WorldWideScience

Sample records for human mitochondrial peptide

  1. Chimeric mitochondrial peptides from contiguous regular and swinger RNA.

    Science.gov (United States)

    Seligmann, Hervé

    2016-01-01

    Previous mass spectrometry analyses described human mitochondrial peptides entirely translated from swinger RNAs, RNAs where polymerization systematically exchanged nucleotides. Exchanges follow one among 23 bijective transformation rules, nine symmetric exchanges (X ↔ Y, e.g. A ↔ C) and fourteen asymmetric exchanges (X → Y → Z → X, e.g. A → C → G → A), multiplying by 24 DNA's protein coding potential. Abrupt switches from regular to swinger polymerization produce chimeric RNAs. Here, human mitochondrial proteomic analyses assuming abrupt switches between regular and swinger transcriptions, detect chimeric peptides, encoded by part regular, part swinger RNA. Contiguous regular- and swinger-encoded residues within single peptides are stronger evidence for translation of swinger RNA than previously detected, entirely swinger-encoded peptides: regular parts are positive controls matched with contiguous swinger parts, increasing confidence in results. Chimeric peptides are 200 × rarer than swinger peptides (3/100,000 versus 6/1000). Among 186 peptides with > 8 residues for each regular and swinger parts, regular parts of eleven chimeric peptides correspond to six among the thirteen recognized, mitochondrial protein-coding genes. Chimeric peptides matching partly regular proteins are rarer and less expressed than chimeric peptides matching non-coding sequences, suggesting targeted degradation of misfolded proteins. Present results strengthen hypotheses that the short mitogenome encodes far more proteins than hitherto assumed. Entirely swinger-encoded proteins could exist.

  2. Calf Spleen Extractive Injection (CSEI, a small peptides enriched extraction, induces human hepatocellular carcinoma cell apoptosis via ROS/MAPKs dependent mitochondrial pathway

    Directory of Open Access Journals (Sweden)

    Dongxu Jia

    2016-10-01

    Full Text Available Calf Spleen Extractive Injection (CSEI, a small peptides enriched extraction, performs immunomodulatory activity on cancer patients suffering from radiotherapy or chemotherapy. The present study aims to investigate the anti-hepatocellular carcinoma effects of CSEI in cells and tumor-xenografted mouse models. In HepG2 and SMMC-7721 cells, CSEI reduced cell viability, enhanced apoptosis rate, caused reactive oxygen species (ROS accumulation, inhibited migration ability, and induced caspases cascade and mitochondrial membrane potential dissipation. CSEI significantly inhibited HepG2-xenografted tumor growth in nude mice. In cell and animal experiments, CSEI increased the activations of pro-apoptotic proteins including caspase 8, caspase 9 and caspase 3; meanwhile, it suppressed the expressions of anti-apoptotic protein B-cell lymphoma 2 (Bcl-2 and anti-oxidation proteins, such as nuclear factor-erythroid 2 related factor 2 (Nrf2 and catalase (CAT. The enhanced phosphorylation of P38 and c-JunN-terminalkinase (JNK, and decreased phosphorylation of extra cellular signal-regulated protein kinase (ERKs were observed in CSEI-treated cells and tumor tissues. CSEI-induced cell viability reduction was significantly attenuated by N-Acetyl-l-cysteine (a ROS inhibitor pretreatment. All data demonstrated that the upregulated oxidative stress status and the altered mitogen-activated protein kinases (MAPKs phosphorylation contributed to CSEI-driven mitochondrial dysfunction. Taken together, CSEI exactly induced apoptosis in human hepatocellular carcinoma cells via ROS/MAPKs dependent mitochondrial pathway.

  3. The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae

    DEFF Research Database (Denmark)

    Hansson Petersen, Camilla A; Alikhani, Nyosha; Behbahani, Homira

    2008-01-01

    that extracellulary applied Abeta can be internalized by human neuroblastoma cells and can colocalize with mitochondrial markers. Together, these results provide further insight into the mitochondrial uptake of Abeta, a peptide considered to be of major significance in Alzheimer's disease....

  4. Human peptide transporters

    DEFF Research Database (Denmark)

    Nielsen, Carsten Uhd; Brodin, Birger; Jørgensen, Flemming Steen

    2002-01-01

    Peptide transporters are epithelial solute carriers. Their functional role has been characterised in the small intestine and proximal tubules, where they are involved in absorption of dietary peptides and peptide reabsorption, respectively. Currently, two peptide transporters, PepT1 and PepT2, wh...

  5. Effect of a Fusion Peptide by Covalent Conjugation of a Mitochondrial Cell-Penetrating Peptide and a Glutathione Analog Peptide

    Directory of Open Access Journals (Sweden)

    Carmine Pasquale Cerrato

    2017-06-01

    Full Text Available Previously, we designed and synthesized a library of mitochondrial antioxidative cell-penetrating peptides (mtCPPs superior to the parent peptide, SS31, to protect mitochondria from oxidative damage. A library of antioxidative glutathione analogs called glutathione peptides (UPFs, exceptional in hydroxyl radical elimination compared with glutathione, were also designed and synthesized. Here, a follow-up study is described, investigating the effects of the most promising members from both libraries on reactive oxidative species scavenging ability. None of the peptides influenced cell viability at the concentrations used. Fluorescence microscopy studies showed that the fluorescein-mtCPP1-UPF25 (mtgCPP internalized into cells, and spectrofluorometric analysis determined the presence and extent of peptide into different cell compartments. mtgCPP has superior antioxidative activity compared with mtCPP1 and UPF25 against H2O2 insult, preventing ROS formation by 2- and 3-fold, respectively. Moreover, we neither observed effects on mitochondrial membrane potential nor production of ATP. These data indicate that mtgCPP is targeting mitochondria, protecting them from oxidative damage, while also being present in the cytosol. Our hypothesis is based on a synergistic effect resulting from the fused peptide. The mitochondrial peptide segment is targeting mitochondria, whereas the glutathione analog peptide segment is active in the cytosol, resulting in increased scavenging ability.

  6. Human skeletal muscle mitochondrial capacity.

    Science.gov (United States)

    Rasmussen, U F; Rasmussen, H N

    2000-04-01

    Under aerobic work, the oxygen consumption and major ATP production occur in the mitochondria and it is therefore a relevant question whether the in vivo rates can be accounted for by mitochondrial capacities measured in vitro. Mitochondria were isolated from human quadriceps muscle biopsies in yields of approximately 45%. The tissue content of total creatine, mitochondrial protein and different cytochromes was estimated. A number of activities were measured in functional assays of the mitochondria: pyruvate, ketoglutarate, glutamate and succinate dehydrogenases, palmitoyl-carnitine respiration, cytochrome oxidase, the respiratory chain and the ATP synthesis. The activities involved in carbohydrate oxidation could account for in vivo oxygen uptakes of 15-16 mmol O2 min-1 kg-1 or slightly above the value measured at maximal work rates in the knee-extensor model of Saltin and co-workers, i.e. without limitation from the cardiac output. This probably indicates that the maximal oxygen consumption of the muscle is limited by the mitochondrial capacities. The in vitro activities of fatty acid oxidation corresponded to only 39% of those of carbohydrate oxidation. The maximal rate of free energy production from aerobic metabolism of glycogen was calculated from the mitochondrial activities and estimates of the DeltaG or ATP hydrolysis and the efficiency of the actin-myosin reaction. The resultant value was 20 W kg-1 or approximately 70% of the maximal in vivo work rates of which 10-20% probably are sustained by the anaerobic ATP production. The lack of aerobic in vitro ATP synthesis might reflect termination of some critical interplay between cytoplasm and mitochondria.

  7. Nucleotide sequence preservation of human mitochondrial DNA

    International Nuclear Information System (INIS)

    Monnat, R.J. Jr.; Loeb, L.A.

    1985-01-01

    Recombinant DNA techniques have been used to quantitate the amount of nucleotide sequence divergence in the mitochondrial DNA population of individual normal humans. Mitochondrial DNA was isolated from the peripheral blood lymphocytes of five normal humans and cloned in M13 mp11; 49 kilobases of nucleotide sequence information was obtained from 248 independently isolated clones from the five normal donors. Both between- and within-individual differences were identified. Between-individual differences were identified in approximately = to 1/200 nucleotides. In contrast, only one within-individual difference was identified in 49 kilobases of nucleotide sequence information. This high degree of mitochondrial nucleotide sequence homogeneity in human somatic cells is in marked contrast to the rapid evolutionary divergence of human mitochondrial DNA and suggests the existence of mechanisms for the concerted preservation of mammalian mitochondrial DNA sequences in single organisms

  8. Increased intrinsic mitochondrial function in humans with mitochondrial haplogroup H

    DEFF Research Database (Denmark)

    Larsen, Steen; Díez-Sánchez, Carmen; Rabøl, Rasmus

    2014-01-01

    and determined their mitochondrial haplogroup, mitochondrial oxidative phosphorylation capacity (OXPHOS), mitochondrial content (citrate synthase (CS)) and VO2max. Intrinsic mitochondrial function is calculated as mitochondrial OXPHOS capacity divided by mitochondrial content (CS). Haplogroup H showed a 30......% higher intrinsic mitochondrial function compared with the other haplo group U. There was no relationship between haplogroups and VO2max. In skeletal muscle from men with mitochondrial haplogroup H, an increased intrinsic mitochondrial function is present....

  9. Mitochondrial dysfunction and human immunodeficiency virus ...

    African Journals Online (AJOL)

    Human immunodeficiency virus (HIV) infection and the pharmacological treatment thereof have both been shown to affect mitochondrial function in a number of tissues, and each may cause specific organ pathology through specific mitochondrial pathways. HIV has been shown to kill various tissue cells by activation of ...

  10. Melatonin and human mitochondrial diseases

    Directory of Open Access Journals (Sweden)

    Reza Sharafati-Chaleshtori

    2017-01-01

    Full Text Available Mitochondrial dysfunction is one of the main causative factors in a wide variety of complications such as neurodegenerative disorders, ischemia/reperfusion, aging process, and septic shock. Decrease in respiratory complex activity, increase in free radical production, increase in mitochondrial synthase activity, increase in nitric oxide production, and impair in electron transport system and/or mitochondrial permeability are considered as the main factors responsible for mitochondrial dysfunction. Melatonin, the pineal gland hormone, is selectively taken up by mitochondria and acts as a powerful antioxidant, regulating the mitochondrial bioenergetic function. Melatonin increases the permeability of membranes and is the stimulator of antioxidant enzymes including superoxide dismutase, glutathione peroxidase, glutathione reductase, and catalase. It also acts as an inhibitor of lipoxygenase. Melatonin can cause resistance to oxidation damage by fixing the microsomal membranes. Melatonin has been shown to retard aging and inhibit neurodegenerative disorders, ischemia/reperfusion, septic shock, diabetes, cancer, and other complications related to oxidative stress. The purpose of the current study, other than introducing melatonin, was to present the recent findings on clinical effects in diseases related to mitochondrial dysfunction including diabetes, cancer, gastrointestinal diseases, and diseases related to brain function.

  11. The metabolic enhancer piracetam ameliorates the impairment of mitochondrial function and neurite outgrowth induced by beta-amyloid peptide.

    Science.gov (United States)

    Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, W E

    2010-05-01

    beta-Amyloid peptide (Abeta) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Abeta-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Abeta and on neurite outgrowth in PC12 cells were investigated. Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Abeta(1-42). Similar protective effects against Abeta(1-42) were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Abeta load was markedly diminished in the brain of those animals after treatment with piracetam. Abeta production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Abeta-induced mitochondrial dysfunction and Abeta-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Abeta on brain function.

  12. Mitochondrial Fusion Proteins and Human Diseases

    Directory of Open Access Journals (Sweden)

    Michela Ranieri

    2013-01-01

    Full Text Available Mitochondria are highly dynamic, complex organelles that continuously alter their shape, ranging between two opposite processes, fission and fusion, in response to several stimuli and the metabolic demands of the cell. Alterations in mitochondrial dynamics due to mutations in proteins involved in the fusion-fission machinery represent an important pathogenic mechanism of human diseases. The most relevant proteins involved in the mitochondrial fusion process are three GTPase dynamin-like proteins: mitofusin 1 (MFN1 and 2 (MFN2, located in the outer mitochondrial membrane, and optic atrophy protein 1 (OPA1, in the inner membrane. An expanding number of degenerative disorders are associated with mutations in the genes encoding MFN2 and OPA1, including Charcot-Marie-Tooth disease type 2A and autosomal dominant optic atrophy. While these disorders can still be considered rare, defective mitochondrial dynamics seem to play a significant role in the molecular and cellular pathogenesis of more common neurodegenerative diseases, for example, Alzheimer’s and Parkinson’s diseases. This review provides an overview of the basic molecular mechanisms involved in mitochondrial fusion and focuses on the alteration in mitochondrial DNA amount resulting from impairment of mitochondrial dynamics. We also review the literature describing the main disorders associated with the disruption of mitochondrial fusion.

  13. Endoplasmic reticulum-mitochondrial crosstalk: a novel role for the mitochondrial peptide humanin

    Directory of Open Access Journals (Sweden)

    Parameswaran G Sreekumar

    2017-01-01

    Full Text Available In this review, the interactive mechanisms of mitochondria with the endoplasmic reticulum (ER are discussed with emphasis on the potential protective role of the mitochondria derived peptide humanin (HN in ER stress. The ER and mitochondria are dynamic organelles capable of modifying their structure and function in response to changing environmental conditions. The ER and mitochondria join together at multiple sites and form mitochondria-ER associated membranes that participate in signal transduction pathways that are under active investigation. Our laboratory previously showed that HN protects cells from oxidative stress induced cell death and more recently, described the beneficial role of HN on ER stress-induced apoptosis in retinal pigment epithelium cells and the involvement of ER-mitochondrial cross-talk in cellular protection. The protection was achieved, in part, by the restoration of mitochondrial glutathione that was depleted by ER stress. Thus, HN may be a promising candidate for therapy for diseases that involve both oxidative and ER stress. Developing novel approaches for retinal delivery of HN, its analogues as well as small molecular weight ER stress inhibitors would prove to be a valuable approach in the treatment of age-related macular degeneration.

  14. Human Antimicrobial Peptides and Proteins

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2014-05-01

    Full Text Available As the key components of innate immunity, human host defense antimicrobial peptides and proteins (AMPs play a critical role in warding off invading microbial pathogens. In addition, AMPs can possess other biological functions such as apoptosis, wound healing, and immune modulation. This article provides an overview on the identification, activity, 3D structure, and mechanism of action of human AMPs selected from the antimicrobial peptide database. Over 100 such peptides have been identified from a variety of tissues and epithelial surfaces, including skin, eyes, ears, mouths, gut, immune, nervous and urinary systems. These peptides vary from 10 to 150 amino acids with a net charge between −3 and +20 and a hydrophobic content below 60%. The sequence diversity enables human AMPs to adopt various 3D structures and to attack pathogens by different mechanisms. While α-defensin HD-6 can self-assemble on the bacterial surface into nanonets to entangle bacteria, both HNP-1 and β-defensin hBD-3 are able to block cell wall biosynthesis by binding to lipid II. Lysozyme is well-characterized to cleave bacterial cell wall polysaccharides but can also kill bacteria by a non-catalytic mechanism. The two hydrophobic domains in the long amphipathic α-helix of human cathelicidin LL-37 lays the basis for binding and disrupting the curved anionic bacterial membrane surfaces by forming pores or via the carpet model. Furthermore, dermcidin may serve as ion channel by forming a long helix-bundle structure. In addition, the C-type lectin RegIIIα can initially recognize bacterial peptidoglycans followed by pore formation in the membrane. Finally, histatin 5 and GAPDH(2-32 can enter microbial cells to exert their effects. It appears that granulysin enters cells and kills intracellular pathogens with the aid of pore-forming perforin. This arsenal of human defense proteins not only keeps us healthy but also inspires the development of a new generation of personalized

  15. Insect Peptides - Perspectives in Human Diseases Treatment.

    Science.gov (United States)

    Chowanski, Szymon; Adamski, Zbigniew; Lubawy, Jan; Marciniak, Pawel; Pacholska-Bogalska, Joanna; Slocinska, Malgorzata; Spochacz, Marta; Szymczak, Monika; Urbanski, Arkadiusz; Walkowiak-Nowicka, Karolina; Rosinski, Grzegorz

    2017-01-01

    Insects are the largest and the most widely distributed group of animals in the world. Their diversity is a source of incredible variety of different mechanisms of life processes regulation. There are many agents that regulate immunology, reproduction, growth and development or metabolism. Hence, it seems that insects may be a source of numerous substances useful in human diseases treatment. Especially important in the regulation of insect physiology are peptides, like neuropeptides, peptide hormones or antimicrobial peptides. There are two main aspects where they can be helpful, 1) Peptides isolated from insects may become potential drugs in therapy of different diseases, 2) A lot of insect peptide hormones show structural or functional homology to mammalian peptide hormones and the comparative studies may give a new look on human disorders. In our review we focused on three group of insect derived peptides: 1) immune-active peptides, 2) peptide hormones and 3) peptides present in venoms. In our review we try to show the considerable potential of insect peptides in searching for new solutions for mammalian diseases treatment. We summarise the knowledge about properties of insect peptides against different virulent agents, anti-inflammatory or anti-nociceptive properties as well as compare insect and mammalian/vertebrate peptide endocrine system to indicate usefulness of knowledge about insect peptide hormones in drug design. The field of possible using of insect delivered peptide to therapy of various human diseases is still not sufficiently explored. Undoubtedly, more attention should be paid to insects due to searching new drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Mitochondrial transcription factor A protects human retinal ...

    African Journals Online (AJOL)

    Purpose: To investigate the impact of mitochondrial transcription factor A (TFAM), as a modulator of NF-κB, on proliferation of hypoxia-induced human retinal endothelial cell (HREC), and the probable mechanism. Methods: After exposure to hypoxia (1 % O2) for 5 days, cell proliferation and cell cycle of HREC were ...

  17. The human endolymphatic sac expresses natriuretic peptides

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Kirkeby, Svend; Vikeså, Jonas

    2017-01-01

    : Several natriuretic peptides were found expressed significantly in the ES, including uroguanylin and brain natriuretic peptide, but also peptides regulating vascular tone, including adrenomedullin 2. In addition, both neurophysin and oxytocin (OXT) were found significantly expressed. All peptides were...... verified by immunohistochemistry. CONCLUSION: The present data support the hypothesis that the human ES may have an endocrine/paracrine capacity through expression of several peptides with potent natriuretic activity. Furthermore, the ES may influence the hypothalamo-pituitary-adrenal axis and may regulate...... vasopressin receptors and aquaporin-2 channels in the inner ear via OXT expression. We hypothesize that the ES is likely to regulate inner ear endolymphatic homeostasis, possibly through secretion of several peptides, but it may also influence systemic and/or intracranial blood pressure through direct...

  18. Thyrotropin-releasing hormone controls mitochondrial biology in human epidermis.

    Science.gov (United States)

    Knuever, Jana; Poeggeler, Burkhard; Gáspár, Erzsébet; Klinger, Matthias; Hellwig-Burgel, Thomas; Hardenbicker, Celine; Tóth, Balázs I; Bíró, Tamás; Paus, Ralf

    2012-03-01

    Mitochondrial capacity and metabolic potential are under the control of hormones, such as thyroid hormones. The most proximal regulator of the hypothalamic-pituitary-thyroid (HPT) axis, TRH, is the key hypothalamic integrator of energy metabolism via its impact on thyroid hormone secretion. Here, we asked whether TRH directly modulates mitochondrial functions in normal, TRH-receptor-positive human epidermis. Organ-cultured human skin was treated with TRH (5-100 ng/ml) for 12-48 h. TRH significantly increased epidermal immunoreactivity for the mitochondria-selective subunit I of respiratory chain complex IV (MTCO1). This resulted from an increased MTCO1 transcription and protein synthesis and a stimulation of mitochondrial biogenesis as demonstrated by transmission electron microscopy and TRH-enhanced mitochondrial DNA synthesis. TRH also significantly stimulated the transcription of several other mitochondrial key genes (TFAM, HSP60, and BMAL1), including the master regulator of mitochondrial biogenesis (PGC-1α). TRH significantly enhanced mitochondrial complex I and IV enzyme activity and enhanced the oxygen consumption of human skin samples, which shows that the stimulated mitochondria are fully vital because the main source for cellular oxygen consumption is mitochondrial endoxidation. These findings identify TRH as a potent, novel neuroendocrine stimulator of mitochondrial activity and biogenesis in human epidermal keratinocytes in situ. Thus, human epidermis offers an excellent model for dissecting neuroendocrine controls of human mitochondrial biology under physiologically relevant conditions and for exploring corresponding clinical applications.

  19. Abnormal mitochondrial respiration in failed human myocardium.

    Science.gov (United States)

    Sharov, V G; Todor, A V; Silverman, N; Goldstein, S; Sabbah, H N

    2000-12-01

    Chronic heart failure (HF) is associated with morphologic abnormalities of cardiac mitochondria including hyperplasia, reduced organelle size and compromised structural integrity. In this study, we examined whether functional abnormalities of mitochondrial respiration are also present in myocardium of patients with advanced HF. Mitochondrial respiration was examined using a Clark electrode in an oxygraph cell containing saponin-skinned muscle bundles obtained from myocardium of failed explanted human hearts due to ischemic (ICM, n=9) or idiopathic dilated (IDC, n=9) cardiomyopathy. Myocardial specimens from five normal donor hearts served as controls (CON). Basal respiratory rate, respiratory rate after addition of the substrates glutamate and malate (V(SUB)), state 3 respiration (after addition of ADP, V(ADP)) and respiration after the addition of atractyloside (V(AT)) were measured in scar-free muscle bundles obtained from the subendocardial (ENDO) and subepicardial (EPI) thirds of the left ventricular (LV) free wall, interventricular septum and right ventricular (RV) free wall. There were no differences in basal and substrate-supported respiration between CON and HF regardless of etiology. V(ADP)was significantly depressed both in ICM and IDC compared to CON in all the regions studied. The respiratory control ratio, V(ADP)/V(AT), was also significantly decreased in HF compared to CON. In both ICM and IDC, V(ADP)was significantly lower in ENDO compared to EPI. The results indicate that mitochondrial respiration is abnormal in the failing human heart. The findings support the concept of low myocardial energy production in HF via oxidative phosphorylation, an abnormality with a potentially impact on global cardiac performance. Copyright 2000 Academic Press.

  20. Human C-peptide. Pt. 1

    International Nuclear Information System (INIS)

    Beischer, W.; Keller, L.; Maas, M.; Schiefer, E.; Pfeiffer, E.F.

    1976-01-01

    Synthetic human C-peptide bearing a tyrosine group at its amino end is labelled with 125 iodine using chloramin T or hydrogen peroxide and lactoperoxidase. The results of the two methods are compared. Antiserum to synthetic human C-peptide (without tyrosine), which was partially coupled to rabbit albumin, is raised in guinea pigs and goats. Goats show to be superior to guinea pips concerning antibody production. The so-called 'hook effect' phenomenon is observed when setting up the standard curves for the radioimmunoassay. Monotonically decreasing standard curves are obtained on dilution of antiserum with a high antibody titer which was produced by repeated immunization in goats. Free C-peptide and C-peptide bound to antiserum are separated using the anion exchange resin amberlite. Using this separation technique we excluded unspecific binding of labelled C-peptide to protein fractions in serum of diabetics. The sensitivity of our radioimmunoassay is approx. 0.3 ng C-peptide/ml serum. Intra- and interassay variability are below 10%. Human proinsulin is the only substance found to crossreact with the antiserum. (orig.) [de

  1. Human C-peptide. Pt. 1. Radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Beischer, W; Keller, L; Maas, M; Schiefer, E; Pfeiffer, E F [Ulm Univ. (Germany, F.R.). Abt. Innere Medizin, Endokrinologie und Stoffwechsel

    1976-08-01

    Synthetic human C-peptide bearing a tyrosine group at its amino end is labelled with /sup 125/iodine using chloramin T or hydrogen peroxide and lactoperoxidase. The results of the two methods are compared. Antiserum to synthetic human C-peptide (without tyrosine), which was partially coupled to rabbit albumin, is raised in guinea pigs and goats. Goats show to be superior to guinea pips concerning antibody production. The so-called 'hook effect' phenomenon is observed when setting up the standard curves for the radioimmunoassay. Monotonically decreasing standard curves are obtained on dilution of antiserum with a high antibody titer which was produced by repeated immunization in goats. Free C-peptide and C-peptide bound to antiserum are separated using the anion exchange resin amberlite. Using this separation technique we excluded unspecific binding of labelled C-peptide to protein fractions in serum of diabetics. The sensitivity of our radioimmunoassay is approx. 0.3 ng C-peptide/ml serum. Intra- and interassay variability are below 10%. Human proinsulin is the only substance found to crossreact with the antiserum.

  2. Impaired mitochondrial function in chronically ischemic human heart

    DEFF Research Database (Denmark)

    Stride, Nis Ottesen; Larsen, Steen; Hey-Mogensen, Martin

    2013-01-01

    , and finally to assess myocardial antioxidant levels. Mitochondrial respiration in biopsies from ischemic and nonischemic regions from the left ventricle of the same heart was compared in nine human subjects. Maximal oxidative phosphorylation capacity in fresh muscle fibers was lower in ischemic compared.......05), and the levels of antioxidant protein expression was lower. Diminished mitochondrial respiration capacity and excessive ROS production demonstrate an impaired mitochondrial function in ischemic human heart muscle. No chronic ischemic preconditioning effect was found....

  3. Towards a functional definition of the mitochondrial human proteome

    Directory of Open Access Journals (Sweden)

    Mauro Fasano

    2016-03-01

    Full Text Available The mitochondrial human proteome project (mt-HPP was initiated by the Italian HPP group as a part of both the chromosome-centric initiative (C-HPP and the “biology and disease driven” initiative (B/D-HPP. In recent years several reports highlighted how mitochondrial biology and disease are regulated by specific interactions with non-mitochondrial proteins. Thus, it is of great relevance to extend our present view of the mitochondrial proteome not only to those proteins that are encoded by or transported to mitochondria, but also to their interactors that take part in mitochondria functionality. Here, we propose a graphical representation of the functional mitochondrial proteome by retrieving mitochondrial proteins from the NeXtProt database and adding to the network their interactors as annotated in the IntAct database. Notably, the network may represent a reference to map all the proteins that are currently being identified in mitochondrial proteomics studies.

  4. The metabolic enhancer piracetam ameliorates the impairment of mitochondrial function and neurite outgrowth induced by ß-amyloid peptide

    Science.gov (United States)

    Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, WE

    2010-01-01

    Background and purpose: β-Amyloid peptide (Aβ) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. Experimental approach: We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Aβ-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Aβ and on neurite outgrowth in PC12 cells were investigated. Key results: Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Aβ1-42. Similar protective effects against Aβ1-42 were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Aβ load was markedly diminished in the brain of those animals after treatment with piracetam. Aβ production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Aβ-induced mitochondrial dysfunction and Aβ-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Conclusion and implications: Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Aβ on brain function. This article is commented on by Moncada, pp. 217–219 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00706.x and to view related papers by Pravdic et al. and Puerta et al. visit http://dx.doi.org/10.1111/j.1476-5381.2010.00698.x and http://dx.doi.org/10.1111/j

  5. Peptide inhibition of human cytomegalovirus infection

    Directory of Open Access Journals (Sweden)

    Morris Cindy A

    2011-02-01

    Full Text Available Abstract Background Human cytomegalovirus (HCMV is the most prevalent congenital viral infection in the United States and Europe causing significant morbidity and mortality to both mother and child. HCMV is also an opportunistic pathogen in immunocompromised individuals, including human immunodeficiency virus (HIV- infected patients with AIDS, and solid organ and allogeneic stem cell transplantation recipients. Current treatments for HCMV-associated diseases are insufficient due to the emergence of drug-induced resistance and cytotoxicity, necessitating novel approaches to limit HCMV infection. The aim of this study was to develop therapeutic peptides targeting glycoprotein B (gB, a major glycoprotein of HCMV that is highly conserved across the Herpesviridae family, that specifically inhibit fusion of the viral envelope with the host cell membrane preventing HCMV entry and infection. Results Using the Wimley-White Interfacial Hydrophobicity Scale (WWIHS, several regions within gB were identified that display a high potential to interact with lipid bilayers of cell membranes and hydrophobic surfaces within proteins. The ability of synthetic peptides analogous to WWIHS-positive sequences of HCMV gB to inhibit viral infectivity was evaluated. Human foreskin fibroblasts (HFF were infected with the Towne-GFP strain of HCMV (0.5 MOI, preincubated with peptides at a range of concentrations (78 nm to 100 μM, and GFP-positive cells were visualized 48 hours post-infection by fluorescence microscopy and analyzed quantitatively by flow cytometry. Peptides that inhibited HCMV infection demonstrated different inhibitory concentration curves indicating that each peptide possesses distinct biophysical properties. Peptide 174-200 showed 80% inhibition of viral infection at a concentration of 100 μM, and 51% and 62% inhibition at concentrations of 5 μM and 2.5 μM, respectively. Peptide 233-263 inhibited infection by 97% and 92% at concentrations of 100

  6. Mitochondrial N-formyl peptides induce cardiovascular collapse and sepsis-like syndrome

    Science.gov (United States)

    McCarthy, Cameron G.; Szasz, Theodora; Goulopoulou, Styliani; Webb, R. Clinton

    2015-01-01

    Fifty percent of trauma patients who present sepsis-like syndrome do not have bacterial infections. This condition is known as systemic inflammatory response syndrome (SIRS). A unifying factor of SIRS and sepsis is cardiovascular collapse. Trauma and severe blood loss cause the release of endogenous molecules known as damage-associated molecular patterns. Mitochondrial N-formyl peptides (F-MIT) are damage-associated molecular patterns that share similarities with bacterial N-formylated peptides and are potent immune system activators. The goal of this study was to investigate whether F-MIT trigger SIRS, including hypotension and vascular collapse via formyl peptide receptor (FPR) activation. We evaluated cardiovascular parameters in Wistar rats treated with FPR or histamine receptor antagonists and inhibitors of the nitric oxide pathway before and after F-MIT infusion. F-MIT, but not nonformylated peptides or mitochondrial DNA, induced severe hypotension via FPR activation and nitric oxide and histamine release. Moreover, F-MIT infusion induced hyperthermia, blood clotting, and increased vascular permeability. To evaluate the role of leukocytes in F-MIT-induced hypotension, neutrophil, basophil, or mast cells were depleted. Depletion of basophils, but not neutrophils or mast cells, abolished F-MIT-induced hypotension. Rats that underwent hemorrhagic shock increased plasma levels of mitochondrial formylated proteins associated with lung damage and antagonism of FPR ameliorated hemorrhagic shock-induced lung injury. Finally, F-MIT induced vasodilatation in isolated resistance arteries via FPR activation; however, F-MIT impaired endothelium-dependent relaxation in the presence of blood. These data suggest that F-MIT may be the link among trauma, SIRS, and cardiovascular collapse. PMID:25637548

  7. Stimulated human mast cells secrete mitochondrial components that have autocrine and paracrine inflammatory actions.

    Directory of Open Access Journals (Sweden)

    Bodi Zhang

    Full Text Available Mast cells are hematopoietically-derived tissue immune cells that participate in acquired and innate immunity, as well as in inflammation through release of many chemokines and cytokines, especially in response to the pro-inflammatory peptide substance P (SP. Inflammation is critical in the pathogenesis of many diseases, but the trigger(s is often unknown. We investigated if mast cell stimulation leads to secretion of mitochondrial components and whether these could elicit autocrine and/or paracrine inflammatory effects. Here we show that human LAD2 mast cells stimulated by IgE/anti-IgE or by the SP led to secretion of mitochondrial particles, mitochondrial (mt mtDNA and ATP without cell death. Mitochondria purified from LAD2 cells and, when mitochondria added to mast cells trigger degranulation and release of histamine, PGD(2, IL-8, TNF, and IL-1β. This stimulatory effect is partially inhibited by an ATP receptor antagonist and by DNAse. These results suggest that the mitochondrial protein fraction may also contribute. Purified mitochondria also stimulate IL-8 and vascular endothelial growth factor (VEGF release from cultured human keratinocytes, and VEGF release from primary human microvascular endothelial cells. In order to investigate if mitochondrial components could be secreted in vivo, we injected rats intraperiotoneally (ip with compound 48/80, which mimicks the action of SP. Peritoneal mast cells degranulated and mitochondrial particles were documented by transimission electron microscopy outside the cells. We also wished to investigate if mitochondrial components secreted locally could reach the systemic circulation. Administration ip of mtDNA isolated from LAD2 cells in rats was detected in their serum within 4 hr, indicating that extravascular mtDNA could enter the systemic circulation. Secretion of mitochondrial components from stimulated live mast cells may act as "autopathogens" contributing to the pathogenesis of inflammatory

  8. Selective Gene Delivery for Integrating Exogenous DNA into Plastid and Mitochondrial Genomes Using Peptide-DNA Complexes.

    Science.gov (United States)

    Yoshizumi, Takeshi; Oikawa, Kazusato; Chuah, Jo-Ann; Kodama, Yutaka; Numata, Keiji

    2018-05-14

    Selective gene delivery into organellar genomes (mitochondrial and plastid genomes) has been limited because of a lack of appropriate platform technology, even though these organelles are essential for metabolite and energy production. Techniques for selective organellar modification are needed to functionally improve organelles and produce transplastomic/transmitochondrial plants. However, no method for mitochondrial genome modification has yet been established for multicellular organisms including plants. Likewise, modification of plastid genomes has been limited to a few plant species and algae. In the present study, we developed ionic complexes of fusion peptides containing organellar targeting signal and plasmid DNA for selective delivery of exogenous DNA into the plastid and mitochondrial genomes of intact plants. This is the first report of exogenous DNA being integrated into the mitochondrial genomes of not only plants, but also multicellular organisms in general. This fusion peptide-mediated gene delivery system is a breakthrough platform for both plant organellar biotechnology and gene therapy for mitochondrial diseases in animals.

  9. Mitochondrial DNA mutations in human tumor cells

    OpenAIRE

    LI, HUI; HONG, ZE-HUI

    2012-01-01

    Mitochondria play significant roles in cellular energy metabolism, free radical generation and apoptosis. The dysfunction of mitochondria is correlated with the origin and progression of tumors; thus, mutations in the mitochondrial genome that affect mitochondrial function may be one of the causal factors of tumorigenesis. Although the role of mitochondrial DNA (mtDNA) mutations in carcinogenesis has been investigated extensively by various approaches, the conclusions remain controversial to ...

  10. Human antimicrobial peptides and cancer.

    Science.gov (United States)

    Jin, Ge; Weinberg, Aaron

    2018-05-30

    Antimicrobial peptides (AMPs) have long been a topic of interest for entomologists, biologists, immunologists and clinicians because of these agents' intriguing origins in insects, their ubiquitous expression in many life forms, their capacity to kill a wide range of bacteria, fungi and viruses, their role in innate immunity as microbicidal and immunoregulatory agents that orchestrate cross-talk with the adaptive immune system, and, most recently, their association with cancer. We and others have theorized that surveillance through epithelial cell-derived AMPs functions to keep the natural flora of microorganisms in a steady state in different niches such as the skin, the intestines, and the mouth. More recently, findings related to specific activation pathways of some of these AMPs have led investigators to associate them with pro-tumoral activity; i.e., contributing to a tumorigenic microenvironment. This area is still in its infancy as there are intriguing yet contradictory findings demonstrating that while some AMPs have anti-tumoral activity and are under-expressed in solid tumors, others are overexpressed and pro-tumorigenic. This review will introduce a new paradigm in cancer biology as it relates to AMP activity in neoplasia to address the following questions: Is there evidence that AMPs contribute to tumor promoting microenvironments? Can an anti-AMP strategy be of use in cancer therapy? Do AMPs, expressed in and released from tumors, contribute to compositional shifting of bacteria in cancerous lesions? Can specific AMP expression characteristics be used one day as early warning signs for solid tumors? Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Gnaiger, Erich; Calbet, Jose A L

    2011-01-01

    Across a wide range of species and body mass a close matching exists between maximal conductive oxygen delivery and mitochondrial respiratory rate. In this study we investigated in humans how closely in-vivo maximal oxygen consumption (VO(2) max) is matched to state 3 muscle mitochondrial respira...

  12. A functional test of Neandertal and modern human mitochondrial targeting sequences

    Energy Technology Data Exchange (ETDEWEB)

    Gralle, Matthias, E-mail: gralle@bioqmed.ufrj.br [Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundao, 21941-590 Rio de Janeiro (Brazil); Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig (Germany); Schaefer, Ingo; Seibel, Peter [Department of Molecular Cell Therapy, Leipzig University, Deutscher Platz 5, 04103 Leipzig (Germany); Paeaebo, Svante [Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig (Germany)

    2010-11-26

    Research highlights: {yields} Two mutations in mitochondrial targeting peptides occurred during human evolution, possibly after Neandertals split off from modern human lineage. {yields} The ancestral and modern human versions of these two targeting peptides were tested functionally for their effects on localization and cleavage rate. {yields} In spite of recent evolution, and to the contrary of other mutations in targeting peptides, these mutations had no visible effects. -- Abstract: Targeting of nuclear-encoded proteins to different organelles, such as mitochondria, is a process that can result in the redeployment of proteins to new intracellular destinations during evolution. With the sequencing of the Neandertal genome, it has become possible to identify amino acid substitutions that occurred on the modern human lineage since its separation from the Neandertal lineage. Here we analyze the function of two substitutions in mitochondrial targeting sequences that occurred and rose to high frequency recently during recent human evolution. The ancestral and modern versions of the two targeting sequences do not differ in the efficiency with which they direct a protein to the mitochondria, an observation compatible with the neutral theory of molecular evolution.

  13. A functional test of Neandertal and modern human mitochondrial targeting sequences

    International Nuclear Information System (INIS)

    Gralle, Matthias; Schaefer, Ingo; Seibel, Peter; Paeaebo, Svante

    2010-01-01

    Research highlights: → Two mutations in mitochondrial targeting peptides occurred during human evolution, possibly after Neandertals split off from modern human lineage. → The ancestral and modern human versions of these two targeting peptides were tested functionally for their effects on localization and cleavage rate. → In spite of recent evolution, and to the contrary of other mutations in targeting peptides, these mutations had no visible effects. -- Abstract: Targeting of nuclear-encoded proteins to different organelles, such as mitochondria, is a process that can result in the redeployment of proteins to new intracellular destinations during evolution. With the sequencing of the Neandertal genome, it has become possible to identify amino acid substitutions that occurred on the modern human lineage since its separation from the Neandertal lineage. Here we analyze the function of two substitutions in mitochondrial targeting sequences that occurred and rose to high frequency recently during recent human evolution. The ancestral and modern versions of the two targeting sequences do not differ in the efficiency with which they direct a protein to the mitochondria, an observation compatible with the neutral theory of molecular evolution.

  14. Involvement of the mitochondrial compartment in human NCL fibroblasts

    International Nuclear Information System (INIS)

    Pezzini, Francesco; Gismondi, Floriana; Tessa, Alessandra; Tonin, Paola; Carrozzo, Rosalba; Mole, Sara E.; Santorelli, Filippo M.; Simonati, Alessandro

    2011-01-01

    Highlights: ► Mitochondrial reticulum fragmentation occurs in human CLN1 and CLN6 fibroblasts. ► Likewise mitochondrial shift-to periphery and decreased mitochondrial density are seen. ► Enhanced caspase-mediated apoptosis occurs following STS treatment in CLN1 fibroblasts. -- Abstract: Neuronal ceroid lipofuscinosis (NCL) are a group of progressive neurodegenerative disorders of childhood, characterized by the endo-lysosomal storage of autofluorescent material. Impaired mitochondrial function is often associated with neurodegeneration, possibly related to the apoptotic cascade. In this study we investigated the possible effects of lysosomal accumulation on the mitochondrial compartment in the fibroblasts of two NCL forms, CLN1 and CLN6. Fragmented mitochondrial reticulum was observed in all cells by using the intravital fluorescent marker Mitotracker, mainly in the perinuclear region. This was also associated with intense signal from the lysosomal markers Lysotracker and LAMP2. Likewise, mitochondria appeared to be reduced in number and shifted to the cell periphery by electron microscopy; moreover the mitochondrial markers VDCA and COX IV were reduced following quantitative Western blot analysis. Whilst there was no evidence of increased cell death under basal condition, we observed a significant increase in apoptotic nuclei following Staurosporine treatment in CLN1 cells only. In conclusion, the mitochondrial compartment is affected in NCL fibroblasts invitro, and CLN1 cells seem to be more vulnerable to the negative effects of stressed mitochondrial membrane than CLN6 cells.

  15. Host defence peptides in human burns.

    Science.gov (United States)

    Kaus, Aljoscha; Jacobsen, Frank; Sorkin, Michael; Rittig, Andrea; Voss, Bruno; Daigeler, Adrien; Sudhoff, Holger; Steinau, Hans-Ulrich; Steinstraesser, Lars

    2008-02-01

    The goal of this study was to analyse expression profiles of human epithelial host defence peptides in burned and unburned skin tissue, samples of which were obtained during debridements and snap-frozen in liquid nitrogen. Total RNA was isolated, and cDNA of epithelial host defence peptides and proteins (hCAP-18/LL-37, hBD1-hBD4, dermcidin, S100A7/psoriasin and RNAse7) was quantified by qRT-PCR. In situ hybridisation and immunohistochemical staining localised gene expression of hCAP-18/LL-37, hBD2 and hBD3 in histological sections. Most of the analysed host defence peptides and proteins showed higher mRNA levels in partial-thickness burns than in unburned tissue. In situ hybridisation revealed expression of hCAP-18/LL-37, hBD2 and hBD3 at the surface of burns that was independent of burn depth. However, the finding of higher host defence peptide gene expression rates does not correlate with the incidence of wound infection in burns. We hypothesise that the epithelial innate immune response in burns is complex.

  16. Three dimensional reconstruction of the human skeletal muscle mitochondrial network as a tool to assess mitochondrial content and structural organization

    DEFF Research Database (Denmark)

    Dahl, Rannvá; Larsen, Steen; Dohlmann, Tine L

    2015-01-01

    a method to visualize mitochondrial networks in high resolution and assess mitochondrial volume. Methods: Confocal fluorescence microscopy imaging of mitochondrial network stains in human vastus lateralis single muscle fibers and, focused ion beam scanning electron microscopy (FIB/SEM) imaging, combined...... mitochondrial dynamics in response to life-style interventions and/or in certain pathologies. Our results question the classification of mitochondria into subsarcolemmal and intermyofibrillar pools, since they are physically interconnected. This article is protected by copyright. All rights reserved....

  17. Mitochondrial oxidative stress in human hepatoma cells exposed to stavudine

    International Nuclear Information System (INIS)

    Velsor, Leonard W.; Kovacevic, Miro; Goldstein, Mark; Leitner, Heather M.; Lewis, William; Day, Brian J.

    2004-01-01

    The toxicity of nucleoside reverse transcriptase inhibitors (NRTIs) is linked to altered mitochondrial DNA (mtDNA) replication and subsequent disruption of cellular energetics. This manifests clinically as elevated concentrations of lactate in plasma. The mechanism(s) underlying how the changes in mtDNA replication lead to lactic acidosis remains unclear. It is hypothesized that mitochondrial oxidative stress links the changes in mtDNA replication to mitochondrial dysfunction and ensuing NRTIs toxicity. To test this hypothesis, changes in mitochondrial function, mtDNA amplification efficiency, and oxidative stress were assessed in HepG2-cultured human hepatoblasts treated with the NRTI stavudine (2',3'-didehydro-2',3'-deoxythymidine or d4T) for 48 h. d4T produced significant mitochondrial dysfunction with a 1.5-fold increase in cellular lactate to pyruvate ratios. In addition, d4T caused a dose-dependent decrease in mtDNA amplification and a correlative increase in abundance of markers of mitochondrial oxidative stress. Manganese (III) meso-tetrakis (4-benzoic acid) porphyrin, MnTBAP, a catalytic antioxidant, ameliorated or reversed d4T-induced changes in cell injury, energetics, mtDNA amplification, and mitochondrial oxidative stress. In conclusion, d4T treatment elevates mitochondrial reactive oxygen species (ROS), enhances mitochondrial oxidative stress, and contributes mechanistically to NRTI-induced toxicity. These deleterious events may be potentiated in acquired immunodeficiency syndrome (AIDS) by human immunodeficiency virus (HIV) infection itself, coinfection (e.g., viral hepatitis), aging, substance, and alcohol use

  18. Human 2'-phosphodiesterase localizes to the mitochondrial matrix with a putative function in mitochondrial RNA turnover

    DEFF Research Database (Denmark)

    Poulsen, Jesper Buchhave; Andersen, Kasper Røjkjær; Kjær, Karina Hansen

    2011-01-01

    . Interestingly, 2′-PDE shares both functionally and structurally characteristics with the CCR4-type exonuclease–endonuclease–phosphatase family of deadenylases. Here we show that 2′-PDE locates to the mitochondrial matrix of human cells, and comprise an active 3′–5′ exoribonuclease exhibiting a preference...

  19. Sildenafil protects neuronal cells from mitochondrial toxicity induced by β-amyloid peptide via ATP-sensitive K+ channels.

    Science.gov (United States)

    Son, Yonghae; Kim, Koanhoi; Cho, Hyok-Rae

    2018-06-02

    To understand the molecular mechanisms underlying the beneficial effects of sildenafil in animal models of neurological disorders, we investigated the effects of sildenafil on the mitochondrial toxicity induced by β-amyloid (Aβ) peptide. Treatment of HT-22 hippocampal neuronal cells with Aβ 25∼35 results in increased mitochondrial Ca 2+ load, which is subsequently suppressed by sildenafil as well as by diazoxide, a selective opener of the ATP-sensitive K + channels (K ATP ). However, the suppressive effects of sildenafil and diazoxide are significantly attenuated by 5-hydroxydecanoic acid (5-HD), a K ATP inhibitor. The increased mitochondrial Ca 2+ overload is accompanied by decrease in the intracellular ATP concentration, increase in intracellular ROS generation, occurrence of mitochondrial permeability transition, and activation of caspase-9 and cell death. Exposure to sildenafil inhibited the mitochondria-associated changes and cell death induced by Aβ. However, the inhibitory effects of sildenafil are abolished or weakened in the presence of 5-HD, suggesting that opening of the mitochondrial K ATP is required for sildenafil to exert these effects. Taken together, these results indicate that at the mitochondrial levels, sildenafil plays a protective role towards neuronal cell in an environment rich in Aβ, and exerts its effects via the mitochondrial K ATP channels-dependent mechanisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Sandra C. [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States); Chau, Mary D.L.; Yang, Qing [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Gauthier, Marie-Soleil [Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02140 (United States); Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper [Cardiovascular and Metabolism Disease Area, Novartis Institutes for Biomedical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (United States); Dole, William P., E-mail: bill.dole@novartis.com [Translational Sciences - Translational Medicine, Novartis Institutes for Biomedical Research, Inc., 220 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2011-07-08

    Highlights: {yields} Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). {yields} ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. {yields} ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. {yields} Exposure of human adipocytes to fatty acids and (TNF{alpha}) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract: Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and

  1. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    International Nuclear Information System (INIS)

    Souza, Sandra C.; Chau, Mary D.L.; Yang, Qing; Gauthier, Marie-Soleil; Clairmont, Kevin B.; Wu, Zhidan; Gromada, Jesper; Dole, William P.

    2011-01-01

    Highlights: → Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). → ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. → ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. → Exposure of human adipocytes to fatty acids and (TNFα) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract: Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and peroxisome proliferator

  2. Cryopreservation of human skeletal muscle impairs mitochondrial function

    DEFF Research Database (Denmark)

    Larsen, Steen; Wright-Paradis, C; Gnaiger, E

    2012-01-01

    functionality after long term cryopreservation (1 year). Skeletal muscle samples were preserved in dimethyl sulfoxide (DMSO) for later analysis. Human skeletal muscle fibres were thawed and permeabilised with saponin, and mitochondrial respiration was measured by high-resolution respirometry. The capacity...

  3. Erythropoietin treatment enhances muscle mitochondrial capacity in humans

    DEFF Research Database (Denmark)

    Plenge, Ulla; Belhage, Bo; Guadalupe-Grau, Amelia

    2012-01-01

    in humans. In six healthy volunteers rhEpo was administered by sub-cutaneous injection over 8 weeks with oral iron (100 mg) supplementation taken daily. Mitochondrial OXPHOS was quantified by high-resolution respirometry in saponin-permeabilized muscle fibers obtained from biopsies of the vastus lateralis...

  4. The Mitochondrial Protein Atlas: A Database of Experimentally Verified Information on the Human Mitochondrial Proteome.

    Science.gov (United States)

    Godin, Noa; Eichler, Jerry

    2017-09-01

    Given its central role in various biological systems, as well as its involvement in numerous pathologies, the mitochondrion is one of the best-studied organelles. However, although the mitochondrial genome has been extensively investigated, protein-level information remains partial, and in many cases, hypothetical. The Mitochondrial Protein Atlas (MPA; URL: lifeserv.bgu.ac.il/wb/jeichler/MPA ) is a database that provides a complete, manually curated inventory of only experimentally validated human mitochondrial proteins. The MPA presently contains 911 unique protein entries, each of which is associated with at least one experimentally validated and referenced mitochondrial localization. The MPA also contains experimentally validated and referenced information defining function, structure, involvement in pathologies, interactions with other MPA proteins, as well as the method(s) of analysis used in each instance. Connections to relevant external data sources are offered for each entry, including links to NCBI Gene, PubMed, and Protein Data Bank. The MPA offers a prototype for other information sources that allow for a distinction between what has been confirmed and what remains to be verified experimentally.

  5. Mitochondrial regulation of epigenetics and its role in human diseases

    DEFF Research Database (Denmark)

    Minocherhomji, Sheroy; Tollefsbol, Trygve O; Singh, Keshav K

    2012-01-01

    as the sole pathogenic factor suggesting that additional mechanisms contribute to lack of genotype and clinical phenotype correlationship. An increasing number of studies have identified a possible effect on the epigenetic landscape of the nuclear genome as a consequence of mitochondrial dysfunction....... In particular, these studies demonstrate reversible or irreversible changes in genomic DNA methylation profiles of the nuclear genome. Here we review how mitochondria damage checkpoint (mitocheckpoint) induces epigenetic changes in the nucleus. Persistent pathogenic mutations in mtDNA may also lead...... to epigenetic changes causing genomic instability in the nuclear genome. We propose that "mitocheckpoint" mediated epigenetic and genetic changes may play key roles in phenotypic variation related to mitochondrial diseases or host of human diseases in which mitochondrial defect plays a primary role....

  6. Anticancer activities of bovine and human lactoferricin-derived peptides.

    Science.gov (United States)

    Arias, Mauricio; Hilchie, Ashley L; Haney, Evan F; Bolscher, Jan G M; Hyndman, M Eric; Hancock, Robert E W; Vogel, Hans J

    2017-02-01

    Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits broad-spectrum anticancer activity, while a similar peptide derived from human LF (hLF) is not as active. In this work, several peptides derived from the N-terminal regions of bLF and hLF were studied for their anticancer activities against leukemia and breast-cancer cells, as well as normal peripheral blood mononuclear cells. The cyclized LFcinB-CLICK peptide, which possesses a stable triazole linkage, showed improved anticancer activity, while short peptides hLF11 and bLF10 were not cytotoxic to cancer cells. Interestingly, hLF11 can act as a cell-penetrating peptide; when combined with the antimicrobial core sequence of LFcinB (RRWQWR) through either a Pro or Gly-Gly linker, toxicity to Jurkat cells increased. Together, our work extends the library of LF-derived peptides tested for anticancer activity, and identified new chimeric peptides with high cytotoxicity towards cancerous cells. Additionally, these results support the notion that short cell-penetrating peptides and antimicrobial peptides can be combined to create new adducts with increased potency.

  7. Continued colonization of the human genome by mitochondrial DNA.

    Directory of Open Access Journals (Sweden)

    Miria Ricchetti

    2004-09-01

    Full Text Available Integration of mitochondrial DNA fragments into nuclear chromosomes (giving rise to nuclear DNA sequences of mitochondrial origin, or NUMTs is an ongoing process that shapes nuclear genomes. In yeast this process depends on double-strand-break repair. Since NUMTs lack amplification and specific integration mechanisms, they represent the prototype of exogenous insertions in the nucleus. From sequence analysis of the genome of Homo sapiens, followed by sampling humans from different ethnic backgrounds, and chimpanzees, we have identified 27 NUMTs that are specific to humans and must have colonized human chromosomes in the last 4-6 million years. Thus, we measured the fixation rate of NUMTs in the human genome. Six such NUMTs show insertion polymorphism and provide a useful set of DNA markers for human population genetics. We also found that during recent human evolution, Chromosomes 18 and Y have been more susceptible to colonization by NUMTs. Surprisingly, 23 out of 27 human-specific NUMTs are inserted in known or predicted genes, mainly in introns. Some individuals carry a NUMT insertion in a tumor-suppressor gene and in a putative angiogenesis inhibitor. Therefore in humans, but not in yeast, NUMT integrations preferentially target coding or regulatory sequences. This is indeed the case for novel insertions associated with human diseases and those driven by environmental insults. We thus propose a mutagenic phenomenon that may be responsible for a variety of genetic diseases in humans and suggest that genetic or environmental factors that increase the frequency of chromosome breaks provide the impetus for the continued colonization of the human genome by mitochondrial DNA.

  8. Lipopolysaccharide interactions of C-terminal peptides from human thrombin.

    Science.gov (United States)

    Singh, Shalini; Kalle, Martina; Papareddy, Praveen; Schmidtchen, Artur; Malmsten, Martin

    2013-05-13

    Interactions with bacterial lipopolysaccharide (LPS), both in aqueous solution and in lipid membranes, were investigated for a series of amphiphilic peptides derived from the C-terminal region of human thrombin, using ellipsometry, dual polarization interferometry, fluorescence spectroscopy, circular dichroism (CD), dynamic light scattering, and z-potential measurements. The ability of these peptides to block endotoxic effects caused by LPS, monitored through NO production in macrophages, was compared to peptide binding to LPS and its endotoxic component lipid A, and to size, charge, and secondary structure of peptide/LPS complexes. While the antiendotoxic peptide GKY25 (GKYGFYTHVFRLKKWIQKVIDQFGE) displayed significant binding to both LPS and lipid A, so did two control peptides with either selected D-amino acid substitutions or with maintained composition but scrambled sequence, both displaying strongly attenuated antiendotoxic effects. Hence, the extent of LPS or lipid A binding is not the sole discriminant for the antiendotoxic effect of these peptides. In contrast, helix formation in peptide/LPS complexes correlates to the antiendotoxic effect of these peptides and is potentially linked to this functionality. Preferential binding to LPS over lipid membrane was furthermore demonstrated for these peptides and preferential binding to the lipid A moiety within LPS inferred.

  9. Structure of the Human Mitochondrial Ribosome Studied In Situ by Cryoelectron Tomography.

    Science.gov (United States)

    Englmeier, Robert; Pfeffer, Stefan; Förster, Friedrich

    2017-10-03

    Mitochondria maintain their own genome and its corresponding protein synthesis machine, the mitochondrial ribosome (mitoribosome). Mitoribosomes primarily synthesize highly hydrophobic proteins of the inner mitochondrial membrane. Recent studies revealed the complete structure of the isolated mammalian mitoribosome, but its mode of membrane association remained hypothetical. In this study, we used cryoelectron tomography to visualize human mitoribosomes in isolated mitochondria. The subtomogram average of the membrane-associated human mitoribosome reveals a single major contact site with the inner membrane, mediated by the mitochondria-specific protein mL45. A second rRNA-mediated contact site that is present in yeast is absent in humans, resulting in a more variable association of the human mitoribosome with the inner membrane. Despite extensive structural differences of mammalian and fungal mitoribosomal structure, the principal organization of peptide exit tunnel and the mL45 homolog remains invariant, presumably to align the mitoribosome with the membrane-embedded insertion machinery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A mitochondrial cytochrome b mutation causing severe respiratory chain enzyme deficiency in humans and yeast.

    NARCIS (Netherlands)

    Blakely, E.L.; Mitchell, A.L.; Fisher, N.; Meunier, B.; Nijtmans, L.G.J.; Schaefer, A.M.; Jackson, M.J.; Turnbull, D.M.; Taylor, R.W.

    2005-01-01

    Whereas the majority of disease-related mitochondrial DNA mutations exhibit significant biochemical and clinical heterogeneity, mutations within the mitochondrially encoded human cytochrome b gene (MTCYB) are almost exclusively associated with isolated complex III deficiency in muscle and a clinical

  11. Insulin and C-peptide in human brain neurons (insulin/C-peptide/brain peptides/immunohistochemistry/radioimmunoassay)

    International Nuclear Information System (INIS)

    Dorn, A.; Bernstein, H.G.; Rinne, A.; Hahn, H.J.; Ziegler, M.

    1983-01-01

    The regional distribution and cellular localization of insulin and C-peptide immunoreactivities were studied in human cadaver brains using the indirect immunofluorescence method, the peroxidase-antiperoxidase technique, and radioimmunoassay. Products of the immune reactions to both polypeptides were observed in most nerve cells in all areas of the brain examined. Immunostaining was mainly restricted to the cell soma and proximal dendrites. Radioimmunoassay revealed that human brain contains insulin and C-peptide in concentrations much higher than the blood, the highest being in the hypothalamus. These findings support the hypothesis that the 'brain insulin' is - at least in part - produced in the CNS. (author)

  12. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans.

    Directory of Open Access Journals (Sweden)

    Anthony E Civitarese

    2007-03-01

    Full Text Available Caloric restriction without malnutrition extends life span in a range of organisms including insects and mammals and lowers free radical production by the mitochondria. However, the mechanism responsible for this adaptation are poorly understood.The current study was undertaken to examine muscle mitochondrial bioenergetics in response to caloric restriction alone or in combination with exercise in 36 young (36.8 +/- 1.0 y, overweight (body mass index, 27.8 +/- 0.7 kg/m(2 individuals randomized into one of three groups for a 6-mo intervention: Control, 100% of energy requirements; CR, 25% caloric restriction; and CREX, caloric restriction with exercise (CREX, 12.5% CR + 12.5% increased energy expenditure (EE. In the controls, 24-h EE was unchanged, but in CR and CREX it was significantly reduced from baseline even after adjustment for the loss of metabolic mass (CR, -135 +/- 42 kcal/d, p = 0.002 and CREX, -117 +/- 52 kcal/d, p = 0.008. Participants in the CR and CREX groups had increased expression of genes encoding proteins involved in mitochondrial function such as PPARGC1A, TFAM, eNOS, SIRT1, and PARL (all, p < 0.05. In parallel, mitochondrial DNA content increased by 35% +/- 5% in the CR group (p = 0.005 and 21% +/- 4% in the CREX group (p < 0.004, with no change in the control group (2% +/- 2%. However, the activity of key mitochondrial enzymes of the TCA (tricarboxylic acid cycle (citrate synthase, beta-oxidation (beta-hydroxyacyl-CoA dehydrogenase, and electron transport chain (cytochrome C oxidase II was unchanged. DNA damage was reduced from baseline in the CR (-0.56 +/- 0.11 arbitrary units, p = 0.003 and CREX (-0.45 +/- 0.12 arbitrary units, p = 0.011, but not in the controls. In primary cultures of human myotubes, a nitric oxide donor (mimicking eNOS signaling induced mitochondrial biogenesis but failed to induce SIRT1 protein expression, suggesting that additional factors may regulate SIRT1 content during CR.The observed increase in

  13. INTERNALIZATION OF ANTIMICROBIAL PEPTIDE ACIPENSIN 1 INTO HUMAN TUMOR CELLS

    Directory of Open Access Journals (Sweden)

    E. S. Umnyakova

    2016-01-01

    Full Text Available Search for new compounds providing delivery of drugs into infected or neoplastic cells, is an important direction of biomedical research. Cell-penetrating peptides are among those compounds, due to their ability to translocate through membranes of eukaryotic cells, serving as potential carriers of various therapeutic agents to the target cells. The aim of present work was to investigate the ability of acipensin 1, an antimicrobial peptide of innate immune system, for in vitro penetration into human tumor cells. Acipensin 1 is a cationic peptide that we have previously isolated from leukocytes of the Russian sturgeon, Acipenser gueldenstaedtii. Capability of acipensin 1 to enter the human erytroleukemia K-562 cells has been investigated for the first time. A biotechnological procedure for producing a recombinant acipensin 1 peptide has been developed. The obtained peptide was conjugated with a fluorescent probe BODIPY FL. By means of confocal microscopy, we have shown that the tagged acipensin 1 rapidly enters into K-562 cells and can be detected in the intracellular space within 5 min after its addition to the cell culture. Using flow cytometry technique, penetration kinetics of the labeled peptide into K-562 cells (at nontoxic micromolar concentrations has been studied. We have observed a rapid internalization of the peptide to the target cells, thus confirming the results of microscopic analysis, i.e, the labeled acipensin was detectable in K-562 cells as soon as wihin 2-3 seconds after its addition to the incubation medium. The maximum of fluorescence was reached within a period of approx. 45 seconds, with further “plateau” at the terms of >100 seconds following cell stimulation with the test compound. These data support the concept, that the antimicrobial peptides of innate immunity system possess the features of cell-penetrating peptides, and allow us to consider the studied sturgeon peptide a promising template for development of new

  14. Major genomic mitochondrial lineages delineate early human expansions

    Directory of Open Access Journals (Sweden)

    Flores Carlos

    2001-08-01

    Full Text Available Abstract Background The phylogeographic distribution of human mitochondrial DNA variations allows a genetic approach to the study of modern Homo sapiens dispersals throughout the world from a female perspective. As a new contribution to this study we have phylogenetically analysed complete mitochondrial DNA(mtDNA sequences from 42 human lineages, representing major clades with known geographic assignation. Results We show the relative relationships among the 42 lineages and present more accurate temporal calibrations than have been previously possible to give new perspectives as how modern humans spread in the Old World. Conclusions The first detectable expansion occurred around 59,000–69,000 years ago from Africa, independently colonizing western Asia and India and, following this southern route, swiftly reaching east Asia. Within Africa, this expansion did not replace but mixed with older lineages detectable today only in Africa. Around 39,000–52,000 years ago, the western Asian branch spread radially, bringing Caucasians to North Africa and Europe, also reaching India, and expanding to north and east Asia. More recent migrations have entangled but not completely erased these primitive footprints of modern human expansions.

  15. NMR investigations of the dual targeting peptide of Thr-tRNA synthetase and its interaction with the mitochondrial Tom20 receptor in Arabidopsis thaliana.

    Science.gov (United States)

    Ye, Weihua; Spånning, Erika; Unnerståle, Sofia; Gotthold, David; Glaser, Elzbieta; Mäler, Lena

    2012-10-01

    Most mitochondrial proteins are synthesized in the cytosol as precursor proteins containing an N-terminal targeting peptide and are imported into mitochondria through the import machineries, the translocase of the outer mitochondrial membrane (TOM) and the translocase of the inner mitochondrial membrane (TIM). The N-terminal targeting peptide of precursor proteins destined for the mitochondrial matrix is recognized by the Tom20 receptor and plays an important role in the import process. Protein import is usually organelle specific, but several plant proteins are dually targeted into mitochondria and chloroplasts using an ambiguous dual targeting peptide. We present NMR studies of the dual targeting peptide of Thr-tRNA synthetase and its interaction with Tom20 in Arabidopsis thaliana. Our findings show that the targeting peptide is mostly unstructured in buffer, with a propensity to form α-helical structure in one region, S6-F27, and a very weak β-strand propensity for Q34-Q38. The α-helical structured region has an amphiphilic character and a φχχφφ motif, both of which have previously been shown to be important for mitochondrial import. Using NMR we have mapped out two regions in the peptide that are important for Tom20 recognition: one of them, F9-V28, overlaps with the amphiphilic region, and the other comprises residues L30-Q39. Our results show that the targeting peptide may interact with Tom20 in several ways. Furthermore, our results indicate a weak, dynamic interaction. The results provide for the first time molecular details on the interaction of the Tom20 receptor with a dual targeting peptide. © 2012 The Authors Journal compilation © 2012 FEBS.

  16. Bovine and human lactoferricin peptides: chimeras and new cyclic analogs.

    Science.gov (United States)

    Arias, Mauricio; McDonald, Lindsey J; Haney, Evan F; Nazmi, Kamran; Bolscher, Jan G M; Vogel, Hans J

    2014-10-01

    Lactoferrin (LF) is an important antimicrobial and immune regulatory protein present in neutrophils and most exocrine secretions of mammals. The antimicrobial activity of LF has been related to the presence of an antimicrobial peptide sequence, called lactoferricin (LFcin), located in the N-terminal region of the protein. The antimicrobial activity of bovine LFcin is considerably stronger than the human version. In this work, chimera peptides combining segments of bovine and human LFcin were generated in order to study their antimicrobial activity and mechanism of action. In addition, the relevance of the conserved disulfide bridge and the resulting cyclic structure of both LFcins were analyzed by using "click chemistry" and sortase A-catalyzed cyclization of the peptides. The N-terminal region of bovine LFcin (residues 17-25 of bovine LF) proved to be very important for the antimicrobial activity of the chimera peptides against E. coli, when combined with the C-terminal region of human LFcin. Similarly the cyclic bovine LFcin analogs generated by "click chemistry" and sortase A preserved the antimicrobial activity of the original peptide, showing the significance of these two techniques in the design of cyclic antimicrobial peptides. The mechanism of action of bovine LFcin and its active derived peptides was strongly correlated with membrane leakage in E. coli and up to some extent with the ability to induce vesicle aggregation. This mechanism was also preserved under conditions of high ionic strength (150 mM NaCl) illustrating the importance of these peptides in a more physiologically relevant system.

  17. Discovery of non-peptidic small molecule inhibitors of cyclophilin D as neuroprotective agents in Aβ-induced mitochondrial dysfunction

    Science.gov (United States)

    Park, Insun; Londhe, Ashwini M.; Lim, Ji Woong; Park, Beoung-Geon; Jung, Seo Yun; Lee, Jae Yeol; Lim, Sang Min; No, Kyoung Tai; Lee, Jiyoun; Pae, Ae Nim

    2017-10-01

    Cyclophilin D (CypD) is a mitochondria-specific cyclophilin that is known to play a pivotal role in the formation of the mitochondrial permeability transition pore (mPTP).The formation and opening of the mPTP disrupt mitochondrial homeostasis, cause mitochondrial dysfunction and eventually lead to cell death. Several recent studies have found that CypD promotes the formation of the mPTP upon binding to β amyloid (Aβ) peptides inside brain mitochondria, suggesting that neuronal CypD has a potential to be a promising therapeutic target for Alzheimer's disease (AD). In this study, we generated an energy-based pharmacophore model by using the crystal structure of CypD—cyclosporine A (CsA) complex and performed virtual screening of ChemDiv database, which yielded forty-five potential hit compounds with novel scaffolds. We further tested those compounds using mitochondrial functional assays in neuronal cells and identified fifteen compounds with excellent protective effects against Aβ-induced mitochondrial dysfunction. To validate whether these effects derived from binding to CypD, we performed surface plasmon resonance (SPR)—based direct binding assays with selected compounds and discovered compound 29 was found to have the equilibrium dissociation constants (KD) value of 88.2 nM. This binding affinity value and biological activity correspond well with our predicted binding mode. We believe that this study offers new insights into the rational design of small molecule CypD inhibitors, and provides a promising lead for future therapeutic development.

  18. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects

    DEFF Research Database (Denmark)

    Larsen, Steen; Nielsen, Joachim; Hansen, Christina Neigaard

    2012-01-01

    Key points  Several biochemical measures of mitochondrial components are used as biomarkers of mitochondrial content and muscle oxidative capacity. However, no studies have validated these surrogates against a morphological measure of mitochondrial content in human subjects.  The most commonly used...... markers (citrate synthase activity, cardiolipin content, mitochondrial DNA content (mtDNA), complex I-V protein, and complex I-IV activity) were correlated with a measure of mitochondrial content (transmission electron microscopy) and muscle oxidative capacity (respiration in permeabilized fibres......).  Cardiolipin content followed by citrate synthase activity and complex I activity were the biomarkers showing the strongest association with mitochondrial content.  mtDNA was found to be a poor biomarker of mitochondrial content.  Complex IV activity was closely associated with mitochondrial oxidative...

  19. Antimicrobial peptide exposure selects for Staphylococcus aureus resistance to human defence peptides

    DEFF Research Database (Denmark)

    Kubicek-Sutherland, Jessica Z.; Lofton, Hava; Vestergaard, Martin

    2017-01-01

    Background: The clinical development of antimicrobial peptides (AMPs) is currently under evaluation to combat the rapid increase in MDR bacterial pathogens. However, many AMPs closely resemble components of the human innate immune system and the ramifications of prolonged bacterial exposure to AM...

  20. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases

    Directory of Open Access Journals (Sweden)

    Serge Grazioli

    2018-05-01

    Full Text Available Over the recent years, much has been unraveled about the pro-inflammatory properties of various mitochondrial molecules once they are leaving the mitochondrial compartment. On entering the cytoplasm or the extracellular space, mitochondrial DAMPs (also known as mitochondrial alarmins can become pro-inflammatory and initiate innate and adaptive immune responses by activating cell surface and intracellular receptors. Current evidence indicates that uncontrolled and excessive release of mitochondrial DAMPs is associated with severity, has prognosis value in human diseases, and contributes to the dysregulated process observed in numerous inflammatory and autoimmune conditions, as well as in ischemic heart disease and cancer. Herein, we review that the expanding research field of mitochondrial DAMPs in innate immune responses and the current knowledge on the association between mitochondrial DAMPs and human diseases.

  1. The NFL-TBS.40-63 anti-glioblastoma peptide disrupts microtubule and mitochondrial networks in the T98G glioma cell line.

    Directory of Open Access Journals (Sweden)

    Romain Rivalin

    Full Text Available Despite aggressive therapies, including combinations of surgery, radiotherapy and chemotherapy, glioblastoma remains a highly aggressive brain cancer with the worst prognosis of any central nervous system disease. We have previously identified a neurofilament-derived cell-penetrating peptide, NFL-TBS.40-63, that specifically enters by endocytosis in glioblastoma cells, where it induces microtubule destruction and inhibits cell proliferation. Here, we explore the impact of NFL-TBS.40-63 peptide on the mitochondrial network and its functions by using global cell respiration, quantitative PCR analysis of the main actors directing mitochondrial biogenesis, western blot analysis of the oxidative phosphorylation (OXPHOS subunits and confocal microscopy. We show that the internalized peptide disturbs mitochondrial and microtubule networks, interferes with mitochondrial dynamics and induces a rapid depletion of global cell respiration. This effect may be related to reduced expression of the NRF-1 transcription factor and of specific miRNAs, which may impact mitochondrial biogenesis, in regard to default mitochondrial mobility.

  2. Peptide secreted by human alveolar macrophages releases neutrophil granule contents

    International Nuclear Information System (INIS)

    MacArthur, C.K.; Miller, E.J.; Cohen, A.B.

    1987-01-01

    A monoclonal antibody was developed against an 8000-kDa enzyme-releasing peptide (ERP) released from human alveolar macrophages. ERP was isolated on an immunoaffinity column containing the antibody bound to staphylococcal protein A-Sepharose, and by autoradiography. Release of ERP from the macrophages is not changed by plastic adherence, phagocytosis, calcium ionophore, or phorbol esters. The peptide was not antigenically similar to interferon-γ, tumor necrosis factor, or interleukin lα or 1β. The release of constituents from azurophilic and specific granules was the main identified biologic function of ERP. ERP was a more effective secretagogue in the untreated neutrophils and f-met-leu-phe was more effective in the cytochalasin B-treated neutrophils. Absorption of ERP from macrophage-conditioned medium removed a small amount of the chemotactic activity; however, the immunopurified peptide was not chemotactic or chemokinetic for neutrophils, and at high concentrations, it suppressed base line chemokinesis. Treatment of washed macrophages with trypsin released active ERP of approximately the same m.w. of spontaneously secreted ERP. These studies showed that human alveolar macrophages release a peptide which is a secretagogue for human neutrophils under conditions which may be encountered in the lungs during certain disease states. Proteolytic enzymes which are free in the lungs may release the peptide and lead to the secretion of neutrophil enzymes

  3. Immunohistochemical distribution of regulatory peptides in the human fetal adenohypophysis

    Science.gov (United States)

    Reyes, R; Valladares, F; Gutiérrez, R; González, M; Bello, A R

    2008-01-01

    We have studied here the cellular distribution of several regulatory peptides in hormone-producing cells of the human pituitary during the fetal period. Immunohistochemistry was used to show the expression of several regulatory peptides, namely Angiotensin-II, Neurotensin and Galanin, at successive gestational stages and their co-localization with hormones in the human fetal adenohypophysis. Somatotrophs, gonadotrophs and thyrotrophs were differentiated earliest. At gestational week 9, Angiotensin-II immunoreactivity was co-localized only with growth hormone immunoreactivity in somatotrophs, one of the first hormone-producing cells to differentiate. This co-localization remained until week 37. Neurotensin immunoreactivity was present in gonadotrophs and thyrotrophs in week 23, after FSH and TSH hormone differentiation. Galanin immunoreactivity was present in all hormone-producing cell types except corticotrophs. The different pro-opiomelanocortin-derived peptides were detected at different stages of gestation and adrenocorticotrophic hormone immunoreaction was the last to be detected. Our results show an interesting relationship between regulatory peptides and hormones during human fetal development, which could imply that these peptides play a regulatory role in the development of pituitary function. PMID:18510508

  4. Modulation of mitochondrial activity in HaCaT keratinocytes by the cell penetrating peptide Z-Gly-RGD(DPhe)-mitoparan.

    Science.gov (United States)

    Richardson, Adam; Muir, Lewis; Mousdell, Sasha; Sexton, Darren; Jones, Sarah; Howl, John; Ross, Kehinde

    2018-01-30

    Biologically active cell penetrating peptides (CPPs) are an emerging class of therapeutic agent. The wasp venom peptide mastoparan is an established CPP that modulates mitochondrial activity and triggers caspase-dependent apoptosis in cancer cells, as does the mastoparan analogue mitoparan (mitP). Mitochondrial depolarisation and activation of the caspase cascade also underpins the action of dithranol, a topical agent for treatment of psoriasis. The effects of a potent mitP analogue on mitochondrial activity were therefore examined to assess its potential as a novel approach for targeting mitochondria for the treatment of psoriasis. In HaCaT keratinocytes treated with the mitP analogue Z-Gly-RGD(DPhe)-mitP for 24 h, a dose-dependent loss of mitochondrial activity was observed using the methyl-thiazolyl-tetrazolium (MTT) assay. At 10 μmol L -1 , MTT activity was less than 30% that observed in untreated cells. Staining with the cationic dye JC-1 suggested that Z-Gly-RGD(DPhe)-mitP also dissipated the mitochondrial membrane potential, with a threefold increase in mitochondrial depolarisation levels. However, caspase activity appeared to be reduced by 24 h exposure to Z-Gly-RGD(DPhe)-mitP treatment. Furthermore, Z-Gly-RGD(DPhe)-mitP treatment had little effect on overall cell viability. Our findings suggest Z-Gly-RGD(DPhe)-mitP promotes the loss of mitochondrial activity but does not appear to evoke apoptosis in HaCaT keratinocytes.

  5. Microneedle Enhanced Delivery of Cosmeceutically Relevant Peptides in Human Skin

    Science.gov (United States)

    Mohammed, Yousuf H.; Yamada, Miko; Lin, Lynlee L.; Grice, Jeffrey E.; Roberts, Michael S.; Raphael, Anthony P.; Benson, Heather A. E.; Prow, Tarl W.

    2014-01-01

    Peptides and proteins play an important role in skin health and well-being. They are also found to contribute to skin aging and melanogenesis. Microneedles have been shown to substantially enhance skin penetration and may offer an effective means of peptide delivery enhancement. The aim of this investigation was to assess the influence of microneedles on the skin penetration of peptides using fluorescence imaging to determine skin distribution. In particular the effect of peptide chain length (3, 4, 5 amino acid chain length) on passive and MN facilitated skin penetration was investigated. Confocal laser scanning microscopy was used to image fluorescence intensity and the area of penetration of fluorescently tagged peptides. Penetration studies were conducted on excised full thickness human skin in Franz type diffusion cells for 1 and 24 hours. A 2 to 22 fold signal improvement in microneedle enhanced delivery of melanostatin, rigin and pal-KTTKS was observed. To our knowledge this is the first description of microneedle enhanced skin permeation studies on these peptides. PMID:25033398

  6. Microneedle enhanced delivery of cosmeceutically relevant peptides in human skin.

    Directory of Open Access Journals (Sweden)

    Yousuf H Mohammed

    Full Text Available Peptides and proteins play an important role in skin health and well-being. They are also found to contribute to skin aging and melanogenesis. Microneedles have been shown to substantially enhance skin penetration and may offer an effective means of peptide delivery enhancement. The aim of this investigation was to assess the influence of microneedles on the skin penetration of peptides using fluorescence imaging to determine skin distribution. In particular the effect of peptide chain length (3, 4, 5 amino acid chain length on passive and MN facilitated skin penetration was investigated. Confocal laser scanning microscopy was used to image fluorescence intensity and the area of penetration of fluorescently tagged peptides. Penetration studies were conducted on excised full thickness human skin in Franz type diffusion cells for 1 and 24 hours. A 2 to 22 fold signal improvement in microneedle enhanced delivery of melanostatin, rigin and pal-KTTKS was observed. To our knowledge this is the first description of microneedle enhanced skin permeation studies on these peptides.

  7. Mitochondrial respiratory efficiency is positively correlated with human sperm motility.

    Science.gov (United States)

    Ferramosca, Alessandra; Provenzano, Sara Pinto; Coppola, Lamberto; Zara, Vincenzo

    2012-04-01

    To correlate sperm mitochondrial respiratory efficiency with variations in sperm motility and with sperm morphologic anomalies. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically-treated sperm cells. A possible relationship among sperm mitochondrial respiratory efficiency, sperm motility, and morphologic anomalies was investigated. Mitochondrial respiratory efficiency was positively correlated with sperm motility and negatively correlated with the percentage of immotile spermatozoa. Moreover, midpiece defects impaired mitochondrial functionality. Our data indicate that an increase in sperm motility requires a parallel increase in mitochondrial respiratory capacity, thereby supporting the fundamental role played by mitochondrial oxidative phosphorylation in sperm motility of normozoospermic subjects. These results are of physiopathological relevance because they suggest that disturbances of sperm mitochondrial function and of energy production could be responsible for asthenozoospermia. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Oxidative stress negatively affects human sperm mitochondrial respiration.

    Science.gov (United States)

    Ferramosca, Alessandra; Pinto Provenzano, Sara; Montagna, Daniela Domenica; Coppola, Lamberto; Zara, Vincenzo

    2013-07-01

    To correlate the level of oxidative stress in serum and seminal fluid and the level of sperm deoxyribonucleic acid (DNA) fragmentation with sperm mitochondrial respiratory efficiency. Sperm mitochondrial respiratory activity was evaluated with a polarographic assay of oxygen consumption carried out in hypotonically treated sperm cells. A possible relationship between sperm mitochondrial respiratory efficiency, the level of oxidative stress, and the level of sperm DNA fragmentation was investigated. Sperm motility was positively correlated with mitochondrial respiration but negatively correlated with oxidative stress and DNA fragmentation. Interestingly, sperm mitochondrial respiratory activity was negatively affected by oxidative stress and DNA fragmentation. Our data indicate that sperm mitochondrial respiration is decreased in patients with high levels of reactive oxygen species by an uncoupling between electron transport and adenosine triphosphate synthesis. This reduction in mitochondrial functionality might be 1 of the reasons responsible for the decrease in spermatozoa motility. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Mitochondrial respiration in human viable platelets-Methodology and influence of gender, age and storage

    DEFF Research Database (Denmark)

    Sjövall, Fredrik; Ehinger, Johannes K H; Marelsson, Sigurður E

    2013-01-01

    Studying whole cell preparations with intact mitochondria and respiratory complexes has a clear benefit compared to isolated or disrupted mitochondria due to the dynamic interplay between mitochondria and other cellular compartments. Platelet mitochondria have a potential to serve as a source...... of human viable mitochondria when studying mitochondrial physiology and pathogenic mechanisms, as well as for the diagnostics of mitochondrial diseases. The objective of the present study was to perform a detailed evaluation of platelet mitochondrial respiration using high-resolution respirometry. Further...

  10. [Genetic system for maintaining the mitochondrial human genome in yeast Yarrowia lipolytica].

    Science.gov (United States)

    Isakova, E P; Deryabina, Yu I; Velyakova, A V; Biryukova, J K; Teplova, V V; Shevelev, A B

    2016-01-01

    For the first time, the possibility of maintaining an intact human mitochondrial genome in a heterologous system in the mitochondria of yeast Yarrowia lipolytica is shown. A method for introducing directional changes into the structure of the mitochondrial human genome replicating in Y. lipolytica by an artificially induced ability of yeast mitochondria for homologous recombination is proposed. A method of introducing and using phenotypic selection markers for the presence or absence of defects in genes tRNA-Lys and tRNA-Leu of the mitochondrial genome is developed. The proposed system can be used to correct harmful mutations of the human mitochondrial genome associated with mitochondrial diseases and for preparative amplification of intact mitochondrial DNA with an adjusted sequence in yeast cells. The applicability of the new system for the correction of mutations in the genes of Lys- and Leu-specific tRNAs of the human mitochondrial genome associated with serious and widespread human mitochondrial diseases such as myoclonic epilepsy with lactic acidosis (MELAS) and myoclonic epilepsy with ragged-red fibers (MERRF) is shown.

  11. Lebetin 2, a Snake Venom-Derived Natriuretic Peptide, Attenuates Acute Myocardial Ischemic Injury through the Modulation of Mitochondrial Permeability Transition Pore at the Time of Reperfusion.

    Directory of Open Access Journals (Sweden)

    Bochra Tourki

    Full Text Available Cardiac ischemia is one of the leading causes of death worldwide. It is now well established that natriuretic peptides can attenuate the development of irreversible ischemic injury during myocardial infarction. Lebetin 2 (L2 is a new discovered peptide isolated from Macrovipera lebetina venom with structural similarity to B-type natriuretic peptide (BNP. Our objectives were to define the acute cardioprotective actions of L2 in isolated Langendorff-perfused rat hearts after regional or global ischemia-reperfusion (IR. We studied infarct size, left ventricular contractile recovery, survival protein kinases and mitochondrial permeability transition pore (mPTP opening in injured myocardium. L2 dosage was determined by preliminary experiments at its ability to induce cyclic guanosine monophosphate (cGMP release without changing hemodynamic effects in normoxic hearts. L2 was found to be as effective as BNP in reducing infarct size after the induction of either regional or global IR. Both peptides equally improved contractile recovery after regional IR, but only L2 increased coronary flow and reduced severe contractile dysfunction after global ischemia. Cardioprotection afforded by L2 was abolished after isatin or 5-hydroxydecanote pretreatment suggesting the involvement of natriuretic peptide receptors and mitochondrial KATP (mitoKATP channels in the L2-induced effects. L2 also increased survival protein expression in the reperfused myocardium as evidenced by phosphorylation of signaling pathways PKCε/ERK/GSK3β and PI3K/Akt/eNOS. IR induced mitochondrial pore opening, but this effect was markedly prevented by L2 treatment. These data show that L2 has strong cardioprotective effect in acute ischemia through stimulation of natriuretic peptide receptors. These beneficial effects are mediated, at least in part, by mitoKATP channel opening and downstream activated survival kinases, thus delaying mPTP opening and improving IR-induced mitochondrial

  12. Bacteria, Yeast, Worms, and Flies: Exploiting Simple Model Organisms to Investigate Human Mitochondrial Diseases

    Science.gov (United States)

    Rea, Shane L.; Graham, Brett H.; Nakamaru-Ogiso, Eiko; Kar, Adwitiya; Falk, Marni J.

    2010-01-01

    The extensive conservation of mitochondrial structure, composition, and function across evolution offers a unique opportunity to expand our understanding of human mitochondrial biology and disease. By investigating the biology of much simpler model organisms, it is often possible to answer questions that are unreachable at the clinical level.…

  13. Signatures of Climatic Change In Human Mitochondrial Dna From Europe

    Science.gov (United States)

    Richards, M. B.; Macaulay, V. A.; Torroni, A.; Bandelt, H.-J.

    Founder analysis is an approach to analysing non-recombining DNA sequence data, such as variation in the mitochondrial DNA (mtDNA), which aims at identifying and dating migrations into new territory. We applied the approach to about 4,000 human mtDNA sequences from Europe and the Near East, in order to estimate the proportion of modern lineages whose ancestors arrived at various times during the continent's past. We found that the major signal dates to about 15,000 years ago, at the time of rewarming following the Last Glacial Maximum (LGM). There is little or no archaeological evidence for immigration into Europe at this time, and the record indicates that at least parts of southern Europe remained populated during the LGM. Therefore, we interpret this signal as the trace of a bottleneck at the time of the LGM, as a result of the retreat from northern Europe during the peak of the glaciation, followed by a re-expansion from one or more refugial zones. Immigration episodes then figure at the beginning of the Early Upper Palaeolithic, during the Middle Upper Palaeolithic, and with the Neolithic. The impact of the latter on the composition of the European mtDNA pool was evidently rather minor. This result implies that climate is likely to have been a major force shaping human demographic history in Europe.

  14. V-MitoSNP: visualization of human mitochondrial SNPs

    Directory of Open Access Journals (Sweden)

    Tsui Ke-Hung

    2006-08-01

    Full Text Available Abstract Background Mitochondrial single nucleotide polymorphisms (mtSNPs constitute important data when trying to shed some light on human diseases and cancers. Unfortunately, providing relevant mtSNP genotyping information in mtDNA databases in a neatly organized and transparent visual manner still remains a challenge. Amongst the many methods reported for SNP genotyping, determining the restriction fragment length polymorphisms (RFLPs is still one of the most convenient and cost-saving methods. In this study, we prepared the visualization of the mtDNA genome in a way, which integrates the RFLP genotyping information with mitochondria related cancers and diseases in a user-friendly, intuitive and interactive manner. The inherent problem associated with mtDNA sequences in BLAST of the NCBI database was also solved. Description V-MitoSNP provides complete mtSNP information for four different kinds of inputs: (1 color-coded visual input by selecting genes of interest on the genome graph, (2 keyword search by locus, disease and mtSNP rs# ID, (3 visualized input of nucleotide range by clicking the selected region of the mtDNA sequence, and (4 sequences mtBLAST. The V-MitoSNP output provides 500 bp (base pairs flanking sequences for each SNP coupled with the RFLP enzyme and the corresponding natural or mismatched primer sets. The output format enables users to see the SNP genotype pattern of the RFLP by virtual electrophoresis of each mtSNP. The rate of successful design of enzymes and primers for RFLPs in all mtSNPs was 99.1%. The RFLP information was validated by actual agarose electrophoresis and showed successful results for all mtSNPs tested. The mtBLAST function in V-MitoSNP provides the gene information within the input sequence rather than providing the complete mitochondrial chromosome as in the NCBI BLAST database. All mtSNPs with rs number entries in NCBI are integrated in the corresponding SNP in V-MitoSNP. Conclusion V-MitoSNP is a web

  15. Mitochondrial dysfunction in human skeletal muscle biopsies of lipid storage disorder.

    Science.gov (United States)

    Debashree, Bandopadhyay; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Natarajan, Archana; Christopher, Rita; Nalini, Atchayaram; Bindu, Parayil Sankaran; Gayathri, Narayanappa; Srinivas Bharath, Muchukunte Mukunda

    2018-02-09

    Mitochondria regulate the balance between lipid metabolism and storage in the skeletal muscle. Altered lipid transport, metabolism and storage influence the bioenergetics, redox status and insulin signalling, contributing to cardiac and neurological diseases. Lipid storage disorders (LSDs) are neurological disorders which entail intramuscular lipid accumulation and impaired mitochondrial bioenergetics in the skeletal muscle causing progressive myopathy with muscle weakness. However, the mitochondrial changes including molecular events associated with impaired lipid storage have not been completely understood in the human skeletal muscle. We carried out morphological and biochemical analysis of mitochondrial function in muscle biopsies of human subjects with LSDs (n = 7), compared to controls (n = 10). Routine histology, enzyme histochemistry and ultrastructural analysis indicated altered muscle cell morphology and mitochondrial structure. Protein profiling of the muscle mitochondria from LSD samples (n = 5) (vs. control, n = 5) by high-throughput mass spectrometric analysis revealed that impaired metabolic processes could contribute to mitochondrial dysfunction and ensuing myopathy in LSDs. We propose that impaired fatty acid and respiratory metabolism along with increased membrane permeability, elevated lipolysis and altered cristae entail mitochondrial dysfunction in LSDs. Some of these mechanisms were unique to LSD apart from others that were common to dystrophic and inflammatory muscle pathologies. Many differentially regulated mitochondrial proteins in LSD are linked with other human diseases, indicating that mitochondrial protection via targeted drugs could be a treatment modality in LSD and related metabolic diseases. © 2018 International Society for Neurochemistry.

  16. Human milk peptides differentiate between the preterm and term infant and across varying lactational stages

    NARCIS (Netherlands)

    Dingess, Kelly A.; de Waard, Marita; Boeren, Sjef; Vervoort, Jacques; Lambers, Tim T.; van Goudoever, Johannes B.; Hettinga, Kasper

    2017-01-01

    Variations in endogenous peptide profiles, functionality, and the enzymes responsible for the formation of these peptides in human milk are understudied. Additionally, there is a lack of knowledge regarding peptides in donor human milk, which is used to feed preterm infants when mother's own milk is

  17. Mitochondrial mass is inversely correlated to complete lipid oxidation in human myotubes

    DEFF Research Database (Denmark)

    Gaster, Michael

    2011-01-01

    Exercise increases while physical inactivity decrease mitochondrial content and oxidative capacity of skeletal muscles in vivo. It is unknown whether mitochondrial mass and substrate oxidation are related in non-contracting skeletal muscle. Mitochondrial mass, ATP, ADP, AMP, glucose and lipid......, basal glucose oxidation and incomplete lipid oxidation were significantly increased while complete lipid oxidation was lower. Mitochondrial mass was not correlated to glucose oxidation or incomplete lipid oxidation in human myotubes but inversely correlated to complete lipid oxidation. Thus within...... a stable energetic background, an increased mitochondrial mass in human myotubes was not positive correlated to an increased substrate oxidation as expected from skeletal muscles in vivo but surprisingly with a reduced complete lipid oxidation....

  18. Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle

    DEFF Research Database (Denmark)

    Hütter, Eveline; Skovbro, Mette; Lener, Barbara

    2007-01-01

    According to the free radical theory of aging, reactive oxygen species (ROS) act as a driving force of the aging process, and it is generally believed that mitochondrial dysfunction is a major source of increased oxidative stress in tissues with high content of mitochondria, such as muscle or brain....... However, recent experiments in mouse models of premature aging have questioned the role of mitochondrial ROS production in premature aging. To address the role of mitochondrial impairment and ROS production for aging in human muscles, we have analyzed mitochondrial properties in muscle fibres isolated...... from the vastus lateralis of young and elderly donors. Mitochondrial respiratory functions were addressed by high-resolution respirometry, and ROS production was analyzed by in situ staining with the redox-sensitive dye dihydroethidium. We found that aged human skeletal muscles contain fully functional...

  19. Glutaredoxin-2 controls cardiac mitochondrial dynamics and energetics in mice, and protects against human cardiac pathologies

    Directory of Open Access Journals (Sweden)

    Georges N. Kanaan

    2018-04-01

    Full Text Available Glutaredoxin 2 (GRX2, a mitochondrial glutathione-dependent oxidoreductase, is central to glutathione homeostasis and mitochondrial redox, which is crucial in highly metabolic tissues like the heart. Previous research showed that absence of Grx2, leads to impaired mitochondrial complex I function, hypertension and cardiac hypertrophy in mice but the impact on mitochondrial structure and function in intact cardiomyocytes and in humans has not been explored. We hypothesized that Grx2 controls cardiac mitochondrial dynamics and function in cellular and mouse models, and that low expression is associated with human cardiac dysfunction. Here we show that Grx2 absence impairs mitochondrial fusion, ultrastructure and energetics in primary cardiomyocytes and cardiac tissue. Moreover, provision of the glutathione precursor, N-acetylcysteine (NAC to Grx2-/- mice did not restore glutathione redox or prevent impairments. Using genetic and histopathological data from the human Genotype-Tissue Expression consortium we demonstrate that low GRX2 is associated with fibrosis, hypertrophy, and infarct in the left ventricle. Altogether, GRX2 is important in the control of cardiac mitochondrial structure and function, and protects against human cardiac pathologies. Keywords: Human heart, Mitochondria, Oxidative stress, Redox, Cardiac metabolism, Cardiac hypertrophy

  20. Antiproliferative Activity of Egg Yolk Peptides in Human Colon Cancer Cells.

    Science.gov (United States)

    Yousr, Marwa N; Aloqbi, Akram A; Omar, Ulfat M; Howell, Nazlin K

    2017-01-01

    Egg yolk peptides were successfully prepared from egg yolk protein by-products after lecithin extraction. Defatted egg yolk protein was hydrolyzed with pepsin and pancreatin and purified by gel filtration to produce egg yolk gel filtration fraction (EYGF-33) with antiproliferative activity. The highlight of this study was that the peptide EYGF-33 (1.0 mg/ml) significantly inhibits cell viability of colon cancer cells (Caco-2) with no inhibitory effects on the viability of human colon epithelial normal cells (HCEC) after 48 h. Reduced cell viability can be explained by cell cycle arrest in the S-phase in which DNA replication normally takes place. EYGF-33 significantly enhanced the production of superoxide anions in the mitochondria of Caco-2 cells; this could activate a mitochondrial apoptotic pathway leading to typical Poly Adenosine diphosphate-ribose polymerase (PARP) cleavage as observed in the Western blot result. The induction of apoptotic cell death by EYGF-33 was supported by the externalization of phosphatidylserine (PS). However, further elucidation of the mechanism of EYGF-33-mediated apoptosis would provide further support for its use as a potential therapeutic and chemopreventive agent.

  1. Optimizing the measurement of mitochondrial protein synthesis in human skeletal muscle.

    Science.gov (United States)

    Burd, Nicholas A; Tardif, Nicolas; Rooyackers, Olav; van Loon, Luc J C

    2015-01-01

    The measurement of mitochondrial protein synthesis after food ingestion, contractile activity, and/or disease is often used to provide insight into skeletal muscle adaptations that occur in the longer term. Studies have shown that protein ingestion stimulates mitochondrial protein synthesis in human skeletal muscle. Minor differences in the stimulation of mitochondrial protein synthesis occur after a single bout of resistance or endurance exercise. There appear to be no measurable differences in mitochondrial protein synthesis between critically ill patients and aged-matched controls. However, the mitochondrial protein synthetic response is reduced at a more advanced age. In this paper, we discuss the challenges involved in the measurement of human skeletal muscle mitochondrial protein synthesis rates based on stable isotope amino acid tracer methods. Practical guidelines are discussed to improve the reliability of the measurement of mitochondrial protein synthesis rates. The value of the measurement of mitochondrial protein synthesis after a single meal or exercise bout on the prediction of the longer term skeletal muscle mass and performance outcomes in both the healthy and disease populations requires more work, but we emphasize that the measurements need to be reliable to be of any value to the field.

  2. Peptide array-based screening of human mesenchymal stem cell-adhesive peptides derived from fibronectin type III domain

    International Nuclear Information System (INIS)

    Okochi, Mina; Nomura, Shigeyuki; Kaga, Chiaki; Honda, Hiroyuki

    2008-01-01

    Human mesenchymal stem cell-adhesive peptides were screened based on the amino acid sequence of fibronectin type III domain 8-11 (FN-III 8-11 ) using a peptide array synthesized by the Fmoc-chemistry. Using hexameric peptide library of FN-III 8-11 scan, we identified the ALNGR (Ala-Leu-Asn-Gly-Arg) peptide that induced cell adhesion as well as RGDS (Arg-Gly-Asp-Ser) peptide. After incubation for 2 h, approximately 68% of inoculated cells adhere to the ALNGR peptide disk. Adhesion inhibition assay with integrin antibodies showed that the ALNGR peptide interacts with integrin β1 but not with αvβ3, indicating that the receptors for ALNGR are different from RGDS. Additionally, the ALNGR peptide expressed cell specificities for adhesion: cell adhesion was promoted for fibroblasts but not for keratinocytes or endotherial cells. The ALNGR peptide induced cell adhesion and promoted cell proliferation without changing its property. It is therefore useful for the construction of functional biomaterials

  3. The cardiac glycoside oleandrin induces apoptosis in human colon cancer cells via the mitochondrial pathway.

    Science.gov (United States)

    Pan, Li; Zhang, Yuming; Zhao, Wanlu; Zhou, Xia; Wang, Chunxia; Deng, Fan

    2017-07-01

    Evidence indicates that the cardiac glycoside oleandrin exhibits cytotoxic activity against several different types of cancer. However, the specific mechanisms underlying oleandrin-induced anti-tumor effects remain largely unknown. The present study examined the anti-cancer effect and underlying mechanism of oleandrin on human colon cancer cells. The cytotoxicity and IC50 of five small molecule compounds (oleandrin, neriifolin, strophanthidin, gitoxigenin, and convallatoxin) in human colon cancer cell line SW480 cells and normal human colon cell line NCM460 cells were determined by cell counting and MTT assays, respectively. Apoptosis was determined by staining cells with annexin V-FITC and propidium iodide, followed by flow cytometry. Intracellular Ca 2+ was determined using Fluo-3 AM,glutathione (GSH) levels were measured using a GSH detection kit,and the activity of caspase-3, -9 was measured using a peptide substrate. BAX, pro-caspase-3, -9, cytochrome C and BCL-2 expression were determined by Western blotting. Oleandrin significantly decreased cell viabilities in SW480, HCT116 and RKO cells. The IC50 for SW480 cells was 0.02 µM, whereas for NCM460 cells 0.56 µM. More interestingly, the results of flow cytometry showed that oleandrin potently induced apoptosis in SW480 and RKO cells. Oleandrin downregulated protein expression of pro-caspase-3, -9, but enhanced caspase-3, -9 activities. These effects were accompanied by upregulation of protein expression of cytochrome C and BAX, and downregulation of BCL-2 protein expression in a concentration-dependent manner. Furthermore, oleandrin increased intracellular Ca 2+ concentration, but decreased GSH concentration in the cells. The present results suggest that oleandrin induces apoptosis in human colorectal cancer cells via the mitochondrial pathway. Our findings provide new insight into the mechanism of anti-cancer property of oleandrin.

  4. Changes in mitochondrial respiration in the human placenta over gestation.

    Science.gov (United States)

    Holland, Olivia J; Hickey, Anthony J R; Alvsaker, Anna; Moran, Stephanie; Hedges, Christopher; Chamley, Lawrence W; Perkins, Anthony V

    2017-09-01

    Placental mitochondria are subjected to micro-environmental changes throughout gestation, in particular large variations in oxygen. How placental mitochondrial respiration adapts to changing oxygen concentrations remains unexplored. Additionally, placental tissue is often studied in culture; however, the effect of culture on placental mitochondria is unclear. Placental tissue was obtained from first trimester and term (laboured and non-laboured) pregnancies, and selectively permeabilized to access mitochondria. Respirometry was used to compare respiration states and substrate use in mitochondria. Additionally, explants of placental tissue were cultured for four, 12, 24, 48, or 96 h and respiration measured. Mitochondrial respiration decreased at 11 weeks compared to earlier gestations (p = 0.05-0.001), and mitochondrial content increased at 12-13 weeks compared to 7-10 weeks (p = 0.042). In term placentae, oxidative phosphorylation (OXPHOS) through mitochondrial complex IV (p Respiration was increased (p ≤ 0.006-0.001) in laboured compared to non-laboured placenta. After four hours of culture, respiration was depressed compared to fresh tissue from the same placenta and continued to decline with time in culture. Markers of apoptosis were increased, while markers of autophagy, mitochondrial biogenesis, and mitochondrial membrane potential were decreased after four hours of culture. Respiration and mitochondrial content alter over gestation/with labour. Decreased respiration at 11 weeks and increased mitochondrial content at 12-13 weeks may relate to onset of maternal blood flow, and increased respiration as a result of labour may be an adaptation to ischaemia-reperfusion. At term, mitochondria were more susceptible to changes in respiratory function relative to first trimester when cultured in vitro, perhaps reflecting changes in metabolic demands as gestation progresses. Metabolic plasticity of placental mitochondria has relevance to placenta

  5. Defect in mitochondrial functions in damaged human mitral valve

    OpenAIRE

    Shinde, Santosh; Kumar, Pawan; Mishra, Kaushala; Patil, Neela

    2006-01-01

    Mitochondrial diseases are a heterogeneous group of disorders in which a primary mitochondrial dysfunction is proven by morphological, biochemical, and genetic examinations. The mitral valve has important function in the regulation of blood flow from one chamber to another. Often, the mitral valve becomes abnormal with age, in Rheumatic fever or it is abnormal from birth (Congenital) or it can be destroyed by infection i.e. bacterial endocarditis and needs replacement. Myocardial function dep...

  6. Insulin increases phosphorylation of mitochondrial proteins in human skeletal muscle in vivo

    DEFF Research Database (Denmark)

    Zhao, Xiaolu; Bak, Steffen; Pedersen, Andreas James Thestrup

    2014-01-01

    , we investigated the effect of insulin on the phosphorylation of mitochondrial proteins in human skeletal muscle in vivo. Using a combination of TiO2 phosphopeptide-enrichment, HILIC fractionation, and LC−MS/MS, we compared the phosphoproteomes of isolated mitochondria from skeletal muscle samples...... obtained from healthy individuals before and after 4 h of insulin infusion. In total, we identified 207 phosphorylation sites in 95 mitochondrial proteins. Of these phosphorylation sites, 45% were identified in both basal and insulin-stimulated samples. Insulin caused a 2-fold increase in the number...... of different mitochondrial phosphopeptides (87 ± 7 vs 40 ± 7, p = 0.015) and phosphoproteins (46 ± 2 vs 26 ± 3, p = 0.005) identified in each mitochondrial preparation. Almost half of the mitochondrial phosphorylation sites (n = 94) were exclusively identified in the insulin-stimulated state and included...

  7. Mitochondrial function in human skeletal muscle following high-altitude exposure

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Boushel, Robert; Wright-Paradis, Cynthia

    2013-01-01

    Studies regarding mitochondrial modifications in human skeletal muscle following acclimatization to high altitude are conflicting, and these inconsistencies may be due to the prevalence of representing mitochondrial function through static and isolated measurements of specific mitochondrial...... characteristics. The aim of this study, therefore, was to investigate mitochondrial function in response to high-altitude acclimatization through measurements of respiratory control in the vastus lateralis muscle. Skeletal muscle biopsies were obtained from 10 lowland natives prior to and again after a total of 9......-11 days of exposure to 4559 m. High-resolution respirometry was performed on the muscle samples to compare respiratory chain function and respiratory capacities. Respirometric analysis revealed that mitochondrial function was largely unaffected, because high-altitude exposure did not affect the capacity...

  8. Identification of the polypeptides encoded in the unassigned reading frames 2, 4, 4L, and 5 of human mitochondrial DNA

    International Nuclear Information System (INIS)

    Mariottini, P.; Chomyn, A.; Riley, M.; Cottrell, B.; Doolittle, R.F.; Attardi, G.

    1986-01-01

    In previous work, antibodies prepared against chemically synthesized peptides predicted from the DNA sequence were used to identify the polypeptides encoded in three of the eight unassigned reading frames (URFs) of human mitochondrial DNA (mtDNA). In the present study, this approach has been extended to other human mtDNA URFs. In particular, antibodies directed against the NH 2 -terminal octapeptide of the putative URF2 product specifically precipitated component 11 of the HeLa cell mitochondrial translation products, the reaction being inhibited by the specific peptide. Similarly, antibodies directed against the COOH-terminal nonapeptide of the putative URF4 product reacted specifically with components 4 and 5, and antibodies against a COOH-terminal heptapeptide of the presumptive URF4L product reacted specifically with component 26. Antibodies against the NH 2 -terminal heptapeptide of the putative product of URF5 reacted with component 1, but only to a marginal extent; however, the results of a trypsin fingerprinting analysis of component 1 point strongly to this component as being the authentic product of URF5. The polypeptide assignments to the mtDNA URFs analyzed here are supported by the relative electrophoretic mobilities of proteins 11, 4-5, 26, and 1, which are those expected for the molecular weights predicted from the DNA sequence for the products of URF2, URF4, URF4L, and URF5, respectively. With the present assignment, seven of the eight human mtDNA URFs have been shown to be expressed in HeLa cells

  9. Detection of human spermatozoal peptides after conjugation to 125I-labelled human serum albumin

    International Nuclear Information System (INIS)

    Metler, L.; Skrabei, H.; Czuppon, A.B.

    1981-01-01

    Human spermatozoal peptides, liberated during autolysis of the cells, were fractionated by gel-filtration chromatography and thin-layer chromatography. After conjugation to 125 I-labelled human serum albumin, all fractions were assayed with rabbit antihuman spermatozoa antiserum. In earlier publications, human sperm-immobilizing and sperm-agglutinating sera were used for the detection of solubilized spermatozoal antigen. The low sensitivity of these tests necessitated a more sensitive test. The purpose of this work is to describe a solid-phase radioimmunoassay for the detection of antigenic peptides

  10. Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy

    Directory of Open Access Journals (Sweden)

    Chong-Chong Xu

    2016-01-01

    Full Text Available Spinal muscular atrophy (SMA, characterized by specific degeneration of spinal motor neurons, is caused by mutations in the survival of motor neuron 1, telomeric (SMN1 gene and subsequent decreased levels of functional SMN. How the deficiency of SMN, a ubiquitously expressed protein, leads to spinal motor neuron-specific degeneration in individuals affected by SMA remains unknown. In this study, we examined the role of SMN in mitochondrial axonal transport and morphology in human motor neurons by generating SMA type 1 patient-specific induced pluripotent stem cells (iPSCs and differentiating these cells into spinal motor neurons. The initial specification of spinal motor neurons was not affected, but these SMA spinal motor neurons specifically degenerated following long-term culture. Moreover, at an early stage in SMA spinal motor neurons, but not in SMA forebrain neurons, the number of mitochondria, mitochondrial area and mitochondrial transport were significantly reduced in axons. Knocking down of SMN expression led to similar mitochondrial defects in spinal motor neurons derived from human embryonic stem cells, confirming that SMN deficiency results in impaired mitochondrial dynamics. Finally, the application of N-acetylcysteine (NAC mitigated the impairment in mitochondrial transport and morphology and rescued motor neuron degeneration in SMA long-term cultures. Furthermore, NAC ameliorated the reduction in mitochondrial membrane potential in SMA spinal motor neurons, suggesting that NAC might rescue apoptosis and motor neuron degeneration by improving mitochondrial health. Overall, our data demonstrate that SMN deficiency results in abnormal mitochondrial transport and morphology and a subsequent reduction in mitochondrial health, which are implicated in the specific degeneration of spinal motor neurons in SMA.

  11. Human mitochondrial DNA (mtDNA) types in Malaysia

    International Nuclear Information System (INIS)

    Lian, L.H.; Koh, C.L.; Lim, M.E.

    2000-01-01

    Each human cell contains hundreds of mitochondria and thousands of double-stranded circular mtDNA. The delineation of human mtDNA variation and genetics over the past decade has provided unique and often startling insights into human evolution, degenerative diseases, and aging. Each mtDNA of 16,569 base pairs, encodes 13 polypeptides essential to the enzymes of the mitochondrial energy generating pathway, plus the necessary tRNAs and rRNAs. The highly polymorphic noncoding D-(displacement) loop region, also called the control region, is approximately 1.2 kb long. It contains two well-characterized hypervariable (HV-) regions, HV1 and HV2. MtDNA identification is usually based on these sequence differences. According to the TWTGDAM (Technical Working Group for DNA Analysis Methods), the minimum requirement for a mtDNA database for HV1 is from positions 16024 to 16365 and for HV2, from positions 00073 to 00340. The targeted Malaysian population subgroups for this study were mainly the Malays, Chinese, Indians, and indigenous Ibans, Bidayuhs, Kadazan-Dusuns, and Bajaus. Research methodologies undertaken included DNA extraction of samples from unrelated individuals, amplification of the specific regions via the polymerase chain reaction (PCR), and preparation of template DNA for sequencing by using an automated DNA sequencer. Sufficient nucleotide sequence data were generated from the mtDNA analysis. When the sequences were analyzed, sequence variations were found to be caused by nucleotide substitutions, insertions, and deletions. Of the three causes of the sequence variations, nucleotide substitutions (86.1%) accounted for the vast majority of polymorphism. It is noted that transitions (83.5%) were predominant when compared to the significantly lower frequencies of transversions (2.6%). Insertions (0.9%) and deletions (13.0%) were rather rare and found only in HV2. The data generated will also form the basis of a Malaysian DNA sequence database of mtDNA D

  12. Role of stress peptides during human pregnancy and labour.

    Science.gov (United States)

    Hillhouse, Edward W; Grammatopoulos, Dimitris K

    2002-09-01

    Premature birth is the major source of perinatal death and disability. Furthermore, the intrauterine health of the baby is important for preventing certain adult diseases. However, the molecular mechanisms driving the onset of human labour remain uncertain, although several key players have been identified. It is becoming clear that there are many pathways to parturition in humans. Stress peptides, in particular placental corticotrophin releasing hormone (CRH) and possibly the related peptide urocortin, appear to play important roles throughout pregnancy. Plasma CRH is a predictor of the duration of human gestation. During most of pregnancy, CRH, acting via specific CRH receptor subtypes, plays a 'protective' role by promoting myometrial quiescence via the generation of cAMP and cGMP, and upregulation of nitric oxide synthase expression. At term, myometrial contractility is enhanced by a complex series of molecular switches, involving the upregulation of oxytocin receptor expression and crosstalk between the oxytocin and CRH receptors. This results in protein kinase C-induced phosphorylation of specific CRH receptor subtypes, with subsequent desensitization and a shift in the intracellular microenvironment to enhance contractility. CRH/urocortin, via specific receptor isoforms, is now able to activate Gq and potentially enhance the oxytocin-driven generation of inositol triphosphate. In addition, CRH/urocortin, via specific CRH receptor subtypes, may generate prostaglandins from the fetal membranes and decidua, play a role in placental vasodilatation and participate in fetal adrenal function and organ maturation. These peptides and receptors are phylogenetically ancient and well preserved across species. They may have evolved as a mechanism to protect against the 'stress' of premature birth.

  13. Distinct patterns of mitochondrial genome diversity in bonobos (Pan paniscus and humans

    Directory of Open Access Journals (Sweden)

    Zsurka Gábor

    2010-09-01

    Full Text Available Abstract Background We have analyzed the complete mitochondrial genomes of 22 Pan paniscus (bonobo, pygmy chimpanzee individuals to assess the detailed mitochondrial DNA (mtDNA phylogeny of this close relative of Homo sapiens. Results We identified three major clades among bonobos that separated approximately 540,000 years ago, as suggested by Bayesian analysis. Incidentally, we discovered that the current reference sequence for bonobo likely is a hybrid of the mitochondrial genomes of two distant individuals. When comparing spectra of polymorphic mtDNA sites in bonobos and humans, we observed two major differences: (i Of all 31 bonobo mtDNA homoplasies, i.e. nucleotide changes that occurred independently on separate branches of the phylogenetic tree, 13 were not homoplasic in humans. This indicates that at least a part of the unstable sites of the mitochondrial genome is species-specific and difficult to be explained on the basis of a mutational hotspot concept. (ii A comparison of the ratios of non-synonymous to synonymous changes (dN/dS among polymorphic positions in bonobos and in 4902 Homo sapiens mitochondrial genomes revealed a remarkable difference in the strength of purifying selection in the mitochondrial genes of the F0F1-ATPase complex. While in bonobos this complex showed a similar low value as complexes I and IV, human haplogroups displayed 2.2 to 7.6 times increased dN/dS ratios when compared to bonobos. Conclusions Some variants of mitochondrially encoded subunits of the ATPase complex in humans very likely decrease the efficiency of energy conversion leading to production of extra heat. Thus, we hypothesize that the species-specific release of evolutionary constraints for the mitochondrial genes of the proton-translocating ATPase is a consequence of altered heat homeostasis in modern humans.

  14. Human milk peptides differentiate between the preterm and term infant and across varying lactational stages.

    Science.gov (United States)

    Dingess, Kelly A; de Waard, Marita; Boeren, Sjef; Vervoort, Jacques; Lambers, Tim T; van Goudoever, Johannes B; Hettinga, Kasper

    2017-10-18

    Variations in endogenous peptide profiles, functionality, and the enzymes responsible for the formation of these peptides in human milk are understudied. Additionally, there is a lack of knowledge regarding peptides in donor human milk, which is used to feed preterm infants when mother's own milk is not (sufficiently) available. To assess this, 29 human milk samples from the Dutch Human Milk Bank were analyzed as three groups, preterm late lactation stage (LS) (n = 12), term early (n = 8) and term late LS (n = 9). Gestational age (GA) groups were defined as preterm (24-36 weeks) and term (≥37 weeks). LS was determined as days postpartum as early (16-36 days) or late (55-88 days). Peptides, analyzed by LC-MS/MS, and parent proteins (proteins from matched peptide sequences) were identified and quantified, after which peptide functionality and the enzymes responsible for protein cleavage were determined. A total of 16 different parent proteins were identified from human milk, with no differences by GA or LS. We identified 1104 endogenous peptides, of which, the majority were from the parent proteins β-casein, polymeric immunoglobulin receptor, α s1 -casein, osteopontin, and κ-casein. The absolute number of peptides differed by GA and LS with 30 and 41 differing sequences respectively (p milk peptides. These results explain some of the variation in endogenous peptides in human milk, leading to future targets that may be studied for functionality.

  15. DNA Sequences Proximal to Human Mitochondrial DNA Deletion Breakpoints Prevalent in Human Disease Form G-quadruplexes, a Class of DNA Structures Inefficiently Unwound by the Mitochondrial Replicative Twinkle Helicase*

    Science.gov (United States)

    Bharti, Sanjay Kumar; Sommers, Joshua A.; Zhou, Jun; Kaplan, Daniel L.; Spelbrink, Johannes N.; Mergny, Jean-Louis; Brosh, Robert M.

    2014-01-01

    Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the “Pattern Finder” G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase. PMID:25193669

  16. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    Science.gov (United States)

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies

  17. Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Naoya; Yamada, Shigeru [Division of Pharmacology, National Institute of Health Sciences (Japan); Asanagi, Miki [Division of Pharmacology, National Institute of Health Sciences (Japan); Faculty of Engineering, Department of Materials Science and Engineering, Yokohama National University (Japan); Sekino, Yuko [Division of Pharmacology, National Institute of Health Sciences (Japan); Kanda, Yasunari, E-mail: kanda@nihs.go.jp [Division of Pharmacology, National Institute of Health Sciences (Japan)

    2016-02-05

    Nicotine is considered to contribute to the health risks associated with cigarette smoking. Nicotine exerts its cellular functions by acting on nicotinic acetylcholine receptors (nAChRs), and adversely affects normal embryonic development. However, nicotine toxicity has not been elucidated in human embryonic stage. In the present study, we examined the cytotoxic effects of nicotine in human multipotent embryonal carcinoma cell line NT2/D1. We found that exposure to 10 μM nicotine decreased intracellular ATP levels and inhibited proliferation of NT2/D1 cells. Because nicotine suppressed energy production, which is a critical mitochondrial function, we further assessed the effects of nicotine on mitochondrial dynamics. Staining with MitoTracker revealed that 10 μM nicotine induced mitochondrial fragmentation. The levels of the mitochondrial fusion proteins, mitofusins 1 and 2, were also reduced in cells exposed to nicotine. These nicotine effects were blocked by treatment with mecamylamine, a nonselective nAChR antagonist. These data suggest that nicotine degrades mitofusin in NT2/D1 cells and thus induces mitochondrial dysfunction and cell growth inhibition in a nAChR-dependent manner. Thus, mitochondrial function in embryonic cells could be used to assess the developmental toxicity of chemicals.

  18. Nicotine induces mitochondrial fission through mitofusin degradation in human multipotent embryonic carcinoma cells

    International Nuclear Information System (INIS)

    Hirata, Naoya; Yamada, Shigeru; Asanagi, Miki; Sekino, Yuko; Kanda, Yasunari

    2016-01-01

    Nicotine is considered to contribute to the health risks associated with cigarette smoking. Nicotine exerts its cellular functions by acting on nicotinic acetylcholine receptors (nAChRs), and adversely affects normal embryonic development. However, nicotine toxicity has not been elucidated in human embryonic stage. In the present study, we examined the cytotoxic effects of nicotine in human multipotent embryonal carcinoma cell line NT2/D1. We found that exposure to 10 μM nicotine decreased intracellular ATP levels and inhibited proliferation of NT2/D1 cells. Because nicotine suppressed energy production, which is a critical mitochondrial function, we further assessed the effects of nicotine on mitochondrial dynamics. Staining with MitoTracker revealed that 10 μM nicotine induced mitochondrial fragmentation. The levels of the mitochondrial fusion proteins, mitofusins 1 and 2, were also reduced in cells exposed to nicotine. These nicotine effects were blocked by treatment with mecamylamine, a nonselective nAChR antagonist. These data suggest that nicotine degrades mitofusin in NT2/D1 cells and thus induces mitochondrial dysfunction and cell growth inhibition in a nAChR-dependent manner. Thus, mitochondrial function in embryonic cells could be used to assess the developmental toxicity of chemicals.

  19. Mitochondrial genome inheritance and replacement in the human germline.

    Science.gov (United States)

    Wolf, Don P; Hayama, Tomonari; Mitalipov, Shoukhrat

    2017-08-01

    Mitochondria, the ubiquitous power packs in nearly every eukaryotic cell, contain their own DNA, known as mtDNA, which is inherited exclusively from the mother. The number of mitochondrial genomes varies depending on the cell's energy needs. The mature oocyte contains the highest number of mitochondria of any cell type, although there is little if any mtDNA replication after fertilization until the embryo implants. This has potential repercussions for mitochondrial replacement therapy (MRT; see description of currently employed methods below) used to prevent the transmission of mtDNA-based disorders. If only a few mitochondria with defective mtDNA are left in the embryo and undergo extensive replication, it might therefore thwart the purpose of MRT In order to improve the safety and efficacy of this experimental therapy, we need a better understanding of how and which mtDNA is tagged for replication versus transcription after fertilization of the oocyte. © 2017 The Authors.

  20. Ketamine Causes Mitochondrial Dysfunction in Human Induced Pluripotent Stem Cell-Derived Neurons

    Science.gov (United States)

    Ito, Hiroyuki; Uchida, Tokujiro; Makita, Koshi

    2015-01-01

    Purpose Ketamine toxicity has been demonstrated in nonhuman mammalian neurons. To study the toxic effect of ketamine on human neurons, an experimental model of cultured neurons from human induced pluripotent stem cells (iPSCs) was examined, and the mechanism of its toxicity was investigated. Methods Human iPSC-derived dopaminergic neurons were treated with 0, 20, 100 or 500 μM ketamine for 6 and 24 h. Ketamine toxicity was evaluated by quantification of caspase 3/7 activity, reactive oxygen species (ROS) production, mitochondrial membrane potential, ATP concentration, neurotransmitter reuptake activity and NADH/NAD+ ratio. Mitochondrial morphological change was analyzed by transmission electron microscopy and confocal microscopy. Results Twenty-four-hour exposure of iPSC-derived neurons to 500 μM ketamine resulted in a 40% increase in caspase 3/7 activity (P ketamine (100 μM) decreased the ATP level (22%, P ketamine concentration, which suggests that mitochondrial dysfunction preceded ROS generation and caspase activation. Conclusions We established an in vitro model for assessing the neurotoxicity of ketamine in iPSC-derived neurons. The present data indicate that the initial mitochondrial dysfunction and autophagy may be related to its inhibitory effect on the mitochondrial electron transport system, which underlies ketamine-induced neural toxicity. Higher ketamine concentration can induce ROS generation and apoptosis in human neurons. PMID:26020236

  1. Advances in the quantification of mitochondrial function in primary human immune cells through extracellular flux analysis.

    Directory of Open Access Journals (Sweden)

    Dequina Nicholas

    Full Text Available Numerous studies show that mitochondrial energy generation determines the effectiveness of immune responses. Furthermore, changes in mitochondrial function may regulate lymphocyte function in inflammatory diseases like type 2 diabetes. Analysis of lymphocyte mitochondrial function has been facilitated by introduction of 96-well format extracellular flux (XF96 analyzers, but the technology remains imperfect for analysis of human lymphocytes. Limitations in XF technology include the lack of practical protocols for analysis of archived human cells, and inadequate data analysis tools that require manual quality checks. Current analysis tools for XF outcomes are also unable to automatically assess data quality and delete untenable data from the relatively high number of biological replicates needed to power complex human cell studies. The objectives of work presented herein are to test the impact of common cellular manipulations on XF outcomes, and to develop and validate a new automated tool that objectively analyzes a virtually unlimited number of samples to quantitate mitochondrial function in immune cells. We present significant improvements on previous XF analyses of primary human cells that will be absolutely essential to test the prediction that changes in immune cell mitochondrial function and fuel sources support immune dysfunction in chronic inflammatory diseases like type 2 diabetes.

  2. Insights into the mutation-induced HHH syndrome from modeling human mitochondrial ornithine transporter-1.

    Directory of Open Access Journals (Sweden)

    Jing-Fang Wang

    Full Text Available Human mitochondrial ornithine transporter-1 is reported in coupling with the hyperornithinemia-hyperammonemia-homocitrullinuria (HHH syndrome, which is a rare autosomal recessive disorder. For in-depth understanding of the molecular mechanism of the disease, it is crucially important to acquire the 3D structure of human mitochondrial ornithine transporter-1. Since no such structure is available in the current protein structure database, we have developed it via computational approaches based on the recent NMR structure of human mitochondrial uncoupling protein (Berardi MJ, Chou JJ, et al. Nature 2011, 476:109-113. Subsequently, we docked the ligand L-ornithine into the computational structure to search for the favorable binding mode. It was observed that the binding interaction for the most favorable binding mode is featured by six remarkable hydrogen bonds between the receptor and ligand, and that the most favorable binding mode shared the same ligand-binding site with most of the homologous mitochondrial carriers from different organisms, implying that the ligand-binding sites are quite conservative in the mitochondrial carriers family although their sequences similarity is very low with 20% or so. Moreover, according to our structural analysis, the relationship between the disease-causing mutations of human mitochondrial ornithine transporter-1 and the HHH syndrome can be classified into the following three categories: (i the mutation occurs in the pseudo-repeat regions so as to change the region of the protein closer to the mitochondrial matrix; (ii the mutation is directly affecting the substrate binding pocket so as to reduce the substrate binding affinity; (iii the mutation is located in the structural region closer to the intermembrane space that can significantly break the salt bridge networks of the protein. These findings may provide useful insights for in-depth understanding of the molecular mechanism of the HHH syndrome and

  3. Effect of remifentanil on mitochondrial oxygen consumption of cultured human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Siamak Djafarzadeh

    Full Text Available During sepsis, liver dysfunction is common, and failure of mitochondria to effectively couple oxygen consumption with energy production has been described. In addition to sepsis, pharmacological agents used to treat septic patients may contribute to mitochondrial dysfunction. This study addressed the hypothesis that remifentanil interacts with hepatic mitochondrial oxygen consumption. The human hepatoma cell line HepG2 and their isolated mitochondria were exposed to remifentanil, with or without further exposure to tumor necrosis factor-α (TNF-α. Mitochondrial oxygen consumption was measured by high-resolution respirometry, Caspase-3 protein levels by Western blotting, and cytokine levels by ELISA. Inhibitory κBα (IκBα phosphorylation, measurement of the cellular ATP content and mitochondrial membrane potential in intact cells were analysed using commercial ELISA kits. Maximal cellular respiration increased after one hour of incubation with remifentanil, and phosphorylation of IκBα occurred, denoting stimulation of nuclear factor κB (NF-κB. The effect on cellular respiration was not present at 2, 4, 8 or 16 hours of incubation. Remifentanil increased the isolated mitochondrial respiratory control ratio of complex-I-dependent respiration without interfering with maximal respiration. Preincubation with the opioid receptor antagonist naloxone prevented a remifentanil-induced increase in cellular respiration. Remifentanil at 10× higher concentrations than therapeutic reduced mitochondrial membrane potential and ATP content without uncoupling oxygen consumption and basal respiration levels. TNF-α exposure reduced respiration of complex-I, -II and -IV, an effect which was prevented by prior remifentanil incubation. Furthermore, prior remifentanil incubation prevented TNF-α-induced IL-6 release of HepG2 cells, and attenuated fragmentation of pro-caspase-3 into cleaved active caspase 3 (an early marker of apoptosis. Our data suggest that

  4. Comparative study of human mitochondrial proteome reveals extensive protein subcellular relocalization after gene duplications

    Directory of Open Access Journals (Sweden)

    Huang Yong

    2009-11-01

    Full Text Available Abstract Background Gene and genome duplication is the principle creative force in evolution. Recently, protein subcellular relocalization, or neolocalization was proposed as one of the mechanisms responsible for the retention of duplicated genes. This hypothesis received support from the analysis of yeast genomes, but has not been tested thoroughly on animal genomes. In order to evaluate the importance of subcellular relocalizations for retention of duplicated genes in animal genomes, we systematically analyzed nuclear encoded mitochondrial proteins in the human genome by reconstructing phylogenies of mitochondrial multigene families. Results The 456 human mitochondrial proteins selected for this study were clustered into 305 gene families including 92 multigene families. Among the multigene families, 59 (64% consisted of both mitochondrial and cytosolic (non-mitochondrial proteins (mt-cy families while the remaining 33 (36% were composed of mitochondrial proteins (mt-mt families. Phylogenetic analyses of mt-cy families revealed three different scenarios of their neolocalization following gene duplication: 1 relocalization from mitochondria to cytosol, 2 from cytosol to mitochondria and 3 multiple subcellular relocalizations. The neolocalizations were most commonly enabled by the gain or loss of N-terminal mitochondrial targeting signals. The majority of detected subcellular relocalization events occurred early in animal evolution, preceding the evolution of tetrapods. Mt-mt protein families showed a somewhat different pattern, where gene duplication occurred more evenly in time. However, for both types of protein families, most duplication events appear to roughly coincide with two rounds of genome duplications early in vertebrate evolution. Finally, we evaluated the effects of inaccurate and incomplete annotation of mitochondrial proteins and found that our conclusion of the importance of subcellular relocalization after gene duplication on

  5. Mitochondrial DNA inheritance in the human fungal pathogen Cryptococcus gattii.

    Science.gov (United States)

    Wang, Zixuan; Wilson, Amanda; Xu, Jianping

    2015-02-01

    The inheritance of mitochondrial DNA (mtDNA) is predominantly uniparental in most sexual eukaryotes. In this study, we examined the mitochondrial inheritance pattern of Cryptococcus gattii, a basidiomycetous yeast responsible for the recent and ongoing outbreak of cryptococcal infections in the US Pacific Northwest and British Columbia (especially Vancouver Island) in Canada. Using molecular markers, we analyzed the inheritance of mtDNA in 14 crosses between strains within and between divergent lineages in C. gattii. Consistent with results from recent studies, our analyses identified significant variations in mtDNA inheritance patterns among strains and crosses, ranging from strictly uniparental to biparental. For two of the crosses that showed uniparental mitochondrial inheritance in standard laboratory conditions, we further investigated the effects of the following environmental variables on mtDNA inheritance: UV exposure, temperature, and treatments with the methylation inhibitor 5-aza-2'-deoxycytidine and with the ubiquitination inhibitor ammonium chloride. Interestingly, one of these crosses showed no response to these environmental variables while the other exhibited diverse patterns ranging from complete uniparental inheritance of the MATa parent mtDNA, to biparental inheritance, and to a significant bias toward inheritance of the MATα parental mtDNA. Our results indicate that mtDNA inheritance in C. gattii differs from that in its closely related species Cryptococcus neoformans. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Complex forms of mitochondrial DNA in human B cells transformed by Epstein-Barr virus (EBV)

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Christiansen, C; Zeuthen, J

    1983-01-01

    Human lymphocytes and lymphoid cell lines were analyzed for the presence of complex forms of mitochondrial DNA (mtDNA) by electron microscopy. A high frequency (9%-14.5%) of catenated dimers, circular dimers, or oligomers were found in samples from Epstein-Barr-virus-(EBV) transformed lymphoblast......Human lymphocytes and lymphoid cell lines were analyzed for the presence of complex forms of mitochondrial DNA (mtDNA) by electron microscopy. A high frequency (9%-14.5%) of catenated dimers, circular dimers, or oligomers were found in samples from Epstein-Barr-virus-(EBV) transformed...

  7. Endangered species: mitochondrial DNA loss as a mechanism of human disease.

    Science.gov (United States)

    Herrera, Alan; Garcia, Iraselia; Gaytan, Norma; Jones, Edith; Maldonado, Alicia; Gilkerson, Robert

    2015-06-01

    Human mitochondrial DNA (mtDNA) is a small maternally inherited DNA, typically present in hundreds of copies in a single human cell. Thus, despite its small size, the mitochondrial genome plays a crucial role in the metabolic homeostasis of the cell. Our understanding of mtDNA genotype-phenotype relationships is derived largely from studies of the classical mitochondrial neuromuscular diseases, in which mutations of mtDNA lead to compromised mitochondrial bioenergetic function, with devastating pathological consequences. Emerging research suggests that loss, rather than mutation, of mtDNA plays a major role across a range of prevalent human diseases, including diabetes mellitus, cardiovascular disease, and aging. Here, we examine the 'rules' of mitochondrial genetics and function, the clinical settings in which loss of mtDNA is an emerging pathogenic mechanism, and explore mtDNA damage and its consequences for the organellar network and cell at large. As extranuclear genetic material arrayed throughout the cell to support metabolism, mtDNA is increasingly implicated in a host of disease conditions, opening a range of exciting questions regarding mtDNA and its role in cellular homeostasis.

  8. The oncolytic peptide LTX-315 induces cell death and DAMP release by mitochondria distortion in human melanoma cells

    Science.gov (United States)

    Eike, Liv-Marie; Yang, Nannan; Rekdal, Øystein; Sveinbjørnsson, Baldur

    2015-01-01

    Host defense peptides (HDPs) are naturally occurring molecules found in most species, in which they play a significant role in the first line defense against intruding pathogens, and several HDPs have been shown to possess anticancer activity. Structure-activity relationship studies on the HDP bovine lactoferricin revealed a de novo design of a nonamer peptide LTX-315, with oncolytic properties. In the present study, we investigated the oncolytic activity of LTX-315 in human melanoma cells (A375). LTX-315 induced a rapid plasma membrane disruption and cell death within 2 hours. At a low concentration, fluorescence-labeled LTX-315 was internalized and accumulated in cytoplasmic vacuoles in close proximity to the mitochondria. The mitochondrial membrane potential was shown to depolarize as a consequence of LTX-315 treatment and at ultrastructural level, the mitochondria morphology was significantly altered. Release of danger signals (DAMPs) such as ATP, Cytochrome C and HMGB1 into the cell supernatant of cultured cells was evident minutes after peptide treatment. The oncolytic effect of LTX-315 involving perturbation of both the cell membrane and the mitochondria with subsequent release of DAMPs may highlight the ability of LTX-315 to induce complete regression and long-term protective immune responses as previously reported in experimental animal models. PMID:26472184

  9. Tributyltin induces mitochondrial fission through NAD-IDH dependent mitofusin degradation in human embryonic carcinoma cells.

    Science.gov (United States)

    Yamada, Shigeru; Kotake, Yaichiro; Nakano, Mizuho; Sekino, Yuko; Kanda, Yasunari

    2015-08-01

    Organotin compounds, such as tributyltin (TBT), are well-known endocrine disruptors. TBT acts at the nanomolar level through genomic pathways via the peroxisome proliferator activated receptor (PPAR)/retinoid X receptor (RXR). We recently reported that TBT inhibits cell growth and the ATP content in the human embryonic carcinoma cell line NT2/D1 via a non-genomic pathway involving NAD(+)-dependent isocitrate dehydrogenase (NAD-IDH), which metabolizes isocitrate to α-ketoglutarate. However, the molecular mechanisms by which NAD-IDH mediates TBT toxicity remain unclear. In the present study, we evaluated the effects of TBT on mitochondrial NAD-IDH and energy production. Staining with MitoTracker revealed that nanomolar TBT levels induced mitochondrial fragmentation. TBT also degraded the mitochondrial fusion proteins, mitofusins 1 and 2. Interestingly, apigenin, an inhibitor of NAD-IDH, mimicked the effects of TBT. Incubation with an α-ketoglutarate analogue partially recovered TBT-induced mitochondrial dysfunction, supporting the involvement of NAD-IDH. Our data suggest that nanomolar TBT levels impair mitochondrial quality control via NAD-IDH in NT2/D1 cells. Thus, mitochondrial function in embryonic cells could be used to assess cytotoxicity associated with metal exposure.

  10. The HO-1/CO system regulates mitochondrial-capillary density relationships in human skeletal muscle.

    Science.gov (United States)

    Pecorella, Shelly R H; Potter, Jennifer V F; Cherry, Anne D; Peacher, Dionne F; Welty-Wolf, Karen E; Moon, Richard E; Piantadosi, Claude A; Suliman, Hagir B

    2015-10-15

    The heme oxygenase-1 (HO-1)/carbon monoxide (CO) system induces mitochondrial biogenesis, but its biological impact in human skeletal muscle is uncertain. The enzyme system generates CO, which stimulates mitochondrial proliferation in normal muscle. Here we examined whether CO breathing can be used to produce a coordinated metabolic and vascular response in human skeletal muscle. In 19 healthy subjects, we performed vastus lateralis muscle biopsies and tested one-legged maximal O2 uptake (V̇o2max) before and after breathing air or CO (200 ppm) for 1 h daily for 5 days. In response to CO, there was robust HO-1 induction along with increased mRNA levels for nuclear-encoded mitochondrial transcription factor A (Tfam), cytochrome c, cytochrome oxidase subunit IV (COX IV), and mitochondrial-encoded COX I and NADH dehydrogenase subunit 1 (NDI). CO breathing did not increase V̇o2max (1.96 ± 0.51 pre-CO, 1.87 ± 0.50 post-CO l/min; P = not significant) but did increase muscle citrate synthase, mitochondrial density (139.0 ± 34.9 pre-CO, 219.0 ± 36.2 post-CO; no. of mitochondrial profiles/field), myoglobin content and glucose transporter (GLUT4) protein level and led to GLUT4 localization to the myocyte membrane, all consistent with expansion of the tissue O2 transport system. These responses were attended by increased cluster of differentiation 31 (CD31)-positive muscle capillaries (1.78 ± 0.16 pre-CO, 2.37 ± 0.59 post-CO; capillaries/muscle fiber), implying the enrichment of microvascular O2 reserve. The findings support that induction of the HO-1/CO system by CO not only improves muscle mitochondrial density, but regulates myoglobin content, GLUT4 localization, and capillarity in accordance with current concepts of skeletal muscle plasticity. Copyright © 2015 the American Physiological Society.

  11. Proteolytic fragmentation and peptide mapping of human carboxyamidomethylated tracheobronchial mucin

    International Nuclear Information System (INIS)

    Rose, M.C.; Kaufman, B.; Martin, B.M.

    1989-01-01

    Human tracheobronchial mucin was isolated from lung mucosal gel by chromatography on Sepharose 4B in the presence of dissociating and reducing agents, and its thiol residues were carboxyamidomethylated with iodo[1(-14)C]acetamide. The 14C-carboxyamido-methylated mucin was purified by chromatography on Sepharose 2B. No low molecular weight components were detected by molecular sieve chromatography or polyacrylamide gel electrophoresis in the presence of dissociating and reducing agents or by analytical density centrifugation in CsCl/guanidinium chloride. After digestion of the purified 14C-mucin with trypsin-L-1-tosylamido-2-phenylethyl chloromethyl ketone, three fractions (TR-1, TR-2, and TR-3) were observed by chromatography on Sepharose 4B. TR-1, a 260-kDa mucin glycopeptide fragment, contained all of the neutral hexose and blood group activity and 20% of the radioactivity in the undigested mucin. TR-1 was refractory to a second incubation with trypsin but could be digested by papain or Pronase to a smaller mucin glycopeptide fraction, as judged by the slight decrease in apparent molecular weight on Sepharose CL-4B. These mucin glycopeptides contained approximately 50% of the radioactivity in the TR-1 fraction, indicating that the glycosylated domains of carboxyamidomethylated tracheobronchial mucin contained thiol residues. The remainder of the radioactivity from papain or Pronase digests of TR-1 eluted, like the TR-3 fractions, in the salt fraction on Sepharose CL-4B. Peptide mapping of the nonglycosylated TR-3 fraction by TLC and high voltage electrophoresis yielded six principal and several less intensely stained ninhydrin reactive components, with the radiolabel concentrated in one of the latter peptides

  12. Changes in the human mitochondrial genome after treatment of malignant disease

    International Nuclear Information System (INIS)

    Wardell, Theresa M.; Ferguson, Elaine; Chinnery, Patrick F.; Borthwick, Gillian M.; Taylor, Robert W.; Jackson, Graham; Craft, Alan; Lightowlers, Robert N.; Howell, Neil; Turnbull, Douglass M.

    2003-01-01

    Mitochondrial DNA (mtDNA) is the only extrachromosomal DNA in human cells. The mitochondrial genome encodes essential information for the synthesis of the mitochondrial respiratory chain. Inherited defects of this genome are an important cause of human disease. In addition, the mitochondrial genome seems to be particularly prone to DNA damage and acquired mutations may have a role in ageing, cancer and neurodegeneration. We wished to determine if radiotherapy and chemotherapy used in the treatment of cancer could induce changes in the mitochondrial genome. Such changes would be an important genetic marker of DNA damage and may explain some of the adverse effects of treatment. We studied samples from patients who had received radiotherapy and chemotherapy for point mutations within the mtDNA control region, and for large-scale deletions. In blood samples from patients, we found a significantly increased number of point mutations compared to the control subjects. In muscle biopsies from 7 of 8 patients whom had received whole body irradiation as well as chemotherapy, the level of a specific mtDNA deletion was significantly greater than in control subjects. Our studies have shown that in patients who have been treated for cancer there is an increased level of mtDNA damage

  13. Bioactivity of a modified human Glucagon-like peptide-1.

    Directory of Open Access Journals (Sweden)

    Fangfang Xu

    Full Text Available Diabetes has become the third largest cause of death in humans worldwide. Therefore, effective treatment for this disease remains a critical issue. Glucagon-like peptide-1 (GLP-1 plays an important role in glucose homeostasis, and therefore represents a promising candidate to use for the treatment of diabetes. Native GLP-1, however, is quickly degraded in in the circulatory system; which limits its clinical application. In the present study, a chemically-synthesized, modified analogue of human GLP-1 (mGLP-1 was designed. Our analyses indicated that, relative to native GLP-1, mGLP-1 is more resistant to trypsin and pancreatin degradation. mGLP-1 promotes mouse pancreatic β-cell proliferation by up-regulating the expression level of cyclin E, CDK2, Bcl-2 and down-regulating Bax, p21, and stimulates insulin secretion. An oral glucose tolerance test indicated that mGLP-1 significantly improved glucose tolerance in mice. Intraperitoneal injections of mGLP-1 into streptozotocin (STZ-induced type 2 diabetic mice significantly reduced blood sugar levels and stimulated insulin secretion. Oral gavages of mGLP-1 in diabetic mice did not result in significant hypoglycemic activity.

  14. Mass-spectrometric identification of a novel angiotensin peptide in human plasma

    DEFF Research Database (Denmark)

    Jankowski, Vera; Vanholder, Raymond; van der Giet, Markus

    2007-01-01

    Angiotensin peptides play a central role in cardiovascular physiology and pathology. Among these peptides, angiotensin II (Ang II) has been investigated most intensively. However, further angiotensin peptides such as Ang 1-7, Ang III, and Ang IV also contribute to vascular regulation, and may eli...... elicit additional, different, or even opposite effects to Ang II. Here, we describe a novel Ang II-related, strong vasoconstrictive substance in plasma from healthy humans and end-stage renal failure patients....

  15. Mitochondrial morphology and cardiovascular disease

    OpenAIRE

    Ong, Sang-Bing; Hausenloy, Derek J.

    2010-01-01

    Mitochondria are dynamic and are able to interchange their morphology between elongated interconnected mitochondrial networks and a fragmented disconnected arrangement by the processes of mitochondrial fusion and fission, respectively. Changes in mitochondrial morphology are regulated by the mitochondrial fusion proteins (mitofusins 1 and 2, and optic atrophy 1) and the mitochondrial fission proteins (dynamin-related peptide 1 and mitochondrial fission protein 1) and have been implicated in a...

  16. Transcutaneous application of carbon dioxide (CO2 induces mitochondrial apoptosis in human malignant fibrous histiocytoma in vivo.

    Directory of Open Access Journals (Sweden)

    Yasuo Onishi

    Full Text Available Mitochondria play an essential role in cellular energy metabolism and apoptosis. Previous studies have demonstrated that decreased mitochondrial biogenesis is associated with cancer progression. In mitochondrial biogenesis, peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α regulates the activities of multiple nuclear receptors and transcription factors involved in mitochondrial proliferation. Previously, we showed that overexpression of PGC-1α leads to mitochondrial proliferation and induces apoptosis in human malignant fibrous histiocytoma (MFH cells in vitro. We also demonstrated that transcutaneous application of carbon dioxide (CO(2 to rat skeletal muscle induces PGC-1α expression and causes an increase in mitochondrial proliferation. In this study, we utilized a murine model of human MFH to determine the effect of transcutaneous CO(2 exposure on PGC-1α expression, mitochondrial proliferation and cellular apoptosis. PGC-1α expression was evaluated by quantitative real-time PCR, while mitochondrial proliferation was assessed by immunofluorescence staining and the relative copy number of mitochondrial DNA (mtDNA was assessed by real-time PCR. Immunofluorescence staining and DNA fragmentation assays were used to examine mitochondrial apoptosis. We also evaluated the expression of mitochondrial apoptosis related proteins, such as caspases, cytochorome c and Bax, by immunoblot analysis. We show that transcutaneous application of CO(2 induces PGC-1α expression, and increases mitochondrial proliferation and apoptosis of tumor cells, significantly reducing tumor volume. Proteins involved in the mitochondrial apoptotic cascade, including caspase 3 and caspase 9, were elevated in CO(2 treated tumors compared to control. We also observed an enrichment of cytochrome c in the cytoplasmic fraction and Bax protein in the mitochondrial fraction of CO(2 treated tumors, highlighting the involvement of mitochondria in apoptosis

  17. Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus

    OpenAIRE

    El-Bacha , Tatiana; Midlej , Victor; Silva , Ana Paula Pereira Da; Costa , Leandro Silva Da; Benchimol , Marlene; Galina , Antonio; Poian , Andrea T. Da

    2007-01-01

    Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus correspondence: Corresponding author. Fax: +55 21 22708647. (El-Bacha, Tatiana) (El-Bacha, Tatiana) Laboratorio de Bioquimica de Virus, Instituto de Bioquimica Medica, Universidade Federal do Rio de Janeiro - RJ-Brasil--> , Av. Bauhinia n? 400 ? CCS Bloco H 2? andar--> , sala 22. Ilha do Governador--> ...

  18. A revised timescale for human evolution based on ancient mitochondrial genomes

    Czech Academy of Sciences Publication Activity Database

    Fu, Q.; Mittnik, A.; Johnson, P. L. F.; Bos, K.; Lari, M.; Bollongino, R.; Sun, Ch.; Giemsch, L.; Schmitz, R.; Burger, J.; Ronchitelli, A. M.; Martini, F.; Cremonesi, R. G.; Svoboda, Jiří; Bauer, P.; Caramelli, D.; Castellano, S.; Reich, D.; Pääbo, S.; Krause, J.

    2013-01-01

    Roč. 23, April 8 (2013), s. 553-559 ISSN 0960-9822 Institutional support: RVO:68081758 Keywords : mitochondrial genome * human evolution * calibration Subject RIV: AC - Archeology, Anthropology, Ethnology OBOR OECD: Archaeology Impact factor: 9.916, year: 2013

  19. Human C4orf14 interacts with the mitochondrial nucleoid and is involved in the biogenesis of the small mitochondrial ribosomal subunit.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Kazak, L; Wood, S R; Mao, C C; Fearnley, I M; Walker, J E; Holt, I J

    2012-07-01

    The bacterial homologue of C4orf14, YqeH, has been linked to assembly of the small ribosomal subunit. Here, recombinant C4orf14 isolated from human cells, co-purified with the small, 28S subunit of the mitochondrial ribosome and the endogenous protein co-fractionated with the 28S subunit in sucrose gradients. Gene silencing of C4orf14 specifically affected components of the small subunit, leading to decreased protein synthesis in the organelle. The GTPase of C4orf14 was critical to its interaction with the 28S subunit, as was GTP. Therefore, we propose that C4orf14, with bound GTP, binds to components of the 28S subunit facilitating its assembly, and GTP hydrolysis acts as the release mechanism. C4orf14 was also found to be associated with human mitochondrial nucleoids, and C4orf14 gene silencing caused mitochondrial DNA depletion. In vitro C4orf14 is capable of binding to DNA. The association of C4orf14 with mitochondrial translation factors and the mitochondrial nucleoid suggests that the 28S subunit is assembled at the mitochondrial nucleoid, enabling the direct transfer of messenger RNA from the nucleoid to the ribosome in the organelle.

  20. Comparative analysis of human milk and infant formula derived peptides following in vitro digestion.

    Science.gov (United States)

    Su, M-Y; Broadhurst, M; Liu, C-P; Gathercole, J; Cheng, W-L; Qi, X-Y; Clerens, S; Dyer, J M; Day, L; Haigh, B

    2017-04-15

    It has long been recognised that there are differences between human milk and infant formulas which lead to differences in health and nutrition for the neonate. In this study we examine and compare the peptide profile of human milk and an exemplar infant formula. The study identifies both similarities and differences in the endogenous and postdigestion peptide profiles of human milk and infant formula. This includes differences in the protein source of these peptides but also with the region within the protein producing the dominant proteins. Clustering of similar peptides around regions of high sequence identity and known bioactivity was also observed. Together the data may explain some of the functional differences between human milk and infant formula, while identifying some aspects of conserved function between bovine and human milks which contribute to the effectiveness of modern infant formula as a substitute for human milk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Distribution patterns of postmortem damage in human mitochondrial DNA

    DEFF Research Database (Denmark)

    Gilbert, M Thomas P; Willerslev, Eske; Hansen, Anders J

    2002-01-01

    1 (HVR1) and cytochrome oxidase subunit III genes. A comparison of damaged sites within and between the regions reveals that damage hotspots exist and that, in the HVR1, these correlate with sites known to have high in vivo mutation rates. Conversely, HVR1 subregions with known structural function......, such as MT5, have lower in vivo mutation rates and lower postmortem-damage rates. The postmortem data also identify a possible functional subregion of the HVR1, termed "low-diversity 1," through the lack of sequence damage. The amount of postmortem damage observed in mitochondrial coding regions...... was significantly lower than in the HVR1, and, although hotspots were noted, these did not correlate with codon position. Finally, a simple method for the identification of incorrect archaeological haplogroup designations is introduced, on the basis of the observed spectrum of postmortem damage....

  2. Important mitochondrial proteins in human omental adipose tissue show reduced expression in obesity

    Directory of Open Access Journals (Sweden)

    Peter W. Lindinger

    2015-09-01

    Full Text Available Obesity is associated with impaired mitochondrial function. This study compares mitochondrial protein expression in omental fat in obese and non-obese humans. Omental adipose tissue was obtained by surgical biopsy, adipocytes were purified and mitochondria isolated. Using anion-exchange chromatography, SDS-PAGE and mass-spectrometry, 128 proteins with potentially different abundances in patient groups were identified, 62 of the 128 proteins are mainly localized in the mitochondria. Further quantification of 12 of these 62 proteins by immune dot blot analysis revealed four proteins citrate synthase, HADHA, LETM1 and mitofilin being inversely associated with BMI, and mitofilin being inversely correlated with gender.

  3. Important mitochondrial proteins in human omental adipose tissue show reduced expression in obesity.

    Science.gov (United States)

    Lindinger, Peter W; Christe, Martine; Eberle, Alex N; Kern, Beatrice; Peterli, Ralph; Peters, Thomas; Jayawardene, Kamburapola J I; Fearnley, Ian M; Walker, John E

    2015-09-01

    Obesity is associated with impaired mitochondrial function. This study compares mitochondrial protein expression in omental fat in obese and non-obese humans. Omental adipose tissue was obtained by surgical biopsy, adipocytes were purified and mitochondria isolated. Using anion-exchange chromatography, SDS-PAGE and mass-spectrometry, 128 proteins with potentially different abundances in patient groups were identified, 62 of the 128 proteins are mainly localized in the mitochondria. Further quantification of 12 of these 62 proteins by immune dot blot analysis revealed four proteins citrate synthase, HADHA, LETM1 and mitofilin being inversely associated with BMI, and mitofilin being inversely correlated with gender.

  4. Anticancer activities of bovine and human lactoferricin-derived peptides

    NARCIS (Netherlands)

    Arias, M.; Hilchie, A.L.; Haney, E.F.; Bolscher, J.G.M.; Hyndman, M.E.; Hancock, R.E.W.; Vogel, H.J.

    2017-01-01

    Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits

  5. Anti-Mycobacterial Peptides: From Human to Phage

    Directory of Open Access Journals (Sweden)

    Tieshan Teng

    2015-01-01

    Full Text Available Mycobacterium tuberculosis is the major pathogen of tuberculosis (TB. With the growing problem of M. tuberculosis resistant to conventional antibiotics, especially multi-drug resistant tuberculosis (MDR-TB and extensively-drug resistant tuberculosis (XDR-TB, the need for new TB drugs is now more prominent than ever. Among the promising candidates for anti-TB drugs, anti-mycobacterial peptides have a few advantages, such as low immunogenicity, selective affinity to prokaryotic negatively charged cell envelopes, and diverse modes of action. In this review, we summarize the recent progress in the anti-mycobacterial peptides, highlighting the sources, effectiveness and bactericidal mechanisms of these antimicrobial peptides. Most of the current anti-mycobacterial peptides are derived either from host immune cells, bacterial extraction, or mycobacteriophages. Besides trans-membrane pore formation, which is considered to be the common bactericidal mechanism, many of the anti-mycobacterial peptides have the second non-membrane targets within mycobacteria. Additionally, some antimicrobial peptides play critical roles in innate immunity. However, a few obstacles, such as short half-life in vivo and resistance to antimicrobial peptides, need overcoming before clinical applications. Nevertheless, the multiple functions of anti-mycobacterial peptides, especially direct killing of pathogens and immune-modulators in infectious and inflammatory conditions, indicate that they are promising candidates for future drug development.

  6. Antimicrobial Peptide Human Neutrophil Peptide 1 as a Potential Link Between Chronic Inflammation and Ductal Adenocarcinoma of the Pancreas.

    Science.gov (United States)

    Pausch, Thomas; Adolph, Sarah; Felix, Klaus; Bauer, Andrea S; Bergmann, Frank; Werner, Jens; Hartwig, Werner

    Defensins are antimicrobial peptides playing a role in innate immunity, in epithelial cell regeneration, and in carcinogenesis of inflammation-triggered malignancies. We analyzed this role in pancreatic ductal adenocarcinoma (PDAC) in the context of its association with chronic pancreatitis (CP). Human tissue of healthy pancreas, CP, and PDAC was screened for defensins by immunohistochemistry. Defensin α 1 (human neutrophil peptide 1 [HNP-1]) expression was validated using mass spectrometry and microarray analysis. Human neutrophil peptide 1 expression and influences of proinflammatory cytokines (tumor necrosis factor α, interleukin 1β, and interferon γ) were studied in human pancreatic cancer cells (Colo 357, T3M4, PANC-1) and normal human pancreatic duct epithelial cells (HPDE). Accumulation of HNP-1 in malignant pancreatic ductal epithelia was seen. Spectrometry showed increased expression of HNP-1 in CP and even more in PDAC. At RNA level, no significant regulation was found. In cancer cells, HNP-1 expression was significantly higher than in HPDE. Proinflammatory cytokines significantly led to increased HNP-1 levels in culture supernatants and decreased levels in lysates of cancer cells. In HPDE cytokines significantly decreased HNP-1 levels. Inflammatory regulation of HNP-1 in PDAC tissue and cells indicates that HNP-1 may be a link between chronic inflammation and malignant transformation in the pancreas.

  7. Automated multi-dimensional liquid chromatography : sample preparation and identification of peptides from human blood filtrate

    NARCIS (Netherlands)

    Machtejevas, Egidijus; John, Harald; Wagner, Knut; Standker, Ludger; Marko-Varga, Gyorgy; Georg Forssmann, Wolf; Bischoff, Rainer; K. Unger, Klaus

    2004-01-01

    A comprehensive on-line sample clean-up with an integrated two-dimensional HPLC system was developed for the analysis of natural peptides. Samples comprised of endogenous peptides with molecular weights up to 20 kDa were generated from human hemofiltrate (HF) obtained from patients with chronic

  8. Insulin resistance and the mitochondrial link. Lessons from cultured human myotubes

    DEFF Research Database (Denmark)

    Gaster, Michael

    2007-01-01

    In order to better understand the impact of reduced mitochondrial function for the development of insulin resistance and cellular metabolism, human myotubes were established from lean, obese, and T2D subjects and exposed to mitochondrial inhibitors, either affecting the electron transport chain...... lipid uptake. The metabolic phenotype during respiratory uncoupling resembled the above picture, except for an increase in glucose and palmitate oxidation. Antimycin A and oligomycin treatment induced insulin resistance at the level of glucose and palmitate uptake in all three study groups while......, at the level of glycogen synthesis, insulin resistance was only seen in lean myotubes. Primary insulin resistance in diabetic myotubes was significantly worsened at the level of glucose and lipid uptake. The present study is the first convincing data linking functional mitochondrial impairment per se...

  9. Lactate dehydrogenase is not a mitochondrial enzyme in human and mouse vastus lateralis muscle

    DEFF Research Database (Denmark)

    Rasmussen, Hans N; van Hall, Gerrit; Rasmussen, Ulla F

    2002-01-01

    The presence of lactate dehydrogenase in skeletal muscle mitochondria was investigated to clarify whether lactate is a possible substrate for mitochondrial respiration. Mitochondria were prepared from 100 mg samples of human and mouse vastus lateralis muscle. All fractions from the preparation...... procedure were assayed for marker enzymes and lactate dehydrogenase (LDH). The mitochondrial fraction contained no LDH activity (detection limit approximately 0.05 % of the tissue activity) and the distribution of LDH activity among the fractions paralleled that of pyruvate kinase, i.e. LDH was fractionated...... as a cytoplasmic enzyme. Respiratory experiments with the mitochondrial fraction also indicated the absence of LDH. Lactate did not cause respiration, nor did it affect the respiration of pyruvate + malate. The major part of the native cytochrome c was retained in the isolated mitochondria, which, furthermore...

  10. Repeated static contractions increase mitochondrial vulnerability toward oxidative stress in human skeletal muscle

    DEFF Research Database (Denmark)

    Sahlin, Kent; Nielsen, Jens Steen; Mogensen, Martin

    2006-01-01

    Repeated static contractions (RSC) induce large fluctuations in tissue oxygen tension and increase the generation of reactive oxygen species (ROS). This study investigated the effect of RSC on muscle contractility, mitochondrial respiratory function, and in vitro sarcoplasmic reticulum (SR) Ca(2......+) kinetics in human muscle. Ten male subjects performed five bouts of static knee extension with 10-min rest in between. Each bout of RSC (target torque 66% of maximal voluntary contraction torque) was maintained to fatigue. Muscle biopsies were taken preexercise and 0.3 and 24 h postexercise from vastus...... lateralis. Mitochondria were isolated and respiratory function measured after incubation with H(2)O(2) (HPX) or control medium (Con). Mitochondrial function was not affected by RSC during Con. However, RSC exacerbated mitochondrial dysfunction during HPX, resulting in decreased respiratory control index...

  11. Tributyltin induces mitochondrial fission through Mfn1 degradation in human induced pluripotent stem cells.

    Science.gov (United States)

    Yamada, Shigeru; Asanagi, Miki; Hirata, Naoya; Itagaki, Hiroshi; Sekino, Yuko; Kanda, Yasunari

    2016-08-01

    Organotin compounds, such as tributyltin (TBT), are well-known endocrine disruptors. TBT is also known to cause various forms of cytotoxicity, including neurotoxicity and immunotoxicity. However, TBT toxicity has not been identified in normal stem cells. In the present study, we examined the effects of TBT on cell growth in human induced pluripotent stem cells (iPSCs). We found that exposure to nanomolar concentrations of TBT decreased intracellular ATP levels and inhibited cell viability in iPSCs. Because TBT suppressed energy production, which is a critical function of the mitochondria, we further assessed the effects of TBT on mitochondrial dynamics. Staining with MitoTracker revealed that nanomolar concentrations of TBT induced mitochondrial fragmentation. TBT also reduced the expression of mitochondrial fusion protein mitofusin 1 (Mfn1), and this effect was abolished by knockdown of the E3 ubiquitin ligase membrane-associated RING-CH 5 (MARCH5), suggesting that nanomolar concentrations of TBT could induce mitochondrial dysfunction via MARCH5-mediated Mfn1 degradation in iPSCs. Thus, mitochondrial function in normal stem cells could be used to assess cytotoxicity associated with metal exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Manganese induces mitochondrial dynamics impairment and apoptotic cell death: a study in human Gli36 cells.

    Science.gov (United States)

    Alaimo, Agustina; Gorojod, Roxana M; Miglietta, Esteban A; Villarreal, Alejandro; Ramos, Alberto J; Kotler, Mónica L

    2013-10-25

    Manganese (Mn) is an essential trace element due to its participation in many physiological processes. However, overexposure to this metal leads to a neurological disorder known as Manganism whose clinical manifestations and molecular mechanisms resemble Parkinson's disease. Several lines of evidence implicate astrocytes as an early target of Mn neurotoxicity being the mitochondria the most affected organelles. The aim of this study was to investigate the possible mitochondrial dynamics alterations in Mn-exposed human astrocytes. Therefore, we employed Gli36 cells which express the astrocytic markers GFAP and S100B. We demonstrated that Mn triggers the mitochondrial apoptotic pathway revealed by increased Bax/Bcl-2 ratio, by the loss of mitochondrial membrane potential and by caspase-9 activation. This apoptotic program may be in turn responsible of caspase-3/7 activation, PARP-1 cleavage, chromatin condensation and fragmentation. In addition, we determined that Mn induces deregulation in mitochondria-shaping proteins (Opa-1, Mfn-2 and Drp-1) expression levels in parallel with the disruption of the mitochondrial network toward to an exacerbated fragmentation. Since mitochondrial dynamics is altered in several neurodegenerative diseases, these proteins could become future targets to be considered in Manganism treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Characterization of Human and Yeast Mitochondrial Glycine Carriers with Implications for Heme Biosynthesis and Anemia.

    Science.gov (United States)

    Lunetti, Paola; Damiano, Fabrizio; De Benedetto, Giuseppe; Siculella, Luisa; Pennetta, Antonio; Muto, Luigina; Paradies, Eleonora; Marobbio, Carlo Marya Thomas; Dolce, Vincenza; Capobianco, Loredana

    2016-09-16

    Heme is an essential molecule in many biological processes, such as transport and storage of oxygen and electron transfer as well as a structural component of hemoproteins. Defects of heme biosynthesis in developing erythroblasts have profound medical implications, as represented by sideroblastic anemia. The synthesis of heme requires the uptake of glycine into the mitochondrial matrix where glycine is condensed with succinyl coenzyme A to yield δ-aminolevulinic acid. Herein we describe the biochemical and molecular characterization of yeast Hem25p and human SLC25A38, providing evidence that they are mitochondrial carriers for glycine. In particular, the hem25Δ mutant manifests a defect in the biosynthesis of δ-aminolevulinic acid and displays reduced levels of downstream heme and mitochondrial cytochromes. The observed defects are rescued by complementation with yeast HEM25 or human SLC25A38 genes. Our results identify new proteins in the heme biosynthetic pathway and demonstrate that Hem25p and its human orthologue SLC25A38 are the main mitochondrial glycine transporters required for heme synthesis, providing definitive evidence of their previously proposed glycine transport function. Furthermore, our work may suggest new therapeutic approaches for the treatment of congenital sideroblastic anemia. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. DNA repair of UV photoproducts and mutagenesis in human mitochondrial DNA

    International Nuclear Information System (INIS)

    Pascucci, B.; Dogliotti, E.; Versteegh, A.; Hoffen, A. van; Zeeland, A.A. van; Mullenders, L.H.F.

    1997-01-01

    The induction and repair of DNA photolesions and mutations in the mitochondrial (mt) DNA of human cells in culture were analysed after cell exposure to UV-C light. The level of induction of cyclobutane pyrimidine dimers (CPD) in mitochondrial and nuclear DNA was comparable, while a higher frequency of pyrimidine (6-4) pyrimidone photoproducts (6-4 PP) was detected in mitochondrial than in nuclear DNA. Besides the known defect in CPD removal, mitochondria were shown to be deficient also in the excision of 6-4 PP. The effects of repair-defective conditions for the two major UV photolesions on mutagensis was assessed by analysing the frequency and spectrum of spontaneous and UV-induced mutations by restriction site mutation (RSM) method in a restriction endonuclease site, NciI (5'CCCGG3') located within the coding sequence of the mitochondrial gene for tRNA Leu . The spontaneous mutation frequency and spectrum at the NciI site of mitochondrial DNA was very similar to the RSM background mutation frequency (approximately 10 -5 ) and type (predominantly GC > AT transitions at GL 1 ) of the NciI site). Conversely, an approximately tenfold increase over background mutation frequency was recorded after cell exposure to 20 J/m 2 . In this case, the majority of mutations were C > T transitions preferentially located on the non-transcribed DNA strand at C 1 and C 2 of the NciI site. This mutation spectrum is expected by UV mutagenesis. This is the first evidence of induction of mutations in mitochondrial DNA by treatment of human cells with a carcinogen. (author)

  15. Bioactive peptides released from in vitro digestion of human milk with or without pasteurization.

    Science.gov (United States)

    Wada, Yasuaki; Lönnerdal, Bo

    2015-04-01

    Pasteurized donor human milk (HM) serves as the best alternative for breast-feeding when availability of mother's milk is limited. Pasteurization is also applied to mother's own milk for very low birth weight infants, who are vulnerable to microbial infection. Whether pasteurization affects protein digestibility and therefore modulates the profile of bioactive peptides released from HM proteins by gastrointestinal digestion, has not been examined to date. HM with and without pasteurization (62.5 °C for 30 min) were subjected to in vitro gastrointestinal digestion, followed by peptidomic analysis to compare the formation of bioactive peptides. Some of the bioactive peptides, such as caseinophosphopeptide homologues, a possible opioid peptide (or propeptide), and an antibacterial peptide, were present in undigested HM and showed resistance to in vitro digestion, suggesting that these peptides are likely to exert their bioactivities in the gastrointestinal lumen, or be stably transported to target organs. In vitro digestion of HM released a large variety of bioactive peptides such as angiotensin I-converting enzyme-inhibitory, antioxidative, and immunomodulatory peptides. Bioactive peptides were released largely in the same manner with and without pasteurization. Provision of pasteurized HM may be as beneficial as breast-feeding in terms of milk protein-derived bioactive peptides.

  16. Structure-activity studies and therapeutic potential of host defense peptides of human thrombin.

    Science.gov (United States)

    Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Mörgelin, Matthias; Albiger, Barbara; Malmsten, Martin; Schmidtchen, Artur

    2011-06-01

    Peptides of the C-terminal region of human thrombin are released upon proteolysis and identified in human wounds. In this study, we wanted to investigate minimal determinants, as well as structural features, governing the antimicrobial and immunomodulating activity of this peptide region. Sequential amino acid deletions of the peptide GKYGFYTHVFRLKKWIQKVIDQFGE (GKY25), as well as substitutions at strategic and structurally relevant positions, were followed by analyses of antimicrobial activity against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive bacterium Staphylococcus aureus, and the fungus Candida albicans. Furthermore, peptide effects on lipopolysaccharide (LPS)-, lipoteichoic acid-, or zymosan-induced macrophage activation were studied. The thrombin-derived peptides displayed length- and sequence-dependent antimicrobial as well as immunomodulating effects. A peptide length of at least 20 amino acids was required for effective anti-inflammatory effects in macrophage models, as well as optimal antimicrobial activity as judged by MIC assays. However, shorter (>12 amino acids) variants also displayed significant antimicrobial effects. A central K14 residue was important for optimal antimicrobial activity. Finally, one peptide variant, GKYGFYTHVFRLKKWIQKVI (GKY20) exhibiting improved selectivity, i.e., low toxicity and a preserved antimicrobial as well as anti-inflammatory effect, showed efficiency in mouse models of LPS shock and P. aeruginosa sepsis. The work defines structure-activity relationships of C-terminal host defense peptides of thrombin and delineates a strategy for selecting peptide epitopes of therapeutic interest.

  17. Disturbed mitochondrial function restricts glutamate uptake in the human Müller glia cell line, MIO-M1

    DEFF Research Database (Denmark)

    Vohra, Rupali; Gurubaran, Iswariyaraja Sridevi; Henriksen, Ulrik

    2017-01-01

    Using the human Müller cell line, MIO-M1, the aim was to study the impact of mitochondrial inhibition in Müller glia through antimycin A treatment. MIO-M1 cell survival, levels of released lactate, mitochondrial function, and glutamate uptake were studied in response to mitochondrial inhibition...... and glucose restriction. Lactate release decreased in response to glucose restriction. Combined glucose restriction and blocked mitochondrial activity decreased survival and caused collapse of the respiratory chain measured by oxygen consumption rate and extracellular acidification rate. Mitochondrial...... inhibition caused impaired glutamate uptake and decreased mRNA expression of the glutamate transporter, EAAT1. Over all, we show important roles of mitochondrial activity in MIO-M1 cell function and survival....

  18. Alpha-amidated peptides derived from pro-opiomelanocortin in normal human pituitary

    DEFF Research Database (Denmark)

    Fenger, M; Johnsen, A H

    1988-01-01

    Normal human pituitaries were extracted in boiling water and acetic acid, and the alpha-amidated peptide products of pro-opiomelanocortin (POMC), alpha-melanocyte-stimulating hormone (alpha MSH), gamma-melanocyte-stimulating hormone (gamma 1MSH), and amidated hinge peptide (HP-N), as well...... (ACTH)-(1-39), ACTH-(1-14) and alpha MSH immunoreactivity]. alpha MSH and ACTH-(1-14) were only present in non- or mono-acetylated forms. Only large forms of gamma 1MSH and gamma 2MSH were present in partly glycosylated states. The hinge peptides were amidated to an extent two to three orders...... amidated POMC-related peptides are present in normal human pituitary. It also shows that cleavage in vivo at all dibasic amino acids but one, takes place at the N-terminal POMC region; the exception is at the POMC-(49-50) N-terminal of the gamma MSH sequence. The pattern of peptides produced suggests...

  19. Role of mitochondrial permeability transition in human renal tubular epithelial cell death induced by aristolochic acid

    International Nuclear Information System (INIS)

    Qi Xinming; Cai Yan; Gong Likun; Liu Linlin; Chen Fangping; Xiao Ying; Wu Xiongfei; Li Yan; Xue Xiang; Ren Jin

    2007-01-01

    Aristolochic acid (AA), a natural nephrotoxin and carcinogen, can induce a progressive tubulointerstitial nephropathy. However, the mechanism by which AA causes renal injury remains largely unknown. Here we reported that the mitochondrial permeability transition (MPT) plays an important role in the renal injury induced by aristolochic acid I (AAI). We found that in the presence of Ca 2+ , AAI caused mitochondrial swelling, leakage of Ca 2+ , membrane depolarization, and release of cytochrome c in isolated kidney mitochondria. These alterations were suppressed by cyclosporin A (CsA), an agent known to inhibit MPT. Culture of HK-2 cell, a human renal tubular epithelial cell line for 24 h with AAI caused a decrease in cellular ATP, mitochondrial membrane depolarization, cytochrome c release, and increase of caspase 3 activity. These toxic effects of AAI were attenuated by CsA and bongkrekic acid (BA), another specific MPT inhibitor. Furthermore, AAI greatly inhibited the activity of mitochondrial adenine nucleotide translocator (ANT) in isolated mitochondria. We suggested that ANT may mediate, at least in part, the AAI-induced MPT. Taken together, these results suggested that MPT plays a critical role in the pathogenesis of HK-2 cell injury induced by AAI and implied that MPT might contribute to human nephrotoxicity of aristolochic acid

  20. Comparative syntheses of peptides and peptide thioesters derived from mouse and human prion proteins

    Czech Academy of Sciences Publication Activity Database

    Šebestík, Jaroslav; Zawada, Zbigniew; Šafařík, Martin; Hlaváček, Jan

    2012-01-01

    Roč. 43, č. 3 (2012), s. 1297-1309 ISSN 0939-4451 R&D Projects: GA ČR GA203/07/1517 Institutional research plan: CEZ:AV0Z40550506 Keywords : prion protein segments * classical synthesis * chemical ligation synthesis * peptide thioesters Subject RIV: CC - Organic Chemistry Impact factor: 3.914, year: 2012

  1. PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Alison Wood-Kaczmar

    2008-06-01

    Full Text Available Parkinson's disease (PD is a common age-related neurodegenerative disease and it is critical to develop models which recapitulate the pathogenic process including the effect of the ageing process. Although the pathogenesis of sporadic PD is unknown, the identification of the mendelian genetic factor PINK1 has provided new mechanistic insights. In order to investigate the role of PINK1 in Parkinson's disease, we studied PINK1 loss of function in human and primary mouse neurons. Using RNAi, we created stable PINK1 knockdown in human dopaminergic neurons differentiated from foetal ventral mesencephalon stem cells, as well as in an immortalised human neuroblastoma cell line. We sought to validate our findings in primary neurons derived from a transgenic PINK1 knockout mouse. For the first time we demonstrate an age dependent neurodegenerative phenotype in human and mouse neurons. PINK1 deficiency leads to reduced long-term viability in human neurons, which die via the mitochondrial apoptosis pathway. Human neurons lacking PINK1 demonstrate features of marked oxidative stress with widespread mitochondrial dysfunction and abnormal mitochondrial morphology. We report that PINK1 plays a neuroprotective role in the mitochondria of mammalian neurons, especially against stress such as staurosporine. In addition we provide evidence that cellular compensatory mechanisms such as mitochondrial biogenesis and upregulation of lysosomal degradation pathways occur in PINK1 deficiency. The phenotypic effects of PINK1 loss-of-function described here in mammalian neurons provides mechanistic insight into the age-related degeneration of nigral dopaminergic neurons seen in PD.

  2. Radioimmunoassay and characterization of atrial natriuretic peptide in human plasma

    International Nuclear Information System (INIS)

    Yandle, T.G.; Espiner, E.A.; Nicholls, M.G.; Duff, H.

    1986-01-01

    A RIA for alpha-human atrial natriuretic peptide (alpha hANP) in plasma was developed and used to study the immunoreactive components secreted by the heart and circulating in peripheral venous plasma. The assay used [125I]diiodotyrosyl-alpha hANP, purified by high pressure liquid chromatography (HPLC), and a C-terminal-specific antiserum purchased from Peninsula Laboratories. Serial dilution curves of coronary sinus plasma samples were parallel with the standard curve, but significant nonparallelism was found in peripheral plasma samples of low immunoreactivity. When plasma was extracted using C-18 Sep-Pak cartridges, serial dilution curves from both coronary sinus and peripheral plasma samples were parallel to the standard curve. Although values for plasma samples assayed before and after extraction agreed closely (r = 0.99; n = 76), immunoreactive ANP in unextracted plasma was consistently greater (70-79 pmol/liter) than in extracts of plasma, suggesting non-specific interference by a component in plasma when assayed without extraction. Mean plasma immunoreactive ANP in 19 normal subjects consuming a normal salt intake was 14 +/- 1 (+/- SE) pmol/liter. In 5 normal men, increasing dietary sodium intake from 10 to 200 mmol sodium/day was associated with a 2-fold increment in ANP levels, and similar changes accompanied acute sodium loading using iv saline. Elevated values were found in patients with congestive heart failure (mean, 58 pmol/liter; range, 0-200; n = 9), chronic renal failure (mean, 118 pmol/liter; range, 30-290; n = 8), and primary aldosteronism (range, 32-90 pmol/liter; n = 3). HPLC and gel chromatographic analysis of the immunoreactive material found in coronary sinus plasma extracts showed that a large amount of the material eluted in the position of alpha hANP

  3. Activation-dependent mitochondrial translocation of Foxp3 in human hepatocytes

    International Nuclear Information System (INIS)

    Rojas, Joselyn; Teran-Angel, Guillermo; Barbosa, Luisa; Peterson, Darrell L.; Berrueta, Lisbeth; Salmen, Siham

    2016-01-01

    Foxp3 is considered to be the master regulator for the development and function of regulatory T cells (Treg). Recently Foxp3, has been detected in extra lymphoid tissue, and in hepatocytes and has been associated with hepatocellular carcinoma (HCC), although its role has not been defined. Since it is expected that there is a relationship between protein localization, activity and cellular function, the aim of this study was to explore the subcellular localization of Foxp3 in resting and stimulated human hepatocytes. Foxp3 expression was measured by flow cytometry, subcellular fractioning, and immunofluorescence, and this data was used to track the shuttling of Foxp3 in different subcellular compartments in hepatocytes (HepG2 cell line), stimulated by using the PKC activators (PMA), core and preS1/2 antigen from hepatitis B virus (HBV). Our data shows that besides the nuclear location, mitochondrial translocation was detected after stimulation with PMA and at to a lesser extent, with preS1/2. In addition, Foxp3 is localizes at outer mitochondrial membrane. These results suggest a non-canonical role of Foxp3 in the mitochondrial compartment in human hepatocytes, and opens a new field about their role in liver damages during HBV infection. - Highlights: • The expression and subcellular distribution of Foxp3, is modulated by PMA and preS1/2. • PMA and preS1/2 increase Foxp3 expression on HepG2. • PMA and preS1/2 induce foxp3 enrichment at mitochondrial, microsomal and nuclear compartments. • Results suggest a non-canonical function of Foxp3 or a mitochondrial transcriptional activity.

  4. Activation-dependent mitochondrial translocation of Foxp3 in human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, Joselyn; Teran-Angel, Guillermo; Barbosa, Luisa [Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Peterson, Darrell L. [Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA (United States); Berrueta, Lisbeth, E-mail: lberruet@ula.ve [Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of); Division of Preventive Medicine, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Salmen, Siham, E-mail: sihamsa@ula.ve [Instituto de Inmunología Clínica, Facultad de Medicina, Universidad de Los Andes, Merida (Venezuela, Bolivarian Republic of)

    2016-05-01

    Foxp3 is considered to be the master regulator for the development and function of regulatory T cells (Treg). Recently Foxp3, has been detected in extra lymphoid tissue, and in hepatocytes and has been associated with hepatocellular carcinoma (HCC), although its role has not been defined. Since it is expected that there is a relationship between protein localization, activity and cellular function, the aim of this study was to explore the subcellular localization of Foxp3 in resting and stimulated human hepatocytes. Foxp3 expression was measured by flow cytometry, subcellular fractioning, and immunofluorescence, and this data was used to track the shuttling of Foxp3 in different subcellular compartments in hepatocytes (HepG2 cell line), stimulated by using the PKC activators (PMA), core and preS1/2 antigen from hepatitis B virus (HBV). Our data shows that besides the nuclear location, mitochondrial translocation was detected after stimulation with PMA and at to a lesser extent, with preS1/2. In addition, Foxp3 is localizes at outer mitochondrial membrane. These results suggest a non-canonical role of Foxp3 in the mitochondrial compartment in human hepatocytes, and opens a new field about their role in liver damages during HBV infection. - Highlights: • The expression and subcellular distribution of Foxp3, is modulated by PMA and preS1/2. • PMA and preS1/2 increase Foxp3 expression on HepG2. • PMA and preS1/2 induce foxp3 enrichment at mitochondrial, microsomal and nuclear compartments. • Results suggest a non-canonical function of Foxp3 or a mitochondrial transcriptional activity.

  5. Age-Associated Impairments in Mitochondrial ADP Sensitivity Contribute to Redox Stress in Senescent Human Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Graham P. Holloway

    2018-03-01

    Full Text Available Summary: It remains unknown if mitochondrial bioenergetics are altered with aging in humans. We established an in vitro method to simultaneously determine mitochondrial respiration and H2O2 emission in skeletal muscle tissue across a range of biologically relevant ADP concentrations. Using this approach, we provide evidence that, although the capacity for mitochondrial H2O2 emission is not increased with aging, mitochondrial ADP sensitivity is impaired. This resulted in an increase in mitochondrial H2O2 and the fraction of electron leak to H2O2, in the presence of virtually all ADP concentrations examined. Moreover, although prolonged resistance training in older individuals increased muscle mass, strength, and maximal mitochondrial respiration, exercise training did not alter H2O2 emission rates in the presence of ADP, the fraction of electron leak to H2O2, or the redox state of the muscle. These data establish that a reduction in mitochondrial ADP sensitivity increases mitochondrial H2O2 emission and contributes to age-associated redox stress. : Holloway et al. show that an inability of ADP to decrease mitochondrial reactive oxygen species emission contributes to redox stress in skeletal muscle tissue of older individuals and that this process is not recovered following prolonged resistance-type exercise training, despite the general benefits of resistance training for muscle health. Keywords: mitochondria, aging, muscle, ROS, H2O2, ADP, respiration, bioenergetics, exercise, resistance training

  6. Proteolytic signatures define unique thrombin-derived peptides present in human wound fluid in vivo.

    Science.gov (United States)

    Saravanan, Rathi; Adav, Sunil S; Choong, Yeu Khai; van der Plas, Mariena J A; Petrlova, Jitka; Kjellström, Sven; Sze, Siu Kwan; Schmidtchen, Artur

    2017-10-13

    The disease burden of failing skin repair and non-healing ulcers is extensive. There is an unmet need for new diagnostic approaches to better predict healing activity and wound infection. Uncontrolled and excessive protease activity, of endogenous or bacterial origin, has been described as a major contributor to wound healing impairments. Proteolytic peptide patterns could therefore correlate and "report" healing activity and infection. This work describes a proof of principle delineating a strategy by which peptides from a selected protein, human thrombin, are detected and attributed to proteolytic actions. With a particular focus on thrombin-derived C-terminal peptides (TCP), we show that distinct peptide patterns are generated in vitro by the human S1 peptidases human neutrophil elastase and cathepsin G, and the bacterial M4 peptidases Pseudomonas aeruginosa elastase and Staphylococcus aureus aureolysin, respectively. Corresponding peptide sequences were identified in wound fluids from acute and non-healing ulcers, and notably, one peptide, FYT21 (FYTHVFRLKKWIQKVIDQFGE), was only present in wound fluid from non-healing ulcers colonized by P. aeruginosa and S. aureus. Our result is a proof of principle pointing at the possibility of defining peptide biomarkers reporting distinct proteolytic activities, of potential implication for improved diagnosis of wound healing and infection.

  7. Antimicrobial activity and mechanism of PDC213, an endogenous peptide from human milk

    International Nuclear Information System (INIS)

    Sun, Yazhou; Zhou, Yahui; Liu, Xiao; Zhang, Fan; Yan, Linping; Chen, Ling; Wang, Xing; Ruan, Hongjie; Ji, Chenbo; Cui, Xianwei; Wang, Jiaqin

    2017-01-01

    Human milk has always been considered an ideal source of elemental nutrients to both preterm and full term infants in order to optimally develop the infant's tissues and organs. Recently, hundreds of endogenous milk peptides were identified in human milk. These peptides exhibited angiotensin-converting enzyme inhibition, immunomodulation, or antimicrobial activity. Here, we report the antimicrobial activity and mechanism of a novel type of human antimicrobial peptide (AMP), termed PDC213 (peptide derived from β-Casein 213-226 aa). PDC213 is an endogenous peptide and is present at higher levels in preterm milk than in full term milk. The inhibitory concentration curve and disk diffusion tests showed that PDC213 had obvious antimicrobial against S. aureus and Y. enterocolitica, the common nosocomial pathogens in neonatal intensive care units (NICUs). Fluorescent dye methods, electron microscopy experiments and DNA-binding activity assays further indicated that PDC213 can permeabilize bacterial membranes and cell walls rather than bind intracellular DNA to kill bacteria. Together, our results suggest that PDC213 is a novel type of AMP that warrants further investigation. - Highlights: • PDC213 is an endogenous peptide presenting higher levels in preterm milk. • PDC213 showed obvious antimicrobial against S. aereus and Y. enterocolitica. • PDC213 can permeabilize bacterial membranes and cell walls to kill bacterias. • PDC213 is a novel type of antimicrobial peptides worthy further investigation.

  8. Analysis of mitochondrial function and localisation during human embryonic stem cell differentiation in vitro.

    Directory of Open Access Journals (Sweden)

    Andrew B J Prowse

    Full Text Available Human embryonic stem cell (hESC derivatives show promise as viable cell therapy options for multiple disorders in different tissues. Recent advances in stem cell biology have lead to the reliable production and detailed molecular characterisation of a range of cell-types. However, the role of mitochondria during differentiation has yet to be fully elucidated. Mitochondria mediate a cells response to altered energy requirements (e.g. cardiomyocyte contraction and, as such, the mitochondrial phenotype is likely to change during the dynamic process of hESC differentiation. We demonstrate that manipulating mitochondrial biogenesis alters mesendoderm commitment. To investigate mitochondrial localisation during early lineage specification of hESCs we developed a mitochondrial reporter line, KMEL2, in which sequences encoding the green fluorescent protein (GFP are targeted to the mitochondria. Differentiation of KMEL2 lines into the three germ layers showed that the mitochondria in these differentiated progeny are GFP positive. Therefore, KMEL2 hESCs facilitate the study of mitochondria in a range of cell types and, importantly, permit real-time analysis of mitochondria via the GFP tag.

  9. Cilostazol promotes mitochondrial biogenesis in human umbilical vein endothelial cells through activating the expression of PGC-1α

    International Nuclear Information System (INIS)

    Zuo, Luning; Li, Qiang; Sun, Bei; Xu, Zhiying; Ge, Zhiming

    2013-01-01

    Highlights: ► First time to show that cilostazol promotes the expressions of PGC-1α. ► First time to show that cilostazol stimulates mitochondrial biogenesis in HUVECs. ► PKA/CREB pathway mediates the effect of cilostazol on PGC-1α expression. ► Suggesting the roles of cilostazol in mitochondrial dysfunction related disease. -- Abstract: Mitochondrial dysfunction is frequently observed in vascular diseases. Cilostazol is a drug approved by the US Food and Drug Administration for the treatment of intermittent claudication. Cilostazol increases intracellular cyclic adenosine monophosphate (cAMP) levels through inhibition of type III phosphodiesterase. The effects of cilostazol in mitochondrial biogenesis in human umbilical vein endothelial cells (HUVECs) were investigated in this study. Cilostazol treated HUVECs displayed increased levels of ATP, mitochondrial DNA/nuclear DNA ratio, expressions of cytochrome B, and mitochondrial mass, suggesting an enhanced mitochondrial biogenesis induced by cilostazol. The promoted mitochondrial biogenesis could be abolished by Protein kinase A (PKA) specific inhibitor H-89, implying that PKA pathway played a critical role in increased mitochondrial biogenesis after cilostazol treatment. Indeed, expression levels of peroxisome proliferator activator receptor gamma-coactivator 1α (PGC-1α), NRF 1 and mitochondrial transcription factor A (TFAM) were significantly increased in HUVECs after incubation with cilostazol at both mRNA levels and protein levels. Importantly, knockdown of PGC-1α could abolish cilostazol-induced mitochondrial biogenesis. Enhanced expression of p-CREB and PGC-1α induced by cilostazol could be inhibited by H-89. Moreover, the increased expression of PGC-1α induced by cilostazol could be inhibited by downregulation of CREB using CREB siRNA at both mRNA and protein levels. All the results indicated that cilostazol promoted mitochondrial biogenesis through activating the expression of PGC-1α in

  10. Successful enrichment and recovery of whole mitochondrial genomes from ancient human dental calculus.

    Science.gov (United States)

    Ozga, Andrew T; Nieves-Colón, Maria A; Honap, Tanvi P; Sankaranarayanan, Krithivasan; Hofman, Courtney A; Milner, George R; Lewis, Cecil M; Stone, Anne C; Warinner, Christina

    2016-06-01

    Archaeological dental calculus is a rich source of host-associated biomolecules. Importantly, however, dental calculus is more accurately described as a calcified microbial biofilm than a host tissue. As such, concerns regarding destructive analysis of human remains may not apply as strongly to dental calculus, opening the possibility of obtaining human health and ancestry information from dental calculus in cases where destructive analysis of conventional skeletal remains is not permitted. Here we investigate the preservation of human mitochondrial DNA (mtDNA) in archaeological dental calculus and its potential for full mitochondrial genome (mitogenome) reconstruction in maternal lineage ancestry analysis. Extracted DNA from six individuals at the 700-year-old Norris Farms #36 cemetery in Illinois was enriched for mtDNA using in-solution capture techniques, followed by Illumina high-throughput sequencing. Full mitogenomes (7-34×) were successfully reconstructed from dental calculus for all six individuals, including three individuals who had previously tested negative for DNA preservation in bone using conventional PCR techniques. Mitochondrial haplogroup assignments were consistent with previously published findings, and additional comparative analysis of paired dental calculus and dentine from two individuals yielded equivalent haplotype results. All dental calculus samples exhibited damage patterns consistent with ancient DNA, and mitochondrial sequences were estimated to be 92-100% endogenous. DNA polymerase choice was found to impact error rates in downstream sequence analysis, but these effects can be mitigated by greater sequencing depth. Dental calculus is a viable alternative source of human DNA that can be used to reconstruct full mitogenomes from archaeological remains. Am J Phys Anthropol 160:220-228, 2016. © 2016 The Authors American Journal of Physical Anthropology Published by Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Degradation and Stabilization of Peptide Hormones in Human Blood Specimens.

    Directory of Open Access Journals (Sweden)

    Jizu Yi

    Full Text Available Plasma hormone peptides, including GLP-1, GIP, Glucagon, and OXM, possess multiple physiological roles and potential therapeutic and diagnostic utility as biomarkers in the research of metabolic disorders. These peptides are subject to proteolytic degradation causing preanalytical variations. Stabilization for accurate quantitation of these active peptides in ex vivo blood specimens is essential for drug and biomarker development. We investigated the protease-driven instability of these peptides in conventional serum, plasma, anticoagulated whole blood, as well as whole blood and plasma stabilized with protease inhibitors. The peptide was monitored by both time-course Matrix-Assisted Laser Desorption Ionization Time-to-Flight Mass Spectrometry (MALDI -TOF MS and Ab-based assay (ELISA or RIA. MS enabled the identification of proteolytic fragments. In non-stabilized blood samples, the results clearly indicated that dipeptidyl peptidase-IV (DPP-IV removed the N-terminal two amino acid residues from GLP-1, GIP and OXM(1-37 and not-yet identified peptidase(s cleave(s the full-length OXM(1-37 and its fragments. DPP-IV also continued to remove two additional N-terminal residues of processed OXM(3-37 to yield OXM(5-37. Importantly, both DPP-IV and other peptidase(s activities were inhibited efficiently by the protease inhibitors included in the BD P800* tube. There was preservation of GLP-1, GIP, OXM and glucagon in the P800 plasma samples with half-lives > 96, 96, 72, and 45 hours at room temperature (RT, respectively. In the BD P700* plasma samples, the stabilization of GLP-1 was also achieved with half-life > 96 hours at RT. The stabilization of these variable peptides increased their utility in drug and/or biomarker development. While stability results of GLP-1 obtained with Ab-based assay were consistent with those obtained by MS analysis, the Ab-based results of GIP, Glucagon, and OXM did not reflect the time-dependent degradations revealed by MS

  12. Validation of the use of an artificial mitochondrial reporter DNA vector containing a Cytomegalovirus promoter for mitochondrial transgene expression.

    Science.gov (United States)

    Yamada, Yuma; Ishikawa, Takuya; Harashima, Hideyoshi

    2017-08-01

    Mitochondria have their own gene expression system that is independent of the nuclear system, and control cellular functions in cooperation with the nucleus. While a number of useful technologies for achieving nuclear transgene expression have been reported, only a few have focused on mitochondria. In this study, we validated the utility of an artificial mitochondrial DNA vector with a virus promoter on mitochondrial transgene expression. We designed and constructed pCMV-mtLuc (CGG) that contains a CMV promotor derived from Cytomegalovirus and an artificial mitochondrial genome with a NanoLuc (Nluc) luciferase gene that records adjustments to the mitochondrial codon system. Nluc luciferase activity measurements showed that the pCMV-mtLuc (CGG) efficiently produced the Nluc luciferase protein in human HeLa cells. Moreover, we optimized the mitochondrial transfection of pCMV-mtLuc (CGG) using a MITO-Porter system, a liposome-based carrier for mitochondrial delivery via membrane fusion. As a result, we found that transfection of pCMV-mtLuc (CGG) by MITO-Porter modified with the KALA peptide (cationic amphipathic cell-penetrating peptide) showed a high mitochondrial transgene expression. The developed mitochondrial transgene expression system represents a potentially useful tool for the fields of nanoscience and nanotechnology for controlling the intracellular microenvironment via the regulation of mitochondrial function and promises to open additional innovative research fields of study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Bovine and human lactoferricin peptides: chimeras and new cyclic analogs

    NARCIS (Netherlands)

    Arias, M.; McDonald, L.J.; Haney, E.F.; Nazmi, K.; Bolscher, J.G.M.; Vogel, H.J.

    2014-01-01

    Lactoferrin (LF) is an important antimicrobial and immune regulatory protein present in neutrophils and most exocrine secretions of mammals. The antimicrobial activity of LF has been related to the presence of an antimicrobial peptide sequence, called lactoferricin (LFcin), located in the N-terminal

  14. Alpha-amidated peptides derived from pro-opiomelanocortin in human pituitary tumours

    DEFF Research Database (Denmark)

    Fenger, M; Johnsen, A H

    1988-01-01

    Human pituitary tumours, obtained at surgery for Cushing's disease and Nelson's syndrome, were extracted and the content and molecular forms of pro-opiomelanocortin (POMC)-derived peptides determined by radioimmunoassay, gel chromatography, reversed-phase high-performance liquid chromatography....... In conclusion, all the molecular forms of the amidated peptides detected in tumours from patients with Cushing's disease and Nelson's syndrome were similar to the molecular forms found in the normal human pituitary. The main difference between the tumours and the normal pituitary was the greater amount...... (HPLC) and sequence analysis. In the tumours from patients with Cushing's disease the mean concentrations of amidated peptides relative to the total amount of POMC were as follows: alpha-MSH, 1.7%; amidated gamma-MSH (gamma 1-MSH), 8.5% and the peptide linking gamma-MSH and ACTH in the precursor (hinge...

  15. Complete sequences of glucagon-like peptide-1 from human and pig small intestine

    DEFF Research Database (Denmark)

    Orskov, C; Bersani, M; Johnsen, A H

    1989-01-01

    intestine of the proglucagon precursor were determined by pairs of basic amino acid residues flanking the two peptides. Earlier studies have shown that synthetic glucagon-like peptide-1 (GLP-1) synthesized according to the proposed structure (proglucagon 71-108 or because residue 108 is Gly, 72-107 amide......) had no physiological effects, whereas a truncated from of GLP-1, corresponding to proglucagon 78-107 amide, strongly stimulated insulin secretion and depressed glucagon secretion. To determine the amino acid sequence of the naturally occurring peptide we isolated GLP-1 from human small intestine...

  16. Cell wall trapping of autocrine peptides for human G-protein-coupled receptors on the yeast cell surface.

    Directory of Open Access Journals (Sweden)

    Jun Ishii

    Full Text Available G-protein-coupled receptors (GPCRs regulate a wide variety of physiological processes and are important pharmaceutical targets for drug discovery. Here, we describe a unique concept based on yeast cell-surface display technology to selectively track eligible peptides with agonistic activity for human GPCRs (Cell Wall Trapping of Autocrine Peptides (CWTrAP strategy. In our strategy, individual recombinant yeast cells are able to report autocrine-positive activity for human GPCRs by expressing a candidate peptide fused to an anchoring motif. Following expression and activation, yeast cells trap autocrine peptides onto their cell walls. Because captured peptides are incapable of diffusion, they have no impact on surrounding yeast cells that express the target human GPCR and non-signaling peptides. Therefore, individual yeast cells can assemble the autonomous signaling complex and allow single-cell screening of a yeast population. Our strategy may be applied to identify eligible peptides with agonistic activity for target human GPCRs.

  17. In silico-designed novel non-peptidic ABAD LD hot spot mimetics reverse Aβ-induced mitochondrial impairments in vitro.

    Science.gov (United States)

    Viswanath, Ambily Nath Indu; Kim, TaeHun; Jung, Seo Yun; Lim, Sang Min; Pae, Ae Nim

    2017-12-01

    Present work aimed to introduce non-peptidic ABAD loop D (L D ) hot spot mimetics as ABAD-Aβ inhibitors. A full-length atomistic model of ABAD-Aβ complex was built as a scaffold to launch the lead design and its topology later verified by cross-checking the computational mutagenesis results with that of in vitro data. Thereafter, the interactions of prime Aβ-binding L D residues-Tyr101, Thr108, and Thr110-were translated into specific pharmacophore features and this hypothesis subsequently used as a virtual screen query. ELISA-based screening of 20 hits identified two promising lead candidates, VC15 and VC19 with an IC 50 of 4.4 ± 0.3 and 9.6 ± 0.1 μm, respectively. They productively reversed Aβ-induced mitochondrial dysfunctions such as mitochondrial membrane potential loss (JC-1 assay), toxicity (MTT assay), and ATP reduction (ATP assay) in addition to increased cell viabilities. This is the first reporting of L D hot spot-centric in silico scheme to discover novel compounds with promising ABAD-Aβ inhibitory potential. These chemotypes are proposed for further structural optimization to derive novel Alzheimer's disease (AD) therapeutics. © 2017 John Wiley & Sons A/S.

  18. Cocaine- and amphetamine-regulated transcript peptide increases mitochondrial respiratory chain complex II activity and protects against oxygen-glucose deprivation in neurons.

    Science.gov (United States)

    Sha, Dujuan; Wang, Luna; Zhang, Jun; Qian, Lai; Li, Qiming; Li, Jin; Qian, Jian; Gu, Shuangshuang; Han, Ling; Xu, Peng; Xu, Yun

    2014-09-25

    The mechanisms of ischemic stroke, a main cause of disability and death, are complicated. Ischemic stroke results from the interaction of various factors including oxidative stress, a key pathological mechanism that plays an important role during the acute stage of ischemic brain injury. This study demonstrated that cocaine- and amphetamine-regulated transcript (CART) peptide, specifically CART55-102, increased the survival rate, but decreased the mortality of neurons exposed to oxygen-glucose deprivation (OGD), in a dose-dependent manner. The above-mentioned effects of CART55-102 were most significant at 0.4nM. These results indicated that CART55-102 suppressed neurotoxicity and enhanced neuronal survival after oxygen-glucose deprivation. CART55-102 (0.4nM) significantly diminished reactive oxygen species levels and markedly increased the activity of mitochondrial respiratory chain complex II in oxygen-glucose deprived neurons. In summary, CART55-102 suppressed oxidative stress in oxygen-glucose deprived neurons, possibly through elevating the activity of mitochondrial respiratory chain complex II. This result provides evidence for the development of CART55-102 as an antioxidant drug. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues.

    Science.gov (United States)

    Lundquist, P; Artursson, P

    2016-11-15

    In this contribution, we review the molecular and physiological barriers to oral delivery of peptides and nanoparticles. We discuss the opportunities and predictivity of various in vitro systems with special emphasis on human intestine in Ussing chambers. First, the molecular constraints to peptide absorption are discussed. Then the physiological barriers to peptide delivery are examined. These include the gastric and intestinal environment, the mucus barrier, tight junctions between epithelial cells, the enterocytes of the intestinal epithelium, and the subepithelial tissue. Recent data from human proteome studies are used to provide information about the protein expression profiles of the different physiological barriers to peptide and nanoparticle absorption. Strategies that have been employed to increase peptide absorption across each of the barriers are discussed. Special consideration is given to attempts at utilizing endogenous transcytotic pathways. To reliably translate in vitro data on peptide or nanoparticle permeability to the in vivo situation in a human subject, the in vitro experimental system needs to realistically capture the central aspects of the mentioned barriers. Therefore, characteristics of common in vitro cell culture systems are discussed and compared to those of human intestinal tissues. Attempts to use the cell and tissue models for in vitro-in vivo extrapolation are reviewed. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. 78 FR 42530 - Prospective Grant of an Exclusive License: Human Papillomavirus 16 E2 and E6 Peptides for...

    Science.gov (United States)

    2013-07-16

    ... peptide from HPV 16. E6 peptide vaccines are potentially prophylactic or therapeutic for cervical cancer... Exclusive License: Human Papillomavirus 16 E2 and E6 Peptides for Cervical Cancer Vaccine Development AGENCY... principal place of business in Augusta, Georgia. The United States of America is an assignee to the patent...

  1. Mitochondrial protein adducts formation and mitochondrial dysfunction during N-acetyl-m-aminophenol (AMAP)-induced hepatotoxicity in primary human hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yuchao; McGill, Mitchell R.; Du, Kuo; Dorko, Kenneth [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Kumer, Sean C.; Schmitt, Timothy M. [Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Ding, Wen-Xing [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Jaeschke, Hartmut, E-mail: hjaeschke@kumc.edu [Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2015-12-01

    3′-Hydroxyacetanilide or N-acetyl-meta-aminophenol (AMAP) is generally regarded as a non-hepatotoxic analog of acetaminophen (APAP). Previous studies demonstrated the absence of toxicity after AMAP in mice, hamsters, primary mouse hepatocytes and several cell lines. In contrast, experiments with liver slices suggested that it may be toxic to human hepatocytes; however, the mechanism of toxicity is unclear. To explore this, we treated primary human hepatocytes (PHH) with AMAP or APAP for up to 48 h and measured several parameters to assess metabolism and injury. Although less toxic than APAP, AMAP dose-dependently triggered cell death in PHH as indicated by alanine aminotransferase (ALT) release and propidium iodide (PI) staining. Similar to APAP, AMAP also significantly depleted glutathione (GSH) in PHH and caused mitochondrial damage as indicated by glutamate dehydrogenase (GDH) release and the JC-1 assay. However, unlike APAP, AMAP treatment did not cause relevant c-jun-N-terminal kinase (JNK) activation in the cytosol or phospho-JNK translocation to mitochondria. To compare, AMAP toxicity was assessed in primary mouse hepatocytes (PMH). No cytotoxicity was observed as indicated by the lack of lactate dehydrogenase release and no PI staining. Furthermore, there was no GSH depletion or mitochondrial dysfunction after AMAP treatment in PMH. Immunoblotting for arylated proteins suggested that AMAP treatment caused extensive mitochondrial protein adduct formation in PHH but not in PMH. In conclusion, AMAP is hepatotoxic in PHH and the mechanism involves the formation of mitochondrial protein adducts and mitochondrial dysfunction. - Highlights: • AMAP induces cell death in primary human hepatocytes (PHH). • AMAP does not cause cell death in primary mouse hepatocytes (PMH). • AMAP leads to mitochondria dysfunction in PHH but not PMH. • Protein adduct formation and dysfunction in mitochondria correlate with toxicity.

  2. Mitochondrial protein adducts formation and mitochondrial dysfunction during N-acetyl-m-aminophenol (AMAP)-induced hepatotoxicity in primary human hepatocytes

    International Nuclear Information System (INIS)

    Xie, Yuchao; McGill, Mitchell R.; Du, Kuo; Dorko, Kenneth; Kumer, Sean C.; Schmitt, Timothy M.; Ding, Wen-Xing; Jaeschke, Hartmut

    2015-01-01

    3′-Hydroxyacetanilide or N-acetyl-meta-aminophenol (AMAP) is generally regarded as a non-hepatotoxic analog of acetaminophen (APAP). Previous studies demonstrated the absence of toxicity after AMAP in mice, hamsters, primary mouse hepatocytes and several cell lines. In contrast, experiments with liver slices suggested that it may be toxic to human hepatocytes; however, the mechanism of toxicity is unclear. To explore this, we treated primary human hepatocytes (PHH) with AMAP or APAP for up to 48 h and measured several parameters to assess metabolism and injury. Although less toxic than APAP, AMAP dose-dependently triggered cell death in PHH as indicated by alanine aminotransferase (ALT) release and propidium iodide (PI) staining. Similar to APAP, AMAP also significantly depleted glutathione (GSH) in PHH and caused mitochondrial damage as indicated by glutamate dehydrogenase (GDH) release and the JC-1 assay. However, unlike APAP, AMAP treatment did not cause relevant c-jun-N-terminal kinase (JNK) activation in the cytosol or phospho-JNK translocation to mitochondria. To compare, AMAP toxicity was assessed in primary mouse hepatocytes (PMH). No cytotoxicity was observed as indicated by the lack of lactate dehydrogenase release and no PI staining. Furthermore, there was no GSH depletion or mitochondrial dysfunction after AMAP treatment in PMH. Immunoblotting for arylated proteins suggested that AMAP treatment caused extensive mitochondrial protein adduct formation in PHH but not in PMH. In conclusion, AMAP is hepatotoxic in PHH and the mechanism involves the formation of mitochondrial protein adducts and mitochondrial dysfunction. - Highlights: • AMAP induces cell death in primary human hepatocytes (PHH). • AMAP does not cause cell death in primary mouse hepatocytes (PMH). • AMAP leads to mitochondria dysfunction in PHH but not PMH. • Protein adduct formation and dysfunction in mitochondria correlate with toxicity.

  3. Isolation and characterization of the human parathyroid hormone-like peptide gene

    International Nuclear Information System (INIS)

    Mangin, M.; Ikeda, K.; Dreyer, B.E.; Broadus, A.E.

    1989-01-01

    A parathyroid hormone-like peptide (PTH-LP) has recently been identified in human tumors associated with the syndrome of humoral hypercalcemia of malignancy. The peptide appears to be encoded by a single-copy gene that gives rise to multiple mRNAs that are heterogeneous at both their 5' and their 3' ends. Alternative RNA splicing is responsible for the 3' heterogeneity and results in mRNAs encoding three different peptides, each with a unique C terminus. The authors have isolated and characterized the human PTHLP gene. The gene is a complex transcriptional unit spanning more than 12 kilobases of DNA and containing six exons. Two 5' exons encode distinct 5' untranslated regions and are separated by a putative promoter element, indicating that the gene either has two promoters or is alternatively spliced from a single promoter upstream of the first exon. The middle portion of the PTHLP gene, comprising exons 2-4, has an organizational pattern of introns and exons identical to that of the parathyroid hormone gene, consistent with a common ancestral origin of these two genes. Exon 4 of the PTHLP gene encodes the region common to all three peptides and the C terminus of the shortest peptide, and exons 5 and 6 encode the unique C termini of the other two peptides. Northern analysis of mRNAs from four human tumors of different histological types reveals the preferential use of 3' splicing patterns of individual tumors

  4. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo [NovaCell Technology Inc., Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, So Young [Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Department of Convergence Medicine and Pharmaceutical Biosciences, Graduate School, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Jang, Hwan-Hee [Functional Food and Nutrition Division, Department of Agrofood Resources, Rural Development Administration, Suwon 441-853 (Korea, Republic of); Ryu, Sung Ho [Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 790-784 (Korea, Republic of); Kim, Beom Joon [Department of Dermatology, Chung-Ang University College of Medicine, Seoul 156-756 (Korea, Republic of); Department of Convergence Medicine and Pharmaceutical Biosciences, Graduate School, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Taehoon G., E-mail: taehoon@novacelltech.com [NovaCell Technology Inc., Pohang, Kyungbuk 790-784 (Korea, Republic of)

    2012-11-23

    Highlights: Black-Right-Pointing-Pointer We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. Black-Right-Pointing-Pointer YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. Black-Right-Pointing-Pointer There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. Black-Right-Pointing-Pointer The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. Black-Right-Pointing-Pointer The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929-933 sequence of the {beta}1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate

  5. Laminin peptide YIGSR induces collagen synthesis in Hs27 human dermal fibroblasts

    International Nuclear Information System (INIS)

    Yoon, Jong Hyuk; Kim, Jaeyoon; Lee, Hyeongjoo; Kim, So Young; Jang, Hwan-Hee; Ryu, Sung Ho; Kim, Beom Joon; Lee, Taehoon G.

    2012-01-01

    Highlights: ► We identify a function of the YIGSR peptide to enhance collagen synthesis in Hs27. ► YIGSR peptide enhanced collagen type 1 synthesis both of gene and protein levels. ► There were no changes in cell proliferation and MMP-1 level in YIGSR treatment. ► The YIGSR effect on collagen synthesis mediated activation of FAK, pyk2 and ERK. ► The YIGSR-induced FAK and ERK activation was modulated by FAK and MEK inhibitors. -- Abstract: The dermal ECM is synthesized from fibroblasts and is primarily compromised of fibrillar collagen and elastic fibers, which support the mechanical strength and resiliency of skin, respectively. Laminin, a major glycoprotein located in the basement membrane, promotes cell adhesion, cell growth, differentiation, and migration. The laminin tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide, corresponding to the 929–933 sequence of the β1 chain, is known to be a functional motif with effects on the inhibition of tumor metastasis, the regulation of sensory axonal response and the inhibition of angiogenesis through high affinity to the 67 kDa laminin receptor. In this study, we identified a novel function of the YIGSR peptide to enhance collagen synthesis in human dermal fibroblasts. To elucidate this novel function regarding collagen synthesis, we treated human dermal fibroblasts with YIGSR peptide in both a time- and dose-dependent manner. According to subsequent experiments, we found that the YIGSR peptide strongly enhanced collagen type 1 synthesis without changing cell proliferation or cellular MMP-1 level. This YIGSR peptide-mediated collagen type 1 synthesis was modulated by FAK inhibitor and MEK inhibitor. This study clearly reveals that YIGSR peptide plays a novel function on the collagen type 1 synthesis of dermal fibroblasts and also suggests that YIGSR is a strong candidate peptide for the treatment of skin aging and wrinkles.

  6. Human Milk: Bioactive Proteins/Peptides and Functional Properties.

    Science.gov (United States)

    Lönnerdal, Bo

    2016-06-23

    Breastfeeding has been associated with many benefits, both in the short and in the long term. Infants being breastfed generally have less illness and have better cognitive development at 1 year of age than formula-fed infants. Later in life, they have a lower risk of obesity, diabetes and cardiovascular disease. Several components in breast milk may be responsible for these different outcomes, but bioactive proteins/peptides likely play a major role. Some proteins in breast milk are comparatively resistant towards digestion and may therefore exert their functions in the gastrointestinal tract in intact form or as larger fragments. Other milk proteins may be partially digested in the upper small intestine and the resulting peptides may exert functions in the lower small intestine. Lactoferrin, lysozyme and secretory IgA have been found intact in the stool of breastfed infants and are therefore examples of proteins that are resistant against proteolytic degradation in the gut. Together, these proteins serve protective roles against infection and support immune function in the immature infant. α-lactalbumin, β-casein, κ-casein and osteopontin are examples of proteins that are partially digested in the upper small intestine, and the resulting peptides influence functions in the gut. Such functions include stimulation of immune function, mineral and trace element absorption and defense against infection. © 2016 Nestec Ltd., Vevey/S. Karger AG, Basel.

  7. Dynamics of major histocompatibility complex class I association with the human peptide-loading complex.

    Science.gov (United States)

    Panter, Michaela S; Jain, Ankur; Leonhardt, Ralf M; Ha, Taekjip; Cresswell, Peter

    2012-09-07

    Although the human peptide-loading complex (PLC) is required for optimal major histocompatibility complex class I (MHC I) antigen presentation, its composition is still incompletely understood. The ratio of the transporter associated with antigen processing (TAP) and MHC I to tapasin, which is responsible for MHC I recruitment and peptide binding optimization, is particularly critical for modeling of the PLC. Here, we characterized the stoichiometry of the human PLC using both biophysical and biochemical approaches. By means of single-molecule pulldown (SiMPull), we determined a TAP/tapasin ratio of 1:2, consistent with previous studies of insect-cell microsomes, rat-human chimeric cells, and HeLa cells expressing truncated TAP subunits. We also report that the tapasin/MHC I ratio varies, with the PLC population comprising both 2:1 and 2:2 complexes, based on mutational and co-precipitation studies. The MHC I-saturated PLC may be particularly prevalent among peptide-selective alleles, such as HLA-C4. Additionally, MHC I association with the PLC increases when its peptide supply is reduced by inhibiting the proteasome or by blocking TAP-mediated peptide transport using viral inhibitors. Taken together, our results indicate that the composition of the human PLC varies under normal conditions and dynamically adapts to alterations in peptide supply that may arise during viral infection. These findings improve our understanding of the quality control of MHC I peptide loading and may aid the structural and functional modeling of the human PLC.

  8. The evolution of the natriuretic peptides - Current applications in human and animal medicine.

    Science.gov (United States)

    van Kimmenade, Roland R J; Januzzi, James L

    2009-05-01

    Although natriuretic peptides have played an important role in the fluid homeostasis of vertebrates for over several million years, their importance has only been noticed in the last few decades. Yet, the family of natriuretic peptides have since their discovery, drawn the attention of a broad spectrum of physicians and researchers involved in the maintenance of fluid homeostasis, including marine biologists, basic scientists, physicians and veterinarians. While all natriuretic peptides share a common phylogenetic background, due to differences in receptor-binding affinities, they have evolved into different hormones with clear distinct functions. B-type natriuretic peptide (BNP) is the most studied member of the natriuretic peptide family, and together with its cleavage equivalent amino-terminal proB-type natriuretic peptide (NT-proBNP) these peptides have emerged as important cardiovascular serum markers. However, since their introduction, physicians involved in human or animal medicine have faced common but also different challenges in order to optimally interpret the diagnostic and prognostic value of these novel cardiovascular biomarkers.

  9. Identification and accurate quantification of structurally related peptide impurities in synthetic human C-peptide by liquid chromatography-high resolution mass spectrometry.

    Science.gov (United States)

    Li, Ming; Josephs, Ralf D; Daireaux, Adeline; Choteau, Tiphaine; Westwood, Steven; Wielgosz, Robert I; Li, Hongmei

    2018-06-04

    Peptides are an increasingly important group of biomarkers and pharmaceuticals. The accurate purity characterization of peptide calibrators is critical for the development of reference measurement systems for laboratory medicine and quality control of pharmaceuticals. The peptides used for these purposes are increasingly produced through peptide synthesis. Various approaches (for example mass balance, amino acid analysis, qNMR, and nitrogen determination) can be applied to accurately value assign the purity of peptide calibrators. However, all purity assessment approaches require a correction for structurally related peptide impurities in order to avoid biases. Liquid chromatography coupled to high resolution mass spectrometry (LC-hrMS) has become the key technique for the identification and accurate quantification of structurally related peptide impurities in intact peptide calibrator materials. In this study, LC-hrMS-based methods were developed and validated in-house for the identification and quantification of structurally related peptide impurities in a synthetic human C-peptide (hCP) material, which served as a study material for an international comparison looking at the competencies of laboratories to perform peptide purity mass fraction assignments. More than 65 impurities were identified, confirmed, and accurately quantified by using LC-hrMS. The total mass fraction of all structurally related peptide impurities in the hCP study material was estimated to be 83.3 mg/g with an associated expanded uncertainty of 3.0 mg/g (k = 2). The calibration hierarchy concept used for the quantification of individual impurities is described in detail. Graphical abstract ᅟ.

  10. Resveratrol-Sensitized UVA Induced Apoptosis in Human Keratinocytes through Mitochondrial Oxidative Stress and Pore Opening

    Science.gov (United States)

    Boyer, Jean Z; Jandova, Jana; Janda, Jaroslav; Vleugels, Frank R; Elliott, David; Sligh, James E

    2012-01-01

    Resveratrol (3, 5, 4′-trihydroxy- trans- stilbene), a polyphenol compound, is derived from natural products such as the skin of red grapes, blueberries and cranberries. Resveratrol not only exhibits antioxidant, cardioprotection, and anti-aging properties, but can also inhibit cancer cell growth and induce apoptosis. It has been shown that resveratrol inhibits the activation of Nf-kB and subsequently down regulates the expression of Nf-kB regulated genes such as interleukin-2 and Bcl-2, leading to cell cycle arrest and increased apoptosis in multiple myeloma cells. In the skin, resveratrol has been reported to sensitize keratinocytes to UVA induced apoptosis. However, the effect of resveratrol on opening of the mitochondrial permeability transition pore has not been previously examined. Our data show that UVA (14J/cm2) along with resveratrol causes massive oxidative stress in mitochondria. As a consequence of oxidative stress, the mitochondrial membrane potential decreases which results in opening of the mitochondrial pores ultimately leading to apoptosis in human keratinocytes. These results may have clinical implications for development of future chemotherapeutic treatment for tumors of the skin. PMID:22673012

  11. The Human Escort Protein Hep Binds to the ATPase Domain of Mitochondrial Hsp70 and Regulates ATP Hydrolysis*

    Science.gov (United States)

    Zhai, Peng; Stanworth, Crystal; Liu, Shirley; Silberg, Jonathan J.

    2008-01-01

    Hsp70 escort proteins (Hep) have been implicated as essential for maintaining the function of yeast mitochondrial hsp70 molecular chaperones (mtHsp70), but the role that escort proteins play in regulating mammalian chaperone folding and function has not been established. We present evidence that human mtHsp70 exhibits limited solubility due to aggregation mediated by its ATPase domain and show that human Hep directly enhances chaperone solubility through interactions with this domain. In the absence of Hep, mtHsp70 was insoluble when expressed in Escherichia coli, as was its isolated ATPase domain and a chimera having this domain fused to the peptide-binding domain of HscA, a soluble monomeric chaperone. In contrast, these proteins all exhibited increased solubility when expressed in the presence of Hep. In vitro studies further revealed that purified Hep regulates the interaction of mtHsp70 with nucleotides. Full-length mtHsp70 exhibited slow intrinsic ATP hydrolysis activity (6.8 ± 0.2 × 10-4 s-1) at 25 °C, which was stimulated up to 49-fold by Hep. Hep also stimulated the activity of the isolated ATPase domain, albeit to a lower maximal extent (11.5-fold). In addition, gel-filtration studies showed that formation of chaperone-escort protein complexes inhibited mtHsp70 self-association, and they revealed that Hep binding to full-length mtHsp70 and its isolated ATPase domain is strongest in the absence of nucleotides. These findings provide evidence that metazoan escort proteins regulate the catalytic activity and solubility of their cognate chaperones, and they indicate that both forms of regulation arise from interactions with the mtHsp70 ATPase domain. PMID:18632665

  12. The human escort protein Hep binds to the ATPase domain of mitochondrial hsp70 and regulates ATP hydrolysis.

    Science.gov (United States)

    Zhai, Peng; Stanworth, Crystal; Liu, Shirley; Silberg, Jonathan J

    2008-09-19

    Hsp70 escort proteins (Hep) have been implicated as essential for maintaining the function of yeast mitochondrial hsp70 molecular chaperones (mtHsp70), but the role that escort proteins play in regulating mammalian chaperone folding and function has not been established. We present evidence that human mtHsp70 exhibits limited solubility due to aggregation mediated by its ATPase domain and show that human Hep directly enhances chaperone solubility through interactions with this domain. In the absence of Hep, mtHsp70 was insoluble when expressed in Escherichia coli, as was its isolated ATPase domain and a chimera having this domain fused to the peptide-binding domain of HscA, a soluble monomeric chaperone. In contrast, these proteins all exhibited increased solubility when expressed in the presence of Hep. In vitro studies further revealed that purified Hep regulates the interaction of mtHsp70 with nucleotides. Full-length mtHsp70 exhibited slow intrinsic ATP hydrolysis activity (6.8+/-0.2 x 10(-4) s(-1)) at 25 degrees C, which was stimulated up to 49-fold by Hep. Hep also stimulated the activity of the isolated ATPase domain, albeit to a lower maximal extent (11.5-fold). In addition, gel-filtration studies showed that formation of chaperone-escort protein complexes inhibited mtHsp70 self-association, and they revealed that Hep binding to full-length mtHsp70 and its isolated ATPase domain is strongest in the absence of nucleotides. These findings provide evidence that metazoan escort proteins regulate the catalytic activity and solubility of their cognate chaperones, and they indicate that both forms of regulation arise from interactions with the mtHsp70 ATPase domain.

  13. Characterization of the cell penetrating properties of a human salivary proline-rich peptide.

    Science.gov (United States)

    Radicioni, Giorgia; Stringaro, Annarita; Molinari, Agnese; Nocca, Giuseppina; Longhi, Renato; Pirolli, Davide; Scarano, Emanuele; Iavarone, Federica; Manconi, Barbara; Cabras, Tiziana; Messana, Irene; Castagnola, Massimo; Vitali, Alberto

    2015-11-01

    Saliva contains hundreds of small proline-rich peptides most of which derive from the post-translational and post-secretory processing of the acidic and basic salivary proline-rich proteins. Among these peptides we found that a 20 residue proline-rich peptide (p1932), commonly present in human saliva and patented for its antiviral activity, was internalized within cells of the oral mucosa. The cell-penetrating properties of p1932 have been studied in a primary gingival fibroblast cell line and in a squamous cancer cell line, and compared to its retro-inverso form. We observed by mass-spectrometry, flow cytometry and confocal microscopy that both peptides were internalized in the two cell lines on a time scale of minutes, being the natural form more efficient than the retro-inverso one. The cytosolic localization was dependent on the cell type: both peptide forms were able to localize within nuclei of tumoral cells, but not in the nuclei of gingival fibroblasts. The uptake was shown to be dependent on the culture conditions used: peptide internalization was indeed effective in a complete medium than in a serum-free one allowing the hypothesis that the internalization could be dependent on the cell cycle. Both peptides were internalized likely by a lipid raft-mediated endocytosis mechanism as suggested by the reduced uptake in the presence of methyl-ß-cyclodextrin. These results suggest that the natural peptide may play a role within the cells of the oral mucosa after its secretion and subsequent internalization. Furthermore, lack of cytotoxicity of both peptide forms highlights their possible application as novel drug delivery agents.

  14. Human-gyrovirus-Apoptin triggers mitochondrial death pathway--Nur77 is required for apoptosis triggering.

    Science.gov (United States)

    Chaabane, Wiem; Cieślar-Pobuda, Artur; El-Gazzah, Mohamed; Jain, Mayur V; Rzeszowska-Wolny, Joanna; Rafat, Mehrdad; Stetefeld, Joerg; Ghavami, Saeid; Los, Marek J

    2014-09-01

    The human gyrovirus derived protein Apoptin (HGV-Apoptin) a homologue of the chicken anemia virus Apoptin (CAV-Apoptin), a protein with high cancer cells selective toxicity, triggers apoptosis selectively in cancer cells. In this paper, we show that HGV-Apoptin acts independently from the death receptor pathway as it induces apoptosis in similar rates in Jurkat cells deficient in either FADD (fas-associated death domain) function or caspase-8 (key players of the extrinsic pathway) and their parental clones. HGV-Apoptin induces apoptosis via the activation of the mitochondrial intrinsic pathway. It induces both mitochondrial inner and outer membrane permebilization, characterized by the loss of the mitochondrial potential and the release into cytoplasm of the pro-apoptotic molecules including apoptosis inducing factor and cytochrome c. HGV-Apoptin acts via the apoptosome, as lack of expression of apoptotic protease-activating factor 1 in murine embryonic fibroblast strongly protected the cells from HGV-Apoptin-induced apoptosis. Moreover, QVD-oph a broad-spectrum caspase inhibitor delayed HGV-Apoptin-induced death. On the other hand, overexpression of the anti-apoptotic BCL-XL confers resistance to HGV-Apoptin-induced cell death. In contrast, cells that lack the expression of the pro-apoptotic BAX and BAK are protected from HGV-Apoptin induced apoptosis. Furthermore, HGV-Apoptin acts independently from p53 signal but triggers the cytoplasmic translocation of Nur77. Taking together these data indicate that HGV-Apoptin acts through the mitochondrial pathway, in a caspase-dependent manner but independently from the death receptor pathway. Copyright © 2014 Neoplasia Press, Inc. Published by Elsevier Inc. All rights reserved.

  15. Destabilization of Human Insulin Fibrils by Peptides of Fruit Bromelain Derived From Ananas comosus (Pineapple).

    Science.gov (United States)

    Das, Sromona; Bhattacharyya, Debasish

    2017-12-01

    Deposition of insulin aggregates in human body leads to dysfunctioning of several organs. Effectiveness of fruit bromelain from pineapple in prevention of insulin aggregate was investigated. Proteolyses of bromelain was done as par human digestive system and the pool of small peptides was separated from larger peptides and proteins. Under conditions of growth of insulin aggregates from its monomers, this pool of peptides restricted the reaction upto formation of oligomers of limited size. These peptides also destabilized preformed insulin aggregates to oligomers. These processes were followed fluorimetrically using Thioflavin T and 1-ANS, size-exclusion HPLC, dynamic light scattering, atomic force microscopy, and transmission electron microscopy. Sequences of insulin (A and B chains) and bromelain were aligned using Clustal W software to predict most probable sites of interactions. Synthetic tripeptides corresponding to the hydrophobic interactive sites of bromelain showed disaggregation of insulin suggesting specificity of interactions. The peptides GG and AAA serving as negative controls showed no potency in destabilization of aggregates. Disaggregation potency of the peptides was also observed when insulin was deposited on HepG2 liver cells where no formation of toxic oligomers occurred. Amyloidogenic des-octapeptide (B23-B30 of insulin) incapable of cell signaling showed cytotoxicity similar to insulin. This toxicity could be neutralized by bromelain derived peptides. FT-IR and far-UV circular dichroism analysis indicated that disaggregated insulin had structure distinctly different from that of its hexameric (native) or monomeric states. Based on the stoichiometry of interaction and irreversibility of disaggregation, the mechanism/s of the peptides and insulin interactions has been proposed. J. Cell. Biochem. 118: 4881-4896, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Synergistic Protective Effects of Mitochondrial Division Inhibitor 1 and Mitochondria-Targeted Small Peptide SS31 in Alzheimer's Disease.

    Science.gov (United States)

    Reddy, P Hemachandra; Manczak, Maria; Yin, XiangLing; Reddy, Arubala P

    2018-01-01

    The purpose of our study was to determine the synergistic protective effects of mitochondria-targeted antioxidant SS31 and mitochondria division inhibitor 1 (Mdivi1) in Alzheimer's disease (AD). Using biochemical methods, we assessed mitochondrial function by measuring the levels of hydrogen peroxide, lipid peroxidation, cytochrome c oxidase activity, mitochondrial ATP, and GTPase Drp1 enzymatic activity in mutant AβPP cells. Using biochemical methods, we also measured cell survival and apoptotic cell death. Amyloid-β (Aβ) levels were measured using sandwich ELISA, and using real-time quantitative RT-PCR, we assessed mtDNA (mtDNA) copy number in relation to nuclear DNA (nDNA) in all groups of cells. We found significantly reduced levels of Aβ40 and Aβ42 in mutant AβPP cells treated with SS31, Mdivi1, and SS31+Mdivi1, and the reduction of Aβ42 levels were much higher in SS31+Mdivi1 treated cells than individual treatments of SS31 and Mdivi1. The levels of mtDNA copy number and cell survival were significantly increased in SS31, Mdivi1, and SS31+Mdivi1 treated mutant AβPP cells; however, the increased levels of mtDNA copy number and cell survival were much higher in SS31+Mdivi1 treated cells than individual treatments of SS31 and Mdivi1. Mitochondrial dysfunction is significantly reduced in SS31, Mdivi1, and SS31+Mdivi1 treated mutant AβPP cells; however, the reduction is much higher in cells treated with both SS31+Mdvi1. Similarly, GTPase Drp1 activity is reduced in all treatments, but reduced much higher in SS31+Mdivi1 treated cells. These observations strongly suggest that combined treatment of SS31+Mdivi1 is effective than individual treatments of SS31 and Mdivi1. Therefore, we propose that combined treatment of SS31+Mdivi1 is a better therapeutic strategy for AD. Ours is the first study to investigate combined treatment of mitochondria-targeted antioxidant SS31 and mitochondrial division inhibitor 1 in AD neurons.

  17. Mitochondrial cardiomyopathies

    Directory of Open Access Journals (Sweden)

    Ayman W. El-Hattab

    2016-07-01

    Full Text Available Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA while more than 99% of them are encoded by nuclear DNA (nDNA. Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs of various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular noncompaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain (ETC complexes subunits and their assembly factors, mitochondrial tRNAs, rRNAs, ribosomal proteins, and translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia.

  18. Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis

    International Nuclear Information System (INIS)

    Wu, C.-W.; Ping, Y.-H.; Yen, J.-C.; Chang, C.-Y.; Wang, S.-F.; Yeh, C.-L.; Chi, C.-W.; Lee, H.-C.

    2007-01-01

    Methamphetamine (METH) is an abused drug that may cause psychiatric and neurotoxic damage, including degeneration of monoaminergic terminals and apoptosis of non-monoaminergic cells in Brain. The cellular and molecular mechanisms underlying these METH-induced neurotoxic effects remain to be clarified. In this study, we performed a time course assessment to investigate the effects of METH on intracellular oxidative stress and mitochondrial alterations in a human dopaminergic neuroblastoma SH-SY5Y cell line. We characterized that METH induces a temporal sequence of several cellular events including, firstly, a decrease in mitochondrial membrane potential within 1 h of the METH treatment, secondly, an extensive decline in mitochondrial membrane potential and increase in the level of reactive oxygen species (ROS) after 8 h of the treatment, thirdly, an increase in mitochondrial mass after the drug treatment for 24 h, and finally, a decrease in mtDNA copy number and mitochondrial proteins per mitochondrion as well as the occurrence of apoptosis after 48 h of the treatment. Importantly, vitamin E attenuated the METH-induced increases in intracellular ROS level and mitochondrial mass, and prevented METH-induced cell death. Our observations suggest that enhanced oxidative stress and aberrant mitochondrial biogenesis may play critical roles in METH-induced neurotoxic effects

  19. Mitochondrial Toxicity in Human Pregnancy: An Update on Clinical and Experimental Approaches in the Last 10 Years

    Directory of Open Access Journals (Sweden)

    Constanza Morén

    2014-09-01

    Full Text Available Mitochondrial toxicity can be one of the most dreadful consequences of exposure to a wide range of external agents including pathogens, therapeutic agents, abuse drugs, toxic gases and other harmful chemical substances. However, little is known about the effects of mitochondrial toxicity on pregnant women exposed to these agents that may exert transplacental activity and condition fetal remodeling. It has been hypothesized that mitochondrial toxicity may be involved in some adverse obstetric outcomes. In the present study, we investigated the association between exposure to mitochondrial toxic agents and pathologic conditions ranging from fertility defects, detrimental fetal development and impaired newborn health due to intra-uterine exposure. We have reviewed data from studies in human subjects to propose mechanisms of mitochondrial toxicity that could be associated with the symptoms present in both exposed pregnant and fetal patients. Since some therapeutic interventions or accidental exposure cannot be avoided, further research is needed to gain insight into the molecular pathways leading to mitochondrial toxicity during pregnancy. The ultimate objective of these studies should be to reduce the mitochondrial toxicity of these agents and establish biomarkers for gestational monitoring of harmful effects.

  20. A role for human mitochondrial complex II in the production of reactive oxygen species in human skin

    Directory of Open Access Journals (Sweden)

    Alasdair Anderson

    2014-01-01

    Full Text Available The mitochondrial respiratory chain is a major generator of cellular oxidative stress, thought to be an underlying cause of the carcinogenic and ageing process in many tissues including skin. Previous studies of the relative contributions of the respiratory chain (RC complexes I, II and III towards production of reactive oxygen species (ROS have focussed on rat tissues and certainly not on human skin which is surprising as this tissue is regularly exposed to UVA in sunlight, a potent generator of cellular oxidative stress. In a novel approach we have used an array of established specific metabolic inhibitors and DHR123 fluorescence to study the relative roles of the mitochondrial RC complexes in cellular ROS production in 2 types of human skin cells. These include additional enhancement of ROS production by exposure to physiological levels of UVA. The effects within epidermal and dermal derived skin cells are compared to other tissue cell types as well as those harbouring a compromised mitochondrial status (Rho-zero A549. The results show that the complex II inhibitor, TTFA, was the only RC inhibitor to significantly increase UVA-induced ROS production in both skin cell types (P<0.05 suggesting that the role of human skin complex II in terms of influencing ROS production is more important than previously thought particularly in comparison to liver cells. Interestingly, two-fold greater maximal activity of complex II enzyme was observed in both skin cell types compared to liver (P<0.001. The activities of RC enzymes appear to decrease with increasing age and telomere length is correlated with ageing. Our study showed that the level of maximal complex II activity was higher in the MRC5/hTERT (human lung fibroblasts transfected with telomerase cells than the corresponding wild type cells (P=0.0012 which can be considered (in terms of telomerase activity as models of younger and older cells respectively.

  1. Primary structure of the human M2 mitochondrial autoantigen of primary biliary cirrhosis: Dihydrolipoamide acetyltransferase

    International Nuclear Information System (INIS)

    Coppel, R.L.; McNeilage, L.J.; Surh, C.D.; Van De Water, J.; Spithill, T.W.; Whittingham, S.; Gershwin, M.E.

    1988-01-01

    Primary biliary cirrhosis is a chronic, destructive autoimmune liver disease of humans. Patient sera are characterized by a high frequency of autoantibodies to a M r 70,000 mitochondrial antigen a component of the M2 antigen complex. The authors have identified a human cDNA clone encoding the complete amino acid sequence of this autoantigen. The predicted structure has significant similarity with the dihydrolipoamide acetyltransferase of the Escherichia coli pyruvate dehydrogenase multienzyme complex. The human sequence preserves the Glu-Thr-Asp-Lys-Ala motif of the lipoyl-binding site and has two potential binding sites. Expressed fragments of the cDNA react strongly with sera from patients with primary biliary cirrhosis but not with sera from patients with autoimmune chronic active hepatitis or sera from healthy subjects

  2. PreproVIP-derived peptides in the human female genital tract: expression and biological function

    DEFF Research Database (Denmark)

    Bredkjoer, H E; Palle, C; Ekblad, E

    1997-01-01

    The aim of the study was to elucidate the localization, distribution, colocalization and biological effect of preproVIP-derived peptides in the human female genital tract. Radioimmunoassays applying antisera against the five functional domains of the VIP precursor in combination with immunohistoc......The aim of the study was to elucidate the localization, distribution, colocalization and biological effect of preproVIP-derived peptides in the human female genital tract. Radioimmunoassays applying antisera against the five functional domains of the VIP precursor in combination...... with immunohistochemistry were used. The effect of preproVIP 22-79, preproVIP 111-122 and preproVIP 156-170 on genital smooth muscle activity in the Fallopian tube was investigated in vitro and compared to that of VIP. All the preproVIP-derived peptides were expressed throughout the genital tract in neuronal elements...

  3. A nanoengineered peptidic delivery system with specificity for human brain capillary endothelial cells

    DEFF Research Database (Denmark)

    Wu, Linping; Moghimi, Seyed Moein

    2016-01-01

    , without manipulating the integrity of the BBB. This may be achieved by simultaneous and appropriate nanoparticle surface decoration with polymers that protect nanoparticles against rapid interception by body's defenses and ligands specific for cerebral capillary endothelial cells. To date, the binding...... avidity of the majority of the so-called ‘brain-specific’ nanoparticles to the brain capillary endothelial cells has been poor, even during in vitro conditions. We have addressed this issue and designed a versatile peptidic nanoplatform with high binding avidity to the human cerebral capillary endothelial...... cells. This was achieved by selecting an appropriate phage-derived peptide with high specificity for human brain capillary endothelial cells, which following careful structural modifications spontaneously formed a nanoparticle-fiber network. The peptidic network was characterized fully and its uptake...

  4. Glucagon-like peptide 2 inhibits ghrelin secretion in humans

    DEFF Research Database (Denmark)

    Banasch, Matthias; Bulut, Kerem; Hagemann, Dirk

    2006-01-01

    INTRODUCTION: The growth hormone secretagogue receptor ligand ghrelin is known to play a pivotal role in the central nervous control of energy homeostasis. Circulating ghrelin levels are high under fasting conditions and decline after meal ingestion, but the mechanisms underlying the postprandial...... drop in ghrelin levels are poorly understood. In the present study we addressed, whether (1) exogenous GLP-2 administration decreases ghrelin levels and (2) what other endogenous factors are related to ghrelin secretion under fasting conditions. PATIENTS AND METHODS: Fifteen healthy male volunteers...... were studied with the intravenous infusion of GLP-2 (2 pmol l(-1) min(-1)) or placebo over 120 min in the fasting state. Plasma concentrations of glucose, insulin, C-peptide, glucagon, intact GLP-2 and ghrelin were determined. RESULTS: During the infusion of GLP-2, plasma concentrations of intact GLP-2...

  5. Influence of erythrocyte oxygenation and intravascular ATP on resting and exercising skeletal muscle blood flow in humans with mitochondrial myopathy

    DEFF Research Database (Denmark)

    Jeppesen, Tina D; Vissing, John; González-Alonso, José

    2012-01-01

    Oxygen (O(2)) extraction is impaired in exercising skeletal muscle of humans with mutations of mitochondrial DNA (mtDNA), but the muscle hemodynamic response to exercise has never been directly investigated. This study sought to examine the extent to which human skeletal muscle perfusion can incr...

  6. Intracellular calcium mobilization in human lymphocytes in the presence of synthetic IgG Fc peptides

    International Nuclear Information System (INIS)

    Plummer, J.M.; Panahi, Y.P.; McClurg, M.R.; Hahn, G.S.; Naemura, J.R.

    1986-01-01

    Certain synthetic peptides derived from the Fc region of human IgG can suppress the mixed lymphocyte response. These peptides were tested for the ability to induce intracellular calcium mobilization in human lymphocytes using fura-2/calcium fluorescence. T cells were isolated by rosetting and were > 90% OKT3 positive. Lymphocytes were incubated with the acetoxymethyl ester of fura-2 (10 μM) for 60 minutes at 37 0 C. Fluorescence intensity changes at 505 nm were monitored at an excitation lambda of 340 nm. Fura-2 was not cytotoxic compared to quin-2 since fura-2 loaded mononuclear cells incorporated 3 H-thymidine when stimulated by PHA, succinyl Con A, PWM or LPS-STM whereas quin-2 loaded cells showed a dose dependent inhibition of proliferation. Those synthetic peptides (5 to 400 μg/ml) that suppressed the MLR induced a dose dependent increase in intracellular calcium in mononuclear cells, lymphocytes, non-T cells and T cells. The fura-2 calcium fluorescence time course response was similar for peptide, PHA and succinyl Con A. These results suggest that these immunoregulatory peptides suppress 3 H-thymidine incorporation at a point after intracellular calcium mobilization and that fura-2 has advantages over quin-2 in measuring intracellular calcium levels in lymphocytes

  7. Effects of Mitochondrial Uncoupling Protein 2 Inhibition by Genipin in Human Cumulus Cells

    Directory of Open Access Journals (Sweden)

    Hongshan Ge

    2015-01-01

    Full Text Available UCP2 plays a physiological role by regulating mitochondrial biogenesis, maintaining energy balance, ROS elimination, and regulating cellular autophagy in numerous tissues. But the exact roles of UCP2 in cumulus cells are still not clear. Genipin, a special UCP2 inhibitor, was added into the cultural medium to explore the roles of UCP2 in human cumulus cells. There were no significant differences in ATP and mitochondrial membrane potential levels in cumulus cells from UCP2 inhibiting groups as compared with the control. The levels of ROS and Mn-SOD were markedly elevated after UCP2 inhibited Genipin. However, the ratio of reduced GSH to GSSG significantly declined after treatment with Genipin. UCP2 inhibition by Genipin also resulted in obvious increase in the active caspase-3, which accompanied the decline of caspase-3 mRNA. The level of progesterone in culture medium declined obviously after Genipin treatment. But there was no significant difference in estradiol concentrations. This study indicated that UCP2 is expressed in human cumulus cells and plays important roles on mediate ROS production, apoptotic process, and steroidogenesis, suggesting UCP2 may be involved in regulation of follicle development and oocyte maturation and quality.

  8. Cholesterol can modulate mitochondrial aquaporin-8 expression in human hepatic cells.

    Science.gov (United States)

    Danielli, Mauro; Capiglioni, Alejo M; Marrone, Julieta; Calamita, Giuseppe; Marinelli, Raúl A

    2017-05-01

    Hepatocyte mitochondrial aquaporin-8 (mtAQP8) works as a multifunctional membrane channel protein that facilitates the uptake of ammonia for its detoxification to urea as well as the mitochondrial release of hydrogen peroxide. Since early oligonucleotide microarray studies in liver of cholesterol-fed mice showed an AQP8 downregulation, we tested whether alterations of cholesterol content per se modulate mtAQP8 expression in human hepatocyte-derived Huh-7 cells. Cholesterol loading with methyl-β-cyclodextrin (mβCD):cholesterol complexes downregulated the proteolytic activation of cholesterol-responsive sterol regulatory element-binding protein (SREBP) transcriptions factors 1 and 2, and the expression of the target gene 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Under such conditions, mtAQP8 mRNA and protein expressions were significantly reduced. In contrast, cholesterol depletion using mβCD alone increased SREBP-1 and 2 activation and upregulated HMGCR and mtAQP8 mRNA and protein expressions. The results suggest that cholesterol can regulate transcriptionally human hepatocyte mtAQP8 expression likely via SREBPs. The functional implications of our findings are discussed. © 2017 IUBMB Life, 69(5):341-346, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  9. The Plant Decapeptide OSIP108 Can Alleviate Mitochondrial Dysfunction Induced by Cisplatin in Human Cells

    Directory of Open Access Journals (Sweden)

    Pieter Spincemaille

    2014-09-01

    Full Text Available We investigated the effect of the Arabidopsis thaliana-derived decapeptide OSIP108 on human cell tolerance to the chemotherapeutic agent cisplatin (Cp, which induces apoptosis and mitochondrial dysfunction. We found that OSIP108 increases the tolerance of HepG2 cells to Cp and prevents Cp-induced changes in basic cellular metabolism. More specifically, we demonstrate that OSIP108 reduces Cp-induced inhibition of respiration, decreases glycolysis and prevents Cp-uptake in HepG2 cells. Apart from its protective action against Cp in human cells, OSIP108 also increases the yeast Saccharomyces cerevisiae tolerance to Cp. A limited yeast-based study of OSIP108 analogs showed that cyclization does not severely affect its activity, which was further confirmed in HepG2 cells. Furthermore, the similarity in the activity of the D-stereoisomer (mirror image form of OSIP108 with the L-stereoisomer suggests that its mode of action does not involve binding to a stereospecific receptor. In addition, as OSIP108 decreases Cp uptake in HepG2 cells and the anti-Cp activity of OSIP108 analogs without free cysteine is reduced, OSIP108 seems to protect against Cp-induced toxicity only partly via complexation. Taken together, our data indicate that OSIP108 and its cyclic derivatives can protect against Cp-induced toxicity and, thus, show potential as treatment options for mitochondrial dysfunction- and apoptosis-related conditions.

  10. Gastrin-releasing peptide receptor imaging in human breast carcinoma versus immunohistochemistry

    NARCIS (Netherlands)

    de Wiele, Christophe Van; Phonteyne, Philippe; Pauwels, Patrick; Goethals, Ingeborg; Van den Broecke, Rudi; Cocquyt, Veronique; Dierckx, Rudi Andre

    This study reports on the uptake of (99m)Tc-RP527 by human breast carcinoma and its relationship to gastrin-releasing peptide receptor (GRIP-R) expression as measured by immunohistochemistry (IHC). Methods: Nine patients referred because of a clinical diagnosis suggestive of breast carcinoma and 5

  11. Peptide Mimicrying Between SARS Coronavirus Spike Protein and Human Proteins Reacts with SARS Patient Serum

    Directory of Open Access Journals (Sweden)

    K.-Y. Hwa

    2008-01-01

    Full Text Available Molecular mimicry, defined as similar structures shared by molecules from dissimilar genes or proteins, is a general strategy used by pathogens to infect host cells. Severe acute respiratory syndrome (SARS is a new human respiratory infectious disease caused by SARS coronavirus (SARS-CoV. The spike (S protein of SARS-CoV plays an important role in the virus entry into a cell. In this study, eleven synthetic peptides from the S protein were selected based on its sequence homology with human proteins. Two of the peptides D07 (residues 927–937 and D08 (residues 942–951 were recognized by the sera of SARS patients. Murine hyperimmune sera against these peptides bound to proteins of human lung epithelial cells A549. Another peptide D10 (residues 490–502 stimulated A549 to proliferate and secrete IL-8. The present results suggest that the selected S protein regions, which share sequence homology with human proteins, may play important roles in SARS-CoV infection.

  12. Identification of human embryonic progenitor cell targeting peptides using phage display.

    Directory of Open Access Journals (Sweden)

    Paola A Bignone

    Full Text Available Human pluripotent stem (hPS cells are capable of differentiation into derivatives of all three primary embryonic germ layers and can self-renew indefinitely. They therefore offer a potentially scalable source of replacement cells to treat a variety of degenerative diseases. The ability to reprogram adult cells to induced pluripotent stem (iPS cells has now enabled the possibility of patient-specific hPS cells as a source of cells for disease modeling, drug discovery, and potentially, cell replacement therapies. While reprogramming technology has dramatically increased the availability of normal and diseased hPS cell lines for basic research, a major bottleneck is the critical unmet need for more efficient methods of deriving well-defined cell populations from hPS cells. Phage display is a powerful method for selecting affinity ligands that could be used for identifying and potentially purifying a variety of cell types derived from hPS cells. However, identification of specific progenitor cell-binding peptides using phage display may be hindered by the large cellular heterogeneity present in differentiating hPS cell populations. We therefore tested the hypothesis that peptides selected for their ability to bind a clonal cell line derived from hPS cells would bind early progenitor cell types emerging from differentiating hPS cells. The human embryonic stem (hES cell-derived embryonic progenitor cell line, W10, was used and cell-targeting peptides were identified. Competition studies demonstrated specificity of peptide binding to the target cell surface. Efficient peptide targeted cell labeling was accomplished using multivalent peptide-quantum dot complexes as detected by fluorescence microscopy and flow cytometry. The cell-binding peptides were selective for differentiated hPS cells, had little or no binding on pluripotent cells, but preferential binding to certain embryonic progenitor cell lines and early endodermal hPS cell derivatives. Taken

  13. Secreted Human Adipose Leptin Decreases Mitochondrial Respiration in HCT116 Colon Cancer Cells

    Science.gov (United States)

    Yehuda-Shnaidman, Einav; Nimri, Lili; Tarnovscki, Tanya; Kirshtein, Boris; Rudich, Assaf; Schwartz, Betty

    2013-01-01

    Obesity is a key risk factor for the development of colon cancer; however, the endocrine/paracrine/metabolic networks mediating this connection are poorly understood. Here we hypothesize that obesity results in secreted products from adipose tissue that induce malignancy-related metabolic alterations in colon cancer cells. Human HCT116 colon cancer cells, were exposed to conditioned media from cultured human adipose tissue fragments of obese vs. non-obese subjects. Oxygen consumption rate (OCR, mostly mitochondrial respiration) and extracellular acidification rate (ECAR, mostly lactate production via glycolysis) were examined vis-à-vis cell viability and expression of related genes and proteins. Our results show that conditioned media from obese (vs. non-obese) subjects decreased basal (40%, prespiration and function in HCT116 colon cancer cells, an effect that is at least partly mediated by leptin. These results highlight a putative novel mechanism for obesity-associated risk of gastrointestinal malignancies, and suggest potential new therapeutic avenues. PMID:24073224

  14. Radioimmunoassay for the middle region of human parathyroid hormone: comparison of two radioiodinated synthetic peptides

    International Nuclear Information System (INIS)

    Sharp, M.E.; Marx, S.J.

    1985-01-01

    Two synthetic peptides were evaluated to develop radioligands for midregion-specific radioimmunoassay (RIA) of human parathyroid hormone (hPTH). Both radioligands were tested using three anti-PTH sera of proven clinical utility. While each of these midregion-directed antisera showed unique specificity, they all reacted with high affinity with both radioligands and none of them discriminated significantly between the two synthetic midregion peptides. Analysis of data on the relation of serum calcium and hPTH midregion immunoreactivity showed a useful separation of groups (all nonazotemic) with primary hyperparathyroidism, secondary hyperparathyroidism, primary hypoparathyroidism and secondary hypoparathyroidism. (Auth.)

  15. The pyrimidine nucleotide carrier PNC1 and mitochondrial trafficking of thymidine phosphates in cultured human cells

    Energy Technology Data Exchange (ETDEWEB)

    Franzolin, Elisa; Miazzi, Cristina; Frangini, Miriam; Palumbo, Elisa; Rampazzo, Chiara [Department of Biology, University of Padova, Via Ugo Bassi 58B, I-35131 Padova (Italy); Bianchi, Vera, E-mail: vbianchi@bio.unipd.it [Department of Biology, University of Padova, Via Ugo Bassi 58B, I-35131 Padova (Italy)

    2012-10-15

    In cycling cells cytosolic de novo synthesis of deoxynucleotides is the main source of precursors for mitochondrial (mt) DNA synthesis. The transfer of deoxynucleotides across the inner mt membrane requires protein carriers. PNC1, a SLC25 family member, exchanges pyrimidine nucleoside triphosphates in liposomes and its downregulation decreases mtUTP concentration in cultured cells. By an isotope-flow protocol we confirmed transport of uridine nucleotides by PNC1 in intact cultured cells and investigated PNC1 involvement in the mt trafficking of thymidine phosphates. Key features of our approach were the manipulation of PNC1 expression by RNA interference or inducible overexpression, the employment of cells proficient or deficient for cytosolic thymidine kinase (TK1) to distinguish the direction of flow of thymidine nucleotides across the mt membrane during short pulses with [{sup 3}H]-thymidine, the determination of mtdTTP specific radioactivity to quantitate the rate of mtdTTP export to the cytoplasm. Downregulation of PNC1 in TK1{sup -} cells increased labeled dTTP in mitochondria due to a reduced rate of export. Overexpression of PNC1 in TK1{sup +} cells increased mtdTTP pool size and radioactivity, suggesting an involvement in the import of thymidine phosphates. Thus PNC1 is a component of the network regulating the mtdTTP pool in human cells. -- Highlights: Black-Right-Pointing-Pointer Thymidine phosphates exchange between mitochondria and cytosol in mammalian cells. Black-Right-Pointing-Pointer siRNA-downregulation of PNC1 delays mitochondrial dTTP export in TK1{sup -} cells. Black-Right-Pointing-Pointer PNC1 overexpression accumulates dTTP in mitochondria of TK1{sup +} cells. Black-Right-Pointing-Pointer PNC1 exchanges thymidine nucleotides across the mitochondrial inner membrane. Black-Right-Pointing-Pointer PNC1 participates in the regulation of the mtdTTP pool supporting mtDNA synthesis.

  16. The pyrimidine nucleotide carrier PNC1 and mitochondrial trafficking of thymidine phosphates in cultured human cells

    International Nuclear Information System (INIS)

    Franzolin, Elisa; Miazzi, Cristina; Frangini, Miriam; Palumbo, Elisa; Rampazzo, Chiara; Bianchi, Vera

    2012-01-01

    In cycling cells cytosolic de novo synthesis of deoxynucleotides is the main source of precursors for mitochondrial (mt) DNA synthesis. The transfer of deoxynucleotides across the inner mt membrane requires protein carriers. PNC1, a SLC25 family member, exchanges pyrimidine nucleoside triphosphates in liposomes and its downregulation decreases mtUTP concentration in cultured cells. By an isotope-flow protocol we confirmed transport of uridine nucleotides by PNC1 in intact cultured cells and investigated PNC1 involvement in the mt trafficking of thymidine phosphates. Key features of our approach were the manipulation of PNC1 expression by RNA interference or inducible overexpression, the employment of cells proficient or deficient for cytosolic thymidine kinase (TK1) to distinguish the direction of flow of thymidine nucleotides across the mt membrane during short pulses with [ 3 H]-thymidine, the determination of mtdTTP specific radioactivity to quantitate the rate of mtdTTP export to the cytoplasm. Downregulation of PNC1 in TK1 − cells increased labeled dTTP in mitochondria due to a reduced rate of export. Overexpression of PNC1 in TK1 + cells increased mtdTTP pool size and radioactivity, suggesting an involvement in the import of thymidine phosphates. Thus PNC1 is a component of the network regulating the mtdTTP pool in human cells. -- Highlights: ► Thymidine phosphates exchange between mitochondria and cytosol in mammalian cells. ► siRNA-downregulation of PNC1 delays mitochondrial dTTP export in TK1 − cells. ► PNC1 overexpression accumulates dTTP in mitochondria of TK1 + cells. ► PNC1 exchanges thymidine nucleotides across the mitochondrial inner membrane. ► PNC1 participates in the regulation of the mtdTTP pool supporting mtDNA synthesis.

  17. Fidelity and mutational spectrum of Pfu DNA polymerase on a human mitochondrial DNA sequence.

    Science.gov (United States)

    André, P; Kim, A; Khrapko, K; Thilly, W G

    1997-08-01

    The study of rare genetic changes in human tissues requires specialized techniques. Point mutations at fractions at or below 10(-6) must be observed to discover even the most prominent features of the point mutational spectrum. PCR permits the increase in number of mutant copies but does so at the expense of creating many additional mutations or "PCR noise". Thus, each DNA sequence studied must be characterized with regard to the DNA polymerase and conditions used to avoid interpreting a PCR-generated mutation as one arising in human tissue. The thermostable DNA polymerase derived from Pyrococcus furiosus designated Pfu has the highest fidelity of any DNA thermostable polymerase studied to date, and this property recommends it for analyses of tissue mutational spectra. Here, we apply constant denaturant capillary electrophoresis (CDCE) to separate and isolate the products of DNA amplification. This new strategy permitted direct enumeration and identification of point mutations created by Pfu DNA polymerase in a 96-bp low melting domain of a human mitochondrial sequence despite the very low mutant fractions generated in the PCR process. This sequence, containing part of the tRNA glycine and NADH dehydrogenase subunit 3 genes, is the target of our studies of mitochondrial mutagenesis in human cells and tissues. Incorrectly synthesized sequences were separated from the wild type as mutant/wild-type heteroduplexes by sequential enrichment on CDCE. An artificially constructed mutant was used as an internal standard to permit calculation of the mutant fraction. Our study found that the average error rate (mutations per base pair duplication) of Pfu was 6.5 x 10(-7), and five of its more frequent mutations (hot spots) consisted of three transversions (GC-->TA, AT-->TA, and AT-->CG), one transition (AT-->GC), and one 1-bp deletion (in an AAAAAA sequence). To achieve an even higher sensitivity, the amount of Pfu-induced mutants must be reduced.

  18. Construction and confirmation of the plasmid of human mitochondrial DNA 4977 bp deletion induced by ionizing radiation

    International Nuclear Information System (INIS)

    Chen Xiaosui; Zhou Lijun; Wang Yuxiao; Qu Jia; Feng Jiangbing; Lu Xue; Chen Deqing; Liu Qingjie

    2006-01-01

    Objective: To construct a stable plasmid that spanning deleted human mitochondrial DNA (mtDNA) 4977 bp induced by ionizing radiation and another one for control DNA fragment, in order to use in the human mitochondrial genome study in the future. Methods: The peripheral blood, which had no mtDNA 4977 bp deletion found in previous study, was exposed to 10 Gy 60 Co γ-rays in vitro. The total cell DNA was extracted and PCR was carried out: a nest-PCR of three-round PCR was used for the mtDNA 4977 bp deletion and one- round regular PCR was used for the control ND1 gene. The PCR products were used for transfection by electroporation and the positive clones were obtained after screening. The plasmid DNA was isolated and sequenced after enzymatic digestion and purification. The sequence result was BLASTed with the human mitochondrial genome. Results: The sizes of PCR products for the flanked 4977 bp deletion and the ND1 gene were similar with those predicted according to GeneBank. The sequences for the positive clones were above 99 per cent homologous with the human mitochondrial genome after BLASTed. Conclusion: The plasmids for deleted human mtDNA 4977 bp and control DNA fragment have been constructed successfully, and they could be used in the quality and quantity studies on human mtDNA 4977 bp deletion. (authors)

  19. A short synthetic peptide fragment of human C2ORF40 has therapeutic potential in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chaoyang [Shandong Univ., Jinan (China); Zhang, Pengju [Shandong Univ., Jinan (China); Jiang, Anli [Shandong Univ., Jinan (China); Mao, Jian-Hua [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wei, Guangwei [Shandong Univ. School of Medicine, Jinan (China)

    2017-03-30

    C2ORF40 encodes a secreted protein which is cleaved to generate soluble peptides by proteolytic processing and this process is believed to be necessary for C2ORF40 to exert cell type specific biological activity. Here, we reported a short mimic peptide of human C2ORF40 acts potential therapeutic efficacy in human cancer cells in vitro and in vivo. We synthesized a short peptide of human C2ORF40, named C2ORF40 mimic peptide fragment and assessed its biological function on cancer cell growth, migration and tumorigenesis. Cell growth assay showed that C2ORF40 mimic peptide fragment significantly suppressed cell proliferation of breast and lung cancer cells. Moreover, C2ORF40 mimic peptide fragment significantly inhibited the migration and invasion of breast cancer cells. Furthermore, we showed that this peptide suppressed tumorigenesis in breast tumor xenograft model. Cell cycle assay indicated that the C2ORF40 mimic peptide fragment suppressed the growth of tumor cells through inducing mitotic phase arrest. In conclusion, our results firstly suggested that this short synthetic peptide of human C2ORF40 may be a candidate tumor therapeutic agent.

  20. Glucagon-like peptide 1 (GLP-1) suppresses ghrelin levels in humans via increased insulin secretion

    DEFF Research Database (Denmark)

    Hagemann, Dirk; Holst, Jens Juul; Gethmann, Arnica

    2007-01-01

    INTRODUCTION: Ghrelin is an orexigenic peptide predominantly secreted by the stomach. Ghrelin plasma levels rise before meal ingestion and sharply decline afterwards, but the mechanisms controlling ghrelin secretion are largely unknown. Since meal ingestion also elicits the secretion...... of the incretin hormone glucagon-like peptide 1 (GLP-1), we examined whether exogenous GLP-1 administration reduces ghrelin secretion in humans. PATIENTS AND METHODS: 14 healthy male volunteers were given intravenous infusions of GLP-1(1.2 pmol x kg(-1) min(-1)) or placebo over 390 min. After 30 min, a solid test...... meal was served. Venous blood was drawn frequently for the determination of glucose, insulin, C-peptide, GLP-1 and ghrelin. RESULTS: During the infusion of exogenous GLP-1 and placebo, GLP-1 plasma concentrations reached steady-state levels of 139+/-15 pmol/l and 12+/-2 pmol/l, respectively (p

  1. Biomimetic chimeric peptide-tethered hydrogels for human mesenchymal stem cell delivery.

    Science.gov (United States)

    Shim, Gayong; Kim, Gunwoo; Choi, Junhyeok; Yi, TacGhee; Cho, Yun Kyoung; Song, Sun Uk; Byun, Youngro; Oh, Yu-Kyoung

    2015-12-01

    Here, we report a chimeric peptide-tethered fibrin hydrogel scaffold for delivery of human mesenchymal stem cells (hMSC). Osteopontin-derived peptide (OP) was used as an hMSC-tethering moiety. OP showed hMSC adhesion properties and enhanced hMSC proliferation. A natural fibrin-binding protein-derived peptide (FBP) was tested for its ability to tether hMSC to the fibrin gel matrix. FBP loading on fibrin gels was 8.2-fold higher than that of a scrambled peptide (scFBP). FBP-loaded fibrin gels were retained at injection sites longer than scFBP-loaded fibrin gels, showing a 15.9-fold higher photon intensity of fluorescent FBP-grafted fibrin gels than fluorescent scFBP-loaded fibrin gels 48 h after injection. On the basis of the fibrin gel-binding properties of FBP and the hMSC-binding and proliferation-supporting properties of OP, we constructed chimeric peptides containing FBP and OP linked with a spacer (FBPsOP). Four days after transplantation, the survival of hMSC in FBPsOP-grafted fibrin gels was 3.9-fold higher than hMSC in fibrin gels alone. Our results suggest the potential of FBPsOP-grafted fibrin gels as a bioactive delivery system for enhanced survival of stem cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Thiol-disulfide exchange in peptides derived from human growth hormone.

    Science.gov (United States)

    Chandrasekhar, Saradha; Epling, Daniel E; Sophocleous, Andreas M; Topp, Elizabeth M

    2014-04-01

    Disulfide bonds stabilize proteins by cross-linking distant regions into a compact three-dimensional structure. They can also participate in hydrolytic and oxidative pathways to form nonnative disulfide bonds and other reactive species. Such covalent modifications can contribute to protein aggregation. Here, we present experimental data for the mechanism of thiol-disulfide exchange in tryptic peptides derived from human growth hormone in aqueous solution. Reaction kinetics was monitored to investigate the effect of pH (6.0-10.0), temperature (4-50°C), oxidation suppressants [ethylenediaminetetraacetic acid (EDTA) and N2 sparging], and peptide secondary structure (amide cyclized vs. open form). The concentrations of free thiol containing peptides, scrambled disulfides, and native disulfide-linked peptides generated via thiol-disulfide exchange and oxidation reactions were determined using reverse-phase HPLC and liquid chromatography-mass spectrometry. Concentration versus time data were fitted to a mathematical model using nonlinear least squares regression analysis. At all pH values, the model was able to fit the data with R(2) ≥ 0.95. Excluding oxidation suppressants (EDTA and N2 sparging) resulted in an increase in the formation of scrambled disulfides via oxidative pathways but did not influence the intrinsic rate of thiol-disulfide exchange. In addition, peptide secondary structure was found to influence the rate of thiol-disulfide exchange. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. Selective downregulation of mitochondrial electron transport chain activity and increased oxidative stress in human atrial fibrillation.

    Science.gov (United States)

    Emelyanova, Larisa; Ashary, Zain; Cosic, Milanka; Negmadjanov, Ulugbek; Ross, Gracious; Rizvi, Farhan; Olet, Susan; Kress, David; Sra, Jasbir; Tajik, A Jamil; Holmuhamedov, Ekhson L; Shi, Yang; Jahangir, Arshad

    2016-07-01

    Mitochondria are critical for maintaining normal cardiac function, and a deficit in mitochondrial energetics can lead to the development of the substrate that promotes atrial fibrillation (AF) and its progression. However, the link between mitochondrial dysfunction and AF in humans is still not fully defined. The aim of this study was to elucidate differences in the functional activity of mitochondrial oxidative phosphorylation (OXPHOS) complexes and oxidative stress in right atrial tissue from patients without (non-AF) and with AF (AF) who were undergoing open-heart surgery and were not significantly different for age, sex, major comorbidities, and medications. The overall functional activity of the electron transport chain (ETC), NADH:O2 oxidoreductase activity, was reduced by 30% in atrial tissue from AF compared with non-AF patients. This was predominantly due to a selective reduction in complex I (0.06 ± 0.007 vs. 0.09 ± 0.006 nmol·min(-1)·citrate synthase activity(-1), P = 0.02) and II (0.11 ± 0.012 vs. 0.16 ± 0.012 nmol·min(-1)·citrate synthase activity(-1), P = 0.003) functional activity in AF patients. Conversely, complex V activity was significantly increased in AF patients (0.21 ± 0.027 vs. 0.12 ± 0.01 nmol·min(-1)·citrate synthase activity(-1), P = 0.005). In addition, AF patients exhibited a higher oxidative stress with increased production of mitochondrial superoxide (73 ± 17 vs. 11 ± 2 arbitrary units, P = 0.03) and 4-hydroxynonenal level (77.64 ± 30.2 vs. 9.83 ± 2.83 ng·mg(-1) protein, P = 0.048). Our findings suggest that AF is associated with selective downregulation of ETC activity and increased oxidative stress that can contribute to the progression of the substrate for AF. Copyright © 2016 the American Physiological Society.

  4. Expression of a novel non-coding mitochondrial RNA in human proliferating cells.

    Science.gov (United States)

    Villegas, Jaime; Burzio, Veronica; Villota, Claudio; Landerer, Eduardo; Martinez, Ronny; Santander, Marcela; Martinez, Rodrigo; Pinto, Rodrigo; Vera, María I; Boccardo, Enrique; Villa, Luisa L; Burzio, Luis O

    2007-01-01

    Previously, we reported the presence in mouse cells of a mitochondrial RNA which contains an inverted repeat (IR) of 121 nucleotides (nt) covalently linked to the 5' end of the mitochondrial 16S RNA (16S mtrRNA). Here, we report the structure of an equivalent transcript of 2374 nt which is over-expressed in human proliferating cells but not in resting cells. The transcript contains a hairpin structure comprising an IR of 815 nt linked to the 5' end of the 16S mtrRNA and forming a long double-stranded structure or stem and a loop of 40 nt. The stem is resistant to RNase A and can be detected and isolated after digestion with the enzyme. This novel transcript is a non-coding RNA (ncRNA) and several evidences suggest that the transcript is synthesized in mitochondria. The expression of this transcript can be induced in resting lymphocytes stimulated with phytohaemagglutinin (PHA). Moreover, aphidicolin treatment of DU145 cells reversibly blocks proliferation and expression of the transcript. If the drug is removed, the cells re-assume proliferation and over-express the ncmtRNA. These results suggest that the expression of the ncmtRNA correlates with the replicative state of the cell and it may play a role in cell proliferation.

  5. Host Mitochondrial Association Evolved in the Human Parasite Toxoplasma gondii via Neofunctionalization of a Gene Duplicate.

    Science.gov (United States)

    Adomako-Ankomah, Yaw; English, Elizabeth D; Danielson, Jeffrey J; Pernas, Lena F; Parker, Michelle L; Boulanger, Martin J; Dubey, Jitender P; Boyle, Jon P

    2016-05-01

    In Toxoplasma gondii, an intracellular parasite of humans and other animals, host mitochondrial association (HMA) is driven by a gene family that encodes multiple mitochondrial association factor 1 (MAF1) proteins. However, the importance of MAF1 gene duplication in the evolution of HMA is not understood, nor is the impact of HMA on parasite biology. Here we used within- and between-species comparative analysis to determine that the MAF1 locus is duplicated in T. gondii and its nearest extant relative Hammondia hammondi, but not another close relative, Neospora caninum Using cross-species complementation, we determined that the MAF1 locus harbors multiple distinct paralogs that differ in their ability to mediate HMA, and that only T. gondii and H. hammondi harbor HMA(+) paralogs. Additionally, we found that exogenous expression of an HMA(+) paralog in T. gondii strains that do not normally exhibit HMA provides a competitive advantage over their wild-type counterparts during a mouse infection. These data indicate that HMA likely evolved by neofunctionalization of a duplicate MAF1 copy in the common ancestor of T. gondii and H. hammondi, and that the neofunctionalized gene duplicate is selectively advantageous. Copyright © 2016 by the Genetics Society of America.

  6. Laminarin Induces Apoptosis of Human Colon Cancer LOVO Cells through a Mitochondrial Pathway

    Directory of Open Access Journals (Sweden)

    He Zhang

    2012-08-01

    Full Text Available Many scientific studies have shown that laminarin has anti-tumor effects, but the anti-tumor mechanism was unclear. The purpose of this study was to investigate the effect of laminarin on the induction of apoptosis in human colon cancer LOVO cells and the molecular mechanism involved. LOVO cells were treated with different concentrations of laminarin at different times. Morphology observations were performed to determine the effects of laminarin on apoptosis of LOVO cells. Flow cytometry (FCM was used to detect the level of intracellular reactive oxygen species (ROS and pH. Laser scanning confocal microscope (LSCM was used to analyze intracellular calcium ion concentration, mitochondrion permeability transition pore (MPTP and mitochondrial membrane potential (MMP. Western blotd were performed to analyze the expressions of Cyt-C, Caspase-9 and -3. The results showed the apoptosis morphology, which showed cell protuberance, concentrated cytoplasm and apoptotic bodies, was obvious after 72 h treatment. Laminarin treatment for 24 h increased the intracellular level of ROS and Ca2+; decreased pH value; activated intracellular MPTP and decreased MMP in dose-dependent manners. It also induced the release of Cyt-C and the activation of Caspase-9 and -3. In conclusion, laminarin induces LOVO cell apoptosis through a mitochondrial pathway, suggesting that it could be a potent agent for cancer prevention and treatment.

  7. Codon usage and expression level of human mitochondrial 13 protein coding genes across six continents.

    Science.gov (United States)

    Chakraborty, Supriyo; Uddin, Arif; Mazumder, Tarikul Huda; Choudhury, Monisha Nath; Malakar, Arup Kumar; Paul, Prosenjit; Halder, Binata; Deka, Himangshu; Mazumder, Gulshana Akthar; Barbhuiya, Riazul Ahmed; Barbhuiya, Masuk Ahmed; Devi, Warepam Jesmi

    2017-12-02

    The study of codon usage coupled with phylogenetic analysis is an important tool to understand the genetic and evolutionary relationship of a gene. The 13 protein coding genes of human mitochondria are involved in electron transport chain for the generation of energy currency (ATP). However, no work has yet been reported on the codon usage of the mitochondrial protein coding genes across six continents. To understand the patterns of codon usage in mitochondrial genes across six different continents, we used bioinformatic analyses to analyze the protein coding genes. The codon usage bias was low as revealed from high ENC value. Correlation between codon usage and GC3 suggested that all the codons ending with G/C were positively correlated with GC3 but vice versa for A/T ending codons with the exception of ND4L and ND5 genes. Neutrality plot revealed that for the genes ATP6, COI, COIII, CYB, ND4 and ND4L, natural selection might have played a major role while mutation pressure might have played a dominant role in the codon usage bias of ATP8, COII, ND1, ND2, ND3, ND5 and ND6 genes. Phylogenetic analysis indicated that evolutionary relationships in each of 13 protein coding genes of human mitochondria were different across six continents and further suggested that geographical distance was an important factor for the origin and evolution of 13 protein coding genes of human mitochondria. Copyright © 2017 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  8. Oxygen consumption rate and mitochondrial density in human melanoma monolayer cultures and multicellular spheroids.

    Science.gov (United States)

    Hystad, M E; Rofstad, E K

    1994-05-15

    Rate of oxygen consumption per cell has been shown in previous studies to decrease with increasing depth in the viable rim of multicellular spheroids initiated from rodent cells, human colon-carcinoma cells, and human glioma cells, due to progressive accumulation of quiescent cells during spheroid growth. The purpose of our work was to determine oxygen-consumption profiles in human melanoma spheroids. Monolayer cultures of 4 lines (BEX-c, COX-c, SAX-c, and WIX-c) and spheroid cultures of 2 lines (BEX-c and WIX-c) were subjected to investigation. Spheroids were initiated from monolayer cell cultures and grown in spinner flasks. Rate of oxygen consumption was measured with a Clarke-type electrode. Mitochondrial density was determined by stereological analysis of transmission electron micrographs. Thickness of viable rim and cell packing density were assessed by light microscopy of central spheroid sections. Cell-cycle distribution was determined by analysis of DNA histograms measured by flow cytometry. Cell volume was measured by an electronic particle counter. Rate of oxygen consumption per cell differed by a factor of approximately 1.8 between the 4 cell lines and was positively correlated to total volume of mitochondria per cell. Rate of oxygen consumption per cell and total volume of mitochondria per cell were equal for monolayer cell cultures, 600-microns spheroids and 1,200-microns spheroids of the same line. Mitochondrial density and location in the cell did not differ between cells at the spheroid surface, in the middle of the viable rim and adjacent to the central necrosis. Cell-cycle distribution, cell volume, and cell-packing density in the outer and inner halves of the viable rim were not significantly different. Consequently, the rate of oxygen consumption per cell in inner regions of the viable rim was probably equal to that at the spheroid surface, suggesting that oxygen diffusion distances may be shorter in some melanomas than in many other tumor

  9. Thioredoxin reductase 1 knockdown enhances selenazolidine cytotoxicity in human lung cancer cells via mitochondrial dysfunction

    Science.gov (United States)

    Poerschke, Robyn L.; Moos, Philip J.

    2010-01-01

    Thioredoxin reductase (TR1) is a selenoprotein that is involved in cellular redox status control and deoxyribonucleotide biosynthesis. Many cancers, including lung, overexpress TR1, making it a potential cancer therapy target. Previous work has shown that TR1 knockdown enhances the sensitivity of cancer cells to anticancer treatments, as well as certain selenocompounds. However, it is unknown if TR1 knockdown produces similar effect on the sensitivity of human lung cancer cells. To further elucidate the role of TR1 in the mechanism of selenocompounds in lung cancer, a lentiviral microRNA delivery system to knockdown TR1 expression in A549 human lung adenocarcinoma cells was utilized. Cell viability was assessed after 48 hr treatment with the selenocysteine prodrug selenazolidines 2-butylselenazolidine-4(R)-carboxylic acid (BSCA) and 2-cyclohexylselenazolidine-4-(R)-carboxylic acid (ChSCA), selenocystine (SECY), methylseleninic acid (MSA), 1,4-phenylenebis(methylene)selenocyanate (p-XSC), and selenomethionine (SEM). TR1 knockdown increased the cytotoxicity of BSCA, ChSCA, and SECY but did not sensitize cells to MSA, SEM, or p-XSC. GSH and TR1 depletion together decreased cell viability, while no change was observed with GSH depletion alone. Reactive oxygen species generation was induced only in TR1 knockdown cells treated with the selenazolidines or SECY. These three compounds also decreased total intracellular glutathione levels and oxidized thioredoxin, but in a TR1 independent manner. TR1 knockdown increased selenazolidine and SECY-induced mitochondrial membrane depolarization, as well as DNA strand breaks and AIF translocation from the mitochondria. These results indicate the ability of TR1 to modulate the cytotoxic effects of BSCA, ChSCA and SECY in human lung cancer cells through mitochondrial dysfunction. PMID:20920480

  10. Detection of mitochondrial DNA deletions in human cells induced by ionizing radiation

    International Nuclear Information System (INIS)

    Liu, Qing-Jie; Feng, Jiang-Bin; Lu, Xue; Li, Yu-Wen; Chen, De-Qing

    2008-01-01

    Full text: Purpose: To screen the novel mitochondrial DNA (mt DNA) deletions induced by ionizing radiation, and analyze the several kinds of mt DNA deletions, known as 3895 bp, 889 bp, 7436 bp or 4934 bp deletions. Methods: Long-range PCR with two pairs of primers, which could amplify the whole human mitochondrial genome, was used to analyze the lymphoblastoid cell line before and after exposed to 10 Gy 60 Co γ-rays. The limited condition PCR was used to certify the possible mt DNA deletion showed by long-range PCR. The PCR products were purified, cloned, sequenced and the sequence result were BLASTed. Regular PCR or nest-PCR were used to analyze the 3895 bp, 889 bp, 7436 bp or 4934 bp deletions before and after radiation exposure. The final PCR products were purified, sequenced and BALSTed on standard human mitochondrial genome sequence database. Results: (1) The predicted bands of mt DNA were observed on the control cell lines, and the possible mt DNA deletions were also detected on the irradiated cell lines. The deletions were certified by the limited condition PCR. The sequence BLAST results of the cloned PCR products showed that two kinds of deletions, 7455 bp deletion (nt 475-7929 in heavy strand) and 9225 bp deletion (nt 7714-369 in heavy strand), which were between two 8 bp direct repeats. Further bioinformatics analysis showed that the two deletions were novel deletions. (2) The 889 bp and 3895 bp deletion were not detected for the cell line samples not exposed to 60 Co γ-rays. The 889 bp and 3895 bp deletions were detected on samples exposed to 10 Gy 60 Co γ-rays. The BALST results showed that the 889 bp and 3895 deletions flanked nt 11688 bp-12576, nt 548 bp-4443, respectively. The 7436 bp deletion levels were not changed much before and after irradiation. (3) The 4934 bp deletions had the same pattern as 7436 bp deletion, but it could induced by radiation. Conclusions: Ionizing radiation could induce the human lymphoblastoid two novel mt DNA

  11. Chemical probing of the human sirtuin 5 active site reveals its substrate acyl specificity and peptide-based inhibitors.

    Science.gov (United States)

    Roessler, Claudia; Nowak, Theresa; Pannek, Martin; Gertz, Melanie; Nguyen, Giang T T; Scharfe, Michael; Born, Ilona; Sippl, Wolfgang; Steegborn, Clemens; Schutkowski, Mike

    2014-09-26

    Sirtuins are NAD(+)-dependent deacetylases acting as sensors in metabolic pathways and stress response. In mammals there are seven isoforms. The mitochondrial sirtuin 5 is a weak deacetylase but a very efficient demalonylase and desuccinylase; however, its substrate acyl specificity has not been systematically analyzed. Herein, we investigated a carbamoyl phosphate synthetase 1 derived peptide substrate and modified the lysine side chain systematically to determine the acyl specificity of Sirt5. From that point we designed six potent peptide-based inhibitors that interact with the NAD(+) binding pocket. To characterize the interaction details causing the different substrate and inhibition properties we report several X-ray crystal structures of Sirt5 complexed with these peptides. Our results reveal the Sirt5 acyl selectivity and its molecular basis and enable the design of inhibitors for Sirt5. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Modulation of mitochondrial morphology by bioenergetics defects in primary human fibroblasts

    DEFF Research Database (Denmark)

    Guillery, O.; Malka, F.; Frachon, P.

    2008-01-01

    induced partial but significant mitochondrial fragmentation, whereas dissipation of mitochondrial membrane potential (D Psi m) provoked complete fragmentation, and glycolysis inhibition had no effect. Oxidative phosphorylation defective fibroblasts had essentially normal filamentous mitochondria under...... basal conditions, although when challenged some of them presented with mild alteration of fission or fusion efficacy. Severely defective cells disclosed complete mitochondrial fragmentation under glycolysis inhibition. In conclusion, mitochondrial morphology is modulated by D Psi m but loosely linked...... to mitochondrial oxidative phosphorylation. Its alteration by glycolysis, inhibition points to a severe oxidative phosphorylation defect. (C) 2008 Elsevier B.V. All rights reserved Udgivelsesdato: 2008/4...

  13. Human METTL12 is a mitochondrial methyltransferase that modifies citrate synthase.

    Science.gov (United States)

    Rhein, Virginie F; Carroll, Joe; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2017-06-01

    The protein methylome in mammalian mitochondria has been little studied until recently. Here, we describe that lysine-368 of human citrate synthase is methylated and that the modifying enzyme, localized in the mitochondrial matrix, is methyltransferase-like protein 12 (METTL12), a member of the family of 7β-strand methyltransferases. Lysine-368 is near the active site of citrate synthase, but removal of methylation has no effect on its activity. In mitochondria, it is possible that some or all of the enzymes of the citric acid cycle, including citrate synthase, are organized in metabolons to facilitate the channelling of substrates between participating enzymes. Thus, possible roles for the methylation of Lys-368 are in controlling substrate channelling itself, or in influencing protein-protein interactions in the metabolon. © 2017 The Authors FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  14. PGC-1α-Dependent Mitochondrial Adaptation Is Necessary to Sustain IL-2-Induced Activities in Human NK Cells.

    Science.gov (United States)

    Miranda, Dante; Jara, Claudia; Ibañez, Jorge; Ahumada, Viviana; Acuña-Castillo, Claudio; Martin, Adrian; Córdova, Alexandra; Montoya, Margarita

    2016-01-01

    Human Natural Killer (NK) cells are a specialized heterogeneous subpopulation of lymphocytes involved in antitumor defense reactions. NK cell effector functions are critically dependent on cytokines and metabolic activity. Among various cytokines modulating NK cell function, interleukin-2 (IL-2) can induce a more potent cytotoxic activity defined as lymphokine activated killer activity (LAK). Our aim was to determine if IL-2 induces changes at the mitochondrial level in NK cells to support the bioenergetic demand for performing this enhanced cytotoxic activity more efficiently. Purified human NK cells were cultured with high IL-2 concentrations to develop LAK activity, which was assessed by the ability of NK cells to lyse NK-resistant Daudi cells. Here we show that, after 72 h of culture of purified human NK cells with enough IL-2 to induce LAK activity, both the mitochondrial mass and the mitochondrial membrane potential increased in a PGC-1α-dependent manner. In addition, oligomycin, an inhibitor of ATP synthase, inhibited IL-2-induced LAK activity at 48 and 72 h of culture. Moreover, the secretion of IFN-γ from NK cells with LAK activity was also partially dependent on PGC-1α expression. These results indicate that PGC-1α plays a crucial role in regulating mitochondrial function involved in the maintenance of LAK activity in human NK cells stimulated with IL-2.

  15. Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells

    International Nuclear Information System (INIS)

    Su, Chen-Ming; Wang, Shih-Wei; Lee, Tzong-Huei; Tzeng, Wen-Pei; Hsiao, Che-Jen; Liu, Shih-Chia; Tang, Chih-Hsin

    2013-01-01

    Chondrosarcoma is the second most common primary bone tumor, and it responds poorly to both chemotherapy and radiation treatment. Nalanthamala psidii was described originally as Myxosporium in 1926. This is the first study to investigate the anti-tumor activity of trichodermin (trichothec-9-en-4-ol, 12,13-epoxy-, acetate), an endophytic fungal metabolite from N. psidii against human chondrosarcoma cells. We demonstrated that trichodermin induced cell apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353 cells) instead of primary chondrocytes. In addition, trichodermin triggered endoplasmic reticulum (ER) stress protein levels of IRE1, p-PERK, GRP78, and GRP94, which were characterized by changes in cytosolic calcium levels. Furthermore, trichodermin induced the upregulation of Bax and Bid, the downregulation of Bcl-2, and the dysfunction of mitochondria, which released cytochrome c and activated caspase-3 in human chondrosarcoma. In addition, animal experiments illustrated reduced tumor volume, which led to an increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and an increased level of cleaved PARP protein following trichodermin treatment. Together, this study demonstrates that trichodermin is a novel anti-tumor agent against human chondrosarcoma cells both in vitro and in vivo via mitochondrial dysfunction and ER stress. - Highlights: • Trichodermin induces chondrosarcoma apoptosis. • ER stress is involved in trichodermin-induced cell death. • Trichodermin induces chondrosarcoma death in vivo.

  16. Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chen-Ming [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Wang, Shih-Wei [Department of Medicine, Mackay Medical College, New Taipei City, Taiwan (China); Lee, Tzong-Huei [Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan (China); Tzeng, Wen-Pei [Graduate Institute of Sports and Health, National Changhua University of Education, Changhua, Taiwan (China); Hsiao, Che-Jen [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Liu, Shih-Chia [Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan (China); Tang, Chih-Hsin, E-mail: chtang@mail.cmu.edu.tw [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan (China); Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan (China)

    2013-10-15

    Chondrosarcoma is the second most common primary bone tumor, and it responds poorly to both chemotherapy and radiation treatment. Nalanthamala psidii was described originally as Myxosporium in 1926. This is the first study to investigate the anti-tumor activity of trichodermin (trichothec-9-en-4-ol, 12,13-epoxy-, acetate), an endophytic fungal metabolite from N. psidii against human chondrosarcoma cells. We demonstrated that trichodermin induced cell apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353 cells) instead of primary chondrocytes. In addition, trichodermin triggered endoplasmic reticulum (ER) stress protein levels of IRE1, p-PERK, GRP78, and GRP94, which were characterized by changes in cytosolic calcium levels. Furthermore, trichodermin induced the upregulation of Bax and Bid, the downregulation of Bcl-2, and the dysfunction of mitochondria, which released cytochrome c and activated caspase-3 in human chondrosarcoma. In addition, animal experiments illustrated reduced tumor volume, which led to an increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and an increased level of cleaved PARP protein following trichodermin treatment. Together, this study demonstrates that trichodermin is a novel anti-tumor agent against human chondrosarcoma cells both in vitro and in vivo via mitochondrial dysfunction and ER stress. - Highlights: • Trichodermin induces chondrosarcoma apoptosis. • ER stress is involved in trichodermin-induced cell death. • Trichodermin induces chondrosarcoma death in vivo.

  17. Renal clearance of the thyrotropin-releasing hormone-like peptide pyroglutamyl-glutamyl-prolineamide in humans

    NARCIS (Netherlands)

    W. Klootwijk (Willem); E. Sleddens-Linkels (Esther); R. de Boer (Renske); C.A. Jansen; R. Autar; W.W. de Herder (Wouter); E.R. Boeve; T.J. Visser (Theo); W.J. de Greef (W.)

    1997-01-01

    textabstractTRH-like peptides have been identified that differ from TRH (pGlu-His- ProNH2) in the middle aminoacid. We have estimated TRH-like immunoreactivity (TRH-LI) in human serum and urine by RIA with TRH-specific antiserum 8880 or with antiserum 4319, which binds most peptides with the

  18. Radiosensitivity evaluation of Human tumor cell lines by detecting 4977bp deletion in mitochondrial DNA

    International Nuclear Information System (INIS)

    Zhang Yipei

    2009-01-01

    Objective: To explore the feasibility of determining radiosensitivity of human tumor cell lines in vitro using the assay of mtDNA4977bp deletion. Methods: Three human tumor cell lines were selected in this study, HepG 2 , EC-9706 and MCF-7. The surviving fraction(SF), the ratio of mtDNA4977bp deletion and DNA damage were detected by MTT assay and nested PCR technique respectively. Results: MTT assay: The SF of HepG 2 and EC-9706 after irradiated by 2, 4and 8Gy was lower significantly than that of MCF-7, which showed that the radiosensitivity of HepG 2 and EC-9706 was higher than that of MCF-7. But there was no statistical difference of SF between HepG 2 and EC-9706. PCR method:The differences on mtDNA 4977bp deletion in mitochondrial DNA among HepG 2 , EC-9706 and MCF-7 were not significant after 1Gy and 4Gy γ-ray irradiation. The ratio of 4977bp deletion in mitochondrial DNA of HepG 2 and EC-9706 increased while that of MCF-7 decreased after 8Gy irradiation. The ratio of mtDNA 4977bp deletion of HepG 2 and EC-9706 was higher significantly than that of MCF-7, which implies that the radiosensitivity of HepG 2 and EC-9706 was higher than that of MCF -7. Conclusion: As a new biological marker, mtDNA4977bp deletion may be hopeful to evaluate the radiosensitivity of tumor cells more objectively and exactly. (authors)

  19. Mitochondrial damage and cholesterol storage in human hepatocellular carcinoma cells with silencing of UBIAD1 gene expression

    Directory of Open Access Journals (Sweden)

    Carlos R. Morales

    2014-01-01

    Full Text Available Heterozygous mutations in the UBIAD1 gene cause Schnyder corneal dystrophy characterized by abnormal cholesterol and phospholipid deposits in the cornea. Ubiad1 protein was recently identified as Golgi prenyltransferase responsible for biosynthesis of vitamin K2 and CoQ10, a key protein in the mitochondrial electron transport chain. Our study shows that silencing UBIAD1 in cultured human hepatocellular carcinoma cells causes dramatic morphological changes and cholesterol storage in the mitochondria, emphasizing an important role of UBIAD1 in mitochondrial function.

  20. High-confidence assessment of functional impact of human mitochondrial non-synonymous genome variations by APOGEE.

    Directory of Open Access Journals (Sweden)

    Stefano Castellana

    2017-06-01

    Full Text Available 24,189 are all the possible non-synonymous amino acid changes potentially affecting the human mitochondrial DNA. Only a tiny subset was functionally evaluated with certainty so far, while the pathogenicity of the vast majority was only assessed in-silico by software predictors. Since these tools proved to be rather incongruent, we have designed and implemented APOGEE, a machine-learning algorithm that outperforms all existing prediction methods in estimating the harmfulness of mitochondrial non-synonymous genome variations. We provide a detailed description of the underlying algorithm, of the selected and manually curated training and test sets of variants, as well as of its classification ability.

  1. Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics.

    Science.gov (United States)

    Zampieri, Sandra; Mammucari, Cristina; Romanello, Vanina; Barberi, Laura; Pietrangelo, Laura; Fusella, Aurora; Mosole, Simone; Gherardi, Gaia; Höfer, Christian; Löfler, Stefan; Sarabon, Nejc; Cvecka, Jan; Krenn, Matthias; Carraro, Ugo; Kern, Helmut; Protasi, Feliciano; Musarò, Antonio; Sandri, Marco; Rizzuto, Rosario

    2016-12-01

    Age-related sarcopenia is characterized by a progressive loss of muscle mass with decline in specific force, having dramatic consequences on mobility and quality of life in seniors. The etiology of sarcopenia is multifactorial and underlying mechanisms are currently not fully elucidated. Physical exercise is known to have beneficial effects on muscle trophism and force production. Alterations of mitochondrial Ca 2+ homeostasis regulated by mitochondrial calcium uniporter (MCU) have been recently shown to affect muscle trophism in vivo in mice. To understand the relevance of MCU-dependent mitochondrial Ca 2+ uptake in aging and to investigate the effect of physical exercise on MCU expression and mitochondria dynamics, we analyzed skeletal muscle biopsies from 70-year-old subjects 9 weeks trained with either neuromuscular electrical stimulation (ES) or leg press. Here, we demonstrate that improved muscle function and structure induced by both trainings are linked to increased protein levels of MCU Ultrastructural analyses by electron microscopy showed remodeling of mitochondrial apparatus in ES-trained muscles that is consistent with an adaptation to physical exercise, a response likely mediated by an increased expression of mitochondrial fusion protein OPA1. Altogether these results indicate that the ES-dependent physiological effects on skeletal muscle size and force are associated with changes in mitochondrial-related proteins involved in Ca 2+ homeostasis and mitochondrial shape. These original findings in aging human skeletal muscle confirm the data obtained in mice and propose MCU and mitochondria-related proteins as potential pharmacological targets to counteract age-related muscle loss. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  2. Investigating the role of melanin in UVA/UVB- and hydrogen peroxide-induced cellular and mitochondrial ROS production and mitochondrial DNA damage in human melanoma cells.

    Science.gov (United States)

    Swalwell, Helen; Latimer, Jennifer; Haywood, Rachel M; Birch-Machin, Mark A

    2012-02-01

    Skin cancer incidence is dramatically increasing worldwide, with exposure to ultraviolet radiation (UVR) a predominant factor. The UVA component initiates oxidative stress in human skin, although its exact role in the initiation of skin cancer, particularly malignant melanoma, remains unclear and is controversial because there is evidence for a melanin-dependent mechanism in UVA-linked melanoma studies. Nonpigmented (CHL-1, A375), moderately pigmented (FM55, SKmel23), and highly pigmented (FM94, hyperpigmented FM55) human melanoma cell lines have been used to investigate UVA-induced production of reactive oxygen species using FACS analysis, at both the cellular (dihydrorhodamine-123) and the mitochondrial (MitoSOX) level, where most cellular stress is generated. For the first time, downstream mtDNA damage (utilizing a quantitative long-PCR assay) has been investigated. Using UVA, UVB, and H(2)O(2) as cellular stressors, we have explored the dual roles of melanin as a photoprotector and photosensitizer. The presence of melanin has no influence over cellular oxidative stress generation, whereas, in contrast, melanin protects against mitochondrial superoxide generation and mtDNA damage (one-way ANOVA with post hoc Tukey's analysis, Pmelanin binds directly to DNA, it acts as a direct photosensitizer of mtDNA damage during UVA irradiation (Pmelanin. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. [Linezolid-induced Apoptosis through Mitochondrial Damage and Role of Superoxide Dismutase-1 in Human Monocytic Cell Line U937].

    Science.gov (United States)

    Fujii, Satoshi; Muraoka, Sanae; Miyamoto, Atsushi; Sakurai, Koichi

    2018-01-01

     Cytopenia is a major adverse event associated with linezolid therapy. The objective of this study was to examine whether the cytotoxicity of linezolid to eukaryotic cells was associated with mitochondrial dysfunction and apoptosis-like cell death in human leukemic monocyte lymphoma cell line U937. Apoptosis-like cell death was clearly observed when cells were incubated with linezolid, depending on the duration and linezolid concentration. Mitochondrial membrane potential of cells treated with linezolid collapsed in a short period of time, but the number of mitochondria did not decrease. Cytotoxicity of linezolid was relieved by the knockdown of superoxide dismutase-1 in U937 cells. On the other hand, no autophagy was observed in cells treated with linezolid. These results suggest that mitochondrial damages would be linked to the induction of apoptosis in U937 cells treated with linezolid and that its mechanism does not involve autophagy.

  4. The Human Gene SLC25A29, of Solute Carrier Family 25, Encodes a Mitochondrial Transporter of Basic Amino Acids*

    Science.gov (United States)

    Porcelli, Vito; Fiermonte, Giuseppe; Longo, Antonella; Palmieri, Ferdinando

    2014-01-01

    The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation. PMID:24652292

  5. The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids.

    Science.gov (United States)

    Porcelli, Vito; Fiermonte, Giuseppe; Longo, Antonella; Palmieri, Ferdinando

    2014-05-09

    The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation.

  6. Autoradiographic quantification of vasoactive intestinal peptide binding sites in sections from human blood mononuclear cell pellets

    Energy Technology Data Exchange (ETDEWEB)

    Gutkind, J.S.; Kurihara, M.; Castren, E.; Saavedra, J.M.

    1988-09-01

    Quantitative autoradiographic methods were utilized to characterize specific, high-affinity vasoactive intestinal peptide binding sites (Kd = 310 +/- 60 pmol/L; Bmax = 93 +/- 11 fmol/mg protein) in frozen sections obtained from a mononuclear cell pellet derived from 20 ml of human blood. The method is at least one order of magnitude more sensitive than conventional membrane binding techniques, and it has the potential for wide applications in studies of neuropeptide, biogenic amine, and drug binding in clinical samples.

  7. Autoradiographic quantification of vasoactive intestinal peptide binding sites in sections from human blood mononuclear cell pellets

    International Nuclear Information System (INIS)

    Gutkind, J.S.; Kurihara, M.; Castren, E.; Saavedra, J.M.

    1988-01-01

    Quantitative autoradiographic methods were utilized to characterize specific, high-affinity vasoactive intestinal peptide binding sites (Kd = 310 +/- 60 pmol/L; Bmax = 93 +/- 11 fmol/mg protein) in frozen sections obtained from a mononuclear cell pellet derived from 20 ml of human blood. The method is at least one order of magnitude more sensitive than conventional membrane binding techniques, and it has the potential for wide applications in studies of neuropeptide, biogenic amine, and drug binding in clinical samples

  8. HmtDB 2016: data update, a better performing query system and human mitochondrial DNA haplogroup predictor.

    Science.gov (United States)

    Clima, Rosanna; Preste, Roberto; Calabrese, Claudia; Diroma, Maria Angela; Santorsola, Mariangela; Scioscia, Gaetano; Simone, Domenico; Shen, Lishuang; Gasparre, Giuseppe; Attimonelli, Marcella

    2017-01-04

    The HmtDB resource hosts a database of human mitochondrial genome sequences from individuals with healthy and disease phenotypes. The database is intended to support both population geneticists as well as clinicians undertaking the task to assess the pathogenicity of specific mtDNA mutations. The wide application of next-generation sequencing (NGS) has provided an enormous volume of high-resolution data at a low price, increasing the availability of human mitochondrial sequencing data, which called for a cogent and significant expansion of HmtDB data content that has more than tripled in the current release. We here describe additional novel features, including: (i) a complete, user-friendly restyling of the web interface, (ii) links to the command-line stand-alone and web versions of the MToolBox package, an up-to-date tool to reconstruct and analyze human mitochondrial DNA from NGS data and (iii) the implementation of the Reconstructed Sapiens Reference Sequence (RSRS) as mitochondrial reference sequence. The overall update renders HmtDB an even more handy and useful resource as it enables a more rapid data access, processing and analysis. HmtDB is accessible at http://www.hmtdb.uniba.it/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. A role for mitochondrial oxidants in stress-induced premature senescence of human vascular smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Yogita Mistry

    2013-01-01

    Full Text Available Mitochondria are a major source of cellular oxidants and have been implicated in aging and associated pathologies, notably cardiovascular diseases. Vascular cell senescence is observed in experimental and human cardiovascular pathologies. Our previous data highlighted a role for angiotensin II in the induction of telomere-dependent and -independent premature senescence of human vascular smooth muscle cells and suggested this was due to production of superoxide by NADPH oxidase. However, since a role for mitochondrial oxidants was not ruled out we hypothesise that angiotensin II mediates senescence by mitochondrial superoxide generation and suggest that inhibition of superoxide may prevent vascular smooth muscle cell aging in vitro. Cellular senescence was induced using a stress-induced premature senescence protocol consisting of three successive once-daily exposure of cells to 1×10−8 mol/L angiotensin II and was dependent upon the type-1 angiotensin II receptor. Angiotensin stimulated NADPH-dependent superoxide production as estimated using lucigenin chemiluminescence in cell lysates and this was attenuated by the mitochondrial electron transport chain inhibitor, rotenone. Angiotensin also resulted in an increase in mitoSOX fluorescence indicating stimulation of mitochondrial superoxide. Significantly, the induction of senescence by angiotensin II was abrogated by rotenone and by the mitochondria-targeted superoxide dismutase mimetic, mitoTEMPO. These data suggest that mitochondrial superoxide is necessary for the induction of stress-induced premature senescence by angiotensin II and taken together with other data suggest that mitochondrial cross-talk with NADPH oxidases, via as yet unidentified signalling pathways, is likely to play a key role.

  10. Fidelity and Mutational Spectrum of Pfu DNA Polymerase on a Human Mitochondrial DNA Sequence

    Science.gov (United States)

    André, Paulo; Kim, Andrea; Khrapko, Konstantin; Thilly, William G.

    1997-01-01

    The study of rare genetic changes in human tissues requires specialized techniques. Point mutations at fractions at or below 10−6 must be observed to discover even the most prominent features of the point mutational spectrum. PCR permits the increase in number of mutant copies but does so at the expense of creating many additional mutations or “PCR noise”. Thus, each DNA sequence studied must be characterized with regard to the DNA polymerase and conditions used to avoid interpreting a PCR-generated mutation as one arising in human tissue. The thermostable DNA polymerase derived from Pyrococcus furiosus designated Pfu has the highest fidelity of any DNA thermostable polymerase studied to date, and this property recommends it for analyses of tissue mutational spectra. Here, we apply constant denaturant capillary electrophoresis (CDCE) to separate and isolate the products of DNA amplification. This new strategy permitted direct enumeration and identification of point mutations created by Pfu DNA polymerase in a 96-bp low melting domain of a human mitochondrial sequence despite the very low mutant fractions generated in the PCR process. This sequence, containing part of the tRNA glycine and NADH dehydrogenase subunit 3 genes, is the target of our studies of mitochondrial mutagenesis in human cells and tissues. Incorrectly synthesized sequences were separated from the wild type as mutant/wild-type heteroduplexes by sequential enrichment on CDCE. An artificially constructed mutant was used as an internal standard to permit calculation of the mutant fraction. Our study found that the average error rate (mutations per base pair duplication) of Pfu was 6.5 × 10−7, and five of its more frequent mutations (hot spots) consisted of three transversions (GC → TA, AT → TA, and AT → CG), one transition (AT → GC), and one 1-bp deletion (in an AAAAAA sequence). To achieve an even higher sensitivity, the amount of Pfu-induced mutants must be

  11. Rhein induces apoptosis of human gastric cancer SGC-7901 cells via an intrinsic mitochondrial pathway

    Directory of Open Access Journals (Sweden)

    Yiwen Li

    2012-11-01

    Full Text Available Rhein is a primary anthraquinone found in the roots of a traditional Chinese herb, rhubarb, and has been shown to have some anticancer effects. The aim of the present study was to investigate the effect of rhein on the apoptosis of the human gastric cancer line SGC-7901 and to identify the mechanism involved. SGC-7901 cells were cultured and treated with rhein (0, 50, 100, 150, and 200 µM for 24, 48, or 72 h. Relative cell viability assessed by the MTT assay after treatment was 100, 99, 85, 79, 63% for 24 h; 100, 98, 80, 51, 37% for 48 h, and 100, 97, 60, 36, 15% for 72 h, respectively. Cell apoptosis was detected with TUNEL staining and quantified with flow cytometry using annexin FITC-PI staining at 48 h after 100, 200 and 300 µm rhein. The percentage of apoptotic cells was 7.3, 21.9, 43.5%, respectively. We also measured the mRNA levels of caspase-3 and -9 using real-time PCR. Treatment with 100 µM rhein for 48 h significantly increased mRNA expression of caspase-3 and -9. The levels of apoptosis-related proteins including Bcl-2, Bax, Bcl-xL, and pro-caspase-3 were evaluated in rhein-treated cells. Rhein increased the Bax:Bcl-2 ratio but decreased the protein levels of Bcl-xL and pro-caspase-3. Moreover, rhein significantly increased the expression of cytochrome c and apoptotic protease activating factor 1, two critical components involved in mitochondrial pathway-mediated apoptosis. We conclude that rhein inhibits SGC-7901 proliferation by inducing apoptosis and this antitumor effect of rhein is mediated in part by an intrinsic mitochondrial pathway.

  12. Rhein induces apoptosis of human gastric cancer SGC-7901 cells via an intrinsic mitochondrial pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yiwen; Xu, Yuqing [Department of Oncology,Second Affiliated Hospital, Harbin Medical University, Nangang District, Harbin, Heilongjiang (China); Lei, Bo [Department of Breast Surgery, Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang (China); Wang, Wenxiu [Department of Oncology,Second Affiliated Hospital, Harbin Medical University, Nangang District, Harbin, Heilongjiang (China); Ge, Xin; Li, Jingrui [Department of General Surgery, Heilongjiang Province Hospital, Harbin, Heilongjiang (China)

    2012-08-03

    Rhein is a primary anthraquinone found in the roots of a traditional Chinese herb, rhubarb, and has been shown to have some anticancer effects. The aim of the present study was to investigate the effect of rhein on the apoptosis of the human gastric cancer line SGC-7901 and to identify the mechanism involved. SGC-7901 cells were cultured and treated with rhein (0, 50, 100, 150, and 200 µM) for 24, 48, or 72 h. Relative cell viability assessed by the MTT assay after treatment was 100, 99, 85, 79, 63% for 24 h; 100, 98, 80, 51, 37% for 48 h, and 100, 97, 60, 36, 15% for 72 h, respectively. Cell apoptosis was detected with TUNEL staining and quantified with flow cytometry using annexin FITC-PI staining at 48 h after 100, 200 and 300 µm rhein. The percentage of apoptotic cells was 7.3, 21.9, 43.5%, respectively. We also measured the mRNA levels of caspase-3 and -9 using real-time PCR. Treatment with 100 µM rhein for 48 h significantly increased mRNA expression of caspase-3 and -9. The levels of apoptosis-related proteins including Bcl-2, Bax, Bcl-xL, and pro-caspase-3 were evaluated in rhein-treated cells. Rhein increased the Bax:Bcl-2 ratio but decreased the protein levels of Bcl-xL and pro-caspase-3. Moreover, rhein significantly increased the expression of cytochrome c and apoptotic protease activating factor 1, two critical components involved in mitochondrial pathway-mediated apoptosis. We conclude that rhein inhibits SGC-7901 proliferation by inducing apoptosis and this antitumor effect of rhein is mediated in part by an intrinsic mitochondrial pathway.

  13. Mitochondrial protection by the mixed muscarinic/σ1 ligand ANAVEX2-73, a tetrahydrofuran derivative, in Aβ25-35 peptide-injected mice, a nontransgenic Alzheimer's disease model.

    Science.gov (United States)

    Lahmy, Valentine; Long, Romain; Morin, Didier; Villard, Vanessa; Maurice, Tangui

    2014-01-01

    Alzheimer's disease (AD), the most prevalent dementia in the elderly, is characterized by progressive synaptic and neuronal loss. Mitochondrial dysfunctions have been consistently reported as an early event in AD and appear before Aβ deposition and memory decline. In order to define a new neuroprotectant strategy in AD targeting mitochondrial alterations, we develop tetrahydro-N,N-dimethyl-2,2-diphenyl-3-furanmethanamine (ANAVEX2-73, AE37), a mixed muscarinic receptor ligand and a sigma-1 receptor (σ1R) agonist. We previously reported that ANAVEX2-73 shows anti-amnesic and neuroprotective activities in mice injected intracerebroventricular (ICV) with oligomeric amyloid-β25-35 peptide (Aβ25-35). The σ1R is present at mitochondria-associated endoplasmic reticulum (ER) membranes, where it acts as a sensor/modulator of ER stress responses and local Ca(2+) exchanges with the mitochondria. We therefore evaluated the effect of ANAVEX2-73 and PRE-084, a reference σ1R agonist, on preservation of mitochondrial integrity in Aβ25-35-injected mice. In isolated mitochondria from hippocampus preparations of Aβ25-35 injected animals, we measured respiration rates, complex activities, lipid peroxidation, Bax/Bcl-2 ratios and cytochrome c release into the cytosol. Five days after Aβ25-35 injection, mitochondrial respiration in mouse hippocampus was altered. ANAVEX2-73 (0.01-1 mg/kg IP) restored normal respiration and PRE-084 (0.5-1 mg/kg IP) increased respiration rates. Both compounds prevented Aβ25-35-induced increases in lipid peroxidation levels, Bax/Bcl-2 ratio and cytochrome c release into the cytosol, all indicators of increased toxicity. ANAVEX2-73 and PRE-084 efficiently prevented the mitochondrial respiratory dysfunction and resulting oxidative stress and apoptosis. The σ1R, targeted selectively or non-selectively, therefore appears as a valuable target for protection against mitochondrial damages in AD.

  14. The CNGRC-GG-D(KLAKLAK)2 peptide induces a caspase-independent, Ca2+-dependent death in human leukemic myeloid cells by targeting surface aminopeptidase N/CD13.

    Science.gov (United States)

    Bouchet, Sandrine; Tang, Ruoping; Fava, Fanny; Legrand, Ollivier; Bauvois, Brigitte

    2016-04-12

    The CD13 antigen's binding site for the Asn-Gly-Arg (NGR) motif enables NGR-containing chemotherapeutic drugs to be delivered to CD13-positive tumours. Human CD13-positive acute myeloid leukemia (AML) cells proliferate abnormally and escape death. Here, we show that the CNGRC-GG-D(KLAKLAK)2 peptide induces death in AML cell lines (U937, THP-1, NB4, HL-60) and primary blood cells from AML patients. Cell death was characterized as a caspase-independent mechanism, without DNA fragmentation, but phosphatidylserine externalization and membrane disruption. Our results demonstrate in U937 cells that (i) the NGR-peptide triggers the loss of mitochondrial potential(ΔΨm) and generates superoxide anion (O2-), (ii) N-acetyl-L-cysteine (NAC) and extra/intracellular Ca2+ chelators (BAPTA) prevent both O2- production and cell death, (iii) the Ca2+-channel blocker nifedipine prevents cell death (indicating that Ca2+ influx is the initial death trigger), and (iv) BAPTA, but not NAC, prevents ΔΨm loss (suggesting O2- is a mitochondrial downstream effector). AML cell lines and primary blasts responding to the lethal action of NGR-peptide express promatrix metalloproteinase-12 (proMMP-12) and its substrate progranulin (an 88 kDa cell survival factor). A cell-free assay highlighted proMMP-12 activation by O2-. Accordingly, NGR-peptide's downregulation of 88 kDa progranulin protein was prevented by BAPTA and NAC. Conversely, AML blast resistance to NGR-peptide is associated with the expression of a distinct, 105 kDa progranulin isoform. These results indicate that CNGRC-GG-D(KLAKLAK)2 induces death in AML cells through the Ca2+-mitochondria-O2.-pathway, and support the link between proMMP-12 activation and progranulin cleavage during cell death. Our findings may have implications for the understanding of tumour biology and treatment.

  15. Impact of human milk pasteurization on the kinetics of peptide release during in vitro dynamic term newborn digestion.

    Science.gov (United States)

    Deglaire, Amélie; De Oliveira, Samira C; Jardin, Julien; Briard-Bion, Valérie; Emily, Mathieu; Ménard, Olivia; Bourlieu, Claire; Dupont, Didier

    2016-07-01

    Holder pasteurization (62.5°C, 30 min) ensures sanitary quality of donor's human milk but also denatures beneficial proteins. Understanding whether this further impacts the kinetics of peptide release during gastrointestinal digestion of human milk was the aim of the present paper. Mature raw (RHM) or pasteurized (PHM) human milk were digested (RHM, n = 2; PHM, n = 3) by an in vitro dynamic system (term stage). Label-free quantitative peptidomics was performed on milk and digesta (ten time points). Ascending hierarchical clustering was conducted on "Pasteurization × Digestion time" interaction coefficients. Preproteolysis occurred in human milk (159 unique peptides; RHM: 91, PHM: 151), mostly on β-casein (88% of the endogenous peptides). The predicted cleavage number increased with pasteurization, potentially through plasmin activation (plasmin cleavages: RHM, 53; PHM, 76). During digestion, eight clusters resumed 1054 peptides from RHM and PHM, originating for 49% of them from β-casein. For seven clusters (57% of peptides), the kinetics of peptide release differed between RHM and PHM. The parent protein was significantly linked to the clustering (p-value = 1.4 E-09), with β-casein and lactoferrin associated to clusters in an opposite manner. Pasteurization impacted selectively gastric and intestinal kinetics of peptide release in term newborns, which may have further nutritional consequences. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The remarkable stability of chimeric, sialic acid-derived alpha/delta-peptides in human blood plasma.

    Science.gov (United States)

    Saludes, Jonel P; Natarajan, Arutselvan; DeNardo, Sally J; Gervay-Hague, Jacquelyn

    2010-05-01

    Peptides are labile toward proteolytic enzymes, and structural modifications are often required to prolong their metabolic half-life and increase resistance. One modification is the incorporation of non-alpha-amino acids into the peptide to deter recognition by hydrolytic enzymes. We previously reported the synthesis of chimeric alpha/delta-peptides from glutamic acids (Glu) and the sialic acid derivative Neu2en. Conformational analyses revealed these constructs adopt secondary structures in water and may serve as conformational surrogates of polysialic acid. Polysialic acid is a tumor-associated polysaccharide and is correlated with cancer metastasis. Soluble polysialic acid is rapidly cleared from the blood limiting its potential for vaccine development. One motivation in developing structural surrogates of polysialic acid was to create constructs with increased bioavailability. Here, we report plasma stability profiles of Glu/Neu2en alpha/delta-peptides. DOTA was conjugated at the peptide N-termini by solid phase peptide synthesis, radiolabeled with (111)In, incubated in human blood plasma at 37 degrees C, and their degradation patterns monitored by cellulose acetate electrophoresis and radioactivity counting. Results indicate that these peptides exhibit a long half-life that is two- to three-orders of magnitude higher than natural alpha-peptides. These findings provide a viable platform for the synthesis of plasma stable, sialic acid-derived peptides that may find pharmaceutical application.

  17. [Peptide fragments of chemokine domain of fractalkine: effect on human monocyte migration].

    Science.gov (United States)

    Kukhtina, N B; Aref'eva, T I; Ruleva, N Iu; Sidorova, M V; Az'muko, A A; Bespalova, Zh D; Krasnikova, T L

    2012-01-01

    Leukocyte chemotaxis to the area of tissue damage is mediated by chemokines. According to the primary structure, chemokines are divided into four families, fractalkine (CX3CL1) is the only one member of CX3C family and the only membrane-bound chemokine. Fractalkine molecule includes the extracellular N-terminal chemokine domain, mucin-like rod, the transmembrane and the intracellular domains. In membrane-bound state fractalkine has the properties of an adhesion molecule. Chemokine domain of fractalkine (CDF) is released from cell membrane by proteolysis, and this soluble form acts as a chemoattractant for leukocytes expressing fractalkine receptor CX3CR1. Fractalkine is involved in development of a number of pathological processes caused by inflammation, and therefore a search for fractalkine inhibitors is very important. For this purpose we identified several antigenic determinants--the fragments of CDF, and the following peptides were synthesized--P41-52 H-Leu-Glu-Thr-Arg-Gln-His-Arg-Leu-Phe-Cys-Ala-Asp-NH2, P53-60 H-Pro-Lys-Glu-Gln-Trp-Val-Lys-Asp-NH2 and P60-71 H-Asp-Ala-Met-Gln-His-Leu-Asp-Arg-Gln-Ala-Ala-Ala-NH2. The peptide effects on adhesion and migration of human peripheral blood monocytes expressing fractalkine receptors were investigated. In the presence of CDF and P41-52 we observed the increased adhesion and migration of monocytes compared with spontaneous values. Peptides P53-60 and P60-71 significantly inhibited monocyte adhesion and migration stimulated by CDF. Since the chemotactic activity of chemokines was shown to be dependent on their binding to glycosaminoglycans of the cell surface and extracellular matrix, the effect ofpeptides on the interaction of CDF with heparin was analyzed by ELISA. Peptide P41-52 competed with CDF for heparin binding, while peptides P53-60 and P60-71 had no significant activity.

  18. Mutation of the human mitochondrial phenylalanine-tRNA synthetase causes infantile-onset epilepsy and cytochrome c oxidase deficiency.

    Science.gov (United States)

    Almalki, Abdulraheem; Alston, Charlotte L; Parker, Alasdair; Simonic, Ingrid; Mehta, Sarju G; He, Langping; Reza, Mojgan; Oliveira, Jorge M A; Lightowlers, Robert N; McFarland, Robert; Taylor, Robert W; Chrzanowska-Lightowlers, Zofia M A

    2014-01-01

    Mitochondrial aminoacyl-tRNA synthetases (aaRSs) are essential enzymes in protein synthesis since they charge tRNAs with their cognate amino acids. Mutations in the genes encoding mitochondrial aaRSs have been associated with a wide spectrum of human mitochondrial diseases. Here we report the identification of pathogenic mutations (a partial genomic deletion and a highly conserved p. Asp325Tyr missense variant) in FARS2, the gene encoding mitochondrial phenylalanyl-tRNA synthetase, in a patient with early-onset epilepsy and isolated complex IV deficiency in muscle. The biochemical defect was expressed in myoblasts but not in fibroblasts and associated with decreased steady state levels of COXI and COXII protein and reduced steady state levels of the mt-tRNA(Phe) transcript. Functional analysis of the recombinant mutant p. Asp325Tyr FARS2 protein showed an inability to bind ATP and consequently undetectable aminoacylation activity using either bacterial tRNA or human mt-tRNA(Phe) as substrates. Lentiviral transduction of cells with wildtype FARS2 restored complex IV protein levels, confirming that the p.Asp325Tyr mutation is pathogenic, causing respiratory chain deficiency and neurological deficits on account of defective aminoacylation of mt-tRNA(Phe). © 2013. Published by Elsevier B.V. All rights reserved.

  19. Quantification of pharmaceutical peptides in human plasma by LC-ICP-MS sulfur detection

    DEFF Research Database (Denmark)

    Møller, Laura Hyrup; Macherius, André; Hansen, Thomas Hesselhøj

    2016-01-01

    A method for quantification of a pharmaceutical peptide in human plasma was developed using gradient elution LC-ICP-MS. A membrane desolvation (MD) system was applied to remove organic solvents from the eluent prior to the detection as SO+ in the dynamic reaction cell (DRC) of the ICP-DRC-MS inst......A method for quantification of a pharmaceutical peptide in human plasma was developed using gradient elution LC-ICP-MS. A membrane desolvation (MD) system was applied to remove organic solvents from the eluent prior to the detection as SO+ in the dynamic reaction cell (DRC) of the ICP......-DRC-MS instrument and subsequent quantification by post-column isotope dilution (IDA). Plasma proteins were precipitated prior to analysis. Analytical figures of merit including linearity, precision, LOD, LOQ and accuracy were considered satisfactory for analysis of plasma samples. The selectivity of the developed...... method was demonstrated for five pharmaceutically relevant peptides: desmopressin, penetratin, substance P, PTH (1-34) and insulin. Preliminary experiments on an ICP-MS/MS system using oxygen to reduce the effect of organic solvents were also performed to compare sensitivity. The results of the study...

  20. Mitochondrial Effects of PGC-1alpha Silencing in MPP+ Treated Human SH-SY5Y Neuroblastoma Cells

    Directory of Open Access Journals (Sweden)

    Qinyong Ye

    2017-05-01

    Full Text Available The dopaminergic neuron degeneration and loss that occurs in Parkinson’s disease (PD has been tightly linked to mitochondrial dysfunction. Although the aged-related cause of the mitochondrial defect observed in PD patients remains unclear, nuclear genes are of potential importance to mitochondrial function. Human peroxisome proliferator-activated receptor γ coactivator-1alpha (PGC-1α is a multi-functional transcription factor that tightly regulates mitochondrial biogenesis and oxidative capacity. The goal of the present study was to explore the potential pathogenic effects of interference by the PGC-1α gene on N-methyl-4-phenylpyridinium ion (MPP+-induced SH-SY5Y cells. We utilized RNA interference (RNAi technology to probe the pathogenic consequences of inhibiting PGC-1α in the SH-SY5Y cell line. Remarkably, a reduction in PGC-1α resulted in the reduction of mitochondrial membrane potential, intracellular ATP content and intracellular H2O2 generation, leading to the translocation of cytochrome c (cyt c to the cytoplasm in the MPP+-induced PD cell model. The expression of related proteins in the signaling pathway (e.g., estrogen-related receptor α (ERRα, nuclear respiratory factor 1 (NRF-1, NRF-2 and Peroxisome proliferator-activated receptor γ (PPARγ also decreased. Our finding indicates that small interfering RNA (siRNA interference targeting the PGC-1α gene could inhibit the function of mitochondria in several capacities and that the PGC-1α gene may modulate mitochondrial function by regulating the expression of ERRα, NRF-1, NRF-2 and PPARγ. Thus, PGC-1α can be considered a potential therapeutic target for PD.

  1. The Synthetic Antimicrobial Peptide 19-2.5 Interacts with Heparanase and Heparan Sulfate in Murine and Human Sepsis.

    Directory of Open Access Journals (Sweden)

    Lukas Martin

    Full Text Available Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains from their proteoglycans. Thereby, heparanase liberates highly potent circulating heparan sulfate-fragments (HS-fragments and triggers the fatal and excessive inflammatory response in sepsis. As a potential anti-inflammatory agent for sepsis therapy, peptide 19-2.5 belongs to the class of synthetic anti-lipopolysaccharide peptides; however, its activity is not restricted to Gram-negative bacterial infection. We hypothesized that peptide 19-2.5 interacts with heparanase and/or HS, thereby reducing the levels of circulating HS-fragments in murine and human sepsis. Our data indicate that the treatment of septic mice with peptide 19-2.5 compared to untreated control animals lowers levels of plasma heparanase and circulating HS-fragments and reduces heparanase activity. Additionally, mRNA levels of heparanase in heart, liver, lung, kidney and spleen are downregulated in septic mice treated with peptide 19-2.5 compared to untreated control animals. In humans, plasma heparanase level and activity are elevated in septic shock. The ex vivo addition of peptide 19-2.5 to plasma of septic shock patients decreases heparanase activity but not heparanase level. Isothermal titration calorimetry revealed a strong exothermic reaction between peptide 19-2.5 and heparanase and HS-fragments. However, a saturation character has been identified only in the peptide 19-2.5 and HS interaction. In conclusion, the findings of our current study indicate that peptide 19-2.5 interacts with heparanase, which is elevated in murine and human sepsis and consecutively attenuates the generation of circulating HS-fragments in systemic inflammation. Thus, peptide 19-2.5 seems to be a potential anti-inflammatory agent in sepsis.

  2. Intracellular Delivery of Proteins with Cell-Penetrating Peptides for Therapeutic Uses in Human Disease.

    Science.gov (United States)

    Dinca, Ana; Chien, Wei-Ming; Chin, Michael T

    2016-02-22

    Protein therapy exhibits several advantages over small molecule drugs and is increasingly being developed for the treatment of disorders ranging from single enzyme deficiencies to cancer. Cell-penetrating peptides (CPPs), a group of small peptides capable of promoting transport of molecular cargo across the plasma membrane, have become important tools in promoting the cellular uptake of exogenously delivered proteins. Although the molecular mechanisms of uptake are not firmly established, CPPs have been empirically shown to promote uptake of various molecules, including large proteins over 100 kiloDaltons (kDa). Recombinant proteins that include a CPP tag to promote intracellular delivery show promise as therapeutic agents with encouraging success rates in both animal and human trials. This review highlights recent advances in protein-CPP therapy and discusses optimization strategies and potential detrimental effects.

  3. Antimicrobial Activity of Lactoferrin-Related Peptides and Applications in Human and Veterinary Medicine

    Directory of Open Access Journals (Sweden)

    Natascia Bruni

    2016-06-01

    Full Text Available Antimicrobial peptides (AMPs represent a vast array of molecules produced by virtually all living organisms as natural barriers against infection. Among AMP sources, an interesting class regards the food-derived bioactive agents. The whey protein lactoferrin (Lf is an iron-binding glycoprotein that plays a significant role in the innate immune system, and is considered as an important host defense molecule. In search for novel antimicrobial agents, Lf offers a new source with potential pharmaceutical applications. The Lf-derived peptides Lf(1–11, lactoferricin (Lfcin and lactoferrampin exhibit interesting and more potent antimicrobial actions than intact protein. Particularly, Lfcin has demonstrated strong antibacterial, anti-fungal and antiparasitic activity with promising applications both in human and veterinary diseases (from ocular infections to osteo-articular, gastrointestinal and dermatological diseases.

  4. The mitochondrial membrane potential in human platelets: a sensitive parameter for platelet quality

    NARCIS (Netherlands)

    Verhoeven, Arthur J.; Verhaar, Robin; Gouwerok, Eric G. W.; de Korte, Dirk

    2005-01-01

    BACKGROUND: Deterioration of platelet (PLT) quality during storage is accompanied by an increase in lactate production, indicating a decrease in mitochondrial function. In this study, the optimal conditions under which the fluorescent dye JC-1 can be used to detect changes in mitochondrial function

  5. Improvement of mitochondrial function and dynamics by the metabolic enhancer piracetam.

    Science.gov (United States)

    Stockburger, Carola; Kurz, Christopher; Koch, Konrad A; Eckert, Schamim H; Leuner, Kristina; Müller, Walter E

    2013-10-01

    The metabolic enhancer piracetam is used in many countries to treat cognitive impairment in aging, brain injuries, as well as dementia such as AD (Alzheimer's disease). As a specific feature of piracetam, beneficial effects are usually associated with mitochondrial dysfunction. In previous studies we were able to show that piracetam enhanced ATP production, mitochondrial membrane potential as well as neurite outgrowth in cell and animal models for aging and AD. To investigate further the effects of piracetam on mitochondrial function, especially mitochondrial fission and fusion events, we decided to assess mitochondrial morphology. Human neuroblastoma cells were treated with the drug under normal conditions and under conditions imitating aging and the occurrence of ROS (reactive oxygen species) as well as in stably transfected cells with the human wild-type APP (amyloid precursor protein) gene. This AD model is characterized by expressing only 2-fold more human Aβ (amyloid β-peptide) compared with control cells and therefore representing very early stages of AD when Aβ levels gradually increase over decades. Interestingly, these cells exhibit an impaired mitochondrial function and morphology under baseline conditions. Piracetam is able to restore this impairment and shifts mitochondrial morphology back to elongated forms, whereas there is no effect in control cells. After addition of a complex I inhibitor, mitochondrial morphology is distinctly shifted to punctate forms in both cell lines. Under these conditions piracetam is able to ameliorate morphology in cells suffering from the mild Aβ load, as well as mitochondrial dynamics in control cells.

  6. Human, donkey and cow milk differently affects energy efficiency and inflammatory state by modulating mitochondrial function and gut microbiota.

    Science.gov (United States)

    Trinchese, Giovanna; Cavaliere, Gina; Canani, Roberto Berni; Matamoros, Sebastien; Bergamo, Paolo; De Filippo, Chiara; Aceto, Serena; Gaita, Marcello; Cerino, Pellegrino; Negri, Rossella; Greco, Luigi; Cani, Patrice D; Mollica, Maria Pina

    2015-11-01

    Different nutritional components are able, by modulating mitochondrial function and gut microbiota composition, to influence body composition, metabolic homeostasis and inflammatory state. In this study, we aimed to evaluate the effects produced by the supplementation of different milks on energy balance, inflammatory state, oxidative stress and antioxidant/detoxifying enzyme activities and to investigate the role of the mitochondrial efficiency and the gut microbiota in the regulation of metabolic functions in an animal model. We compared the intake of human milk, gold standard for infant nutrition, with equicaloric supplementation of donkey milk, the best substitute for newborns due to its nutritional properties, and cow milk, the primary marketed product. The results showed a hypolipidemic effect produced by donkey and human milk intake in parallel with enhanced mitochondrial activity/proton leakage. Reduced mitochondrial energy efficiency and proinflammatory signals (tumor necrosis factor α, interleukin-1 and lipopolysaccharide levels) were associated with a significant increase of antioxidants (total thiols) and detoxifying enzyme activities (glutathione-S-transferase, NADH quinone oxidoreductase) in donkey- and human milk-treated animals. The beneficial effects were attributable, at least in part, to the activation of the nuclear factor erythroid-2-related factor-2 pathway. Moreover, the metabolic benefits induced by human and donkey milk may be related to the modulation of gut microbiota. In fact, milk treatments uniquely affected the proportions of bacterial phyla and genera, and we hypothesized that the increased concentration of fecal butyrate in human and donkey milk-treated rats was related to the improved lipid and glucose metabolism and detoxifying activities. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Selectivity in the potentiation of antibacterial activity of α-peptide/β-peptoid peptidomimetics and antimicrobial peptides by human blood plasma

    DEFF Research Database (Denmark)

    Hein-Kristensen, Line; Knapp, Kolja M.; Franzyk, Henrik

    2013-01-01

    Antimicrobial peptides (AMPs) are promising leads for novel antibiotics; however, their activity is often compromised under physiological conditions. The purpose of this study was to determine the activity of alpha-peptide/beta-peptoid peptidomimetics and AMPs against Escherichia coli and Staphyl......Antimicrobial peptides (AMPs) are promising leads for novel antibiotics; however, their activity is often compromised under physiological conditions. The purpose of this study was to determine the activity of alpha-peptide/beta-peptoid peptidomimetics and AMPs against Escherichia coli...... and Staphylococcus aureus in the presence of human blood-derived matrices and immune effectors. The minimum inhibitory concentration (MIC) of two peptidomimetics against E. coli decreased by up to one order of magnitude when determined in 50% blood plasma as compared to MHB media. The MIC of a membrane-active AMP......, LL-I/3, also decreased, whereas two intracellularly acting AMPs were not potentiated by plasma. Blood serum had no effect on activity against E. coli and neither matrix had an effect on activity against S. aureus. Unexpectedly, physiological concentrations of human serum albumin did not influence...

  8. Bridging two scholarly islands enriches both: COI DNA barcodes for species identification versus human mitochondrial variation for the study of migrations and pathologies.

    Science.gov (United States)

    Thaler, David S; Stoeckle, Mark Y

    2016-10-01

    DNA barcodes for species identification and the analysis of human mitochondrial variation have developed as independent fields even though both are based on sequences from animal mitochondria. This study finds questions within each field that can be addressed by reference to the other. DNA barcodes are based on a 648-bp segment of the mitochondrially encoded cytochrome oxidase I. From most species, this segment is the only sequence available. It is impossible to know whether it fairly represents overall mitochondrial variation. For modern humans, the entire mitochondrial genome is available from thousands of healthy individuals. SNPs in the human mitochondrial genome are evenly distributed across all protein-encoding regions arguing that COI DNA barcode is representative. Barcode variation among related species is largely based on synonymous codons. Data on human mitochondrial variation support the interpretation that most - possibly all - synonymous substitutions in mitochondria are selectively neutral. DNA barcodes confirm reports of a low variance in modern humans compared to nonhuman primates. In addition, DNA barcodes allow the comparison of modern human variance to many other extant animal species. Birds are a well-curated group in which DNA barcodes are coupled with census and geographic data. Putting modern human variation in the context of intraspecies variation among birds shows humans to be a single breeding population of average variance.

  9. Persistence of the mitochondrial permeability transition in the absence of subunit c of human ATP synthase.

    Science.gov (United States)

    He, Jiuya; Ford, Holly C; Carroll, Joe; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2017-03-28

    The permeability transition in human mitochondria refers to the opening of a nonspecific channel, known as the permeability transition pore (PTP), in the inner membrane. Opening can be triggered by calcium ions, leading to swelling of the organelle, disruption of the inner membrane, and ATP synthesis, followed by cell death. Recent proposals suggest that the pore is associated with the ATP synthase complex and specifically with the ring of c-subunits that constitute the membrane domain of the enzyme's rotor. The c-subunit is produced from three nuclear genes, ATP5G1 , ATP5G2 , and ATP5G3 , encoding identical copies of the mature protein with different mitochondrial-targeting sequences that are removed during their import into the organelle. To investigate the involvement of the c-subunit in the PTP, we generated a clonal cell, HAP1-A12, from near-haploid human cells, in which ATP5G1 , ATP5G2 , and ATP5G3 were disrupted. The HAP1-A12 cells are incapable of producing the c-subunit, but they preserve the characteristic properties of the PTP. Therefore, the c-subunit does not provide the PTP. The mitochondria in HAP1-A12 cells assemble a vestigial ATP synthase, with intact F 1 -catalytic and peripheral stalk domains and the supernumerary subunits e, f, and g, but lacking membrane subunits ATP6 and ATP8. The same vestigial complex plus associated c-subunits was characterized from human 143B ρ 0 cells, which cannot make the subunits ATP6 and ATP8, but retain the PTP. Therefore, none of the membrane subunits of the ATP synthase that are involved directly in transmembrane proton translocation is involved in forming the PTP.

  10. Mitochondrial electron transport is inhibited by disappearance of metallothionein in human bronchial epithelial cells following exposure to silver nitrate.

    Science.gov (United States)

    Miyayama, Takamitsu; Arai, Yuta; Suzuki, Noriyuki; Hirano, Seishiro

    2013-03-08

    Silver (Ag) possesses antibacterial activity and has been used in wound dressings and deodorant powders worldwide. However, the metabolic behavior and biological roles of Ag in mammals have not been well characterized. In the present study, we exposed human bronchial epithelial cells (BEAS-2B) to AgNO3 and investigated uptake and intracellular distribution of Ag, expression of metallothionein (MT), generation of reactive oxygen species (ROS), and changes in mitochondrial respiration. The culture medium concentration of Ag decreased with time and stabilized at 12h. The concentration of both Ag and MT in the soluble cellular fraction increased up to 3h and then decreased, indicating that cytosolic Ag relocated to the insoluble fraction of the cells. The levels of mRNAs for the major human MT isoforms MT-I and MT-II paralleled with the protein levels of Ag-MT. The intensity of fluorescence derived from ROS was elevated in the mitochondrial region at 24h. Ag decreased mitochondrial oxygen consumption in a dose-dependent manner and the activity of mitochondrial complex I-IV enzymes was significantly inhibited following exposure to Ag. In a separate experiment, we found that hydrogen peroxide (H2O2) at concentrations as low as 0.001% (equivalent to the concentration of H2O2 in Ag-exposed cells) removed Ag from MT. These results suggest MT was decomposed by cytosolic H2O2, and then Ag released from MT relocated to insoluble cellular fractions and inhibited electron chain transfer of mitochondrial complexes, which eventually led to cell damage. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Activation of IGF-1 and insulin signaling pathways ameliorate mitochondrial function and energy metabolism in Huntington's Disease human lymphoblasts.

    Science.gov (United States)

    Naia, Luana; Ferreira, I Luísa; Cunha-Oliveira, Teresa; Duarte, Ana I; Ribeiro, Márcio; Rosenstock, Tatiana R; Laço, Mário N; Ribeiro, Maria J; Oliveira, Catarina R; Saudou, Frédéric; Humbert, Sandrine; Rego, A Cristina

    2015-02-01

    Huntington's disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the huntingtin protein. Mitochondrial dysfunction associated with energy failure plays an important role in this untreated pathology. In the present work, we used lymphoblasts obtained from HD patients or unaffected parentally related individuals to study the protective role of insulin-like growth factor 1 (IGF-1) versus insulin (at low nM) on signaling and metabolic and mitochondrial functions. Deregulation of intracellular signaling pathways linked to activation of insulin and IGF-1 receptors (IR,IGF-1R), Akt, and ERK was largely restored by IGF-1 and, at a less extent, by insulin in HD human lymphoblasts. Importantly, both neurotrophic factors stimulated huntingtin phosphorylation at Ser421 in HD cells. IGF-1 and insulin also rescued energy levels in HD peripheral cells, as evaluated by increased ATP and phosphocreatine, and decreased lactate levels. Moreover, IGF-1 effectively ameliorated O2 consumption and mitochondrial membrane potential (Δψm) in HD lymphoblasts, which occurred concomitantly with increased levels of cytochrome c. Indeed, constitutive phosphorylation of huntingtin was able to restore the Δψm in lymphoblasts expressing an abnormal expansion of polyglutamines. HD lymphoblasts further exhibited increased intracellular Ca(2+) levels before and after exposure to hydrogen peroxide (H2O2), and decreased mitochondrial Ca(2+) accumulation, being the later recovered by IGF-1 and insulin in HD lymphoblasts pre-exposed to H2O2. In summary, the data support an important role for IR/IGF-1R mediated activation of signaling pathways and improved mitochondrial and metabolic function in HD human lymphoblasts.

  12. Reactive oxygen species mediates homocysteine-induced mitochondrial biogenesis in human endothelial cells: Modulation by antioxidants

    International Nuclear Information System (INIS)

    Perez-de-Arce, Karen; Foncea, Rocio; Leighton, Federico

    2005-01-01

    It has been proposed that homocysteine (Hcy)-induces endothelial dysfunction and atherosclerosis by generation of reactive oxygen species (ROS). A previous report has shown that Hcy promotes mitochondrial damage. Considering that oxidative stress can affect mitochondrial biogenesis, we hypothesized that Hcy-induced ROS in endothelial cells may lead to increased mitochondrial biogenesis. We found that Hcy-induced ROS (1.85-fold), leading to a NF-κB activation and increase the formation of 3-nitrotyrosine. Furthermore, expression of the mitochondrial biogenesis factors, nuclear respiratory factor-1 and mitochondrial transcription factor A, was significantly elevated in Hcy-treated cells. These changes were accompanied by increase in mitochondrial mass and higher mRNA and protein expression of the subunit III of cytochrome c oxidase. These effects were significantly prevented by pretreatment with the antioxidants, catechin and trolox. Taken together, our results suggest that ROS is an important mediator of mitochondrial biogenesis induced by Hcy, and that modulation of oxidative stress by antioxidants may protect against the adverse vascular effects of Hcy

  13. Effect of DHA and CoenzymeQ10 Against Aβ- and Zinc-Induced Mitochondrial Dysfunction in Human Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Nadia Sadli

    2013-07-01

    Full Text Available Background: Beta-amyloid (Aβ protein is a key factor in the pathogenesis of Alzheimer's disease (AD and it has been reported that mitochondria is involved in the biochemical pathway by which Aβ can lead to neuronal dysfunction. Coenzyme Q10 (CoQ10 is an essential cofactor involved in the mitochondrial electron transport chain and has been suggested as a potential therapeutic agent in AD. Zinc toxicity also affects cellular energy production by decreasing oxygen consumption rate (OCR and ATP turnover in human neuronal cells, which can be restored by the neuroprotective effect of docosahexaenoic acid (DHA. Method: In the present study, using Seahorse XF-24 Metabolic Flux Analysis we investigated the effect of DHA and CoQ10 alone and in combination against Aβ- and zinc-mediated changes in the mitochondrial function of M17 neuroblastoma cell line. Results: Here, we observed that DHA is specifically neuroprotective against zinc-triggered mitochondrial dysfunction, but does not directly affect Aβ neurotoxicity. CoQ10 has shown to be protective against both Aβ- and zinc-induced alterations in mitochondrial function. Conclusion: Our results indicate that DHA and CoQ10 may be useful for the prevention, treatment and management of neurodegenerative diseases such as AD.

  14. Mitochondrial DNA Hypomethylation Is a Biomarker Associated with Induced Senescence in Human Fetal Heart Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Dehai Yu

    2017-01-01

    Full Text Available Background. Fetal heart can regenerate to restore its normal anatomy and function in response to injury, but this regenerative capacity is lost within the first week of postnatal life. Although the specific molecular mechanisms remain to be defined, it is presumed that aging of cardiac stem or progenitor cells may contribute to the loss of regenerative potential. Methods. To study this aging-related dysfunction, we cultured mesenchymal stem cells (MSCs from human fetal heart tissues. Senescence was induced by exposing cells to chronic oxidative stress/low serum. Mitochondrial DNA methylation was examined during the period of senescence. Results. Senescent MSCs exhibited flattened and enlarged morphology and were positive for the senescence-associated beta-galactosidase (SA-β-Gal. By scanning the entire mitochondrial genome, we found that four CpG islands were hypomethylated in close association with senescence in MSCs. The mitochondrial COX1 gene, which encodes the main subunit of the cytochrome c oxidase complex and contains the differentially methylated CpG island 4, was upregulated in MSCs in parallel with the onset of senescence. Knockdown of DNA methyltransferases (DNMT1, DNMT3a, and DNMT3B also upregulated COX1 expression and induced cellular senescence in MSCs. Conclusions. This study demonstrates that mitochondrial CpG hypomethylation may serve as a critical biomarker associated with cellular senescence induced by chronic oxidative stress.

  15. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation.

    Science.gov (United States)

    Nisr, Raid B; Affourtit, Charles

    2014-02-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. © 2013.

  16. Insulin acutely improves mitochondrial function of rat and human skeletal muscle by increasing coupling efficiency of oxidative phosphorylation☆

    Science.gov (United States)

    Nisr, Raid B.; Affourtit, Charles

    2014-01-01

    Insulin is essential for the regulation of fuel metabolism and triggers the uptake of glucose by skeletal muscle. The imported glucose is either stored or broken down, as insulin stimulates glycogenesis and ATP synthesis. The mechanism by which ATP production is increased is incompletely understood at present and, generally, relatively little functional information is available on the effect of insulin on mitochondrial function. In this paper we have exploited extracellular flux technology to investigate insulin effects on the bioenergetics of rat (L6) and human skeletal muscle myoblasts and myotubes. We demonstrate that a 20-min insulin exposure significantly increases (i) the cell respiratory control ratio, (ii) the coupling efficiency of oxidative phosphorylation, and (iii) the glucose sensitivity of anaerobic glycolysis. The improvement of mitochondrial function is explained by an insulin-induced immediate decrease of mitochondrial proton leak. Palmitate exposure annuls the beneficial mitochondrial effects of insulin. Our data improve the mechanistic understanding of insulin-stimulated ATP synthesis, and reveal a hitherto undisclosed insulin sensitivity of cellular bioenergetics that suggests a novel way of detecting insulin responsiveness of cells. PMID:24212054

  17. Jaceosidin Induces Apoptosis in Human Ovary Cancer Cells through Mitochondrial Pathway

    Directory of Open Access Journals (Sweden)

    Wen Lv

    2008-01-01

    Full Text Available We examined the antiproliferation effect of Jaceosidin (4′, 5, 7-trihydroxy-3′, 6-dimethoxyflavone isolated from the herb of Artemisia vestita Wall on several human cancer cell lines. Jaceosidin significantly reduced the proliferation of CAOV-3, SKOV-3, HeLa, and PC3 cells in a concentration-dependent manner. A time-dependent inhibition was also observed in CAOV-3 cells by Jaceosidin. By flow cytometric analysis, we found that Jaceosidin treatment resulted in an increased apoptosis in CAOV-3 cells. The cells treated with Jaceosidin exhibited a decreased mitochondrial membrane potential. Jaceosidin also increased the level of cleaved caspase-9 and induced the cleavage of caspase-3 and poly (ADP-ribose polymerase (PARP, while caspase-3 inhibitor Z-DEVD-FMK significantly reversed the proapoptotic effect of Jaceosidin in CAOV-3 cells. Moreover, Jaceosidin elevated the level of cytochrome c in cytosol. These findings suggest that the anticancer effect of Jaceosidin may be contributed by an induction of apoptosis involving cytochrome c release from mitochondria to cytosol.

  18. Mitochondrial DNA diversity of present-day Aboriginal Australians and implications for human evolution in Oceania.

    Science.gov (United States)

    Nagle, Nano; Ballantyne, Kaye N; van Oven, Mannis; Tyler-Smith, Chris; Xue, Yali; Wilcox, Stephen; Wilcox, Leah; Turkalov, Rust; van Oorschot, Roland A H; van Holst Pellekaan, Sheila; Schurr, Theodore G; McAllister, Peter; Williams, Lesley; Kayser, Manfred; Mitchell, R John

    2017-03-01

    Aboriginal Australians are one of the more poorly studied populations from the standpoint of human evolution and genetic diversity. Thus, to investigate their genetic diversity, the possible date of their ancestors' arrival and their relationships with neighboring populations, we analyzed mitochondrial DNA (mtDNA) diversity in a large sample of Aboriginal Australians. Selected mtDNA single-nucleotide polymorphisms and the hypervariable segment haplotypes were analyzed in 594 Aboriginal Australians drawn from locations across the continent, chiefly from regions not previously sampled. Most (~78%) samples could be assigned to mtDNA haplogroups indigenous to Australia. The indigenous haplogroups were all ancient (with estimated ages >40 000 years) and geographically widespread across the continent. The most common haplogroup was P (44%) followed by S (23%) and M42a (9%). There was some geographic structure at the haplotype level. The estimated ages of the indigenous haplogroups range from 39 000 to 55 000 years, dates that fit well with the estimated date of colonization of Australia based on archeological evidence (~47 000 years ago). The distribution of mtDNA haplogroups in Australia and New Guinea supports the hypothesis that the ancestors of Aboriginal Australians entered Sahul through at least two entry points. The mtDNA data give no support to the hypothesis of secondary gene flow into Australia during the Holocene, but instead suggest long-term isolation of the continent.

  19. Induction of Mitochondrial DNA Deletion by Ionizing Radiation in Human Lung Fibroblast IMR-90 Cells

    International Nuclear Information System (INIS)

    Eom, Hyeon Soo; Jung, U Hee; Park, Hae Ran; Jo, Sung Kee

    2009-01-01

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging and also contributes to their unfavorable effects in cultured cells and animal tissues. This study was conducted to investigate the effect of ionizing radiation (IR) on mtDNA deletion and the involvement of reactive oxygen species (ROS) in this process in human lung fibroblast (IMR-90) cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated with 137 Cs -rays and the intracellular ROS level was determined by 2',7'-dichlorofluorescein diacetate (DCFH-DA) and mtDNA common deletion (4977bp) was detected by nested PCR. Old cells at PD 55 and H 2 O 2 -treated young cells were compared as the positive control. IR increased the intracellular ROS level and mtDNA 4977 bp deletion in IMR-90 cells dose-dependently. The increases of ROS level and mtDNA deletion were also observed in old cells and H 2 O 2 -treated young cells. To confirm the increased ROS level is essential for mtDNA deletion in irradiated cells, the effects of N-acetylcysteine (NAC) on IRinduced ROS and mtDNA deletion were examined. 5 mM NAC significantly attenuated the IR-induced ROS increase and mtDNA deletion. These results suggest that IR induces the mtDNA deletion and this process is mediated by ROS in IMR-90 cells

  20. Induction of Mitochondrial DNA Deletion by Ionizing Radiation in Human Lung Fibroblast IMR-90 Cells

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Hyeon Soo; Jung, U Hee; Park, Hae Ran; Jo, Sung Kee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2009-06-15

    Mitochondrial DNA (mtDNA) deletion is a well-known marker for oxidative stress and aging and also contributes to their unfavorable effects in cultured cells and animal tissues. This study was conducted to investigate the effect of ionizing radiation (IR) on mtDNA deletion and the involvement of reactive oxygen species (ROS) in this process in human lung fibroblast (IMR-90) cells. Young IMR-90 cells at population doubling (PD) 39 were irradiated with {sup 137}Cs -rays and the intracellular ROS level was determined by 2',7'-dichlorofluorescein diacetate (DCFH-DA) and mtDNA common deletion (4977bp) was detected by nested PCR. Old cells at PD 55 and H{sub 2}O{sub 2}-treated young cells were compared as the positive control. IR increased the intracellular ROS level and mtDNA 4977 bp deletion in IMR-90 cells dose-dependently. The increases of ROS level and mtDNA deletion were also observed in old cells and H{sub 2}O{sub 2}-treated young cells. To confirm the increased ROS level is essential for mtDNA deletion in irradiated cells, the effects of N-acetylcysteine (NAC) on IRinduced ROS and mtDNA deletion were examined. 5 mM NAC significantly attenuated the IR-induced ROS increase and mtDNA deletion. These results suggest that IR induces the mtDNA deletion and this process is mediated by ROS in IMR-90 cells.

  1. Kinetic and structural characterization of amyloid-β peptide hydrolysis by human angiotensin-1-converting enzyme.

    Science.gov (United States)

    Larmuth, Kate M; Masuyer, Geoffrey; Douglas, Ross G; Schwager, Sylva L; Acharya, K Ravi; Sturrock, Edward D

    2016-03-01

    Angiotensin-1-converting enzyme (ACE), a zinc metallopeptidase, consists of two homologous catalytic domains (N and C) with different substrate specificities. Here we report kinetic parameters of five different forms of human ACE with various amyloid beta (Aβ) substrates together with high resolution crystal structures of the N-domain in complex with Aβ fragments. For the physiological Aβ(1-16) peptide, a novel ACE cleavage site was found at His14-Gln15. Furthermore, Aβ(1-16) was preferentially cleaved by the individual N-domain; however, the presence of an inactive C-domain in full-length somatic ACE (sACE) greatly reduced enzyme activity and affected apparent selectivity. Two fluorogenic substrates, Aβ(4-10)Q and Aβ(4-10)Y, underwent endoproteolytic cleavage at the Asp7-Ser8 bond with all ACE constructs showing greater catalytic efficiency for Aβ(4-10)Y. Surprisingly, in contrast to Aβ(1-16) and Aβ(4-10)Q, sACE showed positive domain cooperativity and the double C-domain (CC-sACE) construct no cooperativity towards Aβ(4-10)Y. The structures of the Aβ peptide-ACE complexes revealed a common mode of peptide binding for both domains which principally targets the C-terminal P2' position to the S2' pocket and recognizes the main chain of the P1' peptide. It is likely that N-domain selectivity for the amyloid peptide is conferred through the N-domain specific S2' residue Thr358. Additionally, the N-domain can accommodate larger substrates through movement of the N-terminal helices, as suggested by the disorder of the hinge region in the crystal structures. Our findings are important for the design of domain selective inhibitors as the differences in domain selectivity are more pronounced with the truncated domains compared to the more physiological full-length forms. The atomic coordinates and structure factors for N-domain ACE with Aβ peptides 4-10 (5AM8), 10-16 (5AM9), 1-16 (5AMA), 35-42 (5AMB) and (4-10)Y (5AMC) complexes have been deposited in the

  2. Human Platelet-Rich Plasma- and Extracellular Matrix-Derived Peptides Promote Impaired Cutaneous Wound Healing In Vivo

    Science.gov (United States)

    Demidova-Rice, Tatiana N.; Wolf, Lindsey; Deckenback, Jeffry; Hamblin, Michael R.; Herman, Ira M.

    2012-01-01

    Previous work in our laboratory has described several pro-angiogenic short peptides derived from endothelial extracellular matrices degraded by bacterial collagenase. Here we tested whether these peptides could stimulate wound healing in vivo. Our experiments demonstrated that a peptide created as combination of fragments of tenascin X and fibrillin 1 (comb1) applied into cranial dermal wounds created in mice treated with cyclophosphamide to impair wound healing, can improve the rate of wound closure. Furthermore, we identify and characterize a novel peptide (UN3) created and modified from two naturally-occurring peptides, which are present in human platelet-rich plasma. In vitro testing of UN3 demonstrates that it causes a 50% increase in endothelial proliferation, 250% increase in angiogenic response and a tripling of epithelial cell migration in response to injury. Results of in vivo experiments where comb1 and UN3 peptides were added together to cranial wounds in cyclophosphamide-treated mice leads to improvement of wound vascularization as shown by an increase of the number of blood vessels present in the wound beds. Application of the peptides markedly promotes cellular responses to injury and essentially restores wound healing dynamics to those of normal, acute wounds in the absence of cyclophosphamide impairment. Our current work is aimed at understanding the mechanisms underlying the stimulatory effects of these peptides as well as identification of the cellular receptors mediating these effects. PMID:22384158

  3. SP-LL-37, human antimicrobial peptide, enhances disease resistance in transgenic rice.

    Science.gov (United States)

    Lee, In Hye; Jung, Yu-Jin; Cho, Yong Gu; Nou, Ill Sup; Huq, Md Amdadul; Nogoy, Franz Marielle; Kang, Kwon-Kyoo

    2017-01-01

    Human LL-37 is a multifunctional antimicrobial peptide of cathelicidin family. It has been shown in recent studies that it can serve as a host's defense against influenza A virus. We now demonstrate in this study how signal peptide LL-37 (SP-LL-37) can be used in rice resistance against bacterial leaf blight and blast. We synthesized LL-37 peptide and subcloned in a recombinant pPZP vector with pGD1 as promoter. SP-LL-37 was introduced into rice plants by Agrobacterium mediated transformation. Stable expression of SP-LL-37 in transgenic rice plants was confirmed by RT-PCR and ELISA analyses. Subcellular localization of SP-LL-37-GFP fusion protein showed evidently in intercellular space. Our data on testing for resistance to bacterial leaf blight and blast revealed that the transgenic lines are highly resistant compared to its wildtype. Our results suggest that LL-37 can be further explored to improve wide-spectrum resistance to biotic stress in rice.

  4. Functional characterization of the modified melanocortin peptides responsible for ligand selectivity at the human melanocortin receptors.

    Science.gov (United States)

    Chen, Min; Georgeson, Keith E; Harmon, Carroll M; Haskell-Luevano, Carrie; Yang, Yingkui

    2006-11-01

    The melanocortin system plays an important role in energy homeostasis as well as skin pigmentation, steroidogenesis and exocrine gland function. In this study, we examined eight Ac-His-Phe-Arg-Trp-NH(2) tetrapeptides that were modified at the Phe position and pharmacologically characterized their activities at the human MCR wild-types and their mutants. Our results indicate that at the hMC1R, all D stereochemical modified residues at the Phe position of peptides increase cAMP production in a dose-dependent manner. At the hMC3R, the DPhe peptide dose dependently increases cAMP production but all other three tetrapeptides were not. At the hMC4R, both the DPhe and DNal(1') peptides induce cAMP production. However, both DTyr and DNal(2') were not able to induce cAMP production. Further studies indicated that at the hMC1R M128L mutant receptor, the all D-configured tetrapeptides reduce their potencies as compared to that of hMC1R wild-type. However, at the hMC3R and hMC4R L165M and L133M mutant receptors, the DNal(2') and DTyr tetrapeptides possess agonist activity. These findings indicate that DPhe in tetrapeptide plays an important role in ligand selectivity and specific residue TM3 of the melanocortin receptors is crucial for ligand selectivity.

  5. Antimicrobial Effects of Helix D-derived Peptides of Human Antithrombin III*

    Science.gov (United States)

    Papareddy, Praveen; Kalle, Martina; Bhongir, Ravi K. V.; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur

    2014-01-01

    Antithrombin III (ATIII) is a key antiproteinase involved in blood coagulation. Previous investigations have shown that ATIII is degraded by Staphylococcus aureus V8 protease, leading to release of heparin binding fragments derived from its D helix. As heparin binding and antimicrobial activity of peptides frequently overlap, we here set out to explore possible antibacterial effects of intact and degraded ATIII. In contrast to intact ATIII, the results showed that extensive degradation of the molecule yielded fragments with antimicrobial activity. Correspondingly, the heparin-binding, helix d-derived, peptide FFFAKLNCRLYRKANKSSKLV (FFF21) of human ATIII, was found to be antimicrobial against particularly the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. Fluorescence microscopy and electron microscopy studies demonstrated that FFF21 binds to and permeabilizes bacterial membranes. Analogously, FFF21 was found to induce membrane leakage of model anionic liposomes. In vivo, FFF21 significantly reduced P. aeruginosa infection in mice. Additionally, FFF21 displayed anti-endotoxic effects in vitro. Taken together, our results suggest novel roles for ATIII-derived peptide fragments in host defense. PMID:25202017

  6. Antimicrobial effects of helix D-derived peptides of human antithrombin III.

    Science.gov (United States)

    Papareddy, Praveen; Kalle, Martina; Bhongir, Ravi K V; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur

    2014-10-24

    Antithrombin III (ATIII) is a key antiproteinase involved in blood coagulation. Previous investigations have shown that ATIII is degraded by Staphylococcus aureus V8 protease, leading to release of heparin binding fragments derived from its D helix. As heparin binding and antimicrobial activity of peptides frequently overlap, we here set out to explore possible antibacterial effects of intact and degraded ATIII. In contrast to intact ATIII, the results showed that extensive degradation of the molecule yielded fragments with antimicrobial activity. Correspondingly, the heparin-binding, helix D-derived, peptide FFFAKLNCRLYRKANKSSKLV (FFF21) of human ATIII, was found to be antimicrobial against particularly the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. Fluorescence microscopy and electron microscopy studies demonstrated that FFF21 binds to and permeabilizes bacterial membranes. Analogously, FFF21 was found to induce membrane leakage of model anionic liposomes. In vivo, FFF21 significantly reduced P. aeruginosa infection in mice. Additionally, FFF21 displayed anti-endotoxic effects in vitro. Taken together, our results suggest novel roles for ATIII-derived peptide fragments in host defense. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Stapled peptides as a new technology to investigate protein-protein interactions in human platelets.

    Science.gov (United States)

    Iegre, Jessica; Ahmed, Niaz S; Gaynord, Josephine S; Wu, Yuteng; Herlihy, Kara M; Tan, Yaw Sing; Lopes-Pires, Maria E; Jha, Rupam; Lau, Yu Heng; Sore, Hannah F; Verma, Chandra; O' Donovan, Daniel H; Pugh, Nicholas; Spring, David R

    2018-05-28

    Platelets are blood cells with numerous crucial pathophysiological roles in hemostasis, cardiovascular thrombotic events and cancer metastasis. Platelet activation requires the engagement of intracellular signalling pathways that involve protein-protein interactions (PPIs). A better understanding of these pathways is therefore crucial for the development of selective anti-platelet drugs. New strategies for studying PPIs in human platelets are required to overcome limitations associated with conventional platelet research methods. For example, small molecule inhibitors can lack selectivity and are often difficult to design and synthesise. Additionally, development of transgenic animal models is costly and time-consuming and conventional recombinant techniques are ineffective due to the lack of a nucleus in platelets. Herein, we describe the generation of a library of novel, functionalised stapled peptides and their first application in the investigation of platelet PPIs. Moreover, the use of platelet-permeable stapled Bim BH3 peptides confirms the part of Bim in phosphatidyl-serine (PS) exposure and reveals a role for the Bim protein in platelet activatory processes. Our work demonstrates that functionalised stapled peptides are a complementary alternative to conventional platelet research methods, and could make a significant contribution to the understanding of platelet signalling pathways and hence to the development of anti-platelet drugs.

  8. Delineation of the peptide binding site of the human galanin receptor.

    Science.gov (United States)

    Kask, K; Berthold, M; Kahl, U; Nordvall, G; Bartfai, T

    1996-01-01

    Galanin, a neuroendocrine peptide of 29 amino acids, binds to Gi/Go-coupled receptors to trigger cellular responses. To determine which amino acids of the recently cloned seven-transmembrane domain-type human galanin receptor are involved in the high-affinity binding of the endogenous peptide ligand, we performed a mutagenesis study. Mutation of the His264 or His267 of transmembrane domain VI to alanine, or of Phe282 of transmembrane domain VII to glycine, results in an apparent loss of galanin binding. The substitution of Glu271 to serine in the extracellular loop III of the receptor causes a 12-fold loss in affinity for galanin. We combined the mutagenesis results with data on the pharmacophores (Trp2, Tyr9) of galanin and with molecular modelling of the receptor using bacteriorhodopsin as a model. Based on these studies, we propose a binding site model for the endogenous peptide ligand in the galanin receptor where the N-terminus of galanin hydrogen bonds with Glu271 of the receptor, Trp2 of galanin interacts with the Zn2+ sensitive pair of His264 and His267 of transmembrane domain VI, and Tyr9 of galanin interacts with Phe282 of transmembrane domain VII, while the C-terminus of galanin is pointing towards the N-terminus of th Images PMID:8617199

  9. Role of Mitochondrial DNA Copy Number Alteration in Human Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Chen-Sung Lin

    2016-05-01

    Full Text Available We investigated the role of mitochondrial DNA (mtDNA copy number alteration in human renal cell carcinoma (RCC. The mtDNA copy numbers of paired cancer and non-cancer parts from five resected RCC kidneys after radical nephrectomy were determined by quantitative polymerase chain reaction (Q-PCR. An RCC cell line, 786-O, was infected by lentiviral particles to knock down mitochondrial transcriptional factor A (TFAM. Null target (NT and TFAM-knockdown (TFAM-KD represented the control and knockdown 786-O clones, respectively. Protein or mRNA expression levels of TFAM; mtDNA-encoded NADH dehydrogenase subunit 1 (ND1, ND6 and cytochrome c oxidase subunit 2 (COX-2; nuclear DNA (nDNA-encoded succinate dehydrogenase subunit A (SDHA; v-akt murine thymoma viral oncogene homolog 1 gene (AKT-encoded AKT and v-myc myelocytomatosis viral oncogene homolog gene (c-MYC-encoded MYC; glycolytic enzymes including hexokinase II (HK-II, glucose 6-phosphate isomerase (GPI, phosphofructokinase (PFK, and lactate dehydrogenase subunit A (LDHA; and hypoxia-inducible factors the HIF-1α and HIF-2α, pyruvate dehydrogenase kinase 1 (PDK1, and pyruvate dehydrogenase E1 component α subunit (PDHA1 were analyzed by Western blot or Q-PCR. Bioenergetic parameters of cellular metabolism, basal mitochondrial oxygen consumption rate (mOCRB and basal extracellular acidification rate (ECARB, were measured by a Seahorse XFe-24 analyzer. Cell invasiveness was evaluated by a trans-well migration assay and vimentin expression. Doxorubicin was used as a chemotherapeutic agent. The results showed a decrease of mtDNA copy numbers in resected RCC tissues (p = 0.043. The TFAM-KD clone expressed lower mtDNA copy number (p = 0.034, lower mRNA levels of TFAM (p = 0.008, ND1 (p = 0.007, and ND6 (p = 0.017, and lower protein levels of TFAM and COX-2 than did the NT clone. By contrast, the protein levels of HIF-2α, HK-II, PFK, LDHA, AKT, MYC and vimentin; trans-well migration activity (p = 0

  10. The potato tuber mitochondrial proteome

    DEFF Research Database (Denmark)

    Møller, Ian Max; Salvato, Fernanda; Havelund, Jesper

    We are testing the hypothesis that oxidized peptides are released from stressed mitochondria and contribute to retrograde signalling (Møller IM & Sweetlove LJ 2010 Trends Plant Sci 15, 370-374). However, there is a large gap between the number of experimentally verified mitochondrial proteins (~450......) and in silico-predicted mitochondrial proteins (2000-3000). Thus, before starting to look for oxidized peptides, we wanted to expand the current compendium of plant mitochondrial proteins while obtaining what could be termed the "baseline proteome" from our model organelle, the potato tuber mitochondrion. Its...

  11. Characterization of amyloid beta peptides from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein.

    Science.gov (United States)

    Pype, Stefan; Moechars, Dieder; Dillen, Lieve; Mercken, Marc

    2003-02-01

    Alzheimer's disease (AD) is marked by the presence of neurofibrillary tangles and amyloid plaques in the brain of patients. To study plaque formation, we report on further quantitative and qualitative analysis of human and mouse amyloid beta peptides (Abeta) from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP). Using enzyme-linked immunosorbant assays (ELISAs) specific for either human or rodent Abeta, we found that the peptides from both species aggregated to form plaques. The ratios of deposited Abeta1-42/1-40 were in the order of 2-3 for human and 8-9 for mouse peptides, indicating preferential deposition of Abeta42. We also determined the identity and relative levels of other Abeta variants present in protein extracts from soluble and insoluble brain fractions. This was done by combined immunoprecipitation and mass spectrometry (IP/MS). The most prominent peptides truncated either at the carboxyl- or the amino-terminus were Abeta1-38 and Abeta11-42, respectively, and the latter was strongly enriched in the extracts of deposited peptides. Taken together, our data indicate that plaques of APP-London transgenic mice consist of aggregates of multiple human and mouse Abeta variants, and the human variants that we identified were previously detected in brain extracts of AD patients.

  12. Role of C-type natriuretic peptide in the function of normal human sperm

    Directory of Open Access Journals (Sweden)

    Hui Xia

    2016-01-01

    Full Text Available C-type natriuretic peptide (CNP is a newly discovered type of local regulatory factor that mediates its biological effects through the specific, membrane-bound natriuretic peptide receptor-B (NPR-B. Recent studies have established that CNP is closely related to male reproductive function. The aims of this study were to determine the distribution of CNP/NPR-B in human ejaculated spermatozoa through different methods (such as immunolocalization, real time polymerase chain reaction and Western Blot, and then to evaluate the influence of CNP on sperm function i n vitro, such as motility and acrosome reaction. Human semen samples were collected from consenting donors who met the criteria of the World Health Organization for normozoospermia. Our results show that the specific receptor NPR-B of CNP is localized in the acrosomal region of the head and the membrane of the front-end tail of the sperm, and there is no signal of CNP in human sperm. Compared with the control, CNP can induce a significant dose-dependent increase in spermatozoa motility and acrosome reaction. In summary, CNP/NPR-B can affect sperm motility and acrosome reaction, thus regulating the reproductive function of males. CNP may be a new key factor in regulating sperm function.

  13. Identification of Small Peptides in Human Cerebrospinal Fluid upon Amyloid-β Degradation.

    Science.gov (United States)

    Mizuta, Naoki; Yanagida, Kanta; Kodama, Takashi; Tomonaga, Takeshi; Takami, Mako; Oyama, Hiroshi; Kudo, Takashi; Ikeda, Manabu; Takeda, Masatoshi; Tagami, Shinji; Okochi, Masayasu

    2017-01-01

    Amyloid-β (Aβ) degradation in brains of Alzheimer disease patients is a crucial focus for the clarification of disease pathogenesis. Nevertheless, the mechanisms underlying Aβ degradation in the human brain remain unclear. This study aimed to quantify the levels of small C-terminal Aβ fragments generated upon Aβ degradation in human cerebrospinal fluid (CSF). A fraction containing small peptides was isolated and purified from human CSF by high-pressure liquid chromatography. Degradation products of Aβ C termini were identified and measured by liquid chromatography-tandem mass spectrometry. The C-terminal fragments of Aβ in the conditioned medium of cultured cells transfected with the Swedish variant of βAPP (sw βAPP) were analyzed. These fragments in brains of PS1 I213T knock-in transgenic mice, overexpressing sw βAPP, were also analyzed. The peptide fragments GGVV and GVV, produced by the cleavage of Aβ40, were identified in human CSF as well as in the brains of the transgenic mice and in the conditioned medium of the cultured cells. Relative to Aβ40 levels, GGVV and GVV levels were 7.6 ± 0.81 and 1.5 ± 0.18%, respectively, in human CSF. Levels of the GGVV fragment did not increase by the introduction of genes encoding neprilysin and insulin-degrading enzyme to the cultured cells. Our results indicate that a substantial amount of Aβ40 in human brains is degraded via a neprilysin- or insulin-degrading enzyme-independent pathway. © 2017 S. Karger AG, Basel.

  14. Selective toxicity of persian gulf sea cucumber holothuria parva on human chronic lymphocytic leukemia b lymphocytes by direct mitochondrial targeting.

    Science.gov (United States)

    Salimi, Ahmad; Motallebi, Abbasali; Ayatollahi, Maryam; Seydi, Enayatollah; Mohseni, Ali Reza; Nazemi, Melika; Pourahmad, Jalal

    2017-04-01

    Natural products isolated from marine environment are well known for their pharmacodynamic potential in diversity of disease treatments such as cancer or inflammatory conditions. Sea cucumbers are one of the marine animals of the phylum Echinoderm. Many studies have shown that the sea cucumber contains antioxidants and anti-cancer compounds. Chronic lymphocytic leukemia (CLL) is a disease characterized by the relentless accumulation of CD5 + B lymphocytes. CLL is the most common leukemia in adults, about 25-30% of all leukemias. In this study B lymphocytes and their mitochondria (cancerous and non-cancerous) were obtained from peripheral blood of human subjects and B lymphocyte cytotoxicity assay, and caspase 3 activation along with mitochondrial upstream events of apoptosis signaling including reactive oxygen species (ROS) production, collapse of mitochondrial membrane potential (MMP) and mitochondrial swelling were determined following the addition of Holothuria parva extract to both cancerous and non-cancerous B lymphocytes and their mitochondria. Our in vitro finding showed that mitochondrial ROS formation, MMP collapse, and mitochondrial swelling and cytochrome c release were significantly (P < 0.05) increased after addition of different concentrations of H. parva only in cancerous BUT NOT normal non-cancerous mitochondria. Consistently, different concentrations of H. parva significantly (P < 0.05) increased cytotoxicity and caspase 3 activation only in cancerous BUT NOT normal non-cancerous B lymphocytes. These results showed that H. parva methanolic extract has a selective mitochondria mediated apoptotic effect on chronic lymphocytic leukemia B lymphocytes hence may be promising in the future anticancer drug development for treatment of CLL. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1158-1169, 2017. © 2016 Wiley Periodicals, Inc.

  15. Prohibitin 1 modulates mitochondrial stress-related autophagy in human colonic epithelial cells.

    Directory of Open Access Journals (Sweden)

    Arwa S Kathiria

    Full Text Available Autophagy is an adaptive response to extracellular and intracellular stress by which cytoplasmic components and organelles, including damaged mitochondria, are degraded to promote cell survival and restore cell homeostasis. Certain genes involved in autophagy confer susceptibility to Crohn's disease. Reactive oxygen species and pro-inflammatory cytokines such as tumor necrosis factor α (TNFα, both of which are increased during active inflammatory bowel disease, promote cellular injury and autophagy via mitochondrial damage. Prohibitin (PHB, which plays a role in maintaining normal mitochondrial respiratory function, is decreased during active inflammatory bowel disease. Restoration of colonic epithelial PHB expression protects mice from experimental colitis and combats oxidative stress. In this study, we investigated the potential role of PHB in modulating mitochondrial stress-related autophagy in intestinal epithelial cells.We measured autophagy activation in response to knockdown of PHB expression by RNA interference in Caco2-BBE and HCT116 WT and p53 null cells. The effect of exogenous PHB expression on TNFα- and IFNγ-induced autophagy was assessed. Autophagy was inhibited using Bafilomycin A(1 or siATG16L1 during PHB knockdown and the affect on intracellular oxidative stress, mitochondrial membrane potential, and cell viability were determined. The requirement of intracellular ROS in siPHB-induced autophagy was assessed using the ROS scavenger N-acetyl-L-cysteine.TNFα and IFNγ-induced autophagy inversely correlated with PHB protein expression. Exogenous PHB expression reduced basal autophagy and TNFα-induced autophagy. Gene silencing of PHB in epithelial cells induces mitochondrial autophagy via increased intracellular ROS. Inhibition of autophagy during PHB knockdown exacerbates mitochondrial depolarization and reduces cell viability.Decreased PHB levels coupled with dysfunctional autophagy renders intestinal epithelial cells

  16. Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health

    Science.gov (United States)

    Villamena, Frederick A.

    2018-01-01

    Impaired mitochondrial function often results in excessive production of reactive oxygen species (ROS) and is involved in the etiology of many chronic diseases, including cardiovascular disease, diabetes, neurodegenerative disorders, and cancer. Moderate levels of mitochondrial ROS, however, can protect against chronic disease by inducing upregulation of mitochondrial capacity and endogenous antioxidant defense. This phenomenon, referred to as mitohormesis, is induced through increased reliance on mitochondrial respiration, which can occur through diet or exercise. Nutritional ketosis is a safe and physiological metabolic state induced through a ketogenic diet low in carbohydrate and moderate in protein. Such a diet increases reliance on mitochondrial respiration and may, therefore, induce mitohormesis. Furthermore, the ketone β-hydroxybutyrate (BHB), which is elevated during nutritional ketosis to levels no greater than those resulting from fasting, acts as a signaling molecule in addition to its traditionally known role as an energy substrate. BHB signaling induces adaptations similar to mitohormesis, thereby expanding the potential benefit of nutritional ketosis beyond carbohydrate restriction. This review describes the evidence supporting enhancement of mitochondrial function and endogenous antioxidant defense in response to nutritional ketosis, as well as the potential mechanisms leading to these adaptations. PMID:29607218

  17. Human lactoferricin derived di-peptides deploying loop structures induce apoptosis specifically in cancer cells through targeting membranous phosphatidylserine.

    Science.gov (United States)

    Riedl, Sabrina; Leber, Regina; Rinner, Beate; Schaider, Helmut; Lohner, Karl; Zweytick, Dagmar

    2015-11-01

    Host defense-derived peptides have emerged as a novel strategy for the development of alternative anticancer therapies. In this study we report on characteristic features of human lactoferricin (hLFcin) derivatives which facilitate specific killing of cancer cells of melanoma, glioblastoma and rhabdomyosarcoma compared with non-specific derivatives and the synthetic peptide RW-AH. Changes in amino acid sequence of hLFcin providing 9-11 amino acids stretched derivatives LF11-316, -318 and -322 only yielded low antitumor activity. However, the addition of the repeat (di-peptide) and the retro-repeat (di-retro-peptide) sequences highly improved cancer cell toxicity up to 100% at 20 μM peptide concentration. Compared to the complete parent sequence hLFcin the derivatives showed toxicity on the melanoma cell line A375 increased by 10-fold and on the glioblastoma cell line U-87mg by 2-3-fold. Reduced killing velocity, apoptotic blebbing, activation of caspase 3/7 and formation of apoptotic DNA fragments proved that the active and cancer selective peptides, e.g. R-DIM-P-LF11-322, trigger apoptosis, whereas highly active, though non-selective peptides, such as DIM-LF11-318 and RW-AH seem to kill rapidly via necrosis inducing membrane lyses. Structural studies revealed specific toxicity on cancer cells by peptide derivatives with loop structures, whereas non-specific peptides comprised α-helical structures without loop. Model studies with the cancer membrane mimic phosphatidylserine (PS) gave strong evidence that PS only exposed by cancer cells is an important target for specific hLFcin derivatives. Other negatively charged membrane exposed molecules as sialic acid, heparan and chondroitin sulfate were shown to have minor impact on peptide activity. Copyright © 2015. Published by Elsevier B.V.

  18. Cross-protective peptide vaccine against influenza A viruses developed in HLA-A*2402 human immunity model.

    Directory of Open Access Journals (Sweden)

    Toru Ichihashi

    Full Text Available BACKGROUND: The virus-specific cytotoxic T lymphocyte (CTL induction is an important target for the development of a broadly protective human influenza vaccine, since most CTL epitopes are found on internal viral proteins and relatively conserved. In this study, the possibility of developing a strain/subtype-independent human influenza vaccine was explored by taking a bioinformatics approach to establish an immunogenic HLA-A24 restricted CTL epitope screening system in HLA-transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: HLA-A24 restricted CTL epitope peptides derived from internal proteins of the H5N1 highly pathogenic avian influenza A virus were predicted by CTL epitope peptide prediction programs. Of 35 predicted peptides, six peptides exhibited remarkable cytotoxic activity in vivo. More than half of the mice which were subcutaneously vaccinated with the three most immunogenic and highly conserved epitopes among three different influenza A virus subtypes (H1N1, H3N2 and H5N1 survived lethal influenza virus challenge during both effector and memory CTL phases. Furthermore, mice that were intranasally vaccinated with these peptides remained free of clinical signs after lethal virus challenge during the effector phase. CONCLUSIONS/SIGNIFICANCE: This CTL epitope peptide selection system can be used as an effective tool for the development of a cross-protective human influenza vaccine. Furthermore this vaccine strategy can be applicable to the development of all intracellular pathogens vaccines to induce epitope-specific CTL that effectively eliminate infected cells.

  19. High Glucose-Induced Oxidative Stress Increases the Copy Number of Mitochondrial DNA in Human Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Ghada Al-Kafaji

    2013-01-01

    Full Text Available Oxidative damage to mitochondrial DNA (mtDNA has been linked to the pathogenicity of diabetic nephropathy. We tested the hypothesis that mtDNA copy number may be increased in human mesangial cells in response to high glucose-induced reactive oxygen species (ROS to compensate for damaged mtDNA. The effect of manganese superoxide dismutase mimetic (MnTBAP on glucose-induced mtDNA copy number was also examined. The copy number of mtDNA was determined by real-time PCR in human mesangial cells cultured in 5 mM glucose, 25 mM glucose, and mannitol (osmotic control, as well as in cells cultured in 25 mM glucose in the presence and absence of 200 μM MnTBAP. Intracellular ROS was assessed by confocal microscopy and flow cytometry in human mesangial cells. The copy number of mtDNA was significantly increased when human mesangial cells were incubated with 25 mM glucose compared to 5 mM glucose and mannitol. In addition, 25 mM glucose rapidly generated ROS in the cells, which was not detected in 5 mM glucose. Furthermore, mtDNA copy number was significantly decreased and maintained to normal following treatment of cells with 25 mM glucose and MnTBAP compared to 25 mM glucose alone. Inclusion of MnTBAP during 25 mM glucose incubation inhibited mitochondrial superoxide in human mesangial cells. Increased mtDNA copy number in human mesangial cells by high glucose could contribute to increased mitochondrial superoxide, and prevention of mtDNA copy number could have potential in retarding the development of diabetic nephropathy.

  20. Ionizing radiation induces PI3K-dependent JNK activation for amplifying mitochondrial dysfunction in human cervical cancer cells

    International Nuclear Information System (INIS)

    Kim, Min Jung; Choi, Soon Young; Bae, Sang Woo; Kang, Chang Mo; Lee, Yun Sil; Lee, Su Jae

    2005-01-01

    Ionizing radiation is one of the most commonly used treatments for a wide variety of tumors. Exposure of cells to ionizing radiation results in the simultaneous activation or down regulation of multiple signaling pathways, which play critical role in controlling cell death and cell survival after irradiation in a cell type specific manner. The molecular mechanism by which apoptotic cell death occurs in response to ionizing radiation has been widely explored but not precisely deciphered. Therefore an improved understanding of the mechanisms involved in radiation-induced apoptosis may ultimately provide novel strategies of intervention in specific signal transduction pathways to favorably alter the therapeutic ratio in the treatment of human malignancies. The aim of our investigation was to elucidate molecular mechanisms of the mitochondrial dysfunction mediated apoptotic cell death triggered by ionizing radiation in human cervical cancer cells. We demonstrated that ionizing radiation utilizes PI3K-JNK signaling pathway for amplifying mitochondrial dysfunction and susequent apoptotic cell death: We showed that PI3K-dependent JNK activation leads to transcriptional upregulation of Fas and the phosphorylation/inactivation of Bcl-2, resulting in mitochondrial dysfunction-mediated apoptotic cell death in response to ionizing radiation

  1. Metabolites from invasive pests inhibit mitochondrial complex II: A potential strategy for the treatment of human ovarian carcinoma?

    Energy Technology Data Exchange (ETDEWEB)

    Ferramosca, Alessandra, E-mail: alessandra.ferramosca@unisalento.it [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce (Italy); Conte, Annalea; Guerra, Flora; Felline, Serena [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce (Italy); Rimoli, Maria Grazia [Dipartimento di Farmacia, Università di Napoli Federico II, Napoli (Italy); Mollo, Ernesto [Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli (Italy); Zara, Vincenzo [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce (Italy); Terlizzi, Antonio [Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Lecce (Italy); Stazione Zoologica Anton Dohrn, Napoli (Italy)

    2016-05-13

    The red pigment caulerpin, a secondary metabolite from the marine invasive green algae Caulerpa cylindracea can be accumulated and transferred along the trophic chain, with detrimental consequences on biodiversity and ecosystem functioning. Despite increasing research efforts to understand how caulerpin modifies fish physiology, little is known on the effects of algal metabolites on mammalian cells. Here we report for the first time the mitochondrial targeting activity of both caulerpin, and its closely related derivative caulerpinic acid, by using as experimental model rat liver mitochondria, a system in which bioenergetics mechanisms are not altered. Mitochondrial function was tested by polarographic and spectrophotometric methods. Both compounds were found to selectively inhibit respiratory complex II activity, while complexes I, III, and IV remained functional. These results led us to hypothesize that both algal metabolites could be used as antitumor agents in cell lines with defects in mitochondrial complex I. Ovarian cancer cisplatin-resistant cells are a good example of cell lines with a defective complex I function on which these molecules seem to have a toxic effect on proliferation. This provided novel insight toward the potential use of metabolites from invasive Caulerpa species for the treatment of human ovarian carcinoma cisplatin-resistant cells. -- Highlights: •Novel insight toward the potential use of the algal metabolites for the treatment of human diseases. •Caulerpin and caulerpinic acid inhibit respiratory complex II activity. •Both algal metabolites could be used as antitumor agents in ovarian cancer cisplatin-resistant cells.

  2. Metabolites from invasive pests inhibit mitochondrial complex II: A potential strategy for the treatment of human ovarian carcinoma?

    International Nuclear Information System (INIS)

    Ferramosca, Alessandra; Conte, Annalea; Guerra, Flora; Felline, Serena; Rimoli, Maria Grazia; Mollo, Ernesto; Zara, Vincenzo; Terlizzi, Antonio

    2016-01-01

    The red pigment caulerpin, a secondary metabolite from the marine invasive green algae Caulerpa cylindracea can be accumulated and transferred along the trophic chain, with detrimental consequences on biodiversity and ecosystem functioning. Despite increasing research efforts to understand how caulerpin modifies fish physiology, little is known on the effects of algal metabolites on mammalian cells. Here we report for the first time the mitochondrial targeting activity of both caulerpin, and its closely related derivative caulerpinic acid, by using as experimental model rat liver mitochondria, a system in which bioenergetics mechanisms are not altered. Mitochondrial function was tested by polarographic and spectrophotometric methods. Both compounds were found to selectively inhibit respiratory complex II activity, while complexes I, III, and IV remained functional. These results led us to hypothesize that both algal metabolites could be used as antitumor agents in cell lines with defects in mitochondrial complex I. Ovarian cancer cisplatin-resistant cells are a good example of cell lines with a defective complex I function on which these molecules seem to have a toxic effect on proliferation. This provided novel insight toward the potential use of metabolites from invasive Caulerpa species for the treatment of human ovarian carcinoma cisplatin-resistant cells. -- Highlights: •Novel insight toward the potential use of the algal metabolites for the treatment of human diseases. •Caulerpin and caulerpinic acid inhibit respiratory complex II activity. •Both algal metabolites could be used as antitumor agents in ovarian cancer cisplatin-resistant cells.

  3. The Human Plasma Proteome Draft of 2017: Building on the Human Plasma PeptideAtlas from Mass Spectrometry and Complementary Assays.

    Science.gov (United States)

    Schwenk, Jochen M; Omenn, Gilbert S; Sun, Zhi; Campbell, David S; Baker, Mark S; Overall, Christopher M; Aebersold, Ruedi; Moritz, Robert L; Deutsch, Eric W

    2017-12-01

    Human blood plasma provides a highly accessible window to the proteome of any individual in health and disease. Since its inception in 2002, the Human Proteome Organization's Human Plasma Proteome Project (HPPP) has been promoting advances in the study and understanding of the full protein complement of human plasma and on determining the abundance and modifications of its components. In 2017, we review the history of the HPPP and the advances of human plasma proteomics in general, including several recent achievements. We then present the latest 2017-04 build of Human Plasma PeptideAtlas, which yields ∼43 million peptide-spectrum matches and 122,730 distinct peptide sequences from 178 individual experiments at a 1% protein-level FDR globally across all experiments. Applying the latest Human Proteome Project Data Interpretation Guidelines, we catalog 3509 proteins that have at least two non-nested uniquely mapping peptides of nine amino acids or more and >1300 additional proteins with ambiguous evidence. We apply the same two-peptide guideline to historical PeptideAtlas builds going back to 2006 and examine the progress made in the past ten years in plasma proteome coverage. We also compare the distribution of proteins in historical PeptideAtlas builds in various RNA abundance and cellular localization categories. We then discuss advances in plasma proteomics based on targeted mass spectrometry as well as affinity assays, which during early 2017 target ∼2000 proteins. Finally, we describe considerations about sample handling and study design, concluding with an outlook for future advances in deciphering the human plasma proteome.

  4. Human neutrophil peptides and complement factor Bb in pathogenesis of acquired thrombotic thrombocytopenic purpura.

    Science.gov (United States)

    Cao, Wenjing; Pham, Huy P; Williams, Lance A; McDaniel, Jenny; Siniard, Rance C; Lorenz, Robin G; Marques, Marisa B; Zheng, X Long

    2016-11-01

    Acquired thrombotic thrombocytopenic purpura is primarily caused by the deficiency of plasma ADAMTS13 activity resulting from autoantibodies against ADAMTS13. However, ADAMTS13 deficiency alone is often not sufficient to cause acute thrombotic thrombocytopenic purpura. Infections or systemic inflammation may precede acute bursts of the disease, but the underlying mechanisms are not fully understood. Herein, 52 patients with acquired autoimmune thrombotic thrombocytopenic purpura and 30 blood donor controls were recruited for the study. The plasma levels of human neutrophil peptides 1-3 and complement activation fragments (i.e. Bb, iC3b, C4d, and sC5b-9) were determined by enzyme-linked immunosorbent assays. Univariate analyses were performed to determine the correlation between each biomarker and clinical outcomes. We found that the plasma levels of human neutrophil peptides 1-3 and Bb in patients with acute thrombotic thrombocytopenic purpura were significantly higher than those in the control (Ppurpura patients and the control. We conclude that innate immunity, i.e. neutrophil and complement activation via the alternative pathway, may play a role in the pathogenesis of acute autoimmune thrombotic thrombocytopenic purpura, and a therapy targeted at these pathways may be considered in a subset of these patients. Copyright© Ferrata Storti Foundation.

  5. Functional and structural characterization of recombinant dermcidin-1L, a human antimicrobial peptide

    International Nuclear Information System (INIS)

    Lai Yuping; Peng Yifei; Zuo Yi; Li Jun; Huang Jing; Wang Linfa; Wu Zirong

    2005-01-01

    Antimicrobial peptides from human skin are an important component of the innate immune response and play a key role as a first line of defense against infections. One such peptide is the recently discovered dermcidin-1L. To better understand its mechanism and to further investigate its antimicrobial spectrum, recombinant dermcidin-1L was expressed in Escherichia coli as a fusion protein and purified by affinity chromatography. The fusion protein was cleaved by factor Xa protease to produce recombinant dermcidin-1L. Antimicrobial and hemolytic assays demonstrated that dermcidin-1L displayed microbicidal activity against several opportunistic nosocomial pathogens, but no hemolytic activity against human erythrocytes even at concentrations up to 100 μM. Structural studies performed by circular dichroism spectroscopy indicated that the secondary structure of dermcidin-1L was very flexible, and both α-helix and β-sheet structures might be required for the antimicrobial activity. Our results confirmed previous findings indicating that dermcidin-1L could have promising therapeutic potentials and shed new light on the structure-function relationship of dermcidin-1L

  6. Renal targeted delivery of triptolide by conjugation to the fragment peptide of human serum albumin.

    Science.gov (United States)

    Yuan, Zhi-xiang; Wu, Xiao-juan; Mo, Jingxin; Wang, Yan-li; Xu, Chao-qun; Lim, Lee Yong

    2015-08-01

    We have previously demonstrated that peptide fragments (PFs) of the human serum albumin could be developed as potential renal targeting carriers, in particular, the peptide fragment, PF-A299-585 (A299-585 representing the amino acid sequence of the human serum albumin). In this paper, we conjugated triptolide (TP), the anti-inflammatory Chinese traditional medicine, to PF-A299-585 via a succinic acid spacer to give TPS-PF-A299-585 (TP loading 2.2% w/w). Compared with the free TP, TPS-PF-A299-585 exhibited comparable anti-inflammatory activity in the lipopolysaccharide stimulated MDCK cells, but was significantly less cytotoxic than the free drug. Accumulation of TPS-PF-A299-585 in the MDCK cells in vitro and in rodent kidneys in vivo was demonstrated using FITC-labeled TPS-PF-A299-585. Renal targeting was confirmed in vivo in a membranous nephropathic (MN) rodent model, where optical imaging and analyses of biochemical markers were combined to show that TPS-PF-A299-585 was capable of alleviating the characteristic symptoms of MN. The collective data affirm PF-A299-585 to be a useful carrier for targeting TP to the kidney. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Characterization of Cimex lectularius (bedbug) defensin peptide and its antimicrobial activity against human skin microflora.

    Science.gov (United States)

    Kaushal, Akanksha; Gupta, Kajal; van Hoek, Monique L

    2016-02-19

    Antimicrobial peptides are components of both vertebrate and invertebrate innate immune systems that are expressed in response to exposure to bacterial antigens. Naturally occurring antimicrobial peptides from evolutionarily ancient species have been extensively studied and are being developed as potential therapeutics against antibiotic resistant microorganisms. In this study, a putative Cimex lectularius (bedbug, CL) defensin is characterized for its effectiveness against human skin flora including Gram-negative and Gram-positive bacteria. The bedbug defensin (CL-defensin), belonging to family of insect defensins, is predicted to have a characteristic N-terminal loop, an α-helix, and an antiparallel β-sheet, which was supported by circular dichroism spectroscopy. The defensin was shown to be antimicrobial against Gram-positive bacteria commonly found on human skin (Micrococcus luteus, Corynebacterium renale, Staphylococcus aureus and Staphylococcus epidermidis); however, it was ineffective against common skin Gram-negative bacteria (Pseudomonas aeruginosa and Acinetobacter baumannii) under low-salt conditions. CL-defensin was also effective against M. luteus and C. renale in high-salt (MIC) conditions. Our studies indicate that CL-defensin functions by depolarization and pore-formation in the bacterial cytoplasmic membrane. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. The complete mitochondrial genomes for three Toxocara species of human and animal health significance

    Directory of Open Access Journals (Sweden)

    Wu Xiang-Yun

    2008-05-01

    Full Text Available Abstract Background Studying mitochondrial (mt genomics has important implications for various fundamental areas, including mt biochemistry, physiology and molecular biology. In addition, mt genome sequences have provided useful markers for investigating population genetic structures, systematics and phylogenetics of organisms. Toxocara canis, Toxocara cati and Toxocara malaysiensis cause significant health problems in animals and humans. Although they are of importance in human and animal health, no information on the mt genomes for any of Toxocara species is available. Results The sizes of the entire mt genome are 14,322 bp for T. canis, 14029 bp for T. cati and 14266 bp for T. malaysiensis, respectively. These circular genomes are amongst the largest reported to date for all secernentean nematodes. Their relatively large sizes relate mainly to an increased length in the AT-rich region. The mt genomes of the three Toxocara species all encode 12 proteins, two ribosomal RNAs and 22 transfer RNA genes, but lack the ATP synthetase subunit 8 gene, which is consistent with all other species of Nematode studied to date, with the exception of Trichinella spiralis. All genes are transcribed in the same direction and have a nucleotide composition high in A and T, but low in G and C. The contents of A+T of the complete genomes are 68.57% for T. canis, 69.95% for T. cati and 68.86% for T. malaysiensis, among which the A+T for T. canis is the lowest among all nematodes studied to date. The AT bias had a significant effect on both the codon usage pattern and amino acid composition of proteins. The mt genome structures for three Toxocara species, including genes and non-coding regions, are in the same order as for Ascaris suum and Anisakis simplex, but differ from Ancylostoma duodenale, Necator americanus and Caenorhabditis elegans only in the location of the AT-rich region, whereas there are substantial differences when compared with Onchocerca volvulus

  9. Telmisartan enhances mitochondrial activity and alters cellular functions in human coronary artery endothelial cells via AMP-activated protein kinase pathway.

    Science.gov (United States)

    Kurokawa, Hirofumi; Sugiyama, Seigo; Nozaki, Toshimitsu; Sugamura, Koichi; Toyama, Kensuke; Matsubara, Junichi; Fujisue, Koichiro; Ohba, Keisuke; Maeda, Hirofumi; Konishi, Masaaki; Akiyama, Eiichi; Sumida, Hitoshi; Izumiya, Yasuhiro; Yasuda, Osamu; Kim-Mitsuyama, Shokei; Ogawa, Hisao

    2015-04-01

    Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Mitochondrial lineage M1 traces an early human backflow to Africa.

    Science.gov (United States)

    González, Ana M; Larruga, José M; Abu-Amero, Khaled K; Shi, Yufei; Pestano, José; Cabrera, Vicente M

    2007-07-09

    The out of Africa hypothesis has gained generalized consensus. However, many specific questions remain unsettled. To know whether the two M and N macrohaplogroups that colonized Eurasia were already present in Africa before the exit is puzzling. It has been proposed that the east African clade M1 supports a single origin of haplogroup M in Africa. To test the validity of that hypothesis, the phylogeographic analysis of 13 complete mitochondrial DNA (mtDNA) sequences and 261 partial sequences belonging to haplogroup M1 was carried out. The coalescence age of the African haplogroup M1 is younger than those for other M Asiatic clades. In contradiction to the hypothesis of an eastern Africa origin for modern human expansions out of Africa, the most ancestral M1 lineages have been found in Northwest Africa and in the Near East, instead of in East Africa. The M1 geographic distribution and the relative ages of its different subclades clearly correlate with those of haplogroup U6, for which an Eurasian ancestor has been demonstrated. This study provides evidence that M1, or its ancestor, had an Asiatic origin. The earliest M1 expansion into Africa occurred in northwestern instead of eastern areas; this early spread reached the Iberian Peninsula even affecting the Basques. The majority of the M1a lineages found outside and inside Africa had a more recent eastern Africa origin. Both western and eastern M1 lineages participated in the Neolithic colonization of the Sahara. The striking parallelism between subclade ages and geographic distribution of M1 and its North African U6 counterpart strongly reinforces this scenario. Finally, a relevant fraction of M1a lineages present today in the European Continent and nearby islands possibly had a Jewish instead of the commonly proposed Arab/Berber maternal ascendance.

  11. Modulation of Mitochondrial DNA Copy Number to Induce Hepatocytic Differentiation of Human Amniotic Epithelial Cells.

    Science.gov (United States)

    Vaghjiani, Vijesh; Cain, Jason E; Lee, William; Vaithilingam, Vijayaganapathy; Tuch, Bernard E; St John, Justin C

    2017-10-15

    Mitochondrial deoxyribonucleic acid (mtDNA) copy number is tightly regulated during pluripotency and differentiation. There is increased demand of cellular adenosine triphosphate (ATP) during differentiation for energy-intensive cell types such as hepatocytes and neurons to meet the cell's functional requirements. During hepatocyte differentiation, mtDNA copy number should be synchronously increased to generate sufficient ATP through oxidative phosphorylation. Unlike bone marrow mesenchymal cells, mtDNA copy number failed to increase by 28 days of differentiation of human amniotic epithelial cells (hAEC) into hepatocyte-like cells (HLC) despite their expression of some end-stage hepatic markers. This was due to higher levels of DNA methylation at exon 2 of POLGA, the mtDNA-specific replication factor. Treatment with a DNA demethylation agent, 5-azacytidine, resulted in increased mtDNA copy number, reduced DNA methylation at exon 2 of POLGA, and reduced hepatic gene expression. Depletion of mtDNA followed by subsequent differentiation did not increase mtDNA copy number, but reduced DNA methylation at exon 2 of POLGA and increased expression of hepatic and pluripotency genes. We encapsulated hAEC in barium alginate microcapsules and subsequently differentiated them into HLC. Encapsulation resulted in no net increase of mtDNA copy number but a significant reduction in DNA methylation of POLGA. RNAseq analysis showed that differentiated HLC express hepatocyte-specific genes but also increased expression of inflammatory interferon genes. Differentiation in encapsulated cells showed suppression of inflammatory genes as well as increased expression of genes associated with hepatocyte function pathways and networks. This study demonstrates that an increase in classical hepatic gene expression can be achieved in HLC through encapsulation, although they fail to effectively regulate mtDNA copy number.

  12. Mitochondrial lineage M1 traces an early human backflow to Africa

    Directory of Open Access Journals (Sweden)

    Pestano José

    2007-07-01

    Full Text Available Abstract Background The out of Africa hypothesis has gained generalized consensus. However, many specific questions remain unsettled. To know whether the two M and N macrohaplogroups that colonized Eurasia were already present in Africa before the exit is puzzling. It has been proposed that the east African clade M1 supports a single origin of haplogroup M in Africa. To test the validity of that hypothesis, the phylogeographic analysis of 13 complete mitochondrial DNA (mtDNA sequences and 261 partial sequences belonging to haplogroup M1 was carried out. Results The coalescence age of the African haplogroup M1 is younger than those for other M Asiatic clades. In contradiction to the hypothesis of an eastern Africa origin for modern human expansions out of Africa, the most ancestral M1 lineages have been found in Northwest Africa and in the Near East, instead of in East Africa. The M1 geographic distribution and the relative ages of its different subclades clearly correlate with those of haplogroup U6, for which an Eurasian ancestor has been demonstrated. Conclusion This study provides evidence that M1, or its ancestor, had an Asiatic origin. The earliest M1 expansion into Africa occurred in northwestern instead of eastern areas; this early spread reached the Iberian Peninsula even affecting the Basques. The majority of the M1a lineages found outside and inside Africa had a more recent eastern Africa origin. Both western and eastern M1 lineages participated in the Neolithic colonization of the Sahara. The striking parallelism between subclade ages and geographic distribution of M1 and its North African U6 counterpart strongly reinforces this scenario. Finally, a relevant fraction of M1a lineages present today in the European Continent and nearby islands possibly had a Jewish instead of the commonly proposed Arab/Berber maternal ascendance.

  13. Factors affecting antimicrobial activity of MUC7 12-mer, a human salivary mucin-derived peptide

    Directory of Open Access Journals (Sweden)

    Bobek Libuse A

    2007-11-01

    Full Text Available Abstract Background MUC7 12-mer (RKSYKCLHKRCR, a cationic antimicrobial peptide derived from the human low-molecular-weight salivary mucin MUC7, possesses potent antimicrobial activity in vitro. In order to evaluate the potential therapeutic application of the MUC7 12-mer, we examined the effects of mono- and divalent cations, EDTA, pH, and temperature on its antimicrobial activity. Methods Minimal Inhibitory Concentrations (MICs were determined using a liquid growth inhibition assay in 96-well microtiter plates. MUC7 12-mer was added at concentrations of 1.56–50 μM. MICs were determined at three endpoints: MIC-0, MIC-1, and MIC-2 (the lowest drug concentration showing 10%, 25% and 50% of growth, respectively. To examine the effect of salts or EDTA, a checkerboard microdilution technique was used. Fractional inhibitory concentration index (FICi was calculated on the basis of MIC-0. The viability of microbial cells treated with MUC7 12-mer in the presence of sodium or potassium was also determined by killing assay or flow cytometry. Results The MICs of MUC7 12-mer against organisms tested ranged from 6.25–50 μM. For C. albicans, antagonism (FICi 4.5 was observed for the combination of MUC7 12-mer and calcium; however, there was synergism (FICi 0.22 between MUC7 12-mer and EDTA, and the synergism was retained in the presence of calcium at its physiological concentration (1–2 mM. No antagonism but additivity or indifference (FICi 0.55–2.5 was observed for the combination of MUC7 12-mer and each K+, Na+, Mg2+, or Zn2+. MUC7 12-mer peptide (at 25 μM also exerted killing activity in the presence of NaCl, (up to 25 mM for C. albicans and up to 150 mM for E. coli, a physiological concentration of sodium in the oral cavity and serum, respectively and retained candidacidal activity in the presence of KCl (up to 40 mM. The peptide exhibited higher inhibitory activity against C. albicans at pH 7, 8, and 9 than at pH 5 and 6, and temperature up to

  14. A RAPID Method for Blood Processing to Increase the Yield of Plasma Peptide Levels in Human Blood.

    Science.gov (United States)

    Teuffel, Pauline; Goebel-Stengel, Miriam; Hofmann, Tobias; Prinz, Philip; Scharner, Sophie; Körner, Jan L; Grötzinger, Carsten; Rose, Matthias; Klapp, Burghard F; Stengel, Andreas

    2016-04-28

    Research in the field of food intake regulation is gaining importance. This often includes the measurement of peptides regulating food intake. For the correct determination of a peptide's concentration, it should be stable during blood processing. However, this is not the case for several peptides which are quickly degraded by endogenous peptidases. Recently, we developed a blood processing method employing Reduced temperatures, Acidification, Protease inhibition, Isotopic exogenous controls and Dilution (RAPID) for the use in rats. Here, we have established this technique for the use in humans and investigated recovery, molecular form and circulating concentration of food intake regulatory hormones. The RAPID method significantly improved the recovery for (125)I-labeled somatostatin-28 (+39%), glucagon-like peptide-1 (+35%), acyl ghrelin and glucagon (+32%), insulin and kisspeptin (+29%), nesfatin-1 (+28%), leptin (+21%) and peptide YY3-36 (+19%) compared to standard processing (EDTA blood on ice, p processing, while after standard processing 62% of acyl ghrelin were degraded resulting in an earlier peak likely representing desacyl ghrelin. After RAPID processing the acyl/desacyl ghrelin ratio in blood of normal weight subjects was 1:3 compared to 1:23 following standard processing (p = 0.03). Also endogenous kisspeptin levels were higher after RAPID compared to standard processing (+99%, p = 0.02). The RAPID blood processing method can be used in humans, yields higher peptide levels and allows for assessment of the correct molecular form.

  15. Complete covalent structure of statherin, a tyrosine-rich acidic peptide which inhibits calcium phosphate precipitation from human parotid saliva.

    Science.gov (United States)

    Schlesinger, D H; Hay, D I

    1977-03-10

    The complete amino acid sequence of human salivary statherin, a peptide which strongly inhibits precipitation from supersaturated calcium phosphate solutions, and therefore stabilizes supersaturated saliva, has been determined. The NH2-terminal half of this Mr=5380 (43 amino acids) polypeptide was determined by automated Edman degradations (liquid phase) on native statherin. The peptide was digested separately with trypsin, chymotrypsin, and Staphylococcus aureus protease, and the resulting peptides were purified by gel filtration. Manual Edman degradations on purified peptide fragments yielded peptides that completed the amino acid sequence through the penultimate COOH-terminal residue. These analyses, together with carboxypeptidase digestion of native statherin and of peptide fragments of statherin, established the complete sequence of the molecule. The 2 serine residues (positions 2 and 3) in statherin were identified as phosphoserine. The amino acid sequence of human salivary statherin is striking in a number of ways. The NH2-terminal one-third is highly polar and includes three polar dipeptides: H2PO3-Ser-Ser-H2PO3-Arg-Arg-, and Glu-Glu-. The COOH-terminal two-thirds of the molecule is hydrophobic, containing several repeating dipeptides: four of -Gn-Pro-, three of -Tyr-Gln-, two of -Gly-Tyr-, two of-Gln-Tyr-, and two of the tetrapeptide sequence -Pro-Tyr-Gln-Pro-. Unusual cleavage sites in the statherin sequence obtained with chymotrypsin and S. aureus protease were also noted.

  16. Antimicrobial activity of synthetic cationic peptides and lipopeptides derived from human lactoferricin against Pseudomonas aeruginosa planktonic cultures and biofilms.

    Science.gov (United States)

    Sánchez-Gómez, Susana; Ferrer-Espada, Raquel; Stewart, Philip S; Pitts, Betsey; Lohner, Karl; Martínez de Tejada, Guillermo

    2015-07-07

    Infections by Pseudomonas aeruginosa constitute a serious health threat because this pathogen -particularly when it forms biofilms - can acquire resistance to the majority of conventional antibiotics. This study evaluated the antimicrobial activity of synthetic peptides based on LF11, an 11-mer peptide derived from human lactoferricin against P. aeruginosa planktonic and biofilm-forming cells. We included in this analysis selected N-acylated derivatives of the peptides to analyze the effect of acylation in antimicrobial activity. To assess the efficacy of compounds against planktonic bacteria, microdilution assays to determine the minimal inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill studies were conducted. The anti-biofilm activity of the agents was assessed on biofilms grown under static (on microplates) and dynamic (in a CDC-reactor) flow regimes. The antimicrobial activity of lipopeptides differed from that of non-acylated peptides in their killing mechanisms on planktonic and biofilm-forming cells. Thus, acylation enhanced the bactericidal activity of the parental peptides and resulted in lipopeptides that were uniformly bactericidal at their MIC. In contrast, acylation of the most potent anti-biofilm peptides resulted in compounds with lower anti-biofilm activity. Both peptides and lipopeptides displayed very rapid killing kinetics and all of them required less than 21 min to reduce 1,000 times the viability of planktonic cells when tested at 2 times their MBC. The peptides, LF11-215 (FWRIRIRR) and LF11-227 (FWRRFWRR), displayed the most potent anti-biofilm activity causing a 10,000 fold reduction in cell viability after 1 h of treatment at 10 times their MIC. At that concentration, these two compounds exhibited low citotoxicity on human cells. In addition to its bactericidal activity, LF11-227 removed more that 50 % of the biofilm mass in independent assays. Peptide LF11-215 and two of the shortest and least

  17. Prokaryotic Selectivity, Anti-endotoxic Activity and Protease Stability of Diastereomeric and Enantiomeric Analogs of Human Antimicrobial Peptide LL-37

    International Nuclear Information System (INIS)

    Nan, Yong Hai; Lee, Bongju; Shin, Song Yub

    2012-01-01

    LL-37 is the only antimicrobial peptide (AMP) of the human cathelicidin family. In addition to potent antimicrobial activity, LL-37 is known to have the potential to inhibit lipolysaccharide (LPS)-induced endotoxic effects. To provide the stability to proteolytic digestion and increase prokaryotic selectivity and/or anti-endotoxic activity of two Lys/Trp-substituted 19-meric anti-microbial peptides (a4-W1 and a4-W2) designed from IG-19 (residues 13-31 of LL-37), we synthesized the diastereomeric peptides (a4-W1-D and a4-W2-D) with D-amino acid substitution at positions 3, 7, 10, 13 and 17 of a4-W1 and a4-W2, respectively and the enantiomeric peptides (a4-W1-E and a4-W2-E) composed D-amino acids. The diastereomeric peptides exhibited the best prokaryotic selectivity and effective protease stability, but no or less anti-endotoxic activity. In contrast, the enantiomeric peptides had not only prokaryotic selectivity and anti-endotoxic activity but also protease stability. Our results suggest that the hydrophobicity and α-helicity of the peptide is important for anti-endotoxic activity. In particular, the enantiomeric peptides showed potent anti-endotoxic and LPS-neutralizing activities comparable to that of LL-37. Taken together, both a4-W1-E and a4-W2-E holds promise as a template for the development of peptide antibiotics for the treatment of endotoxic shock and sepsis

  18. Prokaryotic Selectivity, Anti-endotoxic Activity and Protease Stability of Diastereomeric and Enantiomeric Analogs of Human Antimicrobial Peptide LL-37

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Yong Hai; Lee, Bongju; Shin, Song Yub [Chosun Univ., Gwangju (Korea, Republic of)

    2012-09-15

    LL-37 is the only antimicrobial peptide (AMP) of the human cathelicidin family. In addition to potent antimicrobial activity, LL-37 is known to have the potential to inhibit lipolysaccharide (LPS)-induced endotoxic effects. To provide the stability to proteolytic digestion and increase prokaryotic selectivity and/or anti-endotoxic activity of two Lys/Trp-substituted 19-meric anti-microbial peptides (a4-W1 and a4-W2) designed from IG-19 (residues 13-31 of LL-37), we synthesized the diastereomeric peptides (a4-W1-D and a4-W2-D) with D-amino acid substitution at positions 3, 7, 10, 13 and 17 of a4-W1 and a4-W2, respectively and the enantiomeric peptides (a4-W1-E and a4-W2-E) composed D-amino acids. The diastereomeric peptides exhibited the best prokaryotic selectivity and effective protease stability, but no or less anti-endotoxic activity. In contrast, the enantiomeric peptides had not only prokaryotic selectivity and anti-endotoxic activity but also protease stability. Our results suggest that the hydrophobicity and α-helicity of the peptide is important for anti-endotoxic activity. In particular, the enantiomeric peptides showed potent anti-endotoxic and LPS-neutralizing activities comparable to that of LL-37. Taken together, both a4-W1-E and a4-W2-E holds promise as a template for the development of peptide antibiotics for the treatment of endotoxic shock and sepsis.

  19. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation.

    Science.gov (United States)

    Stigliani, S; Anserini, P; Venturini, P L; Scaruffi, P

    2013-10-01

    Is the amount of cell-free DNA released by human embryos into culture medium correlated with embryo morphological features? The mitochondrial DNA (mtDNA) content of culture medium is significantly associated with the fragmentation rate on Days 2 and 3 of embryo development, whether the oocyte came from women ≤ 35 or >35 years old. Cellular fragmentation is often utilized as one of the morphological parameters for embryo quality assessment. The amount of cellular fragments is considered to be an important morphological parameter for embryo implantation potential. It has been hypothesized that fragments are apoptotic bodies or anuclear cytoplasmatic pieces of blastomeres, although no definitive conclusion has been drawn about their pathogenesis. Human fertilized oocytes were individually cultured from Day 1 to Days 2 and 3. A total of 800 samples (166 spent media from Day 2 and 634 from Day 3) were enrolled into the present study. Double-stranded DNA (dsDNA) was quantified in 800 spent embryo culture media by Pico Green dye fluorescence assay. After DNA purification, genomic DNA (gDNA) and mtDNA were profiled by specific quantitative PCR. Statistical analyses defined correlations among DNA contents, embryo morphology and maternal age. Different independent tests confirmed the presence of DNA into embryo culture medium and, for the first time, we demonstrate that both gDNA and mtDNA are detectable in the secretome. The amount of DNA is larger in embryos with bad quality cleavage compared with high-grade embryos, suggesting that the DNA profile of culture medium is an objective marker for embryo quality assessment. In particular, DNA profiles are significantly associated with fragmentation feature (total dsDNA: P = 0.0010; mtDNA; P = 0.0247) and advanced maternal age. It is necessary to establish whether DNA profiling of spent embryo culture medium is a robust onsite test that can improve the prediction of blastulation, implantation and/or pregnancy rate. The

  20. Mitochondrial content is central to nuclear gene expression: Profound implications for human health.

    Science.gov (United States)

    Muir, Rebecca; Diot, Alan; Poulton, Joanna

    2016-02-01

    We review a recent paper in Genome Research by Guantes et al. showing that nuclear gene expression is influenced by the bioenergetic status of the mitochondria. The amount of energy that mitochondria make available for gene expression varies considerably. It depends on: the energetic demands of the tissue; the mitochondrial DNA (mtDNA) mutant load; the number of mitochondria; stressors present in the cell. Hence, when failing mitochondria place the cell in energy crisis there are major effects on gene expression affecting the risk of degenerative diseases, cancer and ageing. In 2015 the UK parliament approved a change in the regulation of IVF techniques, allowing "Mitochondrial replacement therapy" to become a reproductive choice for women at risk of transmitting mitochondrial disease to their children. This is the first time that this technique will be available. Therefore understanding the interaction between mitochondria and the nucleus has never been more important. © 2015 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  1. Effects of acute and chronic endurance exercise on mitochondrial uncoupling in human skeletal muscle

    DEFF Research Database (Denmark)

    Fernström, Maria; Tonkonogi, Michail; Sahlin, Kent

    2004-01-01

    Mitochondrial proteins such as uncoupling protein 3 (UCP3) and adenine nucleotide translocase (ANT) may mediate back-leakage of protons and serve as uncouplers of oxidative phosphorylation. We hypothesized that UCP3 and ANT increase after prolonged exercise and/or endurance training, resulting...... respiration or state 3). Protein expression of UCP3 and ANT was measured with Western blotting. After endurance training, .VO2peak, citrate synthase activity (CS), state 3 respiration and ANT increased by 24, 47, 40 and 95%, respectively (all P ... mitochondrial resistance to Ca2+ overload but does not influence UCR or protein expression of UCP3 and ANT. The increased Ca2+ resistance may prevent mitochondrial degradation and the mechanism needs to be further explored....

  2. Human mitochondrial haplogroup H: the highest VO2max consumer--is it a paradox?

    Science.gov (United States)

    Martínez-Redondo, Diana; Marcuello, Ana; Casajús, José A; Ara, Ignacio; Dahmani, Yahya; Montoya, Julio; Ruiz-Pesini, Eduardo; López-Pérez, Manuel J; Díez-Sánchez, Carmen

    2010-03-01

    Mitochondrial background has been demonstrated to influence maximal oxygen uptake (VO(2max), in mLkg(-1)min(-1)), but this genetic influence can be compensated for by regular exercise. A positive correlation among electron transport chain (ETC) coupling, ATP and reactive oxygen species (ROS) production has been established, and mitochondrial variants have been reported to show differences in their ETC performance. In this study, we examined in detail the VO(2max) differences found among mitochondrial haplogroups. We recruited 81 healthy male Spanish Caucasian individuals and determined their mitochondrial haplogroup. Their VO(2max) was determined using incremental cycling exercise (ICE). VO(2max) was lower in J than in non-J haplogroup individuals (P=0.04). The H haplogroup was responsible for this difference (VO(2max); J vs. H; P=0.008) and this group also had significantly higher mitochondrial oxidative damage (mtOD) than the J haplogroup (P=0.04). In agreement with these results, VO(2max) and mtOD were positively correlated (P=0.01). Given that ROS production is the major contributor to mtOD and consumes four times more oxygen per electron than the ETC, our results strongly suggest that ROS production is responsible for the higher VO(2max) found in the H variant. These findings not only contribute to a better understanding of the mechanisms underneath VO(2max), but also help to explain some reported associations between mitochondrial haplogroups and mtOD with longevity, sperm motility, premature aging and susceptibility to different pathologies.

  3. Mitochondrial Disease

    OpenAIRE

    Bulent Kurt; Turgut Topal

    2013-01-01

    Mitochondria are the major energy source of cells. Mitochondrial disease occurs due to a defect in mitochondrial energy production. A valuable energy production in mitochondria depend a healthy interconnection between nuclear and mitochondrial DNA. A mutation in nuclear or mitochondrial DNA may cause abnormalities in ATP production and single or multiple organ dysfunctions, secondarily. In this review, we summarize mitochondrial physiology, mitochondrial genetics, and clinical expression and ...

  4. 2-ethylpyridine, a cigarette smoke component, causes mitochondrial damage in human retinal pigment epithelial cells in vitro

    Directory of Open Access Journals (Sweden)

    S Mansoor

    2014-01-01

    Full Text Available Purpose: Our goal was to identify the cellular and molecular effects of 2-ethylpyridine (2-EP, a component of cigarette smoke on human retinal pigment epithelial cells (ARPE-19 in vitro. Materials and Methods: ARPE-19 cells were exposed to varying concentrations of 2-EP. Cell viability (CV was measured by a trypan blue dye exclusion assay. Caspase-3/7 and caspase-9 activities were measured by fluorochrome assays. The production of reactive oxygen/nitrogen species (ROS/RNS was detected with a 2′,7′-dichlorodihydrofluorescein diacetate dye assay. The JC-1 assay was used to measure mitochondrial membrane potential (ΔΨm. Mitochondrial redox potential was measured using a RedoxSensor Red kit and mitochondria were evaluated with Mitotracker dye. Results: After 2-EP exposure, ARPE-19 cells showed significantly decreased CV, increased caspase-3/7 and caspase-9 activities, elevated ROS/RNS levels, decreased ΔΨm value and decreased redox fluorescence when compared with control samples. Conclusions: These results show that 2-EP treatment induced cell death by caspase-dependent apoptosis associated with an oxidative stress and mitochondrial dysfunction. These data represent a possible mechanism by which smoking contributes to age-related macular degeneration and other retinal diseases and identify mitochondria as a target for future therapeutic interventions.

  5. Carnosine inhibits the proliferation of human gastric cancer SGC-7901 cells through both of the mitochondrial respiration and glycolysis pathways.

    Directory of Open Access Journals (Sweden)

    Yao Shen

    Full Text Available Carnosine, a naturally occurring dipeptide, has been recently demonstrated to possess anti-tumor activity. However, its underlying mechanism is unclear. In this study, we investigated the effect and mechanism of carnosine on the cell viability and proliferation of the cultured human gastric cancer SGC-7901 cells. Carnosine treatment did not induce cell apoptosis or necrosis, but reduced the proliferative capacity of SGC-7901 cells. Seahorse analysis showed SGC-7901 cells cultured with pyruvate have active mitochondria, and depend on mitochondrial oxidative phosphorylation more than glycolysis pathway for generation of ATP. Carnosine markedly decreased the absolute value of mitochondrial ATP-linked respiration, and reduced the maximal oxygen consumption and spare respiratory capacity, which may reduce mitochondrial function correlated with proliferative potential. Simultaneously, carnosine also reduced the extracellular acidification rate and glycolysis of SGC-7901 cells. Our results suggested that carnosine is a potential regulator of energy metabolism of SGC-7901 cells both in the anaerobic and aerobic pathways, and provided a clue for preclinical and clinical evaluation of carnosine for gastric cancer therapy.

  6. Purification, crystallization and preliminary X-ray characterization of a human mitochondrial phenylalanyl-tRNA synthetase

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Inna; Kessler, Naama [Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot (Israel); Moor, Nina [Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk (Russian Federation); Klipcan, Liron [Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot (Israel); Koc, Emine [Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802 (United States); Templeton, Paul [Department Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215 (United States); Spremulli, Linda [Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290 (United States); Safro, Mark, E-mail: mark.safro@weizmann.ac.il [Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot (Israel)

    2007-09-01

    The expression, purification and crystallization of recombinant human mitochondrial phenylalanyl-tRNA synthetase (mitPheRS) are reported. Diffraction data were collected to 2.2 Å resolution and the mitPheRS structure was solved using the molecular-replacement method. Human monomeric mitochondrial phenylalanyl-tRNA synthetase (mitPheRS) is an enzyme that catalyzes the charging of tRNA with the cognate amino acid phenylalanine. Human mitPheRS is a chimera of the bacterial α-subunit of PheRS and the B8 domain of its β-subunit. Together, the α-subunit and the ‘RNP-domain’ (B8 domain) at the C-terminus form the minimal structural set to construct an enzyme with phenylalanylation activity. The recombinant human mitPheRS was purified to homogeneity and crystallized in complex with phenylalanine and ATP. The crystals diffracted to 2.2 Å resolution and belonged to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 55, b = 90, c = 96 Å.

  7. Purification, crystallization and preliminary X-ray characterization of a human mitochondrial phenylalanyl-tRNA synthetase

    International Nuclear Information System (INIS)

    Levin, Inna; Kessler, Naama; Moor, Nina; Klipcan, Liron; Koc, Emine; Templeton, Paul; Spremulli, Linda; Safro, Mark

    2007-01-01

    The expression, purification and crystallization of recombinant human mitochondrial phenylalanyl-tRNA synthetase (mitPheRS) are reported. Diffraction data were collected to 2.2 Å resolution and the mitPheRS structure was solved using the molecular-replacement method. Human monomeric mitochondrial phenylalanyl-tRNA synthetase (mitPheRS) is an enzyme that catalyzes the charging of tRNA with the cognate amino acid phenylalanine. Human mitPheRS is a chimera of the bacterial α-subunit of PheRS and the B8 domain of its β-subunit. Together, the α-subunit and the ‘RNP-domain’ (B8 domain) at the C-terminus form the minimal structural set to construct an enzyme with phenylalanylation activity. The recombinant human mitPheRS was purified to homogeneity and crystallized in complex with phenylalanine and ATP. The crystals diffracted to 2.2 Å resolution and belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 55, b = 90, c = 96 Å

  8. Photosensitized 2-amino-3-hydroxypyridine-induced mitochondrial apoptosis via Smac/DIABLO in human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Shruti; Amar, Saroj Kumar [Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR — Indian Institute of Toxicology Research (CSIR-IITR), M.G, Marg, Lucknow 226001, Uttar Pradesh (India); Academy of Scientific and Innovative Research (AcSIR), CSIR — IITR, Lucknow 226001 (India); Dwivedi, Ashish; Mujtaba, Syed Faiz; Kushwaha, Hari Narayan; Chopra, Deepti; Pal, Manish Kumar; Singh, Dhirendra [Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR — Indian Institute of Toxicology Research (CSIR-IITR), M.G, Marg, Lucknow 226001, Uttar Pradesh (India); Chaturvedi, Rajnish Kumar [Developmental Toxicology Division, CSIR — Indian Institute of Toxicology Research, P. O. Box 80, M.G. Marg, Lucknow 226001 (India); Ray, Ratan Singh, E-mail: ratanray.2011@rediffmail.com [Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR — Indian Institute of Toxicology Research (CSIR-IITR), M.G, Marg, Lucknow 226001, Uttar Pradesh (India); Academy of Scientific and Innovative Research (AcSIR), CSIR — IITR, Lucknow 226001 (India)

    2016-04-15

    The popularity of hair dyes use has been increasing regularly throughout the world as per the demand of hair coloring fashion trends and other cosmetic products. 2-Amino-3-hydroxypyridine (A132) is widely used as a hair dye ingredient around the world. We are reporting first time the phototoxicity mechanism of A132 under ambient environmental UV-B radiation. It showed maximum absorption in UV-B region (317 nm) and forms a photoproduct within an hour exposure of UV-B irradiation. Photocytotoxicity of A132 in human keratinocytes (HaCaT) was measured by mitochondrial (MTT), lysosomal (NRU) and LDH assays which illustrated the significant reduction in cell viability. The role of reactive oxygen species (ROS) generation for A132 phototoxicity was established photo- chemically as well as intracellularly. Noteworthy, formation of tail DNA (comet assay), micronuclei and cyclobutane pyrimidine dimers (CPDs) (immunocytochemistry) formation confirmed the photogenotoxic potential of dye. Cell cycle study (sub-G1peak) and staining with EB/AO revealed the cell cycle arrest and apoptosis. Further, mitochondrial mediated apoptosis was corroborated by reduced MMP, release of cytochrome c and upregulation of caspase-3. Release of mitochondrial Smac/DIABLO in cytoplasm demonstrated the caspase dependent apoptotic cell death by photolabile A132 dye. In-addition increased Bax/Bcl2 ratio again proved the apoptosis. Thus, study suggests that A132 induces photogenotoxicity, phototoxicity and apoptotic cell death through the involvement of Smac/DIABLO in mitochondrial apoptosis via caspase dependent manner. Therefore, the long term use of A132 dye and sunlight exposure jointly increased the oxidative stress in skin which causes premature hair loss, damage to progenitor cells of hair follicles. - Highlights: • Photodegradation of A132 and formation of novel photoproduct • Involvement of ROS in A132 phototoxicity • Role of ROS in DNA damage, CPD and micronuclei formation • Release of

  9. Photosensitized 2-amino-3-hydroxypyridine-induced mitochondrial apoptosis via Smac/DIABLO in human skin cells

    International Nuclear Information System (INIS)

    Goyal, Shruti; Amar, Saroj Kumar; Dwivedi, Ashish; Mujtaba, Syed Faiz; Kushwaha, Hari Narayan; Chopra, Deepti; Pal, Manish Kumar; Singh, Dhirendra; Chaturvedi, Rajnish Kumar; Ray, Ratan Singh

    2016-01-01

    The popularity of hair dyes use has been increasing regularly throughout the world as per the demand of hair coloring fashion trends and other cosmetic products. 2-Amino-3-hydroxypyridine (A132) is widely used as a hair dye ingredient around the world. We are reporting first time the phototoxicity mechanism of A132 under ambient environmental UV-B radiation. It showed maximum absorption in UV-B region (317 nm) and forms a photoproduct within an hour exposure of UV-B irradiation. Photocytotoxicity of A132 in human keratinocytes (HaCaT) was measured by mitochondrial (MTT), lysosomal (NRU) and LDH assays which illustrated the significant reduction in cell viability. The role of reactive oxygen species (ROS) generation for A132 phototoxicity was established photo- chemically as well as intracellularly. Noteworthy, formation of tail DNA (comet assay), micronuclei and cyclobutane pyrimidine dimers (CPDs) (immunocytochemistry) formation confirmed the photogenotoxic potential of dye. Cell cycle study (sub-G1peak) and staining with EB/AO revealed the cell cycle arrest and apoptosis. Further, mitochondrial mediated apoptosis was corroborated by reduced MMP, release of cytochrome c and upregulation of caspase-3. Release of mitochondrial Smac/DIABLO in cytoplasm demonstrated the caspase dependent apoptotic cell death by photolabile A132 dye. In-addition increased Bax/Bcl2 ratio again proved the apoptosis. Thus, study suggests that A132 induces photogenotoxicity, phototoxicity and apoptotic cell death through the involvement of Smac/DIABLO in mitochondrial apoptosis via caspase dependent manner. Therefore, the long term use of A132 dye and sunlight exposure jointly increased the oxidative stress in skin which causes premature hair loss, damage to progenitor cells of hair follicles. - Highlights: • Photodegradation of A132 and formation of novel photoproduct • Involvement of ROS in A132 phototoxicity • Role of ROS in DNA damage, CPD and micronuclei formation • Release of

  10. Antiviral activity against human immunodeficiency virus-1 in vitro by myristoylated-peptide from Heliothis virescens

    International Nuclear Information System (INIS)

    Ourth, Donald D.

    2004-01-01

    An insect antiviral compound was purified from Heliothis virescens larval hemolymph by gel-filtration high pressure liquid chromatography (HPLC) and C-18 reverse-phase HPLC and its structure was determined by mass spectrometry. The antiviral compound is an N-myristoylated-peptide containing six amino acids with calculated molecular weight of 916 Da. The N-terminus contains the fatty acid myristoyl, and the C-terminus contains histidine with two methyl groups giving the histidine a permanent positive charge. The remainder of the compound is essentially non-polar. The structure of the compound corresponds with the 'myristate plus basic' motif expressed by certain viral proteins in their binding to the cytoplasmic side of the plasma membrane to initiate viral assembly and budding from a host cell. The insect antiviral compound may inhibit viral assembly and/or budding of viruses from host cells that could include the human immunodeficiency virus-1 (HIV-1) and herpes simplex virus-1 that use this motif for exit from a host cell. Using the formazan assay, the myristoylated-peptide was effective against HIV-1, with a nine times increase in the viability and protection in vitro of treated CEM-SS cells when compared with infected but untreated control cells

  11. Identification of Cellular Binding Sites for a Novel Human Anti-Breast Cancer Peptide

    National Research Council Canada - National Science Library

    DeFreest, Lori

    2004-01-01

    ... breast cancer growth. We have developed and optimized an affinity chromatography procedure to identify the receptor for AFPep by using the peptide as "bait" to isolate proteins from solublized cells which have an affinity for the peptide...

  12. Oxidative stress induced by palytoxin in human keratinocytes is mediated by a H+-dependent mitochondrial pathway

    International Nuclear Information System (INIS)

    Pelin, Marco; Ponti, Cristina; Sosa, Silvio; Gibellini, Davide; Florio, Chiara; Tubaro, Aurelia

    2013-01-01

    In the last decades, massive blooms of palytoxin (PLTX)-producing Ostreopsis cf. ovata have been observed along Mediterranean coasts, usually associated to human respiratory and cutaneous problems. At the molecular level, PLTX induces a massive intracellular Na + influx due to the transformation of Na + /K + ATPase in a cationic channel. Recently, we have demonstrated that Na + overload is the crucial step in mediating overproduction of reactive oxygen species (ROS) and cell death in human HaCaT keratinocytes, tentatively explaining PLTX-induced skin irritant effects. In the present study the molecular mechanisms of ROS production induced by PLTX-mediated Na + intracellular overload have been investigated. In HaCaT cells, PLTX exposure caused accumulation of superoxide anion, but not of nitric oxide or peroxynitrite/hydroxyl radicals. Even if RT-PCR and western blot analysis revealed an early NOX-2 and iNOS gene and protein over-expressions, their active involvement seemed to be only partial since selective inhibitors did not completely reduce O 2 − production. A significant role of other enzymes (COX-1, COX-2, XO) was not evidenced. Nigericin, that counteracts Na + -mediated H + -imbalance, dissipating ΔpH across mitochondrial inner membrane, and the uncouplers DNP significantly reduced O 2 − production. These inhibitions were synergistic when co-exposed with complex-I inhibitor rotenone. These results suggest a novel mechanism of O 2 − production induced by PLTX-mediated ionic imbalance. Indeed, the H + intracellular overload that follows PLTX-induced intracellular Na + accumulation, could enhance ΔpH across mitochondrial inner membrane, that seems to be the driving force for O 2 − production by reversing mitochondrial electron transport. Highlights: ► PLTX induces superoxide (O 2 − ) production by reversing mitochondrial transport chain. ► The mechanism of O 2 − production is dependent on PLTX-induced ionic imbalance. ► The results led to the

  13. Oxidative stress induced by palytoxin in human keratinocytes is mediated by a H{sup +}-dependent mitochondrial pathway

    Energy Technology Data Exchange (ETDEWEB)

    Pelin, Marco, E-mail: marco.pelin@phd.units.it [Department of Life Science, University of Trieste, Via L. Giorgieri 7/9, 34127 Trieste (Italy); Ponti, Cristina, E-mail: cponti@units.it [Department of Life Science, University of Trieste, Via L. Giorgieri 7/9, 34127 Trieste (Italy); Sosa, Silvio, E-mail: silvio.sosa@econ.units.it [Department of Life Science, University of Trieste, Via L. Giorgieri 7/9, 34127 Trieste (Italy); Gibellini, Davide, E-mail: davide.gibellini@unibo.it [Department of Haematology and Oncological Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna (Italy); Florio, Chiara, E-mail: florioc@units.it [Department of Life Science, University of Trieste, Via L. Giorgieri 7/9, 34127 Trieste (Italy); Tubaro, Aurelia, E-mail: tubaro@units.it [Department of Life Science, University of Trieste, Via L. Giorgieri 7/9, 34127 Trieste (Italy)

    2013-01-01

    In the last decades, massive blooms of palytoxin (PLTX)-producing Ostreopsis cf. ovata have been observed along Mediterranean coasts, usually associated to human respiratory and cutaneous problems. At the molecular level, PLTX induces a massive intracellular Na{sup +} influx due to the transformation of Na{sup +}/K{sup +} ATPase in a cationic channel. Recently, we have demonstrated that Na{sup +} overload is the crucial step in mediating overproduction of reactive oxygen species (ROS) and cell death in human HaCaT keratinocytes, tentatively explaining PLTX-induced skin irritant effects. In the present study the molecular mechanisms of ROS production induced by PLTX-mediated Na{sup +} intracellular overload have been investigated. In HaCaT cells, PLTX exposure caused accumulation of superoxide anion, but not of nitric oxide or peroxynitrite/hydroxyl radicals. Even if RT-PCR and western blot analysis revealed an early NOX-2 and iNOS gene and protein over-expressions, their active involvement seemed to be only partial since selective inhibitors did not completely reduce O{sub 2}{sup −} production. A significant role of other enzymes (COX-1, COX-2, XO) was not evidenced. Nigericin, that counteracts Na{sup +}-mediated H{sup +}-imbalance, dissipating ΔpH across mitochondrial inner membrane, and the uncouplers DNP significantly reduced O{sub 2}{sup −} production. These inhibitions were synergistic when co-exposed with complex-I inhibitor rotenone. These results suggest a novel mechanism of O{sub 2}{sup −} production induced by PLTX-mediated ionic imbalance. Indeed, the H{sup +} intracellular overload that follows PLTX-induced intracellular Na{sup +} accumulation, could enhance ΔpH across mitochondrial inner membrane, that seems to be the driving force for O{sub 2}{sup −} production by reversing mitochondrial electron transport. Highlights: ► PLTX induces superoxide (O{sub 2}{sup −}) production by reversing mitochondrial transport chain. ► The mechanism of

  14. Vasoactive intestinal polypeptide and peptide histidine methionine. Presence in human follicular fluid and effects on DNA synthesis and steroid secretion in cultured human granulosa/lutein cells

    DEFF Research Database (Denmark)

    Gräs, S; Ovesen, Per Glud; Andersen, A N

    1994-01-01

    Vasoactive intestinal polypeptide (VIP) and peptide histidine methionine (PHM) originate from the same precursor molecule, prepro VIP. In the present study we examined the concentrations of VIP and PHM in human follicular fluid and their effects on cultured human granulosa/lutein cells. Follicula...

  15. N-acylated peptides derived from human lactoferricin perturb organization of cardiolipin and phosphatidylethanolamine in cell membranes and induce defects in Escherichia coli cell division.

    Directory of Open Access Journals (Sweden)

    Dagmar Zweytick

    Full Text Available Two types of recently described antibacterial peptides derived from human lactoferricin, either nonacylated or N-acylated, were studied for their different interaction with membranes of Escherichia coli in vivo and in model systems. Electron microscopy revealed striking effects on the bacterial membrane as both peptide types induced formation of large membrane blebs. Electron and fluorescence microscopy, however demonstrated that only the N-acylated peptides partially induced the generation of oversized cells, which might reflect defects in cell-division. Further a different distribution of cardiolipin domains on the E. coli membrane was shown only in the presence of the N-acylated peptides. The lipid was distributed over the whole bacterial cell surface, whereas cardiolipin in untreated and nonacylated peptide-treated cells was mainly located at the septum and poles. Studies with bacterial membrane mimics, such as cardiolipin or phosphatidylethanolamine revealed that both types of peptides interacted with the negatively charged lipid cardiolipin. The nonacylated peptides however induced segregation of cardiolipin into peptide-enriched and peptide-poor lipid domains, while the N-acylated peptides promoted formation of many small heterogeneous domains. Only N-acylated peptides caused additional severe effects on the main phase transition of liposomes composed of pure phosphatidylethanolamine, while both peptide types inhibited the lamellar to hexagonal phase transition. Lipid mixtures of phosphatidylethanolamine and cardiolipin revealed anionic clustering by all peptide types. However additional strong perturbation of the neutral lipids was only seen with the N-acylated peptides. Nuclear magnetic resonance demonstrated different conformational arrangement of the N-acylated peptide in anionic and zwitterionic micelles revealing possible mechanistic differences in their action on different membrane lipids. We hypothesized that both peptides kill

  16. Caffeic Acid Induces Apoptosis in Human Cervical Cancer Cells Through the Mitochondrial Pathway

    Directory of Open Access Journals (Sweden)

    Wei-Chun Chang

    2010-12-01

    Conclusion: Caffeic acid induces apoptosis by inhibiting Bcl-2 activity, leading to release of cytochrome c and subsequent activation of caspase-3, indicating that caffeic acid induces apoptosis via the mitochondrial apoptotic pathway. This also suggests that caffeic acid has a strong anti-tumor effect and may be a promising chemopreventive or chemotherapeutic agent.

  17. Analysis of the mitochondrial maxicircle of Trypanosoma lewisi, a neglected human pathogen

    Czech Academy of Sciences Publication Activity Database

    Lin, R.-H.; Lai, D.-H.; Zheng, L.-L.; Wu, J.; Lukeš, Julius; Hide, G.; Lun, Z.-R.

    2015-01-01

    Roč. 8, 30 December 2015 (2015), s. 665 ISSN 1756-3305 Institutional support: RVO:60077344 Keywords : Trypanosoma lewisi * Kinetoplast maxicircle * Mitochondrial DNA * RNA editing * Palindrome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.234, year: 2015

  18. Decreased mitochondrial oxidative phosphorylation capacity in the human heart with left ventricular systolic dysfunction

    DEFF Research Database (Denmark)

    Stride, Nis; Larsen, Steen; Hey-Mogensen, Martin

    2013-01-01

    Heart failure (HF) with left ventricular systolic dysfunction (LVSD) is associated with a shift in substrate utilization and a compromised energetic state. Whether these changes are connected with mitochondrial dysfunction is not known. We hypothesized that the cardiac phenotype in LVSD could...

  19. Introducing Human Population Biology through an Easy Laboratory Exercise on Mitochondrial DNA

    Science.gov (United States)

    Pardinas, Antonio F.; Dopico, Eduardo; Roca, Agustin; Garcia-Vazquez, Eva; Lopez, Belen

    2010-01-01

    This article describes an easy and cheap laboratory exercise for students to discover their own mitochondrial haplogroup. Students use buccal swabs to obtain mucosa cells as noninvasive tissue samples, extract DNA, and with a simple polymerase chain reaction-restriction fragment length polymorphism analysis they can obtain DNA fragments of…

  20. A novel method for determining human ex vivo submaximal skeletal muscle mitochondrial function

    DEFF Research Database (Denmark)

    Hey-Mogensen, Martin; Gram, Martin; Jensen, Martin Borch

    2015-01-01

    previously used. Muscle biopsies were taken from 64 old or young male subjects (60-70 or 20-30 years old). Aged subjects were recruited as trained or untrained. Muscle biopsies were used for isolation of mitochondria and subsequent measurements of DNA repair, antioxidant capacity and mitochondrial protein...

  1. Oxidative damage of mitochondrial and nuclear DNA induced by ionizing radiation in human hepatoblastoma cells

    International Nuclear Information System (INIS)

    Morales, Albert; Miranda, Merce; Sanchez-Reyes, Alberto; Biete, Alberto; Fernandez-Checa, Jose C.

    1998-01-01

    Purpose: Since reactive oxygen species (ROS) act as mediators of radiation-induced cellular damage, the aim of our studies was to determine the effects of ionizing radiation on the regulation of hepatocellular reduced glutathione (GSH), survival and integrity of nuclear and mitochondrial DNA (mtDNA) in human hepatoblastoma cells (Hep G2) depleted of GSH prior to radiation. Methods and Materials: GSH, oxidized glutathione (GSSG), and generation of ROS were determined in irradiated (50-500 cGy) Hep G2 cells. Clonogenic survival, nuclear DNA fragmentation, and integrity of mtDNA were assessed in cells depleted of GSH prior to radiation. Results: Radiation of Hep G2 cells (50-400 cGy) resulted in a dose-dependent generation of ROS, an effect accompanied by a decrease of reduced GSH, ranging from a 15% decrease for 50 cGy to a 25% decrease for 400 cGy and decreased GSH/GSSG from a ratio of 17 to a ratio of 7 for controls and from 16 to 6 for diethyl maleate (DEM)-treated cells. Depletion of GSH prior to radiation accentuated the increase of ROS by 40-50%. The depletion of GSH by radiation was apparent in different subcellular sites, being particularly significant in mitochondria. Furthermore, depletion of nuclear GSH to 50-60% of initial values prior to irradiation (400 cGy) resulted in DNA fragmentation and apoptosis. Consequently, the survival of Hep G2 to radiation was reduced from 25% of cells not depleted of GSH to 10% of GSH-depleted cells. Fitting the survival rate of cells as a function of GSH using a theoretical model confirmed cellular GSH as a key factor in determining intrinsic sensitivity of Hep G2 cells to radiation. mtDNA displayed an increased susceptibility to the radiation-induced loss of integrity compared to nuclear DNA, an effect that was potentiated by GSH depletion in mitochondria (10-15% intact mtDNA in GSH-depleted cells vs. 25-30% of repleted cells). Conclusion: GSH plays a critical protective role in maintaining nuclear and mtDNA functional

  2. Influence of heavy ions on cell survival, cytogenetic damage and mitochondrial function of human endothelial cells

    Science.gov (United States)

    Ritter, Sylvia; Helm, Alexander; Lee, Ryonfa; Pollet, Dieter; Durante, Marco

    There is increasing evidence that there is an elevated risk of cardiovascular disease among atomic bomb survivors and radiotherapy patients, typically developing with a long latency. However, essentially no information is available on the potential cardiovascular risks associated with space radiation, in particular heavy ions. To address this issue, we have chosen human umbilical vein endothelial cells (HUVEC) as a model system. Cells at an early passage number were irradiated with 0.1 to 4 Gy of either 9.8 MeV/u C-ions (LET=170 keV/µm), 91 MeV/u C-ions (LET=29 keV/µm) or 250 kV X-rays. Cells were regularly subcultured up to 40 days (20 population doublings) post-irradiation. Immediately after exposure cell inactivation was deter-mined by the colony forming assay. Furthermore, at selected time-points cytogenetic damage (formation of micronuclei in binucleated cells) and the mitochondrial membrane potential ΨM (flow cytometric analysis following JC-1 staining) were assessed. Measurement of the directly induced radiation damage showed that 9.8 MeV/u and 91 MeV/u C-ions were more effective than X-rays (i.e. about 3 and 2 times, respectively) with respect to cell inactivation or the in-duction of cytogenetic damage. At the subsequent days in the irradiated cultures the number of cells with micronuclei declined to the control level (3-5Altogether our data indicate that under the applied radiation conditions the integrity of mitochondria which play a significant role in the regulation of cardiovascular cell function is not impaired. With respect to directly induced genetic damage C-ions are more effective than X-rays as observed in other cell systems. If the effectiveness of charged particles for the occurrence of late chromosomal damage in endothelial cells is higher than that of sparsely ionizing radiation needs further clarification. The data obtained up to now indicate that sophisticated cytogenetic techniques have to be applied in order to draw any firm

  3. Mitochondrial modulation of oxygen-dependent radiosensitivity in some human tumour cell lines.

    LENUS (Irish Health Repository)

    Anoopkumar-Dukie, S

    2009-10-01

    Oxygen-dependent radiosensitivity of tumour cells reflects direct oxidative damage to DNA, but non-nuclear mechanisms including signalling pathways may also contribute. Mitochondria are likely candidates because not only do they integrate signals from each of the main kinase pathways but mitochondrial kinases responsive to oxidative stress communicate to the rest of the cell. Using pharmacological and immunochemical methods, we tested the role of mitochondrial permeability transition (MPT) and the Bcl-2 proteins in oxygen-dependent radiosensitivity. Drug-treated or untreated cervical cancer HeLa, breast cancer MCF-7 and melanoma MeWo cell lines were irradiated at 6.2 Gy under normoxic and hypoxic conditions then allowed to proliferate for 7 days. The MPT blocker cyclosporin A (2 microM) strongly protected HeLa but not the other two lines against oxygen-dependent radiosensitivity. By contrast, bongkrekic acid (50 microM), which blocks MPT by targeting the adenine nucleotide transporter, had only marginal effect and calcineurin inhibitor FK-506 (0.1 microM) had none. Nor was evidence found for the modulation of oxygen-dependent radiosensitivity by Bax\\/Bcl-2 signalling, mitochondrial ATP-dependent potassium (mitoK(ATP)) channels or mitochondrial Ca(2+) uptake. In conclusion, calcineurin-independent protection by cyclosporin A suggests that MPT but not mitoK(ATP) or the mitochondrial apoptosis pathway plays a causal role in oxygen-dependent radiosensitivity of HeLa cells. Targeting MPT may therefore improve the effectiveness of radiotherapy in some solid tumours.

  4. Effects of mycoplasma contamination on phenotypic expression of mitochondrial mutants in human cells.

    Science.gov (United States)

    Doersen, C J; Stanbridge, E J

    1981-04-01

    HeLa cells sensitive to the mitochondrial protein synthesis inhibitors erythromycin (ERY) and chloramphenicol (CAP) and HeLa variants resistant to the effects of these drugs were purposefully infected with drug-sensitive and -resistant mycoplasma strains. Mycoplasma hyorhinis and the ERY-resistant strain of Mycoplasma orale, MO-ERYr, did not influence the growth of HeLa and ERY-resistant ERY2301 cells in the presence or absence of ERY. M. hyorhinis also did not affect the growth of HeLa and CAP-resistant Cap-2 cells in the presence or absence of CAP. However, both HeLa and Cap-2 cells infected with the CAP-resistant strain of M. hyorhinis, MH-CAPr, were more sensitive to the cytotoxic effect of CAP. This may be due to the glucose dependence of the cells, which was compromised by the increased utilization of glucose by MH-CAPr in these infected cell cultures. In vitro protein synthesis by isolated mitochondria was significantly altered by mycoplasma infection of the various cell lines. A substantial number of mycoplasmas copurified with the mitochondria, resulting in up to a sevenfold increase in the incorporation of [3H]leucine into the trichloroacetic acid-insoluble material. More importantly, the apparent drug sensitivity or resistance of mitochondrial preparations from mycoplasma-infected cells reflected the drug sensitivity or resistance of the contaminating mycoplasmas. These results illustrate the hazards in interpreting mitochondrial protein synthesis data derived from mycoplasma-infected cell lines, particularly putative mitochondrially encoded mutants resistant to inhibitors of mitochondrial protein synthesis.

  5. Identification and mapping of linear antibody epitopes in human serum albumin using high-density Peptide arrays.

    Directory of Open Access Journals (Sweden)

    Lajla Bruntse Hansen

    Full Text Available We have recently developed a high-density photolithographic, peptide array technology with a theoretical upper limit of 2 million different peptides per array of 2 cm(2. Here, we have used this to perform complete and exhaustive analyses of linear B cell epitopes of a medium sized protein target using human serum albumin (HSA as an example. All possible overlapping 15-mers from HSA were synthesized and probed with a commercially available polyclonal rabbit anti-HSA antibody preparation. To allow for identification of even the weakest epitopes and at the same time perform a detailed characterization of key residues involved in antibody binding, the array also included complete single substitution scans (i.e. including each of the 20 common amino acids at each position of each 15-mer peptide. As specificity controls, all possible 15-mer peptides from bovine serum albumin (BSA and from rabbit serum albumin (RSA were included as well. The resulting layout contained more than 200.000 peptide fields and could be synthesized in a single array on a microscope slide. More than 20 linear epitope candidates were identified and characterized at high resolution i.e. identifying which amino acids in which positions were needed, or not needed, for antibody interaction. As expected, moderate cross-reaction with some peptides in BSA was identified whereas no cross-reaction was observed with peptides from RSA. We conclude that high-density peptide microarrays are a very powerful methodology to identify and characterize linear antibody epitopes, and should advance detailed description of individual specificities at the single antibody level as well as serologic analysis at the proteome-wide level.

  6. Identification and mapping of linear antibody epitopes in human serum albumin using high-density Peptide arrays.

    Science.gov (United States)

    Hansen, Lajla Bruntse; Buus, Soren; Schafer-Nielsen, Claus

    2013-01-01

    We have recently developed a high-density photolithographic, peptide array technology with a theoretical upper limit of 2 million different peptides per array of 2 cm(2). Here, we have used this to perform complete and exhaustive analyses of linear B cell epitopes of a medium sized protein target using human serum albumin (HSA) as an example. All possible overlapping 15-mers from HSA were synthesized and probed with a commercially available polyclonal rabbit anti-HSA antibody preparation. To allow for identification of even the weakest epitopes and at the same time perform a detailed characterization of key residues involved in antibody binding, the array also included complete single substitution scans (i.e. including each of the 20 common amino acids) at each position of each 15-mer peptide. As specificity controls, all possible 15-mer peptides from bovine serum albumin (BSA) and from rabbit serum albumin (RSA) were included as well. The resulting layout contained more than 200.000 peptide fields and could be synthesized in a single array on a microscope slide. More than 20 linear epitope candidates were identified and characterized at high resolution i.e. identifying which amino acids in which positions were needed, or not needed, for antibody interaction. As expected, moderate cross-reaction with some peptides in BSA was identified whereas no cross-reaction was observed with peptides from RSA. We conclude that high-density peptide microarrays are a very powerful methodology to identify and characterize linear antibody epitopes, and should advance detailed description of individual specificities at the single antibody level as well as serologic analysis at the proteome-wide level.

  7. The vasorelaxant effect of adrenomedullin, proadrenomedullin N-terminal 20 peptide and amylin in human skin

    DEFF Research Database (Denmark)

    Hasbak, Philip; Eskesen, Karen; Lind, Peter Henrik

    2006-01-01

    of the peptides. The mRNA expression was assessed by real-time reverse transcriptase-polymerase chain reaction (real-time PCR). CGRP, adrenomedullin and amylin induced concentration-dependent, long-lasting increases in skin blood flow. The response to PAMP was shorter in duration appearing similar...... to the transient response induced by substance P. PAMP (10(-6)-10(-5) M) caused distinct itch sensation and local erythema. This effect could be abolished when combining the histamine H1-receptor antagonist mepyramin and PAMP. Real-time PCR data showed a higher level of mRNA for RAMP2 than CL-R, RAMP1 and RAMP3...... of CGRP, adrenomedullin and amylin induces long lasting dilatation of human skin vasculature by activation of CGRP1 receptors. PAMP induces transient vasodilatation. PAMP but not CGRP, adrenomedullin and amylin causes itch sensation and local erythema. The transient effect on vasodilatation as response...

  8. Expression of Mitochondrial Non-coding RNAs (ncRNAs) Is Modulated by High Risk Human Papillomavirus (HPV) Oncogenes*

    Science.gov (United States)

    Villota, Claudio; Campos, América; Vidaurre, Soledad; Oliveira-Cruz, Luciana; Boccardo, Enrique; Burzio, Verónica A.; Varas, Manuel; Villegas, Jaime; Villa, Luisa L.; Valenzuela, Pablo D. T.; Socías, Miguel; Roberts, Sally; Burzio, Luis O.

    2012-01-01

    The study of RNA and DNA oncogenic viruses has proved invaluable in the discovery of key cellular pathways that are rendered dysfunctional during cancer progression. An example is high risk human papillomavirus (HPV), the etiological agent of cervical cancer. The role of HPV oncogenes in cellular immortalization and transformation has been extensively investigated. We reported the differential expression of a family of human mitochondrial non-coding RNAs (ncRNAs) between normal and cancer cells. Normal cells express a sense mitochondrial ncRNA (SncmtRNA) that seems to be required for cell proliferation and two antisense transcripts (ASncmtRNAs). In contrast, the ASncmtRNAs are down-regulated in cancer cells. To shed some light on the mechanisms that trigger down-regulation of the ASncmtRNAs, we studied human keratinocytes (HFK) immortalized with HPV. Here we show that immortalization of HFK with HPV-16 or 18 causes down-regulation of the ASncmtRNAs and induces the expression of a new sense transcript named SncmtRNA-2. Transduction of HFK with both E6 and E7 is sufficient to induce expression of SncmtRNA-2. Moreover, E2 oncogene is involved in down-regulation of the ASncmtRNAs. Knockdown of E2 in immortalized cells reestablishes in a reversible manner the expression of the ASncmtRNAs, suggesting that endogenous cellular factors(s) could play functions analogous to E2 during non-HPV-induced oncogenesis. PMID:22539350

  9. Expression of mitochondrial non-coding RNAs (ncRNAs) is modulated by high risk human papillomavirus (HPV) oncogenes.

    Science.gov (United States)

    Villota, Claudio; Campos, América; Vidaurre, Soledad; Oliveira-Cruz, Luciana; Boccardo, Enrique; Burzio, Verónica A; Varas, Manuel; Villegas, Jaime; Villa, Luisa L; Valenzuela, Pablo D T; Socías, Miguel; Roberts, Sally; Burzio, Luis O

    2012-06-15

    The study of RNA and DNA oncogenic viruses has proved invaluable in the discovery of key cellular pathways that are rendered dysfunctional during cancer progression. An example is high risk human papillomavirus (HPV), the etiological agent of cervical cancer. The role of HPV oncogenes in cellular immortalization and transformation has been extensively investigated. We reported the differential expression of a family of human mitochondrial non-coding RNAs (ncRNAs) between normal and cancer cells. Normal cells express a sense mitochondrial ncRNA (SncmtRNA) that seems to be required for cell proliferation and two antisense transcripts (ASncmtRNAs). In contrast, the ASncmtRNAs are down-regulated in cancer cells. To shed some light on the mechanisms that trigger down-regulation of the ASncmtRNAs, we studied human keratinocytes (HFK) immortalized with HPV. Here we show that immortalization of HFK with HPV-16 or 18 causes down-regulation of the ASncmtRNAs and induces the expression of a new sense transcript named SncmtRNA-2. Transduction of HFK with both E6 and E7 is sufficient to induce expression of SncmtRNA-2. Moreover, E2 oncogene is involved in down-regulation of the ASncmtRNAs. Knockdown of E2 in immortalized cells reestablishes in a reversible manner the expression of the ASncmtRNAs, suggesting that endogenous cellular factors(s) could play functions analogous to E2 during non-HPV-induced oncogenesis.

  10. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro

    International Nuclear Information System (INIS)

    Dykens, James A.; Jamieson, Joseph; Marroquin, Lisa; Nadanaciva, Sashi; Billis, Puja A.; Will, Yvonne

    2008-01-01

    As a class, the biguanides induce lactic acidosis, a hallmark of mitochondrial impairment. To assess potential mitochondrial impairment, we evaluated the effects of metformin, buformin and phenformin on: 1) viability of HepG2 cells grown in galactose, 2) respiration by isolated mitochondria, 3) metabolic poise of HepG2 and primary human hepatocytes, 4) activities of immunocaptured respiratory complexes, and 5) mitochondrial membrane potential and redox status in primary human hepatocytes. Phenformin was the most cytotoxic of the three with buformin showing moderate toxicity, and metformin toxicity only at mM concentrations. Importantly, HepG2 cells grown in galactose are markedly more susceptible to biguanide toxicity compared to cells grown in glucose, indicating mitochondrial toxicity as a primary mode of action. The same rank order of potency was observed for isolated mitochondrial respiration where preincubation (40 min) exacerbated respiratory impairment, and was required to reveal inhibition by metformin, suggesting intramitochondrial bio-accumulation. Metabolic profiling of intact cells corroborated respiratory inhibition, but also revealed compensatory increases in lactate production from accelerated glycolysis. High (mM) concentrations of the drugs were needed to inhibit immunocaptured respiratory complexes, supporting the contention that bioaccumulation is involved. The same rank order was found when monitoring mitochondrial membrane potential, ROS production, and glutathione levels in primary human hepatocytes. In toto, these data indicate that biguanide-induced lactic acidosis can be attributed to acceleration of glycolysis in response to mitochondrial impairment. Indeed, the desired clinical outcome, viz., decreased blood glucose, could be due to increased glucose uptake and glycolytic flux in response to drug-induced mitochondrial dysfunction

  11. Characterization of a human peptide deformylase: implications for antibacterial drug design.

    Science.gov (United States)

    Nguyen, Kiet T; Hu, Xubo; Colton, Craig; Chakrabarti, Ratna; Zhu, Michael X; Pei, Dehua

    2003-08-26

    Ribosomal protein synthesis in eubacteria and eukaryotic organelles initiates with an N-formylmethionyl-tRNA(i), resulting in N-terminal formylation of all nascent polypeptides. Peptide deformylase (PDF) catalyzes the subsequent removal of the N-terminal formyl group from the majority of bacterial proteins. Deformylation was for a long time thought to be a feature unique to the prokaryotes, making PDF an attractive target for designing novel antibiotics. However, recent genomic sequencing has revealed PDF-like sequences in many eukaryotes, including man. In this work, the cDNA encoding Homo sapiens PDF (HsPDF) has been cloned and a truncated form that lacks the N-terminal 58-amino-acid targeting sequence was overexpressed in Escherichia coli. The recombinant, Co(2+)-substituted protein is catalytically active in deformylating N-formylated peptides, shares many of the properties of bacterial PDF, and is strongly inhibited by specific PDF inhibitors. Expression of HsPDF fused to the enhanced green fluorescence protein in human embryonic kidney cells revealed its location in the mitochondrion. However, HsPDF is much less active than its bacterial counterpart, providing a possible explanation for the apparent lack of deformylation in the mammalian mitochondria. The lower catalytic activity is at least partially due to mutation of a highly conserved residue (Leu-91 in E. coli PDF) in mammalian PDF. PDF inhibitors had no detectable effect on two different human cell lines. These results suggest that HsPDF is likely an evolutional remnant without any functional role in protein formylation/deformylation and validates PDF as an excellent target for antibacterial drug design.

  12. Human Vitronectin-Derived Peptide Covalently Grafted onto Titanium Surface Improves Osteogenic Activity: A Pilot In Vivo Study on Rabbits.

    Science.gov (United States)

    Cacchioli, Antonio; Ravanetti, Francesca; Bagno, Andrea; Dettin, Monica; Gabbi, Carlo

    2009-10-01

    Peptide and protein exploitation for the biochemical functionalization of biomaterial surfaces allowed fabricating biomimetic devices able to evoke and promote specific and advantageous cell functions in vitro and in vivo. In particular, cell adhesion improvement to support the osseointegration of implantable devices has been thoroughly investigated. This study was aimed at checking the biological activity of the (351-359) human vitronectin precursor (HVP) sequence, mapped on the human vitronectin protein; the peptide was covalently linked to the surface of titanium cylinders, surgically inserted in the femurs of New Zealand white rabbits and analyzed at short experimental time points (4, 9, and 16 days after surgery). To assess the osteogenic activity of the peptide, three vital fluorochromic bone markers were used (calcein green, xylenol orange, and calcein blue) to stain the areas of newly grown bone. Static and dynamic histomorphometric parameters were measured at the bone-implant interface and at different distances from the surface. The biological role of the (351-359)HVP sequence was checked by comparing peptide-grafted samples and controls, analyzing how and how much its effects change with time across the bone regions surrounding the implant surface. The results obtained reveal a major activity of the investigated peptide 4 days after surgery, within the bone region closest to the implant surface, and larger bone to implant contact 9 and 16 days after surgery. Thus, improved primary fixation of endosseous devices can be foreseen, resulting in an increased osteointegration.

  13. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones.

    Science.gov (United States)

    Theaker, Sarah M; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J; Cole, David K; Peakman, Mark; Sewell, Andrew K; Dolton, Garry

    2016-03-01

    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8(+) or CD4(+) polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein-Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Monoclonal antibodies against a synthetic peptide from human immunodeficiency virus type 1 Nef protein

    DEFF Research Database (Denmark)

    Steinaa, L; Wulff, A M; Saermark, T

    1994-01-01

    Monoclonal antibodies against a synthetic peptide (aa 138-152) from HIV-1 Nef protein were produced and characterized. Three hybridoma lines producing monoclonal antibodies (MAbs) against the synthetic peptide were generated by fusion between P3-X63 Ag8.653 myeloma cells and BALB/c splenocytes from...... mice immunized with the synthetic peptide coupled to keyhole limpet hemocyanin (KLH). The hybridomas were screened and selected by ELISA with the peptide coupled to bovine serum albumin (BSA) immobilized to the polystyrene surface and specificity for the peptide was confirmed by competitive ELISA...... with the peptide free in solution. The reactions of the MAbs with a 5-aa motif (WCYKL) included in the sequence were examined with synthetic peptides and two of the MAbs reacted with the motif. The recognitions of recombinant full-length Nef protein were also tested. One MAb reacted with the protein in both ELISA...

  15. Renal clearance of the thyrotropin-releasing hormone-like peptide pyroglutamyl-glutamyl-prolineamide in humans

    NARCIS (Netherlands)

    W. Klootwijk (Willem); E. Sleddens-Linkels (Esther); R.D.H. de Boer (Remco); C.A. Jansen; R. Autar; W.W. de Herder (Wouter); E.R. Boeve; T.J. Visser (Theo); W.J. de Greef

    1997-01-01

    textabstractTRH-like peptides have been identified that differ from TRH (pGlu-His-ProNH2) in the middle amino acid. We have estimated TRH-like immunoreactivity (TRH-LI) in human serum and urine by RIA with TRH-specific antiserum 8880 or with antiserum 4319, which binds

  16. Prognostic significance of serum antibodies to human papillomavirus-16 E4 and E7 peptides in cervical cancer

    NARCIS (Netherlands)

    Gaarenstroom, K. N.; Kenter, G. G.; Bonfrer, J. M.; Korse, C. M.; Gallee, M. P.; Hart, A. A.; Müller, M.; Trimbos, J. B.; Helmerhorst, T. J.

    1994-01-01

    BACKGROUND: The objective of this study was to investigate the prognostic significance of serum antibodies to human papillomavirus (HPV)-16 peptides in patients with squamous cell cervical cancer. METHODS: Pretreatment sera from 78 patients and 198 control women were tested by an enzyme-linked

  17. Arginine (Di)methylated Human Leukocyte Antigen Class I Peptides Are Favorably Presented by HLA-B*07

    NARCIS (Netherlands)

    Marino, Fabio; Mommen, Geert P M; Jeko, Anita; Meiring, Hugo D; van Gaans-van den Brink, Jacqueline A M; Scheltema, Richard A; van Els, Cécile A C M; Heck, Albert J R

    Alterations in protein post-translational modification (PTM) are recognized hallmarks of diseases. These modifications potentially provide a unique source of disease-related human leukocyte antigen (HLA) class I-presented peptides that can elicit specific immune responses. While phosphorylated HLA

  18. Cloning and functional analysis of human mTERFL encoding a novel mitochondrial transcription termination factor-like protein

    International Nuclear Information System (INIS)

    Chen Yao; Zhou Guangjin; Yu Min; He Yungang; Tang Wei; Lai Jianhua; He Jie; Liu Wanguo; Tan Deyong

    2005-01-01

    Serum plays an important role in the regulation of cell cycle and cell growth. To identify novel serum-inhibitory factors and study their roles in cell cycle regulation, we performed mRNA differential display analysis of U251 cells in the presence or absence of serum and cloned a novel gene encoding the human mitochondrial transcription termination factor-like protein (mTERFL). The full-length mTERFL cDNA has been isolated and the genomic structure determined. The mTERFL gene consists of three exons and encodes 385 amino acids with 52% sequence similarity to the human mitochondrial transcription termination factor (mTERF). However, mTERFL and mTERF have an opposite expression pattern in response to serum. The expression of mTERFL is dramatically inhibited by the addition of serum in serum-starved cells while the mTERF is rather induced. Northern blot analysis detected three mTERFL transcripts of 1.7, 3.2, and 3.5 kb. Besides the 3.2 kb transcript that is unique to skeletal muscle, other two transcripts express predominant in heart, liver, pancreas, and skeletal muscle. Expression of the GFP-mTERFL fusion protein in HeLa cells localized it to the mitochondria. Furthermore, ectopic expression of mTERFL suppresses cell growth and arrests cells in the G1 stage demonstrated by MTT and flow cytometry analysis. Collectively, our data suggest that mTERFL is a novel mTERF family member and a serum-inhibitory factor probably participating in the regulation of cell growth through the modulation of mitochondrial transcription

  19. Mitochondrial targeting of human O6-methylguanine DNA methyltransferase protects against cell killing by chemotherapeutic alkylating agents.

    Science.gov (United States)

    Cai, Shanbao; Xu, Yi; Cooper, Ryan J; Ferkowicz, Michael J; Hartwell, Jennifer R; Pollok, Karen E; Kelley, Mark R

    2005-04-15

    DNA repair capacity of eukaryotic cells has been studied extensively in recent years. Mammalian cells have been engineered to overexpress recombinant nuclear DNA repair proteins from ectopic genes to assess the impact of increased DNA repair capacity on genome stability. This approach has been used in this study to specifically target O(6)-methylguanine DNA methyltransferase (MGMT) to the mitochondria and examine its impact on cell survival after exposure to DNA alkylating agents. Survival of human hematopoietic cell lines and primary hematopoietic CD34(+) committed progenitor cells was monitored because the baseline repair capacity for alkylation-induced DNA damage is typically low due to insufficient expression of MGMT. Increased DNA repair capacity was observed when K562 cells were transfected with nuclear-targeted MGMT (nucl-MGMT) or mitochondrial-targeted MGMT (mito-MGMT). Furthermore, overexpression of mito-MGMT provided greater resistance to cell killing by 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU) than overexpression of nucl-MGMT. Simultaneous overexpression of mito-MGMT and nucl-MGMT did not enhance the resistance provided by mito-MGMT alone. Overexpression of either mito-MGMT or nucl-MGMT also conferred a similar level of resistance to methyl methanesulfonate (MMS) and temozolomide (TMZ) but simultaneous overexpression in both cellular compartments was neither additive nor synergistic. When human CD34(+) cells were infected with oncoretroviral vectors that targeted O(6)-benzylguanine (6BG)-resistant MGMT (MGMT(P140K)) to the nucleus or the mitochondria, committed progenitors derived from infected cells were resistant to 6BG/BCNU or 6BG/TMZ. These studies indicate that mitochondrial or nuclear targeting of MGMT protects hematopoietic cells against cell killing by BCNU, TMZ, and MMS, which is consistent with the possibility that mitochondrial DNA damage and nuclear DNA damage contribute equally to alkylating agent-induced cell killing during chemotherapy.

  20. Human gut endogenous proteins as a potential source of angiotensin-I-converting enzyme (ACE-I)-, renin inhibitory and antioxidant peptides.

    Science.gov (United States)

    Dave, Lakshmi A; Hayes, Maria; Montoya, Carlos A; Rutherfurd, Shane M; Moughan, Paul J

    2016-02-01

    It is well known that endogenous bioactive proteins and peptides play a substantial role in the body's first line of immunological defence, immune-regulation and normal body functioning. Further, the peptides derived from the luminal digestion of proteins are also important for body function. For example, within the peptide database BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/en/biopep) 12 endogenous antimicrobial and 64 angiotensin-I-converting enzyme (ACE-I) inhibitory peptides derived from human milk and plasma proteins are listed. The antimicrobial peptide database (http://aps.unmc.edu/AP/main.php) lists over 111 human host-defence peptides. Several endogenous proteins are secreted in the gut and are subject to the same gastrointestinal digestion processes as food proteins derived from the diet. The human gut endogenous proteins (GEP) include mucins, serum albumin, digestive enzymes, hormones, and proteins from sloughed off epithelial cells and gut microbiota, and numerous other secreted proteins. To date, much work has been carried out regarding the health altering effects of food-derived bioactive peptides but little attention has been paid to the possibility that GEP may also be a source of bioactive peptides. In this review, we discuss the potential of GEP to constitute a gut cryptome from which bioactive peptides such as ACE-I inhibitory, renin inhibitory and antioxidant peptides may be derived. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA

    DEFF Research Database (Denmark)

    Rebolledo-Jaramillo, Boris; Su, Marcia Shu-Wei; Stoler, Nicholas

    2014-01-01

    The manifestation of mitochondrial DNA (mtDNA) diseases depends on the frequency of heteroplasmy (the presence of several alleles in an individual), yet its transmission across generations cannot be readily predicted owing to a lack of data on the size of the mtDNA bottleneck during oogenesis......, an order of magnitude higher than for nuclear DNA. Notably, we found a positive association between the number of heteroplasmies in a child and maternal age at fertilization, likely attributable to oocyte aging. This study also took advantage of droplet digital PCR (ddPCR) to validate heteroplasmies...... and confirm a de novo mutation. Our results can be used to predict the transmission of disease-causing mtDNA variants and illuminate evolutionary dynamics of the mitochondrial genome....

  2. PeptideAtlas

    Data.gov (United States)

    U.S. Department of Health & Human Services — PeptideAtlas is a multi-organism, publicly accessible compendium of peptides identified in a large set of tandem mass spectrometry proteomics experiments. Mass...

  3. Mitochondrial dysfunction in fatty acid oxidation disorders: insights from human and animal studies

    OpenAIRE

    Wajner, Moacir; Amaral, Alexandre?Umpierrez

    2016-01-01

    Mitochondrial fatty acid oxidation (FAO) plays a pivotal role in maintaining body energy homoeostasis mainly during catabolic states. Oxidation of fatty acids requires approximately 25 proteins. Inherited defects of FAO have been identified in the majority of these proteins and constitute an important group of inborn errors of metabolism. Affected patients usually present with severe hepatopathy, cardiomyopathy and skeletal myopathy, whereas some patients may suffer acute and/or progressive e...

  4. Mitochondrial dysfunction in fatty acid oxidation disorders: insights from human and animal studies.

    Science.gov (United States)

    Wajner, Moacir; Amaral, Alexandre Umpierrez

    2015-11-20

    Mitochondrial fatty acid oxidation (FAO) plays a pivotal role in maintaining body energy homoeostasis mainly during catabolic states. Oxidation of fatty acids requires approximately 25 proteins. Inherited defects of FAO have been identified in the majority of these proteins and constitute an important group of inborn errors of metabolism. Affected patients usually present with severe hepatopathy, cardiomyopathy and skeletal myopathy, whereas some patients may suffer acute and/or progressive encephalopathy whose pathogenesis is poorly known. In recent years growing evidence has emerged indicating that energy deficiency/disruption of mitochondrial homoeostasis is involved in the pathophysiology of some fatty acid oxidation defects (FAOD), although the exact underlying mechanisms are not yet established. Characteristic fatty acids and carnitine derivatives are found at high concentrations in these patients and more markedly during episodes of metabolic decompensation that are associated with worsening of clinical symptoms. Therefore, it is conceivable that these compounds may be toxic. We will briefly summarize the current knowledge obtained from patients and genetic mouse models with these disorders indicating that disruption of mitochondrial energy, redox and calcium homoeostasis is involved in the pathophysiology of the tissue damage in the more common FAOD, including medium-chain acyl-CoA dehydrogenase (MCAD), long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and very long-chain acyl-CoA dehydrogenase (VLCAD) deficiencies. We will also provide evidence that the fatty acids and derivatives that accumulate in these diseases disrupt mitochondrial homoeostasis. The elucidation of the toxic mechanisms of these compounds may offer new perspectives for potential novel adjuvant therapeutic strategies in selected disorders of this group. © 2016 Authors.

  5. [Relationship between mitochondrial DNA copy number, membrane potential of human embryo and embryo morphology].

    Science.gov (United States)

    Zhao, H; Teng, X M; Li, Y F

    2017-11-25

    Objective: To explore the relationship between the embryo with the different morphological types in the third day and its mitochondrial copy number, the membrane potential. Methods: Totally 117 embryos with poor development after normal fertilization and were not suitable transferred in the fresh cycle and 106 frozen embryos that were discarded voluntarily by infertility patients with in vitro fertilization-embryo transfer after successful pregnancy were selected. According to evaluation of international standard in embryos, all cleavage stage embryos were divided into class Ⅰ frozen embryo group ( n= 64), class Ⅱ frozen embryo group ( n= 42) and class Ⅲ fresh embryonic group (not transplanted embryos; n= 117). Real-time PCR and confocal microscopy methods were used to detect mitochondrial DNA (mtDNA) copy number and the mitochondrial membrane potential of a single embryo. The differences between embryo quality and mtDNA copy number and membrane potential of each group were compared. Results: The copy number of mtDNA and the mitochondrial membrane potential in class Ⅲ fresh embryonic group [(1.7±1.0)×10(5) copy/μl, 1.56±0.32] were significantly lower than those in class Ⅰ frozen embryo group [(3.4±1.7)×10(5) copy/μl, 2.66±0.21] and class Ⅱ frozen embryo group [(2.6±1.2)×10(5) copy/μl, 1.80±0.32; all Pembryo group were significantly higher than those in classⅡ frozen embryo group (both Pembryos of the better quality embryo are higher.

  6. Metabolic remodeling precedes mitochondrial outer membrane permeabilization in human glioma xenograft cells.

    Science.gov (United States)

    Ponnala, Shivani; Chetty, Chandramu; Veeravalli, Krishna Kumar; Dinh, Dzung H; Klopfenstein, Jeffrey D; Rao, Jasti S

    2012-02-01

    Glioma cancer cells adapt to changing microenvironment and shift from mitochondrial oxidative phosphorylation to aerobic glycolysis for their metabolic needs irrespective of oxygen availability. In the present study, we show that silencing MMP-9 in combination with uPAR/cathepsin B switch the glycolytic metabolism of glioma cells to oxidative phosphorylation (OXPHOS) and generate reactive oxygen species (ROS) to predispose glioma cells to mitochondrial outer membrane permeabilization. shRNA for MMP-9 and uPAR (pMU) as well as shRNA for MMP-9 and cathepsin B (pMC) activated complexes of mitochondria involved in OXPHOS and inhibited glycolytic hexokinase expression. The decreased interaction of hexokinase 2 with mitochondria in the treated cells indicated the inhibition of glycolysis activation. Overexpression of Akt reversed the pMU- and pMC-mediated OXPHOS to glycolysis switch. The OXPHOS un-coupler oligomycin A altered the expression levels of the Bcl-2 family of proteins; treatment with pMU or pMC reversed this effect and induced mitochondrial outer membrane permeabilization. In addition, our results show changes in mitochondrial pore transition to release cytochrome c due to changes in the VDAC-Bcl-XL and BAX-BAK interaction with pMU and pMC treatments. Taken together, our results suggest that pMU and pMC treatments switch glioma cells from the glycolytic to the OXPHOS pathway through an inhibitory effect on Akt, ROS induction and an increase of cytosolic cytochrome c accumulation. These results demonstrate the potential of pMU and pMC as therapeutic candidates for the treatment of glioma.

  7. GUG is an efficient initiation codon to translate the human mitochondrial ATP6 gene

    Czech Academy of Sciences Publication Activity Database

    Dubot, A.; Godinot, C.; Dumur, V.; Sablonniere, B.; Stojkovic, T.; Cuisset, J. M.; Vojtíšková, Alena; Pecina, Petr; Ješina, Pavel; Houštěk, Josef

    2004-01-01

    Roč. 313, č. 3 (2004), s. 687-693 ISSN 0006-291X R&D Projects: GA MŠk LN00A079; GA MZd NE6533 Grant - others:Fondation Jerome LeJeune(XE) Grant project; GA-(FR) CNRS; GA-(FR) Rhone Alpes Region Institutional research plan: CEZ:AV0Z5011922 Keywords : GUG initiation codon * ATP6 gene * mitochondrial diseases Subject RIV: CE - Biochemistry Impact factor: 2.904, year: 2004

  8. Recognition of HIV-1 peptides by host CTL is related to HIV-1 similarity to human proteins.

    Directory of Open Access Journals (Sweden)

    Morgane Rolland

    Full Text Available BACKGROUND: While human immunodeficiency virus type 1 (HIV-1-specific cytotoxic T lymphocytes preferentially target specific regions of the viral proteome, HIV-1 features that contribute to immune recognition are not well understood. One hypothesis is that similarities between HIV and human proteins influence the host immune response, i.e., resemblance between viral and host peptides could preclude reactivity against certain HIV epitopes. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the extent of similarity between HIV-1 and the human proteome. Proteins from the HIV-1 B consensus sequence from 2001 were dissected into overlapping k-mers, which were then probed against a non-redundant database of the human proteome in order to identify segments of high similarity. We tested the relationship between HIV-1 similarity to host encoded peptides and immune recognition in HIV-infected individuals, and found that HIV immunogenicity could be partially modulated by the sequence similarity to the host proteome. ELISpot responses to peptides spanning the entire viral proteome evaluated in 314 individuals showed a trend indicating an inverse relationship between the similarity to the host proteome and the frequency of recognition. In addition, analysis of responses by a group of 30 HIV-infected individuals against 944 overlapping peptides representing a broad range of individual HIV-1B Nef variants, affirmed that the degree of similarity to the host was significantly lower for peptides with reactive epitopes than for those that were not recognized. CONCLUSIONS/SIGNIFICANCE: Our results suggest that antigenic motifs that are scarcely represented in human proteins might represent more immunogenic CTL targets not selected against in the host. This observation could provide guidance in the design of more effective HIV immunogens, as sequences devoid of host-like features might afford superior immune reactivity.

  9. Altered expression of mitochondrial and extracellular matrix genes in the heart of human fetuses with chromosome 21 trisomy

    Directory of Open Access Journals (Sweden)

    Olla Carlo

    2007-08-01

    Full Text Available Abstract Background The Down syndrome phenotype has been attributed to overexpression of chromosome 21 (Hsa21 genes. However, the expression profile of Hsa21 genes in trisomic human subjects as well as their effects on genes located on different chromosomes are largely unknown. Using oligonucleotide microarrays we compared the gene expression profiles of hearts of human fetuses with and without Hsa21 trisomy. Results Approximately half of the 15,000 genes examined (87 of the 168 genes on Hsa21 were expressed in the heart at 18–22 weeks of gestation. Hsa21 gene expression was globally upregulated 1.5 fold in trisomic samples. However, not all genes were equally dysregulated and 25 genes were not upregulated at all. Genes located on other chromosomes were also significantly dysregulated. Functional class scoring and gene set enrichment analyses of 473 genes, differentially expressed between trisomic and non-trisomic hearts, revealed downregulation of genes encoding mitochondrial enzymes and upregulation of genes encoding extracellular matrix proteins. There were no significant differences between trisomic fetuses with and without heart defects. Conclusion We conclude that dosage-dependent upregulation of Hsa21 genes causes dysregulation of the genes responsible for mitochondrial function and for the extracellular matrix organization in the fetal heart of trisomic subjects. These alterations might be harbingers of the heart defects associated with Hsa21 trisomy, which could be based on elusive mechanisms involving genetic variability, environmental factors and/or stochastic events.

  10. Mitochondrial DAMPs induce endotoxin tolerance in human monocytes: an observation in patients with myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Irene Fernández-Ruiz

    Full Text Available Monocyte exposure to mitochondrial Danger Associated Molecular Patterns (DAMPs, including mitochondrial DNA (mtDNA, induces a transient state in which these cells are refractory to further endotoxin stimulation. In this context, IRAK-M up-regulation and impaired p65 activity were observed. This phenomenon, termed endotoxin tolerance (ET, is characterized by decreased production of cytokines in response to the pro-inflammatory stimulus. We also show that monocytes isolated from patients with myocardial infarction (MI exhibited high levels of circulating mtDNA, which correlated with ET status. Moreover, a significant incidence of infection was observed in those patients with a strong tolerant phenotype. The present data extend our current understanding of the implications of endotoxin tolerance. Furthermore, our data suggest that the levels of mitochondrial antigens in plasma, such as plasma mtDNA, should be useful as a marker of increased risk of susceptibility to nosocomial infections in MI and in other pathologies involving tissue damage.

  11. The effect of chronic alcohol consumption on mitochondrial DNA mutagenesis in human blood

    Energy Technology Data Exchange (ETDEWEB)

    Wurmb-Schwark, N. von [Institute of Legal Medicine, Christian Albrecht University of Kiel, Arnold-Heller-Str. 12, 24105 Kiel (Germany)], E-mail: nvonwurmb@rechtsmedizin.uni-kiel.de; Ringleb, A.; Schwark, T. [Institute of Legal Medicine, Christian Albrecht University of Kiel, Arnold-Heller-Str. 12, 24105 Kiel (Germany); Broese, T.; Weirich, S.; Schlaefke, D. [Clinic of Psychiatry and Psychotherapy, University of Rostock, Gehlsheimer Str. 20, Rostock (Germany); Wegener, R. [Institute of Legal Medicine, St-Georg-Str. 108, University of Rostock, 18055 Rostock (Germany); Oehmichen, M. [Institute of Legal Medicine, Christian Albrecht University of Kiel, Arnold-Heller-Str. 12, 24105 Kiel (Germany)

    2008-01-01

    The 4977 bp deletion of mitochondrial DNA (mtDNA) is known to accumulate with increasing age in post mitotic tissues. Recently, studies came out detecting this specific alteration also in fast replicating cells, e.g. in blood or skin tissue, often in correlation to specific diseases or - specifically in skin - external stressors such as UV radiation. In this study, we investigated mitochondrial mutagenesis in 69 patients with a chronic alcoholic disease and 46 age matched controls with a moderate drinking behavior. Two different fragments, specific for total and for deleted mtDNA (dmtDNA) were amplified in a duplex-PCR. A subsequent fragment analysis was performed and for relative quantification, the quotient of the peak areas of amplification products specific for deleted and total mtDNA was determined. Additionally, a real time PCR was performed to quantify mtDNA copy number. The relative amount of 4977 bp deleted mtDNA in alcoholics was significantly increased compared to controls. On the other hand, no difference regarding the mtDNA/nuclear DNA ratio in both investigated groups was detected. Additionally, no age dependence could be found nor in alcoholics, neither in the control group. These findings indicate that mtDNA mutagenesis in blood can be influenced by stressors such as alcohol. Ethanol seems to be a significant factor to alter mitochondrial DNA in blood and might be an additional contributor for the cellular aging process.

  12. The effect of chronic alcohol consumption on mitochondrial DNA mutagenesis in human blood

    International Nuclear Information System (INIS)

    Wurmb-Schwark, N. von; Ringleb, A.; Schwark, T.; Broese, T.; Weirich, S.; Schlaefke, D.; Wegener, R.; Oehmichen, M.

    2008-01-01

    The 4977 bp deletion of mitochondrial DNA (mtDNA) is known to accumulate with increasing age in post mitotic tissues. Recently, studies came out detecting this specific alteration also in fast replicating cells, e.g. in blood or skin tissue, often in correlation to specific diseases or - specifically in skin - external stressors such as UV radiation. In this study, we investigated mitochondrial mutagenesis in 69 patients with a chronic alcoholic disease and 46 age matched controls with a moderate drinking behavior. Two different fragments, specific for total and for deleted mtDNA (dmtDNA) were amplified in a duplex-PCR. A subsequent fragment analysis was performed and for relative quantification, the quotient of the peak areas of amplification products specific for deleted and total mtDNA was determined. Additionally, a real time PCR was performed to quantify mtDNA copy number. The relative amount of 4977 bp deleted mtDNA in alcoholics was significantly increased compared to controls. On the other hand, no difference regarding the mtDNA/nuclear DNA ratio in both investigated groups was detected. Additionally, no age dependence could be found nor in alcoholics, neither in the control group. These findings indicate that mtDNA mutagenesis in blood can be influenced by stressors such as alcohol. Ethanol seems to be a significant factor to alter mitochondrial DNA in blood and might be an additional contributor for the cellular aging process

  13. In vitro and in vivo cytotoxic activity of human lactoferricin derived antitumor peptide R-DIM-P-LF11-334 on human malignant melanoma.

    Science.gov (United States)

    Riedl, Sabrina; Rinner, Beate; Schaider, Helmut; Liegl-Atzwanger, Bernadette; Meditz, Katharina; Preishuber-Pflügl, Julia; Grissenberger, Sarah; Lohner, Karl; Zweytick, Dagmar

    2017-09-22

    Di-peptides derived from the human host defense peptide lactoferricin were previously described to specifically interact with the negatively charged lipid phosphatidylserine exposed by cancer cells. In this study one further derivative, namely R-DIM-P-LF11-334 is shown to exhibit even increased cancer toxicity in vitro and in vivo while non-neoplastic cells are not harmed. In liposomal model systems composed of phosphatidylserine mimicking cancerous and phosphatidylcholine mimicking non-cancerous membranes the specific interaction with the cancer marker PS was confirmed by specific induction of membrane perturbation and permeabilization in presence of the peptide. In vitro studies with cell lines of human malignant melanoma, such as A375, or primary cells of human melanoma metastases to the brain, as MUG Mel1, and non-neoplastic human dermal fibroblasts NHDF revealed high cytotoxic effect of R-DIM-P-LF11-334 on melanoma cells of A375 and MUG Mel1, whereas only minor effect on the dermal fibroblasts NHDF was observed, yielding an about 20-fold killing-specificity for A375 and MUG-Mel1. The LC 50 values for melanoma A375 and MUG Mel1 were about 10 μM. Analysis of secondary structure of the peptide revealed an increase in the proportion of β-sheets exclusively in presence of the cancer mimic. Stability studies further indicated a potential adequate stability in blood or under stringent conditions. Importantly the cytotoxic effect on cancer cells was also proven in vivo in mouse xenografts of human melanoma, where peptide treatment induced strong tumor regression and in average a tumor area reduction of 85% compared to tumors of control mice without peptide treatment.

  14. Protective effects of recombinant human brain natriuretic peptide in perioperative period during open heart surgery.

    Science.gov (United States)

    Xu, Yunbin; Li, Yong; Bao, Weiguo; Qiu, Shi

    2018-03-01

    The aim of the present study was to evaluate the protective effects and safety aspects of recombinant human brain natriuretic peptide (rhBNP) on cardiac functions of patients undergoing open-heart surgery during perioperative period. In total, 150 patients undergoing open heart surgery in the Second Hospital of Shandong Universty from August 2015 to July 2016 were randomly divided into control group and observation group each with 75 cases. Patients in control group were treated by routine rehabilitation while patients in the observation group were treated by both the routine rehabilitation and rhBNP. All the observations were made before operation, after operation and 7 days after operation. The changes of N-terminal pro-brain natriuretic peptide (NT-proBNP) of patients, the left ventricular ejection fraction (LVEF), cardiac function [Cardiac output (CO), pulmonary capillary wedge pressure (PAWP) and central venous pressure (CVP)] of patients were measured. Further, respirator support time, ICU stay time, incidence of complications and vital signs (BP, HR, SaO2) of patients in the two groups were also compared. NT-proBNP levels of all patients improved after operation but it decreased in both groups after 7 days of operation. The decrease of NT-proBNP levels in observation group was significantly higher than that of control group. Whereas, LVEF, CO, PAWP and CVP of patients in both the groups increased after operation but effects were significantly higher in the observation group after 7 days of medication. Respirator support time and ICU stay time of patients in observation group were significantly shorter than those in control group, and the incidence of postoperative complications of patients in the observation group were significantly lower than the control group. Moreover, BP, HR and SaO2 of patients in observation group were significantly elevated in comparison to control group (Popen heart surgery, and is safe as well as reliable.

  15. Evaluation of anticancer peptide VEGF111b secretion in HEK293 human cells

    Directory of Open Access Journals (Sweden)

    Morteza Sadeghi

    2017-04-01

    Full Text Available Background: VEGF111b is a new isoform of vascular endothelial growth factor (VEGF recently considered as a new anticancer drug. The aim of this study was to evaluate the VEGF111b secretion from HEK293 cell wall in order to commercial production of this recombinant factor. Materials and Methods: After the design of VEGF111b sequence using OLIGO software and NCBI gene bank data, it was cloned into the pBUD.cE4.1 vector. The pBUD.VEGF111b recombinant vector was transfected into HEK293 cells using lipofectamine kit. Forty-eight hours after the transfection the production of VEGF111b was estimated by Western blotting and Human anti VEGF antibody. The VEGF111b secretion into cell culture and cell lysate extract was measured using ELISA. Results: The correct cloning of VEGF111b into pBUD.cE4.1vector was confirmed using enzymatic digestion and gel electrophoresis. The observed production of recombinant peptide in HEK293 was confirmed with 12KDa band in cell lysate extract of Western blotting. The ELISA results at 450 nanometer absorbance for cell culture media and cell lysate extract were 19.20±2.81 pg/ml and 32.87±7.42 pg/ml, respectively. However, no VEGF111b expression was observed in negative controls. Conclusion: The findings of this study indicate the powerful ability of transformation and secretion of VEGF111b from HEK293 cell wall to cell culture media with no breaking and proteolytic digestion. It seems that the commercial production and purification of this therapeutic peptide from HEK293 cell culture would be possible with high efficiency.

  16. A novel bioassay for the activity determination of therapeutic human brain natriuretic peptide (BNP.

    Directory of Open Access Journals (Sweden)

    Lei Yu

    Full Text Available BACKGROUND: Recombinant human brain natriuretic peptide (rhBNP is an important peptide-based therapeutic drug indicated for the treatment of acute heart failure. Accurate determination of the potency of therapeutic rhBNP is crucial for the safety and efficacy of the drug. The current bioassay involves use of rabbit aortic strips, with experiments being complicated and time-consuming and markedly variable in results. Animal-less methods with better precision and accuracy should be explored. We have therefore developed an alternative cell-based assay, which relies on the ability of BNP to induce cGMP production in HEK293 cells expressing BNP receptor guanylyl cyclase-A. METHODOLOGY/PRINCIPAL FINDINGS: An alternative assay based on the measurement of BNP-induced cGMP production was developed. Specifically, the bioassay employs cells engineered to express BNP receptor guanylyl cyclase-A (GCA. Upon rhBNP stimulation, the levels of the second messager cGMP in these cells drastically increased and subsequently secreted into culture supernatants. The quantity of cGMP, which corresponds to the rhBNP activity, was determined using a competitive ELISA developed by us. Compared with the traditional assay, the novel cell-based assay demonstrated better reproducibility and precision. CONCLUSION/SIGNIFICANCE: The optimized cell-based assay is much simpler, more rapid and precise compared with the traditional assay using animal tissues. To our knowledge, this is the first report on a novel and viable alternative assay for rhBNP potency analysis.

  17. Human neutrophil peptide-1 promotes alcohol-induced hepatic fibrosis and hepatocyte apoptosis.

    Directory of Open Access Journals (Sweden)

    Rie Ibusuki

    Full Text Available Neutrophil infiltration of the liver is a typical feature of alcoholic liver injury. Human neutrophil peptide (HNP-1 is an antimicrobial peptide secreted by neutrophils. The aim of this study was to determine if HNP-1 affects ethanol-induced liver injury and to examine the mechanism of liver injury induced by HNP-1.Transgenic (TG mice expressing HNP-1 under the control of a β-actin-based promoter were established. Ethanol was orally administered to HNP-1 TG or wild-type C57BL/6N (WT mice. SK-Hep1 hepatocellular carcinoma cells were used to investigate the effect of HNP-1 on hepatocytes in vitro.After 24 weeks of ethanol intake, hepatic fibrosis and hepatocyte apoptosis were significantly more severe in TG mice than in WT mice. Levels of CD14, TLR4, and IL-6 in liver tissues were higher in TG mice than in WT mice. Apoptosis was accompanied by higher protein levels of caspase-3, caspase-8, and cleaved PARP in liver tissue. In addition, phosphorylated ASK1, ASK1, phosphorylated JNK, JNK1, JNK2, Bax, Bak and Bim were all more abundant in TG mice than in WT mice. In contrast, the level of anti-apoptotic Bcl2 in the liver was significantly lower in TG mice than in WT mice. Analysis of microRNAs in liver tissue showed that miR-34a-5p expression was significantly higher in TG mice than in WT mice. Furthermore, in the presence of ethanol, HNP-1 increased the apoptosis with the decreased level of Bcl2 in a concentration-dependent manner in vitro.HNP-1 secreted by neutrophils may exacerbate alcohol-induced hepatic fibrosis and hepatocyte apoptosis with a decrease in Bcl2 expression and an increase in miR-34a-5p expression.

  18. Synthetic α subunit peptide 125-147 of human nicotinic acetylcholine receptor induces antibodies to native receptor

    International Nuclear Information System (INIS)

    McCormick, D.J.; Griesmann, G.E.; Huang, Z.; Lennon, V.A.

    1986-01-01

    A synthetic peptide corresponding to residues 125-147 of the Torpedo acetylcholine receptor (AChR) α subunit proved to be a major antigenic region of the AChR. Rats inoculated with 50 μg of peptide (T α 125-147) developed T cell immunity and antibodies to native AChR and signs of experimental autoimmune myasthenia gravis. They report the synthesis and preliminary testing of a disulfide-looped peptide comprising residues 125-147 of the human AChR α subunit. Peptide H α 125-147 differs from T α 125-147 at residues 139 (Glu for Gln) and 143 (Ser for Thr). In immunoprecipitation assays, antibodies to Torpedo AChR bound 125 I-labelled Hα 125-147 antibody bound Hα 125-147, but monoclonal antibodies to an immunodominant region of native AChR bound neither Hα 125-147 nor T α 125-147. Rats immunized with H α 125-147 produced anti-mammalian muscle AChR antibodies that induced modulation of AChRs from cultured human myotubes. Thus, region 125-147 of the human AChR α subunit is extracellular in muscle, and is both antigenic and immunogenic. It remains to be determined whether or not autoantibodies to this region may in part cause the weakness or myasthenia gravis in man

  19. Synthetic. cap alpha. subunit peptide 125-147 of human nicotinic acetylcholine receptor induces antibodies to native receptor

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, D.J.; Griesmann, G.E.; Huang, Z.; Lennon, V.A.

    1986-03-05

    A synthetic peptide corresponding to residues 125-147 of the Torpedo acetylcholine receptor (AChR) ..cap alpha.. subunit proved to be a major antigenic region of the AChR. Rats inoculated with 50 ..mu..g of peptide (T ..cap alpha.. 125-147) developed T cell immunity and antibodies to native AChR and signs of experimental autoimmune myasthenia gravis. They report the synthesis and preliminary testing of a disulfide-looped peptide comprising residues 125-147 of the human AChR ..cap alpha.. subunit. Peptide H ..cap alpha.. 125-147 differs from T ..cap alpha.. 125-147 at residues 139 (Glu for Gln) and 143 (Ser for Thr). In immunoprecipitation assays, antibodies to Torpedo AChR bound /sup 125/I-labelled H..cap alpha.. 125-147 antibody bound H..cap alpha.. 125-147, but monoclonal antibodies to an immunodominant region of native AChR bound neither H..cap alpha.. 125-147 nor T ..cap alpha.. 125-147. Rats immunized with H ..cap alpha.. 125-147 produced anti-mammalian muscle AChR antibodies that induced modulation of AChRs from cultured human myotubes. Thus, region 125-147 of the human AChR ..cap alpha.. subunit is extracellular in muscle, and is both antigenic and immunogenic. It remains to be determined whether or not autoantibodies to this region may in part cause the weakness or myasthenia gravis in man.

  20. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice.

    Directory of Open Access Journals (Sweden)

    Jin Hee Kim

    Full Text Available When expression of more than one gene is required in cells, bicistronic or multicistronic expression vectors have been used. Among various strategies employed to construct bicistronic or multicistronic vectors, an internal ribosomal entry site (IRES has been widely used. Due to the large size and difference in expression levels between genes before and after IRES, however, a new strategy was required to replace IRES. A self-cleaving 2A peptide could be a good candidate to replace IRES because of its small size and high cleavage efficiency between genes upstream and downstream of the 2A peptide. Despite the advantages of the 2A peptides, its use is not widespread because (i there are no publicly available cloning vectors harboring a 2A peptide gene and (ii comprehensive comparison of cleavage efficiency among various 2A peptides reported to date has not been performed in different contexts. Here, we generated four expression plasmids each harboring different 2A peptides derived from the foot-and-mouth disease virus, equine rhinitis A virus, Thosea asigna virus and porcine teschovirus-1, respectively, and evaluated their cleavage efficiency in three commonly used human cell lines, zebrafish embryos and adult mice. Western blotting and confocal microscopic analyses revealed that among the four 2As, the one derived from porcine teschovirus-1 (P2A has the highest cleavage efficiency in all the contexts examined. We anticipate that the 2A-harboring cloning vectors we generated and the highest efficiency of the P2A peptide we demonstrated would help biomedical researchers easily adopt the 2A technology when bicistronic or multicistronic expression is required.

  1. Glucagon-like peptide 2 stimulates glucagon secretion, enhances lipid absorption, and inhibits gastric acid secretion in humans

    DEFF Research Database (Denmark)

    Meier, Juris J; Nauck, Michael A; Pott, Andrea

    2006-01-01

    or placebo during the ingestion of a solid test meal. Gastric emptying was determined using a 13C-sodium-octanote breath test. Plasma concentrations of glucose, insulin, C-peptide, glucagon, GLP-2, free fatty acids, free glycerol, and triglycerides were determined. RESULTS: GLP-2 administration led...... (P = .07). GLP-2 administration caused an approximately 15% reduction in pentagastrin-stimulated gastric acid and chloride secretion (P gastric emptying was not affected (P = .99). CONCLUSIONS: GLP-2 reduces gastric acid secretion but does not seem to have an influence on gastric......BACKGROUND & AIMS: The gut-derived peptide glucagon-like peptide 2 (GLP-2) has been suggested as a potential drug candidate for the treatment of various intestinal diseases. However, the acute effects of GLP-2 on gastric functions as well as on glucose and lipid homeostasis in humans are less well...

  2. Rescuing the Rescuer: On the Protein Complex between the Human Mitochondrial Acyl Carrier Protein and ISD11.

    Science.gov (United States)

    Herrera, María Georgina; Pignataro, María Florencia; Noguera, Martín Ezequiel; Cruz, Karen Magalí; Santos, Javier

    2018-05-16

    Iron-sulfur clusters are essential cofactors in many biochemical processes. ISD11, one of the subunits of the protein complex that carries out the cluster assembly in mitochondria, is necessary for cysteine desulfurase NFS1 stability and function. Several authors have recently provided evidence showing that ISD11 interacts with the acyl carrier protein (ACP). We carried out the coexpression of human mitochondrial ACP and ISD11 in E. coli. This work shows that ACP and ISD11 form a soluble, structured, and stable complex able to bind to the human NFS1 subunit modulating its activity. Results suggest that ACP plays a key-role in ISD11 folding and stability in vitro. These findings offer the opportunity to study the mechanism of interaction between ISD11 and NFS1.

  3. Human Recombinant Peptide Sponge Enables Novel, Less Invasive Cell Therapy for Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Michiyuki Miyamoto

    2018-01-01

    Full Text Available Bone marrow stromal cell (BMSC transplantation has the therapeutic potential for ischemic stroke. However, it is unclear which delivery routes would yield both safety and maximal therapeutic benefits. We assessed whether a novel recombinant peptide (RCP sponge, that resembles human collagen, could act as a less invasive and beneficial scaffold in cell therapy for ischemic stroke. BMSCs from green fluorescent protein-transgenic rats were cultured and Sprague–Dawley rats were subjected to permanent middle cerebral artery occlusion (MCAo. A BMSC-RCP sponge construct was transplanted onto the ipsilateral intact neocortex 7 days after MCAo. A BMSC suspension or vehicle was transplanted into the ipsilateral striatum. Rat motor function was serially evaluated and histological analysis was performed 5 weeks after transplantation. The results showed that BMSCs could proliferate well in the RCP sponge and the BMSC-RCP sponge significantly promoted functional recovery, compared with the vehicle group. Histological analysis revealed that the RCP sponge provoked few inflammatory reactions in the host brain. Moreover, some BMSCs migrated to the peri-infarct area and differentiated into neurons in the BMSC-RCP sponge group. These findings suggest that the RCP sponge may be a promising candidate for animal protein-free scaffolds in cell therapy for ischemic stroke in humans.

  4. [Effect of 3-bromopyruvate on mitochondrial membrane potential and apoptosis of human breast carcinoma SK-BR-3 cells].

    Science.gov (United States)

    Zhang, Yuanyuan; Liu, Zhe; Zhang, Qianwen; Chao, Zhenhua; Zhang, Pei; Xia, Fei; Jiang, Chenchen; Liu, Hao; Jiang, Zhiwen

    2013-09-01

    To study the effect of glycolysis inhibitor 3-bromopyruvate (3-BrPA) in inducing apoptosis of human breast carcinoma cells SK-BR-3 and the possible mechanism. MTT assay was used to detect the growth inhibition induced by 3-BrPA in breast cancer cells SK-BR-3. The apoptotic cells were detected by flow cytometry with propidium iodide (PI). ATP levels in the cells were detected by ATP assay kit, and DHE fluorescent probe technique was used to determine superoxide anion levels; the mitochondrial membrane potential was assessed using JC-1 staining assay. MTT assay showed that the proliferation of SK-BR-3 cells was inhibited by 3-BrPA in a time- and concentration-dependent manner. Exposure to 80, 160, and 320 µmol·L(-1) 3-BrPA for 24 h resulted in cell apoptosis rates of 6.7%, 22.3%, and 79.6%, respectively, and the intracellular ATP levels of SK-BR-3 cells treated with 80, 160, 320 µmol·L(-1) 3-BrPA for 5 h were 87.7%, 60.6%, and 23.7% of the control levels. 3-BrPA at 160 µmol·L(-1) increased reactive oxygen levels and lowered mitochondrial membrane potential of SK-BR-3 cells. 3-BrPA can inhibit cell proliferation, reduce the mitochondrial membrane potential and induce apoptosis in SK-BR-3 cells, the mechanism of which may involve a reduced ATP level by inhibiting glycolysis and increasing the reactive oxygen level in the cells.

  5. Azoxystrobin Induces Apoptosis of Human Esophageal Squamous Cell Carcinoma KYSE-150 Cells through Triggering of the Mitochondrial Pathway

    Directory of Open Access Journals (Sweden)

    Xiao-ke Shi

    2017-05-01

    Full Text Available Recent studies indicate that mitochondrial pathways of apoptosis are potential chemotherapeutic target for the treatment of esophageal cancer. Azoxystrobin (AZOX, a methoxyacrylate derived from the naturally occurring strobilurins, is a known fungicide acting as a ubiquinol oxidation (Qo inhibitor of mitochondrial respiratory complex III. In this study, the effects of AZOX on human esophageal squamous cell carcinoma KYSE-150 cells were examined and the underlying mechanisms were investigated. AZOX exhibited inhibitory effects on the proliferation of KYSE-150 cells with inhibitory concentration 50% (IC50 of 2.42 μg/ml by 48 h treatment. Flow cytometry assessment revealed that the inhibitory effect of AZOX on KYSE-150 cell proliferation occurred with cell cycle arrest at S phase and increased cell apoptosis in time-dependent and dose-dependent manners. Cleaved poly ADP ribose polymerase (PARP, caspase-3 and caspase-9 were increased significantly by AZOX. It is worth noted that the Bcl-2/Bax ratios were decreased because of the down-regulated Bcl-2 and up-regulated Bax expression level. Meanwhile, the cytochrome c release was increased by AZOX in KYSE-150 cells. AZOX-induced cytochrome c expression and caspase-3 activation was significantly blocked by Bax Channel Blocker. Intragastric administration of AZOX effectively decreased the tumor size generated by subcutaneous inoculation of KYSE-150 cells in nude mice. Consistently, decreased Bcl-2 expression, increased cytochrome c and PARP level, and activated caspase-3 and caspase-9 were observed in the tumor samples. These results indicate that AZOX can effectively induce esophageal cancer cell apoptosis through the mitochondrial pathways of apoptosis, suggesting AZOX or its derivatives may be developed as potential chemotherapeutic agents for the treatment of esophageal cancer.

  6. Nicotinamide induces mitochondrial-mediated apoptosis through oxidative stress in human cervical cancer HeLa cells.

    Science.gov (United States)

    Feng, Yi; Wang, Yonghua; Jiang, Chengrui; Fang, Zishui; Zhang, Zhiqiang; Lin, Xiaoying; Sun, Liwei; Jiang, Weiying

    2017-07-15

    Nicotinamide participates in energy metabolism and influences cellular redox status and modulates multiple pathways related with both cellular survival and death. Recent studies have shown that it induced proliferation inhibition and apoptosis in many cancer cells. However, little is known about the effects of nicotinamide on human cervical cancer cells. We aimed to evaluate the effects of the indicated concentrations nicotinamide on cell proliferation, apoptosis and redox-related parameters in HeLa cells and investigated the apoptotic mechanism. After the treatment of the indicated concentrations nicotinamide, HeLa cell proliferation was evaluated by the CCK-8 assay and the production of ROS (reactive oxygen species) was measured using 2',7'-Dichlorofluorescin diacetate. The apoptotic effect was confirmed by observing the cellular and nuclear morphologies with fluorescence microscope and apoptotic rate of HeLa cell apoptosis was measured by flow cytometry using Annexin-V method. Moreover, we examined the mitochondrial membrane potential by JC-1 method and measured the expression of apoptosis related genes using qRT-PCR and immunoblotting. Nicotinamide restrained the HeLa cell proliferation and significantly increased the accumulation of ROS and depletion of GSH at relatively high concentrations. Furthermore, nicotinamide promoted HeLa cell apoptosis via the intrinsic mitochondrial apoptotic pathway. Our study revealed that nicotinamide induced the apoptosis through oxidative stress and intrinsic mitochondrial apoptotic pathways in HeLa cell. The results emerge that nicotinamide may be an inexpensive, safe and promising therapeutic agent or a neoadjuvant chemotherapy for cervical cancer patients, as well useful to find new drugs for cervical cancer therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Butachlor induced dissipation of mitochondrial membrane potential, oxidative DNA damage and necrosis in human peripheral blood mononuclear cells

    International Nuclear Information System (INIS)

    Dwivedi, Sourabh; Saquib, Quaiser; Al-Khedhairy, Abdulaziz A.; Musarrat, Javed

    2012-01-01

    Highlights: ► Butachlor exhibited strong binding affinity with DNA and produced 8-oxodG adducts. ► Butachlor induced DNA strand breaks and micronuclei formation in PBMN cells. ► Butachlor induced ROS and dissipation of mitochondrial membrane potential in cells. ► Butachlor resulted in cell cycle arrest and eventually caused cellular necrosis. -- Abstract: Butachlor is a systemic herbicide widely applied on rice, tea, wheat, beans and other crops; however, it concurrently exerts toxic effects on beneficial organisms like earthworms, aquatic invertebrates and other non-target animals including humans. Owing to the associated risk to humans, this chloroacetanilide class of herbicide was investigated with the aim to assess its potential for the (i) interaction with DNA, (ii) mitochondria membrane damage and DNA strand breaks and (iii) cell cycle arrest and necrosis in butachlor treated human peripheral blood mononuclear (PBMN) cells. Fluorescence quenching data revealed the binding constant (Ka = 1.2 × 10 4 M −1 ) and binding capacity (n = 1.02) of butachlor with ctDNA. The oxidative potential of butachlor was ascertained based on its capacity of inducing reactive oxygen species (ROS) and substantial amounts of promutagenic 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) adducts in DNA. Also, the discernible butachlor dose-dependent reduction in fluorescence intensity of a cationic dye rhodamine (Rh-123) and increased fluorescence intensity of 2′,7′-dichlorodihydro fluorescein diacetate (DCFH-DA) in treated cells signifies decreased mitochondrial membrane potential (ΔΨm) due to intracellular ROS generation. The comet data revealed significantly greater Olive tail moment (OTM) values in butachlor treated PBMN cells vs untreated and DMSO controls. Treatment of cultured PBMN cells for 24 h resulted in significantly increased number of binucleated micronucleated (BNMN) cells with a dose dependent reduction in the nuclear division index (NDI). The flow

  8. Immunogenic properties of the human gut-associated archaeon Methanomassiliicoccus luminyensis and its susceptibility to antimicrobial peptides.

    Directory of Open Access Journals (Sweden)

    Corinna Bang

    Full Text Available The methanogenic archaeon Methanomassiliicoccus luminyensis strain B10T was isolated from human feces just a few years ago. Due to its remarkable metabolic properties, particularly the degradation of trimethylamines, this strain was supposed to be used as "Archaebiotic" during metabolic disorders of the human intestine. However, there is still no data published regarding adaptations to the natural habitat of M. luminyensis as it has been shown for the other two reported mucosa-associated methanoarchaea. This study aimed at unraveling susceptibility of M. luminyensis to antimicrobial peptides as well as its immunogenicity. By using the established microtiter plate assay adapted to the anaerobic growth requirements of methanogenic archaea, we demonstrated that M. luminyensis is highly sensitive against LL32, a derivative of human cathelicidin (MIC = 2 μM. However, the strain was highly resistant against the porcine lysin NK-2 (MIC = 10 μM and the synthetic antilipopolysaccharide peptide (Lpep (MIC>10 μM and overall differed from the two other methanoarchaea, Methanobrevibacter smithii and Methanosphaera stadtmanae in respect to AMP sensitivity. Moreover, only weak immunogenic potential of M. luminyensis was demonstrated using peripheral blood mononuclear cells (PBMCs and monocyte-derived dendritic cells (moDCs by determining release of pro-inflammatory cytokines. Overall, our findings clearly demonstrate that the archaeal gut inhabitant M. luminyensis is susceptible to the release of human-derived antimicrobial peptides and exhibits low immunogenicity towards human immune cells in vitro-revealing characteristics of a typical commensal gut microbe.

  9. Effects of the antitumoural dequalinium on NB4 and K562 human leukemia cell lines. Mitochondrial implication in cell death.

    Science.gov (United States)

    Galeano, Eva; Nieto, Elena; García-Pérez, Ana Isabel; Delgado, M Dolores; Pinilla, Montserrat; Sancho, Pilar

    2005-10-01

    Dequalinium (DQA) is a delocalized lipophylic cation that selectively targets the mitochondria of carcinoma cells. However, the underlying mechanisms of DQA action are not yet well understood. We have studied the effects of DQA on two different leukemia cell lines: NB4, derived from acute promyelocytic leukemia, and K562, derived from chronic myeloid leukemia. We found that DQA displays differential cytotoxic activity in these cell lines. In NB4 cells, a low DQA concentration (2microM) induces a mixture of apoptosis and necrosis, whereas a high DQA concentration (20microM) induces mainly necrosis. However, K562 cell death was always by necrosis as the cells showed a resistance to apoptosis at all time-periods and DQA concentrations assayed. In both cell lines, the cell death seems to be mediated by alterations of mitochondrial function as evidenced by loss of mitochondrial transmembrane potential, O2*- accumulation and ATP depletion. The current study improves the knowledge on DQA as a novel anticancer agent with a potential application in human acute promyelocytic leukemia chemotherapy.

  10. Human mitochondrial Hsp70 (mortalin): shedding light on ATPase activity, interaction with adenosine nucleotides, solution structure and domain organization.

    Science.gov (United States)

    Dores-Silva, Paulo R; Barbosa, Leandro R S; Ramos, Carlos H I; Borges, Júlio C

    2015-01-01

    The human mitochondrial Hsp70, also called mortalin, is of considerable importance for mitochondria biogenesis and the correct functioning of the cell machinery. In the mitochondrial matrix, mortalin acts in the importing and folding process of nucleus-encoded proteins. The in vivo deregulation of mortalin expression and/or function has been correlated with age-related diseases and certain cancers due to its interaction with the p53 protein. In spite of its critical biological roles, structural and functional studies on mortalin are limited by its insoluble recombinant production. This study provides the first report of the production of folded and soluble recombinant mortalin when co-expressed with the human Hsp70-escort protein 1, but it is still likely prone to self-association. The monomeric fraction of mortalin presented a slightly elongated shape and basal ATPase activity that is higher than that of its cytoplasmic counterpart Hsp70-1A, suggesting that it was obtained in the functional state. Through small angle X-ray scattering, we assessed the low-resolution structural model of monomeric mortalin that is characterized by an elongated shape. This model adequately accommodated high resolution structures of Hsp70 domains indicating its quality. We also observed that mortalin interacts with adenosine nucleotides with high affinity. Thermally induced unfolding experiments indicated that mortalin is formed by at least two domains and that the transition is sensitive to the presence of adenosine nucleotides and that this process is dependent on the presence of Mg2+ ions. Interestingly, the thermal-induced unfolding assays of mortalin suggested the presence of an aggregation/association event, which was not observed for human Hsp70-1A, and this finding may explain its natural tendency for in vivo aggregation. Our study may contribute to the structural understanding of mortalin as well as to contribute for its recombinant production for antitumor compound screenings.

  11. Expression and characterization of preproVIP derived peptides in the human male urogenital tract

    DEFF Research Database (Denmark)

    Ottesen, B; Bredkjaer, H E; Ekblad, E

    1995-01-01

    Expression of the gene sequence encoding vasoactive intestinal polypeptide (VIP) leads to the synthesis of a 170 amino acid precursor molecule which can be processed to five fragments: preproVIP 22-79, peptide histidine methionine (PHM), or peptide histidine valine (PHV), preproVIP 111-122, VIP...

  12. Investigation of CGRP receptors and peptide pharmacology in human coronary arteries. Characterization with a nonpeptide antagonist

    DEFF Research Database (Denmark)

    Hasbak, Philip; Saetrum Opgaard, Ole; Eskesen, Karen

    2003-01-01

    Calcitonin gene-related peptide (CGRP), adrenomedullin (AM), and amylin are structurally related peptides mediating vasorelaxation in the coronary circulation possibly via CGRP receptors (subtypes 1 or 2). Functional CGRP1 receptors appear to consist of at least three different kinds of proteins:...

  13. Arsenite Effects on Mitochondrial Bioenergetics in Human and Mouse Primary Hepatocytes Follow a Nonlinear Dose Response

    Directory of Open Access Journals (Sweden)

    Hemantkumar Chavan

    2017-01-01

    Full Text Available Arsenite is a known carcinogen and its exposure has been implicated in a variety of noncarcinogenic health concerns. Increased oxidative stress is thought to be the primary cause of arsenite toxicity and the toxic effect is thought to be linear with detrimental effects reported at all concentrations of arsenite. But the paradigm of linear dose response in arsenite toxicity is shifting. In the present study we demonstrate that arsenite effects on mitochondrial respiration in primary hepatocytes follow a nonlinear dose response. In vitro exposure of primary hepatocytes to an environmentally relevant, moderate level of arsenite results in increased oxidant production that appears to arise from changes in the expression and activity of respiratory Complex I of the mitochondrial proton circuit. In primary hepatocytes the excess oxidant production appears to elicit adaptive responses that promote resistance to oxidative stress and a propensity to increased proliferation. Taken together, these results suggest a nonlinear dose-response characteristic of arsenite with low-dose arsenite promoting adaptive responses in a process known as mitohormesis, with transient increase in ROS levels acting as transducers of arsenite-induced mitohormesis.

  14. Fisetin induces apoptosis through mitochondrial apoptosis pathway in human uveal melanoma cells.

    Science.gov (United States)

    Wang, Kai; Hu, Dan-Ning; Lin, Hui-Wen; Yang, Wei-En; Hsieh, Yi-Hsien; Chien, Hsiang-Wen; Yang, Shun-Fa

    2018-05-01

    Fisetin, a diatery flavonoid, been reported that possess anticancer effects in various cancers. The purpose of the study was to investigate the antitumor effects of fisetin in cultured uveal melanoma cell lines and compared with normal retinal pigment epithelial (RPE) cells. MTT assay was used for evaluating cytotoxic effects of fisetin. Flow cytometry study was used for the determination of apoptosis. JC-1 fluorescent reader was used to determine mitochondrial transmembrane potential changes. The results shown that fisetin dose-dependently decreased the cell viability of uveal melanoma cells but not influenced the cell viability of RPE cells. Apoptosis of uveal melanoma cells was induced by fisetin efficiently. Fisetin inhibited antiapoptotic Bcl-2 family proteins and damaged the mitochondrial transmembrane potential. The levels of proapoptotic Bcl-2 proteins, cytochrome c, and various caspase activities were increased by fisetin. In conclusion, fisetin induces apoptosis of uveal melanoma cells selectively and may be a promising agent to be explored for the treatment of uveal melanoma. © 2018 Wiley Periodicals, Inc.

  15. High-affinity human leucocyte antigen class I binding variola-derived peptides induce CD4(+) T cell responses more than 30 years post-vaccinia virus vaccination

    DEFF Research Database (Denmark)

    Wang, M.; Tang, Sheila Tuyet; Lund, Ole

    2009-01-01

    Interferon-gamma secreting T lymphocytes against pox virus-derived synthetic 9-mer peptides were tested by enzyme-linked immunospot in peripheral blood of individuals vaccinated with vaccinia virus more than 30 years ago. The peptides were characterized biochemically as high-affinity human leucoc...

  16. The antibacterial activity of peptides derived from human beta-2 glycoprotein I is inhibited by protein H and M1 protein from Streptococcus pyogenes

    NARCIS (Netherlands)

    Nilsson, Maria; Wasylik, Sylwia; Mörgelin, Matthias; Olin, Anders I.; Meijers, Joost C. M.; Derksen, Ronald H. W. M.; de Groot, Philip G.; Herwald, Heiko

    2008-01-01

    During the last years, the importance of antibacterial peptides has attracted considerable attention. We report here that peptides derived from the fifth domain of beta-2 glycoprotein I (beta(2)GPI), a human heparin binding plasma protein, have antibacterial activities against Gram-positive and

  17. Amidated joining peptide in the human pituitary, gut, adrenal gland and bronchial carcinoids. Immunocytochemical and immunochemical evidence

    DEFF Research Database (Denmark)

    Bjartell, A; Fenger, M; Ekman, R

    1990-01-01

    The distribution of the proopiomelanocortin-derivated amidated joining peptide (JP-N) was examined in the human pituitary gland, adrenal gland, gut and in three bronchial carcinoids. Double immunostaining showed coexistence of immunoreactive JP-N and other proopiomelanocortin derivatives, e......-N, respectively, but under reduced conditions most of the immunoreactive material appeared as of low molecular weight in both extracts. In conclusion, immunoreactive JP-N is a major product from the processing of proopiomelanocortin in human extrapituitary tissues. The molecular forms of immunoreactive JP......-N correspond to previous findings in the human pituitary gland....

  18. Synthesis of peptide templated copper nanoclusters for fluorometric determination of Fe(III) in human serum

    International Nuclear Information System (INIS)

    Tang, Ting; Ouyang, Jiang; Hu, Lanshuang; Guo, Linyan; Yang, Minghui; Chen, Xiang

    2016-01-01

    Copper nanoclusters (Cu-NCs) were prepared by reducing CuCl 2 with ascorbic acid in the presence of the short peptide template Cys-Cys-Cys-Asp-Leu. They were characterized by UV-vis absorption and fluorescence spectroscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The Cu-NCs have a size of ∼2 nm, can be well dispersed in water and are photostable. Their fluorescence (peaking at 425 nm under 365-nm excitation) is quenched by Fe(III) ions. Based on this finding, a sensitive and selective fluorescence assay for the detection of Fe(III) was developed. Under optimized conditions and a pH value of 2.0, the assay displays a linear response in the 0.05 to 30 μM Fe(III) concentration range, with a detection limit of 20 nM based on an S/N ratio of 3. The assay was successfully applied to the determination of Fe(III) in spiked human serum where is gave recoveries that ranged from 96.2 % to 98.3 %. (author)

  19. Antimicrobial activity and mechanism of the human milk-sourced peptide Casein201

    International Nuclear Information System (INIS)

    Zhang, Fan; Cui, Xianwei; Fu, Yanrong; Zhang, Jun; Zhou, Yahui; Sun, Yazhou; Wang, Xing; Li, Yun; Liu, Qianqi; Chen, Ting

    2017-01-01

    Introduction: Casein201 is one of the human milk sourced peptides that differed significantly in preterm and full-term mothers. This study is designed to demonstrate the biological characteristics, antibacterial activity and mechanisms of Casein201 against common pathogens in neonatal infection. Methodology: The analysis of biological characteristics was done by bioinformatics. Disk diffusion method and flow cytometry were used to detect the antimicrobial activity of Casein201. Killing kinetics of Casein201 was measured using microplate reader. The antimicrobial mechanism of Casein201 was studied by electron microscopy and electrophoresis. Results: Bioinformatics analysis indicates that Casein201 derived from β-casein and showed significant sequence overlap. Antibacterial assays showed Casein201 inhibited the growth of S taphylococcus aureus and Y ersinia enterocolitica. Ultrastructural analyses revealed that the antibacterial activity of Casein201 is through cytoplasmic structures disintegration and bacterial cell envelope alterations but not combination with DNA. Conclusion: We conclude the antimicrobial activity and mechanism of Casein201. Our data demonstrate that Casein201 has potential therapeutic value for the prevention and treatment of pathogens in neonatal infection.

  20. Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori

    International Nuclear Information System (INIS)

    Han Cong; Wang Qi; Dong Lei; Sun Haifang; Peng Shuying; Chen Jing; Yang Yiming; Yue Jianmin; Shen Xu; Jiang Hualiang

    2004-01-01

    Helicobacter pylori is a gram-negative pathogenic bacterium, which is associated with peptic ulcer disease and gastric cancer. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. In bacteria, peptide deformylase (PDF) catalyzes the removal of a formyl group from the N-termini of nascent polypeptides. Due to its essentiality and absence in mammalian cells, PDF has been considered as an attractive target for the discovery of novel antibiotics. In this work, a new PDF gene (def) from H. pylori strain SS1 was cloned, expressed, and purified in Escherichia coli system. Sequence alignment shows that H. pylori PDF (HpPDF) shares about 40% identity to E. coli PDF (EcPDF). The enzymatic properties of HpPDF demonstrate its relatively high activity toward formyl-Met-Ala-Ser, with K cat of 3.4 s -1 , K m of 1.7 mM, and K cat /K m of 2000 M -1 s -1 . HpPDF enzyme appears to be fully active at pH between 8.0 and 9.0, and temperature 50 deg. C. The enzyme activity of Co 2+ -containing HpPDF is apparently higher than that of Zn 2+ -containing HpPDF. This present work thereby supplies a potential platform that facilitates the discovery of novel HpPDF inhibitors and further of possible antimicrobial agents against H. pylori

  1. Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori.

    Science.gov (United States)

    Han, Cong; Wang, Qi; Dong, Lei; Sun, Haifang; Peng, Shuying; Chen, Jing; Yang, Yiming; Yue, Jianmin; Shen, Xu; Jiang, Hualiang

    2004-07-09

    Helicobacter pylori is a gram-negative pathogenic bacterium, which is associated with peptic ulcer disease and gastric cancer. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. In bacteria, peptide deformylase (PDF) catalyzes the removal of a formyl group from the N-termini of nascent polypeptides. Due to its essentiality and absence in mammalian cells, PDF has been considered as an attractive target for the discovery of novel antibiotics. In this work, a new PDF gene (def) from H. pylori strain SS1 was cloned, expressed, and purified in Escherichia coli system. Sequence alignment shows that H. pylori PDF (HpPDF) shares about 40% identity to E. coli PDF (EcPDF). The enzymatic properties of HpPDF demonstrate its relatively high activity toward formyl-Met-Ala-Ser, with K(cat) of 3.4s(-1), K(m) of 1.7 mM, and K(cat) / K(m) of 2000M(-1)s(-1). HpPDF enzyme appears to be fully active at pH between 8.0 and 9.0, and temperature 50 degrees C. The enzyme activity of Co(2+)-containing HpPDF is apparently higher than that of Zn(2+)-containing HpPDF. This present work thereby supplies a potential platform that facilitates the discovery of novel HpPDF inhibitors and further of possible antimicrobial agents against H. pylori.

  2. Influence of Dimerization of Lipopeptide Laur-Orn-Orn-Cys-NH2 and an N-terminal Peptide of Human Lactoferricin on Biological Activity.

    Science.gov (United States)

    Kamysz, Elżbieta; Sikorska, Emilia; Dawgul, Małgorzata; Tyszkowski, Rafał; Kamysz, Wojciech

    Lactoferrin (LF) is a naturally occurring antimicrobial peptide that is cleaved by pepsin to lactoferricin (LFcin). LFcin has an enhanced antimicrobial activity as compared to that of LF. Recently several hetero- and homodimeric antimicrobial peptides stabilized by a single disulfide bond linking linear polypeptide chains have been discovered. We have demonstrated that the S-S bond heterodimerization of lipopeptide Laur-Orn-Orn-Cys-NH 2 (peptide III) and the synthetic N -terminal peptide of human lactoferricin (peptide I) yields a dimer (peptide V), which is almost as microbiologically active as the more active monomer and at the same time it is much less toxic. Furthermore, it has been found that the S-S bond homodimerization of both peptide I and peptide III did not affect antimicrobial and haemolytic activity of the compounds. The homo- and heterodimerization of peptides I and III resulted in either reduction or loss of antifungal activity. This work suggests that heterodimerization of antimicrobial lipopeptides via intermolecular disulfide bond might be a powerful modification deserving consideration in the design of antimicrobial peptides.

  3. Direct assessment of hepatic mitochondrial oxidative and anaplerotic fluxes in humans using dynamic 13C magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Befroy, Douglas E; Perry, Rachel J; Jain, Nimit

    2014-01-01

    that rates of mitochondrial oxidation and anaplerosis in human liver can be directly determined noninvasively. Using this approach, we found the mean rates of hepatic tricarboxylic acid (TCA) cycle flux (VTCA) and anaplerotic flux (VANA) to be 0.43 ± 0.04 μmol g(-1) min(-1) and 0.60 ± 0.11 μmol g(-1) min(-1......), respectively, in twelve healthy, lean individuals. We also found the VANA/VTCA ratio to be 1.39 ± 0.22, which is severalfold lower than recently published estimates using an indirect approach. This method will be useful for understanding the pathogenesis of nonalcoholic fatty liver disease and type 2 diabetes...

  4. Apoptotic death of Listeria monocytogenes-infected human macrophages induced by lactoferricin B, a bovine lactoferrin-derived peptide.

    Science.gov (United States)

    Longhi, C; Conte, M P; Ranaldi, S; Penta, M; Valenti, P; Tinari, A; Superti, F; Seganti, L

    2005-01-01

    Listeria monocytogenes, an intracellular facultative food-borne pathogen, was reported to induce apoptosis in vitro and in vivo in a variety of cell types with the exception of murine macrophages. These cells represent the predominant compartment of bacterial multiplication and die as a result of necrosis. In this study we showed that human non-activated and IFN-gamma-activated macrophagic-like (THP-1) cells infected with L. monocytogenes, mainly die by necrosis rather than by an apoptotic process. Two natural products derived from bovine milk, lactoferrin and its derivative peptide lactoferricin B, are capable of regulating the fate of infected human macrophages. Bovine lactoferrin treatment of macrophages protects them from L. monocytogenes-induced death whereas lactoferricin B, its derivative peptide, determines a shifting of the equilibrium from necrosis to apoptosis.

  5. Errantum: Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins

    Directory of Open Access Journals (Sweden)

    Lai JCK

    2010-12-01

    Full Text Available Lai JCK, Ananthakrishnan G, Jandhyam S, et al. Treatment of human astrocytoma U87 cells with silicon dioxide nanoparticles lowers their survival and alters their expression of mitochondrial and cell signaling proteins. Int J Nanomedicine. 2010;5:715–723.The wrong image was used in Figure 5 on page 719.

  6. Calcitonin gene-related peptide modulates heat nociception in the human brain - An fMRI study in healthy volunteers

    DEFF Research Database (Denmark)

    Asghar, Mohammad Sohail; Becerra, Lino; Larsson, Henrik B.W.

    2016-01-01

    Background: Intravenous infusion of calcitonin-gene-related-peptide (CGRP) provokes headache and migraine in humans. Mechanisms underlying CGRP-induced headache are not fully clarified and it is unknown to what extent CGRP modulates nociceptive processing in the brain. To elucidate this we recorded...... cortex. Sumatriptan injection reversed these changes. Conclusion: The changes in BOLD-signals in the brain after CGRP infusion suggests that systemic CGRP modulates nociceptive transmission in the trigeminal pain pathways in response to noxious heat stimuli....

  7. Unprecedented high insulin secretion in a healthy human subject after intravenous glucagon-like peptide-1

    DEFF Research Database (Denmark)

    Knop, Filip K; Lund, Asger; Madsbad, Sten

    2014-01-01

    BACKGROUND: The gut-derived incretin hormones, glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1, are released in response to ingestion of nutrients. Both hormones are highly insulinotropic in strictly glucose-dependent fashions and glucagon-like peptide-1 is often referred...... to as one of the most insulinotropic substances known. CASE PRESENTATION: Plasma insulin and C-peptide concentrations were measured in a healthy Caucasian male (age: 53 years; body mass index: 28.6 kg/m2; fasting plasma glucose: 5.7 mM; 2 h plasma glucose value following 75 g-oral glucose tolerance test: 3...

  8. Mitochondrial Dynamics: Coupling Mitochondrial Fitness with Healthy Aging.

    Science.gov (United States)

    Sebastián, David; Palacín, Manuel; Zorzano, Antonio

    2017-03-01

    Aging is associated with a decline in mitochondrial function and the accumulation of abnormal mitochondria. However, the precise mechanisms by which aging promotes these mitochondrial alterations and the role of the latter in aging are still not fully understood. Mitochondrial dynamics is a key process regulating mitochondrial function and quality. Altered expression of some mitochondrial dynamics proteins has been recently associated with aging and with age-related alterations in yeast, Caenorhabditis elegans, mice, and humans. Here, we review the link between alterations in mitochondrial dynamics, aging, and age-related impairment. We propose that the dysregulation of mitochondrial dynamics leads to age-induced accumulation of unhealthy mitochondria and contributes to alterations linked to aging, such as diabetes and neurodegeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Two putative subunits of a peptide pump encoded in the human major histocompatability complex class 2 region

    International Nuclear Information System (INIS)

    Bahram, S.; Arnold, D.; Bresnahan, M.; Strominger, J.L.; Spies, T.

    1991-01-01

    The class 2 region of the human major histocompatibility complex (MHC) may encode several genes controlling the processing of endogenous antigen and the presentation of peptide epitopes by MHC class 1 molecules to cytotoxic T lymphocytes. A previously described peptide supply factor (PSF1) is a member of the multidrug-resistance family of transporters and may pump cytosolic peptides into the membrane-bound compartment where class 1 molecules assemble. A second transporter gene, PSF2, was identified 10 kilobases (kb) from PSF1, near the class 2 DOB gene. The complete sequences of PSF1 and PSF2 were determined from cDNA clones. The translation products are closely related in sequence and predicted secondary structure. Both contain a highly conserved ATP-binding fold and share 25% homology in a hydrophobic domain with a tentative number of eight membrane-spanning segments. Based on the principle dimeric organization of these two domains in other transporters, PSF1 and PSF2 may function as complementary subunits, independently as homodimers, or both. Taken together with previous genetic evidence, the coregulation of PSF1 and PSF2 by γ interferon and the to-some-degree coordinate transcription of these genes suggest a common role in peptide-loading of class 1 molecules, although a distinct function of PSF2 cannot be ruled out

  10. A facile and sensitive peptide-modulating graphene oxide nanoribbon catalytic nanoplasmon analytical platform for human chorionic gonadotropin.

    Science.gov (United States)

    Liang, Aihui; Li, Chongning; Li, Dan; Luo, Yanghe; Wen, Guiqing; Jiang, Zhiliang

    2017-01-01

    The nanogold reaction between HAuCl 4 and citrate is very slow, and the catalyst graphene oxide nanoribbon (GONR) enhanced the nanoreaction greatly to produce gold nanoparticles (AuNPs) that exhibited strong surface plasmon resonance (SPR) absorption (Abs) at 550 nm and resonance Rayleigh scattering (RRS) at 550 nm. Upon addition of the peptide of human chorionic gonadotropin (hCG), the peptide could adsorb on the GONR surface, which inhibited the catalysis. When hCG was added, peptides were separated from the GONR surface due to the formation of stable peptide-hCG complex, which led to the activation of GONR catalytic effect. With the increase in hCG concentration, the RRS and Abs signal enhanced linearly. The enhanced RRS value showed a good linear relationship with hCG concentration in the range of 0.2-20 ng/mL, with a detection limit of 70 pg/mL. Accordingly, two new GONR catalytic RRS/Abs methods were established for detecting hCG in serum samples.

  11. A novel branched TAT(47-57) peptide for selective Ni(2+) introduction into the human fibrosarcoma cell nucleus.

    Science.gov (United States)

    Szyrwiel, Łukasz; Shimura, Mari; Shirataki, Junko; Matsuyama, Satoshi; Matsunaga, Akihiro; Setner, Bartosz; Szczukowski, Łukasz; Szewczuk, Zbigniew; Yamauchi, Kazuto; Malinka, Wiesław; Chavatte, Laurent; Łobinski, Ryszard

    2015-07-01

    A TAT47-57 peptide was modified on the N-terminus by elongation with a 2,3-diaminopropionic acid residue and then by coupling of two histidine residues on its N-atoms. This branched peptide could bind to Ni under physiological conditions as a 1 : 1 complex. We demonstrated that the complex was quantitatively taken up by human fibrosarcoma cells, in contrast to Ni(2+) ions. Ni localization (especially at the nuclei) was confirmed by imaging using both scanning X-ray fluorescence microscopy and Newport Green fluorescence. A competitive assay with Newport Green showed that the latter displaced the peptide ligand from the Ni-complex. Ni(2+) delivered as a complex with the designed peptide induced substantially more DNA damage than when introduced as a free ion. The availability of such a construct opens up the way to investigate the importance of the nucleus as a target for the cytotoxicity, genotoxicity or carcinogenicity of Ni(2+).

  12. Human acid β-glucosidase: isolation and amino acid sequence of a peptide containing the catalytic site

    International Nuclear Information System (INIS)

    Dinur, T.; Osiecki, K.M.; Legler, G.; Gatt, S.; Desnick, R.J.; Grabowski, G.A.

    1986-01-01

    Human acid β-glucosidase (D-glucosyl-N-acylsphingosine glucohydrolase, EC 3.2.1.45) cleaves the glucosidic bonds of glucosylceramide and synthetic β-glucosides. The deficient activity of this hydrolase is the enzymatic defect in the subtypes and variants of Gaucher disease, the most prevalent lysosomal storage disease. To isolate and characterize the catalytic site of the normal enzyme, brominated 3 H-labeled conduritol B epoxide ( 3 H-Br-CBE), which inhibits the enzyme by binding covalently to this site, was used as an affinity label. Under optimal conditions 1 mol of 3 H-Br-CBE bound to 1 mol of pure enzyme protein, indicating the presence of a single catalytic site per enzyme subunit. After V 8 protease digestion of the 3 H-Br-CBE-labeled homogeneous enzyme, three radiolabeled peptides, designated peptide A, B, or C, were resolved by reverse-phase HPLC. The partial amino acid sequence (37 residues) of peptide A (M/sub r/, 5000) was determined. The sequence of this peptide, which contained the catalytic site, had exact homology to the sequence near the carboxyl terminus of the protein, as predicted from the nucleotide sequence of the full-length cDNA encoding acid β-glucosidase

  13. Comparative syntheses of peptide thioesters derived from mouse and human prion proteins

    Czech Academy of Sciences Publication Activity Database

    Šebestík, Jaroslav; Zawada, Zbigniew; Šafařík, Martin; Hlaváček, Jan

    2011-01-01

    Roč. 41, Suppl. 1 (2011), S78-S79 ISSN 0939-4451. [International Congress on Amino Acids, Peptides and Proteins /12./. 01.08.2011-05.08.2011, Beijing] R&D Projects: GA ČR GA203/07/1517 Institutional research plan: CEZ:AV0Z40550506 Keywords : peptide thioesters * ligation * prions * C-domain Subject RIV: CC - Organic Chemistry

  14. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling.

    Directory of Open Access Journals (Sweden)

    Wei Li

    2008-01-01

    Full Text Available Specificity of protein ubiquitylation is conferred by E3 ubiquitin (Ub ligases. We have annotated approximately 617 putative E3s and substrate-recognition subunits of E3 complexes encoded in the human genome. The limited knowledge of the function of members of the large E3 superfamily prompted us to generate genome-wide E3 cDNA and RNAi expression libraries designed for functional screening. An imaging-based screen using these libraries to identify E3s that regulate mitochondrial dynamics uncovered MULAN/FLJ12875, a RING finger protein whose ectopic expression and knockdown both interfered with mitochondrial trafficking and morphology. We found that MULAN is a mitochondrial protein - two transmembrane domains mediate its localization to the organelle's outer membrane. MULAN is oriented such that its E3-active, C-terminal RING finger is exposed to the cytosol, where it has access to other components of the Ub system. Both an intact RING finger and the correct subcellular localization were required for regulation of mitochondrial dynamics, suggesting that MULAN's downstream effectors are proteins that are either integral to, or associated with, mitochondria and that become modified with Ub. Interestingly, MULAN had previously been identified as an activator of NF-kappaB, thus providing a link between mitochondrial dynamics and mitochondria-to-nucleus signaling. These findings suggest the existence of a new, Ub-mediated mechanism responsible for integration of mitochondria into the cellular environment.

  15. Cellular determinants involving mitochondrial dysfunction, oxidative stress and apoptosis correlate with the synergic cytotoxicity of epigallocatechin-3-gallate and menadione in human leukemia Jurkat T cells.

    Science.gov (United States)

    Tofolean, Ioana Teodora; Ganea, Constanta; Ionescu, Diana; Filippi, Alexandru; Garaiman, Alexandru; Goicea, Alexandru; Gaman, Mihnea-Alexandru; Dimancea, Alexandru; Baran, Irina

    2016-01-01

    We have investigated the growth-suppressive action of epigallocatechin-3-gallate (EGCG) on human leukemia Jurkat T cells. Results show a strong correlation between the dose-dependent reduction of clonogenic survival following acute EGCG treatments and the EGCG-induced decline of the mitochondrial level of Ca(2+). The cell killing ability of EGCG was synergistically enhanced by menadione. In addition, the cytotoxic effect of EGCG applied alone or in combination with menadione was accompanied by apoptosis induction. We also observed that in acute treatments EGCG displays strong antioxidant properties in the intracellular milieu, but concurrently triggers some oxidative stress generating mechanisms that can fully develop on a longer timescale. In parallel, EGCG dose-dependently induced mitochondrial depolarization during exposure, but this condition was subsequently reversed to a persistent hyperpolarized mitochondrial state that was dependent on the activity of respiratory Complex I. Fluorimetric measurements suggest that EGCG is a mitochondrial Complex III inhibitor and indicate that EGCG evokes a specific cellular fluorescence with emission at 400nm and two main excitation bands (at 330nm and 350nm) that may originate from a mitochondrial supercomplex containing dimeric Complex III and dimeric ATP-synthase, and therefore could provide a valuable means to characterize the functional properties of the respiratory chain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. The Relationship Between Transcript Expression Levels of Nuclear Encoded (TFAM, NRF1 and Mitochondrial Encoded (MT-CO1 Genes in Single Human Oocytes During Oocyte Maturation

    Directory of Open Access Journals (Sweden)

    Ghaffari Novin M.

    2015-06-01

    Full Text Available In some cases of infertility in women, human oocytes fail to mature when they reach the metaphase II (MII stage. Mitochondria plays an important role in oocyte maturation. A large number of mitochondrial DNA (mtDNA, copied in oocytes, is essential for providing adenosine triphosphate (ATP during oocyte maturation. The purpose of this study was to identify the relationship between transcript expression levels of the mitochondrial encoded gene (MT-CO1 and two nuclear encoded genes, nuclear respiratory factor 1 (NRF1 and mitochondrial transcription factor A (TFAM in various stages of human oocyte maturation. Nine consenting patients, age 21-35 years old, with male factors were selected for ovarian stimulation and intracytoplasmic sperm injection (ICSI procedures. mRNA levels of mitochondrial- related genes were performed by singlecell TaqMan® quantitative real-time polymerase chain reaction (qRT-PCR. There was no significant relationship between the relative expression levels in germinal vesicle (GV stage oocytes (p = 0.62. On the contrary, a significant relationship was seen between the relative expression levels of TFAM and NRF1 and the MT-CO1 genes at the stages of metaphase I (MI and MII (p = 0.03 and p = 0.002. A relationship exists between the transcript expression levels of TFAM and NRF1, and MT-CO1 genes in various stages of human oocyte maturation.

  17. A novel benzofuran derivative, ACDB, induces apoptosis of human chondrosarcoma cells through mitochondrial dysfunction and endoplasmic reticulum stress.

    Science.gov (United States)

    Su, Chen-Ming; Chen, Chien-Yu; Lu, Tingting; Sun, Yi; Li, Weimin; Huang, Yuan-Li; Tsai, Chun-Hao; Chang, Chih-Shiang; Tang, Chih-Hsin

    2016-12-13

    Chondrosarcoma is one of the bone tumor with high mortality in respond to poor radiation and chemotherapy treatment. Here, we analyze the antitumor activity of a novel benzofuran derivative, 2-amino-3-(2-chlorophenyl)-6-(4-dimethylaminophenyl)benzofuran-4-yl acetate (ACDB), in human chondrosarcoma cells. ACDB increased the cell apoptosis of human chondrosarcomas without harm in chondrocytes. ACDB also enhanced endoplasmic reticulum (ER) stress, which was characterized by varieties in the cytosolic calcium levels and induced the expression of glucose-regulated protein (GRP) and calpain. Furthermore, the ACDB-induced chondrosarcoma apoptosis was associated with the upregulation of the B cell lymphoma-2 (Bcl-2) family members including pro- and anti-apoptotic proteins, downregulation of dysfunctional mitochondria that released cytochrome C, and subsequent activation of caspases-3. In addition, the ACDB-mediated cellular apoptosis was suppressed by transfecting cells with glucose-regulated protein (GRP) and calpain siRNA or treating cells with ER stress chelators and caspase inhibitors. Interestingly, animal experiments illustrated a reduction in the tumor volume following ACDB treatment. Together, these results suggest that ACDB may be a novel tumor suppressor of chondrosarcoma, and this study demonstrates that the novel antitumor agent, ACDB, induced apoptosis by mitochondrial dysfunction and ER stress in human chondrosarcoma cells in vitro and in vivo.

  18. Milk derived bioactive peptides and their impact on human health – A review

    Directory of Open Access Journals (Sweden)

    D.P. Mohanty

    2016-09-01

    Full Text Available Milk-derived bioactive peptides have been identified as potential ingredients of health-promoting functional foods. These bioactive peptides are targeted at diet-related chronic diseases especially the non-communicable diseases viz., obesity, cardiovascular diseases and diabetes. Peptides derived from the milk of cow, goat, sheep, buffalo and camel exert multifunctional properties, including anti-microbial, immune modulatory, anti-oxidant, inhibitory effect on enzymes, anti-thrombotic, and antagonistic activities against various toxic agents. Majority of those regulate immunological, gastrointestinal, hormonal and neurological responses, thereby playing a vital role in the prevention of cancer, osteoporosis, hypertension and other disorders as discussed in this review. For the commercial production of such novel bioactive peptides large scale technologies based on membrane separation and ion exchange chromatography methods have been developed. Separation and identification of those peptides and their pharmacodynamic parameters are necessary to transfer their potent functional properties into food applications. The present review summarizes the preliminary classes of bioactive milk-derived peptides along with their physiological functions, general characteristics and potential applications in health-care.

  19. Identification of ageing-associated naturally occurring peptides in human urine

    Science.gov (United States)

    Nkuipou-Kenfack, Esther; Bhat, Akshay; Klein, Julie; Jankowski, Vera; Mullen, William; Vlahou, Antonia; Dakna, Mohammed; Koeck, Thomas; Schanstra, Joost P.; Zürbig, Petra; Rudolph, Karl L.; Schumacher, Björn; Pich, Andreas; Mischak, Harald

    2015-01-01

    To assess normal and pathological peptidomic changes that may lead to an improved understanding of molecular mechanisms underlying ageing, urinary peptidomes of 1227 healthy and 10333 diseased individuals between 20 and 86 years of age were investigated. The diseases thereby comprised diabetes mellitus, renal and cardiovascular diseases. Using age as a continuous variable, 116 peptides were identified that significantly (p age in the healthy cohort. The same approach was applied to the diseased cohort. Upon comparison of the peptide patterns of the two cohorts 112 common age-correlated peptides were identified. These 112 peptides predominantly originated from collagen, uromodulin and fibrinogen. While most fibrillar and basement membrane collagen fragments showed a decreased age-related excretion, uromodulin, beta-2-microglobulin and fibrinogen fragments showed an increase. Peptide-based in silico protease analysis was performed and 32 proteases, including matrix metalloproteinases and cathepsins, were predicted to be involved in ageing. Identified peptides, predicted proteases and patient information were combined in a systems biology pathway analysis to identify molecular pathways associated with normal and/or pathological ageing. While perturbations in collagen homeostasis, trafficking of toll-like receptors and endosomal pathways were commonly identified, degradation of insulin-like growth factor-binding proteins was uniquely identified in pathological ageing. PMID:26431327

  20. Phosphorylated form of adrenocorticotropin and corticotropin-like intermediary lobe peptide in human tumors

    International Nuclear Information System (INIS)

    Massias, J.F.; Hardouin, S.; Vieau, D.; Lenne, F.; Bertagna, X.

    1994-01-01

    Many peptides contribute to the heterogeneity of immunoreactive adrenocorticotropin (ACTH) in man. The use of a radioimmunoassay (RIA) specifically directed against the C-terminal end of ACTH allowed the precise study of the following four peptides: ACTH itself, corticotropin-like intermediary lobe peptide (CLIP) or ACTH and their phosphorylated forms on SeR 31 . The authors have set up a high-performance liquid chromatography system that separates these four molecules in a single run, to establish their relative distributions in tumors responsible for Cushing's disease or for the ectopic ACTH syndrome, and to evaluate the possible interference of phospho-Ser 31 on various RIA or immuno-radiometric assay (IRMA) recognition systems for ACTH. In this system, alkaline phosphatase treatment shifted the retention time of the phosphorylated peptides to that of their non-phosphorylated counterparts. In three tumors responsible for the ectopic ACTH syndrome, CLIP peptides were predominant in two and phosphorylated molecules represented between 22% and 50% of immuno-reactive materials. In five pituitary tumors responsible for Cushing's disease, ACTH peptides were predominant and the phosphorylated molecules varied between 35% and 75% in four of them. In the same tumor the ratios of phosphorylated to non-phosphorylated CLIP or ACTH were identical. The presence of phospho-Ser 31 did not affect the recognition ability of two mid-ACTH and two C-terminal ACTH RIA's, nor of the ACTH IRMA. 15 refs., 5 figs., 2 tabs

  1. H{sup +}/peptide transporter (PEPT2) is expressed in human epidermal keratinocytes and is involved in skin oligopeptide transport

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, Michiko; Katayoshi, Takeshi; Kobayashi-Nakamura, Kumiko [DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba 261-0025 (Japan); Akagawa, Mitsugu [Department of Biological Chemistry, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); Tsuji-Naito, Kentaro, E-mail: knaito@dhc.co.jp [DHC Corporation Laboratories, Division 2, 2-42 Hamada, Mihama-ku, Chiba 261-0025 (Japan)

    2016-07-08

    Peptide transporter 2 (PEPT2) is a member of the proton-coupled oligopeptide transporter family, which mediates the cellular uptake of oligopeptides and peptide-like drugs. Although PEPT2 is expressed in many tissues, its expression in epidermal keratinocytes remains unclear. We investigated PEPT2 expression profile and functional activity in keratinocytes. We confirmed PEPT2 mRNA expression in three keratinocyte lines (normal human epidermal keratinocytes (NHEKs), immortalized keratinocytes, and malignant keratinocytes) by reverse transcription-polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR. In contrast to PEPT1, PEPT2 expression in the three keratinocytes was similar or higher than that in HepG2 cells, used as PEPT2-positive cells. Immunolocalization analysis using human skin showed epidermal PEPT2 localization. We studied keratinocyte transport function by measuring the oligopeptide content using liquid chromatography/tandem mass spectrometry. Glycylsarcosine uptake in NHEKs was pH-dependent, suggesting that keratinocytes could absorb small peptides in the presence of an inward H{sup +} gradient. We also performed a skin-permeability test of several oligopeptides using skin substitute, suggesting that di- and tripeptides pass actively through the epidermis. In conclusion, PEPT2 is expressed in keratinocytes and involved in skin oligopeptide uptake. -- Highlights: •PEPT2 is expressed in keratinocytes, which are more common than other skin cells. •Immunolocalization analysis using human skin revealed epidermal PEPT2 localization. •Keratinocytes could absorb small peptides in the presence of an inward H{sup +} gradient. •Di- and tripeptide pass actively through the epidermis.

  2. Structure–activity relationships of the human prothrombin kringle-2 peptide derivative NSA9: anti-proliferative activity and cellular internalization

    OpenAIRE

    Hwang, Hyun Sook; Kim, Dong Won; Kim, Soung Soo

    2006-01-01

    The human prothrombin kringle-2 protein inhibits angiogenesis and LLC (Lewis lung carcinoma) growth and metastasis in mice. Additionally, the NSA9 peptide (NSAVQLVEN) derived from human prothrombin kringle-2 has been reported to inhibit the proliferation of BCE (bovine capillary endothelial) cells and CAM (chorioallantoic membrane) angiogenesis. In the present study, we examined the structure–activity relationships of the NSA9 peptide in inhibiting the proliferation of endothelial cells lines...

  3. Mitochondrial damage and cytoskeleton reorganization in human dermal fibroblasts exposed to artificial visible light similar to screen-emitted light.

    Science.gov (United States)

    Rascalou, Adeline; Lamartine, Jérôme; Poydenot, Pauline; Demarne, Frédéric; Bechetoille, Nicolas

    2018-05-05

    Artificial visible light is everywhere in modern life. Social communication confronts us with screens of all kinds, and their use is on the rise. We are therefore increasingly exposed to artificial visible light, the effects of which on skin are poorly known. The purpose of this study was to model the artificial visible light emitted by electronic devices and assess its effect on normal human fibroblasts. The spectral irradiance emitted by electronic devices was optically measured and equipment was developed to accurately reproduce such artificial visible light. Effects on normal human fibroblasts were analyzed on human genome microarray-based gene expression analysis. At cellular level, visualization and image analysis were performed on the mitochondrial network and F-actin cytoskeleton. Cell proliferation, ATP release and type I procollagen secretion were also measured. We developed a device consisting of 36 LEDs simultaneously emitting blue, green and red light at distinct wavelengths (450 nm, 525 nm and 625 nm) with narrow spectra and equivalent radiant power for the three colors. A dose of 99 J/cm 2 artificial visible light was selected so as not to induce cell mortality following exposure. Microarray analysis revealed 2984 light-modulated transcripts. Functional annotation of light-responsive genes revealed several enriched functions including, amongst others, the "mitochondria" and "integrin signaling" categories. Selected results were confirmed by real-time quantitative PCR, analyzing 24 genes representing these two categories. Analysis of micro-patterned culture plates showed marked fragmentation of the mitochondrial network and disorganization of the F-actin cytoskeleton following exposure. Functionally, there was considerable impairment of cell growth and spread, ATP release and type I procollagen secretion in exposed fibroblasts. Artificial visible light induces drastic molecular and cellular changes in normal human fibroblasts. This may impede

  4. A novel synthetic analog of militarin, MA-1 induces mitochondrial dependent apoptosis by ROS generation in human lung cancer cells

    International Nuclear Information System (INIS)

    Yoon, Deok Hyo; Lim, Mi-Hee; Lee, Yu Ran; Sung, Gi-Ho; Lee, Tae-Ho; Jeon, Byeong Hwa; Cho, Jae Youl; Song, Won O.; Park, Haeil; Choi, Sunga; Kim, Tae Woong

    2013-01-01

    A synthetic Militarin analog-1[(2R,3R,4R,5R)-1,6-bis(4-(2,4,4-trimethylpentan-2-yl)phenoxy) hexane-2,3,4,5-tetraol] is a novel derivative of constituents from Cordyceps militaris, which has been used to treat a variety of chronic diseases including inflammation, diabetes, hyperglycemia and cancers. Here, we report for the first time the synthesis of Militarin analog-1 (MA-1) and the apoptotic mechanism of MA-1 against human lung cancer cell lines. Treatment with MA-1 significantly inhibited the viability of 3 human lung cancer cell lines. The inhibition of viability and growth in MA-1-treated A549 cells with an IC 50 of 5 μM were mediated through apoptosis induction, as demonstrated by an increase in DNA fragmentation, sub-G 0 /G 1 -DNA fraction, nuclear condensation, and phosphatidylserine exposure. The apoptotic cell death caused mitochondrial membrane permeabilization through regulation of expression of the Bcl-2 family proteins, leading to cytochrome c release in a time-dependent manner. Subsequently, the final stage of apoptosis, activation of caspase-9/-3 and cleavage of poly (ADP ribose) polymerase, was induced. Furthermore, A549 lung cancer cells were more responsive to MA-1 than a bronchial epithelial cell line (BEAS-2B), involving the rapid generation of reactive oxygen species (ROS), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) activation. The pharmacological inhibition of ROS generation and JNK/p38 MAPK exhibited attenuated DNA fragmentation in MA-1-induced apoptosis. Oral administration of MA-1 also retarded growth of A549 orthotopic xenografts. In conclusion, the present study indicates that the new synthetic derivative MA-1 triggers mitochondrial apoptosis through ROS generation and regulation of MAPKs and may be a potent therapeutic agent against human lung cancer. - Highlights: • We report a novel synthesized derivative, militarin analog-1 (MA-1). • MA-1-induced cancer cell death was triggered by the ROS

  5. A novel synthetic analog of militarin, MA-1 induces mitochondrial dependent apoptosis by ROS generation in human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Deok Hyo; Lim, Mi-Hee [Department of Biochemistry, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Lee, Yu Ran [Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of); Sung, Gi-Ho [Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon 404-707 (Korea, Republic of); Lee, Tae-Ho [R and D Center, Dong-A Pharmaceutical Co, Ltd, Yongin 446-905 (Korea, Republic of); Jeon, Byeong Hwa [Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of); Cho, Jae Youl [Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Song, Won O. [Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 (United States); Park, Haeil [College of Pharmacy, Kangwon National University, Chuncheon 200-701 (Korea, Republic of); Choi, Sunga, E-mail: sachoi@cnu.ac.kr [Department of Physiology, School of Medicine, Chungnam National University, Daejeon 301-747 (Korea, Republic of); Kim, Tae Woong, E-mail: tawkim@kangwon.ac.kr [Department of Biochemistry, Kangwon National University, Chuncheon 200-701 (Korea, Republic of)

    2013-12-15

    A synthetic Militarin analog-1[(2R,3R,4R,5R)-1,6-bis(4-(2,4,4-trimethylpentan-2-yl)phenoxy) hexane-2,3,4,5-tetraol] is a novel derivative of constituents from Cordyceps militaris, which has been used to treat a variety of chronic diseases including inflammation, diabetes, hyperglycemia and cancers. Here, we report for the first time the synthesis of Militarin analog-1 (MA-1) and the apoptotic mechanism of MA-1 against human lung cancer cell lines. Treatment with MA-1 significantly inhibited the viability of 3 human lung cancer cell lines. The inhibition of viability and growth in MA-1-treated A549 cells with an IC{sub 50} of 5 μM were mediated through apoptosis induction, as demonstrated by an increase in DNA fragmentation, sub-G{sub 0}/G{sub 1}-DNA fraction, nuclear condensation, and phosphatidylserine exposure. The apoptotic cell death caused mitochondrial membrane permeabilization through regulation of expression of the Bcl-2 family proteins, leading to cytochrome c release in a time-dependent manner. Subsequently, the final stage of apoptosis, activation of caspase-9/-3 and cleavage of poly (ADP ribose) polymerase, was induced. Furthermore, A549 lung cancer cells were more responsive to MA-1 than a bronchial epithelial cell line (BEAS-2B), involving the rapid generation of reactive oxygen species (ROS), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) activation. The pharmacological inhibition of ROS generation and JNK/p38 MAPK exhibited attenuated DNA fragmentation in MA-1-induced apoptosis. Oral administration of MA-1 also retarded growth of A549 orthotopic xenografts. In conclusion, the present study indicates that the new synthetic derivative MA-1 triggers mitochondrial apoptosis through ROS generation and regulation of MAPKs and may be a potent therapeutic agent against human lung cancer. - Highlights: • We report a novel synthesized derivative, militarin analog-1 (MA-1). • MA-1-induced cancer cell death was triggered by

  6. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    Science.gov (United States)

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  7. Human atrial natriuretic peptide treatment for acute heart failure: a systematic review of efficacy and mortality.

    Science.gov (United States)

    Kobayashi, Daiki; Yamaguchi, Norihiro; Takahashi, Osamu; Deshpande, Gautam A; Fukui, Tsuguya

    2012-01-01

    The objectives of this study were to assess the effect of human atrial natriuretic peptide (hANP) treatment on physiological parameters and mortality in acute heart failure. The MEDLINE (1966-2009), EMBASE (1980-2009), Cochrane Central Register of Controlled Trials (1991-2009), American College of Physicians Journal Club (1991), Ichushi (Japana Centra Revuo Medicina) (1983-2009), Cinni (NII Scholarly and Academic Information Navigator) (1959-2009), National Diet Library Online Public Access Catalog (1969-2009), Webcat Plus (Japanese National Institute of Informatics) (1986-2009), Medical Online (1947-2009), and JST China (1981-2009) databases were searched for studies that compared the efficacy of hANP and the mortality in patients with acute heart failure with placebo controls. Only randomized controlled trials (RCTs) were included in the study. Out of 347 articles, a total of 4 studies involving 220 patients with acute heart failure fulfilled the predefined inclusion criteria. There were significant differences in the hemodynamic parameters between the hANP and placebo groups, especially in the pulmonary capillary wedge pressure (PCWP) reduction (standard mean difference [SMD] 2.07; 95% confidence interval [CI], 0.34-3.81) and the cardiac index (SMD 1.79; 95% CI, 0.12-3.47). No statistically significant differences in mortality rates were found (relative risk 1.03; 95% CI, 0.27-3.92). In a limited number of studies, hANP appears to improve several hemodynamic parameters, including pulmonary capillary wedge pressure and cardiac index, but not mortality. Further high-quality studies are needed to corroborate these results. Copyright © 2012 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  8. Molecular Characterisation of Small Molecule Agonists Effect on the Human Glucagon Like Peptide-1 Receptor Internalisation.

    Science.gov (United States)

    Thompson, Aiysha; Stephens, Jeffrey W; Bain, Stephen C; Kanamarlapudi, Venkateswarlu

    2016-01-01

    The glucagon-like peptide receptor (GLP-1R), which is a G-protein coupled receptor (GPCR), signals through both Gαs and Gαq coupled pathways and ERK phosphorylation to stimulate insulin secretion. The aim of this study was to determine molecular details of the effect of small molecule agonists, compounds 2 and B, on GLP-1R mediated cAMP production, intracellular Ca2+ accumulation, ERK phosphorylation and its internalisation. In human GLP-1R (hGLP-1R) expressing cells, compounds 2 and B induced cAMP production but caused no intracellular Ca2+ accumulation, ERK phosphorylation or hGLP-1R internalisation. GLP-1 antagonists Ex(9-39) and JANT-4 and the orthosteric binding site mutation (V36A) in hGLP-1R failed to inhibit compounds 2 and B induced cAMP production, confirming that their binding site distinct from the GLP-1 binding site on GLP-1R. However, K334A mutation of hGLP-1R, which affects Gαs coupling, inhibited GLP-1 as well as compounds 2 and B induced cAMP production, indicating that GLP-1, compounds 2 and B binding induce similar conformational changes in the GLP-1R for Gαs coupling. Additionally, compound 2 or B binding to the hGLP-1R had significantly reduced GLP-1 induced intracellular Ca2+ accumulation, ERK phosphorylation and hGLP-1R internalisation. This study illustrates pharmacology of differential activation of GLP-1R by GLP-1 and compounds 2 and B.

  9. Molecular Characterisation of Small Molecule Agonists Effect on the Human Glucagon Like Peptide-1 Receptor Internalisation.

    Directory of Open Access Journals (Sweden)

    Aiysha Thompson

    Full Text Available The glucagon-like peptide receptor (GLP-1R, which is a G-protein coupled receptor (GPCR, signals through both Gαs and Gαq coupled pathways and ERK phosphorylation to stimulate insulin secretion. The aim of this study was to determine molecular details of the effect of small molecule agonists, compounds 2 and B, on GLP-1R mediated cAMP production, intracellular Ca2+ accumulation, ERK phosphorylation and its internalisation. In human GLP-1R (hGLP-1R expressing cells, compounds 2 and B induced cAMP production but caused no intracellular Ca2+ accumulation, ERK phosphorylation or hGLP-1R internalisation. GLP-1 antagonists Ex(9-39 and JANT-4 and the orthosteric binding site mutation (V36A in hGLP-1R failed to inhibit compounds 2 and B induced cAMP production, confirming that their binding site distinct from the GLP-1 binding site on GLP-1R. However, K334A mutation of hGLP-1R, which affects Gαs coupling, inhibited GLP-1 as well as compounds 2 and B induced cAMP production, indicating that GLP-1, compounds 2 and B binding induce similar conformational changes in the GLP-1R for Gαs coupling. Additionally, compound 2 or B binding to the hGLP-1R had significantly reduced GLP-1 induced intracellular Ca2+ accumulation, ERK phosphorylation and hGLP-1R internalisation. This study illustrates pharmacology of differential activation of GLP-1R by GLP-1 and compounds 2 and B.

  10. The Antimicrobial Peptide Human Beta-Defensin-3 Is Induced by Platelet-Released Growth Factors in Primary Keratinocytes

    OpenAIRE

    Andreas Bayer; Justus Lammel; Mersedeh Tohidnezhad; Sebastian Lippross; Peter Behrendt; Tim Klüter; Thomas Pufe; Jochen Cremer; Holger Jahr; Franziska Rademacher; Regine Gläser; Jürgen Harder

    2017-01-01

    Platelet-released growth factors (PRGF) and its related clinically used formulations (e.g., Vivostat Platelet-Rich Fibrin (PRF?)) contain a variety of chemokines, cytokines, and growth factors and are therefore used to support healing of chronic, hard-to-heal, or infected wounds. Human beta-defensin-3 (hBD-3) is an antimicrobial peptide inducibly expressed in human keratinocytes especially upon wounding. The potent antimicrobial activity of hBD-3 together with its wound closure-promoting acti...

  11. Rapid degradation of D- and L-succinimide-containing peptides by a post-proline endopeptidase from human erythrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Momand, J.; Clarke, S.

    1987-12-01

    The authors have been interested in the metabolic fate of proteins containing aspartyl succinimide (Asu) residues. These residues can be derived from the spontaneous rearrangement of Asp and Asn residues and from the spontaneous demethylation of enzymatically methylated L-isoAsp and D-Asp residues. Incubation of the synthetic hexapeptide N-Ac-Val-Tyr-Pro-Asu-Gly-Ala with the cytosolic fraction of human erythrocytes resulted in rapid cleavage of the prolyl-aspartyl succinimide bond producing the tripeptide N-Ac-Val-Try-Pro. The rate of this reaction is equal for both L- and D-Asu-containing peptides and is 10-fold greater that the rate of cleavage of a corresponding peptide containing a normal Pro-Asp linkage. When the aspartyl succinimide ring was replaced with an isoaspartyl residue, the cleavage rate was about 5 times that of the normal Pro-Asp peptide. The tripeptide-producing activity copurified on DEAE-cellulose chromatography with an activity that cleaves N-carbobenzoxy-Gly-Pro-4-methylcoumarin-7-amide, a post-proline endopeptidase substrate. These two activities were both inhibited by an antiserum to rat brain post-proline endopeptidase, and it appears that they are catalyzed by the same enzyme. This enzyme has a molecular weight of approximately 80,000 and is covalently labeled and inhibited by (/sup 3/H) diisopropyl fluorophosphate. The facile cleavage of the succinimide- and isoaspartyl-containing peptides by this post-proline endopeptidase suggests that it may play a role in the metabolism of peptides containing altered aspartyl residues.

  12. Human biallelic MFN2 mutations induce mitochondrial dysfunction, upper body adipose hyperplasia, and suppression of leptin expression

    DEFF Research Database (Denmark)

    Rocha, Nuno M; Bulger, David A; Frontini, Andrea

    2017-01-01

    body adipose overgrowth. We describe similar massive adipose overgrowth with suppressed leptin expression in four further patients with biallelic MFN2 mutations and at least one p.Arg707Trp allele. Overgrown tissue was composed of normal-sized, UCP1-negative unilocular adipocytes, with mitochondrial...... network fragmentation, disorganised cristae, and increased autophagosomes. There was strong transcriptional evidence of mitochondrial stress signalling, increased protein synthesis, and suppression of signatures of cell death in affected tissue, whereas mitochondrial morphology and gene expression were...

  13. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xue; Wang, Xiaoxuan [Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China); Zheng, Ming, E-mail: zhengm@bjmu.edu.cn [Department of Physiology and Pathophysiology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191 (China); Luan, Qing Xian, E-mail: kqluanqx@126.com [Department of Periodontology, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081 (China)

    2016-09-10

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatment with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. - Highlights: • Inflammation is thought to promote pathogenic changes in periodontitis. • We investigated mtROS as a regulator of inflammation in gingival fibroblasts. • Targeted antioxidants were used to inhibit mtROS production after LPS challenge. • Inhibiting mtROS generation suppressed the secretion of pro-inflammatory cytokines. • JNK, p38, IKK, and NF-κB were shown to act as transducers of mtROS signaling.

  14. Mitochondrial reactive oxygen species mediate the lipopolysaccharide-induced pro-inflammatory response in human gingival fibroblasts

    International Nuclear Information System (INIS)

    Li, Xue; Wang, Xiaoxuan; Zheng, Ming; Luan, Qing Xian

    2016-01-01

    Although periodontal diseases are initiated by bacteria that colonize the tooth surface and gingival sulcus, the host response is believed to play an essential role in the breakdown of connective tissue and bone. Mitochondrial reactive oxygen species (mtROS) have been proposed to regulate the activation of the inflammatory response by the innate immune system. However, the role of mtROS in modulating the response of human gingival fibroblasts (HGFs) to immune stimulation by lipopolysaccharides (LPS) has yet to be fully elucidated. Here, we showed that LPS from Porphyromonas gingivalis stimulated HGFs to increase mtROS production, which could be inhibited by treatment with a mitochondrial-targeted exogenous antioxidant (mito-TEMPO) or transfection with manganese superoxide dismutase (MnSOD). A time-course study revealed that an increase in the concentration of mtROS preceded the expression of inflammatory cytokines in HGFs. Mito-TEMPO treatment or MnSOD transfection also significantly prevented the LPS-induced increase of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. Furthermore, suppressing LPS-induced mtROS generation inhibited the activation of p38, c-Jun N-terminal kinase, and inhibitor of nuclear factor-κB kinase, as well as the nuclear localization of nuclear factor-κB. These results demonstrate that mtROS generation is a key signaling event in the LPS-induced pro-inflammatory response of HGFs. - Highlights: • Inflammation is thought to promote pathogenic changes in periodontitis. • We investigated mtROS as a regulator of inflammation in gingival fibroblasts. • Targeted antioxidants were used to inhibit mtROS production after LPS challenge. • Inhibiting mtROS generation suppressed the secretion of pro-inflammatory cytokines. • JNK, p38, IKK, and NF-κB were shown to act as transducers of mtROS signaling.

  15. MitoLSDB: a comprehensive resource to study genotype to phenotype correlations in human mitochondrial DNA variations.

    Directory of Open Access Journals (Sweden)

    Shamnamole K

    Full Text Available Human mitochondrial DNA (mtDNA encodes a set of 37 genes which are essential structural and functional components of the electron transport chain. Variations in these genes have been implicated in a broad spectrum of diseases and are extensively reported in literature and various databases. In this study, we describe MitoLSDB, an integrated platform to catalogue disease association studies on mtDNA (http://mitolsdb.igib.res.in. The main goal of MitoLSDB is to provide a central platform for direct submissions of novel variants that can be curated by the Mitochondrial Research Community. MitoLSDB provides access to standardized and annotated data from literature and databases encompassing information from 5231 individuals, 675 populations and 27 phenotypes. This platform is developed using the Leiden Open (source Variation Database (LOVD software. MitoLSDB houses information on all 37 genes in each population amounting to 132397 variants, 5147 unique variants. For each variant its genomic location as per the Revised Cambridge Reference Sequence, codon and amino acid change for variations in protein-coding regions, frequency, disease/phenotype, population, reference and remarks are also listed. MitoLSDB curators have also reported errors documented in literature which includes 94 phantom mutations, 10 NUMTs, six documentation errors and one artefactual recombination. MitoLSDB is the largest repository of mtDNA variants systematically standardized and presented using the LOVD platform. We believe that this is a good starting resource to curate mtDNA variants and will facilitate direct submissions enhancing data coverage, annotation in context of pathogenesis and quality control by ensuring non-redundancy in reporting novel disease associated variants.

  16. High-resolution mitochondrial DNA analysis sheds light on human diversity, cultural interactions, and population mobility in Northwestern Amazonia.

    Science.gov (United States)

    Arias, Leonardo; Barbieri, Chiara; Barreto, Guillermo; Stoneking, Mark; Pakendorf, Brigitte

    2018-02-01

    Northwestern Amazonia (NWA) is a center of high linguistic and cultural diversity. Several language families and linguistic isolates occur in this region, as well as different subsistence patterns, with some groups being foragers and others agriculturalists. In addition, speakers of Eastern Tukanoan languages are known for practicing linguistic exogamy, a marriage system in which partners are taken from different language groups. In this study, we use high-resolution mitochondrial DNA sequencing to investigate the impact of this linguistic and cultural diversity on the genetic relationships and population structure of NWA groups. We collected saliva samples from individuals representing 40 different NWA ethnolinguistic groups and sequenced 439 complete mitochondrial genomes to an average coverage of 1,030×. The mtDNA data revealed that NWA populations have high genetic diversity with extensive sharing of haplotypes among groups. Moreover, groups who practice linguistic exogamy have higher genetic diversity, while the foraging Nukak have lower genetic diversity. We also find that rivers play a more important role than either geography or language affiliation in structuring the genetic relationships of populations. Contrary to the view of NWA as a pristine area inhabited by small human populations living in isolation, our data support a view of high diversity and contact among different ethnolinguistic groups, with movement along rivers probably facilitating this contact. Additionally, we provide evidence for the impact of cultural practices, such as linguistic exogamy, on patterns of genetic variation. Overall, this study provides new data and insights into a remote and little-studied region of the world. © 2017 Wiley Periodicals, Inc.

  17. Human polyomavirus JCV late leader peptide region contains important regulatory elements

    International Nuclear Information System (INIS)

    Akan, Ilhan; Sariyer, Ilker Kudret; Biffi, Renato; Palermo, Victoria; Woolridge, Stefanie; White, Martyn K.; Amini, Shohreh; Khalili, Kamel; Safak, Mahmut

    2006-01-01

    Transcription is a complex process that relies on the cooperative interaction between sequence-specific factors and the basal transcription machinery. The strength of a promoter depends on upstream or downstream cis-acting DNA elements, which bind transcription factors. In this study, we investigated whether DNA elements located downstream of the JCV late promoter, encompassing the late leader peptide region, which encodes agnoprotein, play regulatory roles in the JCV lytic cycle. For this purpose, the entire coding region of the leader peptide was deleted and the functional consequences of this deletion were analyzed. We found that viral gene expression and replication were drastically reduced. Gene expression also decreased from a leader peptide point mutant but to a lesser extent. This suggested that the leader peptide region of JCV might contain critical cis-acting DNA elements to which transcription factors bind and regulate viral gene expression and replication. We analyzed the entire coding region of the late leader peptide by a footprinting assay and identified three major regions (region I, II and III) that were protected by nuclear proteins. Further investigation of the first two protected regions by band shift assays revealed a new band that appeared in new infection cycles, suggesting that viral infection induces new factors that interact with the late leader peptide region of JCV. Analysis of the effect of the leader peptide region on the promoter activity of JCV by transfection assays demonstrated that this region has a positive and negative effect on the large T antigen (LT-Ag)-mediated activation of the viral early and late promoters, respectively. Furthermore, a partial deletion analysis of the leader peptide region encompassing the protected regions I and II demonstrated a significant down-regulation of viral gene expression and replication. More importantly, these results were similar to that obtained from a complete deletion of the late leader

  18. A novel synthetic peptide microarray assay detects Chlamydia species-specific antibodies in animal and human sera.

    Science.gov (United States)

    Sachse, Konrad; Rahman, Kh Shamsur; Schnee, Christiane; Müller, Elke; Peisker, Madlen; Schumacher, Thomas; Schubert, Evelyn; Ruettger, Anke; Kaltenboeck, Bernhard; Ehricht, Ralf

    2018-03-16

    Serological analysis of Chlamydia (C.) spp. infections is still mainly based on micro-immunofluorescence and ELISA. To overcome the limitations of conventional serology, we have designed a novel microarray carrying 52 synthetic peptides representing B-cell epitopes from immunodominant proteins of all 11 chlamydial species. The new assay has been validated using monospecific mouse hyperimmune sera. Subsequently, serum samples from cattle, sheep and humans with a known history of chlamydial infection were examined. For instance, the specific humoral response of sheep to treatment with a C. abortus vaccine has been visualized against a background of C. pecorum carriership. In samples from humans, dual infection with C. trachomatis and C. pneumoniae could be demonstrated. The experiments revealed that the peptide microarray assay was capable of simultaneously identifying specific antibodies to each Chlamydia spp. The actual assay represents an open platform test that can be complemented through future advances in Chlamydia proteome research. The concept of the highly parallel multi-antigen microarray proven in this study has the potential to enhance our understanding of antibody responses by defining not only a single quantitative response, but also the pattern of this response. The added value of using peptide antigens will consist in unprecedented serodiagnostic specificity.

  19. beta. -Endorphin and related peptides suppress phorbol myristate acetate-induced respiratory burst in human polymorphonuclear leukocytes

    Energy Technology Data Exchange (ETDEWEB)

    Diamant, M.; Henricks, P.A.J.; Nijkamp, F.P.; de Wied, D. (Univ. of Utrecht (Netherlands))

    1989-01-01

    In the present study, the immunomodulatory effect of {beta}-endorphin ({beta}-E) and shorter pro-opiomelancortin (POMC) fragments was evaluated by assessing their influence on respiratory burst in human polymorphonuclear leukocytes (PMN). The effect of the peptides on phorbol myristate acetate (PMA)-stimulated production of reactive oxygen metabolites was measured in a lucigenin-enhanced chemiluminescence (CL) assay. Both POMC peptides with opiate-like activity and their non-opioid derivatives were tested. With the exception of {alpha}-E, PMA-stimulated respiratory burst was suppressed by all POMC fragments tested. A U-shaped dose-response relation was observed. Doses lower than 10{sup {minus}17}M and higher than 10{sup {minus}8}M were without effect. {beta}-E and dT{beta}E both suppressed PMA-induced oxidative burst in human PMN at physiological concentrations. {gamma}-E and dT{gamma}E proved to be less potent inhibitors, reaching maximal effect at higher concentrations. DE{gamma}E exerted an even less pronounced but still significant suppressive effect at the concentration of 10{sup {minus}10}M. None of the endorphins tested was shown to affect resting oxidative metabolism in the PMN. The modulatory effects of the opioid peptides could not be blocked by the opioid antagonist naloxone.

  20. Accurate measurement of mitochondrial DNA deletion level and copy number differences in human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    John P Grady

    Full Text Available Accurate and reliable quantification of the abundance of mitochondrial DNA (mtDNA molecules, both wild-type and those harbouring pathogenic mutations, is important not only for understanding the progression of mtDNA disease but also for evaluating novel therapeutic approaches. A clear understanding of the sensitivity of mtDNA measurement assays under different experimental conditions is therefore critical, however it is routinely lacking for most published mtDNA quantification assays. Here, we comprehensively assess the variability of two quantitative Taqman real-time PCR assays, a widely-applied MT-ND1/MT-ND4 multiplex mtDNA deletion assay and a recently developed MT-ND1/B2M singleplex mtDNA copy number assay, across a range of DNA concentrations and mtDNA deletion/copy number levels. Uniquely, we provide a specific guide detailing necessary numbers of sample and real-time PCR plate replicates for accurately and consistently determining a given difference in mtDNA deletion levels and copy number in homogenate skeletal muscle DNA.

  1. Generation and characterization of a human-mouse chimeric high-affinity antibody that detects the DYKDDDDK FLAG peptide.

    Science.gov (United States)

    Ikeda, Koki; Koga, Tomoaki; Sasaki, Fumiyuki; Ueno, Ayumi; Saeki, Kazuko; Okuno, Toshiaki; Yokomizo, Takehiko

    2017-05-13

    DYKDDDDK peptide (FLAG) is a useful tool for investigating the function and localization of proteins whose antibodies (Abs) are not available. We recently established a high-affinity monoclonal antibody (mAb) for FLAG (clone 2H8). The 2H8 Ab is highly sensitive for detecting FLAG-tagged proteins by flowcytometry and immunoprecipitation, but it can yield nonspecific signals in immunohistochemistry of mouse tissues because it is of mouse origin. In this study, we reduced nonspecific signals by generating a chimeric 2H8 Ab with Fc fragments derived from human immunoglobulin. We fused a 5' terminal cDNA fragments for the Fab region of 2H8 mAb with 3' terminal cDNA fragments for Fc region of human IgG1. We transfected both chimeric plasmids and purified the resulting human-mouse chimeric 2H8. The chimeric 2H8 Ab successfully detected FLAG-tagged proteins in flowcytometry with anti-human IgG secondary Ab with comparable sensitivity to 2H8 mAb. Importantly, chimeric 2H8 detected specific FLAG peptide signals without nonspecific signals in immunohistochemical analysis with mouse tissues. This human-mouse chimeric high-affinity anti-FLAG Ab will prove useful for future immunohistochemical analysis of mouse tissues. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Mitochondrial genome analyses suggest multiple Trichuris species in humans, baboons, and pigs from different geographical regions

    DEFF Research Database (Denmark)

    Hawash, Mohamed B. F.; Andersen, Lee O.; Gasser, Robin B.

    2015-01-01

    Trichuris from françois' leaf monkey, suggesting multiple whipworm species circulating among non-human primates. The genetic and protein distances between pig Trichuris from Denmark and other regions were roughly 9% and 6%, respectively, while Chinese and Ugandan whipworms were more closely related......) suggesting that they represented different species. Trichuris from the olive baboon in US was genetically related to human Trichuris in China, while the other from the hamadryas baboon in Denmark was nearly identical to human Trichuris from Uganda. Baboon-derived Trichuris was genetically distinct from......BACKGROUND: The whipworms Trichuris trichiura and Trichuris suis are two parasitic nematodes of humans and pigs, respectively. Although whipworms in human and non-human primates historically have been referred to as T. trichiura, recent reports suggest that several Trichuris spp. are found...

  3. Solution structure of the first SH3 domain of human vinexin and its interaction with vinculin peptides

    International Nuclear Information System (INIS)

    Zhang, Jiahai; Li, Xiang; Yao, Bo; Shen, Weiqun; Sun, Hongbin; Xu, Chao; Wu, Jihui; Shi, Yunyu

    2007-01-01

    Solution structure of the first Src homology (SH) 3 domain of human vinexin (V S H3 1 ) was determined using nuclear magnetic resonance (NMR) method and revealed that it was a canonical SH3 domain, which has a typical β-β-β-β-α-β fold. Using chemical shift perturbation and surface plasmon resonance experiments, we studied the binding properties of the SH3 domain with two different peptides from vinculin hinge regions: P856 and P868. The observations illustrated slightly different affinities of the two peptides binding to V S H3 1 . The interaction between P868 and V S H3 1 belonged to intermediate exchange with a modest binding affinity, while the interaction between P856 and V S H3 1 had a low binding affinity. The structure and ligand-binding interface of V S H3 1 provide a structural basis for the further functional study of this important molecule

  4. MRM screening/biomarker discovery with linear ion trap MS: a library of human cancer-specific peptides

    International Nuclear Information System (INIS)

    Yang, Xu; Lazar, Iulia M

    2009-01-01

    The discovery of novel protein biomarkers is essential in the clinical setting to enable early disease diagnosis and increase survivability rates. To facilitate differential expression analysis and biomarker discovery, a variety of tandem mass spectrometry (MS/MS)-based protein profiling techniques have been developed. For achieving sensitive detection and accurate quantitation, targeted MS screening approaches, such as multiple reaction monitoring (MRM), have been implemented. MCF-7 breast cancer protein cellular extracts were analyzed by 2D-strong cation exchange (SCX)/reversed phase liquid chromatography (RPLC) separations interfaced to linear ion trap MS detection. MS data were interpreted with the Sequest-based Bioworks software (Thermo Electron). In-house developed Perl-scripts were used to calculate the spectral counts and the representative fragment ions for each peptide. In this work, we report on the generation of a library of 9,677 peptides (p < 0.001), representing ~1,572 proteins from human breast cancer cells, that can be used for MRM/MS-based biomarker screening studies. For each protein, the library provides the number and sequence of detectable peptides, the charge state, the spectral count, the molecular weight, the parameters that characterize the quality of the tandem mass spectrum (p-value, DeltaM, Xcorr, DeltaCn, Sp, no. of matching a, b, y ions in the spectrum), the retention time, and the top 10 most intense product ions that correspond to a given peptide. Only proteins identified by at least two spectral counts are listed. The experimental distribution of protein frequencies, as a function of molecular weight, closely matched the theoretical distribution of proteins in the human proteome, as provided in the SwissProt database. The amino acid sequence coverage of the identified proteins ranged from 0.04% to 98.3%. The highest-abundance proteins in the cellular extract had a molecular weight (MW)<50,000. Preliminary experiments have

  5. Electrochemical paper-based peptide nucleic acid biosensor for detecting human papillomavirus

    Energy Technology Data Exchange (ETDEWEB)

    Teengam, Prinjaporn [Program in Petrochemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330 (Thailand); Siangproh, Weena [Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110 (Thailand); Tuantranont, Adisorn [Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, Pathumthani, 12120 (Thailand); Henry, Charles S. [Department of Chemistry, Colorado State University, Fort Collins, CO, 80523 (United States); Vilaivan, Tirayut [Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330 (Thailand); Chailapakul, Orawon, E-mail: corawon@chula.ac.th [Electrochemistry and Optical Spectroscopy Research Unit, Department of Chemistry, Chulalongkorn University, Pathumwan, Bangkok, 10330 (Thailand); Nanotec-CU Center of Excellence on Food and Agriculture, Bangkok, 10330 (Thailand)

    2017-02-01

    A novel paper-based electrochemical biosensor was developed using an anthraquinone-labeled pyrrolidinyl peptide nucleic acid (acpcPNA) probe (AQ-PNA) and graphene-polyaniline (G-PANI) modified electrode to detect human papillomavirus (HPV). An inkjet printing technique was employed to prepare the paper-based G-PANI-modified working electrode. The AQ-PNA probe baring a negatively charged amino acid at the N-terminus was immobilized onto the electrode surface through electrostatic attraction. Electrochemical impedance spectroscopy (EIS) was used to verify the AQ-PNA immobilization. The paper-based electrochemical DNA biosensor was used to detect a synthetic 14-base oligonucleotide target with a sequence corresponding to human papillomavirus (HPV) type 16 DNA by measuring the electrochemical signal response of the AQ label using square-wave voltammetry before and after hybridization. It was determined that the current signal significantly decreased after the addition of target DNA. This phenomenon is explained by the rigidity of PNA-DNA duplexes, which obstructs the accessibility of electron transfer from the AQ label to the electrode surface. Under optimal conditions, the detection limit of HPV type 16 DNA was found to be 2.3 nM with a linear range of 10–200 nM. The performance of this biosensor on real DNA samples was tested with the detection of PCR-amplified DNA samples from the SiHa cell line. The new method employs an inexpensive and disposable device, which easily incinerated after use and is promising for the screening and monitoring of the amount of HPV-DNA type 16 to identify the primary stages of cervical cancer. - Highlights: • A paper-based DNA biosensor using AQ-PNA probe and G-PANI modified electrode was first developed. • This developed DNA biosensor was highly specific over the non-complementary DNA. • This sensor was successfully applied to detect the HPV-DNA type 16 obtained from cancer cell lines. • This sensor is inexpensive and

  6. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  7. Release of Periplasmic Nucleotidase Induced by Human Antimicrobial Peptide in E. coli Causes Accumulation of the Immunomodulator Adenosine.

    Directory of Open Access Journals (Sweden)

    Andreia Bergamo Estrela

    Full Text Available Previous work by our group described that human β-defensin-2 induces accumulation of extracellular adenosine (Ado in E. coli cultures through a non-lytic mechanism causing severe plasmolysis. Here, we investigate the presence of AMP as a direct precursor and the involvement of a bacterial enzyme in the generation of extracellular Ado by treated bacteria. Following hBD-2 treatment, metabolites were quantified in the supernatants using targeted HPLC-MS/MS analysis. Microbial growth was monitored by optical density and cell viability was determined by colony forming units counts. Phosphatase activity was measured using chromogenic substrate pNPP. The results demonstrate that defensin-treated E. coli strain W releases AMP in the extracellular space, where it is converted to Ado by a bacterial soluble factor. An increase in phosphatase activity in the supernatant was observed after peptide treatment, similar to the effect of sucrose-induced osmotic stress, suggesting that the periplasmic 5'nucleotidase (5'-NT is released following the plasmolysis event triggered by the peptide. Ado accumulation was enhanced in the presence of Co2+ ion and inhibited by EDTA, further supporting the involvement of a metallo-phosphatase such as 5'-NT in extracellular AMP conversion into Ado. The comparative analysis of hBD-induced Ado accumulation in different E. coli strains and in Pseudomonas aeruginosa revealed that the response is not correlated to the peptide's effect on cell viability, but indicates it might be dependent on the subcellular distribution of the nucleotidase. Taken together, these data shed light on a yet undescribed mechanism of host-microbial interaction: a human antimicrobial peptide inducing selective release of a bacterial enzyme (E. coli 5'-NT, leading to the formation of a potent immunomodulator metabolite (Ado.

  8. Symbiotic Plant Peptides Eliminate Candida albicans Both In Vitro and in an Epithelial Infection Model and Inhibit the Proliferation of Immortalized Human Cells

    Directory of Open Access Journals (Sweden)

    Lilla Ördögh

    2014-01-01

    Full Text Available The increasing number of multidrug-resistant microbes now emerging necessitates the identification of novel antimicrobial agents. Plants produce a great variety of antimicrobial peptides including hundreds of small, nodule-specific cysteine-rich NCR peptides that, in the legume Medicago truncatula, govern the differentiation of endosymbiotic nitrogen fixing bacteria and, in vitro, can display potent antibacterial activities. In this study, the potential candidacidal activity of 19 NCR peptides was investigated. Cationic NCR peptides having an isoelectric point above 9 were efficient in killing Candida albicans, one of the most common fungal pathogens of humans. None of the tested NCR peptides were toxic for immortalized human epithelial cells at concentrations that effectively killed the fungus; however, at higher concentrations, some of them inhibited the division of the cells. Furthermore, the cationic peptides successfully inhibited C. albicans induced human epithelial cell death in an in vitro coculture model. These results highlight the therapeutic potential of cationic NCR peptides in the treatment of candidiasis.

  9. Bezafibrate induces a mitochondrial derangement in human cell lines: a PPAR-independent mechanism for a peroxisome proliferator.

    Science.gov (United States)

    Scatena, R; Bottoni, P; Vincenzoni, F; Messana, I; Martorana, G E; Nocca, G; De Sole, P; Maggiano, N; Castagnola, M; Giardina, B

    2003-11-01

    Bezafibrate is a hypolipidemic drug that belongs to the group of peroxisome proliferators because it binds to peroxisome proliferator-activated receptors type alpha (PPARs). Peroxisome proliferators produce a myriad of extraperoxisomal effects, which are not necessarily dependent on their interaction with PPARs. An investigation on the peculiar activities of bezafibrate could clarify some of the molecular events and the relationship with the biochemical and pharmacological properties of this class of compounds. In this view, the human acute promyelocytic leukemia HL-60 cell line and human rabdomiosarcoma TE-671 cell line were cultured in media containing bezafibrate and a number of observations such as spectrophotometric analysis of mitochondrial respiratory chain enzymes, NMR metabolite determinations, phosphofructokinase enzymatic analysis, and differentiation assays were carried on. Bezafibrate induced a derangement of NADH cytochrome c reductase activity accompanied by metabolic alterations, mainly a shift to anaerobic glycolysis and an increase of fatty acid oxidation, as shown by NMR analysis of culture supernatants where acetate, lactate, and alanine levels increased. On the whole, the present results suggest a biochemical profile and a therapeutic role of this class of PPARs ligands more complex than those previously proposed.

  10. A Lentinus edodes polysaccharide induces mitochondrial-mediated apoptosis in human cervical carcinoma HeLa cells.

    Science.gov (United States)

    Ya, Guowei

    2017-10-01

    In this study, a homogeneous polysaccharide (LEP1) with an average molecular weight of 53kDa was successfully purified from the fruiting bodies of Lentinus edodes and its anticancer efficacy on human cervical carcinoma HeLa cells in vitro and associated possible molecular mechanism were also evaluated. MTT assay showed that LEP1 exhibited a dose-dependent inhibitory effect on the proliferation of HeLa cells and caused apoptotic death. Our present findings provided the first evidence that LEP1 induced the apoptosis of HeLa cells via a mitochondria dependent pathway, as indicated by an increase in Bax/Bcl-2 ratio, a loss of mitochondrial membrane potential (Δym), the release of cytochrome c from the mitochondria to the cytosol, activation of caspase-9 and caspase-3, and cleavage of poly (ADP-ribose) polymerase (PARP) in HeLa cells. These combined results unequivocally indicated that the involvement of mitochondria-mediated signaling pathway in LEP1-induced apoptosis and strongly provided experimental evidence for the use of LEP1 as a potential therapeutic agent in the prevention and treatment of human cervical carcinoma. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Diglycolic acid inhibits succinate dehydrogenase activity in human proximal tubule cells leading to mitochondrial dysfunction and cell death.

    Science.gov (United States)

    Landry, Greg M; Dunning, Cody L; Conrad, Taylor; Hitt, Mallory J; McMartin, Kenneth E

    2013-08-29

    Diethylene glycol (DEG) is a solvent used in consumer products allowing the increased risk for consumer exposure. DEG metabolism produces two primary metabolites, 2-hydroxyethoxyacetic acid (2-HEAA) and diglycolic acid (DGA). DGA has been shown to be the toxic metabolite responsible for the proximal tubule cell necrosis seen in DEG poisoning. The mechanism of DGA toxicity in the proximal tubule cell is not yet known. The chemical structure of DGA is very similar to citric acid cycle intermediates. Studies were designed to assess whether its mechanism of toxicity involves disruption of cellular metabolic pathways resulting in mitochondrial dysfunction. First, DGA preferentially inhibited succinate dehydrogenase, including human kidney cell enzyme, but had no effect on other citric acid cycle enzyme activities. DGA produces a cellular ATP depletion that precedes cell death. Human proximal tubule (HPT) cells, pre-treated with increasing DGA concentrations, showed significantly decreased oxygen consumption. DGA did not increase lactate levels, indicating no effect on glycolytic activity. DGA increased reactive oxygen species (ROS) production in HPT cells in a concentration and time dependent manner. These results indicate that DGA produced proximal tubule cell dysfunction by specific inhibition of succinate dehydrogenase and oxygen consumption. Disruption of these processes results in decreased energy production and proximal tubule cell death. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. The intensity of the 1602 cm-1 band in human cells is related to mitochondrial activity

    NARCIS (Netherlands)

    Pully, V.V.; Otto, Cornelis

    2009-01-01

    We report a Raman band at 1602 cm−1 in the spectra of human cells, which previously had only been observed in mitochondria of yeast cells. This band, which has not yet been assigned to a particular molecular species, was found to occur in HeLa cells, peripheral blood lymphocytes, human mesenchymal

  13. Conserved residues of the human mitochondrial holocytochrome c synthase mediate interactions with heme.

    Science.gov (United States)

    Babbitt, Shalon E; San Francisco, Brian; Bretsnyder, Eric C; Kranz, Robert G

    2014-08-19

    C-type cytochromes are distinguished by the covalent attachment of a heme cofactor, a modification that is typically required for its subsequent folding, stability, and function. Heme attachment takes place in the mitochondrial intermembrane space and, in most eukaryotes, is mediated by holocytochrome c synthase (HCCS). HCCS is the primary component of the eukaryotic cytochrome c biogenesis pathway, known as System III. The catalytic function of HCCS depends on its ability to coordinate interactions between its substrates: heme and cytochrome c. Recent advancements in the recombinant expression and purification of HCCS have facilitated comprehensive analyses of the roles of conserved residues in HCCS, as demonstrated in this study. Previously, we proposed a four-step model describing HCCS-mediated cytochrome c assembly, identifying a conserved histidine residue (His154) as an axial ligand to the heme iron. In this study, we performed a systematic mutational analysis of 17 conserved residues in HCCS, and we provide evidence that the enzyme contains two heme-binding domains. Our data indicate that heme contacts mediated by residues within these domains modulate the dynamics of heme binding and contribute to the stability of the HCCS-heme-cytochrome c steady state ternary complex. While some residues are essential for initial heme binding (step 1), others impact the subsequent release of the holocytochrome c product (step 4). Certain HCCS mutants that were defective in heme binding were corrected for function by exogenous aminolevulinic acid (ALA, the precursor to heme). This chemical "correction" supports the proposed role of heme binding for the corresponding residues.

  14. Mitochondrial myopathies.

    Science.gov (United States)

    DiMauro, Salvatore

    2006-11-01

    Our understanding of mitochondrial diseases (defined restrictively as defects of the mitochondrial respiratory chain) is expanding rapidly. In this review, I will give the latest information on disorders affecting predominantly or exclusively skeletal muscle. The most recently described mitochondrial myopathies are due to defects in nuclear DNA, including coenzyme Q10 deficiency and mutations in genes controlling mitochondrial DNA abundance and structure, such as POLG, TK2, and MPV17. Barth syndrome, an X-linked recessive mitochondrial myopathy/cardiopathy, is associated with decreased amount and altered structure of cardiolipin, the main phospholipid of the inner mitochondrial membrane, but a secondary impairment of respiratory chain function is plausible. The role of mutations in protein-coding genes of mitochondrial DNA in causing isolated myopathies has been confirmed. Mutations in tRNA genes of mitochondrial DNA can also cause predominantly myopathic syndromes and--contrary to conventional wisdom--these mutations can be homoplasmic. Defects in the mitochondrial respiratory chain impair energy production and almost invariably involve skeletal muscle, causing exercise intolerance, cramps, recurrent myoglobinuria, or fixed weakness, which often affects extraocular muscles and results in droopy eyelids (ptosis) and progressive external ophthalmoplegia.

  15. Ca2+-mobilizing agonists increase mitochondrial ATP production to accelerate cytosolic Ca2+ removal: aberrations in human complex I deficiency.

    NARCIS (Netherlands)

    Visch, H.J.; Koopman, W.J.H.; Zeegers, D.; Emst-de Vries, S.E. van; Kuppeveld, F.J.M. van; Heuvel, L.W. van den; Smeitink, J.A.M.; Willems, P.H.G.M.

    2006-01-01

    Previously, we reported that both the bradykinin (Bk)-induced increase in mitochondrial ATP concentration ([ATP]M) and the rate of cytosolic Ca2+ removal are significantly decreased in skin fibroblasts from a patient with an isolated complex I deficiency. Here we demonstrate that the mitochondrial

  16. Human DMBT1-Derived Cell-Penetrating Peptides for Intracellular siRNA Delivery

    DEFF Research Database (Denmark)

    Tuttolomondo, Martina; Casella, Cinzia; Hansen, Pernille Lund

    2017-01-01

    tumor 1) is a pattern recognition molecule that interacts with polyanions and recognizes and aggregates bacteria. Taking advantage of these properties, we investigated whether specific synthetic DMBT1-derived peptides could be used to formulate nanoparticles for siRNA administration. Using......-potential, circular dichroism, dynamic light scattering, and transmission electron microscopy revealed negatively charged nanoparticles with an average diameter of 10-800 nm, depending on the reaction conditions, and a spherical or rice-shaped morphology, depending on the peptide and β-helix conformation. We...

  17. The Use of a Liposomal Formulation Incorporating an Antimicrobial Peptide from Tilapia as a New Adjuvant to Epirubicin in Human Squamous Cell Carcinoma and Pluripotent Testicular Embryonic Carcinoma Cells

    Science.gov (United States)

    Lo, Yu-Li; Lee, Hsin-Pin; Tu, Wei-Chen

    2015-01-01

    This study aims to explore the effects and mechanisms of hepcidin, a potential antimicrobial peptide from Tilapia, and epirubicin (Epi), an antineoplastic agent, on the generation of reactive oxygen species (ROS) and link the ROS levels to the reversal mechanisms of multidrug resistance (MDR) by epirubicin and hepcidin in human squamous cell carcinoma SCC15 and human embryonal carcinoma NT2D1 cells. The cells, pretreated with hepcidin, epirubicin, or a combination of these compounds in PEGylated liposomes, were used to validate the molecular mechanisms involved in inhibiting efflux transporters and inducing apoptosis as evaluated by cytotoxicity, intracellular accumulation, mRNA levels, cell cycle distribution, and caspase activity of this combination. We found that hepcidin significantly enhanced the cytotoxicity of epirubicin in liposomes. The co-incubation of epirubicin with hepcidin in liposomes intensified the ROS production, including hydrogen peroxide and superoxide free radicals. Hepcidin significantly increased epirubicin intracellular uptake into NT2D1 and SCC15 cells, as supported by the diminished mRNA expressions of MDR1, MDR-associated protein (MRP) 1, and MRP2. Hepcidin and/or epirubicin in liposomes triggered apoptosis, as verified by the reduced mitochondrial membrane potential, increased sub-G1 phase of cell cycle, incremental populations of apoptosis using annexin V/PI assay, and chromatin condensation. As far as we know, this is the first example showing that PEGylated liposomal TH1-5 and epirubicin gives rise to cell death in human squamous carcinoma and testicular embryonic carcinoma cells through the reduced epirubicin efflux via ROS-mediated suppression of P-gp and MRPs and concomitant initiation of mitochondrial apoptosis pathway. Hence, hepcidin in PEGylated liposomes may function as an adjuvant to anticancer drugs, thus demonstrating a novel strategy for reversing MDR. PMID:26393585

  18. Structure-Based Design of Peptidic Inhibitors of the Interaction between CC Chemokine Ligand 5 (CCL5) and Human Neutrophil Peptides 1 (HNP1)

    NARCIS (Netherlands)

    Wichapong, Kanin; Alard, Jean-Eric; Ortega-Gomez, Almudena; Weber, Christian; Hackeng, Tilman M.; Soehnlein, Oliver; Nicolaes, Gerry A. F.

    2016-01-01

    Protein-protein interactions (PPIs) are receiving increasing interest, much sparked by the realization that they represent druggable targets. Recently, we successfully developed a peptidic inhibitor, RRYGTSKYQ ("SKY" peptide), that shows high potential in vitro and in vivo to interrupt a PPI between

  19. Identification of the IGF-1 processing product human Ec/rodent Eb peptide in various tissues: Evidence for its differential regulation after exercise-induced muscle damage in humans.

    Science.gov (United States)

    Vassilakos, George; Philippou, Anastassios; Koutsilieris, Michael

    2017-02-01

    Insulin-like growth factor-1 (IGF-1) is a pleiotropic factor expressed in various tissues and plays a critical role in skeletal muscle physiology. Alternative splicing of the IGF-1 gene gives rise to different precursor polypeptides (isoforms) which could undergo post-translational cleavage, generating the common mature IGF-1 peptide and different carboxyl terminal extension (E-) peptides, with the fate of the latter being, so far, unknown. The objective if this study was to identify the IGF-1Ec forms or processing product(s), other than mature IGF-1, generated in different human and rodent tissues and particularly in human skeletal muscle after exercise-induced damage. Protein lysates from a wide range of human and rodent tissues were immunoblotted with a rabbit anti-human Ec polyclonal antibody raised against the last 24 amino acids of the C-terminal of the Ec peptide. This antibody can recognize the Ec peptide, both as part of IGF-1Ec and alone, and also the corresponding rodent forms, due to the high homology that the human Ec shares with the rodent Eb. We were able to confirm, for the first time, that the human Ec peptide and its rodent homologous Eb peptide are produced simultaneously with their precursor protein (pro-IGF-1Ec/Eb) in vivo, in a wide range of tissues (e.g. muscle, liver, heart). Proprotein convertase furin digestion of human muscle and liver protein lysates confirmed that the higher molecular form, pro-IGF-1Ec, can be cleaved to produce the free Ec peptide. Furthermore, initial evidence is provided that Ec peptide is differentially regulated during the process of muscle regeneration after exercise-induced damage in humans. The findings of this study possibly imply that the post-translational modification of the IGF-1Ec pro-peptide may regulate the bioavailability and activity of the processing product(s). Copyright © 2016. Published by Elsevier Ltd.

  20. NMR assignments of SPOC domain of the human transcriptional corepressor SHARP in complex with a C-terminal SMRT peptide.

    Science.gov (United States)

    Mikami, Suzuka; Kanaba, Teppei; Ito, Yutaka; Mishima, Masaki

    2013-10-01

    The transcriptional corepressor SMRT/HDAC1-associated repressor protein (SHARP) recruits histone deacetylases. Human SHARP protein is thought to function in processes involving steroid hormone responses and the Notch signaling pathway. SHARP consists of RNA recognition motifs (RRMs) in the N-terminal region and the spen paralog and ortholog C-terminal (SPOC) domain in the C-terminal region. It is known that the SPOC domain binds the LSD motif in the C-terminal tail of corepressors silencing mediator for retinoid and thyroid receptor (SMRT)/nuclear receptor corepressor (NcoR). We are interested in delineating the mechanism by which the SPOC domain recognizes the LSD motif of the C-terminal tail of SMRT/NcoR. To this end, we are investigating the tertiary structure of the SPOC/SMRT peptide using NMR. Herein, we report on the (1)H, (13)C and (15)N resonance assignments of the SPOC domain in complex with a SMRT peptide, which contributes towards a structural understanding of the SPOC/SMRT peptide and its molecular recognition.

  1. Ribonuclease 7, an antimicrobial peptide up-regulated during infection, contributes to microbial defense of the human urinary tract

    Science.gov (United States)

    Spencer, John David; Schwaderer, Andrew L.; Wang, Huanyu; Bartz, Julianne; Kline, Jennifer; Eichler, Tad; DeSouza, Kristin R.; Sims-Lucas, Sunder; Baker, Peter; Hains, David S.

    2012-01-01

    The mechanisms that maintain sterility in the urinary tract are incompletely understood; however, recent studies stress the importance of antimicrobial peptides in protecting the urinary tract from infection. Ribonuclease 7 (RNase 7), a potent antimicrobial peptide contributing to urinary tract sterility, is expressed by intercalated cells in the renal collecting tubules and is present in the urine at levels sufficient to kill bacteria at baseline. Here, we characterize the expression and function of RNase 7 in the human urinary tract during infection. Both quantitative real-time PCR and ELISA assays demonstrated increases in RNASE7 expression in the kidney along with kidney and urinary RNase 7 peptide concentrations with infection. While immunostaining localized RNase 7 production to the intercalated cells of the collecting tubule during sterility, its expression during pyelonephritis was found to increase throughout the nephron but not in glomeruli or the interstitium. Recombinant RNase 7 exhibited antimicrobial activity against uropathogens at low micromolar concentrations by disrupting the microbial membrane as determined by atomic force microscopy. Thus, RNase 7 expression is increased in the urinary tract with infection, and has antibacterial activity against uropathogens at micromolar concentrations. PMID:23302724

  2. Membrane-Active Epithelial Keratin 6A Fragments (KAMPs) Are Unique Human Antimicrobial Peptides with a Non-αβ Structure

    Science.gov (United States)

    Lee, Judy T. Y.; Wang, Guangshun; Tam, Yu Tong; Tam, Connie

    2016-01-01

    Antibiotic resistance is a pressing global health problem that threatens millions of lives each year. Natural antimicrobial peptides and their synthetic derivatives, including peptoids and peptidomimetics, are promising candidates as novel antibiotics. Recently, the C-terminal glycine-rich fragments of human epithelial keratin 6A were found to have bactericidal and cytoprotective activities. Here, we used an improved 2-dimensional NMR method coupled with a new protocol for structural refinement by low temperature simulated annealing to characterize the solution structure of these kerain-derived antimicrobial peptides (KAMPs). Two specific KAMPs in complex with membrane mimicking sodium dodecyl sulfate (SDS) micelles displayed amphipathic conformations with only local bends and turns, and a central 10-residue glycine-rich hydrophobic strip that is central to bactericidal activity. To our knowledge, this is the first report of non-αβ structure for human antimicrobial peptides. Direct observation of Staphylococcus aureus and Pseudomonas aeruginosa by scanning and transmission electron microscopy showed that KAMPs deformed bacterial cell envelopes and induced pore formation. Notably, in competitive binding experiments, KAMPs demonstrated binding affinities to LPS and LTA that did not correlate with their bactericidal activities, suggesting peptide-LPS and peptide-LTA interactions are less important in their mechanisms of action. Moreover, immunoprecipitation of KAMPs-bacterial factor complexes indicated that membrane surface lipoprotein SlyB and intracellular machineries NQR sodium pump and ribosomes are potential molecular targets for the peptides. Results of this study improve our understanding of the bactericidal function of epithelial cytokeratin fragments, and highlight an unexplored class of human antimicrobial peptides, which may serve as non-αβ peptide scaffolds for the design of novel peptide-based antibiotics. PMID:27891122

  3. Membrane-Active Epithelial Keratin 6A Fragments (KAMPs Are Unique Human Antimicrobial Peptides with a Non-αβ Structure

    Directory of Open Access Journals (Sweden)

    Judy Tsz Ying Lee

    2016-11-01

    Full Text Available Antibiotic resistance is a pressing global health problem that threatens millions of lives each year. Natural antimicrobial peptides and their synthetic derivatives, including peptoids and peptidomimetics, are promising candidates as novel antibiotics. Recently, the C-terminal glycine-rich fragments of human epithelial keratin 6A were found to have bactericidal and cytoprotective activities. Here, we used an improved 2-dimensional NMR method coupled with a new protocol for structural refinement by low temperature simulated annealing to characterize the solution structure of these kerain-derived antimicrobial peptides (KAMPs. Two specific KAMPs in complex with membrane mimicking sodium dodecyl sulfate (SDS micelles displayed amphipathic conformations with only local bends and turns, and a central 10-residue glycine-rich hydrophobic strip that is central to bactericidal activity. To our knowledge, this is the first report of non-αβ structure for human antimicrobial peptides. Direct observation of Staphylococcus aureus and Pseudomonas aeruginosa by scanning and transmission electron microscopy showed that KAMPs deformed bacterial cell envelopes and induced pore formation. Notably, in competitive binding experiments, KAMPs demonstrated binding affinities to LPS and LTA that did not correlate with their bactericidal activities, suggesting peptide-LPS and peptide-LTA interactions are less important in their mechanisms of action. Moreover, immunoprecipitation of KAMPs-bacterial factor complexes indicated that membrane surface lipoprotein SlyB and intracellular machineries NQR sodium pump and ribosomes are potential molecular targets for the peptides. Results of this study improve our understanding of the bactericidal function of epithelial cytokeratin fragments, and highlight an unexplored class of human antimicrobial peptides, which may serve as non-αβ peptide scaffolds for the design of novel peptide-based antibiotics.

  4. Cytosolic calcium mediates RIP1/RIP3 complex-dependent necroptosis through JNK activation and mitochondrial ROS production in human colon cancer cells.

    Science.gov (United States)

    Sun, Wen; Wu, Xiaxia; Gao, Hongwei; Yu, Jie; Zhao, Wenwen; Lu, Jin-Jian; Wang, Jinhua; Du, Guanhua; Chen, Xiuping

    2017-07-01

    accumulation is a critical mediator in MAM-induced necroptosis through sustained JNK activation and mitochondrial ROS production. Our study also provided new insights into the molecular regulation of necroptosis in human colon cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Expression of receptors for gut peptides in human pancreatic adenocarcinoma and tumour-free pancreas

    NARCIS (Netherlands)

    Tang, C.; Biemond, I.; Offerhaus, G. J.; Verspaget, W.; Lamers, C. B.

    1997-01-01

    Gut hormones that modulate the growth of normal pancreas may also modulate the growth of cancers originating from pancreas. This study visualized and compared the receptors for cholecystokinin (CCK), bombesin (BBS), secretin and vasoactive intestinal peptide (VIP) in tumour-free tissue sections of

  6. Effect of the calcitonin gene-related peptide (CGRP) receptor antagonist telcagepant in human cranial arteries

    NARCIS (Netherlands)

    L. Edvinsson (Lars); K.Y. Chan (Kayi); S. Eftekhari; E. Nilsson (Elisabeth); R. de Vries (René); H. Säveland (Hans); C.M.F. Dirven (Clemens); A.H.J. Danser (Jan)

    2010-01-01

    textabstractIntroduction: Calcitonin gene-related peptide (CGRP) is a neuronal messenger in intracranial sensory nerves and is considered to play a significant role in migraine pathophysiology. Materials and methods: We investigated the effect of the CGRP receptor antagonist, telcagepant, on

  7. Effect of Pancreatic Hormones on pro-Atrial Natriuretic Peptide in Humans

    DEFF Research Database (Denmark)

    Zois, Nora E.; Terzic, Dijana; Faerch, Kristine

    2017-01-01

    Plasma concentrations of pro-Atrial natriuretic peptide, proANP, are decreased in obesity and diabetes. Decreased proANP concentrations have also been noted after meal intake, and recently, a glucose-mediated regulation of ANP gene expression was reported. Hence, we evaluated the effects of insul...

  8. Novel anti-oxidative peptides from enzymatic digestion of human milk

    DEFF Research Database (Denmark)

    Tsopmo, Apollinaire; Romanowski, Andrea; Banda, Lyness

    2011-01-01

    Humanmilk pepsin and pancreatin digests were separated using molecular membrane and reverse phase chromatography. Chemical screening of the resulting fractions using the ORAC antioxidant assay yielded a peptide fraction (PF-23) with high antioxidant activity (5207 μM Trolox Equivalents (TE...

  9. Trefoil factor family peptides in the human foetus and at birth

    DEFF Research Database (Denmark)

    Samson, Mie Hessellund; Poulsen, Steen Seier; Obeid, Rima

    2011-01-01

    Eur J Clin Invest 2011; 41 (7): 785-792 ABSTRACT: Background Trefoil factors (TFF1-3) are cysteine-rich peptides secreted by mucosal surfaces. Changing levels of expression are reflected in serum concentrations. Serum levels of TFF2 and TFF3 are highly elevated during pregnancy. Here, we explore ...

  10. Vasoactive intestinal polypeptide and peptide histidine methionine. Presence in human follicular fluid and effects on DNA synthesis and steroid secretion in cultured human granulosa/lutein cells

    DEFF Research Database (Denmark)

    Gräs, S; Ovesen, P; Andersen, A N

    1994-01-01

    Vasoactive intestinal polypeptide (VIP) and peptide histidine methionine (PHM) originate from the same precursor molecule, prepro VIP. In the present study we examined the concentrations of VIP and PHM in human follicular fluid and their effects on cultured human granulosa/lutein cells. Follicular....../l, respectively. VIP at a concentration of 10 nmol/l caused a significant increase in [3H]thymidine incorporation, and at 1000 nmol/l a significant increase in oestradiol secretion was observed. VIP had no effect on progesterone secretion. PHM at the concentrations tested did not influence any of the activities...

  11. A facile and sensitive peptide-modulating graphene oxide nanoribbon catalytic nanoplasmon analytical platform for human chorionic gonadotropin

    Directory of Open Access Journals (Sweden)

    Liang A

    2017-12-01

    Full Text Available Aihui Liang,1,2,* Chongning Li,1,2,* Dan Li,1,2,* Yanghe Luo,1–3 Guiqing Wen,1,2 Zhiliang Jiang1,2 1Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Guangxi Normal University, Ministry of Education, 2Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 3School of Food and Bioengineering, Hezhou University, Hezhou, China *These authors contributed equally to this work Abstract: The nanogold reaction between HAuCl4 and citrate is very slow, and the catalyst graphene oxide nanoribbon (GONR enhanced the nanoreaction greatly to produce gold nanoparticles (AuNPs that exhibited strong surface plasmon resonance (SPR absorption (Abs at 550 nm and resonance Rayleigh scattering (RRS at 550 nm. Upon addition of the peptide of human chorionic gonadotropin (hCG, the peptide could adsorb on the GONR surface, which inhibited the catalysis. When hCG was added, peptides were separated from the GONR surface due to the formation of stable peptide–hCG complex, which led to the activation of GONR catalytic effect. With the increase in hCG concentration, the RRS and Abs signal enhanced linearly. The enhanced RRS value showed a good linear relationship with hCG concentration in the range of 0.2–20 ng/mL, with a detection limit of 70 pg/mL. Accordingly, two new GONR catalytic RRS/Abs methods were established for detecting hCG in serum samples. Keywords: nanocatalysis, graphene oxide nanoribbon, peptide regulation, hCG, RRS

  12. Conserved Bacterial-Binding Peptides of the Scavenger-Like Human Lymphocyte Receptor CD6 Protect From Mouse Experimental Sepsis

    Directory of Open Access Journals (Sweden)

    Mario Martínez-Florensa

    2018-04-01

    Full Text Available Sepsis is an unmet clinical need constituting one of the most important causes of death worldwide, a fact aggravated by the appearance of multidrug resistant strains due to indiscriminate use of antibiotics. Host innate immune receptors involved in pathogen-associated molecular patterns (PAMPs recognition represent a source of broad-spectrum therapies alternative or adjunctive to antibiotics. Among the few members of the ancient and highly conserved scavenger receptor cysteine-rich superfamily (SRCR-SF sharing bacterial-binding properties there is CD6, a lymphocyte-specific surface receptor. Here, we analyze the bacterial-binding properties of three conserved short peptides (11-mer mapping at extracellular SRCR domains of human CD6 (CD6.PD1, GTVEVRLEASW; CD6.PD2 GRVEMLEHGEW; and CD6.PD3, GQVEVHFRGVW. All peptides show high binding affinity for PAMPs from Gram-negative (lipopolysaccharide; Kd from 3.5 to 3,000 nM and Gram-positive (lipoteichoic acid; Kd from 36 to 680 nM bacteria. The CD6.PD3 peptide possesses broad bacterial-agglutination properties and improved survival of mice undergoing polymicrobial sepsis in a dose- and time-dependent manner. Accordingly, CD6.PD3 triggers a decrease in serum levels of both pro-inflammatory cytokines and bacterial load. Interestingly, CD6.PD3 shows additive survival effects on septic mice when combined with Imipenem/Cilastatin. These results illustrate the therapeutic potential of peptides retaining the bacterial-binding properties of native CD6.

  13. Induction of Mitochondrial Changes Associ