genomic island 1 (PGI1) in Proteus mirabilis from human and animal sources in France in light of the previously reported cases. A total of 52 and 46 P. mirabilis clinical strains from human and animal sources, respectively, were studied for the period 2010-13. MDR was assessed by antimicrobial susceptibility testing, PCR detection of SGI1 and PGI1 and PCR mapping of the MDR regions. The diversity of the SGI1/PGI1-positive P. mirabilis strains was assessed by PFGE. Twelve P. mirabilis strains (5 humans and 7 dogs) were found to harbour an MDR island related to SGI1 or PGI1. Among them, several SGI1 variants were identified in diverse P. mirabilis genetic backgrounds. The variant SGI1-V, which harbours the ESBL bla VEB-6 gene, was found in closely genetically related human and dog P. mirabilis strains. The recently described PGI1 element was also identified in human and dog strains. Finally, one strain harboured a novel SGI genomic island closely related to SGI1 and SGI2 without an insertion of the MDR region. This study reports for the first time, to our knowledge, SGI1-positive and PGI1-positive P. mirabilis strains from dogs in France. The genetic diversity of the strains suggests several independent horizontal acquisitions of these MDR elements. The potential transmission of SGI1/PGI1-positive P. mirabilis strains between animals and humans is of public health concern, notably with regard to the spread of ESBL and carbapenemase genes, i.e. bla VEB-6 and bla NDM-1. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. CdTe quantum dots with daunorubicin induce apoptosis of multidrug-resistant human hepatoma HepG2/ADM cells: in vitro and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    Shi Lixin

    2011-01-01

    Full Text Available Abstract Cadmium telluride quantum dots (Cdte QDs have received significant attention in biomedical research because of their potential in disease diagnosis and drug delivery. In this study, we have investigated the interaction mechanism and synergistic effect of 3-mercaptopropionic acid-capped Cdte QDs with the anti-cancer drug daunorubicin (DNR on the induction of apoptosis using drug-resistant human hepatoma HepG2/ADM cells. Electrochemical assay revealed that Cdte QDs readily facilitated the uptake of the DNR into HepG2/ADM cells. Apoptotic staining, DNA fragmentation, and flow cytometry analysis further demonstrated that compared with Cdte QDs or DNR treatment alone, the apoptosis rate increased after the treatment of Cdte QDs together with DNR in HepG2/ADM cells. We observed that Cdte QDs treatment could reduce the effect of P-glycoprotein while the treatment of Cdte QDs together with DNR can clearly activate apoptosis-related caspases protein expression in HepG2/ADM cells. Moreover, our in vivo study indicated that the treatment of Cdte QDs together with DNR effectively inhibited the human hepatoma HepG2/ADM nude mice tumor growth. The increased cell apoptosis rate was closely correlated with the enhanced inhibition of tumor growth in the studied animals. Thus, Cdte QDs combined with DNR may serve as a possible alternative for targeted therapeutic approaches for some cancer treatments.

  19. Altered membrane permeability in multidrug resistant Escherichia ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... involvement during the transport of β - lactams in multidrug resistant Escherichia coli isolated from extra-intestinal infections. Also, the ... lactam resistance in multidrug resistant E. coli in ESBL and non-ESBL isolates. .... and decreased susceptibility to carbapenems, particularly ertapenem (Perez et al.,.

  20. Detection of multidrug resistance using molecular nuclear technique

    International Nuclear Information System (INIS)

    Lee, Jae Tae; Ahn, Byeong Cheol

    2004-01-01

    Although the outcome of cancer patients after cytotoxic chemotherapy is related diverse mechanisms, multidrug resistance (MDR) for chemotherapeutic drugs due to cellular P-glycoprotein (Pgp) or multidrug-resistance associated protein (MRP) is most important factor in the chemotherapy failure to cancer. A large number of pharmacologic compounds, including verapamil, quinidine, tamoxifen, cyclosporin A and quinolone derivatives have been reported to overcome MDR. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) are available for the detection of Pgp and MRP-mediated transporter. 99 m-Tc-MIBI and other 99 m-Tc-radiopharmaceuticals are substrates for Pgp and MRP, and have been used in clinical studies for tumor imaging, and to visualize blockade of Pgp-mediated transport after modulation of Pgp pump. Colchicine, verapamil and daunorubicin labeled with 11 C have been evaluated for the quantification of Pgp-mediated transport with PET in vivo and reported to be feasible substrates with which to image Pgp function in tumors. Leukotrienes are specific substrates for MRP and N-( 11 C)acetyl-leukotriene E4 provides an opportunity to study MRP function non-invasively in vivo. SPECT and PET pharmaceuticals have successfully used to evaluate pharmacologic effects of MDR modulators. Imaging of MDR and reversal of MDR with bioluminescence in a living animal is also evaluated for future clinical trial. We have described recent advances in molecular imaging of MDR and reviewed recent publications regarding feasibility of SPECT and PET imaging to study the functionality of MDR transporters in vivo

  1. JNK signaling maintains the mesenchymal properties of multi-drug resistant human epidermoid carcinoma KB cells through snail and twist1

    International Nuclear Information System (INIS)

    Zhan, Xia; Feng, Xiaobing; Kong, Ying; Chen, Yi; Tan, Wenfu

    2013-01-01

    In addition to possess cross drug resistance characteristic, emerging evidences have shown that multiple-drug resistance (MDR) cancer cells exhibit aberrant metastatic capacity when compared to parental cells. In this study, we explored the contribution of c-Jun N-terminal kinases (JNK) signaling to the mesenchymal phenotypes and the aberrant motile capacity of MDR cells utilizing a well characterized MDR cell line KB/VCR, which is established from KB human epidermoid carcinoma cells by vincristine (VCR), and its parental cell line KB. Taking advantage of experimental strategies including pharmacological tool and gene knockdown, we showed here that interference with JNK signaling pathway by targeting JNK1/2 or c-Jun reversed the mesenchymal properties of KB/VCR cells to epithelial phenotypes and suppressed the motile capacity of KB/VCR cells, such as migration and invasion. These observations support a critical role of JNK signaling in maintaining the mesenchymal properties of KB/VCR cells. Furthermore, we observed that JNK signaling may control the expression of both snail and twist1 in KB/VCR cells, indicating that both snail and twist1 are involved in controlling the mesenchymal characteristics of KB/VCR cells by JNK signaling. JNK signaling is required for maintaining the mesenchymal phenotype of KB/VCR cells; and JNK signaling may maintain the mesenchymal characteristics of KB/VCR cells potentially through snail and twist1

  2. JNK signaling maintains the mesenchymal properties of multi-drug resistant human epidermoid carcinoma KB cells through snail and twist1.

    Science.gov (United States)

    Zhan, Xia; Feng, Xiaobing; Kong, Ying; Chen, Yi; Tan, Wenfu

    2013-04-04

    In addition to possess cross drug resistance characteristic, emerging evidences have shown that multiple-drug resistance (MDR) cancer cells exhibit aberrant metastatic capacity when compared to parental cells. In this study, we explored the contribution of c-Jun N-terminal kinases (JNK) signaling to the mesenchymal phenotypes and the aberrant motile capacity of MDR cells utilizing a well characterized MDR cell line KB/VCR, which is established from KB human epidermoid carcinoma cells by vincristine (VCR), and its parental cell line KB. Taking advantage of experimental strategies including pharmacological tool and gene knockdown, we showed here that interference with JNK signaling pathway by targeting JNK1/2 or c-Jun reversed the mesenchymal properties of KB/VCR cells to epithelial phenotypes and suppressed the motile capacity of KB/VCR cells, such as migration and invasion. These observations support a critical role of JNK signaling in maintaining the mesenchymal properties of KB/VCR cells. Furthermore, we observed that JNK signaling may control the expression of both snail and twist1 in KB/VCR cells, indicating that both snail and twist1 are involved in controlling the mesenchymal characteristics of KB/VCR cells by JNK signaling. JNK signaling is required for maintaining the mesenchymal phenotype of KB/VCR cells; and JNK signaling may maintain the mesenchymal characteristics of KB/VCR cells potentially through snail and twist1.

  3. Multidrug-resistant opportunistic pathogens challenging veterinary infection control.

    Science.gov (United States)

    Walther, Birgit; Tedin, Karsten; Lübke-Becker, Antina

    2017-02-01

    Although the problems associated with healthcare-associated infections (HAI) and the emergence of zoonotic and multidrug-resistant pathogens in companion animal (dogs, cats and horses) medicine have been well-known for decades, current progress with respect to practical implementation of infection control programs in veterinary clinics has been limited. Clinical outbreak events reported for methicillin-resistant Staphylooccus aureus (MRSA) and Staphylococcus pseudintermedius (MRSP), extended spectrum beta-lactamase (ESBL)-producing Escherichia coli and multidrug-resistant (MDR) Salmonella Serovars indicate the necessity of infection control strategies for protecting animal patients at risk as well as veterinary personnel. The close bond between humans and their companion animals provides opportunities for exchange of microorganisms, including MDR pathogens. This particular aspect of the "One Health" idea requires more representative surveillance efforts and infection control strategies with respect to animal-species specific characters. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Reversal of multidrug resistance with KR-30035: evaluated with biodistribution of Tc-99m MIBI in nude mice bearing human tumor xenografts

    International Nuclear Information System (INIS)

    Kim, Jung Kyun; Lee, Jae Tae; Lee, Byung Ho

    2001-01-01

    KR-30035 (KR), a new MDR reversing agent, has been found to produce a similar degree of increased Tc-99m MIBI uptake in cultured tumor cells over-expressing mdr1 mRNA compared to verapamil (VP), with less cardiovascular effects. We assessed the MDR-reversing ability of KR in vivo, and effects of various doses of KR on MIBI uptake in nude mice bearing P-glycoprotein (P-gp) positive (+) and P-gp negative (-) human tumor xenografts. P-gp (+) HCT15/CLO2 colorectal and P-gp (-) A549 non-small cell cancer cells were inoculated in each flank of 120 nude mice (20 mice x 6 groups). Group 1 (Gr1) mice received 10mg/kg Kr i.p. 3 times (x3); Gr2, 10mg/kg VP i.p. x3; Gr3, 10mg/kg KR i.p. x2 + 25mg/kg KR i.p. x1; Gr4, 10mg/kg KR i.p. x 2 + 50mg/kg i.p. x1; Gr5, 10mg/kg Kr i.p. x2 + 25mg/kg KR i.v. x1, GrC, controls. The mice were then injected with Tc-99m MIBI and sacrificed after 10 min, 30 min, 90 min and 240 min. Tumor uptake of MIBI (TU) in each group was compared. Tu in P-gp (+) and (-)tumors were both higher in Gr1 than Gr2. Washout rate between the 10 min and 4 hours was lower in Gr5 of P-gp (+) cell (0.93) than the control. Percentage increases in Tu were higher in P-gp (+) than P-gp (-) tumors with all KR doses. Pgp (+) TU were highest at 10 min (173% of GrC) and persisted up to 240 min (144%) in Gr3. Larger doses of KR resulted in a lesser degree of increase in P-gp (+) TU at 10 min (130% in Gr4 and 117% in Gr5) and 30 min (178%, 129%), but TU increased by time up to 240 min (177%, 196%). Heart and lung uptakes were markedly increased in Gr4 and Gr5 at 10 and 3C min, likely due to cardiovascular effects. No mice died. These data further suggest that KR that has significantly lower cardiovascular toxicity than verapamil can be used as an active inhibitor of MDR. Even a relatively low dose of KR significantly increased Tc-99m MIBI uptake in P-gp (+) tumors in vivo

  5. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations.

    Science.gov (United States)

    Sun, Jingjing; Deng, Ziqing; Yan, Aixin

    2014-10-17

    Multidrug resistance (MDR) refers to the capability of bacterial pathogens to withstand lethal doses of structurally diverse drugs which are capable of eradicating non-resistant strains. MDR has been identified as a major threat to the public health of human being by the World Health Organization (WHO). Among the four general mechanisms that cause antibiotic resistance including target alteration, drug inactivation, decreased permeability and increased efflux, drug extrusion by the multidrug efflux pumps serves as an important mechanism of MDR. Efflux pumps not only can expel a broad range of antibiotics owing to their poly-substrate specificity, but also drive the acquisition of additional resistance mechanisms by lowering intracellular antibiotic concentration and promoting mutation accumulation. Over-expression of multidrug efflux pumps have been increasingly found to be associated with clinically relevant drug resistance. On the other hand, accumulating evidence has suggested that efflux pumps also have physiological functions in bacteria and their expression is subject tight regulation in response to various of environmental and physiological signals. A comprehensive understanding of the mechanisms of drug extrusion, and regulation and physiological functions of efflux pumps is essential for the development of anti-resistance interventions. In this review, we summarize the development of these research areas in the recent decades and present the pharmacological exploitation of efflux pump inhibitors as a promising anti-drug resistance intervention. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Complete Genome Sequence of a Human-Invasive Salmonella enterica Serovar Typhimurium Strain of the Emerging Sequence Type 213 Harboring a Multidrug Resistance IncA/C Plasmid and a blaCMY-2-Carrying IncF Plasmid.

    Science.gov (United States)

    Silva, Claudia; Calva, Edmundo; Calva, Juan J; Wiesner, Magdalena; Fernández-Mora, Marcos; Puente, José L; Vinuesa, Pablo

    2015-11-12

    Salmonella enterica subsp. enterica serovar Typhimurium strain 33676 was isolated in Mexico City, Mexico, from a patient with a systemic infection, and its complete genome sequence was determined using PacBio single-molecule real-time technology. Strain 33676 harbors an IncF plasmid carrying the extended-spectrum cephalosporin gene blaCMY-2 and a multidrug resistance IncA/C plasmid. Copyright © 2015 Silva et al.

  7. Influence of multidrug resistance on 18F-FCH cellular uptake in a glioblastoma model

    International Nuclear Information System (INIS)

    Vanpouille, Claire; Jeune, Nathalie le; Clotagatide, Anthony; Dubois, Francis; Kryza, David; Janier, Marc; Perek, Nathalie

    2009-01-01

    Multidrug resistance, aggressiveness and accelerated choline metabolism are hallmarks of malignancy and have motivated the development of new PET tracers like 18 F-FCH, an analogue of choline. Our aim was to study the relationship of multidrug resistance of cultured glioma cell lines and 18 F-FCH tracer uptake. We used an in vitro multidrug-resistant (MDR) glioma model composed of sensitive parental U87MG and derived resistant cells U87MG-CIS and U87MG-DOX. Aggressiveness, choline metabolism and transport were studied, particularly the expression of choline kinase (CK) and high-affinity choline transporter (CHT1). FCH transport studies were assessed in our glioblastoma model. As expected, the resistant cell lines express P-glycoprotein (Pgp), multidrug resistance-associated protein isoform 1 (MRP1) and elevated glutathione (GSH) content and are also more mobile and more invasive than the sensitive U87MG cells. Our results show an overexpression of CK and CHT1 in the resistant cell lines compared to the sensitive cell lines. We found an increased uptake of FCH (in % of uptake per 200,000 cells) in the resistant cells compared to the sensitive ones (U87MG: 0.89±0.14; U87MG-CIS: 1.27±0.18; U87MG-DOX: 1.33±0.13) in line with accelerated choline metabolism and aggressive phenotype. FCH uptake is not influenced by the two ATP-dependant efflux pumps: Pgp and MRP1. FCH would be an interesting probe for glioma imaging which would not be effluxed from the resistant cells by the classic MDR ABC transporters. Our results clearly show that FCH uptake reflects accelerated choline metabolism and is related to tumour aggressiveness and drug resistance. (orig.)

  8. Multidrug resistance in amoebiasis patients.

    Science.gov (United States)

    Bansal, Devendra; Sehgal, Rakesh; Chawla, Yogesh; Malla, Nancy; Mahajan, R C

    2006-08-01

    Amoebiasis, caused by Entamoeba sp. a protozoan parasite, is a major public health problem in tropical and subtropical countries. The symptomatic patients are treated by specific chemotherapy. However, there are reports of treatment failure in some cases suggesting the possibility of drug resistance. The present study was therefore planned to assess the presence and expression of mRNA of multidrug resistance (MDR) gene in clinical isolates of Entamoeba histolytica and E. dispar. Forty five clinical isolates of Entamoeba sp. [E. histolytica (15) and E. dispar (30)] were maintained in polyxenic followed by monoxenic medium. DNA and total RNA were extracted from clinical isolates of Entamoeba sp. and from sensitive strain of E. histolytica (HM1: IMSS) and subjected to polymerase chain reaction (PCR) and multiplex reverse transcription (RT)-PCR techniques. The 344 bp segment of E. histolytica DNA was seen by PCR using primers specific to EhPgp1 in all clinical isolates and sensitive strain of E. histolytica. Over expression of EhPgp1 was observed only in resistant mutant of E. histolytica; however, transcription of EhPgp1 was not seen in any clinical isolates and sensitive strain of E. histolytica. The findings of the present study indicate that, so far, drug resistance in clinical isolates of E. histolytica does not seem to be a major problem in this country. However, susceptibility of clinical isolates of E. histolytica against various antiamoebic drugs needs to be investigated for better management.

  9. Multidrug resistance in tumour cells: characterisation of the multidrug resistant cell line K562-Lucena 1

    Directory of Open Access Journals (Sweden)

    VIVIAN M. RUMJANEK

    2001-03-01

    Full Text Available Multidrug resistance to chemotherapy is a major obstacle in the treatment of cancer patients. The best characterised mechanism responsible for multidrug resistance involves the expression of the MDR-1 gene product, P-glycoprotein. However, the resistance process is multifactorial. Studies of multidrug resistance mechanisms have relied on the analysis of cancer cell lines that have been selected and present cross-reactivity to a broad range of anticancer agents. This work characterises a multidrug resistant cell line, originally selected for resistance to the Vinca alkaloid vincristine and derived from the human erythroleukaemia cell K562. This cell line, named Lucena 1, overexpresses P-glycoprotein and have its resistance reversed by the chemosensitisers verapamil, trifluoperazine and cyclosporins A, D and G. Furthermore, we demonstrated that methylene blue was capable of partially reversing the resistance in this cell line. On the contrary, the use of 5-fluorouracil increased the resistance of Lucena 1. In addition to chemotherapics, Lucena 1 cells were resistant to ultraviolet A radiation and hydrogen peroxide and failed to mobilise intracellular calcium when thapsigargin was used. Changes in the cytoskeleton of this cell line were also observed.A resistência a múltiplos fármacos é o principal obstáculo no tratamento de pacientes com câncer. O mecanismo responsável pela resistência múltipla mais bem caracterizado envolve a expressão do produto do gene MDR-1, a glicoproteína P. Entretanto, o processo de resistência tem fatores múltiplos. Estudos de mecanismos de resistência m��ltipla a fármacos têm dependido da análise de linhagens celulares tumorais que foram selecionadas e apresentam reatividade cruzada a uma ampla faixa de agentes anti-tumorais. Este trabalho caracteriza uma linhagem celular com múltipla resistência a fármacos, selecionada originalmente pela resistência ao alcalóide de Vinca vincristina e derivado

  10. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    International Nuclear Information System (INIS)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming

    2015-01-01

    Graphical abstract: - Highlights: • CD44-engineered mesoporous silica nanoparticles are synthesized. • The mechanism of CD44-engineered mesoporous silica nanoparticles is revealed. • This new delivery system increased the drug accumulation in vitro and in vivo. • This new delivery system offers an effective approach to treat multidrug resistance. - Abstract: Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer

  11. ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal

    Directory of Open Access Journals (Sweden)

    Choi Cheol-Hee

    2005-10-01

    Full Text Available Abstract One of the major problems related with anticancer chemotherapy is resistance against anticancer drugs. The ATP-binding cassette (ABC transporters are a family of transporter proteins that are responsible for drug resistance and a low bioavailability of drugs by pumping a variety of drugs out cells at the expense of ATP hydrolysis. One strategy for reversal of the resistance of tumor cells expressing ABC transporters is combined use of anticancer drugs with chemosensitizers. In this review, the physiological functions and structures of ABC transporters, and the development of chemosensitizers are described focusing on well-known proteins including P-glycoprotein, multidrug resistance associated protein, and breast cancer resistance protein.

  12. Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells

    NARCIS (Netherlands)

    Müller, M.; de Vries, E. G.; Jansen, P. L.

    1996-01-01

    The human multidrug resistance protein (MRP), a 190-kDa member of the ABC-protein superfamily, is an ATP-dependent glutathione S-conjugate carrier (GS-X pump) and is present in membranes of many, if not all, cells. Overexpression of MRP in tumor cells contributes to resistance to natural product

  13. Role of multidrug resistance protein (MRP) in glutathione S-conjugate transport in mammalian cells

    NARCIS (Netherlands)

    Muller, M; deVries, EGE; Jansen, PLM

    1996-01-01

    The human multidrug resistance protein (MRP), a 190-kDa member of the ABC-protein superfamily, is an ATP-dependent glutathione S-conjugate carrier (GS-X pump) and is present in membranes of many, if not all, cells, Overexpression of MRP in tumor cells contributes to resistance to natural product

  14. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2

    NARCIS (Netherlands)

    Hooijberg, J. H.; Broxterman, H. J.; Kool, M.; Assaraf, Y. G.; Peters, G. J.; Noordhuis, P.; Scheper, R. J.; Borst, P.; Pinedo, H. M.; Jansen, G.

    1999-01-01

    Transfection of multidrug resistance proteins (MRPs) MRP1 and MRP2 in human ovarian carcinoma 2008 cells conferred a marked level of resistance to short-term (1-4 h) exposure to the polyglutamatable antifolates methotrexate (MTX; 21-74-fold), ZD1694 (4-138-fold), and GW1843 (101-156-fold). Evidence

  15. Coexpression of multidrug resistance involve proteins: a flow cytometric analysis.

    Science.gov (United States)

    Boutonnat, J; Bonnefoix, T; Mousseau, M; Seigneurin, D; Ronot, X

    1998-01-01

    Cross resistance to multiple natural cytotoxic products represents a major obstacle in myeloblastic acute leukaemia (AML). Multidrug resistance (MDR) often involves overexpression of plasma membrane drug transporter P-glycoprotein (PGP) or the resistance associated protein (MRP). Recently, a protein overexpressed in a non-PGP MDR lung cancer cell line and termed lung resistance related protein (LRP) was identified. These proteins are known to be associated with a bad prognosis in AML. We have developed a triple indirect labelling analysed by flow cytometry to detect the coexpression of these proteins. Since no cell line expressing all three antigens is known, we mixed K562 cells (resistant to Adriblastine, PGP+, MRP-, LRP-) with GLC4 cells (resistant to Adriblastine, PGP-, MRP+, LRP+) to create a model system to test the method. The antibodies used were UIC2 for PGP, MRPm6 for MRP and LRP56 for LRP. They were revealed by Fab'2 coupled with Fluoresceine-isothiocyanate, Phycoerythrin or Tricolor with isotype specificity. Cells were fixed and permeabilized after PGP labelling because MRPm6 and LRP56 recognize intracellular epitopes. PGP and LRP were easily detected. MRP is expressed at relatively low levels and was more difficult to detect because in the triple labelling the non specific staining was higher than in a single labelling. Despite the increased background in the triple labelling we were able to detect coexpression of PGP, MRP, LRP by flow cytometry. This method appears to be very useful to detect coexpression of markers in AML. Such coexpression could modify the therapeutic approach with revertants.

  16. Targeted multidrug delivery system to overcome chemoresistance in breast cancer

    Directory of Open Access Journals (Sweden)

    Tang Y

    2017-01-01

    Full Text Available Yuan Tang,1 Fariborz Soroush,1 Zhaohui Tong,2 Mohammad F Kiani,1 Bin Wang1,3 1Department of Mechanical Engineering, Temple University, Philadelphia, PA, 2Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 3Department of Biomedical Engineering, Widener University, Chester, PA, USA Abstract: Chemotherapy has been widely used in breast cancer patients to reduce tumor size. However, most anticancer agents cannot differentiate between cancerous and normal cells, resulting in severe systemic toxicity. In addition, acquired drug resistance during the chemotherapy treatment further decreases treatment efficacy. With the proper treatment strategy, nanodrug carriers, such as liposomes/immunoliposomes, may be able to reduce undesired side effects of chemotherapy, to overcome the acquired multidrug resistance, and to further improve the treatment efficacy. In this study, a novel combinational targeted drug delivery system was developed by encapsulating antiangiogenesis drug bevacizumab into liposomes and encapsulating chemotherapy drug doxorubicin (DOX into immunoliposomes where the human epidermal growth factor receptor 2 (HER2 antibody was used as a targeting ligand. This novel combinational system was tested in vitro using a HER2 positive and multidrug resistant breast cancer cell line (BT-474/MDR, and in vivo using a xenograft mouse tumor model. In vitro cell culture experiments show that immunoliposome delivery led to a high cell nucleus accumulation of DOX, whereas free DOX was observed mostly near the cell membrane and in cytoplasm due to the action of P-gp. Combining liposomal bevacizumab with immunoliposomal DOX achieved the best tumor growth inhibition and the lowest toxicity. Tumor size decreased steadily within a 60-day observation period indicating a potential synergistic effect between DOX and bevacizumab through the targeted delivery. Our findings clearly indicate that tumor growth was significantly

  17. Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens

    Science.gov (United States)

    Andersen, Jody L.; He, Gui-Xin; Kakarla, Prathusha; KC, Ranjana; Kumar, Sanath; Lakra, Wazir Singh; Mukherjee, Mun Mun; Ranaweera, Indrika; Shrestha, Ugina; Tran, Thuy; Varela, Manuel F.

    2015-01-01

    Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations. PMID:25635914

  18. Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens

    Directory of Open Access Journals (Sweden)

    Jody L. Andersen

    2015-01-01

    Full Text Available Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.

  19. Antimicrobial Activity of Actinomycetes Against Multidrug Resistant ...

    African Journals Online (AJOL)

    Antimicrobial Activity of Actinomycetes Against Multidrug Resistant Staphylococcus aureus, E. coli and Various Other Pathogens. ... Purpose: The rapid emergence of drug resistance among pathogenic bacteria, especially multidrugresistant bacteria, underlines the need to look for new antibiotics. Methods: In the present ...

  20. Altered membrane permeability in multidrug resistant Escherichia ...

    African Journals Online (AJOL)

    The study was conducted with the objective of examining the outer membrane proteins and their involvement during the transport of β - lactams in multidrug resistant Escherichia coli isolated from extra-intestinal infections. Also, the response of gram negative bacterial biomembrane alteration was studied using extended ...

  1. Molecular properties of bacterial multidrug transporters

    NARCIS (Netherlands)

    Putman, M; van Veen, HW; Konings, WN

    2000-01-01

    One of the mechanisms that bacteria utilize to evade the toxic effects of antibiotics is the active extrusion of structurally unrelated drugs from the cell. Both intrinsic and acquired multidrug transporters play an important role in antibiotic resistance of several pathogens, including Neisseria

  2. Multidrug Resistant Acinetobacter Infection and Their Antimicrobial ...

    African Journals Online (AJOL)

    Background: Acinetobacter baumannii, a non-glucose fermenting Gram negative bacillus, has emerged in the last three decades as a major etiological agent of hospital-associated infections giving rise to significant morbidity and mortality particularly in immunocompromised patients. Multidrug resistant A. baumannii ...

  3. Multidrug transporters in lactic acid bacteria

    NARCIS (Netherlands)

    Mazurkiewicz, P; Sakamoto, K; Poelarends, GJ; Konings, WN

    Gram-positive lactic acid bacteria possess several Multi-Drug Resistance systems (MDRs) that excrete out of the cell a wide variety of mainly cationic lipophilic cytotoxic compounds as well as many clinically relevant antibiotics. These MDRs are either proton/drug antiporters belonging to the major

  4. Drug efflux proteins in multidrug resistant bacteria

    NARCIS (Netherlands)

    vanVeen, HW; Konings, WN

    Bacteria contain an array of transport proteins in their cytoplasmic membrane. Many of these proteins play an important role in conferring resistance to toxic compounds. The multidrug efflux systems encountered in prokaryotic cells are very similar to those observed in eukaryotic cells. Therefore, a

  5. Multidrug-resistant pathogens in the food supply.

    Science.gov (United States)

    Doyle, Marjorie E

    2015-04-01

    Antimicrobial resistance, including multidrug resistance (MDR), is an increasing problem globally. MDR bacteria are frequently detected in humans and animals from both more- and less-developed countries and pose a serious concern for human health. Infections caused by MDR microbes may increase morbidity and mortality and require use of expensive drugs and prolonged hospitalization. Humans may be exposed to MDR pathogens through exposure to environments at health-care facilities and farms, livestock and companion animals, human food, and exposure to other individuals carrying MDR microbes. The Centers for Disease Control and Prevention classifies drug-resistant foodborne bacteria, including Campylobacter, Salmonella Typhi, nontyphoidal salmonellae, and Shigella, as serious threats. MDR bacteria have been detected in both meat and fresh produce. Salmonellae carrying genes coding for resistance to multiple antibiotics have caused numerous foodborne MDR outbreaks. While there is some level of resistance to antimicrobials in environmental bacteria, the widespread use of antibiotics in medicine and agriculture has driven the selection of a great variety of microbes with resistance to multiple antimicrobials. MDR bacteria on meat may have originated in veterinary health-care settings or on farms where animals are given antibiotics in feed or to treat infections. Fresh produce may be contaminated by irrigation or wash water containing MDR bacteria. Livestock, fruits, and vegetables may also be contaminated by food handlers, farmers, and animal caretakers who carry MDR bacteria. All potential sources of MDR bacteria should be considered and strategies devised to reduce their presence in foods. Surveillance studies have documented increasing trends in MDR in many pathogens, although there are a few reports of the decline of certain multidrug pathogens. Better coordination of surveillance programs and strategies for controlling use of antimicrobials need to be implemented in

  6. Fluconazole Resistance Associated with Drug Efflux and Increased Transcription of a Drug Transporter Gene, PDH1, in Candida glabrata

    Science.gov (United States)

    Miyazaki, Haruko; Miyazaki, Yoshitsugu; Geber, Antonia; Parkinson, Tanya; Hitchcock, Christopher; Falconer, Derek J.; Ward, Douglas J.; Marsden, Katherine; Bennett, John E.

    1998-01-01

    Sequential Candida glabrata isolates were obtained from the mouth of a patient infected with human immunodeficiency virus type 1 who was receiving high doses of fluconazole for oropharyngeal thrush. Fluconazole-susceptible colonies were replaced by resistant colonies that exhibited both increased fluconazole efflux and increased transcripts of a gene which codes for a protein with 72.5% identity to Pdr5p, an ABC multidrug transporter in Saccharomyces cerevisiae. The deduced protein had a molecular mass of 175 kDa and was composed of two homologous halves, each with six putative transmembrane domains and highly conserved sequences of ATP-binding domains. When the earliest and most azole-susceptible isolate of C. glabrata from this patient was exposed to fluconazole, increased transcripts of the PDR5 homolog appeared, linking azole exposure to regulation of this gene. PMID:9661006

  7. Inhibition of P-glycoprotein and multidrug resistance-associated protein 2 regulates the hepatobiliary excretion and plasma exposure of thienorphine and its glucuronide conjugate

    Directory of Open Access Journals (Sweden)

    Ling-Lei Kong

    2016-08-01

    Full Text Available Thienorphine (TNP is a novel partial opioid agonist that has completed phase II clinical evaluation as a promising drug candidate for the treatment of opioid dependence. Previous studies have shown that TNP and its glucuronide conjugate (TNP-G undergo significant bile excretion. The purpose of this study was to investigate the roles of efflux transporters in regulating biliary excretion and plasma exposure of TNP and TNP-G. An ATPase assay suggested that TNP and TNP-G were substrates of P-gp and MRP2, respectively. The in vitro data from rat hepatocytes showed that bile excretion of TNP and TNP-G was regulated by the P-gp and MRP2 modulators. The accumulation of TNP and TNP-G in HepG2 cells significantly increased by the treatment of mdr1a or MRP2 siRNA for P-gp or MRP2 modulation. In intact rats, the bile excretion and pharmacokinetic profiles of TNP and TNP-G were remarkably changed with tariquidar and probenecid pretreatment, respectively. Tariquidar increased the Cmax and AUC0-t and decreased MRT and T1/2 of TNP, whereas probenecid decreased the plasma exposure of TNP-G and increased its T1/2. Knockdown P-gp and MRP2 function using siRNA significantly increased the plasma exposure of TNP and TNP-G and reduced their mean retention time in mice. These results indicated the important roles of P-gp and MRP2 in hepatobiliary excretion and plasma exposure of TNP and TNP-G. Inhibition of the efflux transporters may affect the pharmacokinetics of TNP and result in a drug-drug interaction between TNP and the concomitant transporter inhibitor or inducer in clinic.

  8. Could polymorphisms in ATP-binding cassette C3/multidrug resistance associated protein 3 (ABCC3/MRP3) modify colorectal cancer risk?

    Czech Academy of Sciences Publication Activity Database

    Campa, D.; Vodička, Pavel; Pardini, Barbara; Novotný, J.; Försti, A.; Hemminki, K.; Barale, R.; Canzian, F.

    2008-01-01

    Roč. 44, č. 6 (2008), s. 854-857 ISSN 0959-8049 R&D Projects: GA ČR GA310/05/2626 Institutional research plan: CEZ:AV0Z50390512 Keywords : ABCC3 * Transporter * Colorectal Cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.475, year: 2008

  9. Multidrug Resistance in Infants and Children

    Directory of Open Access Journals (Sweden)

    Gian Maria Pacifici

    2018-02-01

    Full Text Available Bacterial infections may cause disease and death. Infants and children are often subject to bacterial infections. Antimicrobials kill bacteria protecting the infected patients andreducing the risk of morbidity and mortality caused by bacteria. The antibiotics may lose their antibacterial activity when they become resistant to a bacteria. The resistance to different antibiotics in a bacteria is named multidrug-resistance. Gram-negative bacilli, especially Escherichia coli, Klebsiella, Enterobacter, Salmonella, Shigella, Pseudomonas, Streptococcus, and Haemophilus influenzae type b, may become resistant. Amikacin ampicillin, amoxicillin, amoxiclav, cefuroxime, cefotaxime, ceftazidime, cefoperazone tetracycline, chloramphenicol, ciprofloxacin, and gentamicin may cause bacterial-resistance. Resistance to bacteria for several pathogens makes complications in the treatment of infections caused by them. Salmonella strains may become resistant to ampicillin, cephalotin, ceftriaxone, gentamicin, amikacin, trimethoprim-sulfamethoxazole, chloramphenicol, and tetracycline. Shigella strains may become resistant to ampicillin, cotrimoxazole, chloramphenicol, and streptomycin. Multidrug-resistance of Streptococcus pneumoniae may be due to β-lactams, macrolides, tetracycline, chloramphenicol, and trimethoprim-sulfamethoxazole. Multidrug-resistance of Pseudomonas aeruginosa may become resistant to β-lactams, chloramphenicol, trimethoprim-sulfamethoxazole, and tetracycline. The antibacterial activity against Haemophilus strains may occur with ampicillin, sulbactam-ampicillin, trimethoprim-sulfamethoxazole, gentamicin, chloramphenicol, and ciprofloxacin. Multidrug-resistance of the Klebsiella species may be due with ampicillin, cefotaxime, cefuroxime, co-amxilav, mezlocillin, chloramphenicol, gentamicin, and ceftazidime. Multidrug-resistance of Escherichia coli may be caused by ampicillin, cotrimoxazole, chloramphenicol, ceftriaxone, and ceftazidime. Vibrio

  10. Epidemiology of multi-drug resistant staphylococci in cats, dogs and people in Switzerland

    OpenAIRE

    Decristophoris, Paola Maria Aurelia

    2011-01-01

    Background: The human relationship with cats and dogs has been suggested to be of potential concern to public health because of the possible role of pets as reservoir of antibiotic resistant microorganisms. Here I suggest the “One Health” interdisciplinary approach to be helpful towards the understanding of the role of pets in antibiotic resistance spreading, considering also the socio-emotional context of the human-pet relationship. Methods: I investigated the presence of multi-drug resis...

  11. Evaluating the Role of Multidrug Resistance Protein 3 (MDR3) Inhibition in Predicting Drug-Induced Liver Injury Using 125 Pharmaceuticals.

    Science.gov (United States)

    Aleo, Michael D; Shah, Falgun; He, Kan; Bonin, Paul D; Rodrigues, A David

    2017-05-15

    The role of bile salt export protein (BSEP) inhibition in drug-induced liver injury (DILI) has been investigated widely, while inhibition of the canalicular multidrug resistant protein 3 (MDR3) has received less attention. This transporter plays a pivotal role in secretion of phospholipids into bile and functions coordinately with BSEP to mediate the formation of bile acid-containing biliary micelles. Therefore, inhibition of MDR3 in human hepatocytes was examined across 125 drugs (70 of Most-DILI-concern and 55 of No-DILI-concern). Of these tested, 41% of Most-DILI-concern and 47% of No-DILI-concern drugs had MDR3 IC 50 values of <50 μM. A better distinction across DILI classifications occurred when systemic exposure was considered where safety margins of 50-fold had low sensitivity (0.29), but high specificity (0.96). Analysis of physical chemical property space showed that basic compounds were twice as likely to be MDR3 inhibitors as acids, neutrals, and zwitterions and that inhibitors were more likely to have polar surface area (PSA) values of <100 Å 2 and cPFLogD values between 1.5 and 5. These descriptors, with different cutoffs, also highlighted a group of compounds that shared dual potency as MDR3 and BSEP inhibitors. Nine drugs classified as Most-DILI-concern compounds (four withdrawn, four boxed warning, and one liver injury warning in their approved label) had intrinsic potency features of <20 μM in both assays, thereby reinforcing the notion that multiple inhibitory mechanisms governing bile formation (bile acid and phospholipid efflux) may confer additional risk factors that play into more severe forms of DILI as shown by others for BSEP inhibitors combined with multidrug resistance-associated protein (MRP2, MRP3, MRP4) inhibitory properties. Avoiding physical property descriptors that highlight dual BSEP and MDR3 inhibition or testing drug candidates for inhibition of multiple efflux transporters (e.g., BSEP, MDR3, and MRPs) may be an effective

  12. Multi-drug resistant Ewingella Americana

    International Nuclear Information System (INIS)

    Bukhari, Syed Z.; Ashshi, Ahmad M.; Hussain, Waleed M.; Fatani, Mohammad I.

    2008-01-01

    We report a case of pneumonia due to multi-drug resistant Ewingella Americana in a young patient admitted in the Intensive Care Unit of Hera General Hospital, Makkah, Saudi Arabia with severe head injury in a road traffic accident. He was an Indonesian pilgrim who had traveled to the Kingdom of Saudi Arabia to perform Hajj in December 2007. Ewingella Americana was identified to be the pathogen of pneumonia with clinical signs and symptoms along with positive radiological findings. (author)

  13. Synthesis, Antiproliferative, and Multidrug Resistance Reversal Activities of Heterocyclic α,β-Unsaturated Carbonyl Compounds.

    Science.gov (United States)

    Sun, Ju-Feng; Hou, Gui-Ge; Zhao, Feng; Cong, Wei; Li, Hong-Juan; Liu, Wen-Shuai; Wang, Chunhua

    2016-10-01

    A series of heterocyclic α,β-unsaturated carbonyl compounds (1a-1d, 2a-2d, 3a-3d, 4a-3d, and 5a-5d) with 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore were synthesized for the development of anticancer and multidrug resistance reverting agents. The antiproliferative activities were tested against nine human cancer cell lines. Approximately 73% of the IC50 values were below 5 μm, while 35% of these figures were submicromolar, and compounds 3a-3d with 4-trifluoro methyl in the arylidene benzene rings were the most potent, since their IC50 values are between 0.06 and 3.09 μm against all cancer cell lines employed. Meanwhile, their multidrug resistance reversal properties and cellular uptake were further examined. The data displayed that all of these compounds could reverse multidrug resistance, particularly, compounds 3a and 4a demonstrated both potent multidrug resistance reverting properties and strong antiproliferative activities, which can be taken as leading molecules for further research of dual effect agents in tumor chemotherapy. © 2016 John Wiley & Sons A/S.

  14. Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria

    OpenAIRE

    Xu, Zeling; Yan, Aixin

    2015-01-01

    Active drug efflux constitutes an important mechanism of antibiotic and multidrug resistance in bacteria. Understanding the distribution, expression, and physiological functions of multidrug efflux pumps, especially under physiologically and clinically relevant conditions of the pathogens, is the key to combat drug resistance. In animal hosts, most wounded, infected and inflamed tissues display low oxygen tensions. In this article, we summarize research development on multidrug efflux pumps i...

  15. Identification of multi-drug resistant Pseudomonas aeruginosa clinical isolates that are highly disruptive to the intestinal epithelial barrier

    Directory of Open Access Journals (Sweden)

    Shevchenko Olga

    2006-06-01

    Full Text Available Abstract Background Multi-drug resistant Pseudomonas aeruginosa nosocomial infections are increasingly recognized worldwide. In this study, we focused on the virulence of multi-drug resistant clinical strains P. aeruginosa against the intestinal epithelial barrier, since P. aeruginosa can cause lethal sepsis from within the intestinal tract of critically ill and immuno-compromised patients via mechanisms involving disruption of epithelial barrier function. Methods We screened consecutively isolated multi-drug resistant P. aeruginosa clinical strains for their ability to disrupt the integrity of human cultured intestinal epithelial cells (Caco-2 and correlated these finding to related virulence phenotypes such as adhesiveness, motility, biofilm formation, and cytotoxicity. Results Results demonstrated that the majority of the multi-drug resistant P. aeruginosa clinical strains were attenuated in their ability to disrupt the barrier function of cultured intestinal epithelial cells. Three distinct genotypes were found that displayed an extreme epithelial barrier-disrupting phenotype. These strains were characterized and found to harbor the exoU gene and to display high swimming motility and adhesiveness. Conclusion These data suggest that detailed phenotypic analysis of the behavior of multi-drug resistant P. aeruginosa against the intestinal epithelium has the potential to identify strains most likely to place patients at risk for lethal gut-derived sepsis. Surveillance of colonizing strains of P. aeruginosa in critically ill patients beyond antibiotic sensitivity is warranted.

  16. Multidrug resistance in pediatric urinary tract infections.

    Science.gov (United States)

    Gaspari, Romolo J; Dickson, Eric; Karlowsky, James; Doern, Gary

    2006-01-01

    Urinary tract infections (UTIs) represent a common infection in the pediatric population. Escherichia coli is the most common uropathogen in children, and antimicrobial resistance in this species complicates the treatment of pediatric UTIs. Despite the impact of resistance on empiric antibiotic choice, there is little data on multidrug resistance in pediatric patients. In this paper, we describe characteristics of multidrug-resistant E. coli in pediatric patients using a large national database of uropathogens antimicrobial sensitivities. Antimicrobial susceptibility patterns to commonly prescribed antibiotics were performed on uropathogens isolated from children presenting to participating hospitals between 1999 and 2001. Data were analyzed separately for four pediatric age groups. Single and multidrug resistance to ampicillin, amoxicillin-clavulanate, cefazolin, ciprofloxacin, nitrofurantoin, and trimethoprim-sulfamethoxazole (TMP-SMX) were performed on all specimens. There were a total of 11,341 E. coli urine cultures from 343 infants (0-4 weeks), 1,801 toddlers (5 weeks-24 months), 6,742 preteens (2-12 years), and 2,455 teens (13-17 years). E. coli resistance to ampicillin peaked in toddlers (52.8%) but was high in preteens (52.1%), infants (50.4%), and teens (40.6%). Resistance to two or more antibiotics varied across age groups, with toddlers (27%) leading preteens (23.1%), infants (21%), and teens (15.9%). Resistance to three or more antibiotics was low in all age groups (range 3.1-5.2%). The most common co-resistance in all age groups was ampicillin/TMP-SMZ. In conclusion, less than half of all pediatric UTIs are susceptible to all commonly used antibiotics. In some age groups, there is a significant percentage of co-resistance between the two most commonly used antibiotics (ampicillin and TMP-SMZ).

  17. Resistant plasmid profile analysis of multidrug resistant Escherichia ...

    African Journals Online (AJOL)

    Background: Multi-drug resistant Escherichia coli has become a major threat and cause of many urinary tract infections (UTIs) in Abeokuta, Nigeria. Objectives: This study was carried out to determine the resistant plasmids of multidrug resistant Escherichia coli isolated from (Urinary tract infections)UTIs in Abeokuta.

  18. Reversal of multidrug resistance by surfactants.

    Science.gov (United States)

    Woodcock, D. M.; Linsenmeyer, M. E.; Chojnowski, G.; Kriegler, A. B.; Nink, V.; Webster, L. K.; Sawyer, W. H.

    1992-01-01

    Cremophor EL, a pharmacologically inactive solubilising agent, has been shown to reverse multidrug resistance (MDR). Using flow cytometric evaluation of equilibrium intracellular levels of daunorubicin (DNR), we found that eight other surface active agents will also reverse MDR. All the active detergents contain polyethoxylated moieties but have no similarities in their hydrophobic components. The properties of three polyethoxylated surfactants that showed the lowest toxicities, Cremophor, Tween 80 and Solutol HS15, were examined in more detail. The concentrations of Tween 80 and Solutol required to reverse DNR exclusion were 10-fold lower than for Cremophor. However while concentrations greater than or equal to 1:10(2) of the former two surfactants resulted in breakdown of cells, even 1:10 of Cremophor did not lyse cells. Studies of the effects of Cremophor on the uptake and efflux of DNR in normal and MDR cell types showed that Cremophor increases intracellular DNR primarily by locking the rapid efflux from the cells. This blockage of drug efflux may be mediated by a substantial alteration in the fluidity of cell membranes induced by Cremophor, as shown by decreased fluorescence anisotropy of a membrane probe. Consistent with these data, coinjection of adriamycin plus Cremophor into mice carrying a multidrug resistant P388 transplantable tumour significantly increased the survival time of the mice compared with adriamycin treatment alone. PMID:1637678

  19. Crystal structure of the Neisseria gonorrhoeae MtrD inner membrane multidrug efflux pump.

    Directory of Open Access Journals (Sweden)

    Jani Reddy Bolla

    Full Text Available Neisseria gonorrhoeae is an obligate human pathogen and the causative agent of the sexually-transmitted disease gonorrhea. The control of this disease has been compromised by the increasing proportion of infections due to antibiotic-resistant strains, which are growing at an alarming rate. The MtrCDE tripartite multidrug efflux pump, belonging to the hydrophobic and amphiphilic efflux resistance-nodulation-cell division (HAE-RND family, spans both the inner and outer membranes of N. gonorrhoeae and confers resistance to a variety of antibiotics and toxic compounds. We here report the crystal structure of the inner membrane MtrD multidrug efflux pump, which reveals a novel structural feature that is not found in other RND efflux pumps.

  20. The cellular uptake mechanism, intracellular transportation, and exocytosis of polyamidoamine dendrimers in multidrug-resistant breast cancer cells.

    Science.gov (United States)

    Zhang, Jie; Liu, Dan; Zhang, Mengjun; Sun, Yuqi; Zhang, Xiaojun; Guan, Guannan; Zhao, Xiuli; Qiao, Mingxi; Chen, Dawei; Hu, Haiyang

    2016-01-01

    Polyamidoamine dendrimers, which can deliver drugs and genetic materials to resistant cells, are attracting increased research attention, but their transportation behavior in resistant cells remains unclear. In this paper, we performed a systematic analysis of the cellular uptake, intracellular transportation, and efflux of PAMAM-NH2 dendrimers in multidrug-resistant breast cancer cells (MCF-7/ADR cells) using sensitive breast cancer cells (MCF-7 cells) as the control. We found that the uptake rate of PAMAM-NH2 was much lower and exocytosis of PAMAM-NH2 was much greater in MCF-7/ADR cells than in MCF-7 cells due to the elimination of PAMAM-NH2 from P-glycoprotein and the multidrug resistance-associated protein in MCF-7/ADR cells. Macropinocytosis played a more important role in its uptake in MCF-7/ADR cells than in MCF-7 cells. PAMAM-NH2 aggregated and became more degraded in the lysosomal vesicles of the MCF-7/ADR cells than in those of the MCF-7 cells. The endoplasmic reticulum and Golgi complex were found to participate in the exocytosis rather than endocytosis process of PAMAM-NH2 in both types of cells. Our findings clearly showed the intracellular transportation process of PAMAM-NH2 in MCF-7/ADR cells and provided a guide of using PAMAM-NH2 as a drug and gene vector in resistant cells.

  1. [Clinical significance of drug resistance-associated mutations in treatment of hepatitis C with direct-acting antiviral agents].

    Science.gov (United States)

    Li, Z; Chen, Z W; Ren, H; Hu, P

    2017-03-20

    Direct-acting antiviral agents (DAAs) achieve a high sustained virologic response rate in the treatment of chronic hepatitis C virus infection. However, drug resistance-associated mutations play an important role in treatment failure and have attracted more and more attention. This article elaborates on the clinical significance of drug resistance-associated mutations from the aspects of their definition, association with genotype, known drug resistance-associated mutations and their prevalence rates, the impact of drug resistance-associated mutations on treatment naive and treatment-experienced patients, and the role of clinical detection, in order to provide a reference for clinical regimens with DAAs and help to achieve higher sustained virologic response rates.

  2. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems.

    Science.gov (United States)

    Hassan, Karl A; Liu, Qi; Henderson, Peter J F; Paulsen, Ian T

    2015-02-10

    Multidrug efflux systems are a major cause of resistance to antimicrobials in bacteria, including those pathogenic to humans, animals, and plants. These proteins are ubiquitous in these pathogens, and five families of bacterial multidrug efflux systems have been identified to date. By using transcriptomic and biochemical analyses, we recently identified the novel AceI (Acinetobacter chlorhexidine efflux) protein from Acinetobacter baumannii that conferred resistance to the biocide chlorhexidine, via an active efflux mechanism. Proteins homologous to AceI are encoded in the genomes of many other bacterial species and are particularly prominent within proteobacterial lineages. In this study, we expressed 23 homologs of AceI and examined their resistance and/or transport profiles. MIC analyses demonstrated that, like AceI, many of the homologs conferred resistance to chlorhexidine. Many of the AceI homologs conferred resistance to additional biocides, including benzalkonium, dequalinium, proflavine, and acriflavine. We conducted fluorimetric transport assays using the AceI homolog from Vibrio parahaemolyticus and confirmed that resistance to both proflavine and acriflavine was mediated by an active efflux mechanism. These results show that this group of AceI homologs represent a new family of bacterial multidrug efflux pumps, which we have designated the proteobacterial antimicrobial compound efflux (PACE) family of transport proteins. Bacterial multidrug efflux pumps are an important class of resistance determinants that can be found in every bacterial genome sequenced to date. These transport proteins have important protective functions for the bacterial cell but are a significant problem in the clinical setting, since a single efflux system can mediate resistance to many structurally and mechanistically diverse antibiotics and biocides. In this study, we demonstrate that proteins related to the Acinetobacter baumannii AceI transporter are a new class of multidrug

  3. Multidrug-resistant tuberculosis in pregnancy

    International Nuclear Information System (INIS)

    Dhingra, V.K.; Arora, V.K.; Rajpal, S.

    2007-01-01

    This is a case report of 26 years old pregnant woman with multidrug-resistant tuberculosis (MDR TB), treated at outpatient department of New Delhi Tuberculosis (NDTB) Centre, India with second line agents. Before presentation at NDTB Centre, she had been treated with first line drugs for approximately one and-a-half-year, including category II re-treatment DOTS regimen under RNTCP. Patient conceived twice during her anti-TB treatment. The first one was during her category II treatment, when put on second line drugs. We describe congenital abnormalities documented in her second child exposed in-utero to second line anti-tubercular drugs with a brief review of treatment of MDR TB in pregnancy. (author)

  4. Study of multidrug resistance and radioresistance

    International Nuclear Information System (INIS)

    Kang, Yoon Koo; Yoo, Young Do

    1999-04-01

    We investigated the mechanism of 5-FU, adriamycin, radiation resistance in Korean gastric cancer cells. First we investigated the relation between Rb and multidrug resistance. Rb stable transfectants exhibited 5- to 10- fold more resistance to adriamycin than the control cells. These Rb transfectants showed increased MDR1 expression. We also investigated up-regulation in radiation-resistant tumor tissues. HSP27, MRP-8, GST, and NKEF-B were up-regulated in radiation resistant tumor. Expression of NKEF-B was also increased by radiation exposure in Head and Neck cells. These results demonstrated that NKEF-B is a stress response protein and it may have an important role in radiation resistance

  5. Decreased LRIG1 in Human Ovarian Cancer Cell SKOV3 Upregulates MRP-1 and Contributes to the Chemoresistance of VP16.

    Science.gov (United States)

    Yang, Hua; Yao, Jun; Yin, Jiangpin; Wei, Xuan

    2016-05-01

    The leucine-rich repeats and immunoglobulin-like domains (LRIG) are used as tumor suppressors in clinical applications. Although the LRIG has been identified to manipulate the cell proliferation via various oncogenic receptor tyrosine kinases in diverse cancers, its role in multidrug resistance needs to be further elucidated, especially in human ovarian cancer. We herein established that the etoposide (VP16)-resistant SKOV3 human ovarian cancer cell clones (SKOV3/VP16 cells) and mRNA expression of LRIG1 were significantly reduced by the treatment of VP16 in a concentration-dependent manner. Moreover, downregulated LRIG1 in SKOV3 could enhance the colony formation and resist the inhibition of proliferation by VP16, leading to the elevated expression of Bcl-2 and decreased apoptosis of SKOV3. Interestingly, our results uncovered that the multidrug resistance-associated protein 1 (MRP-1) was upregulated for the chemoresistance of VP16. To overcome the chemoresistance of SKOV3, SKOV3/VP16 was ectopically expressed of LRIG1. We found that the inhibition of VP16 on colony formation and proliferation was remarkably enhanced with increased apoptosis in SKOV3/VP16. Furthermore, the expression of MRP-1 and Bcl-2 was also inhibited, suggesting that the LRIG1could negatively control MRP-1 and the apoptosis to improve the sensitivity of VP16-related chemotherapy.

  6. Characterisation of multidrug-resistant Ehrlich ascites tumour cells selected in vivo for resistance to etoposide

    DEFF Research Database (Denmark)

    Nielsen, D; Maare, C; Eriksen, J

    2000-01-01

    -extractable immunoreactive topoisomerase IIalpha and beta in EHR2/VP16 was reduced by 30-40% relative to that in EHR2. The multidrug resistance-associated protein (MRP) mRNA was increased 20-fold in EHR2/VP16 as compared with EHR2, whereas the expression of P-glycoprotein was unchanged. In EHR2/VP16, the steady......M. ATPase activity was slightly stimulated by daunorubicin, whereas vinblastine, verapamil, and cyclosporin A had no effect. In conclusion, development of resistance to VP16 in EHR2 is accompanied by a significant reduction in topoisomerase II (alpha and beta) and by increased expression of MRP mRNA (20......-fold). MRP displays several points of resemblance to P-glycoprotein in its mode of action: 1) like P-glycoprotein, MRP causes resistance to a range of hydrophobic drugs; 2) MRP decreases drug accumulation in the cells and this decrease is abolished by omission of energy; and 3) MRP increases efflux...

  7. Multidrug Efflux Pumps at the Crossroad between Antibiotic Resistance and Bacterial Virulence.

    Science.gov (United States)

    Alcalde-Rico, Manuel; Hernando-Amado, Sara; Blanco, Paula; Martínez, José L

    2016-01-01

    Multidrug efflux pumps can be involved in bacterial resistance to antibiotics at different levels. Some efflux pumps are constitutively expressed at low levels and contribute to intrinsic resistance. In addition, their overexpression may allow higher levels of resistance. This overexpression can be transient, in the presence of an effector (phenotypic resistance), or constitutive when mutants in the regulatory elements of the expression of efflux pumps are selected (acquired resistance). Efflux pumps are present in all cells, from human to bacteria and are highly conserved, which indicates that they are ancient elements in the evolution of different organisms. Consequently, it has been suggested that, besides antibiotic resistance, bacterial multidrug efflux pumps would likely contribute to other relevant processes of the microbial physiology. In the current article, we discuss some specific examples of the role that efflux pumps may have in the bacterial virulence of animals' and plants' pathogens, including the processes of intercellular communication. Based in these evidences, we propose that efflux pumps are at the crossroad between resistance and virulence of bacterial pathogens. Consequently, the comprehensive study of multidrug efflux pumps requires addressing these functions, which are of relevance for the bacterial-host interactions during infection.

  8. Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence

    Directory of Open Access Journals (Sweden)

    Manuel Alcalde-Rico

    2016-09-01

    Full Text Available Multidrug efflux pumps can be involved in bacterial resistance to antibiotics at different levels. Some efflux pumps are constitutively expressed at low levels and contribute to intrinsic resistance. In addition, their overexpression may allow higher levels of resistance. This overexpression can be transient, in the presence of an effector (phenotypic resistance, or constitutive when mutants in the regulatory elements of the expression of efflux pumps are selected (acquired resistance. Efflux pumps are present in all cells, from human to bacteria and are highly conserved, which indicates that they are ancient elements in the evolution of different organisms. Consequently, it has been suggested that, besides antibiotic resistance, bacterial multidrug efflux pumps would likely contribute to other relevant process of the microbial physiology. In the current article, we discuss some specific examples of the role that efflux pumps may have in the bacterial virulence of animals' and plants' pathogens, including the processes of intercellular communication. Based in these evidences, we propose that efflux pumps are at the crossroad between resistance and virulence of bacterial pathogens. Consequently, the comprehensive study of multidrug efflux pumps requires addressing these functions, which are of relevance for the bacterial-host interactions during infection.

  9. Indolcarboxamide is a preclinical candidate for treating multidrug-resistant tuberculosis.

    Science.gov (United States)

    Rao, Srinivasa P S; Lakshminarayana, Suresh B; Kondreddi, Ravinder R; Herve, Maxime; Camacho, Luis R; Bifani, Pablo; Kalapala, Sarath K; Jiricek, Jan; Ma, Ng L; Tan, Bee H; Ng, Seow H; Nanjundappa, Mahesh; Ravindran, Sindhu; Seah, Peck G; Thayalan, Pamela; Lim, Siao H; Lee, Boon H; Goh, Anne; Barnes, Whitney S; Chen, Zhong; Gagaring, Kerstin; Chatterjee, Arnab K; Pethe, Kevin; Kuhen, Kelli; Walker, John; Feng, Gu; Babu, Sreehari; Zhang, Lijun; Blasco, Francesca; Beer, David; Weaver, Margaret; Dartois, Veronique; Glynne, Richard; Dick, Thomas; Smith, Paul W; Diagana, Thierry T; Manjunatha, Ujjini H

    2013-12-04

    New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). We have identified and characterized the indolcarboxamides as a new class of antitubercular bactericidal agent. Genetic and lipid profiling studies identified the likely molecular target of indolcarboxamides as MmpL3, a transporter of trehalose monomycolate that is essential for mycobacterial cell wall biosynthesis. Two lead candidates, NITD-304 and NITD-349, showed potent activity against both drug-sensitive and multidrug-resistant clinical isolates of Mtb. Promising pharmacokinetic profiles of both compounds after oral dosing in several species enabled further evaluation for efficacy and safety. NITD-304 and NITD-349 were efficacious in treating both acute and chronic Mtb infections in mouse efficacy models. Furthermore, dosing of NITD-304 and NITD-349 for 2 weeks in exploratory rat toxicology studies revealed a promising safety margin. Finally, neither compound inhibited the activity of major cytochrome P-450 enzymes or the hERG (human ether-a-go-go related gene) channel. These results suggest that NITD-304 and NITD-349 should undergo further development as a potential treatment for multidrug-resistant TB.

  10. Molecular characterization of multidrug-resistant Shigella spp. of food origin.

    Science.gov (United States)

    Ahmed, Ashraf M; Shimamoto, Tadashi

    2015-02-02

    Shigella spp. are the causative agents of food-borne shigellosis, an acute enteric infection. The emergence of multidrug-resistant clinical isolates of Shigella presents an increasing challenge for clinicians in the treatment of shigellosis. Several studies worldwide have characterized the molecular basis of antibiotic resistance in clinical Shigella isolates of human origin, however, to date, no such characterization has been reported for Shigella spp. of food origin. In this study, we characterized the genetic basis of multidrug resistance in Shigella spp. isolated from 1600 food samples (800 meat products and 800 dairy products) collected from different street venders, butchers, retail markets, and slaughterhouses in Egypt. Twenty-four out of 27 Shigella isolates (88.9%) showed multidrug resistance phenotypes to at least three classes of antimicrobials. The multidrug-resistant Shigella spp. were as follows: Shigella flexneri (66.7%), Shigella sonnei (18.5%), and Shigella dysenteriae (3.7%). The highest resistance was to streptomycin (100.0%), then to kanamycin (95.8%), nalidixic acid (95.8%), tetracycline (95.8%), spectinomycin (93.6%), ampicillin (87.5%), and sulfamethoxazole/trimethoprim (87.5%). PCR and DNA sequencing were used to screen and characterize integrons and antibiotic resistance genes. Our results indicated that 11.1% and 74.1% of isolates were positive for class 1 and class 2 integrons, respectively. Beta-lactamase-encoding genes were identified in 77.8% of isolates, and plasmid-mediated quinolone resistance genes were identified in 44.4% of isolates. These data provide useful information to better understand the molecular basis of antimicrobial resistance in Shigella spp. To the best of our knowledge, this is the first report of the molecular characterization of antibiotic resistance in Shigella spp. isolated from food. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Risk factors for multidrug resistant tuberculosis patients in Amhara ...

    African Journals Online (AJOL)

    Risk factors for multidrug resistant tuberculosis patients in Amhara National ... risk factors of MDR-TB patients in Amhara National Regional State, Ethiopia. ... strict adherence to directly observed therapy, appropriate management of TB ...

  12. Epidemiologic analysis: Prophylaxis and multidrug-resistance in surgery

    Directory of Open Access Journals (Sweden)

    H. Solís-Téllez

    2017-04-01

    Conclusions: The prophylactic guidelines are not strictly adhered to in our environment. There was a significant association between the development of nosocomial infections from multidrug-resistant germs and admission to the intensive care unit.

  13. Multidrug resistance in enteric and other gram-negative bacteria.

    Science.gov (United States)

    George, A M

    1996-05-15

    In Gram-negative bacteria, multidrug resistance is a term that is used to describe mechanisms of resistance by chromosomal genes that are activated by induction or mutation caused by the stress of exposure to antibiotics in natural and clinical environments. Unlike plasmid-borne resistance genes, there is no alteration or degradation of drugs or need for genetic transfer. Exposure to a single drug leads to cross-resistance to many other structurally and functionally unrelated drugs. The only mechanism identified for multidrug resistance in bacteria is drug efflux by membrane transporters, even though many of these transporters remain to be identified. The enteric bacteria exhibit mostly complex multidrug resistance systems which are often regulated by operons or regulons. The purpose of this review is to survey molecular mechanisms of multidrug resistance in enteric and other Gram-negative bacteria, and to speculate on the origins and natural physiological functions of the genes involved.

  14. Prognostic significance of multidrug-resistance protein (MDR-1 in renal clear cell carcinomas: A five year follow-up analysis

    Directory of Open Access Journals (Sweden)

    Strazzullo Viviana

    2006-12-01

    Full Text Available Abstract Background A large number of renal cancer patients shows poor or partial response to chemotherapy and the mechanisms have not been still understood. Multi-drug resistance is the principal mechanism by which many cancers develop resistance to chemotherapic drugs. The role of the multi-drug resistant transporter (MDR-1/P-glycoprotein, the gene product of MDR-1, and that one of the so-called multi-drug resistance associated protein (MRP, two energy-dependent efflux pumps, are commonly known to confer drug resistance. We studied MDR-1 expression in selected cases of renal cell carcinoma (RCC, clear cell type, with long-term follow-up, in order to establish its prognostic role and its possible contribution in the choice of post-surgical therapy. Methods MDR-1 has been studied by standard LSAB-HRP immunohistochemical technique, in paraffin embedded RCC samples. Protein expression has been compared to clinical and histopathological data and to disease specific survival of RCC patients, by Kaplan-Meier curve and Cox multivariate regression analyses. Results Two groups of RCCs were obtained by esteeming MDR-1 expression and disease specific survival (obtained with Kaplan-Meier curve and Cox multivariate regression analyses: the first one presents low or absent MDR-1 expression and good survival; the second one is characterized by high MDR-1 expression and significant poor outcome (p p p p Conclusion In our opinion, the results of this study well prove the relationship between MDR-1 expression and worse clinical prognosis in RCC, because MDR-1 over-expressing RCCs can be considered a group of tumours with a more aggressive behavior. This finding outlines a possible role of MDR-1 as prognostic factor, dependent and independent of multidrug resistance. These results could be useful to predict cancer evolution and to choose the appropriate treatment: this is another step that can stimulate further promising and interesting investigations on broader

  15. Multidrug Efflux Pumps in Staphylococcus aureus: an Update

    OpenAIRE

    Costa, Sofia Santos; Viveiros, Miguel; Amaral, Leonard; Couto, Isabel

    2013-01-01

    The emergence of infections caused by multi- or pan-resistant bacteria in the hospital or in the community settings is an increasing health concern. Albeit there is no single resistance mechanism behind multiresistance, multidrug efflux pumps, proteins that cells use to detoxify from noxious compounds, seem to play a key role in the emergence of these multidrug resistant (MDR) bacteria. During the last decades, experimental data has established their contribution to low level resistance to an...

  16. Human skeletal muscle drug transporters determine local exposure and toxicity of statins.

    Science.gov (United States)

    Knauer, Michael J; Urquhart, Bradley L; Meyer zu Schwabedissen, Henriette E; Schwarz, Ute I; Lemke, Christopher J; Leake, Brenda F; Kim, Richard B; Tirona, Rommel G

    2010-02-05

    The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, are important drugs used in the treatment and prevention of cardiovascular disease. Although statins are well tolerated, many patients develop myopathy manifesting as muscle aches and pain. Rhabdomyolysis is a rare but severe toxicity of statins. Interindividual differences in the activities of hepatic membrane drug transporters and metabolic enzymes are known to influence statin plasma pharmacokinetics and risk for myopathy. Interestingly, little is known regarding the molecular determinants of statin distribution into skeletal muscle and its relevance to toxicity. We sought to identify statin transporters in human skeletal muscle and determine their impact on statin toxicity in vitro. We demonstrate that the uptake transporter OATP2B1 (human organic anion transporting polypeptide 2B1) and the efflux transporters, multidrug resistance-associated protein (MRP)1, MRP4, and MRP5 are expressed on the sarcolemmal membrane of human skeletal muscle fibers and that atorvastatin and rosuvastatin are substrates of these transporters when assessed using a heterologous expression system. In an in vitro model of differentiated, primary human skeletal muscle myoblast cells, we demonstrate basal membrane expression and drug efflux activity of MRP1, which contributes to reducing intracellular statin accumulation. Furthermore, we show that expression of human OATP2B1 in human skeletal muscle myoblast cells by adenoviral vectors increases intracellular accumulation and toxicity of statins and such effects were abrogated when cells overexpressed MRP1. These results identify key membrane transporters as modulators of skeletal muscle statin exposure and toxicity.

  17. The imaging feature of multidrug-resistant tuberculosis

    International Nuclear Information System (INIS)

    Yang Jun; Zhou Xinhua; Li Xi; Fu Yuhong; Zheng Suhua; Lv Pingxin; Ma Daqing

    2004-01-01

    Objective: To evaluate the imaging features of multidrug-resistant tuberculosis by collecting multidrug-resistant tuberculosis verified by test of drug-sensitivity, which defined as resistance to three anti-tuberculosis drugs. Methods:Fifty-one cases of multidrug-resistant tuberculosis were categorized as group of observed, and 46 cases of drug sensitive tuberculosis were categorized as control. Cultures were positive for Mycobacterium tuberculosis in all cases with no other illness such as diabetes mellitus. All patients had chest radiographs available for review, while 64 cases had tomography and 30 cases had CT during the same time. All images were analyzed by three of the radiologists, disagreement among them was discussed and a consensus was reached. Results: There was no difference in the distribution of lesions between the multidrug-resistant tuberculosis group and control group. However, the radiological findings in the multidrug-resistant tuberculosis group were significantly more common than in control group, such as multiple nodules (10 cases), disseminated foci (23 cases), cavity (9 cases), and complications (10 cases). Comparing the dynamic cases, deteriorating cases were more commonly seen in observed group than in control group, while improved cases were less in observed group than in control group. Conclusion: Multidrug-resistant tuberculosis is the most serious tuberculosis, which is characterized with significant activity, more disseminated foci, cavity, and complications. The lesion deteriorated while correct anti-tuberculosis treatment is applied. (authors)

  18. Relationship Between Substance Abuse and Multidrug-Resistant Tuberculosis

    Directory of Open Access Journals (Sweden)

    Sadya Afroz

    2012-07-01

    Full Text Available This case control study was conducted between January to June 2010 to determine the relationship between substance abuse and multidrug- resistant tuberculosis. A total of 73 cases were selected purposively, from culture- positive multidrug- resistant tuberculosis patients admitted in the National Institute of Diseases of the Chest and Hospital, Dhaka and compared with 81 un-matched controls, recruited from the cured patients of pulmonary tuberculosis who attended several DOTS centers of ‘Nagar Shastho Kendra’ under Urban Primary Health Care Project in Dhaka city. Data were collected by face to face interview and documents’ review, using a pre- tested structured questionnaire and a checklist. Multidrug- resistance was found to be associated with smoking status (χ2 = 11.76; p = 0.01 and panmasala use (χ2 = 8.28; p = 0.004. The study also revealed that alcohol consumption and other substance abuse such as jarda, sadapata, gul, snuff, heroine, cannabis, injectable drugs was not associated with the development of multidrug- resistant tuberculosis. Relationship between substance abuse and multidrug- resistant tuberculosis are more or less similar in the developing countries. Bangladesh is not out of this trend. The present study revealed the same fact, which warrants actions targeting specific factors. Further study is recommended to assess the magnitude and these factors related to the development of multidrug- resistant tuberculosis in different settings in our country. Ibrahim Med. Coll. J. 2012; 6(2: 50-54

  19. Antibiotics: Pharmacokinetics, toxicity, resistance and multidrug efflux pumps.

    Science.gov (United States)

    Yılmaz, Çiğdem; Özcengiz, Gülay

    2017-06-01

    The discovery of penicillin followed by streptomycin, tetracycline, cephalosporins and other natural, semi-synthetic and synthetic antimicrobials completely revolutionized medicine by reducing human morbidity and mortality from most of the common infections. However, shortly after they were introduced to clinical practice, the development of resistance was emerged. The decreasing interest from antibiotic industry in spite of rapid global emergence of antibiotic resistance is a tough dilemma from the pointview of public health. The efficiency of antimicrobial treatment is determined by both pharmacokinetics and pharmacodynamics. In spite of their selective toxicity, antibiotics still cause severe, life-threatening adverse reactions in host body mostly due to defective drug metabolism or excessive dosing regimen. The present article aims at updating current knowledge on pharmacokinetics/pharmacodynamics concepts and models, toxicity of antibiotics as well as antibiotic resistance mechanisms, resistome analyses and search for novel antibiotic resistance determinants with special emphasis given to the-state-of-the-art regarding multidrug efflux pumps and their additional physiological functions in stress adaptation and virulence of bacteria. All these issues are highly linked to each other and not only important for most efficient and prolonged use of current antibiotics, but also for discovery and development of new antibiotics and novel inhibitors of antibiotic resistance determinants of pathogens. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Multidrug and toxin extrusion proteins as transporters of antimicrobial drugs.

    Science.gov (United States)

    Nies, Anne T; Damme, Katja; Schaeffeler, Elke; Schwab, Matthias

    2012-12-01

    Antimicrobial drugs are essential in the treatment of infectious diseases. A better understanding of transport processes involved in drug disposition will improve the predictability of drug-drug interactions with consequences for drug response. Multidrug And Toxin Extrusion (MATE; SLC47A) proteins are efflux transporters mediating the excretion of several antimicrobial drugs as well as other organic compounds into bile and urine, thereby contributing to drug disposition. This review summarizes current knowledge of the structural and molecular features of human MATE transporters including their functional role in drug transport with a specific focus on antimicrobial drugs. The PubMed database was searched using the terms "MATE1," "MATE-2K," "MATE2," "SLC47A1," "SLC47A2," and "toxin extrusion protein" (up to June 2012). MATE proteins have been recognized as important transporters mediating the final excretion step of cationic drugs into bile and urine. These include the antiviral drugs acyclovir, amprenavir, and ganciclovir, the antibiotics cephalexin, cephradine and levofloxacin, as well as the antimalarial agents chloroquine and quinine. It is therefore important to enhance our understanding of the role of MATEs in drug extrusion with particular emphasis on the functional consequences of genetic variants on disposition of these antimicrobial drugs.

  1. Metabolic Reprogramming During Multidrug Resistance in Leukemias

    Directory of Open Access Journals (Sweden)

    Raphael Silveira Vidal

    2018-04-01

    Full Text Available Cancer outcome has improved since introduction of target therapy. However, treatment success is still impaired by the same drug resistance mechanism of classical chemotherapy, known as multidrug resistance (MDR phenotype. This phenotype promotes resistance to drugs with different structures and mechanism of action. Recent reports have shown that resistance acquisition is coupled to metabolic reprogramming. High-gene expression, increase of active transport, and conservation of redox status are one of the few examples that increase energy and substrate demands. It is not clear if the role of this metabolic shift in the MDR phenotype is related to its maintenance or to its induction. Apart from the nature of this relation, the metabolism may represent a new target to avoid or to block the mechanism that has been impairing treatment success. In this mini-review, we discuss the relation between metabolism and MDR resistance focusing on the multiple non-metabolic functions that enzymes of the glycolytic pathway are known to display, with emphasis with the diverse activities of glyceraldehyde-3-phosphate dehydrogenase.

  2. Tripartite assembly of RND multidrug efflux pumps.

    Science.gov (United States)

    Daury, Laetitia; Orange, François; Taveau, Jean-Christophe; Verchère, Alice; Monlezun, Laura; Gounou, Céline; Marreddy, Ravi K R; Picard, Martin; Broutin, Isabelle; Pos, Klaas M; Lambert, Olivier

    2016-02-12

    Tripartite multidrug efflux systems of Gram-negative bacteria are composed of an inner membrane transporter, an outer membrane channel and a periplasmic adaptor protein. They are assumed to form ducts inside the periplasm facilitating drug exit across the outer membrane. Here we present the reconstitution of native Pseudomonas aeruginosa MexAB-OprM and Escherichia coli AcrAB-TolC tripartite Resistance Nodulation and cell Division (RND) efflux systems in a lipid nanodisc system. Single-particle analysis by electron microscopy reveals the inner and outer membrane protein components linked together via the periplasmic adaptor protein. This intrinsic ability of the native components to self-assemble also leads to the formation of a stable interspecies AcrA-MexB-TolC complex suggesting a common mechanism of tripartite assembly. Projection structures of all three complexes emphasize the role of the periplasmic adaptor protein as part of the exit duct with no physical interaction between the inner and outer membrane components.

  3. Unusual Complication of Multidrug Resistant Tuberculosis

    Directory of Open Access Journals (Sweden)

    Prerna Sharma

    2017-01-01

    Full Text Available Introduction. Capreomycin is a second-line drug often used for multidrug-resistant tuberculosis which can result in nephrotoxic effects similar to other aminoglycosides. We describe a case of capreomycin induced Bartter-like syndrome with hypocalcemic tetany. Case Report. 23-year-old female patient presented with carpopedal spasms and tingling sensations in hands. Patient was being treated with capreomycin for two months for tuberculosis. On further investigation, hypocalcemia, hyponatremia, hypomagnesemia, hypokalemia, and hypochloremic metabolic alkalosis were noted. Vitamin D and serum PTH levels were within normal limits. Hypercalciuria was confirmed by urine calcium/creatinine ratio. Calcium, potassium, and magnesium supplementation was given and capreomycin was discontinued. Electrolytes normalized in two days after cessation of capreomycin with no further abnormalities on repeat investigations. Discussion. Aminoglycosides can result in renal tubular dysfunction leading to Fanconi syndrome, Bartter syndrome, and distal tubular acidosis. Impaired mitochondrial function in the tubular cells has been hypothesized as the possible cause of these tubulopathies. Acquired Bartter-like syndrome phenotypically resembles autosomal dominant type 5 Bartter syndrome. Treatment consists of correction of electrolyte abnormalities, indomethacin, and potassium-sparing diuretics. Prompt diagnosis and treatment of severe dyselectrolytemia are warranted in patients on aminoglycoside therapy.

  4. Drug Transporter Expression and Activity in Human Hepatoma HuH-7 Cells

    Directory of Open Access Journals (Sweden)

    Elodie Jouan

    2016-12-01

    Full Text Available Human hepatoma cells may represent a valuable alternative to the use of human hepatocytes for studying hepatic drug transporters, which is now a regulatory issue during drug development. In the present work, we have characterized hepatic drug transporter expression, activity and regulation in human hepatoma HuH-7 cells, in order to determine the potential relevance of these cells for drug transport assays. HuH-7 cells displayed notable multidrug resistance-associated protein (MRP activity, presumed to reflect expression of various hepatic MRPs, including MRP2. By contrast, they failed to display functional activities of the uptake transporters sodium taurocholate co-transporting polypeptide (NTCP, organic anion-transporting polypeptides (OATPs and organic cation transporter 1 (OCT1, and of the canalicular transporters P-glycoprotein and breast cancer resistance protein (BCRP. Concomitantly, mRNA expressions of various sinusoidal and canalicular hepatic drug transporters were not detected (NTCP, OATP1B1, organic anion transporter 2 (OAT2, OCT1 and bile salt export pump or were found to be lower (OATP1B3, OATP2B1, multidrug and toxin extrusion protein 1, BCRP and MRP3 in hepatoma HuH-7 cells than those found in human hepatocytes, whereas other transporters such as OAT7, MRP4 and MRP5 were up-regulated. HuH-7 cells additionally exhibited farnesoid X receptor (FXR- and nuclear factor erythroid 2-related factor 2 (Nrf2-related up-regulation of some transporters. Such data indicate that HuH-7 cells, although expressing rather poorly some main hepatic drug transporters, may be useful for investigating interactions of drugs with MRPs, notably MRP2, and for studying FXR- or Nrf2-mediated gene regulation.

  5.  Resistance-associated polymorphisms in Dutch hepatitis C genotype 1a patients with and without HIV infection.

    Science.gov (United States)

    Lieveld, Faydra I; Swaans, Niels; Newsum, Astrid M; Ho, Cynthia K Y; Schinkel, Janke; Molenkamp, Richard; van der Meer, Jan T M; Arends, Joop E; Hoepelman, Andy I M; Wensing, Anne M J; Siersema, Peter D; van Erpecum, Karel J; Boland, Greet J

    2016-01-01

     Background and aim. Resistance-associated variants (RAVs) on the NS3 region of the hepatitis C virus (HCV) may be relevant for antiviral therapy, but data in human immunodeficiency virus (HIV) coinfected patients are scarce. We assessed frequencies of NS3 RAVs in patients infected with HCV genotype 1a with or without HIV coinfection. HCV NS3 amino acids 1-181 were sequenced by the Sanger method and analyzed for RAVs. RAVs and their distribution between HCV genotype 1a clade I and II viruses were compared between HIV-infected versus HIV-uninfected patients. 148 samples were available (n = 68 HIV and n = 80 non-HIV). Relative frequency of clade I and clade II was significantly different between HIV (85% and 15%) and non-HIV groups (49% and 51%). Overall, HIV infected patients exhibited significantly lower prevalence of RAVs than HIV-uninfected patients (62% vs. 79%, p = 0.03). However, Q80K prevalence was significantly higher in HIV-infected subjects (50% vs. 24%, p = 0.001), whereas prevalence of S122D/G/N/S (2% vs. 16%, p = 0.002) and N174G/N/S (10% vs. 55%, p < 0.0001) polymorphisms were significantly lower. Q80K was found exclusively in clade I viruses. S122 (3% vs. 22%, p=0.001) and N174 (13% vs. 75%, p<0.0001) polymorphisms had significantly lower prevalence in clade I than clade II viruses. In the Netherlands, prevalence of clade I viruses and Q80K was significantly higher in HCV genotype 1a infected patients with HIV coinfection than in those without HIV coinfection. Prevalence of N174 and S122 polymorphisms was significantly higher in clade II than clade I viruses.

  6. A portable 3D printer system for the diagnosis and treatment of multidrug-resistant bacteria

    OpenAIRE

    Glatzel, Stefan; Hezwani, Mohammed; Kitson, Philip J.; Gromski, Piotr S.; Schürer, Sophie; Cronin, Leroy

    2016-01-01

    Summary: Multidrug-resistant bacteria are a major threat to human health, but broad-spectrum\\ud antibiotics are losing efficacy. There is a need to screen a given drug against\\ud a bacterial infection outside of the laboratory. To address this need, we have designed\\ud and built an inexpensive and easy-to-use 3D-printer-based system that\\ud allows easily readable quantitative tests for the performance of antibacterial\\ud drugs. The platform creates a sterile diagnostic device by using 3D prin...

  7. The application of 99Tcm-MIBI scintimammography to diagnose multidrug resistance of breast cancer

    International Nuclear Information System (INIS)

    Cheng Bing

    2002-01-01

    The author discussed the main mechanism of multidrug resistance of breast cancer tissues, and the correlation between technetium-99m sestamibi ( 99 Tc m -MIBI) breast imaging results, with the expression of drug resistance proteins P-glycoprotein and glutathione-S-transferase-π in human breast cancer. Through not all the results reported before matched each other, as a kind of a noninvasive simple functional test imaging technology in vitro, SPECT can be used to diagnose P-glycoprotein expression in breast cancer, and can be used to predict chemotherapy response

  8. Identification of antimicrobial resistance genes in multidrug-resistant clinical Bacteroides fragilis isolates by whole genome shotgun sequencing

    DEFF Research Database (Denmark)

    Sydenham, Thomas Vognbjerg; Sóki, József; Hasman, Henrik

    2015-01-01

    Bacteroides fragilis constitutes the most frequent anaerobic bacterium causing bacteremia in humans. The genetic background for antimicrobial resistance in B. fragilis is diverse with some genes requiring insertion sequence (IS) elements inserted upstream for increased expression. To evaluate whole...... genome shotgun sequencing as a method for predicting antimicrobial resistance properties, one meropenem resistant and five multidrug-resistant blood culture isolates were sequenced and antimicrobial resistance genes and IS elements identified using ResFinder 2.1 (http...

  9. Inhibiting fungal multidrug resistance by disrupting an activator-Mediator interaction.

    Science.gov (United States)

    Nishikawa, Joy L; Boeszoermenyi, Andras; Vale-Silva, Luis A; Torelli, Riccardo; Posteraro, Brunella; Sohn, Yoo-Jin; Ji, Fei; Gelev, Vladimir; Sanglard, Dominique; Sanguinetti, Maurizio; Sadreyev, Ruslan I; Mukherjee, Goutam; Bhyravabhotla, Jayaram; Buhrlage, Sara J; Gray, Nathanael S; Wagner, Gerhard; Näär, Anders M; Arthanari, Haribabu

    2016-02-25

    Eukaryotic transcription activators stimulate the expression of specific sets of target genes through recruitment of co-activators such as the RNA polymerase II-interacting Mediator complex. Aberrant function of transcription activators has been implicated in several diseases. However, therapeutic targeting efforts have been hampered by a lack of detailed molecular knowledge of the mechanisms of gene activation by disease-associated transcription activators. We previously identified an activator-targeted three-helix bundle KIX domain in the human MED15 Mediator subunit that is structurally conserved in Gal11/Med15 Mediator subunits in fungi. The Gal11/Med15 KIX domain engages pleiotropic drug resistance transcription factor (Pdr1) orthologues, which are key regulators of the multidrug resistance pathway in Saccharomyces cerevisiae and in the clinically important human pathogen Candida glabrata. The prevalence of C. glabrata is rising, partly owing to its low intrinsic susceptibility to azoles, the most widely used antifungal agent. Drug-resistant clinical isolates of C. glabrata most commonly contain point mutations in Pdr1 that render it constitutively active, suggesting that this transcriptional activation pathway represents a linchpin in C. glabrata multidrug resistance. Here we perform sequential biochemical and in vivo high-throughput screens to identify small-molecule inhibitors of the interaction of the C. glabrata Pdr1 activation domain with the C. glabrata Gal11A KIX domain. The lead compound (iKIX1) inhibits Pdr1-dependent gene activation and re-sensitizes drug-resistant C. glabrata to azole antifungals in vitro and in animal models for disseminated and urinary tract C. glabrata infection. Determining the NMR structure of the C. glabrata Gal11A KIX domain provides a detailed understanding of the molecular mechanism of Pdr1 gene activation and multidrug resistance inhibition by iKIX1. We have demonstrated the feasibility of small-molecule targeting of a

  10. The management of multidrug-resistant Enterobacteriaceae.

    Science.gov (United States)

    Bassetti, Matteo; Peghin, Maddalena; Pecori, Davide

    2016-12-01

    Multidrug-resistant (MDR) Enterobacteriaceae are often related to the production of extended-spectrum b-lactamases (ESBLs) and carbapenemase-producing Enterobacteriaceae (CRE), and represent an increasing global threat. Recommendations for the therapeutic management of MDR-related infections, however, are mainly derived from retrospective and nonrandomized prospective studies. The aim of this review is to discuss the challenges in the treatment of patients with infections because of MDR Enterobacteriaceae and provide an expert opinion while awaiting for more definitive data. To avoid the selection of carbapenemase-producing Enterobacteriaceae, carbapenem-sparing strategies should be considered. B-lactams/b-lactamase inhibitors, mainly piperacillin-tazobactam, minimum inhibitory concentration (MIC) 16/4mg/ml or less represents the best alternative to carbapenems for the treatment of ESBL-producing strains. Overall, combination therapy may be preferred over monotherapy for CRE. The combination of a carbapenem-containing regimen with colistin or high-dose tigecycline or aminoglycoside can be administered at high-dose prolonged infusion with therapeutic drug monitoring for the treatment of CRE with MIC for meropenem 8-16 mg/l or less. For MIC higher than 8-16 mg/l, the use of meropenem should be avoided and various combination therapies based on the in-vitro susceptibility of antimicrobials (e.g., colistin, high-dose tigecycline, fosfomycin, and aminoglycosides) should be selected. Carbapenem-sparing strategies should be used, when feasible, for ESBL infections. The majority of available nonrandomized studies highlight that combination for CRE seem to offer some therapeutic advantage over monotherapy. Strict infection control measures toward MDR Gram-negative pathogens remain necessary while awaiting for new treatment options.

  11. The multidrug ABC transporter BmrC/BmrD of Bacillus subtilis is regulated via a ribosome-mediated transcriptional attenuation mechanism

    NARCIS (Netherlands)

    Reilman, Ewoud; Mars, Ruben A. T.; van Dijl, Jan Maarten; Denham, Emma L.

    2014-01-01

    Expression of particular drug transporters in response to antibiotic pressure is a critical element in the development of bacterial multidrug resistance, and represents a serious concern for human health. To obtain a better understanding of underlying regulatory mechanisms, we have dissected the

  12. Characterization of a multidrug-resistant Salmonella enterica serovar Heidelberg outbreak strain in commercial turkeys: Colonization, transmission, and host transcriptional response

    Science.gov (United States)

    In recent years, multidrug-resistant (MDR) Salmonella enterica serovar Heidelberg has been associated with numerous human foodborne illness outbreaks due to consumption of poultry. For example, in 2011, an MDR S. Heidelberg outbreak associated with ground turkey sickened 136 individuals and resulted...

  13. Comparative genomics of multidrug resistance in Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Pierre-Edouard Fournier

    2006-01-01

    Full Text Available Acinetobacter baumannii is a species of nonfermentative gram-negative bacteria commonly found in water and soil. This organism was susceptible to most antibiotics in the 1970s. It has now become a major cause of hospital-acquired infections worldwide due to its remarkable propensity to rapidly acquire resistance determinants to a wide range of antibacterial agents. Here we use a comparative genomic approach to identify the complete repertoire of resistance genes exhibited by the multidrug-resistant A. baumannii strain AYE, which is epidemic in France, as well as to investigate the mechanisms of their acquisition by comparison with the fully susceptible A. baumannii strain SDF, which is associated with human body lice. The assembly of the whole shotgun genome sequences of the strains AYE and SDF gave an estimated size of 3.9 and 3.2 Mb, respectively. A. baumannii strain AYE exhibits an 86-kb genomic region termed a resistance island--the largest identified to date--in which 45 resistance genes are clustered. At the homologous location, the SDF strain exhibits a 20 kb-genomic island flanked by transposases but devoid of resistance markers. Such a switching genomic structure might be a hotspot that could explain the rapid acquisition of resistance markers under antimicrobial pressure. Sequence similarity and phylogenetic analyses confirm that most of the resistance genes found in the A. baumannii strain AYE have been recently acquired from bacteria of the genera Pseudomonas, Salmonella, or Escherichia. This study also resulted in the discovery of 19 new putative resistance genes. Whole-genome sequencing appears to be a fast and efficient approach to the exhaustive identification of resistance genes in epidemic infectious agents of clinical significance.

  14. Comparative Genomics of Multidrug Resistance in Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Acinetobacter baumannii is a species of nonfermentative gram-negative bacteria commonly found in water and soil. This organism was susceptible to most antibiotics in the 1970s. It has now become a major cause of hospital-acquired infections worldwide due to its remarkable propensity to rapidly acquire resistance determinants to a wide range of antibacterial agents. Here we use a comparative genomic approach to identify the complete repertoire of resistance genes exhibited by the multidrug-resistant A. baumannii strain AYE, which is epidemic in France, as well as to investigate the mechanisms of their acquisition by comparison with the fully susceptible A. baumannii strain SDF, which is associated with human body lice. The assembly of the whole shotgun genome sequences of the strains AYE and SDF gave an estimated size of 3.9 and 3.2 Mb, respectively. A. baumannii strain AYE exhibits an 86-kb genomic region termed a resistance island-the largest identified to date-in which 45 resistance genes are clustered. At the homologous location, the SDF strain exhibits a 20 kb-genomic island flanked by transposases but devoid of resistance markers. Such a switching genomic structure might be a hotspot that could explain the rapid acquisition of resistance markers under antimicrobial pressure. Sequence similarity and phylogenetic analyses confirm that most of the resistance genes found in the A. baumannii strain AYE have been recently acquired from bacteria of the genera Pseudomonas, Salmonella, or Escherichia. This study also resulted in the discovery of 19 new putative resistance genes. Whole-genome sequencing appears to be a fast and efficient approach to the exhaustive identification of resistance genes in epidemic infectious agents of clinical significance.

  15. Heterocyclic cyclohexanone monocarbonyl analogs of curcumin can inhibit the activity of ATP-binding cassette transporters in cancer multidrug resistance.

    Science.gov (United States)

    Revalde, Jezrael L; Li, Yan; Hawkins, Bill C; Rosengren, Rhonda J; Paxton, James W

    2015-02-01

    Curcumin (CUR) is a phytochemical that inhibits the xenobiotic ABC efflux transporters implicated in cancer multidrug resistance (MDR), such as P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins 1 and 5 (MRP1 and MRP5). The use of CUR in the clinic however, is complicated by its instability and poor pharmacokinetic profile. Monocarbonyl analogs of CUR (MACs) are compounds without CUR's unstable β-diketone moiety and were reported to have improved stability and in vivo disposition. Whether the MACs can be used as MDR reversal agents is less clear, as the absence of a β-diketone may negatively impact transporter inhibition. In this study, we investigated 23 heterocyclic cyclohexanone MACs for inhibitory effects against P-gp, BCRP, MRP1 and MRP5. Using flow cytometry and resistance reversal assays, we found that many of these compounds inhibited the transport activity of the ABC transporters investigated, often with much greater potency than CUR. Overall the analogs were most effective at inhibiting BCRP and we identified three compounds, A12 (2,6-bis((E)-2,5-dimethoxy-benzylidene)cyclohexanone), A13 (2,6-bis((E)-4-hydroxyl-3-methoxybenzylidene)-cyclohexanone) and B11 (3,5-bis((E)-2-fluoro-4,5-dimethoxybenzylidene)-1-methylpiperidin-4-one), as the most promising BCRP inhibitors. These compounds inhibited BCRP activity in a non-cell line, non-substrate-specific manner. Their inhibition occurred by direct transporter interaction rather than modulating protein or cell surface expression. From these results, we concluded that MACs, such as the heterocyclic cyclohexanone analogs in this study, also have potential as MDR reversal agents and may be superior alternatives to the unstable parent compound, CUR. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Drug accumulation in the presence of the multidrug resistance pump

    DEFF Research Database (Denmark)

    Ayesh, S; Litman, Thomas; Stein, W D

    1997-01-01

    We studied the interaction between the multidrug transporter, P-glycoprotein, and two compounds that interact with it: vinblastine, a classical substrate of the pump, and verapamil, a classical reverser. Steady-state levels of accumulation of these two drugs were determined in a multidrug resistant...... P388 leukemia cell line, P388/ADR. The time course of accumulation of these drugs, and the effect of energy starvation and the presence of chloroquine on the level of their steady-state accumulation were quite disparate. Vinblastine inhibited the accumulation of verapamil whereas it enhanced...

  17. Tailoring Cytotoxicity of Antimicrobial Peptidomimetics with High Activity against Multidrug-Resistant Escherichia coli

    DEFF Research Database (Denmark)

    Jahnsen, Rasmus D; Sandberg-Schaal, Anne; Vissing, Karina Juul

    2014-01-01

    Infections with multidrug-resistant pathogens are an increasing concern for public health. Recently, subtypes of peptide-peptoid hybrids were demonstrated to display potent activity against multidrug-resistant Gram-negative bacteria. Here, structural variation of these antibacterial peptidomimetics...... cells. Thus, lead compounds with a high selectivity toward killing of clinically important multidrug-resistant E. coli were identified....

  18. Non-cytotoxic nanomaterials enhance antimicrobial activities of cefmetazole against multidrug-resistant Neisseria gonorrhoeae.

    Directory of Open Access Journals (Sweden)

    Lan-Hui Li

    Full Text Available The emergence and spread of antibiotic-resistant Neisseria gonorrhoeae has led to difficulties in treating patients, and novel strategies to prevent and treat this infection are urgently needed. Here, we examined 21 different nanomaterials for their potential activity against N. gonorrhoeae (ATCC 49226. Silver nanoparticles (Ag NPs, 120 nm showed the greatest potency for reducing N. gonorrhoeae colony formation (MIC: 12.5 µg/ml and possessed the dominant influence on the antibacterial activity with their properties of the nanoparticles within a concentration range that did not induce cytotoxicity in human fibroblasts or epithelial cells. Electron microscopy revealed that the Ag NPs significantly reduced bacterial cell membrane integrity. Furthermore, the use of clinical isolates of multidrug-resistant N. gonorrhoeae showed that combined treatment with 120 nm Ag NPs and cefmetazole produced additive effects. This is the first report to screen the effectiveness of nanomaterials against N. gonorrhoeae, and our results indicate that 120 nm Ag NPs deliver low levels of toxicity to human epithelial cells and could be used as an adjuvant with antibiotic therapy, either for topical use or as a coating for biomaterials, to prevent or treat multidrug-resistant N. gonorrhoeae.

  19. Functional evidence of multidrug resistance transporters (MDR in rodent olfactory epithelium.

    Directory of Open Access Journals (Sweden)

    Adrien Molinas

    Full Text Available P-glycoprotein (Pgp and multidrug resistance-associated protein (MRP1 are membrane transporter proteins which function as efflux pumps at cell membranes and are considered to exert a protective function against the entry of xenobiotics. While evidence for Pgp and MRP transporter activity is reported for olfactory tissue, their possible interaction and participation in the olfactory response has not been investigated.Functional activity of putative MDR transporters was assessed by means of the fluorometric calcein acetoxymethyl ester (calcein-AM accumulation assay on acute rat and mouse olfactory tissue slices. Calcein-AM uptake was measured as fluorescence intensity changes in the presence of Pgp or MRP specific inhibitors. Epifluorescence microscopy measured time course analysis in the olfactory epithelium revealed significant inhibitor-dependent calcein uptake in the presence of each of the selected inhibitors. Furthermore, intracellular calcein accumulation in olfactory receptor neurons was also significantly increased in the presence of either one of the Pgp or MRP inhibitors. The presence of Pgp or MRP1 encoding genes in the olfactory mucosa of rat and mouse was confirmed by RT-PCR with appropriate pairs of species-specific primers. Both transporters were expressed in both newborn and adult olfactory mucosa of both species. To assess a possible involvement of MDR transporters in the olfactory response, we examined the electrophysiological response to odorants in the presence of the selected MDR inhibitors by recording electroolfactograms (EOG. In both animal species, MRPs inhibitors induced a marked reduction of the EOG magnitude, while Pgp inhibitors had only a minor or no measurable effect.The findings suggest that both Pgp and MRP transporters are functional in the olfactory mucosa and in olfactory receptor neurons. Pgp and MRPs may be cellular constituents of olfactory receptor neurons and represent potential mechanisms for modulation

  20. Multidrug and toxin extrusion proteins mediate cellular transport of cadmium

    International Nuclear Information System (INIS)

    Yang, Hong; Guo, Dong; Obianom, Obinna N.; Su, Tong; Polli, James E.; Shu, Yan

    2017-01-01

    Cadmium (Cd) is an environmentally prevalent toxicant posing increasing risk to human health worldwide. As compared to the extensive research in Cd tissue accumulation, little was known about the elimination of Cd, particularly its toxic form, Cd ion (Cd 2+ ). In this study, we aimed to examine whether Cd 2+ is a substrate of multidrug and toxin extrusion proteins (MATEs) that are important in renal xenobiotic elimination. HEK-293 cells overexpressing the human MATE1 (HEK-hMATE1), human MATE2-K (HEK-hMATE2-K) and mouse Mate1 (HEK-mMate1) were used to study the cellular transport and toxicity of Cd 2+ . The cells overexpressing MATEs showed a 2–4 fold increase of Cd 2+ uptake that could be blocked by the MATE inhibitor cimetidine. A saturable transport profile was observed with the Michaelis-Menten constant (K m ) of 130 ± 15.8 μM for HEK-hMATE1; 139 ± 21.3 μM for HEK-hMATE2-K; and 88.7 ± 13.5 μM for HEK-mMate1, respectively. Cd 2+ could inhibit the uptake of metformin, a substrate of MATE transporters, with the half maximal inhibitory concentration (IC 50 ) of 97.5 ± 6.0 μM, 20.2 ± 2.6 μM, and 49.9 ± 6.9 μM in HEK-hMATE1, HEK-hMATE2-K, and HEK-mMate1 cells, respectively. In addition, hMATE1 could transport preloaded Cd 2+ out of the HEK-hMATE1 cells, thus resulting in a significant decrease of Cd 2+ -induced cytotoxicity. The present study has provided the first evidence supporting that MATEs transport Cd 2+ and may function as cellular elimination machinery in Cd intoxication. - Highlights: • Cadmium is an environmentally prevalent toxicant. • Little was known regarding the elimination and detoxification of cadmium. • Cadmium ion is here demonstrated as a substrate of MATE transporters. • MATEs may function as cellular elimination machinery in cadmium detoxification.

  1. Multidrug and toxin extrusion proteins mediate cellular transport of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hong; Guo, Dong; Obianom, Obinna N. [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Su, Tong [Department of Oral Maxillofacial Surgery, the First Affiliated Hospital, Xiangya Medical School, Central South University, Hunan 410007 (China); Polli, James E. [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Shu, Yan, E-mail: yshu@rx.umaryland.edu [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States)

    2017-01-01

    Cadmium (Cd) is an environmentally prevalent toxicant posing increasing risk to human health worldwide. As compared to the extensive research in Cd tissue accumulation, little was known about the elimination of Cd, particularly its toxic form, Cd ion (Cd{sup 2+}). In this study, we aimed to examine whether Cd{sup 2+} is a substrate of multidrug and toxin extrusion proteins (MATEs) that are important in renal xenobiotic elimination. HEK-293 cells overexpressing the human MATE1 (HEK-hMATE1), human MATE2-K (HEK-hMATE2-K) and mouse Mate1 (HEK-mMate1) were used to study the cellular transport and toxicity of Cd{sup 2+}. The cells overexpressing MATEs showed a 2–4 fold increase of Cd{sup 2+} uptake that could be blocked by the MATE inhibitor cimetidine. A saturable transport profile was observed with the Michaelis-Menten constant (K{sub m}) of 130 ± 15.8 μM for HEK-hMATE1; 139 ± 21.3 μM for HEK-hMATE2-K; and 88.7 ± 13.5 μM for HEK-mMate1, respectively. Cd{sup 2+} could inhibit the uptake of metformin, a substrate of MATE transporters, with the half maximal inhibitory concentration (IC{sub 50}) of 97.5 ± 6.0 μM, 20.2 ± 2.6 μM, and 49.9 ± 6.9 μM in HEK-hMATE1, HEK-hMATE2-K, and HEK-mMate1 cells, respectively. In addition, hMATE1 could transport preloaded Cd{sup 2+} out of the HEK-hMATE1 cells, thus resulting in a significant decrease of Cd{sup 2+}-induced cytotoxicity. The present study has provided the first evidence supporting that MATEs transport Cd{sup 2+} and may function as cellular elimination machinery in Cd intoxication. - Highlights: • Cadmium is an environmentally prevalent toxicant. • Little was known regarding the elimination and detoxification of cadmium. • Cadmium ion is here demonstrated as a substrate of MATE transporters. • MATEs may function as cellular elimination machinery in cadmium detoxification.

  2. Glycyrrhiza glabra HPLC fractions: identification of Aldehydo Isoophiopogonone and Liquirtigenin having activity against multidrug resistant bacteria.

    Science.gov (United States)

    Rahman, Hazir; Khan, Ilyas; Hussain, Anwar; Shahat, Abdelaaty Abdelaziz; Tawab, Abdul; Qasim, Muhammad; Adnan, Muhammad; Al-Said, Mansour S; Ullah, Riaz; Khan, Shahid Niaz

    2018-05-02

    Medicinal plants have been founded as traditional herbal medicine worldwide. Most of the plant's therapeutic properties are due to the presence of secondary metabolites such as alkaloids, glycosides, tannins and volatile oil. The present investigation analyzed the High-Pressure Liquid Chromatography (HPLC) fractions of Glycyrrhiza glabra (Aqueous, Chloroform, Ethanol and Hexane) against multidrug resistant human bacterial pathogens (Escherichia coli, Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa). All the fractions showed antibacterial activity, were subjected to LC MS/MS analysis for identification of bioactive compounds. Among total HPLC fractions of G. glabra (n = 20), three HPLC fractions showed potential activity against multidrug resistant (MDR) bacterial isolates. Fraction 1 (F1) of aqueous extracts, showed activity against A. baumannii (15 ± 0.5 mm). F4 from hexane extract of G. glabra showed activity against S. aureus (10 ± 0.2 mm). However, F2 from ethanol extract exhibited activity against S. aureus (10 ± 0.3 mm). These active fractions were further processed by LC MS/MS analysis for the identification of compounds. Ellagic acid was identified in the F1 of aqueous extract while 6-aldehydo-isoophiopogonone was present in F4 of hexane extract. Similarly, Liquirtigenin was identified in F2 of ethanol. Glycyrrhiza glabra extracts HPLC fractions showed anti-MDR activity. Three bioactive compounds were identified in the study. 6-aldehydo-isoophiopogonone and Liquirtigenin were for the first time reported in G. glabra. Further characterization of the identified compounds will be helpful for possible therapeutic uses against infectious diseases caused by multidrug resistant bacteria.

  3. Solutol HS 15, nontoxic polyoxyethylene esters of 12-hydroxystearic acid, reverses multidrug resistance.

    Science.gov (United States)

    Coon, J S; Knudson, W; Clodfelter, K; Lu, B; Weinstein, R S

    1991-02-01

    A recently developed non-ionic surfactant called Solutol HS 15 (poly-oxyethylene esters of 12-hydroxystearic acid), with low toxicity in vivo, was shown to reverse completely the multidrug resistance of KB 8-5 and KB 8-5-11 human epidermoid carcinoma cells in vitro but did not potentiate drug toxicity in drug-sensitive KB 3-1 cells. At a concentration of 10% of its own IC50 (mean concentration of drug that causes 50% inhibition of cell growth compared to controls), Solutol HS 15 produced a 35-, 28-, and 42-fold reduction in the resistance of KB 8-5-11 cells to colchicine, vinblastine, and doxorubicin, respectively. Solutol HS 15 was relatively much more potent than the prototypic reversing agent, verapamil, for reversing colchicine resistance, compared to the ability of each agent to reverse colchicine resistance, compared to the ability of each agent to reverse vinblastine resistance. Like verapamil, Solutol HS 15 promoted a 50-fold accumulation of rhodamine 123 in KB 8-5-11 cells, as measured by flow cytometry. Also, Solutol HS 15 and verapamil reduced the efflux of rhodamine 123 from KB 8-5-11 cells previously loaded with rhodamine 123 to a similar low rate. Solutol HS 15 did not affect the transport of alanine or glucose into KB 8-5-11 cells, indicating that its effect upon membrane active transport is not entirely nonspecific. Considering their different structure and different relative potency for reversing colchicine resistance, Solutol HS 15 and verapamil probably reverse multidrug resistance by different mechanisms. Solutol HS 15 merits consideration as a potential therapeutic agent because of its effectiveness for reversing multidrug resistance in vitro and its low toxicity in vivo.

  4. The multidrug transporter ABCG2 (BCRP) is inhibited by plant-derived cannabinoids.

    Science.gov (United States)

    Holland, M L; Lau, D T T; Allen, J D; Arnold, J C

    2007-11-01

    Cannabinoids are used therapeutically for the palliation of the adverse side effects associated with cancer chemotherapy. However, cannabinoids also inhibit both the activity and expression of the multidrug transporter, P-glycoprotein in vitro. Here we address the interaction of cannabinol (CBN), cannabidiol (CBD) and delta 9-tetrahydrocannabinol (THC) with the related multidrug transporter, ABCG2. Cannabinoid inhibition of Abcg2/ABCG2 was assessed using flow cytometric analysis of substrate accumulation and ATPase activity assays. The cytotoxicity and chemosensitization by cannabinoids was determined with cell viability assays. Expression of cannabinoid and vanilloid receptors was assessed using reverse transcriptase polymerase chain reaction, and cannabinoid modulation of ABCG2 expression was examined using immunoblotting. CBN, CBD and THC increased the intracellular accumulation of the Abcg2/ABCG2 substrate, mitoxantrone, in an over-expressing cell line. The THC metabolite, (-)-11-nor-9-carboxy-delta 9-THC was much less potent. The plant cannabinoids inhibited both basal and substrate stimulated ATPase activity of human ABCG2. Cannabinoid cytotoxicity occurred in the absence of known cannabinoid cell surface receptors, and only at concentrations higher than those required for Abcg2/ABCG2 inhibition. Sub-toxic concentrations of the cannabinoids resensitized the overexpressing cell line to the cytotoxic effect of Abcg2/ABCG2 substrates, mitoxantrone and topotecan. This occurred in the absence of any effect on ABCG2 expression. Cannabinoids are novel Abcg2/ABCG2 inhibitors, reversing the Abcg2-mediated multidrug-resistant phenotype in vitro. This finding may have implications for the co-administration of cannabinoids with pharmaceuticals that are ABCG2 substrates.

  5. Border Malaria Associated with Multidrug Resistance on Thailand-Myanmar and Thailand-Cambodia Borders: Transmission Dynamic, Vulnerability, and Surveillance

    Science.gov (United States)

    Bhumiratana, Adisak; Intarapuk, Apiradee; Sorosjinda-Nunthawarasilp, Prapa; Maneekan, Pannamas; Koyadun, Surachart

    2013-01-01

    This systematic review elaborates the concepts and impacts of border malaria, particularly on the emergence and spread of Plasmodium falciparum and Plasmodium vivax multidrug resistance (MDR) malaria on Thailand-Myanmar and Thailand-Cambodia borders. Border malaria encompasses any complex epidemiological settings of forest-related and forest fringe-related malaria, both regularly occurring in certain transmission areas and manifesting a trend of increased incidence in transmission prone areas along these borders, as the result of interconnections of human settlements and movement activities, cross-border population migrations, ecological changes, vector population dynamics, and multidrug resistance. For regional and global perspectives, this review analyzes and synthesizes the rationales pertaining to transmission dynamics and the vulnerabilities of border malaria that constrain surveillance and control of the world's most MDR falciparum and vivax malaria on these chaotic borders. PMID:23865048

  6. Border Malaria Associated with Multidrug Resistance on Thailand-Myanmar and Thailand-Cambodia Borders: Transmission Dynamic, Vulnerability, and Surveillance

    Directory of Open Access Journals (Sweden)

    Adisak Bhumiratana

    2013-01-01

    Full Text Available This systematic review elaborates the concepts and impacts of border malaria, particularly on the emergence and spread of Plasmodium falciparum and Plasmodium vivax multidrug resistance (MDR malaria on Thailand-Myanmar and Thailand-Cambodia borders. Border malaria encompasses any complex epidemiological settings of forest-related and forest fringe-related malaria, both regularly occurring in certain transmission areas and manifesting a trend of increased incidence in transmission prone areas along these borders, as the result of interconnections of human settlements and movement activities, cross-border population migrations, ecological changes, vector population dynamics, and multidrug resistance. For regional and global perspectives, this review analyzes and synthesizes the rationales pertaining to transmission dynamics and the vulnerabilities of border malaria that constrain surveillance and control of the world’s most MDR falciparum and vivax malaria on these chaotic borders.

  7. Mycoplasma genitalium infection: current treatment options, therapeutic failure, and resistance-associated mutations

    Directory of Open Access Journals (Sweden)

    Couldwell DL

    2015-05-01

    failure, due to bacteria with coexistent macrolide-associated and fluoroquinolone-associated resistance mutations, were recently published by Australian investigators. Pristinamycin and solithromycin may be of clinical benefit for such multidrug-resistant infections. Further clinical studies are required to determine the optimal therapeutic dosing schedules for both agents to effect clinical cure and minimize the risk of emergent antimicrobial resistance. Continual inappropriate M. genitalium treatments will likely lead to untreatable infections in the future. Keywords: Mycoplasma genitalium, non-gonococcal urethritis, macrolide, fluoroquinolone, resistance, treatment failure

  8. Infection by multidrug-resistant Elizabethkingia meningoseptica: case reports

    Directory of Open Access Journals (Sweden)

    Jailton Lobo da Costa Lima

    2014-12-01

    Full Text Available We report two cases of sepsis in critically ill patients in two tertiary care hospitals in Recife-PE, Brazil. The first case is an 87-year-old patient with chronic myeloid leukemia and sepsis; and the second case is a 93-year-old patient with prostate cancer and septic shock caused by multidrug-resistant (MDR Elizabethkingia meningoseptica.

  9. Increased multi-drug resistant Escherichia coli from hospitals in ...

    African Journals Online (AJOL)

    Background: Multidrug-resistant Escherichia coli (MDR E. coli) has become a major public health concern in Sudan and many countries, causing failure in treatment with consequent huge health burden. Objectives: To determine the prevalence and susceptibility of MDR E. coli isolated from patients in hospitals at Khartoum ...

  10. Multidrug-resistant tuberculosis, Somalia, 2010-2011.

    Science.gov (United States)

    Sindani, Ireneaus; Fitzpatrick, Christopher; Falzon, Dennis; Suleiman, Bashir; Arube, Peter; Adam, Ismail; Baghdadi, Samiha; Bassili, Amal; Zignol, Matteo

    2013-03-01

    In a nationwide survey in 2011, multidrug-resistant tuberculosis (MDR TB) was found in 5.2% and 40.8% of patients with new and previously treated TB, respectively. These levels of drug resistance are among the highest ever documented in Africa and the Middle East. This finding presents a serious challenge for TB control in Somalia.

  11. Multidrug-Resistant Tuberculosis, Somalia, 2010–2011

    Science.gov (United States)

    Sindani, Ireneaus; Fitzpatrick, Christopher; Falzon, Dennis; Suleiman, Bashir; Arube, Peter; Adam, Ismail; Baghdadi, Samiha; Bassili, Amal

    2013-01-01

    In a nationwide survey in 2011, multidrug-resistant tuberculosis (MDR TB) was found in 5.2% and 40.8% of patients with new and previously treated TB, respectively. These levels of drug resistance are among the highest ever documented in Africa and the Middle East. This finding presents a serious challenge for TB control in Somalia. PMID:23621911

  12. Beyond multidrug-resistant tuberculosis in Europe: a TBNET study

    NARCIS (Netherlands)

    Günther, G.; van Leth, F.; Altet, N.; Dedicoat, M.; Duarte, R.; Gualano, G.; Kunst, H.; Muylle, I.; Spinu, V.; Tiberi, S.; Viiklepp, P.; Lange, C.; Alexandru, S.; Cernenco, I.; Ciobanu, A.; Donica, A.; Cayla, J.; Fina, L.; Galvao, M. L. de Souza; Maldonado, J.; Avsar, K.; Bang, D.; Andersen, A. B.; Barbuta, R.; Dubceac, V.; Bothamley, G.; Crudu, V.; Davilovits, M.; Atunes, A.; de Lange, W.; Leimane, V.; Rusmane, L.; de Lorenzo, S.; Cuppen, F.; de Guchtenaire, I.; Magis-Escurra, C.; McLaughlin, A.-M.; Meesters, R.; te Pas, M.; Prins, B.; Mütterlein, R.; Kotrbova, J.; Polcová, V.; Vasakova, M.; Pontali, E.; Rumetshofer, R.; Rowhani, M.; Skrahina, A.; Avchinko, V.; Katovich, D.

    2015-01-01

    The emergence of drug-resistant tuberculosis (TB) is a challenge to TB control in Europe. We evaluated second-line drug susceptibility testing in Mycobacterium tuberculosis isolates from patients with multidrug-resistant, pre-extensively drug-resistant (pre-XDR-TB) and XDR-TB at 23 TBNET sites in 16

  13. High incidence of multidrug-resistant strains of methicill inresistant ...

    African Journals Online (AJOL)

    Infections of methicillin-resistant Staphylococcus aureus (MRSA) are becoming an increasingly concerning clinical problem. The aim of this study was to assess the development of multidrug resistant strains of MRSA from clinical samples andpossibilities for reducing resistance. This study included a total of seventy-five (75) ...

  14. Clarithromycin increases linezolid exposure in multidrug-resistant tuberculosis patients

    NARCIS (Netherlands)

    Bolhuis, Mathieu S.; van Altena, Richard; van Soolingen, Dick; de Lange, Wiel C. M.; Uges, Donald R. A.; van der Werf, Tjip S.; Kosterink, Jos G. W.; Alffenaar, Jan-Willem C.

    2013-01-01

    The use of linezolid for the treatment of multidrug-resistant tuberculosis is limited by dose-and time-dependent toxicity. Recently, we reported a case of pharmacokinetic drug drug interaction between linezolid and clarithromycin that resulted in increased linezolid exposure. The aim of this

  15. Exploring the iron metabolism in multidrug resistant tuberculosis ...

    African Journals Online (AJOL)

    The iron metabolism plays a key role in the progression of active Tuberculosis. Several studies have shown a link between iron metabolism disorders an active tuberculosis. The aim of this study was to explore the iron metabolism of 100 patients with multidrug-resistant tuberculosis. (MDR-TB) treated with second ...

  16. Multi-drug resistant tuberculosis in Tanzania: Initial description of ...

    African Journals Online (AJOL)

    Background: Drug resistant Tuberculosis is well documented worldwide and is associated with increasing morbidity and mortality complicating Tuberculosis control with increasing costs of managing the disease. Broad. Objective: To describe clinical and laboratory characteristics of multi-drug resistant Tuberculosis ...

  17. Multidrug-resistant hepatocellular carcinoma cells are enriched for ...

    African Journals Online (AJOL)

    Chemotherapy is a main treatment for cancer, while multidrug-resistance is the main reason for chemotherapy failure, and tumor relapse and metastasis. Cancer stem cells or cancer stem-like cells (CSCs) are a small subset of cancer cells, which may be inherently resistant to the cytotoxic effect of chemotherapy.

  18. Antimicrobial activity of peptidomimetics against multidrug-resistant Escherichia coli

    DEFF Research Database (Denmark)

    Jahnsen, Rasmus D; Frimodt-Møller, Niels; Franzyk, Henrik

    2012-01-01

    Novel remedies in the battle against multidrug-resistant bacterial strains are urgently needed, and one obvious approach involves antimicrobial peptides and mimics hereof. The impact of a- and ß-peptoid as well as ß(3)-amino acid modifications on the activity profile against ß-lactamase-producing...

  19. plasmid mediated resistance in multidrug resistant bacteria isolated

    African Journals Online (AJOL)

    User

    PLASMID MEDIATED RESISTANCE IN MULTIDRUG RESISTANT BACTERIA. ISOLATED FROM CHILDREN WITH SUSPECTED SEPTICAEMIA IN ZARIA,. NIGERIA. AbdulAziz, Z. A.,1* Ehinmidu, J. O.,1 Adeshina, G. O.,1 Pala, Y. Y2., Yusuf, S. S2. and. Bugaje, M. A.3. 1Department of Pharmaceutics and Pharmaceutical ...

  20. bmr3, a third multidrug transporter gene of Bacillus subtilis.

    OpenAIRE

    Ohki, R; Murata, M

    1997-01-01

    A third multidrug transporter gene named bmr3 was cloned from Bacillus subtilis. Although Bmr3 shows relatively low homology to Bmr and Blt, the substrate specificities of these three transporters overlap. Northern hybridization analysis showed that expression of the bmr3 gene was dependent on the growth phase.

  1. Multidrug-Resistant Tuberculosis and Culture Conversion with Bedaquiline

    NARCIS (Netherlands)

    Diacon, Andreas H.; Pym, Alexander; Grobusch, Martin P.; de Los Rios, Jorge M.; Gotuzzo, Eduardo; Vasilyeva, Irina; Leimane, Vaira; Andries, Koen; Bakare, Nyasha; de Marez, Tine; Haxaire-Theeuwes, Myriam; Lounis, Nacer; Meyvisch, Paul; de Paepe, Els; van Heeswijk, Rolf P. G.; Dannemann, Brian; Rolla, Valeria; Dalcomo, Margreth; Gripp, Karla; Escada, Rodrigo; Tavares, Isabel; Borga, Liamar; Thomas, Aleyamma; Rekha, Banu; Nair, Dina; Chandrasekar, Chockalingam; Parthasarathy, Ramavaran Thiruvengadaraj; Sekhar, Gomathi; Ganesh, Krishnamoorthy; Rajagopalan, Krishnakumar; Rajapandian, Gangadevi; Dorairajalu, Rajendran; Sharma, Surendra Kumar; Banavaliker, Jayant; Kadhiravan, Tamilarasu; Gulati, Vinay; Mahmud, Hanif; Gupta, Arvind; Bhatnagar, Anuj; Jain, Vipin; Hari, Smriti; Gupta, Yogesh Kumar; Vaid, Ashok; Cirule, Andra; Dravniece, Gunta; Skripconoka, Vija; Kuksa, Liga; Kreigere, Edite; Ramos, Carlos Rafael Seas; Amat y Leon, Ivan Arapovic

    2014-01-01

    BACKGROUND Bedaquiline (Sirturo, TMC207), a diarylquinoline that inhibits mycobacterial ATP synthase, has been associated with accelerated sputum-culture conversion in patients with multidrug-resistant tuberculosis, when added to a preferred background regimen for 8 weeks. METHODS In this phase 2b

  2. Risk factors associated with multidrug resistant tuberculosis among ...

    African Journals Online (AJOL)

    Background: Multidrug resistant tuberculosis (MDR-TB) remains is an important public health problem in developing world. We conducted this study to determine risk factors associated with MDR-TB and drug susceptibility pattern to second line drug among MDR TB patients in Tanzania. Methods: Unmatched case control ...

  3. Exploring the iron metabolism in multidrug resistant tuberculosis ...

    African Journals Online (AJOL)

    The iron metabolism plays a key role in the progression of active Tuberculosis. Several studies have shown a link between iron metabolism disorders an active tuberculosis. The aim of this study was to explore the iron metabolism of 100 patients with multidrug-resistant tuberculosis (MDR-TB) treated with second generation ...

  4. Overcoming cellular multidrug resistance using classical nanomedicine formulations

    Czech Academy of Sciences Publication Activity Database

    Kunjachan, S.; Blauz, A.; Möckel, D.; Theek, B.; Kiessling, F.; Etrych, Tomáš; Ulbrich, K.; van Bloois, L.; Storm, G.; Bartosz, G.; Rychlik, B.; Lammers, T.

    2012-01-01

    Roč. 45, č. 4 (2012), s. 421-428 ISSN 0928-0987 R&D Projects: GA AV ČR IAA400500806 Institutional research plan: CEZ:AV0Z40500505 Keywords : cancer * nanomedicine * multidrug resistance Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.987, year: 2012

  5. Bedaquiline in the multidrug-resistant tuberculosis treatment: Belarus experience

    Directory of Open Access Journals (Sweden)

    Alena Skrahina

    2016-01-01

    Conclusion: Our interim results on safety and effectiveness of bedaquiline-containing regimens in multidrug and extensively drug-resistant tuberculosis (M/XDR-TB patients are encouraging. They will add value to understanding role and place of this new anti-TB drug in M/XDR-TB treatment.

  6. Multidrug-resistant tuberculosis and migration to Europe

    DEFF Research Database (Denmark)

    Hargreaves, S.; Lönnroth, K.; Nellums, L. B.

    2017-01-01

    Multidrug-resistant tuberculosis (MDR-TB) in low-incidence countries in Europe is more prevalent among migrants than the native population. The impact of the recent increase in migration to EU and EEA countries with a low incidence of TB (

  7. Effect of biocides on biofilms of some multidrug resistant clinical ...

    African Journals Online (AJOL)

    The ability of Escherichia coli and Klebsiella aerogenes to form biofilms was most affected. There was little inhibition of biofilm formation by the biocides on Staphylococcus aureus. This study has shown a relationship between biocide and multidrug resistance. Keywords: Biocides, Multi drug resistance, sodium hypochlorite, ...

  8. Proteome analysis of multidrug-resistant, breast cancer–derived microparticles

    Directory of Open Access Journals (Sweden)

    Deep Pokharel

    2014-08-01

    Full Text Available Cancer multidrug resistance (MDR occurs when cancer cells evade the cytotoxic actions of chemotherapeutics through the active efflux of drugs from within the cells. Our group have previously demonstrated that multidrug-resistant breast cancer cells spontaneously shed microparticles (MPs and that these MPs can transfer resistance to drug-responsive cells and confer MDR on those cells in as little as 4 h. Furthermore, we also showed that, unlike MPs derived from leukaemia cells, breast cancer–derived MPs display a tissue selectivity in the transfer of P-glycoprotein (P-gp, transferring the resistance protein only to malignant breast cells. This study aims to define the proteome of breast cancer–derived MPs in order to understand the differences in protein profiles between those shed from drug-resistant versus drug-sensitive breast cancer cells. In doing so, we detail the protein cargo required for the intercellular transfer of MDR to drug-sensitive recipient cells and the factors governing the transfer selectivity to malignant breast cells. We describe the first proteomic analysis of MPs derived from human breast cancer cells using SDS PAGE and liquid chromatography–tandem mass spectrometry (LC/MS/MS, in which we identify 120 unique proteins found only in drug-resistant, breast cancer–derived MPs. Our results demonstrate that the MP-mediated transfer of P-gp to recipient cells occurs alongside CD44; the Ezrin, Radixin and Moesin protein family (ERM; and cytoskeleton motor proteins within the MP cargo.

  9. Development of hydroxyapatite-chitosan gel sunscreen combating clinical multidrug-resistant bacteria

    Science.gov (United States)

    Morsy, Reda; Ali, Sameh S.; El-Shetehy, Mohamed

    2017-09-01

    The several harmful effects on infected human skin resulting from exposure to the sun's UV radiation generate an interest in the development of a multifunctional hydroxyapatite-chitosan (HAp-chitosan) gel that works as an antibacterial sunscreen agent for skin care. In this work, HAp-chitosan gel was synthesized via coprecipitation method by dissolving chitosan in phosphoric acid and adding HAp. The characteristics of HAp-chitosan composite were investigated by conventional techniques, such as XRD, FTIR, and SEM techniques, while its sunscreen property was investigated by UV-spectroscopy. In addition to the influence of the gel on bacterial cell morphology, the antibacterial activity of HAp-chitosan gel against clinical multidrug resistant skin pathogens, such as Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa has been studied. The results revealed the formation of HAp-chitosan gel having nanosized particles, which confers protection against UV-radiation. The antibacterial activity records showed that chitosan-HAp gel exhibits a significant effect on the growth and ultrastructure of multi-drug resistant bacterial activities. Therefore, the chitosan-HAp gel is promising for skin health care as an antibacterial sunscreen.

  10. Identification and characterization of multidrug-resistant Salmonella enterica serotype Albert isolates in the United States.

    Science.gov (United States)

    Folster, Jason P; Campbell, Davina; Grass, Julian; Brown, Allison C; Bicknese, Amelia; Tolar, Beth; Joseph, Lavin A; Plumblee, Jodie R; Walker, Carrie; Fedorka-Cray, Paula J; Whichard, Jean M

    2015-05-01

    Salmonella enterica is one of the most common causes of bacterial foodborne illness in the United States. Although most Salmonella infections are self-limiting, antimicrobial treatment of invasive salmonellosis is critical. The primary antimicrobial treatment options include fluoroquinolones or extended-spectrum cephalosporins, and resistance to these antimicrobial drugs may complicate treatment. At present, S. enterica is composed of more than 2,600 unique serotypes, which vary greatly in geographic prevalence, ecological niche, and the ability to cause human disease, and it is important to understand and mitigate the source of human infection, particularly when antimicrobial resistance is found. In this study, we identified and characterized 19 S. enterica serotype Albert isolates collected from food animals, retail meat, and humans in the United States during 2005 to 2013. All five isolates from nonhuman sources were obtained from turkeys or ground turkey, and epidemiologic data suggest poultry consumption or live-poultry exposure as the probable source of infection. S. enterica serotype Albert also appears to be geographically localized to the midwestern United States. All 19 isolates displayed multidrug resistance, including decreased susceptibility to fluoroquinolones and resistance to extended-spectrum cephalosporins. Turkeys are a likely source of multidrug-resistant S. enterica serotype Albert, and circulation of resistance plasmids, as opposed to the expansion of a single resistant strain, is playing a role. More work is needed to understand why these resistance plasmids spread and how their presence and the serotype they reside in contribute to human disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. DNA sequence analysis of plasmids from multidrug resistant Salmonella enterica serotype Heidelberg isolates.

    Directory of Open Access Journals (Sweden)

    Jing Han

    Full Text Available Salmonella enterica serovar Heidelberg is among the most detected serovars in swine and poultry, ranks among the top five serotypes associated with human salmonellosis and is disproportionately associated with invasive infections and mortality in humans. Salmonella are known to carry plasmids associated with antimicrobial resistance and virulence. To identify plasmid-associated genes in multidrug resistant S. enterica serovar Heidelberg, antimicrobial resistance plasmids from five isolates were sequenced using the 454 LifeSciences pyrosequencing technology. Four of the isolates contained incompatibility group (Inc A/C multidrug resistance plasmids harboring at least eight antimicrobial resistance genes. Each of these strains also carried a second resistance plasmid including two IncFIB, an IncHI2 and a plasmid lacking an identified Inc group. The fifth isolate contained an IncI1 plasmid, encoding resistance to gentamicin, streptomycin and sulfonamides. Some of the IncA/C plasmids lacked the full concert of transfer genes and yet were able to be conjugally transferred, likely due to the transfer genes carried on the companion plasmids in the strains. Several non-IncA/C resistance plasmids also carried putative virulence genes. When the sequences were compared to previously sequenced plasmids, it was found that while all plasmids demonstrated some similarity to other plasmids, they were unique, often due to differences in mobile genetic elements in the plasmids. Our study suggests that Salmonella Heidelberg isolates harbor plasmids that co-select for antimicrobial resistance and virulence, along with genes that can mediate the transfer of plasmids within and among other bacterial isolates. Prevalence of such plasmids can complicate efforts to control the spread of S. enterica serovar Heidelberg in food animal and human populations.

  12. RND multidrug efflux pumps: what are they good for?

    Science.gov (United States)

    Alvarez-Ortega, Carolina; Olivares, Jorge; Martínez, José L.

    2013-01-01

    Multidrug efflux pumps are chromosomally encoded genetic elements capable of mediating resistance to toxic compounds in several life forms. In bacteria, these elements are involved in intrinsic and acquired resistance to antibiotics. Unlike other well-known horizontally acquired antibiotic resistance determinants, genes encoding for multidrug efflux pumps belong to the core of bacterial genomes and thus have evolved over millions of years. The selective pressure stemming from the use of antibiotics to treat bacterial infections is relatively recent in evolutionary terms. Therefore, it is unlikely that these elements have evolved in response to antibiotics. In the last years, several studies have identified numerous functions for efflux pumps that go beyond antibiotic extrusion. In this review we present some examples of these functions that range from bacterial interactions with plant or animal hosts, to the detoxification of metabolic intermediates or the maintenance of cellular homeostasis. PMID:23386844

  13. Multidrug resistant bacteria isolated from septic arthritis in horses

    Directory of Open Access Journals (Sweden)

    Rodrigo G. Motta

    Full Text Available ABSTRACT: Septic arthritis is a debilitating joint infectious disease of equines that requires early diagnosis and immediate therapeutic intervention to prevent degenerative effects on the articular cartilage, as well as loss of athletic ability and work performance of the animals. Few studies have investigated the etiological complexity of this disease, as well as multidrug resistance of isolates. In this study, 60 horses with arthritis had synovial fluid samples aseptically collected, and tested by microbiological culture and in vitro susceptibility test (disk diffusion using nine antimicrobials belonging to six different pharmacological groups. Bacteria were isolated in 45 (75.0% samples, as follows: Streptococcus equi subsp. equi (11=18.3%, Escherichia coli (9=15.0%, Staphylococcus aureus (6=10.0%, Streptococcus equi subsp. zooepidemicus (5=8.3%, Staphylococcus intermedius (2=3.3%, Proteus vulgaris (2=3.3%, Trueperella pyogenes (2=3.3%, Pseudomonas aeruginosa (2=3.3%, Klebsiella pneumoniae (1=1.7%, Rhodococcus equi (1=1.7%, Staphylococcus epidermidis (1=1.7%, Klebsiella oxytoca (1=1.7%, Nocardia asteroides (1=1.7%, and Enterobacter cloacae (1=1.7%. Ceftiofur was the most effective drug (>70% efficacy against the pathogens in the disk diffusion test. In contrast, high resistance rate (>70% resistance was observed to penicillin (42.2%, enrofloxacin (33.3%, and amikacin (31.2%. Eleven (24.4% isolates were resistant to three or more different pharmacological groups and were considered multidrug resistant strains. The present study emphasizes the etiological complexity of equine septic arthritis, and highlights the need to institute treatment based on the in vitro susceptibility pattern, due to the multidrug resistance of isolates. According to the available literature, this is the first report in Brazil on the investigation of the etiology. of the septic arthritis in a great number of horses associated with multidrug resistance of the isolates.

  14. Multidrug-Resistant Escherichia fergusonii: a Case of Acute Cystitis▿

    Science.gov (United States)

    Savini, Vincenzo; Catavitello, Chiara; Talia, Marzia; Manna, Assunta; Pompetti, Franca; Favaro, Marco; Fontana, Carla; Febbo, Fabio; Balbinot, Andrea; Di Berardino, Fabio; Di Bonaventura, Giovanni; Di Zacomo, Silvia; Esattore, Francesca; D'Antonio, Domenico

    2008-01-01

    We report a case in which Escherichia fergusonii, an emerging pathogen in various types of infections, was associated with cystitis in a 52-year-old woman. The offending strain was found to be multidrug resistant. Despite in vitro activity, beta-lactam treatment failed because of a lack of patient compliance with therapy. The work confirms the pathogenic potential of E. fergusonii. PMID:18256229

  15. Candida auris: An emerging multidrug-resistant pathogen

    Directory of Open Access Journals (Sweden)

    David Sears

    2017-10-01

    Full Text Available Candida aurisis an emerging multidrug-resistant pathogen that can be difficult to identify using traditional biochemical methods. C. auris is capable of causing invasive fungal infections, particularly among hospitalized patients with significant medical comorbidities. Echinocandins are the empiric drugs of choice for C. auris, although not all isolates are susceptible and resistance may develop on therapy. Nosocomial C. auris outbreaks have been reported in a number of countries and aggressive infection control measures are paramount to stopping transmission.

  16. Multidrug resistant shigella flexneri infection simulating intestinal intussusception

    Directory of Open Access Journals (Sweden)

    Srirangaraj Sreenivasan

    2016-01-01

    Full Text Available Shigella enteritis remains an important cause of mortality and morbidity in all age groups, in developing as well as developed countries. Owing to the emerging resistance to multiple antibiotics among Shigella spp., it has been recognized as a major global public health concern and warrants constant monitoring of its resistance pattern. We report a case of segmental ileitis caused by non.-ESBL producing multidrug resistant Shigella flexneri in an infant clinically mimicking intussusception, which was effectively treated by ceftriaxone.

  17. Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections

    OpenAIRE

    Shankar Thangamani; Waleed Younis; Mohamed N. Seleem

    2015-01-01

    Novel antimicrobials and new approaches to developing them are urgently needed. Repurposing already-approved drugs with well-characterized toxicology and pharmacology is a novel way to reduce the time, cost, and risk associated with antibiotic innovation. Ebselen, an organoselenium compound, is known to be clinically safe and has a well-known pharmacology profile. It has shown potent bactericidal activity against multidrug-resistant clinical isolates of staphylococcus aureus, including methic...

  18. ATP-dependent transport of statins by human and rat MRP2/Mrp2

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Lucy C.J., E-mail: Luc_ellis@yahoo.co.uk [Section of Translational Medicine, Division of Applied Biology, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD (United Kingdom); Hawksworth, Gabrielle M. [Section of Translational Medicine, Division of Applied Biology, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD (United Kingdom); Weaver, Richard J. [Biologie Servier, Drug Safety Research Centre, 905 Route de Saran, 45520 Gidy (France)

    2013-06-01

    Multidrug resistance associated protein-2, MRP2 (human), Mrp2 (rat) are an efflux transporter, responsible for the transport of numerous endogenous and xenobiotic compounds including taurocholate, methotrexate and carboxydichlorofluorescein (CDF). The present study aims to characterise transport of statins by human and rat MRP2/Mrp2 using membrane and vesicle preparations. All statins tested (simvastatin, pravastatin, pitavastatin, fluvastatin, atorvastatin, lovastatin and rosuvastatin) stimulated vanadate-sensitive ATPase activity in membranes expressing human or rat MRP2/Mrp2, suggesting that all statins are substrates of human and rat MRP2/Mrp2. The substrate affinity (Km) of all statins for MRP2/Mrp2 was comparable and no correlation between lipophilicity (logD{sub 7.0}) and Km was seen. All statins also inhibited uptake of the fluorescent Mrp2 substrate, CDF (1 μM) into vesicles expressing human or rat MRP2/Mrp2 with similar IC{sub 50} values. Fitting of the inhibitory data to the hill slope equation, gave hill coefficients (h) of greater than one, suggesting that transport involved more than one binding site for inhibitors of MPR2 and Mrp2. We conclude that statins were transported by both human and rat MRP2/Mrp2 with similar affinity. Statins were also shown to compete with other substrates for transport by MRP2/Mrp2 and that this transport involved more than one binding site on the Mrp2/MRP2 protein. - Highlights: • We characterised MRP2 (human)/Mrp2 (rat)-mediated transport of statins. • We show statins were transported by human and rat MRP2/Mrp2. • Statins competed with a known substrate for transport by MRP2/Mrp2. • Competition involved more than one binding site on the MRP2/Mrp2 protein.

  19. ATP-dependent transport of statins by human and rat MRP2/Mrp2

    International Nuclear Information System (INIS)

    Ellis, Lucy C.J.; Hawksworth, Gabrielle M.; Weaver, Richard J.

    2013-01-01

    Multidrug resistance associated protein-2, MRP2 (human), Mrp2 (rat) are an efflux transporter, responsible for the transport of numerous endogenous and xenobiotic compounds including taurocholate, methotrexate and carboxydichlorofluorescein (CDF). The present study aims to characterise transport of statins by human and rat MRP2/Mrp2 using membrane and vesicle preparations. All statins tested (simvastatin, pravastatin, pitavastatin, fluvastatin, atorvastatin, lovastatin and rosuvastatin) stimulated vanadate-sensitive ATPase activity in membranes expressing human or rat MRP2/Mrp2, suggesting that all statins are substrates of human and rat MRP2/Mrp2. The substrate affinity (Km) of all statins for MRP2/Mrp2 was comparable and no correlation between lipophilicity (logD 7.0 ) and Km was seen. All statins also inhibited uptake of the fluorescent Mrp2 substrate, CDF (1 μM) into vesicles expressing human or rat MRP2/Mrp2 with similar IC 50 values. Fitting of the inhibitory data to the hill slope equation, gave hill coefficients (h) of greater than one, suggesting that transport involved more than one binding site for inhibitors of MPR2 and Mrp2. We conclude that statins were transported by both human and rat MRP2/Mrp2 with similar affinity. Statins were also shown to compete with other substrates for transport by MRP2/Mrp2 and that this transport involved more than one binding site on the Mrp2/MRP2 protein. - Highlights: • We characterised MRP2 (human)/Mrp2 (rat)-mediated transport of statins. • We show statins were transported by human and rat MRP2/Mrp2. • Statins competed with a known substrate for transport by MRP2/Mrp2. • Competition involved more than one binding site on the MRP2/Mrp2 protein

  20. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment.

    Science.gov (United States)

    Arendrup, Maiken Cavling; Patterson, Thomas F

    2017-08-15

    Invasive Candida infections remain an important cause of morbidity and mortality, especially in hospitalized and immunocompromised or critically ill patients. A limited number of antifungal agents from only a few drug classes are available to treat patients with these serious infections. Resistance can be either intrinsic or acquired. Resistance mechanisms are not exchanged between Candida; thus, acquired resistance either emerges in response to an antifungal selection pressure in the individual patient or, more rarely, occur due to horizontal transmission of resistant strains between patients. Although multidrug resistance is uncommon, increasing reports of multidrug resistance to the azoles, echinocandins, and polyenes have occurred in several Candida species, most notably Candida glabrata and more recently Candida auris. Drivers are overall antifungal use, subtherapeutic drug levels at sites of infection/colonization, drug sequestration in the biofilm matrix, and, in the setting of outbreaks, suboptimal infection control. Moreover, recent research suggests that DNA mismatch repair gene mutations may facilitate acquisition of resistance mutations in C. glabrata specifically. Diagnosis of antifungal-resistant Candida infections is critical to the successful management of patients with these infections. Reduction of unnecessary use of antifungals via antifungal stewardship is critical to limit multidrug resistance emergence. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  1. [Impact of fluoroquinolone use on multidrug-resistant bacteria emergence].

    Science.gov (United States)

    Nseir, S; Ader, F; Marquette, C-H; Durocher, A

    2005-01-01

    During the last two decades, fluoroquinolone use has significantly increased in Europe and in the USA. This could be explained by the arrival of newer fluoroquinolones with antipneumoccal activity. Increased use of fluoroquinolones is associated with higher rates of bacterial resistance to these antibiotics. Resistance of Gram-negative bacilli to fluoroquinolones is increasing in industrialized countries. In addition, fluoroquinolone use has been identified as a risk factor for colonization and infection to methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumanni, extending-spectrum beta-lactamase producing Gram negative bacilli, and multidrug-resistant bacteria. Nosocomial infections due to multidrug-resistant bacteria are associated with higher mortality and morbidity rates. This could be related to more frequent inappropriate initial antibiotic treatment in these patients. Limiting the use of fluoroquinolones, limiting the duration of treatment with fluoroquinolones, and using appropriate dosage of these antibiotics could be suggested to reduce resistance to these antibiotics and to reduce the emergence of multidrug-resistant bacteria.

  2. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours.

    Science.gov (United States)

    Mercado-Lubo, Regino; Zhang, Yuanwei; Zhao, Liang; Rossi, Kyle; Wu, Xiang; Zou, Yekui; Castillo, Antonio; Leonard, Jack; Bortell, Rita; Greiner, Dale L; Shultz, Leonard D; Han, Gang; McCormick, Beth A

    2016-07-25

    Salmonella enterica serotype Typhimurium is a food-borne pathogen that also selectively grows in tumours and functionally decreases P-glycoprotein (P-gp), a multidrug resistance transporter. Here we report that the Salmonella type III secretion effector, SipA, is responsible for P-gp modulation through a pathway involving caspase-3. Mimicking the ability of Salmonella to reverse multidrug resistance, we constructed a gold nanoparticle system packaged with a SipA corona, and found this bacterial mimic not only accumulates in tumours but also reduces P-gp at a SipA dose significantly lower than free SipA. Moreover, the Salmonella nanoparticle mimic suppresses tumour growth with a concomitant reduction in P-gp when used with an existing chemotherapeutic drug (that is, doxorubicin). On the basis of our finding that the SipA Salmonella effector is fundamental for functionally decreasing P-gp, we engineered a nanoparticle mimic that both overcomes multidrug resistance in cancer cells and increases tumour sensitivity to conventional chemotherapeutics.

  3. Ursodeoxycholic acid pretreatment reduces oral bioavailability of the multiple drug resistance-associated protein 2 substrate baicalin in rats.

    Science.gov (United States)

    Wu, Tao; Li, Xi-Ping; Xu, Yan-Jiao; Du, Guang; Liu, Dong

    2013-11-01

    Baicalin is a major bioactive component of Scutellaria baicalensis and a substrate of multiple drug resistance-associated protein 2. Expression of multiple drug resistance-associated protein 2 is regulated by NF-E2-related factor 2. The aim of this study was to explore whether ursodeoxycholic acid, an NF-E2-related factor 2 activator, could influence the oral bioavailability of baicalin. A single dose of baicalin (200 mg/kg) was given orally to rats pretreated with ursodeoxycholic acid (75 mg/kg and 150 mg/kg, per day, intragastrically) or normal saline (per day, intragastrically) for six consecutive days. The plasma concentration of baicalin was measured with the HPLC method. The result indicated that the oral bioavailability of baicalin was significantly and dose-dependently reduced in rats pretreated with ursodeoxycholic acid. Compared with control rats, the mean area under concentration-time curve of baicalin was reduced from 13.25 ± 0.24 mg/L h to 7.62 ± 0.15 mg/L h and 4.97 ± 0.21 mg/L h, and the C(max) value was decreased from 1.31 ± 0.03 mg/L to 0.62 ± 0.05 mg/L and 0.36 ± 0.04 mg/L in rats pretreated with ursodeoxycholic acid at doses of 75 mg/kg and 150 mg/kg, respectively, for six consecutive days. Hence, ursodeoxycholic acid treatment reduced the oral bioavailability of baicalin in rats, probably due to the enhanced efflux of baicalin from the intestine and liver by multiple drug resistance-associated protein 2. Georg Thieme Verlag KG Stuttgart · New York.

  4. International spread of multidrug-resistant Salmonella Schwarzengrund in food products

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Hendriksen, Rene S.; Lockett, Jana

    2007-01-01

    We compared 581 Salmonella enterica serotype Schwarzengrund isolates from persons, food, and food animals in Denmark, Thailand, and the United States by antimicrobial drug susceptibility and pulsed-field gel electrophoresis (PFGE) typing. Resistance, including resistance to nalidixic acid......, was frequent among isolates from persons and chickens in Thailand, persons in the United States, and food imported from Thailand to Denmark and the United States. A total of 183 PFGE patterns were observed, and 136 (23.4%) isolates had the 3 most common patterns. Seven of 14 isolates from persons in Denmark...... had patterns found in persons and chicken meat in Thailand; 22 of 390 human isolates from the United States had patterns found in Denmark and Thailand. This study suggests spread of multidrug-resistant S. Schwarzengrund from chickens to persons in Thailand, and from imported Thai food products...

  5. Strategies to overcome or circumvent P-glycoprotein mediated multidrug resistance.

    Science.gov (United States)

    Yuan, Hongyu; Li, Xun; Wu, Jifeng; Li, Jinpei; Qu, Xianjun; Xu, Wenfang; Tang, Wei

    2008-01-01

    Cancer patients who receive chemotherapy often experience intrinsic or acquired resistance to a broad spectrum of chemotherapeutic agents. The phenomenon, termed multidrug resistance (MDR), is often associated with the over-expression of P-glycoprotein, a transmembrane protein pump, which can enhance efflux of a various chemicals structurally unrelated at the expense of ATP depletion, resulting in decrease of the intracellular cytotoxic drug accumulation. The MDR has been a big threaten to the human health and the war fight for it continues. Although several other mechanisms for MDR are elucidated in recent years, considerable efforts attempting to inverse MDR are involved in exploring P-glycoprotein modulators and suppressing P-glycoprotein expression. In this review, we will report on the recent advances in various strategies for overcoming or circumventing MDR mediated by P-glycoprotein.

  6. Mouse ATP-Binding Cassette (ABC) Transporters Conferring Multi-Drug Resistance

    Science.gov (United States)

    Shuaizhang, L I; Zhang, Wen; Yin, Xuejiao; Xing, Shilai; Xie, Qunhui; Cao, Zhengyu; Zhao, Bin

    2015-04-28

    The ABC (ATP-binding cassette) transporter is one of the largest and most ancient protein families with members functioning from protozoa to human. The resistance of cancer and tumor cells to anticancer drugs is due to the over-expression of some ABC transporters, which may finally lead to chemotherapy failure. The mouse ABC transporters are classified into seven subfamilies by phylogenetic analysis. The mouse ABC transporter gene, alias, chromosomal location and function have been determined. Within the ABC super-family, the MDR transporters (Abcb1, Abcc1, Abcg2) in mouse models have been proved to be valuable to investigate the biochemistry and physiological functions. This review concentrates on the multidrug resistance of mouse ABC transporters in cancer and tumor cells.

  7. Decreasing prevalence of multi-drugs resistant Mycobacterium tuberculosis in Nashik City, India

    OpenAIRE

    More, Arun Punaji; Nagdawane, Ramkrishna Panchamrao; Gangurde, Aniket K

    2013-01-01

    Objective: In India, increasing prevalence of multi-drug resistant tuberculosis (MDR) has aggravated the control oftuberculosis problem. In many urban and semi-urban regions of India, no surveillance data of multidrug resistance inMycobacterium tuberculosisis available.Methods: A surveillance study on multidrug resistance was carried out in semi-urban and rural regions in and aroundNashik City of Maharashtra, India. The surveillance study was conducted in this region found that the prevalence...

  8. Association between HIV/AIDS and multi-drug resistance tuberculosis: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Yonatan Moges Mesfin

    Full Text Available BACKGROUND: Human immunodeficiency virus (HIV, multi-drug resistant tuberculosis (MDR is emerging as major challenge facing tuberculosis control programs worldwide particularly in Asia and Africa. Findings from different studies on associations of HIV co-infection and drug resistance among patients with TB have been contradictory (discordant. Some institution based studies found strongly increased risks for multi-drug resistant TB (MDR TB among patients co-infected with TB and HIV, whereas other studies found no increased risk (it remains less clear in community based studies. The aim was to conduct a systematic review and meta-analysis of the association between multi-drug resistant tuberculosis and HIV infection. METHODS AND FINDINGS: Systematic review of the published literature of observational studies was conducted. Original studies were identified using databases of Medline/Pubmed, Google Scholar and HINARI. The descriptions of original studies were made using frequency and forest plot. Publication bias was assessed using Funnel plot graphically and Egger weighted and Begg rank regression tests statistically. Heterogeneity across studies was checked using Cochrane Q test statistic and I(2. Pool risk estimates of MDR-TB and sub-grouping analysis were computed to analyze associations with HIV. Random effects of the meta-analysis of all 24 observational studies showed that HIV is associated with a marginal increased risk of multi-drug resistant tuberculosis (estimated Pooled OR 1.24; 95%, 1.04-1.43. Subgroup analyses showed that effect estimates were higher (Pooled OR 2.28; 95%, 1.52-3.04 for primary multi-drug resistance tuberculosis and moderate association between HIV/AIDS and MDR-TB among population based studies and no significant association in institution settings. CONCLUSIONS: This study demonstrated that there is association between MDR-TB and HIV. Capacity for diagnosis of MDR-TB and initiating and scale up of antiretroviral

  9. Complete nucleotide sequence of the multidrug resistance IncA/C plasmid pR55 from Klebsiella pneumoniae isolated in 1969.

    Science.gov (United States)

    Doublet, Benoît; Boyd, David; Douard, Gregory; Praud, Karine; Cloeckaert, Axel; Mulvey, Michael R

    2012-10-01

    To determine the complete nucleotide sequence of the multidrug resistance IncA/C plasmid pR55 from a clinical Klebsiella pneumoniae strain that was isolated from a urinary tract infection in 1969 in a French hospital and compare it with those of contemporary emerging IncA/C plasmids. The plasmid was purified and sequenced using a 454 sequencing approach. After draft assembly, additional PCRs and walking reads were performed for gap closure. Sequence comparisons and multiple alignments with other IncA/C plasmids were done using the BLAST algorithm and CLUSTAL W, respectively. Plasmid pR55 (170 810 bp) revealed a shared plasmid backbone (>99% nucleotide identity) with current members of the IncA/C(2) multidrug resistance plasmid family that are widely disseminating antibiotic resistance genes. Nevertheless, two specific multidrug resistance gene arrays probably acquired from other genetic elements were identified inserted at conserved hotspot insertion sites in the IncA/C backbone. A novel transposon named Tn6187 showed an atypical mixed transposon configuration composed of two mercury resistance operons and two transposition modules that are related to Tn21 and Tn1696, respectively, and an In0-type integron. IncA/C(2) multidrug resistance plasmids have a broad host range and have been implicated in the dissemination of antibiotic resistance among Enterobacteriaceae from humans and animals. This typical IncA/C(2) genetic scaffold appears to carry various multidrug resistance gene arrays and is now also a successful vehicle for spreading AmpC-like cephalosporinase and metallo-β-lactamase genes, such as bla(CMY) and bla(NDM), respectively.

  10. The multidrug ABC transporter BmrC/BmrD of Bacillus subtilis is regulated via a ribosome-mediated transcriptional attenuation mechanism

    OpenAIRE

    Reilman, E.; Mars, R. A. T.; van Dijl, J. M.; Denham, Emma

    2014-01-01

    Expression of particular drug transporters in response to antibiotic pressure is a critical element in the development of bacterial multidrug resistance, and represents a serious concern for human health. To obtain a better understanding of underlying regulatory mechanisms, we have dissected the transcriptional activation of the ATP-binding cassette (ABC) transporter BmrC/BmrD of the Gram-positive model bacterium Bacillus subtilis. By using promoter-GFP fusions and live cell array technology,...

  11. A Novel Docetaxel-Loaded Poly (ɛ-Caprolactone)/Pluronic F68 Nanoparticle Overcoming Multidrug Resistance for Breast Cancer Treatment

    Science.gov (United States)

    Mei, Lin; Zhang, Yangqing; Zheng, Yi; Tian, Ge; Song, Cunxian; Yang, Dongye; Chen, Hongli; Sun, Hongfan; Tian, Yan; Liu, Kexin; Li, Zhen; Huang, Laiqiang

    2009-12-01

    Multidrug resistance (MDR) in tumor cells is a significant obstacle to the success of chemotherapy in many cancers. The purpose of this research is to test the possibility of docetaxel-loaded poly (ɛ-caprolactone)/Pluronic F68 (PCL/Pluronic F68) nanoparticles to overcome MDR in docetaxel-resistance human breast cancer cell line. Docetaxel-loaded nanoparticles were prepared by modified solvent displacement method using commercial PCL and self-synthesized PCL/Pluronic F68, respectively. PCL/Pluronic F68 nanoparticles were found to be of spherical shape with a rough and porous surface. The nanoparticles had an average size of around 200 nm with a narrow size distribution. The in vitro drug release profile of both nanoparticle formulations showed a biphasic release pattern. There was an increased level of uptake of PCL/Pluronic F68 nanoparticles in docetaxel-resistance human breast cancer cell line, MCF-7 TAX30, when compared with PCL nanoparticles. The cytotoxicity of PCL nanoparticles was higher than commercial Taxotere® in the MCF-7 TAX30 cell culture, but the differences were not significant ( p > 0.05). However, the PCL/Pluronic F68 nanoparticles achieved significantly higher level of cytotoxicity than both of PCL nanoparticles and Taxotere® ( p < 0.05), indicating docetaxel-loaded PCL/Pluronic F68 nanoparticles could overcome multidrug resistance in human breast cancer cells and therefore have considerable potential for treatment of breast cancer.

  12. Linezolid susceptibility in Helicobacter pylori, including strains with multidrug resistance.

    Science.gov (United States)

    Boyanova, Lyudmila; Evstatiev, Ivailo; Gergova, Galina; Yaneva, Penka; Mitov, Ivan

    2015-12-01

    Only a few studies have evaluated Helicobacter pylori susceptibility to linezolid. The aim of the present study was to assess linezolid susceptibility in H. pylori, including strains with double/multidrug resistance. The susceptibility of 53 H. pylori strains was evaluated by Etest and a breakpoint susceptibility testing method. Helicobacter pylori resistance rates were as follows: amoxicillin, 1.9%; metronidazole, 37.7%; clarithromycin, 17.0%; tetracycline, 1.9%; levofloxacin, 24.5%; and linezolid (>4 mg/L), 39.6%. The linezolid MIC50 value was 31.2-fold higher than that of clarithromycin and 10.5-fold higher than that of levofloxacin; however, 4 of 11 strains with double/multidrug resistance were linezolid-susceptible. The MIC range of the oxazolidinone agent was larger (0.125-64 mg/L) compared with those in the previous two reports. The linezolid resistance rate was 2.2-fold higher in metronidazole-resistant strains and in strains resistant to at least one antibiotic compared with the remaining strains. Briefly, linezolid was less active against H. pylori compared with clarithromycin and levofloxacin, and linezolid resistance was linked to resistance to metronidazole as well as to resistance to at least one antibiotic. However, linezolid activity against some strains with double/multidrug resistance may render the agent appropriate to treat some associated H. pylori infections following in vitro susceptibility testing of the strains. Clinical trials are required to confirm this suggestion. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  13. Epidemiologic analysis: Prophylaxis and multidrug-resistance in surgery.

    Science.gov (United States)

    Solís-Téllez, H; Mondragón-Pinzón, E E; Ramírez-Marino, M; Espinoza-López, F R; Domínguez-Sosa, F; Rubio-Suarez, J F; Romero-Morelos, R D

    Surgical site infection is defined as an infection related to the surgical procedure in the area of manipulation occurring within the first 30 postoperative days. The diagnostic criteria include: purulent drainage, isolation of microorganisms, and signs of infection. To describe the epidemiologic characteristics and differences among the types of prophylactic regimens associated with hospital-acquired infections at the general surgery service of a tertiary care hospital. The electronic case records of patients that underwent general surgery at a tertiary care hospital within the time frame of January 1, 2013 and December 31, 2014 were reviewed. A convenience sample of 728 patients was established and divided into the following groups: Group 1: n=728 for the epidemiologic study; Group 2: n=638 for the evaluation of antimicrobial prophylaxis; and Group 3: n=50 for the evaluation of multidrug-resistant bacterial strains in the intensive care unit. The statistical analysis was carried out with the SPSS 19 program, using the Mann-Whitney U test and the chi-square test. A total of 728 procedures were performed (65.9% were elective surgeries). Three hundred twelve of the patients were males and 416 were females. Only 3.98% of the patients complied with the recommended antimicrobial prophylaxis, and multidrug-resistant bacterial strains were found in the intensive care unit. A single prophylactic dose is effective, but adherence to this recommendation was not adequate. The prophylactic guidelines are not strictly adhered to in our environment. There was a significant association between the development of nosocomial infections from multidrug-resistant germs and admission to the intensive care unit. Copyright © 2016 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  14. Epidemiology and molecular characterization of multidrug-resistant Gram-negative bacteria in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Nuntra Suwantarat

    2016-05-01

    Full Text Available Abstract Background Multidrug-resistant Gram-negative bacteria (MDRGN, including extended-spectrum β-lactamases (ESBLs and multidrug-resistant glucose-nonfermenting Gram-negative bacilli (nonfermenters, have emerged and spread throughout Southeast Asia. Methods We reviewed and summarized current critical knowledge on the epidemiology and molecular characterization of MDRGN in Southeast Asia by PubMed searches for publications prior to 10 March 2016 with the term related to “MDRGN definition” combined with specific Southeast Asian country names (Thailand, Singapore, Malaysia, Vietnam, Indonesia, Philippines, Laos, Cambodia, Myanmar, Brunei. Results There were a total of 175 publications from the following countries: Thailand (77, Singapore (35, Malaysia (32, Vietnam (23, Indonesia (6, Philippines (1, Laos (1, and Brunei (1. We did not find any publications on MDRGN from Myanmar and Cambodia. We did not include publications related to Shigella spp., Salmonella spp., and Vibrio spp. and non-human related studies in our review. English language articles and abstracts were included for analysis. After the abstracts were reviewed, data on MDRGN in Southeast Asia from 54 publications were further reviewed and included in this study. Conclusions MDRGNs are a major contributor of antimicrobial-resistant bacteria in Southeast Asia. The high prevalence of ESBLs has been a major problem since 2005 and is possibly related to the development of carbapenem resistant organisms in this region due to the overuse of carbapenem therapy. Carbapenem–resistant Acinetobacter baumannii is the most common pathogen associated with nosocomial infections in this region followed by carbapenem-resistant Pseudomonas aeruginosa. Although Southeast Asia is not an endemic area for carbapenem-resistant Enterobacteriaceae (CRE, recently, the rate of CRE detection has been increasing. Limited infection control measures, lack of antimicrobial control, such as the presence of

  15. Prevalence and multidrug resistance pattern of Salmonella isolated from resident wild birds of Bangladesh

    Directory of Open Access Journals (Sweden)

    Abdullah Al Faruq

    2016-10-01

    Full Text Available Aim: Salmonellosis is one of the most common zoonotic diseases, and the presence of antimicrobial resistant Salmonella in wild birds is global public health threat. Throughout the last decades, multidrug resistance of Salmonella spp. has increased, particularly in developing countries. Therefore, a cross-sectional study was conducted to investigate the prevalence of Salmonella spp. and antimicrobial resistance pattern against Salmonella spp. from two species of resident wild birds namely house crow (Corvus splendens and Asian pied starling (Gracupica contra. Materials and Methods: Samples were collected from cloacal swabs of house crows and Asian pied starling for isolating Salmonella spp. (bacteriological culture methods followed by antimicrobial susceptibility testing (disk diffusion method against Salmonella spp. isolates during March to December 2014. Results: The prevalence of Salmonella in Asian pied starling and house crows were 67% and 65%, respectively. Within the category of samples from different species, the variation in prevalence was not varied significantly (p>0.05. Isolated Salmonella spp. was tested for resistance to six different antimicrobial agents. Among six antimicrobial tested, 100% resistance were found to penicillin, oxacillin, and clindamycin followed by erythromycin (50-93%, kanamycin (7-20%, and cephalothin (30-67% from both species of birds. Kanamycin remained sensitive in (70-73%, cephalothin (26-70%, and erythromycin appeared to be (0-30% sensitive against Salmonella spp. isolates. Isolated Salmonella spp. was multidrug resistant up to three of the six antimicrobials tested. Conclusion: It can be said that the rational use of antimicrobials needs to be adopted in the treatment of disease for livestock, poultry, and human of Bangladesh to limit the emergence of drug resistance to Salmonella spp.

  16. Converging risk factors but no association between HIV infection and multidrug-resistant tuberculosis in Kazakhstan.

    Science.gov (United States)

    van den Hof, S; Tursynbayeva, A; Abildaev, T; Adenov, M; Pak, S; Bekembayeva, G; Ismailov, S

    2013-04-01

    Kazakhstan is a country with a low HIV/AIDS (human immunodeficiency virus/acquired immune-deficiency syndrome) burden, but a high prevalence of multidrug-resistant tuberculosis (MDR-TB). We describe the epidemiology of multidrug resistance and HIV among TB patients, using the 2007-2011 national electronic TB register. HIV test results were available for 97.2% of TB patients. HIV prevalence among TB patients increased from 0.6% in 2007 to 1.5% in 2011. Overall, 41.6% of patients had a positive smear at diagnosis, 38.6% a positive culture and 51.7% either a positive smear or culture. Drug susceptibility testing (DST) results were available for 92.7% of culture-positive cases. Socio-economic factors independently associated with both HIV and MDR-TB were urban residency, drug use, homelessness and a history of incarceration. In adjusted analysis, HIV positivity was not associated with MDR-TB (OR 1.0, 95%CI 0.86-1.2). Overall, among TB patients with DST and HIV test results available, 65.0% were positive for neither HIV nor MDR-TB, 33.5% only for MDR-TB, 0.9% only for HIV and 0.6% for both HIV and MDR-TB. Among injection drug users, 12.5% were positive for HIV and MDR-TB. We showed increasing HIV prevalence among TB patients in Kazakhstan. HIV was not an independent risk factor for MDR-TB, but risk factors were largely overlapping and we did identify subgroups at particular risk of HIV-MDR-TB co-infection, notably drug users. Enhanced efforts are necessary to provide care to these socially vulnerable populations.

  17. The serum resistome of a globally disseminated multidrug resistant uropathogenic Escherichia coli clone.

    Science.gov (United States)

    Phan, Minh-Duy; Peters, Kate M; Sarkar, Sohinee; Lukowski, Samuel W; Allsopp, Luke P; Gomes Moriel, Danilo; Achard, Maud E S; Totsika, Makrina; Marshall, Vikki M; Upton, Mathew; Beatson, Scott A; Schembri, Mark A

    2013-01-01

    Escherichia coli ST131 is a globally disseminated, multidrug resistant clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with antibiotic resistance; however, this phenotype alone is unlikely to explain its dominance amongst multidrug resistant uropathogens circulating worldwide in hospitals and the community. Thus, a greater understanding of the molecular mechanisms that underpin the fitness of E. coli ST131 is required. In this study, we employed hyper-saturated transposon mutagenesis in combination with multiplexed transposon directed insertion-site sequencing to define the essential genes required for in vitro growth and the serum resistome (i.e. genes required for resistance to human serum) of E. coli EC958, a representative of the predominant E. coli ST131 clonal lineage. We identified 315 essential genes in E. coli EC958, 231 (73%) of which were also essential in E. coli K-12. The serum resistome comprised 56 genes, the majority of which encode membrane proteins or factors involved in lipopolysaccharide (LPS) biosynthesis. Targeted mutagenesis confirmed a role in serum resistance for 46 (82%) of these genes. The murein lipoprotein Lpp, along with two lipid A-core biosynthesis enzymes WaaP and WaaG, were most strongly associated with serum resistance. While LPS was the main resistance mechanism defined for E. coli EC958 in serum, the enterobacterial common antigen and colanic acid also impacted on this phenotype. Our analysis also identified a novel function for two genes, hyxA and hyxR, as minor regulators of O-antigen chain length. This study offers novel insight into the genetic make-up of E. coli ST131, and provides a framework for future research on E. coli and other Gram-negative pathogens to define their essential gene repertoire and to dissect the molecular mechanisms that enable them to survive in the bloodstream and cause disease.

  18. The serum resistome of a globally disseminated multidrug resistant uropathogenic Escherichia coli clone.

    Directory of Open Access Journals (Sweden)

    Minh-Duy Phan

    Full Text Available Escherichia coli ST131 is a globally disseminated, multidrug resistant clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with antibiotic resistance; however, this phenotype alone is unlikely to explain its dominance amongst multidrug resistant uropathogens circulating worldwide in hospitals and the community. Thus, a greater understanding of the molecular mechanisms that underpin the fitness of E. coli ST131 is required. In this study, we employed hyper-saturated transposon mutagenesis in combination with multiplexed transposon directed insertion-site sequencing to define the essential genes required for in vitro growth and the serum resistome (i.e. genes required for resistance to human serum of E. coli EC958, a representative of the predominant E. coli ST131 clonal lineage. We identified 315 essential genes in E. coli EC958, 231 (73% of which were also essential in E. coli K-12. The serum resistome comprised 56 genes, the majority of which encode membrane proteins or factors involved in lipopolysaccharide (LPS biosynthesis. Targeted mutagenesis confirmed a role in serum resistance for 46 (82% of these genes. The murein lipoprotein Lpp, along with two lipid A-core biosynthesis enzymes WaaP and WaaG, were most strongly associated with serum resistance. While LPS was the main resistance mechanism defined for E. coli EC958 in serum, the enterobacterial common antigen and colanic acid also impacted on this phenotype. Our analysis also identified a novel function for two genes, hyxA and hyxR, as minor regulators of O-antigen chain length. This study offers novel insight into the genetic make-up of E. coli ST131, and provides a framework for future research on E. coli and other Gram-negative pathogens to define their essential gene repertoire and to dissect the molecular mechanisms that enable them to survive in the bloodstream and

  19. Genetic characterisation of multidrug-resistant Salmonella enterica serotypes isolated from poultry in Cairo, Egypt

    Directory of Open Access Journals (Sweden)

    Mohammed Abdel-Maksoud

    2015-05-01

    Full Text Available Background: Food-borne diseases pose serious health problems, affecting public health and economic development worldwide. Methods: Salmonella was isolated from samples of chicken parts, skin samples of whole chicken carcasses, raw egg yolks, eggshells and chicken faeces. Resulting isolates were characterised by serogrouping, serotyping, antimicrobial susceptibility testing and detection of extended-spectrum β-lactamase (ESBL production. Antibiotic resistance genes and integrons were identified by polymerase chain reaction (PCR. Results: The detection rates of Salmonella were 60%, 64% and 62% in chicken parts, skin, and faeces, respectively, whereas the egg yolks and eggshells were uniformly negative. Salmonella Kentucky and S. Enteritidis serotypes comprised 43.6% and 2.6% of the isolates, respectively, whilst S. Typhimurium was absent. Variable resistance rates were observed against 16 antibiotics; 97% were resistant to sulfamethoxazole, 96% to nalidixic acid and tetracycline and 76% to ampicillin. Multidrug resistance was detected in 82% (64/78 of the isolates and ESBL production was detected in 8% (6/78. The β-lactamase blaTEM-1 gene was detected in 57.6% and blaSHV-1 in 6.8% of the isolates, whilst the blaOXA gene was absent. The sul1gene was detected in 97.3% and the sul2 gene in 5.3% of the isolates. Sixty-four of the 78 isolates (82% were positive for the integrase gene (int I from class 1 integrons, whilst int II was absent. Conclusion: This study reveals the presence of an alarming number of multidrug-resistant Salmonella isolates in the local poultry markets in Cairo. The high levels of drug resistance suggest an emerging problem that could impact negatively on efforts to prevent and treat poultry and poultry-transmitted human diseases in Egypt.

  20. MOLECULAR DYNAMICS COMPUTER SIMULATIONS OF MULTIDRUG RND EFFLUX PUMPS

    Directory of Open Access Journals (Sweden)

    Paolo Ruggerone

    2013-02-01

    Full Text Available Over-expression of multidrug efflux pumps of the Resistance Nodulation Division (RND protein super family counts among the main causes for microbial resistance against pharmaceuticals. Understanding the molecular basis of this process is one of the major challenges of modern biomedical research, involving a broad range of experimental and computational techniques. Here we review the current state of RND transporter investigation employing molecular dynamics simulations providing conformational samples of transporter components to obtain insights into the functional mechanism underlying efflux pump-mediated antibiotics resistance in Escherichia coli and Pseudomonas aeruginosa.

  1. Molecular Dynamics Computer Simulations of Multidrug RND Efflux Pumps

    Directory of Open Access Journals (Sweden)

    Paolo Ruggerone

    2013-02-01

    Full Text Available Over-expression of multidrug efflux pumps of the Resistance Nodulation Division (RND protein super family counts among the main causes for microbial resistance against pharmaceuticals. Understanding the molecular basis of this process is one of the major challenges of modern biomedical research, involving a broad range of experimental and computational techniques. Here we review the current state of RND transporter investigation employing molecular dynamics simulations providing conformational samples of transporter components to obtain insights into the functional mechanism underlying efflux pump-mediated antibiotics resistance in Escherichia coli and Pseudomonas aeruginosa.

  2. Multidrug-resistant tuberculosis in Europe, 2010-2011

    DEFF Research Database (Denmark)

    Günther, Gunar; van Leth, Frank; Alexandru, Sofia

    2015-01-01

    Drug-resistant Mycobacterium tuberculosis is challenging elimination of tuberculosis (TB). We evaluated risk factors for TB and levels of second-line drug resistance in M. tuberculosis in patients in Europe with multidrug-resistant (MDR) TB. A total of 380 patients with MDR TB and 376 patients...... with non-MDR TB were enrolled at 23 centers in 16 countries in Europe during 2010-2011. A total of 52.4% of MDR TB patients had never been treated for TB, which suggests primary transmission of MDR M. tuberculosis. At initiation of treatment for MDR TB, 59.7% of M. tuberculosis strains tested were...

  3. Putative role for ABC multidrug exporters in yeast quorum sensing

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Otakar; Kučerová, Helena; Harant, Karel; Palková, Z.; Váchová, Libuše

    2009-01-01

    Roč. 583, č. 7 (2009), s. 1107-1113 ISSN 0014-5793 R&D Projects: GA ČR GA525/05/0297; GA ČR GP204/05/P175; GA MŠk(CZ) LC531 Grant - others:GB(GB) Howard Hughes Medical Institute International Research Award Institutional research plan: CEZ:AV0Z50200510 Keywords : multidrug resistance * pdr transporter * yeast physiology Subject RIV: EE - Microbiology, Virology Impact factor: 3.541, year: 2009

  4. Total hepatocellular disposition profiling of rosuvastatin and pitavastatin in sandwich-cultured human hepatocytes.

    Science.gov (United States)

    Kanda, Katsuhiro; Takahashi, Ryosuke; Yoshikado, Takashi; Sugiyama, Yuichi

    2018-04-09

    This study describes the total disposition profiling of rosuvastatin (RSV) and pitavastatin (PTV) using a single systematic procedure called D-PREX (Disposition Profile Exploration) in sandwich-cultured human hepatocytes (SCHH). The biliary excretion fractions of both statins were clearly observed, which were significantly decreased dependent on the concentration of Ko143, an inhibitor for breast cancer resistance protein (BCRP). Ko143 also decreased the basolateral efflux fraction of RSV, whereas that of PTV was not significantly affected. To understand these phenomena, effects of Ko143 on biliary excretion (BCRP and multidrug resistance-associated protein (MRP) 2) and basolateral efflux (MRP3 and MRP4) transporters were examined using transporter-expressing membrane vesicles. BCRP, MRP3 and MRP4-mediated transport of RSV was observed, and Ko143 inhibited these transporters except MRP3. BCRP and MRP4 also mediated the transport of PTV, but the Ko143-mediated inhibition was only clear for BCRP. These results might explain the Ko143-mediated complete and partial inhibition of the biliary excretion and the basolateral efflux of RSV, respectively, in SCHH. In conclusion, D-PREX with sequential sampling of supernatants prior to cell lysis enables the evaluation of total drug disposition profiles resulting from complex interplays of intracellular pathways, which would provide high-throughput evaluation of drug disposition during drug discovery. Copyright © 2018 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  5. The lactococcal secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines

    NARCIS (Netherlands)

    Putman, M; van Veen, HW; Degener, JE; Konings, WN

    2001-01-01

    The active efflux of toxic compounds by (multi)drug transporters is one of the mechanisms that bacteria have developed to resist cytotoxic drugs. The authors describe the role of the lactococcal secondary multidrug transporter LmrP in the resistance to a broad range of clinically important

  6. Worldwide Endemicity of a Multidrug-Resistant Staphylococcus capitis Clone Involved in Neonatal Sepsis.

    Science.gov (United States)

    Butin, Marine; Martins-Simões, Patricia; Rasigade, Jean-Philippe; Picaud, Jean-Charles; Laurent, Frédéric

    2017-03-01

    A multidrug-resistant Staphylococcus capitis clone, NRCS-A, has been isolated from neonatal intensive care units in 17 countries throughout the world. S. capitis NRCS-A prevalence is high in some neonatal intensive care units in France. These data highlight the worldwide endemicity and epidemiologic relevance of this multidrug-resistant, coagulase-negative staphylococci clone.

  7. Multidrug resistance in lactic acid bacteria : molecular mechanisms and clinical relevance

    NARCIS (Netherlands)

    van Veen, HW; Margolles, A; Putman, M; Sakamoto, K; Konings, WN

    The active extrusion of cytotoxic compounds from the cell by multidrug transporters is one of the major causes of failure of chemotherapeutic treatment of tumor cells and of infections by pathogenic microorganisms. The secondary multidrug transporter LmrP and the ATP-binding cassette (ABC) type

  8. Exosomal biomarkers of brain insulin resistance associated with regional atrophy in Alzheimer's disease.

    Science.gov (United States)

    Mullins, Roger J; Mustapic, Maja; Goetzl, Edward J; Kapogiannis, Dimitrios

    2017-04-01

    Brain insulin resistance (IR), which depends on insulin-receptor-substrate-1 (IRS-1) phosphorylation, is characteristic of Alzheimer's disease (AD). Previously, we demonstrated higher pSer312-IRS-1 (ineffective insulin signaling) and lower p-panTyr-IRS-1 (effective insulin signaling) in neural origin-enriched plasma exosomes of AD patients vs. Here, we hypothesized that these exosomal biomarkers associate with brain atrophy in AD. We studied 24 subjects with biomarker-supported probable AD (low CSF Aβ 42 ). Exosomes were isolated from plasma, enriched for neural origin using immunoprecipitation for L1CAM, and measured for pSer 312 - and p-panTyr-IRS-1 phosphotypes. MPRAGE images were segmented by brain tissue type and voxel-based morphometry (VBM) analysis for gray matter against pSer 312 - and p-panTyr-IRS-1 was conducted. Given the regionally variable brain expression of IRS-1, we used the Allen Brain Atlas to make spatial comparisons between VBM results and IRS-1 expression. Brain volume was positively associated with P-panTyr-IRS-1 and negatively associated with pSer 312 -IRS-1 in a strikingly similar regional pattern (bilateral parietal-occipital junction, R middle temporal gyrus). This volumetric association pattern was spatially correlated with Allen Human Brain atlas normal brain IRS-1 expression. Exosomal biomarkers of brain IR are thus associated with atrophy in AD as could be expected by their pathophysiological roles and do so in a pattern that reflects regional IRS-1 expression. Furthermore, neural-origin plasma exosomes may recover molecular signals from specific brain regions. Hum Brain Mapp 38:1933-1940, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Molecular assessment of artemisinin resistance markers, polymorphisms in the k13 propeller, and a multidrug-resistance gene in the eastern and western border areas of Myanmar.

    Science.gov (United States)

    Nyunt, Myat Htut; Hlaing, Thaung; Oo, Htet Wai; Tin-Oo, Lu-Lu Kyaw; Phway, Hnin Phyu; Wang, Bo; Zaw, Ni Ni; Han, Soe Soe; Tun, Thurein; San, Kyaw Kyaw; Kyaw, Myat Phone; Han, Eun-Taek

    2015-04-15

    As K13 propeller mutations have been recently reported to serve as molecular markers, assessment of K13 propeller polymorphisms in multidrug-resistant gene in isolates from Myanmar, especially the eastern and western border areas, is crucial if we are to understand the spread of artemisinin resistance. A 3-day surveillance study was conducted in the eastern and western border areas in Myanmar, and K13 propeller and Plasmodium falciparum multidrug resistance-associated protein 1 (pfmrp1) mutations were analyzed. Among the 1761 suspected malaria cases screened, a total of 42 uncomplicated falciparum cases from the eastern border and 49 from the western border were subjected to 3 days of surveillance after artemether-lumefantrine treatment. No parasitemic case showing positivity on day 3 was noted from the western border, but 26.2% (11/42) of cases were positive in the eastern border. Although we found no marked difference in the prevalence of the pfmrp1 mutation in the eastern and western borders (36% vs 31%, respectively), K13 mutations were more frequent in the eastern border area (where the 3-day persistent cases were detected; 48% vs 14%). C580Y, M476I, A481V, N458Y, R539T, and R516Y accounted for 68.9% of all K13 mutations significantly associated with day 3 parasitaemia. The K13 mutations were significantly associated with day 3 parasitaemia, emphasizing the importance of K13 surveillance. The low prevalence of K13 mutations and the absence of day 3 parasitaemic cases indicate that artemisinin resistance may not have spread to the western Myanmar border region. Although analysis of multiple K13 mutations is challenging, it should be done at various sentinel sites in Myanmar. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Overcoming multidrug resistance in 2D and 3D culture models by controlled drug chitosan-graft poly(caprolactone)-based nanoparticles.

    Science.gov (United States)

    Shi, Wei-Bin; Le, Van-Minh; Gu, Chun-Hua; Zheng, Yuan-Hong; Lang, Mei-Dong; Lu, Yan-Hua; Liu, Jian-Wen

    2014-04-01

    The principal limitations of chemotherapy are dose-limiting systemic toxicity and the development of multidrug-resistant phenotypes. The aim of this study was to investigate the efficiency of a new sustained drug delivery system based on chitosan and ε-caprolactone to overcome multidrug resistance in monolayer and drug resistance associated with the three-dimensional (3D) tumor microenvironment in our established 3D models. The 5-fluorouracil (5-FU)-loaded nanoparticles (NPs) were characterized by transmission electron microscope and dynamic light scattering, and its released property was determined at different pH values. 5-FU/NPs exhibited well-sustained release properties and markedly enhanced the cytotoxicity of 5-FU against HCT116/L-OHP or HCT8/VCR MDR cells in two-dimensional (2D) and its parental cells in 3D collagen gel culture with twofold to threefold decrease in the IC50 values, as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Hoechst/propidium iodide staining and flow cytometry analysis. Furthermore, the possible mechanism was explored by high-performance liquid chromatography and rhodamine 123 accumulation experiment. Overall, the results demonstrated that 5-FU/NPs increase intracellular concentration of 5-FU and enhance its anticancer efficiency by inducing apoptosis. It was suggested that this novel NPs are a promising carrier to decrease toxic of 5-FU and has the potential to reverse the forms of both intrinsic and acquired drug resistance in 2D and 3D cultures. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  11. Purification of a Multidrug Resistance Transporter for Crystallization Studies

    Directory of Open Access Journals (Sweden)

    Kamela O. Alegre

    2015-03-01

    Full Text Available Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS. Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters.

  12. Multidrug Efflux Pumps in Staphylococcus aureus: an Update

    Science.gov (United States)

    Costa, Sofia Santos; Viveiros, Miguel; Amaral, Leonard; Couto, Isabel

    2013-01-01

    The emergence of infections caused by multi- or pan-resistant bacteria in the hospital or in the community settings is an increasing health concern. Albeit there is no single resistance mechanism behind multiresistance, multidrug efflux pumps, proteins that cells use to detoxify from noxious compounds, seem to play a key role in the emergence of these multidrug resistant (MDR) bacteria. During the last decades, experimental data has established their contribution to low level resistance to antimicrobials in bacteria and their potential role in the appearance of MDR phenotypes, by the extrusion of multiple, unrelated compounds. Recent studies suggest that efflux pumps may be used by the cell as a first-line defense mechanism, avoiding the drug to reach lethal concentrations, until a stable, more efficient alteration occurs, that allows survival in the presence of that agent. In this paper we review the current knowledge on MDR efflux pumps and their intricate regulatory network in Staphylococcus aureus, a major pathogen, responsible from mild to life-threatening infections. Particular emphasis will be given to the potential role that S. aureus MDR efflux pumps, either chromosomal or plasmid-encoded, have on resistance towards different antimicrobial agents and on the selection of drug - resistant strains. We will also discuss the many questions that still remain on the role of each specific efflux pump and the need to establish appropriate methodological approaches to address all these questions. PMID:23569469

  13. Photoexcited quantum dots for killing multidrug-resistant bacteria

    Science.gov (United States)

    Courtney, Colleen M.; Goodman, Samuel M.; McDaniel, Jessica A.; Madinger, Nancy E.; Chatterjee, Anushree; Nagpal, Prashant

    2016-05-01

    Multidrug-resistant bacterial infections are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Metal nanoparticles can induce cell death, yet the toxicity effect is typically nonspecific. Here, we show that photoexcited quantum dots (QDs) can kill a wide range of multidrug-resistant bacterial clinical isolates, including methicillin-resistant Staphylococcus aureus, carbapenem-resistant Escherichia coli, and extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Salmonella typhimurium. The killing effect is independent of material and controlled by the redox potentials of the photogenerated charge carriers, which selectively alter the cellular redox state. We also show that the QDs can be tailored to kill 92% of bacterial cells in a monoculture, and in a co-culture of E. coli and HEK 293T cells, while leaving the mammalian cells intact, or to increase bacterial proliferation. Photoexcited QDs could be used in the study of the effect of redox states on living systems, and lead to clinical phototherapy for the treatment of infections.

  14. The secondary resistome of multidrug-resistant Klebsiella pneumoniae.

    Science.gov (United States)

    Jana, Bimal; Cain, Amy K; Doerrler, William T; Boinett, Christine J; Fookes, Maria C; Parkhill, Julian; Guardabassi, Luca

    2017-02-15

    Klebsiella pneumoniae causes severe lung and bloodstream infections that are difficult to treat due to multidrug resistance. We hypothesized that antimicrobial resistance can be reversed by targeting chromosomal non-essential genes that are not responsible for acquired resistance but essential for resistant bacteria under therapeutic concentrations of antimicrobials. Conditional essentiality of individual genes to antimicrobial resistance was evaluated in an epidemic multidrug-resistant clone of K. pneumoniae (ST258). We constructed a high-density transposon mutant library of >430,000 unique Tn5 insertions and measured mutant depletion upon exposure to three clinically relevant antimicrobials (colistin, imipenem or ciprofloxacin) by Transposon Directed Insertion-site Sequencing (TraDIS). Using this high-throughput approach, we defined three sets of chromosomal non-essential genes essential for growth during exposure to colistin (n = 35), imipenem (n = 1) or ciprofloxacin (n = 1) in addition to known resistance determinants, collectively termed the "secondary resistome". As proof of principle, we demonstrated that inactivation of a non-essential gene not previously found linked to colistin resistance (dedA) restored colistin susceptibility by reducing the minimum inhibitory concentration from 8 to 0.5 μg/ml, 4-fold below the susceptibility breakpoint (S ≤ 2 μg/ml). This finding suggests that the secondary resistome is a potential target for developing antimicrobial "helper" drugs that restore the efficacy of existing antimicrobials.

  15. Effect of methylglyoxal on multidrug-resistant Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Katsuhiko eHayashi

    2014-04-01

    Full Text Available Honey has a complex chemistry, and its broad-spectrum antimicrobial activity varies with floral source, climate, and harvesting conditions. Methylglyoxal was identified as the dominant antibacterial component of manuka honey. Although it has been known that methylglyoxal has antibacterial activity against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus, there is not much information describing its activity against gram-negative bacteria. In this study, we report the effect of methylglyoxal against multidrug-resistant Pseudomonas aeruginosa (MDRP using 53 clinically isolated strains. We also assessed the effect of deleting the five multidrug efflux systems in P. aeruginosa, as well as the efflux systems in Escherichia coli and Salmonella enterica serovar Typhimurium, on MICs of methylglyoxal. Our results indicate that methylglyoxal inhibits the growth of MDRP at concentrations of 128–512 µg/ml (1.7–7.1 mM and is not recognized by drug efflux systems.

  16. Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections.

    Science.gov (United States)

    Thangamani, Shankar; Younis, Waleed; Seleem, Mohamed N

    2015-06-26

    Novel antimicrobials and new approaches to developing them are urgently needed. Repurposing already-approved drugs with well-characterized toxicology and pharmacology is a novel way to reduce the time, cost, and risk associated with antibiotic innovation. Ebselen, an organoselenium compound, is known to be clinically safe and has a well-known pharmacology profile. It has shown potent bactericidal activity against multidrug-resistant clinical isolates of staphylococcus aureus, including methicillin- and vancomycin-resistant S. aureus (MRSA and VRSA). We demonstrated that ebselen acts through inhibition of protein synthesis and subsequently inhibited toxin production in MRSA. Additionally, ebselen was remarkably active and significantly reduced established staphylococcal biofilms. The therapeutic efficacy of ebselen was evaluated in a mouse model of staphylococcal skin infections. Ebselen 1% and 2% significantly reduced the bacterial load and the levels of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and monocyte chemo attractant protein-1 (MCP-1) in MRSA USA300 skin lesions. Furthermore, it acts synergistically with traditional antimicrobials. This study provides evidence that ebselen has great potential for topical treatment of MRSA skin infections and lays the foundation for further analysis and development of ebselen as a potential treatment for multidrug-resistant staphylococcal infections.

  17. Multidrug Efflux Pumps in Staphylococcus aureus: an Update.

    Science.gov (United States)

    Costa, Sofia Santos; Viveiros, Miguel; Amaral, Leonard; Couto, Isabel

    2013-01-01

    The emergence of infections caused by multi- or pan-resistant bacteria in the hospital or in the community settings is an increasing health concern. Albeit there is no single resistance mechanism behind multiresistance, multidrug efflux pumps, proteins that cells use to detoxify from noxious compounds, seem to play a key role in the emergence of these multidrug resistant (MDR) bacteria. During the last decades, experimental data has established their contribution to low level resistance to antimicrobials in bacteria and their potential role in the appearance of MDR phenotypes, by the extrusion of multiple, unrelated compounds. Recent studies suggest that efflux pumps may be used by the cell as a first-line defense mechanism, avoiding the drug to reach lethal concentrations, until a stable, more efficient alteration occurs, that allows survival in the presence of that agent. In this paper we review the current knowledge on MDR efflux pumps and their intricate regulatory network in Staphylococcus aureus, a major pathogen, responsible from mild to life-threatening infections. Particular emphasis will be given to the potential role that S. aureus MDR efflux pumps, either chromosomal or plasmid-encoded, have on resistance towards different antimicrobial agents and on the selection of drug - resistant strains. We will also discuss the many questions that still remain on the role of each specific efflux pump and the need to establish appropriate methodological approaches to address all these questions.

  18. Cytotoxic and multidrug resistance reversal activity of a vegetable, 'Anastasia Red', a variety of sweet pepper.

    Science.gov (United States)

    Motohashi, Noboru; Wakabayashi, Hidetsugu; Kurihara, Teruo; Takada, Yuko; Maruyama, Shichiro; Sakagami, Hiroshi; Nakashima, Hideki; Tani, Satoru; Shirataki, Yoshiaki; Kawase, Masami; Wolfard, Kristina; Molnár, Joseph

    2003-04-01

    The vegetable, Anastasia Red, Capsicum annuum L. var. angulosum Mill. (Solanaceae) was successively extracted with hexane, acetone, methanol and 70% methanol, and the extracts were further separated into a total of 21 fractions by silica gel or octadecylsilane (ODS) column chromatography. The biological activities of extracts and fractions were determined. These extracts showed relatively higher cytotoxic activity against two human oral tumor cell lines (HSC-2, HSG) than against normal human gingival fibroblasts (HGF), suggesting a tumor-specific cytotoxic activity. The cytotoxic activity of these extracts was enhanced by fractionation on silica gel [H2, A2, M1-M3] or ODS column chromatography [70M]. Several fractions [H2, H4, H5, A1, A2, A3, A5, A6, A7, M2] reversed the multidrug resistance (MDR) phenotype with L5178 mouse lymphoma T cells, more efficiently than (+/-)-verapamil. The extracts and fractions did not show any detectable anti-human immunodeficiency virus (HIV) or anti-Helicobacter pylori activity. Thus, this study suggests the effective and selective antitumor potential of 'Anastasia Red' of sweet pepper for further phytochemical and biological investigation. Copyright 2003 John Wiley & Sons, Ltd.

  19. Detecting Mutations in the Mycobacterium tuberculosis Pyrazinamidase Gene pncA to Improve Infection Control and Decrease Drug Resistance Rates in Human Immunodeficiency Virus Coinfection

    Science.gov (United States)

    Dudley, Matthew Z.; Sheen, Patricia; Gilman, Robert H.; Ticona, Eduardo; Friedland, Jon S.; Kirwan, Daniela E.; Caviedes, Luz; Rodriguez, Richard; Cabrera, Lilia Z.; Coronel, Jorge; Grandjean, Louis; Moore, David A. J.; Evans, Carlton A.; Huaroto, Luz; Chávez-Pérez, Víctor; Zimic, Mirko

    2016-01-01

    Hospital infection control measures are crucial to tuberculosis (TB) control strategies within settings caring for human immunodeficiency virus (HIV)–positive patients, as these patients are at heightened risk of developing TB. Pyrazinamide (PZA) is a potent drug that effectively sterilizes persistent Mycobacterium tuberculosis bacilli. However, PZA resistance associated with mutations in the nicotinamidase/pyrazinamidase coding gene, pncA, is increasing. A total of 794 patient isolates obtained from four sites in Lima, Peru, underwent spoligotyping and drug resistance testing. In one of these sites, the HIV unit of Hospital Dos de Mayo (HDM), an isolation ward for HIV/TB coinfected patients opened during the study as an infection control intervention: circulating genotypes and drug resistance pre- and postintervention were compared. All other sites cared for HIV-negative outpatients: genotypes and drug resistance rates from these sites were compared with those from HDM. HDM patients showed high concordance between multidrug resistance, PZA resistance according to the Wayne method, the two most common genotypes (spoligotype international type [SIT] 42 of the Latino American-Mediterranean (LAM)-9 clade and SIT 53 of the T1 clade), and the two most common pncA mutations (G145A and A403C). These associations were absent among community isolates. The infection control intervention was associated with 58–92% reductions in TB caused by SIT 42 or SIT 53 genotypes (odds ratio [OR] = 0.420, P = 0.003); multidrug-resistant TB (OR = 0.349, P < 0.001); and PZA-resistant TB (OR = 0.076, P < 0.001). In conclusion, pncA mutation typing, with resistance testing and spoligotyping, was useful in identifying a nosocomial TB outbreak and demonstrating its resolution after implementation of infection control measures. PMID:27928075

  20. The radiological spectrum of pulmonary multidrug-resistant tuberculosis: in HIV-Negative patients

    International Nuclear Information System (INIS)

    Zahirifard, S.; Amiri, M.V.; Bakhshayesh Karam, M.; Mirsaeidi, S.M.; Ehsanpour, A.; Masjedi, M.R.

    2003-01-01

    Background: Multidrug-resistant tuberculosis is a major worldwide health problem. In countries where tuberculosis is of moderate to high prevalence, the issue of Multidrug-resistant tuberculosis carries significant importance. Multidrug-resistant tuberculosis, similar to drug-sensitive tuberculosis, is contagious. Meanwhile its treatment is not only more difficult but also more expensive with lower success rates. Regarding clinical findings, there is no significant difference between Multidrug-resistant tuberculosis and drug-sensitive tuberculosis. Therefore determination of characteristic radiological findings in cases of Multidrug-resistant tuberculosis might be of help in early detection, and hence appropriate management of this disease condition. Objective: To explain the radiological spectrum of pulmonary Multidrug-resistant tuberculosis. Patients and methods: We retrospectively evaluated the radiographic images of 35 patients with clinically-and microbiologically- proven Multidrug-resistant tuberculosis admitted to our tertiary-care tuberculosis unit over a period of 13 months. The latest chest x-ray of all patients and the conventional chest CT scan without contrast of 15 patients were reviewed by three expert radiologists who rendered consensus opinion. Results: Of the 35 patients with imaging studies, 23 (66%) were male and 12 (34%) were female. The mean±SD age of participants was 38.2±17.3 (range: 16-20) years. 33 patients were known as secondary and only 2 had primary Multidrug-resistant tuberculosis. Chest radiography revealed cavitary lesion in 80% pulmonary infiltration in 89% and nodules in 80% of the cases. Pleurisy was the rarest finding observed in only 5 (14%) patients. All of 15 chest CT scans revealed cavitation, 93% of which were bilateral and multiple. Pleural involvement was seen in 93% of patients. Conclusion: Presence of multiple cavities, especially in both lungs, nodular and infiltrative lesions, and pleural effusion are main features

  1. Bactericidal activity of herbal volatile oil extracts against multidrug resistant Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Amornrat Intorasoot

    2017-06-01

    Full Text Available Aim:\tTo investigate the antibacterial activity of ten volatile oils extracted from medicinal plants, including galangal (Alpinia galanga Linn., ginger (Zingiber officinale, plai (Zingiber cassumunar Roxb., lime (Citrus aurantifolia, kaffir lime (Citrus hystrix DC., sweet basil (Ocimum basilicum Linn., tree basil (Ocimum gratissimum, lemongrass (Cymbopogon citratus DC., clove (Syzygium aromaticum and cinnamon (Cinnamomum verum against four standard strains of Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii and thirty clinical isolates of multidrug-resistant A. baumannii (MDR-A. baumannii. Methods:\tAgar diffusion, minimal inhibitory concentration (MIC and minimal bactericidal concentration (MBC were employed for determination of bactericidal activity of water distillated medicinal plants. Tea tree oil (Melaleuca alternifolia was used as positive control in this study. Results:\tThe results indicated the volatile oil extracted from cinnamon exhibited potent antibacterial activity against the most common human pathogens, S. aureus, E. coli, P. aeruginosa and A. baumannii. Most of volatile oil extracts were less effective against non-fermentative bacteria, P. aeruginosa. In addition, volatile oil extracted from cinnamon, clove and tree basil possessed potent bactericidal activity against MDR-A. baumannii with MBC90 of 0.5, 1 and 2 mg/mL, respectively. Conclusions: The volatile oil extracts would be useful as alternative natural product for treatment of the most common human pathogens and MDR-A. baumannii infections. [J Complement Med Res 2017; 6(2.000: 218-222

  2. Bactericidal activity of herbal volatile oil extracts against multidrug-resistant Acinetobacter baumannii.

    Science.gov (United States)

    Intorasoot, Amornrat; Chornchoem, Piyaorn; Sookkhee, Siriwoot; Intorasoot, Sorasak

    2017-01-01

    The aim of the study is to investigate the antibacterial activity of 10 volatile oils extracted from medicinal plants, including galangal ( Alpinia galanga Linn.), ginger ( Zingiber officinale ), plai ( Zingiber cassumunar Roxb.), lime ( Citrus aurantifolia ), kaffir lime ( Citrus hystrix DC.), sweet basil ( Ocimum basilicum Linn.), tree basil ( Ocimum gratissimum ), lemongrass ( Cymbopogon citratus DC.), clove ( Syzygium aromaticum ), and cinnamon ( Cinnamomum verum ) against four standard strains of Staphylococcus aureus , Escherichia coli , Pseudomonas aeruginosa , Acinetobacter baumannii , and 30 clinical isolates of multidrug-resistant A. baumannii (MDR- A. baumannii ). Agar diffusion, minimum inhibitory concentration, and minimum bactericidal concentration (MBC) were employed for the determination of bactericidal activity of water distilled medicinal plants. Tea tree oil ( Melaleuca alternifolia ) was used as positive control in this study. The results indicated the volatile oil extracted from cinnamon exhibited potent antibacterial activity against the most common human pathogens, S. aureus , E. coli , P. aeruginosa , and A. baumannii . Most of volatile oil extracts were less effective against non-fermentative bacteria, P. aeruginosa . In addition, volatile oil extracted from cinnamon, clove, and tree basil possessed potent bactericidal activity against MDR- A. baumannii with MBC 90 of 0.5, 1, and 2 mg/mL, respectively. The volatile oil extracts would be useful as alternative natural product for the treatment of the most common human pathogens and MDR- A. baumannii infections.

  3. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris

    Directory of Open Access Journals (Sweden)

    Mohammed Y. Shobrak

    2014-12-01

    Full Text Available Emergence and distribution of multi-drug resistant (MDR bacteria in environments pose a risk to human and animal health. A total of 82 isolates of Escherichia spp. were recovered from cloacal swabs of migrating and non-migrating wild birds. All bacterial isolates were identified and characterized morphologically and biochemically. 72% and 50% of isolates recovered from non-migrating and migrating birds, respectively, showed positive congo red dye binding (a virulence factor. Also, hemolysin production (a virulence factor was showed in 8% of isolates recovered from non-migrating birds and 75% of isolates recovered from migrating birds. All isolates recovered from non-migrating birds were found resistant to Oxacillin while all isolates recovered from migrating birds demonstrated resistance to Oxacillin, Chloramphenicol, Oxytetracycline and Lincomycin. Some bacterial isolates recovered from non-migrating birds and migrating birds exhibited MDR phenotype. The MDR isolates were further characterized by API 20E and 16S rRNA as E. coli and E. vulneris. MDR Escherichia isolates contain ~1-5 plasmids of high-molecular weights. Accordingly, wild birds could create a potential threat to human and animal health by transmitting MDR bacteria to water streams and other environmental sources through their faecal residues, and to remote regions by migration.

  4. Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris

    Science.gov (United States)

    Shobrak, Mohammed Y.; Abo-Amer, Aly E.

    2014-01-01

    Emergence and distribution of multi-drug resistant (MDR) bacteria in environments pose a risk to human and animal health. A total of 82 isolates of Escherichia spp. were recovered from cloacal swabs of migrating and non-migrating wild birds. All bacterial isolates were identified and characterized morphologically and biochemically. 72% and 50% of isolates recovered from non-migrating and migrating birds, respectively, showed positive congo red dye binding (a virulence factor). Also, hemolysin production (a virulence factor) was showed in 8% of isolates recovered from non-migrating birds and 75% of isolates recovered from migrating birds. All isolates recovered from non-migrating birds were found resistant to Oxacillin while all isolates recovered from migrating birds demonstrated resistance to Oxacillin, Chloramphenicol, Oxytetracycline and Lincomycin. Some bacterial isolates recovered from non-migrating birds and migrating birds exhibited MDR phenotype. The MDR isolates were further characterized by API 20E and 16S rRNA as E. coli and E. vulneris. MDR Escherichia isolates contain ~1–5 plasmids of high-molecular weights. Accordingly, wild birds could create a potential threat to human and animal health by transmitting MDR bacteria to water streams and other environmental sources through their faecal residues, and to remote regions by migration. PMID:25763023

  5. Phenotypic and genotypic profile of clinical and animal multidrug-resistant Salmonella enterica isolates from Mexico.

    Science.gov (United States)

    Aguilar-Montes de Oca, S; Talavera-Rojas, M; Soriano-Vargas, E; Barba-León, J; Vázquez-Navarrete, J; Acosta-Dibarrat, J; Salgado-Miranda, C

    2018-01-01

    The objective of this study was to obtain a phenotypic and genotypic profile of Salmonella enterica including multidrug-resistant (MDR) isolates from food-producing animals and clinical isolates, as well as their genetic relatedness in two different States of Mexico (Jalisco and State of Mexico). A total of 243 isolates were evaluated in terms of antimicrobial resistance (AMR) and related genes through a disk diffusion method and PCR respectively; we found 16 MDR isolates, all of them harbouring the bla CMY gene but not qnr genes, these isolates represent less than 10% of the collection. The pulsed-field gel electrophoresis revealed a higher genotypic similitude within isolates of State of Mexico than Jalisco. A low percentage of Salmonella isolates were resistant to relevant antibiotics in human health, nevertheless, the AMR and involved genes were similar despite the different serovars and origin of the isolates. This investigation provided an insight of the current status of AMR of Salmonella isolates in two States of Mexico and pinpoint the genes involved in AMR and their epidemiological relationship, the information could help to determine an adequate therapy in human and veterinary medicine. © 2017 The Society for Applied Microbiology.

  6. Putative supramolecular complexes formed by carotenoids and xanthophylls with ascorbic acid to reverse multidrug resistance in cancer cells.

    Science.gov (United States)

    Molnár, József; Serly, Julianna; Pusztai, Rozália; Vincze, Irén; Molnár, Péter; Horváth, Györgyi; Deli, József; Maoka, Takashi; Zalatnai, Attila; Tokuda, Harukuni; Nishino, Hoyoku

    2012-02-01

    The molecular basis of interaction of selected carotenoids and xanthophylls with ascorbic acid on cancer cells was studied to determine their anticancer effects. Drug accumulation was measured in a human ABCB1 gene-transfected mouse lymphoma cell line and in a human lung cancer cell line by flow cytometry; furthermore, their anticancer effects were determined in mice in vivo. Several carotenoids inhibited the multidrug resistance of cancer cells. Ascorbic acid improved the effect of certain xanthophylls, but the effect of capsanthin was not modified. Capsanthin had weak (12%) but capsorubin (85%) had a remarkable antiproliferative effect on A549 lung cancer cells. Capsorubin reduced immediate-early tumor antigen expression, while capsanthin was not effective. Capsorubin accumulates selectively in the nuclei of cancer cells. The Authors suggest a special complex formation between membrane-bound capsorubin and ascorbic acid, which can be exploited in experimental chemotherapy.

  7. Multidrug Resistant Tuberculosis involving the Clavicle, Spine and Ribs

    Directory of Open Access Journals (Sweden)

    H Krishnan

    2011-03-01

    Full Text Available This report describes an unusual case of multidrug resistant tuberculosis (MDR-TB, involving the right clavicle and multicentric aytpical spine involvement without any neurological deficit. The female patient presented with acute onset of right clavicular pain associated with a one-month history of lower backache with constitutional symptoms. The clavicular lesion and MRI spine findings were highly suggestive of TB. Anti TB drugs (ATD were started empirically as Sabah, Malaysia the patient’s home, is an endemic area for TB. Despite, 2 months of ATD administration, the patient did not respond well clinically and developed left sided chest wall abscesses arising from the left 3rd and 6th ribs. She was then treated for MDR-TB infection and has responded well to this treatment.

  8. Clusters of Multidrug-Resistant Mycobacterium tuberculosis Cases, Europe

    Science.gov (United States)

    Kremer, Kristin; Heersma, Herre; Van Soolingen, Dick

    2009-01-01

    Molecular surveillance of multidrug-resistant tuberculosis (MDR TB) was implemented in Europe as case reporting in 2005. For all new MDR TB cases detected from January 2003 through June 2007, countries reported case-based epidemiologic data and DNA fingerprint patterns of MDR TB strains when available. International clusters were detected and analyzed. From 2003 through mid-2007 in Europe, 2,494 cases of MDR TB were reported from 24 European countries. Epidemiologic and molecular data were linked for 593 (39%) cases, and 672 insertion sequence 6110 DNA fingerprint patterns were reported from 19 countries. Of these patterns, 288 (43%) belonged to 18 European clusters; 7 clusters (242/288 cases, 84%) were characterized by strains of the Beijing genotype family, including the largest cluster (175/288 cases, 61%). Both clustering and the Beijing genotype were associated with strains originating in eastern European countries. Molecular cluster detection contributes to identification of transmission profile, risk factors, and control measures. PMID:19624920

  9. Chinese hamster pleiotropic multidrug-resistant cells are not radioresistant

    International Nuclear Information System (INIS)

    Mitchell, J.B.; Gamson, J.; Russo, A.; Friedman, N.; DeGraff, W.; Carmichael, J.; Glatstein, E.

    1988-01-01

    The inherent cellular radiosensitivity of a Chinese hamster ovary pleiotropic cell line that is multidrug resistant (CHRC5) was compared to that of its parental cell line (AuxB1). Radiation survival curve parameters n and D0 were 4.5 and 1.1 Gy, respectively, for the CHRC5 line and 5.0 and 1.2 Gy, respectively, for the parental line. Thus, the inherent radiosensitivity of the two lines was similar even though key intracellular free radical scavenging and detoxifying systems employing glutathione, glutathione transferase, and catalase produced enzyme levels that were 2.0-, 1.9-, and 1.9-fold higher, respectively, in the drug-resistant cell line. Glutathione depletion by buthionine sulfoximine resulted in the same extent of aerobic radiosensitization in both lines (approximately 10%). Incorporation of iododeoxyuridine into cellular DNA sensitized both cell lines to radiation. These studies indicate that pleiotropic drug resistance does not necessarily confer radiation resistance

  10. Chitosan as an effective inhibitor of multidrug resistant Acinetobacter baumannii.

    Science.gov (United States)

    Costa, E M; Silva, S; Vicente, S; Veiga, M; Tavaria, F; Pintado, M M

    2017-12-15

    Over the last two decades worldwide levels of antibiotic resistance have risen leading to the appearance of multidrug resistant microorganisms. Acinetobacter baumannii is a known skin pathogen which has emerged as a major cause of nosocomial outbreaks due to its capacity to colonize indwelling medical devices and natural antibiotic resistance. With chitosan being an effective antimicrobial agent against antibiotic resistant microorganisms, the aim of this work was to access its potential as an alternative to traditional antimicrobials in the management of A. baumannii growth. What the results showed was that both chitosan MW's tested were active upon A. baumannii's planktonic and sessile growth. For planktonic growth MICs and MBCs were obtained at relatively low concentrations (0.5-2mg/mL) while for sessile growth chitosan proved to be an effective inhibitor of A. baumannii's adhesion and biofilm formation. Considering these results chitosan shows a high potential for control of A. baumannii infections. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Structure, mechanism and cooperation of bacterial multidrug transporters.

    Science.gov (United States)

    Du, Dijun; van Veen, Hendrik W; Murakami, Satoshi; Pos, Klaas M; Luisi, Ben F

    2015-08-01

    Cells from all domains of life encode energy-dependent trans-membrane transporters that can expel harmful substances including clinically applied therapeutic agents. As a collective body, these transporters perform as a super-system that confers tolerance to an enormous range of harmful compounds and consequently aid survival in hazardous environments. In the Gram-negative bacteria, some of these transporters serve as energy-transducing components of tripartite assemblies that actively efflux drugs and other harmful compounds, as well as deliver virulence agents across the entire cell envelope. We draw together recent structural and functional data to present the current models for the transport mechanisms for the main classes of multi-drug transporters and their higher-order assemblies. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Photodynamic therapy of cancer — Challenges of multidrug resistance

    Directory of Open Access Journals (Sweden)

    Zheng Huang

    2015-01-01

    Full Text Available Photodynamic therapy (PDT of cancer is a two-step drug-device combination modality, which involves the topical or systemic administration of a photosensitizer followed by light illumination of cancer site. In the presence of oxygen molecules, the light illumination of photosensitizer (PS can lead to the generation of cytotoxic reactive oxygen species (ROS and consequently destroy cancer. Similar to many other anticancer therapies, PDT is also subject to intrinsic cancer resistance mediated by multidrug resistance (MDR mechanisms. This paper will review the recent progress in understanding the interaction between MDR transporters and PS uptake. The strategies that can be used in a clinical setting to overcome or bypass MDR will also be discussed.

  13. Tolerance response of multidrug-resistant Salmonella enterica strains to habituation to Origanum vulgare L. essential oil

    Science.gov (United States)

    Monte, Daniel F. M.; Tavares, Adassa G.; Albuquerque, Allan R.; Sampaio, Fábio C.; Oliveira, Tereza C. R. M.; Franco, Octavio L.; Souza, Evandro L.; Magnani, Marciane

    2014-01-01

    Multidrug-resistant Salmonella enterica isolates from human outbreaks or from poultry origin were investigated for their ability to develop direct-tolerance or cross-tolerance to sodium chloride, potassium chloride, lactic acid, acetic acid, and ciprofloxacin after habituation in subinhibitory amounts ( of the minimum inhibitory concentration – (MIC) and of the minimum inhibitory concentration – MIC) of Origanum vulgare L. essential oil (OVEO) at different time intervals. The habituation of S. enterica to OVEO did not induce direct-tolerance or cross-tolerance in the tested strains, as assessed by the modulation of MIC values. However, cells habituated to OVEO maintained or increased susceptibility to the tested antimicrobials agents, with up to fourfold double dilution decrease from previously determined MIC values. This study reports for the first time the non-inductive effect of OVEO on the acquisition of direct-tolerance or cross-tolerance in multidrug-resistant S. enterica strains to antimicrobial agents that are largely used in food preservation, as well as to CIP, the therapeutic drug of salmonellosis. PMID:25566231

  14. [Molecular mechanism of cisplatin to enhance the ability of TRAIL in reversing multidrug resistance in gastric cancer cells].

    Science.gov (United States)

    Zhu, Xingchao; Zhang, Kaiguang; Wang, Qiaomin; Chen, Si; Gou, Yawen; Cui, Yufang; Li, Qin

    2015-06-01

    To study the molecular mechanism of cisplatin to enhance the ability of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in reversing multidrug resistance in vincristine-resistant human gastric cancer SGC7901/VCR cells. MTT assay was used to measure the 50% inhibiting concentration (IC₅₀) and cell survival in SGC7901 and SGC7901/VCR cells after different treatments. SGC7901/VCR cells were treated with different concentrations of DDP, different concentrations of TRAIL alone or in combination, and then the mRNA and protein levels of several genes were determined by RT-PCR, RT-qPCR and Western-blot analysis. After targeted silencing with specific siRNA and transfection of recombinant plasmid c-myc into the SGC7901/VCR cells, the mRNA and protein levels of DR4, DR5 and c-myc were determined by RT-PCR and Western-blot analysis. After combined treatment with TRAIL and DDP of the SGC7901/VCR cells, the IC₅₀ of VCR, DDP, ADM, and 5-Fu treatment was significantly decreased compared with the control group or TRAIL-treated group (P mechanism of DDP-induced sensitization of TRAIL to reverse the multidrug resistancein SGC7901/VCR cells.

  15. New hepatitis C virus genotype 1 subtype naturally harbouring resistance-associated mutations to NS5A inhibitors.

    Science.gov (United States)

    Ordeig, Laura; Garcia-Cehic, Damir; Gregori, Josep; Soria, Maria Eugenia; Nieto-Aponte, Leonardo; Perales, Celia; Llorens, Meritxell; Chen, Qian; Riveiro-Barciela, Mar; Buti, Maria; Esteban, Rafael; Esteban, Juan Ignacio; Rodriguez-Frias, Francisco; Quer, Josep

    2018-01-01

    Hepatitis C virus (HCV) is a highly divergent virus currently classified into seven major genotypes and 86 subtypes (ICTV, June 2017), which can have differing responses to therapy. Accurate genotyping/subtyping using high-resolution HCV subtyping enables confident subtype identification, identifies mixed infections and allows detection of new subtypes. During routine genotyping/subtyping, one sample from an Equatorial Guinea patient could not be classified into any of the subtypes. The complete genomic sequence was compared to reference sequences by phylogenetic and sliding window analysis. Resistance-associated substitutions (RASs) were assessed by deep sequencing. The unclassified HCV genome did not belong to any of the existing genotype 1 (G1) subtypes. Sliding window analysis along the complete genome ruled out recombination phenomena suggesting that it belongs to a new HCV G1 subtype. Two NS5A RASs (L31V+Y93H) were found to be naturally combined in the genome which could limit treatment possibilities in patients infected with this subtype.

  16. Trends of drug-resistance-associated mutations in the reverse transcriptase gene of HIV type 1 isolates from North India.

    Science.gov (United States)

    Azam, Mohd; Malik, Abida; Rizvi, Meher; Rai, Arvind

    2014-04-01

    A major cause of failure of antiretroviral therapy (ART) is the presence of drug-resistance-associated mutations in the polymerase gene of HIV-1. The paucity of data regarding potential drug resistance to reverse transcriptase inhibitors (RTIs) prompted us to carry out this study. This information will shed light on the extent of drug resistance already present in HIV strains and will give future directions in patient treatment and in drug design. Drug resistance genotyping of a partial reverse transcriptase gene was done in 103 HIV-1-infected patients, including the ART-naive and ART-experienced population. The drug resistance pattern was analyzed using the Stanford HIV-DR database, the IAS-USA mutation list and the REGA algorithm-v8.0. Subtyping was done using the REGA HIV-1 subtyping tool-v2.01. The majority of our sequences (96 %) were found to be subtype C, and four (3.8 %) were subtype A1. Significant prevalence of DR mutations (28 %) was observed in the RT gene. Major amino acid substitutions were seen at positions 41, 90, 98, 103, 106, 108, 138, 181, 184, 190, 215, and 219, which confer high/intermediate levels of resistance to most RTIs, independently or together. Our results show that there is an urgent need to tailor ART drug regimens to the individual to achieve optimum therapeutic outcome in North India.

  17. Functional study of the novel multidrug resistance gene HA117 and its comparison to multidrug resistance gene 1

    Directory of Open Access Journals (Sweden)

    Chen Tingfu

    2010-07-01

    Full Text Available Abstract Background The novel gene HA117 is a multidrug resistance (MDR gene expressed by all-trans retinoic acid-resistant HL-60 cells. In the present study, we compared the multidrug resistance of the HA117 with that of the classical multidrug resistance gene 1 (MDR1 in breast cancer cell line 4T1. Methods Transduction of the breast cancer cell line 4T1 with adenoviral vectors encoding the HA117 gene and the green fluorescence protein gene (GFP (Ad-GFP-HA117, the MDR1 and GFP (Ad-GFP-MDR1 or GFP (Ad-GFP was respectively carried out. The transduction efficiency and the multiplicity of infection (MOI were detected by fluorescence microscope and flow cytometry. The transcription of HA117 gene and MDR1 gene were detected by reverse transcription polymerase chain reaction (RT-PCR. Western blotting analysis was used to detect the expression of P-glycoprotein (P-gp but the expression of HA117 could not be analyzed as it is a novel gene and its antibody has not yet been synthesized. The drug-excretion activity of HA117 and MDR1 were determined by daunorubicin (DNR efflux assay. The drug sensitivities of 4T1/HA117 and 4T1/MDR1 to chemotherapeutic agents were detected by Methyl-Thiazolyl-Tetrazolium (MTT assay. Results The transducted efficiency of Ad-GFP-HA117 and Ad-GFP-MDR1 were 75%-80% when MOI was equal to 50. The transduction of Ad-GFP-HA117 and Ad-GFP-MDR1 could increase the expression of HA117 and MDR1. The drug resistance index to Adriamycin (ADM, vincristine (VCR, paclitaxel (Taxol and bleomycin (BLM increased to19.8050, 9.0663, 9.7245, 3.5650 respectively for 4T1/HA117 and 24.2236, 11.0480, 11.3741, 0.9630 respectively for 4T1/MDR1 as compared to the control cells. There were no significant differences in drug sensitivity between 4T1/HA117 and 4T1/MDR1 for the P-gp substrates (ADM, VCR and Taxol (P Conclusions These results confirm that HA117 is a strong MDR gene in both HL-60 and 4T1 cells. Furthermore, our results indicate that the MDR

  18. Antibacterial activity of local herbs collected from Murree (Pakistan) against multi-drug resistant Klebsiella pneumonae, E. coli and methyciline resistant Staphylococcus aureus.

    Science.gov (United States)

    Mansoor, Qaisar; Shaheen, Saira; Javed, Uzma; Shaheen, Uzma; Iqrar, Irum; Ismail, Muhammad

    2013-07-01

    Exploring healing power in plants emerged in prehistory of human civilization. Sustaining good health has been achieved over the millions of years by use of plant products in various traditional sockets. A major contribution of medicinal plants to health care systems is their limitless possession of bioactive components that stimulate explicit physiological actions. Luckily Pakistan is blessed with huge reservoir of plants with medicinal potential and some of them; we focused in this study for their medicinal importance.In this study we checked the antibacterial activity inherent in Ricinus communis, Solanum nigrum, Dodonaea viscose and Berberis lyceum extracts for multidrug resistance bacterial strains Klebsiella pneumonae, E. coli and methyciline resistant Staphylococcus aureus. MRSA showed sensitivity for Ricinus communis. Multidrug resistant Klebsiella pneumonae was sensitive with Pine roxburgii and Ricinus communis but weakly susceptible for Solanum nigrum. Multidrug resistant E. coli was resistant to all plant extracts. Treatment of severe infections caused by the bacterial strains used in this study with Ricinus communis, Pine roxburgii and Solanum nigrum can lower the undesired side effects of synthetic medicine and also reduce the economic burden.

  19. Characterization and antimicrobial susceptibility of one antibiotic-sensitive and one multidrug-resistant Corynebacterium kroppenstedtii strain isolated from patients with granulomatous mastitis

    Directory of Open Access Journals (Sweden)

    I. Fernández-Natal

    2016-11-01

    Full Text Available Human infections associated with Corynebacterium kroppenstedtii are rarely reported, and this organism is usually described as antibiotic sensitive. Almost all published cases of C. kroppenstedtii infections have been associated with breast pathology in women and have been described in New Zealand, France, Canada, India and Japan. Here we describe the microbiologic characteristics of two strains isolated from two women diagnosed of granulomatous mastitis in Spain. One C. kroppenstedtii isolate was antibiotic sensitive while the other was multidrug resistant. Biochemical identification was possible using a wide battery of methods including API Coryne V2.0, API Strep, API NH, API NE, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and 16S rRNA gene amplification and sequencing. Antimicrobial susceptibility to 28 antibiotics as determined by Etest showed one isolate being sensitive to benzylpenicillin, ciprofloxacin, moxifloxacin, gentamicin, vancomycin, clindamycin, tetracycline, linezolid and rifampin. The second isolate showed resistance to ciprofloxacin, moxifloxacin, clindamycin, tetracycline and rifampin. The multidrug-resistant isolate contained the erm(X, tet(W, cmx, aphA1-IAB, strAB and sul1 resistance genes known from the R plasmid pJA144188 of Corynebacterium resistens. These genes were absent in the genome of the antibiotic-sensitive isolate. This report confirms the tropism of this microorganism for women's breasts and presents the first description of a multidrug-resistant C. kroppenstedtii strain.

  20. Detection of expression and modulation of multidrug-resistance (MDR) and establishment of a new bioassay

    International Nuclear Information System (INIS)

    Berger, W.

    1993-08-01

    The present thesis deals with the resistance of human malignant cells against cellular toxicity of anticancer drugs, a phenomenon representing one of the major obstacles to successful chemotherapy. One mechanism underlying a cross-resistance to different drugs called multidrug resistance (MDR) is characterized by the expression of an active transport protein (P-glycoprotein), causing decreased intracellular drug retention and cytotoxicity. The main subjects of the present work were to establish different detection methods for MDR and its modulation (by substances blocking activity of P-glycoprotein) including immunological methods (immunocytochemistry, radioimmunoassay), molecular biology (slot-blot analysis, in-situ hybridization) and functional assays (drug-accumulation analysis, drug-cytotoxicity analysis). The methods were evaluated and compared using human and mouse MDR control cell lines and human tumor cell lines established in our laboratory. In cell lines derived from human melanoma - a malignancy insensitive to chemotherapy - expression of P-glycoprotein of relatively low transporting activity was detected by different methods in 8 of 33 cases. Furthermore a new sensitive in vitro assay for the functional detection of MDR was established using the biological features of cytochalasins, a microfilament disrupting substance group. These compounds were shown to be substrates for the P-glycoprotein efflux pump and their effects on cell division (blockade of cytokinesis resulting in multinucleate cells) correlated with MDR-activity of the tested cells. With this new assay P-glycoprotein activity can be demonstrated and analysed over a wide range of resistance against different cytotoxic drugs. Therefore it may by a suitable tool for research and diagnosis in the field of drug resistance

  1. Detection of multi-drug resistant Escherichia coli in the urban waterways of Milwaukee, WI

    Directory of Open Access Journals (Sweden)

    Anthony D. Kappell

    2015-04-01

    Full Text Available Urban waterways represent a natural reservoir of antibiotic resistance which may provide a source of transferable genetic elements to human commensal bacteria and pathogens. The objective of this study was to evaluate antibiotic resistance of Escherichia coli isolated from the urban waterways of Milwaukee, WI compared to those from Milwaukee sewage and a clinical setting in Milwaukee. Antibiotics covering 10 different families were utilized to determine the phenotypic antibiotic resistance for all 259 E. coli isolates. All obtained isolates were determined to be multi-drug resistant. The E. coli isolates were also screened for the presence of the genetic determinants of resistance including ermB (macrolide resistance, tet(M (tetracycline resistance, and β-lactamases (blaOXA, blaSHV, and blaPSE. E. coli from urban waterways showed a greater incidence of antibiotic resistance to 8 of 17 antibiotics tested compared to human derived sources. These E. coli isolates also demonstrated a greater incidence of resistance to higher numbers of antibiotics compared to the human derived isolates. The urban waterways demonstrated a greater abundance of isolates with co-occurrence of antibiotic resistance than human derived sources. When screened for 5 different antibiotic resistance genes conferring macrolide, tetracycline, and β-lactam resistance, clinical E. coli isolates were more likely to harbor ermB and blaOXA than isolates from urban waterway. These results indicate that Milwaukee’s urban waterways may select for a greater incidence of multiple antibiotic resistance organisms and likely harbor a different antibiotic resistance gene pool than clinical sources. The implications of this study are significant to understanding the presence of resistance in urban freshwater environments by supporting the idea that sediment from urban waterways serves as a reservoir of antibiotic resistance.

  2. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts

    DEFF Research Database (Denmark)

    Porse, Andreas; Schønning, Kristian; Munck, Christian

    2016-01-01

    Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution...

  3. Lipoteichoic acid synthesis inhibition in combination with antibiotics abrogates growth of multidrug-resistant Enterococcus faecium

    NARCIS (Netherlands)

    Paganelli, Fernanda L.; van de Kamer, Tim; Brouwer, Ellen C.; Leavis, Helen L.; Woodford, Neil; Bonten, Marc J M; Willems, Rob J L; Hendrickx, Antoni P A

    Enterococcus faecium is a multidrug-resistant (MDR) nosocomial pathogen causing significant morbidity in debilitated patients. New antimicrobials are needed to treat antibiotic-resistant E. faecium infections in hospitalised patients. E. faecium incorporates lipoteichoic acid (LTA)

  4. Multidrug transporters from bacteria to man : similarities in structure and function

    NARCIS (Netherlands)

    van Veen, HW; Konings, WN

    Organisms ranging from bacteria to man possess transmembrane transporters which confer resistance to toxic corn pounds. Underlining their biological significance, prokaryotic and eukaryotic multidrug transport proteins are very similar in structure and function. Therefore, a study of the factors

  5. Biofilm formation in clinical isolates of nosocomial Acinetobacter baumannii and its relationship with multidrug resistance

    Directory of Open Access Journals (Sweden)

    Ebrahim Babapour

    2016-06-01

    Conclusions: Since most of the multidrug resistant strains produce biofilm, it seems necessary to provide continuous monitoring and determination of antibiotic susceptibility of clinical A. baumannii. This would help to select the most appropriate antibiotic for treatment.

  6. Divide and conquer: processive transport enables multidrug transporters to tackle challenging drugs

    Directory of Open Access Journals (Sweden)

    Nir Fluman

    2014-09-01

    Full Text Available Multidrug transporters are membrane proteins that catalyze efflux of antibiotics and other toxic compounds from cells, thereby conferring drug resistance on various organisms. Unlike most solute transporters that transport a single type of compound or similar analogues, multidrug transporters are extremely promiscuous. They transport a broad spectrum of dissimilar drugs and represent a serious obstacle to antimicrobial or anticancer chemotherapy. Many challenging aspects of multidrug transporters, which are unique, have been studied in detail, including their ability to interact with chemically unrelated drugs, and how they utilize energy to drive efflux of compounds that are not only structurally but electrically different. A new and surprising dimension of the promiscuous nature of multidrug transporters has been described recently: they can move long molecules through the membrane in a processive manner.

  7. Microsatellite analysis of chloroquine resistance associated alleles and neutral loci reveal genetic structure of Indian Plasmodium falciparum.

    Science.gov (United States)

    Mallick, Prashant K; Sutton, Patrick L; Singh, Ruchi; Singh, Om P; Dash, Aditya P; Singh, Ashok K; Carlton, Jane M; Bhasin, Virendra K

    2013-10-01

    Efforts to control malignant malaria caused by Plasmodium falciparum are hampered by the parasite's acquisition of resistance to antimalarial drugs, e.g., chloroquine. This necessitates evaluating the spread of chloroquine resistance in any malaria-endemic area. India displays highly variable malaria epidemiology and also shares porous international borders with malaria-endemic Southeast Asian countries having multi-drug resistant malaria. Malaria epidemiology in India is believed to be affected by two major factors: high genetic diversity and evolving drug resistance in P. falciparum. How transmission intensity of malaria can influence the genetic structure of chloroquine-resistant P. falciparum population in India is unknown. Here, genetic diversity within and among P. falciparum populations is analyzed with respect to their prevalence and chloroquine resistance observed in 13 different locations in India. Microsatellites developed for P. falciparum, including three putatively neutral and seven microsatellites thought to be under a hitchhiking effect due to chloroquine selection were used. Genetic hitchhiking is observed in five of seven microsatellites flanking the gene responsible for chloroquine resistance. Genetic admixture analysis and F-statistics detected genetically distinct groups in accordance with transmission intensity of different locations and the probable use of chloroquine. A large genetic break between the chloroquine-resistant parasite of the Northeast-East-Island group and Southwest group (FST=0.253, Pstructure for Indian P. falciparum population. Overall, the study suggests that transmission intensity can be an efficient driver for genetic differentiation at both neutral and adaptive loci across India. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Microsatellite analysis of chloroquine resistance associated alleles and neutral loci reveal genetic structure of Indian Plasmodium falciparum

    Science.gov (United States)

    Mallick, Prashant K.; Sutton, Patrick L.; Singh, Ruchi; Singh, Om P.; Dash, Aditya P.; Singh, Ashok K.; Carlton, Jane M.; Bhasin, Virendra K.

    2013-01-01

    Efforts to control malignant malaria caused by Plasmodium falciparum are hampered by the parasite’s acquisition of resistance to antimalarial drugs, e.g., chloroquine. This necessitates evaluating the spread of chloroquine resistance in any malaria-endemic area. India displays highly variable malaria epidemiology and also shares porous international borders with malaria-endemic Southeast Asian countries having multi-drug resistant malaria. Malaria epidemiology in India is believed to be affected by two major factors: high genetic diversity and evolving drug resistance in P. falciparum. How transmission intensity of malaria can influence the genetic structure of chloroquine-resistant P. falciparum population in India is unknown. Here, genetic diversity within and among P. falciparum populations is analyzed with respect to their prevalence and chloroquine resistance observed in 13 different locations in India. Microsatellites developed for P. falciparum, including three putatively neutral and seven microsatellites thought to be under a hitchhiking effect due to chloroquine selection were used. Genetic hitchhiking is observed in five of seven microsatellites flanking the gene responsible for chloroquine resistance. Genetic admixture analysis and F-statistics detected genetically distinct groups in accordance with transmission intensity of different locations and the probable use of chloroquine. A large genetic break between the chloroquine-resistant parasite of the Northeast-East-Island group and Southwest group (FST = 0.253, P<0.001) suggests a long period of isolation or a possibility of different origin between them. A pattern of significant isolation by distance was observed in low transmission areas (r = 0.49, P=0.003, N = 83, Mantel test). An unanticipated pattern of spread of hitchhiking suggests genetic structure for Indian P. falciparum population. Overall, the study suggests that transmission intensity can be an efficient driver for genetic differentiation

  9. Resistance-Associated NS5A Variants of Hepatitis C Virus Are Susceptible to Interferon-Based Therapy.

    Directory of Open Access Journals (Sweden)

    Jun Itakura

    Full Text Available The presence of resistance-associated variants (RAVs of hepatitis C virus (HCV attenuates the efficacy of direct acting antivirals (DAAs. The objective of this study was to characterize the susceptibility of RAVs to interferon-based therapy.Direct and deep sequencing were performed to detect Y93H RAV in the NS5A region. Twenty nine genotype 1b patients with detectable RAV at baseline were treated by a combination of simeprevir, pegylated interferon and ribavirin. The longitudinal changes in the proportion of Y93H RAV during therapy and at breakthrough or relapse were determined.By direct sequencing, Y93H RAV became undetectable or decreased in proportion at an early time point during therapy (within 7 days in 57% of patients with both the Y93H variant and wild type virus at baseline when HCV RNA was still detectable. By deep sequencing, the proportion of Y93H RAV against Y93 wild type was 52.7% (5.8%- 97.4% at baseline which significantly decreased to 29.7% (0.16%- 98.3% within 7 days of initiation of treatment (p = 0.023. The proportion of Y93H RAV was reduced in 21 of 29 cases (72.4% and a marked reduction of more than 10% was observed in 14 cases (48.7%. HCV RNA reduction was significantly greater for Y93H RAV (-3.65±1.3 logIU/mL/day than the Y93 wild type (-3.35±1.0 logIU/mL/day (p<0.001.Y93H RAV is more susceptible to interferon-based therapy than the Y93 wild type.

  10. Resistance-Associated NS5A Variants of Hepatitis C Virus Are Susceptible to Interferon-Based Therapy.

    Science.gov (United States)

    Itakura, Jun; Kurosaki, Masayuki; Higuchi, Mayu; Takada, Hitomi; Nakakuki, Natsuko; Itakura, Yoshie; Tamaki, Nobuharu; Yasui, Yutaka; Suzuki, Shoko; Tsuchiya, Kaoru; Nakanishi, Hiroyuki; Takahashi, Yuka; Maekawa, Shinya; Enomoto, Nobuyuki; Izumi, Namiki

    2015-01-01

    The presence of resistance-associated variants (RAVs) of hepatitis C virus (HCV) attenuates the efficacy of direct acting antivirals (DAAs). The objective of this study was to characterize the susceptibility of RAVs to interferon-based therapy. Direct and deep sequencing were performed to detect Y93H RAV in the NS5A region. Twenty nine genotype 1b patients with detectable RAV at baseline were treated by a combination of simeprevir, pegylated interferon and ribavirin. The longitudinal changes in the proportion of Y93H RAV during therapy and at breakthrough or relapse were determined. By direct sequencing, Y93H RAV became undetectable or decreased in proportion at an early time point during therapy (within 7 days) in 57% of patients with both the Y93H variant and wild type virus at baseline when HCV RNA was still detectable. By deep sequencing, the proportion of Y93H RAV against Y93 wild type was 52.7% (5.8%- 97.4%) at baseline which significantly decreased to 29.7% (0.16%- 98.3%) within 7 days of initiation of treatment (p = 0.023). The proportion of Y93H RAV was reduced in 21 of 29 cases (72.4%) and a marked reduction of more than 10% was observed in 14 cases (48.7%). HCV RNA reduction was significantly greater for Y93H RAV (-3.65±1.3 logIU/mL/day) than the Y93 wild type (-3.35±1.0 logIU/mL/day) (p<0.001). Y93H RAV is more susceptible to interferon-based therapy than the Y93 wild type.

  11. Naturally occurring NS3 resistance-associated variants in hepatitis C virus genotype 1: Their relevance for developing countries.

    Science.gov (United States)

    Echeverría, Natalia; Betancour, Gabriela; Gámbaro, Fabiana; Hernández, Nelia; López, Pablo; Chiodi, Daniela; Sánchez, Adriana; Boschi, Susana; Fajardo, Alvaro; Sóñora, Martín; Moratorio, Gonzalo; Cristina, Juan; Moreno, Pilar

    2016-09-02

    Hepatitis C virus (HCV) is a major cause of global morbidity and mortality, with an estimated 130-150 million infected individuals worldwide. HCV is a leading cause of chronic liver diseases including cirrhosis and hepatocellular carcinoma. Current treatment options in developing countries involve pegylated interferon-α and ribavirin as dual therapy or in combination with one or more direct-acting antiviral agents (DAA). The emergence of resistance-associated variants (RAVs) after treatment reveals the great variability of this virus leading to a great difficulty in developing effective antiviral strategies. Baseline RAVs detected in DAA treatment-naïve HCV-infected patients could be of great importance for clinical management and outcome prediction. Although the frequency of naturally occurring HCV NS3 protease inhibitor mutations has been addressed in many countries, there are only a few reports on their prevalence in South America. In this study, we investigated the presence of RAVs in the HCV NS3 serine protease region by analysing a cohort of Uruguayan patients with chronic hepatitis C who had not been treated with any DAAs and compare them with the results found for other South American countries. The results of these studies revealed that naturally occurring mutations conferring resistance to NS3 inhibitors exist in a substantial proportion of Uruguayan treatment-naïve patients infected with HCV genotype 1 enrolled in these studies. The identification of these baseline RAVs could be of great importance for patients' management and outcome prediction in developing countries. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Analysis of hepatitis C NS5A resistance associated polymorphisms using ultra deep single molecule real time (SMRT) sequencing.

    Science.gov (United States)

    Bergfors, Assar; Leenheer, Daniël; Bergqvist, Anders; Ameur, Adam; Lennerstrand, Johan

    2016-02-01

    Development of Hepatitis C virus (HCV) resistance against direct-acting antivirals (DAAs), including NS5A inhibitors, is an obstacle to successful treatment of HCV when DAAs are used in sub-optimal combinations. Furthermore, it has been shown that baseline (pre-existing) resistance against DAAs is present in treatment naïve-patients and this will potentially complicate future treatment strategies in different HCV genotypes (GTs). Thus the aim was to detect low levels of NS5A resistant associated variants (RAVs) in a limited sample set of treatment-naïve patients of HCV GT1a and 3a, since such polymorphisms can display in vitro resistance as high as 60000 fold. Ultra-deep single molecule real time (SMRT) sequencing with the Pacific Biosciences (PacBio) RSII instrument was used to detect these RAVs. The SMRT sequencing was conducted on ten samples; three of them positive with Sanger sequencing (GT1a Q30H and Y93N, and GT3a Y93H), five GT1a samples, and two GT3a non-positive samples. The same methods were applied to the HCV GT1a H77-plasmid in a dilution series, in order to determine the error rates of replication, which in turn was used to determine the limit of detection (LOD), as defined by mean + 3SD, of minority variants down to 0.24%. We found important baseline NS5A RAVs at levels between 0.24 and 0.5%, which could potentially have clinical relevance. This new method with low level detection of baseline RAVs could be useful in predicting the most cost-efficient combination of DAA treatment, and reduce the treatment duration for an HCV infected individual. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Pharmaceutical excipients influence the function of human uptake transporting proteins.

    Science.gov (United States)

    Engel, Anett; Oswald, Stefan; Siegmund, Werner; Keiser, Markus

    2012-09-04

    Although pharmaceutical excipients are supposed to be pharmacologically inactive, solubilizing agents like Cremophor EL have been shown to interact with cytochrome P450 (CYP)-dependent drug metabolism as well as efflux transporters such as P-glycoprotein (ABCB1) and multidrug resistance associated protein 2 (ABCC2). However, knowledge about their influence on the function of uptake transporters important in drug disposition is very limited. In this study we investigated the in vitro influence of polyethylene glycol 400 (PEG), hydroxypropyl-β-cyclodextrin (HPCD), Solutol HS 15 (SOL), and Cremophor EL (CrEL) on the organic anion transporting polypeptides (OATP) 1A2, OATP2B1, OATP1B1, and OATP1B3 and the Na(+)/taurocholate cotransporting polypeptide (NTCP). In stably transfected human embryonic kidney cells we analyzed the competition of the excipients with the uptake of bromosulfophthalein in OATP1B1, OATP1B3, OATP2B1, and NTCP, estrone-3-sulfate (E(3)S) in OATP1A2, OATP1B1, and OATP2B1, estradiol-17β-glucuronide in OATP1B3, and taurocholate (TA) in OATP1A2 and NTCP cells. SOL and CrEL were the most potent inhibitors of all transporters with the strongest effect on OATP1A2, OATP1B3, and OATP2B1 (IC(50) < 0.01%). HPCD also strongly inhibited all transport proteins but only for substrates containing a sterane-backbone. Finally, PEG seems to be a selective and potent modulator of OATP1A2 with IC(50) values of 0.05% (TA) and 0.14% (E(3)S). In conclusion, frequently used solubilizing agents were shown to interact substantially with intestinal and hepatic uptake transporters which should be considered in drug development. However, the clinical relevance of these findings needs to be evaluated in further in vivo studies.

  14. Higher Desolvation Energy Reduces Molecular Recognition in Multi-Drug Resistant HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Ladislau C. Kovari

    2012-05-01

    Full Text Available Designing HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1’F. Both substrates display different levels of molecular recognition by the wild-type and multi-drug resistant HIV-1 protease. From the crystal structures, only limited differences can be identified between the wild-type and multi-drug resistant protease. Therefore, a wild-type HIV-1 protease and four multi-drug resistant HIV-1 proteases in complex with the two peptides were modeled based on the crystal structures and examined during a 10 ns-molecular dynamics simulation. The simulation results reveal that the multi-drug resistant HIV-1 proteases require higher desolvation energy to form complexes with the peptides. This result suggests that the desolvation of the HIV-1 protease active site is an important step of protease-ligand complex formation as well as drug resistance. Therefore, desolvation energy could be considered as a parameter in the evaluation of future HIV-1 protease inhibitor candidates.

  15. Hypothyroidism during second-line treatment of multidrug-resistant tuberculosis: a prospective study.

    Science.gov (United States)

    Bares, R; Khalid, N; Daniel, H; Dittmann, H; Reimold, M; Gallwitz, B; Schmotzer, C

    2016-07-01

    Hypothyroidism is an adverse effect of certain anti-tuberculosis drugs. This is a prospective study of the frequency and possible pathomechanisms associated with hypothyroidism due to second-line treatment of multidrug-resistant tuberculosis. Fifty human immunodeficiency virus negative patients and 20 controls were included. All participants underwent ultrasonography of the thyroid and measurement of thyroid stimulating hormone (TSH). TSH levels were checked every 3 months. If hypothyroidism was present, T3, T4 and thyroid peroxidase autoantibodies were measured, and imaging extended to scintigraphy and repeated ultrasonography. Before treatment, 7 patients (14%) and 1 control (5%) were hypothyreotic. During the first 6 months of treatment, TSH levels increased in 41 patients (82%), 39 (78%) had values above the normal range and 19 (38%) had overt hypothyroidism. As none of the patients had signs of autoimmune thyroiditis, interaction with anti-tuberculosis drugs was assumed to be the cause of hypothyroidism. Nine patients died during treatment, all of whom had developed hypothyroidism. In seven, the metabolic situation at their death was known, and they had become euthyreotic following levothyroxine substitution. TSH levels should be checked before initiating anti-tuberculosis treatment and after 3 and 6 months to start timely replacement of levothyroxine. Further studies are needed to elucidate the exact pathomechanism involved in hypothyroidism and whether hypothyroidism can be used as predictor of treatment failure.

  16. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria.

    Science.gov (United States)

    Chung, Pooi Yin; Khanum, Ramona

    2017-08-01

    Bacterial resistance to commonly used drugs has become a global health problem, causing increased infection cases and mortality rate. One of the main virulence determinants in many bacterial infections is biofilm formation, which significantly increases bacterial resistance to antibiotics and innate host defence. In the search to address the chronic infections caused by biofilms, antimicrobial peptides (AMP) have been considered as potential alternative agents to conventional antibiotics. Although AMPs are commonly considered as the primitive mechanism of immunity and has been extensively studied in insects and non-vertebrate organisms, there is now increasing evidence that AMPs also play a crucial role in human immunity. AMPs have exhibited broad-spectrum activity against many strains of Gram-positive and Gram-negative bacteria, including drug-resistant strains, and fungi. In addition, AMPs also showed synergy with classical antibiotics, neutralize toxins and are active in animal models. In this review, the important mechanisms of action and potential of AMPs in the eradication of biofilm formation in multidrug-resistant pathogen, with the goal of designing novel antimicrobial therapeutics, are discussed. Copyright © 2017. Published by Elsevier B.V.

  17. Synthesis of Nanodiamond-Daunorubicin Conjugates to Overcome Multidrug Chemoresistance in Leukemia

    Science.gov (United States)

    Man, Han B.; Kim, Hansung; Kim, Ho-Joong; Robinson, Erik; Liu, Wing Kam; Chow, Edward Kai-Hua; Ho, Dean

    2013-01-01

    Nanodiamonds (NDs) are promising candidates in nanomedicine, demonstrating significant potential as gene/drug delivery platforms for cancer therapy. We have synthesized ND vectors capable of chemotherapeutic loading and delivery with applications towards chemoresistant leukemia. The loading of Daunorubicin (DNR) onto NDs was optimized by adjusting reaction parameters such as acidity and concentration. The resulting conjugate, a novel therapeutic payload for NDs, was characterized extensively for size, surface charge, and loading efficiency. A K562 human myelogenous leukemia cell line, with multidrug resistance conferred by incremental DNR exposure, was used to demonstrate the efficacy enhancement resulting from ND-based delivery. While resistant K562 cells were able to overcome treatment from DNR alone, as compared with non-resistant K562 cells, NDs were able to improve DNR delivery into resistant K562 cells. By overcoming efflux mechanisms present in this resistant leukemia line, ND-enabled therapeutics have demonstrated the potential to improve cancer treatment efficacy, especially towards resistant strains. PMID:23916889

  18. Risk factors and timing of default from treatment for non-multidrug-resistant tuberculosis in Moldova.

    Science.gov (United States)

    Jenkins, H E; Ciobanu, A; Plesca, V; Crudu, V; Galusca, I; Soltan, V; Cohen, T

    2013-03-01

    The Republic of Moldova, in Eastern Europe, has among the highest reported nationwide proportions of tuberculosis (TB) patients with multidrug-resistant tuberculosis (MDR-TB) worldwide. Default has been associated with increased mortality and amplification of drug resistance, and may contribute to the high MDR-TB rates in Moldova. To assess risk factors and timing of default from treatment for non-MDR-TB from 2007 to 2010. A retrospective analysis of routine surveillance data on all non-MDR-TB patients reported. A total of 14.7% of non-MDR-TB patients defaulted from treatment during the study period. Independent risk factors for default included sociodemographic factors, such as homelessness, living alone, less formal education and spending substantial time outside Moldova in the year prior to diagnosis; and health-related factors such as human immunodeficiency virus co-infection, greater lung pathology and increasing TB drug resistance. Anti-tuberculosis treatment is usually initiated within an institutional setting in Moldova, and the default risk was highest in the month following the phase of hospitalized treatment (among civilians) and after leaving prison (among those diagnosed while incarcerated). Targeted interventions to increase treatment adherence for patients at highest risk of default, and improving the continuity of care for patients transitioning from institutional to community care may substantially reduce risk of default.

  19. Clinical Concentrations of Thioridazine Kill Intracellular Multidrug-Resistant Mycobacterium tuberculosis

    Science.gov (United States)

    Ordway, Diane; Viveiros, Miguel; Leandro, Clara; Bettencourt, Rosário; Almeida, Josefina; Martins, Marta; Kristiansen, Jette E.; Molnar, Joseph; Amaral, Leonard

    2003-01-01

    The phenothiazines chlorpromazine (CPZ) and thioridazine (TZ) have equal in vitro activities against antibiotic-sensitive and -resistant Mycobacterium tuberculosis. These compounds have not been used as anti-M. tuberculosis agents because their in vitro activities take place at concentrations which are beyond those that are clinically achievable. In addition, chronic administration of CPZ produces frequent severe side effects. Because CPZ has been shown to enhance the killing of intracellular M. tuberculosis at concentrations in the medium that are clinically relevant, we have investigated whether TZ, a phenothiazine whose negative side effects are less frequent and serious than those associated with CPZ, kills M. tuberculosis organisms that have been phagocytosed by human macrophages, which have nominal killing activities against these bacteria. Both CPZ and TZ killed intracellular antibiotic-sensitive and -resistant M. tuberculosis organisms when they were used at concentrations in the medium well below those present in the plasma of patients treated with these agents. These concentrations in vitro were not toxic to the macrophage, nor did they affect in vitro cellular immune processes. TZ thus appears to be a serious candidate for the management of a freshly diagnosed infection of pulmonary tuberculosis or as an adjunct to conventional antituberculosis therapy if the patient originates from an area known to have a high prevalence of multidrug-resistant M. tuberculosis isolates. Nevertheless, we must await the outcomes of clinical trials to determine whether TZ itself may be safely and effectively used as an antituberculosis agent. PMID:12604522

  20. Essential Oil from Origanum vulgare Completely Inhibits the Growth of Multidrug-Resistant Cystic Fibrosis Pathogens.

    Science.gov (United States)

    Pesavento, Giovanna; Maggini, Valentina; Maida, Isabel; Lo Nostro, Antonella; Calonico, Carmela; Sassoli, Chiara; Perrin, Elena; Fondi, Marco; Mengoni, Alessio; Chiellini, Carolina; Vannacci, Alfredo; Gallo, Eugenia; Gori, Luigi; Bogani, Patrizia; Bilia, Anna Rita; Campana, Silvia; Ravenni, Novella; Dolce, Daniela; Firenzuoli, Fabio; Fani, Renato

    2016-06-01

    Essential oils (EOs) are known to inhibit the growth of a wide range of microorganisms. Particularly interesting is the possible use of EOs to treat multidrug-resistant cystic fibrosis (CF) pathogens. We tested the essential oil (EO) from Origanum vulgare for in vitro antimicrobial activity, against three of the major human opportunistic pathogens responsible for respiratory infections in CF patients; these are methicillin-resistant Staphylococcus aureus, Stenotrophomonas maltophilia and Achromobacter xylosoxidans. Antibiotic susceptibility of each strain was previously tested by the standard disk diffusion method. Most strains were resistant to multiple antibiotics and could be defined as multi-drug-resistant (MDR). The antibacterial activity of O. vulgare EO (OEO) against a panel of 59 bacterial strains was evaluated, with MIC and MBC determined at 24, 48 and 72 hours by a microdilution method. The OEO was effective against all tested strains, although to a different extent. The MBC and MIC of OEO for S. aureus strains were either lower or equal to 0.50%, v/v, for A. xylosoxidans strains were lower or equal to 1% and 0.50%, v/v, respectively; and for S. maltophilia strains were lower or equal to 0.25%, v/v. The results from this study suggest that OEO might exert a role as an antimicrobial in the treatment of CF infections.

  1. Nanohybrid systems of non-ionic surfactant inserting liposomes loading paclitaxel for reversal of multidrug resistance.

    Science.gov (United States)

    Ji, Xiufeng; Gao, Yu; Chen, Lingli; Zhang, Zhiwen; Deng, Yihui; Li, Yaping

    2012-01-17

    Three new nanohybrid systems of non-ionic surfactant inserting liposomes loading paclitaxel (PTX) (NLPs) were prepared to overcome multidrug resistance (MDR) in PTX-resistance human lung cancer cell line. Three non-ionic surfactants, Solutol HS 15 (HS-15), pluronic F68 (PF-68) and cremophor EL (CrEL) were inserted into liposomes by film hydration method to form NLPs with an average size of around 110, 180 and 110 nm, respectively. There was an obvious increase of rhodamin 123 (Rh123) accumulation in A549/T cells after treated with nanohybrid systems loading Rh123 (NLRs) when compared with free Rh123 or liposomes loading Rh123 without surfactants (LRs), which indicated the significant inhibition effects of NLRs on drug efflux. The P-gp detection and ATP determination demonstrated that BNLs could not only interfere P-gp expression on the membrane of drug resistant cells, but also decrease ATP level in the cells. The cytotoxicity of NLPs against A549/T cells was higher than PTX loaded liposomes without surfactants (LPs), and the best result was achieved after treated with NLPs2. The apoptotic assay and the cell cycle analysis showed that NLPs could induce more apoptotic cells in drug resistant cells when compared with LPs. These results suggested that NLPs could overcome MDR by combination of drug delivery, P-gp inhibition and ATP depletion, and showed potential for treatment of MDR. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Multidrug resistance-selective antiproliferative activity of Piper amide alkaloids and synthetic analogues.

    Science.gov (United States)

    Wang, Yue-Hu; Goto, Masuo; Wang, Li-Ting; Hsieh, Kan-Yen; Morris-Natschke, Susan L; Tang, Gui-Hua; Long, Chun-Lin; Lee, Kuo-Hsiung

    2014-10-15

    Twenty-five amide alkaloids (1-25) from Piper boehmeriifolium and 10 synthetic amide alkaloid derivatives (39-48) were evaluated for antiproliferative activity against eight human tumor cell lines, including chemosensitive and multidrug-resistant (MDR) cell lines. The results suggested tumor type-selectivity. 1-[7-(3,4,5-Trimethoxyphenyl)heptanoyl]piperidine (46) exhibited the best inhibitory activity (IC50=4.94 μM) against the P-glycoprotein (P-gp)-overexpressing KBvin MDR sub-line, while it and all other tested compounds, except 9, were inactive (IC50 >40 μM) against MDA-MB-231 and SK-BR-3. Structure-activity relationships (SARs) indicated that (i) 3,4,5-trimethoxy phenyl substitution is critical for selectivity against KBvin, (ii) the 4-methoxy group in this pattern is crucial for antiproliferative activity, (iii) double bonds in the side chain are not needed for activity, and (iv), in arylalkenylacyl amide alkaloids, replacement of an isobutylamino group with pyrrolidin-1-yl or piperidin-1-yl significantly improved activity. Further study on Piper amides is warranted, particularly whether side chain length affects the ability to overcome the MDR cancer phenotype. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A Rare Class of New Dimeric Naphtoquiones from Diospyros lotus have Multidrug Reversal and Antiproliferative Effects

    Directory of Open Access Journals (Sweden)

    Dr. Abdur eRauf

    2015-12-01

    Full Text Available Three new dimeric naphthoquinones, 5,4′-dihydroxy-1′-methoxy-6,6′-dimethyl-7,3′-binaphthyl-1,4,5′,8′-tetraone (1, 5′,8′-dihydroxy-5-methoxy-6,6′-dimethyl-7,3′-binaphthyl-1,4,1′,4′-tetraone (2 and 8,5′,8′-trihydroxy-6,6′-dimethyl-7,3′-binaphthyl-1,4,1′,4′-tetraone (3, were isolated from the roots of Diospyros lotus. Their structures were elucidated by spectroscopic techniques, including 1D and 2D NMR, such as HSQC, HMBS, NOESY and J resolved. Compounds 1-3 were evaluated for their effects on the reversion of multidrug resistance (MDR mediated by P-glycoprotein through use of the rhodamine-123 exclusion screening test on human ABCB1 gene transfected L5178Y mouse T-cell lymphoma. Compounds 1-3 were also assessed for their antiproliferative and cytotoxic effects on L5178 and L5178Y mouse T-cell lymphoma lines. Both 1 and 2 exhibited promising antiproliferative and MDR-reversing effects in a dose dependent manner. The effects of the tested compounds on the activity of doxorubicin were observed to vary from slight antagonism to antagonism.

  4. Chromatin remodeling agent trichostatin A: a key-factor in the hepatic differentiation of human mesenchymal stem cells derived of adult bone marrow

    Directory of Open Access Journals (Sweden)

    Vinken Mathieu

    2007-04-01

    Full Text Available Abstract Background The capability of human mesenchymal stem cells (hMSC derived of adult bone marrow to undergo in vitro hepatic differentiation was investigated. Results Exposure of hMSC to a cocktail of hepatogenic factors [(fibroblast growth factor-4 (FGF-4, hepatocyte growth factor (HGF, insulin-transferrin-sodium-selenite (ITS and dexamethasone] failed to induce hepatic differentiation. Sequential exposure to these factors (FGF-4, followed by HGF, followed by HGF+ITS+dexamethasone, however, resembling the order of secretion during liver embryogenesis, induced both glycogen-storage and cytokeratin (CK18 expression. Additional exposure of the cells to trichostatin A (TSA considerably improved endodermal differentiation, as evidenced by acquisition of an epithelial morphology, chronological expression of hepatic proteins, including hepatocyte-nuclear factor (HNF-3β, alpha-fetoprotein (AFP, CK18, albumin (ALB, HNF1α, multidrug resistance-associated protein (MRP2 and CCAAT-enhancer binding protein (C/EBPα, and functional maturation, i.e. upregulated ALB secretion, urea production and inducible cytochrome P450 (CYP-dependent activity. Conclusion hMSC are able to undergo mesenchymal-to-epithelial transition. TSA is hereby essential to promote differentiation of hMSC towards functional hepatocyte-like cells.

  5. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery.

    Science.gov (United States)

    Callender, Shannon P; Mathews, Jessica A; Kobernyk, Katherine; Wettig, Shawn D

    2017-06-30

    Emulsion technology has been utilized extensively in the pharmaceutical industry. This article presents a comprehensive review of the literature on an important subcategory of emulsions, microemulsions. Microemulsions are optically transparent, thermodynamically stable colloidal systems, 10-100nm diameter, that form spontaneously upon mixing of oil, water and emulsifier. This review is the first to address advantages and disadvantages, as well as considerations and challenges in multi-drug delivery. For the period 1 January 2011-30 April 2016, 431 publications related to microemulsion drug delivery were identified and screened according to microemulsion, drug classification, and surfactant types. Results indicate the use of microemulsions predominantly in lipophilic drug delivery (79.4%) via oil-in-water microemulsions and non-ionic surfactants (90%) for oral or topical administration. Cancer is the disease state most targeted followed by inflammatory diseases, microbial infections and cardiovascular disease. Key generalizations from this analysis include: 1) microemulsion formulation is largely based on trial-and-error despite over 1200 publications related to microemulsion drug delivery since their discovery in 1943; 2) characterization using methods including interfacial tension, droplet size, electrical conductivity, turbidity and viscosity may provide additional information for greater predictability; 3) microemulsion drug delivery publications arise primarily from China (27%) and India (21%) suggesting additional research opportunities elsewhere. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Outbreak of multidrug-resistant tuberculosis in two secondary schools.

    Science.gov (United States)

    Miravet Sorribes, Luis; Arnedo Pena, Alberto; Bellido Blasco, Juan B; Romeu García, María Angeles; Gil Fortuño, María; García Sidro, Patricia; Cortés Miró, Pascual

    2016-02-01

    To describe an outbreak of multidrug-resistant tuberculosis (MDR-TB) in two schools This was a prospective, observational study of an outbreak of MDR-TB in 2 schools located in the towns of Onda and Nules, in the Spanish province of Castellon, from the moment of detection in November 2008 until November 2014, including patient follow-up and contact tracing. Five cases of MDR-TB were diagnosed. Overall attack rate was 0.9%, and among the contacts traced, 66 had latent tuberculous infection, with an infection rate of 14.4%. Molecular characterization of the 5M. tuberculosis isolates was performed by restriction fragment length polymorphism (RFLP) analysis of the IS6110 sequence. In all 5 patients, cultures were negative at 4-month follow-up, showing the efficacy of the treatment given. No recurrence has been reported to date. In the context of globalization and the increased prevalence of MDR-TB, outbreaks such as the one presented here are only to be expected. Contact tracing, strict follow-up of confirmed cases, the availability of fast diagnostic techniques to avoid treatment delay, and chemoprophylaxis, together with the molecular characterization of strains, are still essential. Copyright © 2015 SEPAR. Published by Elsevier Espana. All rights reserved.

  7. Targeting protein kinases to reverse multidrug resistance in sarcoma.

    Science.gov (United States)

    Chen, Hua; Shen, Jacson; Choy, Edwin; Hornicek, Francis J; Duan, Zhenfeng

    2016-02-01

    Sarcomas are a group of cancers that arise from transformed cells of mesenchymal origin. They can be classified into over 50 subtypes, accounting for approximately 1% of adult and 15% of pediatric cancers. Wide surgical resection, radiotherapy, and chemotherapy are the most common treatments for the majority of sarcomas. Among these therapies, chemotherapy can palliate symptoms and prolong life for some sarcoma patients. However, sarcoma cells can have intrinsic or acquired resistance after treatment with chemotherapeutics drugs, leading to the development of multidrug resistance (MDR). MDR attenuates the efficacy of anticancer drugs and results in treatment failure for sarcomas. Therefore, overcoming MDR is an unmet need for sarcoma therapy. Certain protein kinases demonstrate aberrant expression and/or activity in sarcoma cells, which have been found to be involved in the regulation of sarcoma cell progression, such as cell cycle, apoptosis, and survival. Inhibiting these protein kinases may not only decrease the proliferation and growth of sarcoma cells, but also reverse their resistance to chemotherapeutic drugs to subsequently reduce the doses of anticancer drugs and decrease drug side-effects. The discovery of novel strategies targeting protein kinases opens a door to a new area of sarcoma research and provides insight into the mechanisms of MDR in chemotherapy. This review will focus on the recent studies in targeting protein kinase to reverse chemotherapeutic drug resistance in sarcoma. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Marine Natural Products as Models to Circumvent Multidrug Resistance

    Directory of Open Access Journals (Sweden)

    Solida Long

    2016-07-01

    Full Text Available Multidrug resistance (MDR to anticancer drugs is a serious health problem that in many cases leads to cancer treatment failure. The ATP binding cassette (ABC transporter P-glycoprotein (P-gp, which leads to premature efflux of drugs from cancer cells, is often responsible for MDR. On the other hand, a strategy to search for modulators from natural products to overcome MDR had been in place during the last decades. However, Nature limits the amount of some natural products, which has led to the development of synthetic strategies to increase their availability. This review summarizes the research findings on marine natural products and derivatives, mainly alkaloids, polyoxygenated sterols, polyketides, terpenoids, diketopiperazines, and peptides, with P-gp inhibitory activity highlighting the established structure-activity relationships. The synthetic pathways for the total synthesis of the most promising members and analogs are also presented. It is expected that the data gathered during the last decades concerning their synthesis and MDR-inhibiting activities will help medicinal chemists develop potential drug candidates using marine natural products as models which can deliver new ABC transporter inhibitor scaffolds.

  9. Hearing loss in children treated for multidrug-resistant tuberculosis.

    Science.gov (United States)

    Seddon, James A; Thee, Stephanie; Jacobs, Kayleen; Ebrahim, Adam; Hesseling, Anneke C; Schaaf, H Simon

    2013-04-01

    The aminoglycosides and polypeptides are vital drugs for the management of multidrug-resistant (MDR) tuberculosis (TB). Both classes of drug cause hearing loss. We aimed to determine the extent of hearing loss in children treated for MDR-TB. In this retrospective study, children (Hearing was assessed and classified using audiometry and otoacoustic emissions. Ninety-four children were included (median age: 43 months). Of 93 tested, 28 (30%) were HIV-infected. Twenty-three (24%) children had hearing loss. Culture-confirmed, as opposed to presumed, diagnosis of TB was a risk factor for hearing loss (OR: 4.12; 95% CI: 1.13-15.0; p = 0.02). Seven of 11 (64%) children classified as having hearing loss using audiometry had progression of hearing loss after finishing the injectable drug. Hearing loss is common in children treated for MDR-TB. Alternative drugs are required for the treatment of paediatric MDR-TB. Copyright © 2012 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  10. Combating multidrug-resistant Gram-negative bacterial infections.

    Science.gov (United States)

    Xu, Ze-Qi; Flavin, Michael T; Flavin, John

    2014-02-01

    Multidrug-resistant (MDR) bacterial infections, especially those caused by Gram-negative pathogens, have emerged as one of the world's greatest health threats. The development of novel antibiotics to treat MDR Gram-negative bacteria has, however, stagnated over the last half century. This review provides an overview of recent R&D activities in the search for novel antibiotics against MDR Gram-negatives. It provides emphasis in three key areas. First, the article looks at new analogs of existing antibiotic molecules such as β-lactams, tetracyclines, and aminoglycoside as well as agents against novel bacterial targets such as aminoacyl-tRNA synthetase and peptide deformylase. Second, it also examines alternative strategies to conventional approaches including cationic antimicrobial peptides, siderophores, efflux pump inhibitors, therapeutic antibodies, and renewed interest in abandoned treatments or those with limited indications. Third, the authors aim to provide an update on the current clinical development status for each drug candidate. The traditional analog approach is insufficient to meet the formidable challenge brought forth by MDR superbugs. With the disappointing results of the genomics approach for delivering novel targets and drug candidates, alternative strategies to permeate the bacterial cell membrane, enhance influx, disrupt efflux, and target specific pathogens via therapeutic antibodies are attractive and promising. Coupled with incentivized business models, governmental policies, and a clarified regulatory pathway, it is hoped that the antibiotic pipeline will be filled with an effective armamentarium to safeguard global health.

  11. [Multidrug-resistant tuberculosis: challenges of a global emergence].

    Science.gov (United States)

    Comolet, T

    2015-10-01

    Drug-resistant tuberculosis, in particular Multi-Drug Resistant (MDR-TB) is an increasing global concern and a major burden for some developing countries, especially the BRICS. It is assumed that every year roughly 350 000 new MDR-TB cases occur in the world, on average in 20.5% of TB patients that have been previously treated but also in 3.5% of persons that have never been on TB treatment before. The global distribution of cases is very heterogeneous and is now better understood thanks to a growing number of specific surveys and routine surveillance systems: incidence is much higher in southern Africa and in all countries formerly part of the USSR. Countries with weak health systems and previously inefficient TB control programs are highly vulnerable to MDR epidemics because program failures do help creating, maintaining and spreading resistances. Global response is slowly rolled out and diagnosis capacities are on the rise (mostly with genotypic methods) but adequate and successful treatment and care is still limited to a minority of global cases. From a public health perspective the MDR-TB growing epidemics will not be controlled merely by the introduction of few new antibiotics because it is also linked to patient's compliance and adequate case management supported by efficient TB program. In depth quality improvement will only be achieved after previous errors are thoroughly analyzed and boldly corrected.

  12. Modulation of P-glycoprotein-mediated multidrug resistance in K562 leukemic cells by indole-3-carbinol

    International Nuclear Information System (INIS)

    Arora, Annu; Seth, Kavita; Kalra, Neetu; Shukla, Yogeshwer

    2005-01-01

    Resistance to chemotherapeutic drugs is one of the major problems in the treatment of cancer. P-glycoprotein (P-gp) encoded by the mdr gene is a highly conserved protein, acts as a multidrug transporter, and has a major role in multiple drug resistance (MDR). Targeting of P-gp by naturally occurring compounds is an effective strategy to overcome MDR. Indole-3-carbinol (I3C), a glucosinolates present in cruciferous vegetables, is a promising chemopreventive agent as it is reported to possess antimutagenic, antitumorigenic, and antiestrogenic properties in experimental studies. In the present investigation, the potential of I3C to modulate P-gp expression was evaluated in vinblastine (VBL)-resistant K562 human leukemic cells. The resistant K562 cells (K562/R10) were found to be cross-resistant to vincristine (VCR), doxorubicin (DXR), and other antineoplastic agents. I3C at a nontoxic dose (10 x 10 -3 M) enhanced the cytotoxic effects of VBL time dependently in VBL-resistant human leukemia (K562/R10) cells but had no effect on parent-sensitive cells (K562/S). The Western blot analysis of K 562/R 10 cells showed that I3C downregulates the induced levels of P-gp in resistant cells near to normal levels. The quantitation of immunocytochemically stained K562/R10 cells showed 24%, 48%, and 80% decrease in the levels of P-gp by I3C for 24, 48, and 72 h of incubation. The above features thus indicate that I3C could be used as a novel modulator of P-gp-mediated multidrug resistance in vitro and may be effective as a dietary adjuvant in the treatment of MDR cancers

  13. Association between vitamin D deficiency and pre-existing resistance-associated hepatitis C virus NS5A variants.

    Science.gov (United States)

    Okubo, Tomomi; Atsukawa, Masanori; Tsubota, Akihito; Shimada, Noritomo; Abe, Hiroshi; Yoshizawa, Kai; Arai, Taeang; Nakagawa, Ai; Itokawa, Norio; Kondo, Chisa; Aizawa, Yoshio; Iwakiri, Katsuhiko

    2017-06-01

    Although interferon-free therapy with direct-acting antivirals has developed as a standard of care for chronic hepatitis C, the existence of resistance-associated variants (RAVs) has a negative impact on treatment results. Recently, several studies indicated a relationship between chronic hepatitis C and serum vitamin D levels. However, the relationship between RAVs at the hepatitis C virus non-structure 5A (NS5A) region and serum vitamin D level has not yet been examined. Among patients with genotype 1 chronic hepatitis C who were enrolled in a multicenter cooperative study, our subjects comprised 247 patients in whom it was possible to measure RAVs at the NS5A region. These RAVs were measured using a direct sequencing method. The median age of patients was 70 years (range, 24-87 years), and the number of female patients was 135 (54.7%). The median serum 25(OH) D3 level was 22 ng/mL (range, 6-64 ng/mL). L31 and Y93 RAVs at the NS5A region were detected in 3.7% (9/247) and 13.4% (33/247) of patients, respectively. Multivariate analysis identified vitamin D deficiency (serum 25(OH) D3 ≤ 20 ng/mL) (P = 5.91 × 10⁻ 5 , odds ratio = 5.015) and elderly age (>70 years) (P = 1.85 × 10 -3 , odds ratio = 3.364) as contributing independent factors associated with the presence of the L31 and/or Y93 RAVs. The Y93H RAV was detected in 25.9% (29/112) of patients with a vitamin D deficiency, and in 8.9% (12/135) of those with a serum 25(OH) D3 level >20 ng/mL (P = 4.90 × 10 -3 ). We showed that RAVs at the NS5A region are associated with vitamin D deficiency and elderly age, which may have a negative influence on innate/adaptive immune responses to hepatitis C virus infection. © 2016 The Japan Society of Hepatology.

  14. Baseline NS5A resistance associated substitutions may impair DAA response in real-world hepatitis C patients.

    Science.gov (United States)

    Carrasco, Itzíar; Arias, Ana; Benítez-Gutiérrez, Laura; Lledó, Gemma; Requena, Silvia; Cuesta, Miriam; Cuervas-Mons, Valentín; de Mendoza, Carmen

    2018-03-01

    Oral DAA have demonstrated high efficacy as treatment of hepatitis C. However, the presence of resistance-associated substitutions (RAS) at baseline has occasionally been associated with impaired treatment response. Herein, we examined the impact of baseline RAS at the HCV NS5A gene region on treatment response in a real-life setting. All hepatitis C patients treated with DAA including NS5A inhibitors at our institution were retrospectively examined. The virus NS5A gene was analyzed using population sequencing at baseline and after 24 weeks of completing therapy in all patients that failed. All changes recorded at positions 28, 29, 30, 31, 32, 58, 62, 92, and 93 were considered. A total of 166 patients were analyzed. HCV genotypes were as follows: G1a (31.9%), G1b (48.2%), G3 (10.2%), and G4 (9.6%). Overall, 69 (41.6%) patients were coinfected with HIV and 46.7% had advanced liver fibrosis (Metavir F3-F4). Sixty (36.1%) patients had at least one RAS at baseline, including M28A/G/T (5), Q30X (12), L31I/F/M/V (6), T58P/S (25), Q/E62D (1), A92 K (7), and Y93C/H (15). Overall, 4.8% had two or more RAS, being more frequent in G4 (12.5%) followed by G1b (6.3%) and G1a (1.9%). Of 10 (6%) patients that failed DAA therapy, five had baseline NS5A RAS. No association was found for specific baseline RAS, although changes at position 30 were more frequent in failures than cures (22.2% vs 6.4%, P = 0.074). Moreover, the presence of two or more RAS at baseline was more frequent in failures (HR: 7.2; P = 0.029). Upon failure, six patients showed emerging RAS, including Q30C/H/R (3), L31M (1), and Y93C/H (2). Baseline NS5A RAS are frequently seen in DAA-naïve HCV patients. Two or more baseline NS5A RAS were found in nearly 5% and were significantly associated to DAA failure. Therefore, baseline NS5A testing should be considered when HCV treatment is planned with NS5A inhibitors. © 2017 Wiley Periodicals, Inc.

  15. Circumvention of tumor multidrug resistance by a new annonaceous acetogenin: atemoyacin-B.

    Science.gov (United States)

    Fu, L W; Pan, Q C; Liang, Y J; Huang, H B

    1999-05-01

    To explore the effect of atemoyacin-B (Ate) on overcoming multidrug resistance (MDR). Bullatacin (Bul) was used as a positive control. Cytotoxic effects of Bul and Ate were studied with cell culture of human MDR breast adenocarcinoma cells, MCF-7/Dox and human KBv200 cells, and their parental sensitive cell lines MCF-7 and KB. Cytotoxicity was determined by tetrazolium (MTT) assay. The function of P-glycoprotein (P-gp) was examined by Fura 2-AM assay. Cellular accumulation of doxorubicin (Dox) was determined by fluorescence spectrophotometry. Apoptosis was measured by flow cytometry. IC50 of Ate for MCF-7/Dox, MCF-7, KBv200, and KB cells were 122, 120, 1.34, and 1.27 nmol.L-1, respectively. IC50 of Bul for MCF-7/Dox, MCF-7, KBv200, and KB cells were 0.60, 0.59, 0.04, and 0.04 nmol.L-1, respectively. The cytotoxicities of Bul and Ate to MDR cells were similar to those to parental sensitive cells. Bul and Ate markedly increased cellular Fura-2 and Dox accumulation in MCF-7/Dox cells, but not in MCF-7 cells. The rates of apoptosis in MDR cells were similar to those in sensitive cells induced by Ate. There was no cross-resistance of P-gp positive MCF-7/Dox and KBv200 cell lines to Bul and Ate as compared with their sensitive P-gp negative MCF-7 and KB cell lines. The mechanism of the circumvention of MDR was associated with the decrease of P-gp function and the increase of cellular drug accumulation in MDR cells.

  16. MRP- and BCL-2-mediated drug resistance in human SCLC: effects of apoptotic sphingolipids in vitro.

    Science.gov (United States)

    Khodadadian, M; Leroux, M E; Auzenne, E; Ghosh, S C; Farquhar, D; Evans, R; Spohn, W; Zou, Y; Klostergaard, J

    2009-10-01

    Multidrug-resistance-associated protein (MRP) and BCL-2 contribute to drug resistance expressed in SCLC. To establish whether MRP-mediated drug resistance affects sphingolipid (SL)-induced apoptosis in SCLC, we first examined the human SCLC cell line, UMCC-1, and its MRP over-expressing, drug-resistant subline, UMCC-1/VP. Despite significantly decreased sensitivity to doxorubicin (Dox) and to the etoposide, VP-16, the drug-selected line was essentially equally as sensitive to treatment with exogenous ceramide (Cer), sphingosine (Sp) or dimethyl-sphingosine (DMSP) as the parental line. Next, we observed that high BCL-2-expressing human H69 SCLC cells, that were approximately 160-fold more sensitive to Dox than their combined BCL-2 and MRP-over-expressing (H69AR) counterparts, were only approximately 5-fold more resistant to DMSP. Time-lapse fluorescence microscopy of either UMCC cell line treated with DMSP-Coumarin revealed comparable extents and kinetics of SL uptake, further ruling out MRP-mediated effects on drug uptake. DMSP potentiated the cytotoxic activity of VP-16 and Taxol, but not Dox, in drug-resistant UMCC-1/VP cells. However, this sensitization did not appear to involve DMSP-mediated effects on the function of MRP in drug export; nor did DMSP strongly shift the balance of pro-apoptotic Sps and anti-apoptotic Sp-1-Ps in these cells. We conclude that SL-induced apoptosis markedly overcomes or bypasses MRP-mediated drug resistance relevant to SCLC and may suggest a novel therapeutic approach to chemotherapy for these tumors.

  17. Multidrug resistance 1 gene polymorphisms may determine Crohn's disease behavior in patients from Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Ana Teresa P. Carvalho

    2014-01-01

    Full Text Available OBJECTIVES: Conflicting data from studies on the potential role of multidrug resistance 1 gene polymorphisms in inflammatory bowel disease may result from the analysis of genetically and geographically distinct populations. Here, we investigated whether multidrug resistance 1 gene polymorphisms are associated with inflammatory bowel diseases in patients from Rio de Janeiro. METHODS: We analyzed 123 Crohn's disease patients and 83 ulcerative colitis patients to determine the presence of the multidrug resistance 1 gene polymorphisms C1236T, G2677T and C3435T. In particular, the genotype frequencies of Crohn's disease and ulcerative colitis patients were analyzed. Genotype-phenotype associations with major clinical characteristics were established, and estimated risks were calculated for the mutations. RESULTS: No significant difference was observed in the genotype frequencies of the multidrug resistance 1 G2677T/A and C3435T polymorphisms between Crohn's disease and ulcerative colitis patients. In contrast, the C1236T polymorphism was significantly more common in Crohn's disease than in ulcerative colitis (p = 0.047. A significant association was also found between the multidrug resistance 1 C3435T polymorphism and the stricturing form of Crohn's disease (OR: 4.13; p = 0.009, whereas no association was found with penetrating behavior (OR: 0.33; p = 0.094. In Crohn's disease, a positive association was also found between the C3435T polymorphism and corticosteroid resistance/refractoriness (OR: 4.14; p = 0.010. However, no significant association was found between multidrug resistance 1 gene polymorphisms and UC subphenotypic categories. CONCLUSION: The multidrug resistance 1 gene polymorphism C3435T is associated with the stricturing phenotype and an inappropriate response to therapy in Crohn's disease. This association with Crohn's disease may support additional pathogenic roles for the multidrug resistance 1 gene in regulating gut

  18. Genome of the carbapenemase-producing clinical isolate Elizabethkingia miricola EM_CHUV and comparative genomics with Elizabethkingia meningoseptica and Elizabethkingia anophelis: evidence for intrinsic multidrug resistance trait of emerging pathogens.

    OpenAIRE

    Opota, O.; Diene, S.M.; Bertelli, C.; Prod'hom, G.; Eckert, P.; Greub, G.

    2017-01-01

    Elizabethkingia miricola is a Gram-negative non-fermenting rod emerging as a life-threatening human pathogen. The multidrug-resistant (MDR) carbapenemase-producing clinical isolate E. miricola EM_CHUV was recovered in the setting of severe nosocomial pneumonia. In this study, the genome of E. miricola EM_CHUV was sequenced and a functional analysis was performed, including a comparative genomic study with Elizabethkingia meningoseptica and Elizabethkingia anophelis. The resistome of EM_CHUV r...

  19. Virulence and genomic feature of multidrug resistant Campylobacter jejuni isolated from broiler chicken

    Directory of Open Access Journals (Sweden)

    Haihong Hao

    2016-10-01

    Full Text Available The aim of this study was to reveal the molecular mechanism involved in multidrug resistance and virulence of Campylobacter jejuni isolated from broiler chickens. The virulence of six multidrug resistant C. jejuni was determined by in vitro and in vivo methods. The de novo whole genome sequencing technology and molecular biology methods were used to analyze the genomic features associated with the multidrug resistance and virulence of a selected isolate (C. jejuni 1655. The comparative genomic analyses revealed a large number of single nucleotide polymorphisms, deletions, rearrangements, and inversions in C. jejuni 1655 compared to reference C. jejuni genomes. The co-emergence of Thr-86-Ile mutation in gyrA gene, A2075G mutation in 23S rRNA gene, tetO, aphA and aadE genes and pTet plasmid in C. jejuni 1655 contributed its multidrug resistance to fluoroquinolones, macrolides, tetracycline and aminoglycosides. The combination of multiple virulence genes may work together to confer the relative higher virulence in C. jejuni 1655. The co-existence of mobile gene elements (e.g. pTet and CRISPR-Cas system in C. jejuni 1655 may play an important role in the gene transfer and immune defense. The present study provides basic information of phenotypic and genomic features of C. jejuni 1655, a strain recently isolated from a chicken displaying multidrug resistance and relatively high level of virulence.

  20. Aggressive Regimens for Multidrug-Resistant Tuberculosis Reduce Recurrence

    Science.gov (United States)

    Franke, Molly F.; Appleton, Sasha C.; Mitnick, Carole D.; Furin, Jennifer J.; Bayona, Jaime; Chalco, Katiuska; Shin, Sonya; Murray, Megan; Becerra, Mercedes C.

    2013-01-01

    Background. Recurrent tuberculosis disease occurs within 2 years in as few as 1% and as many as 29% of individuals successfully treated for multidrug-resistant (MDR) tuberculosis. A better understanding of treatment-related factors associated with an elevated risk of recurrent tuberculosis after cure is urgently needed to optimize MDR tuberculosis therapy. Methods. We conducted a retrospective cohort study among adults successfully treated for MDR tuberculosis in Peru. We used multivariable Cox proportional hazards regression analysis to examine whether receipt of an aggressive MDR tuberculosis regimen for ≥18 months following sputum conversion from positive to negative was associated with a reduced rate of recurrent tuberculosis. Results. Among 402 patients, the median duration of follow-up was 40.5 months (interquartile range, 21.2–53.4). Receipt of an aggressive MDR tuberculosis regimen for ≥18 months following sputum conversion was associated with a lower risk of recurrent tuberculosis (hazard ratio, 0.40 [95% confidence interval, 0.17–0.96]; P = .04). A baseline diagnosis of diabetes mellitus also predicted recurrent tuberculosis (hazard ratio, 10.47 [95% confidence interval, 2.17–50.60]; P = .004). Conclusions. Individuals who received an aggressive MDR tuberculosis regimen for ≥18 months following sputum conversion experienced a lower rate of recurrence after cure. Efforts to ensure that an aggressive regimen is accessible to all patients with MDR tuberculosis, such as minimization of sequential ineffective regimens, expanded drug access, and development of new MDR tuberculosis compounds, are critical to reducing tuberculosis recurrence in this population. Patients with diabetes mellitus should be carefully managed during initial treatment and followed closely for recurrent disease. PMID:23223591

  1. Imaging and Targeted Therapy of Multidrug Resistance. Final Report

    International Nuclear Information System (INIS)

    Piwnica-Worms, David

    2009-01-01

    One focus area of DOE Office of Science was the Imaging of Gene Expression in Health and Disease in real time in tissue culture, whole animals and ultimately patients. Investigators of the Molecular Imaging Group, Washington University Medical School, ascribed to this objective and a major focus of this group directly tied into the DOE program through their efforts targeting the multidrug resistance gene (MDR1). Our plans for continuation of the program were to extend and build on this line of investigation, incorporating new molecular tools into our methodology to selectively inhibit MDR1 gene expression with novel modulation strategies. Two approaches were to be pursued: (1) high throughput screening of compounds that disrupted mutant p53 transactivation of the MDR1 promoter, and (2) knockdown of MDR1 messenger RNA with retroviral-mediated delivery of small interfering RNA constructs. These would be combined with our continuing effort to synthesize ligands and examine structure-activity relationships of bis-salicylaldehydes labeled with gallium-68 to generate PET agents for imaging MDR1 P-glycoprotein function. We would be uniquely positioned to correlate therapeutic modulation of MDR1 gene expression and protein function in the same systems in vivo using PET and bioluminescence reporters. Use of animal models such as the mdr1a/1b(-/-) gene deleted mice would also have enabled refined analysis of modulation and tracer pharmacokinetics in vivo. Overall, this DOE program and resultant tools would enable direct monitoring of novel therapeutic strategies and the MDR phenotype in relation to gene expression and protein function in vivo.

  2. Treatment strategy for a multidrug-resistant Klebsiella UTI.

    Science.gov (United States)

    Fleming, Erin; Heil, Emily L; Hynicka, Lauren M

    2014-01-01

    To describe the management strategy for a multidrug-resistant (MDR) Klebsiella urinary tract infection (UTI). A 69-year-old Caucasian woman with a past medical history of recurrent UTIs and a right-lung transplant presented with fever to 101.4°F, chills, malaise, and cloudy, foul-smelling urine for approximately 1 week. She was found to have a MDR Klebsiella UTI that was sensitive to tigecycline and cefepime. To further evaluate the degree of resistance Etest minimum inhibitory concentrations were requested for cefepime, amikacin, meropenem, and ertapenem. The patient received a 14-day course of amikacin, which resulted in resolution of her symptoms. One month later, the patient's UTI symptoms returned. The urine culture again grew MDR Klebsiella, sensitive only to tigecycline. Fosfomycin was initiated and resulted in limited resolution of her symptoms. Colistin was started, however, therapy was discontinued on day 5 secondary to the development of acute kidney injury. Despite the short course of therapy, the patient's symptoms resolved. The case presented lends itself well to numerous discussion items that are important to consider when determining optimal treatment for MDR Gram-negative bacilli (GNBs). Susceptibility testing is an important tool for optimizing antibiotic therapy, however, automated systems may overestimate the susceptibility profile for a MDR GNB. Treatment strategies evaluated to treat MDR GNB, include combination therapy with a carbepenem and synergy using polymyxin. We have described the management strategy for a MDR Klebsiella UTI, the consequences of the initial management strategy, and potential strategies to manage these types of infections in future patients.

  3. Prevalence and characterization of multi-drug resistant Salmonella Enterica serovar Gallinarum biovar Pullorum and Gallinarum from chicken

    Directory of Open Access Journals (Sweden)

    Md. Shafiullah Parvej

    2016-01-01

    Full Text Available Aim: Salmonella is an important zoonotic pathogen responsible for animal and human diseases. The aim of the present study was to determine the prevalence and stereotyping of Salmonella isolates isolated from apparently healthy poultry. Furthermore, the clonal relatedness among the isolated Salmonella serovars was assessed. Materials and Methods: A total of 150 cloacal swab samples from apparently healthy chickens were collected, and were subjected for the isolation and identification of associated Salmonella organisms. The isolated colonies were identified and characterized on the basis of morphology, cultural characters, biochemical tests, slide agglutination test, polymerase chain reaction, and pulsed-field gel electrophoresis (PFGE. Antibiotic sensitivity patterns were also investigated using commonly used antibiotics. Results: Of the 150 samples, 11 (7.33% produced characteristics pink colony with black center on XLD agar medium, and all were culturally and biochemically confirmed to be Salmonella. All possessed serovar-specific gene SpeF and reacted uniformly with group D antisera, suggesting that all of the isolates were Salmonella Enterica serovar Gallinarum, biovar Pullorum and/or Gallinarum. Antimicrobial susceptibility testing revealed that 54.54% of the isolated Salmonella Enterica serovars were highly sensitive to ciprofloxacin, whereas the 81.81% isolates were resistant to amoxycillin, doxycycline, kanamycin, gentamycin, and tetracycline. Pulsed-field gel electrophoresis of the XbaI-digested genomic DNA exhibited identical banding patterns, suggesting that the multidrug resistant Salmonella Enterica serovars occurring in commercial layers are highly clonal in Bangladesh. Conclusion: The present study was conducted to find out the prevalence of poultry Salmonella in layer chicken and to find out the clonal relationship among them. The data in this study suggest the prevalence of Salmonella Enterica, which is multidrug resistant and

  4. Draft genome sequence of a multidrug-resistant Chryseobacterium indologenes isolate from Malaysia

    Directory of Open Access Journals (Sweden)

    Choo Yee Yu

    2016-03-01

    Full Text Available Chryseobacterium indologenes is an emerging pathogen which poses a threat in clinical healthcare setting due to its multidrug-resistant phenotype and its common association with nosocomial infections. Here, we report the draft genome of a multidrug-resistant C. indologenes CI_885 isolated in 2014 from Malaysia. The 908,704-kb genome harbors a repertoire of putative antibiotic resistance determinants which may elucidate the molecular basis and underlying mechanisms of its resistant to various classes of antibiotics. The genome sequence has been deposited in DDBJ/EMBL/GenBank under the accession number LJOD00000000. Keywords: Chryseobacterium indologenes, Genome, Multi-drug resistant, blaIND, Next generation sequencing

  5. The commensal infant gut meta-mobilome as a potential reservoir for persistent multidrug resistance integrons.

    Science.gov (United States)

    Ravi, Anuradha; Avershina, Ekaterina; Foley, Steven L; Ludvigsen, Jane; Storrø, Ola; Øien, Torbjørn; Johnsen, Roar; McCartney, Anne L; L'Abée-Lund, Trine M; Rudi, Knut

    2015-10-28

    Despite the accumulating knowledge on the development and establishment of the gut microbiota, its role as a reservoir for multidrug resistance is not well understood. This study investigated the prevalence and persistence patterns of an integrase gene (int1), used as a proxy for integrons (which often carry multiple antimicrobial resistance genes), in the fecal microbiota of 147 mothers and their children sampled longitudinally from birth to 2 years. The study showed the int1 gene was detected in 15% of the study population, and apparently more persistent than the microbial community structure itself. We found int1 to be persistent throughout the first two years of life, as well as between mothers and their 2-year-old children. Metagenome sequencing revealed integrons in the gut meta-mobilome that were associated with plasmids and multidrug resistance. In conclusion, the persistent nature of integrons in the infant gut microbiota makes it a potential reservoir of mobile multidrug resistance.

  6. Crystal Structure of a Plant Multidrug and Toxic Compound Extrusion Family Protein.

    Science.gov (United States)

    Tanaka, Yoshiki; Iwaki, Shigehiro; Tsukazaki, Tomoya

    2017-09-05

    The multidrug and toxic compound extrusion (MATE) family of proteins consists of transporters responsible for multidrug resistance in prokaryotes. In plants, a number of MATE proteins were identified by recent genomic and functional studies, which imply that the proteins have substrate-specific transport functions instead of multidrug extrusion. The three-dimensional structure of eukaryotic MATE proteins, including those of plants, has not been reported, preventing a better understanding of the molecular mechanism of these proteins. Here, we describe the crystal structure of a MATE protein from the plant Camelina sativa at 2.9 Å resolution. Two sets of six transmembrane α helices, assembled pseudo-symmetrically, possess a negatively charged internal pocket with an outward-facing shape. The crystal structure provides insight into the diversity of plant MATE proteins and their substrate recognition and transport through the membrane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Potential strategies for the eradication of multidrug-resistant Gram-negative bacterial infections.

    Science.gov (United States)

    Huwaitat, Rawan; McCloskey, Alice P; Gilmore, Brendan F; Laverty, Garry

    2016-07-01

    Antimicrobial resistance is one of the leading threats to society. The increasing burden of multidrug-resistant Gram-negative infection is particularly concerning as such bacteria are demonstrating resistance to nearly all currently licensed therapies. Various strategies have been hypothesized to treat multidrug-resistant Gram-negative infections including: targeting the Gram-negative outer membrane; neutralization of lipopolysaccharide; inhibition of bacterial efflux pumps and prevention of protein folding. Silver and silver nanoparticles, fusogenic liposomes and nanotubes are potential strategies for extending the activity of licensed, Gram-positive selective, antibiotics to Gram-negatives. This may serve as a strategy to fill the current void in pharmaceutical development in the short term. This review outlines the most promising strategies that could be implemented to solve the threat of multidrug-resistant Gram-negative infections.

  8. Characterization of putative multidrug resistance transporters of the major facilitator-superfamily expressed in Salmonella Typhi

    DEFF Research Database (Denmark)

    Shaheen, Aqsa; Ismat, Fouzia; Iqbal, Mazhar

    2015-01-01

    Multidrug resistance mediated by efflux pumps is a well-known phenomenon in infectious bacteria. Although much work has been carried out to characterize multidrug efflux pumps in Gram-negative and Gram-positive bacteria, such information is still lacking for many deadly pathogens. The aim...... of this study was to gain insight into the substrate specificity of previously uncharacterized transporters of Salmonella Typhi to identify their role in the development of multidrug resistance. S. Typhi genes encoding putative members of the major facilitator superfamily were cloned and expressed in the drug......-hypersensitive Escherichia coli strain KAM42, and tested for transport of 25 antibacterial compounds, including representative antibiotics of various classes, antiseptics, dyes and detergents. Of the 15 tested putative transporters, STY0901, STY2458 and STY4874 exhibited a drug-resistance phenotype. Among these, STY4874...

  9. Bloodstream infections caused by multi-drug resistant Proteus mirabilis: Epidemiology, risk factors and impact of multi-drug resistance.

    Science.gov (United States)

    Korytny, Alexander; Riesenberg, Klaris; Saidel-Odes, Lisa; Schlaeffer, Fransisc; Borer, Abraham

    2016-01-01

    The prevalence of antimicrobial co-resistance among ESBL-producing Enterobactereaceae is extremely high in Israel. Multidrug-resistant Proteus mirabilis strains (MDR-PM), resistant to almost all antibiotic classes have been described. The aim was to determine the risk factors for bloodstream infections caused by MDR-PM and clinical outcomes. A retrospective case-control study. Adult patients with PM bacteremia during 7 years were identified retrospectively and their files reviewed for demographics, underlying diseases, Charlson Comorbidity Index, treatment and outcome. One hundred and eighty patients with PM-bloodstream infection (BSI) were included; 90 cases with MDR-PM and 90 controls with sensitive PM (S-PM). Compared to controls, cases more frequently were from nursing homes, had recurrent hospital admissions in the past year and received antibiotic therapy in the previous 3 months, were bedridden and suffered from peripheral vascular disease and peptic ulcer disease (p < 0.001). Two-thirds of the MDR-PM isolates were ESBL-producers vs 4.4% of S-PM isolates (p < 0.001, OR = 47.6, 95% CI = 15.9-142.6). In-hospital crude mortality rate of patients with MDR-PM BSI was 37.7% vs 23.3% in those with S-PM BSI (p = 0.0359, OR = 2, 95% CI = 1.4-3.81). PM bacteremia in elderly and functionally-dependent patients is likely to be caused by nearly pan-resistant PM strains in the institution; 51.8% of the patients received inappropriate empiric antibiotic treatment. The crude mortality rate of patients with MDR-PM BSI was significantly higher than that of patients with S-PM BSI.

  10. Draft Genome Sequences of Six Multidrug-Resistant Clinical Strains of Acinetobacter baumannii, Isolated at Two Major Hospitals in Kuwait.

    Science.gov (United States)

    Nasser, Kother; Mustafa, Abu Salim; Khan, Mohd Wasif; Purohit, Prashant; Al-Obaid, Inaam; Dhar, Rita; Al-Fouzan, Wadha

    2018-04-19

    Acinetobacter baumannii is an important opportunistic pathogen in global health care settings. Its dissemination and multidrug resistance pose an issue with treatment and outbreak control. Here, we present draft genome assemblies of six multidrug-resistant clinical strains of A. baumannii isolated from patients admitted to one of two major hospitals in Kuwait. Copyright © 2018 Nasser et al.

  11. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition

    Directory of Open Access Journals (Sweden)

    Morales Eva

    2012-05-01

    Full Text Available Abstract Background We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. Methods A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain. All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Results Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros. In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively. Conclusions P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact.

  12. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition.

    Science.gov (United States)

    Morales, Eva; Cots, Francesc; Sala, Maria; Comas, Mercè; Belvis, Francesc; Riu, Marta; Salvadó, Margarita; Grau, Santiago; Horcajada, Juan P; Montero, Maria Milagro; Castells, Xavier

    2012-05-23

    We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain). All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros). In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively). P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact.

  13. Multidrug-resistant tuberculosis: The problem and some priorities in controlling it

    Directory of Open Access Journals (Sweden)

    Sven Hoffner

    2016-01-01

    Full Text Available Multidrug-resistant tuberculosis (MDR-TB, and even more severe forms of drug resistance, cause significant problems and costs for national TB control programs and constitutes an increasing public health concern globally. In parts of the former Soviet Union, the prevalence of MDR-TB is as high as 50% and one third of all newly detected TB patients are infected with MDR strains. Such strains transmit and certain MDR-TB clones constitute an important part of the problem, especially in high MDR-TB burden areas. There are several actions that should be given priority to control this situation. A first important step is timely detection of all patients infected with resistant strains, which makes possible prompt change of standard TB chemotherapy to more effective combinations of drugs. This is important both from the public health and clinical perspectives, since it renders the individual patient noninfectious and subsequently cured. Early detection of MDR-TB also allows infection control to be focused where it is most needed. Strengthened infection control measures are crucial for limiting the ongoing spread of resistant TB in hospitals and elsewhere. In addition, a sustainable drug supply must be ensured to guarantee that all patients are initiated on effective treatment and can avoid interruptions due to drug shortages. An extra focus should be put on vulnerable cases, such as immunosuppressed individuals, prisoners, drug addicts, and migrants, in whom TB is generally more frequent and difficult to control than in the normal population. Finally, political support is needed to ensure necessary infrastructures, human and financial resources to effectively control drug resistant TB.

  14. Multidrug-resistant tuberculosis: The problem and some priorities in controlling it.

    Science.gov (United States)

    Hoffner, Sven

    2016-12-01

    Multidrug-resistant tuberculosis (MDR-TB), and even more severe forms of drug resistance, cause significant problems and costs for national TB control programs and constitutes an increasing public health concern globally. In parts of the former Soviet Union, the prevalence of MDR-TB is as high as 50% and one third of all newly detected TB patients are infected with MDR strains. Such strains transmit and certain MDR-TB clones constitute an important part of the problem, especially in high MDR-TB burden areas. There are several actions that should be given priority to control this situation. A first important step is timely detection of all patients infected with resistant strains, which makes possible prompt change of standard TB chemotherapy to more effective combinations of drugs. This is important both from the public health and clinical perspectives, since it renders the individual patient noninfectious and subsequently cured. Early detection of MDR-TB also allows infection control to be focused where it is most needed. Strengthened infection control measures are crucial for limiting the ongoing spread of resistant TB in hospitals and elsewhere. In addition, a sustainable drug supply must be ensured to guarantee that all patients are initiated on effective treatment and can avoid interruptions due to drug shortages. An extra focus should be put on vulnerable cases, such as immunosuppressed individuals, prisoners, drug addicts, and migrants, in whom TB is generally more frequent and difficult to control than in the normal population. Finally, political support is needed to ensure necessary infrastructures, human and financial resources to effectively control drug resistant TB. Copyright © 2016.

  15. Vitamin K3 Induces the Expression of the Stenotrophomonas maltophilia SmeVWX Multidrug Efflux Pump.

    Science.gov (United States)

    Blanco, P; Corona, F; Sánchez, M B; Martínez, J L

    2017-05-01

    Stenotrophomonas maltophilia is an opportunistic pathogen with increasing prevalence, which is able to cause infections in immunocompromised patients or in those with a previous pathology. The treatment of the infections caused by this bacterium is often complicated due to the several intrinsic antibiotic resistance mechanisms that it presents. Multidrug efflux pumps are among the best-studied mechanisms of S. maltophilia antibiotic resistance. Some of these efflux pumps have a basal expression level but, in general, their expression is often low and only reaches high levels when the local regulator is mutated or bacteria are in the presence of an effector. In the current work, we have developed a yellow fluorescent protein (YFP)-based sensor with the aim to identify effectors able to trigger the expression of SmeVWX, an efflux pump that confers resistance to quinolones, chloramphenicol, and tetracycline when it is expressed at high levels. With this purpose in mind, we tested a variety of different compounds and analyzed the fluorescence signal given by the expression of YFP under the control of the smeVWX promoter. Among the tested compounds, vitamin K 3 , which is a compound belonging to the 2-methyl-1,4-naphthoquinone family, is produced by plants in defense against infection, and has increasing importance in human therapy, was able to induce the expression of the SmeVWX efflux pump. In addition, a decrease in the susceptibility of S. maltophilia to ofloxacin and chloramphenicol was observed in the presence of vitamin K 3 , in both wild-type and smeW -deficient strains. Copyright © 2017 American Society for Microbiology.

  16. Multidrug resistant commensal Escherichia coli in animals and its impact for public health

    Directory of Open Access Journals (Sweden)

    Ama eSzmolka

    2013-09-01

    Full Text Available After the era of plentiful antibiotics we are alarmed by the increasing number of antibiotic resistant strains. The genetic flexibility and adaptability of E. coli to constantly changing environments allows to acquire a great number of antimicrobial resistance mechanisms. Commensal strains of E. coli as versatile residents of the lower intestine are also repeatedly challenged by antimicrobial pressures during the lifetime of their host. As a consequence, commensal strains acquire the respective resistance genes, and/or develop resistant mutants in order to survive and maintain microbial homeostasis in the lower intestinal tract. Thus, commensal E. coli strains are regarded as indicators of antimicrobial load on their hosts. This chapter provides a short historic background of the appearance and presumed origin and transfer of antimicrobial resistance genes in commensal intestinal E. coli of animals with comparative information on their pathogenic counterparts. The dynamics, development and ways of evolution of resistance in the E. coli populations differ according to hosts, resistance mechanisms and antimicrobial classes used. The most frequent tools of E. coli against a variety of antimicrobials are the efflux pumps and mobile resistance mechanisms carried by plasmids and/or other transferable elements. The emergence of hybrid plasmids (both resistance and virulence among E. coli is of further concern. Co-existence and co-transfer of these bad genes in this huge and most versatile in vivo compartment may represent an increased public health risk in the future. Significance of multidrug resistant (MDR commensal E. coli seem to be highest in the food animal industry, acting as reservoir for intra- and interspecific exchange and a source for spread of MDR determinants through contaminated food to humans. Thus, public health potential of MDR commensal E. coli of food animals can be a concern and needs monitoring and more molecular analysis in the

  17. Fallopia japonica, a Natural Modulator, Can Overcome Multidrug Resistance in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Safaa Yehia Eid

    2015-01-01

    Full Text Available Resistance of cancer cells to chemotherapy is controlled by the decrease of intracellular drug accumulation, increase of detoxification, and diminished propensity of cancer cells to undergo apoptosis. ATP-binding cassette (ABC membrane transporters with intracellular metabolic enzymes contribute to the complex and unresolved phenomenon of multidrug resistance (MDR. Natural products as alternative medicine have great potential to discover new MDR inhibitors with diverse modes of action. In this study, we characterized several extracts of traditional Chinese medicine (TCM plants (N = 16 for their interaction with ABC transporters, cytochrome P3A4 (CYP3A4, and glutathione-S-transferase (GST activities and their cytotoxic effect on different cancer cell lines. Fallopia japonica (FJ (Polygonaceae shows potent inhibitory effect on CYP3A4 P-glycoprotein activity about 1.8-fold when compared to verapamil as positive control. FJ shows significant inhibitory effect (39.81% compared with the known inhibitor ketoconazole and 100 μg/mL inhibited GST activity to 14 μmol/min/mL. FJ shows moderate cytotoxicity in human Caco-2, HepG-2, and HeLa cell lines; IC50 values were 630.98, 198.80, and 317.37 µg/mL, respectively. LC-ESI-MS were used to identify and quantify the most abundant compounds, emodin, polydatin, and resveratrol, in the most active extract of FJ. Here, we present the prospect of using Fallopia japonica as natural products to modulate the function of ABC drug transporters. We are conducting future study to evaluate the ability of the major active secondary metabolites of Fallopia japonica to modulate MDR and their impact in case of failure of chemotherapy.

  18. HIV, multidrug-resistant TB and depressive symptoms: when three conditions collide.

    Science.gov (United States)

    Das, Mrinalini; Isaakidis, Petros; Van den Bergh, Rafael; Kumar, Ajay M V; Nagaraja, Sharath Burugina; Valikayath, Asmaa; Jha, Santosh; Jadhav, Bindoo; Ladomirska, Joanna

    2014-01-01

    Management of multidrug-resistant TB (MDR-TB) patients co-infected with human immunodeficiency virus (HIV) is highly challenging. Such patients are subject to long and potentially toxic treatments and may develop a number of different psychiatric illnesses such as anxiety and depressive disorders. A mental health assessment before MDR-TB treatment initiation may assist in early diagnosis and better management of psychiatric illnesses in patients already having two stigmatising and debilitating diseases. To address limited evidence on the baseline psychiatric conditions of HIV-infected MDR-TB patients, we aimed to document the levels of depressive symptoms at baseline, and any alteration following individualized clinical and psychological support during MDR-TB therapy, using the Patient Health Questionnaire-9 (PHQ-9) tool, among HIV-infected patients. This was a retrospective review of the medical records of an adult (aged >15 years) HIV/MDR-TB cohort registered for care during the period of August 2012 through to March 2014. A total of 45 HIV/MDR-TB patients underwent baseline assessment using the PHQ-9 tool, and seven (16%) were found to have depressive symptoms. Of these, four patients had moderate to severe depressive symptoms. Individualized psychological and clinical support was administered to these patients. Reassessments were carried out for all patients after 3 months of follow-up, except one, who died during the period. Among these 44 patients, three with baseline depressive symptoms still had depressive symptoms. However, improvements were observed in all but one after 3 months of follow-up. Psychiatric illnesses, including depressive symptoms, during MDR-TB treatment demand attention. Routine administration of baseline mental health assessments by trained staff has the potential to assist in determining appropriate measures for the management of depressive symptoms during MDR-TB treatment, and help in improving overall treatment outcomes. We recommend

  19. Fighting infections due to multidrug-resistant Gram-positive pathogens.

    Science.gov (United States)

    Cornaglia, G

    2009-03-01

    Growing bacterial resistance in Gram-positive pathogens means that what were once effective and inexpensive treatments for infections caused by these bacteria are now being seriously questioned, including penicillin and macrolides for use against pneumococcal infections and-in hospitals-oxacillin for use against staphylococcal infections. As a whole, multidrug-resistant (MDR) Gram-positive pathogens are rapidly becoming an urgent and sometimes unmanageable clinical problem. Nevertheless, and despite decades of research into the effects of antibiotics, the actual risk posed to human health by antibiotic resistance has been poorly defined; the lack of reliable data concerning the outcomes resulting from antimicrobial resistance stems, in part, from problems with study designs and the methods used in resistence determination. Surprisingly little is known, too, about the actual effectiveness of the many types of intervention aimed at controlling antibiotic resistance. New antibiotics active against MDR Gram-positive pathogens have been recently introduced into clinical practice, and the antibiotic pipeline contains additional compounds at an advanced stage of development, including new glycopeptides, new anti-methicillin-resistant Staphylococcus aureus (MRSA) beta-lactams, and new diaminopyrimidines. Many novel antimicrobial agents are likely to be niche products, endowed with narrow antibacterial spectra and/or targeted at specific clinical problems. Therefore, an important educational goal will be to change the current, long-lasting attitudes of both physicians and customers towards broad-spectrum and multipurpose compounds. Scientific societies, such as the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), must play a leading role in this process.

  20. Diabetes is Associated with Severe Adverse Events in Multidrug-Resistant Tuberculosis.

    Science.gov (United States)

    Muñoz-Torrico, Marcela; Caminero-Luna, José; Migliori, Giovanni Battista; D'Ambrosio, Lia; Carrillo-Alduenda, José Luis; Villareal-Velarde, Héctor; Torres-Cruz, Alfredo; Flores-Vergara, Héctor; Martínez-Mendoza, Dina; García-Sancho, Cecilia; Centis, Rosella; Salazar-Lezama, Miguel Ángel; Pérez-Padilla, Rogelio

    2017-05-01

    Diabetes mellitus (DM), a very common disease in Mexico, is a well-known risk factor for tuberculosis (TB). However, it is not known by which extent DM predisposes to adverse events (AE) to anti-TB drugs and/or to worse outcomes in patients with multidrug-resistant (MDR-TB) and extensively drug-resistant TB (XDR-TB). The main objective of this study was to describe the outcomes of TB treatment, the impact of DM and the prevalence of AE in a cohort of patients with MDR-/XDR pulmonary TB treated at the national TB referral centre in Mexico City. Ninety patients were enrolled between 2010 and 2015: 73 with MDR-TB (81.1%), 11 with pre-XDR-TB (12.2%) and 6 (6.7%) with XDR-TB, including 49 (54.4%) with DM, and 3 with Human Immunodeficiency Virus (HIV) co-infection (3.3%). In 98% of patients, diagnosis was made by culture and drug susceptibility testing, while in a single case the diagnosis was made by a molecular test. The presence of DM was associated with an increased risk of serious drug-related AEs, such as nephrotoxicity (Odds Ratio [OR]=6.5; 95% Confidence Interval [95% CI]: 1.9-21.8) and hypothyroidism (OR=8.8; 95% CI: 1.8-54.2), but not for a worse outcome. Our data suggest that DM does not impact second-line TB treatment outcomes, but patients with DM have a higher risk of developing serious AEs to drug-resistant TB treatment, such as nephrotoxicity and hypothyroidism. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. MRSA and multidrug-resistant Staphylococcus aureus in U.S. retail meats, 2010-2011.

    Science.gov (United States)

    Ge, Beilei; Mukherjee, Sampa; Hsu, Chih-Hao; Davis, Johnnie A; Tran, Thu Thuy T; Yang, Qianru; Abbott, Jason W; Ayers, Sherry L; Young, Shenia R; Crarey, Emily T; Womack, Niketta A; Zhao, Shaohua; McDermott, Patrick F

    2017-04-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has been detected in retail meats, although large-scale studies are scarce. We conducted a one-year survey in 2010-2011 within the framework of the National Antimicrobial Resistance Monitoring System. Among 3520 retail meats collected from eight U.S. states, 982 (27.9%) contained S. aureus and 66 (1.9%) were positive for MRSA. Approximately 10.4% (107/1032) of S. aureus isolates, including 37.2% (29/78) of MRSA, were multidrug-resistant (MDRSA). Turkey had the highest MRSA prevalence (3.5%), followed by pork (1.9%), beef (1.7%), and chicken (0.3%). Whole-genome sequencing was performed for all 66 non-redundant MRSA. Among five multilocus sequence types identified, ST8 (72.7%) and ST5 (22.7%) were most common and livestock-associated MRSA ST398 was assigned to one pork isolate. Eleven spa types were represented, predominately t008 (43.9%) and t2031 (22.7%). All four types of meats harbored t008, whereas t2031 was recovered from turkey only. The majority of MRSA (84.8%) possessed SCCmec IV and 62.1% harbored Panton-Valentine leukocidin. Pulsed-field gel electrophoresis showed that all ST8 MRSA belonged to the predominant human epidemic clone USA300, and others included USA100 and USA200. We conclude that a diverse MRSA population was present in U.S. retail meats, albeit at low prevalence. Published by Elsevier Ltd.

  2. The emergence and outbreak of multidrug-resistant typhoid fever in China.

    Science.gov (United States)

    Yan, Meiying; Li, Xinlan; Liao, Qiaohong; Li, Fang; Zhang, Jing; Kan, Biao

    2016-06-22

    Typhoid fever remains a severe public health problem in developing countries. The emergence of resistant typhoid, particularly multidrug-resistant typhoid infections, highlights the necessity of monitoring the resistance characteristics of this invasive pathogen. In this study, we report a typhoid fever outbreak caused by multidrug-resistant Salmonella enterica serovar Typhi strains with an ACSSxtT pattern. Resistance genes conferring these phenotypes were harbored by a large conjugative plasmid, which increases the threat of Salmonella Typhi and thus requires close surveillance for dissemination of strains containing such genes.

  3. Multidrug resistance in Pseudomonas aeruginosa isolated from nosocomial respiratory and urinary infections in Aleppo, Syria.

    Science.gov (United States)

    Mahfoud, Maysa; Al Najjar, Mona; Hamzeh, Abdul Rezzak

    2015-02-19

    Pseudomonas aeruginosa represents a serious clinical challenge due to its frequent involvement in nosocomial infections and its tendency towards multidrug resistance. This study uncovered antibiotic susceptibility patterns in 177 isolates from inpatients in three key hospitals in Aleppo, the largest city in Syria. Exceptionally low susceptibility to most routinely used antibiotics was uncovered; resistance to ciprofloxacin and gentamicin was 64.9% and 70.3%, respectively. Contrarily, susceptibility to colistin was the highest (89.1%). Multidrug resistance was rife, found at a rate of 53.67% among studied P. aeruginosa isolates.

  4. MarA-like regulator of multidrug resistance in Yersinia pestis.

    Science.gov (United States)

    Udani, Rupa A; Levy, Stuart B

    2006-09-01

    MarA47(Yp) from Yersinia pestis, showing 47% identity to Escherichia coli MarA in its N terminus, caused resistance to antibiotics and to organic solvents when expressed in both E. coli and Y. pestis. Resistance was linked to increased expression of the AcrAB multidrug efflux pump. In four of five spontaneous multidrug-resistant mutants of Y. pestis independently selected by growth on tetracycline, the marA47(Yp) gene was overexpressed. The findings suggest that marA47(Yp) is a marA ortholog in Y. pestis.

  5. Transfer and persistence of a multi-drug resistance plasmid in situ of the infant gut microbiota in the absence of antibiotic treatment

    DEFF Research Database (Denmark)

    Gumpert, Heidi; Kubicek-Sutherland, Jessica Z.; Porse, Andreas

    2017-01-01

    lineage was maintained for months, demonstrating that antibiotic resistance genes can disseminate and persist in the gut microbiome; even in absence of antibiotic selection. Furthermore, through in vivo competition assays, we suggest that the resistant transconjugant can persist through a fitness......The microbial ecosystem residing in the human gut is believed to play an important role in horizontal exchange of virulence and antibiotic resistance genes that threatens human health. While the diversity of gut-microorganisms and their genetic content has been studied extensively, high...... infections, as well as the loss and acquisition of plasmids in these lineages during their colonization of the human gut. In particular, we captured the exchange of multidrug resistance genes, and identified a clinically relevant conjugative plasmid mediating the transfer. This resistant transconjugant...

  6. Comparative genomic analysis of multidrug-resistant Streptococcus pneumoniae isolates

    Directory of Open Access Journals (Sweden)

    Pan F

    2018-05-01

    Full Text Available Fen Pan,1 Hong Zhang,1 Xiaoyan Dong,2 Weixing Ye,3 Ping He,4 Shulin Zhang,4 Jeff Xianchao Zhu,5 Nanbert Zhong1,2,6 1Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China; 2Department of Respiratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China; 3Shanghai Personal Biotechnology Co., Ltd, Shanghai, China; 4Department of Medical Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; 5Zhejiang Bioruida Biotechnology co. Ltd, Zhejiang, China; 6New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA Introduction: Multidrug resistance in Streptococcus pneumoniae has emerged as a serious problem to public health. A further understanding of the genetic diversity in antibiotic-resistant S. pneumoniae isolates is needed. Methods: We conducted whole-genome resequencing for 25 pneumococcal strains isolated from children with different antimicrobial resistance profiles. Comparative analysis focus on detection of single-nucleotide polymorphisms (SNPs and insertions and deletions (indels was conducted. Moreover, phylogenetic analysis was applied to investigate the genetic relationship among these strains. Results: The genome size of the isolates was ~2.1 Mbp, covering >90% of the total estimated size of the reference genome. The overall G+C% content was ~39.5%, and there were 2,200–2,400 open reading frames. All isolates with different drug resistance profiles harbored many indels (range 131–171 and SNPs (range 16,103–28,128. Genetic diversity analysis showed that the variation of different genes were associated with specific antibiotic resistance. Known antibiotic resistance genes (pbps, murMN, ciaH, rplD, sulA, and dpr were identified, and new genes (regR, argH, trkH, and PTS-EII closely related with antibiotic resistance were found, although these genes were primarily annotated

  7. Molecular characterization of multidrug-resistant Klebsiella pneumoniae isolates

    Directory of Open Access Journals (Sweden)

    Xiang-hua Hou

    2015-09-01

    Full Text Available Klebsiella pneumoniae is an important cause of healthcare-associated infections worldwide. Selective pressure, the extensive use of antibiotics, and the conjugational transmission of antibiotic resistance genes across bacterial species and genera facilitate the emergence of multidrug-resistant (MDR K. pneumoniae. Here, we examined the occurrence, phenotypes and genetic features of MDR K. pneumoniae isolated from patients in intensive care units (ICUs at the First Affiliated Hospital of Xiamen University in Xiamen, China, from January to December 2011. Thirty-eight MDR K. pneumoniae strains were collected. These MDR K. pneumoniae isolates possessed at least seven antibiotic resistance determinants, which contribute to the high-level resistance of these bacteria to aminoglycosides, macrolides, quinolones and β-lactams. Among these isolates, 24 strains were extended-spectrum β-lactamase (ESBL producers, 2 strains were AmpC producers, and 12 strains were both ESBL and AmpC producers. The 38 MDR isolates also contained class I (28/38 and class II integrons (10/38. All 28 class I-positive isolates contained aacC1, aacC4, orfX, orfX’ and aadA1 genes. β-lactam resistance was conferred through blaSHV (22/38, blaTEM (10/38, and blaCTX-M (7/38. The highly conserved blaKPC-2 (37/38 and blaOXA-23(1/38 alleles were responsible for carbapenem resistance, and a gyrAsite mutation (27/38 and the plasmid-mediated qnrB gene (13/38 were responsible for quinolone resistance. Repetitive-sequence-based PCR (REP-PCR fingerprinting of these MDR strains revealed the presence of five groups and sixteen patterns. The MDR strains from unrelated groups showed different drug resistance patterns; however, some homologous strains also showed different drug resistance profiles. Therefore, REP-PCR-based analyses can provide information to evaluate the epidemic status of nosocomial infection caused by MDR K. pneumoniae; however, this test lacks the power to discriminate some

  8. Multifunctional biosynthesized silver nanoparticles exhibiting excellent antimicrobial potential against multi-drug resistant microbes along with remarkable anticancerous properties.

    Science.gov (United States)

    Jha, Diksha; Thiruveedula, Prasanna Kumar; Pathak, Rajiv; Kumar, Bipul; Gautam, Hemant K; Agnihotri, Shrish; Sharma, Ashwani Kumar; Kumar, Pradeep

    2017-11-01

    This study demonstrates the therapeutic potential of silver nanoparticles (AgNPs), which were biosynthesized using the extracts of Citrus maxima plant. Characterization through UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) confirmed the formation of AgNps in nano-size range. These nanoparticles exhibited enhanced antioxidative activity and showed commendable antimicrobial activity against wide range of microbes including multi-drug resistant bacteria that were later confirmed by TEM. These particles exhibited minimal toxicity when cytotoxicity study was performed on normal human lung fibroblast cell line as well as human red blood cells. It was quite noteworthy that these particles showed remarkable cytotoxicity on human fibrosarcoma and mouse melanoma cell line (B16-F10). Additionally, the apoptotic topographies of B16-F10 cells treated with AgNps were confirmed by using acridine orange and ethidium bromide dual dye staining, caspase-3 assay, DNA fragmentation assay followed by cell cycle analysis using fluorescence-activated cell sorting. Taken together, these results advocate promising potential of the biosynthesized AgNps for their use in therapeutic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model: implications for prophylaxis and treatment of combat-related wound infections.

    Science.gov (United States)

    Zhang, Yunsong; Zhu, Yingbo; Gupta, Asheesh; Huang, Yingying; Murray, Clinton K; Vrahas, Mark S; Sherwood, Margaret E; Baer, David G; Hamblin, Michael R; Dai, Tianhong

    2014-06-15

    In this study, we investigated the utility of antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model. A bioluminescent clinical isolate of multidrug-resistant A. baumannii was obtained. The susceptibility of A. baumannii to blue light (415 nm)-inactivation was compared in vitro to that of human keratinocytes. Repeated cycles of sublethal inactivation of bacterial by blue light were performed to investigate the potential resistance development of A. baumannii to blue light. A mouse model of third degree burn infected with A. baumannii was developed. A single exposure of blue light was initiated 30 minutes after bacterial inoculation to inactivate A. baumannii in mouse burns. It was found that the multidrug-resistant A. baumannii strain was significantly more susceptible than keratinocytes to blue light inactivation. Transmission electron microscopy revealed blue light-induced ultrastructural damage in A. baumannii cells. Fluorescence spectroscopy suggested that endogenous porphyrins exist in A. baumannii cells. Blue light at an exposure of 55.8 J/cm(2) significantly reduced the bacterial burden in mouse burns. No resistance development to blue light inactivation was observed in A. baumannii after 10 cycles of sublethal inactivation of bacteria. No significant DNA damage was detected in mouse skin by means of a skin TUNEL assay after a blue light exposure of 195 J/cm(2). © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Use of peptide antibodies to probe for the mitoxantrone resistance-associated protein MXR/BCRP/ABCP/ABCG2

    DEFF Research Database (Denmark)

    Litman, Thomas; Jensen, Ulla; Hansen, Alastair

    2002-01-01

    Recent studies have characterized the ABC half-transporter associated with mitoxantrone resistance in human cancer cell lines. Encoded by the ABCG2 gene, overexpression confers resistance to camptothecins, as well as to mitoxantrone. We developed four polyclonal antibodies against peptides corres...

  11. Skeletal muscle insulin resistance associated with cholesterol-induced activation of macrophages is prevented by high density lipoprotein.

    Directory of Open Access Journals (Sweden)

    Andrew L Carey

    Full Text Available BACKGROUND: Emerging evidence suggests that high density lipoprotein (HDL may modulate glucose metabolism through multiple mechanisms including pancreatic insulin secretion as well as insulin-independent glucose uptake into muscle. We hypothesized that HDL may also increase skeletal muscle insulin sensitivity via cholesterol removal and anti-inflammatory actions in macrophages associated with excess adiposity and ectopic lipid deposition. METHODS: Human primary and THP-1 macrophages were treated with vehicle (PBS or acetylated low density lipoprotein (acLDL with or without HDL for 18 hours. Treatments were then removed, and macrophages were incubated with fresh media for 4 hours. This conditioned media was then applied to primary human skeletal myotubes derived from vastus lateralis biopsies taken from patients with type 2 diabetes to examine insulin-stimulated glucose uptake. RESULTS: Conditioned media from acLDL-treated primary and THP-1 macrophages reduced insulin-stimulated glucose uptake in primary human skeletal myotubes compared with vehicle (primary macrophages, 168±21% of basal uptake to 104±19%; THP-1 macrophages, 142±8% of basal uptake to 108±6%; P<0.05. This was restored by co-treatment of macrophages with HDL. While acLDL increased total intracellular cholesterol content, phosphorylation of c-jun N-terminal kinase and secretion of pro- and anti-inflammatory cytokines from macrophages, none were altered by co-incubation with HDL. Insulin-stimulated Akt phosphorylation in human skeletal myotubes exposed to conditioned media was unaltered by either treatment condition. CONCLUSION: Inhibition of insulin-stimulated glucose uptake in primary human skeletal myotubes by conditioned media from macrophages pre-incubated with acLDL was restored by co-treatment with HDL. However, these actions were not linked to modulation of common pro- or anti-inflammatory mediators or insulin signaling via Akt.

  12. Human intestinal absorption of imidacloprid with Caco-2 cells as enterocyte model

    International Nuclear Information System (INIS)

    Brunet, Jean-Luc; Maresca, Marc; Fantini, Jacques; Belzunces, Luc P.

    2004-01-01

    In order to assess the risk to mammals of a chronic exposure to imidacloprid (IMI), we investigated its absorption with the human intestinal Caco-2 cell line. Measurements of transepithelial transport revealed an apparent permeability coefficient of 21.6 x 10 -6 ± 3.2 x 10 -6 cm/s reflecting a 100% absorption. The comparison of apical to basal (A-B) and basal to apical (B-A) transports showed that the monolayer presents a basal to apical polarized transport. Studies of apical uptake demonstrated that the transport was concentration-dependent and not saturable from 5 to 200 μM. Arrhenius plot analysis revealed two apparent activation energies, E a(4-12deg . C) = 63.8 kJ/mol and E a(12-37deg. C) 18.2 kJ/mol, suggesting two temperature-dependent processes. IMI uptake was equivalent when it was performed at pH 6.0 or 7.4. Depletion of Na + from the transport buffer did not affect the uptake, indicating that a sodium-dependent transporter was not involved. Decrease of uptake with sodium-azide or after cell surface trypsin (Ti) treatment suggested the involvement of a trypsin-sensitive ATP-dependent transporter. Investigations on apical efflux demonstrated that initial velocities paralleled the increase of loading concentrations. A cell surface trypsin treatment did not affect the apical efflux. The lack of effect when the efflux was performed against an IMI concentration gradient suggested that an energy-dependent transporter was involved. However, the inhibition of P-glycoproteins (P-gp) and multidrug resistance-associated proteins (MRP) by taxol, vincristine, and daunorubicine had no effect on IMI intracellular accumulation suggesting the involvement of transporters distinct from classical ATP binding cassette transport (ABC-transport) systems. All results suggest that IMI is strongly absorbed in vivo by inward and outward active transporters

  13. Tigecycline use in two cases with multidrug-resistant Acinetobacter baumannii meningitis.

    Science.gov (United States)

    Tutuncu, E Ediz; Kuscu, Ferit; Gurbuz, Yunus; Ozturk, Baris; Haykir, Asli; Sencan, Irfan

    2010-09-01

    The treatment of post-surgical meningitis due to multidrug-resistant (MDR) Acinetobacter baumannii is a therapeutic dilemma. The cases of two patients with MDR A. baumannii meningitis secondary to surgical site infections, successfully treated with combination regimens including tigecycline, are presented. Copyright © 2009 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  14. Multidrug resistance gene expression is controlled by steroid hormones in the secretory epithelium of the uterus

    NARCIS (Netherlands)

    Arceci, R. J.; Baas, F.; Raponi, R.; Horwitz, S. B.; Housman, D.; Croop, J. M.

    1990-01-01

    The multidrug resistance (mdr) gene family has been shown to encode a membrane glycoprotein, termed the P-glycoprotein, which functions as a drug efflux pump with broad substrate specificity. This multigene family is expressed in a tissue-specific fashion in a wide variety of normal and neoplastic

  15. Antibacterial activities of ethanol extracts of Philippine medicinal plants against multidrug-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Demetrio L. Valle Jr.

    2015-07-01

    Conclusions: P. betle had the greatest potential value against both Gram-negative and Gram-positive multidrug-resistant bacteria. Favorable antagonistic activities were also exhibited by the ethanol extracts of Psidium guajava, Phyllanthus niruri and Ehretia microphylla.

  16. Vital and dispensable roles of Plasmodium multidrug resistance transporters during blood- and mosquito-stage development

    NARCIS (Netherlands)

    Rijpma, S.R.; Velden, M. van der; Annoura, T.; Matz, J.M.; Kenthirapalan, S.; Kooij, T.W.; Matuschewski, K.; Gemert, G.J.A. van; Vegte-Bolmer, M.G. van de; Siebelink-Stoter, R.; Graumans, W.; Ramesar, J.; Klop, O.; Russel, F.G.; Sauerwein, R.W.; Janse, C.J.; Franke-Fayard, B.M.; Koenderink, J.B.

    2016-01-01

    Multidrug resistance (MDR) proteins belong to the B subfamily of the ATP Binding Cassette (ABC) transporters, which export a wide range of compounds including pharmaceuticals. In this study, we used reverse genetics to study the role of all seven Plasmodium MDR proteins during the life cycle of

  17. Multidrug-Resistant Bacteroides fragilis Bacteremia in a US Resident: An Emerging Challenge

    Directory of Open Access Journals (Sweden)

    Cristian Merchan

    2016-01-01

    Full Text Available We describe a case of Bacteroides fragilis bacteremia associated with paraspinal and psoas abscesses in the United States. Resistance to b-lactam/b-lactamase inhibitors, carbapenems, and metronidazole was encountered despite having a recent travel history to India as the only possible risk factor for multidrug resistance. Microbiological cure was achieved with linezolid, moxifloxacin, and cefoxitin.

  18. Limited Sampling Strategies for Therapeutic Drug Monitoring of Linezolid in Patients With Multidrug-Resistant Tuberculosis

    NARCIS (Netherlands)

    Alffenaar, Jan-Willem C.; Kosterink, Jos G. W.; van Altena, Richard; van der Werf, Tjip S.; Uges, Donald R. A.; Proost, Johannes H.

    Introduction: Linezolid is a potential drug for the treatment of multidrug-resistant tuberculosis but its use is limited because of severe adverse effects such as anemia, thrombocytopenia, and peripheral neuropathy. This study aimed to develop a model for the prediction of linezolid area. under the

  19. Multidrug Resistance Among New Tuberculosis Cases Detecting Local Variation Through Lot Quality-assurance Sampling

    NARCIS (Netherlands)

    Hedt, Bethany Lynn; van Leth, Frank; Zignol, Matteo; Cobelens, Frank; van Gemert, Wayne; Nhung, Nguyen Viet; Lyepshina, Svitlana; Egwaga, Saidi; Cohen, Ted

    2012-01-01

    Background: Current methodology for multidrug-resistant tuberculosis (MDR TB) surveys endorsed by the World Health Organization provides estimates of MDR TB prevalence among new cases at the national level. On the aggregate, local variation in the burden of MDR TB may be masked. This paper

  20. Physiological characterisation of the efflux pump system of antibiotic-susceptible and multidrug-resistant

    OpenAIRE

    Martins , A.; Spengler , G.; Martins , M.; Rodrigues , L.; Viveiros , M.; Davin-Regli , A.; Chevalier , J.; Couto , I.; Pagès , J.M.; Amaral , L.

    2010-01-01

    Abstract Enterobacter aerogenes predominates among Enterobacteriaceae species that are increasingly reported as producers of extended-spectrum ?-lactamases. Although this mechanism of resistance to ?-lactams is important, other mechanisms bestowing a multidrug-resistant (MDR) phenotype in this species are now well documented. Among these mechanisms is the overexpression of efflux pumps that extrude structurally unrelated antibiotics prior to their reaching their targets. Interestin...

  1. Surgery as an Adjunctive Treatment for Multidrug-Resistant Tuberculosis : An Individual Patient Data Metaanalysis

    NARCIS (Netherlands)

    Fox, Gregory J.; Mitnick, Carole D.; Benedetti, Andrea; Chan, Edward D.; Becerra, Mercedes; Chiang, Chen-Yuan; Keshavjee, Salmaan; Koh, Won-Jung; Shiraishi, Yuji; Viiklepp, Piret; Yim, Jae-Joon; Pasvol, Geoffrey; Robert, Jerome; Shim, Tae Sun; Shin, Sonya S.; Menzies, Dick; van der Werf, Tjip S.

    2016-01-01

    Background. Medical treatment for multidrug-resistant (MDR)-tuberculosis is complex, toxic, and associated with poor outcomes. Surgical lung resection may be used as an adjunct to medical therapy, with the intent of reducing bacterial burden and improving cure rates. We conducted an individual

  2. Fecal Microbiota Transplantation Inhibits Multidrug-Resistant Gut Pathogens: Preliminary Report Performed in an Immunocompromised Host.

    Science.gov (United States)

    Biliński, Jarosław; Grzesiowski, Paweł; Muszyński, Jacek; Wróblewska, Marta; Mądry, Krzysztof; Robak, Katarzyna; Dzieciątkowski, Tomasz; Wiktor-Jedrzejczak, Wiesław; Basak, Grzegorz W

    2016-06-01

    Colonization of the gastrointestinal tract with multidrug-resistant (MDR) bacteria is a consequence of gut dysbiosis. We describe the successful utilization of fecal microbiota transplantation to inhibit Klebsiella pneumoniae MBL(+) and Escherichia coli ESBL(+) gut colonization in the immunocompromised host as a novel tool in the battle against MDR microorganisms. ClinicalTrials.gov identifier NCT02461199.

  3. Pattern of intensive phase treatment outcomes of multi-drug resistant ...

    African Journals Online (AJOL)

    Pattern of intensive phase treatment outcomes of multi-drug resistant tuberculosis in University of Port Harcourt Treatment Centre: a review of records from ... Data on patients' age, sex, HIV status, treatment outcomes were extracted from the hospital book records into a computer data sheet at the UPTH treatment centre.

  4. Drugs, ionophoric peptides, and steroids as substrates of the yeast multidrug transporter Pdr5p

    NARCIS (Netherlands)

    Kolaczkowski, M; vanderRest, M; CybularzKolaczkowska, A; Soumillion, JP; Konings, WN; Goffeau, A

    1996-01-01

    Pdr5p is the yeast Saccharomyces cerevisiae ATP-binding cassette transporter conferring resistance to several unrelated drugs. Its high overproduction in Pdr1p transcription factor mutants allows us to study the molecular mechanism of multidrug transport and substrate specificity. We have developed

  5. Optimizing the Safety of Multidrug-resistant Tuberculosis Therapy in Namibia

    NARCIS (Netherlands)

    Sagwa, Evans

    2017-01-01

    Introduction: Multidrug-resistant tuberculosis (MDR-TB), a growing global menace, is seriously undermining the previous successes made in the elimination of TB. MDR-TB treatment takes a long time, is complex, and is frequently associated with the occurrence of adverse drug reactions, some of which

  6. Isolation and characterization of antimicrobial compounds in plant extracts against multidrug-resistant Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Yoko Miyasaki

    Full Text Available The number of fully active antibiotic options that treat nosocomial infections due to multidrug-resistant Acinetobacter baumannii (A. baumannii is extremely limited. Magnolia officinalis, Mahonia bealei, Rabdosia rubescens, Rosa rugosa, Rubus chingii, Scutellaria baicalensis, and Terminalia chebula plant extracts were previously shown to have growth inhibitory activity against a multidrug-resistant clinical strain of A. baumannii. In this study, the compounds responsible for their antimicrobial activity were identified by fractionating each plant extract using high performance liquid chromatography, and determining the antimicrobial activity of each fraction against A. baumannii. The chemical structures of the fractions inhibiting >40% of the bacterial growth were elucidated by liquid chromatography/mass spectrometry analysis and nuclear magnetic resonance spectroscopy. The six most active compounds were identified as: ellagic acid in Rosa rugosa; norwogonin in Scutellaria baicalensis; and chebulagic acid, chebulinic acid, corilagin, and terchebulin in Terminalia chebula. The most potent compound was identified as norwogonin with a minimum inhibitory concentration of 128 µg/mL, and minimum bactericidal concentration of 256 µg/mL against clinically relevant strains of A. baumannii. Combination studies of norwogonin with ten anti-Gram negative bacterial agents demonstrated that norwogonin did not enhance the antimicrobial activity of the synthetic antibiotics chosen for this study. In conclusion, of all identified antimicrobial compounds, norwogonin was the most potent against multidrug-resistant A. baumannii strains. Further studies are warranted to ascertain the prophylactic and therapeutic potential of norwogonin for infections due to multidrug-resistant A. baumannii.

  7. Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition.

    Science.gov (United States)

    Madoori, Pramod Kumar; Agustiandari, Herfita; Driessen, Arnold J M; Thunnissen, Andy-Mark W H

    2009-01-21

    LmrR is a PadR-related transcriptional repressor that regulates the production of LmrCD, a major multidrug ABC transporter in Lactococcus lactis. Transcriptional regulation is presumed to follow a drug-sensitive induction mechanism involving the direct binding of transporter ligands to LmrR. Here, we present crystal structures of LmrR in an apo state and in two drug-bound states complexed with Hoechst 33342 and daunomycin. LmrR shows a common topology containing a typical beta-winged helix-turn-helix domain with an additional C-terminal helix involved in dimerization. Its dimeric organization is highly unusual with a flat-shaped hydrophobic pore at the dimer centre serving as a multidrug-binding site. The drugs bind in a similar manner with their aromatic rings sandwiched in between the indole groups of two dimer-related tryptophan residues. Multidrug recognition is facilitated by conformational plasticity and the absence of drug-specific hydrogen bonds. Combined analyses using site-directed mutagenesis, fluorescence-based drug binding and protein-DNA gel shift assays reveal an allosteric coupling between the multidrug- and DNA-binding sites of LmrR that most likely has a function in the induction mechanism.

  8. Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition

    NARCIS (Netherlands)

    Madoori, Pramod Kumar; Agustiandari, Herfita; Driessen, Arnold J. M.; Thunnissen, Andy-Mark W. H.

    2009-01-01

    LmrR is a PadR-related transcriptional repressor that regulates the production of LmrCD, a major multidrug ABC transporter in Lactococcus lactis. Transcriptional regulation is presumed to follow a drug-sensitive induction mechanism involving the direct binding of transporter ligands to LmrR. Here,

  9. Geraniol Restores Antibiotic Activities against Multidrug-Resistant Isolates from Gram-Negative Species▿ †

    Science.gov (United States)

    Lorenzi, Vannina; Muselli, Alain; Bernardini, Antoine François; Berti, Liliane; Pagès, Jean-Marie; Amaral, Leonard; Bolla, Jean-Michel

    2009-01-01

    The essential oil of Helichrysum italicum significantly reduces the multidrug resistance of Enterobacter aerogenes, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Combinations of the two most active fractions of the essential oil with each other or with phenylalanine arginine β-naphthylamide yield synergistic activity. Geraniol, a component of one fraction, significantly increased the efficacy of β-lactams, quinolones, and chloramphenicol. PMID:19258278

  10. Distribution and physiology of ABC-Type transporters contributing to multidrug resistance in bacteria

    NARCIS (Netherlands)

    Lubelski, Jacek; Konings, Wil N.; Driessen, Arnold J. M.

    Membrane proteins responsible for the active efflux of structurally and functionally unrelated drugs were first characterized in higher eukalyotes. To date, a vast number of transporters contributing to multidrug resistance (MDR transporters) have been reported for a large variety of organisms.

  11. Potential antimicrobial agents for the treatment of multidrug-resistant tuberculosis

    NARCIS (Netherlands)

    Alsaad, Noor; Wilffert, Bob; van Altena, Richard; de Lange, Wiel C. M.; van der Werf, Tjip S.; Kosterink, Jos G. W.; Alffenaar, Jan-Willem C.

    2014-01-01

    Treatment of multidrug-resistant (MDR) tuberculosis (TB) is challenging because of the high toxicity of second-line drugs and the longer treatment duration than for drug-susceptible TB patients. In order to speed up novel treatment for MDR-TB, we suggest considering expanding the indications of

  12. New-Onset Psychosis in a Multi-Drug Resistant Tuberculosis Patient ...

    African Journals Online (AJOL)

    Drug-resistant tuberculosis poses a serious challenge to global control of TB. These forms of TB do not respond to the standard six-month treatment; it can take two years or more to treat with category IV drugs that are less potent, more toxic and much more expensive. Treatment of multi-drug resistant tuberculosis is still ...

  13. The socioeconomic impact of multidrug resistant tuberculosis on patients: results from Ethiopia, Indonesia and Kazakhstan

    NARCIS (Netherlands)

    van den Hof, Susan; Collins, David; Hafidz, Firdaus; Beyene, Demissew; Tursynbayeva, Aigul; Tiemersma, Edine

    2016-01-01

    One of the main goals of the post-2015 global tuberculosis (TB) strategy is that no families affected by TB face catastrophic costs. We revised an existing TB patient cost measurement tool to specifically also measure multi-drug resistant (MDR) TB patients' costs and applied it in Ethiopia,

  14. Resistance to fluoroquinolones and second-line injectable drugs: impact on multidrug-resistant TB outcomes

    NARCIS (Netherlands)

    Falzon, Dennis; Gandhi, Neel; Migliori, Giovanni B.; Sotgiu, Giovanni; Cox, Helen S.; Holtz, Timothy H.; Hollm-Delgado, Maria-Graciela; Keshavjee, Salmaan; Deriemer, Kathryn; Centis, Rosella; D'Ambrosio, Lia; Lange, Christoph G.; Bauer, Melissa; Menzies, Dick; Ahuja, S. D.; Ashkin, D.; Avendaño, M.; Banerjee, R.; Bauer, M.; Becerra, M. C.; Benedetti, A.; Burgos, M.; Centis, R.; Chan, E. D.; Chiang, C. Y.; Cobelens, F.; Cox, H.; D'Ambrosio, L.; de Lange, W. C. M.; DeRiemer, K.; Enarson, D.; Falzon, D.; Flanagan, K. L.; Flood, J.; Gandhi, N.; Garcia-Garcia, M. L.; Granich, R. M.; Hollm-Delgado, M. G.; Holtz, T. H.; Hopewell, P.; Iseman, M. D.; Jarlsberg, L. G.; Keshavjee, S.; Kim, H. R.; Koh, W. J.; Lancaster, J. L.; Lange, C.; Leimane, V.; Leung, C. C.; Li, J.

    2013-01-01

    A meta-analysis for response to treatment was undertaken using individual data of multidrug-resistant tuberculosis (MDR-TB) (resistance to isoniazid and rifampicin) patients from 26 centres. The analysis assessed the impact of additional resistance to fluoroquinolones and/or second-line injectable

  15. Prevalence of multidrug resistant pathogens in children with urinary tract infection: a retrospective analysis

    Directory of Open Access Journals (Sweden)

    Srinivasan S, Madhusudhan NS

    2014-11-01

    Full Text Available Urinary tract infection (UTI is one of the commonest medical problems in children. It can distress the child and may cause kidney damage. Prompt diagnosis and effective treatment can prevent complications in the child. But treatment of UTI in children has now become a challenge due to the emergence of multidrug resistant bacteria. Aims & Objectives: To know the bacteriological profile and susceptibility pattern of urinary tract infections in children and to know the prevalence of multidrug resistant uropathogens. Materials & Methods: A retrospective analysis was done on all paediatric urine samples for a period of one year. A total of 1581 samples were included in the study. Antimicrobial susceptibility testing was done on samples showing significant growth by Kirby-Bauer disc diffusion method. Statistical analysis: Prevalence and pattern were analyzed using proportions and percentages. Results: E.coli was the most predominant organism (56% causing UTI in children followed by Klebsiella sp (17%. Fifty three percent of gram negative organisms isolated from children were found to be multidrug resistant. Majority of E. coli isolates were found to be highly resistant to Ampicillin (91% and Cotrimoxazole (82% and highly sensitive to Imipenem (99% and Amikacin (93%. Conclusion: Paediatric UTI was common in children less than 5 years of age. Gram negative bacteria (E. coli and Klebsiella sp were more common than gram positive bacteria. Our study revealed that multidrug resistance was higher in E.coli.

  16. Modulation of P-glycoprotein activity by novel synthetic curcumin derivatives in sensitive and multidrug-resistant T-cell acute lymphoblastic leukemia cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Ooko, Edna [Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Alsalim, Tahseen; Saeed, Bahjat [Department of Chemistry, College of Education for Pure Sciences, University of Basrah, P.O. Box 49 Basrah, Al Basrah (Iraq); Saeed, Mohamed E.M.; Kadioglu, Onat [Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Abbo, Hanna S. [Department of Chemistry, University of the Western Cape, P/B X17, Bellville, 7535 Cape Town (South Africa); Titinchi, Salam J.J., E-mail: stitinchi@uwc.ac.za [Department of Chemistry, University of the Western Cape, P/B X17, Bellville, 7535 Cape Town (South Africa); Efferth, Thomas, E-mail: efferth@uni-mainz.de [Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany)

    2016-08-15

    Background: Multidrug resistance (MDR) and drug transporter P-glycoprotein (P-gp) represent major obstacles in cancer chemotherapy. We investigated 19 synthetic curcumin derivatives in drug-sensitive acute lymphoblastic CCRF–CEM leukemia cells and their multidrug-resistant P-gp-overexpressing subline, CEM/ADR5000. Material and methods: Cytotoxicity was tested by resazurin assays. Doxorubicin uptake was assessed by flow cytometry. Binding modes of compounds to P-gp were analyzed by molecular docking. Chemical features responsible for bioactivity were studied by quantitative structure activity relationship (QSAR) analyses. A 7-descriptor QSAR model was correlated with doxorubicin uptake values, IC{sub 50} values and binding energies. Results: The compounds displayed IC{sub 50} values between 0.7 ± 0.03 and 20.2 ± 0.25 μM. CEM/ADR5000 cells exhibited cross-resistance to 10 compounds, collateral sensitivity to three compounds and regular sensitivity to the remaining six curcumins. Molecular docking studies at the intra-channel transmembrane domain of human P-gp resulted in lowest binding energies ranging from − 9.00 ± 0.10 to − 6.20 ± 0.02 kcal/mol and pKi values from 0.24 ± 0.04 to 29.17 ± 0.88 μM. At the ATP-binding site of P-gp, lowest binding energies ranged from − 9.78 ± 0.17 to − 6.79 ± 0.01 kcal/mol and pKi values from 0.07 ± 0.02 to 0.03 ± 0.03 μM. CEM/ADR5000 cells accumulated approximately 4-fold less doxorubicin than CCRF–CEM cells. The control P-gp inhibitor, verapamil, partially increased doxorubicin uptake in CEM/ADR5000 cells. Six curcumins increased doxorubicin uptake in resistant cells or even exceeded uptake levels compared to sensitive one. QSAR yielded good activity prediction (R = 0.797 and R = 0.794 for training and test sets). Conclusion: Selected derivatives may serve to guide future design of novel P-gp inhibitors and collateral sensitive drugs to combat MDR. - Highlights: • Novel derivatives of curcumin in reversing

  17. Modulation of P-glycoprotein activity by novel synthetic curcumin derivatives in sensitive and multidrug-resistant T-cell acute lymphoblastic leukemia cell lines

    International Nuclear Information System (INIS)

    Ooko, Edna; Alsalim, Tahseen; Saeed, Bahjat; Saeed, Mohamed E.M.; Kadioglu, Onat; Abbo, Hanna S.; Titinchi, Salam J.J.; Efferth, Thomas

    2016-01-01

    Background: Multidrug resistance (MDR) and drug transporter P-glycoprotein (P-gp) represent major obstacles in cancer chemotherapy. We investigated 19 synthetic curcumin derivatives in drug-sensitive acute lymphoblastic CCRF–CEM leukemia cells and their multidrug-resistant P-gp-overexpressing subline, CEM/ADR5000. Material and methods: Cytotoxicity was tested by resazurin assays. Doxorubicin uptake was assessed by flow cytometry. Binding modes of compounds to P-gp were analyzed by molecular docking. Chemical features responsible for bioactivity were studied by quantitative structure activity relationship (QSAR) analyses. A 7-descriptor QSAR model was correlated with doxorubicin uptake values, IC 50 values and binding energies. Results: The compounds displayed IC 50 values between 0.7 ± 0.03 and 20.2 ± 0.25 μM. CEM/ADR5000 cells exhibited cross-resistance to 10 compounds, collateral sensitivity to three compounds and regular sensitivity to the remaining six curcumins. Molecular docking studies at the intra-channel transmembrane domain of human P-gp resulted in lowest binding energies ranging from − 9.00 ± 0.10 to − 6.20 ± 0.02 kcal/mol and pKi values from 0.24 ± 0.04 to 29.17 ± 0.88 μM. At the ATP-binding site of P-gp, lowest binding energies ranged from − 9.78 ± 0.17 to − 6.79 ± 0.01 kcal/mol and pKi values from 0.07 ± 0.02 to 0.03 ± 0.03 μM. CEM/ADR5000 cells accumulated approximately 4-fold less doxorubicin than CCRF–CEM cells. The control P-gp inhibitor, verapamil, partially increased doxorubicin uptake in CEM/ADR5000 cells. Six curcumins increased doxorubicin uptake in resistant cells or even exceeded uptake levels compared to sensitive one. QSAR yielded good activity prediction (R = 0.797 and R = 0.794 for training and test sets). Conclusion: Selected derivatives may serve to guide future design of novel P-gp inhibitors and collateral sensitive drugs to combat MDR. - Highlights: • Novel derivatives of curcumin in reversing multidrug

  18. REACTIONAL STATES IN MULTIBACILLARY HANSEN DISEASE PATIENTS DURING MULTIDRUG THERAPY

    Directory of Open Access Journals (Sweden)

    José A.C. NERY

    1998-11-01

    Full Text Available It is well known that reactions are commonplace occurrences during the course of leprosy disease. Stigmatization may even be attributable to reactions which are also responsible for the worsening of neural lesions. A cohort of 162 newly-diagnosed baciloscopically positive patients from the Leprosy Care Outpatient Clinic of the Oswaldo Cruz Foundation (FIOCRUZ was selected for this study. While 46% of the multibacillary (MB patients submitted to the 24 fixed-dose multidrug therapy (MDT regimen suffered reactions during treatment, it was found that all MBs were susceptible and that constant attention and care were required at all times. Fourteen per cent were classified as BB, 52% as BL, and 33% as LL. None of the variables under study, such as, sex, age, clinical form, length of illness, length of dermatological lesions, baciloscopic index (BI, or degree of disability proved to be associate with reaction among the patients studied. Reversal Reaction (RR occurred in 45%, and Erythema Nodosum Leprosum (ENL occurred in 55%. Among BB patients who developed reactions (15 patients, 93% presented RR; while among the LL patients who developed reactions (34 patients, 91% presented ENL. Likewise, ENL was very frequent among those with disseminate lesions, while RR was most often observed in patients with segmentary lesions. RR was also most likely to occur during the initial months of treatment. It was demonstrated that the recurrence rate of ENL was significantly higher than that of RR. Neither grade of disability nor BI was shown to be associated with RR and ENL reaction. However, the RR rate was significantly higher among patients showing BI 3.Reações são ocorrências comuns no curso da hanseníase e são responsáveis pelo agravamento das lesões neurais. Uma coorte de 162 pacientes recém-diagnosticados, baciloscopicamente positivos, em acompanhamento no Ambulatório de Hanseníase da Fundação Oswaldo Cruz (FIOCRUZ foi selecionada para estudo

  19. Multidrug resistant enterohaemorrhagic Escherichia coli O157:H7 in ...

    African Journals Online (AJOL)

    Pigeons are commonly seen around human dwellings and in city centres. The movement of these birds from place to place makes them a veritable vehicle for environmental dissemination of pathogens. Enterohaemorrhagic E. coli (EHEC) O157:H7 can cause severe and sometimes fatal gastroenteritis in humans. This study ...

  20. Microparticles shed from multidrug resistant breast cancer cells provide a parallel survival pathway through immune evasion.

    Science.gov (United States)

    Jaiswal, Ritu; Johnson, Michael S; Pokharel, Deep; Krishnan, S Rajeev; Bebawy, Mary

    2017-02-06

    Breast cancer is the most frequently diagnosed cancer in women. Resident macrophages at distant sites provide a highly responsive and immunologically dynamic innate immune response against foreign infiltrates. Despite extensive characterization of the role of macrophages and other immune cells in malignant tissues, there is very little known about the mechanisms which facilitate metastatic breast cancer spread to distant sites of immunological integrity. The mechanisms by which a key healthy defense mechanism fails to protect distant sites from infiltration by metastatic cells in cancer patients remain undefined. Breast tumors, typical of many tumor types, shed membrane vesicles called microparticles (MPs), ranging in size from 0.1-1 μm in diameter. MPs serve as vectors in the intercellular transfer of functional proteins and nucleic acids and in drug sequestration. In addition, MPs are also emerging to be important players in the evasion of cancer cell immune surveillance. A comparative analysis of effects of MPs isolated from human breast cancer cells and non-malignant human brain endothelial cells were examined on THP-1 derived macrophages in vitro. MP-mediated effects on cell phenotype and functionality was assessed by cytokine analysis, cell chemotaxis and phagocytosis, immunolabelling, flow cytometry and confocal imaging. Student's t-test or a one-way analysis of variance (ANOVA) was used for comparison and statistical analysis. In this paper we report on the discovery of a new cellular basis for immune evasion, which is mediated by breast cancer derived MPs. MPs shed from multidrug resistant (MDR) cells were shown to selectively polarize macrophage cells to a functionally incapacitated state and facilitate their engulfment by foreign cells. We propose this mechanism may serve to physically disrupt the inherent immune response prior to cancer cell colonization whilst releasing mediators required for the recruitment of distant immune cells. These findings

  1. Experimental research of 99Tcm-MIBI SPECT in detecting multidrug resistance status on tumor nude mice

    International Nuclear Information System (INIS)

    Hu Xudong; Ji Cheng; Wang Xiaoyue; Xu Jiaying; Fan Saijun; Yang Guoren

    2009-01-01

    Objective: To analyze 99 Tc m -MIBI images separately before and after VPL in nude mice bearing human lung tumors in order to find a feasible way in evaluating MDR status of tumor with 99 Tc m -MIBI image. Methods: Analysis of 99 Tc m -MIBI images was performed at 15 min, 60 min and 120 min after injecting 99 Tc m -MIBI 7.4 MBq in female BALB/c nude mice bearing human lung tumors. The tumor uptake rate (TUR) and retention rate (RI) were calculated and the data were analyzed. P-gp albumen ex-pression was determined by flow cytometry. Results: Significance difference in TUR was observed for at the 15th, 60th or 120th min between the imaging in the control group versus in the second imaging in VPL reverse group as well as between the first imaging and the second imaging in the reverse group. Furthermore, there was negative correlation between retention rate (RI) and P-gp albumen expression. Conclusion: These results for the first time demonstrate that the results of 99 Tc m -MIBI imaging exhibits a negative correlation to P-gp albumen expression, indicating that analysis of 99 Tc m -MIBI imaging may be a potential indicator for MDR status of tumor and can be used to monitoring the role of VPL in reverting the multidrug resistance. (authors)

  2. Circumvention of multidrug resistance and reduction of cardiotoxicity of doxorubicin in vivo by coupling it with low density lipoprotein.

    Science.gov (United States)

    Lo, Elka H K; Ooi, Vincent E L; Fung, K P

    2002-12-27

    Doxorubicin (Dox) was coupled into human low density lipoprotein (LDL) to form a complex LDL-Dox. In in vitro studies, the accumulation of LDL-Dox in human resistant hepatoma (R-HepG2) cells was found to be higher than that of free Dox in the cells, resulting in an increase of the cytotoxic effect on the cells. Moreover, in in vivo studies, under the same dosage of drugs (1 mg/kg), the anti-proliferative effect on the tumor cells of LDL-Dox in nude mice bearing R-HepG2 cells was higher than that of free Dox as evidenced by the larger reduction in tumor volumes and tumor weights in LDL-Dox treated group. Histological studies showed that LDL-Dox treatment did not cause any heart damage when compared with the control group. In contrast, Dox treatment caused disruption and vacuolization of myocardial filament. Plasma lactate dehydrogenase activity and plasma creatine kinase activity in nude mice bearing R-HepG2 cells were found to be elevated in the Dox-treated group but remained unchanged in LDL-Dox-treated group. The present studies indicate that when Dox is coupled with LDL, the multidrug resistance can be circumvented and the cardiotoxicity can be reduced.

  3. Intraventricular ciprofloxacin usage in treatment of multidrug-resistant central nervous system infections: report of four cases

    Directory of Open Access Journals (Sweden)

    Ayse Karaaslan

    2014-12-01

    Full Text Available In recent years, multidrug-resistant microorganisms appear as important nosocomial pathogens which treatment is quite difficult. As sufficient drug levels could not be achieved in cerebrospinal fluid during intravenous antibiotic therapy for central nervous system infections and due to multidrug-resistance treatment alternatives are limited. In this study, four cases of central nervous system infections due to multidrug-resistant microorganisms who were successfully treated with removal of the devices and intraventricular ciprofloxacin are presented. In conclusion, intraventricular ciprofloxacin can be used for treatment of central nervous system infections if the causative microorganism is sensitive to the drug and no other alternative therapy is available.

  4. DACHPt-Loaded Nanoparticles Self-assembled from Biodegradable Dendritic Copolymer Polyglutamic Acid-b-D-α-Tocopheryl Polyethylene Glycol 1000 Succinate for Multidrug Resistant Lung Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Hsiang-I Tsai

    2018-02-01

    Full Text Available The clinical applications of platinum-based antitumor agents are still largely limited by severe side effects as well as multidrug resistance (MDR. To solve these problems, we developed an 1,2-diaminocyclohexane-platinum(II (DACHPt-loaded nanoparticle (NP-TPGS-Pt by self-assembly of poly(amidoamine-polyglutamic acid-b-D-α-tocopheryl polyethylene glycol 1000 succinate (PAM-PGlu-b-TPGS and DACHPt. NP-TPGS-Pt showed robust stability and pH-responsive DACHPt release profile in vitro similar to the PEG-containing nanoparticle (NP-PEG-Pt. Meanwhile, in contrast with NP-PEG-Pt, NP-TPGS-Pt exhibited efficient nanoparticle-based cellular uptake by the Pt-resistant A549/DDP human lung cancer cells and caused much more cytotoxicity than free Oxaliplatin and NP-PEG-Pt. Finally, this NP-TPGS-Pt was proved to perform outstanding inhibition of Pt-resistant tumor growth, much superior than free Oxaliplatin and NP-PEG-Pt. Thus, this NP-TPGS-Pt provides a novel powerful nanomedicine platform for combatting multidrug resistant cancer.

  5. The Acinetobacter baumannii Two-Component System AdeRS Regulates Genes Required for Multidrug Efflux, Biofilm Formation, and Virulence in a Strain-Specific Manner

    Directory of Open Access Journals (Sweden)

    Grace E. Richmond

    2016-04-01

    Full Text Available The opportunistic pathogen Acinetobacter baumannii is able to persist in the environment and is often multidrug resistant (MDR, causing difficulties in the treatment of infections. Here, we show that the two-component system AdeRS, which regulates the production of the AdeABC multidrug resistance efflux pump, is required for the formation of a protective biofilm in an ex vivo porcine mucosal model, which mimics a natural infection of the human epithelium. Interestingly, deletion of adeB impacted only on the ability of strain AYE to form a biofilm on plastic and only on the virulence of strain Singapore 1 for Galleria mellonella. RNA-Seq revealed that loss of AdeRS or AdeB significantly altered the transcriptional landscape, resulting in the changed expression of many genes, notably those associated with antimicrobial resistance and virulence interactions. For example, A. baumannii lacking AdeRS displayed decreased expression of adeABC, pil genes, com genes, and a pgaC-like gene, whereas loss of AdeB resulted in increased expression of pil and com genes and decreased expression of ferric acinetobactin transport system genes. These data define the scope of AdeRS-mediated regulation, show that changes in the production of AdeABC mediate important phenotypes controlled by AdeRS, and suggest that AdeABC is a viable target for antimicrobial drug and antibiofilm discovery.

  6. Characterization and purification of a bacteriocin from Lactobacillus paracasei subsp. paracasei BMK2005, an intestinal isolate active against multidrug-resistant pathogens.

    Science.gov (United States)

    Bendjeddou, Kamel; Fons, Michel; Strocker, Pierre; Sadoun, Djamila

    2012-04-01

    A strain of Lactobacillus paracasei subsp. paracasei BMK2005 isolated from healthy infant faeces has shown a remarkable antibacterial activity against 32 bacterial pathogenic strains of human clinical isolates. Among them, 13 strains belonging to species of Escherichia coli, Citrobacter freundii, Citrobacter diversus, Klebsiella oxytoca, Enterobacter cloacae and Pseudomonas aeruginosa were resistant to Cefotaxime (CTX) and Ceftazidime (CAZ), and 4 strains of Staphylococcus aureus were resistant to Methicillin (MRSA). This antibacterial activity was attributed to a bacteriocin designated as Paracaseicin A. It was heat-stable up to 120°C for 5 min and active within the pH range of 2-5. Its activity was lost when treated with proteases, which reveals its proteinaceous nature. This bacteriocin was successfully purified only by two steps of reversed phase chromatography. Its molecular mass, determined by mass spectrometry analysis, was 2,462.5 Da. To our knowledge, the present study is the first report on characterization and purification of a bacteriocin, produced by a L. paracasei subsp. paracasei strain exhibiting an antibacterial activity against various multidrug-resistant species of Gram-positive and Gram-negative bacteria, which reveals its potential for use in prevention or treatment of infections caused by multidrug-resistant species especially in cases of antibiotics-associated diarrhea (AAD).

  7. Characterization of DNA topoisomerase I in three SN-38 resistant human colon cancer cell lines reveals a new pair of resistance-associated mutations

    DEFF Research Database (Denmark)

    Jensen, Niels Frank; Agama, Keli; Roy, Amit

    2016-01-01

    gene copy gain and a loss of chromosome 20, respectively. One resistant cell line harbored a pair of yet unreported TOP1 mutations (R364K and G717R) in close proximity to the drug binding site. Mutant TOP1 was expressed at a markedly higher level than wild-type TOP1. None or very small reductions were...... mechanisms for Top1-targeting chemotherapeutic drugs. Importantly, two yet unreported TOP1 mutations were identified, and it was underlined that cross-resistance to the new indenoisoquinoline drugs depends on the specific underlying molecular mechanism of resistance to SN-38....

  8. Warfarin resistance associated with genetic polymorphism of VKORC1: linking clinical response to molecular mechanism using computational modeling.

    Science.gov (United States)

    Lewis, Benjamin C; Nair, Pramod C; Heran, Subash S; Somogyi, Andrew A; Bowden, Jeffrey J; Doogue, Matthew P; Miners, John O

    2016-01-01

    The variable response to warfarin treatment often has a genetic basis. A protein homology model of human vitamin K epoxide reductase, subunit 1 (VKORC1), was generated to elucidate the mechanism of warfarin resistance observed in a patient with the Val66Met mutation. The VKORC1 homology model comprises four transmembrane (TM) helical domains and a half helical lid domain. Cys132 and Cys135, located in the N-terminal end of TM-4, are linked through a disulfide bond. Two distinct binding sites for warfarin were identified. Site-1, which binds vitamin K epoxide (KO) in a catalytically favorable orientation, shows higher affinity for S-warfarin compared with R-warfarin. Site-2, positioned in the domain occupied by the hydrophobic tail of KO, binds both warfarin enantiomers with similar affinity. Displacement of Arg37 occurs in the Val66Met mutant, blocking access of warfarin (but not KO) to Site-1, consistent with clinical observation of warfarin resistance.

  9. Evolution and Diversity of the Antimicrobial Resistance Associated Mobilome in Streptococcus suis: A Probable Mobile Genetic Elements Reservoir for Other Streptococci.

    Science.gov (United States)

    Huang, Jinhu; Ma, Jiale; Shang, Kexin; Hu, Xiao; Liang, Yuan; Li, Daiwei; Wu, Zuowei; Dai, Lei; Chen, Li; Wang, Liping

    2016-01-01

    Streptococcus suis is a previously neglected, newly emerging multidrug-resistant zoonotic pathogen. Mobile genetic elements (MGEs) play a key role in intra- and interspecies horizontal transfer of antimicrobial resistance (AMR) determinants. Although, previous studies showed the presence of several MGEs, a comprehensive analysis of AMR-associated mobilome as well as their interaction and evolution has not been performed. In this study, we presented the AMR-associated mobilome and their insertion hotspots in S. suis . Integrative conjugative elements (ICEs), prophages and tandem MGEs were located at different insertion sites, while 86% of the AMR-associated MGEs were inserted at rplL and rum loci. Comprehensive analysis of insertions at rplL and rum loci among four pathogenic Streptococcus species ( Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes , and S. suis ) revealed the existence of different groups of MGEs, including Tn5252, ICE Sp 1108, and TnGBS2 groups ICEs, Φm46.1 group prophage, ICE_ICE and ICE_prophage tandem MGEs. Comparative ICE genomics of ICE Sa 2603 family revealed that module exchange and acquisition/deletion were the main mechanisms in MGEs' expansion and evolution. Furthermore, the observation of tandem MGEs reflected a novel mechanism for MGE diversity. Moreover, an in vitro competition assay showed no visible fitness cost was observed between different MGE-carrying isolates and a conjugation assay revealed the transferability of ICE Sa 2603 family of ICEs. Our statistics further indicated that the prevalence and diversity of MGEs in S. suis is much greater than in other three species which prompted our hypothesis that S. suis is probably a MGEs reservoir for other streptococci. In conclusion, our results showed that acquisition of MGEs confers S. suis not only its capability as a multidrug resistance pathogen, but also represents a paradigm to study the modular evolution and matryoshkas of MGEs.

  10. Evolution and diversity of the antimicrobial resistance associated mobilome in Streptococcus suis: a probable mobile genetic elements reservoir for other streptococci

    Directory of Open Access Journals (Sweden)

    Jinhu Huang

    2016-10-01

    Full Text Available Streptococcus suis is a previously neglected, newly emerging multidrug-resistant zoonotic pathogen. Mobile genetic elements (MGEs play a key role in intra- and interspecies horizontal transfer of antimicrobial resistance (AMR determinants. Although previous studies showed the presence of several MGEs, a comprehensive analysis of AMR-associated mobilome as well as their interaction and evolution has not been performed. In this study, we presented the AMR-associated mobilome and their insertion hotspots in S. suis. Integrative conjugative elements (ICEs, prophages and tandem MGEs were located at different insertion sites, while 86% of the AMR-associated MGEs were inserted at rplL and rum loci. Comprehensive analysis of insertions at rplL and rum loci among four pathogenic Streptococcus species (Streptococcus agalactiae, Streptococcus pneumoniae, Streptococcus pyogenes, and S. suis revealed the existence of different groups of MGEs, including Tn5252, ICESp1108, and TnGBS2 groups ICEs, Φm46.1 group prophage, ICE_ICE and ICE_prophage tandem MGEs. Comparative ICE genomics of ICESa2603 family revealed that module exchange and acquisition/deletion were the main mechanisms in MGEs’ expansion and evolution. Furthermore, the observation of tandem MGEs reflected a novel mechanism for MGE diversity. Moreover, an in vitro competition assay showed no visible fitness cost was observed between different MGE-carrying isolates and a conjugation assay revealed the transferability of ICESa2603 family of ICEs. Our statistics further indicated that the prevalence and diversity of MGEs in S. suis is much greater than in other three species which prompted our hypothesis that S. suis is probably a MGEs reservoir for other streptococci. In conclusion, our results showed that acquisition of MGEs confers S. suis not only its capability as a multidrug resistance pathogen, but also represents a paradigm to study the modular evolution and matryoshkas of MGEs.

  11. CYP1A1 induction and CYP3A4 inhibition by the fungicide imazalil in the human intestinal Caco-2 cells-comparison with other conazole pesticides.

    Science.gov (United States)

    Sergent, Thérèse; Dupont, Isabelle; Jassogne, Coralie; Ribonnet, Laurence; van der Heiden, Edwige; Scippo, Marie-Louise; Muller, Marc; McAlister, Dan; Pussemier, Luc; Larondelle, Yvan; Schneider, Yves-Jacques

    2009-02-10

    Imazalil (IMA) is a widely used imidazole-antifungal pesticide and, therefore, a food contaminant. This compound is also used as a drug (enilconazole). As intestine is the first site of exposure to ingested drugs and pollutants, we have investigated the effects of IMA, at realistic intestinal concentrations, on xenobiotic-metabolizing enzymes and efflux pumps by using Caco-2 cells, as a validated in vitro model of the human intestinal absorptive epithelium. For comparison, other conazole fungicides, i.e. ketoconazole, propiconazole and tebuconazole, were also studied. IMA induced cytochrome P450 (CYP) 1A1 activity to the same extent as benzo(a)pyrene (B(a)P) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), in a dose- and time-dependent manner. Cell-free aryl hydrocarbon receptor (AhR) binding assay and reporter gene assay suggested that IMA is not an AhR-ligand, implying that IMA-mediated induction should involve an AhR-independent pathway. Moreover, IMA strongly inhibited the CYP3A4 activity in 1,25-vitamin D(3)-induced Caco-2 cells. The other fungicides had weak or nil effects on CYP activities. Study of the apical efflux pump activities revealed that ketoconazole inhibited both P-glycoprotein (Pgp) and multidrug resistance-associated protein 2 (MRP-2) or breast cancer resistance protein (BCRP), whereas IMA and other fungicides did not. Our results imply that coingestion of IMA-contaminated food and CYP3A4- or CYP1A1-metabolizable drugs or chemicals could lead to drug bioavailability modulation or toxicological interactions, with possible adverse effects for human health.

  12. Differential Regulation of cGMP Signaling in Human Melanoma Cells at Altered Gravity: Simulated Microgravity Down-Regulates Cancer-Related Gene Expression and Motility

    Science.gov (United States)

    Ivanova, Krassimira; Eiermann, Peter; Tsiockas, Wasiliki; Hemmersbach, Ruth; Gerzer, Rupert

    2018-03-01

    Altered gravity is known to affect cellular function by changes in gene expression and cellular signaling. The intracellular signaling molecule cyclic guanosine-3',5'-monophosphate (cGMP), a product of guanylyl cyclases (GC), e.g., the nitric oxide (NO)-sensitive soluble GC (sGC) or natriuretic peptide-activated GC (GC-A/GC-B), is involved in melanocyte response to environmental stress. NO-sGC-cGMP signaling is operational in human melanocytes and non-metastatic melanoma cells, whereas up-regulated expression of GC-A/GC-B and inducible NO synthase (iNOS) are found in metastatic melanoma cells, the deadliest skin cancer. Here, we investigated the effects of altered gravity on the mRNA expression of NOS isoforms, sGC, GC-A/GC-B and multidrug resistance-associated proteins 4/5 (MRP4/MRP5) as selective cGMP exporters in human melanoma cells with different metastatic potential and pigmentation. A specific centrifuge (DLR, Cologne Germany) was used to generate hypergravity (5 g for 24 h) and a fast-rotating 2-D clinostat (60 rpm) to simulate microgravity values ≤ 0.012 g for 24 h. The results demonstrate that hypergravity up-regulates the endothelial NOS-sGC-MRP4/MRP5 pathway in non-metastatic melanoma cells, but down-regulates it in simulated microgravity when compared to 1 g. Additionally, the suppression of sGC expression and activity has been suggested to correlate inversely to tumor aggressiveness. Finally, hypergravity is ineffective in highly metastatic melanoma cells, whereas simulated microgravity down-regulates predominantly the expression of the cancer-related genes iNOS and GC-A/GC-B (shown additionally on protein levels) as well as motility in comparison to 1 g. The results suggest that future studies in real microgravity can benefit from considering GC-cGMP signaling as possible factor for melanocyte transformation.

  13. Comparative Sequence Analysis of Multidrug-Resistant IncA/C Plasmids from Salmonella enterica.

    Science.gov (United States)

    Hoffmann, Maria; Pettengill, James B; Gonzalez-Escalona, Narjol; Miller, John; Ayers, Sherry L; Zhao, Shaohua; Allard, Marc W; McDermott, Patrick F; Brown, Eric W; Monday, Steven R

    2017-01-01

    Determinants of multidrug resistance (MDR) are often encoded on mobile elements, such as plasmids, transposons, and integrons, which have the potential to transfer among foodborne pathogens, as well as to other virulent pathogens, increasing the threats these traits pose to human and veterinary health. Our understanding of MDR among Salmonella has been limited by the lack of closed plasmid genomes for comparisons across resistance phenotypes, due to difficulties in effectively separating the DNA of these high-molecular weight, low-copy-number plasmids from chromosomal DNA. To resolve this problem, we demonstrate an efficient protocol for isolating, sequencing and closing IncA/C plasmids from Salmonella sp. using single molecule real-time sequencing on a Pacific Biosciences (Pacbio) RS II Sequencer. We obtained six Salmonella enterica isolates from poultry, representing six different serovars, each exhibiting the MDR-Ampc resistance profile. Salmonella plasmids were obtained using a modified mini preparation and transformed with Escherichia coli DH10Br. A Qiagen Large-Construct kit™ was used to recover highly concentrated and purified plasmid DNA that was sequenced using PacBio technology. These six closed IncA/C plasmids ranged in size from 104 to 191 kb and shared a stable, conserved backbone containing 98 core genes, with only six differences among those core genes. The plasmids encoded a number of antimicrobial resistance genes, including those for quaternary ammonium compounds and mercury. We then compared our six IncA/C plasmid sequences: first with 14 IncA/C plasmids derived from S. enterica available at the National Center for Biotechnology Information (NCBI), and then with an additional 38 IncA/C plasmids derived from different taxa. These comparisons allowed us to build an evolutionary picture of how antimicrobial resistance may be mediated by this common plasmid backbone. Our project provides detailed genetic information about resistance genes in

  14. Comparative Sequence Analysis of Multidrug-Resistant IncA/C Plasmids from Salmonella enterica

    Directory of Open Access Journals (Sweden)

    Maria Hoffmann

    2017-08-01

    Full Text Available Determinants of multidrug resistance (MDR are often encoded on mobile elements, such as plasmids, transposons, and integrons, which have the potential to transfer among foodborne pathogens, as well as to other virulent pathogens, increasing the threats these traits pose to human and veterinary health. Our understanding of MDR among Salmonella has been limited by the lack of closed plasmid genomes for comparisons across resistance phenotypes, due to difficulties in effectively separating the DNA of these high-molecular weight, low-copy-number plasmids from chromosomal DNA. To resolve this problem, we demonstrate an efficient protocol for isolating, sequencing and closing IncA/C plasmids from Salmonella sp. using single molecule real-time sequencing on a Pacific Biosciences (Pacbio RS II Sequencer. We obtained six Salmonella enterica isolates from poultry, representing six different serovars, each exhibiting the MDR-Ampc resistance profile. Salmonella plasmids were obtained using a modified mini preparation and transformed with Escherichia coli DH10Br. A Qiagen Large-Construct kit™ was used to recover highly concentrated and purified plasmid DNA that was sequenced using PacBio technology. These six closed IncA/C plasmids ranged in size from 104 to 191 kb and shared a stable, conserved backbone containing 98 core genes, with only six differences among those core genes. The plasmids encoded a number of antimicrobial resistance genes, including those for quaternary ammonium compounds and mercury. We then compared our six IncA/C plasmid sequences: first with 14 IncA/C plasmids derived from S. enterica available at the National Center for Biotechnology Information (NCBI, and then with an additional 38 IncA/C plasmids derived from different taxa. These comparisons allowed us to build an evolutionary picture of how antimicrobial resistance may be mediated by this common plasmid backbone. Our project provides detailed genetic information about

  15. Partial circumvention of P-glycoprotein-mediated multidrug resistance by doxorubicin-14-O-hemiadipate.

    Science.gov (United States)

    Leontieva, Olga V; Preobrazhenskaya, Maria N; Bernacki, Ralph J

    2002-02-01

    Previously, we have reported partial circumvention of P-glycoprotein (Pgp)-associated resistance to doxorubicin (Dox) in MCF7/R human breast carcinoma and P388/R murine leukemia cell lines by doxorubicin-14-O-hemiadipate (H-Dox) [Povarov L.S. et al. (1995) Russian J. Bioorganic Chemistry 21: 797-803]. We felt that these changes were due to alterations in the cellular pharmacokinetics of the analog in multidrug (MDR) resistant cells, as compared to that of Dox. To address this hypothesis, we performed comparative studies of the accumulation, retention and intracellular localization of H-Dox and Dox in Dox-sensitive murine leukemia cell line P388/S and its Dox-selected. Pgp-positive drug resistant P388/R subline. These studies were performed in the presence or absence of cyclosporin A (CsA), a competitive inhibitor of Pgp. Flow cytometric analysis revealed significant differences in Dox and H-Dox accumulation in P388/R cells when compared to P388/S cells. In P388/R versus P388/S cells, there was a 38-fold decrease in Dox accumulation, but only a 5-fold decrease in H-Dox accumulation, indicating over a 7-fold increase in H-Dox buildup in resistant cells. CsA did not affect uptake or retention of either drug by sensitive cells. However, coincubation with CsA resulted in a 54-fold increase in Dox accumulation and only a 5-fold increase in H-Dox uptake in P388/R cells, restoring anthracycline levels in P388/R to 100% of that found in P388/S cells. Once internalized by the resistant cells, H-Dox was retained better than Dox regardless of presence or absence of CsA. Confocal microscopic analysis revealed the presence of H-Dox but no Dox in cellular nuclei of P388/R cells. Thus, increased activity of H-Dox toward P388/R cells was correlated with its enhanced ability to enter and be retained in these cells, and also with redistribution of H-Dox into the nuclei of the resistant cells as compared to Dox. Overall, our findings support our initial hypothesis and provide evidence

  16. ZTI-01 Treatment Improves Survival of Animals Infected with Multidrug Resistant Pseudomonas aeruginosa

    Science.gov (United States)

    Lawrenz, Matthew B; denDekker, Ashley Eb; Cramer, Daniel E; Gabbard, Jon D; Lafoe, Kathryn M; Pfeffer, Tia L; Sotsky, Julie B; Vanover, Carol D; Ellis-Grosse, Evelyn J; Warawa, Jonathan M

    2017-01-01

    Abstract Background ZTI-01 (fosfomycin, FOS, for injection) is currently under US development to treat complicated urinary tract infections. ZTI-01 is unique compared with other antimicrobials in that it inhibits an early step in cell wall synthesis via covalent binding to MurA. ZTI-01 demonstrates broad in vitro activity against Gram-negative (GN) and -positive (GP) bacteria, including multidrug-resistant (MDR) organisms. Our study goals were to determine the efficacy of ZTI-01 as a monotherapy or in combination with meropenem against MDR Pseudomonas aeruginosa in a preclinical model of pulmonary infection. Methods 8 week old neutropenic mice were infected with a MDR strain of P. aeruginosa via intubation-mediated intratracheal (IMIT) instillation. 3 hours after instillation, mice received treatment with ZTI-01, meropenem, or ZTI-01 plus meropenem (combination therapy) q8h for 5 days. Mice were monitored every 8 hours for 7 days for development of disease and moribund animals were humanely euthanized. Lungs and spleens were harvested at euthanasia, or at 7 days for survivors, and processed for bacterial enumeration and development of pathology. Results Mice were challenged with a lethal dose of P. aeruginosa UNC-D. Mock treated animals succumbed to infection within 36 hours post-infection. Animals that received 6 g/kg/day ZTI-01 showed an increase in the MTD (52 hours) and 25% of the cohort were protected from lethal disease. Combining ZTI-01 with meropenem resulted in a significant increase in survival (≥75% of cohorts survived infection). Combination therapy also significantly decreased bacterial numbers in the lungs and inhibited dissemination to the spleens. Furthermore, animals receiving combination therapy were protected from significant inflammation in the lungs and the development of pneumonia. Conclusion Here we report that combination therapy with ZTI-01 and meropenem provides significant improvements in all disease manifestations over treatment with

  17. The AcrB efflux pump: conformational cycling and peristalsis lead to multidrug resistance.

    Science.gov (United States)

    Seeger, Markus A; Diederichs, Kay; Eicher, Thomas; Brandstätter, Lorenz; Schiefner, André; Verrey, François; Pos, Klaas M

    2008-09-01

    Antimicrobial resistance of human pathogenic bacteria is an emerging problem for global public health. This resistance is often associated with the overproduction of membrane transport proteins that are capable to pump chemotherapeutics, antibiotics, detergents, dyes and organic solvents out of the cell. In Gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa, tripartite multidrug efflux systems extrude a large variety of cytotoxic substances from the cell membrane directly into the medium bypassing the periplasm and the outer membrane. In E. coli, the tripartite efflux system AcrA/AcrB/TolC is the pump in charge of the efflux of multiple antibiotics, dyes, bile salts and detergents. The trimeric outer membrane factor (OMF) TolC forms a beta-barrel pore in the outer membrane and exhibits a long periplasmic alpha-helical conduit. The periplasmic membrane fusion protein (MFP) AcrA serves as a linker between TolC and the trimeric resistance nodulation cell division (RND) pump AcrB, located in the inner membrane acting as a proton/drug antiporter. The newly elucidated asymmetric structure of trimeric AcrB reveals three different monomer conformations representing consecutive states in a transport cycle. The monomers show tunnels with occlusions at different sites leading from the lateral side through the periplasmic porter (pore) domains towards the funnel of the trimer and TolC. The structural changes create a hydrophobic pocket in one monomer, which is not present in the other two monomers. Minocyclin and doxorubicin, both AcrB substrates, specifically bind to this pocket substantiating its role as drug binding pocket. The energy transduction from the proton motive force into drug efflux includes proton binding in (and release from) the transmembrane part. The conformational changes observed within a triad of essential, titratable residues (Asp407/Asp408/Lys940) residing in the hydrophobic transmembrane domain appear to be transduced by

  18. Surveillance of multidrug resistant suppurative infection causing bacteria in hospitalized patients in an Indian tertiary care hospital

    Directory of Open Access Journals (Sweden)

    Nabakishore Nayak

    2014-01-01

    Conclusions: Of these S. aureus, particularly the methicillin resistant strain predominates, followed by strains of S. pyogenes and P. aeruginosa that were in the higher proportions of multidrug resistance.

  19. Spontaneous T-cell responses against peptides derived from the Taxol resistance-associated gene-3 (TRAG-3) protein in cancer patients

    DEFF Research Database (Denmark)

    Meier, Anders; Hadrup, Sine Reker; Svane, Inge Marie

    2005-01-01

    for immunotherapy of cancer. To identify HLA-A* 02.01 - restricted epitopes from TRAG-3, we screened cancer patients for spontaneous cytotoxic T-cell responses against TRAG-3 - derived peptides. The TRAG-3 protein sequence was screened for 9mer and 10mer peptides possessing HLA-A* 02.01 - binding motifs. Of 12......Expression of the cancer-testis antigen Taxol resistance - associated gene-3 (TRAG-3) protein is associated with acquired paclitaxel ( Taxol) resistance, and is expressed in various cancer types; e. g., breast cancer, leukemia, and melanoma. Thus, TRAG-3 represents an attractive target...... potential binders, 9 peptides were indeed capable of binding to the HLA-A* 02.01 molecule, with binding affinities ranging from strong to weak binders. Subsequently, lymphocytes from cancer patients ( 9 breast cancer patients, 12 melanoma patients, and 13 patients with hematopoietic malignancies) were...

  20. Overexpression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells

    DEFF Research Database (Denmark)

    Robey, R W; Medina-Pérez, W Y; Nishiyama, K

    2001-01-01

    We sought to characterize the interactions of flavopiridol with members of the ATP-binding cassette (ABC) transporter family. Cells overexpressing multidrug resistance-1 (MDR-1) and multidrug resistance-associated protein (MRP) did not exhibit appreciable flavopiridol resistance, whereas cell lines...... overexpressing the ABC half-transporter, ABCG2 (MXR/BCRP/ABCP1), were found to be resistant to flavopiridol. Flavopiridol at a concentration of 10 microM was able to prevent MRP-mediated calcein efflux, whereas Pgp-mediated transport of rhodamine 123 was unaffected at flavopiridol concentrations of up to 100...... analysis revealed overexpression of the ABCG2 gene. Western blot confirmed overexpression of ABCG2; neither P-glycoprotein nor MRP overexpression was detected. These results suggest that ABCG2 plays a role in resistance to flavopiridol....

  1. Prevalence of NS5B resistance-associated variants in treatment-naïve Asian patients with chronic hepatitis C.

    Science.gov (United States)

    Yang, Song; Xing, Huichun; Feng, Shenghu; Ju, Wei; Liu, Shunai; Wang, Xiaomei; Ou, Weini; Cheng, Jun; Pan, Calvin Q

    2018-02-01

    There is little information on the association between baseline non-structural protein (NS) 5b resistance-associated variants (RAVs) and treatment failure in hepatitis C patients. This study examined the frequencies of natural hepatitis C virus (HCV) NS5B resistance-associated variants (RAVs) in an Asian cohort. Samples from Asian HCV patients enrolled between October 2009 and September 2014 were analyzed for NS5B RAVs within the region from amino acid 230 to 371. Serum samples were tested by PCR genotyping, with sequence alignment performed using the neighbor-joining method. NS5B was detected by Sanger sequencing followed by Geno2pheno analysis. NS5B RAVs were detected in 80.52% (1199/1489) of patients; 68.4% (1019/1489) and 79.7% (1186/1489) were associated with resistance to sofosbuvir (SOF) and dasabuvir (DSV), respectively. These RAVs were present in 95% (1004/1058) of genotype 1b patients. When genotypes 1b and 2a were compared, SOF-associated RAVs were detected at a higher frequency in genotype 1b (94.8% [1004/1058] vs. 2.9% [9/309]; χ 2 = 1054.433, P C316H/N was more common in genotype 1b (94.7% [1002/1058] vs. 0% [0/309]; χ 2 = 1096.014, P C316Y/H/N/W was higher in genotype 1b (94.7% [1002/1058] vs. 0% [0/309]; χ 2 = 1096.014, P < 0.001). In conclusion, baseline SOF and DSV RAVs are common in Asian HCV patients and predominantly occur in genotype 1b.

  2. Understanding institutional stakeholders’ perspectives on multidrug-resistant bacterial organism at the end of life: a qualitative study

    Science.gov (United States)

    Heckel, Maria; Herbst, Franziska A; Adelhardt, Thomas; Tiedtke, Johanna M; Sturm, Alexander; Stiel, Stephanie; Ostgathe, Christoph

    2017-01-01

    Background Information lacks about institutional stakeholders’ perspectives on management approaches of multidrug-resistant bacterial organism in end-of-life situations. The term “institutional stakeholder” includes persons in leading positions with responsibility in hospitals’ multidrug-resistant bacterial organism management. They have great influence on how strategies on multidrug-resistant bacterial organism management approaches in institutions of the public health system are designed. This study targeted institutional stakeholders’ individual perspectives on multidrug-resistant bacterial organism colonization or infection and isolation measures at the end of life. Methods Between March and December 2014, institutional stakeholders of two study centers, a German palliative care unit and a geriatric ward, were queried in semistructured interviews. Interviews were audiotaped, transcribed verbatim, and analyzed qualitatively with the aid of the software MAXQDA for qualitative data analysis using principles of Grounded Theory. In addition, two external stakeholders were interviewed to enrich data. Results Key issues addressed by institutional stakeholders (N=18) were the relevance of multidrug-resistant bacterial organism in palliative and geriatric care, contradictions between hygiene principles and patients’ and family caregivers’ needs and divergence from standards, frame conditions, and reflections on standardization of multidrug-resistant bacterial organism end-of-life care procedures. Results show that institutional stakeholders face a dilemma between their responsibility in protecting third persons and ensuring patients’ quality of life. Until further empirical evidence establishes a clear multidrug-resistant bacterial organism management approach in end-of-life care, stakeholders suggest a case-based approach. Conclusion The institutional stakeholders’ perspectives and their suggestion of a case-based approach advance the development

  3. Understanding institutional stakeholders' perspectives on multidrug-resistant bacterial organism at the end of life: a qualitative study.

    Science.gov (United States)

    Heckel, Maria; Herbst, Franziska A; Adelhardt, Thomas; Tiedtke, Johanna M; Sturm, Alexander; Stiel, Stephanie; Ostgathe, Christoph

    2017-01-01

    Information lacks about institutional stakeholders' perspectives on management approaches of multidrug-resistant bacterial organism in end-of-life situations. The term "institutional stakeholder" includes persons in leading positions with responsibility in hospitals' multidrug-resistant bacterial organism management. They have great influence on how strategies on multidrug-resistant bacterial organism management approaches in institutions of the public health system are designed. This study targeted institutional stakeholders' individual perspectives on multidrug-resistant bacterial organism colonization or infection and isolation measures at the end of life. Between March and December 2014, institutional stakeholders of two study centers, a German palliative care unit and a geriatric ward, were queried in semistructured interviews. Interviews were audiotaped, transcribed verbatim, and analyzed qualitatively with the aid of the software MAXQDA for qualitative data analysis using principles of Grounded Theory. In addition, two external stakeholders were interviewed to enrich data. Key issues addressed by institutional stakeholders (N=18) were the relevance of multidrug-resistant bacterial organism in palliative and geriatric care, contradictions between hygiene principles and patients' and family caregivers' needs and divergence from standards, frame conditions, and reflections on standardization of multidrug-resistant bacterial organism end-of-life care procedures. Results show that institutional stakeholders face a dilemma between their responsibility in protecting third persons and ensuring patients' quality of life. Until further empirical evidence establishes a clear multidrug-resistant bacterial organism management approach in end-of-life care, stakeholders suggest a case-based approach. The institutional stakeholders' perspectives and their suggestion of a case-based approach advance the development process of a patient-, family-, staff-, and institutional

  4. Characterization of a multidrug resistant Salmonella enterica give ...

    African Journals Online (AJOL)

    Salmonella enterica Give is one of the serotypes that have been incriminated in Salmonella infections; sometimes associated with hospitalization and mortalities in humans and animals in some parts of the world. In this work, we characterized one Salmonella Give isolated from cloaca swab of an Agama agama lizard ...

  5. Isolation and characterization of multidrug-resistant side population ...

    African Journals Online (AJOL)

    Results: SP cells in the prostate cancer samples constituted 2.8 %, but fell to 0.6 % after treatment with ... tumor. Keywords: Side population cells, ABC transporters, Cancer stem cells, Chemotherapy, Prostate treatment failure, Tumor recurrence, Drug resistance ..... Identification of human brain tumour initiating cells.

  6. An In Vitro Chicken Gut Model Demonstrates Transfer of a Multidrug Resistance Plasmid from Salmonella to Commensal Escherichia coli.

    Science.gov (United States)

    Card, Roderick M; Cawthraw, Shaun A; Nunez-Garcia, Javier; Ellis, Richard J; Kay, Gemma; Pallen, Mark J; Woodward, Martin J; Anjum, Muna F

    2017-07-18

    The chicken gastrointestinal tract is richly populated by commensal bacteria that fulfill various beneficial roles for the host, including helping to resist colonization by pathogens. It can also facilitate the conjugative transfer of multidrug resistance (MDR) plasmids between commensal and pathogenic bacteria which is a significant public and animal health concern as it may affect our ability to treat bacterial infections. We used an in vitro chemostat system to approximate the chicken cecal microbiota, simulate colonization by an MDR Salmonella pathogen, and examine the dynamics of transfer of its MDR plasmid harboring several genes, including the extended-spectrum beta-lactamase bla CTX-M1 We also evaluated the impact of cefotaxime administration on plasmid transfer and microbial diversity. Bacterial community profiles obtained by culture-independent methods showed that Salmonella inoculation resulted in no significant changes to bacterial community alpha diversity and beta diversity, whereas administration of cefotaxime caused significant alterations to both measures of diversity, which largely recovered. MDR plasmid transfer from Salmonella to commensal Escherichia coli was demonstrated by PCR and whole-genome sequencing of isolates purified from agar plates containing cefotaxime. Transfer occurred to seven E. coli sequence types at high rates, even in the absence of cefotaxime, with resistant strains isolated within 3 days. Our chemostat system provides a good representation of bacterial interactions, including antibiotic resistance transfer in vivo It can be used as an ethical and relatively inexpensive approach to model dissemination of antibiotic resistance within the gut of any animal or human and refine interventions that mitigate its spread before employing in vivo studies. IMPORTANCE The spread of antimicrobial resistance presents a grave threat to public health and animal health and is affecting our ability to respond to bacterial infections

  7. Community-acquired multidrug-resistant Gram-negative bacterial infective endocarditis.

    Science.gov (United States)

    Naha, Sowjanya; Naha, Kushal; Acharya, Vasudev; Hande, H Manjunath; Vivek, G

    2014-08-05

    We describe two cases of bacterial endocarditis secondary to multidrug-resistant Gram-negative organisms. In both cases, the diagnosis was made in accordance with the modified Duke's criteria and confirmed by histopathological analysis. Furthermore, in both instances there were no identifiable sources of bacteraemia and no history of contact with hospital or other medical services prior to the onset of symptoms. The patients were managed in similar fashion with prolonged broad-spectrum antibiotic therapy and surgical intervention and made complete recoveries. These cases highlight Gram-negative organisms as potential agents for endocarditis, as well as expose the dissemination of such multidrug-resistant bacteria into the community. The application of an integrated medical and surgical approach and therapeutic dilemmas encountered in managing these cases are described. 2014 BMJ Publishing Group Ltd.

  8. [Antimicrobial therapy in severe infections with multidrug-resistant Gram-negative bacterias].

    Science.gov (United States)

    Duszyńska, Wiesława

    2010-01-01

    Multidrug-resistant Gram-negative bacteria pose a serious and rapidly emerging threat to patients in healthcare settings, and are especially prevalent and problematic in intensive therapy units. Recently, the emergence of pandrug-resistance in Gram-negative bacteria poses additional concerns. This review examines the clinical impact and epidemiology of multidrug-resistant Gram-negative bacteria as a cause of increased morbidity and mortality among ITU patients. Beta-lactamases, cephalosporinases and carbapenemases play the most important role in resistance to antibiotics. Despite the tendency to increased resistance, carbapenems administered by continuous infusion remain the most effective drugs in severe sepsis. Drug concentration monitoring, albeit rarely used in practice, is necessary to ensure an effective therapeutic effect.

  9. Meaning of leprosy for people who have experienced treatment during the sulfonic and multidrug therapy periods

    Directory of Open Access Journals (Sweden)

    Karen da Silva Santos

    2015-08-01

    Full Text Available AbstractObjective: to analyze the meanings of leprosy for people treated during the sulfonic and multidrug therapy periods.Method: qualitative nature study based on the Vigotski's historical-cultural approach, which guided the production and analysis of data. It included eight respondents who have had leprosy and were submitted to sulfonic and multidrug therapy treatments. The participants are also members of the Movement for Reintegration of People Affected by Leprosy.Results: the meanings were organized into three meaning cores: spots on the body: something is out of order; leprosy or hanseniasis? and leprosy from the inclusion in the Movement for Reintegration of People Affected by Leprosy.Conclusion: the meanings of leprosy for people submitted to both regimens point to a complex construction thereof, indicating differences and similarities in both treatments. Health professionals may contribute to the change of the meanings, since these are socially constructed and the changes are continuous.

  10. Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment.

    Science.gov (United States)

    Gomez, James E; Kaufmann-Malaga, Benjamin B; Wivagg, Carl N; Kim, Peter B; Silvis, Melanie R; Renedo, Nikolai; Ioerger, Thomas R; Ahmad, Rushdy; Livny, Jonathan; Fishbein, Skye; Sacchettini, James C; Carr, Steven A; Hung, Deborah T

    2017-02-21

    Antibiotic resistance arising via chromosomal mutations is typically specific to a particular antibiotic or class of antibiotics. We have identified mutations in genes encoding ribosomal components in Mycobacterium smegmatis that confer resistance to several structurally and mechanistically unrelated classes of antibiotics and enhance survival following heat shock and membrane stress. These mutations affect ribosome assembly and cause large-scale transcriptomic and proteomic changes, including the downregulation of the catalase KatG, an activating enzyme required for isoniazid sensitivity, and upregulation of WhiB7, a transcription factor involved in innate antibiotic resistance. Importantly, while these ribosomal mutations have a fitness cost in antibiotic-free medium, in a multidrug environment they promote the evolution of high-level, target-based resistance. Further, suppressor mutations can then be easily acquired to restore wild-type growth. Thus, ribosomal mutations can serve as stepping-stones in an evolutionary path leading to the emergence of high-level, multidrug resistance.

  11. In vitro and in vivo reversal of cancer cell multidrug resistance by the semi-synthetic antibiotic tiamulin.

    Science.gov (United States)

    Baggetto, L G; Dong, M; Bernaud, J; Espinosa, L; Rigal, D; Bonvallet, R; Marthinet, E

    1998-11-01

    A large number of multidrug resistance (MDR) modulators, termed chemosensitizers, have been identified from a variety of chemicals, but most have been proven to be clinically toxic. Low concentrations of the pleuromutilin-derived semi-synthetic antibiotic tiamulin (0.1 to 10 microM) sensitized the three highly resistant P-glycoprotein (Pgp)-overexpressing tumor cell lines P388 (murine lymphoid leukemia), AS30-D (rat hepatoma), CEM (human lymphoblastic leukemia), and the barely resistant AS30-D/S cell lines to several MDR-related anticancer drugs. Flow cytometric analysis showed that tiamulin significantly increased the intracellular accumulation of daunomycin. When compared to reference modulating agents such as verapamil and cyclosporin A, tiamulin proved to be 1.1 to 8.3 times more efficient in sensitizing the resistant cell lines. Moreover, when given i.p. (1.6 microg/mg body weight), tiamulin increased the survival rate of adriamycin-treated mice bearing the P388/ADR25 tumor line by 29%. In the presence of an anticancer drug, tiamulin inhibited both ATPase and drug transport activities of Pgp in plasma membranes from tumor cells. Tiamulin is thus a potent chemosensitizer that antagonizes the Pgp-mediated chemoresistance in many tumor cell lines expressing the MDR phenotype at different levels and displays no toxic effects on contractile tissues at active doses, therefore providing the promise for potential clinical applications.

  12. Multidrug resistance found in extended-spectrum beta-lactamase-producing Enterobacteriaceae from rural water reservoirs in Guantao, China

    Directory of Open Access Journals (Sweden)

    Hongna eZhang

    2015-03-01

    Full Text Available Extended-spectrum beta-lactamase (ESBL-producing Enterobacteriaceae have been isolated from humans and animals across the world. However, data on prevalence of ESBL-producing Enterobacteriaceae from rural water reservoirs is limited. This study aimed to isolate and characterize ESBL-producing Enterobacteriaceae in rural water reservoirs in Guantao, China. ESBL-producing Enterobacteriaceae were found in 5 (16.7% of 30 sampled rural water reservoirs. 66 individual isolates expressing an ESBL phenotype were obtained in the present study. Species identification showed that 42 representatives of Escherichia coli, 17 Klebsiella pneumoniae, 4 Raoultella planticola, and 3 Enterobacter cloacae. 20 isolates contained a single bla gene, including CTX-M (17 strains, TEM (2 strains, and SHV (1 strain. 46 isolates contained more than one type of beta-lactamase genes. ESBL-producing Enterobacteriaceae isolated in this study were all multidrug resistant. These findings indicated that the seroius contamination of ESBL-producing Enterobacteriaceae in rural water resevoirs existed in Guantao, China.

  13. Effect of Chlorine Exposure on the Survival and Antibiotic Gene Expression of Multidrug Resistant Acinetobacter baumannii in Water

    Directory of Open Access Journals (Sweden)

    Deepti Prasad Karumathil

    2014-02-01

    Full Text Available Acinetobacter baumannii is a multidrug resistant pathogen capable of causing a wide spectrum of clinical conditions in humans. Acinetobacter spp. is ubiquitously found in different water sources. Chlorine being the most commonly used disinfectant in water, the study investigated the effect of chlorine on the survival of A. baumannii in water and transcription of genes conferring antibiotic resistance. Eight clinical isolates of A. baumannii, including a fatal meningitis isolate (ATCC 17978 (~108 CFU/mL were separately exposed to free chlorine concentrations (0.2, 1, 2, 3 and 4 ppm with a contact time of 30, 60, 90 and 120 second. The surviving pathogen counts at each specified contact time were determined using broth dilution assay. In addition, real-time quantitative PCR (RT-qPCR analysis of the antibiotic resistance genes (efflux pump genes and those encoding resistance to specific antibiotics of three selected A. baumannii strains following exposure to chlorine was performed. Results revealed that all eight A. baumannii isolates survived the tested chlorine levels during all exposure times (p > 0.05. Additionally, there was an up-regulation of all or some of the antibiotic resistance genes in A. baumannii, indicating a chlorine-associated induction of antibiotic resistance in the pathogen.

  14. Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB.

    Science.gov (United States)

    Eicher, Thomas; Seeger, Markus A; Anselmi, Claudio; Zhou, Wenchang; Brandstätter, Lorenz; Verrey, François; Diederichs, Kay; Faraldo-Gómez, José D; Pos, Klaas M

    2014-09-19

    Membrane transporters of the RND superfamily confer multidrug resistance to pathogenic bacteria, and are essential for cholesterol metabolism and embryonic development in humans. We use high-resolution X-ray crystallography and computational methods to delineate the mechanism of the homotrimeric RND-type proton/drug antiporter AcrB, the active component of the major efflux system AcrAB-TolC in Escherichia coli, and one most complex and intriguing membrane transporters known to date. Analysis of wildtype AcrB and four functionally-inactive variants reveals an unprecedented mechanism that involves two remote alternating-access conformational cycles within each protomer, namely one for protons in the transmembrane region and another for drugs in the periplasmic domain, 50 Å apart. Each of these cycles entails two distinct types of collective motions of two structural repeats, coupled by flanking α-helices that project from the membrane. Moreover, we rationalize how the cross-talk among protomers across the trimerization interface might lead to a more kinetically efficient efflux system.

  15. Punica granatum peel extracts: HPLC fractionation and LC MS analysis to quest compounds having activity against multidrug resistant bacteria.

    Science.gov (United States)

    Khan, Ilyas; Rahman, Hazir; Abd El-Salam, Nasser M; Tawab, Abdul; Hussain, Anwar; Khan, Taj Ali; Khan, Usman Ali; Qasim, Muhammad; Adnan, Muhammad; Azizullah, Azizullah; Murad, Waheed; Jalal, Abdullah; Muhammad, Noor; Ullah, Riaz

    2017-05-03

    Medicinal plants are rich source of traditional herbal medicine around the globe. Most of the plant's therapeutic properties are due to the presence of secondary bioactive compounds. The present study analyzed the High Pressure Liquid Chromatography (HPLC) fractions of Puncia granatum (peel) extracts (aqueous, chloroform, ethanol and hexane) against multidrug resistant bacterial pathogens (Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus). All the fractions having antibacterial activity was processed for bioactive compounds identification using LC MS/MS analysis. Among total HPLC fractions (n = 30), 4 HPLC fractions of P. granatum (peel) showed potential activity against MDR pathogens. Fraction 1 (F1) and fraction 4 (F4) collected from aqueous extract showed maximum activity against P. aeruginosa. Fraction 2 (F2) of hexane showed antibacterial activity against three pathogens, while ethanol F4 exhibited antibacterial activity against A. baumannii. The active fractions were processed for LC MS/MS analysis to identify bioactive compounds. Valoneic acid dilactone (aqueous F1 and F4), Hexoside (ethanol F4) and Coumaric acid (hexane F2) were identified as bioactive compounds in HPLC fractions. Puncia granatum peel extracts HPLC fractions exhibited potential inhibitory activity against MDR bacterial human pathogens. Several bioactive compounds were identified from the HPLC fractions. Further characterization of these compounds may be helpful to conclude it as therapeutic lead molecules against MDR pathogens.

  16. Production of putrescine-capped stable silver nanoparticle: its characterization and antibacterial activity against multidrug-resistant bacterial strains

    Science.gov (United States)

    Saha, Saswati; Gupta, Bhaskar; Gupta, Kamala; Chaudhuri, Mahua Ghosh

    2016-11-01

    Integration of biology with nanotechnology is now becoming attention-grabbing area of research. The antimicrobial potency of silver has been eminent from antiquity. Due to the recent desire for the enhancement of antibacterial efficacy of silver, various synthesis methods of silver in their nano dimensions are being practiced using a range of capping material. The present work highlights a facile biomimetic approach for production of silver nanoparticle being capped and stabilized by putrescine, possessing a diameter of 10-25 ± 1.5 nm. The synthesized nanoparticles have been analyzed spectrally and analytically. Morphological studies are carried out by high-resolution transmission electron microscopy and crystallinity by selected area electron diffraction patterns. Moreover, the elemental composition of the capped nanoparticles was confirmed by energy-dispersive X-ray spectroscopy analysis. A comparative study (zone of inhibition and minimum inhibitory concentration) regarding the interactions and antibacterial potentiality of the capped silver nanoparticles with respect to the bare ones reveal the efficiency of the capped one over the bare one. The bacterial kinetic study was executed to monitor the interference of nanoparticles with bacterial growth rate. The results also highlight the efficacy of putrescine-capped silver nanoparticles as effective growth inhibitors against multi-drug resistant human pathogenic bacterial strains, which may, thus, potentially be applicable as an effective antibacterial control system to fight diseases.

  17. Vasovagal tonus index (VVTI) as an indirect assessment of remission status in canine multicentric lymphoma undergoing multi-drug chemotherapy.

    Science.gov (United States)

    Pecceu, Evi; Stebbing, Brittainy; Martinez Pereira, Yolanda; Handel, Ian; Culshaw, Geoff; Hodgkiss-Geere, Hannah; Lawrence, Jessica

    2017-12-01

    Vasovagal tonus index (VVTI) is an indirect measure of heart rate variability and may serve as a marker of disease severity. Higher heart rate variability has predicted lower tumour burden and improved survival in humans with various tumour types. The purpose of this pilot study was to evaluate VVTI as a biomarker of remission status in canine lymphoma. The primary hypothesis was that VVTI would be increased in dogs in remission compared to dogs out of remission. Twenty-seven dogs were prospectively enrolled if they had a diagnosis of intermediate to high-grade lymphoma and underwent multidrug chemotherapy. Serial electrocardiogram data were collected under standard conditions and relationships between VVTI, remission status and other clinical variables were evaluated. VVTI from dogs in remission (partial or complete) did not differ from dogs with fulminant lymphoma (naive or at time of relapse). Dogs in partial remission had higher VVTI than dogs in complete remission (p = 0.021). Higher baseline VVTI was associated with higher subsequent scores (p < 0.001). VVTI also correlated with anxiety level (p = 0.03). Based on this pilot study, VVTI did not hold any obvious promise as a useful clinical biomarker of remission status. Further investigation may better elucidate the clinical and prognostic utility of VVTI in dogs with lymphoma.

  18. Multidrug analysis of pharmaceutical and urine matrices by on-line coupled capillary electrophoresis and triple quadrupole mass spectrometry.

    Science.gov (United States)

    Maráková, Katarína; Piešt'anský, Juraj; Veizerová, Lucia; Galba, Jaroslav; Dokupilová, Svetlana; Havránek, Emil; Mikuš, Peter

    2013-06-01

    The present work illustrates potentialities of CE hyphenated with MS/MS for the simultaneous determination and identification of a mixture of simultaneously acting drugs in pharmaceutical and biological matrices. Here, the hyphenation was provided by ESI interface, while the MS/MS technique was based on the triple quadrupole configuration. Three drugs, namely pheniramine, phenylephrine, and paracetamol were determined and identified with high reliability due to their characterization in three different dimensions, i.e. electrophoresis and MS/MS, that prevented practically any interference. Appropriately selected transitions of the analytes (parent ion-quantifier product ion-qualifier product ion) provided their selective determination at maximum S/N. The proposed CE-MS/MS method was validated (LOD/LOQ, linearity, precision, recovery, accuracy) and applied for (i) the multidrug composition pharmaceuticals, namely Theraflu®, and (ii) human urine taken after per-oral administration of the same pharmaceutical preparation. The method was applied also for the investigation of potential weak associates of the drugs and monitoring of predicted (bio)degradation products of the drugs. Successful validation and application of the proposed method suggest its routine use in highly effective and reliable advanced drug control and biomedical research. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Development of novel strategies to combat multidrug resistance mediated by efflux transporters and intracellular bacteria

    OpenAIRE

    Kuriakose, Jerrin

    2014-01-01

    Multidrug resistance (MDR) is the condition where cancer cells or microorganisms cease to respond to multiple drugs. MDR conferred by efflux transporters, that deprive the bioavailability of drugs at their site of action, are a threat to cancer and malarial chemotherapy. Specifically, the mammalian ABC transporter Pglycoprotein (P-gp) has undermined many drugs in treatment of cancer and other disease states. Mutations in the parasitic transporter Plasmodium falciparum chloroquine resistance t...

  20. Multidrug-resistant Bacteroides fragilis group on the rise in Europe?

    DEFF Research Database (Denmark)

    Hartmeyer, G N; Sóki, J; Nagy, E

    2012-01-01

    We report a case of multidrug-resistance (MDR) in a strain of Bacteroides fragilis from a blood culture and abdominal fluid in a Danish patient. The patient had not been travelling for several years and had not received antibiotics prior to the present case. We also summarize the cases that have...... been reported to date of MDR B. fragilis group in Europe. As far as we know, a case like this with MDR B. fragilis has not been described in Scandinavia before....

  1. Multidrug-Resistant Candida haemulonii and C. auris, Tel Aviv, Israel

    OpenAIRE

    Ben-Ami, Ronen; Berman, Judith; Novikov, Ana; Bash, Edna; Shachor-Meyouhas, Yael; Zakin, Shiri; Maor, Yasmin; Tarabia, Jalal; Schechner, Vered; Adler, Amos; Finn, Talya

    2017-01-01

    Candida auris and C. haemulonii are closely related, multidrug-resistant emerging fungal pathogens that are not readily distinguishable with phenotypic assays. We studied C. auris and C. haemulonii clinical isolates from 2 hospitals in central Israel. C. auris was isolated in 5 patients with nosocomial bloodstream infection, and C. haemulonii was found as a colonizer of leg wounds at a peripheral vascular disease clinic. Liberal use of topical miconazole and close contact among patients were ...

  2. Genetic diversity of drug and multidrug-resistant Mycobacterium tuberculosis circulating in Veracruz, Mexico

    Science.gov (United States)

    Munro-Rojas, Daniela; Fernandez-Morales, Esdras; Zarrabal-Meza, José; Martínez-Cazares, Ma. Teresa; Parissi-Crivelli, Aurora; Fuentes-Domínguez, Javier; Séraphin, Marie Nancy; Lauzardo, Michael; González-y-Merchand, Jorge Alberto; Rivera-Gutierrez, Sandra

    2018-01-01

    Background Mexico is one of the most important contributors of drug and multidrug-resistant tuberculosis in Latin America; however, knowledge of the genetic diversity of drug-resistant tuberculosis isolates is limited. Methods In this study, the genetic structure of 112 Mycobacterium tuberculosis strains from the southeastern Mexico was determined by spoligotyping and 24-loci MIRU-VNTRs. Findings The results show eight major lineages, the most of which was T1 (24%), followed by LAM (16%) and H (15%). A total of 29 (25%) isolates were identified as orphan. The most abundant SITs were SIT53/T1 and SIT42/LAM9 with 10 isolates each and SIT50/H3 with eight isolates. Fifty-two spoligotype patterns, twenty-seven clusters and ten clonal complexes were observed, demonstrating an important genetic diversity of drug and multidrug-resistant tuberculosis isolates in circulation and transmission level of these aggravated forms of tuberculosis. Being defined as orphan or as part of an orphan cluster, was a risk factor for multidrug resistant-tuberculosis (OR 2.5, IC 1.05–5.86 and OR 3.3, IC 1–11.03, respectively). Multiple correspondence analyses showed association of some clusters and SITs with specific geographical locations. Conclusions Our study provides one of the most detailed description of the genetic structure of drug and multidrug-resistant tuberculosis strains in southeast Mexico, establishing for the first time a baseline of the genotypes observed in resistant isolates circulating, however further studies are required to better elucidate the genetic structure of tuberculosis in region and the factors that could be participating in their dispersion. PMID:29543819

  3. Prevalence of Multidrug-Resistant Tuberculosis and Associated Factors in Ethiopia: A Systematic Review

    OpenAIRE

    Asgedom, Solomon Weldegebreal; Teweldemedhin, Mebrahtu; Gebreyesus, Hailay

    2018-01-01

    Background. Multidrug-resistant tuberculosis (MDR-TB) has continued to be a challenge for tuberculosis (TB) control globally. Ethiopia is one of the countries with high MDR-TB burden. Objective. The main purpose of this study was to determine the prevalence of MDR-TB and associated factors in Ethiopia. Methods. A systematic review of the literatures on prevalence of MDR-TB and associated factors was conducted in the country. Results. In our electronic search, 546 citations were depicted. Amon...

  4. Decreasing prevalence of multi-drugs resistant Mycobacterium tuberculosis in Nashik City, India

    Directory of Open Access Journals (Sweden)

    Arun P. More

    2013-03-01

    Full Text Available Objective: In India, increasing prevalence of multi-drug resistant tuberculosis (MDR has aggravated the control oftuberculosis problem. In many urban and semi-urban regions of India, no surveillance data of multidrug resistance inMycobacterium tuberculosisis available.Methods: A surveillance study on multidrug resistance was carried out in semi-urban and rural regions in and aroundNashik City of Maharashtra, India. The surveillance study was conducted in this region found that the prevalence ofcombined resistance to first and second-line anti-tuberculosis drugs is remarkably high. The isolates of M. tuberculosiswas identified and subjected to drug susceptibility testing. The patterns of drug susceptibility of isolates of M. tuberculosisduring the periods 2000 and 2004 were compared with drug susceptibility patterns of the organisms during theperiod 2008 to 2011.Results: The 260 isolates identified as M. tuberculosis show mean drug resistance prevalence of 45.6% for more than anytwo drugs and the MDR rate as 37% in the years 2000 to 2004 whereas 305 isolates of the organism show mean drugresistance prevalence of 30.2% and the MDR rate as 25% in the years 2008 to 2011.Conclusion: The researcher found that, though the prevalence of multidrug resistance to the drugs tested is remarkablyhigh, it has come down noticeably during the past seven years due to efforts of State Government and strict implementationof treatment guidelines of WHO by the physicians. J Microbiol Infect Dis 2013; 3(1: 12-17Key words: MDR-TB, XDR-TB, DOTS, drug-resistance prevalence rate.

  5. Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor.

    Science.gov (United States)

    Kalle, Arunasree M; Rizvi, Arshad

    2011-01-01

    Multidrug resistance (MDR) is a major problem in the treatment of infectious diseases and cancer. Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)-specific inhibitor celecoxib would not only inhibit COX-2 but also help in the reversal of drug resistance in cancers by inhibiting the MDR1 efflux pump. Here, we demonstrate that celecoxib increases the sensitivity of bacteria to the antibiotics ampicillin, kanamycin, chloramphenicol, and ciprofloxacin by accumulating the drugs inside the cell, thus reversing MDR in bacteria.

  6. Multidrug resistance among new tuberculosis cases: detecting local variation through lot quality-assurance sampling.

    Science.gov (United States)

    Hedt, Bethany Lynn; van Leth, Frank; Zignol, Matteo; Cobelens, Frank; van Gemert, Wayne; Nhung, Nguyen Viet; Lyepshina, Svitlana; Egwaga, Saidi; Cohen, Ted

    2012-03-01

    Current methodology for multidrug-resistant tuberculosis (MDR TB) surveys endorsed by the World Health Organization provides estimates of MDR TB prevalence among new cases at the national level. On the aggregate, local variation in the burden of MDR TB may be masked. This paper investigates the utility of applying lot quality-assurance sampling to identify geographic heterogeneity in the proportion of new cases with multidrug resistance. We simulated the performance of lot quality-assurance sampling by applying these classification-based approaches to data collected in the most recent TB drug-resistance surveys in Ukraine, Vietnam, and Tanzania. We explored 3 classification systems- two-way static, three-way static, and three-way truncated sequential sampling-at 2 sets of thresholds: low MDR TB = 2%, high MDR TB = 10%, and low MDR TB = 5%, high MDR TB = 20%. The lot quality-assurance sampling systems identified local variability in the prevalence of multidrug resistance in both high-resistance (Ukraine) and low-resistance settings (Vietnam). In Tanzania, prevalence was uniformly low, and the lot quality-assurance sampling approach did not reveal variability. The three-way classification systems provide additional information, but sample sizes may not be obtainable in some settings. New rapid drug-sensitivity testing methods may allow truncated sequential sampling designs and early stopping within static designs, producing even greater efficiency gains. Lot quality-assurance sampling study designs may offer an efficient approach for collecting critical information on local variability in the burden of multidrug-resistant TB. Before this methodology is adopted, programs must determine appropriate classification thresholds, the most useful classification system, and appropriate weighting if unbiased national estimates are also desired.

  7. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts

    DEFF Research Database (Denmark)

    Porse, Andreas; Schønning, Kristian; Munck, Christian

    2016-01-01

    sequencing to show that the long-term persistence and molecular integrity of the plasmid is highly influenced by multiple factors within a 25 kb plasmid region constituting a host-dependent burden. In the E. coli hosts investigated here, improved plasmid stability readily evolves via IS26 mediated deletions...... consistently followed by all evolved E. coli lineages exposes a trade-off between horizontal and vertical transmission that may ultimately limit the dissemination potential of clinical multidrug resistance plasmids in these hosts....

  8. Photochemical internalisation of chemotherapy potentiates killing of multidrug-resistant breast and bladder cancer cells

    OpenAIRE

    Adigbli, D. K.; Wilson, D. G. G.; Farooqui, N.; Sousi, E.; Risley, P.; Taylor, I.; MacRobert, A. J.; Loizidou, M.

    2007-01-01

    Multidrug resistance (MDR) is the major confounding factor in adjuvant solid tumour chemotherapy. Increasing intracellular amounts of chemotherapeutics to circumvent MDR may be achieved by a novel delivery method, photochemical internalisation (PCI). PCI consists of the co-administration of drug and photosensitiser; upon light activation the latter induces intracellular release of organelle-bound drug. We investigated whether co-administration of hypericin ( photosensitiser) with mitoxantrone...

  9. Photochemical internalisation of chemotherapy potentiates killing of multidrug-resistant breast and bladder cancer cells

    OpenAIRE

    Adigbli, D K; Wilson, D G G; Farooqui, N; Sousi, E; Risley, P; Taylor, I; MacRobert, A J; Loizidou, M

    2007-01-01

    Multidrug resistance (MDR) is the major confounding factor in adjuvant solid tumour chemotherapy. Increasing intracellular amounts of chemotherapeutics to circumvent MDR may be achieved by a novel delivery method, photochemical internalisation (PCI). PCI consists of the co-administration of drug and photosensitiser; upon light activation the latter induces intracellular release of organelle-bound drug. We investigated whether co-administration of hypericin (photosensitiser) with mitoxantrone ...

  10. Priorities in the prevention and control of multidrug-resistant Enterobacteriaceae in hospitals.

    LENUS (Irish Health Repository)

    Khan, A S

    2012-10-01

    Multidrug-resistant Enterobacteriaceae (MDE) are a major public health threat due to international spread and few options for treatment. Furthermore, unlike meticillin-resistant Staphylococcus aureus (MRSA), MDE encompass several genera and multiple resistance mechanisms, including extended-spectrum beta-lactamases and carbapenemases, which complicate detection in the routine diagnostic laboratory. Current measures to contain spread in many hospitals are somewhat ad hoc as there are no formal national or international guidelines.

  11. Mutations affecting substrate specificity of the Bacillus subtilis multidrug transporter Bmr.

    OpenAIRE

    Klyachko, K A; Schuldiner, S; Neyfakh, A A

    1997-01-01

    The Bacillus subtilis multidrug transporter Bmr, a member of the major facilitator superfamily of transporters, causes the efflux of a number of structurally unrelated toxic compounds from cells. We have shown previously that the activity of Bmr can be inhibited by the plant alkaloid reserpine. Here we demonstrate that various substitutions of residues Phe143 and Phe306 of Bmr not only reduce its sensitivity to reserpine inhibition but also significantly change its substrate specificity. Cros...

  12. A case of multidrug-resistant monoarticular joint tuberculosis in a renal transplant recipient.

    Science.gov (United States)

    Regmi, A; Singh, P; Harford, A

    2014-01-01

    Tuberculosis (TB) is a common opportunistic infection after renal transplantation. The risk of TB in renal transplant recipients is reported to be 20 to 74 times higher than in the general population. Although extrapulmonary TB occurs frequently, isolated ankle joint TB is a rare form of extrapulmonary TB infection. It is often difficult to diagnose because of its atypical presentation; management is complex, especially with multidrug-resistant TB, the need for a prolonged course of therapy, and the risks of drug interactions and drug toxicity. We report herein a case of a 60-year-old female renal allograft recipient who developed multidrug-resistant ankle joint TB 11 months after her deceased donor renal transplantation. She presented to the emergency department with escalating pain and swelling of the left ankle, difficulty in ambulation, and a low-grade fever. An x-ray of the ankle revealed an effusion and soft tissue swelling. A synovial fluid culture was performed which tested positive for acid fast bacilli which grew a multidrug-resistant form of Mycobacterium tuberculosis. She was initially treated with isoniazid, rifampin, ethambutol, and pyrazinamide; then therapy was tailored secondary to the resistant nature of the organism. She received a combination of extensive debridement of the joint and institution of second-line anti-TB therapy with pyrazinamide, ethambutol, moxifloxacin, and ethionamide. To our knowledge, no other cases of multidrug-resistant TB have been reported in the literature after renal transplantation. This case shows both an atypical presentation of TB and the difficulties in managing a transplant patient with this disease. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. A case of acute postoperative keratitis after deep anterior lamellar keratoplasty by multidrug resistant Klebsiella

    Directory of Open Access Journals (Sweden)

    Leena Bajracharya

    2015-01-01

    Full Text Available A healthy lady of 42 years underwent deep anterior lamellar keratoplasty for granular dystrophy. The very next day, it was complicated by development of infectious keratitis. The organism was identified as multidrug resistant Klebsiella pneumoniae. Donor corneal button may be implicated in the transmission of infection in an otherwise uneventful surgery and follow-up. Nosocomial infections are usually severe, rapidly progressive and difficult to treat. Finally, the lady had to undergo therapeutic penetrating keratoplasty for complete resolution of infection.

  14. The commensal infant gut meta-mobilome as a potential reservoir for persistent multidrug resistance integrons

    OpenAIRE

    Anuradha Ravi; Ekaterina Avershina; Steven L. Foley; Jane Ludvigsen; Ola Storrø; Torbjørn Øien; Roar Johnsen; Anne L. McCartney; Trine M. L’Abée-Lund; Knut Rudi

    2015-01-01

    Despite the accumulating knowledge on the development and establishment of the gut microbiota, its role as a reservoir for multidrug resistance is not well understood. This study investigated the prevalence and persistence patterns of an integrase gene (int1), used as a proxy for integrons (which often carry multiple antimicrobial resistance genes), in the fecal microbiota of 147 mothers and their children sampled longitudinally from birth to 2 years. The study showed the int1 gene was detect...

  15. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes

    DEFF Research Database (Denmark)

    Venkatesan, Meera; Gadalla, Nahla B; Stepniewska, Kasia

    2014-01-01

    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated...... with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized...

  16. Synthesis of multidrug resistance modulator LY335979 labeled with deuterium and tritium

    International Nuclear Information System (INIS)

    Czeskis, B.A.

    1997-01-01

    DIDEUTERO AND DITRITIOISOTOPOMERS OF THE MULTIDRUG RESISTANCE MODULATOR LY335979 WERE PREPARED BY INITIAL BROMINATION OF 5-HYDROXYQUINOLINE UNDER ACIDIC CONDITIONS FOLLOWED BY MITSUNOBU COUPLING OF 6,8-DIBROMO-5-HYDROXYQUINOLINE WITH (S)-GLYCIDOL. OPENING OF THE RESULTING EPOXIDE WITH DIBENZOSUBERYLPIPERAZINE LY335995 RESULTED IN DIBROMOANALOG OF LY335979, WHICH WAS FINALLY REDUCTIVELY DEBROMINATED WITH DEUTERIUM OR TRITIUM IN THE PRESENCE OF PALLADIUM ON CARBON. (AUTHOR)

  17. Individualizing Risk of Multidrug-Resistant Pathogens in Community-Onset Pneumonia

    OpenAIRE

    Falcone, Marco; Russo, Alessandro; Giannella, Maddalena; Cangemi, Roberto; Scarpellini, Maria Gabriella; Bertazzoni, Giuliano; Alarc?n, Jos? Mart?nez; Taliani, Gloria; Palange, Paolo; Farcomeni, Alessio; Vestri, Annarita; Bouza, Emilio; Violi, Francesco; Venditti, Mario

    2015-01-01

    Introduction The diffusion of multidrug-resistant (MDR) bacteria has created the need to identify risk factors for acquiring resistant pathogens in patients living in the community. Objective To analyze clinical features of patients with community-onset pneumonia due to MDR pathogens, to evaluate performance of existing scoring tools and to develop a bedside risk score for an early identification of these patients in the Emergency Department. Patients and Methods This was an open, observation...

  18. Multidrug therapy for leprosy: a game changer on the path to elimination.

    Science.gov (United States)

    Smith, Cairns S; Aerts, Ann; Saunderson, Paul; Kawuma, Joseph; Kita, Etsuko; Virmond, Marcos

    2017-09-01

    Leprosy is present in more than 100 countries, where it remains a major cause of peripheral neuropathy and disability. Attempts to eliminate the disease have faced various obstacles, including characteristics of the causative bacillus Mycobacterium leprae: the long incubation period, limited knowledge about its mode of transmission, and its poor growth on culture media. Fortunately, the leprosy bacillus is sensitive to several antibiotics. The first antibiotic to be widely used for leprosy treatment was dapsone in the 1950s, which had to be taken over several years and was associated with increasing bacterial resistance. Therefore, in 1981, WHO recommended that all registered patients with leprosy should receive combination therapy with three antibiotics: rifampicin, clofazimine, and dapsone. Global implementation of this highly effective multidrug therapy took about 15 years. In 1985, 5·3 million patients were receiving multidrug therapy; by 1991, this figure had decreased to 3·1 million (a decrease of 42%) and, by 2000, to 597 232 (a decrease of almost 90%). This reduction in the number of patients registered for treatment was due to shortening of the treatment regimen and achievement of 100% coverage with multidrug therapy. This achievement, which owed much to WHO and the donors of the multidrug therapy components, prompted WHO in 1991 to set a global target of less than one case per 10 000 population by 2000 to eliminate the disease as a public health problem. All but 15 countries achieved this target. Since 2000, about 250 000 new cases of leprosy have been detected every year. We believe an all-out campaign by a global leprosy coalition is needed to bring that figure down to zero. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Copper bis(diphosphine) complexes: radiopharmaceuticals for the detection of multi-drug resistance in tumours by PET

    International Nuclear Information System (INIS)

    Lewis, J.S.; Dearling, J.L.S.; Blower, P.J.; Sosabowski, J.K.; Zweit, J.; Carnochan, P.; Kelland, L.R.; Coley, H.M.

    2000-01-01

    Experience with imaging of the multi-drug resistance (MDR) phenotype in tumours using technetium-99m sestamibi, a substrate of the P-glycoprotein (Pgp) transporter, suggests that better quantification of images and separation of MDR from other variables affecting tracer uptake in tumours are required. One approach to these problems is the development of short half-life positron-emitting tracers which are substrates of Pgp. Several lipophilic cationic copper(I) bis(diphosphine) complexes labelled with copper-64 have been synthesised and evaluated in vitro as substrates for Pgp. The synthesis is rapid and efficient with no need for purification steps. The chemistry is suitable for use with very short half-life radionuclides such as copper-62 (9.7 min) and copper-60 (23.7 min). Incubation of the complexes with human serum in vitro showed that they are sufficiently stable in serum to support clinical imaging, and the more lipophilic members of the series are taken up rapidly by cells (Chinese hamster ovary and human ovarian carcinoma) in vitro with great avidity. Uptake in human ovarian carcinoma cells is significantly reduced after several months of conditioning in the presence of doxorubicin, which induces increased Pgp expression. Uptake in hooded rat sarcoma (HSN) cells, which express Pgp, is significantly increased in the presence of the MDR modulator cyclosporin A. Biodistribution studies in hooded rats show rapid blood clearance, excretion through both kidneys and liver, and low uptake in other tissues. The one complex investigated in HSN tumour-bearing rats showed uptake in tumour increasing up to 30 min p.i. while it was decreasing in other tissues. We conclude that diphosphine ligands offer a good basis for development of radiopharmaceuticals containing copper radionuclides, and that this series of complexes should undergo further evaluation in vivo as positron emission tomography imaging agents for MDR. (orig.)

  20. Identification and characterization of SSE15206, a microtubule depolymerizing agent that overcomes multidrug resistance

    KAUST Repository

    Manzoor, Safia

    2018-02-13

    Microtubules are highly dynamic structures that form spindle fibres during mitosis and are one of the most validated cancer targets. The success of drugs targeting microtubules, however, is often limited by the development of multidrug resistance. Here we describe the discovery and characterization of SSE15206, a pyrazolinethioamide derivative [3-phenyl-5-(3,4,5-trimethoxyphenyl)-4,5-dihydro-1H-pyrazole-1-carbothioamide] that has potent antiproliferative activities in cancer cell lines of different origins and overcomes resistance to microtubule-targeting agents. Treatment of cells with SSE15206 causes aberrant mitosis resulting in G2/M arrest due to incomplete spindle formation, a phenotype often associated with drugs that interfere with microtubule dynamics. SSE15206 inhibits microtubule polymerization both in biochemical and cellular assays by binding to colchicine site in tubulin as shown by docking and competition studies. Prolonged treatment of cells with the compound results in apoptotic cell death [increased Poly (ADP-ribose) polymerase cleavage and Annexin V/PI staining] accompanied by p53 induction. More importantly, we demonstrate that SSE15206 is able to overcome resistance to chemotherapeutic drugs in different cancer cell lines including multidrug-resistant KB-V1 and A2780-Pac-Res cell lines overexpressing MDR-1, making it a promising hit for the lead optimization studies to target multidrug resistance.

  1. Multidrug Resistant Salmonella typhi in Asymptomatic Typhoid Carriers among Food Handlers in Namakkal District, Tamil Nadu

    Directory of Open Access Journals (Sweden)

    Senthilkumar B

    2005-01-01

    Full Text Available Purpose: to screen Salmonella typhi in asymptomatic typhoid carriers and to find out drug resistance and ability of the strains to transmit drug resistance to other bacteria. Methods: Cultural characters, biochemical tests, antibiotic sensitivity test (disc diffusion, agarose gel electrophoresis, and conjugation protocols were done. Thirty five stool samples were collected from the suspected food handlers for the study. Results: Among 35 samples, (17.14% yielded a positive result. Out of these 4 (20.0% were women and 2 (13.33% were men. The isolates were tested with a number of conventional antibiotics viz, amikacin, amoxicillin, ampicillin, chloramphenicol, ciprofloxacin, co-trimaxazole, rifampicin, gentamicin, nalidixic acid, ofloxacin and tetracycline. Five isolates were having the multidrug resistant character. Four (66.66% multidrug resistant isolates were found to have plasmids, while one (16.66% multidrug resistant isolate had no plasmid and the chromosome encoded the resistance. Only one strain (16.66% showed single antibiotic resistance in the study and had no plasmid DNA. The molecular weights of the plasmids were determined and found to be 120 kb.The mechanism of spreading of drug resistance through conjugation process was analyzed. In the conjugation studies, the isolates having R+ factor showed the transfer of drug resistance through conjugation, which was determined by the development of antibiotic resistance in the recipients. Conclusion: This study shows that drug resistant strains are able to transfer genes encoding drug resistance.

  2. Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance

    Science.gov (United States)

    Cheng, Tangjian; Liu, Jinjian; Ren, Jie; Huang, Fan; Ou, Hanlin; Ding, Yuxun; Zhang, Yumin; Ma, Rujiang; An, Yingli; Liu, Jianfeng; Shi, Linqi

    2016-01-01

    Chemotherapy for cancer treatment has been demonstrated to cause some side effects on healthy tissues and multidrug resistance of the tumor cells, which greatly limits therapeutic efficacy. To address these limitations and achieve better therapeutic efficacy, combination therapy based on nanoparticle platforms provides a promising approach through delivering different agents simultaneously to the same destination with synergistic effect. In this study, a novel green tea catechin-based polyion complex (PIC) micelle loaded with doxorubicin (DOX) and (-)-Epigallocatechin-3-O-gallate (EGCG) was constructed through electrostatic interaction and phenylboronic acid-catechol interaction between poly(ethylene glycol)-block-poly(lysine-co-lysine-phenylboronic acid) (PEG-PLys/PBA) and EGCG. DOX was co-loaded in the PIC micelles through π-π stacking interaction with EGCG. The phenylboronic acid-catechol interaction endowed the PIC micelles with high stability under physiological condition. Moreover, acid cleavability of phenylboronic acid-catechol interaction in the micelle core has significant benefits for delivering EGCG and DOX to same destination with synergistic effects. In addition, benefiting from the oxygen free radicals scavenging activity of EGCG, combination therapy with EGCG and DOX in the micelle core could protect the cardiomyocytes from DOX-mediated cardiotoxicity according to the histopathologic analysis of hearts. Attributed to modulation of EGCG on P-glycoprotein (P-gp) activity, this kind of PIC micelles could effectively reverse multidrug resistance of cancer cells. These results suggested that EGCG based PIC micelles could effectively overcome DOX induced cardiotoxicity and multidrug resistance. PMID:27375779

  3. New Roads Leading to Old Destinations: Efflux Pumps as Targets to Reverse Multidrug Resistance in Bacteria

    Directory of Open Access Journals (Sweden)

    Gabriella Spengler

    2017-03-01

    Full Text Available Multidrug resistance (MDR has appeared in response to selective pressures resulting from the incorrect use of antibiotics and other antimicrobials. This inappropriate application and mismanagement of antibiotics have led to serious problems in the therapy of infectious diseases. Bacteria can develop resistance by various mechanisms and one of the most important factors resulting in MDR is efflux pump-mediated resistance. Because of the importance of the efflux-related multidrug resistance the development of new therapeutic approaches aiming to inhibit bacterial efflux pumps is a promising way to combat bacteria having over-expressed MDR efflux systems. The definition of an efflux pump inhibitor (EPI includes the ability to render the bacterium increasingly more sensitive to a given antibiotic or even reverse the multidrug resistant phenotype. In the recent years numerous EPIs have been developed, although so far their clinical application has not yet been achieved due to their in vivo toxicity and side effects. In this review, we aim to give a short overview of efflux mediated resistance in bacteria, EPI compounds of plant and synthetic origin, and the possible methods to investigate and screen EPI compounds in bacterial systems.

  4. In vitro evaluation of new anticancer drugs, exemplified by vinorelbine, using the fluorometric microculture cytotoxicity assay on human tumor cell lines and patient biopsy cells.

    Science.gov (United States)

    Fridborg, H; Nygren, P; Dhar, S; Csoka, K; Kristensen, J; Larsson, R

    1996-09-01

    The feasibility of combined studies on a cell-line panel and primary cultures of patient tumor cells in the preclinical evaluation of new anticancer drugs was evaluated in a study of the activity and cross-resistance pattern in vitro of the new semi-synthetic vinca alkaloid vinorelbine (Vrb). The activity of Vrb was investigated in ten cell lines representing different resistance mechanisms and in a total of 256 fresh human tumor samples, using the fluorometric microculture cytotoxicity assay (FMCA). Resistance to Vrb in the cell lines was associated with expression of the multidrug resistance-mediating P-glycoprotein and the multidrug resistance-associated protein (MRP) and by a recently described tubulin-associated mechanism, while the cell lines with topoisomerase II- and glutathion-associated resistance did not show decreased sensitivity to the drug. Cross-resistance to vincristine (Vcr) and other tubulin-active agents was high in cell lines as well as in patient cells. As with most commonly used anti-cancer drugs, Vrb was more active in hematological than in solid tumor samples. Among the solid tumors investigated, the highest in vitro response rates were observed in ovarian cancer (27%), sarcoma (25%), non-small cell lung cancer (21%) and bladder cancer (20%), while no response was observed in renal or colorectal cancer. Compared to Vcr, Vrb appeared to be slightly more active in solid tumors and slightly less active in hematological tumors. The results show that although Vrb displays a high degree of cross-resistance to Vcr and other tubulin-active drugs, some difference in the activity spectrum could be detected and that the drug is sensitive to multiple mechanisms of resistance. The results also suggest that leukemias, ovarian cancer, sarcoma and bladder cancer are possible further targets for Vrb. The combination of studies on a cell-line panel and patient tumor cells from a broad spectrum of diagnoses to evaluate a new drug seems feasible and may give

  5. Mercury toxicokinetics of the healthy human term placenta involve amino acid transporters and ABC transporters

    International Nuclear Information System (INIS)

    Straka, Elisabeth; Ellinger, Isabella; Balthasar, Christina; Scheinast, Matthias; Schatz, Jasmin; Szattler, Tamara; Bleichert, Sonja; Saleh, Leila; Knöfler, Martin; Zeisler, Harald; Hengstschläger, Markus; Rosner, Margit; Salzer, Hans; Gundacker, Claudia

    2016-01-01

    Highlights: • It is known that MeHg is able to pass the placenta and to affect fetal brain development. • Uptake and efflux transporters were examined in human primary trophoblast cells and BeWo cells. • Involvement in mercury transfer was assessed by measurement of cellular mercury content upon siRNA mediated gene knockdown. • Localization of transporters was determined by immunofluorescence microscopy. • LAT1 and rBAT at the apical membrane of the syncytiotrophoblast (STB) are involved in MeHg uptake. • MRP1 located at basal membrane of STB mediates mercury efflux. - Abstract: Background: The capacity of the human placenta to handle exogenous stressors is poorly understood. The heavy metal mercury is well-known to pass the placenta and to affect brain development. An active transport across the placenta has been assumed. The underlying mechanisms however are virtually unknown. Objectives: Uptake and efflux transporters (17 candidate proteins) assumed to play a key role in placental mercury transfer were examined for expression, localization and function in human primary trophoblast cells and the trophoblast-derived choriocarcinoma cell line BeWo. Methods: To prove involvement of the transporters, we used small interfering RNA (siRNA) and exposed cells to methylmercury (MeHg). Total mercury contents of cells were analyzed by Cold vapor-atomic fluorescence spectrometry (CV-AFS). Localization of the proteins in human term placenta sections was determined via immunofluorescence microscopy. Results: We found the amino acid transporter subunits L-type amino acid transporter (LAT)1 and rBAT (related to b 0,+ type amino acid transporter) as well as the efflux transporter multidrug resistance associated protein (MRP)1 to be involved in mercury kinetics of trophoblast cells (t-test P < 0.05). Conclusion: The amino acid transporters located at the apical side of the syncytiotrophoblast (STB) manage uptake of MeHg. Mercury conjugated to glutathione (GSH) is

  6. Multidrug resistance and retroviral transduction potential in human small cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Theilade, M D; Gram, G J; Jensen, P B

    1999-01-01

    of blue colonies after X-Gal staining of the cells grown in soft agar. All examined SCLC cell lines were transducible with either vector. Transduction efficiencies varied from 5.7% to 33.5% independent of the presence of MDR. These results indicate that MDR does not severely impair transduction of SCLC...

  7. Fluorescence-based thermal shift data on multidrug regulator AcrR from Salmonella enterica subsp. entrica serovar Typhimurium str. LT2

    Directory of Open Access Journals (Sweden)

    Babu A. Manjasetty

    2016-06-01

    Full Text Available The fluorescence-based thermal shift (FTS data presented here include Table S1 and Fig. S1, and are supplemental to our original research article describing detailed structural, FTS, and fluorescence polarization analyses of the Salmonella enterica subsp. entrica serovar Typhimurium str. LT2 multidrug transcriptional regulator AcrR (StAcrR (doi:10.1016/j.jsb.2016.01.008 (Manjasetty et al., 2015 [1]. Table S1 contains chemical formulas, a Chemical Abstracts Service (CAS Registry Number (CAS no., FTS rank (a ligand with the highest rank has the largest difference in the melting temperature (ΔTm, and uses as drug molecules against various pathological conditions of sixteen small-molecule ligands that increase thermal stability of StAcrR. Thermal stability of human enolase 1, a negative control protein, was not affected in the presence of various concentrations of the top six StAcrR binders (Fig. S1.

  8. Fluorescence-based thermal shift data on multidrug regulator AcrR from Salmonella enterica subsp. entrica serovar Typhimurium str. LT2.

    Science.gov (United States)

    Manjasetty, Babu A; Halavaty, Andrei S; Luan, Chi-Hao; Osipiuk, Jerzy; Mulligan, Rory; Kwon, Keehwan; Anderson, Wayne F; Joachimiak, Andrzej

    2016-06-01

    The fluorescence-based thermal shift (FTS) data presented here include Table S1 and Fig. S1, and are supplemental to our original research article describing detailed structural, FTS, and fluorescence polarization analyses of the Salmonella enterica subsp. entrica serovar Typhimurium str. LT2 multidrug transcriptional regulator AcrR (StAcrR) (doi:10.1016/j.jsb.2016.01.008) (Manjasetty et al., 2015 [1]). Table S1 contains chemical formulas, a Chemical Abstracts Service (CAS) Registry Number (CAS no.), FTS rank (a ligand with the highest rank) has the largest difference in the melting temperature (ΔT m), and uses as drug molecules against various pathological conditions of sixteen small-molecule li