WorldWideScience

Sample records for human mismatch repair

  1. Impact of DNA mismatch repair system alterations on human fertility and related treatments.

    Science.gov (United States)

    Hu, Min-hao; Liu, Shu-yuan; Wang, Ning; Wu, Yan; Jin, Fan

    2016-01-01

    DNA mismatch repair (MMR) is one of the biological pathways, which plays a critical role in DNA homeostasis, primarily by repairing base-pair mismatches and insertion/deletion loops that occur during DNA replication. MMR also takes part in other metabolic pathways and regulates cell cycle arrest. Defects in MMR are associated with genomic instability, predisposition to certain types of cancers and resistance to certain therapeutic drugs. Moreover, genetic and epigenetic alterations in the MMR system demonstrate a significant relationship with human fertility and related treatments, which helps us to understand the etiology and susceptibility of human infertility. Alterations in the MMR system may also influence the health of offspring conceived by assisted reproductive technology in humans. However, further studies are needed to explore the specific mechanisms by which the MMR system may affect human infertility. This review addresses the physiological mechanisms of the MMR system and associations between alterations of the MMR system and human fertility and related treatments, and potential effects on the next generation.

  2. Measuring strand discontinuity-directed mismatch repair in yeast Saccharomyces cerevisiae by cell-free nuclear extracts.

    Science.gov (United States)

    Yuan, Fenghua; Lai, Fangfang; Gu, Liya; Zhou, Wen; El Hokayem, Jimmy; Zhang, Yanbin

    2009-05-01

    Mismatch repair corrects biosynthetic errors generated during DNA replication, whose deficiency causes a mutator phenotype and directly underlies hereditary non-polyposis colorectal cancer and sporadic cancers. Because of remarkably high conservation of the mismatch repair machinery between the budding yeast (Saccharomyces cerevisiae) and humans, the study of mismatch repair in yeast has provided tremendous insights into the mechanisms of this repair pathway in humans. In addition, yeast cells possess an unbeatable advantage over human cells in terms of the easy genetic manipulation, the availability of whole genome deletion strains, and the relatively low cost for setting up the system. Although many components of eukaryotic mismatch repair have been identified, it remains unclear if additional factors, such as DNA helicase(s) and redundant nuclease(s) besides EXO1, participate in eukaryotic mismatch repair. To facilitate the discovery of novel mismatch repair factors, we developed a straightforward in vitro cell-free repair system. Here, we describe the practical protocols for preparation of yeast cell-free nuclear extracts and DNA mismatch substrates, and the in vitro mismatch repair assay. The validity of the cell-free system was confirmed by the mismatch repair deficient yeast strain (Deltamsh2) and the complementation assay with purified yeast MSH2-MSH6.

  3. Explosive mutation accumulation triggered by heterozygous human Pol ε proofreading-deficiency is driven by suppression of mismatch repair

    Science.gov (United States)

    Campbell, Brittany B; Ungerleider, Nathan; Light, Nicholas; Wu, Tong; LeCompte, Kimberly G; Goksenin, A Yasemin; Bunnell, Bruce A; Tabori, Uri; Shlien, Adam

    2018-01-01

    Tumors defective for DNA polymerase (Pol) ε proofreading have the highest tumor mutation burden identified. A major unanswered question is whether loss of Pol ε proofreading by itself is sufficient to drive this mutagenesis, or whether additional factors are necessary. To address this, we used a combination of next generation sequencing and in vitro biochemistry on human cell lines engineered to have defects in Pol ε proofreading and mismatch repair. Absent mismatch repair, monoallelic Pol ε proofreading deficiency caused a rapid increase in a unique mutation signature, similar to that observed in tumors from patients with biallelic mismatch repair deficiency and heterozygous Pol ε mutations. Restoring mismatch repair was sufficient to suppress the explosive mutation accumulation. These results strongly suggest that concomitant suppression of mismatch repair, a hallmark of colorectal and other aggressive cancers, is a critical force for driving the explosive mutagenesis seen in tumors expressing exonuclease-deficient Pol ε. PMID:29488881

  4. Heterogenous mismatch-repair status in colorectal cancer

    DEFF Research Database (Denmark)

    Joost, Patrick; Veurink, Nynke; Holck, Susanne

    2014-01-01

    BACKGROUND: Immunohistochemical staining for mismatch repair proteins is efficient and widely used to identify mismatch repair defective tumors. The tumors typically show uniform and widespread loss of MMR protein staining. We identified and characterized colorectal cancers with alternative......, heterogenous mismatch repair protein staining in order to delineate expression patterns and underlying mechanisms. METHODS: Heterogenous staining patterns that affected at least one of the mismatch repair proteins MLH1, PMS2, MSH2 and MSH6 were identified in 14 colorectal cancers. Based on alternative....... CONCLUSIONS: Heterogenous mismatch repair status can be demonstrated in colorectal cancer. Though rare, attention to this phenomenon is recommended since it corresponds to differences in mismatch repair status that are relevant for correct classification. VIRTUAL SLIDES: The virtual slide(s) for this article...

  5. [Constitutional mismatch repair deficiency syndrome

    NARCIS (Netherlands)

    Jongmans, M.C.J.; Gidding, C.E.M.; Loeffen, J.; Wesseling, P.; Mensenkamp, A.; Hoogerbrugge, N.

    2015-01-01

    BACKGROUND: Constitutional mismatch repair deficiency (CMMR-D) syndrome is characterised by a significantly increased risk for developing cancer in childhood. It arises when both parents have a mutation in the same mismatch repair gene and pass it on to their child. CASE DESCRIPTION: An 8-year-old

  6. Mismatch repair genes in Lynch syndrome: a review

    Directory of Open Access Journals (Sweden)

    Felipe Cavalcanti Carneiro da Silva

    Full Text Available Lynch syndrome represents 1-7% of all cases of colorectal cancer and is an autosomal-dominant inherited cancer predisposition syndrome caused by germline mutations in deoxyribonucleic acid (DNA mismatch repair genes. Since the discovery of the major human genes with DNA mismatch repair function, mutations in five of them have been correlated with susceptibility to Lynch syndrome: mutS homolog 2 (MSH2; mutL homolog 1 (MLH1; mutS homolog 6 (MSH6; postmeiotic segregation increased 2 (PMS2; and postmeiotic segregation increased 1 (PMS1. It has been proposed that one additional mismatch repair gene, mutL homolog 3 (MLH3, also plays a role in Lynch syndrome predisposition, but the clinical significance of mutations in this gene is less clear. According to the InSiGHT database (International Society for Gastrointestinal Hereditary Tumors, approximately 500 different LS-associated mismatch repair gene mutations are known, primarily involving MLH1 (50% and MSH2 (40%, while others account for 10%. Much progress has been made in understanding the molecular basis of Lynch Syndrome. Molecular characterization will be the most accurate way of defining Lynch syndrome and will provide predictive information of greater accuracy regarding the risks of colon and extracolonic cancer and enable optimal cancer surveillance regimens.

  7. Homozygous germ-line mutation of the PMS2 mismatch repair gene: a unique case report of constitutional mismatch repair deficiency (CMMRD)

    OpenAIRE

    Ramchander, N. C.; Ryan, N. A. J.; Crosbie, E. J.; Evans, D. G.

    2017-01-01

    BackgroundConstitutional mismatch repair deficiency syndrome results from bi-allelic inheritance of mutations affecting the key DNA mismatch repair genes: MLH1, MSH2, MSH6 or PMS2. Individuals with bi-allelic mutations have a dysfunctional mismatch repair system from birth; as a result, constitutional mismatch repair deficiency syndrome is characterised by early onset malignancies. Fewer than 150 cases have been reported in the literature over the past 20 years. This is the first report of th...

  8. Purification, crystallization and preliminary X-ray diffraction analysis of the human mismatch repair protein MutSβ

    International Nuclear Information System (INIS)

    Tseng, Quincy; Orans, Jillian; Hast, Michael A.; Iyer, Ravi R.; Changela, Anita; Modrich, Paul L.; Beese, Lorena S.

    2011-01-01

    Human MutSβ is a 232 kDa heterodimer (MSH2–MSH3) involved in the lesion-recognition step of mismatch repair. Here, the overexpression, purification, biochemical characterization and cocrystallization of MutSβ with a duplex DNA substrate are reported. MutSβ is a eukaryotic mismatch repair protein that preferentially targets extrahelical unpaired nucleotides and shares partial functional redundancy with MutSα (MSH2–MSH6). Although mismatch recognition by MutSα has been shown to involve a conserved Phe-X-Glu motif, little is known about the lesion-binding mechanism of MutSβ. Combined MSH3/MSH6 deficiency triggers a strong predisposition to cancer in mice and defects in msh2 and msh6 account for roughly half of hereditary nonpolyposis colorectal cancer mutations. These three MutS homologs are also believed to play a role in trinucleotide repeat instability, which is a hallmark of many neurodegenerative disorders. The baculovirus overexpression and purification of recombinant human MutSβ and three truncation mutants are presented here. Binding assays with heteroduplex DNA were carried out for biochemical characterization. Crystallization and preliminary X-ray diffraction analysis of the protein bound to a heteroduplex DNA substrate are also reported

  9. [Constitutional mismatch repair deficiency syndrome].

    Science.gov (United States)

    Jongmans, Marjolijn C; Gidding, Corrie E; Loeffen, Jan; Wesseling, Pieter; Mensenkamp, Arjen; Hoogerbrugge, Nicoline

    2015-01-01

    Constitutional mismatch repair deficiency (CMMR-D) syndrome is characterised by a significantly increased risk for developing cancer in childhood. It arises when both parents have a mutation in the same mismatch repair gene and pass it on to their child. An 8-year-old girl was diagnosed with CMMR-D syndrome after she developed a brain tumour at the age of 4 and a T-cell non-Hodgkin lymphoma at the age of 6. She had multiple hyperpigmented skin lesions and died of myelodysplastic syndrome at the age of 11. In children with cancer CMMR-D syndrome can be recognized particularly if there are multiple primary malignancies and skin hyperpigmentations and hypopigmentations. The parents of these children are at high risk for colorectal and endometrial cancer (Lynch syndrome), amongst others.

  10. Human DNA polymerase delta double-mutant D316A;E318A interferes with DNA mismatch repair in vitro

    DEFF Research Database (Denmark)

    Liu, Dekang; Frederiksen, Jane H.; Liberti, Sascha Emilie

    2017-01-01

    DNA mismatch repair (MMR) is a highly-conserved DNA repair mechanism, whose primary role is to remove DNA replication errors preventing them from manifesting as mutations, thereby increasing the overall genome stability. Defects in MMR are associated with increased cancer risk in humans and other...... organisms. Here, we characterize the interaction between MMR and a proofreading-deficient allele of the human replicative DNA polymerase delta, PolδD316A;E318A, which has a higher capacity for strand displacement DNA synthesis than wild type Polδ. Human cell lines overexpressing PolδD316A;E318A display...

  11. Homozygous germ-line mutation of the PMS2 mismatch repair gene: a unique case report of constitutional mismatch repair deficiency (CMMRD).

    Science.gov (United States)

    Ramchander, N C; Ryan, N A J; Crosbie, E J; Evans, D G

    2017-04-05

    Constitutional mismatch repair deficiency syndrome results from bi-allelic inheritance of mutations affecting the key DNA mismatch repair genes: MLH1, MSH2, MSH6 or PMS2. Individuals with bi-allelic mutations have a dysfunctional mismatch repair system from birth; as a result, constitutional mismatch repair deficiency syndrome is characterised by early onset malignancies. Fewer than 150 cases have been reported in the literature over the past 20 years. This is the first report of the founder PMS2 mutation - NM_000535.5:c.1500del (p.Val501TrpfsTer94) in exon 11 and its associated cancers in this family. The proband is 30 years old and is alive today. She is of Pakistani ethnic origin and a product of consanguinity. She initially presented aged 24 with painless bleeding per-rectum from colorectal polyps and was referred to clinical genetics. Clinical examination revealed two café-au-lait lesions, lichen planus, and a dermoid cyst. Her sister had been diagnosed in childhood with an aggressive brain tumour followed by colorectal cancer. During follow up, the proband developed 37 colorectal adenomatous polyps, synchronous ovarian and endometrial adenocarcinomas, and ultimately a metachronous gastric adenocarcinoma. DNA sequencing of peripheral lymphocytes revealed a bi-allelic inheritance of the PMS2 mutation NM_000535.5:c.1500del (p.Val501TrpfsTer94) in exon 11. Ovarian tumour tissue demonstrated low microsatellite instability. To date, she has had a total abdominal hysterectomy, bilateral salpingo-oophorectomy, and a total gastrectomy. Aspirin and oestrogen-only hormone replacement therapy provide some chemoprophylaxis and manage postmenopausal symptoms, respectively. An 18-monthly colonoscopy surveillance programme has led to the excision of three high-grade dysplastic colorectal tubular adenomatous polyps. The proband's family pedigree displays multiple relatives with cancers including a likely case of 'true' Turcot syndrome. Constitutional mismatch repair

  12. Human mismatch repair protein hMutLα is required to repair short slipped-DNAs of trinucleotide repeats.

    Science.gov (United States)

    Panigrahi, Gagan B; Slean, Meghan M; Simard, Jodie P; Pearson, Christopher E

    2012-12-07

    Mismatch repair (MMR) is required for proper maintenance of the genome by protecting against mutations. The mismatch repair system has also been implicated as a driver of certain mutations, including disease-associated trinucleotide repeat instability. We recently revealed a requirement of hMutSβ in the repair of short slip-outs containing a single CTG repeat unit (1). The involvement of other MMR proteins in short trinucleotide repeat slip-out repair is unknown. Here we show that hMutLα is required for the highly efficient in vitro repair of single CTG repeat slip-outs, to the same degree as hMutSβ. HEK293T cell extracts, deficient in hMLH1, are unable to process single-repeat slip-outs, but are functional when complemented with hMutLα. The MMR-deficient hMLH1 mutant, T117M, which has a point mutation proximal to the ATP-binding domain, is defective in slip-out repair, further supporting a requirement for hMLH1 in the processing of short slip-outs and possibly the involvement of hMHL1 ATPase activity. Extracts of hPMS2-deficient HEC-1-A cells, which express hMLH1, hMLH3, and hPMS1, are only functional when complemented with hMutLα, indicating that neither hMutLβ nor hMutLγ is sufficient to repair short slip-outs. The resolution of clustered short slip-outs, which are poorly repaired, was partially dependent upon a functional hMutLα. The joint involvement of hMutSβ and hMutLα suggests that repeat instability may be the result of aberrant outcomes of repair attempts.

  13. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    International Nuclear Information System (INIS)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A.

    2014-01-01

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting

  14. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A., E-mail: sarah.martin@qmul.ac.uk [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ (United Kingdom)

    2014-08-05

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting.

  15. A Database to Support the Interpretation of Human Mismatch Repair Gene Variants

    NARCIS (Netherlands)

    Ou, Jianghua; Niessen, Renee C.; Vonk, Jan; Westers, Helga; Hofstra, Robert M. W.; Sijmons, Rolf H.

    Germline mutations in the mismatch repair (MMR) genes MLH1, MSH2, MSH6, or PMS2 can cause Lynch syndrome. This syndrome, also known as hereditary nonpolyposis colorectal cancer (HNPCC), is an autosomal dominantly-inherited disorder predominantly characterized by colorectal and endometrial cancer.

  16. Interobserver variability in the evaluation of mismatch repair protein immunostaining

    DEFF Research Database (Denmark)

    Klarskov, Louise Laurberg; Ladelund, Steen; Holck, Susanne

    2010-01-01

    Immunohistochemical staining for mismatch repair proteins has during recent years been established as a routine analysis in many pathology laboratories with the aim to identify tumors linked to the hereditary nonpolyposis colorectal cancer syndrome. Despite widespread application, data on reliabi......Immunohistochemical staining for mismatch repair proteins has during recent years been established as a routine analysis in many pathology laboratories with the aim to identify tumors linked to the hereditary nonpolyposis colorectal cancer syndrome. Despite widespread application, data...... on reliability are lacking. We therefore evaluated interobserver variability among 6 pathologists, 3 experienced gastrointestinal pathologists and 3 residents. In total, 225 immunohistochemically stained colorectal cancers were evaluated as having normal, weak, loss of, or nonevaluable mismatch repair protein...... variability was considerable, though experienced pathologists and residents reached the same level of consensus. Because results from immunohistochemical mismatch repair protein stainings are used for decisions on mutation analysis and as an aid in the interpretation of gene variants of unknown significance...

  17. Mismatch Repair Balances Leading and Lagging Strand DNA Replication Fidelity

    Science.gov (United States)

    2012-10-11

    Rev Mol Cell Biol 7: 335–346. 7. Li GM (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18: 85–98. 8. Pavlov YI, Mian IM, Kunkel TA...11: 165–170. 41. Li F, Tian L, Gu L, Li GM (2009) Evidence that nucleosomes inhibit mismatch repair in eukaryotic cells. J Biol Chem 284: 33056–33061

  18. Relationship among mismatch repair deficiency, CDX2 loss, p53 and E-cadherin in colon carcinoma and suitability of using a double panel of mismatch repair proteins by immunohistochemistry.

    Science.gov (United States)

    Sayar, Ilyas; Akbas, Emin Murat; Isik, Arda; Gokce, Aysun; Peker, Kemal; Demirtas, Levent; Gürbüzel, Mehmet

    2015-09-01

    Biomarkers such as mismatch repair proteins, CDX2, p53, and E-cadherin are blamed for colon cancers, but the relationships of these biomarkers with each other and with pathological risk factors in colon carcinoma are still not clear. The aim of this study was to evaluate the association of these biomarkers with each other by using immunohistochemical staining and to compare their expression with pathological risk factors for colonic adenocarcinoma. We also aimed to study the usability of a double panel of mismatch repair proteins. One hundred and eleven cases with colonic adenocarcinoma were examined. There was a statistically significant relationship between tumor histological differentiation and perineural invasion, vascular invasion, mismatch repair deficiency, p53, CDX2, and E-cadherin (p < 0.05). PMS2 and MSH6 loss covered 100% of cases with mismatch repair deficiency. Mismatch repair deficiency was correlated with CDX2 loss and E-cadherin expression (p < 0.05). It was also observed that cases with PMS2 loss covered all the cases with CDX2 loss. In conclusion, this double panel may be used instead of a quadruple panel for detecting mismatch repair deficiency. Association of CDX2 and PMS2 in the present study is necessary to conduct further genetic and pathological studies focusing on these two markers together.

  19. Interaction of proliferating cell nuclear antigen with PMS2 is required for MutLα activation and function in mismatch repair.

    Science.gov (United States)

    Genschel, Jochen; Kadyrova, Lyudmila Y; Iyer, Ravi R; Dahal, Basanta K; Kadyrov, Farid A; Modrich, Paul

    2017-05-09

    Eukaryotic MutLα (mammalian MLH1-PMS2 heterodimer; MLH1-PMS1 in yeast) functions in early steps of mismatch repair as a latent endonuclease that requires a mismatch, MutSα/β, and DNA-loaded proliferating cell nuclear antigen (PCNA) for activation. We show here that human PCNA and MutLα interact specifically but weakly in solution to form a complex of approximately 1:1 stoichiometry that depends on PCNA interaction with the C-terminal endonuclease domain of the MutLα PMS2 subunit. Amino acid substitution mutations within a PMS2 C-terminal 721 QRLIAP motif attenuate or abolish human MutLα interaction with PCNA, as well as PCNA-dependent activation of MutLα endonuclease, PCNA- and DNA-dependent activation of MutLα ATPase, and MutLα function in in vitro mismatch repair. Amino acid substitution mutations within the corresponding yeast PMS1 motif ( 723 QKLIIP) reduce or abolish mismatch repair in vivo. Coupling of a weak allele within this motif ( 723 AKLIIP) with an exo1 Δ null mutation, which individually confer only weak mutator phenotypes, inactivates mismatch repair in the yeast cell.

  20. Immunohistochemical and DNA sequencing analysis on human mismatch repair gene MLH1 in cervical squamous cell carcinoma with LOH of this gene

    NARCIS (Netherlands)

    Hu, X.; Guo, Z.; Pang, T.; Li, Q.; Afink, G.; Pontén, J.

    2000-01-01

    BACKGROUND: The human MLH1 gene (hMLH1) is one of the DNA mismatch repair genes. Defects in these genes are believed to be the underlying cause of microsatellite instability (MSI). MSI has been demonstrated in many human cancers such as colon cancer and some female-specific tumors. The hMLH1 gene

  1. DNA mismatch repair, genome instability and cancer in zebrafish

    NARCIS (Netherlands)

    Feitsma, H.

    2008-01-01

    The objective of this study was to find out whether the zebrafish can be an appropriate model for studying DNA repair and cancer. For this purpose three fish lines were used that lack components of an important mechanism for the repair of small DNA damage: DNA mismatch repair. These fish are

  2. Constitutional mismatch repair deficiency in a healthy child : On the spot diagnosis?

    NARCIS (Netherlands)

    Suerink, Manon; Potjer, Thomas P.; Versluijs, A. B.; Ten Broeke, Sanne W.; Tops, Carli M.; Wimmer, K.; Nielsen, M.

    2018-01-01

    Constitutional mismatch repair deficiency (CMMRD) is a rare, recessively inherited childhood cancer predisposition syndrome caused by biallelic germline mutations in one of the mismatch repair genes. The CMMRD phenotype overlaps with that of neurofibromatosis type 1 (NF1), since many patients have

  3. Constitutional mismatch repair deficiency syndrome: Do we know it?

    Science.gov (United States)

    Ramachandra, C; Challa, Vasu Reddy; Shetty, Rachan

    2014-04-01

    Constitutional mismatch repair deficiency syndrome is a rare autosomal recessive syndrome caused by homozygous mutations in mismatch repair genes. This is characterized by the childhood onset of brain tumors, colorectal cancers, cutaneous manifestations of neurofibromatosis-1 like café au lait spots, hematological malignancies, and occasionally other rare malignancies. Here, we would like to present a family in which the sibling had glioblastoma, and the present case had acute lymphoblastic lymphoma and colorectal cancer. We would like to present this case because of its rarity and would add to literature.

  4. Down-regulation of DNA mismatch repair proteins in human and murine tumor spheroids: implications for multicellular resistance to alkylating agents.

    Science.gov (United States)

    Francia, Giulio; Green, Shane K; Bocci, Guido; Man, Shan; Emmenegger, Urban; Ebos, John M L; Weinerman, Adina; Shaked, Yuval; Kerbel, Robert S

    2005-10-01

    Similar to other anticancer agents, intrinsic or acquired resistance to DNA-damaging chemotherapeutics is a major obstacle for cancer therapy. Current strategies aimed at overcoming this problem are mostly based on the premise that tumor cells acquire heritable genetic mutations that contribute to drug resistance. Here, we present evidence for an epigenetic, tumor cell adhesion-mediated, and reversible form of drug resistance that is associated with a reduction of DNA mismatch repair proteins PMS2 and/or MLH1 as well as other members of this DNA repair process. Growth of human breast cancer, human melanoma, and murine EMT-6 breast cancer cell lines as multicellular spheroids in vitro, which is associated with increased resistance to many chemotherapeutic drugs, including alkylating agents, is shown to lead to a reproducible down-regulation of PMS2, MLH1, or, in some cases, both as well as MHS6, MSH3, and MSH2. The observed down-regulation is in part reversible by treatment of tumor spheroids with the DNA-demethylating agent, 5-azacytidine. Thus, treatment of EMT-6 mouse mammary carcinoma spheroids with 5-azacytidine resulted in reduced and/or disrupted cell-cell adhesion, which in turn sensitized tumor spheroids to cisplatin-mediated killing in vitro. Our results suggest that antiadhesive agents might sensitize tumor spheroids to alkylating agents in part by reversing or preventing reduced DNA mismatch repair activity and that the chemosensitization properties of 5-azacytidine may conceivably reflect its role as a potential antiadhesive agent as well as reversal agent for MLH1 gene silencing in human tumors.

  5. Distinct mutational signatures characterize concurrent loss of polymerase proofreading and mismatch repair.

    Science.gov (United States)

    Haradhvala, N J; Kim, J; Maruvka, Y E; Polak, P; Rosebrock, D; Livitz, D; Hess, J M; Leshchiner, I; Kamburov, A; Mouw, K W; Lawrence, M S; Getz, G

    2018-05-01

    Fidelity of DNA replication is maintained using polymerase proofreading and the mismatch repair pathway. Tumors with loss of function of either mechanism have elevated mutation rates with characteristic mutational signatures. Here we report that tumors with concurrent loss of both polymerase proofreading and mismatch repair function have mutational patterns that are not a simple sum of the signatures of the individual alterations, but correspond to distinct, previously unexplained signatures: COSMIC database signatures 14 and 20. We then demonstrate that in all five cases in which the chronological order of events could be determined, polymerase epsilon proofreading alterations precede the defect in mismatch repair. Overall, we illustrate that multiple distinct mutational signatures can result from different combinations of a smaller number of mutational processes (of either damage or repair), which can influence the interpretation and discovery of mutational signatures.

  6. Upper tract urothelial carcinomas: frequency of association with mismatch repair protein loss and lynch syndrome.

    Science.gov (United States)

    Harper, Holly L; McKenney, Jesse K; Heald, Brandie; Stephenson, Andrew; Campbell, Steven C; Plesec, Thomas; Magi-Galluzzi, Cristina

    2017-01-01

    Increased risk for upper tract urothelial carcinoma is described in patients with Lynch syndrome, caused by germline mutations in mismatch repair genes. We aimed to identify the frequency of mismatch repair protein loss in upper tract urothelial carcinoma and its potential for identifying an association with Lynch syndrome. We queried our database to identify upper tract urothelial carcinomas. Patients were cross-referenced for history of colorectal carcinoma or other common Lynch syndrome-associated neoplasms to enrich for potential Lynch syndrome cases. Tumor histopathologic characteristics were reviewed and each case was analyzed for loss of mismatch repair proteins, MLH1, MSH2, MSH6, and PMS2, by immunohistochemistry. Of 444 patients with upper tract urothelial carcinoma, a subset of 215 (encompassing 30 with upper tract urothelial carcinoma and another common Lynch syndrome-associated neoplasm) was analyzed for loss of mismatch repair protein expression. Of 30 patients with Lynch syndrome-associated neoplasms, six had documented Lynch syndrome, including two with Muir-Torre syndrome. Mismatch repair protein loss was identified in 7% of total upper tract urothelial carcinomas and 30% of patients with Lynch syndrome-associated neoplasms (including all patients with Lynch syndrome/Muir-Torre syndrome). Of patients without history of Lynch syndrome-associated neoplasms, 5 of 184 (2.7%) had loss of mismatch repair protein expression. Twelve cases with mismatch repair protein loss demonstrated loss of MSH2 and MSH6, and 2 had isolated loss of MSH6. MLH1 and PMS2 expression were consistently retained. Although increased intratumoral lymphocytes, inverted growth, pushing tumor-stromal interface, and lack of nuclear pleomorphism were more commonly seen in cases with mismatch repair protein loss, only intratumoral lymphocytes and presence of pushing borders were statistically significant. MLH1 and PMS2 testing appear to have little utility in upper tract urothelial

  7. DNA mismatch repair deficiency in sporadic colorectal cancer and Lynch Syndrome

    OpenAIRE

    Poulogiannis , George; Frayling , Ian; Arends , Mark

    2009-01-01

    Abstract DNA mismatch repair (MMR) deficiency is one of the best understood forms of genetic instability in colorectal cancer (CRC), and is characterised by the loss of function of the MMR pathway. Failure to repair replication-associated errors due to a defective MMR system allows persistence of mismatch mutations all over the genome, but especially in regions of repetitive DNA known as microsatellites, giving rise to the phenomenon of microsatellite instability (MSI). A high freq...

  8. Physical interaction between components of DNA mismatch repair and nucleotide excision repair

    International Nuclear Information System (INIS)

    Bertrand, P.; Tishkoff, D.X.; Filosi, N.; Dasgupta, R.; Kolodner, R.D.

    1998-01-01

    Nucleotide excision repair (NER) and DNA mismatch repair are required for some common processes although the biochemical basis for this requirement is unknown. Saccharomyces cerevisiae RAD14 was identified in a two-hybrid screen using MSH2 as 'bait,' and pairwise interactions between MSH2 and RAD1, RAD2, RAD3, RAD10, RAD14, and RAD25 subsequently were demonstrated by two-hybrid analysis. MSH2 coimmunoprecipitated specifically with epitope-tagged versions of RAD2, RAD10, RAD14, and RAD25. MSH2 and RAD10 were found to interact in msh3 msh6 and mlh1 pms1 double mutants, suggesting a direct interaction with MSH2. Mutations in MSH2 increased the UV sensitivity of NER-deficient yeast strains, and msh2 mutations were epistatic to the mutator phenotype observed in NER-deficient strains. These data suggest that MSH2 and possibly other components of DNA mismatch repair exist in a complex with NER proteins, providing a biochemical and genetical basis for these proteins to function in common processes

  9. The role of the bacterial mismatch repair system in SOS-induced mutagenesis: a theoretical background

    International Nuclear Information System (INIS)

    Belov, O.V.; Kapralov, M.I.; Chuluunbaatar, O.; Sweilam, N.H.

    2012-01-01

    A theoretical study is performed of the possible role of the methyl-directed mismatch repair system in the ultraviolet-induced mutagenesis of Escherichia coli bacterial cells. For this purpose, a mathematical model of the bacterial mismatch repair system is developed. Within this model, the key pathways of this type of repair are simulated on the basis of modern experimental data related to its mechanisms. Here we have modelled in detail five main pathways of DNA misincorporation removal with different DNA exonucleases. Using our calculations, we have tested the hypothesis that the bacterial mismatch repair system is responsible for the removal of the nucleotides misincorporated by DNA polymerase V (the UmuD' 2 C complex) during ultraviolet-induced SOS response. For the theoretical analysis of the mutation frequency, we have combined the proposed mathematical approach with the model of SOS-induced mutagenesis in the E.coli bacterial cell developed earlier. Our calculations support the hypothesis that methyl-directed mismatch repair influences the mutagenic effect of ultraviolet radiation

  10. Clinicopathologic factors identify sporadic mismatch repair-defective colon cancers

    DEFF Research Database (Denmark)

    Halvarsson, Britta; Anderson, Harald; Domanska, Katarina

    2008-01-01

    Identification of sporadic mismatch repair (MMR)-defective colon cancers is increasingly demanded for decisions on adjuvant therapies. We evaluated clinicopathologic factors for the identification of these prognostically favorable tumors. Histopathologic features in 238 consecutive colon cancers...

  11. Interdependence of DNA mismatch repair proteins MLH1 and MSH2 in apoptosis in human colorectal carcinoma cell lines.

    Science.gov (United States)

    Hassen, Samar; Ali, Akhtar A; Kilaparty, Surya P; Al-Anbaky, Qudes A; Majeed, Waqar; Boman, Bruce M; Fields, Jeremy Z; Ali, Nawab

    2016-01-01

    indicator of apoptosis, showed that MLH1 translocation only occurred in MMR proficient (SW480) cells upon induction of apoptosis further suggested a MSH2 dependent role of MLH1 in apoptosis. These data suggest a role of MLH1 in mediation of apoptosis in a MSH2-dependent manner. Taken together, our data supported an interdependence of mismatch repair proteins, particularly MLH1 and MSH2, in the mediation of apoptosis in human colorectal carcinoma cell lines.

  12. Estrogen enhances mismatch repair by induction of MLH1 expression via estrogen receptor-β.

    Science.gov (United States)

    Lu, Jun-Yu; Jin, Peng; Gao, Wei; Wang, De-Zhi; Sheng, Jian-Qiu

    2017-06-13

    Epidemiological data demonstrated that hormone replace treatment has protective effect against colorectal cancer (CRC). Our previous studies showed that this effect may be associated with DNA mismatch repair. This study aims to investigate the mechanism of estrogen induction of MLH1, and whether colorectal tumor proliferation can be inhibited through induction of MLH1 by estrogen signal pathway. Human CRC cell lines were used to examine the regulation of MLH1 expression by over-expression and depletion of estrogen receptor-α (ERα) and estrogen receptor-β (ERβ), under the treatment with 17β-estradiol or β-Estradiol 6-(O-carboxy-methyl)oxime:BSA, followed by a real-time Q-PCR and Western blotting analysis. Luciferase reporter and chromatin immunoprecipitation assays were used to identify the estrogen response elements in the proximal promoter of MLH1 gene. Then, the influence of estrogen-induced MLH1 on CRC tumor growth were determined in vitro and in vivo. We found that mismatch repair ability and microsatellite stability of cells were enhanced by estrogen via induction of MLH1 expression, which was mediated by ERβ, through a transcriptional activation process. Furthermore, we identified that ERβ exerted an inhibitory effect on CRC tumor proliferation in vitro and in vivo, combined with 5-FU, through up-regulation of MLH1 expression. Finally, we concluded that estrogen enhances mismatch repair ability and tumor inhibition effect in vitro and in vivo, via induction of MLH1 expression mediated by ERβ.

  13. Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: report from the constitutional mismatch repair deficiency consortium.

    Science.gov (United States)

    Bakry, Doua; Aronson, Melyssa; Durno, Carol; Rimawi, Hala; Farah, Roula; Alharbi, Qasim Kholaif; Alharbi, Musa; Shamvil, Ashraf; Ben-Shachar, Shay; Mistry, Matthew; Constantini, Shlomi; Dvir, Rina; Qaddoumi, Ibrahim; Gallinger, Steven; Lerner-Ellis, Jordan; Pollett, Aaron; Stephens, Derek; Kelies, Steve; Chao, Elizabeth; Malkin, David; Bouffet, Eric; Hawkins, Cynthia; Tabori, Uri

    2014-03-01

    Constitutional mismatch repair deficiency (CMMRD) is a devastating cancer predisposition syndrome for which data regarding clinical manifestations, molecular screening tools and management are limited. We established an international CMMRD consortium and collected comprehensive clinical and genetic data. Molecular diagnosis of tumour and germline biospecimens was performed. A surveillance protocol was developed and implemented. Overall, 22/23 (96%) of children with CMMRD developed 40 different tumours. While childhood CMMRD related tumours were observed in all families, Lynch related tumours in adults were observed in only 2/14 families (p=0.0007). All children with CMMRD had café-au-lait spots and 11/14 came from consanguineous families. Brain tumours were the most common cancers reported (48%) followed by gastrointestinal (32%) and haematological malignancies (15%). Importantly, 12 (30%) of these were low grade and resectable cancers. Tumour immunohistochemistry was 100% sensitive and specific in diagnosing mismatch repair (MMR) deficiency of the corresponding gene while microsatellite instability was neither sensitive nor specific as a diagnostic tool (psyndrome where family history of cancer may not be contributory. Screening tumours and normal tissues using immunohistochemistry for abnormal expression of MMR gene products may help in diagnosis and early implementation of surveillance for these children. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Involvement of mismatch repair proteins in adaptive responses induced by N-methyl-N'-nitro-N-nitrosoguanidine against {gamma}-induced genotoxicity in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Ayumi; Sakamoto, Yasuteru; Masumura, Kenichi; Honma, Masamitsu [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan); Nohmi, Takehiko, E-mail: nohmi@nihs.go.jp [Division of Genetics and Mutagenesis, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501 (Japan)

    2011-08-01

    Highlights: {yields} Health effects of radiation should be evaluated in combination with chemicals. {yields} Here, we show that MNNG suppresses radiation-induced genotoxicity in human cells. {yields} Mismatch repair proteins play critical roles in the apparent adaptive responses. {yields} Chemical exposure may modulate radiation-induced genotoxicity in humans. - Abstract: As humans are exposed to a variety of chemical agents as well as radiation, health effects of radiation should be evaluated in combination with chemicals. To explore combined genotoxic effects of radiation and chemicals, we examined modulating effects of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), a direct-acting methylating agent, against genotoxicity of {gamma}-radiation. Human lymphoblastoid TK6 cells and its mismatch-deficient derivative, i.e., MT1 cells, were treated with MNNG for 24 h before they were exposed to {gamma}-irradiation at a dose of 1.0 Gy, and the resulting genotoxicity was examined. In TK6 cells, the pretreatments with MNNG at low doses suppressed frequencies of the thymidine kinase (TK) gene mutation and micronucleus (MN) formation induced by {gamma}-irradiation and thus the dose responses of TK and MN assays were U-shaped along with the pretreatment doses of MNNG. In contrast, the genotoxic effects of MNNG and {gamma}-irradiation were additive in MT1 cells and the frequencies of TK mutations and MN induction increased along with the doses of MNNG. Apoptosis induced by {gamma}-radiation was suppressed by the pretreatments in TK6 cells, but not in MT1 cells. The expression of p53 was induced and cell cycle was delayed at G2/M phase in TK6, but not in MT1 cells, by the treatments with MNNG. These results suggest that pretreatments of MNNG at low doses suppress genotoxicity of {gamma}-radiation in human cells and also that mismatch repair proteins are involved in the apparent adaptive responses.

  15. Microsatellites in the Eukaryotic DNA Mismatch Repair Genes as Modulators of Evolutionary Mutation Rate

    Science.gov (United States)

    Chang, Dong Kyung; Metzgar, David; Wills, Christopher; Boland, C. Richard

    2003-01-01

    All "minor" components of the human DNA mismatch repair (MMR) system-MSH3, MSH6, PMS2, and the recently discovered MLH3-contain mononucleotide microsatellites in their coding sequences. This intriguing finding contrasts with the situation found in the major components of the DNA MMR system-MSH2 and MLH1-and, in fact, most human genes. Although eukaryotic genomes are rich in microsatellites, non-triplet microsatellites are rare in coding regions. The recurring presence of exonal mononucleotide repeat sequences within a single family of human genes would therefore be considered exceptional.

  16. Immunotherapy holds the key to cancer treatment and prevention in constitutional mismatch repair deficiency (CMMRD) syndrome

    NARCIS (Netherlands)

    Westdorp, Harm; Kolders, Sigrid; Hoogerbrugge, Nicoline; de Vries, I Jolanda M; Jongmans, Marjolijn C.J.; Schreibelt, Gerty

    2017-01-01

    Monoallelic germline mutations in one of the DNA mismatch repair (MMR) genes cause Lynch syndrome, with a high lifetime risks of colorectal and endometrial cancer at adult age. Less well known, is the constitutional mismatch repair deficiency (CMMRD) syndrome caused by biallelic germline mutations

  17. Involvement of DNA mismatch repair in the maintenance of heterochromatic DNA stability in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Basanta K Dahal

    2017-10-01

    Full Text Available Heterochromatin contains a significant part of nuclear DNA. Little is known about the mechanisms that govern heterochromatic DNA stability. We show here that in the yeast Saccharomyces cerevisiae (i DNA mismatch repair (MMR is required for the maintenance of heterochromatic DNA stability, (ii MutLα (Mlh1-Pms1 heterodimer, MutSα (Msh2-Msh6 heterodimer, MutSβ (Msh2-Msh3 heterodimer, and Exo1 are involved in MMR at heterochromatin, (iii Exo1-independent MMR at heterochromatin frequently leads to the formation of Pol ζ-dependent mutations, (iv MMR cooperates with the proofreading activity of Pol ε and the histone acetyltransferase Rtt109 in the maintenance of heterochromatic DNA stability, (v repair of base-base mismatches at heterochromatin is less efficient than repair of base-base mismatches at euchromatin, and (vi the efficiency of repair of 1-nt insertion/deletion loops at heterochromatin is similar to the efficiency of repair of 1-nt insertion/deletion loops at euchromatin.

  18. Selective Cytotoxicity of Rhodium Metalloinsertors in Mismatch Repair-Deficient Cells†

    Science.gov (United States)

    Ernst, Russell J.; Komor, Alexis C.; Barton, Jacqueline K.

    2011-01-01

    Mismatches in DNA occur naturally during replication and as a result of endogenous DNA damaging agents, but the mismatch repair (MMR) pathway acts to correct mismatches before subsequent rounds of replication. Rhodium metalloinsertors bind to DNA mismatches with high affinity and specificity and represent a promising strategy to target mismatches in cells. Here we examine the biological fate of rhodium metalloinsertors bearing dipyridylamine ancillary ligands in cells deficient in MMR versus those that are MMR-proficient. These complexes are shown to exhibit accelerated cellular uptake which permits the observation of various cellular responses, including disruption of the cell cycle, monitored by flow cytometry assays, and induction of necrosis, monitored by dye exclusion and caspase inhibition assays, that occur preferentially in the MMR-deficient cell line. These cellular responses provide insight into the mechanisms underlying the selective activity of this novel class of targeted anti-cancer agents. PMID:22103240

  19. DREMECELS: A Curated Database for Base Excision and Mismatch Repair Mechanisms Associated Human Malignancies.

    Directory of Open Access Journals (Sweden)

    Ankita Shukla

    Full Text Available DNA repair mechanisms act as a warrior combating various damaging processes that ensue critical malignancies. DREMECELS was designed considering the malignancies with frequent alterations in DNA repair pathways, that is, colorectal and endometrial cancers, associated with Lynch syndrome (also known as HNPCC. Since lynch syndrome carries high risk (~40-60% for both cancers, therefore we decided to cover all three diseases in this portal. Although a large population is presently affected by these malignancies, many resources are available for various cancer types but no database archives information on the genes specifically for only these cancers and disorders. The database contains 156 genes and two repair mechanisms, base excision repair (BER and mismatch repair (MMR. Other parameters include some of the regulatory processes that have roles in these disease progressions due to incompetent repair mechanisms, specifically BER and MMR. However, our unique database mainly provides qualitative and quantitative information on these cancer types along with methylation, drug sensitivity, miRNAs, copy number variation (CNV and somatic mutations data. This database would serve the scientific community by providing integrated information on these disease types, thus sustaining diagnostic and therapeutic processes. This repository would serve as an excellent accompaniment for researchers and biomedical professionals and facilitate in understanding such critical diseases. DREMECELS is publicly available at http://www.bioinfoindia.org/dremecels.

  20. Functional implications of the p.Cys680Arg mutation in the MLH1 mismatch repair protein

    DEFF Research Database (Denmark)

    Dominguez-Valentin, Mev; Drost, Mark; Therkildsen, Christina

    2014-01-01

    >C missense mutation in exon 18 of the human MLH1 gene and biochemically characterization of the p.Cys680Arg mutant MLH1 protein to implicate it in the pathogenicity of the Lynch syndrome (LS). We show that the mutation is deficient in DNA mismatch repair and, therefore, contributing to LS in the carriers....

  1. Role of DNA mismatch repair and p53 in signaling induction of apoptosis by alkylating agents.

    Science.gov (United States)

    Hickman, M J; Samson, L D

    1999-09-14

    All cells are unavoidably exposed to chemicals that can alkylate DNA to form genotoxic damage. Among the various DNA lesions formed, O(6)-alkylguanine lesions can be highly cytotoxic, and we recently demonstrated that O(6)-methylguanine (O(6)MeG) and O(6)-chloroethylguanine (O(6)CEG) specifically initiate apoptosis in hamster cells. Here we show, in both hamster and human cells, that the MutSalpha branch of the DNA mismatch repair pathway (but not the MutSbeta branch) is absolutely required for signaling the initiation of apoptosis in response to O(6)MeGs and is partially required for signaling apoptosis in response to O(6)CEGs. Further, O(6)MeG lesions signal the stabilization of the p53 tumor suppressor, and such signaling is also MutSalpha-dependent. Despite this, MutSalpha-dependent apoptosis can be executed in a p53-independent manner. DNA mismatch repair status did not influence the response of cells to other inducers of p53 and apoptosis. Thus, it appears that mismatch repair status, rather than p53 status, is a strong indicator of the susceptibility of cells to alkylation-induced apoptosis. This experimental system will allow dissection of the signal transduction events that couple a specific type of DNA base lesion with the final outcome of apoptotic cell death.

  2. Rhabdomyosarcoma in patients with constitutional mismatch-repair-deficiency syndrome.

    Science.gov (United States)

    Kratz, C P; Holter, S; Etzler, J; Lauten, M; Pollett, A; Niemeyer, C M; Gallinger, S; Wimmer, K

    2009-06-01

    Biallelic germline mutations in the mismatch repair genes MLH1, MSH2, MSH6 or PMS2 cause a recessive childhood cancer syndrome characterised by early-onset malignancies and signs reminiscent of neurofibromatosis type 1 (NF1). Alluding to the underlying genetic defect, we refer to this syndrome as constitutional mismatch repair-deficiency (CMMR-D) syndrome. The tumour spectrum of CMMR-D syndrome includes haematological neoplasias, brain tumours and Lynch syndrome-associated tumours. Other tumours, such as neuroblastoma, Wilm tumour, ovarian neuroectodermal tumour or infantile myofibromatosis, have so far been found only in individual cases. We analysed two consanguineous families that had members with suspected CMMR-D syndrome who developed rhabdomyosarcoma among other neoplasias. In the first family, we identified a pathogenic PMS2 mutation for which the affected patient was homozygous. In family 2, immunohistochemistry analysis showed isolated loss of PMS2 expression in all tumours in the affected patients, including rhabdomyosarcoma itself and the surrounding normal tissue. Together with the family history and microsatellite instability observed in one tumour this strongly suggests an underlying PMS2 alteration in family 2 also. Together, these two new cases show that rhabdomyosarcoma and possibly other embryonic tumours, such as neuroblastoma and Wilm tumour, belong to the tumour spectrum of CMMR-D syndrome. Given the clinical overlap of CMMR-D syndrome with NF1, we suggest careful examination of the family history in patients with embryonic tumours and signs of NF1 as well as analysis of the tumours for loss of one of the mismatch repair genes and microsatellite instability. Subsequent mutation analysis will lead to a definitive diagnosis of the underlying disorder.

  3. Rhodium metalloinsertor binding generates a lesion with selective cytotoxicity for mismatch repair-deficient cells.

    Science.gov (United States)

    Bailis, Julie M; Weidmann, Alyson G; Mariano, Natalie F; Barton, Jacqueline K

    2017-07-03

    The DNA mismatch repair (MMR) pathway recognizes and repairs errors in base pairing and acts to maintain genome stability. Cancers that have lost MMR function are common and comprise an important clinical subtype that is resistant to many standard of care chemotherapeutics such as cisplatin. We have identified a family of rhodium metalloinsertors that bind DNA mismatches with high specificity and are preferentially cytotoxic to MMR-deficient cells. Here, we characterize the cellular mechanism of action of the most potent and selective complex in this family, [Rh(chrysi)(phen)(PPO)] 2+ (Rh-PPO). We find that Rh-PPO binding induces a lesion that triggers the DNA damage response (DDR). DDR activation results in cell-cycle blockade and inhibition of DNA replication and transcription. Significantly, the lesion induced by Rh-PPO is not repaired in MMR-deficient cells, resulting in selective cytotoxicity. The Rh-PPO mechanism is reminiscent of DNA repair enzymes that displace mismatched bases, and is differentiated from other DNA-targeted chemotherapeutics such as cisplatin by its potency, cellular mechanism, and selectivity for MMR-deficient cells.

  4. Pathological assessment of mismatch repair gene variants in Lynch syndrome

    DEFF Research Database (Denmark)

    Rasmussen, Lene Juel; Heinen, Christopher D; Royer-Pokora, Brigitte

    2012-01-01

    Lynch syndrome (LS) is caused by germline mutations in DNA mismatch repair (MMR) genes and is the most prevalent hereditary colorectal cancer syndrome. A significant proportion of variants identified in MMR and other common cancer susceptibility genes are missense or noncoding changes whose...

  5. Clinicopathologic factors identify sporadic mismatch repair-defective colon cancers

    DEFF Research Database (Denmark)

    Halvarsson, Britta; Anderson, Harald; Domanska, Katarina

    2008-01-01

    Identification of sporadic mismatch repair (MMR)-defective colon cancers is increasingly demanded for decisions on adjuvant therapies. We evaluated clinicopathologic factors for the identification of these prognostically favorable tumors. Histopathologic features in 238 consecutive colon cancers...... and excluded 61.5% of the tumors from MMR testing. This clinicopathologic index thus successfully selects MMR-defective colon cancers. Udgivelsesdato: 2008-Feb...

  6. Stabilization of the genome of the mismatch repair deficient Mycobacterium tuberculosis by context-dependent codon choice.

    Science.gov (United States)

    Wanner, Roger M; Güthlein, Carolin; Springer, Burkhard; Böttger, Erik C; Ackermann, Martin

    2008-05-28

    The rate at which a stretch of DNA mutates is determined by the cellular systems for DNA replication and repair, and by the nucleotide sequence of the stretch itself. One sequence feature with a particularly strong influence on the mutation rate are nucleotide repeats. Some microbial pathogens use nucleotide repeats in their genome to stochastically vary phenotypic traits and thereby evade host defense. However, such unstable sequences also come at a cost, as mutations are often deleterious. Here, we analyzed how these opposing forces shaped genome stability in the human pathogen Mycobacterium tuberculosis. M. tuberculosis lacks a mismatch repair system, and this renders nucleotide repeats particularly unstable. We found that proteins of M. tuberculosis are encoded by using codons in a context-dependent manner that prevents the emergence of nucleotide repeats. This context-dependent codon choice leads to a strong decrease in the estimated frame-shift mutation rate and thus to an increase in genome stability. These results indicate that a context-specific codon choice can partially compensate for the lack of a mismatch repair system, and helps to maintain genome integrity in this pathogen.

  7. Stabilization of the genome of the mismatch repair deficient Mycobacterium tuberculosis by context-dependent codon choice

    Directory of Open Access Journals (Sweden)

    Ackermann Martin

    2008-05-01

    Full Text Available Abstract Background The rate at which a stretch of DNA mutates is determined by the cellular systems for DNA replication and repair, and by the nucleotide sequence of the stretch itself. One sequence feature with a particularly strong influence on the mutation rate are nucleotide repeats. Some microbial pathogens use nucleotide repeats in their genome to stochastically vary phenotypic traits and thereby evade host defense. However, such unstable sequences also come at a cost, as mutations are often deleterious. Here, we analyzed how these opposing forces shaped genome stability in the human pathogen Mycobacterium tuberculosis. M. tuberculosis lacks a mismatch repair system, and this renders nucleotide repeats particularly unstable. Results We found that proteins of M. tuberculosis are encoded by using codons in a context-dependent manner that prevents the emergence of nucleotide repeats. This context-dependent codon choice leads to a strong decrease in the estimated frame-shift mutation rate and thus to an increase in genome stability. Conclusion These results indicate that a context-specific codon choice can partially compensate for the lack of a mismatch repair system, and helps to maintain genome integrity in this pathogen.

  8. Review: Clinical aspects of hereditary DNA Mismatch repair gene mutations

    NARCIS (Netherlands)

    Sijmons, Rolf H.; Hofstra, Robert M. W.

    Inherited mutations of the DNA Mismatch repair genes MLH1, MSH2, MSH6 and PMS2 can result in two hereditary tumor syndromes: the adult-onset autosomal dominant Lynch syndrome, previously referred to as Hereditary Non-Polyposis Colorectal Cancer (HNPCC) and the childhood-onset autosomal recessive

  9. Alteration of cellular radiation response as a consequence of defective DNA mismatch repair

    International Nuclear Information System (INIS)

    Weese, Theodore L. de; Bucci, Jennifer M.; Larrier, Nicole A.; Cutler, Richard G.; Riele, Hein te; Nelson, William G.

    1997-01-01

    Purpose/Objective: A number of genes have been implicated in the response of mammalian cells to ionizing radiation. Among these include the genes P53 and P21. Disruption of these genes can alter the predicted cellular behavior following radiation-induced DNA damage. Similarly, cells defective in mismatch repair are known to be tolerant to the lethal effects of alkylating agents. We hypothesized that mammalian cells which are defective in mismatch repair and tolerant to alkylating DNA damage might also be tolerant to the effects of oxidative DNA damage inflicted by ionizing radiation. Materials and Methods: Mouse embryonic stem cells homozygous for disrupted Msh2 alleles (Msh2-/-), heterozygous for a disrupted Msh2 allele (Msh2+/-) or intact cells (Msh2+/+) were exposed to both acute dose (1 Gy/min) and low dose rate (LDR) radiation (0.004 Gy/min) and cell survival was determined by clonogenic assay. Apoptosis induced by LDR was assessed by a terminal transferase assay. Immunoblot analysis was performed in order to evaluate induction of the polypeptides p53 and p21. Another measure of radiation damage tolerance may be accumulation of oxidative DNA species. Therefore, we monitored levels of 8-hydroxyguanine (8-OHG) and 8-hydroxyadenine (8-OHA) by gas chromatography - mass spectrometry with selected ion monitoring (GC-MS/SIM). Results: Cells containing either one or two disrupted Msh2 alleles (Msh2+/-, Msh2-/-) were found to be less sensitive to LDR than cells containing a complete complement of Msh2 alleles (Msh2+/+). Interestingly, all three cell lines had a nearly identical radiosensitivity to acute dose ionizing radiation despite differences in mismatch repair capacity. Apoptosis after LDR also varied between cells, with the Msh2+/+ cells exhibiting higher levels of apoptosis as compared to either the Msh2+/- or Msh2-/- cell lines. In addition, GC-MS/SIM revealed the Msh2+/- and Msh2-/- cell lines to have an approximately ten fold greater accumulation of the

  10. Frequent mismatch-repair defects link prostate cancer to Lynch syndrome

    DEFF Research Database (Denmark)

    Dominguez-Valentin, Mev; Joost, Patrick; Therkildsen, Christina

    2016-01-01

    were high-grade tumors with Gleason scores 8-10. Prostate cancer was associated with mutations in MSH2, MLH1 and MSH6 with loss of the respective mismatch repair protein in 69 % of the tumors, though a MSI-high phenotype was restricted to 13 % of the tumors. The cumulative risk of prostate cancer...

  11. Mismatch repair deficiency in colorectal cancer patients in a low ...

    African Journals Online (AJOL)

    2013-02-06

    Feb 6, 2013 ... This is 10% of the rate reported in First-World countries. In high-incidence areas, the rate of abnormal mismatch repair gene expression in colorectal cancers is 2 - 7%. Objectives. The aim of this study was to determine the prevalence of hMLH1- and hMSH2-deficient colorectal cancer in the. Northern Cape.

  12. An Inducible, Isogenic Cancer Cell Line System for Targeting the State of Mismatch Repair Deficiency

    Science.gov (United States)

    Bailis, Julie M.; Gordon, Marcia L.; Gurgel, Jesse L.; Komor, Alexis C.; Barton, Jacqueline K.; Kirsch, Ilan R.

    2013-01-01

    The DNA mismatch repair system (MMR) maintains genome stability through recognition and repair of single-base mismatches and small insertion-deletion loops. Inactivation of the MMR pathway causes microsatellite instability and the accumulation of genomic mutations that can cause or contribute to cancer. In fact, 10-20% of certain solid and hematologic cancers are MMR-deficient. MMR-deficient cancers do not respond to some standard of care chemotherapeutics because of presumed increased tolerance of DNA damage, highlighting the need for novel therapeutic drugs. Toward this goal, we generated isogenic cancer cell lines for direct comparison of MMR-proficient and MMR-deficient cells. We engineered NCI-H23 lung adenocarcinoma cells to contain a doxycycline-inducible shRNA designed to suppress the expression of the mismatch repair gene MLH1, and compared single cell subclones that were uninduced (MLH1-proficient) versus induced for the MLH1 shRNA (MLH1-deficient). Here we present the characterization of these MMR-inducible cell lines and validate a novel class of rhodium metalloinsertor compounds that differentially inhibit the proliferation of MMR-deficient cancer cells. PMID:24205301

  13. Influence of very short patch mismatch repair on SOS inducing lesions after aminoglycoside treatment in Escherichia coli.

    Science.gov (United States)

    Baharoglu, Zeynep; Mazel, Didier

    2014-01-01

    Low concentrations of aminoglycosides induce the SOS response in Vibrio cholerae but not in Escherichia coli. In order to determine whether a specific factor present in E. coli prevents this induction, we developed a genetic screen where only SOS inducing mutants are viable. We identified the vsr gene coding for the Vsr protein of the very short patch mismatch repair (VSPR) pathway. The effect of mismatch repair (MMR) mutants was also studied. We propose that lesions formed upon aminoglycoside treatment are preferentially repaired by VSPR without SOS induction in E. coli and by MMR when VSPR is impaired. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  14. Role of DNA mismatch repair and p53 in signaling induction of apoptosis by alkylating agents

    OpenAIRE

    Hickman, Mark J.; Samson, Leona D.

    1999-01-01

    All cells are unavoidably exposed to chemicals that can alkylate DNA to form genotoxic damage. Among the various DNA lesions formed, O6-alkylguanine lesions can be highly cytotoxic, and we recently demonstrated that O6-methylguanine (O6MeG) and O6-chloroethylguanine (O6CEG) specifically initiate apoptosis in hamster cells. Here we show, in both hamster and human cells, that the MutSα branch of the DNA mismatch repair pathway (but not the MutSβ branch) is absolutely required for signaling the ...

  15. Mismatch repair status and synchronous metastases in colorectal cancer

    DEFF Research Database (Denmark)

    Nordholm-Carstensen, Andreas; Krarup, Peter-Martin; Morton, Dion

    2015-01-01

    The causality between the metastatic potential, mismatch repair status (MMR) and survival in colorectal cancer (CRC) is complex. This study aimed to investigate the impact of MMR in CRC on the occurrence of synchronous metastases (SCCM) and survival in patients with SCCM on a national basis....... A nationwide cohort study of 6,692 patients diagnosed with CRC between 2010 and 2012 was conducted. Data were prospectively entered into the Danish Colorectal Cancer Group's database and merged with data from the Danish Pathology Registry and the National Patient Registry. Multivariable and multinomial...

  16. Mismatch repair proteins, meiosis, and mice: understanding the complexities of mammalian meiosis.

    Science.gov (United States)

    Svetlanov, Anton; Cohen, Paula E

    2004-05-15

    Mammalian meiosis differs from that seen in lower eukaryotes in several respects, not least of which is the added complexity of dealing with chromosomal interactions across a much larger genome (12 MB over 16 chromosome pairs in Saccharomyces cerevisiae compared to 2500 MB over 19 autosome pairs in Mus musculus). Thus, the recombination machinery, while being highly conserved through eukaryotes, has evolved to accommodate such issues to preserve genome integrity and to ensure propagation of the species. One group of highly conserved meiotic regulators is the DNA mismatch repair protein family that, as their name implies, were first identified as proteins that act to repair DNA mismatches that arise primarily during DNA replication. Their function in ensuring chromosomal integrity has also translated into a critical role for this family in meiotic recombination in most sexually reproducing organisms. In mice, targeted deletion of certain family members results in severe consequences for meiotic progression and infertility. This review will focus on the studies involving these mutant mouse models, with occasional comparison to the function of these proteins in other organisms.

  17. Challenges in the identification of MSH6-associated colorectal cancer: rectal location, less typical histology, and a subset with retained mismatch repair function

    DEFF Research Database (Denmark)

    Klarskov, Louise; Holck, Susanne; Bernstein, Inge

    2011-01-01

    with MLH1/MSH2-mutant tumors and sporadic mismatch repair-deficient cancers. In the MSH6 subset, we confirmed a higher age (median, 56 y) at diagnosis and found a significantly larger proportion (25%) of rectal cancers. Presence of dirty necrosis was the sole histologic component that significantly...... differed between MSH6 and MLH1/MSH2 tumors. Compared with the sporadic mismatch repair-defective cohort, MSH6 cases had a lower prevalence of tumor-infiltrating lymphocytes and Crohn-like reactions. Mismatch repair defects were identified in 92% of MSH6 tumors, with high concordance between microsatellite...

  18. Challenges in the Identification of MSH6-Associated Colorectal Cancer: Rectal Location, Less Typical Histology, and a Subset With Retained Mismatch Repair Function

    DEFF Research Database (Denmark)

    Klarskov, Louise Laurberg; Holck, Susanne; Bernstein, Inge Thomsen

    2011-01-01

    with MLH1/MSH2-mutant tumors and sporadic mismatch repair-deficient cancers. In the MSH6 subset, we confirmed a higher age (median, 56 y) at diagnosis and found a significantly larger proportion (25%) of rectal cancers. Presence of dirty necrosis was the sole histologic component that significantly...... differed between MSH6 and MLH1/MSH2 tumors. Compared with the sporadic mismatch repair-defective cohort, MSH6 cases had a lower prevalence of tumor-infiltrating lymphocytes and Crohn-like reactions. Mismatch repair defects were identified in 92% of MSH6 tumors, with high concordance between microsatellite...

  19. Germ line mutations of mismatch repair genes in hereditary nonpolyposis colorectal cancer patients with small bowel cancer: International Society for Gastrointestinal Hereditary Tumours Collaborative Study

    DEFF Research Database (Denmark)

    Park, Jae-Gahb; Kim, Duck-Woo; Hong, Chang Won

    2006-01-01

    PURPOSE: The aim of study was to determine the clinical characteristics and mutational profiles of the mismatch repair genes in hereditary nonpolyposis colorectal cancer (HNPCC) patients with small bowel cancer (SBC). EXPERIMENTAL DESIGN: A questionnaire was mailed to 55 members of the Internatio......PURPOSE: The aim of study was to determine the clinical characteristics and mutational profiles of the mismatch repair genes in hereditary nonpolyposis colorectal cancer (HNPCC) patients with small bowel cancer (SBC). EXPERIMENTAL DESIGN: A questionnaire was mailed to 55 members...... of the International Society for Gastrointestinal Hereditary Tumours, requesting information regarding patients with HNPCC-associated SBC and germ line mismatch repair gene mutations. RESULTS: The study population consisted of 85 HNPCC patients with identified mismatch repair gene mutations and SBCs. SBC was the first...... HNPCC-associated malignancy in 14 of 41 (34.1%) patients for whom a personal history of HNPCC-associated cancers was available. The study population harbored 69 different germ line mismatch repair gene mutations, including 31 mutations in MLH1, 34 in MSH2, 3 in MSH6, and 1 in PMS2. We compared...

  20. Variations in mismatch repair genes and colorectal cancer risk and clinical outcome

    Czech Academy of Sciences Publication Activity Database

    Vymetálková, Veronika; Pardini, B.; Rosa, F.; Di Gaetano, C.; Novotný, J.; Levý, M.; Buchler, T.; Slyšková, Jana; Vodičková, Ludmila; Naccarati, Alessio; Vodička, Pavel

    2014-01-01

    Roč. 29, č. 4 (2014), s. 259-265 ISSN 0267-8357 R&D Projects: GA ČR GPP304/11/P715; GA ČR GAP304/10/1286; GA MZd NT12025 Institutional support: RVO:68378041 Keywords : colorectal cancer , , * mismatch repair genes * miRNA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.793, year: 2014

  1. Mismatch repair proficiency is not required for radioenhancement by gemcitabine

    International Nuclear Information System (INIS)

    Bree, Chris van; Rodermond, Hans M.; Vos, Judith de; Haveman, Jaap; Franken, Nicolaas

    2005-01-01

    Purpose: Mismatch repair (MMR) proficiency has been reported to either increase or decrease radioenhancement by 24-h incubations with gemcitabine. This study aimed to establish the importance of MMR for radioenhancement by gemcitabine after short-exposure, high-dose treatment and long-exposure, low-dose treatment. Methods and Materials: Survival of MMR-deficient HCT116 and MMR-proficient HCT116 + 3 cells was analyzed by clonogenic assays. Mild, equitoxic gemcitabine treatments (4 h, 0.1 μM vs. 24 h, 6 nM) were combined with γ-irradiation to determine the radioenhancement with or without recovery. Gemcitabine metabolism and cell-cycle effects were evaluated by high-performance liquid chromatography analysis and bivariate flow cytometry. Results: Radioenhancement after 4 h of 0.1 μM of gemcitabine was similar in both cell lines, but the radioenhancement after 24 h of 6 nM of gemcitabine was reduced in MMR-proficient cells. No significant differences between both cell lines were observed in the gemcitabine metabolism or cell-cycle effects after these treatments. Gemcitabine radioenhancement after recovery was also lower in MMR-proficient cells than in MMR-deficient cells. Conclusion: Mismatch repair proficiency decreases radioenhancement by long incubations of gemcitabine but does not affect radioenhancement by short exposures to a clinically relevant gemcitabine dose. Our data suggest that MMR contributes to the recovery from gemcitabine treatment

  2. Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities

    Energy Technology Data Exchange (ETDEWEB)

    Edelbrock, Michael A., E-mail: Edelbrock@findlay.edu [The University of Findlay, 1000 North Main Street, Findlay, OH 45840 (United States); Kaliyaperumal, Saravanan, E-mail: Saravanan.Kaliyaperumal@hms.harvard.edu [Division of Comparative Medicine and Pathology, New England Primate Research Center, One Pine Hill Drive, Southborough, MA 01772 (United States); Williams, Kandace J., E-mail: Kandace.williams@utoledo.edu [University of Toledo College of Medicine and Life Sciences, Department of Biochemistry and Cancer Biology, 3000 Transverse Dr., Toledo, OH 43614 (United States)

    2013-03-15

    The field of DNA mismatch repair (MMR) has rapidly expanded after the discovery of the MutHLS repair system in bacteria. By the mid 1990s yeast and human homologues to bacterial MutL and MutS had been identified and their contribution to hereditary non-polyposis colorectal cancer (HNPCC; Lynch syndrome) was under intense investigation. The human MutS homologue 6 protein (hMSH6), was first reported in 1995 as a G:T binding partner (GTBP) of hMSH2, forming the hMutSα mismatch-binding complex. Signal transduction from each DNA-bound hMutSα complex is accomplished by the hMutLα heterodimer (hMLH1 and hPMS2). Molecular mechanisms and cellular regulation of individual MMR proteins are now areas of intensive research. This review will focus on molecular mechanisms associated with mismatch binding, as well as emerging evidence that MutSα, and in particular, MSH6, is a key protein in MMR-dependent DNA damage response and communication with other DNA repair pathways within the cell. MSH6 is unstable in the absence of MSH2, however it is the DNA lesion-binding partner of this heterodimer. MSH6, but not MSH2, has a conserved Phe-X-Glu motif that recognizes and binds several different DNA structural distortions, initiating different cellular responses. hMSH6 also contains the nuclear localization sequences required to shuttle hMutSα into the nucleus. For example, upon binding to O{sup 6}meG:T, MSH6 triggers a DNA damage response that involves altered phosphorylation within the N-terminal disordered domain of this unique protein. While many investigations have focused on MMR as a post-replication DNA repair mechanism, MMR proteins are expressed and active in all phases of the cell cycle. There is much more to be discovered about regulatory cellular roles that require the presence of MutSα and, in particular, MSH6.

  3. Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities

    International Nuclear Information System (INIS)

    Edelbrock, Michael A.; Kaliyaperumal, Saravanan; Williams, Kandace J.

    2013-01-01

    The field of DNA mismatch repair (MMR) has rapidly expanded after the discovery of the MutHLS repair system in bacteria. By the mid 1990s yeast and human homologues to bacterial MutL and MutS had been identified and their contribution to hereditary non-polyposis colorectal cancer (HNPCC; Lynch syndrome) was under intense investigation. The human MutS homologue 6 protein (hMSH6), was first reported in 1995 as a G:T binding partner (GTBP) of hMSH2, forming the hMutSα mismatch-binding complex. Signal transduction from each DNA-bound hMutSα complex is accomplished by the hMutLα heterodimer (hMLH1 and hPMS2). Molecular mechanisms and cellular regulation of individual MMR proteins are now areas of intensive research. This review will focus on molecular mechanisms associated with mismatch binding, as well as emerging evidence that MutSα, and in particular, MSH6, is a key protein in MMR-dependent DNA damage response and communication with other DNA repair pathways within the cell. MSH6 is unstable in the absence of MSH2, however it is the DNA lesion-binding partner of this heterodimer. MSH6, but not MSH2, has a conserved Phe-X-Glu motif that recognizes and binds several different DNA structural distortions, initiating different cellular responses. hMSH6 also contains the nuclear localization sequences required to shuttle hMutSα into the nucleus. For example, upon binding to O 6 meG:T, MSH6 triggers a DNA damage response that involves altered phosphorylation within the N-terminal disordered domain of this unique protein. While many investigations have focused on MMR as a post-replication DNA repair mechanism, MMR proteins are expressed and active in all phases of the cell cycle. There is much more to be discovered about regulatory cellular roles that require the presence of MutSα and, in particular, MSH6

  4. Mismatch repair deficiency does not enhance ENU mutagenesis in the zebrafish germ line.

    NARCIS (Netherlands)

    Feitsma, H.; de Bruijn, E.; van de Belt, J.; Nijman, I.J.; Cuppen, E.

    2008-01-01

    S(N)1-type alkylating agents such as N-ethyl-N-nitrosourea (ENU) are very potent mutagens. They act by transferring their alkyl group to DNA bases, which, upon mispairing during replication, can cause single base pair mutations in the next replication cycle. As DNA mismatch repair (MMR) proteins are

  5. Constitutional mismatch repair deficiency in a healthy child: On the spot diagnosis?

    Science.gov (United States)

    Suerink, M; Potjer, T P; Versluijs, A B; Ten Broeke, S W; Tops, C M; Wimmer, K; Nielsen, M

    2018-01-01

    Constitutional mismatch repair deficiency (CMMRD) is a rare, recessively inherited childhood cancer predisposition syndrome caused by biallelic germline mutations in one of the mismatch repair genes. The CMMRD phenotype overlaps with that of neurofibromatosis type 1 (NF1), since many patients have multiple café-au-lait macules (CALM) and other NF1 signs, but no germline NF1 mutations. We report of a case of a healthy 6-year-old girl who fulfilled the diagnostic criteria of NF1 with >6 CALM and freckling. Since molecular genetic testing was unable to confirm the diagnosis of NF1 or Legius syndrome and the patient was a child of consanguineous parents, we suspected CMMRD and found a homozygous PMS2 mutation that impairs MMR function. Current guidelines advise testing for CMMRD only in cancer patients. However, this case illustrates that including CMMRD in the differential diagnosis in suspected sporadic NF1 without causative NF1 or SPRED1 mutations may facilitate identification of CMMRD prior to cancer development. We discuss the advantages and potential risks of this CMMRD testing scenario. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Human Postmeiotic Segregation 2 Exhibits Biased Repair at Tetranucleotide Microsatellite Sequences

    OpenAIRE

    Shah, Sandeep N.; Eckert, Kristin A.

    2009-01-01

    The mismatch repair (MMR) system plays a major role in removing DNA polymerization errors, and loss of this pathway results in hereditary cancers characterized by microsatellite instability. We investigated microsatellite stability during DNA replication within human postmeiotic segregation 2 (hPMS2)–deficient and proficient human lymphoblastoid cell lines. Using a shuttle vector assay, we measured mutation rates at reporter cassettes containing defined mononucleotide, dinucleotide, and tetra...

  7. Physical and functional interactions between Werner syndrome helicase and mismatch-repair initiation factors

    DEFF Research Database (Denmark)

    Saydam, Nurten; Kanagaraj, Radhakrishnan; Dietschy, Tobias

    2007-01-01

    is poorly understood. Here we show that WRN physically interacts with the MSH2/MSH6 (MutSalpha), MSH2/MSH3 (MutSbeta) and MLH1/PMS2 (MutLalpha) heterodimers that are involved in the initiation of mismatch repair (MMR) and the rejection of homeologous recombination. MutSalpha and MutSbeta can strongly...

  8. Constitutional mismatch repair deficiency and Lynch syndrome among consecutive Arab Bedouins with colorectal cancer in Israel.

    Science.gov (United States)

    Abu Freha, Naim; Leibovici Weissman, Yaara; Fich, Alexander; Barnes Kedar, Inbal; Halpern, Marisa; Sztarkier, Ignacio; Behar, Doron M; Arbib Sneh, Orly; Vilkin, Alex; Baris, Hagit N; Gingold, Rachel; Lejbkowicz, Flavio; Niv, Yaron; Goldberg, Yael; Levi, Zohar

    2018-01-01

    We assessed the molecular characteristics and the frequency of mutations in mismatch-repair genes among Bedouin patients with colorectal cancer (CRC) in Israel. Bedouin patients with a diagnosis of CRC at a major hospital in the southern part of Israel were deemed eligible for this study. The primary screening method was immunohistochemical staining for mismatch-repair proteins (MLH1, MSH2, MSH6, and PMS2). For subjects with abnormal immunohistochemical staining, we performed microsatellite instability (MSI) analyses, and for tumors with a loss of MLH1 expression we also performed BRAF testing. In MSI high cases we searched further for germline mutations. Of the 24 patients enrolled, four subjects (16.7%) had MSI high tumors: one subject was found to harbor a biallelic PMS2 mutation, one subject had Lynch syndrome (LS) with MSH6 mutation and two subjects had a loss of MLH1/PMS2 proteins/BRAF wild type /normal MLH1 sequence. Ten patients (41.7%) were younger than 50 at the time of diagnosis and none had first degree relatives with CRC. In conclusion, in this cohort of 24 consecutive Arab Bedouins with CRC, one patient was found to harbor a constitutional mismatch repair deficiency, one patient had LS with MSH6 mutation, and two patients had unresolved loss of MLH1/PMS2 proteins/BRAF wild type phenotype.

  9. Constitutional mismatch repair deficiency presenting in childhood as three simultaneous malignancies.

    Science.gov (United States)

    Walter, Andrew W; Ennis, Sara; Best, Hunter; Vaughn, Cecily P; Swensen, Jeffrey J; Openshaw, Amanda; Gripp, Karen W

    2013-11-01

    A 13-year-old child presented with three simultaneous malignancies: glioblastoma multiforme, Burkitt lymphoma, and colonic adenocarcinoma. She was treated for her diseases without success and died 8 months after presentation. Genetic analysis revealed a homozygous mutation in the PMS2 gene, consistent with constitutional mismatch repair deficiency. Her siblings and parents were screened: three of four siblings and both parents were heterozygous for this mutation; the fourth sibling did not have the mutation. Copyright © 2013 Wiley Periodicals, Inc.

  10. Characterization of a Highly Conserved Binding Site of Mlh1 Required for Exonuclease I-Dependent Mismatch Repair

    DEFF Research Database (Denmark)

    Dherin, Claudine; Gueneau, Emeric; Francin, Mathilde

    2009-01-01

    Mlh1 is an essential factor of mismatch repair (MMR) and meiotic recombination. It interacts through its C-terminal region with MutL homologs and proteins involved in DNA repair and replication. In this study, we identified the site of yeast Mlh1 critical for the interaction with Exo1, Ntg2......, and Sgs1 proteins, designated as site S2 by reference to the Mlh1/Pms1 heterodimerization site S1. We show that site S2 is also involved in the interaction between human MLH1 and EXO1 or BLM. Binding at this site involves a common motif on Mlh1 partners that we called the MIP-box for the Mlh1 interacting...... protein box. Direct and specific interactions between yeast Mlh1 and peptides derived from Exo1, Ntg2, and Sgs1 and between human MLH1 and peptide derived from EXO1 and BLM were measured with K(d) values ranging from 8.1 to 17.4 microM. In Saccharomyces cerevisiae, a mutant of Mlh1 targeted at site S2...

  11. Determining the functional significance of mismatch repair gene missense variants using biochemical and cellular assays

    DEFF Research Database (Denmark)

    Heinen, Christopher D; Juel Rasmussen, Lene

    2012-01-01

    ABSTRACT: With the discovery that the hereditary cancer susceptibility disease Lynch syndrome (LS) is caused by deleterious germline mutations in the DNA mismatch repair (MMR) genes nearly 20 years ago, genetic testing can now be used to diagnose this disorder in patients. A definitive diagnosis...

  12. Diagnostic criteria for constitutional mismatch repair deficiency syndrome

    DEFF Research Database (Denmark)

    Wimmer, Katharina; Kratz, Christian P; Vasen, Hans F A

    2014-01-01

    Constitutional mismatch repair deficiency (CMMRD) syndrome is a distinct childhood cancer predisposition syndrome that results from biallelic germline mutations in one of the four MMR genes, MLH1, MSH2, MSH6 or PMS2. The tumour spectrum is very broad, including mainly haematological, brain....... They include multiple hyperpigmented and hypopigmented skin areas, brain malformations, pilomatricomas, a second childhood malignancy, a Lynch syndrome (LS)-associated tumour in a relative and parental consanguinity. According to the scoring system, CMMRD should be suspected in any cancer patient who reaches...... patient. Tumours highly specific for CMMRD syndrome are assigned three points, malignancies overrepresented in CMMRD two points and all other malignancies one point. According to their specificity for CMMRD and their frequency in the general population, additional features are weighted with 1-2 points...

  13. Do polymorphisms and haplotypes of mismatch repair genes modulate risk of sporadic colorectal cancer?

    Czech Academy of Sciences Publication Activity Database

    Tulupová, Elena; Kumar, R.; Hánová, Monika; Slyšková, Jana; Pardini, Barbara; Poláková, Veronika; Naccarati, Alessio; Vodičková, Ludmila; Novotný, J.; Halamková, J.; Hemminki, K.; Vodička, Pavel

    2008-01-01

    Roč. 648, 1-2 (2008), s. 40-45 ISSN 0027-5107 R&D Projects: GA ČR GA310/07/1430 Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50390703 Keywords : DNA mismatch repair * Genetic polymorphism * Haplotype analysis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.198, year: 2008

  14. Immunohistochemistry for PMS2 and MSH6 alone can replace a four antibody panel for mismatch repair deficiency screening in colorectal adenocarcinoma.

    Science.gov (United States)

    Hall, Geoffrey; Clarkson, Adele; Shi, Amanda; Langford, Eileen; Leung, Helen; Eckstein, Robert P; Gill, Anthony J

    2010-01-01

    Currently, testing for mismatch repair deficiency in colorectal cancers is initiated by performing immunohistochemistry with four antibodies (MLH1, PMS2, MSH2 and MSH6). If any one of these stains is negative the tumour is considered microsatellite unstable and, if clinical circumstances warrant it, the patient is offered genetic testing for Lynch's syndrome. Due to the binding properties of the mismatch repair heterodimer complexes, gene mutation and loss of MLH1 and MSH2 invariably result in the degradation of PMS2 and MSH6, respectively, but the converse is not true. We propose that staining for PMS2 and MSH6 alone will be sufficient to detect all cases of mismatch repair deficiency and should replace routine screening with all four antibodies. The electronic database of the department of Anatomical Pathology, Royal North Shore Hospital, Sydney, Australia, was searched for all colorectal carcinomas on which a four panel immunohistochemical microsatellite instability screen was performed. An audit of the slides for concordant loss of MLH1-PMS2 and MSH2-MSH6 was then undertaken. Unusual or discordant cases were reviewed and, in some cases, re-stained to confirm the staining pattern. Of 344 cases of colorectal cancer which underwent four antibody immunohistochemistry, 104 displayed loss of at least one mismatch repair protein. Of these, 100 showed concordant mismatch repair loss (i.e., loss of MLH1 and PMS2 or loss of MSH2 and MSH6). The four discordant cases comprised two single negative cases (1 MSH6 negative/MSH2 positive case, 1 PMS2 negative/MLH1 positive) and two triple negative (both MLH1/PMS2/MSH6 negative). The microsatellite instability (MSI) group showed a relatively high median age (69.3 years) due to the departmental policy of testing all cases with possible MSI morphology regardless of age. The sensitivity and specificity of a two panel test comprised of PMS2 and MSH6, compared to a four panel test, is 100%. No false negatives or positives were

  15. PMS2 gene mutation results in DNA mismatch repair system failure in a case of adult granulosa cell tumor.

    Science.gov (United States)

    Wang, Wen-Chung; Lee, Ya-Ting; Lai, Yen-Chein

    2017-03-27

    Granulosa cell tumors are rare ovarian malignancies. Their characteristics include unpredictable indolent growth with malignant potential and late recurrence. Approximately 95% are of adult type. Recent molecular studies have characterized the FOXL2 402C > G mutation in adult granulosa cell tumor. Our previous case report showed that unique FOXL2 402C > G mutation and defective DNA mismatch repair system are associated with the development of adult granulosa cell tumor. In this study, the DNA sequences of four genes, MSH2, MLH1, MSH6, and PMS2, in the DNA mismatch repair system were determined via direct sequencing to elucidate the exact mechanism for the development of this granulosa cell tumor. The results showed that two missense germline mutations, T485K and N775L, inactivate the PMS2 gene. The results of this case study indicated that although FOXL2 402C > G mutation determines the development of granulosa cell tumor, PMS2 mutation may be the initial driver of carcinogenesis. Immunohistochemistry-based tumor testing for mismatch repair gene expression may be necessary for granulosa cell tumors to determine their malignant potential or if they are part of Lynch syndrome.

  16. Molecular characteristics of mismatch repair genes in sporadic colorectal tumors in Czech patients

    Czech Academy of Sciences Publication Activity Database

    Vymetálková, Veronika; Slyšková, Jana; Korenková, Vlasta; Bielik, Ludovít; Langerová, Lucie; Procházka, Pavel; Rejhová, Alexandra; Schwarzová, L.; Pardini, B.; Naccarati, Alessio; Vodička, Pavel

    2014-01-01

    Roč. 15, č. 1 (2014), s. 17 ISSN 1471-2350 R&D Projects: GA AV ČR IAA500200917; GA ČR(CZ) GPP304/11/P715 Grant - others:GA MŠk(CZ) Prvouk-P27/LF1/1 Institutional support: RVO:68378041 ; RVO:86652036 Keywords : colorectal cancer * mismatch repair genes * expression levels Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.083, year: 2014

  17. Biallelic PMS2 Mutation and Heterozygous DICER1 Mutation Presenting as Constitutional Mismatch Repair Deficiency With Corpus Callosum Agenesis: Case Report and Review of Literature.

    Science.gov (United States)

    Cheyuo, Cletus; Radwan, Walid; Ahn, Janice; Gyure, Kymberly; Qaiser, Rabia; Tomboc, Patrick

    2017-10-01

    Constitutional mismatch repair deficiency syndrome is a cancer predisposition syndrome caused by autosomal recessive biallelic (homozygous) germline mutations in the mismatch repair genes (MLH1, MSH2, MSH6, and PMS2). The clinical spectrum includes neoplastic and non-neoplastic manifestations. We present the case of a 7-year-old boy who presented with T-lymphoblastic lymphoma and glioblastoma, together with non-neoplastic manifestations including corpus callosum agenesis, arachnoid cyst, developmental venous anomaly, and hydrocephalus. Gene mutation analysis revealed pathogenic biallelic mutations of PMS2 and heterozygous DICER1 variant predicted to be pathogenic. This report is the first to allude to a possible interaction of the mismatch repair system with DICER1 to cause corpus callosum agenesis.

  18. DNA Mismatch Repair System: Repercussions in Cellular Homeostasis and Relationship with Aging

    Directory of Open Access Journals (Sweden)

    Juan Cristóbal Conde-Pérezprina

    2012-01-01

    Full Text Available The mechanisms that concern DNA repair have been studied in the last years due to their consequences in cellular homeostasis. The diverse and damaging stimuli that affect DNA integrity, such as changes in the genetic sequence and modifications in gene expression, can disrupt the steady state of the cell and have serious repercussions to pathways that regulate apoptosis, senescence, and cancer. These altered pathways not only modify cellular and organism longevity, but quality of life (“health-span”. The DNA mismatch repair system (MMR is highly conserved between species; its role is paramount in the preservation of DNA integrity, placing it as a necessary focal point in the study of pathways that prolong lifespan, aging, and disease. Here, we review different insights concerning the malfunction or absence of the DNA-MMR and its impact on cellular homeostasis. In particular, we will focus on DNA-MMR mechanisms regulated by known repair proteins MSH2, MSH6, PMS2, and MHL1, among others.

  19. Predictive genetic testing in children: constitutional mismatch repair deficiency cancer predisposing syndrome.

    Science.gov (United States)

    Bruwer, Zandrè; Algar, Ursula; Vorster, Alvera; Fieggen, Karen; Davidson, Alan; Goldberg, Paul; Wainwright, Helen; Ramesar, Rajkumar

    2014-04-01

    Biallelic germline mutations in mismatch repair genes predispose to constitutional mismatch repair deficiency syndrome (CMMR-D). The condition is characterized by a broad spectrum of early-onset tumors, including hematological, brain and bowel and is frequently associated with features of Neurofibromatosis type 1. Few definitive screening recommendations have been suggested and no published reports have described predictive testing. We report on the first case of predictive testing for CMMR-D following the identification of two non-consanguineous parents, with the same heterozygous mutation in MLH1: c.1528C > T. The genetic counseling offered to the family, for their two at-risk daughters, is discussed with a focus on the ethical considerations of testing children for known cancer-causing variants. The challenges that are encountered when reporting on heterozygosity in a child younger than 18 years (disclosure of carrier status and risk for Lynch syndrome), when discovered during testing for homozygosity, are addressed. In addition, the identification of CMMR-D in a three year old, and the recommended clinical surveillance that was proposed for this individual is discussed. Despite predictive testing and presymptomatic screening, the sudden death of the child with CMMR-D syndrome occurred 6 months after her last surveillance MRI. This report further highlights the difficulty of developing guidelines, as a result of the rarity of cases and diversity of presentation.

  20. Nuclear translocation of mismatch repair proteins MSH2 and MSH6 as a response of cells to alkylating agents.

    Science.gov (United States)

    Christmann, M; Kaina, B

    2000-11-17

    Mammalian mismatch repair has been implicated in mismatch correction, the prevention of mutagenesis and cancer, and the induction of genotoxicity and apoptosis. Here, we show that treatment of cells specifically with agents inducing O(6)-methylguanine in DNA, such as N-methyl-N'-nitro-N-nitrosoguanidine and N-methyl-N-nitrosourea, elevates the level of MSH2 and MSH6 and increases GT mismatch binding activity in the nucleus. This inducible response occurs immediately after alkylation, is long-lasting and dose-dependent, and results from translocation of the preformed MutSalpha complex (composed of MSH2 and MSH6) from the cytoplasm into the nucleus. It is not caused by an increase in MSH2 gene activity. Cells expressing the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT), thus having the ability to repair O(6)-methylguanine, showed no translocation of MutSalpha, whereas inhibition of MGMT by O(6)-benzylguanine provoked the translocation. The results demonstrate that O(6)-methylguanine lesions are involved in triggering nuclear accumulation of MSH2 and MSH6. The finding that treatment of cells with O(6)-methylguanine-generating mutagens results in an increase of MutSalpha and GT binding activity in the nucleus indicates a novel type of genotoxic stress response.

  1. Constitutional mismatch repair-deficiency syndrome: have we so far seen only the tip of an iceberg?

    Science.gov (United States)

    Wimmer, Katharina; Etzler, Julia

    2008-09-01

    Heterozygous mutations in one of the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 cause the dominant adult cancer syndrome termed Lynch syndrome or hereditary non-polyposis colorectal cancer. During the past 10 years, some 35 reports have delineated the phenotype of patients with biallelic inheritance of mutations in one of these MMR genes. The patients suffer from a condition that is characterised by the development of childhood cancers, mainly haematological malignancies and/or brain tumours, as well as early-onset colorectal cancers. Almost all patients also show signs reminiscent of neurofibromatosis type 1, mainly café au lait spots. Alluding to the underlying mechanism, this condition may be termed as "constitutional mismatch repair-deficiency (CMMR-D) syndrome". To give an overview of the current knowledge and its implications of this recessively inherited cancer syndrome we summarise here the genetic, clinical and pathological findings of the so far 78 reported patients of 46 families suffering from this syndrome.

  2. Constitutioneel ‘mismatch repair’-deficiëntiesyndroom

    NARCIS (Netherlands)

    Jongmans, Marjolijn C.; Gidding, Corrie E.; Loeffen, Jan; Wesseling, Pieter; Mensenkamp, Arjen; Hoogerbrugge, Nicoline

    2015-01-01

    Constitutional mismatch repair deficiency (CMMRD) syndrome is characterised by a significantly increased risk for developing cancer in childhood. It arises when both parents have a mutation in the same mismatch repair gene and pass it on to their child. Case description An 8yearold girl was

  3. Mismatch repair gene mutation spectrum in the Swedish Lynch syndrome population

    DEFF Research Database (Denmark)

    Lagerstedt-Robinson, Kristina; Rohlin, Anna; Aravidis, Christos

    2016-01-01

    Lynch syndrome caused by constitutional mismatch‑repair defects is one of the most common hereditary cancer syndromes with a high risk for colorectal, endometrial, ovarian and urothelial cancer. Lynch syndrome is caused by mutations in the mismatch repair (MMR) genes i.e., MLH1, MSH2, MSH6 and PMS2...... Lynch syndrome families. These mutations affected MLH1 in 40%, MSH2 in 36%, MSH6 in 18% and PMS2 in 6% of the families. A large variety of mutations were identified with splice site mutations being the most common mutation type in MLH1 and frameshift mutations predominating in MSH2 and MSH6. Large...... deletions of one or several exons accounted for 21% of the mutations in MLH1 and MSH2 and 22% in PMS2, but were rare (4%) in MSH6. In 66% of the Lynch syndrome families the variants identified were private and the effect from founder mutations was limited and predominantly related to a Finnish founder...

  4. Immunotherapy holds the key to cancer treatment and prevention in constitutional mismatch repair deficiency (CMMRD) syndrome.

    Science.gov (United States)

    Westdorp, Harm; Kolders, Sigrid; Hoogerbrugge, Nicoline; de Vries, I Jolanda M; Jongmans, Marjolijn C J; Schreibelt, Gerty

    2017-09-10

    Monoallelic germline mutations in one of the DNA mismatch repair (MMR) genes cause Lynch syndrome, with a high lifetime risks of colorectal and endometrial cancer at adult age. Less well known, is the constitutional mismatch repair deficiency (CMMRD) syndrome caused by biallelic germline mutations in MMR genes. This syndrome is characterized by the development of childhood cancer. Patients with CMMRD are at extremely high risk of developing multiple cancers including hematological, brain and intestinal tumors. Mutations in MMR genes impair DNA repair and therefore most tumors of patients with CMMRD are hypermutated. These mutations lead to changes in the translational reading frame, which consequently result in neoantigen formation. Neoantigens are recognized as foreign by the immune system and can induce specific immune responses. The growing evidence on the clinical efficacy of immunotherapies, such as immune checkpoint inhibitors, offers the prospect for treatment of patients with CMMRD. Combining neoantigen-based vaccination strategies and immune checkpoint inhibitors could be an effective way to conquer CMMRD-related tumors. Neoantigen-based vaccines might also be a preventive treatment option in healthy biallelic MMR mutation carriers. Future studies need to reveal the safety and efficacy of immunotherapies for patients with CMMRD. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. Selecting patients with young-onset colorectal cancer for mismatch repair gene analysis

    DEFF Research Database (Denmark)

    Walker, M; O'Sullivan, B; Perakath, B

    2007-01-01

    BACKGROUND: Young patients with colorectal cancer are at increased risk of carrying a germline mutation in mismatch repair (MMR) genes. This study investigated the role of clinical criteria and immunohistochemistry for MMR proteins in selecting young patients for mutation testing. METHODS: A cohort...... of 56 consecutive patients with colorectal cancer aged less than 45 years were stratified into three groups based on clinical criteria: 'Amsterdam criteria', 'high risk' and 'young onset only'. Immunohistochemistry for four MMR proteins was carried out and the rate of compliance with clinical guidelines...

  6. The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer

    International Nuclear Information System (INIS)

    Meng, Erhong; Hanna, Ann; Samant, Rajeev S.; Shevde, Lalita A.

    2015-01-01

    Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair). Aberrant activation of the Hedgehog (Hh) signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer

  7. The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Erhong; Hanna, Ann; Samant, Rajeev S.; Shevde, Lalita A., E-mail: lsamant@uab.edu [Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, WTI320D, 1824 6th Avenue South, Birmingham, AL 35233 (United States)

    2015-07-21

    Defined cellular mechanisms have evolved that recognize and repair DNA to protect the integrity of its structure and sequence when encountering assaults from endogenous and exogenous sources. There are five major DNA repair pathways: mismatch repair, nucleotide excision repair, direct repair, base excision repair and DNA double strand break repair (including non-homologous end joining and homologous recombination repair). Aberrant activation of the Hedgehog (Hh) signaling pathway is a feature of many cancer types. The Hh pathway has been documented to be indispensable for epithelial-mesenchymal transition, invasion and metastasis, cancer stemness, and chemoresistance. The functional transcription activators of the Hh pathway include the GLI proteins. Inhibition of the activity of GLI can interfere with almost all DNA repair types in human cancer, indicating that Hh/GLI functions may play an important role in enabling tumor cells to survive lethal types of DNA damage induced by chemotherapy and radiotherapy. Thus, Hh signaling presents an important therapeutic target to overcome DNA repair-enabled multi-drug resistance and consequently increase chemotherapeutic response in the treatment of cancer.

  8. Influence of oxidized purine processing on strand directionality of mismatch repair.

    Science.gov (United States)

    Repmann, Simone; Olivera-Harris, Maite; Jiricny, Josef

    2015-04-17

    Replicative DNA polymerases are high fidelity enzymes that misincorporate nucleotides into nascent DNA with a frequency lower than [1/10(5)], and this precision is improved to about [1/10(7)] by their proofreading activity. Because this fidelity is insufficient to replicate most genomes without error, nature evolved postreplicative mismatch repair (MMR), which improves the fidelity of DNA replication by up to 3 orders of magnitude through correcting biosynthetic errors that escaped proofreading. MMR must be able to recognize non-Watson-Crick base pairs and excise the misincorporated nucleotides from the nascent DNA strand, which carries by definition the erroneous genetic information. In eukaryotes, MMR is believed to be directed to the nascent strand by preexisting discontinuities such as gaps between Okazaki fragments in the lagging strand or breaks in the leading strand generated by the mismatch-activated endonuclease of the MutL homologs PMS1 in yeast and PMS2 in vertebrates. We recently demonstrated that the eukaryotic MMR machinery can make use also of strand breaks arising during excision of uracils or ribonucleotides from DNA. We now show that intermediates of MutY homolog-dependent excision of adenines mispaired with 8-oxoguanine (G(O)) also act as MMR initiation sites in extracts of human cells or Xenopus laevis eggs. Unexpectedly, G(O)/C pairs were not processed in these extracts and failed to affect MMR directionality, but extracts supplemented with exogenous 8-oxoguanine DNA glycosylase (OGG1) did so. Because OGG1-mediated excision of G(O) might misdirect MMR to the template strand, our findings suggest that OGG1 activity might be inhibited during MMR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. The role of mismatch repair in small-cell lung cancer cells

    DEFF Research Database (Denmark)

    Hansen, L T; Thykjaer, T; Ørntoft, T F

    2003-01-01

    The role of mismatch repair (MMR) in small-cell lung cancer (SCLC) is controversial, as the phenotype of a MMR-deficiency, microsatellite instability (MSI), has been reported to range from 0 to 76%. We studied the MMR pathway in a panel of 21 SCLC cell lines and observed a highly heterogeneous...... pattern of MMR gene expression. A significant correlation between the mRNA and protein levels was found. We demonstrate that low hMLH1 gene expression was not linked to promoter CpG methylation. One cell line (86MI) was found to be deficient in MMR and exhibited resistance to the alkylating agent MNNG...

  10. Simple detection of germline microsatellite instability for diagnosis of constitutional mismatch repair cancer syndrome.

    Science.gov (United States)

    Ingham, Danielle; Diggle, Christine P; Berry, Ian; Bristow, Claire A; Hayward, Bruce E; Rahman, Nazneen; Markham, Alexander F; Sheridan, Eamonn G; Bonthron, David T; Carr, Ian M

    2013-06-01

    Heterozygous mutations in DNA mismatch repair (MMR) genes result in predisposition to colorectal cancer (hereditary nonpolyposis colorectal cancer or Lynch syndrome). Patients with biallelic mutations in these genes, however, present earlier, with constitutional mismatch repair deficiency cancer syndrome (CMMRD), which is characterized by a spectrum of rare childhood malignancies and café-au-lait skin patches. The hallmark of MMR deficiency, microsatellite instability (MSI), is readily detectable in tumor DNA in Lynch syndrome, but is also present in constitutional DNA of CMMRD patients. However, detection of constitutional or germline MSI (gMSI) has hitherto relied on technically difficult assays that are not routinely applicable for clinical diagnosis. Consequently, we have developed a simple high-throughput screening methodology to detect gMSI in CMMRD patients based on the presence of stutter peaks flanking a dinucleotide repeat allele when amplified from patient blood DNA samples. Using the three different microsatellite markers, the gMSI ratio was determined in a cohort of normal individuals and 10 CMMRD patients, with biallelic germline mutations in PMS2 (seven patients), MSH2 (one patient), or MSH6 (two patients). Subjects with either PMS2 or MSH2 mutations were easily identified; however, this measure was not altered in patients with CMMRD due to MSH6 mutation. © 2013 Wiley Periodicals, Inc.

  11. Acute lymphoblastic leukemia and lymphoma in the context of constitutional mismatch repair deficiency syndrome.

    Science.gov (United States)

    Ripperger, Tim; Schlegelberger, Brigitte

    2016-03-01

    Constitutional mismatch repair deficiency (CMMRD) syndrome is one of the rare diseases associated with a high risk of cancer. Causative mutations are found in DNA mismatch repair genes PMS2, MSH6, MSH2 or MLH1 that are well known in the context of Lynch syndrome. CMMRD follows an autosomal recessive inheritance trait and is characterized by childhood brain tumors and hematological malignancies as well as gastrointestinal cancer in the second and third decades of life. There is a high risk of multiple cancers, occurring synchronously and metachronously. In general, the prognosis is poor. About one third of CMMRD patients develop hematological malignancies as primary (sometimes the only) malignancy or as secondary neoplasm. T-cell non-Hodgkin lymphomas, mainly of mediastinal origin, are the most frequent hematological malignancies. Besides malignant diseases, non-neoplastic features are frequently observed, e.g. café-au-lait spots sometimes resembling neurofibromatosis type I, hypopigmented skin lesions, numerous adenomatous polyps, multiple pilomatricomas, or impaired immunoglobulin class switch recombination. Within the present review, we summarize previously published CMMRD patients with at least one hematological malignancy, provide an overview of steps necessary to substantiate the diagnosis of CMMRD, and refer to the recent most relevant literature. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Efficient and reproducible identification of mismatch repair deficient colon cancer

    DEFF Research Database (Denmark)

    Joost, Patrick; Bendahl, Pär-Ola; Halvarsson, Britta

    2013-01-01

    BACKGROUND: The identification of mismatch-repair (MMR) defective colon cancer is clinically relevant for diagnostic, prognostic and potentially also for treatment predictive purposes. Preselection of tumors for MMR analysis can be obtained with predictive models, which need to demonstrate ease...... of application and favorable reproducibility. METHODS: We validated the MMR index for the identification of prognostically favorable MMR deficient colon cancers and compared performance to 5 other prediction models. In total, 474 colon cancers diagnosed ≥ age 50 were evaluated with correlation between...... clinicopathologic variables and immunohistochemical MMR protein expression. RESULTS: Female sex, age ≥60 years, proximal tumor location, expanding growth pattern, lack of dirty necrosis, mucinous differentiation and presence of tumor-infiltrating lymphocytes significantly correlated with MMR deficiency. Presence...

  13. DNA mismatch repair deficiency accelerates lung neoplasm development in K-rasLA1/+ mice: a brief report

    International Nuclear Information System (INIS)

    Downey, Charlene M; Jirik, Frank R

    2015-01-01

    Inherited as well as acquired deficiencies in specific DNA mismatch repair (MMR) components are associated with the development of a wide range of benign and malignant neoplasms. Loss of key members such as MSH2 and MLH1 severely cripples the ability of the cell to recognize and correct such lesions as base:base mismatches and replicative DNA polymerase errors such as slippages at repetitive sequences. Genomic instability resulting from MMR deficiency not only predisposes cells to malignant transformation but may also promote tumor progression. To test the latter, we interbred Msh2 −/− mice with the K-ras LA1/+ transgenic line that spontaneously develops a range of premalignant and malignant lung lesions. Compared to K-ras LA1/+ mice, K-ras LA1/+ ; Msh2 −/− mice developed lung adenomas and adenocarcinomas at an increased frequency and also demonstrated evidence of accelerated adenocarcinoma growth. Since MMR defects have been identified in some human lung cancers, the mutant mice may not only be of preclinical utility but they will also be useful in identifying gene alterations able to act in concert with Kras mutants to promote tumor progression

  14. Completion of meiosis in male zebrafish (Danio rerio) despite lack of DNA mismatch repair gene mlh1

    NARCIS (Netherlands)

    Leal, M.C.; Feitsma, H.; Cuppen, E.; França, L.R.; Schulz, R.W.

    2008-01-01

    Mlh1 is a member of DNA mismatch repair (MMR) machinery and is also essential for the stabilization of crossovers during the first meiotic division. Recently, we have shown that zebrafish mlh1 mutant males are completely infertile because of a block in metaphase I, whereas females are fertile

  15. Mismatch repair deficiency: a temozolomide resistance factor in medulloblastoma cell lines that is uncommon in primary medulloblastoma tumours

    NARCIS (Netherlands)

    von Bueren, A. O.; Bacolod, M. D.; Hagel, C.; Heinimann, K.; Fedier, A.; Kordes, U.; Pietsch, T.; Koster, J.; Grotzer, M. A.; Friedman, H. S.; Marra, G.; Kool, M.; Rutkowski, S.

    2012-01-01

    BACKGROUND: Tumours are responsive to temozolomide (TMZ) if they are deficient in O-6-methylguanine-DNA methyltransferase (MGMT), and mismatch repair (MMR) proficient. METHODS: The effect of TMZ on medulloblastoma (MB) cell killing was analysed with clonogenic survival assays. Expression of DNA

  16. A 30-Year-Old Man with Three Primary Malignancies: A Case of Constitutional Mismatch Repair Deficiency

    OpenAIRE

    Rengifo-Cam, William; Jasperson, Kory; Garrido-Laguna, Ignacio; Colman, Howard; Scaife, Courtney; Samowitz, Wade; Samadder, N. Jewel

    2017-01-01

    Constitutional mismatch repair deficiency (CMMRD) is a devastating cancer predisposition syndrome for which clinical manifestations, genetic screening, and cancer prevention strategies are limited. We report a case of CMMRD presenting with metachronous colorectal cancer and brain cancer. Oncologists and gastroenterologists should be aware of the CMMRD syndrome as a rare cause of very early-onset colorectal cancer.

  17. A 30-Year-Old Man with Three Primary Malignancies: A Case of Constitutional Mismatch Repair Deficiency.

    Science.gov (United States)

    Rengifo-Cam, William; Jasperson, Kory; Garrido-Laguna, Ignacio; Colman, Howard; Scaife, Courtney; Samowitz, Wade; Samadder, N Jewel

    2017-01-01

    Constitutional mismatch repair deficiency (CMMRD) is a devastating cancer predisposition syndrome for which clinical manifestations, genetic screening, and cancer prevention strategies are limited. We report a case of CMMRD presenting with metachronous colorectal cancer and brain cancer. Oncologists and gastroenterologists should be aware of the CMMRD syndrome as a rare cause of very early-onset colorectal cancer.

  18. Completion of meiosis in male zebrafish (Danio rerio) despite lack of DNA mismatch repair gene mlh1.

    NARCIS (Netherlands)

    Leal, M.C.; Feitsma, H.; Cuppen, E.; Franca, L.R.; Schulz, R.W.

    2008-01-01

    Mlh1 is a member of DNA mismatch repair (MMR) machinery and is also essential for the stabilization of crossovers during the first meiotic division. Recently, we have shown that zebrafish mlh1 mutant males are completely infertile because of a block in metaphase I, whereas females are fertile but

  19. Human longevity and variation in DNA damage response and repair

    DEFF Research Database (Denmark)

    Debrabant, Birgit; Soerensen, Mette; Flachsbart, Friederike

    2014-01-01

    others. Data were applied on 592 SNPs from 77 genes involved in nine sub-processes: DNA-damage response, base excision repair (BER), nucleotide excision repair, mismatch repair, non-homologous end-joining, homologous recombinational repair (HRR), RecQ helicase activities (RECQ), telomere functioning...... in genotyping procedures and investigated SNPs, potentially inducing differences in the coverage of gene regions. Specifically, five genes were not covered at all in the German data. Therefore, investigations in additional study populations are needed before final conclusion can be drawn....

  20. Optic pathway glioma as part of a constitutional mismatch-repair deficiency syndrome in a patient meeting the criteria for neurofibromatosis type 1.

    Science.gov (United States)

    Yeung, Jacky T; Pollack, Ian F; Shah, Sapana; Jaffe, Ronald; Nikiforova, Marina; Jakacki, Regina I

    2013-01-01

    Patients with constitutional mismatch repair-deficiency (CMMR-D) caused by the biallelic deletions of mismatch repair (MMR) genes have a high likelihood of developing malignancies of the bone marrow, bowel, and brain. Affected individuals often have phenotypic features of neurofibromatosis type 1 (NF-1), including café-au-lait spots. Optic pathway gliomas (OPGs), a common manifestation of NF-1, have not been reported. We report the case of a 3-year-old male with an extensive OPG who met the diagnostic criteria for NF-1. He was subsequently found to have multiple colonic polyps and bi-allelic loss of PMS2. Testing for NF-1 was negative. Copyright © 2012 Wiley Periodicals, Inc.

  1. Identification of a mismatch-specific endonuclease in hyperthermophilic Archaea

    OpenAIRE

    Ishino, Sonoko; Nishi, Yuki; Oda, Soichiro; Uemori, Takashi; Sagara, Takehiro; Takatsu, Nariaki; Yamagami, Takeshi; Shirai, Tsuyoshi; Ishino, Yoshizumi

    2016-01-01

    The common mismatch repair system processed by MutS and MutL and their homologs was identified in Bacteria and Eukarya. However, no evidence of a functional MutS/L homolog has been reported for archaeal organisms, and it is not known whether the mismatch repair system is conserved in Archaea. Here, we describe an endonuclease that cleaves double-stranded DNA containing a mismatched base pair, from the hyperthermophilic archaeon Pyrococcus furiosus. The corresponding gene revealed that the act...

  2. Identification of Lynch syndrome mutations in the MLH1-PMS2 interface that disturb dimerization and mismatch repair.

    Science.gov (United States)

    Kosinski, Jan; Hinrichsen, Inga; Bujnicki, Janusz M; Friedhoff, Peter; Plotz, Guido

    2010-08-01

    Missense alterations of the mismatch repair gene MLH1 have been identified in a significant proportion of individuals suspected of having Lynch syndrome, a hereditary syndrome that predisposes for cancer of colon and endometrium. The pathogenicity of many of these alterations, however, is unclear. A number of MLH1 alterations are located in the C-terminal domain (CTD) of MLH1, which is responsible for constitutive dimerization with PMS2. We analyzed which alterations may result in pathogenic effects due to interference with dimerization. We used a structural model of CTD of MLH1-PMS2 heterodimer to select 19 MLH1 alterations located inside and outside two candidate dimerization interfaces in the MLH1-CTD. Three alterations (p.Gln542Leu, p.Leu749Pro, p.Tyr750X) caused decreased coexpression of PMS2, which is unstable in the absence of interaction with MLH1, suggesting that these alterations interfere with dimerization. All three alterations are located within the dimerization interface suggested by our model. They also compromised mismatch repair, suggesting that defects in dimerization abrogate repair and confirming that all three alterations are pathogenic. Additionally, we provided biochemical evidence that four alterations with uncertain pathogenicity (p.Ala586Pro, p.Leu636Pro, p.Thr662Pro, and p.Arg755Trp) are deleterious because of poor expression or poor repair efficiency, and confirm the deleterious effect of eight further alterations.

  3. Role of Cell Cycle Regulation and MLH1, A Key DNA Mismatch Repair Protein, In Adaptive Survival Responses. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    David A. Boothman

    1999-08-11

    Due to several interesting findings on both adaptive survival responses (ASRs) and DNA mismatch repair (MMR), this grant was separated into two discrete Specific Aim sets (each with their own discrete hypotheses). The described experiments were simultaneously performed.

  4. The human cyclin B1 protein modulates sensitivity of DNA mismatch repair deficient prostate cancer cell lines to alkylating agents.

    Science.gov (United States)

    Rasmussen, L J; Rasmussen, M; Lützen, A; Bisgaard, H C; Singh, K K

    2000-05-25

    DNA damage caused by alkylating agents results in a G2 checkpoint arrest. DNA mismatch repair (MMR) deficient cells are resistant to killing by alkylating agents and are unable to arrest the cell cycle in G2 phase after alkylation damage. We investigated the response of two MMR-deficient prostate cancer cell lines DU145 and LNCaP to the alkylating agent MNNG. Our studies reveal that DU145 cancer cells are more sensitive to killing by MNNG than LNCaP. Investigation of the underlying reasons for lower resistance revealed that the DU145 cells contain low endogenous levels of cyclin B1. We provide direct evidence that the endogenous level of cyclin B1 modulates the sensitivity of MMR-deficient prostate cancer cells to alkylating agents.

  5. Human colon cancer profiles show differential microRNA expression depending on mismatch repair status and are characteristic of undifferentiated proliferative states

    International Nuclear Information System (INIS)

    Sarver, Aaron L; Cunningham, Julie M; Subramanian, Subbaya; Wang, Liang; Smyrk, Tom C; Rodrigues, Cecilia MP; Thibodeau, Stephen N; Steer, Clifford J; French, Amy J; Borralho, Pedro M; Thayanithy, Venugopal; Oberg, Ann L; Silverstein, Kevin AT; Morlan, Bruce W; Riska, Shaun M; Boardman, Lisa A

    2009-01-01

    Colon cancer arises from the accumulation of multiple genetic and epigenetic alterations to normal colonic tissue. microRNAs (miRNAs) are small, non-coding regulatory RNAs that post-transcriptionally regulate gene expression. Differential miRNA expression in cancer versus normal tissue is a common event and may be pivotal for tumor onset and progression. To identify miRNAs that are differentially expressed in tumors and tumor subtypes, we carried out highly sensitive expression profiling of 735 miRNAs on samples obtained from a statistically powerful set of tumors (n = 80) and normal colon tissue (n = 28) and validated a subset of this data by qRT-PCR. Tumor specimens showed highly significant and large fold change differential expression of the levels of 39 miRNAs including miR-135b, miR-96, miR-182, miR-183, miR-1, and miR-133a, relative to normal colon tissue. Significant differences were also seen in 6 miRNAs including miR-31 and miR-592, in the direct comparison of tumors that were deficient or proficient for mismatch repair. Examination of the genomic regions containing differentially expressed miRNAs revealed that they were also differentially methylated in colon cancer at a far greater rate than would be expected by chance. A network of interactions between these miRNAs and genes associated with colon cancer provided evidence for the role of these miRNAs as oncogenes by attenuation of tumor suppressor genes. Colon tumors show differential expression of miRNAs depending on mismatch repair status. miRNA expression in colon tumors has an epigenetic component and altered expression that may reflect a reversion to regulatory programs characteristic of undifferentiated proliferative developmental states

  6. No significant role for beta tubulin mutations and mismatch repair defects in ovarian cancer resistance to paclitaxel/cisplatin

    International Nuclear Information System (INIS)

    Mesquita, Bárbara; Veiga, Isabel; Pereira, Deolinda; Tavares, Ana; Pinto, Isabel M; Pinto, Carla; Teixeira, Manuel R; Castedo, Sérgio

    2005-01-01

    The mechanisms of chemoresistance in ovarian cancer patients remain largely to be elucidated. Paclitaxel/cisplatin combination is the standard chemotherapeutic treatment for this disease, although some patients do not respond to therapy. Our goals were to investigate whether TUBB mutations and mismatch repair defects underlie paclitaxel and cisplatin resistance. Thirty-four patients with primary ovarian carcinomas (26 serous and eight clear cell carcinomas) treated with paclitaxel/cisplatin were analysed. TUBB exon 4 was analysed by nested PCR after a first round PCR using intronic primers. Microsatellite analysis was performed with the quasimonomorphic markers BAT 26 and BAT 34. Twenty-two of the 34 ovarian cancers (64.7%) presented residual tumour after surgery, seven of which (7/22; 31.8%) were shown to be chemoresistant (five serous and two clear cell tumours). Sequence analysis did not find any mutation in TUBB exon 4. Microsatellite instability was not detected in any of the ovarian carcinomas. We conclude that TUBB exon 4 mutations and mismatch repair defects do not play a significant role in paclitaxel/cisplatin resistance

  7. A rare case of Crohn's ileitis in a patient with constitutional mismatch repair deficiency.

    Science.gov (United States)

    Kaimakliotis, Pavlos; Giardiello, Francis; Eze, Ogechukwu; Truta, Brindusa

    2017-01-01

    Constitutional mismatch repair deficiency (CMMRD), a variant of Lynch syndrome, is a rare disease characterized by café-au-lait spots, oligopolyposis, glioblastoma and lymphoma. A 24-year-old male, under surveillance for CMMRD, developed Crohn's ileitis after total colectomy with end ileostomy for colorectal cancer and failed to respond to oral corticosteroids. The patient underwent induction and maintenance of remission with vedolizumab infusions. We report the first patient with CMMRD developing Crohn's disease. The choice of immunosuppressive therapy in these patients is challenging and needs to be made according to their risk for malignancy.

  8. C-Terminal Fluorescent Labeling Impairs Functionality of DNA Mismatch Repair Proteins

    Science.gov (United States)

    Brieger, Angela; Plotz, Guido; Hinrichsen, Inga; Passmann, Sandra; Adam, Ronja; Zeuzem, Stefan

    2012-01-01

    The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency. PMID:22348133

  9. C-terminal fluorescent labeling impairs functionality of DNA mismatch repair proteins.

    Directory of Open Access Journals (Sweden)

    Angela Brieger

    Full Text Available The human DNA mismatch repair (MMR process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2. Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency.

  10. Role of Cell Cycle Regulation and MLH1, A Key DNA Mismatch Repair Protein, In Adaptive Survival Responses. Final Report; FINAL

    International Nuclear Information System (INIS)

    David A. Boothman

    1999-01-01

    Due to several interesting findings on both adaptive survival responses (ASRs) and DNA mismatch repair (MMR), this grant was separated into two discrete Specific Aim sets (each with their own discrete hypotheses). The described experiments were simultaneously performed

  11. Identification of a mismatch-specific endonuclease in hyperthermophilic Archaea.

    Science.gov (United States)

    Ishino, Sonoko; Nishi, Yuki; Oda, Soichiro; Uemori, Takashi; Sagara, Takehiro; Takatsu, Nariaki; Yamagami, Takeshi; Shirai, Tsuyoshi; Ishino, Yoshizumi

    2016-04-20

    The common mismatch repair system processed by MutS and MutL and their homologs was identified in Bacteria and Eukarya. However, no evidence of a functional MutS/L homolog has been reported for archaeal organisms, and it is not known whether the mismatch repair system is conserved in Archaea. Here, we describe an endonuclease that cleaves double-stranded DNA containing a mismatched base pair, from the hyperthermophilic archaeon Pyrococcus furiosus The corresponding gene revealed that the activity originates from PF0012, and we named this enzyme Endonuclease MS (EndoMS) as the mismatch-specific Endonuclease. The sequence similarity suggested that EndoMS is the ortholog of NucS isolated from Pyrococcus abyssi, published previously. Biochemical characterizations of the EndoMS homolog from Thermococcus kodakarensis clearly showed that EndoMS specifically cleaves both strands of double-stranded DNA into 5'-protruding forms, with the mismatched base pair in the central position. EndoMS cleaves G/T, G/G, T/T, T/C and A/G mismatches, with a more preference for G/T, G/G and T/T, but has very little or no effect on C/C, A/C and A/A mismatches. The discovery of this endonuclease suggests the existence of a novel mismatch repair process, initiated by the double-strand break generated by the EndoMS endonuclease, in Archaea and some Bacteria. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. A monofunctional platinum complex coordinated to a rhodium metalloinsertor selectively binds mismatched DNA in the minor groove.

    Science.gov (United States)

    Weidmann, Alyson G; Barton, Jacqueline K

    2015-10-05

    We report the synthesis and characterization of a bimetallic complex derived from a new family of potent and selective metalloinsertors containing an unusual Rh-O axial coordination. This complex incorporates a monofunctional platinum center containing only one labile site for coordination to DNA, rather than two, and coordinates DNA nonclassically through adduct formation in the minor groove. This conjugate displays bifunctional, interdependent binding of mismatched DNA via metalloinsertion at a mismatch as well as covalent platinum binding. DNA sequencing experiments revealed that the preferred site of platinum coordination is not the traditional N7-guanine site in the major groove, but rather N3-adenine in the minor groove. The complex also displays enhanced cytotoxicity in mismatch repair-deficient and mismatch repair-proficient human colorectal carcinoma cell lines compared to the chemotherapeutic cisplatin, and it triggers cell death via an apoptotic pathway, rather than the necrotic pathway induced by rhodium metalloinsertors.

  13. In vivo DNA mismatch repair measurement in zebrafish embryos and its use in screening of environmental carcinogens

    International Nuclear Information System (INIS)

    Chen, Yuanhong; Huang, Changjiang; Bai, Chenglian; Du, Changchun; Liao, Junhua; Dong, Qiaoxiang

    2016-01-01

    Highlights: • We developed an in vivo DNA mismatch repair (MMR) measurement assay in zebrafish embryos. • This assay involves microinjection of homo- and heteroduplex EGFP plasmids into zebrafish embryos. • This novel assay was validated with embryos from the MMR-deficient mlh1 mutant fish. • We successfully applied this assay for detecting environmental chemicals with carcinogenic effect. • This novel assay can be used for screening of environmental carcinogens. - Abstract: Impairment of DNA mismatch repair (MMR) function leads to the development and progression of certain cancers. Many environmental contaminants can target DNA MMR system. Currently, measurement of MMR activity is limited to in vitro or in vivo methods at the cell line level, and reports on measurement of MMR activity at the live organism level are lacking. Here, we report an efficient method to measure DNA MMR activity in zebrafish embryos. A G-T mismatch was introduced into enhanced green fluorescent protein (EGFP) gene. Repair of the G-T mismatch to G-C in the heteroduplex plasmid generates a functional EGFP expression. The heteroduplex plasmid and a similarly constructed homoduplex plasmid were injected in parallel into the same batch of embryos at 1-cell stage and EGFP expression in EGFP positive embryos was quantified at 24 h after injection. MMR efficiency was calculated as the total fluorescence intensity of embryos injected with the heteroduplex construct divided by that of embryos injected with the homoduplex construct. Our results showed 73% reduction of MMR activity in embryos derived from MMR-deficient mlh1 mutant fish (positive control) when compared with embryos from MMR-competent wild type AB line fish, indicating feasibility of in vivo MMR activity measurement in zebrafish embryos. We further applied this novel assay for measurement of MMR efficiency in embryos exposed to environmental chemicals such as cadmium chloride (CdCl_2), benzo[a]pyrene (BaP), and

  14. In vivo DNA mismatch repair measurement in zebrafish embryos and its use in screening of environmental carcinogens

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuanhong [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); Huang, Changjiang, E-mail: cjhuang5711@163.com [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); Bai, Chenglian; Du, Changchun; Liao, Junhua [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); Dong, Qiaoxiang, E-mail: dqxdong@163.com [Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035 (China); School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325035 (China)

    2016-01-25

    Highlights: • We developed an in vivo DNA mismatch repair (MMR) measurement assay in zebrafish embryos. • This assay involves microinjection of homo- and heteroduplex EGFP plasmids into zebrafish embryos. • This novel assay was validated with embryos from the MMR-deficient mlh1 mutant fish. • We successfully applied this assay for detecting environmental chemicals with carcinogenic effect. • This novel assay can be used for screening of environmental carcinogens. - Abstract: Impairment of DNA mismatch repair (MMR) function leads to the development and progression of certain cancers. Many environmental contaminants can target DNA MMR system. Currently, measurement of MMR activity is limited to in vitro or in vivo methods at the cell line level, and reports on measurement of MMR activity at the live organism level are lacking. Here, we report an efficient method to measure DNA MMR activity in zebrafish embryos. A G-T mismatch was introduced into enhanced green fluorescent protein (EGFP) gene. Repair of the G-T mismatch to G-C in the heteroduplex plasmid generates a functional EGFP expression. The heteroduplex plasmid and a similarly constructed homoduplex plasmid were injected in parallel into the same batch of embryos at 1-cell stage and EGFP expression in EGFP positive embryos was quantified at 24 h after injection. MMR efficiency was calculated as the total fluorescence intensity of embryos injected with the heteroduplex construct divided by that of embryos injected with the homoduplex construct. Our results showed 73% reduction of MMR activity in embryos derived from MMR-deficient mlh1 mutant fish (positive control) when compared with embryos from MMR-competent wild type AB line fish, indicating feasibility of in vivo MMR activity measurement in zebrafish embryos. We further applied this novel assay for measurement of MMR efficiency in embryos exposed to environmental chemicals such as cadmium chloride (CdCl{sub 2}), benzo[a]pyrene (BaP), and

  15. Clinicopathological characteristics of patients with upper urinary tract urothelial cancer with loss of immunohistochemical expression of the DNA mismatch repair proteins in universal screening.

    Science.gov (United States)

    Urakami, Shinji; Inoshita, Naoko; Oka, Suguru; Miyama, Yu; Nomura, Sachio; Arai, Masami; Sakaguchi, Kazushige; Kurosawa, Kazuhiro; Okaneya, Toshikazu

    2018-02-01

    To assess the detection rate of putative Lynch syndrome-associated upper urinary tract urothelial cancer among all upper urinary tract urothelial cancers and to examine its clinicopathological characteristics. A total of 143 patients with upper urinary tract urothelial cancer who had received total nephroureterectomy were immunohistochemically stained for the expression of mismatch repair proteins MLH1, PMS2, MSH2 and MSH6. For all suspected mismatch repair-deficient cases, MMR genetic testing was recommended and clinicopathological features were examined. Loss of mismatch repair proteins was found in seven patients (5%) who were thus categorized as putative Lynch syndrome-associated upper urinary tract urothelial cancer. Five of these patients showed dual loss of MSH2/MSH6. Two patients were confirmed to be MSH2 germline mutation carriers. Histologically, all seven tumors were low-grade atypical urothelial carcinoma and showed its unique histological features, such as an inverted papilloma-like growth pattern and a villous to papillary structure with mild stratification of tumor cells. Six tumors had no invasion of the muscularis propria. No recurrence or cancer-related deaths were reported in these seven patients. Just three patients met the revised Amsterdam criteria. This is the first report that universally examined mismatch repair immunohistochemical screening for upper urinary tract urothelial cancers. The prevalence (5%) of putative Lynch syndrome-associated upper urinary tract urothelial cancers is much higher than we had expected. We ascertained that putative Lynch syndrome-associated upper urinary tract urothelial cancers were clinically in the early stage and histologically classified into low-grade malignancy with its characteristic pathological features. The clinicopathological characteristics that we found in the present study could become additional possible markers in the diagnosis of Lynch syndrome-associated upper urinary tract urothelial cancers

  16. Crystal structure and DNA-binding property of the ATPase domain of bacterial mismatch repair endonuclease MutL from Aquifex aeolicus.

    Science.gov (United States)

    Fukui, Kenji; Iino, Hitoshi; Baba, Seiki; Kumasaka, Takashi; Kuramitsu, Seiki; Yano, Takato

    2017-09-01

    DNA mismatch repair (MMR) system corrects mismatched bases that are generated mainly by DNA replication errors. The repair system excises the error-containing single-stranded region and enables the re-synthesis of the strand. In the early reactions of MMR, MutL endonuclease incises the newly-synthesized/error-containing strand of the duplex to initiate the downstream excision reaction. MutL endonuclease consists of the N-terminal ATPase and C-terminal endonuclease domains. In this study, we report the crystal structure of the ATPase domain of MutL endonuclease from Aquifex aeolicus. The overall structure of the domain was similar to those of human MutL homologs and Escherichia coli MutL, although E. coli MutL has no endonuclease activity. The ATPase domain was comprised of two subdomains: the N-terminal ATP-binding subdomain and the C-terminal α-β sandwich subdomain. Site-directed mutagenesis experiment identified DNA-interacting eight basic amino acid residues, which were distributed across both the two subdomains and formed a DNA-binding cleft. Docking simulation between the structures of the ATPase and endonuclease domains generated a reliable model structure for the full-length A. aeolicus MutL, which satisfies our previous result of small-angle X-ray scattering analysis. On the basis of the model structure and further experimental results, we concluded that the two separate DNA-binding sites in the full-length A. aeolicus MutL simultaneously bind a dsDNA molecule. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Involvement of the DNA mismatch repair system in cisplatin sensitivity of testicular germ cell tumours

    DEFF Research Database (Denmark)

    Rudolph, Christiane; Melau, Cecilie; Nielsen, John E.

    2017-01-01

    in the majority of tumours, although the underlying mechanism largely remains to be elucidated. The aim of this study was to investigate the role of the DNA mismatch repair (MMR) system in the cisplatin sensitivity of TGCT. MethodsThe expression pattern of key MMR proteins, including MSH2, MSH6, MLH1 and PMS2...... proteins, in particular MSH2 and MLH1, which are involved in the recognition of cisplatin adducts and in activation of the DNA damage response pathway to initiate apoptosis....

  18. DNA Mismatch Binding and Antiproliferative Activity of Rhodium Metalloinsertors

    Science.gov (United States)

    Ernst, Russell J.; Song, Hang; Barton, Jacqueline K.

    2009-01-01

    Deficiencies in mismatch repair (MMR) are associated with carcinogenesis. Rhodium metalloinsertors bind to DNA base mismatches with high specificity and inhibit cellular proliferation preferentially in MMR-deficient cells versus MMR-proficient cells. A family of chrysenequinone diimine complexes of rhodium with varying ancillary ligands that serve as DNA metalloinsertors has been synthesized, and both DNA mismatch binding affinities and antiproliferative activities against the human colorectal carcinoma cell lines HCT116N and HCT116O, an isogenic model system for MMR deficiency, have been determined. DNA photocleavage experiments reveal that all complexes bind to the mismatch sites with high specificities; DNA binding affinities to oligonucleotides containing single base CA and CC mismatches, obtained through photocleavage titration or competition, vary from 104 to 108 M−1 for the series of complexes. Significantly, binding affinities are found to be inversely related to ancillary ligand size and directly related to differential inhibition of the HCT116 cell lines. The observed trend in binding affinity is consistent with the metalloinsertion mode where the complex binds from the minor groove with ejection of mismatched base pairs. The correlation between binding affinity and targeting of the MMR-deficient cell line suggests that rhodium metalloinsertors exert their selective biological effects on MMR-deficient cells through mismatch binding in vivo. PMID:19175313

  19. Somatic mutations in mismatch repair genes in sporadic gastric carcinomas are not a cause but a consequence of the mutator phenotype

    NARCIS (Netherlands)

    Pinto, Mafalda; Wub, Ying; Mensink, Rob G. J.; Cirnes, Luis; Seruca, Raquel; Hofstra, Robert M. W.

    2008-01-01

    In hereditary nonpolyposis colorectal cancer (HNPCC), patients' mismatch repair (MMR) gene mutations cause MMR deficiency, leading to microsatellite instability (MSI-H). MSI-H is also found in a substantial fraction of sporadic gastric carcinomas (SGC), mainly due to MLH1 promoter hypermethylation,

  20. Microsatellite Instability Use in Mismatch Repair Gene Sequence Variant Classification

    Directory of Open Access Journals (Sweden)

    Bryony A. Thompson

    2015-03-01

    Full Text Available Inherited mutations in the DNA mismatch repair genes (MMR can cause MMR deficiency and increased susceptibility to colorectal and endometrial cancer. Microsatellite instability (MSI is the defining molecular signature of MMR deficiency. The clinical classification of identified MMR gene sequence variants has a direct impact on the management of patients and their families. For a significant proportion of cases sequence variants of uncertain clinical significance (also known as unclassified variants are identified, constituting a challenge for genetic counselling and clinical management of families. The effect on protein function of these variants is difficult to interpret. The presence or absence of MSI in tumours can aid in determining the pathogenicity of associated unclassified MMR gene variants. However, there are some considerations that need to be taken into account when using MSI for variant interpretation. The use of MSI and other tumour characteristics in MMR gene sequence variant classification will be explored in this review.

  1. Gastric Medullary Carcinoma with Sporadic Mismatch Repair Deficiency and a TP53 R273C Mutation: An Unusual Case with Wild-Type BRAF

    Directory of Open Access Journals (Sweden)

    Brett M. Lowenthal

    2017-01-01

    Full Text Available Medullary carcinoma has long been recognized as a subtype of colorectal cancer associated with microsatellite instability and Lynch syndrome. Gastric medullary carcinoma is a very rare neoplasm. We report a 67-year-old male who presented with a solitary gastric mass. Total gastrectomy revealed a well-demarcated, poorly differentiated carcinoma with an organoid growth pattern, pushing borders, and abundant peritumoral lymphocytic response. The prior cytology was cellular with immunohistochemical panel consistent with upper gastrointestinal/pancreaticobiliary origin. Overall, the histopathologic findings were consistent with gastric medullary carcinoma. A mismatch repair panel revealed a mismatch repair protein deficient tumor with loss of MLH1 and PMS2 expression. BRAF V600E immunostain (VE1 and BRAF molecular testing were negative, indicating a wild-type gene. Tumor sequencing of MLH1 demonstrated a wild-type gene, while our molecular panel identified TP53 c.817C>T (p.R273C mutation. These findings were compatible with a sporadic tumor. Given that morphologically identical medullary tumors often occur in Lynch syndrome, it is possible that mismatch repair loss is an early event in sporadic tumors with p53 mutation being a late event. Despite having wild-type BRAF, this tumor is sporadic and unrelated to Lynch syndrome. This case report demonstrates that coordinate ancillary studies are needed to resolve sporadic versus hereditary rare tumors.

  2. A novel germline POLE mutation causes an early onset cancer prone syndrome mimicking constitutional mismatch repair deficiency.

    Science.gov (United States)

    Wimmer, Katharina; Beilken, Andreas; Nustede, Rainer; Ripperger, Tim; Lamottke, Britta; Ure, Benno; Steinmann, Diana; Reineke-Plaass, Tanja; Lehmann, Ulrich; Zschocke, Johannes; Valle, Laura; Fauth, Christine; Kratz, Christian P

    2017-01-01

    In a 14-year-old boy with polyposis and rectosigmoid carcinoma, we identified a novel POLE germline mutation, p.(Val411Leu), previously found as recurrent somatic mutation in 'ultramutated' sporadic cancers. This is the youngest reported cancer patient with polymerase proofreading-associated polyposis indicating that POLE mutation p.(Val411Leu) may confer a more severe phenotype than previously reported POLE and POLD1 germline mutations. The patient had multiple café-au-lait macules and a pilomatricoma mimicking the clinical phenotype of constitutional mismatch repair deficiency. We hypothesize that these skin features may be common to different types of constitutional DNA repair defects associated with polyposis and early-onset cancer.

  3. Synchronous glioblastoma and medulloblastoma in a child with mismatch repair mutation.

    Science.gov (United States)

    Amayiri, Nisreen; Al-Hussaini, Maysa; Swaidan, Maisa; Jaradat, Imad; Qandeel, Monther; Tabori, Uri; Hawkins, Cynthia; Musharbash, Awni; Alsaad, Khulood; Bouffet, Eric

    2016-03-01

    Synchronous primary malignant brain tumors are rare. We present a 5-year-old boy with synchronous glioblastoma and medulloblastoma. Both tumor samples had positive p53 stain and loss of PMS2 and MLH1 stains. The child had multiple café au lait spots and a significant family history of cancer. After subtotal resection of both tumors, he received craniospinal radiation with concomitant temozolomide followed by chemotherapy, alternating cycles of cisplatin/lomustine/vincristine with temozolomide. Then, he started maintenance treatment with cis-retinoic acid (100 mg/m(2)/day for 21 days). He remained asymptomatic for 34 months despite a follow-up brain MRI consistent with glioblastoma relapse 9 months before his death. Cis-retinoic acid may have contributed to prolong survival in this child with a probable biallelic mismatch repair syndrome.

  4. TaMSH7: A cereal mismatch repair gene that affects fertility in transgenic barley (Hordeum vulgare L.

    Directory of Open Access Journals (Sweden)

    Langridge Peter

    2007-12-01

    Full Text Available Abstract Background Chromosome pairing, recombination and DNA repair are essential processes during meiosis in sexually reproducing organisms. Investigating the bread wheat (Triticum aestivum L. Ph2 (Pairing homoeologous locus has identified numerous candidate genes that may have a role in controlling such processes, including TaMSH7, a plant specific member of the DNA mismatch repair family. Results Sequencing of the three MSH7 genes, located on the short arms of wheat chromosomes 3A, 3B and 3D, has revealed no significant sequence divergence at the amino acid level suggesting conservation of function across the homoeogroups. Functional analysis of MSH7 through the use of RNAi loss-of-function transgenics was undertaken in diploid barley (Hordeum vulgare L.. Quantitative real-time PCR revealed several T0 lines with reduced MSH7 expression. Positive segregants from two T1 lines studied in detail showed reduced MSH7 expression when compared to transformed controls and null segregants. Expression of MSH6, another member of the mismatch repair family which is most closely related to the MSH7 gene, was not significantly reduced in these lines. In both T1 lines, reduced seed set in positive segregants was observed. Conclusion Results presented here indicate, for the first time, a distinct functional role for MSH7 in vivo and show that expression of this gene is necessary for wild-type levels of fertility. These observations suggest that MSH7 has an important function during meiosis and as such remains a candidate for Ph2.

  5. Ovarian cancer at young age: the contribution of mismatch-repair defects in a population-based series of epithelial ovarian

    DEFF Research Database (Denmark)

    Domanska, K; Malander, S; Måsbäck, A

    2007-01-01

    and endometrioid cancers were overrepresented and were diagnosed in 27% and 16% of the tumors, respectively. Immunostaining using antibodies against MLH1, PMS2, MSH2, and MSH6 was used to assess the mismatch-repair status and revealed loss of expression of MLH1/PMS2 in two cases, loss of MSH2/MSH6 in one case...

  6. Replication Stalling and Heteroduplex Formation within CAG/CTG Trinucleotide Repeats by Mismatch Repair

    KAUST Repository

    Viterbo, David; Michoud, Gregoire; Mosbach, Valentine; Dujon, Bernard; Richard, Guy-Franck

    2016-01-01

    Trinucleotide repeat expansions are responsible for at least two dozen neurological disorders. Mechanisms leading to these large expansions of repeated DNA are still poorly understood. It was proposed that transient stalling of the replication fork by the repeat tract might trigger slippage of the newly-synthesized strand over its template, leading to expansions or contractions of the triplet repeat. However, such mechanism was never formally proven. Here we show that replication fork pausing and CAG/CTG trinucleotide repeat instability are not linked, stable and unstable repeats exhibiting the same propensity to stall replication forks when integrated in a yeast natural chromosome. We found that replication fork stalling was dependent on the integrity of the mismatch-repair system, especially the Msh2p-Msh6p complex, suggesting that direct interaction of MMR proteins with secondary structures formed by trinucleotide repeats in vivo, triggers replication fork pauses. We also show by chromatin immunoprecipitation that Msh2p is enriched at trinucleotide repeat tracts, in both stable and unstable orientations, this enrichment being dependent on MSH3 and MSH6. Finally, we show that overexpressing MSH2 favors the formation of heteroduplex regions, leading to an increase in contractions and expansions of CAG/CTG repeat tracts during replication, these heteroduplexes being dependent on both MSH3 and MSH6. These heteroduplex regions were not detected when a mutant msh2-E768A gene in which the ATPase domain was mutated was overexpressed. Our results unravel two new roles for mismatch-repair proteins: stabilization of heteroduplex regions and transient blocking of replication forks passing through such repeats. Both roles may involve direct interactions between MMR proteins and secondary structures formed by trinucleotide repeat tracts, although indirect interactions may not be formally excluded.

  7. Replication Stalling and Heteroduplex Formation within CAG/CTG Trinucleotide Repeats by Mismatch Repair

    KAUST Repository

    Viterbo, David

    2016-03-16

    Trinucleotide repeat expansions are responsible for at least two dozen neurological disorders. Mechanisms leading to these large expansions of repeated DNA are still poorly understood. It was proposed that transient stalling of the replication fork by the repeat tract might trigger slippage of the newly-synthesized strand over its template, leading to expansions or contractions of the triplet repeat. However, such mechanism was never formally proven. Here we show that replication fork pausing and CAG/CTG trinucleotide repeat instability are not linked, stable and unstable repeats exhibiting the same propensity to stall replication forks when integrated in a yeast natural chromosome. We found that replication fork stalling was dependent on the integrity of the mismatch-repair system, especially the Msh2p-Msh6p complex, suggesting that direct interaction of MMR proteins with secondary structures formed by trinucleotide repeats in vivo, triggers replication fork pauses. We also show by chromatin immunoprecipitation that Msh2p is enriched at trinucleotide repeat tracts, in both stable and unstable orientations, this enrichment being dependent on MSH3 and MSH6. Finally, we show that overexpressing MSH2 favors the formation of heteroduplex regions, leading to an increase in contractions and expansions of CAG/CTG repeat tracts during replication, these heteroduplexes being dependent on both MSH3 and MSH6. These heteroduplex regions were not detected when a mutant msh2-E768A gene in which the ATPase domain was mutated was overexpressed. Our results unravel two new roles for mismatch-repair proteins: stabilization of heteroduplex regions and transient blocking of replication forks passing through such repeats. Both roles may involve direct interactions between MMR proteins and secondary structures formed by trinucleotide repeat tracts, although indirect interactions may not be formally excluded.

  8. Nuclear import of human MLH1, PMS2, and MutLalpha: redundancy is the key.

    Science.gov (United States)

    Leong, Vivian; Lorenowicz, Jessica; Kozij, Natalie; Guarné, Alba

    2009-08-01

    DNA mismatch repair maintains genomic stability by correcting errors that have escaped polymerase proofreading. Defects on mismatch repair genes lead to an increased mutation rate, microsatellite instability and predisposition to human non-polyposis colorectal cancer (HNPCC). Human MutLalpha is a heterodimer formed by the interaction of MLH1 and PMS2 that coordinates a series of key events in mismatch repair. It has been proposed that nuclear import of MutLalpha may be the first regulatory step on the activation of the mismatch repair pathway. Using confocal microscopy and mismatch repair deficient cells, we have identified the sequence determinants that drive nuclear import of human MLH1, PMS2, and MutLalpha. Transient transfection of the individual proteins reveals that MLH1 has a bipartite and PMS2 has a single monopartite nuclear localization signal. Although dimerization is not required for nuclear localization, the MutLalpha heterodimer is imported more efficiently than the MLH1 or PMS2 monomers. Interestingly, the bipartite localization signal of MLH1 can direct import of MutLalpha even when PMS2 encompasses a mutated localization signal. Hence we conclude that the presence of redundant nuclear localization signals guarantees nuclear transport of MutLalpha and, consequently, efficient mismatch repair.

  9. Comprehensive Mutation Analysis of PMS2 in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency Syndrome

    NARCIS (Netherlands)

    Klift, H.M. van der; Mensenkamp, A.R.; Drost, M.; Bik, E.C.; Vos, Y.J.; Gille, H.J.; Redeker, B.E.; Tiersma, Y.; Zonneveld, J.B.; Garcia, E.G.; Letteboer, T.G.; Olderode-Berends, M.J.; Hest, L.P. van; Os, T.A. van; Verhoef, S.; Wagner, A.; Asperen, C.J. van; Broeke, S.W. ten; Hes, F.J.; Wind, N. de; Nielsen, M.; Devilee, P.; Ligtenberg, M.J.L.; Wijnen, J.T.; Tops, C.M.

    2016-01-01

    Monoallelic PMS2 germline mutations cause 5%-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA- and RNA-based strategies are

  10. Comprehensive Mutation Analysis of PMS2 in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency Syndrome

    NARCIS (Netherlands)

    van der Klift, Heleen M.; Mensenkamp, Arjen R.; Drost, Mark; Bik, Elsa C.; Vos, Yvonne J.; Gille, Hans J. J. P.; Redeker, Bert E. J. W.; Tiersma, Yvonne; Zonneveld, Jose B. M.; Garcia, Encarna Gomez; Letteboer, Tom G. W.; Olderode-Berends, Maran J. W.; van Hest, Liselotte P.; van Os, Theo A.; Verhoef, Senno; Wagner, Anja; van Asperen, Christi J.; ten Broeke, Sanne W.; Hes, Frederik J.; de Wind, Niels; Nielsen, Maartje; Devilee, Peter; Ligtenberg, Marjolijn J. L.; Wijnen, Juul T.; Tops, Carli M. J.

    Monoallelic PMS2 germline mutations cause 5%-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA- and RNA-based strategies are

  11. Expression of DNA mismatch repair proteins in transformed non-Hodgkin's lymphoma: relationship to smoking

    DEFF Research Database (Denmark)

    Nandi, S; Yu, J; Reinert, Line

    2006-01-01

    leukemia (CLL/SLL), that have transformed to diffuse-large B-cell lymphoma (DLBCL). We correlated the presence or absence of DNA-mismatch repair enzymes by immunostaining as well as the p53 status to smoking history. Of all patients (n = 30), 37% showed negative immunostaining of MLH1, 16% showed negative...... for either MLH1 or MSH2 was 2.2 times higher in smokers than non-smokers (relative risk = 2.2041, 95% confidence interval: 0.89714, 5.41491). No direct correlation was found between smoking and the mutations in the p53 gene. These results suggest that cigarette smoking may play a role in the development...

  12. Mlh1-Mlh3, a Meiotic Crossover and DNA Mismatch Repair Factor, Is a Msh2-Msh3-stimulated Endonuclease*

    Science.gov (United States)

    Rogacheva, Maria V.; Manhart, Carol M.; Chen, Cheng; Guarne, Alba; Surtees, Jennifer; Alani, Eric

    2014-01-01

    Crossing over between homologous chromosomes is initiated in meiotic prophase in most sexually reproducing organisms by the appearance of programmed double strand breaks throughout the genome. In Saccharomyces cerevisiae the double-strand breaks are resected to form three prime single-strand tails that primarily invade complementary sequences in unbroken homologs. These invasion intermediates are converted into double Holliday junctions and then resolved into crossovers that facilitate homolog segregation during Meiosis I. Work in yeast suggests that Msh4-Msh5 stabilizes invasion intermediates and double Holliday junctions, which are resolved into crossovers in steps requiring Sgs1 helicase, Exo1, and a putative endonuclease activity encoded by the DNA mismatch repair factor Mlh1-Mlh3. We purified Mlh1-Mlh3 and showed that it is a metal-dependent and Msh2-Msh3-stimulated endonuclease that makes single-strand breaks in supercoiled DNA. These observations support a direct role for an Mlh1-Mlh3 endonuclease activity in resolving recombination intermediates and in DNA mismatch repair. PMID:24403070

  13. A rhodium(III) complex for high-affinity DNA base-pair mismatch recognition

    Science.gov (United States)

    Junicke, Henrik; Hart, Jonathan R.; Kisko, Jennifer; Glebov, Oleg; Kirsch, Ilan R.; Barton, Jacqueline K.

    2003-01-01

    A rhodium(III) complex, rac-[Rh(bpy)2phzi]3+ (bpy, 2,2′-bipyridine; phzi, benzo[a]phenazine-5,6-quinone diimine) has been designed as a sterically demanding intercalator targeted to destabilized mismatched sites in double-helical DNA. The complex is readily synthesized by condensation of the phenazine quinone with the corresponding diammine complex. Upon photoactivation, the complex promotes direct strand scission at single-base mismatch sites within the DNA duplex. As with the parent mismatch-specific reagent, [Rh(bpy)2(chrysi)]3+ [chrysene-5,6-quinone diimine (chrysi)], mismatch selectivity depends on the helix destabilization associated with mispairing. Unlike the parent chrysi complex, the phzi analogue binds and cleaves with high affinity and efficiency. The specific binding constants for CA, CC, and CT mismatches within a 31-mer oligonucleotide duplex are 0.3, 1, and 6 × 107 M−1, respectively; site-specific photocleavage is evident at nanomolar concentrations. Moreover, the specificity, defined as the ratio in binding affinities for mispaired vs. well paired sites, is maintained. The increase in affinity is attributed to greater stability in the mismatched site associated with stacking by the heterocyclic aromatic ligand. The high-affinity complex is also applied in the differential cleavage of DNA obtained from cell lines deficient in mismatch repair vs. those proficient in mismatch repair. Agreement is found between photocleavage by the mismatch-specific probes and deficiency in mismatch repair. This mismatch-specific targeting, therefore, offers a potential strategy for new chemotherapeutic design. PMID:12610209

  14. BRCA2, EGFR, and NTRK mutations in mismatch repair-deficient colorectal cancers with MSH2 or MLH1 mutations.

    Science.gov (United States)

    Deihimi, Safoora; Lev, Avital; Slifker, Michael; Shagisultanova, Elena; Xu, Qifang; Jung, Kyungsuk; Vijayvergia, Namrata; Ross, Eric A; Xiu, Joanne; Swensen, Jeffrey; Gatalica, Zoran; Andrake, Mark; Dunbrack, Roland L; El-Deiry, Wafik S

    2017-06-20

    Deficient mismatch repair (MMR) and microsatellite instability (MSI) contribute to ~15% of colorectal cancer (CRCs). We hypothesized MSI leads to mutations in DNA repair proteins including BRCA2 and cancer drivers including EGFR. We analyzed mutations among a discovery cohort of 26 MSI-High (MSI-H) and 558 non-MSI-H CRCs profiled at Caris Life Sciences. Caris-profiled MSI-H CRCs had high mutation rates (50% vs 14% in non-MSI-H, P MLH1-mutant CRCs showed higher mutation rates in BRCA2 compared to non-MSH2/MLH1-mutant tumors (38% vs 6%, P MLH1-mutant CRCs included 75 unique mutations not known to occur in breast or pancreatic cancer per COSMIC v73. Only 5 deleterious BRCA2 mutations in CRC were previously reported in the BIC database as germ-line mutations in breast cancer. Some BRCA2 mutations were predicted to disrupt interactions with partner proteins DSS1 and RAD51. Some CRCs harbored multiple BRCA2 mutations. EGFR was mutated in 45.5% of MSH2/MLH1-mutant and 6.5% of non-MSH2/MLH1-mutant tumors (P MLH1-mutant CRC including NTRK1 I699V, NTRK2 P716S, and NTRK3 R745L. Our findings have clinical relevance regarding therapeutic targeting of BRCA2 vulnerabilities, EGFR mutations or other identified oncogenic drivers such as NTRK in MSH2/MLH1-mutant CRCs or other tumors with mismatch repair deficiency.

  15. Frameshift mutational target gene analysis identifies similarities and differences in constitutional mismatch repair-deficiency and Lynch syndrome.

    Science.gov (United States)

    Maletzki, Claudia; Huehns, Maja; Bauer, Ingrid; Ripperger, Tim; Mork, Maureen M; Vilar, Eduardo; Klöcking, Sabine; Zettl, Heike; Prall, Friedrich; Linnebacher, Michael

    2017-07-01

    Mismatch-repair deficient (MMR-D) malignancies include Lynch Syndrome (LS), which is secondary to germline mutations in one of the MMR genes, and the rare childhood-form of constitutional mismatch repair-deficiency (CMMR-D); caused by bi-allelic MMR gene mutations. A hallmark of LS-associated cancers is microsatellite instability (MSI), characterized by coding frameshift mutations (cFSM) in target genes. By contrast, tumors arising in CMMR-D patients are thought to display a somatic mutation pattern differing from LS. This study has the main goal to identify cFSM in MSI target genes relevant in CMMR-D and to compare the spectrum of common somatic mutations, including alterations in DNA polymerases POLE and D1 between LS and CMMR-D. CMMR-D-associated tumors harbored more somatic mutations compared to LS cases, especially in the TP53 gene and in POLE and POLD1, where novel mutations were additionally identified. Strikingly, MSI in classical mononucleotide markers BAT40 and CAT25 was frequent in CMMR-D cases. MSI-target gene analysis revealed mutations in CMMR-D-associated tumors, some of them known to be frequently hit in LS, such as RNaseT2, HT001, and TGFβR2. Our results imply a general role for these cFSM as potential new drivers of MMR-D tumorigenesis. © 2017 Wiley Periodicals, Inc.

  16. A reversible histone H3 acetylation cooperates with mismatch repair and replicative polymerases in maintaining genome stability.

    Directory of Open Access Journals (Sweden)

    Lyudmila Y Kadyrova

    2013-10-01

    Full Text Available Mutations are a major driving force of evolution and genetic disease. In eukaryotes, mutations are produced in the chromatin environment, but the impact of chromatin on mutagenesis is poorly understood. Previous studies have determined that in yeast Saccharomyces cerevisiae, Rtt109-dependent acetylation of histone H3 on K56 is an abundant modification that is introduced in chromatin in S phase and removed by Hst3 and Hst4 in G2/M. We show here that the chromatin deacetylation on histone H3 K56 by Hst3 and Hst4 is required for the suppression of spontaneous gross chromosomal rearrangements, base substitutions, 1-bp insertions/deletions, and complex mutations. The rate of base substitutions in hst3Δ hst4Δ is similar to that in isogenic mismatch repair-deficient msh2Δ mutant. We also provide evidence that H3 K56 acetylation by Rtt109 is important for safeguarding DNA from small insertions/deletions and complex mutations. Furthermore, we reveal that both the deacetylation and acetylation on histone H3 K56 are involved in mutation avoidance mechanisms that cooperate with mismatch repair and the proofreading activities of replicative DNA polymerases in suppressing spontaneous mutagenesis. Our results suggest that cyclic acetylation and deacetylation of chromatin contribute to replication fidelity and play important roles in the protection of nuclear DNA from diverse spontaneous mutations.

  17. Pembrolizumab, Capecitabine, and Radiation Therapy in Treating Patients With Mismatch-Repair Deficient and Epstein-Barr Virus Positive Gastric Cancer

    Science.gov (United States)

    2017-11-15

    Epstein-Barr Virus Positive; Gastric Adenocarcinoma; Mismatch Repair Protein Deficiency; Stage IB Gastric Cancer AJCC v7; Stage II Gastric Cancer AJCC v7; Stage IIA Gastric Cancer AJCC v7; Stage IIB Gastric Cancer AJCC v7; Stage III Gastric Cancer AJCC v7; Stage IIIA Gastric Cancer AJCC v7; Stage IIIB Gastric Cancer AJCC v7; Stage IIIC Gastric Cancer AJCC v7

  18. DNA repair in human cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Carrier, W.L.; Kusano, I.; Furuno-Fukushi, I.; Dunn, W.C. Jr.; Francis, A.A.; Lee, W.H.

    1982-01-01

    Our primary objective is to elucidate the molecular events in human cells when cellular macromolecules such as DNA are damaged by radiation or chemical agents. We study and characterize (i) the sequence of DNA repair events, (ii) the various modalities of repair, (iii) the genetic inhibition of repair due to mutation, (iv) the physiological inhibition of repair due to mutation, (v) the physiological inhibition of repair due to biochemical inhibitors, and (vi) the genetic basis of repair. Our ultimate goals are to (i) isolate and analyze the repair component of the mutagenic and/or carcinogenic event in human cells, and (ii) elucidate the magnitude and significance of this repair component as it impinges on the practical problems of human irradiation or exposure to actual or potential chemical mutagens and carcinogens. The significance of these studies lies in (i) the ubiquitousness of repair (most organisms, including man, have several complex repair systems), (ii) the belief that mutagenic and carcinogenic events may arise only from residual (nonrepaired) lesions or that error-prone repair systems may be the major induction mechanisms of the mutagenic or carcinogenic event, and (iii) the clear association of repair defects and highly carcinogenic disease states in man [xeroderma pigmentosum (XP)

  19. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches.

    Science.gov (United States)

    Pinto, Ricardo Mouro; Dragileva, Ella; Kirby, Andrew; Lloret, Alejandro; Lopez, Edith; St Claire, Jason; Panigrahi, Gagan B; Hou, Caixia; Holloway, Kim; Gillis, Tammy; Guide, Jolene R; Cohen, Paula E; Li, Guo-Min; Pearson, Christopher E; Daly, Mark J; Wheeler, Vanessa C

    2013-10-01

    The Huntington's disease gene (HTT) CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease Hdh(Q111) mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.Hdh(Q111) ) than on a 129 background (129.Hdh(Q111) ). Linkage mapping in (B6x129).Hdh(Q111) F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR) gene Mlh1 as the most likely candidate modifier. Crossing B6.Hdh(Q111) mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. Hdh(Q111) somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1-MLH3) complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2-MSH3). The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest that MLH1

  20. Mismatch repair genes Mlh1 and Mlh3 modify CAG instability in Huntington's disease mice: genome-wide and candidate approaches.

    Directory of Open Access Journals (Sweden)

    Ricardo Mouro Pinto

    2013-10-01

    Full Text Available The Huntington's disease gene (HTT CAG repeat mutation undergoes somatic expansion that correlates with pathogenesis. Modifiers of somatic expansion may therefore provide routes for therapies targeting the underlying mutation, an approach that is likely applicable to other trinucleotide repeat diseases. Huntington's disease Hdh(Q111 mice exhibit higher levels of somatic HTT CAG expansion on a C57BL/6 genetic background (B6.Hdh(Q111 than on a 129 background (129.Hdh(Q111 . Linkage mapping in (B6x129.Hdh(Q111 F2 intercross animals identified a single quantitative trait locus underlying the strain-specific difference in expansion in the striatum, implicating mismatch repair (MMR gene Mlh1 as the most likely candidate modifier. Crossing B6.Hdh(Q111 mice onto an Mlh1 null background demonstrated that Mlh1 is essential for somatic CAG expansions and that it is an enhancer of nuclear huntingtin accumulation in striatal neurons. Hdh(Q111 somatic expansion was also abolished in mice deficient in the Mlh3 gene, implicating MutLγ (MLH1-MLH3 complex as a key driver of somatic expansion. Strikingly, Mlh1 and Mlh3 genes encoding MMR effector proteins were as critical to somatic expansion as Msh2 and Msh3 genes encoding DNA mismatch recognition complex MutSβ (MSH2-MSH3. The Mlh1 locus is highly polymorphic between B6 and 129 strains. While we were unable to detect any difference in base-base mismatch or short slipped-repeat repair activity between B6 and 129 MLH1 variants, repair efficiency was MLH1 dose-dependent. MLH1 mRNA and protein levels were significantly decreased in 129 mice compared to B6 mice, consistent with a dose-sensitive MLH1-dependent DNA repair mechanism underlying the somatic expansion difference between these strains. Together, these data identify Mlh1 and Mlh3 as novel critical genetic modifiers of HTT CAG instability, point to Mlh1 genetic variation as the likely source of the instability difference in B6 and 129 strains and suggest

  1. Evolution and Adaptation in Pseudomonas aeruginosa Biofilms Driven by Mismatch Repair System-Deficient Mutators

    DEFF Research Database (Denmark)

    Luján, Adela M.; Maciá, María D.; Yang, Liang

    2011-01-01

    , which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS)], play important roles in P. aeruginosa chronic...... infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition...... diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution...

  2. Telomeres and genomic damage repair. Their implication in human pathology

    International Nuclear Information System (INIS)

    Perez, Maria del R.; Dubner, Diana; Michelin, Severino; Gisone, Pablo; Carosella, Edgardo D.

    2002-01-01

    Telomeres, functional complexed that protect eukaryotic chromosome ends, participate in the regulation of cell proliferation and could play a role in the stabilization of genomic regions in response to genotoxic stress. Their significance in human pathology becomes evident in several diseases sharing genomic instability as a common trait, in which alterations of the telomere metabolism have been demonstrated. Many of them are also associated with hypersensitivity to ionizing radiation and cancer susceptibility. Besides the specific proteins belonging to the telomeric complex, other proteins involved in the DNA repair machinery, such as ATM, BRCA1, BRCA2, PARP/tankyrase system, DNA-PK and RAD50-MRE11-NBS1 complexes, are closely related with the telomere. This suggests that the telomere sequesters DNA repair proteins for its own structure maintenance, with could also be released toward damaged sites in the genomic DNA. This communication describes essential aspects of telomere structure and function and their links with homologous recombination, non-homologous end-joining (NHEJ), V(D)J system and mismatch-repair (MMR). Several pathological conditions exhibiting alterations in some of these mechanisms are also considered. The cell response to ionizing radiation and its relationship with the telomeric metabolism is particularly taken into account as a model for studying genotoxicity. (author)

  3. The unstructured linker arms of Mlh1-Pms1 are important for interactions with DNA during mismatch repair

    Science.gov (United States)

    Plys, Aaron J.; Rogacheva, Maria V.; Greene, Eric C.; Alani, Eric

    2012-01-01

    DNA mismatch repair (MMR) models have proposed that MSH proteins identify DNA polymerase errors while interacting with the DNA replication fork. MLH proteins (primarily Mlh1-Pms1 in baker’s yeast) then survey the genome for lesion-bound MSH proteins. The resulting MSH-MLH complex formed at a DNA lesion initiates downstream steps in repair. MLH proteins act as dimers and contain long (20 – 30 nanometers) unstructured arms that connect two terminal globular domains. These arms can vary between 100 to 300 amino acids in length, are highly divergent between organisms, and are resistant to amino acid substitutions. To test the roles of the linker arms in MMR, we engineered a protease cleavage site into the Mlh1 linker arm domain of baker’s yeast Mlh1-Pms1. Cleavage of the Mlh1 linker arm in vitro resulted in a defect in Mlh1-Pms1 DNA binding activity, and in vivo proteolytic cleavage resulted in a complete defect in MMR. We then generated a series of truncation mutants bearing Mlh1 and Pms1 linker arms of varying lengths. This work revealed that MMR is greatly compromised when portions of the Mlh1 linker are removed, whereas repair is less sensitive to truncation of the Pms1 linker arm. Purified complexes containing truncations in Mlh1 and Pms1 linker arms were analyzed and found to have differential defects in DNA binding that also correlated with the ability to form a ternary complex with Msh2-Msh6 and mismatch DNA. These observations are consistent with the unstructured linker domains of MLH proteins providing distinct interactions with DNA during MMR. PMID:22659005

  4. DNA repair systems as targets of cadmium toxicity

    International Nuclear Information System (INIS)

    Giaginis, Constantinos; Gatzidou, Elisavet; Theocharis, Stamatios

    2006-01-01

    Cadmium (Cd) is a heavy metal and a potent carcinogen implicated in tumor development through occupational and environmental exposure. Recent evidence suggests that proteins participating in the DNA repair systems, especially in excision and mismatch repair, are sensitive targets of Cd toxicity. Cd by interfering and inhibiting these DNA repair processes might contribute to increased risk for tumor formation in humans. In the present review, the information available on the interference of Cd with DNA repair systems and their inhibition is summarized. These actions could possibly explain the indirect contribution of Cd to mutagenic effects and/or carcinogenicity

  5. Inactivation of DNA mismatch repair by variants of uncertain significance in the PMS2 gene.

    Science.gov (United States)

    Drost, Mark; Koppejan, Hester; de Wind, Niels

    2013-11-01

    Lynch syndrome (LS) is a common cancer predisposition caused by an inactivating mutation in one of four DNA mismatch repair (MMR) genes. Frequently a variant of uncertain significance (VUS), rather than an obviously pathogenic mutation, is identified in one of these genes. The inability to define pathogenicity of such variants precludes targeted healthcare. Here, we have modified a cell-free assay to test VUS in the MMR gene PMS2 for functional activity. We have analyzed nearly all VUS in PMS2 found thus far and describe loss of MMR activity for five, suggesting the applicability of the assay for diagnosis of LS. © 2013 WILEY PERIODICALS, INC.

  6. PMS2 gene mutation results in DNA mismatch repair system failure in a case of adult granulosa cell tumor

    OpenAIRE

    Wang, Wen-Chung; Lee, Ya-Ting; Lai, Yen-Chein

    2017-01-01

    Background Granulosa cell tumors are rare ovarian malignancies. Their characteristics include unpredictable indolent growth with malignant potential and late recurrence. Approximately 95% are of adult type. Recent molecular studies have characterized the FOXL2 402C?>?G mutation in adult granulosa cell tumor. Our previous case report showed that unique FOXL2 402C?>?G mutation and defective DNA mismatch repair system are associated with the development of adult granulosa cell tumor. Findings In...

  7. Diagnosis of Constitutional Mismatch Repair-Deficiency Syndrome Based on Microsatellite Instability and Lymphocyte Tolerance to Methylating Agents

    DEFF Research Database (Denmark)

    Bodo, Sahra; Colas, Chrystelle; Buhard, Olivier

    2015-01-01

    BACKGROUND & AIMS: Patients with bi-allelic germline mutations in mismatch repair (MMR) genes (MLH1, MSH2, MSH6, or PMS2) develop a rare but severe variant of Lynch syndrome called constitutional MMR deficiency (CMMRD). This syndrome is characterized by early-onset colorectal cancers, lymphomas...... or leukemias, and brain tumors. There is no satisfactory method for diagnosis of CMMRD because screens for mutations in MMR genes are noninformative for 30% of patients. MMR-deficient cancer cells are resistant to genotoxic agents and have microsatellite instability (MSI), due to accumulation of errors...

  8. Association of common variants in mismatch repair genes and breast cancer susceptibility: a multigene study

    International Nuclear Information System (INIS)

    Conde, João; Silva, Susana N; Azevedo, Ana P; Teixeira, Valdemar; Pina, Julieta Esperança; Rueff, José; Gaspar, Jorge F

    2009-01-01

    MMR is responsible for the repair of base-base mismatches and insertion/deletion loops. Besides this, MMR is also associated with an anti-recombination function, suppressing homologous recombination. Losses of heterozygosity and/or microsatellite instability have been detected in a large number of skin samples from breast cancer patients, suggesting a potential role of MMR in breast cancer susceptibility. We carried out a hospital-based case-control study in a Caucasian Portuguese population (287 cases and 547 controls) to estimate the susceptibility to non-familial breast cancer associated with some polymorphisms in mismatch repair genes (MSH3, MSH4, MSH6, MLH1, MLH3, PMS1 and MUTYH). Using unconditional logistic regression we found that MLH3 (L844P, G>A) polymorphism GA (Leu/Pro) and AA (Pro/Pro) genotypes were associated with a decreased risk: OR = 0.65 (0.45-0.95) (p = 0.03) and OR = 0.62 (0.41-0.94) (p = 0.03), respectively. Analysis of two-way SNP interaction effects on breast cancer revealed two potential associations to breast cancer susceptibility: MSH3 Ala1045Thr/MSH6 Gly39Glu - AA/TC [OR = 0.43 (0.21-0.83), p = 0.01] associated with a decreased risk; and MSH4 Ala97Thr/MLH3 Leu844Pro - AG/AA [OR = 2.35 (1.23-4.49), p = 0.01], GG/AA [OR = 2.11 (1.12-3,98), p = 0.02], and GG/AG [adjusted OR = 1.88 (1.12-3.15), p = 0.02] all associated with an increased risk for breast cancer. It is possible that some of these common variants in MMR genes contribute significantly to breast cancer susceptibility. However, further studies with a large sample size will be needed to support our results

  9. Association of common variants in mismatch repair genes and breast cancer susceptibility: a multigene study

    Directory of Open Access Journals (Sweden)

    Pina Julieta

    2009-09-01

    Full Text Available Abstract Background MMR is responsible for the repair of base-base mismatches and insertion/deletion loops. Besides this, MMR is also associated with an anti-recombination function, suppressing homologous recombination. Losses of heterozygosity and/or microsatellite instability have been detected in a large number of skin samples from breast cancer patients, suggesting a potential role of MMR in breast cancer susceptibility. Methods We carried out a hospital-based case-control study in a Caucasian Portuguese population (287 cases and 547 controls to estimate the susceptibility to non-familial breast cancer associated with some polymorphisms in mismatch repair genes (MSH3, MSH4, MSH6, MLH1, MLH3, PMS1 and MUTYH. Results Using unconditional logistic regression we found that MLH3 (L844P, G>A polymorphism GA (Leu/Pro and AA (Pro/Pro genotypes were associated with a decreased risk: OR = 0.65 (0.45-0.95 (p = 0.03 and OR = 0.62 (0.41-0.94 (p = 0.03, respectively. Analysis of two-way SNP interaction effects on breast cancer revealed two potential associations to breast cancer susceptibility: MSH3 Ala1045Thr/MSH6 Gly39Glu - AA/TC [OR = 0.43 (0.21-0.83, p = 0.01] associated with a decreased risk; and MSH4 Ala97Thr/MLH3 Leu844Pro - AG/AA [OR = 2.35 (1.23-4.49, p = 0.01], GG/AA [OR = 2.11 (1.12-3,98, p = 0.02], and GG/AG [adjusted OR = 1.88 (1.12-3.15, p = 0.02] all associated with an increased risk for breast cancer. Conclusion It is possible that some of these common variants in MMR genes contribute significantly to breast cancer susceptibility. However, further studies with a large sample size will be needed to support our results.

  10. Exonuclease 1 and its versatile roles in DNA repair

    DEFF Research Database (Denmark)

    Keijzers, Guido; Liu, Dekang; Rasmussen, Lene Juel

    2016-01-01

    Exonuclease 1 (EXO1) is a multifunctional 5' → 3' exonuclease and a DNA structure-specific DNA endonuclease. EXO1 plays roles in DNA replication, DNA mismatch repair (MMR) and DNA double-stranded break repair (DSBR) in lower and higher eukaryotes and contributes to meiosis, immunoglobulin...... maturation, and micro-mediated end-joining in higher eukaryotes. In human cells, EXO1 is also thought to play a role in telomere maintenance. Mutations in the human EXO1 gene correlate with increased susceptibility to some cancers. This review summarizes recent studies on the enzymatic functions...

  11. Elevated levels of the mismatch repair protein PMS2 are associated with prostate cancer.

    Science.gov (United States)

    Norris, Alixanna M; Woodruff, R D; D'Agostino, Ralph B; Clodfelter, Jill E; Scarpinato, Karin Drotschmann

    2007-02-01

    Defects in mismatch repair (MMR) proteins have been identified in various types of cancer. However, an association with prostate cancer has been controversial. Defective MMR results in genome instability with detrimental consequences that significantly contribute to tumorigenesis. This study determined alterations in key MMR protein levels in prostate cancer with the goal to identify prognostic markers. Prostatectomy samples were immunohistochemically stained and the relative presence or absence of key proteins MSH2, MLH1, and PMS2 determined. Cancer tissue of distinct grades was compared with the normal surrounding tissue. Microsatellite instability (MSI) in altered tissues was determined according to NCI guidelines. In contrast to reports that associate a lack of individual MMR proteins with tumorigenesis, a significant increase in PMS2 levels was identified in PIN lesions and prostate cancer tissue. This elevation in PMS2 was independent of changes in levels in its heterodimeric partner, MLH1. Prostate tumors with elevated levels of PMS2 were genetically unstable, which was corrected by MLH1 co-elevation. This is the first documentation of detrimental consequences associated with the increase in a MMR protein in human cancer. This study recognizes PMS2 elevation as a prognostic marker in pre-neoplastic and prostate cancer lesions. This result has significant implications for future diagnostic and treatment measures. (c) 2006 Wiley-Liss, Inc.

  12. Pitfalls in molecular analysis for mismatch repair deficiency in a family with biallelic pms2 germline mutations.

    Science.gov (United States)

    Leenen, C H M; Geurts-Giele, W R R; Dubbink, H J; Reddingius, R; van den Ouweland, A M; Tops, C M J; van de Klift, H M; Kuipers, E J; van Leerdam, M E; Dinjens, W N M; Wagner, A

    2011-12-01

    Heterozygous germline mutations in the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 cause Lynch syndrome. Biallelic mutations in the MMR genes are associated with a childhood cancer syndrome [constitutional mismatch repair deficiency (CMMR-D)]. This is predominantly characterized by hematological malignancies and tumors of the bowel and brain, often associated with signs of neurofibromatosis type 1 (NF1). Diagnostic strategies for selection of patients for MMR gene analysis include analysis of microsatellite instability (MSI) and immunohistochemical (IHC) analysis of MMR proteins in tumor tissue. We report the clinical characterization and molecular analyses of tumor specimens from a family with biallelic PMS2 germline mutations. This illustrates the pitfalls of present molecular screening strategies. Tumor tissues of five family members were analyzed for MSI and IHC. MSI was observed in only one of the analyzed tissues. However, IHC analysis of brain tumor tissue of the index patient and his sister showed absence of PMS2 expression, and germline mutation analyses showed biallelic mutations in PMS2: p.Ser46IIe and p.Pro246fs. The same heterozygous mutations were confirmed in the father and mother, respectively. These data support the conclusion that in case of a clinical phenotype of CMMR-D, it is advisable to routinely combine MSI analysis with IHC analysis for the expression of MMR proteins. With inconclusive or conflicting results, germline mutation analysis of the MMR genes should be considered after thorough counselling of the patients and/or their relatives. © 2011 John Wiley & Sons A/S.

  13. Programmed Death Ligand 1 Expression Among 700 Consecutive Endometrial Cancers: Strong Association With Mismatch Repair Protein Deficiency.

    Science.gov (United States)

    Li, Zaibo; Joehlin-Price, Amy S; Rhoades, Jennifer; Ayoola-Adeola, Martins; Miller, Karin; Parwani, Anil V; Backes, Floor J; Felix, Ashley S; Suarez, Adrian A

    2018-01-01

    This study aims to determine the prevalence of programmed death ligand 1 (PD-L1) expression in endometrial carcinoma (EC) and determine clinical and pathological associations. Immunohistochemistry for PD-L1 was performed on sections of a triple-core tissue microarray of 700 ECs. Positive PD-L1 expression, defined as 1% of cells staining positive, was evaluated in tumor and stromal compartments. Using age-adjusted logistic regression, we estimated odds ratios and 95% confidence intervals for associations between PD-L1 expression (overall and by staining compartment) with clinical and tumor characteristics. Kaplan-Meier plots and log-rank tests were used to evaluate associations between PD-L1 expression and EC-specific survival. PD-L1 expression was observed in 100 cases (14.3%), including 27 (3.9%) with expression in tumor cells only, 35 (5.0%) with expression in both tumor cells and stroma, and 38 (5.4%) with expression in stroma only. Expression was observed in ECs of different histologic types. Tumors characterized by loss of mismatch repair proteins were significantly associated with tumoral PD-L1 expression (P < 0.0001), but not with stromal PD-L1 expression. Both tumoral and stromal PD-L1 expressions were associated with high-grade endometrioid histology, nonendometrioid histology, and lymphovascular space invasion. We observed no significant associations between PD-L1 expression and EC-specific survival. PD-L1 is expressed in a significant proportion of EC and is associated with mismatch repair deficiency, potentially representing a mechanism of tumor immune evasion and a therapeutic target in EC.

  14. Metachronous T-Lymphoblastic Lymphoma and Burkitt Lymphoma in a Child With Constitutional Mismatch Repair Deficiency Syndrome.

    Science.gov (United States)

    Alexander, Thomas B; McGee, Rose B; Kaye, Erica C; McCarville, Mary Beth; Choi, John K; Cavender, Cary P; Nichols, Kim E; Sandlund, John T

    2016-08-01

    Constitutional mismatch repair deficiency (CMMRD) is a cancer predisposition syndrome associated with a high risk of developing early-onset malignancies of the blood, brain, and intestinal tract. We present the case of a patient with T-lymphoblastic lymphoma at the age of 3 years, followed by Burkitt lymphoma 10 years later. This patient also exhibited numerous nonmalignant findings including café au lait spots, lipomas, bilateral renal nodules, a nonossifying fibroma, multiple colonic adenomas, and a rapidly enlarging pilomatrixoma. The spectrum of malignant and nonmalignant neoplasms in this patient highlights the remarkable diversity, and early onset, of lesions seen in children with CMMRD. © 2016 Wiley Periodicals, Inc.

  15. Single nucleotide polymorphisms of DNA mismatch repair genes MSH2 and MLH1 confer susceptibility to esophageal cancer.

    Science.gov (United States)

    Sun, Ming-Zhong; Ju, Hui-Xiang; Zhou, Zhong-Wei; Jin, Hao; Zhu, Rong

    2014-01-01

    Defects in DNA mismatch repair genes like MSH2 and MLH1 confer increased risk of cancers. Here, single nucleotide polymorphisms (SNPs) in MSH2 and MLH1 were investigated for their potential contribution to the risk of esophageal cancer. This study recruited 614 participants from Affiliated Yancheng Hospital, School of Medicine, Southeast University, of which 289 were patients with esophageal cancer, and the remainder was healthy individuals who served as a control group. Two SNPs, MSH2 c.2063T>G and MLH1 IVS14-19A>G, were genotyped using PCR-RFLP. Statistical analysis was performed using chi-square test and logistic regression analysis. Carriers of the MSH2 c.2063G allele were at significantly higher risk for esophageal cancer compared to individuals with the TT genotype [OR = 3.36, 95% confidence interval (CI): 1.18-11.03]. The MLH1 IVS14-19A>G allele also conferred significantly increased (1.70-fold) for esophageal cancer compared to the AA genotype (OR = 1.70, 95% CI: 1.13-5.06). Further, the variant alleles interacted such that individuals with the susceptible genotypes at both MSH2 and MLH1 had a significantly exacerbated risk for esophageal cancer (OR = 12.38, 95% CI: 3.09-63.11). In brief, SNPs in the DNA mismatch repair genes MSH2 and MLH1 increase the risk of esophageal cancer. Molecular investigations are needed to uncover the mechanism behind their interaction effect.

  16. Agenesis of the corpus callosum and gray matter heterotopia in three patients with constitutional mismatch repair deficiency syndrome.

    Science.gov (United States)

    Baas, Annette F; Gabbett, Michael; Rimac, Milan; Kansikas, Minttu; Raphael, Martine; Nievelstein, Rutger Aj; Nicholls, Wayne; Offerhaus, Johan; Bodmer, Danielle; Wernstedt, Annekatrin; Krabichler, Birgit; Strasser, Ulrich; Nyström, Minna; Zschocke, Johannes; Robertson, Stephen P; van Haelst, Mieke M; Wimmer, Katharina

    2013-01-01

    Constitutional mismatch repair deficiency (CMMR-D) syndrome is a rare inherited childhood cancer predisposition caused by biallelic germline mutations in one of the four mismatch repair (MMR)-genes, MLH1, MSH2, MSH6 or PMS2. Owing to a wide tumor spectrum, the lack of specific clinical features and the overlap with other cancer predisposing syndromes, diagnosis of CMMR-D is often delayed in pediatric cancer patients. Here, we report of three new CMMR-D patients all of whom developed more than one malignancy. The common finding in these three patients is agenesis of the corpus callosum (ACC). Gray matter heterotopia is present in two patients. One of the 57 previously reported CMMR-D patients with brain tumors (therefore all likely had cerebral imaging) also had ACC. With the present report the prevalence of cerebral malformations is at least 4/60 (6.6%). This number is well above the population birth prevalence of 0.09-0.36 live births with these cerebral malformations, suggesting that ACC and heterotopia are features of CMMR-D. Therefore, the presence of cerebral malformations in pediatric cancer patients should alert to the possible diagnosis of CMMR-D. ACC and gray matter heterotopia are the first congenital malformations described to occur at higher frequency in CMMR-D patients than in the general population. Further systematic evaluations of CMMR-D patients are needed to identify possible other malformations associated with this syndrome.

  17. Role of APC and DNA mismatch repair genes in the development of colorectal cancers

    Directory of Open Access Journals (Sweden)

    Roy Deodutta

    2003-12-01

    Full Text Available Abstract Colorectal cancer is the third most common cause of cancer-related death in both men and women in the western hemisphere. According to the American Cancer Society, an estimated 105,500 new cases of colon cancer with 57,100 deaths will occur in the U.S. in 2003, accounting for about 10% of cancer deaths. Among the colon cancer patients, hereditary risk contributes approximately 20%. The main inherited colorectal cancers are the familial adenomatous polyposis (FAP and the hereditary nonpolyposis colorectal cancers (HNPCC. The FAP and HNPCC are caused due to mutations in the adenomatous polyposis coli (APC and DNA mismatch repair (MMR genes. The focus of this review is to summarize the functions of APC and MMR gene products in the development of colorectal cancers.

  18. Guidelines for surveillance of individuals with constitutional mismatch repair-deficiency proposed by the European Consortium "Care for CMMR-D" (C4CMMR-D).

    Science.gov (United States)

    Vasen, H F A; Ghorbanoghli, Z; Bourdeaut, F; Cabaret, O; Caron, O; Duval, A; Entz-Werle, N; Goldberg, Y; Ilencikova, D; Kratz, C P; Lavoine, N; Loeffen, J; Menko, F H; Muleris, M; Sebille, G; Colas, C; Burkhardt, B; Brugieres, L; Wimmer, K

    2014-05-01

    Lynch syndrome (LS) is an autosomal dominant disorder caused by a defect in one of the DNA mismatch repair genes: MLH1, MSH2, MSH6 and PMS2. In the last 15 years, an increasing number of patients have been described with biallelic mismatch repair gene mutations causing a syndrome referred to as 'constitutional mismatch repair-deficiency' (CMMR-D). The spectrum of cancers observed in this syndrome differs from that found in LS, as about half develop brain tumours, around half develop digestive tract cancers and a third develop haematological malignancies. Brain tumours and haematological malignancies are mainly diagnosed in the first decade of life, and colorectal cancer (CRC) and small bowel cancer in the second and third decades of life. Surveillance for CRC in patients with LS is very effective. Therefore, an important question is whether surveillance for the most common CMMR-D-associated cancers will also be effective. Recently, a new European consortium was established with the aim of improving care for patients with CMMR-D. At a workshop of this group held in Paris in June 2013, one of the issues addressed was the development of surveillance guidelines. In 1968, criteria were proposed by WHO that should be met prior to the implementation of screening programmes. These criteria were used to assess surveillance in CMMR-D. The evaluation showed that surveillance for CRC is the only part of the programme that largely complies with the WHO criteria. The values of all other suggested screening protocols are unknown. In particular, it is questionable whether surveillance for haematological malignancies improves the already favourable outcome for patients with these tumours. Based on the available knowledge and the discussions at the workshop, the European consortium proposed a surveillance protocol. Prospective collection of all results of the surveillance is needed to evaluate the effectiveness of the programme.

  19. Café-au-lait macules and pediatric malignancy caused by biallelic mutations in the DNA mismatch repair (MMR) gene PMS2.

    Science.gov (United States)

    Jackson, Carl-Christian; Holter, Spring; Pollett, Aaron; Clendenning, Mark; Chou, Shirley; Senter, Leigha; Ramphal, Raveena; Gallinger, Steven; Boycott, Kym

    2008-06-01

    A 14-year-old male presented with a T4 sigmoid adenocarcinoma, PMS2 protein and high frequency microsatellite instability. Germline analysis identified biallelic PMS2 missense mutations. A new cancer syndrome caused by biallelic mutations in the mismatch repair genes, including PMS2, is now emerging and is characterized by café-au-lait macules, colonic polyps and a distinctive tumor spectrum. (c) 2007 Wiley-Liss, Inc.

  20. Overexpression of the DNA mismatch repair factor, PMS2, confers hypermutability and DNA damage tolerance.

    Science.gov (United States)

    Gibson, Shannon L; Narayanan, Latha; Hegan, Denise Campisi; Buermeyer, Andrew B; Liskay, R Michael; Glazer, Peter M

    2006-12-08

    Inherited defects in genes associated with DNA mismatch repair (MMR) have been linked to familial colorectal cancer. Cells deficient in MMR are genetically unstable and demonstrate a tolerance phenotype in response to certain classes of DNA damage. Some sporadic human cancers also show abnormalities in MMR gene function, typically due to diminished expression of one of the MutL homologs, MLH1. Here, we report that overexpression of the MutL homolog, human PMS2, can also cause a disruption of the MMR pathway in mammalian cells, resulting in hypermutability and DNA damage tolerance. A mouse fibroblast cell line carrying a recoverable lambda phage shuttle vector for mutation detection was transfected with either a vector designed to express hPMS2 or with an empty vector control. Cells overexpressing hPMS2 were found to have elevated spontaneous mutation frequencies at the cII reporter gene locus. They also showed an increase in the level of mutations induced by the alkylating agent, methynitrosourea (MNU). Clonogenic survival assays demonstrated increased survival of the PMS2-overexpressing cells following exposure to MNU, consistent with the induction of a damage tolerance phenotype. Similar results were seen in cells expressing a mutant PMS2 gene, containing a premature stop codon at position 134 and representing a variant found in an individual with familial colon cancer. These results show that dysregulation of PMS2 gene expression can disrupt MMR function in mammalian cells and establish an additional carcinogenic mechanism by which cells can develop genetic instability and acquire resistance to cytotoxic cancer therapies.

  1. An Unusual Case of Constitutional Mismatch Repair Deficiency Syndrome With Anaplastic Ganglioglioma, Colonic Adenocarcinoma, Osteosarcoma, Acute Myeloid Leukemia, and Signs of Neurofibromatosis Type 1: Case Report.

    Science.gov (United States)

    Daou, Badih; Zanello, Marc; Varlet, Pascale; Brugieres, Laurence; Jabbour, Pascal; Caron, Olivier; Lavoine, Noémie; Dhermain, Frederic; Willekens, Christophe; Beuvon, Frederic; Malka, David; Lechapt-Zalcmann, Emmanuèle; Abi Lahoud, Georges

    2015-07-01

    Constitutional mismatch repair deficiency (CMMRD) syndrome is a disorder with recessive inheritance caused by biallelic mismatch repair gene mutations, in which mismatch repair defects are inherited from both parents. This syndrome is associated with multiple cancers occurring in childhood. The most common tumors observed with CMMRD include brain tumors, digestive tract tumors, and hematological malignancies. The aim of this study was to report new phenotypic expressions of CMMRD syndrome and add new insight to the existing knowledge about this disease. A review of the literature was conducted and recommendation for surveillance and follow-up in patients with CMMRD are proposed. We report for the first time in the literature, the case of a 22-year-old female patient who was diagnosed with CMMRD syndrome, with the development of 2 unusual tumors: an anaplastic ganglioglioma and an osteosarcoma. She presented initially with an anaplastic ganglioglioma and later developed several malignancies including colonic adenocarcinoma, osteosarcoma, and acute myeloid leukemia. The patient had an atypical course of her disease with development of the initial malignancy at an older age and a remarkably long survival period despite developing aggressive tumors. Many aspects of this disease are still unknown. We identified a case of CMMRD in a patient presenting with an anaplastic ganglioglioma, who underwent successful surgical resection, chemotherapy, and radiotherapy and has had one of the longest survival periods known with this disease. This case broadens the tumor spectrum observed with CMMRD syndrome with anaplastic ganglioglioma and osteosarcoma as new phenotypic expressions of this genetic defect.

  2. Integrated analysis of mismatch repair system in malignant astrocytomas.

    Directory of Open Access Journals (Sweden)

    Irene Rodríguez-Hernández

    Full Text Available Malignant astrocytomas are the most aggressive primary brain tumors with a poor prognosis despite optimal treatment. Dysfunction of mismatch repair (MMR system accelerates the accumulation of mutations throughout the genome causing uncontrolled cell growth. The aim of this study was to characterize the MMR system defects that could be involved in malignant astrocytoma pathogenesis. We analyzed protein expression and promoter methylation of MLH1, MSH2 and MSH6 as well as microsatellite instability (MSI and MMR gene mutations in a set of 96 low- and high-grade astrocytomas. Forty-one astrocytomas failed to express at least one MMR protein. Loss of MSH2 expression was more frequent in low-grade astrocytomas. Loss of MLH1 expression was associated with MLH1 promoter hypermethylation and MLH1-93G>A promoter polymorphism. However, MSI was not related with MMR protein expression and only 5% of tumors were MSI-High. Furthermore, the incidence of tumors carrying germline mutations in MMR genes was low and only one glioblastoma was associated with Lynch syndrome. Interestingly, survival analysis identified that tumors lacking MSH6 expression presented longer overall survival in high-grade astrocytoma patients treated only with radiotherapy while MSH6 expression did not modify the prognosis of those patients treated with both radiotherapy and chemotherapy. Our findings suggest that MMR system alterations are a frequent event in malignant astrocytomas and might help to define a subgroup of patients with different outcome.

  3. Both hMutSα and hMutSß DNA mismatch repair complexes participate in 5-fluorouracil cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Akihiro Tajima

    Full Text Available Patients with advanced microsatellite unstable colorectal cancers do not show a survival benefit from 5-fluorouracil (5-FU-based chemotherapy. We and others have shown that the DNA mismatch repair (MMR complex hMutSα binds 5-FU incorporated into DNA. Although hMutSß is known to interact with interstrand crosslinks (ICLs induced by drugs such as cisplatin and psoralen, it has not been demonstrated to interact with 5-FU incorporated into DNA. Our aim was to examine if hMutSß plays a role in 5-FU recognition.We compared the normalized growth of 5-FU treated cells containing either or both mismatch repair complexes using MTT and clonogenic assays. We utilized oligonucleotides containing 5-FU and purified baculovirus-synthesized hMutSα and hMutSß in electromobility shift assays (EMSA and further analyzed binding using surface plasmon resonance.MTT and clonogenic assays after 5-FU treatment demonstrated the most cytotoxicity in cells with both hMutSα and hMutSß, intermediate cytotoxicity in cells with hMutSα alone, and the least cytotoxicity in cells with hMutSß alone, hMutSß binds 5-FU-modified DNA, but its relative binding is less than the binding of 5-FU-modified DNA by hMutSα.Cytotoxicity induced by 5-FU is dependent on intact DNA MMR, with relative cell death correlating directly with hMutSα and/or hMutSß 5-FU binding ability (hMutSα>hMutSß. The MMR complexes provide a hierarchical chemosensitivity for 5-FU cell death, and may have implications for treatment of patients with certain MMR-deficient tumors.

  4. MSH3 mismatch repair protein regulates sensitivity to cytotoxic drugs and a histone deacetylase inhibitor in human colon carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jae Myung Park

    Full Text Available MSH3 is a DNA mismatch repair (MMR gene that undergoes frequent somatic mutation in colorectal cancers (CRCs with MMR deficiency. MSH3, together with MSH2, forms the MutSβ heteroduplex that interacts with interstrand cross-links induced by drugs such as cisplatin. To date, the impact of MSH3 on chemosensitivity is unknown.We utilized isogenic HCT116 (MLH1-/MSH3- cells where MLH1 is restored by transfer of chromosome 3 (HCT116+ch3 and also MSH3 by chromosome 5 (HCT116+3+5. We generated HCT116+3+5, SW480 (MLH1+/MSH3+ and SW48 (MLH1-/MSH3+ cells with shRNA knockdown of MSH3. Cells were treated with 5-fluorouracil (5-FU, SN-38, oxaliplatin, or the histone deacetylase (HDAC inhibitor PCI-24781 and cell viability, clonogenic survival, DNA damage and apoptosis were analyzed.MSH3-deficient vs proficient CRC cells showed increased sensitivity to the irinotecan metabolite SN-38 and to oxaliplatin, but not 5-FU, as shown in assays for apoptosis and clonogenic survival. In contrast, suppression of MLH1 attenuated the cytotoxic effect of 5-FU, but did not alter sensitivity to SN-38 or oxaliplatin. The impact of MSH3 knockdown on chemosensitivity to SN-38 and oxaliplatin was maintained independent of MLH1 status. In MSH3-deficient vs proficient cells, SN-38 and oxaliplatin induced higher levels of phosphorylated histone H2AX and Chk2, and similar results were found in MLH1-proficient SW480 cells. MSH3-deficient vs proficient cells showed increased 53BP1 nuclear foci after irradiation, suggesting that MSH3 can regulate DNA double strand break (DSB repair. We then utilized PCI-24781 that interferes with homologous recombination (HR indicated by a reduction in Rad51 expression. The addition of PCI-24781 to oxaliplatin enhanced cytotoxicity to a greater extent compared to either drug alone.MSH3 status can regulate the DNA damage response and extent of apoptosis induced by chemotherapy. The ability of MSH3 to regulate chemosensitivity was independent of MLH1

  5. Nucleotide sequence of the hexA gene for DNA mismatch repair in Streptococcus pneumoniae and homology of hexA to mutS of Escherichia coli and Salmonella typhimurium

    International Nuclear Information System (INIS)

    Priebe, S.D.; Hadi, S.M.; Greenberg, B.; Lacks, S.A.

    1988-01-01

    The Hex system of heteroduplex DNA base mismatch repair operates in Streptococcus pneumoniae after transformation and replication to correct donor and nascent DNA strands, respectively. A functionally similar system, called Mut, operates in Escherichia coli and Salmonella typhimurium. The nucleotide sequence of a 3.8-kilobase segment from the S. pneumoniae chromosome that includes the 2.7-kilobase hexA gene was determined. Chromosomal DNA used as donor to measure Hex phenotype was irradiated with UV light. An open reading frame that could encode a 17-kilodalton polypeptide (OrfC) was located just upstream of the gene encoding a polypeptide of 95 kilodaltons corresponding to HexA. Shine-Dalgarno sequences and putative promoters were identified upstream of each protein start site. Insertion mutations showed that only HexA functioned in mismatch repair and that the promoter for hexA transcription was located within the OrfC-coding region. The HexA polypeptide contains a consensus sequence for ATP- or GTP-binding sites in proteins. Comparison of the entire HexA protein sequence to that of MutS of S. typhimurium, showed the proteins to be homologous, inasmuch as 36% of their amino acid residues were identical. This homology indicates that the Hex and Mut systems of mismatch repair evolved from an ancestor common to the gram-positive streptococci and the gram-negative enterobacteria. It is the first direct evidence linking the two systems

  6. Integration of Principles of Systems Biology and Radiation Biology: Toward Development of in silico Models to Optimize IUdR-Mediated Radiosensitization of DNA Mismatch Repair Deficient (Damage Tolerant) Human Cancers

    International Nuclear Information System (INIS)

    Kinsella, Timothy J.; Gurkan-Cavusoglu, Evren; Du, Weinan; Loparo, Kenneth A.

    2011-01-01

    Over the last 7 years, we have focused our experimental and computational research efforts on improving our understanding of the biochemical, molecular, and cellular processing of iododeoxyuridine (IUdR) and ionizing radiation (IR) induced DNA base damage by DNA mismatch repair (MMR). These coordinated research efforts, sponsored by the National Cancer Institute Integrative Cancer Biology Program (ICBP), brought together system scientists with expertise in engineering, mathematics, and complex systems theory and translational cancer researchers with expertise in radiation biology. Our overall goal was to begin to develop computational models of IUdR- and/or IR-induced base damage processing by MMR that may provide new clinical strategies to optimize IUdR-mediated radiosensitization in MMR deficient (MMR − ) “damage tolerant” human cancers. Using multiple scales of experimental testing, ranging from purified protein systems to in vitro (cellular) and to in vivo (human tumor xenografts in athymic mice) models, we have begun to integrate and interpolate these experimental data with hybrid stochastic biochemical models of MMR damage processing and probabilistic cell cycle regulation models through a systems biology approach. In this article, we highlight the results and current status of our integration of radiation biology approaches and computational modeling to enhance IUdR-mediated radiosensitization in MMR − damage tolerant cancers.

  7. Loss of DNA mismatch repair imparts a selective advantage in planarian adult stem cells.

    Directory of Open Access Journals (Sweden)

    Jessica P Hollenbach

    Full Text Available Lynch syndrome (LS leads to an increased risk of early-onset colorectal and other types of cancer and is caused by germline mutations in DNA mismatch repair (MMR genes. Loss of MMR function results in a mutator phenotype that likely underlies its role in tumorigenesis. However, loss of MMR also results in the elimination of a DNA damage-induced checkpoint/apoptosis activation barrier that may allow damaged cells to grow unchecked. A fundamental question is whether loss of MMR provides pre-cancerous stem cells an immediate selective advantage in addition to establishing a mutator phenotype. To test this hypothesis in an in vivo system, we utilized the planarian Schmidtea mediterranea which contains a significant population of identifiable adult stem cells. We identified a planarian homolog of human MSH2, a MMR gene which is mutated in 38% of LS cases. The planarian Smed-msh2 is expressed in stem cells and some progeny. We depleted Smed-msh2 mRNA levels by RNA-interference and found a striking survival advantage in these animals treated with a cytotoxic DNA alkylating agent compared to control animals. We demonstrated that this tolerance to DNA damage is due to the survival of mitotically active, MMR-deficient stem cells. Our results suggest that loss of MMR provides an in vivo survival advantage to the stem cell population in the presence of DNA damage that may have implications for tumorigenesis.

  8. E. coli mismatch repair enhances AT-to-GC mutagenesis caused by alkylating agents.

    Science.gov (United States)

    Nakano, Kota; Yamada, Yoko; Takahashi, Eizo; Arimoto, Sakae; Okamoto, Keinosuke; Negishi, Kazuo; Negishi, Tomoe

    2017-03-01

    Alkylating agents are known to induce the formation of O 6 -alkylguanine (O 6 -alkG) and O 4 -alkylthymine (O 4 -alkT) in DNA. These lesions have been widely investigated as major sources of mutations. We previously showed that mismatch repair (MMR) facilitates the suppression of GC-to-AT mutations caused by O 6 -methylguanine more efficiently than the suppression of GC-to-AT mutations caused by O 6 -ethylguanine. However, the manner by which O 4 -alkyT lesions are repaired remains unclear. In the present study, we investigated the repair pathway involved in the repair of O 4 -alkT. The E. coli CC106 strain, which harbors Δprolac in its genomic DNA and carries the F'CC106 episome, can be used to detect AT-to-GC reverse-mutation of the gene encoding β-galactosidase. Such AT-to-GC mutations should be induced through the formation of O 4 -alkT at AT base pairs. As expected, an O 6 -alkylguanine-DNA alkyltransferase (AGT) -deficient CC106 strain, which is defective in both ada and agt genes, exhibited elevated mutant frequencies in the presence of methylating agents and ethylating agents. However, in the UvrA-deficient strain, the methylating agents were less mutagenic than in wild-type, while ethylating agents were more mutagenic than in wild-type, as observed with agents that induce O 6 -alkylguanine modifications. Unexpectedly, the mutant frequencies decreased in a MutS-deficient strain, and a similar tendency was observed in MutL- or MutH-deficient strains. Thus, MMR appears to promote mutation at AT base pairs. Similar results were obtained in experiments employing double-mutant strains harboring defects in both MMR and AGT, or MMR and NER. E. coli MMR enhances AT-to-GC mutagenesis, such as that caused by O 4 -alkylthymine. We hypothesize that the MutS protein recognizes the O 4 -alkT:A base pair more efficiently than O 4 -alkT:G. Such a distinction would result in misincorporation of G at the O 4 -alkT site, followed by higher mutation frequencies in wild

  9. DNA mismatch repair deficiency and hereditary syndromes in Latino patients with colorectal cancer.

    Science.gov (United States)

    Ricker, Charité N; Hanna, Diana L; Peng, Cheng; Nguyen, Nathalie T; Stern, Mariana C; Schmit, Stephanie L; Idos, Greg E; Patel, Ravi; Tsai, Steven; Ramirez, Veronica; Lin, Sonia; Shamasunadara, Vinay; Barzi, Afsaneh; Lenz, Heinz-Josef; Figueiredo, Jane C

    2017-10-01

    The landscape of hereditary syndromes and clinicopathologic characteristics among US Latino/Hispanic individuals with colorectal cancer (CRC) remains poorly understood. A total of 265 patients with CRC who were enrolled in the Hispanic Colorectal Cancer Study were included in the current study. Information regarding CRC risk factors was elicited through interviews, and treatment and survival data were abstracted from clinical charts. Tumor studies and germline genetic testing results were collected from medical records or performed using standard molecular methods. The mean age of the patients at the time of diagnosis was 53.7 years (standard deviation, 10.3 years), and 48.3% were female. Overall, 21.2% of patients reported a first-degree or second-degree relative with CRC; 3.4% met Amsterdam I/II criteria. With respect to Bethesda guidelines, 38.5% of patients met at least 1 criterion. Of the 161 individuals who had immunohistochemistry and/or microsatellite instability testing performed, 21 (13.0%) had mismatch repair (MMR)-deficient (dMMR) tumors. dMMR tumors were associated with female sex (61.9%), earlier age at the time of diagnosis (50.4 ± 12.4 years), proximal location (61.9%), and first-degree (23.8%) or second-degree (9.5%) family history of CRC. Among individuals with dMMR tumors, 13 (61.9%) had a germline MMR mutation (MutL homolog 1 [MLH1] in 6 patients; MutS homolog 2 [MSH2] in 4 patients; MutS homolog 6 [MHS6] in 2 patients; and PMS1 homolog 2, mismatch repair system component [PMS2] in 1 patient). The authors identified 2 additional MLH1 mutation carriers by genetic testing who had not received immunohistochemistry/microsatellite instability testing. In total, 5.7% of the entire cohort were confirmed to have Lynch syndrome. In addition, 6 individuals (2.3%) had a polyposis phenotype. The percentage of dMMR tumors noted among Latino individuals (13%) is similar to estimates in non-Hispanic white individuals. In the current study, the majority of

  10. Mismatch repair and treatment resistance in ovarian cancer

    International Nuclear Information System (INIS)

    Helleman, Jozien; Staveren, Iris L van; Dinjens, Winand NM; Kuijk, Patricia F van; Ritstier, Kirsten; Ewing, Patricia C; Burg, Maria EL van der; Stoter, Gerrit; Berns, Els MJJ

    2006-01-01

    The treatment of ovarian cancer is hindered by intrinsic or acquired resistance to platinum-based chemotherapy. The aim of this study is to determine the frequency of mismatch repair (MMR) inactivation in ovarian cancer and its association with resistance to platinum-based chemotherapy. We determined, microsatellite instability (MSI) as a marker for MMR inactivation (analysis of BAT25 and BAT26), MLH1 promoter methylation status (methylation specific PCR on bisulfite treated DNA) and mRNA expression of MLH1, MSH2, MSH3, MSH6 and PMS2 (quantitative RT-PCR) in 75 ovarian carcinomas and eight ovarian cancer cell lines MSI was detected in three of the eight cell lines i.e. A2780 (no MLH1 mRNA expression due to promoter methylation), SKOV3 (no MLH1 mRNA expression) and 2774 (no altered expression of MMR genes). Overall, there was no association between cisplatin response and MMR status in these eight cell lines. Seven of the 75 ovarian carcinomas showed MLH1 promoter methylation, however, none of these showed MSI. Forty-six of these patients received platinum-based chemotherapy (11 non-responders, 34 responders, one unknown response). The resistance seen in the eleven non-responders was not related to MSI and therefore also not to MMR inactivation. No MMR inactivation was detected in 75 ovarian carcinoma specimens and no association was seen between MMR inactivation and resistance in the ovarian cancer cell lines as well as the ovarian carcinomas. In the discussion, the results were compared to that of twenty similar studies in the literature including in total 1315 ovarian cancer patients. Although no association between response and MMR status was seen in the primary tumor the possible role of MMR inactivation in acquired resistance deserves further investigation

  11. Mismatch repair and treatment resistance in ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Helleman, Jozien; Staveren, Iris L van [Department of Medical Oncology, Erasmus MC/Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Dinjens, Winand NM [Department of Pathology, Erasmus MC/Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Kuijk, Patricia F van; Ritstier, Kirsten [Department of Medical Oncology, Erasmus MC/Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Ewing, Patricia C [Department of Pathology, Erasmus MC/Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Burg, Maria EL van der; Stoter, Gerrit [Department of Medical Oncology, Erasmus MC/Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Berns, Els MJJ [Department of Medical Oncology, Erasmus MC/Daniel den Hoed Cancer Center, Rotterdam (Netherlands); Erasmus MC, Department of Medical Oncology, Josephine Nefkens Institute, Room Be424, P.O. Box 1738, 3000 DR (Netherlands)

    2006-07-31

    The treatment of ovarian cancer is hindered by intrinsic or acquired resistance to platinum-based chemotherapy. The aim of this study is to determine the frequency of mismatch repair (MMR) inactivation in ovarian cancer and its association with resistance to platinum-based chemotherapy. We determined, microsatellite instability (MSI) as a marker for MMR inactivation (analysis of BAT25 and BAT26), MLH1 promoter methylation status (methylation specific PCR on bisulfite treated DNA) and mRNA expression of MLH1, MSH2, MSH3, MSH6 and PMS2 (quantitative RT-PCR) in 75 ovarian carcinomas and eight ovarian cancer cell lines MSI was detected in three of the eight cell lines i.e. A2780 (no MLH1 mRNA expression due to promoter methylation), SKOV3 (no MLH1 mRNA expression) and 2774 (no altered expression of MMR genes). Overall, there was no association between cisplatin response and MMR status in these eight cell lines. Seven of the 75 ovarian carcinomas showed MLH1 promoter methylation, however, none of these showed MSI. Forty-six of these patients received platinum-based chemotherapy (11 non-responders, 34 responders, one unknown response). The resistance seen in the eleven non-responders was not related to MSI and therefore also not to MMR inactivation. No MMR inactivation was detected in 75 ovarian carcinoma specimens and no association was seen between MMR inactivation and resistance in the ovarian cancer cell lines as well as the ovarian carcinomas. In the discussion, the results were compared to that of twenty similar studies in the literature including in total 1315 ovarian cancer patients. Although no association between response and MMR status was seen in the primary tumor the possible role of MMR inactivation in acquired resistance deserves further investigation.

  12. Mismatch repair and treatment resistance in ovarian cancer

    Directory of Open Access Journals (Sweden)

    van der Burg Maria EL

    2006-07-01

    Full Text Available Abstract Background The treatment of ovarian cancer is hindered by intrinsic or acquired resistance to platinum-based chemotherapy. The aim of this study is to determine the frequency of mismatch repair (MMR inactivation in ovarian cancer and its association with resistance to platinum-based chemotherapy. Methods We determined, microsatellite instability (MSI as a marker for MMR inactivation (analysis of BAT25 and BAT26, MLH1 promoter methylation status (methylation specific PCR on bisulfite treated DNA and mRNA expression of MLH1, MSH2, MSH3, MSH6 and PMS2 (quantitative RT-PCR in 75 ovarian carcinomas and eight ovarian cancer cell lines Results MSI was detected in three of the eight cell lines i.e. A2780 (no MLH1 mRNA expression due to promoter methylation, SKOV3 (no MLH1 mRNA expression and 2774 (no altered expression of MMR genes. Overall, there was no association between cisplatin response and MMR status in these eight cell lines. Seven of the 75 ovarian carcinomas showed MLH1 promoter methylation, however, none of these showed MSI. Forty-six of these patients received platinum-based chemotherapy (11 non-responders, 34 responders, one unknown response. The resistance seen in the eleven non-responders was not related to MSI and therefore also not to MMR inactivation. Conclusion No MMR inactivation was detected in 75 ovarian carcinoma specimens and no association was seen between MMR inactivation and resistance in the ovarian cancer cell lines as well as the ovarian carcinomas. In the discussion, the results were compared to that of twenty similar studies in the literature including in total 1315 ovarian cancer patients. Although no association between response and MMR status was seen in the primary tumor the possible role of MMR inactivation in acquired resistance deserves further investigation.

  13. Conformations of MutS in DNA mismatch repair

    NARCIS (Netherlands)

    F.S. Groothuizen (Flora)

    2015-01-01

    markdownabstract__Abstract__ Prior to cell division, the DNA containing the genetic information of a cell has to be copied. During this process, errors are sometimes incorporated (so-called mismatches), which may cause genetic abnormalities in future cells. To prevent this, cells contain a DNA

  14. The Effect of Basepair Mismatch on DNA Strand Displacement

    OpenAIRE

    Broadwater, D.?W.?Bo; Kim, Harold?D.

    2016-01-01

    DNA strand displacement is a key reaction in DNA homologous recombination and DNA mismatch repair and is also heavily utilized in DNA-based computation and locomotion. Despite its ubiquity in science and engineering, sequence-dependent effects of displacement kinetics have not been extensively characterized. Here, we measured toehold-mediated strand displacement kinetics using single-molecule fluorescence in the presence of a single base pair mismatch. The apparent displacement rate varied si...

  15. Human diseases associated with defective DNA repair

    International Nuclear Information System (INIS)

    Friedberg, E.C.; Ehmann, U.K.; Williams, J.I.

    1979-01-01

    The observations on xeroderma pigmentosum (XP) cells in culture were the first indications of defective DNA repair in association with human disease. Since then, a wealth of information on DNA repair in XP, and to a lesser extent in other diseases, has accumulated in the literature. Rather than clarifying the understanding of DNA repair mechanisms in normal cells and of defective DNA repair in human disease, the literature suggests an extraordinary complexity of both of the phenomena. In this review a number of discrete human diseases are considered separately. An attempt was made to systematically describe the pertinent clinical features and cellular and biochemical defects in these diseases, with an emphasis on defects in DNA metabolism, particularly DNA repair. Wherever possible observations have been correlated and unifying hypotheses presented concerning the nature of the basic defect(s) in these diseases. Discussions of the following diseases are presented: XP, ataxia telangiectasia; Fanconi's anemia; Hutchinson-Gilford progeria syndrome; Bloom's syndrome, Cockayne's syndrome; Down's syndrome; retinoblastoma; chronic lymphocytic leukemia; and other miscellaneous human diseases with possble DNA repair defects

  16. Isolating human DNA repair genes using rodent-cell mutants

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Brookman, K.W.; Salazar, E.P.; Stewart, S.A.; Mitchell, D.L.

    1987-01-01

    The DNA repair systems of rodent and human cells appear to be at least as complex genetically as those in lower eukaryotes and bacteria. The use of mutant lines of rodent cells as a means of identifying human repair genes by functional complementation offers a new approach toward studying the role of repair in mutagenesis and carcinogenesis. In each of six cases examined using hybrid cells, specific human chromosomes have been identified that correct CHO cell mutations affecting repair of damage from uv or ionizing radiations. This finding suggests that both the repair genes and proteins may be virtually interchangeable between rodent and human cells. Using cosmid vectors, human repair genes that map to chromosome 19 have cloned as functional sequences: ERCC2 and XRCC1. ERCC1 was found to have homology with the yeast excision repair gene RAD10. Transformants of repair-deficient cell lines carrying the corresponding human gene show efficient correction of repair capacity by all criteria examined. 39 refs., 1 fig., 1 tab

  17. Constitutional mismatch repair-deficiency syndrome presenting as colonic adenomatous polyposis: clues from the skin.

    Science.gov (United States)

    Jasperson, K W; Samowitz, W S; Burt, R W

    2011-10-01

    Constitutional mismatch repair-deficiency (CMMR-D) syndrome is an autosomal recessive condition characterized by hematologic malignancies, brain tumors, Lynch syndrome-associated cancers and skin manifestations reminiscent of neurofibromatosis type 1 (NF1). In contrast to Lynch syndrome, CMMR-D syndrome is exceptionally rare, onset typically occurs in infancy or early childhood and, as described in this report, may also present with colonic polyposis suggestive of attenuated familial adenomatous polyposis (AFAP) or MUTYH associated polyposis (MAP). Here we describe two sisters with CMMR-D syndrome due to germline bi-allelic MSH6 mutations. Both sisters are without cancer, are older than typical for this condition, have NF1 associated features and a colonic phenotype suspicious for an attenuated polyposis syndrome. This report highlights the role of skin examinations in leading to an underlying genetic diagnosis in individuals with colonic adenomatous polyposis, but without mutations associated with AFAP or MAP. © 2010 John Wiley & Sons A/S.

  18. DNA Mismatch Repair Deficiency Promotes Genomic Instability in a Subset of Papillary Thyroid Cancers.

    Science.gov (United States)

    Javid, Mahsa; Sasanakietkul, Thanyawat; Nicolson, Norman G; Gibson, Courtney E; Callender, Glenda G; Korah, Reju; Carling, Tobias

    2018-02-01

    Efficient DNA damage repair by MutL-homolog DNA mismatch repair (MMR) enzymes, MLH1, MLH3, PMS1 and PMS2, are required to maintain thyrocyte genomic integrity. We hypothesized that persistent oxidative stress and consequent transcriptional dysregulation observed in thyroid follicles will lead to MMR deficiency and potentiate papillary thyroid tumorigenesis. MMR gene expression was analyzed by targeted microarray in 18 papillary thyroid cancer (PTC), 9 paracarcinoma normal thyroid (PCNT) and 10 normal thyroid (NT) samples. The findings were validated by qRT-PCR, and in follicular thyroid cancers (FTC) and follicular thyroid adenomas (FTA) for comparison. FOXO transcription factor expression was also analyzed. Protein expression was assessed by immunohistochemistry. Genomic integrity was evaluated by whole-exome sequencing-derived read-depth analysis and Mann-Whitney U test. Clinical correlations were assessed using Fisher's exact and t tests. Microarray and qRT-PCR revealed reduced expression of all four MMR genes in PTC compared with PCNT and of PMS2 compared with NT. FTC and FTA showed upregulation in MLH1, MLH3 and PMS2. PMS2 protein expression correlated with the mRNA expression pattern. FOXO1 showed lower expression in PMS2-deficient PTCs (log2-fold change -1.72 vs. -0.55, U = 11, p clinical characteristics. MMR deficiency, potentially promoted by FOXO1 suppression, may explain the etiology for PTC development in some patients. FTC and FTA retain MMR activity and are likely caused by a different tumorigenic pathway.

  19. Comprehensive Mutation Analysis of PMS2 in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency Syndrome.

    Science.gov (United States)

    van der Klift, Heleen M; Mensenkamp, Arjen R; Drost, Mark; Bik, Elsa C; Vos, Yvonne J; Gille, Hans J J P; Redeker, Bert E J W; Tiersma, Yvonne; Zonneveld, José B M; García, Encarna Gómez; Letteboer, Tom G W; Olderode-Berends, Maran J W; van Hest, Liselotte P; van Os, Theo A; Verhoef, Senno; Wagner, Anja; van Asperen, Christi J; Ten Broeke, Sanne W; Hes, Frederik J; de Wind, Niels; Nielsen, Maartje; Devilee, Peter; Ligtenberg, Marjolijn J L; Wijnen, Juul T; Tops, Carli M J

    2016-11-01

    Monoallelic PMS2 germline mutations cause 5%-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional mismatch repair deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA- and RNA-based strategies are applied to overcome problematic PMS2 mutation analysis due to the presence of pseudogenes and frequent gene conversion events. Here, we determined PMS2 mutation detection yield and mutation spectrum in a nationwide cohort of 396 probands. Furthermore, we studied concordance between tumor IHC/MSI (immunohistochemistry/microsatellite instability) profile and mutation carrier state. Overall, we found 52 different pathogenic PMS2 variants explaining 121 Lynch syndrome and nine CMMRD patients. In vitro mismatch repair assays suggested pathogenicity for three missense variants. Ninety-one PMS2 mutation carriers (70%) showed isolated loss of PMS2 in their tumors, for 31 (24%) no or inconclusive IHC was available, and eight carriers (6%) showed discordant IHC (presence of PMS2 or loss of both MLH1 and PMS2). Ten cases with isolated PMS2 loss (10%; 10/97) harbored MLH1 mutations. We confirmed that recently improved mutation analysis provides a high yield of PMS2 mutations in patients with isolated loss of PMS2 expression. Application of universal tumor prescreening methods will however miss some PMS2 germline mutation carriers. © 2016 WILEY PERIODICALS, INC.

  20. (CAG)(n)-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition.

    Science.gov (United States)

    Owen, Barbara A L; Yang, Zungyoon; Lai, Maoyi; Gajec, Maciej; Gajek, Maciez; Badger, John D; Hayes, Jeffrey J; Edelmann, Winfried; Kucherlapati, Raju; Wilson, Teresa M; McMurray, Cynthia T

    2005-08-01

    Cells have evolved sophisticated DNA repair systems to correct damaged DNA. However, the human DNA mismatch repair protein Msh2-Msh3 is involved in the process of trinucleotide (CNG) DNA expansion rather than repair. Using purified protein and synthetic DNA substrates, we show that Msh2-Msh3 binds to CAG-hairpin DNA, a prime candidate for an expansion intermediate. CAG-hairpin binding inhibits the ATPase activity of Msh2-Msh3 and alters both nucleotide (ADP and ATP) affinity and binding interfaces between protein and DNA. These changes in Msh2-Msh3 function depend on the presence of A.A mispaired bases in the stem of the hairpin and on the hairpin DNA structure per se. These studies identify critical functional defects in the Msh2-Msh3-CAG hairpin complex that could misdirect the DNA repair process.

  1. Connections between constitutional mismatch repair deficiency syndrome and neurofibromatosis type 1.

    Science.gov (United States)

    Wimmer, K; Rosenbaum, T; Messiaen, L

    2017-04-01

    Constitutional mismatch repair (MMR) deficiency (CMMRD) is a rare childhood cancer susceptibility syndrome resulting from biallelic germline loss-of-function mutations in one of the MMR genes. Individuals with CMMRD have high risk to develop a broad spectrum of malignancies and frequently display features reminiscent of neurofibromatosis type 1 (NF1). Evaluation of the clinical findings of genetically proven CMMRD patients shows that not only multiple café-au-lait macules but also any of the diagnostic features of NF1 may be present in a CMMRD patient. This phenotypic overlap may lead to misdiagnosis of CMMRD patients as having NF1, which impedes adequate management of the patients and their families. The spectrum of CMMRD-associated childhood malignancies includes high-grade glioma, acute myeloid leukaemia or rhabdomyosarcoma, also reported as associated with NF1. Reported associations between NF1 and these malignancies are to a large extent based on studies that neither proved the presence of an NF1 germline mutation nor ruled-out CMMRD in the affected. Hence, these associations are challenged by our current knowledge of the phenotypic overlap between NF1 and CMMRD and should be re-evaluated in future studies. Recent advances in the diagnostics of CMMRD should render it possible to definitely state or refute this diagnosis in these individuals. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Cloning human DNA repair genes

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Carr, A.M.; Lehmann, A.R.

    1994-01-01

    Many human genes involved in the repair of UV damage have been cloned using different procedures and they have been of great value in assisting the understanding of the mechanism of nucleotide excision-repair. Genes involved in repair of ionizing radiation damage have proved more difficult to isolate. Positional cloning has localized the XRCC5 gene to a small region of chromosome 2q33-35, and a series of yeast artificial chromosomes covering this region have been isolated. Very recent work has shown that the XRCC5 gene encodes the 80 kDa subunit of the Ku DNA-binding protein. The Ku80 gene also maps to this region. Studies with fission yeast have shown that radiation sensitivity can result not only from defective DNA repair but also from abnormal cell cycle control following DNA damage. Several genes involved in this 'check-point' control in fission yeast have been isolated and characterized in detail. It is likely that a similar checkpoint control mechanism exists in human cells. (author)

  3. Genome-wide analysis of heteroduplex DNA in mismatch repair-deficient yeast cells reveals novel properties of meiotic recombination pathways.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Martini

    2011-09-01

    Full Text Available Meiotic DNA double-strand breaks (DSBs initiate crossover (CO recombination, which is necessary for accurate chromosome segregation, but DSBs may also repair as non-crossovers (NCOs. Multiple recombination pathways with specific intermediates are expected to lead to COs and NCOs. We revisited the mechanisms of meiotic DSB repair and the regulation of CO formation, by conducting a genome-wide analysis of strand-transfer intermediates associated with recombination events. We performed this analysis in a SK1 × S288C Saccharomyces cerevisiae hybrid lacking the mismatch repair (MMR protein Msh2, to allow efficient detection of heteroduplex DNAs (hDNAs. First, we observed that the anti-recombinogenic activity of MMR is responsible for a 20% drop in CO number, suggesting that in MMR-proficient cells some DSBs are repaired using the sister chromatid as a template when polymorphisms are present. Second, we observed that a large fraction of NCOs were associated with trans-hDNA tracts constrained to a single chromatid. This unexpected finding is compatible with dissolution of double Holliday junctions (dHJs during repair, and it suggests the existence of a novel control point for CO formation at the level of the dHJ intermediate, in addition to the previously described control point before the dHJ formation step. Finally, we observed that COs are associated with complex hDNA patterns, confirming that the canonical double-strand break repair model is not sufficient to explain the formation of most COs. We propose that multiple factors contribute to the complexity of recombination intermediates. These factors include repair of nicks and double-stranded gaps, template switches between non-sister and sister chromatids, and HJ branch migration. Finally, the good correlation between the strand transfer properties observed in the absence of and in the presence of Msh2 suggests that the intermediates detected in the absence of Msh2 reflect normal intermediates.

  4. DNA damage and repair in human skin in situ

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Gange, R.W.; Freeman, S.E.; Sutherland, J.C.

    1987-01-01

    Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells - including human cells in culture - there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair, as well as qualitative differences, including the presence or absence of repair mechanisms. Quantitation of DNA damage and repair in human skin required the development of new approaches for measuring damage at low levels in nanogram quantities of non-radioactive DNA. The method allows for analysis of multiple samples and the resulting data should be related to behavior of the DNA molecules by analytic expressions. Furthermore, it should be possible to assay a variety of lesions using the same methodology. The development of new analysis methods, new technology, and new biochemical probes for the study of DNA damage and repair are described. 28 refs., 4 figs

  5. DNA damage and repair in human skin in situ

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, B.M.; Gange, R.W.; Freeman, S.E.; Sutherland, J.C.

    1987-01-01

    Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells - including human cells in culture - there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair, as well as qualitative differences, including the presence or absence of repair mechanisms. Quantitation of DNA damage and repair in human skin required the development of new approaches for measuring damage at low levels in nanogram quantities of non-radioactive DNA. The method allows for analysis of multiple samples and the resulting data should be related to behavior of the DNA molecules by analytic expressions. Furthermore, it should be possible to assay a variety of lesions using the same methodology. The development of new analysis methods, new technology, and new biochemical probes for the study of DNA damage and repair are described. 28 refs., 4 figs.

  6. Identification of a novel PMS2 alteration c.505C>G (R169G) in trans with a PMS2 pathogenic mutation in a patient with constitutional mismatch repair deficiency.

    Science.gov (United States)

    Mork, Maureen E; Borras, Ester; Taggart, Melissa W; Cuddy, Amanda; Bannon, Sarah A; You, Y Nancy; Lynch, Patrick M; Ramirez, Pedro T; Rodriguez-Bigas, Miguel A; Vilar, Eduardo

    2016-10-01

    Constitutional mismatch repair deficiency syndrome (CMMRD) is a rare autosomal recessive predisposition to colorectal polyposis and other malignancies, often childhood-onset, that is caused by biallelic inheritance of mutations in the same mismatch repair gene. Here, we describe a patient with a clinical diagnosis of CMMRD based on colorectal polyposis and young-onset endometrial cancer who was identified to have two alterations in trans in PMS2: one known pathogenic mutation (c.1831insA; p.Ile611Asnfs*2) and one novel variant of uncertain significance (c.505C>G; p.Arg169Glu), a missense alteration. We describe the clinical and molecular features in the patient harboring this novel alteration c.505C>G, who meets clinical criteria for CMMRD and exhibits molecular evidence supporting a diagnosis of CMMRD. Although experimental validation is needed to confirm its pathogenicity, PMS2 c.505C>G likely has functional consequences that contributes to our patient's phenotype based on the patient's clinical presentation, tumor studies, and bioinformatics analysis.

  7. 14-3-3 checkpoint regulatory proteins interact specifically with DNA repair protein human exonuclease 1 (hEXO1) via a semi-conserved motif

    DEFF Research Database (Denmark)

    Andersen, Sofie Dabros; Keijzers, Guido; Rampakakis, Emmanouil

    2012-01-01

    Human exonuclease 1 (hEXO1) acts directly in diverse DNA processing events, including replication, mismatch repair (MMR), and double strand break repair (DSBR), and it was also recently described to function as damage sensor and apoptosis inducer following DNA damage. In contrast, 14-3-3 proteins...... are specifically induced by replication inhibition leading to protein ubiquitination and degradation. We demonstrate direct and robust interaction between hEXO1 and six of the seven 14-3-3 isoforms in vitro, suggestive of a novel protein interaction network between DNA repair and cell cycle control. Binding...... and most likely a second unidentified binding motif. 14-3-3 associations do not appear to directly influence hEXO1 in vitro nuclease activity or in vitro DNA replication initiation. Moreover, specific phosphorylation variants, including hEXO1 S746A, are efficiently imported to the nucleus; to associate...

  8. Cytogenetic Response to Ionizing Radiation Exposure in Human Fibroblasts with Suppressed Expression of Non-DSB Repair Genes

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Hammond, Dianne; Mehta, Satish K.; Jeevarajan, Antony S.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in radiation-induced chromosome aberrations and micronuclei formation. In the study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequencies of micronuclei (MN) formation and chromosome aberrations were measured to determine the efficiency of cytogenetic repair, and the fraction of bi-nucleated cells in the MN analysis was used as a marker for cell cycle progression. In response to gamma radiation, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR

  9. Novel roles for MLH3 deficiency and TLE6-like amplification in DNA mismatch repair-deficient gastrointestinal tumorigenesis and progression.

    Directory of Open Access Journals (Sweden)

    Peng-Chieh Chen

    2008-06-01

    Full Text Available DNA mismatch repair suppresses gastrointestinal tumorgenesis. Four mammalian E. coli MutL homologues heterodimerize to form three distinct complexes: MLH1/PMS2, MLH1/MLH3, and MLH1/PMS1. To understand the mechanistic contributions of MLH3 and PMS2 in gastrointestinal tumor suppression, we generated Mlh3(-/-;Apc(1638N and Mlh3(-/-;Pms2(-/-;Apc(1638N (MPA mice. Mlh3 nullizygosity significantly increased Apc frameshift mutations and tumor multiplicity. Combined Mlh3;Pms2 nullizygosity further increased Apc base-substitution mutations. The spectrum of MPA tumor mutations was distinct from that observed in Mlh1(-/-;Apc(1638N mice, implicating the first potential role for MLH1/PMS1 in tumor suppression. Because Mlh3;Pms2 deficiency also increased gastrointestinal tumor progression, we used array-CGH to identify a recurrent tumor amplicon. This amplicon contained a previously uncharacterized Transducin enhancer of Split (Tle family gene, Tle6-like. Expression of Tle6-like, or the similar human TLE6D splice isoform in colon cancer cells increased cell proliferation, colony-formation, cell migration, and xenograft tumorgenicity. Tle6-like;TLE6D directly interact with the gastrointestinal tumor suppressor RUNX3 and antagonize RUNX3 target transactivation. TLE6D is recurrently overexpressed in human colorectal cancers and TLE6D expression correlates with RUNX3 expression. Collectively, these findings provide important insights into the molecular mechanisms of individual MutL homologue tumor suppression and demonstrate an association between TLE mediated antagonism of RUNX3 and accelerated human colorectal cancer progression.

  10. DNA mismatch repair gene MLH1 induces apoptosis in prostate cancer cells.

    Science.gov (United States)

    Fukuhara, Shinichiro; Chang, Inik; Mitsui, Yozo; Chiyomaru, Takeshi; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Hirata, Hiroshi; Deng, Guoren; Gill, Ankurpreet; Wong, Darryn K; Shiina, Hiroaki; Nonomura, Norio; Dahiya, Rajvir; Tanaka, Yuichiro

    2014-11-30

    Mismatch repair (MMR) enzymes have been shown to be deficient in prostate cancer (PCa). MMR can influence the regulation of tumor development in various cancers but their role on PCa has not been investigated. The aim of the present study was to determine the functional effects of the mutL-homolog 1 (MLH1) gene on growth of PCa cells. The DU145 cell line has been established as MLH1-deficient and thus, this cell line was utilized to determine effects of MLH1 by gene expression. Lack of MLH1 protein expression was confirmed by Western blotting in DU145 cells whereas levels were high in normal PWR-1E and RWPE-1 prostatic cells. MLH1-expressing stable transfectant DU145 cells were then created to characterize the effects this MMR gene has on various growth properties. Expression of MLH1 resulted in decreased cell proliferation, migration and invasion properties. Lack of cell growth in vivo also indicated a tumor suppressive effect by MLH1. Interestingly, MLH1 caused an increase in apoptosis along with phosphorylated c-Abl, and treatment with MLH1 siRNAs countered this effect. Furthermore, inhibition of c-Abl with STI571 also abrogated the effect on apoptosis caused by MLH1. These results demonstrate MLH1 protects against PCa development by inducing c-Abl-mediated apoptosis.

  11. DNA repair in PHA stimulated human lymphocytes

    International Nuclear Information System (INIS)

    Catena, C.; Mattoni, A.

    1984-01-01

    Damage an repair of radiation induced DNA strand breaks were measured by alkaline lysis and hydroxyapatite chromatography. PHA stimulated human lymphocytes show that the rejoining process is complete within the first 50 min., afterwords secondary DNA damage and chromatid aberration. DNA repair, in synchronized culture, allows to evaluate individual repair capacity and this in turn can contribute to the discovery of individual who, although they do not demonstrate apparent clinical signs, are carriers of DNA repair deficiency. Being evident that a correlation exists between DNA repair capacity and carcinogenesis, the possibility of evaluating the existent relationship between DNA repair and survival in tumor cells comes therefore into discussion

  12. Distinct DNA-binding surfaces in the ATPase and linker domains of MutLγ determine its substrate specificities and exert separable functions in meiotic recombination and mismatch repair.

    Directory of Open Access Journals (Sweden)

    Corentin Claeys Bouuaert

    2017-05-01

    Full Text Available Mlh1-Mlh3 (MutLγ is a mismatch repair factor with a central role in formation of meiotic crossovers, presumably through resolution of double Holliday junctions. MutLγ has DNA-binding, nuclease, and ATPase activities, but how these relate to one another and to in vivo functions are unclear. Here, we combine biochemical and genetic analyses to characterize Saccharomyces cerevisiae MutLγ. Limited proteolysis and atomic force microscopy showed that purified recombinant MutLγ undergoes ATP-driven conformational changes. In vitro, MutLγ displayed separable DNA-binding activities toward Holliday junctions (HJ and, surprisingly, single-stranded DNA (ssDNA, which was not predicted from current models. MutLγ bound DNA cooperatively, could bind multiple substrates simultaneously, and formed higher-order complexes. FeBABE hydroxyl radical footprinting indicated that the DNA-binding interfaces of MutLγ for ssDNA and HJ substrates only partially overlap. Most contacts with HJ substrates were located in the linker regions of MutLγ, whereas ssDNA contacts mapped within linker regions as well as the N-terminal ATPase domains. Using yeast genetic assays for mismatch repair and meiotic recombination, we found that mutations within different DNA-binding surfaces exert separable effects in vivo. For example, mutations within the Mlh1 linker conferred little or no meiotic phenotype but led to mismatch repair deficiency. Interestingly, mutations in the N-terminal domain of Mlh1 caused a stronger meiotic defect than mlh1Δ, suggesting that the mutant proteins retain an activity that interferes with alternative recombination pathways. Furthermore, mlh3Δ caused more chromosome missegregation than mlh1Δ, whereas mlh1Δ but not mlh3Δ partially alleviated meiotic defects of msh5Δ mutants. These findings illustrate functional differences between Mlh1 and Mlh3 during meiosis and suggest that their absence impinges on chromosome segregation not only via reduced

  13. Repair of DNA-polypeptide crosslinks by human excision nuclease

    Science.gov (United States)

    Reardon, Joyce T.; Sancar, Aziz

    2006-03-01

    DNA-protein crosslinks are relatively common DNA lesions that form during the physiological processing of DNA by replication and recombination proteins, by side reactions of base excision repair enzymes, and by cellular exposure to bifunctional DNA-damaging agents such as platinum compounds. The mechanism by which pathological DNA-protein crosslinks are repaired in humans is not known. In this study, we investigated the mechanism of recognition and repair of protein-DNA and oligopeptide-DNA crosslinks by the human excision nuclease. Under our assay conditions, the human nucleotide excision repair system did not remove a 16-kDa protein crosslinked to DNA at a detectable level. However, 4- and 12-aa-long oligopeptides crosslinked to the DNA backbone were recognized by some of the damage recognition factors of the human excision nuclease with moderate selectivity and were excised from DNA at relatively efficient rates. Our data suggest that, if coupled with proteolytic degradation of the crosslinked protein, the human excision nuclease may be the major enzyme system for eliminating protein-DNA crosslinks from the genome. damage recognition | nucleotide excision repair

  14. Mlh2 is an accessory factor for DNA mismatch repair in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Christopher S Campbell

    2014-05-01

    Full Text Available In Saccharomyces cerevisiae, the essential mismatch repair (MMR endonuclease Mlh1-Pms1 forms foci promoted by Msh2-Msh6 or Msh2-Msh3 in response to mispaired bases. Here we analyzed the Mlh1-Mlh2 complex, whose role in MMR has been unclear. Mlh1-Mlh2 formed foci that often colocalized with and had a longer lifetime than Mlh1-Pms1 foci. Mlh1-Mlh2 foci were similar to Mlh1-Pms1 foci: they required mispair recognition by Msh2-Msh6, increased in response to increased mispairs or downstream defects in MMR, and formed after induction of DNA damage by phleomycin but not double-stranded breaks by I-SceI. Mlh1-Mlh2 could be recruited to mispair-containing DNA in vitro by either Msh2-Msh6 or Msh2-Msh3. Deletion of MLH2 caused a synergistic increase in mutation rate in combination with deletion of MSH6 or reduced expression of Pms1. Phylogenetic analysis demonstrated that the S. cerevisiae Mlh2 protein and the mammalian PMS1 protein are homologs. These results support a hypothesis that Mlh1-Mlh2 is a non-essential accessory factor that acts to enhance the activity of Mlh1-Pms1.

  15. Mismatch repair deficiency does not enhance ENU mutagenesis in the zebrafish germ line.

    Science.gov (United States)

    Feitsma, Harma; de Bruijn, Ewart; van de Belt, Jose; Nijman, Isaac J; Cuppen, Edwin

    2008-07-01

    S(N)1-type alkylating agents such as N-ethyl-N-nitrosourea (ENU) are very potent mutagens. They act by transferring their alkyl group to DNA bases, which, upon mispairing during replication, can cause single base pair mutations in the next replication cycle. As DNA mismatch repair (MMR) proteins are involved in the recognition of alkylation damage, we hypothesized that ENU-induced mutation rates could be increased in a MMR-deficient background, which would be beneficial for mutagenesis approaches. We applied a standard ENU mutagenesis protocol to adult zebrafish deficient in the MMR gene msh6 and heterozygous controls to study the effect of MMR on ENU-induced DNA damage. Dose-dependent lethality was found to be similar for homozygous and heterozygous mutants, indicating that there is no difference in ENU resistance. Mutation discovery by high-throughput dideoxy resequencing of genomic targets in outcrossed progeny of the mutagenized fish did also not reveal any differences in germ line mutation frequency. These results may indicate that the maximum mutation load for zebrafish has been reached with the currently used, highly optimized ENU mutagenesis protocol. Alternatively, the MMR system in the zebrafish germ line may be saturated very rapidly, thereby having a limited effect on high-dose ENU mutagenesis.

  16. A massive parallel sequencing workflow for diagnostic genetic testing of mismatch repair genes

    Science.gov (United States)

    Hansen, Maren F; Neckmann, Ulrike; Lavik, Liss A S; Vold, Trine; Gilde, Bodil; Toft, Ragnhild K; Sjursen, Wenche

    2014-01-01

    The purpose of this study was to develop a massive parallel sequencing (MPS) workflow for diagnostic analysis of mismatch repair (MMR) genes using the GS Junior system (Roche). A pathogenic variant in one of four MMR genes, (MLH1, PMS2, MSH6, and MSH2), is the cause of Lynch Syndrome (LS), which mainly predispose to colorectal cancer. We used an amplicon-based sequencing method allowing specific and preferential amplification of the MMR genes including PMS2, of which several pseudogenes exist. The amplicons were pooled at different ratios to obtain coverage uniformity and maximize the throughput of a single-GS Junior run. In total, 60 previously identified and distinct variants (substitutions and indels), were sequenced by MPS and successfully detected. The heterozygote detection range was from 19% to 63% and dependent on sequence context and coverage. We were able to distinguish between false-positive and true-positive calls in homopolymeric regions by cross-sample comparison and evaluation of flow signal distributions. In addition, we filtered variants according to a predefined status, which facilitated variant annotation. Our study shows that implementation of MPS in routine diagnostics of LS can accelerate sample throughput and reduce costs without compromising sensitivity, compared to Sanger sequencing. PMID:24689082

  17. Capacity of ultraviolet-induced DNA repair in human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Hiroji

    1987-04-01

    A DNA repair abnormality is likely related to an increased incidence of neoplasms in several autosomal recessive diseases such as xeroderma pigmentosum, Fanconi's anemia, Bloom's syndrome and ataxia telangiectasia. In human glioma cells, however, there are only a few reports on DNA repair. In this study, an ultraviolet (UV)-induced DNA repair was examined systematically in many human glioma cells. Two human malignant glioma cell lines (MMG-851, U-251-MG) and 7 human glioma cell strains (4, benign; 3, malignant) of short term culture, in which glial fibrillary acidic protein (GFAP) staining were positive, were used. To investigate the capacity of DNA repair, UV sensitivity was determined by colony formation; excision repair by autoradiography and Cytosine Arabinoside (Ara-C) assay; and post-replication repair by the joining rate of newly synthesized DNA. As a result, the colony-forming abilities of malignant glioma cell lines were lower than those of normal human fibroblasts, but no difference was found between two malignant glioma cell lines. The excision repair of the malignant group (2 cell lines and 3 cell strains) was apparently lower than that of the benign group (4 cell strains). In two malignant glioma cell lines, the excision repair of MMG-851 was lower than that of U-251-MG, and the post-replication repair of MMG-851 was higher than that of U-251-MG. These results were considered to correspond well with colony-forming ability. The results indicate that there are some differences in each human malignant glioma cell in its UV-induced DNA repair mechanism, and that the excision repair of the malignant glioma cells is apparently lower than that of the benign glioma cells. These findings may be useful for diagnosis and treatment.

  18. Selective induction of DNA repair pathways in human B cells activated by CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Xiaosheng Wu

    Full Text Available Greater than 75% of all hematologic malignancies derive from germinal center (GC or post-GC B cells, suggesting that the GC reaction predisposes B cells to tumorigenesis. Because GC B cells acquire expression of the highly mutagenic enzyme activation-induced cytidine deaminase (AID, GC B cells may require additional DNA repair capacity. The goal of this study was to investigate whether normal human B cells acquire enhanced expression of DNA repair factors upon AID induction. We first demonstrated that several DNA mismatch repair, homologous recombination, base excision repair, and ATR signaling genes were overexpressed in GC B cells relative to naïve and memory B cells, reflecting activation of a process we have termed somatic hyperrepair (SHR. Using an in vitro system, we next characterized activation signals required to induce AID expression and SHR. Although AID expression was induced by a variety of polyclonal activators, SHR induction strictly required signals provided by contact with activated CD4+ T cells, and B cells activated in this manner displayed reduced levels of DNA damage-induced apoptosis. We further show the induction of SHR is independent of AID expression, as GC B cells from AID-/-mice retained heightened expression of SHR proteins. In consideration of the critical role that CD4+ T cells play in inducing the SHR process, our data suggest a novel role for CD4+ T cells in the tumor suppression of GC/post-GC B cells.

  19. Low frequency of defective mismatch repair in a population-based series of upper urothelial carcinoma

    International Nuclear Information System (INIS)

    Ericson, Kajsa M; Isinger, Anna P; Isfoss, Björn L; Nilbert, Mef C

    2005-01-01

    Upper urothelial cancer (UUC), i.e. transitional cell carcinomas of the renal pelvis and the ureter, occur at an increased frequency in patients with hereditary nonpolyposis colorectal cancer (HNPCC). Defective mismatch repair (MMR) specifically characterizes HNPCC-associated tumors, but also occurs in subsets of some sporadic tumors, e.g. in gastrointestinal cancer and endometrial cancer. We assessed the contribution of defective MMR to the development of UUC in a population-based series from the southern Swedish Cancer Registry, through microsatellite instability (MSI) analysis and immunohistochemical evaluation of expression of the MMR proteins MLH1, PMS2, MSH2, and MSH6. A MSI-high phenotype was identified in 9/216 (4%) successfully analyzed patients and a MSI-low phenotype in 5/216 (2%). Loss of MMR protein immunostaining was found in 11/216 (5%) tumors, and affected most commonly MSH2 and MSH6. This population-based series indicates that somatic MMR inactivation is a minor pathway in the development of UUC, but tumors that display defective MMR are, based on the immunohistochemical expression pattern, likely to be associated with HNPCC

  20. Low frequency of defective mismatch repair in a population-based series of upper urothelial carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Ericson, Kajsa M; Isinger, Anna P [Departments of Oncology, University Hospital, Lund (Sweden); Isfoss, Björn L [Departments of Pathology, University Hospital, Lund (Sweden); Nilbert, Mef C [Departments of Oncology, University Hospital, Lund (Sweden)

    2005-01-01

    Upper urothelial cancer (UUC), i.e. transitional cell carcinomas of the renal pelvis and the ureter, occur at an increased frequency in patients with hereditary nonpolyposis colorectal cancer (HNPCC). Defective mismatch repair (MMR) specifically characterizes HNPCC-associated tumors, but also occurs in subsets of some sporadic tumors, e.g. in gastrointestinal cancer and endometrial cancer. We assessed the contribution of defective MMR to the development of UUC in a population-based series from the southern Swedish Cancer Registry, through microsatellite instability (MSI) analysis and immunohistochemical evaluation of expression of the MMR proteins MLH1, PMS2, MSH2, and MSH6. A MSI-high phenotype was identified in 9/216 (4%) successfully analyzed patients and a MSI-low phenotype in 5/216 (2%). Loss of MMR protein immunostaining was found in 11/216 (5%) tumors, and affected most commonly MSH2 and MSH6. This population-based series indicates that somatic MMR inactivation is a minor pathway in the development of UUC, but tumors that display defective MMR are, based on the immunohistochemical expression pattern, likely to be associated with HNPCC.

  1. Constitutional mismatch repair deficiency syndrome: clinical description in a French cohort.

    Science.gov (United States)

    Lavoine, N; Colas, C; Muleris, M; Bodo, S; Duval, A; Entz-Werle, N; Coulet, F; Cabaret, O; Andreiuolo, F; Charpy, C; Sebille, G; Wang, Q; Lejeune, S; Buisine, M P; Leroux, D; Couillault, G; Leverger, G; Fricker, J P; Guimbaud, R; Mathieu-Dramard, M; Jedraszak, G; Cohen-Hagenauer, O; Guerrini-Rousseau, L; Bourdeaut, F; Grill, J; Caron, O; Baert-Dusermont, S; Tinat, J; Bougeard, G; Frébourg, T; Brugières, L

    2015-11-01

    Constitutional mismatch repair deficiency (CMMRD) syndrome is a childhood cancer predisposition syndrome involving biallelic germline mutations of MMR genes, poorly recognised by clinicians so far. Retrospective review of all 31 patients with CMMRD diagnosed in French genetics laboratories in order to describe the characteristics, treatment and outcome of the malignancies and biological diagnostic data. 67 tumours were diagnosed in 31 patients, 25 (37%) Lynch syndrome-associated malignancies, 22 (33%) brain tumours, 17 (25%) haematological malignancies and 3 (5%) sarcomas. The median age of onset of the first tumour was 6.9 years (1.2-33.5). Overall, 22 patients died, 9 (41%) due to the primary tumour. Median survival after the diagnosis of the primary tumour was 27 months (0.26-213.2). Failure rate seemed to be higher than expected especially for T-cell non-Hodgkin's lymphoma (progression/relapse in 6/12 patients). A familial history of Lynch syndrome was identified in 6/23 families, and consanguinity in 9/23 families. PMS2 mutations (n=18) were more frequent than other mutations (MSH6 (n=6), MLH1 (n=4) and MSH2 (n=3)). In conclusion, this unselected series of patients confirms the extreme severity of this syndrome with a high mortality rate mostly related to multiple childhood cancers, and highlights the need for its early detection in order to adapt treatment and surveillance. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Evaluating Mismatch Repair Deficiency in Pancreatic Adenocarcinoma: Challenges and Recommendations.

    Science.gov (United States)

    Hu, Zishuo I; Shia, Jinru; Stadler, Zsofia K; Varghese, Anna M; Capanu, Marinela; Salo-Mullen, Erin; Lowery, Maeve A; Diaz, Luis A; Mandelker, Diana; Yu, Kenneth H; Zervoudakis, Alice; Kelsen, David P; Iacobuzio-Donahue, Christine A; Klimstra, David S; Saltz, Leonard B; Sahin, Ibrahim H; O'Reilly, Eileen M

    2018-03-15

    Purpose: Immune checkpoint inhibition has been shown to generate profound and durable responses in mismatch repair deficient (MMR-D) solid tumors and has elicited interest in detection tools and strategies to guide therapeutic decision-making. Herein we address questions on the appropriate screening, detection methods, patient selection, and initiation of therapy for MMR-D pancreatic ductal adenocarcinoma (PDAC) and assess the utility of next-generation sequencing (NGS) in providing additional prognostic and predictive information for MMR-D PDAC. Experimental Design: Archival and prospectively acquired samples and matched normal DNA from N = 833 PDAC cases were analyzed using a hybridization capture-based, NGS assay designed to perform targeted deep sequencing of all exons and selected introns of 341 to 468 cancer-associated genes. A computational program using NGS data derived the MSI status from the tumor-normal paired genome sequencing data. Available germline testing, IHC, and microsatellite instability (MSI) PCR results were reviewed to assess and confirm MMR-D and MSI status. Results: MMR-D in PDAC is a rare event among PDAC patients (7/833), occurring at a frequency of 0.8%. Loss of MMR protein expression by IHC, high mutational load, and elevated MSIsensor scores were correlated with MMR-D PDAC. All 7 MMR-D PDAC patients in the study were found to have Lynch syndrome. Four (57%) of the MMR-D patients treated with immune checkpoint blockade had treatment benefit (1 complete response, 2 partial responses, 1 stable disease). Conclusions: An integrated approach of germline testing and somatic analyses of tumor tissues in advanced PDAC using NGS may help guide future development of immune and molecularly directed therapies in PDAC patients. Clin Cancer Res; 24(6); 1326-36. ©2018 AACR . ©2018 American Association for Cancer Research.

  3. DNA repair and cancer

    International Nuclear Information System (INIS)

    Rathore, Shakuntla; Joshi, Pankaj Kumar; Gaur, Sudha

    2012-01-01

    DNA repair refers to a collection of processes by which a cell identifies and corrects damage to the DNA molecule that encode it's genome. In human cells, both normal metabolic activities and environmental factors such as UV light and radiation can cause DNA damage, resulting in as many one million individual molecular lesions per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions include potentially harmful mutation in cell's genome which affect the survival of it's daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. Inherited mutation that affect DNA repair genes are strongly associated with high cancer risks in humans. Hereditary non polyposis colorectal cancer (HNPCC) is strongly associated with specific mutation in the DNA mismatch repair pathway. BRCA1, BRCA2 two famous mutation conferring a hugely increased risk of breast cancer on carrier, are both associated with a large number of DNA repair pathway, especially NHEJ and homologous recombination. Cancer therapy procedures such as chemotherapy and radiotherapy work by overwhelming the capacity of the cell to repair DNA damage, resulting in cell death. Cells that are most rapidly dividing most typically cancer cells are preferentially affected. The side effect is that other non-cancerous but rapidly dividing cells such as stem cells in the bone marrow are also affected. Modern cancer treatment attempt to localize the DNA damage to cells and tissue only associated with cancer, either by physical means (concentrating the therapeutic agent in the region of the tumor) or by biochemical means (exploiting a feature unique to cancer cells in the body). (author)

  4. Recent advances in DNA repair and recombination.

    Science.gov (United States)

    Iwanejko, L A; Jones, N J

    1998-09-11

    The subjects of the talks at this 1-day DNA Repair Network meeting, held at City University, London on December 15, 1997, encompassed a range of topics and reflected some of the current areas of research in the United Kingdom. Topics included DNA double-strand break repair, V(D)J recombination, DNA ligases, the RecQ family of helicases and Bloom's syndrome, UVB and immunosuppression, the repair of oxidative damage and mismatch repair mechanisms.

  5. Transfer of Chinese hamster DNA repair gene(s) into repair-deficient human cells (Xeroderma pigmentosum)

    International Nuclear Information System (INIS)

    Karentz, D.; Cleaver, J.E.

    1985-01-01

    Transfer of repair genes by DNA transfection into repair-deficient Xeroderma pigmentosum (XP) cells has thus far been unsuccessful, presenting an obstacle to cloning XP genes. The authors chose an indirect route to transfer repair genes in chromosome fragments. DNA repair-competent (UV resistant) hybrid cell lines were established by PEG-mediated fusions of DNA repair-deficient (UV sensitive) human fibroblasts (XP12RO) with wild type Chinese hamster (CHO) cells (AA8). CHO cells were exposed to 5 Krad X-rays prior to fusions, predisposing hybrid cells to lose CHO chromosome fragments preferentially. Repair-competent hybrids were selected by periodic exposures to UV light. Secondary and tertiary hybrid cell lines were developed by fusion of X-irradiated hybrids to XP12RO. The hybrid cell lines exhibit resistance to UV that is comparable to that of CHO cells and they are proficient at repair replication after UV exposure. Whole cell DNA-DNA hybridizations indicate that the hybrids have greater homology to CHO DNA than is evident between XP12RO and CHO. These observations indicate that CHO DNA sequences which can function in repair of UV-damaged DNA in human cells have been transferred into the genome of the repair-deficient XP12RO cells

  6. Prevalence of adenomas and hyperplastic polyps in mismatch repair mutation carriers among CAPP2 participants: report by the colorectal adenoma/carcinoma prevention programme 2

    DEFF Research Database (Denmark)

    Liljegren, Annelie; Barker, Gail; Elliott, Faye

    2008-01-01

    PURPOSE: To determine the prevalence of adenomatous and hyperplastic polyps in a large cohort of individuals with a germline mutation in a mismatch repair (MMR) gene, the major genetic determinant of hereditary nonpolyposis colorectal cancer (HNPCC). These prevalences have been estimated previously...... in smaller studies, and the results have been found to be variable. PATIENTS AND METHODS: Colorectal Adenoma/Carcinoma Prevention Programme 2 trial is a chemoprevention trial in people classified as having HNPCC. The 695 patients with a proven germline MMR mutation and documented screening history before...

  7. DNA repair deficiency in neurodegeneration

    DEFF Research Database (Denmark)

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A; Stevnsner, Tinna V.

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive...... neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative...... base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby...

  8. The Effect of Basepair Mismatch on DNA Strand Displacement.

    Science.gov (United States)

    Broadwater, D W Bo; Kim, Harold D

    2016-04-12

    DNA strand displacement is a key reaction in DNA homologous recombination and DNA mismatch repair and is also heavily utilized in DNA-based computation and locomotion. Despite its ubiquity in science and engineering, sequence-dependent effects of displacement kinetics have not been extensively characterized. Here, we measured toehold-mediated strand displacement kinetics using single-molecule fluorescence in the presence of a single basepair mismatch. The apparent displacement rate varied significantly when the mismatch was introduced in the invading DNA strand. The rate generally decreased as the mismatch in the invader was encountered earlier in displacement. Our data indicate that a single base pair mismatch in the invader stalls branch migration and displacement occurs via direct dissociation of the destabilized incumbent strand from the substrate strand. We combined both branch migration and direct dissociation into a model, which we term the concurrent displacement model, and used the first passage time approach to quantitatively explain the salient features of the observed relationship. We also introduce the concept of splitting probabilities to justify that the concurrent model can be simplified into a three-step sequential model in the presence of an invader mismatch. We expect our model to become a powerful tool to design DNA-based reaction schemes with broad functionality. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  9. Human DNA repair and recombination genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs

  10. Functional role of DNA mismatch repair gene PMS2 in prostate cancer cells.

    Science.gov (United States)

    Fukuhara, Shinichiro; Chang, Inik; Mitsui, Yozo; Chiyomaru, Takeshi; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Deng, Guoren; Gill, Ankurpreet; Wong, Darryn K; Shiina, Hiroaki; Nonomura, Norio; Lau, Yun-Fai C; Dahiya, Rajvir; Tanaka, Yuichiro

    2015-06-30

    DNA mismatch repair (MMR) enzymes act as proofreading complexes that maintains genomic integrity and MMR-deficient cells show an increased mutation rate. MMR has also been shown to influence cell signaling and the regulation of tumor development. MMR consists of various genes and includes post-meiotic segregation (PMS) 2 which is a vital component of mutL-alpha. In prostate, the functional role of this gene has never been reported and in this study, our aim was to investigate the effect of PMS2 on growth properties of prostate cancer (PCa) cells. Previous studies have shown PMS2 to be deficient in DU145 cells and this lack of expression was confirmed by Western blotting whereas normal prostatic PWR-1E and RWPE-1 cells expressed this gene. PMS2 effects on various growth properties of DU145 were then determined by creating stable gene transfectants. Interestingly, PMS2 caused decreased cell proliferation, migration, invasion, and in vivo growth; and increased apoptosis as compared to vector control. We further analyzed genes affected by PMS2 expression and observe the apoptosis-related TMS1 gene to be significantly upregulated whereas anti-apoptotic BCL2A1 was downregulated. These results demonstrate a functional role for PMS2 to protect against PCa progression by enhancing apoptosis of PCa cells.

  11. Low frequency of defective mismatch repair in a population-based series of upper urothelial carcinoma

    Directory of Open Access Journals (Sweden)

    Isfoss Björn L

    2005-03-01

    Full Text Available Abstract Background Upper urothelial cancer (UUC, i.e. transitional cell carcinomas of the renal pelvis and the ureter, occur at an increased frequency in patients with hereditary nonpolyposis colorectal cancer (HNPCC. Defective mismatch repair (MMR specifically characterizes HNPCC-associated tumors, but also occurs in subsets of some sporadic tumors, e.g. in gastrointestinal cancer and endometrial cancer. Methods We assessed the contribution of defective MMR to the development of UUC in a population-based series from the southern Swedish Cancer Registry, through microsatellite instability (MSI analysis and immunohistochemical evaluation of expression of the MMR proteins MLH1, PMS2, MSH2, and MSH6. Results A MSI-high phenotype was identified in 9/216 (4% successfully analyzed patients and a MSI-low phenotype in 5/216 (2%. Loss of MMR protein immunostaining was found in 11/216 (5% tumors, and affected most commonly MSH2 and MSH6. Conclusion This population-based series indicates that somatic MMR inactivation is a minor pathway in the development of UUC, but tumors that display defective MMR are, based on the immunohistochemical expression pattern, likely to be associated with HNPCC.

  12. Cloning and characterization of human DNA repair genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Brookman, K.W.; Weber, C.A.; Salazar, E.P.; Stewart, S.A.; Carrano, A.V.

    1987-01-01

    The isolation of two addition human genes that give efficient restoration of the repair defects in other CHO mutant lines is reported. The gene designated ERCC2 (Excision Repair Complementing Chinese hamster) corrects mutant UV5 from complementation group 1. They recently cloned this gene by first constructing a secondary transformant in which the human gene was shown to have become physically linked to the bacterial gpt dominant-marker gene by cotransfer in calcium phosphate precipitates in the primary transfection. Transformants expressing both genes were recovered by selecting for resistance to both UV radiation and mycophenolic acid. Using similar methods, the human gene that corrects CHO mutant EM9 was isolated in cosmids and named XRCC1 (X-ray Repair Complementing Chinese hamster). In this case, transformants were recovered by selecting for resistance to CldUrd, which kills EM9 very efficiently. In both genomic and cosmid transformants, the XRCC1 gene restored resistance to the normal range. DNA repair was studied using the kinetics of strand-break rejoining, which was measured after exposure to 137 Cs γ-rays

  13. A mismatch in the human realism of face and voice produces an uncanny valley

    Science.gov (United States)

    Mitchell, Wade J; Szerszen, Kevin A; Lu, Amy Shirong; Schermerhorn, Paul W; Scheutz, Matthias; MacDorman, Karl F

    2011-01-01

    The uncanny valley has become synonymous with the uneasy feeling of viewing an animated character or robot that looks imperfectly human. Although previous uncanny valley experiments have focused on relations among a character's visual elements, the current experiment examines whether a mismatch in the human realism of a character's face and voice causes it to be evaluated as eerie. The results support this hypothesis. PMID:23145223

  14. Pms2 and uracil-DNA glycosylases act jointly in the mismatch repair pathway to generate Ig gene mutations at A-T base pairs.

    Science.gov (United States)

    Girelli Zubani, Giulia; Zivojnovic, Marija; De Smet, Annie; Albagli-Curiel, Olivier; Huetz, François; Weill, Jean-Claude; Reynaud, Claude-Agnès; Storck, Sébastien

    2017-04-03

    During somatic hypermutation (SHM) of immunoglobulin genes, uracils introduced by activation-induced cytidine deaminase are processed by uracil-DNA glycosylase (UNG) and mismatch repair (MMR) pathways to generate mutations at G-C and A-T base pairs, respectively. Paradoxically, the MMR-nicking complex Pms2/Mlh1 is apparently dispensable for A-T mutagenesis. Thus, how detection of U:G mismatches is translated into the single-strand nick required for error-prone synthesis is an open question. One model proposed that UNG could cooperate with MMR by excising a second uracil in the vicinity of the U:G mismatch, but it failed to explain the low impact of UNG inactivation on A-T mutagenesis. In this study, we show that uracils generated in the G1 phase in B cells can generate equal proportions of A-T and G-C mutations, which suggests that UNG and MMR can operate within the same time frame during SHM. Furthermore, we show that Ung -/- Pms2 -/- mice display a 50% reduction in mutations at A-T base pairs and that most remaining mutations at A-T bases depend on two additional uracil glycosylases, thymine-DNA glycosylase and SMUG1. These results demonstrate that Pms2/Mlh1 and multiple uracil glycosylases act jointly, each one with a distinct strand bias, to enlarge the immunoglobulin gene mutation spectrum from G-C to A-T bases. © 2017 Girelli Zubani et al.

  15. Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway.

    Science.gov (United States)

    Smith, Catherine E; Mendillo, Marc L; Bowen, Nikki; Hombauer, Hans; Campbell, Christopher S; Desai, Arshad; Putnam, Christopher D; Kolodner, Richard D

    2013-10-01

    Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway.

  16. Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway.

    Directory of Open Access Journals (Sweden)

    Catherine E Smith

    2013-10-01

    Full Text Available Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway.

  17. Both base excision repair and nucleotide excision repair in humans are influenced by nutritional factors.

    Science.gov (United States)

    Brevik, Asgeir; Karlsen, Anette; Azqueta, Amaya; Tirado, Anna Estaban; Blomhoff, Rune; Collins, Andrew

    2011-01-01

    Lack of reliable assays for DNA repair has largely prevented measurements of DNA repair from being included in human biomonitoring studies. Using newly developed modifications of the comet assay we tested whether a fruit- and antioxidant-rich plant-based intervention could affect base excision repair (BER) and nucleotide excision repair (NER) in a group of 102 male volunteers. BER and NER repair capacities were measured in lymphocytes before and after a dietary intervention lasting 8 weeks. The study had one control group, one group consuming three kiwifruits per day and one group consuming a variety of antioxidant-rich fruits and plant products in addition to their normal diet. DNA strand breaks were reduced following consumption of both kiwifruits (13%, p = 0.05) and antioxidant-rich plant products (20%, p = 0.02). Increased BER (55%, p = 0.01) and reduced NER (-39%, p plant products. Reduced NER was also observed in the kiwifruit group (-38%, p = 0.05), but BER was not affected in this group. Here we have demonstrated that DNA repair is affected by diet and that modified versions of the comet assay can be used to assess activity of different DNA repair pathways in human biomonitoring studies. Copyright © 2010 John Wiley & Sons, Ltd.

  18. Predictive models for mutations in mismatch repair genes: implication for genetic counseling in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro Santos, Erika Maria [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); International Center of Research and Training (CIPE), AC Camargo Hospital, Sao Paulo (Brazil); Silva Junior, Wilson Araujo da [Sao Paulo University, Department of Genetics, Medical School of Ribeirao Preto, Ribeirao Preto (Brazil); Carraro, Dirce Maria [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); International Center of Research and Training (CIPE), AC Camargo Hospital, Sao Paulo (Brazil); Rossi, Benedito Mauro; Valentin, Mev Dominguez [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); Carneiro, Felipe [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); International Center of Research and Training (CIPE), AC Camargo Hospital, Sao Paulo (Brazil); Oliveira, Ligia Petrolini de [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); Oliveira Ferreira, Fabio de; Junior, Samuel Aguiar [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); Hereditary Colorectal Cancer Registry, AC Camargo Hospital, Sao Paulo (Brazil); Nakagawa, Wilson Toshihiko [Hereditary Colorectal Cancer Registry, AC Camargo Hospital, Sao Paulo (Brazil); Gomy, Israel [Graduation Program, AC Camargo Hospital, Sao Paulo (Brazil); Sao Paulo University, Department of Genetics, Medical School of Ribeirao Preto, Ribeirao Preto (Brazil); Faria Ferraz, Victor Evangelista de [Sao Paulo University, Department of Genetics, Medical School of Ribeirao Preto, Ribeirao Preto (Brazil)

    2012-02-09

    Lynch syndrome (LS) is the most common form of inherited predisposition to colorectal cancer (CRC), accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), postmeiotic segregation increased 1 (PMS1), post-meiotic segregation increased 2 (PMS2) and mutS homolog 6 (MSH6). Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome. Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed. Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846), Barnetson (0.850), MMRpro (0.821) and Wijnen (0.807) models did not present significant statistical difference. The Myriad model presented lower AUC (0.704) than the four other models evaluated. Considering thresholds of ≥ 5%, the models sensitivity varied between 1 (Myriad) and 0.87 (Wijnen) and specificity ranged from 0 (Myriad) to 0.38 (Barnetson). The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models.

  19. Predictive models for mutations in mismatch repair genes: implication for genetic counseling in developing countries

    International Nuclear Information System (INIS)

    Monteiro Santos, Erika Maria; Silva Junior, Wilson Araujo da; Carraro, Dirce Maria; Rossi, Benedito Mauro; Valentin, Mev Dominguez; Carneiro, Felipe; Oliveira, Ligia Petrolini de; Oliveira Ferreira, Fabio de; Junior, Samuel Aguiar; Nakagawa, Wilson Toshihiko; Gomy, Israel; Faria Ferraz, Victor Evangelista de

    2012-01-01

    Lynch syndrome (LS) is the most common form of inherited predisposition to colorectal cancer (CRC), accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1), mutS homolog 2 (MSH2), postmeiotic segregation increased 1 (PMS1), post-meiotic segregation increased 2 (PMS2) and mutS homolog 6 (MSH6). Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome. Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed. Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846), Barnetson (0.850), MMRpro (0.821) and Wijnen (0.807) models did not present significant statistical difference. The Myriad model presented lower AUC (0.704) than the four other models evaluated. Considering thresholds of ≥ 5%, the models sensitivity varied between 1 (Myriad) and 0.87 (Wijnen) and specificity ranged from 0 (Myriad) to 0.38 (Barnetson). The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models

  20. Mismatch repair deficiency commonly precedes adenoma formation in Lynch Syndrome-Associated colorectal tumorigenesis.

    Science.gov (United States)

    Sekine, Shigeki; Mori, Taisuke; Ogawa, Reiko; Tanaka, Masahiro; Yoshida, Hiroshi; Taniguchi, Hirokazu; Nakajima, Takeshi; Sugano, Kokichi; Yoshida, Teruhiko; Kato, Mamoru; Furukawa, Eisaku; Ochiai, Atsushi; Hiraoka, Nobuyoshi

    2017-08-01

    Lynch syndrome is a cancer predisposition syndrome caused by germline mutations in mismatch repair (MMR) genes. MMR deficiency is a ubiquitous feature of Lynch syndrome-associated colorectal adenocarcinomas; however, it remains unclear when the MMR-deficient phenotype is acquired during tumorigenesis. To probe this issue, the present study examined genetic alterations and MMR statuses in Lynch syndrome-associated colorectal adenomas and adenocarcinomas, in comparison with sporadic adenomas. Among the Lynch syndrome-associated colorectal tumors, 68 of 86 adenomas (79%) and all adenocarcinomas were MMR-deficient, whereas all the sporadic adenomas were MMR-proficient, as determined by microsatellite instability testing and immunohistochemistry for MMR proteins. Sequencing analyses identified APC or CTNNB1 mutations in the majority of sporadic adenomas (58/84, 69%) and MMR-proficient Lynch syndrome-associated adenomas (13/18, 72%). However, MMR-deficient Lynch syndrome-associated adenomas had less APC or CTNNB1 mutations (25/68, 37%) and frequent frameshift RNF43 mutations involving mononucleotide repeats (45/68, 66%). Furthermore, frameshift mutations affecting repeat sequences constituted 14 of 26 APC mutations (54%) in MMR-deficient adenomas whereas these frameshift mutations were rare in MMR-proficient adenomas in patients with Lynch syndrome (1/12, 8%) and in sporadic adenomas (3/52, 6%). Lynch syndrome-associated adenocarcinomas exhibited mutation profiles similar to those of MMR-deficient adenomas. Considering that WNT pathway activation sufficiently drives colorectal adenoma formation, the distinct mutation profiles of WNT pathway genes in Lynch syndrome-associated adenomas suggest that MMR deficiency commonly precedes adenoma formation.

  1. Promoter hypermethylation of mismatch repair gene hMLH1 predicts the clinical response of malignant astrocytomas to nitrosourea.

    Science.gov (United States)

    Fukushima, Takao; Katayama, Yoichi; Watanabe, Takao; Yoshino, Atsuo; Ogino, Akiyoshi; Ohta, Takashi; Komine, Chiaki

    2005-02-15

    In certain types of human cancers, transcriptional inactivation of hMLH1 by promoter hypermethylation plays a causal role in the loss of mismatch repair functions that modulate cytotoxic pathways in response to DNA-damaging agents. The aim of the present study was to investigate the role of promoter methylation of the hMLH1 gene in malignant astrocytomas. We examined the hMLH1 promoter methylation in a homogeneous cohort of patients with 41 malignant astrocytomas treated by 1-(4-amino-2-methyl-5-pyrimidinyl)methyl-3-2(2-chloroethyl)-3-nitrosourea chemotherapy in combination with radiation and interferon therapy, and assessed the correlation of such methylation with clinical outcome. hMLH1 promoter methylation was found in 6 (15%) of the 41 newly diagnosed malignant astrocytomas. Hypermethylation of the hMLH1 promoter corresponded closely with a loss of immunohistochemical staining for hMLH1 protein (P = 0.0013). Patients with hMLH1-methylated tumors displayed a greater chance of responding to adjuvant therapy as compared with those with hMLH1-unmethylated tumors (P = 0.0150). The presence of hMLH1 hypermethylation was significantly associated with a longer progression-free survival on both univariate analysis (P = 0.0340) and multivariate analysis (P = 0.0161). The present study identified hMLH1 methylation status as a predictor of the clinical response of malignant astrocytomas to chloroethylnitrosourea-based adjuvant therapy. The findings obtained suggest that determination of the methylation status of hMLH1 could provide a potential basis for designing rational chemotherapeutic strategies, as well as for predicting prognosis.

  2. Selective tumor cell death induced by irradiated riboflavin through recognizing DNA G-T mismatch.

    Science.gov (United States)

    Yuan, Yi; Zhao, Yongyun; Chen, Lianqi; Wu, Jiasi; Chen, Gangyi; Li, Sheng; Zou, Jiawei; Chen, Rong; Wang, Jian; Jiang, Fan; Tang, Zhuo

    2017-09-06

    Riboflavin (vitamin B2) has been thought to be a promising antitumoral agent in photodynamic therapy, though the further application of the method was limited by the unclear molecular mechanism. Our work reveals that riboflavin was able to recognize G-T mismatch specifically and induce single-strand breaks in duplex DNA targets efficiently under irradiation. In the presence of riboflavin, the photo-irradiation could induce the death of tumor cells that are defective in mismatch repair system selectively, highlighting the G-T mismatch as potential drug target for tumor cells. Moreover, riboflavin is a promising leading compound for further drug design due to its inherent specific recognition of the G-T mismatch. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Relative impact of human leukocyte antigen mismatching and graft ischemic time after lung transplantation.

    Science.gov (United States)

    Brugière, Olivier; Thabut, Gabriel; Suberbielle, Caroline; Reynaud-Gaubert, Martine; Thomas, Pascal; Pison, Christophe; Saint Raymond, Christel; Mornex, Jean-François; Bertocchi, Michèle; Dromer, Claire; Velly, Jean-François; Stern, Marc; Philippe, Bruno; Dauriat, Gaëlle; Biondi, Giuseppina; Castier, Yves; Fournier, Michel

    2008-06-01

    Recent data strongly suggest that human leukocyte antigen (HLA) mismatching has a negative impact on development of bronchiolitis obliterans syndrome (BOS) and survival after lung transplantation (LTx). Because HLA matching is sometimes achieved by extending ischemic time in other solid-organ transplantation models and ischemic time is a risk factor per se for death after LTx, we sought to compare the theoretical benefit of HLA matching with the negative impact of lengthened ischemic time. In this collaborative study we compared the relative impact of HLA mismatching and ischemic time on BOS and survival in 182 LTx recipients. Using multivariate analyses, we observed a lower incidence of BOS (hazard ratio [HR] = 1.70, 95% confidence interval [CI]: 1.1 to 2.7, p = 0.03) and enhanced survival (HR = 1.91, 95% CI: 1.24 to 2.92, p = 0.01) in patients with zero or one HLA-A mismatch compared with those having two HLA-A mismatches. This beneficial effect on survival was equivalent to a reduction of ischemic time of 168 minutes. We observed a reduced incidence of BOS and a better survival rate in patients well-matched at the HLA-A locus, associated with an opposite effect of an enhanced ischemic time. This suggests that graft ischemic time should be taken into account in future studies of prospective HLA matching in LTx.

  4. Indentation Damage and Crack Repair in Human Enamel*

    Science.gov (United States)

    Rivera, C.; Arola, D.; Ossa, A.

    2013-01-01

    Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced via microindentation along the prism direction and evaluated as a function of time after the indentation. Microscopic observations indicated that the repair of cracks began immediately after crack initiation and reaches saturation after approximately 48 hours. During this process he crack length decreased up to 10% of the initial length, and the largest degree of reduction occurred in the deep enamel, nearest the DEJ. In addition, it was found that the degree of repair was significantly greater in the enamel of female patients. PMID:23541701

  5. Risk of colorectal cancer for people with a mutation in both a MUTYH and a DNA mismatch repair gene

    Science.gov (United States)

    Win, Aung Ko; Reece, Jeanette C.; Buchanan, Daniel D.; Clendenning, Mark; Young, Joanne P.; Cleary, Sean P.; Kim, Hyeja; Cotterchio, Michelle; Dowty, James G.; MacInnis, Robert J.; Tucker, Katherine M.; Winship, Ingrid M.; Macrae, Finlay A.; Burnett, Terrilea; Le Marchand, Loïc; Casey, Graham; Haile, Robert W.; Newcomb, Polly A.; Thibodeau, Stephen N.; Lindor, Noralane M.; Hopper, John L.; Gallinger, Steven; Jenkins, Mark A.

    2015-01-01

    The base excision repair protein, MUTYH, functionally interacts with the DNA mismatch repair (MMR) system. As genetic testing moves from testing one gene at a time, to gene panel and whole exome next generation sequencing approaches, understanding the risk associated with co-existence of germline mutations in these genes will be important for clinical interpretation and management. From the Colon Cancer Family Registry, we identified 10 carriers who had both a MUTYH mutation (6 with c.1187G>A p.(Gly396Asp), 3 with c.821G>A p.(Arg274Gln), and 1 with c.536A>G p.(Tyr179Cys)) and a MMR gene mutation (3 in MLH1, 6 in MSH2, and 1 in PMS2), 375 carriers of a single (monoallelic) MUTYH mutation alone, and 469 carriers of a MMR gene mutation alone. Of the 10 carriers of both gene mutations, 8 were diagnosed with colorectal cancer. Using a weighted cohort analysis, we estimated that risk of colorectal cancer for carriers of both a MUTYH and a MMR gene mutation was substantially higher than that for carriers of a MUTYH mutation alone [hazard ratio (HR) 21.5, 95 % confidence interval (CI) 9.19–50.1; p colorectal cancer for carriers of a MMR gene mutation alone. Our finding suggests MUTYH mutation testing in MMR gene mutation carriers is not clinically informative. PMID:26202870

  6. Indentation Damage and Crack Repair in Human Enamel*

    OpenAIRE

    Rivera, C.; Arola, D.; Ossa, A.

    2013-01-01

    Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced ...

  7. Complex relationship between mismatch repair proteins and MBD4 during immunoglobulin class switch recombination.

    Science.gov (United States)

    Grigera, Fernando; Bellacosa, Alfonso; Kenter, Amy L

    2013-01-01

    Mismatch repair (MMR) safeguards against genomic instability and is required for efficient Ig class switch recombination (CSR). Methyl CpG binding domain protein 4 (MBD4) binds to MutL homologue 1 (MLH1) and controls the post-transcriptional level of several MMR proteins, including MutS homologue 2 (MSH2). We show that in WT B cells activated for CSR, MBD4 is induced and interacts with MMR proteins, thereby implying a role for MBD4 in CSR. However, CSR is in the normal range in Mbd4 deficient mice deleted for exons 2-5 despite concomitant reduction of MSH2. We show by comparison in Msh2(+/-) B cells that a two-fold reduction of MSH2 and MBD4 proteins is correlated with impaired CSR. It is therefore surprising that CSR occurs at normal frequencies in the Mbd4 deficient B cells where MSH2 is reduced. We find that a variant Mbd4 transcript spanning exons 1,6-8 is expressed in Mbd4 deficient B cells. This transcript can be ectopically expressed and produces a truncated MBD4 peptide. Thus, the 3' end of the Mbd4 locus is not silent in Mbd4 deficient B cells and may contribute to CSR. Our findings highlight a complex relationship between MBD4 and MMR proteins in B cells and a potential reconsideration of their role in CSR.

  8. Mechanism of the Glycosidic Bond Cleavage of Mismatched Thymine in Human Thymine DNA Glycosylase Revealed by Classical Molecular Dynamics and Quantum Mechanical/Molecular Mechanical Calculations.

    Science.gov (United States)

    Kanaan, Natalia; Crehuet, Ramon; Imhof, Petra

    2015-09-24

    Base excision of mismatched or damaged nucleotides catalyzed by glycosylase enzymes is the first step of the base excision repair system, a machinery preserving the integrity of DNA. Thymine DNA glycosylase recognizes and removes mismatched thymine by cleaving the C1'-N1 bond between the base and the sugar ring. Our quantum mechanical/molecular mechanical calculations of this reaction in human thymine DNA glycosylase reveal a requirement for a positive charge in the active site to facilitate C1'-N1 bond scission: protonation of His151 significantly lowers the free energy barrier for C1'-N1 bond dissociation compared to the situation with neutral His151. Shuttling a proton from His151 to the thymine base further reduces the activation free energy for glycosidic bond cleavage. Classical molecular dynamics simulations of the H151A mutant suggest that the mutation to the smaller, neutral, residue increases the water accessibility of the thymine base, rendering direct proton transfer from the bulk feasible. Quantum mechanical/molecular mechanical calculations of the glycosidic bond cleavage reaction in the H151A mutant show that the activation free energy is slightly lower than in the wild-type enzyme, explaining the experimentally observed higher reaction rates in this mutant.

  9. Stabilization of mismatch repair gene PMS2 by glycogen synthase kinase 3beta is implicated in the treatment of cervical carcinoma.

    Science.gov (United States)

    Zhang, Yuan; Shu, Yi Min; Wang, Shu Fang; Da, Bang Hong; Wang, Ze Hua; Li, Hua Bin

    2010-02-23

    PMS2 expression loss was reported in a variety of human. However, its importance has not been fully understood in cervical carcinoma. The aim of this study was to determine the expression of PMS2 in cervical carcinoma and evaluate the significance of mismatch repair gene PMS2 regulated by glycogen synthase kinase 3beta (GSK-3beta) in chemosensitivity. We examined PMS2 and phosphorylated GSK-3beta(s9) expression in cervical carcinoma tissues using immunohistochemical staining. Furthermore, we detected PMS2 expression in HeLa cells and evaluate the interaction with GSK-3beta after transfection with GSK-3beta by small interference RNA (siRNA), co-immunoprecipitation and immunoblotting. We also evaluated the effect of PMS2 transfection on HeLa cells' chemosensitivity to cisplatin treatment. We found significant downregulation of PMS2 in cervical carcinoma, which was negatively associated with phosphorylated GSK-3beta (s9). Furthermore, we demonstrated GSK-3beta transfection was able to interact with PMS2 and enhance PMS2 production in HeLa cells, and increased PMS2 production was responsible for enhanced chemosensitivity. Our results provide the evidence that stabilization of PMS2 production by GSK-3beta was important to improve chemosensitization, indicating the significance of GSK-3beta-related PMS2 downregulation in the development of cervical carcinoma and in developing a potential strategy for chemotherapy.

  10. Stabilization of mismatch repair gene PMS2 by glycogen synthase kinase 3β is implicated in the treatment of cervical carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuan [Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Shu, Yi Min [Allergy and Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080 (China); Wang, Shu Fang [Department of Pathology, Baylor College of Medicine, Houston, TX 77030 (United States); Da, Bang Hong; Wang, Ze Hua [Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Li, Hua Bin [Allergy and Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080 (China); Department of Medicine, Feinberg Medical School, Northwestern University, Chicago, IL 60611 (United States)

    2010-02-23

    PMS2 expression loss was reported in a variety of human. However, its importance has not been fully understood in cervical carcinoma. The aim of this study was to determine the expression of PMS2 in cervical carcinoma and evaluate the significance of mismatch repair gene PMS2 regulated by glycogen synthase kinase 3β (GSK-3β) in chemosensitivity. We examined PMS2 and phosphorylated GSK-3β(s9) expression in cervical carcinoma tissues using immunohistochemical staining. Furthermore, we detected PMS2 expression in HeLa cells and evaluate the interaction with GSK-3β after transfection with GSK-3β by small interference RNA (siRNA), co-immunoprecipitation and immunoblotting. We also evaluated the effect of PMS2 transfection on HeLa cells' chemosensitivity to cisplatin treatment. We found significant downregulation of PMS2 in cervical carcinoma, which was negatively associated with phosphorylated GSK-3β (s9). Furthermore, we demonstrated GSK-3β transfection was able to interact with PMS2 and enhance PMS2 production in HeLa cells, and increased PMS2 production was responsible for enhanced chemosensitivity. Our results provide the evidence that stabilization of PMS2 production by GSK-3β was important to improve chemosensitization, indicating the significance of GSK-3β-related PMS2 downregulation in the development of cervical carcinoma and in developing a potential strategy for chemotherapy.

  11. Stabilization of mismatch repair gene PMS2 by glycogen synthase kinase 3β is implicated in the treatment of cervical carcinoma

    International Nuclear Information System (INIS)

    Zhang, Yuan; Shu, Yi Min; Wang, Shu Fang; Da, Bang Hong; Wang, Ze Hua; Li, Hua Bin

    2010-01-01

    PMS2 expression loss was reported in a variety of human. However, its importance has not been fully understood in cervical carcinoma. The aim of this study was to determine the expression of PMS2 in cervical carcinoma and evaluate the significance of mismatch repair gene PMS2 regulated by glycogen synthase kinase 3β (GSK-3β) in chemosensitivity. We examined PMS2 and phosphorylated GSK-3β(s9) expression in cervical carcinoma tissues using immunohistochemical staining. Furthermore, we detected PMS2 expression in HeLa cells and evaluate the interaction with GSK-3β after transfection with GSK-3β by small interference RNA (siRNA), co-immunoprecipitation and immunoblotting. We also evaluated the effect of PMS2 transfection on HeLa cells' chemosensitivity to cisplatin treatment. We found significant downregulation of PMS2 in cervical carcinoma, which was negatively associated with phosphorylated GSK-3β (s9). Furthermore, we demonstrated GSK-3β transfection was able to interact with PMS2 and enhance PMS2 production in HeLa cells, and increased PMS2 production was responsible for enhanced chemosensitivity. Our results provide the evidence that stabilization of PMS2 production by GSK-3β was important to improve chemosensitization, indicating the significance of GSK-3β-related PMS2 downregulation in the development of cervical carcinoma and in developing a potential strategy for chemotherapy

  12. An optimized pentaplex PCR for detecting DNA mismatch repair-deficient colorectal cancers.

    Directory of Open Access Journals (Sweden)

    Ajay Goel

    2010-02-01

    Full Text Available Microsatellite instability (MSI is used to screen colorectal cancers (CRC for Lynch Syndrome, and to predict outcome and response to treatment. The current technique for measuring MSI requires DNA from normal and neoplastic tissues, and fails to identify tumors with specific DNA mismatch repair (MMR defects. We tested a panel of five quasi-monomorphic mononucleotide repeat markers amplified in a single multiplex PCR reaction (pentaplex PCR to detect MSI.We investigated a cohort of 213 CRC patients, comprised of 114 MMR-deficient and 99 MMR-proficient tumors. Immunohistochemical (IHC analysis evaluated the expression of MLH1, MSH2, PMS2 and MSH6. MSI status was defined by differences in the quasi-monomorphic variation range (QMVR from a pool of normal DNA samples, and measuring differences in allele lengths in tumor DNA.Amplification of 426 normal alleles allowed optimization of the QMVR at each marker, and eliminated the requirement for matched reference DNA to define MSI in each sample. Using > or = 2/5 unstable markers as the criteria for MSI resulted in a sensitivity of 95.6% (95% CI = 90.1-98.1% and a positive predictive value of 100% (95% CI = 96.6%-100%. Detection of MSH6-deficiency was limited using all techniques. Data analysis with a three-marker panel (BAT26, NR21 and NR27 was comparable in sensitivity (97.4% and positive predictive value (96.5% to the five marker panel. Both approaches were superior to the standard approach to measuring MSI.An optimized pentaplex (or triplex PCR offers a facile, robust, very inexpensive, highly sensitive, and specific assay for the identification of MSI in CRC.

  13. The dual nature of mismatch repair as antimutator and mutator: for better or for worse

    Directory of Open Access Journals (Sweden)

    Sara Thornby Bak

    2014-08-01

    Full Text Available DNA is constantly under attack by a number of both exogenous and endogenous agents that challenge its integrity. Among the mechanisms that have evolved to counteract this deleterious action, mismatch repair (MMR has specialized in removing DNA biosynthetic errors that occur when replicating the genome. Malfunction or inactivation of this system results in an increase in spontaneous mutability and a strong predisposition to tumor development. Besides this key corrective role, MMR proteins are involved in other pathways of DNA metabolism such as mitotic and meiotic recombination and processing of oxidative damage. Surprisingly, MMR is also required for certain mutagenic processes. The mutagenic MMR has beneficial consequences contributing to the generation of a vast repertoire of antibodies through class switch recombination and somatic hypermutation processes. However, this non-canonical mutagenic MMR also has detrimental effects; it promotes repeat expansions associated with neuromuscular and neurodegenerative diseases and may contribute to cancer/disease-related aberrant mutations and translocations. The reaction responsible for replication error correction has been the most thoroughly studied and it is the subject to numerous reviews. This review describes briefly the biochemistry of MMR and focuses primarily on the non-canonical MMR activities described in mammals as well as emerging research implicating interplay of MMR and chromatin.

  14. Spectrum of mismatch repair gene mutations and clinical presentation of Hispanic individuals with Lynch syndrome.

    Science.gov (United States)

    Sunga, Annette Y; Ricker, Charité; Espenschied, Carin R; Castillo, Danielle; Melas, Marilena; Herzog, Josef; Bannon, Sarah; Cruz-Correa, Marcia; Lynch, Patrick; Solomon, Ilana; Gruber, Stephen B; Weitzel, Jeffrey N

    2017-04-01

    Lynch syndrome (LS), the most common hereditary colorectal cancer syndrome, is caused by mismatch repair (MMR) gene mutations. However, data about MMR mutations in Hispanics are limited. This study aims to describe the spectrum of MMR mutations in Hispanics with LS and explore ancestral origins. This case series involved an IRB-approved retrospective chart review of self-identified Hispanic patients (n = 397) seen for genetic cancer risk assessment at four collaborating academic institutions in California, Texas, and Puerto Rico who were evaluated by MMR genotyping and/or tumor analysis. A literature review was conducted for all mutations identified. Of those who underwent clinical genetic testing (n = 176), 71 had MMR gene mutations. Nine mutations were observed more than once. One third (3/9) of recurrent mutations and two additional mutations (seen only once) were previously reported in Spain, confirming the influence of Spanish ancestry on MMR mutations in Hispanic populations. The recurrent mutations identified (n = 9) included both previously reported mutations as well as unique mutations not in the literature. This is the largest report of Hispanic MMR mutations in North America; however, a larger sample and haplotype analyses are needed to better understand recurrent MMR mutations in Hispanic populations. Copyright © 2017. Published by Elsevier Inc.

  15. Screening of the DNA mismatch repair genes MLH1, MSH2 and MSH6 in a Greek cohort of Lynch syndrome suspected families

    International Nuclear Information System (INIS)

    Thodi, Georgia; Fountzilas, George; Yannoukakos, Drakoulis; Fostira, Florentia; Sandaltzopoulos, Raphael; Nasioulas, George; Grivas, Anastasios; Boukovinas, Ioannis; Mylonaki, Maria; Panopoulos, Christos; Magic, Mirjana Brankovic

    2010-01-01

    Germline mutations in the DNA mismatch repair genes predispose to Lynch syndrome, thus conferring a high relative risk of colorectal and endometrial cancer. The MLH1, MSH2 and MSH6 mutational spectrum reported so far involves minor alterations scattered throughout their coding regions as well as large genomic rearrangements. Therefore, a combination of complete sequencing and a specialized technique for the detection of genomic rearrangements should be conducted during a proper DNA-testing procedure. Our main goal was to successfully identify Lynch syndrome families and determine the spectrum of MLH1, MSH2 and MSH6 mutations in Greek Lynch families in order to develop an efficient screening protocol for the Greek colorectal cancer patients' cohort. Forty-two samples from twenty-four families, out of which twenty two of Greek, one of Cypriot and one of Serbian origin, were screened for the presence of germline mutations in the major mismatch repair genes through direct sequencing and MLPA. Families were selected upon Amsterdam criteria or revised Bethesda guidelines. Ten deleterious alterations were detected in twelve out of the twenty-four families subjected to genetic testing, thus our detection rate is 50%. Four of the pathogenic point mutations, namely two nonsense, one missense and one splice site change, are novel, whereas the detected genomic deletion encompassing exon 6 of the MLH1 gene has been described repeatedly in the LOVD database. The average age of onset for the development of both colorectal and endometrial cancer among mutation positive families is 43.2 years. The mutational spectrum of the MMR genes investigated as it has been shaped by our analysis is quite heterogeneous without any strong indication for the presence of a founder effect

  16. Educational Mismatches and Earnings: Extensions of Occupational Mobility Theory and Evidence of Human Capital Depreciation

    Science.gov (United States)

    Rubb, Stephen

    2006-01-01

    Using a human capital theory framework, this study examines the impact of educational mismatches on earnings and occupational mobility. Occupational mobility theory suggests that overeducated workers observe greater upward occupational mobility and undereducated workers observe lower upward occupational mobility. By extension, this leads to…

  17. Mutagenic effect of cadmium on tetranucleotide repeats in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Slebos, Robbert J.C. [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States) and Department of Otolaryngology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States)]. E-mail: r.slebos@vanderbilt.edu; Li Ming [Department of Biostatistics, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Evjen, Amy N. [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Coffa, Jordy [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Shyr, Yu [Department of Biostatistics, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Yarbrough, Wendell G. [Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States); Department of Otolaryngology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232 (United States)

    2006-12-01

    Cadmium is a human carcinogen that affects cell proliferation, apoptosis and DNA repair processes that are all important to carcinogenesis. We previously demonstrated that cadmium inhibits DNA mismatch repair (MMR) in yeast cells and in human cell-free extracts (H.W. Jin, A.B. Clark, R.J.C. Slebos, H. Al-Refai, J.A. Taylor, T.A. Kunkel, M.A. Resnick, D.A. Gordenin, Cadmium is a mutagen that acts by inhibiting mismatch repair, Nat. Genet. 34 (3) (2003) 326-329), but cadmium also inhibits DNA excision repair. For this study, we selected a panel of three hypermutable tetranucleotide markers (MycL1, D7S1482 and DXS981) and studied their suitability as readout for the mutagenic effects of cadmium. We used a clonal derivative of the human fibrosarcoma cell line HT1080 to assess mutation levels in microsatellites after cadmium and/or N-methyl-N-nitro-N-nitrosoguanidine (MNNG) exposure to study effects of cadmium in the presence or absence of base damage. Mutations were measured in clonally expanded cells obtained by limiting dilution after exposure to zero dose, 0.5 {mu}M cadmium, 5 nM MNNG or a combination of 0.5 {mu}M cadmium and 5 nM MNNG. Exposure of HT1080-C1 to cadmium led to statistically significant increases in microsatellite mutations, either with or without concurrent exposure to MNNG. A majority of the observed mutant molecules involved 4-nucleotide shifts consistent with DNA slippage mutations that are normally repaired by MMR. These results provide evidence for the mutagenic effects of low, environmentally relevant levels of cadmium in intact human cells and suggest that inhibition of DNA repair is involved.

  18. The 2015 Nobel Prize in Chemistry The Discovery of Essential Mechanisms that Repair DNA Damage.

    Science.gov (United States)

    Lindahl, Tomas; Modrich, Paul; Sancar, Aziz

    2016-01-01

    The Royal Swedish Academy awarded the Nobel Prize in Chemistry for 2015 to Tomas Lindahl, Paul Modrich and Aziz Sancar for their discoveries in fundamental mechanisms of DNA repair. This pioneering research described three different essential pathways that correct DNA damage, safeguard the integrity of the genetic code to ensure its accurate replication through generations, and allow proper cell division. Working independently of each other, Tomas Lindahl, Paul Modrich and Aziz Sancar delineated the mechanisms of base excision repair, mismatch repair and nucleotide excision repair, respectively. These breakthroughs challenged and dismissed the early view that the DNA molecule was very stable, paving the way for the discovery of human hereditary diseases associated with distinct DNA repair deficiencies and a susceptibility to cancer. It also brought a deeper understanding of cancer as well as neurodegenerative or neurological diseases, and let to novel strategies to treat cancer.

  19. DNA repair in Haemophilus influenzae: isolation and characterization of an ultraviolet sensitive mutator mutant

    International Nuclear Information System (INIS)

    Walter, R.B.

    1985-01-01

    DNA repair in Haemophilus influenzae appears to be quite different from that seen in Escherichia coli in that H. influenzae shows neither SOS nor adaptation phenomena. Repair of DNA lesions in H. influenzae has been seen to occur via recombinational, excision, and mismatch repair pathways acting independently of one another. The author has isolated an ultraviolet (UV)-sensitive mutator mutant (mutB1) of H. influenzae Rd which shows deficiencies in both recombinational and mismatch repair pathways. This mutant is sensitive to a variety of DNA damaging agents as well as being hypermutable by alkylating agents and base analogues. MutB1 cells do not show post-UV DNA breakdown but do begin excision after UV irradiation. Genetic transformation with UV-irradiated DNA on mut B1 recipients shows that high (HE) and low (LE) efficiency markers are transformed at a ratio of 1.0 as in the mismatch repair deficient hex 1 mutant; however, kinetics of UV-inactivation experiments indicate that HE markers are sensitized and act as LE markers do on wild type recipients. Thus, the mutB gene product appears to play a role in both DNA repair and genetic transformation. A model is outlined which presents a role for a DNA helicase in both DNA repair and genetic transformation of H. influenzae

  20. Expression of mismatch repair gene PMS2 in nasopharyngeal carcinoma and regulation by glycogen synthase kinase-3β in vivo and in vitro.

    Science.gov (United States)

    Fang, Jugao; Lei, Wenbin; Huang, Xiaoming; Li, Pingdong; Chen, Xiaohong; Zhu, Xiaolin; Wen, Weiping; Li, Huabin

    2012-02-01

    To evaluate the expression of mismatch repair gene PMS2 in human nasopharyngeal carcinoma (NPC) tissues and evaluate the effect of glycogen synthase kinase (GSK)-3β on PMS2 production in vivo and in vitro. The expression of PMS2 and inactivated phosphorylated GSK-3β(s9) was examined by immunohistochemical staining in 25 NPC tissues and the relation was determined by correlation analysis. The effect of GSK-3β transfection in CNE-2 cells on PMS2 production as well as cell apoptosis and chemosensitization were evaluated using small interference RNA (siRNA), immunoblotting and flow cytometric analysis in vitro. The expression of inactivated phosphorylated GSK-3β(s9) was found to negative correlated with PMS2 in vivo. And transfected GSK-3β was found to be able to enhance PMS2 production, and increase cell apoptosis in CNE-2 cells in combination with cisplatin administration in vitro. Inactivation of GSK-3β might be important for NPC tumorgenesis through negatively regulating PMS2 production, and enhanced PMS2 production by GSK-3β is beneficial for understanding the NPC tumorgenesis and developing potential strategy for future therapy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. The Rate and Spectrum of Spontaneous Mutations in Mycobacterium smegmatis, a Bacterium Naturally Devoid of the Postreplicative Mismatch Repair Pathway.

    Science.gov (United States)

    Kucukyildirim, Sibel; Long, Hongan; Sung, Way; Miller, Samuel F; Doak, Thomas G; Lynch, Michael

    2016-07-07

    Mycobacterium smegmatis is a bacterium that is naturally devoid of known postreplicative DNA mismatch repair (MMR) homologs, mutS and mutL, providing an opportunity to investigate how the mutation rate and spectrum has evolved in the absence of a highly conserved primary repair pathway. Mutation accumulation experiments of M. smegmatis yielded a base-substitution mutation rate of 5.27 × 10(-10) per site per generation, or 0.0036 per genome per generation, which is surprisingly similar to the mutation rate in MMR-functional unicellular organisms. Transitions were found more frequently than transversions, with the A:T→G:C transition rate significantly higher than the G:C→A:T transition rate, opposite to what is observed in most studied bacteria. We also found that the transition-mutation rate of M. smegmatis is significantly lower than that of other naturally MMR-devoid or MMR-knockout organisms. Two possible candidates that could be responsible for maintaining high DNA fidelity in this MMR-deficient organism are the ancestral-like DNA polymerase DnaE1, which contains a highly efficient DNA proofreading histidinol phosphatase (PHP) domain, and/or the existence of a uracil-DNA glycosylase B (UdgB) homolog that might protect the GC-rich M. smegmatis genome against DNA damage arising from oxidation or deamination. Our results suggest that M. smegmatis has a noncanonical Dam (DNA adenine methylase) methylation system, with target motifs differing from those previously reported. The mutation features of M. smegmatis provide further evidence that genomes harbor alternative routes for improving replication fidelity, even in the absence of major repair pathways. Copyright © 2016 Kucukyildirim et al.

  2. The Rate and Spectrum of Spontaneous Mutations in Mycobacterium smegmatis, a Bacterium Naturally Devoid of the Postreplicative Mismatch Repair Pathway

    Directory of Open Access Journals (Sweden)

    Sibel Kucukyildirim

    2016-07-01

    Full Text Available Mycobacterium smegmatis is a bacterium that is naturally devoid of known postreplicative DNA mismatch repair (MMR homologs, mutS and mutL, providing an opportunity to investigate how the mutation rate and spectrum has evolved in the absence of a highly conserved primary repair pathway. Mutation accumulation experiments of M. smegmatis yielded a base-substitution mutation rate of 5.27 × 10−10 per site per generation, or 0.0036 per genome per generation, which is surprisingly similar to the mutation rate in MMR-functional unicellular organisms. Transitions were found more frequently than transversions, with the A:T→G:C transition rate significantly higher than the G:C→A:T transition rate, opposite to what is observed in most studied bacteria. We also found that the transition-mutation rate of M. smegmatis is significantly lower than that of other naturally MMR-devoid or MMR-knockout organisms. Two possible candidates that could be responsible for maintaining high DNA fidelity in this MMR-deficient organism are the ancestral-like DNA polymerase DnaE1, which contains a highly efficient DNA proofreading histidinol phosphatase (PHP domain, and/or the existence of a uracil-DNA glycosylase B (UdgB homolog that might protect the GC-rich M. smegmatis genome against DNA damage arising from oxidation or deamination. Our results suggest that M. smegmatis has a noncanonical Dam (DNA adenine methylase methylation system, with target motifs differing from those previously reported. The mutation features of M. smegmatis provide further evidence that genomes harbor alternative routes for improving replication fidelity, even in the absence of major repair pathways.

  3. Indentation damage and crack repair in human enamel.

    Science.gov (United States)

    Rivera, C; Arola, D; Ossa, A

    2013-05-01

    Tooth enamel is the hardest and most highly mineralized tissue in the human body. While there have been a number of studies aimed at understanding the hardness and crack growth resistance behavior of this tissue, no study has evaluated if cracks in this tissue undergo repair. In this investigation the crack repair characteristics of young human enamel were evaluated as a function of patient gender and as a function of the distance from the Dentin Enamel Junction (DEJ). Cracks were introduced via microindentation along the prism direction and evaluated as a function of time after the indentation. Microscopic observations indicated that the repair of cracks began immediately after crack initiation and reaches saturation after approximately 48 h. During this process he crack length decreased up to 10% of the initial length, and the largest degree of reduction occurred in the deep enamel, nearest the DEJ. In addition, it was found that the degree of repair was significantly greater in the enamel of female patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Identification of DNA repair genes in the human genome

    International Nuclear Information System (INIS)

    Hoeijmakers, J.H.J.; van Duin, M.; Westerveld, A.; Yasui, A.; Bootsma, D.

    1986-01-01

    To identify human DNA repair genes we have transfected human genomic DNA ligated to a dominant marker to excision repair deficient xeroderma pigmentosum (XP) and CHO cells. This resulted in the cloning of a human gene, ERCC-1, that complements the defect of a UV- and mitomycin-C sensitive CHO mutant 43-3B. The ERCC-1 gene has a size of 15 kb, consists of 10 exons and is located in the region 19q13.2-q13.3. Its primary transcript is processed into two mRNAs by alternative splicing of an internal coding exon. One of these transcripts encodes a polypeptide of 297 aminoacids. A putative DNA binding protein domain and nuclear location signal could be identified. Significant AA-homology is found between ERCC-1 and the yeast excision repair gene RAD10. 58 references, 6 figures, 1 table

  5. Repair of human DNA: radiation and chemical damage in normal and xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Regan, J.D.; Setlow, R.B.

    1976-01-01

    We present the experimental evidence we have gathered, using a particular assay for DNA repair in human cells, the photolysis of bromodeoxyuridine (BrdUrd) incorporated during repair. This assay characterizes the sequence of repair events that occur in human cells after radiation, both ultraviolet and ionizing, and permits an estimation of the size of the average repaired region after these physical insults to DNA. We will discuss chemical insults to DNA and attempt to liken the repair processes after chemical damages of various kinds to those repair processes that occur in human DNA after damage from physical agents. We will also show results indicating that, under certain conditions, repair events resembling those seen after uv-irradiation can be observed in normal human cells after ionizing radiation. Furthermore the XP cells, defective in the repair of uv-induced DNA damage, show defective repair of these uv-like DNA lesions induced by ionizing radiation

  6. Ovarian cancer at young age: the contribution of mismatch-repair defects in a population-based series of epithelial ovarian

    DEFF Research Database (Denmark)

    Domanska, K; Malander, S; Måsbäck, A

    2007-01-01

    age is a hallmark of heredity, and ovarian cancers associated with HNPCC have been demonstrated to develop at a particularly early age. We used the Swedish Cancer Registry to identify a population-based series of 98 invasive epithelial ovarian cancers that developed before 40 years. Mucinous......At least one of ten patients with ovarian cancer is estimated to develop their tumor because of heredity with the breast and ovarian cancer syndrome due to mutations in the BRCA1 and BRCA2 genes and hereditary nonpolyposis colorectal cancer (HNPCC) being the major genetic causes. Cancer at young...... and endometrioid cancers were overrepresented and were diagnosed in 27% and 16% of the tumors, respectively. Immunostaining using antibodies against MLH1, PMS2, MSH2, and MSH6 was used to assess the mismatch-repair status and revealed loss of expression of MLH1/PMS2 in two cases, loss of MSH2/MSH6 in one case...

  7. Human diseases with genetically altered DNA repair processes

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Bootsma, D.; Friedberg, E.

    1975-01-01

    DNA repair of single-strand breaks (produced by ionizing radiation) and of base damage (produced by ultraviolet (uv) light) are two repair mechanisms that most mammalian cells possess. Genetic defects in these repair mechanisms are exemplified by cells from the human premature-aging disease, progeria, which fail to rejoin single-strand breaks, and the skin disease, xeroderma pigmentosum (XP), which exhibits high actinic carcinogenesis and involves failure to repair base damage. In terms of the response of XP cells, many chemical carcinogens can be classified as either x-ray-like (i.e., they cause damage that XP cells can repair) or uv-like (i.e., they cause damage that XP cells cannot repair). The first group contains some of the more strongly carcinogenic chemicals (e.g., alkylating agents). XP occurs in at least two clinical forms, and somatic cell hybridization indicates at least three complementation groups. In order to identify cell lines from various different laboratories unambiguously, a modified nomenclature of XP lines is proposed. (U.S.)

  8. Human diseases with genetically altered DNA repair processes

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Bootsma, D.; Friedberg, E.

    1975-01-01

    DNA repair of single-strand breaks (produced by ionizing radiation) and of base damage (produced by ultraviolet (UV) light) are two repair mechanisms that most mammalian cells possess. Genetic defects in these repair mechanisms are exemplified by cells from the human premature-aging disease, progeria, which fail to rejoin single-strand breaks, and the skin disease, xeroderma pigmentosum (XP), which exhibits high actinic carcinogenesis and involves failure to repair base damage. In terms of the response of XP cells, many chemical carcinogens can be classified as either X-ray-like (i.e., they cause damage that XP cells can repair) or UV-like (i.e., they cause damage that XP cells cannot repair). The first group contains some of the more strongly carcinogenic chemicals (e.g., alkylating agents). XP occurs in at least two clinical forms, and somatic cell hybridization indicates at least three complementation groups. In order to identify cell lines from various different laboratories unambiguously, a modified nomenclature of XP lines is proposed

  9. Predictive models for mutations in mismatch repair genes: implication for genetic counseling in developing countries

    Directory of Open Access Journals (Sweden)

    Monteiro Santos Erika

    2012-02-01

    Full Text Available Abstract Background Lynch syndrome (LS is the most common form of inherited predisposition to colorectal cancer (CRC, accounting for 2-5% of all CRC. LS is an autosomal dominant disease characterized by mutations in the mismatch repair genes mutL homolog 1 (MLH1, mutS homolog 2 (MSH2, postmeiotic segregation increased 1 (PMS1, post-meiotic segregation increased 2 (PMS2 and mutS homolog 6 (MSH6. Mutation risk prediction models can be incorporated into clinical practice, facilitating the decision-making process and identifying individuals for molecular investigation. This is extremely important in countries with limited economic resources. This study aims to evaluate sensitivity and specificity of five predictive models for germline mutations in repair genes in a sample of individuals with suspected Lynch syndrome. Methods Blood samples from 88 patients were analyzed through sequencing MLH1, MSH2 and MSH6 genes. The probability of detecting a mutation was calculated using the PREMM, Barnetson, MMRpro, Wijnen and Myriad models. To evaluate the sensitivity and specificity of the models, receiver operating characteristic curves were constructed. Results Of the 88 patients included in this analysis, 31 mutations were identified: 16 were found in the MSH2 gene, 15 in the MLH1 gene and no pathogenic mutations were identified in the MSH6 gene. It was observed that the AUC for the PREMM (0.846, Barnetson (0.850, MMRpro (0.821 and Wijnen (0.807 models did not present significant statistical difference. The Myriad model presented lower AUC (0.704 than the four other models evaluated. Considering thresholds of ≥ 5%, the models sensitivity varied between 1 (Myriad and 0.87 (Wijnen and specificity ranged from 0 (Myriad to 0.38 (Barnetson. Conclusions The Barnetson, PREMM, MMRpro and Wijnen models present similar AUC. The AUC of the Myriad model is statistically inferior to the four other models.

  10. DNA repair in neurons: So if they don't divide what's to repair?

    International Nuclear Information System (INIS)

    Fishel, Melissa L.; Vasko, Michael R.; Kelley, Mark R.

    2007-01-01

    Neuronal DNA repair remains one of the most exciting areas for investigation, particularly as a means to compare the DNA repair response in mitotic (cancer) vs. post-mitotic (neuronal) cells. In addition, the role of DNA repair in neuronal cell survival and response to aging and environmental insults is of particular interest. DNA damage caused by reactive oxygen species (ROS) such as generated by mitochondrial respiration includes altered bases, abasic sites, and single- and double-strand breaks which can be prevented by the DNA base excision repair (BER) pathway. Oxidative stress accumulates in the DNA of the human brain over time especially in the mitochondrial DNA (mtDNA) and is proposed to play a critical role in aging and in the pathogenesis of several neurological disorders including Parkinson's disease, ALS, and Alzheimer's diseases. Because DNA damage accumulates in the mtDNA more than nuclear DNA, there is increased interest in DNA repair pathways and the consequence of DNA damage in the mitochondria of neurons. The type of damage that is most likely to occur in neuronal cells is oxidative DNA damage which is primarily removed by the BER pathway. Following the notion that the bulk of neuronal DNA damage is acquired by oxidative DNA damage and ROS, the BER pathway is a likely area of focus for neuronal studies of DNA repair. BER variations in brain aging and pathology in various brain regions and tissues are presented. Therefore, the BER pathway is discussed in greater detail in this review than other repair pathways. Other repair pathways including direct reversal, nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination and non-homologous end joining are also discussed. Finally, there is a growing interest in the role that DNA repair pathways play in the clinical arena as they relate to the neurotoxicity and neuropathy associated with cancer treatments. Among the numerous side effects of cancer treatments, major clinical effects

  11. DNA Repair in Human Pluripotent Stem Cells Is Distinct from That in Non-Pluripotent Human Cells

    Science.gov (United States)

    Luo, Li Z.; Park, Sang-Won; Bates, Steven E.; Zeng, Xianmin; Iverson, Linda E.; O'Connor, Timothy R.

    2012-01-01

    The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use. PMID:22412831

  12. Distinct mechanisms of DNA repair in mycobacteria and their implications in attenuation of the pathogen growth.

    Science.gov (United States)

    Kurthkoti, Krishna; Varshney, Umesh

    2012-04-01

    About a third of the human population is estimated to be infected with Mycobacterium tuberculosis. Emergence of drug resistant strains and the protracted treatment strategies have compelled the scientific community to identify newer drug targets, and to develop newer vaccines. In the host macrophages, the bacterium survives within an environment rich in reactive nitrogen and oxygen species capable of damaging its genome. Therefore, for its successful persistence in the host, the pathogen must need robust DNA repair mechanisms. Analysis of M. tuberculosis genome sequence revealed that it lacks mismatch repair pathway suggesting a greater role for other DNA repair pathways such as the nucleotide excision repair, and base excision repair pathways. In this article, we summarize the outcome of research involving these two repair pathways in mycobacteria focusing primarily on our own efforts. Our findings, using Mycobacterium smegmatis model, suggest that deficiency of various DNA repair functions in single or in combinations severely compromises their DNA repair capacity and attenuates their growth under conditions typically encountered in macrophages. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Phosphorylation-dependent signaling controls degradation of DNA mismatch repair protein PMS2.

    Science.gov (United States)

    Hinrichsen, Inga; Weßbecher, Isabel M; Huhn, Meik; Passmann, Sandra; Zeuzem, Stefan; Plotz, Guido; Biondi, Ricardo M; Brieger, Angela

    2017-12-01

    MutLα, a heterodimer consisting of MLH1 and PMS2, plays an important role in DNA mismatch repair and has been shown to be additionally involved in several other important cellular mechanisms. Previous work indicated that AKT could modulate PMS2 stability by phosphorylation. Still, the mechanisms of regulation of MutLα remain unclear. The stability of MutLα subunits was investigated by transiently overexpression of wild type and mutant forms of MLH1 and PMS2 using immunoblotting for measuring the protein levels after treatment. We found that treatment with the cell-permeable serine/threonine phosphatase inhibitor, Calyculin, leads to degradation of PMS2 when MLH1 or its C-terminal domain is missing or if amino acids of MLH1 essential for PMS2 interaction are mutated. In addition, we discovered that the C-terminal tail of PMS2 is relevant for this Calyculin-dependent degradation. A direct involvement of AKT, which was previously described to be responsible for PMS2 degradation, could not be detected. The multi-kinase inhibitor Sorafenib, in contrast, was able to avoid the degradation of PMS2 which postulates that cellular phosphorylation is involved in this process. Together, we show that pharmacologically induced phosphorylation by Calyculin can induce the selective proteasome-dependent degradation of PMS2 but not of MLH1 and that the PMS2 degradation could be blocked by Sorafenib treatment. Curiously, the C-terminal Lynch Syndrome-variants MLH1 L749P and MLH1 Y750X make PMS2 prone to Calyculin induced degradation. Therefore, we conclude that the specific degradation of PMS2 may represent a new mechanism to regulate MutLα. © 2017 Wiley Periodicals, Inc.

  14. Different roles of eukaryotic MutS and MutL complexes in repair of small insertion and deletion loops in yeast.

    Directory of Open Access Journals (Sweden)

    Nina V Romanova

    2013-10-01

    Full Text Available DNA mismatch repair greatly increases genome fidelity by recognizing and removing replication errors. In order to understand how this fidelity is maintained, it is important to uncover the relative specificities of the different components of mismatch repair. There are two major mispair recognition complexes in eukaryotes that are homologues of bacterial MutS proteins, MutSα and MutSβ, with MutSα recognizing base-base mismatches and small loop mispairs and MutSβ recognizing larger loop mispairs. Upon recognition of a mispair, the MutS complexes then interact with homologues of the bacterial MutL protein. Loops formed on the primer strand during replication lead to insertion mutations, whereas loops on the template strand lead to deletions. We show here in yeast, using oligonucleotide transformation, that MutSα has a strong bias toward repair of insertion loops, while MutSβ has an even stronger bias toward repair of deletion loops. Our results suggest that this bias in repair is due to the different interactions of the MutS complexes with the MutL complexes. Two mutants of MutLα, pms1-G882E and pms1-H888R, repair deletion mispairs but not insertion mispairs. Moreover, we find that a different MutL complex, MutLγ, is extremely important, but not sufficient, for deletion repair in the presence of either MutLα mutation. MutSβ is present in many eukaryotic organisms, but not in prokaryotes. We suggest that the biased repair of deletion mispairs may reflect a critical eukaryotic function of MutSβ in mismatch repair.

  15. Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators.

    Directory of Open Access Journals (Sweden)

    Adela M Luján

    Full Text Available Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities.

  16. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange*

    Science.gov (United States)

    Borgogno, María V.; Monti, Mariela R.; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E.; Pezza, Roberto J.

    2016-01-01

    Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3′ end of the initiating DNA strand have a small effect, whereas most mismatches near the 5′ end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity. PMID:26709229

  17. The effect of S-substitution at the O6-guanine site on the structure and dynamics of a DNA oligomer containing a G:T mismatch.

    Directory of Open Access Journals (Sweden)

    Elaine Ann Moore

    Full Text Available The effect of S-substitution on the O6 guanine site of a 13-mer DNA duplex containing a G:T mismatch is studied using molecular dynamics. The structure, dynamic evolution and hydration of the S-substituted duplex are compared with those of a normal duplex, a duplex with S-substitution on guanine, but no mismatch and a duplex with just a G:T mismatch. The S-substituted mismatch leads to cell death rather than repair. One suggestion is that the G:T mismatch recognition protein recognises the S-substituted mismatch (GS:T as G:T. This leads to a cycle of futile repair ending in DNA breakage and cell death. We find that some structural features of the helix are similar for the duplex with the G:T mismatch and that with the S-substituted mismatch, but differ from the normal duplex, notably the helical twist. These differences arise from the change in the hydrogen-bonding pattern of the base pair. However a marked feature of the S-substituted G:T mismatch duplex is a very large opening. This showed considerable variability. It is suggested that this enlarged opening would lend support to an alternative model of cell death in which the mismatch protein attaches to thioguanine and activates downstream damage-response pathways. Attack on the sulphur by reactive oxygen species, also leading to cell death, would also be aided by the large, variable opening.

  18. The spontaneous replication error and the mismatch discrimination mechanisms of human DNA polymerase β

    Science.gov (United States)

    Koag, Myong-Chul; Nam, Kwangho; Lee, Seongmin

    2014-01-01

    To provide molecular-level insights into the spontaneous replication error and the mismatch discrimination mechanisms of human DNA polymerase β (polβ), we report four crystal structures of polβ complexed with dG•dTTP and dA•dCTP mismatches in the presence of Mg2+ or Mn2+. The Mg2+-bound ground-state structures show that the dA•dCTP-Mg2+ complex adopts an ‘intermediate’ protein conformation while the dG•dTTP-Mg2+ complex adopts an open protein conformation. The Mn2+-bound ‘pre-chemistry-state’ structures show that the dA•dCTP-Mn2+ complex is structurally very similar to the dA•dCTP-Mg2+ complex, whereas the dG•dTTP-Mn2+ complex undergoes a large-scale conformational change to adopt a Watson–Crick-like dG•dTTP base pair and a closed protein conformation. These structural differences, together with our molecular dynamics simulation studies, suggest that polβ increases replication fidelity via a two-stage mismatch discrimination mechanism, where one is in the ground state and the other in the closed conformation state. In the closed conformation state, polβ appears to allow only a Watson–Crick-like conformation for purine•pyrimidine base pairs, thereby discriminating the mismatched base pairs based on their ability to form the Watson–Crick-like conformation. Overall, the present studies provide new insights into the spontaneous replication error and the replication fidelity mechanisms of polβ. PMID:25200079

  19. Germline PMS2 mutation screened by mismatch repair protein immunohistochemistry of colorectal cancer in Japan.

    Science.gov (United States)

    Sugano, Kokichi; Nakajima, Takeshi; Sekine, Shigeki; Taniguchi, Hirokazu; Saito, Shinya; Takahashi, Masahiro; Ushiama, Mineko; Sakamoto, Hiromi; Yoshida, Teruhiko

    2016-11-01

    Germline PMS2 gene mutations were detected by RT-PCR/direct sequencing of total RNA extracted from puromycin-treated peripheral blood lymphocytes (PBL) and multiplex ligation-dependent probe amplification (MLPA) analyses of Japanese patients with colorectal cancer (CRC) fulfilling either the revised Bethesda Guidelines or being an age at disease onset of younger than 70 years, and screened by mismatch repair protein immunohistochemistry of formalin-fixed paraffin embedded sections. Of the 501 subjects examined, 7 (1.40%) showed the downregulated expression of the PMS2 protein alone and were referred to the genetic counseling clinic. Germline PMS2 mutations were detected in 6 (85.7%), including 3 nonsense and 1 frameshift mutations by RT-PCR/direct sequencing and 2 genomic deletions by MLPA. No mutations were identified in the other MMR genes (i.e. MSH2, MLH1 and MSH6). The prevalence of the downregulated expression of the PMS2 protein alone was 1.40% among the subjects examined and IHC results predicted the presence of PMS2 germline mutations. RT-PCR from puromycin-treated PBL and MLPA may be employed as the first screening step to detect PMS2 mutations without pseudogene interference, followed by the long-range PCR/nested PCR validation using genomic DNA. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  20. Functional analysis of rare variants in mismatch repair proteins augments results from computation-based predictive methods

    Science.gov (United States)

    Arora, Sanjeevani; Huwe, Peter J.; Sikder, Rahmat; Shah, Manali; Browne, Amanda J.; Lesh, Randy; Nicolas, Emmanuelle; Deshpande, Sanat; Hall, Michael J.; Dunbrack, Roland L.; Golemis, Erica A.

    2017-01-01

    ABSTRACT The cancer-predisposing Lynch Syndrome (LS) arises from germline mutations in DNA mismatch repair (MMR) genes, predominantly MLH1, MSH2, MSH6, and PMS2. A major challenge for clinical diagnosis of LS is the frequent identification of variants of uncertain significance (VUS) in these genes, as it is often difficult to determine variant pathogenicity, particularly for missense variants. Generic programs such as SIFT and PolyPhen-2, and MMR gene-specific programs such as PON-MMR and MAPP-MMR, are often used to predict deleterious or neutral effects of VUS in MMR genes. We evaluated the performance of multiple predictive programs in the context of functional biologic data for 15 VUS in MLH1, MSH2, and PMS2. Using cell line models, we characterized VUS predicted to range from neutral to pathogenic on mRNA and protein expression, basal cellular viability, viability following treatment with a panel of DNA-damaging agents, and functionality in DNA damage response (DDR) signaling, benchmarking to wild-type MMR proteins. Our results suggest that the MMR gene-specific classifiers do not always align with the experimental phenotypes related to DDR. Our study highlights the importance of complementary experimental and computational assessment to develop future predictors for the assessment of VUS. PMID:28494185

  1. Stabilization of mismatch repair gene PMS2 by glycogen synthase kinase 3β is implicated in the treatment of cervical carcinoma

    Directory of Open Access Journals (Sweden)

    Wang Ze

    2010-02-01

    Full Text Available Abstract Background PMS2 expression loss was reported in a variety of human. However, its importance has not been fully understood in cervical carcinoma. The aim of this study was to determine the expression of PMS2 in cervical carcinoma and evaluate the significance of mismatch repair gene PMS2 regulated by glycogen synthase kinase 3β (GSK-3β in chemosensitivity. Methods We examined PMS2 and phosphorylated GSK-3β(s9 expression in cervical carcinoma tissues using immunohistochemical staining. Furthermore, we detected PMS2 expression in HeLa cells and evaluate the interaction with GSK-3β after transfection with GSK-3β by small interference RNA (siRNA, co-immunoprecipitation and immunoblotting. We also evaluated the effect of PMS2 transfection on HeLa cells' chemosensitivity to cisplatin treatment. Results We found significant downregulation of PMS2 in cervical carcinoma, which was negatively associated with phosphorylated GSK-3β (s9. Furthermore, we demonstrated GSK-3β transfection was able to interact with PMS2 and enhance PMS2 production in HeLa cells, and increased PMS2 production was responsible for enhanced chemosensitivity. Conclusions Our results provide the evidence that stabilization of PMS2 production by GSK-3β was important to improve chemosensitization, indicating the significance of GSK-3β-related PMS2 downregulation in the development of cervical carcinoma and in developing a potential strategy for chemotherapy.

  2. Stabilization of mismatch repair gene PMS2 by glycogen synthase kinase 3β is implicated in the treatment of cervical carcinoma

    Science.gov (United States)

    2010-01-01

    Background PMS2 expression loss was reported in a variety of human. However, its importance has not been fully understood in cervical carcinoma. The aim of this study was to determine the expression of PMS2 in cervical carcinoma and evaluate the significance of mismatch repair gene PMS2 regulated by glycogen synthase kinase 3β (GSK-3β) in chemosensitivity. Methods We examined PMS2 and phosphorylated GSK-3β(s9) expression in cervical carcinoma tissues using immunohistochemical staining. Furthermore, we detected PMS2 expression in HeLa cells and evaluate the interaction with GSK-3β after transfection with GSK-3β by small interference RNA (siRNA), co-immunoprecipitation and immunoblotting. We also evaluated the effect of PMS2 transfection on HeLa cells' chemosensitivity to cisplatin treatment. Results We found significant downregulation of PMS2 in cervical carcinoma, which was negatively associated with phosphorylated GSK-3β (s9). Furthermore, we demonstrated GSK-3β transfection was able to interact with PMS2 and enhance PMS2 production in HeLa cells, and increased PMS2 production was responsible for enhanced chemosensitivity. Conclusions Our results provide the evidence that stabilization of PMS2 production by GSK-3β was important to improve chemosensitization, indicating the significance of GSK-3β-related PMS2 downregulation in the development of cervical carcinoma and in developing a potential strategy for chemotherapy. PMID:20178594

  3. Isolation of the functional human excision repair gene ERCC5 by intercosmid recombination

    International Nuclear Information System (INIS)

    Mudgett, J.S.; MacInnes, M.A.

    1990-01-01

    The complete human nucleotide exicision repair gene ERCC5 was isolated as a functional gene on overlapping cosmids. ERCC5 corrects the excision repair deficiency of Chinese hamster ovary cell line UV135, of complementation group 5. Cosmids that contained human sequences were obtained from a UV-resistant cell line derived from UV135 cells transformed with human genomic DNA. Individually, none of the cosmids complemented the UV135 repair defect; cosmid groups were formed to represent putative human genomic regions, and specific pairs of cosmids that effectively transformed UV135 cells to UV resistance were identified. Analysis of transformants derived from the active cosmid pairs showed that the functional 32-kbp ERCC5 gene was reconstructed by homologous intercosmid recombination. The cloned human sequences exhibited 100% concordance with the locus designated genetically as ERCC5 located on human chromosome 13q. Cosmid-transformed UV135 host cells repaired cytotoxic damage to levels about 70% of normal and repaired UV-irradiated shuttle vector DNA to levels about 82% of normal

  4. Tolerance of DNA Mismatches in Dmc1 Recombinase-mediated DNA Strand Exchange.

    Science.gov (United States)

    Borgogno, María V; Monti, Mariela R; Zhao, Weixing; Sung, Patrick; Argaraña, Carlos E; Pezza, Roberto J

    2016-03-04

    Recombination between homologous chromosomes is required for the faithful meiotic segregation of chromosomes and leads to the generation of genetic diversity. The conserved meiosis-specific Dmc1 recombinase catalyzes homologous recombination triggered by DNA double strand breaks through the exchange of parental DNA sequences. Although providing an efficient rate of DNA strand exchange between polymorphic alleles, Dmc1 must also guard against recombination between divergent sequences. How DNA mismatches affect Dmc1-mediated DNA strand exchange is not understood. We have used fluorescence resonance energy transfer to study the mechanism of Dmc1-mediated strand exchange between DNA oligonucleotides with different degrees of heterology. The efficiency of strand exchange is highly sensitive to the location, type, and distribution of mismatches. Mismatches near the 3' end of the initiating DNA strand have a small effect, whereas most mismatches near the 5' end impede strand exchange dramatically. The Hop2-Mnd1 protein complex stimulates Dmc1-catalyzed strand exchange on homologous DNA or containing a single mismatch. We observed that Dmc1 can reject divergent DNA sequences while bypassing a few mismatches in the DNA sequence. Our findings have important implications in understanding meiotic recombination. First, Dmc1 acts as an initial barrier for heterologous recombination, with the mismatch repair system providing a second level of proofreading, to ensure that ectopic sequences are not recombined. Second, Dmc1 stepping over infrequent mismatches is likely critical for allowing recombination between the polymorphic sequences of homologous chromosomes, thus contributing to gene conversion and genetic diversity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. DNA repair in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Lechner, J.F.; Grafstrom, R.C.; Harris, C.C.

    1982-01-01

    The purpose of this investigation was to compare the response of human cell types (bronchial epithelial cells and fibroblasts and skin fibroblasts) to various DNA damaging agents. Repair of DNA single strand breaks (SSB) induced by 5 krads of X-ray was similar for all cell types; approximately 90% of the DNA SSB were rejoined within one hour. During excision repair of DNA damage from u.v.-radiation, the frequencies of DNA SSB as estimated by the alkaline elution technique, were similar in all cell types. Repair replication as measured by BND cellulose chromatography was also similar in epithelial and fibroblastic cells after u.v.-irradiation. Similar levels of SSB were also observed in epithelial and fibroblastic cells after exposure to chemical carcinogens: 7,12-dimethylbenz[a]anthracene; benzo[a]pyrene diol epoxide (BPDE); or N-methyl-N-nitro-N-nitrosoguanidine. Significant repair replication of BPDE-induced DNA damage was detected in both bronchial epithelial and fibroblastic cells, although the level in fibroblasts was approximately 40% of that in epithelial cells. The pulmonary carcinogen asbestos did not damage DNA. DNA-protein crosslinks induced by formaldehyde were rapidly removed in bronchial cells. Further, epithelial and fibroblastic cells, which were incubated with formaldehyde and the polymerase inhibitor combination of cytosine arabinoside and hydroxyurea, accumulated DNA SSB at approximately equal frequencies. These results should provide a useful background for further investigations of the response of human bronchial cells to various DNA damaging agents

  6. DNA excision repair in permeable human fibroblasts

    International Nuclear Information System (INIS)

    Kaufmann, W.K.; Bodell, W.J.; Cleaver, J.E.

    1983-01-01

    U.v. irradiation of confluent human fibroblasts activated DNA repair, aspects of which were characterized in the cells after they were permeabilized. Incubation of intact cells for 20 min between irradiation and harvesting was necessary to obtain a maximum rate of reparative DNA synthesis. Cells harvested immediately after irradiation before repair was initiated displayed only a small stimulation of DNA synthesis, indicating that permeable cells have a reduced capacity to recognize pyrimidine dimers and activate repair. The distribution of sizes of DNA strands labeled during 10 min of reparative DNA synthesis resembled that of parental DNA. However, during a 60-min incubation of permeable cells at 37 degrees C, parental DNA and DNA labeled by reparative DNA synthesis were both cleaved to smaller sizes. Cleavage also occurred in unirradiated cells, indicating that endogenous nuclease was active during incubation. Repair patches synthesized in permeable cells displayed increased sensitivity to digestion by micrococcal nuclease. However, the change in sensitivity during a chase with unlabeled DNA precursors was small, suggesting that reassembly of nucleosome structure at sites of repair was impaired. To examine whether this deficiency was due to a preponderance of incomplete or unligated repair patches, 3H-labeled (repaired) DNA was purified, then digested with exonuclease III and nuclease S1 to probe for free 3' ends and single-stranded regions. About 85% of the [3H]DNA synthesized during a 10-min pulse resisted digestion, suggesting that a major fraction of the repair patches that were filled were also ligated. U.v. light-activated DNA synthesis in permeable cells, therefore, appears to represent the continuation of reparative gap-filling at sites of excision repair activated within intact cells. Gap-filling and ligation were comparatively efficient processes in permeable cells

  7. A homozygous PMS2 founder mutation with an attenuated constitutional mismatch repair deficiency phenotype.

    Science.gov (United States)

    Li, Lili; Hamel, Nancy; Baker, Kristi; McGuffin, Michael J; Couillard, Martin; Gologan, Adrian; Marcus, Victoria A; Chodirker, Bernard; Chudley, Albert; Stefanovici, Camelia; Durandy, Anne; Hegele, Robert A; Feng, Bing-Jian; Goldgar, David E; Zhu, Jun; De Rosa, Marina; Gruber, Stephen B; Wimmer, Katharina; Young, Barbara; Chong, George; Tischkowitz, Marc D; Foulkes, William D

    2015-05-01

    Inherited mutations in DNA mismatch repair genes predispose to different cancer syndromes depending on whether they are mono-allelic or bi-allelic. This supports a causal relationship between expression level in the germline and phenotype variation. As a model to study this relationship, our study aimed to define the pathogenic characteristics of a recurrent homozygous coding variant in PMS2 displaying an attenuated phenotype identified by clinical genetic testing in seven Inuit families from Northern Quebec. Pathogenic characteristics of the PMS2 mutation NM_000535.5:c.2002A>G were studied using genotype-phenotype correlation, single-molecule expression detection and single genome microsatellite instability analysis. This PMS2 mutation generates a de novo splice site that competes with the authentic site. In homozygotes, expression of the full-length protein is reduced to a level barely detectable by conventional diagnostics. Median age at primary cancer diagnosis is 22 years among 13 NM_000535.5:c.2002A>G homozygotes, versus 8 years in individuals carrying bi-allelic truncating mutations. Residual expression of full-length PMS2 transcript was detected in normal tissues from homozygotes with cancers in their 20s. Our genotype-phenotype study of c.2002A>G illustrates that an extremely low level of PMS2 expression likely delays cancer onset, a feature that could be exploited in cancer preventive intervention. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Comparison of the Mismatch Repair System between Primary and Metastatic Colorectal Cancers Using Immunohistochemistry

    Directory of Open Access Journals (Sweden)

    Jiyoon Jung

    2017-03-01

    Full Text Available Background Colorectal cancer (CRC is one of the most common malignancies worldwide. Approximately 10%–15% of the CRC cases have defective DNA mismatch repair (MMR genes. Although the high level of microsatellite instability status is a predictor of favorable outcome in primary CRC, little is known about its frequency and importance in secondary CRC. Immunohistochemical staining (IHC for MMR proteins (e.g., MLH1, MSH2, MSH6, and PMS2 has emerged as a useful technique to complement polymerase chain reaction (PCR analyses. Methods In this study, comparison between the MMR system of primary CRCs and paired liver and lung metastatic lesions was done using IHC and the correlation with clinical outcomes was also examined. Results Based on IHC, 7/61 primary tumors (11.4% showed deficient MMR systems, while 13/61 secondary tumors (21.3% showed deficiencies. In total, 44 cases showed proficient expression in both the primary and metastatic lesions. Three cases showed deficiencies in both the primary and paired metastatic lesions. In 10 cases, proficient expression was found only in the primary lesions, and not in the corresponding metastatic lesions. In four cases, proficient expression was detected in the secondary tumor, but not in the primary tumor. Conclusions Although each IHC result and the likely defective genes were not exactly matched between the primary and the metastatic tumors, identical results for primary and metastatic lesions were obtained in 77% of the cases (47/61. These data are in agreement with the previous microsatellite detection studies that used PCR and IHC.

  9. Decreased transcription-coupled nucleotide excision repair capacity is associated with increased p53- and MLH1-independent apoptosis in response to cisplatin

    International Nuclear Information System (INIS)

    Stubbert, Lawton J; Smith, Jennifer M; McKay, Bruce C

    2010-01-01

    One of the most commonly used classes of anti-cancer drugs presently in clinical practice is the platinum-based drugs, including cisplatin. The efficacy of cisplatin therapy is often limited by the emergence of resistant tumours following treatment. Cisplatin resistance is multi-factorial but can be associated with increased DNA repair capacity, mutations in p53 or loss of DNA mismatch repair capacity. RNA interference (RNAi) was used to reduce the transcription-coupled nucleotide excision repair (TC-NER) capacity of several prostate and colorectal carcinoma cell lines with specific defects in p53 and/or DNA mismatch repair. The effect of small inhibitory RNAs designed to target the CSB (Cockayne syndrome group B) transcript on TC-NER and the sensitivity of cells to cisplatin-induced apoptosis was determined. These prostate and colon cancer cell lines were initially TC-NER proficient and RNAi against CSB significantly reduced their DNA repair capacity. Decreased TC-NER capacity was associated with an increase in the sensitivity of tumour cells to cisplatin-induced apoptosis, even in p53 null and DNA mismatch repair-deficient cell lines. The present work indicates that CSB and TC-NER play a prominent role in determining the sensitivity of tumour cells to cisplatin even in the absence of p53 and DNA mismatch repair. These results further suggest that CSB represents a potential target for cancer therapy that may be important to overcome resistance to cisplatin in the clinic

  10. Decreased transcription-coupled nucleotide excision repair capacity is associated with increased p53- and MLH1-independent apoptosis in response to cisplatin

    Directory of Open Access Journals (Sweden)

    Smith Jennifer M

    2010-05-01

    Full Text Available Abstract Background One of the most commonly used classes of anti-cancer drugs presently in clinical practice is the platinum-based drugs, including cisplatin. The efficacy of cisplatin therapy is often limited by the emergence of resistant tumours following treatment. Cisplatin resistance is multi-factorial but can be associated with increased DNA repair capacity, mutations in p53 or loss of DNA mismatch repair capacity. Methods RNA interference (RNAi was used to reduce the transcription-coupled nucleotide excision repair (TC-NER capacity of several prostate and colorectal carcinoma cell lines with specific defects in p53 and/or DNA mismatch repair. The effect of small inhibitory RNAs designed to target the CSB (Cockayne syndrome group B transcript on TC-NER and the sensitivity of cells to cisplatin-induced apoptosis was determined. Results These prostate and colon cancer cell lines were initially TC-NER proficient and RNAi against CSB significantly reduced their DNA repair capacity. Decreased TC-NER capacity was associated with an increase in the sensitivity of tumour cells to cisplatin-induced apoptosis, even in p53 null and DNA mismatch repair-deficient cell lines. Conclusion The present work indicates that CSB and TC-NER play a prominent role in determining the sensitivity of tumour cells to cisplatin even in the absence of p53 and DNA mismatch repair. These results further suggest that CSB represents a potential target for cancer therapy that may be important to overcome resistance to cisplatin in the clinic.

  11. Factors modifying 3-aminobenzamide cytotoxicity in normal and repair-deficient human fibroblasts

    International Nuclear Information System (INIS)

    Boorstein, R.J.; Pardee, A.B.

    1984-01-01

    3-Aminobenzamide (3-AB), an inhibitor of poly(ADP-ribosylation), is lethal to human fibroblasts with damaged DNA. Its cytotoxicity was determined relative to a number of factors including the types of lesions, the kinetics of repair, and the availability of alternative repair systems. A variety of alkylating agent, UV or gamma irradiation, or antimetabolites were used to create DNA lesions. 3-AB enhanced lethality with monofunctional alkylating agents only. Within this class of compounds, methylmethanesulfonate (MMS) treatments made cells more sensitive to 3-AB than did treatment with methylnitrosourea (MNU) or methylnitronitrosoguanidine (MNNG). 3-AB interfered with a dynamic repair process lasting several days, since human fibroblasts remained sensitive to 3-AB for 36-48 hours following MMS treatment. During this same interval 3-AB caused these cells to arrest in G 2 phase. Alkaline elution analysis also revealed that this slow repair was delayed further by 3-AB. Human mutant cell defective in DNA repair differed in their responses to 3-AB. Greater lethality with 3-AB could be dependent on inability of the mutant cells to repair damage by other processes

  12. Calibration of Multiple In Silico Tools for Predicting Pathogenicity of Mismatch Repair Gene Missense Substitutions

    Science.gov (United States)

    Thompson, Bryony A.; Greenblatt, Marc S.; Vallee, Maxime P.; Herkert, Johanna C.; Tessereau, Chloe; Young, Erin L.; Adzhubey, Ivan A.; Li, Biao; Bell, Russell; Feng, Bingjian; Mooney, Sean D.; Radivojac, Predrag; Sunyaev, Shamil R.; Frebourg, Thierry; Hofstra, Robert M.W.; Sijmons, Rolf H.; Boucher, Ken; Thomas, Alun; Goldgar, David E.; Spurdle, Amanda B.; Tavtigian, Sean V.

    2015-01-01

    Classification of rare missense substitutions observed during genetic testing for patient management is a considerable problem in clinical genetics. The Bayesian integrated evaluation of unclassified variants is a solution originally developed for BRCA1/2. Here, we take a step toward an analogous system for the mismatch repair (MMR) genes (MLH1, MSH2, MSH6, and PMS2) that confer colon cancer susceptibility in Lynch syndrome by calibrating in silico tools to estimate prior probabilities of pathogenicity for MMR gene missense substitutions. A qualitative five-class classification system was developed and applied to 143 MMR missense variants. This identified 74 missense substitutions suitable for calibration. These substitutions were scored using six different in silico tools (Align-Grantham Variation Grantham Deviation, multivariate analysis of protein polymorphisms [MAPP], Mut-Pred, PolyPhen-2.1, Sorting Intolerant From Tolerant, and Xvar), using curated MMR multiple sequence alignments where possible. The output from each tool was calibrated by regression against the classifications of the 74 missense substitutions; these calibrated outputs are interpretable as prior probabilities of pathogenicity. MAPP was the most accurate tool and MAPP + PolyPhen-2.1 provided the best-combined model (R2 = 0.62 and area under receiver operating characteristic = 0.93). The MAPP + PolyPhen-2.1 output is sufficiently predictive to feed as a continuous variable into the quantitative Bayesian integrated evaluation for clinical classification of MMR gene missense substitutions. PMID:22949387

  13. Optimisation of the CT h4S bioassay for detection of human interleukin-4 secreted by mononuclear cells stimulated by phytohaemaglutinin or by human leukocyte antigen mismatched mixed lymphocyte culture

    DEFF Research Database (Denmark)

    Petersen, Søren Lykke; Russell, Charlotte Astrid; Bendtzen, Klaus

    2002-01-01

    S bioassay detects 5 pg/ml of human recombinant IL-4 with no detection of IL-2 in concentrations below 500 pg/ml. We have found 72 h of culture optimal for detection of IL-2 and IL-4 produced by human mononuclear cells (MNC) in response to stimulation with phytohaemaglutinin and for detection of IL......-2 in human leukocyte antigen (HLA)-mismatched mixed leukocyte culture (MLC). An interindividual variation in cytokine accumulation was demonstrated for IL-4 but not for IL-2. With the use of 5x10(4) responder cells/well no IL-4 could be detected in HLA-mismatched MLC between days 1 and 16. The lack...

  14. Detection and characterization of polymorphisms in XRCC DNA repair genes in human population

    International Nuclear Information System (INIS)

    Staynova, A.; Hadjidekova, V.; Savov, A.

    2004-01-01

    Human population is continuously exposed to low levels of ionizing radiation. The main contribution gives the exposure due to medical applications. Nevertheless, most of the damage induced is repaired shortly after exposure by cellular repair systems. The review is focused on the development and application of methods to estimate the character of polymorphisms in repair genes (XRCC1, APE1), involved in single strand breaks repair which is corresponding mainly to the repair of X-ray induced DNA damage. Since, DSB are major factor for chromosomal aberrations formation, the assays described in this review might be useful for the assessment of the radiation risk for human population. (authors)

  15. DNA repair in Mycobacterium tuberculosis revisited.

    Science.gov (United States)

    Dos Vultos, Tiago; Mestre, Olga; Tonjum, Tone; Gicquel, Brigitte

    2009-05-01

    Our understanding of Mycobacterium tuberculosis DNA repair mechanisms is still poor compared with that of other bacterial organisms. However, the publication of the first complete M. tuberculosis genome sequence 10 years ago boosted the study of DNA repair systems in this organism. A first step in the elucidation of M. tuberculosis DNA repair mechanisms was taken by Mizrahi and Andersen, who identified homologs of genes involved in the reversal or repair of DNA damage in Escherichia coli and related organisms. Genes required for nucleotide excision repair, base excision repair, recombination, and SOS repair and mutagenesis were identified. Notably, no homologs of genes involved in mismatch repair were identified. Novel characteristics of the M. tuberculosis DNA repair machinery have been found over the last decade, such as nonhomologous end joining, the presence of Mpg, ERCC3 and Hlr - proteins previously presumed to be produced exclusively in mammalian cells - and the recently discovered bifunctional dCTP deaminase:dUTPase. The study of these systems is important to develop therapeutic agents that can counteract M. tuberculosis evolutionary changes and to prevent adaptive events resulting in antibiotic resistance. This review summarizes our current understanding of the M. tuberculosis DNA repair system.

  16. DNA repair in neurons: So if they don't divide what's to repair?

    Energy Technology Data Exchange (ETDEWEB)

    Fishel, Melissa L. [Department of Pediatrics (Section of Hematology/Oncology), Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut, Room 302C, Indianapolis, IN 46202 (United States); Vasko, Michael R. [Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202 (United States); Kelley, Mark R. [Department of Pediatrics (Section of Hematology/Oncology), Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W. Walnut, Room 302C, Indianapolis, IN 46202 (United States) and Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202 (United States) and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut, Room 302C, Indianapolis, IN 46202 (United States)]. E-mail: mkelley@iupui.edu

    2007-01-03

    Neuronal DNA repair remains one of the most exciting areas for investigation, particularly as a means to compare the DNA repair response in mitotic (cancer) vs. post-mitotic (neuronal) cells. In addition, the role of DNA repair in neuronal cell survival and response to aging and environmental insults is of particular interest. DNA damage caused by reactive oxygen species (ROS) such as generated by mitochondrial respiration includes altered bases, abasic sites, and single- and double-strand breaks which can be prevented by the DNA base excision repair (BER) pathway. Oxidative stress accumulates in the DNA of the human brain over time especially in the mitochondrial DNA (mtDNA) and is proposed to play a critical role in aging and in the pathogenesis of several neurological disorders including Parkinson's disease, ALS, and Alzheimer's diseases. Because DNA damage accumulates in the mtDNA more than nuclear DNA, there is increased interest in DNA repair pathways and the consequence of DNA damage in the mitochondria of neurons. The type of damage that is most likely to occur in neuronal cells is oxidative DNA damage which is primarily removed by the BER pathway. Following the notion that the bulk of neuronal DNA damage is acquired by oxidative DNA damage and ROS, the BER pathway is a likely area of focus for neuronal studies of DNA repair. BER variations in brain aging and pathology in various brain regions and tissues are presented. Therefore, the BER pathway is discussed in greater detail in this review than other repair pathways. Other repair pathways including direct reversal, nucleotide excision repair (NER), mismatch repair (MMR), homologous recombination and non-homologous end joining are also discussed. Finally, there is a growing interest in the role that DNA repair pathways play in the clinical arena as they relate to the neurotoxicity and neuropathy associated with cancer treatments. Among the numerous side effects of cancer treatments, major

  17. Role of DNA lesions and repair in the transformation of human cells

    International Nuclear Information System (INIS)

    Maher, V.M.; McCormick, J.J.

    1987-01-01

    Results of studies on the transformation of diploid human fibroblasts in culture into tumor-forming cells by exposure to chemical carcinogens or radiation indicate that such transformation is multi-stepped process that at least one step, acquisition of anchorage independence, occurs as a mutagenic event. Studies comparing normal-repairing human cells with DNA repair-deficient cells, such as those derived from cancer-prone xeroderma pigmentosum patients, indicate that excision repair in human fibroblasts is essentially an error-free process that the ability to excise potentially cytotoxic, mutagenic, or transforming lesions induced DNA by carcinogens determines their ultimate biological consequences. Cells deficient in excision repair are abnormally sensitive to these agents. Studies with cells treated at various times in the cell cycle show that there is a certain limited amount of time available for DNA repair between the initial exposure and the onset of the cellular event responsible for mutation induction and transformation to anchorage independence. The data suggest that DNA replication on a template containing unexcised lesions (photoproducts, adducts) is the critical event

  18. From 'automation' to 'autonomy': the importance of trust repair in human-machine interaction.

    Science.gov (United States)

    de Visser, Ewart J; Pak, Richard; Shaw, Tyler H

    2018-04-09

    Modern interactions with technology are increasingly moving away from simple human use of computers as tools to the establishment of human relationships with autonomous entities that carry out actions on our behalf. In a recent commentary, Peter Hancock issued a stark warning to the field of human factors that attention must be focused on the appropriate design of a new class of technology: highly autonomous systems. In this article, we heed the warning and propose a human-centred approach directly aimed at ensuring that future human-autonomy interactions remain focused on the user's needs and preferences. By adapting literature from industrial psychology, we propose a framework to infuse a unique human-like ability, building and actively repairing trust, into autonomous systems. We conclude by proposing a model to guide the design of future autonomy and a research agenda to explore current challenges in repairing trust between humans and autonomous systems. Practitioner Summary: This paper is a call to practitioners to re-cast our connection to technology as akin to a relationship between two humans rather than between a human and their tools. To that end, designing autonomy with trust repair abilities will ensure future technology maintains and repairs relationships with their human partners.

  19. Deficiency of UV-induced excision repair in human thymocytes

    International Nuclear Information System (INIS)

    Gensler, H.L.; Lindberg, R.E.; Pinnas, J.L.; Jones, J.F.

    1985-01-01

    The capacity of human thymocytes and of differentiated lymphocytes circulating in peripheral blood to perform unscheduled DNA synthesis (a measure of nucleotide excision repair) after UV irradiation was measured by radioautographic analysis. Only 4% of immature T lymphocytes, but 68% of circulating lymphocytes exhibited unscheduled DNA synthesis. When UV sensitivity of peripheral blood lymphocytes and thymocytes from the same donor were compared, the thymocytes, in each case, were significantly more UV sensitive than were the circulating lymphocytes. Peripheral blood lymphocytes from subjects undergoing halothane and morphine anesthesia during surgery showed 56% less excision repair capacity than those from unanesthetized donors. The difference occurred in the number of cells capable of repair rather than in the extent of repair synthesis per cell. Ultraviolet-induced unscheduled DNA synthesis occurred in only 3% of the thymocytes removed from rats killed by cervical dislocation. Therefore, the deficiency of excision repair was observed in rat thymocytes which had not been affected by anesthesia or surgical trauma. The results indicate that immature T-cells are deficient in nucleotide excision repair whereas the majority of mature peripheral blood lymphocytes exhibit such repair. (author)

  20. JOB MISMATCH – EFFECTS ON WORK PRODUCTIVITY

    Directory of Open Access Journals (Sweden)

    Magdalena Velciu

    2017-12-01

    Full Text Available Job matching and finding the best person to the right job inside the right company has become one of the most important and actual challenges of productivity. Not only full employment but the match between the employee and the job, in terms of educational level or field of activity, qualifications and skills of workforce; all have been the new gain of work productivity. Present article synthesizes the theoretical and empirical findings on effects of job mismatch by selecting the main findings about influence of job mismatches on work productivity including both employees and companies sides. on short term overeducation and overqualification could have a positive effect on productivity for one company, but on long term, mismatched worker would be affected by decreasing job satisfaction and lower wages. Also, at macroeconomic level, from a perspective of economy as a whole, job mismatches mean a loss of resources and human capital and could have negative effects on overall productivity. The opposite effects stay at the crossing between the employees, companies, policies and future development. In fact the effects of skill mismatch and productivity is a lost of work potential through inefficient resource (reallocation.

  1. A human repair gene ERCC5 is involved in group G xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Shiomi, Tadahiro

    1994-01-01

    In E. coli, ultraviolet-induced DNA damage is removed by the coordinated action of UVR A, B, C, and D proteins (1). In Saccharomyces cerevisiae, more than ten genes have been reported to be involved in excision repair (2). The nucleotide excision repair pathway has been extensively studied in these organisms. To facilitate studying nucleotide excision repair in mammalian cells. Ultraviolet-sensitive rodent cell mutants have been isolated and classified into 11 complementation groups (9,10). The human nucleotide excision repair genes which complement the defects of the mutants have been designated as the ERCC (excision repair cross-complementing) genes; a number is added to refer to the particular rodent complementation group that is corrected by the gene. Recently, several human DNA repair genes have been cloned using rodent cell lines sensitive to ultraviolet. These include ERCC2 (3), ERCC3 (4), and ERCC6 (5), which correspond to the defective genes in the ultraviolet-sensitive human disorders xeroderma pigmentosum (XP) group D (6) and group B (4), and Cockayne's syndrome (CS) group B (7), respectively. The human excision repair gene ERCC5 was cloned after DNA-mediated gene transfer of human HeLa cell genomic DNA into the ultraviolet-sensitive mouse mutant XL216, a member of rodent complementation group 5 (11,12) and the gene was mapped on human chromosome 13q32.3-q33.1 by the replication R-banding fluorescence in situ hybridization method (13). The ERCC5 cDNA encodes a predicted 133 kDa nuclear protein that shares some homology with product of the yeast DNA repair gene RAD 2. Transfection with mouse ERCC5 cDNA restored normal levels of ultraviolet-resistance to XL216 cells. Microinjection of ERCC5 cDNA specifically restored the defect of XP group G cells (XP-G) as measured by unscheduled DNA synthesis (UDS), and XP-G cells stably transformed with ERCC5 cDNA showed nearly normal ultraviolet resistance. (J.P.N.)

  2. Recombinant methods for screening human DNA excision repair proficiency

    International Nuclear Information System (INIS)

    Athas, W.F.

    1988-01-01

    A method for measuring DNA excision repair in response to ultraviolet radiation (UV)-induced DNA damage has been developed, validated, and field-tested in cultured human lymphocytes. The methodology is amenable to population-based screening and should facilitate future epidemiologic studies seeking to investigate associations between excision repair proficiency and cancer susceptibility. The impetus for such endeavors derives from the belief that the high incidence of skin cancer in the genetic disorder xeroderma pigmentosum (XP) primarily is a result of the reduced capacity of patients cells to repair UV-induced DNA damage. For assay, UV-irradiated non-replicating recombinant plasmid DNA harboring a chloramphenicol acetyltransferase (CAT) indicator gene is introduced into lymphocytes using DEAE-dextran short-term transfection conditions. Exposure to UV induces transcriptionally-inactivating DNA photoproducts in the plasmid DNA which inactivate CAT gene expression. Excision repair of the damaged CAT gene is monitored indirectly as a function of reactivated CAT enzyme activity following a 40 hour repair/expression incubation period

  3. Scale Mismatches in Social-Ecological Systems: Causes, Consequences, and Solutions

    Directory of Open Access Journals (Sweden)

    Graeme S. Cumming

    2006-06-01

    Full Text Available Scale is a concept that transcends disciplinary boundaries. In ecology and geography, scale is usually defined in terms of spatial and temporal dimensions. Sociological scale also incorporates space and time, but adds ideas about representation and organization. Although spatial and temporal location determine the context for social and ecological dynamics, social-ecological interactions can create dynamic feedback loops in which humans both influence and are influenced by ecosystem processes. We hypothesize that many of the problems encountered by societies in managing natural resources arise because of a mismatch between the scale of management and the scale(s of the ecological processes being managed. We use examples from southern Africa and the southern United States to address four main questions: (1 What is a "scale mismatch?" (2 How are scale mismatches generated? (3 What are the consequences of scale mismatches? (4 How can scale mismatches be resolved? Scale mismatches occur when the scale of environmental variation and the scale of social organization in which the responsibility for management resides are aligned in such a way that one or more functions of the social-ecological system are disrupted, inefficiencies occur, and/or important components of the system are lost. They are generated by a wide range of social, ecological, and linked social-ecological processes. Mismatches between the scales of ecological processes and the institutions that are responsible for managing them can contribute to a decrease in social-ecological resilience, including the mismanagement of natural resources and a decrease in human well-being. Solutions to scale mismatches usually require institutional changes at more than one hierarchical level. Long-term solutions to scale mismatch problems will depend on social learning and the development of flexible institutions that can adjust and reorganize in response to changes in ecosystems. Further research is

  4. Tumor mismatch repair immunohistochemistry and DNA MLH1 methylation testing of patients with endometrial cancer diagnosed at age younger than 60 years optimizes triage for population-level germline mismatch repair gene mutation testing.

    Science.gov (United States)

    Buchanan, Daniel D; Tan, Yen Y; Walsh, Michael D; Clendenning, Mark; Metcalf, Alexander M; Ferguson, Kaltin; Arnold, Sven T; Thompson, Bryony A; Lose, Felicity A; Parsons, Michael T; Walters, Rhiannon J; Pearson, Sally-Ann; Cummings, Margaret; Oehler, Martin K; Blomfield, Penelope B; Quinn, Michael A; Kirk, Judy A; Stewart, Colin J; Obermair, Andreas; Young, Joanne P; Webb, Penelope M; Spurdle, Amanda B

    2014-01-10

    Clinicopathologic data from a population-based endometrial cancer cohort, unselected for age or family history, were analyzed to determine the optimal scheme for identification of patients with germline mismatch repair (MMR) gene mutations. Endometrial cancers from 702 patients recruited into the Australian National Endometrial Cancer Study (ANECS) were tested for MMR protein expression using immunohistochemistry (IHC) and for MLH1 gene promoter methylation in MLH1-deficient cases. MMR mutation testing was performed on germline DNA of patients with MMR-protein deficient tumors. Prediction of germline mutation status was compared for combinations of tumor characteristics, age at diagnosis, and various clinical criteria (Amsterdam, Bethesda, Society of Gynecologic Oncology, ANECS). Tumor MMR-protein deficiency was detected in 170 (24%) of 702 cases. Germline testing of 158 MMR-deficient cases identified 22 truncating mutations (3% of all cases) and four unclassified variants. Tumor MLH1 methylation was detected in 99 (89%) of 111 cases demonstrating MLH1/PMS2 IHC loss; all were germline MLH1 mutation negative. A combination of MMR IHC plus MLH1 methylation testing in women younger than 60 years of age at diagnosis provided the highest positive predictive value for the identification of mutation carriers at 46% versus ≤ 41% for any other criteria considered. Population-level identification of patients with MMR mutation-positive endometrial cancer is optimized by stepwise testing for tumor MMR IHC loss in patients younger than 60 years, tumor MLH1 methylation in individuals with MLH1 IHC loss, and germline mutations in patients exhibiting loss of MSH6, MSH2, or PMS2 or loss of MLH1/PMS2 with absence of MLH1 methylation.

  5. Differing levels of excision repair in human fetal dermis and brain cells

    International Nuclear Information System (INIS)

    Gibson, R.E.; D'Ambrosio, S.M.; Ohio State Univ., Columbus

    1982-01-01

    The levels of DNA excision repair, as measured by unscheduled DNA synthesis (UDS) and the UV-endonuclease sensitive site assay, were compared in cells derived from human fetal brain and dermal tissues. The level of UDS induced following ultraviolet (UV) irradiation was found to be lower (approx. 60%) in the fetal brain cells than in fetal dermal cells. It was determined, using the UV-endonuclease sensitive site assay to confirm the UDS observation, that 50% of the dimers induced by UV in fetal dermal cells were repaired in 8 h. while only 15% were removed in the fetal brain cells during the same period of time. Even after 24 h. only 44% of the dimers induced by UV in the fetal brain cells were repaired, while 65% were removed in the dermal cells. These data suggest that cultured human fetal brain cells exhibit lower levels of excision repair compared to cultured human fetal dermal cells. (author)

  6. Nuclear translocation contributes to regulation of DNA excision repair activities

    DEFF Research Database (Denmark)

    Knudsen, Nina Østergaard; Andersen, Sofie Dabros; Lützen, Anne

    2009-01-01

    for regulation of nuclear import that is necessary for proper localization of the repair proteins. This review summarizes the current knowledge on nuclear import mechanisms of DNA excision repair proteins and provides a model that categorizes the import by different mechanisms, including classical nuclear import......DNA mutations are circumvented by dedicated specialized excision repair systems, such as the base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR) pathways. Although the individual repair pathways have distinct roles in suppressing changes in the nuclear DNA......, it is evident that proteins from the different DNA repair pathways interact [Y. Wang, D. Cortez, P. Yazdi, N. Neff, S.J. Elledge, J. Qin, BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures, Genes Dev. 14 (2000) 927-939; M. Christmann, M...

  7. Human inherited diseases with altered mechanisms for DNA repair and mutagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Cleaver, J.E.

    1977-01-01

    A variety of human diseases involving clinical symptoms of increased cancer risk, and disorders of the central nervous system, and of hematopoietic, immunological, ocular, and cutaneous tissues and embryological development have defects in biochemical pathways for excision repair of damaged DNA. Excision repair has multiple branches by which damaged nucleotides, bases, and cross-links are excised and requires cofactors that control the access of repair enzymes to damage in DNA in chromatin. Diseases in which repair defects are a consistent feature of their biochemistry include xeroderma pigmentosum, ataxia telangiectasia and Fanconi's anemia.

  8. Frontal Theta Activity Supports Detecting Mismatched Information in Visual Working Memory.

    Science.gov (United States)

    Liang, Tengfei; Hu, Zhonghua; Liu, Qiang

    2017-01-01

    During the comparison stage of visual working memory (VWM) processing, detecting the mismatch between the external sensory input and internal representations is a crucial cognitive ability for human, but the neural mechanism behind it remains largely unclear. The present study investigated the role of frontal theta power in detecting the mismatched information in VWM in a delayed matching task. A control task required to compare two simultaneously presented visual figures was also designed as a contrast to exclude the possibility that frontal theta activity just reflecting the non-memory-related behavioral conflicts. To better characterize the control mechanisms shaped by the frontal theta oscillation in human VWM, colored shapes were adopted as materials while both the task-relevant shape feature and task-irrelevant color feature could be mismatched. We found that the response times of participants were significantly delayed under the relevant- and irrelevant-mismatch conditions in both tasks and the conjunction-mismatch condition in delayed matching task. While our EEG data showed that increased frontal theta power was only observed under the relevant- and conjunction-mismatch conditions in the delayed matching task, but not the control task. These findings suggest that the frontal distributed theta activity observed here reflects the detection of mismatched information during the comparison stage of VWM, rather than the response-related conflicts. Furthermore, it is consistent with the proposal that theta-band oscillation can act as a control mechanism in working memory function so that the target-mismatched information in VWM could be successfully tracked. We also propose a possible processing structure to explain the neural dynamics underlying the mismatch detection process in VWM.

  9. Frontal Theta Activity Supports Detecting Mismatched Information in Visual Working Memory

    Directory of Open Access Journals (Sweden)

    Tengfei Liang

    2017-10-01

    Full Text Available During the comparison stage of visual working memory (VWM processing, detecting the mismatch between the external sensory input and internal representations is a crucial cognitive ability for human, but the neural mechanism behind it remains largely unclear. The present study investigated the role of frontal theta power in detecting the mismatched information in VWM in a delayed matching task. A control task required to compare two simultaneously presented visual figures was also designed as a contrast to exclude the possibility that frontal theta activity just reflecting the non-memory-related behavioral conflicts. To better characterize the control mechanisms shaped by the frontal theta oscillation in human VWM, colored shapes were adopted as materials while both the task-relevant shape feature and task-irrelevant color feature could be mismatched. We found that the response times of participants were significantly delayed under the relevant- and irrelevant-mismatch conditions in both tasks and the conjunction-mismatch condition in delayed matching task. While our EEG data showed that increased frontal theta power was only observed under the relevant- and conjunction-mismatch conditions in the delayed matching task, but not the control task. These findings suggest that the frontal distributed theta activity observed here reflects the detection of mismatched information during the comparison stage of VWM, rather than the response-related conflicts. Furthermore, it is consistent with the proposal that theta-band oscillation can act as a control mechanism in working memory function so that the target-mismatched information in VWM could be successfully tracked. We also propose a possible processing structure to explain the neural dynamics underlying the mismatch detection process in VWM.

  10. DNA mismatch repair protein deficient non-neoplastic colonic crypts: a novel indicator of Lynch syndrome.

    Science.gov (United States)

    Pai, Rish K; Dudley, Beth; Karloski, Eve; Brand, Randall E; O'Callaghan, Neil; Rosty, Christophe; Buchanan, Daniel D; Jenkins, Mark A; Thibodeau, Stephen N; French, Amy J; Lindor, Noralane M; Pai, Reetesh K

    2018-06-08

    Lynch syndrome is the most common form of hereditary colorectal carcinoma. However, establishing the diagnosis of Lynch syndrome is challenging, and ancillary studies that distinguish between sporadic DNA mismatch repair (MMR) protein deficiency and Lynch syndrome are needed, particularly when germline mutation studies are inconclusive. The aim of this study was to determine if MMR protein-deficient non-neoplastic intestinal crypts can help distinguish between patients with and without Lynch syndrome. We evaluated the expression of MMR proteins in non-neoplastic intestinal mucosa obtained from colorectal surgical resection specimens from patients with Lynch syndrome-associated colorectal carcinoma (n = 52) and patients with colorectal carcinoma without evidence of Lynch syndrome (n = 70), including sporadic MMR protein-deficient colorectal carcinoma (n = 30), MMR protein proficient colorectal carcinoma (n = 30), and "Lynch-like" syndrome (n = 10). MMR protein-deficient non-neoplastic colonic crypts were identified in 19 of 122 (16%) patients. MMR protein-deficient colonic crypts were identified in 18 of 52 (35%) patients with Lynch syndrome compared to only 1 of 70 (1%) patients without Lynch syndrome (p Lynch-like" syndrome and harbored two MSH2-deficient non-neoplastic colonic crypts. MMR protein-deficient non-neoplastic colonic crypts were not identified in patients with sporadic MMR protein-deficient or MMR protein proficient colorectal carcinoma. Our findings suggest that MMR protein-deficient colonic crypts are a novel indicator of Lynch syndrome, and evaluation for MMR protein-deficient crypts may be a helpful addition to Lynch syndrome diagnostics.

  11. The relationship between the PD-1/PD-L1 pathway and DNA mismatch repair in cervical cancer and its clinical significance

    Directory of Open Access Journals (Sweden)

    Feng YC

    2018-01-01

    Full Text Available Yang-chun Feng,1,2 Wen-li Ji,3 Na Yue,3 Yan-chun Huang,2 Xiu-min Ma1 1Clinical Laboratory Center, The First Affiliated Hospital of Xinjiang Medical University, 2Clinical Laboratory Center, 3Clinical Pathology Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, People’s Republic of China Background: According to recent clinical observations, deficient DNA mismatch repair (dMMR is capable of improving antitumor effects of the PD-1/PD-L1 pathway, suggesting that dMMR may act as a prognostic indicator of PD-1/PD-L1 antibody drugs. In this study, we examined the dMMR and PD-1/PD-L1 expression, as well as explored the correlation of dMMR status with PD-1/PD-L1 expression in cervical cancer patients, in order to optimize cervical cancer patient selection for PD-1/PD-L1 antibody drug treatment, which is helpful to avoid adverse effects and keep costs manageable. Methods: Sixty-six tissue samples from patients with squamous cell carcinoma were collected, and data of their clinical characteristics were also gathered. Based on these samples, the expression levels of MLH1, MSH2, and PD-L1 in cancer cells were tested by immunohistochemical assay (IHC. Moreover, PD-1/PD-L1 expression in tumor-invading lymphocytes (TILs was detected by IHC as well. Six single-nucleotide-repeat markers of microsatellite instability (MSI, including NR-27, MONO-27, BAT-25, NR-24, NR-21, and BAT-26, were tested by capillary electrophoresis sequencer analysis. According to expression of MLH1, MSH2 and the MSI test, all 66 cases were divided into dMMR or proficient DNA mismatch repair (pMMR groups. The comparisons of dMMR and PD-L1 in cancer cells and of PD-1/PD-L1 in TILs were conducted categorized by age, childbearing history, history of abortion, ethnicity, and cancer cell differentiation subgroup. Furthermore, PD-L1 levels in cancer cells and PD-1/PD-L1 in TILs were analyzed and compared in both dMMR and pMMR subgroups. Results: Of the patient samples, 25

  12. [Constitutional mismatch repair-deficiency syndrome (CMMR-D) - a case report of a family with biallelic MSH6 mutation].

    Science.gov (United States)

    Ilenčíková, D

    2012-01-01

    This work gives comprehensive information about new recessively inherited syndrome characterized by development of childhood malignancies. Behind this new described syndrome, called Constitutional mismatch repair-deficiency syndrome (CMMR-D), there are biallelic mutations in genes, which cause adult cancer syndrom termed Lynch syndrom (Hereditary non-polyposis cancer syndrom-HNPCC) if they are heterozygous mutations. Biallelic germline mutations of genes MLH1, MSH2, MSH6 and PMS2 in CMMR-D are characterized by increased risk of hematological malignancies, atypical brain tumors and early onset of colorectal cancers. An accompanying manifestation of the disease are skin spots with diffuse margins and irregular pigmentation reminiscent of Café au lait spots of NF1. This paper reports a case of a family with CMMR-D caused by novel homozygous MSH6 mutations leading to gliomatosis cerebri, T-ALL in an 11-year-old female and glioblastoma multiforme in her 10-year-old brother, both with rapid progression of the diseases. A literature review of brain tumors in CMMR-D families shows that they are treatment-resistant and lead to early death. Therefore, this work highlights the importance of early identification of patients with CMMR-D syndrome - in terms of initiation of a screening program for early detection of malignancies as well as early surgical intervention.

  13. DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces cerevisiae

    Science.gov (United States)

    Boiteux, Serge; Jinks-Robertson, Sue

    2013-01-01

    DNA repair mechanisms are critical for maintaining the integrity of genomic DNA, and their loss is associated with cancer predisposition syndromes. Studies in Saccharomyces cerevisiae have played a central role in elucidating the highly conserved mechanisms that promote eukaryotic genome stability. This review will focus on repair mechanisms that involve excision of a single strand from duplex DNA with the intact, complementary strand serving as a template to fill the resulting gap. These mechanisms are of two general types: those that remove damage from DNA and those that repair errors made during DNA synthesis. The major DNA-damage repair pathways are base excision repair and nucleotide excision repair, which, in the most simple terms, are distinguished by the extent of single-strand DNA removed together with the lesion. Mistakes made by DNA polymerases are corrected by the mismatch repair pathway, which also corrects mismatches generated when single strands of non-identical duplexes are exchanged during homologous recombination. In addition to the true repair pathways, the postreplication repair pathway allows lesions or structural aberrations that block replicative DNA polymerases to be tolerated. There are two bypass mechanisms: an error-free mechanism that involves a switch to an undamaged template for synthesis past the lesion and an error-prone mechanism that utilizes specialized translesion synthesis DNA polymerases to directly synthesize DNA across the lesion. A high level of functional redundancy exists among the pathways that deal with lesions, which minimizes the detrimental effects of endogenous and exogenous DNA damage. PMID:23547164

  14. DNA repair in human cells exposed to combinations of carcinogenic agents

    International Nuclear Information System (INIS)

    Setlow, R.B.; Ahmed, F.E.

    1980-01-01

    Normal human and XP 2 fibroblasts were treated with uv plus uv-mimetic chemicals. The uv dose used was sufficient to saturate the uv excision repair system. Excision repair after combined treatments was estimated by unscheduled DNA synthesis, BrdUrd photolysis, and the loss of sites sensitive to a uv specific endonuclease. Since the repair of damage from uv and its mimetics is coordinately controlled we expected that there would be similar rate-limiting steps in the repair of uv and chemical damage and that after a combined treatment the total amount of repair would be the same as from uv or the chemicals separately. The expectation was not fulfilled. In normal cells repair after a combined treatment was additive whereas in XP cells repair after a combined treatment was usually less than after either agent separately. The chemicals tested were AAAF, DMBA-epoxide, 4NQO, and ICR-170

  15. Inhibition of colorectal cancer genomic copy number alterations and chromosomal fragile site tumor suppressor FHIT and WWOX deletions by DNA mismatch repair

    Science.gov (United States)

    Gelincik, Ozkan; Blecua, Pedro; Edelmann, Winfried; Kucherlapati, Raju; Zhou, Kathy; Jasin, Maria; Gümüş, Zeynep H.; Lipkin, Steven M.

    2017-01-01

    Homologous recombination (HR) enables precise DNA repair after DNA double strand breaks (DSBs) using identical sequence templates, whereas homeologous recombination (HeR) uses only partially homologous sequences. Homeologous recombination introduces mutations through gene conversion and genomic deletions through single-strand annealing (SSA). DNA mismatch repair (MMR) inhibits HeR, but the roles of mammalian MMR MutL homologues (MLH1, PMS2 and MLH3) proteins in HeR suppression are poorly characterized. Here, we demonstrate that mouse embryonic fibroblasts (MEFs) carrying Mlh1, Pms2, and Mlh3 mutations have higher HeR rates, by using 7,863 uniquely mapping paired direct repeat sequences (DRs) in the mouse genome as endogenous gene conversion and SSA reporters. Additionally, when DSBs are induced by gamma-radiation, Mlh1, Pms2 and Mlh3 mutant MEFs have higher DR copy number alterations (CNAs), including DR CNA hotspots previously identified in mouse MMR-deficient colorectal cancer (dMMR CRC). Analysis of The Cancer Genome Atlas CRC data revealed that dMMR CRCs have higher genome-wide DR HeR rates than MMR proficient CRCs, and that dMMR CRCs have deletion hotspots in tumor suppressors FHIT/WWOX at chromosomal fragile sites FRA3B and FRA16D (which have elevated DSB rates) flanked by paired homologous DRs and inverted repeats (IR). Overall, these data provide novel insights into the MMR-dependent HeR inhibition mechanism and its role in tumor suppression. PMID:29069730

  16. DNA mismatch repair proteins MLH1 and PMS2 can be imported to the nucleus by a classical nuclear import pathway.

    Science.gov (United States)

    de Barros, Andrea C; Takeda, Agnes A S; Dreyer, Thiago R; Velazquez-Campoy, Adrian; Kobe, Boštjan; Fontes, Marcos R M

    2018-03-01

    MLH1 and PMS2 proteins form the MutLα heterodimer, which plays a major role in DNA mismatch repair (MMR) in humans. Mutations in MMR-related proteins are associated with cancer, especially with colon cancer. The N-terminal region of MutLα comprises the N-termini of PMS2 and MLH1 and, similarly, the C-terminal region of MutLα is composed by the C-termini of PMS2 and MLH1, and the two are connected by linker region. The nuclear localization sequences (NLSs) necessary for the nuclear transport of the two proteins are found in this linker region. However, the exact NLS sequences have been controversial, with different sequences reported, particularly for MLH1. The individual components are not imported efficiently, presumably due to their C-termini masking their NLSs. In order to gain insights into the nuclear transport of these proteins, we solved the crystal structures of importin-α bound to peptides corresponding to the supposed NLSs of MLH1 and PMS2 and performed isothermal titration calorimetry to study their binding affinities. Both putative MLH1 and PMS2 NLSs can bind to importin-α as monopartite NLSs, which is in agreement with some previous studies. However, MLH1-NLS has the highest affinity measured by a natural NLS peptide, suggesting a major role of MLH1 protein in nuclear import compared to PMS2. Finally, the role of MLH1 and PMS2 in the nuclear transport of the MutLα heterodimer is discussed. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  17. Distinct Clinicopathological Patterns of Mismatch Repair Status in Colorectal Cancer Stratified by KRAS Mutations.

    Directory of Open Access Journals (Sweden)

    Wenbin Li

    Full Text Available In sporadic colorectal cancer (CRC, the BRAFV600E mutation is associated with deficient mismatch repair (MMR status and inversely associated with to KRAS mutations. In contrast to deficient MMR (dMMR CRC, data on the presence of KRAS oncogenic mutations in proficient MMR (pMMR CRC and their relationship with tumor progression are scarce. We therefore examined the MMR status in combination with KRAS mutations in 913 Chinese patients and correlated the findings obtained with clinical and pathological features. The MMR status was determined based on detection of MLH1, MSH2, MSH6 and PMS2 expression. KRAS mutation and dMMR status were detected in 36.9% and 7.5% of cases, respectively. Four subtypes were determined by MMR and KRAS mutation status: KRAS (+/pMMR (34.0%, KRAS (+/dMMR (2.9%, KRAS (-/pMMR (58.5% and KRAS (-/dMMR (4.6%. A higher percentage of pMMR tumors with KRAS mutation were most likely to be female (49.0%, proximal located (45.5%, a mucinous histology (38.4%, and to have increased lymph node metastasis (60.3%, compared with pMMR tumors without BRAFV600E and KRAS mutations (36.0%, 29.3%, 29.4% and 50.7%, respectively; all P < 0.01. To the contrary, compared with those with KRAS(-/dMMR tumors, patients with KRAS(+/dMMR tumors demonstrated no statistically significant differences in gender, tumor location, pT depth of invasion, lymph node metastasis, pTNM stage, and histologic grade. This study revealed that specific epidemiologic and clinicopathologic characteristics are associated with MMR status stratified by KRAS mutation. Knowledge of MMR and KRAS mutation status may enhance molecular pathologic staging of CRC patients and metastatic progression in CRC can be estimated based on the combination of these biomarkers.

  18. DNA Damage Induced by Alkylating Agents and Repair Pathways

    Science.gov (United States)

    Kondo, Natsuko; Takahashi, Akihisa; Ono, Koji; Ohnishi, Takeo

    2010-01-01

    The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O6-methylguanine-DNA methyltransferase, and O6MeG:T mispairs are recognized by the mismatch repair system (MMR). MMR cannot repair the O6MeG/T mispairs, which eventually lead to double-strand breaks. Bifunctional alkylating agents form interstrand cross-links (ICLs) which are more complex and highly cytotoxic. ICLs are repaired by complex of NER factors (e.g., endnuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1), Fanconi anemia repair, and homologous recombination. A detailed understanding of how cells cope with DNA damage caused by alkylating agents is therefore potentially useful in clinical medicine. PMID:21113301

  19. Dynamic maps of UV damage formation and repair for the human genome.

    Science.gov (United States)

    Hu, Jinchuan; Adebali, Ogun; Adar, Sheera; Sancar, Aziz

    2017-06-27

    Formation and repair of UV-induced DNA damage in human cells are affected by cellular context. To study factors influencing damage formation and repair genome-wide, we developed a highly sensitive single-nucleotide resolution damage mapping method [high-sensitivity damage sequencing (HS-Damage-seq)]. Damage maps of both cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidone (6-4) photoproducts [(6-4)PPs] from UV-irradiated cellular and naked DNA revealed that the effect of transcription factor binding on bulky adducts formation varies, depending on the specific transcription factor, damage type, and strand. We also generated time-resolved UV damage maps of both CPDs and (6-4)PPs by HS-Damage-seq and compared them to the complementary repair maps of the human genome obtained by excision repair sequencing to gain insight into factors that affect UV-induced DNA damage and repair and ultimately UV carcinogenesis. The combination of the two methods revealed that, whereas UV-induced damage is virtually uniform throughout the genome, repair is affected by chromatin states, transcription, and transcription factor binding, in a manner that depends on the type of DNA damage.

  20. Cell-free assay measuring repair DNA synthesis in human fibroblasts

    International Nuclear Information System (INIS)

    Ciarrocchi, G.; Linn, S.

    1978-01-01

    Osmotic disruption of confluent cultured human fibroblasts that have been irradiated or exposed to chemical carcinogens allows the specific measurement of repair DNA synthesis using dTTP as a precursor. Fibroblasts similarly prepared from various xeroderma pigmentosum cell lines show the deficiencies of uv-induced DNA synthesis predicted from in vivo studies, while giving normal responses to methylmethanesulfonate. A pyrimidine-dimer-specific enzyme, T4 endonuclease V, stimulated the rate of uv-induced repair synthesis with normal and xeroderma pigmentosum cell lines. This system should prove useful for identifying agents that induce DNA repair, and cells that respond abnormally to such induction. It should also be applicable to an in vitro complementation assay with repair-defective cells and proteins obtained from repair-proficient cells. Finally, by using actively growing fibroblasts and thymidine in the system, DNA replication can be measured and studied in vitro

  1. NPM-ALK mediates phosphorylation of MSH2 at tyrosine 238, creating a functional deficiency in MSH2 and the loss of mismatch repair

    International Nuclear Information System (INIS)

    Bone, K M; Wang, P; Wu, F; Wu, C; Li, L; Bacani, J T; Andrew, S E; Lai, R

    2015-01-01

    The vast majority of anaplastic lymphoma kinase-positive anaplastic large cell lymphoma (ALK+ALCL) tumors express the characteristic oncogenic fusion protein NPM-ALK, which mediates tumorigenesis by exerting its constitutive tyrosine kinase activity on various substrates. We recently identified MSH2, a protein central to DNA mismatch repair (MMR), as a novel binding partner and phosphorylation substrate of NPM-ALK. Here, using liquid chromatography–mass spectrometry, we report for the first time that MSH2 is phosphorylated by NPM-ALK at a specific residue, tyrosine 238. Using GP293 cells transfected with NPM-ALK, we confirmed that the MSH2 Y238F mutant is not tyrosine phosphorylated. Furthermore, transfection of MSH2 Y238F into these cells substantially decreased the tyrosine phosphorylation of endogenous MSH2. Importantly, gene transfection of MSH2 Y238F abrogated the binding of NPM-ALK with endogenous MSH2, re-established the dimerization of MSH2:MSH6 and restored the sensitivity to DNA mismatch-inducing drugs, indicative of MMR return. Parallel findings were observed in two ALK+ALCL cell lines, Karpas 299 and SUP-M2. In addition, we found that enforced expression of MSH2 Y238F into ALK+ALCL cells alone was sufficient to induce spontaneous apoptosis. In conclusion, our findings have identified NPM-ALK-induced phosphorylation of MSH2 at Y238 as a crucial event in suppressing MMR. Our studies have provided novel insights into the mechanism by which oncogenic tyrosine kinases disrupt MMR

  2. Defective repair of UV-damaged DNA in human tumor and SV40-transformed human cells but not in adenovirus-transformed human cells

    International Nuclear Information System (INIS)

    Rainbow, A.J.

    1989-01-01

    The DNA repair capacities of five human tumor cell lines, one SV40-transformed human cell line and one adenovirus-transformed human cell line were compared with that of normal human fibroblasts using a sensitive host cell reactivation (HCR) technique. Unirradiated and UV-irradiated suspensions of adenovirus type 2 (Ad 2) were assayed for their ability to form viral structural antigens (Vag) in the various cell types using immunofluorescent staining. The survival of Vag formation for UV-irradiated Ad 2 was significantly reduced in all the human tumor cell lines and the SV40-transformed human line compared to the normal human fibroblasts, but was apparently normal in the adenovirus-transformed human cells. D 0 values for the UV survival of Ad 2 Vag synthesis in the tumor and virally transformed lines expressed as a percentage of that obtained on normal fibroblast strains were used as a measure of DNA repair capacity. Percent HCR values ranged from 26 to 53% in the tumor cells. These results indicate a deficiency in the repair of UV-induced DNA damage associated with human tumorigenesis and the transformation of human cells by SV40 but not the transformation of human cells by adenovirus. (author)

  3. The BER necessities: the repair of DNA damage in human-adapted bacterial pathogens.

    Science.gov (United States)

    van der Veen, Stijn; Tang, Christoph M

    2015-02-01

    During colonization and disease, bacterial pathogens must survive the onslaught of the host immune system. A key component of the innate immune response is the generation of reactive oxygen and nitrogen species by phagocytic cells, which target and disrupt pathogen molecules, particularly DNA, and the base excision repair (BER) pathway is the most important mechanism for the repair of such oxidative DNA damage. In this Review, we discuss how the human-specific pathogens Mycobacterium tuberculosis, Helicobacter pylori and Neisseria meningitidis have evolved specialized mechanisms of DNA repair, particularly their BER pathways, compared with model organisms such as Escherichia coli. This specialization in DNA repair is likely to reflect the distinct niches occupied by these important human pathogens in the host.

  4. Quantitation of the repair of gamma-radiation-induced double-strand DNA breaks in human fibroblasts

    International Nuclear Information System (INIS)

    Woods, W.G.

    1981-01-01

    The quantitation and repair of double-strand DNA breaks in human fibroblasts has been determined using a method involving the nondenaturing elution of DNA from a filter. DNA from cells from two human fibroblast lines exposed to γ-radiation from 0 to 10000 rad showed increasing retention on a filter with decreasing radiation dose, and the data suggest a linear relationship between double-strand breaks induced and radiation dose. The ability of normal human fibroblasts to repair double-strand breaks with various doses of radiation was demonstrated, with a tsub(1/2) of 10 min for repair of 5000 rad exposure and 39 min for repair of 10000 rad damage. The kinetics of the DNA rejoining were not linear and suggest that, as in the repair of single-strand breaks, both an initial fast and a later slow mechanism may be involved. (Auth.)

  5. Balancing repair and tolerance of DNA damage caused by alkylating agents

    OpenAIRE

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D.

    2012-01-01

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial ...

  6. Effects of radiations on DNA and repair of the damage. Progress report, May 1, 1976--March 31, 1977

    International Nuclear Information System (INIS)

    Hutchinson, F.

    1977-01-01

    Last year's report that repair of DNA double-strand breaks from gamma rays occurs in E. coli was verified by additional experiments. Such repair requires recA function and the presence of another DNA molecule of the same base sequence, so it may involve a recombination-like event. Ultraviolet light acting on DNA containing bromouracil produces double-strand breaks by single photochemical events, and a single model can explain this as well as other results. Strains of E. coli which are unusually mutable by bromouracil--uvrE, mutL, mutR, mutS, are defective in mismatch repair. This strengthens the suggestion in last year's report that such mutagenesis occurs when enzymes responsible for the removal of mismatched bases are unable to remove all the mismatches. Ultraviolet mutagenesis of lambda phage may be a useful model for the study of mutagenesis in cells, because the effects of lesions in the gene mutated (i.e., in the phage) and changes in enzyme systems (by treating the host cells) can be examined separately. Quantitative data support this approach

  7. Pyrimidine dimer formation and repair in human skin

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Harber, L.C.; Kochevar, I.E.

    1980-01-01

    Cyclobutyl pyrimidine dimers have been detected in the DNA of human skin following in vivo irradiation with suberythermal doses of ultraviolet (UV) radiation from FS-20 sun lamp fluorescent tubes. Dimers were assayed by treatment of extracted DNA with Micrococus luteus UV-specific endonuclease, alkaline agarose electrophoresis, and ethidum bromide staining. This technique, in contrast to conventional dimer assays, can be used with nonradioactive DNA and is optimal at low UV light doses. These data suggest that some dimer disappearance by excision repair occurs within 20 min of UV irradiation and that photoreactivation of dimers can make a contribution to the total repair process

  8. Expression of DNA mismatch repair proteins MLH1, MSH2, and MSH6 in recurrent glioblastoma.

    Science.gov (United States)

    Stark, Andreas M; Doukas, Alexander; Hugo, Heinz-Herrmann; Hedderich, Jürgen; Hattermann, Kirsten; Maximilian Mehdorn, H; Held-Feindt, Janka

    2015-02-01

    Methylated O6-methylguanin-DNA-methytransferase (MGMT) promoter methylation is associated with survival in patients with glioblastoma. Current evidence suggests that further mismatch repair genes play a pivotal role in the tumor response to treatment. Candidate genes are MLH1, MSH2, and MSH6. Formerly, we found evidence of prognostic impact of MLH1 and MSH6 immunohistochemical expression in a small series of patients with initial glioblastoma. Two hundred and eleven patients were included who underwent macroscopically total removal of primary glioblastoma and at least one re-craniotomy for recurrence. Immunohistochemical staining was performed on paraffin-embedded specimens of initial tumors with specific antibodies against MLH1, MSH2, and MSH6. RESULTS were compared to the Ki67 proliferation index and patient survival. Additionally, fresh frozen samples from 16 paired initial and recurrent specimens were examined using real-time reverse transcription polymerase chain reaction (RT-PCR) with specific primers against MLH1, MSH2, and MSH6. RESULTS were compared to MGMT status and survival. (1) Immunohistochemical expression of MSH6 was significantly associated with the Ki67 proliferation index (PMLH1, MLH2, and MSH6 over treatment combined with lacking MGMT methylation. In another two patients, decreased MLH1, MSH2, and MSH6 expression was observed in combination with MGMT promoter methylation. Our data indicate that there may be glioblastoma patient subgroups characterized by MMR-expression changes beyond MGMT promoter methylation. The immunohistochemical expression of MLH1, MSH2, and MSH6 in initial glioblastoma is not associated with patient survival.

  9. Constitutional Mismatch Repair Deficiency in Israel: High Proportion of Founder Mutations in MMR Genes and Consanguinity.

    Science.gov (United States)

    Baris, Hagit N; Barnes-Kedar, Inbal; Toledano, Helen; Halpern, Marisa; Hershkovitz, Dov; Lossos, Alexander; Lerer, Israela; Peretz, Tamar; Kariv, Revital; Cohen, Shlomi; Half, Elizabeth E; Magal, Nurit; Drasinover, Valerie; Wimmer, Katharina; Goldberg, Yael; Bercovich, Dani; Levi, Zohar

    2016-03-01

    Heterozygous germline mutations in any of the mismatch repair (MMR) genes, MLH1, MSH2, MSH6, and PMS2, cause Lynch syndrome (LS), an autosomal dominant cancer predisposition syndrome conferring a high risk of colorectal, endometrial, and other cancers in adulthood. Offspring of couples where both spouses have LS have a 1:4 risk of inheriting biallelic MMR gene mutations. These cause constitutional MMR deficiency (CMMRD) syndrome, a severe recessively inherited cancer syndrome with a broad tumor spectrum including mainly hematological malignancies, brain tumors, and colon cancer in childhood and adolescence. Many CMMRD children also present with café au lait spots and axillary freckling mimicking neurofibromatosis type 1. We describe our experience in seven CMMRD families demonstrating the role and importance of founder mutations and consanguinity on its prevalence. Clinical presentations included brain tumors, colon cancer, lymphoma, and small bowel cancer. In children from two nonconsanguineous Ashkenazi Jewish (AJ) families, the common Ashkenazi founder mutations were detected; these were homozygous in one family and compound heterozygous in the other. In four consanguineous families of various ancestries, different homozygous mutations were identified. In a nonconsanguineous Caucasus/AJ family, lack of PMS2 was demonstrated in tumor and normal tissues; however, mutations were not identified. CMMRD is rare, but, especially in areas where founder mutations for LS and consanguinity are common, pediatricians should be aware of it since they are the first to encounter these children. Early diagnosis will enable tailored cancer surveillance in the entire family and a discussion regarding prenatal genetic diagnosis. © 2015 Wiley Periodicals, Inc.

  10. Correlation of volumetric mismatch and mismatch of Alberta Stroke program Early CT scores on CT perfusion maps

    International Nuclear Information System (INIS)

    Lin, Ke; Rapalino, Otto; Lee, Benjamin; Do, Kinh G.; Sussmann, Amado R.; Pramanik, Bidyut K.; Law, Meng

    2009-01-01

    We aimed to determine if volumetric mismatch between tissue at risk and tissue destined to infarct on computed tomography perfusion (CTP) can be described by the mismatch of Alberta Stroke Program Early CT Score (ASPECTS). Forty patients with nonlacunar middle cerebral artery infarct 6 s and <2.0 mL per 100 g, respectively. Two other raters assigned ASPECTS to the same MTT and CBV maps while blinded to the volumetric data. Volumetric mismatch was deemed present if ≥20%. ASPECTS mismatch (=CBV ASPECTS - MTT ASPECTS) was deemed present if ≥1. Correlation between the two types of mismatches was assessed by Spearman's coefficient (ρ). ROC curve analyses were performed to determine the optimal ASPECTS mismatch cut point for volumetric mismatch ≥20%, ≥50%, ≥100%, and ≥150%. Median volumetric mismatch was 130% (range 10.9-2,031%) with 31 (77.5%) being ≥20%. Median ASPECTS mismatch was 2 (range 0-6) with 26 (65%) being ≥1. ASPECTS mismatch correlated strongly with volumetric mismatch with ρ = 0.763 [95% CI 0.585-0.870], p < 0.0001. Sensitivity and specificity for volumetric mismatch ≥20% was 83.9% [95% CI 65.5-93.5] and 100% [95% CI 65.9-100], respectively, using ASPECTS mismatch ≥1. Volumetric mismatch ≥50%, ≥100%, and ≥150% were optimally identified using ASPECTS mismatch ≥1, ≥2, and ≥2, respectively. On CTP, ASPECTS mismatch showed strong correlation to volumetric mismatch. ASPECTS mismatch ≥1 was the optimal cut point for volumetric mismatch ≥20%. (orig.)

  11. Inhibition of DNA repair in ultraviolet-irradiated human cells by hydroxyurea

    International Nuclear Information System (INIS)

    Francis, A.A.; Carrier, W.L.; Smith, D.P.; Regan, J.D.; Blevins, R.D.

    1979-01-01

    The effect on DNA repair in ultraviolet-irradiated human skin fibroblasts by hydroxyurea has been examined in this study using three independent methods for measuring DNA repair: the 5-bromodeoxyuridine photolysis assay which measures DNA repair replication, chromatographic measurement of thymine-containing dimers, and measurement of specific ultraviolet-endonuclease-sensitive sites in irradiated DNA. Little effect on hydroxyurea was observed at the concentration of 2mM, which is often used to inhibit semiconservative DNA synthesis; however, 10 mM hydroxyurea resulted in marked inhibition (65-70%) of excision repair. This inhibition was accompanied by a possible doubling in the size of the repaired region. The accumulation of large numbers of single-strand breaks following ultraviolet irradiation and hydroxyurea incubation seen by other investigators was not observed with the normal skin fibroblasts used in this study. A comparison of hydroxyurea effects on the different DNA repair assays indicates inhibition of one step in DNA repair also results in varying degrees of inhibition of other steps as well. (Auth.)

  12. Inhibition of DNA repair in ultraviolet-irradiated human cells by hydroxyurea

    Energy Technology Data Exchange (ETDEWEB)

    Francis, A.A. (Oak Ridge National Lab., TN); Blevins, R.D.; Carrier, W.L.; Smith, D.P.; Regan, J.D.

    1979-01-01

    The effect on DNA repair in ultraviolet-irradiated human skin fibroblasts by hydroxyurea has been examined in this study using three independent methods for measuring DNA repair: the 5-bromodeoxyuridine photolysis assay which measures DNA repair replication, chromatographic measurement of thymine-containing dimers, and measurement of specific ultraviolet-endonuclease-sensitive sites in irradiated DNA. Little effect of hydroxyurea was observed at the concentration of 2 mM, which is often used to inhibit semiconservative DNA synthesis; however, 10 mM hydroxyurea resulted in marked inhibition (65 to 70%) of excision repair. This inhibition was accompanied by a possible doubling in the size of the repaired region. The accumulation of large numbers of single-strand breaks following ultraviolet irradiation and hydroxyurea incubation seen by other investigators was not observed with the normal skin fibroblasts used in this study. A comparison of hydroxyurea effects on the different DNA repair assays indicates inhibition of one step in DNA repair also results in varying degrees of inhibition of other steps as well.

  13. Nucleotide excision repair : complexes and complexities : a study of global genome repair in human cells

    NARCIS (Netherlands)

    Volker, Marcel

    2006-01-01

    Of all exogenous agents that damage genomic DNA and hence threaten its integrity, the ultraviolet B (UVB) component of sunlight is highly relevant because of its abundance. UVB induces predominantly cyclobutane pyrimidine dimers and 6-4 photoproducts. In humans, these photolesions are repaired by

  14. DNA methylation in human fibroblasts following DNA damage and repair

    International Nuclear Information System (INIS)

    Kastan, M.B.

    1984-01-01

    Methylation of deoxycytidine (dCyd) incorporated by DNA excision repair synthesis in human diploid fibroblasts following damage with ultraviolet radiation (UV), N-methyl-N-nitrosourea, or N-acetoxy-2-acetylaminofluorene was studied utilizing [6- 3 H]dCyd to label repaired DNA specifically and high performance liquid chromatographic analysis to quantify the percentage of deoxycytidine converted to 5-methyldeoxycytidine (m 5 dCyd). In confluent, nondividing cells, methylation in repair patches induced by all three agents is slow and incomplete. Whereas after DNA replication a level of 3.4% m 5 dCyd is reached in less than 2 hours, following UV-stimulated repair synthesis in confluent cells it takes about 3 days to reach a level of approx.2.0% m 5 dCyd in the repair patch. This undermethylation of repair patches occurs throughout the genome. In cells from cultures in logarithmic-phase growth, m 5 dCyd formation in UV-induced repair patches occurs faster and to a greater extent, reaching a level of approx.2.7% in 10-20 hours. Pre-existing hypomethylated repair patches in confluent cells are methylated further when the cells are stimulated to divide; however, the repair patch may still not be fully methylated before cell division occurs. Thus DNA damage and repair may lead to heritable loss of methylation at some sites. The distribution within chromatin of m 5 dCyd in repair patches was also investigated. Over a wide range of extents of digestion by staphylococcal nuclease or deoxyribonuclease I, the level of hypomethylation in repaired DNA in nuclease sensitive and resistant regions of chromatin was constant relative to the genomic level of methylation in these regions. Similar conclusions were reached in experiments with isolated mononucleosomes

  15. Mismatch repair protein deficient endometrioid adenocarcinomas, metastasizing to adrenal gland and lymph nodes: Unusual cases with diagnostic implications

    Directory of Open Access Journals (Sweden)

    Bharat Rekhi

    2015-01-01

    Full Text Available Recently, certain endometrial carcinomas have been found to be associated with mismatch repair (MMR protein defects/deficiency. A 39-year-old female presented with cough, decreased appetite and significant weight loss since 2 months. Earlier, she had undergone total abdominal hysterectomy with bilateral salpingo-oophorectomy (TAH-BSO for endometrioid adenocarcinoma. Imaging disclosed an 8 cm-sized adrenal mass that was surgically excised. Histopathology of the adrenal tumor, endocervical tumor, and endometrial biopsy revealed Federation of Gynecology and Obstetrics (FIGO Grade II to III endometrioid adenocarcinoma. By immunohistochemistry, tumor cells were positive for cytokeratin 7, epithelial membrane antigen, PAX8, MLH1 and PMS2 while negative for estrogen receptor (ER, progesterone receptor (PR, MSH2 and MSH6. She underwent adjuvant radiotherapy and chemotherapy. A 34-year-old lady presented with vaginal bleeding since 9 months. She underwent TAH-BSO, reported as FIGO Grade III endometrioid adenocarcinoma. By immunohistochemistry, tumor cells were negative for ER, PR, MLH1, and PMS2 while positive for MSH2 and MSH6. She underwent adjuvant radiotherapy and chemotherapy. However, she developed multiple nodal and pericardial metastases and succumbed to the disease within a year post-diagnosis. Certain high-grade endometrioid adenocarcinomas occurring in younger women are MMR protein deficient and display an aggressive clinical course. Adrenal metastasis in endometrial carcinomas is rare.

  16. Repair of DNA in replicated and unreplicated portions of the human genome

    International Nuclear Information System (INIS)

    Waters, R.

    1979-01-01

    Portions of the human genome that have replicated after ultraviolet light irradiation and those that remain unreplicated have both been examined for the distribution of pyrimidine dimers and the extent of repair replication following their removal. The data indicate that the number of unrepaired dimers and the extent of repair replication seen after their excision are equal in the replicated and unreplicated DNA. Furthermore, the daughter strand of replicated DNA is larger than the average interdimer distance found in the parental strand. Hence, DNA replication in normal human fibroblasts is clearly capable of getting past pyrimidine dimers, and a preferential repair of such lesions in DNA that is about to be or has been replicated does not operate to any visible extent in these cells. (author)

  17. Correlation and agreement between eplet mismatches calculated using serological, low-intermediate and high resolution molecular human leukocyte antigen typing methods.

    Science.gov (United States)

    Fidler, Samantha; D'Orsogna, Lloyd; Irish, Ashley B; Lewis, Joshua R; Wong, Germaine; Lim, Wai H

    2018-03-02

    Structural human leukocyte antigen (HLA) matching at the eplet level can be identified by HLAMatchmaker, which requires the entry of four-digit alleles. The aim of this study was to evaluate the agreement between eplet mismatches calculated by serological and two-digit typing methods compared to high-resolution four-digit typing. In a cohort of 264 donor/recipient pairs, the evaluation of measurement error was assessed using intra-class correlation to confirm the absolute agreement between the number of eplet mismatches at class I (HLA-A, -B, C) and II loci (HLA-DQ and -DR) calculated using serological or two-digit molecular typing compared to four-digit molecular typing methods. The proportion of donor/recipient pairs with a difference of >5 eplet mismatches between the HLA typing methods was also determined. Intra-class correlation coefficients between serological and four-digit molecular typing methods were 0.969 (95% confidence intervals [95% CI] 0.960-0.975) and 0.926 (95% CI 0.899-0.944), respectively; and 0.995 (95% CI 0.994-0.996) and 0.993 (95% CI 0.991-0.995), respectively between two-digit and four-digit molecular typing methods. The proportion of donor/recipient pairs with a difference of >5 eplet mismatches at class I and II loci was 4% and 16% for serological versus four-digit molecular typing methods, and 0% and 2% for two-digit versus four-digit molecular typing methods, respectively. In this small predominantly Caucasian population, compared with serology, there is a high level of agreement in the number of eplet mismatches calculated using two-compared to four-digit molecular HLA-typing methods, suggesting that two-digit typing may be sufficient in determining eplet mismatch load in kidney transplantation.

  18. Evaluating the performance of clinical criteria for predicting mismatch repair gene mutations in Lynch syndrome: a comprehensive analysis of 3,671 families.

    Science.gov (United States)

    Steinke, Verena; Holzapfel, Stefanie; Loeffler, Markus; Holinski-Feder, Elke; Morak, Monika; Schackert, Hans K; Görgens, Heike; Pox, Christian; Royer-Pokora, Brigitte; von Knebel-Doeberitz, Magnus; Büttner, Reinhard; Propping, Peter; Engel, Christoph

    2014-07-01

    Carriers of mismatch repair (MMR) gene mutations have a high lifetime risk for colorectal and endometrial cancers, as well as other malignancies. As mutation analysis to detect these patients is expensive and time-consuming, clinical criteria and tumor-tissue analysis are widely used as pre-screening methods. The aim of our study was to evaluate the performance of commonly applied clinical criteria (the Amsterdam I and II Criteria, and the original and revised Bethesda Guidelines) and the results of tumor-tissue analysis in predicting MMR gene mutations. We analyzed 3,671 families from the German HNPCC Registry and divided them into nine mutually exclusive groups with different clinical criteria. A total of 680 families (18.5%) were found to have a pathogenic MMR gene mutation. Among all 1,284 families with microsatellite instability-high (MSI-H) colorectal cancer, the overall mutation detection rate was 53.0%. Mutation frequencies and their distribution between the four MMR genes differed significantly between clinical groups (p small-bowel cancer (p small-bowel cancer were clinically relevant predictors for Lynch syndrome. © 2013 UICC.

  19. Mismatch Repair Proteins and Microsatellite Instability in Colorectal Carcinoma (MLH1, MSH2, MSH6 and PMS2): Histopathological and Immunohistochemical Study.

    Science.gov (United States)

    Ismael, Nour El Hoda S; El Sheikh, Samar A; Talaat, Suzan M; Salem, Eman M

    2017-03-15

    Colorectal cancer (CRC) is one of the most common cancers worldwide. Microsatellite instability (MSI) is detected in about 15% of all colorectal cancers. CRC with MSI has particular characteristics such as improved survival rates and better prognosis. They also have a distinct sensitivity to the action of chemotherapy. The aim of the study was to detect microsatellite instability in a cohort of colorectal cancer Egyptian patients using the immunohistochemical expression of mismatch repair proteins (MLH1, MSH2, MSH6 and PMS2). Cases were divided into Microsatellite stable (MSS), Microsatellite unstable low (MSI-L) and Microsatellite unstable high (MSI-H). This Microsatellite stability status was correlated with different clinicopathological parameters. There was a statistically significant correlation between the age of cases, tumor site & grade and the microsatellite stability status. There was no statistically significant correlation between the gender of patients, tumor subtype, stage, mucoid change, necrosis, tumor borders, lymphocytic response, lymphovascular emboli and the microsatellite stability status. Testing for MSI should be done for all colorectal cancer patients, especially those younger than 50 years old, right sided and high-grade CRCs.

  20. DNA repair synthesis in human fibroblasts requires DNA polymerase delta

    International Nuclear Information System (INIS)

    Nishida, C.; Reinhard, P.; Linn, S.

    1988-01-01

    When UV-irradiated cultured diploid human fibroblasts were permeabilized with Brij-58 then separated from soluble material by centrifugation, conservative DNA repair synthesis could be restored by a soluble factor obtained from the supernatant of similarly treated HeLa cells. Extensive purification of this factor yielded a 10.2 S, 220,000-dalton polypeptide with the DNA polymerase and 3'- to 5'-exonuclease activities reported for DNA polymerase delta II. Monoclonal antibody to KB cell DNA polymerase alpha, while binding to HeLa DNA polymerase alpha, did not bind to the HeLa DNA polymerase delta. Moreover, at micromolar concentrations N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate (BuPdGTP) and 2-(p-n-butylanilino)-2'-deoxyadenosine 5'-triphosphate (BuAdATP) were potent inhibitors of DNA polymerase alpha, but did not inhibit the DNA polymerase delta. Neither purified DNA polymerase alpha nor beta could promote repair DNA synthesis in the permeabilized cells. Furthermore, under conditions which inhibited purified DNA polymerase alpha by greater than 90%, neither monoclonal antibodies to DNA polymerase alpha, BuPdGTP, nor BuAdATP was able to inhibit significantly the DNA repair synthesis mediated by the DNA polymerase delta. Thus, it appears that a major portion of DNA repair synthesis induced by UV irradiation might be catalyzed by DNA polymerase delta. When xeroderma pigmentosum human diploid fibroblasts were utilized, DNA repair synthesis dependent upon ultraviolet light could be restored by addition of both T4 endonuclease V and DNA polymerase delta, but not by addition of either one alone

  1. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System*

    Science.gov (United States)

    Smith, Catherine E.; Bowen, Nikki; Graham, William J.; Goellner, Eva M.; Srivatsan, Anjana; Kolodner, Richard D.

    2015-01-01

    Previous studies reported the reconstitution of an Mlh1-Pms1-independent 5′ nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3′ nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg2+ and Mn2+ for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2-Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1-Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1-independent and Exo1-dependent MMR. PMID:26170454

  2. Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System.

    Science.gov (United States)

    Smith, Catherine E; Bowen, Nikki; Graham, William J; Goellner, Eva M; Srivatsan, Anjana; Kolodner, Richard D

    2015-08-28

    Previous studies reported the reconstitution of an Mlh1-Pms1-independent 5' nick-directed mismatch repair (MMR) reaction using Saccharomyces cerevisiae proteins. Here we describe the reconstitution of a mispair-dependent Mlh1-Pms1 endonuclease activation reaction requiring Msh2-Msh6 (or Msh2-Msh3), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) and a reconstituted Mlh1-Pms1-dependent 3' nick-directed MMR reaction requiring Msh2-Msh6 (or Msh2-Msh3), exonuclease 1 (Exo1), replication protein A (RPA), RFC, PCNA, and DNA polymerase δ. Both reactions required Mg(2+) and Mn(2+) for optimal activity. The MMR reaction also required two reaction stages in which the first stage required incubation of Mlh1-Pms1 with substrate DNA, with or without Msh2-Msh6 (or Msh2-Msh3), PCNA, and RFC but did not require nicking of the substrate, followed by a second stage in which other proteins were added. Analysis of different mutant proteins demonstrated that both reactions required a functional Mlh1-Pms1 endonuclease active site, as well as mispair recognition and Mlh1-Pms1 recruitment by Msh2-Msh6 but not sliding clamp formation. Mutant Mlh1-Pms1 and PCNA proteins that were defective for Exo1-independent but not Exo1-dependent MMR in vivo were partially defective in the Mlh1-Pms1 endonuclease and MMR reactions, suggesting that both reactions reflect the activation of Mlh1-Pms1 seen in Exo1-independent MMR in vivo. The availability of this reconstituted MMR reaction should now make it possible to better study both Exo1-independent and Exo1-dependent MMR. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Unaccusative Mismatches in Japanese.

    Science.gov (United States)

    Tsujimura, Natsuko

    Two instances of unaccusative verb mismatches in Japanese are examined. An unaccusative mismatch is the situation in which a different accusative diagnostic singles out different classes of intransitive verbs within and across languages. One type of unaccusative mismatch has to do with group C verbs, or verbs of manner with protagonist control.…

  4. Genotoxic thresholds, DNA repair, and susceptibility in human populations

    International Nuclear Information System (INIS)

    Jenkins, Gareth J.S.; Zair, Zoulikha; Johnson, George E.; Doak, Shareen H.

    2010-01-01

    It has been long assumed that DNA damage is induced in a linear manner with respect to the dose of a direct acting genotoxin. Thus, it is implied that direct acting genotoxic agents induce DNA damage at even the lowest of concentrations and that no 'safe' dose range exists. The linear (non-threshold) paradigm has led to the one-hit model being developed. This 'one hit' scenario can be interpreted such that a single DNA damaging event in a cell has the capability to induce a single point mutation in that cell which could (if positioned in a key growth controlling gene) lead to increased proliferation, leading ultimately to the formation of a tumour. There are many groups (including our own) who, for a decade or more, have argued, that low dose exposures to direct acting genotoxins may be tolerated by cells through homeostatic mechanisms such as DNA repair. This argument stems from the existence of evolutionary adaptive mechanisms that allow organisms to adapt to low levels of exogenous sources of genotoxins. We have been particularly interested in the genotoxic effects of known mutagens at low dose exposures in human cells and have identified for the first time, in vitro genotoxic thresholds for several mutagenic alkylating agents (Doak et al., 2007). Our working hypothesis is that DNA repair is primarily responsible for these thresholded effects at low doses by removing low levels of DNA damage but becoming saturated at higher doses. We are currently assessing the roles of base excision repair (BER) and methylguanine-DNA methyltransferase (MGMT) for roles in the identified thresholds (Doak et al., 2008). This research area is currently important as it assesses whether 'safe' exposure levels to mutagenic chemicals can exist and allows risk assessment using appropriate safety factors to define such exposure levels. Given human variation, the mechanistic basis for genotoxic thresholds (e.g. DNA repair) has to be well defined in order that susceptible individuals are

  5. Advances in biologic augmentation for rotator cuff repair

    Science.gov (United States)

    Patel, Sahishnu; Gualtieri, Anthony P.; Lu, Helen H.; Levine, William N.

    2016-01-01

    Rotator cuff tear is a very common shoulder injury that often necessitates surgical intervention for repair. Despite advances in surgical techniques for rotator cuff repair, there is a high incidence of failure after surgery because of poor healing capacity attributed to many factors. The complexity of tendon-to-bone integration inherently presents a challenge for repair because of a large biomechanical mismatch between the tendon and bone and insufficient regeneration of native tissue, leading to the formation of fibrovascular scar tissue. Therefore, various biological augmentation approaches have been investigated to improve rotator cuff repair healing. This review highlights recent advances in three fundamental approaches for biological augmentation for functional and integrative tendon–bone repair. First, the exploration, application, and delivery of growth factors to improve regeneration of native tissue is discussed. Second, applications of stem cell and other cell-based therapies to replenish damaged tissue for better healing is covered. Finally, this review will highlight the development and applications of compatible biomaterials to both better recapitulate the tendon–bone interface and improve delivery of biological factors for enhanced integrative repair. PMID:27750374

  6. Alcohol Consumption and the Risk of Colorectal Cancer for Mismatch Repair Gene Mutation Carriers.

    Science.gov (United States)

    Dashti, S Ghazaleh; Buchanan, Daniel D; Jayasekara, Harindra; Ait Ouakrim, Driss; Clendenning, Mark; Rosty, Christophe; Winship, Ingrid M; Macrae, Finlay A; Giles, Graham G; Parry, Susan; Casey, Graham; Haile, Robert W; Gallinger, Steven; Le Marchand, Loïc; Thibodeau, Stephen N; Lindor, Noralane M; Newcomb, Polly A; Potter, John D; Baron, John A; Hopper, John L; Jenkins, Mark A; Win, Aung Ko

    2017-03-01

    Background: People with germline mutation in one of the DNA mismatch repair (MMR) genes have increased colorectal cancer risk. For these high-risk people, study findings of the relationship between alcohol consumption and colorectal cancer risk have been inconclusive. Methods: 1,925 MMR gene mutations carriers recruited into the Colon Cancer Family Registry who had completed a questionnaire on lifestyle factors were included. Weighted Cox proportional hazard regression models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association between alcohol consumption and colorectal cancer. Results: Colorectal cancer was diagnosed in 769 carriers (40%) at a mean (SD) age of 42.6 (10.3) years. Compared with abstention, ethanol consumption from any alcoholic beverage up to 14 g/day and >28 g/day was associated with increased colorectal cancer risk (HR, 1.50; 95% CI, 1.09-2.07 and 1.69; 95% CI, 1.07-2.65, respectively; P trend = 0.05), and colon cancer risk (HR, 1.78; 95% CI, 1.27-2.49 and 1.94; 95% CI, 1.19-3.18, respectively; P trend = 0.02). However, there was no clear evidence for an association with rectal cancer risk. Also, there was no evidence for associations between consumption of individual alcoholic beverage types (beer, wine, spirits) and colorectal, colon, or rectal cancer risk. Conclusions: Our data suggest that alcohol consumption, particularly more than 28 g/day of ethanol (∼2 standard drinks of alcohol in the United States), is associated with increased colorectal cancer risk for MMR gene mutation carriers. Impact: Although these data suggested that alcohol consumption in MMR carriers was associated with increased colorectal cancer risk, there was no evidence of a dose-response, and not all types of alcohol consumption were associated with increased risk. Cancer Epidemiol Biomarkers Prev; 26(3); 366-75. ©2016 AACR . ©2016 American Association for Cancer Research.

  7. Human Cell Assays for Synthesis-Dependent Strand Annealing and Crossing over During Double-Strand Break Repair.

    Science.gov (United States)

    Zapotoczny, Grzegorz; Sekelsky, Jeff

    2017-04-03

    DNA double-strand breaks (DSBs) are one of the most deleterious types of lesions to the genome. Synthesis-dependent strand annealing (SDSA) is thought to be a major pathway of DSB repair, but direct tests of this model have only been conducted in budding yeast and Drosophila To better understand this pathway, we developed an SDSA assay for use in human cells. Our results support the hypothesis that SDSA is an important DSB repair mechanism in human cells. We used siRNA knockdown to assess the roles of a number of helicases suggested to promote SDSA. None of the helicase knockdowns reduced SDSA, but knocking down BLM or RTEL1 increased SDSA. Molecular analysis of repair products suggests that these helicases may prevent long-tract repair synthesis. Since the major alternative to SDSA (repair involving a double-Holliday junction intermediate) can lead to crossovers, we also developed a fluorescent assay that detects crossovers generated during DSB repair. Together, these assays will be useful in investigating features and mechanisms of SDSA and crossover pathways in human cells. Copyright © 2017 Zapotoczny and Sekelsky.

  8. Human Cell Assays for Synthesis-Dependent Strand Annealing and Crossing over During Double-Strand Break Repair

    Directory of Open Access Journals (Sweden)

    Grzegorz Zapotoczny

    2017-04-01

    Full Text Available DNA double-strand breaks (DSBs are one of the most deleterious types of lesions to the genome. Synthesis-dependent strand annealing (SDSA is thought to be a major pathway of DSB repair, but direct tests of this model have only been conducted in budding yeast and Drosophila. To better understand this pathway, we developed an SDSA assay for use in human cells. Our results support the hypothesis that SDSA is an important DSB repair mechanism in human cells. We used siRNA knockdown to assess the roles of a number of helicases suggested to promote SDSA. None of the helicase knockdowns reduced SDSA, but knocking down BLM or RTEL1 increased SDSA. Molecular analysis of repair products suggests that these helicases may prevent long-tract repair synthesis. Since the major alternative to SDSA (repair involving a double-Holliday junction intermediate can lead to crossovers, we also developed a fluorescent assay that detects crossovers generated during DSB repair. Together, these assays will be useful in investigating features and mechanisms of SDSA and crossover pathways in human cells.

  9. DNA repair processes and their impairment in some human diseases

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1977-01-01

    Some human diseases show enhanced sensitivity to the action of environmental mutagens, and among these several are known which are defective in the repair of damaged DNA. Xeroderma pigmentosum (XP) is mainly defective in excision repair of a large variety of damaged DNA bases caused by ultraviolet light and chemical mutagens. XP involves at least 6 distinct groups, some of which may lack cofactors required for excising damage from chromatin. As a result of these defects the sensitivity of XP cells to many mutagens is increased 5- to 10-fold. Ataxia telangiectasia and Fanconi's anemia may similarly involve defects in repair of certain DNA base damage or cross-links, respectively. But most of these and other mutagen-sensitive diseases only show increases of about 2-fold in sensitivity to mutagens, and the biochemical defects in the diseases may be more complex and less directly involved in DNA repair than in XP. (Auth.)

  10. Common variants in mismatch repair genes associated with increased risk of sperm DNA damage and male infertility

    Directory of Open Access Journals (Sweden)

    Ji Guixiang

    2012-05-01

    Full Text Available Abstract Background The mismatch repair (MMR pathway plays an important role in the maintenance of the genome integrity, meiotic recombination and gametogenesis. This study investigated whether genetic variations in MMR genes are associated with an increased risk of sperm DNA damage and male infertility. Methods We selected and genotyped 21 tagging single nucleotide polymorphisms (SNPs in five MMR genes (MLH1, MLH3, PMS2, MSH4 and MSH5 using the SNPstream 12-plex platform in a case-control study of 1,292 idiopathic infertility patients and 480 fertile controls in a Chinese population. Sperm DNA damage levels were detected with the Tdt-mediated dUTP nick end labelling (TUNEL assay in 450 cases. Fluorescence resonance energy transfer (FRET and co-immunoprecipitation techniques were employed to determine the effects of functional variants. Results One intronic SNP in MLH1 (rs4647269 and two non-synonymous SNPs in PMS2 (rs1059060, Ser775Asn and MSH5 (rs2075789, Pro29Ser seem to be risk factors for the development of azoospermia or oligozoospermia. Meanwhile, we also identified a possible contribution of PMS2 rs1059060 to the risk of male infertility with normal sperm count. Among patients with normal sperm count, MLH1 rs4647269 and PMS2 rs1059060 were associated with increased sperm DNA damage. Functional analysis revealed that the PMS2 rs1059060 can affect the interactions between MLH1 and PMS2. Conclusions Our results provide evidence supporting the involvement of genetic polymorphisms in MMR genes in the aetiology of male infertility.

  11. Repair replication in cultured normal and transformed human fibroblasts

    International Nuclear Information System (INIS)

    Smith, C.A.; Hanawalt, P.C.

    1976-01-01

    Repair replication in response to ultraviolet irradiation has been studied in normal human diploid fibroblast cultures, W138, and an SV40 transformant, VA13. Quantitative comparisons have been made using the combined isotopic and density labelling method for assaying repair replication. No significant difference was found in the amount of repair replication performed, its dose response, or the time course between growing and confluent W138 cells, early passage and senescent cells, or normal W138 cells and the transformed VA13 cells. When [ 3 H]dThd was employed as the isotopic label in the presence of a 30-200 fold excess of unlabelled BrdUrd apparent differences in repair replication were seen between W138 cells shortly after subcultivation and cells which had been allowed to reach confluence. These differences were the same over a wide dose range and regardless of the passage number of the cells, but could be influenced by using different serum lots. The differences were not seen, however, when [ 3 H]BrdUrd provided the isotopic label; thus they reflect either impurities in the [ 3 H]dThd or a slight discrimination by some cellular process

  12. Enhanced capacity of DNA repair in human cytomegalovirus-infected cells

    International Nuclear Information System (INIS)

    Nishiyama, Y.; Rapp, F.

    1981-01-01

    Plaque formation in Vero cells by UV-irradiated herpes simplex virus was enhanced by infection with human cytomegalovirus (HCMV), UV irradiation, or treatment with methylmethanesulfonate. Preinfection of Vero cells with HCMV enhanced reactivation of UV-irradiated herpes simplex virus more significantly than did treatment with UV or methylmethanesulfonate alone. A similar enhancement by HCMV was observed in human embryonic fibroblasts, but not in xeroderma pigmentosum (XP12BE) cells. It was also found that HCMV infection enhanced hydroxyurea-resistant DNA synthesis induced by UV light or methylmethanesulfonate. Alkaline sucrose gradient sedimentation analysis revealed an enhanced rate of synthesis of all size classes of DNA in UV-irradiated HCMV-infected Vero cells. However, HCMV infection did not induce repairable lesions in cellular DNA and did not significantly inhibit host cell DNA synthesis, unlike UV or methylmethanesulfonate. These results indicate that HCMV enhanced DNA repair capacity in the host cells without producing detectable lesions in cellular DNA and without inhibiting DNA synthesis. This repair appeared to be error proof for UV-damaged herpes simplex virus DNA when tested with herpes simplex virus thymidine kinase-negative mutants

  13. Replication infidelity via a mismatch with Watson-Crick geometry.

    Science.gov (United States)

    Bebenek, Katarzyna; Pedersen, Lars C; Kunkel, Thomas A

    2011-02-01

    In describing the DNA double helix, Watson and Crick suggested that "spontaneous mutation may be due to a base occasionally occurring in one of its less likely tautomeric forms." Indeed, among many mispairing possibilities, either tautomerization or ionization of bases might allow a DNA polymerase to insert a mismatch with correct Watson-Crick geometry. However, despite substantial progress in understanding the structural basis of error prevention during polymerization, no DNA polymerase has yet been shown to form a natural base-base mismatch with Watson-Crick-like geometry. Here we provide such evidence, in the form of a crystal structure of a human DNA polymerase λ variant poised to misinsert dGTP opposite a template T. All atoms needed for catalysis are present at the active site and in positions that overlay with those for a correct base pair. The mismatch has Watson-Crick geometry consistent with a tautomeric or ionized base pair, with the pH dependence of misinsertion consistent with the latter. The results support the original idea that a base substitution can originate from a mismatch having Watson-Crick geometry, and they suggest a common catalytic mechanism for inserting a correct and an incorrect nucleotide. A second structure indicates that after misinsertion, the now primer-terminal G • T mismatch is also poised for catalysis but in the wobble conformation seen in other studies, indicating the dynamic nature of the pathway required to create a mismatch in fully duplex DNA.

  14. Replication infidelity via a mismatch with Watson–Crick geometry

    Science.gov (United States)

    Bebenek, Katarzyna; Pedersen, Lars C.; Kunkel, Thomas A.

    2011-01-01

    In describing the DNA double helix, Watson and Crick suggested that “spontaneous mutation may be due to a base occasionally occurring in one of its less likely tautomeric forms.” Indeed, among many mispairing possibilities, either tautomerization or ionization of bases might allow a DNA polymerase to insert a mismatch with correct Watson–Crick geometry. However, despite substantial progress in understanding the structural basis of error prevention during polymerization, no DNA polymerase has yet been shown to form a natural base–base mismatch with Watson–Crick-like geometry. Here we provide such evidence, in the form of a crystal structure of a human DNA polymerase λ variant poised to misinsert dGTP opposite a template T. All atoms needed for catalysis are present at the active site and in positions that overlay with those for a correct base pair. The mismatch has Watson–Crick geometry consistent with a tautomeric or ionized base pair, with the pH dependence of misinsertion consistent with the latter. The results support the original idea that a base substitution can originate from a mismatch having Watson–Crick geometry, and they suggest a common catalytic mechanism for inserting a correct and an incorrect nucleotide. A second structure indicates that after misinsertion, the now primer-terminal G•T mismatch is also poised for catalysis but in the wobble conformation seen in other studies, indicating the dynamic nature of the pathway required to create a mismatch in fully duplex DNA. PMID:21233421

  15. Ultraviolet-induced DNA excision repair in human B and T lymphocytes. II

    International Nuclear Information System (INIS)

    Yew, F.F.-H.; Johnson, R.T.

    1979-01-01

    Despite their great sensitivity to ultraviolet light purified human B and T lymphocytes are capable of complete repair provided that the ultraviolet dose does not exceed 0.5 Jm -2 . Their capacity to repair, as measured by the restoration of DNA supercoiling in preparations of nucleoids, and their survival are significantly increased in the presence of deoxyribonucleosides. Certain agents which inhibit semi-conservative DNA synthesis (hydroxyurea, 1-β-D-arabino-furanosylcytosine (arafCyt) either stop or delay the repair process in lymphocytes. The effect of hydroxyurea is eventually overcome spontaneously, but changes in the sedimentation behaviour of ultraviolet-irradiated nucleoids caused by arafCyt can only be neutralized by addition of deoxycytidine. The effective inhibition of repair by arafCyt permits the detection of extremely small amounts of ultraviolet damage and also the estimation of when repair is complete. (Auth.)

  16. Frequency of intrachromosomal homologous recombination induced by UV radiation in normally repairing and excision repair-deficient human cells

    International Nuclear Information System (INIS)

    Tsujimura, T.; Maher, V.M.; McCormick, J.J.; Godwin, A.R.; Liskay, R.M.

    1990-01-01

    To investigate the role of DNA damage and nucleotide excision repair in intrachromosomal homologous recombination, a plasmid containing duplicated copies of the gene coding for hygromycin resistance was introduced into the genome of a repair-proficient human cell line, KMST-6, and two repair-deficient lines, XP2OS(SV) from xeroderma pigmentosum complementation group A and XP2YO(SV) from complementation group F. Neither hygromycin-resistance gene codes for a functional enzyme because each contains an insertion/deletion mutation at a unique site, but recombination between the two defective genes can yield hygromycin-resistant cells. The rates of spontaneous recombination in normal and xeroderma pigmentosum cell strains containing the recombination substrate were found to be similar. The frequency of UV-induced recombination was determined for three of these cell strains. At low doses, the group A cell strain and the group F cell strain showed a significant increase in frequency of recombinants. The repair-proficient cell strain required 10-to 20-fold higher doses of UV to exhibit comparable increases in frequency of recombinants. These results suggest that unexcised DNA damage, rather than the excision repair process per se, stimulates such recombination

  17. A mismatch between supply and demand of social support in dementia care: a qualitative study on the perspectives of spousal caregivers and their social network members.

    Science.gov (United States)

    Dam, Alieske E H; Boots, Lizzy M M; van Boxtel, Martin P J; Verhey, Frans R J; de Vugt, Marjolein E

    2017-06-13

    Access to social support contributes to feelings of independence and better social health. This qualitative study aims to investigate multi-informant perspectives on informal social support in dementia care networks. Ten spousal caregivers of people with dementia (PwD) completed an ecogram, a social network card and a semi-structured interview. The ecogram aimed to trigger subjective experiences regarding social support. Subsequently, 17 network members were interviewed. The qualitative analyses identified codes, categories, and themes. Sixth themes emerged: (1) barriers to ask for support; (2) facilitators to ask for support; (3) barriers to offer support; (4) facilitators to offer support; (5) a mismatch between supply and demand of social support; and (6) openness in communication to repair the imbalance. Integrating social network perspectives resulted in a novel model identifying a mismatch between the supply and demand of social support, strengthened by a cognitive bias: caregivers reported to think for other social network members and vice versa. Openness in communication in formal and informal care systems might repair this mismatch.

  18. Immunocosmeceuticals: An emerging trend in repairing human hair damage

    Directory of Open Access Journals (Sweden)

    Karthika Selvan

    2013-01-01

    Full Text Available Hair is one of the most important portions for beauty care and in recent years grooming and cosmetic treatment of hair has drastically risen. Substantially, it may deteriorate and weaken the hair by modification of keratin protein. This makes the hair dry, brittle and split vend occurs due to loss of hair strength and the damage further increases with cosmetic treatments. The various poor ingredients are being used for repairing which have extremely poor compatibility with hair. Now the hair care products can be introduced with an active ingredient comprising a yolk derived anti-hair antibody immunoglobin obtained from egg of chickens immunized with damaged hair as antigen. This immuno-cosmeceuticals can repair the hair damage and imparts flexibility and smoothness to the hair. These effects are not lost by the ordinary shampooing. This article focuses on the characteristic of human hair, its damaging processes and the effects of immuno-cosmeceuticals for repairing the hair damage.

  19. An ex vivo human skin model for studying skin barrier repair.

    Science.gov (United States)

    Danso, Mogbekeloluwa O; Berkers, Tineke; Mieremet, Arnout; Hausil, Farzia; Bouwstra, Joke A

    2015-01-01

    In the studies described in this study, we introduce a novel ex vivo human skin barrier repair model. To develop this, we removed the upper layer of the skin, the stratum corneum (SC) by a reproducible cyanoacrylate stripping technique. After stripping the explants, they were cultured in vitro to allow the regeneration of the SC. We selected two culture temperatures 32 °C and 37 °C and a period of either 4 or 8 days. After 8 days of culture, the explant generated SC at a similar thickness compared to native human SC. At 37 °C, the early and late epidermal differentiation programmes were executed comparably to native human skin with the exception of the barrier protein involucrin. At 32 °C, early differentiation was delayed, but the terminal differentiation proteins were expressed as in stripped explants cultured at 37 °C. Regarding the barrier properties, the SC lateral lipid organization was mainly hexagonal in the regenerated SC, whereas the lipids in native human SC adopt a more dense orthorhombic organization. In addition, the ceramide levels were higher in the cultured explants at 32 °C and 37 °C than in native human SC. In conclusion, we selected the stripped ex vivo skin model cultured at 37 °C as a candidate model to study skin barrier repair because epidermal and SC characteristics mimic more closely the native human skin than the ex vivo skin model cultured at 32 °C. Potentially, this model can be used for testing formulations for skin barrier repair. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. DNA repair

    International Nuclear Information System (INIS)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals

  1. DNA repair systems and the pathogenesis of Mycobacterium tuberculosis: varying activities at different stages of infection.

    Science.gov (United States)

    Gorna, Alina E; Bowater, Richard P; Dziadek, Jaroslaw

    2010-05-25

    Mycobacteria, including most of all MTB (Mycobacterium tuberculosis), cause pathogenic infections in humans and, during the infectious process, are exposed to a range of environmental insults, including the host's immune response. From the moment MTB is exhaled by infected individuals, through an active and latent phase in the body of the new host, until the time they reach the reactivation stage, MTB is exposed to many types of DNA-damaging agents. Like all cellular organisms, MTB has efficient DNA repair systems, and these are believed to play essential roles in mycobacterial pathogenesis. As different stages of infection have great variation in the conditions in which mycobacteria reside, it is possible that different repair systems are essential for progression to specific phases of infection. MTB possesses homologues of DNA repair systems that are found widely in other species of bacteria, such as nucleotide excision repair, base excision repair and repair by homologous recombination. MTB also possesses a system for non-homologous end-joining of DNA breaks, which appears to be widespread in prokaryotes, although its presence is sporadic within different species within a genus. However, MTB does not possess homologues of the typical mismatch repair system that is found in most bacteria. Recent studies have demonstrated that DNA repair genes are expressed differentially at each stage of infection. In the present review, we focus on different DNA repair systems from mycobacteria and identify questions that remain in our understanding of how these systems have an impact upon the infection processes of these important pathogens.

  2. Risk of metachronous colon cancer following surgery for rectal cancer in mismatch repair gene mutation carriers.

    Science.gov (United States)

    Win, Aung Ko; Parry, Susan; Parry, Bryan; Kalady, Matthew F; Macrae, Finlay A; Ahnen, Dennis J; Young, Graeme P; Lipton, Lara; Winship, Ingrid; Boussioutas, Alex; Young, Joanne P; Buchanan, Daniel D; Arnold, Julie; Le Marchand, Loïc; Newcomb, Polly A; Haile, Robert W; Lindor, Noralane M; Gallinger, Steven; Hopper, John L; Jenkins, Mark A

    2013-06-01

    Despite regular surveillance colonoscopy, the metachronous colorectal cancer risk for mismatch repair (MMR) gene mutation carriers after segmental resection for colon cancer is high and total or subtotal colectomy is the preferred option. However, if the index cancer is in the rectum, management decisions are complicated by considerations of impaired bowel function. We aimed to estimate the risk of metachronous colon cancer for MMR gene mutation carriers who underwent a proctectomy for index rectal cancer. This retrospective cohort study comprised 79 carriers of germline mutation in a MMR gene (18 MLH1, 55 MSH2, 4 MSH6, and 2 PMS2) from the Colon Cancer Family Registry who had had a proctectomy for index rectal cancer. Cumulative risks of metachronous colon cancer were calculated using the Kaplan-Meier method. During median 9 years (range 1-32 years) of observation since the first diagnosis of rectal cancer, 21 carriers (27 %) were diagnosed with metachronous colon cancer (incidence 24.25, 95 % confidence interval [CI] 15.81-37.19 per 1,000 person-years). Cumulative risk of metachronous colon cancer was 19 % (95 % CI 9-31 %) at 10 years, 47 (95 % CI 31-68 %) at 20 years, and 69 % (95 % CI 45-89 %) at 30 years after surgical resection. The frequency of surveillance colonoscopy was 1 colonoscopy per 1.16 years (95 % CI 1.01-1.31 years). The AJCC stages of the metachronous cancers, where available, were 72 % stage I, 22 % stage II, and 6 % stage III. Given the high metachronous colon cancer risk for MMR gene mutation carriers diagnosed with an index rectal cancer, proctocolectomy may need to be considered.

  3. On-bead fluorescent DNA nanoprobes to analyze base excision repair activities

    International Nuclear Information System (INIS)

    Gines, Guillaume; Saint-Pierre, Christine; Gasparutto, Didier

    2014-01-01

    Graphical abstract: -- Highlights: •On magnetic beads fluorescent enzymatic assays. •Simple, easy, non-radioactive and electrophoresis-free functional assay. •Lesion-containing hairpin DNA probes are selective for repair enzymes. •The biosensing platform allows the measurement of DNA repair activities from purified enzymes or within cell free extracts. -- Abstract: DNA integrity is constantly threatened by endogenous and exogenous agents that can modify its physical and chemical structure. Changes in DNA sequence can cause mutations sparked by some genetic diseases or cancers. Organisms have developed efficient defense mechanisms able to specifically repair each kind of lesion (alkylation, oxidation, single or double strand break, mismatch, etc). Here we report the adjustment of an original assay to detect enzymes’ activity of base excision repair (BER), that supports a set of lesions including abasic sites, alkylation, oxidation or deamination products of bases. The biosensor is characterized by a set of fluorescent hairpin-shaped nucleic acid probes supported on magnetic beads, each containing a selective lesion targeting a specific BER enzyme. We have studied the DNA glycosylase alkyl-adenine glycosylase (AAG) and the human AP-endonuclease (APE1) by incorporating within the DNA probe a hypoxanthine lesion or an abasic site analog (tetrahydrofuran), respectively. Enzymatic repair activity induces the formation of a nick in the damaged strand, leading to probe's break, that is detected in the supernatant by fluorescence. The functional assay allows the measurement of DNA repair activities from purified enzymes or in cell-free extracts in a fast, specific, quantitative and sensitive way, using only 1 pmol of probe for a test. We recorded a detection limit of 1 μg mL −1 and 50 μg mL −1 of HeLa nuclear extracts for APE1 and AAG enzymes, respectively. Finally, the on-bead assay should be useful to screen inhibitors of DNA repair activities

  4. Measurement errors in multifrequency bioelectrical impedance analyzers with and without impedance electrode mismatch

    International Nuclear Information System (INIS)

    Bogónez-Franco, P; Nescolarde, L; Bragós, R; Rosell-Ferrer, J; Yandiola, I

    2009-01-01

    The purpose of this study is to compare measurement errors in two commercially available multi-frequency bioimpedance analyzers, a Xitron 4000B and an ImpediMed SFB7, including electrode impedance mismatch. The comparison was made using resistive electrical models and in ten human volunteers. We used three different electrical models simulating three different body segments: the right-side, leg and thorax. In the electrical models, we tested the effect of the capacitive coupling of the patient to ground and the skin–electrode impedance mismatch. Results showed that both sets of equipment are optimized for right-side measurements and for moderate skin–electrode impedance mismatch. In right-side measurements with mismatch electrode, 4000B is more accurate than SFB7. When an electrode impedance mismatch was simulated, errors increased in both bioimpedance analyzers and the effect of the mismatch in the voltage detection leads was greater than that in current injection leads. For segments with lower impedance as the leg and thorax, SFB7 is more accurate than 4000B and also shows less dependence on electrode mismatch. In both devices, impedance measurements were not significantly affected (p > 0.05) by the capacitive coupling to ground

  5. * Human Amniotic Mesenchymal Stromal Cells as Favorable Source for Cartilage Repair.

    Science.gov (United States)

    Muiños-López, Emma; Hermida-Gómez, Tamara; Fuentes-Boquete, Isaac; de Toro-Santos, Javier; Blanco, Francisco Javier; Díaz-Prado, Silvia María

    2017-09-01

    Localized trauma-derived breakdown of the hyaline articular cartilage may progress toward osteoarthritis, a degenerative condition characterized by total loss of articular cartilage and joint function. Tissue engineering technologies encompass several promising approaches with high therapeutic potential for the treatment of these focal defects. However, most of the research in tissue engineering is focused on potential materials and structural cues, while little attention is directed to the most appropriate source of cells endowing these materials. In this study, using human amniotic membrane (HAM) as scaffold, we defined a novel static in vitro model for cartilage repair. In combination with HAM, four different cell types, human chondrocytes, human bone marrow-derived mesenchymal stromal cells (hBMSCs), human amniotic epithelial cells, and human amniotic mesenchymal stromal cells (hAMSCs) were assessed determining their therapeutic potential. A chondral lesion was drilled in human cartilage biopsies simulating a focal defect. A pellet of different cell types was implanted inside the lesion and covered with HAM. The biopsies were maintained for 8 weeks in culture. Chondrogenic differentiation in the defect was analyzed by histology and immunohistochemistry. HAM scaffold showed good integration and adhesion to the native cartilage in all groups. Although all cell types showed the capacity of filling the focal defect, hBMSCs and hAMSCs demonstrated higher levels of new matrix synthesis. However, only the hAMSCs-containing group presented a significant cytoplasmic content of type II collagen when compared with chondrocytes. More collagen type I was identified in the new synthesized tissue of hBMSCs. In accordance, hBMSCs and hAMSCs showed better International Cartilage Research Society scoring although without statistical significance. HAM is a useful material for articular cartilage repair in vitro when used as scaffold. In combination with hAMSCs, HAM showed better

  6. The gastrointestinal manifestation of constitutional mismatch repair deficiency syndrome: from a single adenoma to polyposis-like phenotype and early onset cancer.

    Science.gov (United States)

    Levi, Z; Kariv, R; Barnes-Kedar, I; Goldberg, Y; Half, E; Morgentern, S; Eli, B; Baris, H N; Vilkin, A; Belfer, R G; Niv, Y; Elhasid, R; Dvir, R; Abu-Freha, N; Cohen, S

    2015-11-01

    Data on the clinical presentation of constitutional mismatch repair deficiency syndrome (CMMRD) is accumulating. However, as the extraintestinal manifestations are often fatal and occur at early age, data on the systematic evaluation of the gastrointestinal tract is scarce. Here we describe 11 subjects with verified biallelic carriage and who underwent colonoscopy, upper endoscopy and small bowel evaluation. Five subjects were symptomatic and in six subjects the findings were screen detected. Two subjects had colorectal cancer and few adenomatous polyps (19, 20 years), three subjects had polyposis-like phenotype (13, 14, 16 years), four subjects had few adenomatous polyps (8, 12-14 years) and two subjects had no polyps (both at age 6). Of the three subjects in the polyposis-like group, two subjects had already developed high-grade dysplasia or cancer and one subject had atypical juvenile polyps suggesting juvenile polyposis. Three out of the five subjects that underwent repeated exams had significant findings during short interval. The gastrointestinal manifestations of CMMRD are highly dependent upon age of examination and highly variable. The polyps may also resemble juvenile polyposis. Intensive surveillance according to current guidelines is mandatory. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Recent research in DNA repair, mutation and recombination: a report of the DNA Repair Network meeting, held at City University, London on 18 December 1995.

    Science.gov (United States)

    Jones, N J; Strike, P

    1996-09-02

    The now traditional one day Christmas DNA Repair meeting was held at City University, London for the third year in succession. With over 130 participants and a programme consisting of a total of 24 pre-offered presentations the meeting reached record dimensions. Attendees were from 24 institutions throughout the United Kingdom, and with several distinct research groups contained within the large contingents from the ICRF Clare Hall Laboratories and the MRC Cell Mutation Unit in Brighton, this indicates the increasing interest and depth of UK research in DNA repair. One slight disappointment of the meeting was the fall in the numbers of non-UK participants. Although the meeting in 1994 (Strike, 1995) saw an increase in presentations from Continental Europe (six countries including France, Germany. The Netherlands and Switzerland), the trend did not continue this year, with only Denmark being represented. The 24 contributors consisted of approximately equal numbers of postgraduate students, postdoctoral researchers and more "established' scientists reflecting the continuing policy of encouraging younger members of the repair community to present their work. The mix of presenters was particularly well illustrated by two excellent and consecutive talks by Professor Bryn Bridges (MRC Cell Mutation Unit) and Alison Mitchell, a postgraduate student in Stephen West's laboratory (ICRF, Clare Hall). The organisms under study were as equally disparate and included Archaebacteria, Escherichia coli. Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus, mice and men. The range of topics was also varied and included bacterial mutagenesis, NMR studies of Ada protein, preferential DNA repair, cell cycle checkpoint genes, reconstitution of nucleotide excision repair and V(D)J recombination in vitro, creation of repair deficient transgenic mice and mismatch defects in human cells. The result was a very successful meeting which was characterized by the consistently high

  8. Genetic polymorphisms in 85 DNA repair genes and bladder cancer risk.

    Science.gov (United States)

    Michiels, Stefan; Laplanche, Agnès; Boulet, Thomas; Dessen, Philippe; Guillonneau, Bertrand; Méjean, Arnaud; Desgrandchamps, François; Lathrop, Mark; Sarasin, Alain; Benhamou, Simone

    2009-05-01

    Several defense mechanisms have been developed and maintained during the evolution to protect human cells against damage produced from exogenous or endogenous sources. We examined the associations between bladder cancer and a panel of 652 polymorphisms from 85 genes involved in maintenance of genetic stability [base excision repair, nucleotide excision repair, double-strand break repair (DSBR) and mismatch repair, as well as DNA synthesis and cell cycle regulation pathways] in 201 incident bladder cancer cases and 326 hospital controls. Score statistics were used to test differences in haplotype frequencies between cases and controls in an unconditional logistic regression model. To account for multiple testing, we associated to each P-value the expected proportion of false discoveries (q-value). Haplotype analysis revealed significant associations (P genes (POLB and FANCA) with an associated q-value of 24%. A permutation test was also used to determine whether, in each pathway analyzed, there are more variants whose allelic frequencies are different between cases and controls as compared with what would be expected by chance. Differences were found for cell cycle regulation (P = 0.02) and to a lesser extent for DSBR (P = 0.05) pathways. These results hint to a few potential candidate genes; however, our study was limited by the small sample size and therefore low statistical power to detect associations. It is anticipated that genome-wide association studies will open new perspectives for interpretation of the results of extensive candidate gene studies such as ours.

  9. Educational Mismatch and Self-Employment

    Science.gov (United States)

    Bender, Keith A.; Roche, Kristen

    2013-01-01

    Previous research on educational mismatch concentrates on estimating its labor market consequences but with a focus on wage and salary workers. This paper examines the far less studied influence of mismatch on the self-employed. Using a sample of workers in science and engineering fields, results show larger earnings penalties for mismatch among…

  10. The induction and repair of cyclobutane thymidine dimers in human skin

    International Nuclear Information System (INIS)

    Roza, L.; Erasmus Univ., Rotterdam; Vermeulen, W.; Schans, G.P. van der; Lohman, P.H.M.

    1987-01-01

    The most important detrimental effect of ultraviolet radiation (UV) on the living cell, so far known, is the induction of damage in the DNA. The major photoproducts induced in DNA by UV-C (200-280 nm) and UV-B (280-315 nm) are the cyclobutane-type pyrimidine dimers, which have been implicated in UV-induced mutagenesis and carcinogenesis. Dimer lesions in DNA of cells may be repaired in the dark by a multi-enzyme process (excision repair), or via a light dependent enzymatic reaction known as photoreactivation (phr) which is specific for pyrimidine dimers. Although phr has been found to occur in a wide range of organisms, studies on the presence of phr in mammalian cells have yielded conflicting results. To investigate repair of pyrimidine dimers in human skin cells irradiated in vivo, a specific and sensitive detection method was developed based on a monoclonal antibody directed against thymidine dimers. Application together with a fluorescent immunostaining permits the direct detection of thymidine dimers in human skin cells. The method is used in studies aimed at a better understanding of the role of these lesions in the process of carcinogenesis. A report is given on the isolation and characterization of the antibodies, and their application in a study on the induction of pyrimidine dimers in human skin and on photorepair in cultured cells. 10 refs.; 2 figs

  11. Involvement of the DNA mismatch repair system in cisplatin sensitivity of testicular germ cell tumours.

    Science.gov (United States)

    Rudolph, Christiane; Melau, Cecilie; Nielsen, John E; Vile Jensen, Kristina; Liu, Dekang; Pena-Diaz, Javier; Rajpert-De Meyts, Ewa; Rasmussen, Lene Juel; Jørgensen, Anne

    2017-08-01

    Testicular germ cell tumours (TGCT) are highly sensitive to cisplatin-based chemotherapy, but patients with tumours containing differentiated teratoma components are less responsive to this treatment. The cisplatin sensitivity in TGCT has previously been linked to the embryonic phenotype in the majority of tumours, although the underlying mechanism largely remains to be elucidated. The aim of this study was to investigate the role of the DNA mismatch repair (MMR) system in the cisplatin sensitivity of TGCT. The expression pattern of key MMR proteins, including MSH2, MSH6, MLH1 and PMS2, were investigated during testis development and in the pathogenesis of TGCT, including germ cell neoplasia in situ (GCNIS). The TGCT-derived cell line NTera2 was differentiated using retinoic acid (10 μM, 6 days) after which MMR protein expression and activity, as well as cisplatin sensitivity, were investigated in both undifferentiated and differentiated cells. Finally, the expression of MSH2 was knocked down by siRNA in NTera2 cells after which the effect on cisplatin sensitivity was examined. MMR proteins were expressed in proliferating cells in the testes, while in malignant germ cells MMR protein expression was found to coincide with the expression of the pluripotency factor OCT4, with no or low expression in the more differentiated yolk sac tumours, choriocarcinomas and teratomas. In differentiated NTera2 cells we found a significantly (p cisplatin sensitivity, compared to undifferentiated NTera2 cells. Also, we found that partial knockdown of MSH2 expression in undifferentiated NTera2 cells resulted in a significantly (p cisplatin sensitivity. This study reports, for the first time, expression of the MMR system in fetal gonocytes, from which GCNIS cells are derived. Our findings in primary TGCT specimens and TGCT-derived cells suggest that a reduced sensitivity to cisplatin in differentiated TGCT components could result from a reduced expression of MMR proteins, in

  12. Importance of stent-graft design for aortic arch aneurysm repair

    Directory of Open Access Journals (Sweden)

    C Singh

    2017-02-01

    Full Text Available Aneurysm of the aorta is currently treated by open surgical repair or endovascular repair. However, when the aneurysm occurs in regions between the aortic arch and proximal descending aorta, it can be a complex pathology to treat due to its intricate geometry. When complex aortic aneurysms are treated with the conventional procedures, some of the patients present with significant post-operative complications and high mortality rate. Consequently, a clinically driven hybrid innovation known as the frozen elephant trunk procedure was introduced to treat complex aortic aneurysms. Although this procedure significantly reduces mortality rate and operating time, it is still associated with complications such as endoleaks, spinal cord ischemia, renal failure and stroke. Some of these complications are consequences of a mismatch in the biomechanical behaviour of the stent-graft device and the aorta. Research on complex aneurysm repair tended to focus more on the surgical procedure than the stent-graft design. Current stent-graft devices are suitable for straight vessels. However, when used to treat aortic aneurysm with complex geometry, these devices are ineffective in restoring the normal biological and biomechanical function of the aorta. A stent-graft device with mechanical properties that are comparable with the aorta and aortic arch could possibly lead to fewer post-operative complications, thus, better outcome for patients with complex aneurysm conditions. This review highlights the influence stent-graft design has on the biomechanical properties of the aorta which in turn can contribute to complications of complex aneurysm repair. Design attributes critical for minimising postoperative biomechanical mismatch are also discussed.

  13. Expression of DNA repair proteins MSH2, MLH1 and MGMT in human benign and malignant thyroid lesions: An immunohistochemical study

    Science.gov (United States)

    Giaginis, Constantinos; Michailidi, Christina; Stolakis, Vasileios; Alexandrou, Paraskevi; Tsourouflis, Gerasimos; Klijanienko, Jerzy; Delladetsima, Ioanna; Theocharis, Stamatios

    2011-01-01

    Summary Background DNA repair is a major defense mechanism, which contributes to the maintenance of genetic sequence, and minimizes cell death, mutation rates, replication errors, DNA damage persistence and genomic instability. Alterations in the expression levels of proteins participating in DNA repair mechanisms have been associated with several aspects of cancer biology. The present study aimed to evaluate the clinical significance of DNA repair proteins MSH2, MLH1 and MGMT in benign and malignant thyroid lesions. Material/Methods MSH2, MLH1 and MGMT protein expression was assessed immunohistochemically on paraffin-embedded thyroid tissues from 90 patients with benign and malignant lesions. Results The expression levels of MLH1 was significantly upregulated in cases with malignant compared to those with benign thyroid lesions (p=0.038). The expression levels of MGMT was significantly downregulated in malignant compared to benign thyroid lesions (p=0.001). Similar associations for both MLH1 and MGMT between cases with papillary carcinoma and hyperplastic nodules were also noted (p=0.014 and p=0.026, respectively). In the subgroup of malignant thyroid lesions, MSH2 downregulation was significantly associated with larger tumor size (p=0.031), while MLH1 upregulation was significantly associated with the presence of lymphatic and vascular invasion (p=0.006 and p=0.002, respectively). Conclusions Alterations in the mismatch repair proteins MSH2 and MLH1 and the direct repair protein MGMT may result from tumor development and/or progression. Further studies are recommended to draw definite conclusions on the clinical significance of DNA repair proteins in thyroid neoplasia. PMID:21358597

  14. Functional evaluation of DNA repair in human biopsies and their relation to other cellular biomarkers

    Czech Academy of Sciences Publication Activity Database

    Slyšková, Jana; Langie, S. A. S.; Collins, A. R.; Vodička, Pavel

    2014-01-01

    Roč. 116, č. 5 (2014) ISSN 1664-8021 R&D Projects: GA ČR(CZ) GAP304/12/1585 Institutional support: RVO:68378041 Keywords : base excision repair * nucleotide excision repair * human solid tissue Subject RIV: EB - Genetics ; Molecular Biology

  15. Repair of Avascular Meniscus Tears with Electrospun Collagen Scaffolds Seeded with Human Cells.

    Science.gov (United States)

    Baek, Jihye; Sovani, Sujata; Glembotski, Nicholas E; Du, Jiang; Jin, Sungho; Grogan, Shawn P; D'Lima, Darryl D

    2016-03-01

    The self-healing capacity of an injured meniscus is limited to the vascularized regions and is especially challenging in the inner avascular regions. As such, we investigated the use of human meniscus cell-seeded electrospun (ES) collagen type I scaffolds to produce meniscal tissue and explored whether these cell-seeded scaffolds can be implanted to repair defects created in meniscal avascular tissue explants. Human meniscal cells (derived from vascular and avascular meniscal tissue) were seeded on ES scaffolds and cultured. Constructs were evaluated for cell viability, gene expression, and mechanical properties. To determine potential for repair of meniscal defects, human meniscus avascular cells were seeded and cultured on aligned ES collagen scaffolds for 4 weeks before implantation. Surgical defects resembling "longitudinal tears" were created in the avascular zone of bovine meniscus and implanted with cell-seeded collagen scaffolds and cultured for 3 weeks. Tissue regeneration and integration were evaluated by histology, immunohistochemistry, mechanical testing, and magentic resonance imaging. Ex vivo implantation with cell-seeded collagen scaffolds resulted in neotissue that was significantly better integrated with the native tissue than acellular collagen scaffolds or untreated defects. Human meniscal cell-seeded ES collagen scaffolds may therefore be useful in facilitating meniscal repair of avascular meniscus tears.

  16. The mechanism of gene targeting in human somatic cells.

    Directory of Open Access Journals (Sweden)

    Yinan Kan

    2014-04-01

    Full Text Available Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB repair known as homologous recombination (HR. The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells.

  17. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    International Nuclear Information System (INIS)

    Hansson, J.; Keyse, S.M.; Lindahl, T.; Wood, R.D.

    1991-01-01

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurements of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links

  18. Dependence of u.v.-induced DNA excision repair on deoxyribonucleoside triphosphate concentrations in permeable human fibroblasts: a model for the inhibition of repair by hydroxyurea

    International Nuclear Information System (INIS)

    Hunting, D.J.; Dresler, S.L.

    1985-01-01

    We have tested the hypothesis that the inhibition by hydroxyurea of repair patch ligation and chromatin rearrangement during u.v.-induced DNA excision repair results from a reduction in cellular deoxyribonucleotide concentrations and not from a direct effect of hydroxyurea on the repair process. Using permeable human fibroblasts, we have shown that hydroxyurea has no direct effect on either repair synthesis or repair patch ligation. We also have shown that by reducing the deoxyribonucleoside triphosphate concentrations in the permeable cell reaction mixture, we can mimic the inhibition of repair patch ligation and chromatin rearrangement seen when u.v.-damaged intact confluent fibroblasts are treated with hydroxyurea. Our results are consistent with the concept that hydroxyurea inhibits DNA repair in intact cells by inhibiting deoxyribonucleotide synthesis through its effect on ribonucleotide reductase and, conversely, that continued deoxyribonucleotide synthesis is required for the excision repair of u.v.-induced DNA damage even in resting cells

  19. DNA single-strand breaks during repair of uv damage in human fibroblasts and abnormalities of repair in xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Kohn, K.W.; Kann, H.E. Jr.

    1976-01-01

    The method of DNA alkaline elution was applied to a study of the formation and resealing of DNA single-strand breaks after irradiation of human fibroblasts with ultraviolet light (UV). The general features of the results were consistent with current concepts of DNA excision repair, in that breaks appeared rapidly after uv, and resealed slowly in normal fibroblasts, whereas breaks did not appear in those cells of patients with xeroderma pigmentosum (XP) that are known to have defects in DNA repair synthesis. The appearance of breaks required a short post-uv incubation, consistent with the expected action of an endonuclease. Cells of the variant form of XP characterized by normal DNA repair synthesis exhibited normal production of breaks after uv, but were slower than normal cells in resealing these breaks. This difference was enhanced by caffeine. A model is proposed to relate this finding with a previously described defect in post-replication repair in these XP variant cells. DNA crosslinking appears to cause an underestimate in the measurement of DNA breakage after uv

  20. Nickel induces transcriptional down-regulation of DNA repair pathways in tumorigenic and non-tumorigenic lung cells.

    Science.gov (United States)

    Scanlon, Susan E; Scanlon, Christine D; Hegan, Denise C; Sulkowski, Parker L; Glazer, Peter M

    2017-06-01

    The heavy metal nickel is a known carcinogen, and occupational exposure to nickel compounds has been implicated in human lung and nasal cancers. Unlike many other environmental carcinogens, however, nickel does not directly induce DNA mutagenesis, and the mechanism of nickel-related carcinogenesis remains incompletely understood. Cellular nickel exposure leads to signaling pathway activation, transcriptional changes and epigenetic remodeling, processes also impacted by hypoxia, which itself promotes tumor growth without causing direct DNA damage. One of the mechanisms by which hypoxia contributes to tumor growth is the generation of genomic instability via down-regulation of high-fidelity DNA repair pathways. Here, we find that nickel exposure similarly leads to down-regulation of DNA repair proteins involved in homology-dependent DNA double-strand break repair (HDR) and mismatch repair (MMR) in tumorigenic and non-tumorigenic human lung cells. Functionally, nickel induces a defect in HDR capacity, as determined by plasmid-based host cell reactivation assays, persistence of ionizing radiation-induced DNA double-strand breaks and cellular hypersensitivity to ionizing radiation. Mechanistically, we find that nickel, in contrast to the metalloid arsenic, acutely induces transcriptional repression of HDR and MMR genes as part of a global transcriptional pattern similar to that seen with hypoxia. Finally, we find that exposure to low-dose nickel reduces the activity of the MLH1 promoter, but only arsenic leads to long-term MLH1 promoter silencing. Together, our data elucidate novel mechanisms of heavy metal carcinogenesis and contribute to our understanding of the influence of the microenvironment on the regulation of DNA repair pathways. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Distribution of ultraviolet-induced DNA repair synthesis in nuclease sensitive and resistant regions of human chromatin

    International Nuclear Information System (INIS)

    Smerdon, M.J.; Tlsty, T.D.; Lieberman, M.W.

    1978-01-01

    The distribution of ultraviolet radiation (uv) induced DNA repair synthesis within chromatin was examined in cultured human diploid fibroblasts (IMR-90). Measurement of the time course of repair synthesis yielded two distinct phases: An initial rapid phase (fast repair) which occurs during the first 2 to 3 h after damage and a slower phase (slow repair) associated with a tenfold decrease in the rate of nucleotide incorporation, which persists for at least 35 h after damage. Staphylococcal nuclease digests of nuclei from cells damaged with uv and labeled during the fast-repair phase revealed a marked preference of fast-repair synthesis for the nuclease-sensitive regions. A new method was developed to analyze the digestion data and showed that approximately 50% of the nucleotides incorporated during the fast-repair phase are located in staphylococcal nuclease-sensitive regions, which comprise about 30% of the genome. Calculations from these data indicate that in the staphylococcal nuclease-sensitive regions the number of newly inserted nucleotides per unit DNA is about twice that of resistant regions. These results were supported by electrophoresis studies which demonstrated a decreased representation of fast-repair synthesis in core particle DNA. In contrast, the distribution within chromatin of nucleotides incorporated during the slow-repair phase was found to be much more homogeneous with about 30% of the repair sites located in 25% of the genome. Digestion studieswith DNase I indicated a slight preference of repair synthesis for regions sensitive to this enzyme; however, no marked difference between the distributions of fast- and slow-repair synthesis was observed. This study provides evidence that the structural constraints placed upon DNA in chromatin also place constraints upon uv-induced DNA repair synthesis in human cells

  2. Augmentation with a reinforced acellular fascia lata strip graft limits cyclic gapping of supraspinatus repairs in a human cadaveric model.

    Science.gov (United States)

    Milks, Ryan A; Kolmodin, Joel D; Ricchetti, Eric T; Iannotti, Joseph P; Derwin, Kathleen A

    2018-06-01

    A reinforced biologic strip graft was designed to mechanically augment the repair of rotator cuff tears that are fully reparable by arthroscopic techniques yet have a likelihood of failure. This study assessed the extent to which augmentation of human supraspinatus repairs with a reinforced fascia strip can reduce gap formation during in vitro cyclic loading. The supraspinatus tendon was sharply released from the proximal humerus and repaired back to its insertion with anchors in 9 matched pairs of human cadaveric shoulders. One repair from each pair was also augmented with a reinforced fascia strip. All repairs were subjected to cyclic mechanical loading of 5 to 180 N for 1000 cycles. All augmented and nonaugmented repair constructs completed 1000 cycles of loading. Augmentation with a reinforced fascia strip graft significantly decreased the amount of gap formation compared with nonaugmented repairs. The average gap formation of augmented repairs was 1.5 ± 0.7 mm after the first cycle vs. 3.0 ± 1.2 mm for nonaugmented repairs (P = .003) and 5.0 ± 1.5 mm after 1000 cycles of loading, which averaged 24% ± 21% less than the gap formation of nonaugmented repairs (7.0 ± 2.8 mm, P = .014). Cadaveric human supraspinatus repairs augmented with a reinforced fascia strip have significantly less initial stroke elongation and gap formation than repairs without augmentation. Augmentation limited gap formation to the greatest extent early in the testing protocol. Human studies are necessary to confirm the appropriate indications and effectiveness of augmentation scaffolds for rotator cuff repair healing in the clinical setting. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  3. Genomic Instability Promoted by Overexpression of Mismatch Repair Factors in Yeast: A Model for Understanding Cancer Progression.

    Science.gov (United States)

    Chakraborty, Ujani; Dinh, Timothy A; Alani, Eric

    2018-04-13

    Mismatch repair (MMR) proteins act in spellchecker roles to excise misincorporation errors that occur during DNA replication. Curiously, large-scale analyses of a variety of cancers showed that increased expression of MMR proteins often correlated with tumor aggressiveness, metastasis, and early recurrence. To better understand these observations, we used the TCGA and GENT databases to analyze MMR protein expression in cancers. We found that the MMR genes MSH2 and MSH6 are overexpressed more frequently than MSH3 , and that MSH2 and MSH6 are often co-overexpressed as a result of copy number amplifications of these genes. These observations encouraged us to test the effects of upregulating MMR protein levels in baker's yeast, where we can sensitively monitor genome instability phenotypes associated with cancer initiation and progression. Msh6 overexpression (2 to 4-fold) almost completely disrupted mechanisms that prevent recombination between divergent DNA sequences by interacting with the DNA polymerase processivity clamp PCNA and by sequestering the Sgs1 helicase. Importantly, co-overexpression of Msh2 and Msh6 (∼8-fold) conferred, in a PCNA interaction dependent manner, several genome instability phenotypes including increased mutation rate, increased sensitivity to the DNA replication inhibitor hydroxyurea and the DNA damaging agents methyl methanesulfonate and 4-nitroquinoline N-oxide, and elevated loss of heterozygosity. Msh2 and Msh6 co-overexpression also altered the cell cycle distribution of exponentially growing cells, resulting in an increased fraction of unbudded cells, consistent with a larger percentage of cells in G1. These novel observations suggested that overexpression of MSH factors affected the integrity of the DNA replication fork, causing genome instability phenotypes that could be important for promoting cancer progression. Copyright © 2018, Genetics.

  4. Diagnosis of Constitutional Mismatch Repair-Deficiency Syndrome Based on Microsatellite Instability and Lymphocyte Tolerance to Methylating Agents.

    Science.gov (United States)

    Bodo, Sahra; Colas, Chrystelle; Buhard, Olivier; Collura, Ada; Tinat, Julie; Lavoine, Noémie; Guilloux, Agathe; Chalastanis, Alexandra; Lafitte, Philippe; Coulet, Florence; Buisine, Marie-Pierre; Ilencikova, Denisa; Ruiz-Ponte, Clara; Kinzel, Miriam; Grandjouan, Sophie; Brems, Hilde; Lejeune, Sophie; Blanché, Hélène; Wang, Qing; Caron, Olivier; Cabaret, Odile; Svrcek, Magali; Vidaud, Dominique; Parfait, Béatrice; Verloes, Alain; Knappe, Ulrich J; Soubrier, Florent; Mortemousque, Isabelle; Leis, Alexander; Auclair-Perrossier, Jessie; Frébourg, Thierry; Fléjou, Jean-François; Entz-Werle, Natacha; Leclerc, Julie; Malka, David; Cohen-Haguenauer, Odile; Goldberg, Yael; Gerdes, Anne-Marie; Fedhila, Faten; Mathieu-Dramard, Michèle; Hamelin, Richard; Wafaa, Badre; Gauthier-Villars, Marion; Bourdeaut, Franck; Sheridan, Eamonn; Vasen, Hans; Brugières, Laurence; Wimmer, Katharina; Muleris, Martine; Duval, Alex

    2015-10-01

    Patients with bi-allelic germline mutations in mismatch repair (MMR) genes (MLH1, MSH2, MSH6, or PMS2) develop a rare but severe variant of Lynch syndrome called constitutional MMR deficiency (CMMRD). This syndrome is characterized by early-onset colorectal cancers, lymphomas or leukemias, and brain tumors. There is no satisfactory method for diagnosis of CMMRD because screens for mutations in MMR genes are noninformative for 30% of patients. MMR-deficient cancer cells are resistant to genotoxic agents and have microsatellite instability (MSI), due to accumulation of errors in repetitive DNA sequences. We investigated whether these features could be used to identify patients with CMMRD. We examined MSI by PCR analysis and tolerance to methylating or thiopurine agents (functional characteristics of MMR-deficient tumor cells) in lymphoblastoid cells (LCs) from 3 patients with CMMRD and 5 individuals with MMR-proficient LCs (controls). Using these assays, we defined experimental parameters that allowed discrimination of a series of 14 patients with CMMRD from 52 controls (training set). We then used the same parameters to assess 23 patients with clinical but not genetic features of CMMRD. In the training set, we identified parameters, based on MSI and LC tolerance to methylation, that detected patients with CMMRD vs controls with 100% sensitivity and 100% specificity. Among 23 patients suspected of having CMMRD, 6 had MSI and LC tolerance to methylation (CMMRD highly probable), 15 had neither MSI nor LC tolerance to methylation (unlikely to have CMMRD), and 2 were considered doubtful for CMMRD based on having only 1 of the 2 features. The presence of MSI and tolerance to methylation in LCs identified patients with CMMRD with 100% sensitivity and specificity. These features could be used in diagnosis of patients. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.

  5. Down-regulation of DNA mismatch repair enhances initiation and growth of neuroblastoma and brain tumour multicellular spheroids.

    Directory of Open Access Journals (Sweden)

    Samuel L Collins

    Full Text Available Multicellular tumour spheroid (MCTS cultures are excellent model systems for simulating the development and microenvironmental conditions of in vivo tumour growth. Many documented cell lines can generate differentiated MCTS when cultured in suspension or in a non-adhesive environment. While physiological and biochemical properties of MCTS have been extensively characterized, insight into the events and conditions responsible for initiation of these structures is lacking. MCTS are formed by only a small subpopulation of cells during surface-associated growth but the processes responsible for this differentiation are poorly understood and have not been previously studied experimentally. Analysis of gene expression within spheroids has provided clues but to date it is not known if the observed differences are a cause or consequence of MCTS growth. One mechanism linked to tumourigenesis in a number of cancers is genetic instability arising from impaired DNA mismatch repair (MMR. This study aimed to determine the role of MMR in MCTS initiation and development. Using surface-associated N2a and CHLA-02-ATRT culture systems we have investigated the impact of impaired MMR on MCTS growth. Analysis of the DNA MMR genes MLH1 and PMS2 revealed both to be significantly down-regulated at the mRNA level compared with non-spheroid-forming cells. By using small interfering RNA (siRNA against these genes we show that silencing of MLH1 and PMS2 enhances both MCTS initiation and subsequent expansion. This effect was prolonged over several passages following siRNA transfection. Down-regulation of DNA MMR can contribute to tumour initiation and progression in N2a and CHLA-02-ATRT MCTS models. Studies of surface-associated MCTS differentiation may have broader applications in studying events in the initiation of cancer foci.

  6. Cancer spectrum in DNA mismatch repair gene mutation carriers: results from a hospital based Lynch syndrome registry.

    Science.gov (United States)

    Pande, Mala; Wei, Chongjuan; Chen, Jinyun; Amos, Christopher I; Lynch, Patrick M; Lu, Karen H; Lucio, Laura A; Boyd-Rogers, Stephanie G; Bannon, Sarah A; Mork, Maureen E; Frazier, Marsha L

    2012-09-01

    The spectrum of cancers seen in a hospital based Lynch syndrome registry of mismatch repair gene mutation carriers was examined to determine the distribution of cancers and examine excess cancer risk. Overall there were 504 cancers recorded in 368 mutation carriers from 176 families. These included 236 (46.8 %) colorectal and 268 (53.2 %) extracolonic cancers. MLH1 mutation carriers had a higher frequency of colorectal cancers whereas MSH2, MSH6 and PMS2 mutation carriers had more extracolonic cancers although these differences were not statistically significant. Men had fewer extracolonic cancers than colorectal (45.3 vs. 54.7 %), whereas women had more extracolonic than colorectal cancers (59.0 vs. 41.0 %). The mean age at diagnosis overall for extracolonic cancers was older than for colorectal, 49.1 versus 44.8 years (P ≤ 0.001). As expected, the index cancer was colorectal in 58.1 % of patients and among the extracolonic index cancers, endometrial was the most common (13.8 %). A significant number of non-Lynch syndrome index cancers were recorded including breast (n = 5) prostate (n = 3), thyroid (n = 3), cervix (n = 3), melanoma (n = 3), and 1 case each of thymoma, sinus cavity, and adenocarcinoma of the lung. However, standardized incidence ratios calculated to assess excess cancer risk showed that only those cancers known to be associated with Lynch syndrome were significant in our sample. We found that Lynch syndrome patients can often present with cancers that are not considered part of Lynch syndrome. This has clinical relevance both for diagnosis of Lynch syndrome and surveillance for cancers of different sites during follow-up of these patients.

  7. DNA repair and induction of plasminogen activator in human fetal cells treated with ultraviolet light

    International Nuclear Information System (INIS)

    Ben-Ishai, R.; Sharon, R.; Rothman, M.; Miskin, R.

    1984-01-01

    We have tested human fetal fibroblasts for development associated changes in DNA repair by utilizing nucleoid sedimentation as an assay for excision repair. Among skin fibroblasts the rate of excision repair was significantly higher in non-fetal cells than in fibroblasts derived from an 8 week fetus; this was evident by a delay in both the relaxation and the restoration of DNA supercoiling in nucleoids after irradiation. Skin fibroblasts derived at 12 week gestation were more repair proficient than those derived at 8 week gestation. However, they exhibited a somewhat lower rate of repair than non-fetal cells. The same fetal and non-fetal cells were also tested for induction of the protease plasminogen activator (PA) after u.v. irradiation. Enhancement of PA was higher in skin fibroblasts derived at 8 week than in those derived at 12 week gestation and was absent in non-fetal skin fibroblasts. These results are consistent with our previous findings that in human cells u.v. light-induced PA synthesis is correlated with reduced DNA repair capacity. Excision repair and PA inducibility were found to depend on tissue of origin in addition to gestational stage, as shown for skin and lung fibroblasts from the same 12 week fetus. Lung compared to skin fibroblasts exhibited lower repair rates and produced higher levels of PA after irradiation. The sedimentation velocity of nucleoids, prepared from unirradiated fibroblasts, in neutral sucrose gradients with or without ethidium bromide, indicated the presence of DNA strand breaks in fetal cells. It is proposed that reduced DNA repair in fetal cells may result from alterations in DNA supercoiling, and that persistent DNA strand breaks enhance transcription of PA gene(s)

  8. Evidence for an involvement of thymidine kinase in the excision repair of ultraviolet-irradiated herpes simplex virus in human cells

    International Nuclear Information System (INIS)

    Intine, R.V.; Rainbow, A.J.

    1990-01-01

    A wild-type strain of herpes simplex virus type 1 (HSV-1:KOS) encoding a functional thymidine kinase (tk+) and a tk- mutant strain (HSV-1:PTK3B) were used to study the role of the viral tk in the repair of UV-irradiated HSV-1 in human cells. UV survival of HSV-1:PTK3B was substantially reduced compared with that of HSV-1:KOS when infecting normal human cells. In contrast, the UV survival of HSV-1:PTK3B was similar to that of HSV-1:KOS when infecting excision repair-deficient cells from a xeroderma pigmentosum patient from complementation group A. These results suggest that the repair of UV-irradiated HSV-1 in human cells depends, in part at least, on expression of the viral tk and that the repair process influenced by tk activity is excision repair or a process dependent on excision repair

  9. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    OpenAIRE

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2012-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial fo...

  10. Entanglement verification with detection efficiency mismatch

    Science.gov (United States)

    Zhang, Yanbao; Lütkenhaus, Norbert

    Entanglement is a necessary condition for secure quantum key distribution (QKD). When there is an efficiency mismatch between various detectors used in the QKD system, it is still an open problem how to verify entanglement. Here we present a method to address this problem, given that the detection efficiency mismatch is characterized and known. The method works without assuming an upper bound on the number of photons going to each threshold detector. Our results suggest that the efficiency mismatch affects the ability to verify entanglement: the larger the efficiency mismatch is, the smaller the set of entangled states that can be verified becomes. When there is no mismatch, our method can verify entanglement even if the method based on squashing maps [PRL 101, 093601 (2008)] fails.

  11. Distribution of u.v.-induced repair events in higher-order chromatin loops in human and hamster fibroblasts

    International Nuclear Information System (INIS)

    Mullenders, L.H.F.; Zeeland, A.A. van; Natarajan, A.T.; Kesteren, A.C. van; Bussmann, C.J.M.

    1986-01-01

    The repair of u.v.-induced damage in human and rodent cells was investigated at the level of DNA loops attached to the nuclear matrix. After 2 h post-u.v. incubation, DNase I digestion studies revealed a 3- to 4-fold enrichment of repair-labeled DNA at the nuclear matrix in four xeroderma pigmentosum cell strains belonging to complementation group C. Two xeroderma pigmentosum cell strains of complementation group D and Syrian hamster embryonic cells, as well as in HeLa cells and normal human fibroblasts, no enrichment of repair-labeled DNA at the nuclear matrix was observed. Visualization of repair events in DNA loops by autoradiography of DNA halo - matrix structures confirmed the biochemical observations. The presence or absence of preferential repair of nuclear matrix-associated DNA paralleled the presence or absence of inhomogeneity in the distribution of T4 endonuclease-V-sensitive sites. In xeroderma pigmentosum cells of complementation group C showed that after 2 h post-u.v. incubation, repair events were found at both attachment sites in a limited number of loops and that large domains of loops were not subjected to repair. (author)

  12. Differential repair of etheno-DNA adducts by bacterial and human AlkB proteins.

    Science.gov (United States)

    Zdżalik, Daria; Domańska, Anna; Prorok, Paulina; Kosicki, Konrad; van den Born, Erwin; Falnes, Pål Ø; Rizzo, Carmelo J; Guengerich, F Peter; Tudek, Barbara

    2015-06-01

    AlkB proteins are evolutionary conserved Fe(II)/2-oxoglutarate-dependent dioxygenases, which remove alkyl and highly promutagenic etheno(ɛ)-DNA adducts, but their substrate specificity has not been fully determined. We developed a novel assay for the repair of ɛ-adducts by AlkB enzymes using oligodeoxynucleotides with a single lesion and specific DNA glycosylases and AP-endonuclease for identification of the repair products. We compared the repair of three ɛ-adducts, 1,N(6)-ethenoadenine (ɛA), 3,N(4)-ethenocytosine (ɛC) and 1,N(2)-ethenoguanine (1,N(2)-ɛG) by nine bacterial and two human AlkBs, representing four different structural groups defined on the basis of conserved amino acids in the nucleotide recognition lid, engaged in the enzyme binding to the substrate. Two bacterial AlkB proteins, MT-2B (from Mycobacterium tuberculosis) and SC-2B (Streptomyces coelicolor) did not repair these lesions in either double-stranded (ds) or single-stranded (ss) DNA. Three proteins, RE-2A (Rhizobium etli), SA-2B (Streptomyces avermitilis), and XC-2B (Xanthomonas campestris) efficiently removed all three lesions from the DNA substrates. Interestingly, XC-2B and RE-2A are the first AlkB proteins shown to be specialized for ɛ-adducts, since they do not repair methylated bases. Three other proteins, EcAlkB (Escherichia coli), SA-1A, and XC-1B removed ɛA and ɛC from ds and ssDNA but were inactive toward 1,N(2)-ɛG. SC-1A repaired only ɛA with the preference for dsDNA. The human enzyme ALKBH2 repaired all three ɛ-adducts in dsDNA, while only ɛA and ɛC in ssDNA and repair was less efficient in ssDNA. ALKBH3 repaired only ɛC in ssDNA. Altogether, we have shown for the first time that some AlkB proteins, namely ALKBH2, RE-2A, SA-2B and XC-2B can repair 1,N(2)-ɛG and that ALKBH3 removes only ɛC from ssDNA. Our results also suggest that the nucleotide recognition lid is not the sole determinant of the substrate specificity of AlkB proteins. Copyright © 2015 Elsevier B

  13. Antibody formation in pregnant women with maternal-neonatal human platelet antigen mismatch from a hospital in northern Taiwan

    Directory of Open Access Journals (Sweden)

    Wan-Hua Yang

    2014-01-01

    Full Text Available Neonatal alloimmune thrombocytopenia (NAIT is a clinical syndrome that resembles hemolytic disease of the newborn, affecting the platelets only. The thrombocytopenia results from the maternal alloantibodies reacting with specific human platelet antigens (HPAs on the fetal platelets. Forty-four maternal plasma samples were screened for platelet alloantibodies using qualitative solid phase enzyme-linked immunosorbent assay (ELISA commercial kit (LIFECODES Pakplus, Hologic Gen-Probe GTI Diagnostics, Waukesha, WI, USA, and both the maternal and the corresponding cord blood samples were genotyped (LIFECODES ThromboType, Hologic Gen-Probe GTI Diagnostics, Waukesha, WI, USA. HPA genotyping results correlated with the genetic frequencies in the Taiwan population. A total of 34 newborns (77.3% had partial HPA genotyping mismatches with the corresponding mothers. The most common partial mismatches between mothers and neonates in HPA genotypes were 13 (29.5% in both HPA-3b and HPA-15a, followed by 12 (27.3% in HPA-15b, and 8 (18.2% in HPA-3a. The frequencies of homozygotic mother with heterozygotic neonate were 15.9% in both HPA-3a and HPA-15b, 9.1% in HPA-15a, 6.8% in HPA-3b, and 2.3% in both HPA-2a and HPA-6a. In this study, maternal HPA antibodies were found in five samples, whereas HLA class I antibodies were found in seven maternal plasma samples from the antibody screen. The results from this study have demonstrated that HPA mismatch is not the main cause for the production of HPA alloantibodies.

  14. DNA mismatch repair related gene expression as potential biomarkers to assess cadmium exposure in Arabidopsis seedlings

    International Nuclear Information System (INIS)

    Liu Wan; Zhou Qixing; Li Peijun; Gao Hairong; Han, Y.P.; Li, X.J.; Yang, Y.S.; Li Yanzhi

    2009-01-01

    In the current study, Arabidopsis seedlings were hydroponically grown on MS media containing cadmium (Cd) of 0-2.0 mg L -1 for 60 h of treatment. Gene expression profiles were used to relate exposure to Cd with some altered biological responses and/or specific growth effects. RT-PCR analysis was used to quantitate mRNA expression for seven genes known to be involved in DNA mismatch repair (MMR) system and cell division. Results indicated that Cd concentrations of 0.25-2.0 mg L -1 cause increased total soluble protein levels in shoots of Arabidopsis seedlings in an inverted U-shaped dose-response manner. Exposure to 0.25 and 0.5 mg L -1 of Cd dramatically induced expression of four genes (i.e. proliferating cell nuclear antigen 2 (atPCNA 2), MutL1 homolog (atMLH1), MutS 2 homolog (atMSH2) and atMSH3) and five genes (i.e. atPCNA1,2, atMLH1 and atMSH2,7), respectively, in shoots of Arabidopsis seedlings; Exposure to 1.0 mg L -1 of Cd significantly elevated expression of only two genes (atMSH6,7), but caused prominent inhibition in expression of three genes (atPCNA2, atMLH1 and atMSH3) in shoots of Arabidopsis seedlings. The expression alterations of the above genes were independent of any biological effects such as survival, fresh weight and chlorophyll level of shoots. However, shoots of Arabidopsis seedlings exposed to 2.0 mg L -1 of Cd exhibited statistically prominent repression in expression of these seven genes, and showed incipient reduction of fresh weight and chlorophyll level. This research provides data concerning sensitivity of expression profiles of atMLH1, atMSH2,3,6,7 and atPCNA1,2 genes in Arabidopsis seedlings to Cd exposure, as well as the potential use of these gene expression patterns as representative molecular biomarkers indicative of Cd exposure and related biological effects.

  15. Polymorphisms of Selected DNA Repair Genes and Lung Cancer in Chromium Exposure.

    Science.gov (United States)

    Halasova, E; Matakova, T; Skerenova, M; Krutakova, M; Slovakova, P; Dzian, A; Javorkova, S; Pec, M; Kypusova, K; Hamzik, J

    2016-01-01

    Chromium is a well-known mutagen and carcinogen involved in lung cancer development. DNA repair genes play an important role in the elimination of genetic changes caused by chromium exposure. In the present study, we investigated the polymorphisms of the following DNA repair genes: XRCC3, participating in the homologous recombination repair, and hMLH1 and hMSH2, functioning in the mismatch repair. We focused on the risk the polymorphisms present in the development of lung cancer regarding the exposure to chromium. We analyzed 106 individuals; 45 patients exposed to chromium with diagnosed lung cancer and 61 healthy controls. Genotypes were determined by a PCR-RFLP method. We unravelled a potential for increased risk of lung cancer development in the hMLH1 (rs1800734) AA genotype in the recessive model. In conclusion, gene polymorphisms in the DNA repair genes underscores the risk of lung cancer development in chromium exposed individuals.

  16. Components of a Fanconi-like pathway control Pso2-independent DNA interstrand crosslink repair in yeast.

    Directory of Open Access Journals (Sweden)

    Thomas A Ward

    Full Text Available Fanconi anemia (FA is a devastating genetic disease, associated with genomic instability and defects in DNA interstrand cross-link (ICL repair. The FA repair pathway is not thought to be conserved in budding yeast, and although the yeast Mph1 helicase is a putative homolog of human FANCM, yeast cells disrupted for MPH1 are not sensitive to ICLs. Here, we reveal a key role for Mph1 in ICL repair when the Pso2 exonuclease is inactivated. We find that the yeast FANCM ortholog Mph1 physically and functionally interacts with Mgm101, a protein previously implicated in mitochondrial DNA repair, and the MutSα mismatch repair factor (Msh2-Msh6. Co-disruption of MPH1, MGM101, MSH6, or MSH2 with PSO2 produces a lesion-specific increase in ICL sensitivity, the elevation of ICL-induced chromosomal rearrangements, and persistence of ICL-associated DNA double-strand breaks. We find that Mph1-Mgm101-MutSα directs the ICL-induced recruitment of Exo1 to chromatin, and we propose that Exo1 is an alternative 5'-3' exonuclease utilised for ICL repair in the absence of Pso2. Moreover, ICL-induced Rad51 chromatin loading is delayed when both Pso2 and components of the Mph1-Mgm101-MutSα and Exo1 pathway are inactivated, demonstrating that the homologous recombination stages of ICL repair are inhibited. Finally, the FANCJ- and FANCP-related factors Chl1 and Slx4, respectively, are also components of the genetic pathway controlled by Mph1-Mgm101-MutSα. Together this suggests that a prototypical FA-related ICL repair pathway operates in budding yeast, which acts redundantly with the pathway controlled by Pso2, and is required for the targeting of Exo1 to chromatin to execute ICL repair.

  17. On-bead fluorescent DNA nanoprobes to analyze base excision repair activities

    Energy Technology Data Exchange (ETDEWEB)

    Gines, Guillaume; Saint-Pierre, Christine; Gasparutto, Didier, E-mail: didier.gasparutto@cea.fr

    2014-02-17

    Graphical abstract: -- Highlights: •On magnetic beads fluorescent enzymatic assays. •Simple, easy, non-radioactive and electrophoresis-free functional assay. •Lesion-containing hairpin DNA probes are selective for repair enzymes. •The biosensing platform allows the measurement of DNA repair activities from purified enzymes or within cell free extracts. -- Abstract: DNA integrity is constantly threatened by endogenous and exogenous agents that can modify its physical and chemical structure. Changes in DNA sequence can cause mutations sparked by some genetic diseases or cancers. Organisms have developed efficient defense mechanisms able to specifically repair each kind of lesion (alkylation, oxidation, single or double strand break, mismatch, etc). Here we report the adjustment of an original assay to detect enzymes’ activity of base excision repair (BER), that supports a set of lesions including abasic sites, alkylation, oxidation or deamination products of bases. The biosensor is characterized by a set of fluorescent hairpin-shaped nucleic acid probes supported on magnetic beads, each containing a selective lesion targeting a specific BER enzyme. We have studied the DNA glycosylase alkyl-adenine glycosylase (AAG) and the human AP-endonuclease (APE1) by incorporating within the DNA probe a hypoxanthine lesion or an abasic site analog (tetrahydrofuran), respectively. Enzymatic repair activity induces the formation of a nick in the damaged strand, leading to probe's break, that is detected in the supernatant by fluorescence. The functional assay allows the measurement of DNA repair activities from purified enzymes or in cell-free extracts in a fast, specific, quantitative and sensitive way, using only 1 pmol of probe for a test. We recorded a detection limit of 1 μg mL{sup −1} and 50 μg mL{sup −1} of HeLa nuclear extracts for APE1 and AAG enzymes, respectively. Finally, the on-bead assay should be useful to screen inhibitors of DNA repair

  18. Twisting right to left: A…A mismatch in a CAG trinucleotide repeat overexpansion provokes left-handed Z-DNA conformation.

    Directory of Open Access Journals (Sweden)

    Noorain Khan

    2015-04-01

    Full Text Available Conformational polymorphism of DNA is a major causative factor behind several incurable trinucleotide repeat expansion disorders that arise from overexpansion of trinucleotide repeats located in coding/non-coding regions of specific genes. Hairpin DNA structures that are formed due to overexpansion of CAG repeat lead to Huntington's disorder and spinocerebellar ataxias. Nonetheless, DNA hairpin stem structure that generally embraces B-form with canonical base pairs is poorly understood in the context of periodic noncanonical A…A mismatch as found in CAG repeat overexpansion. Molecular dynamics simulations on DNA hairpin stems containing A…A mismatches in a CAG repeat overexpansion show that A…A dictates local Z-form irrespective of starting glycosyl conformation, in sharp contrast to canonical DNA duplex. Transition from B-to-Z is due to the mechanistic effect that originates from its pronounced nonisostericity with flanking canonical base pairs facilitated by base extrusion, backbone and/or base flipping. Based on these structural insights we envisage that such an unusual DNA structure of the CAG hairpin stem may have a role in disease pathogenesis. As this is the first study that delineates the influence of a single A…A mismatch in reversing DNA helicity, it would further have an impact on understanding DNA mismatch repair.

  19. Effects of radiations on DNA and repair of the damage. Progress report, May 1, 1974--June 30, 1977

    International Nuclear Information System (INIS)

    Hutchinson, F.

    1977-01-01

    Repair of DNA double-strand breaks produced by gamma rays takes place in E. coli. Such repair requires recA function and the presence of another DNA molecule of the same base sequence, so it may involve a recombination-like event. Ultraviolet light acting on DNA containing bromouracil produces doublestrand breaks by single photochemical events, and a simple model can explain this, as well as other results. Bromouracil mutagenesis of either E. coli or lambda phage does not involve the recA or red functions. Bromouracil mutagenesis is greatly increased in E. coli mutants such as uvrE, mutL, mutR and mutS, which are defective in mismatch repair. This, and other results, suggest that bromouracil mutagenesis occurs when cell enzymes fail to remove mismatched bases. Ultraviolet mutagenesis of lambda phage may be a useful model for the study of mutagenesis in cells, because the effects of lesions in the gene mutated (i.e. in the phage) and changes in enzyme systems (by treating the host cells) can be examined separately. Quantitative data support this approach

  20. In situ enzymology of DNA replication and ultraviolet-induced DNA repair synthesis in permeable human cells

    International Nuclear Information System (INIS)

    Dresler, S.; Frattini, M.G.; Robinson-Hill, R.M.

    1988-01-01

    Using permeable diploid human fibroblasts, the authors have studied the deoxyribonucleoside triphosphate concentration dependences of ultraviolet- (UV-) induced DNA repair synthesis and semiconservative DNA replication. In both cell types (AG1518 and IMR-90) examined, the apparent K m values for dCTP, dGTP, and dTTP for DNA replication were between 1.2 and 2.9 μM. For UV-induced DNA repair synthesis, the apparent K m values were substantially lower, ranging from 0.11 to 0.44 μM for AG1518 cells and from 0.06 to 0.24 μM for IMR-90 cells. Recent data implicate DNA polymerase δ in UV-induced repair synthesis and suggest that DNA polymerases α and δ are both involved in semiconservative replication. They measured K m values for dGTP and dTTP for polymerases α and δ, for comparison with the values for replication and repair synthesis. The deoxyribonucleotide K m values for DNA polymerase δ are much greater than the K m values for UV-induced repair synthesis, suggesting that when polymerase δ functions in DNA repair, its characteristics are altered substantially either by association with accessory proteins or by direct posttranslational modification. In contrast, the deoxyribonucleotide binding characteristics of the DNA replication machinery differ little from those of the isolated DNA polymerases. The K m values for UV-induced repair synthesis are 5-80-fold lower than deoxyribonucleotide concentrations that have been reported for intact cultured diploid human fibroblasts. For replication, however, the K m for dGTP is only slightly lower than the average cellular dGTP concentration that has been reported for exponentially growing human fibroblasts. This finding is consistent with the concept that nucleotide compartmentation is required for the attainment of high rates of DNA replication in vivo

  1. Human embryonic stem cells have enhanced repair of multiple forms of DNA damage

    DEFF Research Database (Denmark)

    Maynard, Scott; Swistowska, Anna Maria; Lee, Jae Wan

    2008-01-01

    cells compared with various differentiated murine cells. Using single-cell gel electrophoresis (comet assay) we found that human embryonic stem cells (BG01, I6) have more efficient repair of different types of DNA damage (generated from H2O2, UV-C, ionizing radiation, or psoralen) than human primary...

  2. 1999 Gordon Research Conference on Mammalian DNA Repair. Final Progress Report

    International Nuclear Information System (INIS)

    NONE

    1999-01-01

    This Conference will examine DNA repair as the key component in genomic surveillance that is so crucial to the overall integrity and function of mammalian cells. Recent discoveries have catapulted the field of DNA repair into a pivotal position for fundamental investigations into oncology, aging, environmental health, and developmental biology. We hope to highlight the most promising and exciting avenues of research in robust discussions at this conference. This Mammalian DNA Repair Gordon Conference differs from the past conferences in this series, in which the programs were broader in scope, with respect to topics and biological systems covered. A conference sponsored by the Genetics Society in April 1998 emphasized recombinational mechanisms for double-strand break repair and the role of mismatch repair deficiency in colorectal cancer. These topics will therefore receive somewhat less emphasis in the upcoming Conference. In view of the recent mechanistic advances in mammalian DNA repair, an upcoming comprehensive DNA repair meeting next autumn at Hilton Head; and the limited enrollment for Gordon Conferences we have decided to focus session-by-session on particular areas of controversy and/or new developments specifically in mammalian systems. Thus, the principal presentations will draw upon results from other cellular systems only to the extent that they impact our understanding of mammalian DNA repair

  3. 1999 Gordon Research Conference on Mammalian DNA Repair. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-02-12

    This Conference will examine DNA repair as the key component in genomic surveillance that is so crucial to the overall integrity and function of mammalian cells. Recent discoveries have catapulted the field of DNA repair into a pivotal position for fundamental investigations into oncology, aging, environmental health, and developmental biology. We hope to highlight the most promising and exciting avenues of research in robust discussions at this conference. This Mammalian DNA Repair Gordon Conference differs from the past conferences in this series, in which the programs were broader in scope, with respect to topics and biological systems covered. A conference sponsored by the Genetics Society in April 1998 emphasized recombinational mechanisms for double-strand break repair and the role of mismatch repair deficiency in colorectal cancer. These topics will therefore receive somewhat less emphasis in the upcoming Conference. In view of the recent mechanistic advances in mammalian DNA repair, an upcoming comprehensive DNA repair meeting next autumn at Hilton Head; and the limited enrollment for Gordon Conferences we have decided to focus session-by-session on particular areas of controversy and/or new developments specifically in mammalian systems. Thus, the principal presentations will draw upon results from other cellular systems only to the extent that they impact our understanding of mammalian DNA repair.

  4. A UV-sensitive human clonal cell line, RSa, which has low repair activity

    International Nuclear Information System (INIS)

    Suzuki, N.; Fuse, A.

    1981-01-01

    The repair activity of a human transformed cell line, RSa, which was found to be highly sensitive to the lethal effects of 254 mm far-ultraviolet radiation, was compared with that of HeLa cells by evaluating the range of UV-induced incorporation of [methyl- 3 H]thymidine ([ 3 H]dThd) or 5-[6- 3 H]bromodeoxyuridine ([ 3 H]BrdUrd) into deoxyribonucleic acid. Direct scintillation counting was used for measuring the extent of unscheduled DNA synthesis (UDS) in UV-irradiated cells, which were treated with hydroxyurea or with arginine deprivation. More quantitative measurements were made by using the density labeling and equilibrium centrifugation method for assaying repair replication. All the amounts of UDS and repair replication in RSa cells were markedly below those in HeLa cells. The possible relationships of the low repair activity to abnormally high UV sensitivity in RSa cells are discussed. (orig.)

  5. Cadmium(Cd)-induced oxidative stress down-regulates the gene expression of DNA mismatch recognition proteins MutS homolog 2 (MSH2) and MSH6 in zebrafish (Danio rerio) embryos

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Todd, E-mail: toddhsu@mail.ntou.edu.tw [Institute of Bioscience and Biotechnology and Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan (China); Huang, Kuan-Ming; Tsai, Huei-Ting; Sung, Shih-Tsung; Ho, Tsung-Nan [Institute of Bioscience and Biotechnology and Center of Excellence for Marine Bioenvironment and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan (China)

    2013-01-15

    DNA mismatch repair (MMR) of simple base mismatches and small insertion-deletion loops in eukaryotes is initiated by the binding of the MutS homolog 2 (MSH2)-MSH6 heterodimer to mismatched DNA. Cadmium (Cd) is a genotoxic heavy metal that has been recognized as a human carcinogen. Oxidant stress and inhibition of DNA repair have been proposed as major factors underlying Cd genotoxicity. Our previous studies indicated the ability of Cd to disturb the gene expression of MSH6 in zebrafish (Danio rerio) embryos. This study was undertaken to explore if Cd-induced oxidative stress down-regulated MSH gene activities. Following the exposure of zebrafish embryos at 1 h post fertilization (hpf) to sublethal concentrations of Cd at 3-5 {mu}M for 4 or 9 h, a parallel down-regulation of MSH2, MSH6 and Cu/Zn superoxide dismutase (Cu/Zn-SOD) gene expression was detected by real-time RT-PCR and the expression levels were 40-50% of control after a 9-h exposure. Cd exposure also induced oxidative stress, yet no inhibition of catalase gene activity was observed. Whole mount in situ hybridization revealed a wide distribution of msh6 mRNA in the head regions of 10 hpf embryos and pretreatment of embryos with antioxidants butylhydroxytoluene (BHT), D-mannitol or N-acetylcysteine (NAC) at 1-10 {mu}M restored Cd-suppressed msh6 expression. QPCR confirmed the protective effects of antioxidants on Cd-suppressed msh2/msh6 mRNA production. Down-regulated MSH gene activities reaching about 50% of control were also induced in embryos exposed to paraquat, a reactive oxygen species (ROS)-generating herbicide, or hydrogen peroxide at 200 {mu}M. Hence, Cd at sublethal levels down-regulates msh2/msh6 expression primarily via ROS as signaling molecules. The transcriptional activation of human msh6 is known to be fully dependent on the specificity factor 1 (Sp1). Cd failed to inhibit the DNA binding activity of zebrafish Sp1 unless at lethal concentrations based on band shift assay, therefore

  6. Conserved XPB Core Structure and Motifs for DNA Unwinding:Implications for Pathway Selection of Transcription or ExcisionRepair

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Li; Arval, Andrew S.; Cooper, Priscilla K.; Iwai, Shigenori; Hanaoka, Fumio; Tainer, John A.

    2005-04-01

    The human xeroderma pigmentosum group B (XPB) helicase is essential for transcription, nucleotide excision repair, and TFIIH functional assembly. Here, we determined crystal structures of an Archaeoglobus fulgidus XPB homolog (AfXPB) that characterize two RecA-like XPB helicase domains and discover a DNA damage recognition domain (DRD), a unique RED motif, a flexible thumb motif (ThM), and implied conformational changes within a conserved functional core. RED motif mutations dramatically reduce helicase activity, and the DRD and ThM, which flank the RED motif, appear structurally as well as functionally analogous to the MutS mismatch recognition and DNA polymerase thumb domains. Substrate specificity is altered by DNA damage, such that AfXPB unwinds dsDNA with 3' extensions, but not blunt-ended dsDNA, unless it contains a lesion, as shown for CPD or (6-4) photoproducts. Together, these results provide an unexpected mechanism of DNA unwinding with Implications for XPB damage verification in nucleotide excision repair.

  7. Targeting telomerase and DNA repair in human cancers

    International Nuclear Information System (INIS)

    Prakash Hande, M.

    2014-01-01

    Telomerase reactivation is essential for telomere maintenance in human cancer cells ensuring indefinite proliferation. Targeting telomere homeostasis has become one of the promising strategies in the therapeutic management of tumours. One major potential drawback, however, is the time lag between telomerase inhibition and critically shortened telomeres triggering cell death, allowing cancer cells to acquire drug resistance. Numerous studies over the last decade have highlighted the role of DNA repair proteins such as Poly (ADP-Ribose) Polymerase-1 (PARP-1), and DNA-dependent protein kinase (DNA-PKcs) in the maintenance of telomere homoeostasis. Dysfunctional telomeres, resulting from the loss of telomeric DNA repeats or the loss of function of telomere-associated proteins trigger DNA damage responses similar to that observed for double strand breaks. We have been working on unravelling such synthetic lethality in cancer cells and this talk would be on one such recently concluded study that demonstrates that inhibition of DNA repair pathways, i.e., NHEJ pathway and that of telomerase could be an alternative strategy to enhance anti-tumour effects and circumvent the possibility of drug resistance. (author)

  8. Involvement of DNA polymerase δ in DNA repair synthesis in human fibroblasts at late times after ultraviolet irradiation

    International Nuclear Information System (INIS)

    Dresler, S.L.; Gowans, B.J.; Robinson-Hill, R.M.; Hunting, D.J.

    1988-01-01

    DNA repair synthesis following UV irradiation of confluent human fibroblasts has a biphasic time course with an early phase of rapid nucleotide incorporation and a late phase of much slower nucleotide incorporation. The biphasic nature of this curve suggests that two distinct DNA repair systems may be operative. Previous studies have specifically implicated DNA polymerase δ as the enzyme involved in DNA repair synthesis occurring immediately after UV damage. In this paper, the authors describe studies of DNA polymerase involvement in DNA repair synthesis in confluent human fibroblasts at late times after UV irradiation. Late UV-induced DNA repair synthesis in both intact and permeable cells was found to be inhibited by aphidicolin, indicating the involvement of one of the aphidicolin-sensitive DNA polymerases, α or δ. In permeable cells, the process was further analyzed by using the nucleotide analogue (butylphenyl)-2'-deoxyguanosine 5'-triphosphate, which inhibits DNA polymerase α several hundred times more strongly than it inhibits DNA polymerase δ. The (butylphenyl)-2'-deoxyguanosine 5'-triphosphate inhibition curve for late UV-induced repair synthesis was very similar to that for polymerase δ. It appears that repair synthesis at late time after UV irradiation, like repair synthesis at early times, is mediated by DNA polymerase δ

  9. Worldwide Practice Patterns in Lynch Syndrome Diagnosis and Management, Based on Data From the International Mismatch Repair Consortium.

    Science.gov (United States)

    Pan, Jennifer Y; Haile, Robert W; Templeton, Allyson; Macrae, Finlay; Qin, FeiFei; Sundaram, Vandana; Ladabaum, Uri

    2018-04-24

    Families with a history of Lynch syndrome often do not adhere to guidelines for genetic testing and screening. We investigated practice patterns related to Lynch syndrome worldwide, to ascertain potential targets for research and public policy efforts. We collected data from the International Mismatch Repair Consortium (IMRC), which comprises major research and clinical groups engaged in the care of families with Lynch syndrome worldwide. IMRC institutions were invited to complete a questionnaire to characterize diagnoses of Lynch syndrome and management practice patterns. Fifty-five providers, representing 63 of 128 member institutions (49%) in 21 countries, completed the questionnaire. For case finding, 55% of respondents reported participating in routine widespread population tumor testing among persons with newly diagnosed Lynch syndrome-associated cancers, whereas 27% reported relying on clinical criteria with selective tumor and/or germline analyses. Most respondents (64%) reported using multigene panels for germline analysis, and only 28% reported testing tumors for biallelic mutations for cases in which suspected pathogenic mutations were not confirmed by germline analysis. Respondents reported relying on passive dissemination of information to at-risk family members, and there was variation in follow through of genetic testing recommendations. Reported risk management practices varied-nearly all programs (98%) recommended colonoscopy every 1 to 2 years, but only 35% recommended chemoprevention with aspirin. There is widespread heterogeneity in management practices for Lynch syndrome worldwide among IMRC member institutions. This may reflect the rapid pace of emerging technology, regional differences in resources, and the lack of definitive data for many clinical questions. Future efforts should focus on the large numbers of high-risk patients without access to state-of-the-art Lynch syndrome management. Copyright © 2018 AGA Institute. Published by

  10. Prolonged Particulate Hexavalent Chromium Exposure Suppresses Homologous Recombination Repair in Human Lung Cells.

    Science.gov (United States)

    Browning, Cynthia L; Qin, Qin; Kelly, Deborah F; Prakash, Rohit; Vanoli, Fabio; Jasin, Maria; Wise, John Pierce

    2016-09-01

    Genomic instability is one of the primary models of carcinogenesis and a feature of almost all cancers. Homologous recombination (HR) repair protects against genomic instability by maintaining high genomic fidelity during the repair of DNA double strand breaks. The defining step of HR repair is the formation of the Rad51 nucleofilament, which facilitates the search for a homologous sequence and invasion of the template DNA strand. Particulate hexavalent chromium (Cr(VI)), a human lung carcinogen, induces DNA double strand breaks and chromosome instability. Since the loss of HR repair increases Cr(VI)-induced chromosome instability, we investigated the effect of extended Cr(VI) exposure on HR repair. We show acute (24 h) Cr(VI) exposure induces a normal HR repair response. In contrast, prolonged (120 h) exposure to particulate Cr(VI) inhibited HR repair and Rad51 nucleofilament formation. Prolonged Cr(VI) exposure had a profound effect on Rad51, evidenced by reduced protein levels and Rad51 mislocalization to the cytoplasm. The response of proteins involved in Rad51 nuclear import and nucleofilament formation displayed varying responses to prolonged Cr(VI) exposure. BRCA2 formed nuclear foci after prolonged Cr(VI) exposure, while Rad51C foci formation was suppressed. These results suggest that particulate Cr(VI), a major chemical carcinogen, inhibits HR repair by targeting Rad51, causing DNA double strand breaks to be repaired by a low fidelity, Rad51-independent repair pathway. These results further enhance our understanding of the underlying mechanism of Cr(VI)-induced chromosome instability and thus, carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Molecular cloning and biological characterization of the human excision repair gene ERCC-3

    International Nuclear Information System (INIS)

    Weeda, G.; van Ham, R.C.; Masurel, R.; Westerveld, A.; Odijk, H.; de Wit, J.; Bootsma, D.; van der Eb, A.J.; Hoeijmakers, J.H.

    1990-01-01

    In this report we present the cloning, partial characterization, and preliminary studies of the biological activity of a human gene, designated ERCC-3, involved in early steps of the nucleotide excision repair pathway. The gene was cloned after genomic DNA transfection of human (HeLa) chromosomal DNA together with dominant marker pSV3gptH to the UV-sensitive, incision-defective Chinese hamster ovary (CHO) mutant 27-1. This mutant belongs to complementation group 3 of repair-deficient rodent mutants. After selection of UV-resistant primary and secondary 27-1 transformants, human sequences associated with the induced UV resistance were rescued in cosmids from the DNA of a secondary transformant by using a linked dominant marker copy and human repetitive DNA as probes. From coinheritance analysis of the ERCC-3 region in independent transformants, we deduce that the gene has a size of 35 to 45 kilobases, of which one essential segment has so far been refractory to cloning. Conserved unique human sequences hybridizing to a 3.0-kilobase mRNA were used to isolate apparently full-length cDNA clones. Upon transfection to 27-1 cells, the ERCC-3 cDNA, inserted in a mammalian expression vector, induced specific and (virtually) complete correction of the UV sensitivity and unscheduled DNA synthesis of mutants of complementation group 3 with very high efficiency. Mutant 27-1 is, unlike other mutants of complementation group 3, also very sensitive toward small alkylating agents. This unique property of the mutant is not corrected by introduction of the ERCC-3 cDNA, indicating that it may be caused by an independent second mutation in another repair function. By hybridization to DNA of a human x rodent hybrid cell panel, the ERCC-3 gene was assigned to chromosome 2, in agreement with data based on cell fusion

  12. Peritumoral granulomatous reaction in endometrial carcinoma: association with DNA mismatch repair protein deficiency, particularly loss of PMS2 expression.

    Science.gov (United States)

    Stewart, Colin J R; Pearn, Amy; Pachter, Nicholas; Tan, Adeline

    2018-04-30

    The observation of peritumoral granulomatous reactions (PGRs) in two endometrial carcinomas (ECs) with a PMS2-deficient/MLH1-intact expression pattern led us to investigate whether PGRs in EC were specifically associated with DNA mismatch repair (MMR) protein deficiency, particularly PMS2 loss. Hysterectomy specimens from 22 MMR protein-intact and 54 MMR protein-deficient ECs were reviewed with specific attention to the presence of a PGR and a tumour-associated lymphoid reaction [including tumour-infiltrating lymphocytes (TILs) and stromal lymphoid infiltrates]. The MMR protein-deficient ECs included 22 cases with combined MLH1/PMS2 loss, 11 with combined MSH2/MSH6 loss, 11 with isolated MSH6 loss, and 10 with PMS2 loss but intact MLH1 staining (including the two 'index' cases). Overall, PGRs were identified in seven of 54 (13%) MMR protein-deficient ECs, five of which showed a PMS2-deficient/MLH1-intact immunophenotype; three of these patients had germline PMS2 mutations and one additional patient had a germline MSH6 mutation. None of the MMR protein-intact tumours showed a PGR. Although five of the seven PGR-positive ECs had a high-grade histological component, six were stage I. Most ECs with PGRs also showed TILs and stromal lymphoid reactions, similarly to MMR protein-deficient ECs in general. MMR protein-deficient ECs, particularly those with PMS2 loss, occasionally show PGRs in addition to stromal lymphoid infiltrates and TILs. Therefore, PGRs could be considered to constitute a histological prompt for consideration of Lynch syndrome. The potential prognostic significance of PGRs in EC requires further study. © 2018 John Wiley & Sons Ltd.

  13. Immunohistochemical null-phenotype for mismatch repair proteins in colonic carcinoma associated with concurrent MLH1 hypermethylation and MSH2 somatic mutations.

    Science.gov (United States)

    Wang, Tao; Stadler, Zsofia K; Zhang, Liying; Weiser, Martin R; Basturk, Olca; Hechtman, Jaclyn F; Vakiani, Efsevia; Saltz, Lenard B; Klimstra, David S; Shia, Jinru

    2018-04-01

    Microsatellite instability, a well-established driver pathway in colorectal carcinogenesis, can develop in both sporadic and hereditary conditions via different molecular alterations in the DNA mismatch repair (MMR) genes. MMR protein immunohistochemistry (IHC) is currently widely used for the detection of MMR deficiency in solid tumors. The IHC test, however, can show varied staining patterns, posing challenges in the interpretation of the staining results in some cases. Here we report a case of an 80-year-old female with a colonic adenocarcinoma that exhibited an unusual "null" IHC staining pattern with complete loss of all four MMR proteins (MLH1, MSH2, MSH6, and PMS2). This led to subsequent MLH1 methylation testing and next generation sequencing which demonstrated that the loss of all MMR proteins was associated with concurrent promoter hypermethylation of MLH1 and double somatic truncating mutations in MSH2. These molecular findings, in conjunction with the patient's age being 80 years and the fact that the patient had no personal or family cancer history, indicated that the MMR deficiency was highly likely sporadic in nature. Thus, the stringent Lynch syndrome type surveillance programs were not recommended to the patient and her family members. This case illustrates a rare but important scenario where a null IHC phenotype signifies complex underlying molecular alternations that bear clinical management implications, highlighting the need for recognition and awareness of such unusual IHC staining patterns.

  14. Four novel germline mutations in the MLH1 and PMS2 mismatch repair genes in patients with hereditary nonpolyposis colorectal cancer.

    Science.gov (United States)

    Montazer Haghighi, Mahdi; Radpour, Ramin; Aghajani, Katayoun; Zali, Narges; Molaei, Mahsa; Zali, Mohammad Reza

    2009-08-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is the most common cause of early onset hereditary colorectal cancer. In the majority of HNPCC families, microsatellite instability (MSI) and germline mutation in one of the DNA mismatch repair (MMR) genes are found. The entire coding sequence of MMR genes (MLH1, MLH2, MLH6, and PMS2) was analyzed using direct sequencing. Also, tumor tests were done as MSI and immunohistochemistry testing. We were able to find three novel MLH1 and one novel PMS2 germline mutations in three Iranian HNPCC patients. The first was a transversion mutation c.346A>C (T116P) and happened in the highly conserved HATPase-c region of MLH1 protein. The second was a transversion mutation c.736A>T (I246L), which caused an amino acid change of isoleucine to leucine. The third mutation (c.2145,6 delTG) was frameshift and resulted in an immature stop codon in five codons downstream. All of these three mutations were detected in the MLH1 gene. The other mutation was a transition mutation, c.676G>A (G207E), which has been found in exon six of the PMS2 gene and caused an amino acid change of glycine to glutamic acid. MSI assay revealed high instability in microsatellite for two patients and microsatellite stable for one patient. In all patients, an abnormal expression of the MMR proteins in HNPCC was related to the above novel mutations.

  15. DNA repair genes

    International Nuclear Information System (INIS)

    Morimyo, Mitsuoki

    1995-01-01

    Fission yeast S. pombe is assumed to be a good model for cloning of human DNA repair genes, because human gene is normally expressed in S. pombe and has a very similar protein sequence to yeast protein. We have tried to elucidate the DNA repair mechanisms of S. pombe as a model system for those of mammals. (J.P.N.)

  16. Human telomeres are hypersensitive to UV-induced DNA Damage and refractory to repair.

    Directory of Open Access Journals (Sweden)

    Patrick J Rochette

    2010-04-01

    Full Text Available Telomeric repeats preserve genome integrity by stabilizing chromosomes, a function that appears to be important for both cancer and aging. In view of this critical role in genomic integrity, the telomere's own integrity should be of paramount importance to the cell. Ultraviolet light (UV, the preeminent risk factor in skin cancer development, induces mainly cyclobutane pyrimidine dimers (CPD which are both mutagenic and lethal. The human telomeric repeat unit (5'TTAGGG/CCCTAA3' is nearly optimal for acquiring UV-induced CPD, which form at dipyrimidine sites. We developed a ChIP-based technique, immunoprecipitation of DNA damage (IPoD, to simultaneously study DNA damage and repair in the telomere and in the coding regions of p53, 28S rDNA, and mitochondrial DNA. We find that human telomeres in vivo are 7-fold hypersensitive to UV-induced DNA damage. In double-stranded oligonucleotides, this hypersensitivity is a property of both telomeric and non-telomeric repeats; in a series of telomeric repeat oligonucleotides, a phase change conferring UV-sensitivity occurs above 4 repeats. Furthermore, CPD removal in the telomere is almost absent, matching the rate in mitochondria known to lack nucleotide excision repair. Cells containing persistent high levels of telomeric CPDs nevertheless proliferate, and chronic UV irradiation of cells does not accelerate telomere shortening. Telomeres are therefore unique in at least three respects: their biophysical UV sensitivity, their prevention of excision repair, and their tolerance of unrepaired lesions. Utilizing a lesion-tolerance strategy rather than repair would prevent double-strand breaks at closely-opposed excision repair sites on opposite strands of a damage-hypersensitive repeat.

  17. Stripped-down DNA repair in a highly reduced parasite

    Directory of Open Access Journals (Sweden)

    Fast Naomi M

    2007-03-01

    Full Text Available Abstract Background Encephalitozoon cuniculi is a member of a distinctive group of single-celled parasitic eukaryotes called microsporidia, which are closely related to fungi. Some of these organisms, including E. cuniculi, also have uniquely small genomes that are within the prokaryotic range. Thus, E. cuniculi has undergone a massive genome reduction which has resulted in a loss of genes from diverse biological pathways, including those that act in DNA repair. DNA repair is essential to any living cell. A loss of these mechanisms invariably results in accumulation of mutations and/or cell death. Six major pathways of DNA repair in eukaryotes include: non-homologous end joining (NHEJ, homologous recombination repair (HRR, mismatch repair (MMR, nucleotide excision repair (NER, base excision repair (BER and methyltransferase repair. DNA polymerases are also critical players in DNA repair processes. Given the close relationship between microsporidia and fungi, the repair mechanisms present in E. cuniculi were compared to those of the yeast Saccharomyces cerevisiae to ascertain how the process of genome reduction has affected the DNA repair pathways. Results E. cuniculi lacks 16 (plus another 6 potential absences of the 56 DNA repair genes sought via BLASTP and PSI-BLAST searches. Six of 14 DNA polymerases or polymerase subunits are also absent in E. cuniculi. All of these genes are relatively well conserved within eukaryotes. The absence of genes is not distributed equally among the different repair pathways; some pathways lack only one protein, while there is a striking absence of many proteins that are components of both double strand break repair pathways. All specialized repair polymerases are also absent. Conclusion Given the large number of DNA repair genes that are absent from the double strand break repair pathways, E. cuniculi is a prime candidate for the study of double strand break repair with minimal machinery. Strikingly, all of the

  18. A teleofunctional account of evolutionary mismatch.

    Science.gov (United States)

    Cofnas, Nathan

    When the environment in which an organism lives deviates in some essential way from that to which it is adapted, this is described as "evolutionary mismatch," or "evolutionary novelty." The notion of mismatch plays an important role, explicitly or implicitly, in evolution-informed cognitive psychology, clinical psychology, and medicine. The evolutionary novelty of our contemporary environment is thought to have significant implications for our health and well-being. However, scientists have generally been working without a clear definition of mismatch. This paper defines mismatch as deviations in the environment that render biological traits unable, or impaired in their ability, to produce their selected effects (i.e., to perform their proper functions in Neander's sense). The machinery developed by Millikan in connection with her account of proper function, and with her related teleosemantic account of representation, is used to identify four major types, and several subtypes, of evolutionary mismatch. While the taxonomy offered here does not in itself resolve any scientific debates, the hope is that it can be used to better formulate empirical hypotheses concerning the effects of mismatch. To illustrate, it is used to show that the controversial hypothesis that general intelligence evolved as an adaptation to handle evolutionary novelty can, contra some critics, be formulated in a conceptually coherent way.

  19. Role of DNA lesions and DNA repair in mutagenesis by carcinogens in diploid human fibroblasts

    International Nuclear Information System (INIS)

    Maher, V.M.; McCormick, J.J.

    1986-01-01

    The authors investigated the cytotoxicity, mutagenicity, and transforming activity of carcinogens and radiation in diploid human fibroblasts, using cells which differ in their DNA repair capacity. The results indicate that cell killing and induction of mutations are correlated with the number of specific lesions remaining unrepaired in the cells at a particular time posttreatment. DNA excision repair acts to eliminate potentially cytotoxic and mutagenic (and transforming) damage from DNA before these can be converted into permanent cellular effects. Normal human fibroblasts were derived from skin biopsies or circumcision material. Skin fibroblasts from xeroderma pigmentosum (XP) patients provided cells deficient in nucleotide excision repair of pyrimidine dimers or DNA adducts formed by bulky ring structures. Cytotoxicity was determined from loss of ability to form a colony. The genetic marker used was resistance to 6-thioguanine (TG). Transformation was measured by determining the frequency of anchorage-independent cells

  20. Establishment, characterization and chemosensitivity of three mismatch repair deficient cell lines from sporadic and inherited colorectal carcinomas.

    Directory of Open Access Journals (Sweden)

    Claudia Maletzki

    Full Text Available BACKGROUND: Colorectal cancer (CRC represents a morphologic and molecular heterogenic disease. This heterogeneity substantially impairs drug effectiveness and prognosis. The subtype of mismatch repair deficient (MMR-D CRCs, accounting for about 15% of all cases, shows particular differential responses up to resistance towards currently approved cytostatic drugs. Pre-clinical in vitro models representing molecular features of MMR-D tumors are thus mandatory for identifying biomarkers that finally help to predict responses towards new cytostatic drugs. Here, we describe the successful establishment and characterization of three patient-derived MMR-D cell lines (HROC24, HROC87, and HROC113 along with their corresponding xenografts. METHODOLOGY: MMR-D cell lines (HROC24, HROC87, and HROC113 were established from a total of ten clinicopathological well-defined MMR-D cases (120 CRC cases in total. Cells were comprehensively characterized by phenotype, morphology, growth kinetics, invasiveness, and molecular profile. Additionally, response to clinically relevant chemotherapeutics was examined in vitro and in vivo. PRINCIPAL FINDINGS: Two MMR-D lines showing CIMP-H derived from sporadic CRC (HROC24: K-ras(wt, B-raf(mut, HROC87: K-ras(wt, B-raf(mut, whereas the HROC113 cell line (K-ras(mut, B-raf(wt was HNPCC-associated. A diploid DNA-status could be verified by flow cytometry and SNP Array analysis. All cell lines were characterized as epithelial (EpCAM(+ tumor cells, showing surface tumor marker expression (CEACAM(+. MHC-class II was inducible by Interferon-γ stimulation. Growth kinetics as well as invasive potential was quite heterogeneous between individual lines. Besides, MMR-D cell lines exhibited distinct responsiveness towards chemotherapeutics, even when comparing in vitro and in vivo sensitivity. CONCLUSIONS: These newly established and well-characterized, low-passage MMR-D cell lines provide a useful tool for future investigations on the

  1. Trex2 enables spontaneous sister chromatid exchanges without facilitating DNA double-strand break repair.

    Science.gov (United States)

    Dumitrache, Lavinia C; Hu, Lingchuan; Son, Mi Young; Li, Han; Wesevich, Austin; Scully, Ralph; Stark, Jeremy; Hasty, Paul

    2011-08-01

    Trex2 is a 3' → 5' exonuclease that removes 3'-mismatched sequences in a biochemical assay; however, its biological function remains unclear. To address biology we previously generated trex2(null) mouse embryonic stem (ES) cells and expressed in these cells wild-type human TREX2 cDNA (Trex2(hTX2)) or cDNA with a single-amino-acid change in the catalytic domain (Trex2(H188A)) or in the DNA-binding domain (Trex2(R167A)). We found the trex2(null) and Trex2(H188A) cells exhibited spontaneous broken chromosomes and trex2(null) cells exhibited spontaneous chromosomal rearrangements. We also found ectopically expressed human TREX2 was active at the 3' ends of I-SceI-induced chromosomal double-strand breaks (DSBs). Therefore, we hypothesized Trex2 participates in DNA DSB repair by modifying 3' ends. This may be especially important for ends with damaged nucleotides. Here we present data that are unexpected and prompt a new model. We found Trex2-altered cells (null, H188A, and R167A) were not hypersensitive to camptothecin, a type-1 topoisomerase inhibitor that induces DSBs at replication forks. In addition, Trex2-altered cells were not hypersensitive to γ-radiation, an agent that causes DSBs throughout the cell cycle. This observation held true even in cells compromised for one of the two major DSB repair pathways: homology-directed repair (HDR) or nonhomologous end joining (NHEJ). Trex2 deletion also enhanced repair of an I-SceI-induced DSB by both HDR and NHEJ without affecting pathway choice. Interestingly, however, trex2(null) cells exhibited reduced spontaneous sister chromatid exchanges (SCEs) but this was not due to a defect in HDR-mediated crossing over. Therefore, reduced spontaneous SCE could be a manifestation of the same defect that caused spontaneous broken chromosomes and spontaneous chromosomal rearrangements. These unexpected data suggest Trex2 does not enable DSB repair and prompt a new model that posits Trex2 suppresses the formation of broken

  2. Biomechanical Comparison of Standard and Linked Single-Row Rotator Cuff Repairs in a Human Cadaver Model.

    Science.gov (United States)

    Meisel, Adam F; Henninger, Heath B; Barber, F Alan; Getelman, Mark H

    2017-05-01

    The purpose of this study was to evaluate the time zero cyclic and failure loading properties of a linked single-row rotator cuff repair compared with a standard simple suture single-row repair using triple-loaded suture anchors. Eighteen human cadaveric shoulders from 9 matched pairs were dissected, and full-thickness supraspinatus tears were created. The tendon cross-sectional area was recorded. In each pair, one side was repaired with a linked single-row construct and the other with a simple suture single-row construct, both using 2 triple-loaded suture anchors. After preloading, specimens were cycled to 1 MPa of effective stress at 1 Hz for 500 cycles, and gap formation was recorded with a digital video system. Samples were then loaded to failure, and modes of failure were recorded. There was no statistical difference in peak gap formation between the control and linked constructs (3.6 ± 0.9 mm and 3.6 ± 1.2 mm, respectively; P = .697). Both constructs averaged below a 5-mm cyclic failure threshold. There was no statistical difference in ultimate load to failure between the control and linked repair (511.1 ± 139.0 N and 561.2 ± 131.8 N, respectively; P = .164), and both groups reached failure at loads similar to previous studies. Constructs failed predominantly via tissue tearing parallel to the medial suture line. The linked repair performed similarly to the simple single-row repair. Both constructs demonstrated high ultimate load to failure and good resistance to gap formation with cyclic loading, validating the time zero strength of both constructs in a human cadaveric model. The linked repair provided equivalent resistance to gap formation and failure loads compared with simple suture single-row repairs with triple-loaded suture anchors. This suggests that the linked repair is a simplified rip-stop configuration using the existing suture that may perform similarly to current rotator cuff repair techniques. Copyright © 2016 Arthroscopy

  3. Detection of mismatch repair gene germline mutation carrier among Chinese population with colorectal cancer

    International Nuclear Information System (INIS)

    Jin, Hei-Ying; Zhao, Ronghua; Liu, Xiufang; Li, Vicky Ka Ming; Ding, Yijiang; Yang, Bolin; Geng, Jianxiang; Lai, Rensheng; Ding, Shuqing; Ni, Min

    2008-01-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant syndrome. The National Cancer Institute (NCI) has recommended the Revised Bethesda guidelines for screening HNPCC. There has been a great deal of research on the value of these tests in other countries. However, literature about the Chinese population is scarce. Our objective is to detect and study microsatellite instability (MSI) and mismatch repair (MMR) gene germline mutation carriers among a Chinese population with colorectal cancer. In 146 prospectively recruited consecutive patients with clinically proven colorectal cancer, MSI carriers were identified by analysis of tumor tissue using multiplex fluorescence polymerase chain reaction (PCR) using the NCI recommended panel and classified into microsatellite instability-low (MSI-L), microsatellite instability-high (MSI-H) and microsatellite stable (MSS) groups. Immunohistochemical staining for MSH2, MSH6 and MLH1 on tissue microarrays (TMAs) was performed, and methylation of the MLH1 promoter was analyzed by quantitative methylation specific PCR (MSP). Germline mutation analysis of blood samples was performed for MSH2, MSH6 and MLH1 genes. Thirty-four out of the 146 colorectal cancers (CRCs, 23.2%) were MSI, including 19 MSI-H CRCs and 15 MSI-L CRCS. Negative staining for MSH2 was found in 8 CRCs, negative staining for MSH6 was found in 6 CRCs. One MSI-H CRC was negative for both MSH6 and MSH2. Seventeen CRCs stained negatively for MLH1. MLH1 promoter methylation was determined in 34 MSI CRCs. Hypermethylation of the MLH1 promoter occurred in 14 (73.7%) out of 19 MSI-H CRCs and 5 (33.3%) out of 15 MSI-L CRCs. Among the 34 MSI carriers and one MSS CRC with MLH1 negative staining, 8 had a MMR gene germline mutation, which accounted for 23.5% of all MSI colorectal cancers and 5.5% of all the colorectal cancers. Five patients harbored MSH2 germline mutations, and three patients harbored MSH6 germline mutations. None of the patients had an MLH

  4. Inhibition of DNA replication and repair by anthralin or danthron in cultured human cells

    International Nuclear Information System (INIS)

    Clark, J.M.; Hanawalt, P.C.

    1982-01-01

    The comparative effects of the tumor promoter anthralin and its analog, danthron, on semiconservative DNA replication and DNA repair synthesis were studied in cultured human cells. Bromodeoxyuridine was used as density label together with 3 H-thymidine to distinguish replication from repair synthesis in isopycnic CsCl gradients. Anthralin at 1.1 microgram inhibited replication in T98G cells by 50%. In cells treated with 0.4 or 1.3 microM anthralin and additive effect was observed on the inhibition of replication by ultraviolet light (254 nm). In cells irradiated with 20 J/m2, 2.3 microM anthralin was required to inhibit repair synthesis by 50%. Thus there was no selective inhibitory effect of anthralin on repair synthesis. Danthron exhibited no detectable effect on either semiconservative replication or repair synthesis at concentrations below about 5.0 microM. Neither compound stimulated repair synthesis in the absence of ultraviolet irradiation. Thus, anthralin and danthron do not appear to react with DNA to form adducts that are subject to excision repair. Although both compounds appear to intercalate into supercoiled DNA in vitro to a limited extent, the degree of unwinding introduced by the respective drugs does not correlate with their relative effects on DNA synthesis in vivo. Therefore the inhibitory effect of anthralin on DNA replication and repair synthesis in T98G cells does not appear to result from the direct interaction of the drug with DNA

  5. CrowdAidRepair: A Crowd-Aided Interactive Data Repairing Method

    KAUST Repository

    Zhou, Jian; Li, Zhixu; Gu, Binbin; Xie, Qing; Zhu, Jia; Zhang, Xiangliang; Li, Guoliang

    2016-01-01

    turn to use the power of crowd in data repairing, but the crowd power has its own drawbacks such as high human intervention cost and inevitable low efficiency. In this paper, we propose a crowd-aided interactive data repairing method which takes

  6. Substrate overlap and functional competition between human nucleotide excision repair and Escherichia coli photolyase and (A)BC excision nuclease

    International Nuclear Information System (INIS)

    Sibghat-Ullah; Sancar, Z.

    1990-01-01

    Human cell free extract prepared by the method of Manley et al. carries out repair synthesis on UV-irradiated DNA. Removal of pyrimidine dimers by photoreactivation with DNA photolyase reduces repair synthesis by about 50%. With excess enzyme in the reaction mixture photolyase reduced the repair signal by the same amount even in the absence of photoreactivating light, presumably by binding to pyrimidine dimers and interfering with the binding of human damage recognition protein. Similarly, the UvrB subunit of Escherichia coli (A)BC excinuclease when loaded onto UV-irradiated or psoralen-adducted DNA inhibited repair synthesis by cell-free extract by 75-80%. The opposite was true also as HeLa cell free extract specifically inhibited the photorepair of a thymine dimer by DNA photolyase and its removal by (A)BC excinuclease. Cell-free extracts from xeroderma pigmentosum (XP) complementation groups A and C were equally effective in blocking the E. coli repair proteins, while extracts from complementation groups D and E were ineffective in blocking the E. coli enzyme. These results suggest that XP-D and XP-E cells are defective in the damage recognition subunits(s) of human excision nuclease

  7. Scintillometric determination of DNA repair in human cell lines. A critical appraisal

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, V.; Zantedeschi, A.; Levis, A.G. (Padua Univ. (Italy). Ist. di Biologica Animale); Nuzzo, F.; Stefanini, M. (Consiglio Nazionale delle Ricerche, Pavia (Italy). Ist. di Genetica Biochimica ed Evoluzionistica); Abbondandolo, A.; Bonatti, S.; Fiorio, R.; Mazzaccaro, A. (Consiglio Nazionale delle Ricerche, Pisa (Italy). Ist. di Mutagenesi e Differenziamento); Capelli, E. (Pavia Univ. (Italy). Ist. di Genetica)

    1982-04-01

    The ability of a variety of chemical and physical agents to stimulate DNA repair synthesis in human cell cultures was tested by a simplified scintillometric procedure, with the use of hydroxyurea (HU) to suppress DNA replicative synthesis. After incubation with (/sup 3/H)thymidine, the radioactivity incorporated into DNA was determined in controls (C) and treated (T) cultures and in the corresponding HU series (Csub(HU), Tsub(HU)). The ratios Tsub(HU)/Csub(HU) and Tsub(HU)/T:Csub(HU)/C, indicating absolute and relative increases of DNA radioactivity, were calculated. When both ratios were significantly higher than 1, they were taken as indices of DNA repair stimulation.

  8. Avaliação da expressão tecidual do gene de reparo MLH1 e dos níveis de dano oxidativo ao DNA em doentes com câncer colorretal Evaluation of expression of mismatch repair gene MLH1 and levels of oxidative DNA damage in normal and neoplastic tissues of patients with colorectal cancer

    Directory of Open Access Journals (Sweden)

    Carlos Augusto Real Martinez

    2009-09-01

    form the DNA, allowing mutations in controlling genes of the cell cycle. The cells have a defense system represented by the DNA mismatch repair genes that correct the errors of matching prevent the development of DNA mutations. Few studies have evaluated the relationship between oxidative DNA damage and the tissue expression of mismatch repair genes. AIM: The aim of the present study was evaluate the levels of oxidative DNA and the tissue expression of MLH1 mismatch repair gene in the cells of normal and neoplastic colonic mucosa of patients with colorectal cancer. MATERIAL AND METHODS: Were studied 44 patients with diagnosis of colorectal adenocarcinoma. Were excluded patients with hereditary colorectal cancer, with colorectal cancer associate with inflammatory bowel diseases and those undergoing neoadjuvant radioquimiotherapy. To evaluate the levels of oxidative DNA damage was used the single cell gel electrophoresis (comet assay evaluating 100 cells obtained from normal and neoplastic tissues. For the evaluation of the tissue expression of MLH1 gene was employed the technique of polymerase chain reaction in real time (RT-PCR with primer specifically designed for MLH1 gene. The comparison among the levels of DNA oxidative stress and expression of MLH1 mismatch repair gene in normal and neoplastic tissues was done by Student t test adopting a significance level of 5% (p< 0.05. RESULTS: The levels of oxidative DNA damage in tumor tissue were significantly higher when compared to the level of the normal tissue (p = 0.0001. The tissue expression of MLH1 mismatch repair gene in tumor tissue was significantly lower when compared to normal tissue (p=0.02. CONCLUSION: The mismatch repair gene MLH1 are less expressed in tumor tissue and inversely related to levels of oxidative DNA damage.

  9. Balancing repair and tolerance of DNA damage caused by alkylating agents.

    Science.gov (United States)

    Fu, Dragony; Calvo, Jennifer A; Samson, Leona D

    2012-01-12

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity.

  10. Methylation Analysis of DNA Mismatch Repair Genes Using DNA Derived from the Peripheral Blood of Patients with Endometrial Cancer: Epimutation in Endometrial Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Takashi Takeda

    2016-10-01

    Full Text Available Germline mutation of DNA mismatch repair (MMR genes is a cause of Lynch syndrome. Methylation of MutL homolog 1 (MLH1 and MutS homolog 2 (MSH2 has been detected in peripheral blood cells of patients with colorectal cancer. This methylation is referred to as epimutation. Methylation of these genes has not been studied in an unselected series of endometrial cancer cases. Therefore, we examined methylation of MLH1, MSH2, and MSH6 promoter regions of peripheral blood cells in 206 patients with endometrial cancer using a methylation-specific polymerase chain reaction (MSP. Germline mutation of MMR genes, microsatellite instability (MSI, and immunohistochemistry (IHC were also analyzed in each case with epimutation. MLH1 epimutation was detected in a single patient out of a total of 206 (0.49%—1 out of 58 (1.72% with an onset age of less than 50 years. The patient with MLH1 epimutation showed high level MSI (MSI-H, loss of MLH1 expression and had developed endometrial cancer at 46 years old, complicated with colorectal cancer. No case had epimutation of MSH2 or MSH6. The MLH1 epimutation detected in a patient with endometrial cancer may be a cause of endometrial carcinogenesis. This result indicates that it is important to check epimutation in patients with endometrial cancer without a germline mutation of MMR genes.

  11. Variability in DNA repair capacity in the human population and its relationship to carcinogenic risk

    International Nuclear Information System (INIS)

    Nuzzo, F.; Stefanini, M.; Giulotto, E.; Falaschi, A.

    1980-01-01

    Several inherited diseases, all characterized by a high incidence of tumours in the homozygous patients, show pronounced defects in DNA repair mechanisms, thus confirming the relationship between the repair process and mutation induction, and indicating clearly that a fraction of the population is certainly much more exposed to cancer that the bulk of the human population. The basic molecular defects in such diseases are summarized. The estimated heterozygote frequency in tumour predisposing syndromes is considered and possible identification of heterozygotes discussed. A procedure to reveal DNA repair capacity at the cellular level would perhaps identify the cancer-prone fraction of the population. A simple assay for measuring repair synthesis is outlined which can be used to determine whether a given substance or treatment elicits repair synthesis and is hence harmful to DNA and potentially mutagenic and/or carcinogenic. It can also be used to assess the capacity of an individual to respond to a known DNA damaging agent. (Auth./C.F.)

  12. DNA repair

    International Nuclear Information System (INIS)

    Van Zeeland, A.A.

    1984-01-01

    In this chapter a series of DNA repair pathways are discussed which are available to the cell to cope with the problem of DNA damaged by chemical or physical agents. In the case of microorganisms our knowledge about the precise mechanism of each DNA repair pathway and the regulation of it has been improved considerably when mutants deficient in these repair mechanisms became available. In the case of mammalian cells in culture, until recently there were very little repair deficient mutants available, because in almost all mammalian cells in culture at least the diploid number of chromosomes is present. Therefore the frequency of repair deficient mutants in such populations is very low. Nevertheless because replica plating techniques are improving some mutants from Chinese hamsters ovary cells and L5178Y mouse lymphoma cells are now available. In the case of human cells, cultures obtained from patients with certain genetic diseases are available. A number of cells appear to be sensitive to some chemical or physical mutagens. These include cells from patients suffering from xeroderma pigmentosum, Ataxia telangiectasia, Fanconi's anemia, Cockayne's syndrome. However, only in the case of xeroderma pigmentosum cells, has the sensitivity to ultraviolet light been clearly correlated with a deficiency in excision repair of pyrimidine dimers. Furthermore the work with strains obtained from biopsies from man is difficult because these cells generally have low cloning efficiencies and also have a limited lifespan in vitro. It is therefore very important that more repair deficient mutants will become available from established cell lines from human or animal origin

  13. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium 'care for CMMRD' (C4CMMRD).

    Science.gov (United States)

    Wimmer, Katharina; Kratz, Christian P; Vasen, Hans F A; Caron, Olivier; Colas, Chrystelle; Entz-Werle, Natacha; Gerdes, Anne-Marie; Goldberg, Yael; Ilencikova, Denisa; Muleris, Martine; Duval, Alex; Lavoine, Noémie; Ruiz-Ponte, Clara; Slavc, Irene; Burkhardt, Brigit; Brugieres, Laurence

    2014-06-01

    Constitutional mismatch repair deficiency (CMMRD) syndrome is a distinct childhood cancer predisposition syndrome that results from biallelic germline mutations in one of the four MMR genes, MLH1, MSH2, MSH6 or PMS2. The tumour spectrum is very broad, including mainly haematological, brain and intestinal tract tumours. Patients show a variety of non-malignant features that are indicative of CMMRD. However, currently no criteria that should entail diagnostic evaluation of CMMRD exist. We present a three-point scoring system for the suspected diagnosis CMMRD in a paediatric/young adult cancer patient. Tumours highly specific for CMMRD syndrome are assigned three points, malignancies overrepresented in CMMRD two points and all other malignancies one point. According to their specificity for CMMRD and their frequency in the general population, additional features are weighted with 1-2 points. They include multiple hyperpigmented and hypopigmented skin areas, brain malformations, pilomatricomas, a second childhood malignancy, a Lynch syndrome (LS)-associated tumour in a relative and parental consanguinity. According to the scoring system, CMMRD should be suspected in any cancer patient who reaches a minimum of three points by adding the points of the malignancy and the additional features. The diagnostic steps to confirm or refute the suspected diagnosis are outlined. We expect that application of the suggested strategy for CMMRD diagnosis will increase the number of patients being identified at the time when they develop their first tumour. This will allow adjustment of the treatment modalities, offering surveillance strategies for second malignancies and appropriate counselling of the entire family. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. DNA Mismatch Repair Deficiency in Rectal Cancer: Benchmarking Its Impact on Prognosis, Neoadjuvant Response Prediction, and Clinical Cancer Genetics.

    Science.gov (United States)

    de Rosa, Nicole; Rodriguez-Bigas, Miguel A; Chang, George J; Veerapong, Jula; Borras, Ester; Krishnan, Sunil; Bednarski, Brian; Messick, Craig A; Skibber, John M; Feig, Barry W; Lynch, Patrick M; Vilar, Eduardo; You, Y Nancy

    2016-09-01

    DNA mismatch repair deficiency (dMMR) hallmarks consensus molecular subtype 1 of colorectal cancer. It is being routinely tested, but little is known about dMMR rectal cancers. The efficacy of novel treatment strategies cannot be established without benchmarking the outcomes of dMMR rectal cancer with current therapy. We aimed to delineate the impact of dMMR on prognosis, the predicted response to fluoropyrimidine-based neoadjuvant therapy, and implications of germline alterations in the MMR genes in rectal cancer. Between 1992 and 2012, 62 patients with dMMR rectal cancers underwent multimodality therapy. Oncologic treatment and outcomes as well as clinical genetics work-up were examined. Overall and rectal cancer-specific survival were calculated by the Kaplan-Meier method. The median age at diagnosis was 41 years. MMR deficiency was most commonly due to alterations in MSH2 (53%) or MSH6 (23%). After a median follow-up of 6.8 years, the 5-year rectal cancer-specific survival was 100% for stage I and II, 85.1% for stage III, and 60.0% for stage IV disease. Fluoropyrimidine-based neoadjuvant chemoradiation was associated with a complete pathologic response rate of 27.6%. The extent of surgical resection was influenced by synchronous colonic disease at presentation, tumor height, clinical stage, and pelvic radiation. An informed decision for a limited resection focusing on proctectomy did not compromise overall survival. Five of the 11 (45.5%) deaths during follow-up were due to extracolorectal malignancies. dMMR rectal cancer had excellent prognosis and pathologic response with current multimodality therapy including an individualized surgical treatment plan. Identification of a dMMR rectal cancer should trigger germline testing, followed by lifelong surveillance for both colorectal and extracolorectal malignancies. We herein provide genotype-specific outcome benchmarks for comparison with novel interventions. © 2016 by American Society of Clinical Oncology.

  15. Stress and DNA repair biology of the Fanconi anemia pathway

    Science.gov (United States)

    Longerich, Simonne; Li, Jian; Xiong, Yong; Sung, Patrick

    2014-01-01

    Fanconi anemia (FA) represents a paradigm of rare genetic diseases, where the quest for cause and cure has led to seminal discoveries in cancer biology. Although a total of 16 FA genes have been identified thus far, the biochemical function of many of the FA proteins remains to be elucidated. FA is rare, yet the fact that 5 FA genes are in fact familial breast cancer genes and FA gene mutations are found frequently in sporadic cancers suggest wider applicability in hematopoiesis and oncology. Establishing the interaction network involving the FA proteins and their associated partners has revealed an intersection of FA with several DNA repair pathways, including homologous recombination, DNA mismatch repair, nucleotide excision repair, and translesion DNA synthesis. Importantly, recent studies have shown a major involvement of the FA pathway in the tolerance of reactive aldehydes. Moreover, despite improved outcomes in stem cell transplantation in the treatment of FA, many challenges remain in patient care. PMID:25237197

  16. HLA-DQ Mismatching and Kidney Transplant Outcomes.

    Science.gov (United States)

    Leeaphorn, Napat; Pena, Jeremy Ryan A; Thamcharoen, Natanong; Khankin, Eliyahu V; Pavlakis, Martha; Cardarelli, Francesca

    2018-05-07

    Recent evidence suggests that HLA epitope-mismatching at HLA-DQ loci is associated with the development of anti-DQ donor-specific antibodies and adverse graft outcomes. However, the clinical significance of broad antigen HLA-DQ mismatching for graft outcomes is not well examined. Using the United Network Organ Sharing/the Organ Procurement and Transplantation Network (UNOS/OPTN) data, patients with primary kidney transplants performed between 2005 and 2014 were included. Patients were classified as having either zero HLA-DQ mismatches, or one or two HLA-DQ mismatches. Primary outcomes were death-censored graft survival and incidence of acute rejection. A total of 93,782 patients were included. Of these, 22,730 (24%) and 71,052 (76%) received zero and one or two HLA-DQ mismatched kidneys, respectively. After adjusting for variables including HLA-ABDR, HLA-DQ mismatching was associated with a higher risk of graft loss in living kidney donor recipients with an adjusted hazard ratio (HR) of 1.18 (95% confidence interval [95% CI], 1.07 to 1.30; P HLA-DQ mismatching was associated with a higher risk of graft loss in deceased kidney donor recipients with cold ischemic time ≤17 hours (HR, 1.12; 95% CI, 1.02 to 1.27; P =0.002), but not in deceased kidney donor recipients with cold ischemic time >17 hours (HR, 0.97; 95% CI, 0.88 to 1.06; P =0.49) ( P value for interaction HLA-DQ mismatched kidneys had a higher incidence of acute rejection at 1 year, with adjusted odds ratios of 1.13 (95% CI, 1.03 to 1.23; P transplant recipients. Specific donor-DQ mismatches seemed to be associated with the risk of acute rejection and graft failure, whereas others did not. HLA-DQ mismatching is associated with lower graft survival independent of HLA-ABDR in living donor kidney transplants and deceased donor kidney transplants with cold ischemia time ≤17 hours, and a higher 1-year risk of acute rejection in living and deceased donor kidney transplants. Copyright © 2018 by the American

  17. Zero energy buildings and mismatch compensation factors

    DEFF Research Database (Denmark)

    Lund, Henrik; Marszal, Anna Joanna; Heiselberg, Per

    2011-01-01

    This paper takes an overall energy system approach to analysing the mismatch problem of zero energy and zero emission buildings (ZEBs). The mismatch arises from hourly differences in energy production and consumption at the building level and results in the need for exchange of electricity via...... the public grid even though the building has an annual net-exchange of zero. This paper argues that, when looked upon from the viewpoint of the overall electricity supply system, a mismatch can be both negative and positive. Moreover, there are often both an element of levelling out mismatches between...... of the energy production unit. Based on historical data for the electricity supply area in western Denmark, this paper makes a first attempt to quantify mismatch compensation factors. The results indicate that such compensation factors are a little below one for buildings with photovoltaics (PV) and a little...

  18. Mismatch oligonucleotides in human and yeast: guidelines for probe design on tiling microarrays

    Directory of Open Access Journals (Sweden)

    Jee Justin

    2008-12-01

    Full Text Available Abstract Background Mismatched oligonucleotides are widely used on microarrays to differentiate specific from nonspecific hybridization. While many experiments rely on such oligos, the hybridization behavior of various degrees of mismatch (MM structure has not been extensively studied. Here, we present the results of two large-scale microarray experiments on S. cerevisiae and H. sapiens genomic DNA, to explore MM oligonucleotide behavior with real sample mixtures under tiling-array conditions. Results We examined all possible nucleotide substitutions at the central position of 36-nucleotide probes, and found that nonspecific binding by MM oligos depends upon the individual nucleotide substitutions they incorporate: C→A, C→G and T→A (yielding purine-purine mispairs are most disruptive, whereas A→X were least disruptive. We also quantify a marked GC skew effect: substitutions raising probe GC content exhibit higher intensity (and vice versa. This skew is small in highly-expressed regions (± 0.5% of total intensity range and large (± 2% or more elsewhere. Multiple mismatches per oligo are largely additive in effect: each MM added in a distributed fashion causes an additional 21% intensity drop relative to PM, three-fold more disruptive than adding adjacent mispairs (7% drop per MM. Conclusion We investigate several parameters for oligonucleotide design, including the effects of each central nucleotide substitution on array signal intensity and of multiple MM per oligo. To avoid GC skew, individual substitutions should not alter probe GC content. RNA sample mixture complexity may increase the amount of nonspecific hybridization, magnify GC skew and boost the intensity of MM oligos at all levels.

  19. Measurement of mismatch loss in CPV modul

    Science.gov (United States)

    Liu, Mingguo; Kinsey, Geoffrey S.; Bagienski, Will; Nayak, Adi; Garboushian, Vahan

    2012-10-01

    A setup capable of simultaneously measuring I-V curves of a full string and its individual cells has been developed. This setup enables us to measure mismatch loss from individual cells in concert with various string combinations under varying field conditions. Mismatch loss from cells to plates at different off-track angles and mismatch from plates to strings in Amonix system during normal operation have been investigated.

  20. Ultraviolet and chemical induced DNA repair in human cells assayed by bromodeoxyuridine photolysis or cytosine arabinoside arrest

    International Nuclear Information System (INIS)

    Regan, J.D.; Dunn, W.C.

    1979-01-01

    The bromodeoxyuridine photolysis assay of DNA damage in human cells permits an estimate of both the number of repaired regions in the DNA and the size of the average repaired region - the patch size. The antineoplastic agent arabinofuranosyl cytosine (ara-C) can also be employed to assay the magnitude of repair since this agent appears to block rejoining of single-strand incisions made in the DNA during the initial step of repair. Thus, the number of incisions can be accumulated. The ara-C effect is dependent on the presence of hydroxyurea. Both assays can be employed for the study of physical or chemical DNA damages. Results comparing these assays are presented

  1. CrowdAidRepair: A Crowd-Aided Interactive Data Repairing Method

    KAUST Repository

    Zhou, Jian

    2016-03-25

    Data repairing aims at discovering and correcting erroneous data in databases. Traditional methods relying on predefined quality rules to detect the conflict between data may fail to choose the right way to fix the detected conflict. Recent efforts turn to use the power of crowd in data repairing, but the crowd power has its own drawbacks such as high human intervention cost and inevitable low efficiency. In this paper, we propose a crowd-aided interactive data repairing method which takes the advantages of both rule-based method and crowd-based method. Particularly, we investigate the interaction between crowd-based repairing and rule-based repairing, and show that by doing crowd-based repairing to a small portion of values, we can greatly improve the repairing quality of the rule-based repairing method. Although we prove that the optimal interaction scheme using the least number of values for crowd-based repairing to maximize the imputation recall is not feasible to be achieved, still, our proposed solution identifies an efficient scheme through investigating the inconsistencies and the dependencies between values in the repairing process. Our empirical study on three data collections demonstrates the high repairing quality of CrowdAidRepair, as well as the efficiency of the generated interaction scheme over baselines.

  2. Direct Mismatch Characterization of femto-Farad Capacitors

    KAUST Repository

    Omran, Hesham

    2015-08-17

    Reducing the capacitance of programmable capacitor arrays, commonly used in analog integrated circuits, is necessary for low-energy applications. However, limited mismatch data is available for small capacitors. We report mismatch measurement for a 2fF poly-insulator-poly (PIP) capacitor, which is the smallest reported PIP capacitor to the best of the authors’ knowledge. Instead of using complicated custom onchip circuitry, direct mismatch measurement is demonstrated and verified using Monte Carlo Simulations and experimental measurements. Capacitive test structures composed of 9 bit programmable capacitor arrays (PCAs) are implemented in a low-cost 0:35m CMOS process. Measured data is compared to mismatch of large PIP capacitors, theoretical models, and recently published data. Measurement results indicate an estimated average relative standard deviation of 0.43% for the 2fF unit capacitor, which is better than the reported mismatch of metal-oxide-metal (MOM) fringing capacitors implemented in an advanced 32nm CMOS process.

  3. Direct Mismatch Characterization of femto-Farad Capacitors

    KAUST Repository

    Omran, Hesham; Elafandy, Rami T.; Arsalan, Muhammad; Salama, Khaled N.

    2015-01-01

    Reducing the capacitance of programmable capacitor arrays, commonly used in analog integrated circuits, is necessary for low-energy applications. However, limited mismatch data is available for small capacitors. We report mismatch measurement for a 2fF poly-insulator-poly (PIP) capacitor, which is the smallest reported PIP capacitor to the best of the authors’ knowledge. Instead of using complicated custom onchip circuitry, direct mismatch measurement is demonstrated and verified using Monte Carlo Simulations and experimental measurements. Capacitive test structures composed of 9 􀀀 bit programmable capacitor arrays (PCAs) are implemented in a low-cost 0:35m CMOS process. Measured data is compared to mismatch of large PIP capacitors, theoretical models, and recently published data. Measurement results indicate an estimated average relative standard deviation of 0.43% for the 2fF unit capacitor, which is better than the reported mismatch of metal-oxide-metal (MOM) fringing capacitors implemented in an advanced 32nm CMOS process.

  4. The cutting edges in DNA repair, licensing, and fidelity: DNA and RNA repair nucleases sculpt DNA to measure twice, cut once.

    Science.gov (United States)

    Tsutakawa, Susan E; Lafrance-Vanasse, Julien; Tainer, John A

    2014-07-01

    To avoid genome instability, DNA repair nucleases must precisely target the correct damaged substrate before they are licensed to incise. Damage identification is a challenge for all DNA damage response proteins, but especially for nucleases that cut the DNA and necessarily create a cleaved DNA repair intermediate, likely more toxic than the initial damage. How do these enzymes achieve exquisite specificity without specific sequence recognition or, in some cases, without a non-canonical DNA nucleotide? Combined structural, biochemical, and biological analyses of repair nucleases are revealing their molecular tools for damage verification and safeguarding against inadvertent incision. Surprisingly, these enzymes also often act on RNA, which deserves more attention. Here, we review protein-DNA structures for nucleases involved in replication, base excision repair, mismatch repair, double strand break repair (DSBR), and telomere maintenance: apurinic/apyrimidinic endonuclease 1 (APE1), Endonuclease IV (Nfo), tyrosyl DNA phosphodiesterase (TDP2), UV Damage endonuclease (UVDE), very short patch repair endonuclease (Vsr), Endonuclease V (Nfi), Flap endonuclease 1 (FEN1), exonuclease 1 (Exo1), RNase T and Meiotic recombination 11 (Mre11). DNA and RNA structure-sensing nucleases are essential to life with roles in DNA replication, repair, and transcription. Increasingly these enzymes are employed as advanced tools for synthetic biology and as targets for cancer prognosis and interventions. Currently their structural biology is most fully illuminated for DNA repair, which is also essential to life. How DNA repair enzymes maintain genome fidelity is one of the DNA double helix secrets missed by James Watson and Francis Crick, that is only now being illuminated though structural biology and mutational analyses. Structures reveal motifs for repair nucleases and mechanisms whereby these enzymes follow the old carpenter adage: measure twice, cut once. Furthermore, to measure

  5. An ex vivo human cartilage repair model to evaluate the potency of a cartilage cell transplant.

    Science.gov (United States)

    Bartz, Christoph; Meixner, Miriam; Giesemann, Petra; Roël, Giulietta; Bulwin, Grit-Carsta; Smink, Jeske J

    2016-11-15

    Cell-based therapies such as autologous chondrocyte implantation are promising therapeutic approaches to treat cartilage defects to prevent further cartilage degeneration. To assure consistent quality of cell-based therapeutics, it is important to be able to predict the biological activity of such products. This requires the development of a potency assay, which assesses a characteristic of the cell transplant before implantation that can predict its cartilage regeneration capacity after implantation. In this study, an ex vivo human cartilage repair model was developed as quality assessment tool for potency and applied to co.don's chondrosphere product, a matrix-associated autologous chondrocyte implant (chondrocyte spheroids) that is in clinical use in Germany. Chondrocyte spheroids were generated from 14 donors, and implanted into a subchondral cartilage defect that was manually generated in human articular cartilage tissue. Implanted spheroids and cartilage tissue were co-cultured ex vivo for 12 weeks to allow regeneration processes to form new tissue within the cartilage defect. Before implantation, spheroid characteristics like glycosaminoglycan production and gene and protein expression of chondrogenic markers were assessed for each donor sample and compared to determine donor-dependent variation. After the co-cultivation, histological analyses showed the formation of repair tissue within the cartilage defect, which varied in amount for the different donors. In the repair tissue, aggrecan protein was expressed and extra-cellular matrix cartilage fibers were present, both indicative for a cartilage hyaline-like character of the repair tissue. The amount of formed repair tissue was used as a read-out for regeneration capacity and was correlated with the spheroid characteristics determined before implantation. A positive correlation was found between high level of aggrecan protein expression in spheroids before implantation and a higher regeneration potential

  6. An ex vivo human cartilage repair model to evaluate the potency of a cartilage cell transplant

    Directory of Open Access Journals (Sweden)

    Christoph Bartz

    2016-11-01

    Full Text Available Abstract Background Cell-based therapies such as autologous chondrocyte implantation are promising therapeutic approaches to treat cartilage defects to prevent further cartilage degeneration. To assure consistent quality of cell-based therapeutics, it is important to be able to predict the biological activity of such products. This requires the development of a potency assay, which assesses a characteristic of the cell transplant before implantation that can predict its cartilage regeneration capacity after implantation. In this study, an ex vivo human cartilage repair model was developed as quality assessment tool for potency and applied to co.don’s chondrosphere product, a matrix-associated autologous chondrocyte implant (chondrocyte spheroids that is in clinical use in Germany. Methods Chondrocyte spheroids were generated from 14 donors, and implanted into a subchondral cartilage defect that was manually generated in human articular cartilage tissue. Implanted spheroids and cartilage tissue were co-cultured ex vivo for 12 weeks to allow regeneration processes to form new tissue within the cartilage defect. Before implantation, spheroid characteristics like glycosaminoglycan production and gene and protein expression of chondrogenic markers were assessed for each donor sample and compared to determine donor-dependent variation. Results After the co-cultivation, histological analyses showed the formation of repair tissue within the cartilage defect, which varied in amount for the different donors. In the repair tissue, aggrecan protein was expressed and extra-cellular matrix cartilage fibers were present, both indicative for a cartilage hyaline-like character of the repair tissue. The amount of formed repair tissue was used as a read-out for regeneration capacity and was correlated with the spheroid characteristics determined before implantation. A positive correlation was found between high level of aggrecan protein expression in spheroids

  7. Making Sense of Missense in the Lynch Syndrome: The Clinical Perspective

    Science.gov (United States)

    Lynch, Henry T.; Jascur, Thomas; Lanspa, Stephen; Boland, C. Richard

    2010-01-01

    The DNA mismatch repair system provides critical genetic housekeeping, and its failure is associated with tumorigenesis. Through distinct domains on the DNA mismatch repair proteins, the system recognizes and repairs errors occurring during DNA synthesis, but signals apoptosis when the DNA damage cannot be repaired. Certain missense mutations in the mismatch repair genes can selectively alter just one of these functions. This impacts the clinical features of tumors associated with defective DNA mismatch repair activity. New work reported by Xie et al. in this issue of the journal (beginning on page XXX) adds to the understanding of DNA mismatch repair. PMID:20978117

  8. Differential response of human and rodent cell lines to chemical inhibition of the repair of potentially lethal damage

    Energy Technology Data Exchange (ETDEWEB)

    Little, J.B.; Ueno, A.M.; Dahlberg, W.K.

    1989-07-01

    We have examined the effects of several classes of metabolic inhibitors on the repair of potentially lethal damage in density-inhibited cultures of two rodent and two human cell systems which differ in their growth characteristics. Aphidicolin, 1-..beta..-D-arabinofuranosylcytosine (ara-C) and hydroxyurea showed no effect on PLD repair, whereas the effects of 9-..beta..-D-arabinofuranosyladenine (ara-A) and 3-aminobenzamide (3-AB) were cell line dependent. For example, 3-AB suppressed PLD repair almost completely in CHO cells, but showed no inhibitory effects in human diploid fibroblasts. These results indicate that inhibitors of DNA replication and poly(ADP-ribose) synthesis are not efficient inhibitors of cellular recovery in irradiated cells and, moreover, that such effects may be cell line dependent.

  9. Reduced repair of potentially lethal radiation damage in glutathione synthetase-deficient human fibroblasts after X-irradiation

    International Nuclear Information System (INIS)

    Midander, J.; Revesz, L.; Deschavanne, P.J.; Debieu, D.; Malaise, E.P.

    1986-01-01

    Using a human fibroblast strain deficient in glutathione synthetase and a related proficient control strain, the role of glutathione (GSH) in repair of potentially lethal damage (PLD) has been investigated in determining survival by plating cells immediately or 24 h after irradiation. After oxic or hypoxic irradiation, both cell strains repair radiation-induced damage. However, under hypoxic conditions, the proficient cells repair PLD as well as under oxic conditions while the deficient cells repair less PLD after irradiation under hypoxic than under oxic conditions. Therefore, the oxygen enhancement ratio (o.e.r.) for proficient cells is similar whether the cells are plated immediately or 24 h later (2.0 and 2.13, respectively). In contrast, the o.e.r. for deficient cells is lower when the cells are plated 24 h after irradiation than when they are plated immediately thereafter (1.16 as compared to 1.55). The results indicate that GSH is involved in PLD repair and, in particular, in the repair of damage induced by radiation delivered under hypoxic conditions. (author)

  10. Efficiency of repair of pyrimidine dimers and psoralen monoadducts in normal and xeroderma pigmentosum human cells

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Charles, W.C.; Kong, S.H.

    1984-01-01

    Repair of DNA damage produced by ultraviolet light or 5-methylisopsoralen in normal and xeroderma pigmentosum human cells involves many similar steps. Aphidicolin and cytosine arabinoside block repair of both kinds of damage with similar efficiency, indicating that DNA polymerase α has a major role in repair for these lesions. In xeroderma pigmentosum cells of various complementation groups, the relative efficiency of excision repair for both ultraviolet- and 5-methylisopsoralen-induced damage was group A< C< D, indicating a close resemblance between both kinds of lesions in relation to the repair deficiencies in these groups. At high doses, the maximum rate of repair of damage by ultraviolet light was about twice that for methylisopsoralen damage, possibly because ultraviolet-induced damage forms a substrate that is more readily recognized and excised than that of the psoralen adducts. Differences in the structural distortions to DNA caused by these kinds of damage could be detected using single strand specific nucleases which excised dimers but not 5-MIP adducts from double strand DNA. (author)

  11. DNA repair ability of cultured cells derived from mouse embryos in comparison with human cells

    International Nuclear Information System (INIS)

    Yaki, T.

    1982-01-01

    DNA repair in mouse cells derived from embryos of 3 inbred strains were investigated in comparison with that in human cells. The levels of unscheduled DNA synthesis after UV irradiation appeared to change at different passages, but capacities of host-cell reactivation of UV-irradiated herpes simplex virus were always reduced to the same levels as those in xeroderma pigmentosum cells. This implied that mouse cells are reduced in excision-repair capacities and that the apparently high levels of unscheduled DNA synthesis at certain passages are not quantitatively related to high levels of cell survival. Essentially no differences in DNA repair were noted among 3 strains - BALB/c, C3H/He and C57BL/10. (orig.)

  12. Repair of human DNA in molecules that replicate or remain unreplicated following ultraviolet irradiation

    International Nuclear Information System (INIS)

    Waters, R.

    1980-01-01

    The extent of DNA replication, the incidence of uv induced pyrimidine dimers and the repair replication observed after their excision was monitored in human fibroblasts uv irradiated with single or split uv doses. The excision repair processes were measured in molecules that remained unreplicated or in those that replicated after the latter uv irradiation. Less DNA replication was observed after a split as opposed to single uv irradiation. Furthermore, a split dose did not modify the excision parameters measured after a single irradiation, regardless of whether the DNA had replicated or not

  13. Spatial Mismatch: A Third Generation Survey.

    Science.gov (United States)

    Eagan, J. Vincent

    1999-01-01

    The spatial mismatch argument hypothesizes that racial discrimination in the housing market, together with the suburbanization of low skilled jobs, contributes significantly to the high unemployment and/or low wages of inner city minority workers. Surveys recent spatial mismatch literature and discusses policy alternatives, focusing on areas…

  14. Guardians of the mycobacterial genome: A review on DNA repair systems in Mycobacterium tuberculosis.

    Science.gov (United States)

    Singh, Amandeep

    2017-12-01

    The genomic integrity of Mycobacterium tuberculosis is continuously threatened by the harsh survival conditions inside host macrophages, due to immune and antibiotic stresses. Faithful genome maintenance and repair must be accomplished under stress for the bacillus to survive in the host, necessitating a robust DNA repair system. The importance of DNA repair systems in pathogenesis is well established. Previous examination of the M. tuberculosis genome revealed homologues of almost all the major DNA repair systems, i.e. nucleotide excision repair (NER), base excision repair (BER), homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent developments in the field have pointed to the presence of novel proteins and pathways in mycobacteria. Homologues of archeal mismatch repair proteins were recently reported in mycobacteria, a pathway previously thought to be absent. RecBCD, the major nuclease-helicase enzymes involved in HR in E. coli, were implicated in the single-strand annealing (SSA) pathway. Novel roles of archeo-eukaryotic primase (AEP) polymerases, previously thought to be exclusive to NHEJ, have been reported in BER. Many new proteins with a probable role in DNA repair have also been discovered. It is now realized that the DNA repair systems in M. tuberculosis are highly evolved and have redundant backup mechanisms to mend the damage. This review is an attempt to summarize our current understanding of the DNA repair systems in M. tuberculosis.

  15. Scale Mismatches in Management of Urban Landscapes

    Directory of Open Access Journals (Sweden)

    Sara T. Borgström

    2006-12-01

    Full Text Available Urban landscapes constitute the future environment for most of the world's human population. An increased understanding of the urbanization process and of the effects of urbanization at multiple scales is, therefore, key to ensuring human well-being. In many conventional natural resource management regimes, incomplete knowledge of ecosystem dynamics and institutional constraints often leads to institutional management frameworks that do not match the scale of ecological patterns and processes. In this paper, we argue that scale mismatches are particularly pronounced in urban landscapes. Urban green spaces provide numerous important ecosystem services to urban citizens, and the management of these urban green spaces, including recognition of scales, is crucial to the well-being of the citizens. From a qualitative study of the current management practices in five urban green spaces within the Greater Stockholm Metropolitan Area, Sweden, we found that 1 several spatial, temporal, and functional scales are recognized, but the cross-scale interactions are often neglected, and 2 spatial and temporal meso-scales are seldom given priority. One potential effect of the neglect of ecological cross-scale interactions in these highly fragmented landscapes is a gradual reduction in the capacity of the ecosystems to provide ecosystem services. Two important strategies for overcoming urban scale mismatches are suggested: 1 development of an integrative view of the whole urban social-ecological landscape, and 2 creation of adaptive governance systems to support practical management.

  16. SKILLS MISMATCH OF THE YOUNG PEOPLE AT THE EUROPEAN LEVEL

    Directory of Open Access Journals (Sweden)

    Hatos Roxana

    2015-07-01

    Full Text Available Transition from school to work is a main issue with many fields of study. Studies on transition from school to work, have highlight the importance of two categories of factors at the level of the individual formal proceedings which may affect how easy it is to graduate to integrate into the labor market: 1 so far as the educational systems are transmitting specific competences as compared with those general and 2 so far as there are direct links between employers and the education system. In this way, are reduced the costs of selection and allocation for employers. A poor articulation between educational institutions and the labor market produce a high level of unmatched competences of assimilated by formal education and competencies required of the labor market (skill mismatch (Parodi et al., 2012. The surveys with European employers reflect particular difficulties that they are experiencing in employment vacancies. Investigation on the European companies in the spring of 2013 found that 40% of the firms in the EU have difficulty in finding employees with suitable qualification (CEDEFOP-European Center for the Development of the Vocational Training, 2014. Skills mismatch is a generic term that refers to various types of imbalances between skills and competences offered and those required in the labor market. Concept has become one intensely discussed and submitted to measurement in international research on the background concerns the under-utilization human resource. Numerous opinion polls with employers come to the same unexpected conclusion - that despite high unemployment many posts can't find occupants satisfactorily prepared and identify the causes: most of them criticized the lack of skills of the candidates or the absence of skills specific to the workplace. Based on the latest studies on international databases have built a set of questions that, through secondary analysis, we tried to find answers. Questions that we try to give answer

  17. Visual-perceptual mismatch in robotic surgery.

    Science.gov (United States)

    Abiri, Ahmad; Tao, Anna; LaRocca, Meg; Guan, Xingmin; Askari, Syed J; Bisley, James W; Dutson, Erik P; Grundfest, Warren S

    2017-08-01

    The principal objective of the experiment was to analyze the effects of the clutch operation of robotic surgical systems on the performance of the operator. The relative coordinate system introduced by the clutch operation can introduce a visual-perceptual mismatch which can potentially have negative impact on a surgeon's performance. We also assess the impact of the introduction of additional tactile sensory information on reducing the impact of visual-perceptual mismatch on the performance of the operator. We asked 45 novice subjects to complete peg transfers using the da Vinci IS 1200 system with grasper-mounted, normal force sensors. The task involves picking up a peg with one of the robotic arms, passing it to the other arm, and then placing it on the opposite side of the view. Subjects were divided into three groups: aligned group (no mismatch), the misaligned group (10 cm z axis mismatch), and the haptics-misaligned group (haptic feedback and z axis mismatch). Each subject performed the task five times, during which the grip force, time of completion, and number of faults were recorded. Compared to the subjects that performed the tasks using a properly aligned controller/arm configuration, subjects with a single-axis misalignment showed significantly more peg drops (p = 0.011) and longer time to completion (p sensors showed no difference between the different groups. The visual-perceptual mismatch created by the misalignment of the robotic controls relative to the robotic arms has a negative impact on the operator of a robotic surgical system. Introduction of other sensory information and haptic feedback systems can help in potentially reducing this effect.

  18. Repair of 8-methoxypsoralen + UVA-induced damage in specific sequences in chromosomal and episomal DNA in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Dean, S.W.

    1989-07-01

    A study of the repair of DNA damage in the dihydrofolate reductase (dhfr) gene of SV40-transformed human fibroblasts after treatment with 8-methoxypsoralen (8MOP) and UVA is described. 8MOP+UVA-induced cross-links in the dhfr gene were completely repaired by 12 h in one normal and one Fanconi's anaemia (FA) group A cell line. In contrast, approximately 35% of cross-links in an episomally maintained Epstein--Barr virus derived plasmid remained unrepaired even after 48 h. Cross-linkable monoadducts in the dhfr gene were repaired more slowly than cross-links, and there was no detectable repair of cross-linkable monoadducts in the plasmid. Thus the ability of a cell to repair 8MOP+UVA-induced cross-links or cross-linkable monoadducts in an episome does not reflect its capacity to repair such lesions in genomic DNA.

  19. Repair of 8-methoxypsoralen + UVA-induced damage in specific sequences in chromosomal and episomal DNA in human cells

    International Nuclear Information System (INIS)

    Dean, S.W.

    1989-01-01

    A study of the repair of DNA damage in the dihydrofolate reductase (dhfr) gene of SV40-transformed human fibroblasts after treatment with 8-methoxypsoralen (8MOP) and UVA is described. 8MOP+UVA-induced cross-links in the dhfr gene were completely repaired by 12 h in one normal and one Fanconi's anaemia (FA) group A cell line. In contrast, ∼35% of cross-links in an episomally maintained Epstein-Barr virus derived plasmid remained unrepaired even after 48 h. Cross-linkable monoadducts in the dhfr gene were repaired more slowly than cross-links, and there was no detectable repair of cross-linkable monoadducts in the plasmid. Thus the ability of a cell to repair 8MOP+UVA-induced cross-links or cross-linkable monoadducts in an episome does not reflect its capacity to repair such lesions in genomic DNA. (author)

  20. Assessment of okadaic acid effects on cytotoxicity, DNA damage and DNA repair in human cells.

    Science.gov (United States)

    Valdiglesias, Vanessa; Méndez, Josefina; Pásaro, Eduardo; Cemeli, Eduardo; Anderson, Diana; Laffon, Blanca

    2010-07-07

    Okadaic acid (OA) is a phycotoxin produced by several types of dinoflagellates causing diarrheic shellfish poisoning (DSP) in humans. Symptoms induced by DSP toxins are mainly gastrointestinal, but the intoxication does not appear to be fatal. Despite this, this toxin presents a potential threat to human health even at concentrations too low to induce acute toxicity, since previous animal studies have shown that OA has very potent tumour promoting activity. However, its concrete action mechanism has not been described yet and the results reported with regard to OA cytotoxicity and genotoxicity are often contradictory. In the present study, the genotoxic and cytotoxic effects of OA on three different types of human cells (peripheral blood leukocytes, HepG2 hepatoma cells, and SHSY5Y neuroblastoma cells) were evaluated. Cells were treated with a range of OA concentrations in the presence and absence of S9 fraction, and MTT test and Comet assay were performed in order to evaluate cytotoxicity and genotoxicity, respectively. The possible effects of OA on DNA repair were also studied by means of the DNA repair competence assay, using bleomycin as DNA damage inductor. Treatment with OA in absence of S9 fraction induced not statistically significant decrease in cell viability and significant increase in DNA damage in all cell types at the highest concentrations investigated. However, only SHSY5Y cells showed OA induced genotoxic and cytotoxic effects in presence of S9 fraction. Furthermore, we found that OA can induce modulations in DNA repair processes when exposure was performed prior to BLM treatment, in co-exposure, or during the subsequent DNA repair process. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Thermodynamic characterization of tandem mismatches found in naturally occurring RNA

    Science.gov (United States)

    Christiansen, Martha E.; Znosko, Brent M.

    2009-01-01

    Although all sequence symmetric tandem mismatches and some sequence asymmetric tandem mismatches have been thermodynamically characterized and a model has been proposed to predict the stability of previously unmeasured sequence asymmetric tandem mismatches [Christiansen,M.E. and Znosko,B.M. (2008) Biochemistry, 47, 4329–4336], experimental thermodynamic data for frequently occurring tandem mismatches is lacking. Since experimental data is preferred over a predictive model, the thermodynamic parameters for 25 frequently occurring tandem mismatches were determined. These new experimental values, on average, are 1.0 kcal/mol different from the values predicted for these mismatches using the previous model. The data for the sequence asymmetric tandem mismatches reported here were then combined with the data for 72 sequence asymmetric tandem mismatches that were published previously, and the parameters used to predict the thermodynamics of previously unmeasured sequence asymmetric tandem mismatches were updated. The average absolute difference between the measured values and the values predicted using these updated parameters is 0.5 kcal/mol. This updated model improves the prediction for tandem mismatches that were predicted rather poorly by the previous model. This new experimental data and updated predictive model allow for more accurate calculations of the free energy of RNA duplexes containing tandem mismatches, and, furthermore, should allow for improved prediction of secondary structure from sequence. PMID:19509311

  2. Radiation-induced DNA damage and repair in radiosensitive and radioresistant human tumour cells measured by field inversion gel electrophoresis

    International Nuclear Information System (INIS)

    Smeets, M.F.M.A.; Mooren, E.H.M.; Begg, A.C.

    1993-01-01

    Radiation-induced DNA damage induction and repair was measured in two human squamous carcinoma cell lines with differing radiosensitivities. Experiments were carried out with field inversion gel electrophoresis (FIGE), adapted to measure DNA double strand break (DSB) induction and repair in unlabelled cells. The sensitivity of the method was increased by introducing a hybridization membrane into the agarose gel. Damaged DNA accumulated on one spot on the membrane resulting in high local concentrations. This DNA was quantified using radioactively-labelled total human DNA as a probe. Radiosensitivity differences at physiological temperatures could not be explained by differences in either induction or repair of DNA damage as measured by pulsed field gel electrophoresis. (author)

  3. Aging and DNA repair capability. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Tice, R R

    1977-01-01

    A review of the literature on DNA repair processes in relation to aging is presented under the following headings: DNA repair processes; age-related occurrence of unrepaired DNA lesions; DNA repair capability as a function of age; tissue-specific DNA repair capability; acceleration of the aging process by exposure to DNA damaging agents; human genetic syndromes; and longevity and DNA repair processes. (HLW)

  4. Mismatch Repair Deficiency Testing in Patients With Colorectal Cancer and Nonadherence to Testing Guidelines in Young Adults.

    Science.gov (United States)

    Shaikh, Talha; Handorf, Elizabeth A; Meyer, Joshua E; Hall, Michael J; Esnaola, Nestor F

    2018-02-08

    Mismatch repair (MMR) deficiency of DNA has been observed in up to 15% of sporadic colorectal cancers (CRCs) and is a characteristic feature of Lynch syndrome, which has a higher incidence in young adults (age, testing in adults with CRC and analyze nonadherence to long-standing testing guidelines in younger adults using a contemporary national data set to help identify potential risk factors for nonadherence to newly implemented universal testing guidelines. Adult (age, testing status were identified using the National Cancer Database. The study was conducted from March 16, 2016, to March 1, 2017. Patient sociodemographic, facility, tumor, and treatment characteristics. The primary outcome of interest was receipt of MMR deficiency testing. Multivariable logistic regression was used to identify independent predictors of testing in adult and/or young adult patients. A total of 152 993 adults with CRC were included in the study (78 579 [51.4%] men; mean [SD] age, 66.9 [13.9] years). Of these patients, only 43 143 (28.2%) underwent MMR deficiency testing; the proportion of patients tested increased between 2010 and 2012 (22.3% vs 33.1%; Ptesting; the proportion tested increased between 2010 and 2012 (36.1% vs 48.0%; P testing, whereas older age (OR, 0.31; 95% CI, 0.26-0.37); Medicare (OR, 0.89; 95% CI, 0.84-0.95), Medicaid (OR, 0.83; 95% CI, 0.73-0.93), or uninsured (OR, 0.78; 95% CI, 0.66-0.92) status; nonacademic vs academic/research facility type (OR, 0.44; 95% CI, 0.34-0.56); rectosigmoid or rectal tumor location (OR, 0.76; 95% CI, 0.68-0.86); unknown grade (OR, 0.61; 95% CI, 0.53-0.69); and nonreceipt of definitive surgery (OR, 0.33; 95% CI, 0.30-0.37) were associated with underuse of MMR deficiency testing. Despite recent endorsement of universal use of MMR deficiency testing in patients with CRC and well-established guidelines aimed at high-risk populations, overall utilization of testing is poor and significant underuse of testing among young adults

  5. Effects on DNA repair in human lymphocytes exposed to the food dye tartrazine yellow.

    Science.gov (United States)

    Soares, Bruno Moreira; Araújo, Taíssa Maíra Thomaz; Ramos, Jorge Amando Batista; Pinto, Laine Celestino; Khayat, Bruna Meireles; De Oliveira Bahia, Marcelo; Montenegro, Raquel Carvalho; Burbano, Rommel Mario Rodríguez; Khayat, André Salim

    2015-03-01

    Tartrazine is a food additive that belongs to a class of artificial dyes and contains an azo group. Studies about its genotoxic, cytotoxic and mutagenic effects are controversial and, in some cases, unsatisfactory. This work evaluated the potential in vitro cytotoxicity, genotoxicity and effects on DNA repair of human lymphocytes exposed to the dye. We assessed the cytotoxicity of tartrazine by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide test and the response of DNA repair through comet assay (alkaline version). We used different concentrations of the dye, ranging from 0.25-64.0 mM. The results demonstrated that tartrazine has no cytotoxic effects. However, this dye had a significant genotoxic effect at all concentrations tested. Although most of the damage was amenable to repair, some damage remained higher than positive control after 24 h of repair. These data demonstrate that tartrazine may be harmful to health and its prolonged use could trigger carcinogenesis. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  6. DNA repair and radiation sensitivity in mammalian cells

    International Nuclear Information System (INIS)

    Chen, D.J.C.; Stackhouse, M.; Chen, D.S.

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population

  7. GLI1 interferes with the DNA mismatch repair system in pancreatic cancer through BHLHE41-mediated suppression of MLH1.

    Science.gov (United States)

    Inaguma, Shingo; Riku, Miho; Hashimoto, Mitsuyoshi; Murakami, Hideki; Saga, Shinsuke; Ikeda, Hiroshi; Kasai, Kenji

    2013-12-15

    The mismatch repair (MMR) system is indispensable for the fidelity of DNA replication, the impairment of which predisposes to the development and progression of many types of cancers. To date, GLI1 transcription factor, a key molecule of the Hedgehog signaling pathway, has been shown to regulate the expression of several genes crucial for a variety of cancer cell properties in many types of cancers, including pancreatic ductal adenocarcinoma (PDAC), but whether GLI1 could control the MMR system was not known. Here, we showed that GLI1 and GLI2 indirectly suppressed the expression of MLH1 in PDAC cells. Through GLI1 target gene screening, we found that GLI1 and GLI2 activated the expression of a basic helix-loop-helix type suppressor BHLHE41/DEC2/SHARP1 through a GLI-binding site in the promoter. Consistent with a previous report that BHLHE41 suppresses the MLH1 promoter activity, we found that the activation of GLI1 led to the BHLHE41-dependent suppression of MLH1, and a double knockdown of GLI1 and GLI2 conversely increased the MLH1 protein in PDAC cells. Using TALEN-based modification of the MLH1 gene, we further showed that GLI1 expression was indeed associated with an increased tolerance to a methylating agent, methylnitrosourea cooperatively with a lower copy number status of MLH1. Finally, GLI1 expression was immunohistochemically related positively with BHLHE41 and inversely with MLH1 in PDAC cells and precancerous lesions of the pancreas. On the basis of these results, we propose that GLI1 depresses the MMR activity and might contribute to the development and progression of PDAC. ©2013 AACR.

  8. Biological evaluation of human hair keratin scaffolds for skin wound repair and regeneration

    International Nuclear Information System (INIS)

    Xu, Songmei; Sang, Lin; Zhang, Yaping; Wang, Xiaoliang; Li, Xudong

    2013-01-01

    The cytocompatibility, in vivo biodegradation and wound healing of keratin biomaterials were investigated. For the purposes, three groups of keratin scaffolds were fabricated by freeze-drying reduced solutions at 2 wt.%, 4 wt.% and 8 wt.% keratins extracted from human hairs. These scaffolds exhibited evenly distributed high porous structures with pore size of 120–220 μm and the porosity > 90%. NIH3T3 cells proliferated well on these scaffolds in culture lasting up to 22 days. Confocal micrographs stained with AO visually revealed cell attachment and infiltration as well as scaffold architectural stability. In vivo animal experiments were conducted with 4 wt.% keratin scaffolds. Early degradation of subcutaneously implanted scaffolds occurred at 3 weeks in the outermost surface, in concomitant with inflammatory response. At 5 weeks, the overall porous structure of scaffolds severely deteriorated while the early inflammatory response in the outermost surface obviously subsided. A faster keratin biodegradation was observed in repairing full-thickness skin defects. Compared with the blank control, keratin scaffolds gave rise to more blood vessels at 2 weeks and better complete wound repair at 3 weeks with a thicker epidermis, less contraction and newly formed hair follicles. These preliminary results suggest that human hair keratin scaffolds are promising dermal substitutes for skin regeneration. - Highlights: ► Preparation of highly-interconnected human hair keratin scaffolds. ► Long-term cell culturing and in vivo animal experiments with keratin scaffolds. ► Biodegradation is dependent on implantation site and function ► Early vascularization and better repair in treating full-thickness skin wounds. ► A thicker epidermis, less contraction and newly formed hair follicles are observed.

  9. Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma

    International Nuclear Information System (INIS)

    Yoshimoto, Koji; Mizoguchi, Masahiro; Hata, Nobuhiro; Murata, Hideki; Hatae, Ryusuke; Amano, Toshiyuki; Nakamizo, Akira; Sasaki, Tomio

    2012-01-01

    Many conventional chemotherapeutic drugs exert their cytotoxic function by inducing DNA damage in the tumor cell. Therefore, a cell-inherent DNA repair pathway, which reverses the DNA-damaging effect of the cytotoxic drugs, can mediate therapeutic resistance to chemotherapy. The monofunctional DNA-alkylating agent temozolomide (TMZ) is a commonly used chemotherapeutic drug and the gold standard treatment for glioblastoma (GBM). Although the activity of DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) has been described as the main modulator to determine the sensitivity of GBM to TMZ, a subset of GBM does not respond despite MGMT inactivation, suggesting that another DNA repair mechanism may also modulate the tolerance to TMZ. Considerable interest has focused on MGMT, mismatch repair (MMR), and the base excision repair (BER) pathway in the mechanism of mediating TMZ resistance, but emerging roles for the DNA strand-break repair pathway have been demonstrated. In the first part of this review article, we briefly review the significant role of MGMT, MMR, and the BER pathway in the tolerance to TMZ; in the last part, we review the recent publications that demonstrate possible roles of DNA strand-break repair pathways, such as single-strand break repair and double-strand break repair, as well as the Fanconi anemia pathway in the repair process after alkylating agent-based therapy. It is possible that all of these repair pathways have a potential to modulate the sensitivity to TMZ and aid in overcoming the therapeutic resistance in the clinic.

  10. Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimoto, Koji; Mizoguchi, Masahiro; Hata, Nobuhiro; Murata, Hideki; Hatae, Ryusuke; Amano, Toshiyuki; Nakamizo, Akira; Sasaki, Tomio, E-mail: kyoshimo@ns.med.kyushu-u.ac.jp [Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan)

    2012-12-05

    Many conventional chemotherapeutic drugs exert their cytotoxic function by inducing DNA damage in the tumor cell. Therefore, a cell-inherent DNA repair pathway, which reverses the DNA-damaging effect of the cytotoxic drugs, can mediate therapeutic resistance to chemotherapy. The monofunctional DNA-alkylating agent temozolomide (TMZ) is a commonly used chemotherapeutic drug and the gold standard treatment for glioblastoma (GBM). Although the activity of DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT) has been described as the main modulator to determine the sensitivity of GBM to TMZ, a subset of GBM does not respond despite MGMT inactivation, suggesting that another DNA repair mechanism may also modulate the tolerance to TMZ. Considerable interest has focused on MGMT, mismatch repair (MMR), and the base excision repair (BER) pathway in the mechanism of mediating TMZ resistance, but emerging roles for the DNA strand-break repair pathway have been demonstrated. In the first part of this review article, we briefly review the significant role of MGMT, MMR, and the BER pathway in the tolerance to TMZ; in the last part, we review the recent publications that demonstrate possible roles of DNA strand-break repair pathways, such as single-strand break repair and double-strand break repair, as well as the Fanconi anemia pathway in the repair process after alkylating agent-based therapy. It is possible that all of these repair pathways have a potential to modulate the sensitivity to TMZ and aid in overcoming the therapeutic resistance in the clinic.

  11. My journey to DNA repair.

    Science.gov (United States)

    Lindahl, Tomas

    2013-02-01

    I completed my medical studies at the Karolinska Institute in Stockholm but have always been devoted to basic research. My longstanding interest is to understand fundamental DNA repair mechanisms in the fields of cancer therapy, inherited human genetic disorders and ancient DNA. I initially measured DNA decay, including rates of base loss and cytosine deamination. I have discovered several important DNA repair proteins and determined their mechanisms of action. The discovery of uracil-DNA glycosylase defined a new category of repair enzymes with each specialized for different types of DNA damage. The base excision repair pathway was first reconstituted with human proteins in my group. Cell-free analysis for mammalian nucleotide excision repair of DNA was also developed in my laboratory. I found multiple distinct DNA ligases in mammalian cells, and led the first genetic and biochemical work on DNA ligases I, III and IV. I discovered the mammalian exonucleases DNase III (TREX1) and IV (FEN1). Interestingly, expression of TREX1 was altered in some human autoimmune diseases. I also showed that the mutagenic DNA adduct O(6)-methylguanine (O(6)mG) is repaired without removing the guanine from DNA, identifying a surprising mechanism by which the methyl group is transferred to a residue in the repair protein itself. A further novel process of DNA repair discovered by my research group is the action of AlkB as an iron-dependent enzyme carrying out oxidative demethylation. Copyright © 2013. Production and hosting by Elsevier Ltd.

  12. Genetic etiology of hereditary colorectal cancer: new mechanisms and advanced mutation detection techniques

    NARCIS (Netherlands)

    Gazzoli, I.

    2006-01-01

    The human DNA mismatch repair (MMR) system functions to repair mispaired bases in DNA that result from DNA replication errors and thereby prevents the accumulation of mutations due to such replication errors. Hereditary nonpolyposis colorectal cancer (HNPCC), the most common form of inherited colon

  13. Differential repair of platinum-DNA adducts in human bladder and testicular tumor continuous cell lines

    International Nuclear Information System (INIS)

    Bedford, P.; Fichtinger-Schepman, A.M.; Shellard, S.A.; Walker, M.C.; Masters, J.R.; Hill, B.T.

    1988-01-01

    The formation and removal of four platinum-DNA adducts were immunochemically quantitated in cultured cells derived from a human bladder carcinoma cell line (RT112) and from two lines derived from germ cell tumors of the testis (833K and SUSA), following exposure in vitro to 16.7 microM (5 micrograms/ml) cisplatin. RT112 cells were least sensitive to the drug and were proficient in the repair of all four adducts, whereas SUSA cells, which were 5-fold more sensitive, were deficient in the repair of DNA-DNA intrastrand cross-links in the sequences pApG and pGpG. Despite expressing a similar sensitivity to SUSA cells, 833K cells were proficient in the repair of all four adducts, although less so than the RT112 bladder tumor cells. In addition, SUSA cells were unable to repair DNA-DNA interstrand cross-links whereas 50-85% of these lesions were removed in RT112 and 833K cells 24 h following drug exposure. It is possible that the inability of SuSa cells to repair platinated DNA may account for their hypersensitivity to cisplatin

  14. Repair of UV-induced DNA damage and its inhibition by etoposide in Sf9 insect cells: comparison with human cells

    International Nuclear Information System (INIS)

    Chandna, Sudhir; Dwarakanath, B.S.; Moorthy, Ganesh; Jain, Charu

    2004-01-01

    In the present investigation, the kinetics of DNA repair in a lepidopteran cell line Sf9 (derived from the ovaries of Spodoptera frugiperda) following UV-irradiation was compared with the responses in a human embryonic kidney cell. DNA repair was studied by analyzing the kinetics of induction and removal of repair related strand breaks using the alkaline single cell gel electrophoresis and Halo assays. Since topoisomerases play important roles in the cellular responses to UV-induced damage, the effects of etoposideon DNA repair kinetics was also studied

  15. Absence of specificity in inhibition of DNA repair replication by DNA-binding agents, cocarcinogens, and steroids in human cells

    International Nuclear Information System (INIS)

    Cleaver, J.E.; Painter, R.B.

    1975-01-01

    Although many chemicals, including cocarcinogens, DNA-binding agents, and steroids, inhibit repair replication of ultraviolet-induced damage to DNA in human lymphocytes and proliferating cells in culture, none of these chemicals is specific. Our results show that all the chemicals we tested inhibit normal DNA synthesis as much as or more than they inhibit repair replication. There is thus no evidence in our results to support the hypothesis that cocarcinogens are specific inhibitors of DNA repair or that any of the chemicals studied might be useful adjuncts to tumor therapy merely because of specific inhibition of radiation repair mechanisms

  16. PFGE analysis of DNA double-strand breaks and DNA repair process in human osteosarcoma cells irradiated by X-ray

    International Nuclear Information System (INIS)

    Cao Jianping; Majima, H.; Yamaguchi, C.

    2000-01-01

    Objective: To study the induction of DNA double-strand breaks (DSBs) in human osteosarcoma cells irradiated by X-ray, the DNA DSBs repair process and the tumour cell radiosensitivity. Methods: Two cell lines of human osteosarcoma, Rho0 and 143. B were used. Initial DNA damage of DSBs by X-ray irradiation was measured using clamped homogeneous electrical field (CHEF) electrophoresis. Results: X-ray-induced DNA DSBs of human osteosarcoma cells after CHEF-electrophoresis increased linearly with the irradiation dose between 0 and 50 Gy. The repair of DNA DSBs in human osteosarcoma cells increased with the post-irradiation incubation time. In contrast to 14.3B cell line at the same dose point, much more DNA DSBs were induced in Rho0 cell line after X-ray irradiation. Conclusion: CHEF pulsed-field gel electrophoresis (PEGE) is a sensitive method for the determination of radiation-induced DNA DSBs in high molecular weight DNA of human osteosarcoma cells. Radiation-induced DNA DSBs of osteosarcoma increase with the dose in a linear manner. After incubation, both Rho0 cell line and 143. B cell line can repair the DNA DSBs. Between two cell lines of human osteosarcoma, Rho0 and 143.B, Rho0 cell line is more sensitive to ionizing radiation than 143.B line

  17. 'Regular' and 'emergency' repair

    International Nuclear Information System (INIS)

    Luchnik, N.V.

    1975-01-01

    Experiments on the combined action of radiation and a DNA inhibitor using Crepis roots and on split-dose irradiation of human lymphocytes lead to the conclusion that there are two types of repair. The 'regular' repair takes place twice in each mitotic cycle and ensures the maintenance of genetic stability. The 'emergency' repair is induced at all stages of the mitotic cycle by high levels of injury. (author)

  18. Mutagenesis and repair of DNA

    International Nuclear Information System (INIS)

    Janion, C.; Grzesiuk, E.; Fabisiewicz, A.; Tudek, B.; Ciesla, J.; Graziewicz, M.; Wojcik, A.; Speina, E.

    1998-01-01

    Full text. The discovery that the mfd gene codes for a transcription-coupling repair factor (TRCF) prompted us to re-investigate the MFD (mutation frequency decline) phenomenon in E.coli K-12 strain when mutations were induced by ultraviolet light, halogen light or MMS-treatment. These studies revealed that: (i) the process of MFD involves the proofreading activity of DNA pol III and the mismatch repair system, as well as, TRCF and the UvrABC-excinuclease (ii) a semi-rich plate test may be replaced by a rich liquid medium, (iii) the T-T pyrimidine dimers are the lesions excised with the highest activity, and (iv) overproduction of UmuD(D'C) proteins leads to a great increase in mutant frequency in irradiated and MMS-treated cells. The role of mismatch repair (MR) in MMS-induced mutagenesis is obscured by the fact that the spectra of mutational specificity are different in bacteria proficient and deficient in MR. It has been found that transposons Tn10 (and Tn5) when inserted into chromosomal DNA of E. coli influence the phenotype lowering the survival and frequency of mutations induced by UV or halogen light irradiation. This is connected with a deficiency of UmuD(D') and UmuC proteins. Transformation of bacteria with plasmids bearing the umuD(D')C genes, suppresses the effects of the transposon insertion, a phenomenon which has not been described before. Single-stranded DNA of M13mp18 phage was oxidized in vitro by a hydroxyl radical generating system including hypoxanthine/xanthine oxidase/Fe3+/EDTA, and it was found that Fapy-Ade, Fapy-Gua, 8-oxyAde and thymine glycol were the main products formed. Replication of the oxidized template by T7 phage DNA polymerase, Klenow fragment of polymerase I, or polymerase beta from bovine thymus has revealed that oxidized pyrimidines are stronger blockers than oxidized purines for T7 phage and Klenow fragment polymerases and the blocking potency depends on the neighboring bases and on the type of polymerase. Studies of

  19. Repair mechanisms and exposure standards

    International Nuclear Information System (INIS)

    Mills, W.A.

    1978-01-01

    The following topics are discussed; public policy for setting radiation standards; use of linear, nonthreshold theory in setting radiation standards; dose-rate dependence; occupational exposure to radiation; radon inhalation from radium in the soil in the vicinity of the phosphate industry; relation of repair mechanisms for cell survival to cancer induction; application of information on genetic repair to humans and to cancer induction; importance of repair processes in radiation protection standards; corrective factors for repair processes; relation of repair processes to age, sex, and other factors; and population distribution in radiosensitivity

  20. DNA excision repair in human cells treated with ultraviolet radiation and 7,12-dimethylbenz(a)anthracene 5,6-oxide

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, F.E.; Gentil, A.; Renstein, B.S.; Setlow, R.B.

    1980-01-01

    Excision repair was measured in normal human and xeroderma pigmentosum group C cells treated with 7,12-dimethylbenz(a)anthracene 5,6-oxide and with ultraviolet radiation by the techniques of unscheduled DNA synthesis, repair replication, a modification and bromodeoxyuridine photolysis and endonuclease-sensitive sites assay. Radiautography and repair replication showed that in normal cells the magnitude of repair after a saturation dose of the epoxide to be 0.1 to 0.2, that after a saturating ultraviolet dose, though survival data showed that both doses gave nearly similar killings. Repair was of the long-patch type and repair kinetics after the epoxide treatment were similar to ultraviolet. After a combined treatment with both agents, unscheduled synthesis in normal cells was more than additive. The data indicate that there are different rate-limiting steps in the removal of the ultraviolet and the epoxide damages, and that the residual repair activity in xeroderma pigmentosum cells is accomplished by different, not just fewer, enzymes than in normal cells.

  1. Steroids Regulate CXCL4 in the Human Endometrium During Menstruation to Enable Efficient Endometrial Repair.

    Science.gov (United States)

    Maybin, Jacqueline A; Thiruchelvam, Uma; Madhra, Mayank; Saunders, Philippa T K; Critchley, Hilary O D

    2017-06-01

    Repair of the endometrial surface at menstruation must be efficient to minimize blood loss and optimize reproductive function. The mechanism and regulation of endometrial repair remain undefined. To determine the presence/regulation of CXCL4 in the human endometrium as a putative repair factor at menses. Endometrial tissue was collected throughout the menstrual cycle from healthy women attending the gynecology department. Menstrual blood loss was objectively measured in a subset, and heavy menstrual bleeding (HMB) was defined as >80 mL per cycle. Monocytes were isolated from peripheral blood. CXCL4 messenger RNA (mRNA) and protein were identified by quantitative reverse transcription polymerase chain reaction and immunohistochemistry. The function/regulation of endometrial CXCL4 was explored by in vitro cell culture. CXCL4 mRNA concentrations were significantly increased during menstruation. Intense staining for CXCL4 was detected in late secretory and menstrual tissue, localized to stromal, epithelial and endothelial cells. Colocalization identified positive staining in CD68+ macrophages. Treatment of human endometrial stromal and endothelial cells (hESCs and HEECs, respectively) with steroids revealed differential regulation of CXCL4. Progesterone withdrawal resulted in significant increases in CXCL4 mRNA and protein in hESCs, whereas cortisol significantly increased CXCL4 in HEECs. In women with HMB, CXCL4 was reduced in endothelial cells during the menstrual phase compared with women with normal menstrual bleeding. Cortisol-exposed macrophages displayed increased chemotaxis toward CXCL4 compared with macrophages incubated with estrogen or progesterone. These data implicate CXCL4 in endometrial repair after menses. Reduced cortisol at the time of menses may contribute to delayed endometrial repair and HMB, in part by mechanisms involving aberrant expression of CXCL4. Copyright © 2017 by the Endocrine Society

  2. EST Table: FS895236 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available match repair)|GO:0030983(mismatched DNA binding) 10/09/28 68 %/141 aa ref|XP_001663861.1| DNA mismatch repair protein pms2... [Aedes aegypti] gb|EAT34048.1| DNA mismatch repair protein pms2 [Aedes aegypti] 10/09/12 62 %...1 %/140 aa gi|91079030|ref|XP_974934.1| PREDICTED: similar to DNA mismatch repair protein pms2 [Tribolium castaneum] FS895236 ftes ...

  3. Energy and Technology Review: Unlocking the mysteries of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, W.A.

    1993-04-01

    DNA, the genetic blueprint, has the remarkable property of encoding its own repair following diverse types of structural damage induced by external agents or normal metabolism. We are studying the interplay of DNA damaging agents, repair genes, and their protein products to decipher the complex biochemical pathways that mediate such repair. Our research focuses on repair processes that correct DNA damage produced by chemical mutagens and radiation, both ionizing and ultraviolet. The most important type of DNA repair in human cells is called excision repair. This multistep process removes damaged or inappropriate pieces of DNA -- often as a string of 29 nucleotides containing the damage -- and replaces them with intact ones. We have isolated, cloned, and mapped several human repair genes associated with the nucleotide excision repair pathway and involved in the repair of DNA damage after exposure to ultraviolet light or mutagens in cooked food. We have shown that a defect in one of these repair genes, ERCC2, is responsible for the repair deficiency in one of the groups of patients with the recessive genetic disorder xeroderma pigmentosum (XP group D). We are exploring ways to purify sufficient quantities (milligrams) of the protein products of these and other repair genes so that we can understand their functions. Our long-term goals are to link defective repair proteins to human DNA repair disorders that predispose to cancer, and to produce DNA-repair-deficient mice that can serve as models for the human disorders.

  4. Adaptive repair induced by small doses of γ radiation in repair-defective human cells

    International Nuclear Information System (INIS)

    Zasukhina, G.D.; L'vova, G.N.; Vasil'eva, I.M.; Sinel'shchikova, T.A.; Semyachkina, A.N.

    1993-01-01

    Adaptive repair induced by small doses of gamma radiation was studied in repair-defective xeroderma pigmentosum, gout, and homocystinuria cells. The adaptation of cells induced by small doses of radiation was estimated after subsequent exposure to gamma radiation, 4-nitroquinoline-1-oxide, and N-methyl-N-nitro-N-nitrosoguanidine by three methods: (1) by the reduction in DNA breaks; (2) by induction of resistant DNA synthesis; and (3) by increased reactivation of vaccinia virus. The three cell types in response to the three different mutagens revealed differences in the mechanism of cell defense in excision repair, in the adaptive response, and in Weigl reactivation

  5. Currency Mismatch, Balance-sheet effect and Monetary Policy

    OpenAIRE

    Nakamura, Chikafumi

    2011-01-01

    This paper analyzes the impact of the currency mismatch between assets and liabilities on monetary policy. The currency mismatch causes macroeconomic instability through balance-sheet effects. To analyze the problem, we apply a small open economy dynamic stochastic general equilibrium model with international credit-market imperfections. As a result, despitethe currency mismatch and high trade openness, a targeting rule to address the terms of trade is not efficient. This result depends on...

  6. Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas.

    Science.gov (United States)

    Felsberg, Jörg; Thon, Niklas; Eigenbrod, Sabina; Hentschel, Bettina; Sabel, Michael C; Westphal, Manfred; Schackert, Gabriele; Kreth, Friedrich Wilhelm; Pietsch, Torsten; Löffler, Markus; Weller, Michael; Reifenberger, Guido; Tonn, Jörg C

    2011-08-01

    Epigenetic silencing of the O(6) -methylguanine-DNA methyltransferase (MGMT) gene promoter is associated with prolonged survival in glioblastoma patients treated with temozolomide (TMZ). We investigated whether glioblastoma recurrence is associated with changes in the promoter methylation status and the expression of MGMT and the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 in pairs of primary and recurrent glioblastomas of 80 patients, including 64 patients treated with radiotherapy and TMZ after the first operation. Among the primary tumors, the MGMT promoter was methylated in 31 patients and unmethylated in 49 patients. In 71 patients (89%), the MGMT promoter methylation status of the primary tumor was retained at recurrence. MGMT promoter methylation, but not MGMT protein expression, was associated with longer progression-free survival, overall survival and postrecurrence survival (PRS). Moreover, PRS was increased under salvage chemotherapy. Investigation of primary and recurrent glioblastomas of 43 patients did not identify promoter methylation in any of the four MMR genes. However, recurrent glioblastomas demonstrated significantly lower MSH2, MSH6 and PMS2 protein expression as detected by immunohistochemistry. In conclusion, reduced expression of MMR proteins, but not changes in MGMT promoter methylation, is characteristic of glioblastomas recurring after the current standards of care. Copyright © 2011 UICC.

  7. The use of SymNose for quantitative assessment of lip symmetry following repair of complete bilateral cleft lip and palate.

    Science.gov (United States)

    Russell, James H B; Kiddy, Harriet C; Mercer, Nigel S

    2014-07-01

    The SymNose computer program has been proposed as an objective method for the quantitative assessment of lip symmetry following unilateral cleft lip repair. This study aims to demonstrate the use of SymNose in patients with complete bilateral cleft lip and palate (BCLP), a group previously excluded from computer-based analysis. A retrospective cohort study compared several parameters of lip symmetry between BCLP cases and non-cleft controls. 15 BCLP cases aged 10 (±1 year) who had undergone primary repair were recruited from the patient database at the South West Cleft Unit, Frenchay Hospital. Frontal facial photographs were selected for measurement. 15 age-matched controls were recruited from a local school. Lip symmetry was expressed as: percentage mismatch of left vermillion border and upper lip area over the right, horizontal lip tilt and lateral deviation of the lip. A significant increase in lip asymmetry was found in the BCLP group expressed as upper vermillion border mismatch across computer-defined and user-defined midlines (mean difference was 16.4% (p lip asymmetry remains in BCLP patients even after primary repair. This challenges previous assumptions that those with bilateral defects would be relatively symmetrical. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. Circuit mismatch influence on performance of paralleling silicon carbide MOSFETs

    DEFF Research Database (Denmark)

    Li, Helong; Munk-Nielsen, Stig; Pham, Cam

    2014-01-01

    This paper focuses on circuit mismatch influence on performance of paralleling SiC MOSFETs. Power circuit mismatch and gate driver mismatch influences are analyzed in detail. Simulation and experiment results show the influence of circuit mismatch and verify the analysis. This paper aims to give...... suggestions on paralleling discrete SiC MOSFETs and designing layout of power modules with paralleled SiC MOSFETs dies....

  9. The mismatch repair and meiotic recombination endonuclease Mlh1-Mlh3 is activated by polymer formation and can cleave DNA substrates in trans.

    Science.gov (United States)

    Manhart, Carol M; Ni, Xiaodan; White, Martin A; Ortega, Joaquin; Surtees, Jennifer A; Alani, Eric

    2017-04-01

    Crossing over between homologs is initiated in meiotic prophase by the formation of DNA double-strand breaks that occur throughout the genome. In the major interference-responsive crossover pathway in baker's yeast, these breaks are resected to form 3' single-strand tails that participate in a homology search, ultimately forming double Holliday junctions (dHJs) that primarily include both homologs. These dHJs are resolved by endonuclease activity to form exclusively crossovers, which are critical for proper homolog segregation in Meiosis I. Recent genetic, biochemical, and molecular studies in yeast are consistent with the hypothesis of Mlh1-Mlh3 DNA mismatch repair complex acting as the major endonuclease activity that resolves dHJs into crossovers. However, the mechanism by which the Mlh1-Mlh3 endonuclease is activated is unknown. Here, we provide evidence that Mlh1-Mlh3 does not behave like a structure-specific endonuclease but forms polymers required to generate nicks in DNA. This conclusion is supported by DNA binding studies performed with different-sized substrates that contain or lack polymerization barriers and endonuclease assays performed with varying ratios of endonuclease-deficient and endonuclease-proficient Mlh1-Mlh3. In addition, Mlh1-Mlh3 can generate religatable double-strand breaks and form an active nucleoprotein complex that can nick DNA substrates in trans. Together these observations argue that Mlh1-Mlh3 may not act like a canonical, RuvC-like Holliday junction resolvase and support a novel model in which Mlh1-Mlh3 is loaded onto DNA to form an activated polymer that cleaves DNA.

  10. Endometrial tumour BRAF mutations and MLH1 promoter methylation as predictors of germline mismatch repair gene mutation status: a literature review.

    Science.gov (United States)

    Metcalf, Alexander M; Spurdle, Amanda B

    2014-03-01

    Colorectal cancer (CRC) that displays high microsatellite instability (MSI-H) can be caused by either germline mutations in mismatch repair (MMR) genes, or non-inherited transcriptional silencing of the MLH1 promoter. A correlation between MLH1 promoter methylation, specifically the 'C' region, and BRAF V600E status has been reported in CRC studies. Germline MMR mutations also greatly increase risk of endometrial cancer (EC), but no systematic review has been undertaken to determine if these tumour markers may be useful predictors of MMR mutation status in EC patients. Endometrial cancer cohorts meeting review inclusion criteria encompassed 2675 tumours from 20 studies for BRAF V600E, and 447 tumours from 11 studies for MLH1 methylation testing. BRAF V600E mutations were reported in 4/2675 (0.1%) endometrial tumours of unknown MMR mutation status, and there were 7/823 (0.9%) total sequence variants in exon 11 and 27/1012 (2.7%) in exon 15. Promoter MLH1 methylation was not observed in tumours from 32 MLH1 mutation carriers, or for 13 MSH2 or MSH6 mutation carriers. MMR mutation-negative individuals with tumour MLH1 and PMS2 IHC loss displayed MLH1 methylation in 48/51 (94%) of tumours. We have also detailed specific examples that show the importance of MLH1 promoter region, assay design, and quantification of methylation. This review shows that BRAF mutations occurs so infrequently in endometrial tumours they can be discounted as a useful marker for predicting MMR-negative mutation status, and further studies of endometrial cohorts with known MMR mutation status are necessary to quantify the utility of tumour MLH1 promoter methylation as a marker of negative germline MMR mutation status in EC patients.

  11. Loss of Cdx2 expression in primary tumors and lymph node metastases is specific for mismatch repair-deficiency in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Heather eDawson

    2013-10-01

    Full Text Available Background: Approximately 20% of all colorectal cancers are hypothesized to arise from the serrated pathway characterized by mutation in BRAF, high-level CpG Island Methylator Phenotype (CIMP and microsatellite instability/mismatch repair (MMR-deficiency. MMR-deficient cancers show frequent losses of Cdx2, a homeodomain transcription factor. Here, we determine the predictive value of Cdx2 expression for MMR-deficiency and investigate changes in expression between primary cancers and matched lymph node metastases. Methods: Immunohistochemistry for Cdx2, Mlh1, Msh2, Msh6, and Pms2 was performed on whole tissue sections from 201 patients with primary colorectal cancer and 59 cases of matched lymph node metastases. Receiver operating characteristic (ROC curve analysis and Area under the Curve (AUC were investigated; association of Cdx2 with clinicopathological features and patient survival was carried out.Results Loss of Cdx2 expression was associated with higher tumor grade (p=0.0002, advanced pT (p=0.0166, and perineural invasion (p=0.0228. Cdx2 loss was an unfavorable prognostic factor in univariate (p=0.0145 and multivariate (p=0.0427; HR (95%CI: 0.58 (0.34-0.98 analysis. The accuracy (AUC for discriminating MMR-proficient and –deficient cancers was 87% (OR (95%CI:0.96 (0.95-0.98; p<0.0001. Specificity and negative predictive value for MMR-deficiency was 99.1% and 96.3%. 174 patients had MMR-proficient cancers, of which 60 (34.5% showed Cdx2 loss. Cdx2 loss in metastases was related to MMR-deficiency (p<0.0001. There was no difference in expression between primary tumors and matched metastases.Conclusion: Loss of Cdx2 is a sensitive and specific predictor of MMR-deficiency, but is not limited to these tumors, suggesting that events upstream of the development of MSI may impact Cdx2 expression.

  12. DNA alkylation lesions and their repair in human cells: modification of the comet assay with 3-methyladenine DNA glycosylase (AlkD).

    Science.gov (United States)

    Hašplová, Katarína; Hudecová, Alexandra; Magdolénová, Zuzana; Bjøras, Magnar; Gálová, Eliška; Miadoková, Eva; Dušinská, Mária

    2012-01-05

    3-methyladenine DNA glycosylase (AlkD) belongs to a new family of DNA glycosylases; it initiates repair of cytotoxic and promutagenic alkylated bases (its main substrates being 3-methyladenine and 7-methylguanine). The modification of the comet assay (single cell gel electrophoresis) using AlkD enzyme thus allows assessment of specific DNA alkylation lesions. The resulting baseless sugars are alkali-labile, and under the conditions of the alkaline comet assay they appear as DNA strand breaks. The alkylating agent methyl methanesulfonate (MMS) was used to induce alkylation lesions and to optimize conditions for the modified comet assay method with AlkD on human lymphoblastoid (TK6) cells. We also studied cellular and in vitro DNA repair of alkylated bases in DNA in TK6 cells after treatment with MMS. Results from cellular repair indicate that 50% of DNA alkylation is repaired in the first 60 min. The in vitro repair assay shows that while AlkD recognises most alkylation lesions after 60 min, a cell extract from TK6 cells recognises most of the MMS-induced DNA adducts already in the first 15 min of incubation, with maximum detection of lesions after 60 min' incubation. Additionally, we tested the in vitro repair capacity of human lymphocyte extracts from 5 individuals and found them to be able to incise DNA alkylations in the same range as AlkD. The modification of the comet assay with AlkD can be useful for in vitro and in vivo genotoxicity studies to detect alkylation damage and repair and also for human biomonitoring and molecular epidemiology studies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    Science.gov (United States)

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2013-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for an organism's favorable response to alkylating agents. Furthermore, an individual's response to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity. PMID:22237395

  14. Systematic immunohistochemical screening for mismatch repair and ERCC1 gene expression from colorectal cancers in China: Clinicopathological characteristics and effects on survival.

    Directory of Open Access Journals (Sweden)

    Pan Li

    Full Text Available We performed a systematic screening of colorectal cancer (CRC tissues to investigate whether mismatch repair (MMR status and ERCC1 protein expression could be predictive of clinical outcomes for these patients following the recommendation of The Evaluation of Genomic Applications in Practice of Prevention (EGAPP.The expression of four MMR genes and ERCC1 were assessed by immunohistochemistry (IHC from cancer tissue samples of 2233 consecutive CRC patients.We observed that most CRC patients with a proficient MMR (pMMR status tended to have simultaneous ERCC1 protein expression (P< 0.001. Stage III CRC patients with deficient MMR (dMMR had higher prognoses than the same stage patients with pMMR (DFS: 74% vs 65%, P = 0.04; OS: 79% vs 69%, P = 0.04. Here, dMMR is also associated with poorer survival for stage II patients after chemotherapy (DFS: 66% vs 78%, P = 0.04. Stage II and III patients that were shown to express ERCC1 protein had higher DFS and OS than those that were deficient in expression (stage II, DFS: 83% vs 70%, P = 0.006; OS 85% vs 73%, P = 0.02. Stage III, DFS: 67% vs56%, P = 0.03; OS: 71% vs 57%, P = 0.04.Our results indicate that dMMR appeared to predictive of a survival benefit for stage III CRC patients. We also found the determination of ERCC1 expression to be useful for predicting DFS or OS for stage II and III CRC patients. In addition, the expression of MMR genes and ERCC1 showed a significant relationship.

  15. Mismatch-Shaping Serial Digital-to-Analog Converter

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper; Moon, Un-Ku; Temes, Gabor C.

    1999-01-01

    A simple but accurate pseudo-passive mismatch-shaping D/A converter is described. A digital state machine is used to control the switching sequence of a symmetric two-capacitor network that performs the D/A conversion. The error caused by capacitor mismatch is uncorrelated with the input signal...

  16. Mismatch-Shaped Pseudo-Passive Two-Capacitor DAC

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper; Moon, Un-Ku; Temes, Gabor C.

    1999-01-01

    A simple mismatch-shaping scheme is proposed for a two-capacitor DAC. Unlike in other mismatch-shaping systems, the shaped error is generated by direct filtering of a well-defined bounded signal, which can be generated as white noise. The operation is closely related to a specific digital...

  17. Interaction of the E. coli DNA G:T-mismatch endonuclease (vsr protein) with oligonucleotides containing its target sequence.

    Science.gov (United States)

    Turner, D P; Connolly, B A

    2000-12-15

    The Escherichia coli vsr endonuclease recognises G:T base-pair mismatches in double-stranded DNA and initiates a repair pathway by hydrolysing the phosphate group 5' to the incorrectly paired T. The enzyme shows a preference for G:T mismatches within a particular sequence context, derived from the recognition site of the E. coli dcm DNA-methyltransferase (CC[A/T]GG). Thus, the preferred substrate for the vsr protein is (CT[A/T]GG), where the underlined T is opposed by a dG base. This paper provides quantitative data for the interaction of the vsr protein with a number of oligonucleotides containing G:T mismatches. Evaluation of specificity constant (k(st)/K(D); k(st)=rate constant for single turnover, K(D)=equilibrium dissociation constant) confirms vsr's preference for a G:T mismatch within a hemi-methylated dcm sequence, i.e. the best substrate is a duplex (both strands written in the 5'-3' orientation) composed of CT[A/T]GG and C(5Me)C[T/A]GG. Conversion of the mispaired T (underlined) to dU or the d(5Me)C to dC gave poorer substrates. No interaction was observed with oligonucleotides that lacked a G:T mismatch or did not possess a dcm sequence. An analysis of the fraction of active protein, by "reverse-titration" (i.e. adding increasing amounts of DNA to a fixed amount of protein followed by gel-mobility shift analysis) showed that less than 1% of the vsr endonuclease was able to bind to the substrate. This was confirmed using "competitive titrations" (where competitor oligonucleotides are used to displace a (32)P-labelled nucleic acid from the vsr protein) and burst kinetic analysis. This result is discussed in the light of previous in vitro and in vivo data which indicate that the MutL protein may be needed for full vsr activity. Copyright 2000 Academic Press.

  18. Repair of DNA damage induced by anthanthrene, a polycyclic aromatic hydrocarbon (PAH) without bay or fjord regions

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Johannessen, Christian; Rasmussen, Lene Juel

    2009-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants, formed during incomplete burning of coal, oil and gas. Several PAHs have carcinogenic and mutagenic potencies, but these compounds must be activated in order to exert their mutagenic effects. One of the principal pathways...... proposed for metabolic activation of PAHs involves the cytochrome P450 enzymes. The DNA damaging potential of cytochrome P450-activated PAHs is generally associated with their bay and fjord regions, and the DNA repair response of PAHs containing such regions has been thoroughly studied. However, little...... in response to DNA damage induced by cytochrome P450-activated anthanthrene. In cell extracts, functional nucleotide excision repair (NER) and mismatch repair (MMR) activities were necessary to trigger a response to anthanthrene metabolite-induced DNA damage. In cell cultures, NER was responsible...

  19. Comparing Biomechanical Properties, Repair Times, and Value of Common Core Flexor Tendon Repairs.

    Science.gov (United States)

    Chauhan, Aakash; Schimoler, Patrick; Miller, Mark C; Kharlamov, Alexander; Merrell, Gregory A; Palmer, Bradley A

    2018-05-01

    The aim of the study was to compare biomechanical strength, repair times, and repair values for zone II core flexor tendon repairs. A total of 75 fresh-frozen human cadaveric flexor tendons were harvested from the index through small finger and randomized into one of 5 repair groups: 4-stranded cross-stitch cruciate (4-0 polyester and 4-0 braided suture), 4-stranded double Pennington (2-0 knotless barbed suture), 4-stranded Pennington (4-0 double-stranded braided suture), and 6-stranded modified Lim-Tsai (4-0 looped braided suture). Repairs were measured in situ and their repair times were measured. Tendons were linearly loaded to failure and multiple biomechanical values were measured. The repair value was calculated based on operating room costs, repair times, and suture costs. Analysis of variance (ANOVA) and Tukey post hoc statistical analysis were used to compare repair data. The braided cruciate was the strongest repair ( P > .05) but the slowest ( P > .05), and the 4-stranded Pennington using double-stranded suture was the fastest ( P > .05) to perform. The total repair value was the highest for braided cruciate ( P > .05) compared with all other repairs. Barbed suture did not outperform any repairs in any categories. The braided cruciate was the strongest of the tested flexor tendon repairs. The 2-mm gapping and maximum load to failure for this repair approached similar historical strength of other 6- and 8-stranded repairs. In this study, suture cost was negligible in the overall repair cost and should be not a determining factor in choosing a repair.

  20. DNA demethylation by 5-aza-2-deoxycytidine treatment abrogates 17 beta-estradiol-induced cell growth and restores expression of DNA repair genes in human breast cancer cells.

    Science.gov (United States)

    Singh, Kamaleshwar P; Treas, Justin; Tyagi, Tulika; Gao, Weimin

    2012-03-01

    Prolonged exposure to elevated levels of estrogen is a risk factor for breast cancer. Though increased cell growth and loss of DNA repair capacity is one of the proposed mechanisms for estrogen-induced cancers, the mechanism through which estrogen induces cell growth and decreases DNA repair capacity is not clear. DNA hypermethylation is known to inactivate DNA repair genes and apoptotic response in cancer cells. Therefore, the objective of this study was to determine the role of DNA hypermethylation in estrogen-induced cell growth and regulation of DNA repair genes expression in breast cancer cells. To achieve this objective, the estrogen-responsive MCF-7 cells either pretreated with 5-aza-2-deoxycytidine (5-aza-dC) or untreated (as control) were exposed to 17 beta-estradiol (E2), and its effect on cell growth and expression of DNA repair genes were measured. The result revealed that 5-aza-dC abrogates the E2-induced growth in MCF-7 cells. An increased expression of OGG1, MSH4, and MLH1 by 5-aza-dC treatment alone, suggest the DNA hypermethylation as a potential cause for decreased expression of these genes in MCF-7 cells. The decreased expression of ERCC1, XPC, OGG1, and MLH1 by E2 alone and its restoration by co-treatment with 5-aza-dC further suggest that E2 reduces the expression of these DNA repair genes potentially through promoter hypermethylation. Reactivation of mismatch repair (MMR) gene MLH1 and abrogation of E2-induced cell growth by 5-aza-dC treatment suggest that estrogen causes increased growth in breast cancer cells potentially through the inhibition of MMR-mediated apoptotic response. In summary, this study suggests that estrogen increases cell growth and decreases the DNA repair capacity in breast cancer cells, at least in part, through epigenetic mechanism. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Selective nanoscale growth of lattice mismatched materials

    Science.gov (United States)

    Lee, Seung-Chang; Brueck, Steven R. J.

    2017-06-20

    Exemplary embodiments provide materials and methods of forming high-quality semiconductor devices using lattice-mismatched materials. In one embodiment, a composite film including one or more substantially-single-particle-thick nanoparticle layers can be deposited over a substrate as a nanoscale selective growth mask for epitaxially growing lattice-mismatched materials over the substrate.

  2. The production and repair of double strand breaks in cells from normal humans and patients with ataxia telangiectasia

    International Nuclear Information System (INIS)

    Lehman, A.R.; Stevens, S.

    1977-01-01

    The production and repair of double strand breaks induced by γ-rays in the DNA of human fibroblasts have been measured by sedimentation in sucrose gradients under non-denaturing conditions. Unirradiated DNA formed a rapidly sedimenting gel. Low doses of radiation released freely sedimenting DNA molecules from this gel. Higher doses reduced the rate of sedimentation of the free DNA due to the introduction of double strand breaks. The breakage efficiency was 1 break/1.3x10 10 daltons of DNA/krad. Postirradiation incubation after a high dose of radiation resulted in an increase in molecular weight of the free DNA molecules, and after a low dose the rapidly-sedimenting gel was reformed. These data suggest that double strand breaks are repaired in human fibroblasts. No significant differences were found between fibroblasts from two normal donors and four patients with the radiosensitive disorder, ataxia telangiectasia, in either the production or repair of double strand breaks

  3. Detection and repair of a UV-induced photosensitive lesion in the DNA of human cells

    International Nuclear Information System (INIS)

    Francis, A.A.; Regan, J.D.

    1986-01-01

    Irradiation with UV light results in damage to the DNA of human cells. The most numerous lesions are pyrimidine dimers; however, other lesions are known to occur and may contribute to the overall deleterious effect of UV irradiation. The authors have observed evidence of a UV-induced lesion other than pyrimidine dimers in the DNA of human cells by measuring DNA strand breaks induced by irradiating with 313-nm light following UV (254-nm) irradiation. The data suggest that, in normal cells, the lesion responsible for this effect is rapidly repaired or altered; whereas, in xeroderma pigmentosum variant cells it seems to remain unchanged. Some change apparently occurs in the DNA of xeroderma pigmentosum group A cells which results in an increase in photolability. These data indicate a deficiency in DNA repair of xeroderma pigmentosum variant cells as well as in xeroderma pigmentosum group A cells. (Auth.)

  4. Differentiation of Human Induced Pluripotent or Embryonic Stem Cells Decreases the DNA Damage Repair by Homologous Recombination

    Directory of Open Access Journals (Sweden)

    Kalpana Mujoo

    2017-11-01

    Full Text Available The nitric oxide (NO-cyclic GMP pathway contributes to human stem cell differentiation, but NO free radical production can also damage DNA, necessitating a robust DNA damage response (DDR to ensure cell survival. How the DDR is affected by differentiation is unclear. Differentiation of stem cells, either inducible pluripotent or embryonic derived, increased residual DNA damage as determined by γ-H2AX and 53BP1 foci, with increased S-phase-specific chromosomal aberration after exposure to DNA-damaging agents, suggesting reduced homologous recombination (HR repair as supported by the observation of decreased HR-related repair factor foci formation (RAD51 and BRCA1. Differentiated cells also had relatively increased fork stalling and R-loop formation after DNA replication stress. Treatment with NO donor (NOC-18, which causes stem cell differentiation has no effect on double-strand break (DSB repair by non-homologous end-joining but reduced DSB repair by HR. Present studies suggest that DNA repair by HR is impaired in differentiated cells.

  5. BatMis: a fast algorithm for k-mismatch mapping.

    Science.gov (United States)

    Tennakoon, Chandana; Purbojati, Rikky W; Sung, Wing-Kin

    2012-08-15

    Second-generation sequencing (SGS) generates millions of reads that need to be aligned to a reference genome allowing errors. Although current aligners can efficiently map reads allowing a small number of mismatches, they are not well suited for handling a large number of mismatches. The efficiency of aligners can be improved using various heuristics, but the sensitivity and accuracy of the alignments are sacrificed. In this article, we introduce Basic Alignment tool for Mismatches (BatMis)--an efficient method to align short reads to a reference allowing k mismatches. BatMis is a Burrows-Wheeler transformation based aligner that uses a seed and extend approach, and it is an exact method. Benchmark tests show that BatMis performs better than competing aligners in solving the k-mismatch problem. Furthermore, it can compete favorably even when compared with the heuristic modes of the other aligners. BatMis is a useful alternative for applications where fast k-mismatch mappings, unique mappings or multiple mappings of SGS data are required. BatMis is written in C/C++ and is freely available from http://code.google.com/p/batmis/

  6. Bifunctional rhodium intercalator conjugates as mismatch-directing DNA alkylating agents.

    Science.gov (United States)

    Schatzschneider, Ulrich; Barton, Jacqueline K

    2004-07-21

    A conjugate of a DNA mismatch-specific rhodium intercalator, containing the bulky chrysenediimine ligand, and an aniline mustard has been prepared, and targeting of mismatches in DNA by this conjugate has been examined. The preferential alkylation of mismatched over fully matched DNA is found by a mobility shift assay at concentrations where untethered organic mustards show little reaction. The binding site of the Rh intercalator was determined by DNA photocleavage, and the position of covalent modification was established on the basis of the enhanced depurination associated with N-alkylation. The site-selective alkylation at mismatched DNA renders these conjugates useful tools for the covalent tagging of DNA base pair mismatches and new chemotherapeutic design.

  7. The repair of low dose UV light-induced damage to human skin DNA in condition of trace amount Mg 2+

    Science.gov (United States)

    Gao, Fang; Guo, Zhouyi; Zheng, Changchun; Wang, Rui; Liu, Zhiming; Meng, Pei; Zhai, Juan

    2008-12-01

    Ultraviolet light-induced damage to human skin DNA was widely investigated. The primary mechanism of this damage contributed to form cyclobutane pyrimidine dimmers (CPDs). Although the distribution of UV light-induced CPDs within a defined sequence is similar, the damage in cellular environment which shields the nuclear DNA was higher than that in organism in apparent dose. So we use low UVB light as main study agent. Low dose UV-irradiated HDF-a cells (Human Dermal Fibroblasts-adult cells) which is weaker than epidermic cells were cultured with DMEM at different trace amount of Mg2+ (0mmol/L , 0.1mmol/L , 0.2mmol/L, 0.4mmol/L, 0.8mmol/L, 1.2mmol/L) free-serum DMEM and the repair of DNA strands injured were observed. Treat these cells with DNA strand breaks detection, photoproducts detection and the repair of photoproducts detection. Then quantitate the role of trace amount Mg2+ in repair of UV light-induced damage to human skin. The experiment results indicated that epidermic cells have capability of resistance to UV-radiation at a certain extent. And Mg2+ can regulate the UV-induced damage repair and relative vitality. It can offer a rationale and experiment data to relieve UV light-induced skin disease.

  8. DNA repair in mammalian cells exposed to combinations of carcinogenic agents

    International Nuclear Information System (INIS)

    Setlow, R.B.; Ahmed, F.E.

    1979-01-01

    Cells defective in one or more aspects of repair are killed and often mutagenized more readily than normal cells by DNA damaging agents, and humans whose cells are deficient in repair are at an increased carcinogenic risk compared to normal individuals. The excision repair of uv induced pyrimidine dimers is a well studied system, but the details of the steps in this repair system are far from being understood in human cells. We know that there are a number of chemicals that mimic uv in that normal human cells repair DNA damage from both these agents and from uv by a long patch excision repair system, and that xeroderma pigmentosum cells defective in repair of uv are also defective in the repair of damage from these chemicals. The chemicals we have investigated are AAAF, 4-NQO, DMBA-epoxide, and ICR-170. We describe experiments, using several techniques, in which DNA excision repair is measured after treatment of various human cell strains with combinations of uv and these agents. If two agents have a common rate limiting step then, at doses high enough to saturate the repair system, one would expect the observed repair after a treatment with a combination of agents to be equal to that from one agent alone. Such is not the case for normal human or excision-deficient XP cells. In the former repair is additive and in the latter repair is usually appreciably less than that observed with either agent alone. Models that attempt to explain these surprising results involve complexes of enzymes and cofactors

  9. Articular cartilage repair with recombinant human type II collagen/polylactide scaffold in a preliminary porcine study.

    Science.gov (United States)

    Muhonen, Virpi; Salonius, Eve; Haaparanta, Anne-Marie; Järvinen, Elina; Paatela, Teemu; Meller, Anna; Hannula, Markus; Björkman, Mimmi; Pyhältö, Tuomo; Ellä, Ville; Vasara, Anna; Töyräs, Juha; Kellomäki, Minna; Kiviranta, Ilkka

    2016-05-01

    The purpose of this study was to investigate the potential of a novel recombinant human type II collagen/polylactide scaffold (rhCo-PLA) in the repair of full-thickness cartilage lesions with autologous chondrocyte implantation technique (ACI). The forming repair tissue was compared to spontaneous healing (spontaneous) and repair with a commercial porcine type I/III collagen membrane (pCo). Domestic pigs (4-month-old, n = 20) were randomized into three study groups and a circular full-thickness chondral lesion with a diameter of 8 mm was created in the right medial femoral condyle. After 3 weeks, the chondral lesions were repaired with either rhCo-PLA or pCo together with autologous chondrocytes, or the lesion was only debrided and left untreated for spontaneous repair. The repair tissue was evaluated 4 months after the second operation. Hyaline cartilage formed most frequently in the rhCo-PLA treatment group. Biomechanically, there was a trend that both treatment groups resulted in better repair tissue than spontaneous healing. Adverse subchondral bone reactions developed less frequently in the spontaneous group (40%) and the rhCo-PLA treated group (50%) than in the pCo control group (100%). However, no statistically significant differences were found between the groups. The novel rhCo-PLA biomaterial showed promising results in this proof-of-concept study, but further studies will be needed in order to determine its effectiveness in articular cartilage repair. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:745-753, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Accelerated repair and reduced mutagenicity of DNA damage induced by cigarette smoke in human bronchial cells transfected with E.coli formamidopyrimidine DNA glycosylase.

    Directory of Open Access Journals (Sweden)

    Mara Foresta

    Full Text Available Cigarette smoke (CS is associated to a number of pathologies including lung cancer. Its mutagenic and carcinogenic effects are partially linked to the presence of reactive oxygen species and polycyclic aromatic hydrocarbons (PAH inducing DNA damage. The bacterial DNA repair enzyme formamidopyrimidine DNA glycosylase (FPG repairs both oxidized bases and different types of bulky DNA adducts. We investigated in vitro whether FPG expression may enhance DNA repair of CS-damaged DNA and counteract the mutagenic effects of CS in human lung cells. NCI-H727 non small cell lung carcinoma cells were transfected with a plasmid vector expressing FPG fused to the Enhanced Green Fluorescent Protein (EGFP. Cells expressing the fusion protein EGFP-FPG displayed accelerated repair of adducts and DNA breaks induced by CS condensate. The mutant frequencies induced by low concentrations of CS condensate to the Na(+K(+-ATPase locus (oua(r were significantly reduced in cells expressing EGFP-FPG. Hence, expression of the bacterial DNA repair protein FPG stably protects human lung cells from the mutagenic effects of CS by improving cells' capacity to repair damaged DNA.

  11. Functional analysis of HNPCC-related missense mutations in MSH2

    International Nuclear Information System (INIS)

    Luetzen, Anne; Wind, Niels de; Georgijevic, Dubravka; Nielsen, Finn Cilius; Rasmussen, Lene Juel

    2008-01-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with germline mutations in the human DNA mismatch repair (MMR) genes, most frequently MSH2 and MLH1. The majority of HNPCC mutations cause truncations and thus loss of function of the affected polypeptide. However, a significant proportion of MMR mutations found in HNPCC patients are single amino acid substitutions and the functional consequences of many of these mutations in DNA repair are unclear. We have examined the consequences of seven MSH2 missense mutations found in HNPCC families by testing the MSH2 mutant proteins in functional assays as well as by generating equivalent missense mutations in Escherichia coli MutS and analyzing the phenotypes of these mutants. Here we show that two mutant proteins, MSH2-P622L and MSH2-C697F confer multiple biochemical defects, namely in mismatch binding, in vivo interaction with MSH6 and EXO1, and in nuclear localization in the cell. Mutation G674R, located in the ATP-binding region of MSH2, appears to confer resistance to ATP-dependent mismatch release. Mutations D167H and H639R show reduced mismatch binding. Results of in vivo experiments in E. coli with MutS mutants show that one additional mutant, equivalent of MSH2-A834T that do not show any defects in MSH2 assays, is repair deficient. In conclusion, all mutant proteins (except for MSH2-A305T) have defects; either in mismatch binding, ATP-release, mismatch repair activity, subcellular localization or protein-protein interactions

  12. Functional analysis of HNPCC-related missense mutations in MSH2

    Energy Technology Data Exchange (ETDEWEB)

    Luetzen, Anne [Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark); Wind, Niels de; Georgijevic, Dubravka [Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden (Netherlands); Nielsen, Finn Cilius [Department of Clinical Biochemistry, Rigshospitalet, DK-2100 Copenhagen (Denmark); Rasmussen, Lene Juel [Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde (Denmark)], E-mail: ljr@ruc.dk

    2008-10-14

    Hereditary nonpolyposis colorectal cancer (HNPCC) is associated with germline mutations in the human DNA mismatch repair (MMR) genes, most frequently MSH2 and MLH1. The majority of HNPCC mutations cause truncations and thus loss of function of the affected polypeptide. However, a significant proportion of MMR mutations found in HNPCC patients are single amino acid substitutions and the functional consequences of many of these mutations in DNA repair are unclear. We have examined the consequences of seven MSH2 missense mutations found in HNPCC families by testing the MSH2 mutant proteins in functional assays as well as by generating equivalent missense mutations in Escherichia coli MutS and analyzing the phenotypes of these mutants. Here we show that two mutant proteins, MSH2-P622L and MSH2-C697F confer multiple biochemical defects, namely in mismatch binding, in vivo interaction with MSH6 and EXO1, and in nuclear localization in the cell. Mutation G674R, located in the ATP-binding region of MSH2, appears to confer resistance to ATP-dependent mismatch release. Mutations D167H and H639R show reduced mismatch binding. Results of in vivo experiments in E. coli with MutS mutants show that one additional mutant, equivalent of MSH2-A834T that do not show any defects in MSH2 assays, is repair deficient. In conclusion, all mutant proteins (except for MSH2-A305T) have defects; either in mismatch binding, ATP-release, mismatch repair activity, subcellular localization or protein-protein interactions.

  13. DNA repair and cell cycle biomarkers of radiation exposure and inflammation stress in human blood.

    Directory of Open Access Journals (Sweden)

    Helen Budworth

    Full Text Available DNA damage and repair are hallmarks of cellular responses to ionizing radiation. We hypothesized that monitoring the expression of DNA repair-associated genes would enhance the detection of individuals exposed to radiation versus other forms of physiological stress. We employed the human blood ex vivo radiation model to investigate the expression responses of DNA repair genes in repeated blood samples from healthy, non-smoking men and women exposed to 2 Gy of X-rays in the context of inflammation stress mimicked by the bacterial endotoxin lipopolysaccharide (LPS. Radiation exposure significantly modulated the transcript expression of 12 genes of 40 tested (2.2E-06human blood ex vivo dataset, and 100% accuracy for discriminating patients who received total body radiation. Three genes of this panel (CDKN1A, FDXR and BBC3 were also highly sensitive to LPS treatment in the absence of radiation exposure, and LPS co-treatment significantly affected their radiation responses. At the protein level, BAX and pCHK2-thr68 were elevated after radiation exposure, but the pCHK2-thr68 response was significantly decreased in the presence of LPS. Our combined panel yields an estimated 4-group accuracy of ∼90% to discriminate between radiation alone, inflammation alone, or combined exposures. Our findings suggest that DNA repair gene expression may be helpful to identify biodosimeters of exposure to radiation, especially within high-complexity exposure scenarios.

  14. Clinical problems of colorectal cancer and endometrial cancer cases with unknown cause of tumor mismatch repair deficiency (suspected Lynch syndrome).

    Science.gov (United States)

    Buchanan, Daniel D; Rosty, Christophe; Clendenning, Mark; Spurdle, Amanda B; Win, Aung Ko

    2014-01-01

    Carriers of a germline mutation in one of the DNA mismatch repair (MMR) genes have a high risk of developing numerous different cancers, predominantly colorectal cancer and endometrial cancer (known as Lynch syndrome). MMR gene mutation carriers develop tumors with MMR deficiency identified by tumor microsatellite instability or immunohistochemical loss of MMR protein expression. Tumor MMR deficiency is used to identify individuals most likely to carry an MMR gene mutation. However, MMR deficiency can also result from somatic inactivation, most commonly methylation of the MLH1 gene promoter. As tumor MMR testing of all incident colorectal and endometrial cancers (universal screening) is becoming increasingly adopted, a growing clinical problem is emerging for individuals who have tumors that show MMR deficiency who are subsequently found not to carry an MMR gene mutation after genetic testing using the current diagnostic approaches (Sanger sequencing and multiplex ligation-dependent probe amplification) and who also show no evidence of MLH1 methylation. The inability to determine the underlying cause of tumor MMR deficiency in these "Lynch-like" or "suspected Lynch syndrome" cases has significant implications on the clinical management of these individuals and their relatives. When the data from published studies are combined, 59% (95% confidence interval [CI]: 55% to 64%) of colorectal cancers and 52% (95% CI: 41% to 62%) of endometrial cancers with MMR deficiency were identified as suspected Lynch syndrome. Recent studies estimated that colorectal cancer risk for relatives of suspected Lynch syndrome cases is lower than for relatives of those with MMR gene mutations, but higher than for relatives of those with tumor MMR deficiency resulting from methylation of the MLH1 gene promoter. The cause of tumor MMR deficiency in suspected Lynch syndrome cases is likely due to either unidentified germline MMR gene mutations, somatic cell mosaicism, or biallelic somatic

  15. The Risk of Transplant Failure With HLA Mismatch in First Adult Kidney Allografts From Deceased Donors.

    Science.gov (United States)

    Williams, Robert C; Opelz, Gerhard; McGarvey, Chelsea J; Weil, E Jennifer; Chakkera, Harini A

    2016-05-01

    Since the beginning of the technology, there has been active debate about the role of human leucocyte antigen (HLA) matching in kidney allograft survival. Recent studies have reported diminishing importance of HLA matching, which have, in turn, been challenged by reports that suggest the continuing importance of these loci. Given the controversies, we examined the effect of HLA compatibility on kidney allograft survival by studying all first adult kidney transplants in the United States from a deceased donor. Using the United Network for Organ Sharing data, we identified first deceased donor kidney transplants between October 1, 1987, and December 31, 2013. Recipients were classified by their number of HLA mismatches. Cox multivariate regression analyses adjusting for recipient and donor transplant characteristics were performed to determine the impact of HLA compatibility on kidney allograft survival. Study cohort included 189 141 first adult kidney alone transplants, with a total of 994 558 years of kidney allograft follow-up time. Analyses adjusted for recipient and donor characteristics demonstrated a 13% higher risk (hazard ratio, 1.13; 95% confidence interval, 1.06-1.21) with 1 mismatch and a 64% higher risk (hazard ratio, 1.64, 95% confidence interval, 1.56-1.73) with 6 mismatches. Dividing the mismatch categories into 27 ordered permutations, and testing their 57 within mismatch category differences, demonstrated that all but 1 were equal, independent of locus. A significant linear relationship of hazard ratios was associated with HLA mismatch and affects allograft survival even during the recent periods of increasing success in renal transplantation.

  16. Radiosensitivity and repair capacity of two xenografted human soft tissue sarcomas to photons and fast neutrons

    International Nuclear Information System (INIS)

    Budach, V.; Stuschke, M.; Budach, W.; Krause, U.; Streffer, C.; Sack, H.

    1989-01-01

    The radiation response, the relative biological effectiveness (RBE) and sublethal damage repair of two xenografted human soft tissue sarcomas after single doses and fractionated irradiation with 60 Co and 5.8 MeV fast neutrons are presented. (author)

  17. Complementation of a DNA repair defect in xeroderma pigmentosum cells by transfer of human chromosome 9

    International Nuclear Information System (INIS)

    Kaur, G.P.; Athwal, R.S.

    1989-01-01

    Complementation of the repair defect in xeroderma pigmentosum cells of complementation group A was achieved by the transfer of human chromosome 9. A set of mouse-human hybrid cell lines, each containing a single Ecogpt-marked human chromosome, was used as a source of donor chromosomes. Chromosome transfer to XPTG-1 cells, a hypoxanthine/guanine phosphoribosyltransferase-deficient mutant of simian virus 40-transformed complementation group A cells, was achieved by microcell fusion and selection for Ecogpt. Chromosome-transfer clones of XPTG-1 cells, each containing a different human donor chromosome, were analyzed for complementation of sensitivity to UV irradiation. Among all the clones, increased levels of resistance to UV was observed only in clones containing chromosome 9. Since our recipient cell line XPTG-1 is hypoxanthine/guanine phosphoribosyltransferase deficient, cultivation of Ecogpt+ clones in medium containing 6-thioguanine permits selection of cells for loss of the marker and, by inference, transferred chromosome 9. Clones isolated for growth in 6-thioguanine, which have lost the Ecogpt-marked chromosome, exhibited a UV-sensitive phenotype, confirming the presence of the repair gene(s) for complementation group A on chromosome 9

  18. [The correlations between aging of the human body, oxidative stress and reduced efficiency of repair systems].

    Science.gov (United States)

    Michalak, Aleksandra; Krzeszowiak, Jakub; Markiewicz-Górka, Iwona

    2014-12-15

    The article presents an current knowledge overview about the importance of oxidative stress and reduced efficiency of repair processes during the aging process of the human body. Oxidative damage to cellular macromolecules (proteins, lipids, nucleic acids), are formed under the influence of reactive oxygen species (ROS). They are the part of important mechanism which is responsible for the process of aging and the development of many diseases. The most important effects result from DNA damage, due to the mutations formation, which can lead to the development of tumors. However, a well-functioning repair systems (i.a. homologous recombination) remove the damage and prevent harmful changes in the cells. Lipid peroxidation products also cause oxidative modification of nucleic acids (and proteins). Proteins and fats also have repair systems, but much simpler than those responsible for the repair of nucleic acids. Unfortunately, with increasing age, they are more weakened, which contributes to increase numbers of cell damage, and consequently development of diseases specific to old age: cancer, neurodegenerative diseases or atherosclerosis.

  19. Splicing analysis for exonic and intronic mismatch repair gene variants associated with Lynch syndrome confirms high concordance between minigene assays and patient RNA analyses

    Science.gov (United States)

    van der Klift, Heleen M; Jansen, Anne M L; van der Steenstraten, Niki; Bik, Elsa C; Tops, Carli M J; Devilee, Peter; Wijnen, Juul T

    2015-01-01

    A subset of DNA variants causes genetic disease through aberrant splicing. Experimental splicing assays, either RT-PCR analyses of patient RNA or functional splicing reporter minigene assays, are required to evaluate the molecular nature of the splice defect. Here, we present minigene assays performed for 17 variants in the consensus splice site regions, 14 exonic variants outside these regions, and two deep intronic variants, all in the DNA mismatch-repair (MMR) genes MLH1, MSH2, MSH6, and PMS2, associated with Lynch syndrome. We also included two deep intronic variants in APC and PKD2. For one variant (MLH1 c.122A>G), our minigene assay and patient RNA analysis could not confirm the previously reported aberrant splicing. The aim of our study was to further investigate the concordance between minigene splicing assays and patient RNA analyses. For 30 variants results from patient RNA analyses were available, either performed by our laboratory or presented in literature. Some variants were deliberately included in this study because they resulted in multiple aberrant transcripts in patient RNA analysis, or caused a splice effect other than the prevalent exon skip. While both methods were completely concordant in the assessment of splice effects, four variants exhibited major differences in aberrant splice patterns. Based on the present and earlier studies, together showing an almost 100% concordance of minigene assays with patient RNA analyses, we discuss the weight given to minigene splicing assays in the current criteria proposed by InSiGHT for clinical classification of MMR variants. PMID:26247049

  20. Germline PMS2 and somatic POLE exonuclease mutations cause hypermutability of the leading DNA strand in biallelic mismatch repair deficiency syndrome brain tumours.

    Science.gov (United States)

    Andrianova, Maria A; Chetan, Ghati Kasturirangan; Sibin, Madathan Kandi; Mckee, Thomas; Merkler, Doron; Narasinga, Rao Kvl; Ribaux, Pascale; Blouin, Jean-Louis; Makrythanasis, Periklis; Seplyarskiy, Vladimir B; Antonarakis, Stylianos E; Nikolaev, Sergey I

    2017-11-01

    Biallelic mismatch repair deficiency (bMMRD) in tumours is frequently associated with somatic mutations in the exonuclease domains of DNA polymerases POLE or POLD1, and results in a characteristic mutational profile. In this article, we describe the genetic basis of ultramutated high-grade brain tumours in the context of bMMRD. We performed exome sequencing of two second-cousin patients from a large consanguineous family of Indian origin with early onset of high-grade glioblastoma and astrocytoma. We identified a germline homozygous nonsense variant, p.R802*, in the PMS2 gene. Additionally, by genome sequencing of these tumours, we found extremely high somatic mutation rates (237/Mb and 123/Mb), as well as somatic mutations in the proofreading domain of POLE polymerase (p.P436H and p.L424V), which replicates the leading DNA strand. Most interestingly, we found, in both cancers, that the vast majority of mutations were consistent with the signature of POLE exo - , i.e. an abundance of C>A and C>T mutations, particularly in special contexts, on the leading strand. We showed that the fraction of mutations under positive selection among mutations in tumour suppressor genes is more than two-fold lower in ultramutated tumours than in other glioblastomas. Genetic analyses enabled the diagnosis of the two consanguineous childhood brain tumours as being due to a combination of PMS2 germline and POLE somatic variants, and confirmed them as bMMRD/POLE exo - disorders. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.