WorldWideScience

Sample records for human metabolic network

  1. Genome-Scale Reconstruction of the Human Astrocyte Metabolic Network

    OpenAIRE

    Mart?n-Jim?nez, Cynthia A.; Salazar-Barreto, Diego; Barreto, George E.; Gonz?lez, Janneth

    2017-01-01

    Astrocytes are the most abundant cells of the central nervous system; they have a predominant role in maintaining brain metabolism. In this sense, abnormal metabolic states have been found in different neuropathological diseases. Determination of metabolic states of astrocytes is difficult to model using current experimental approaches given the high number of reactions and metabolites present. Thus, genome-scale metabolic networks derived from transcriptomic data can be used as a framework t...

  2. Detection of driver metabolites in the human liver metabolic network using structural controllability analysis

    Science.gov (United States)

    2014-01-01

    Background Abnormal states in human liver metabolism are major causes of human liver diseases ranging from hepatitis to hepatic tumor. The accumulation in relevant data makes it feasible to derive a large-scale human liver metabolic network (HLMN) and to discover important biological principles or drug-targets based on network analysis. Some studies have shown that interesting biological phenomenon and drug-targets could be discovered by applying structural controllability analysis (which is a newly prevailed concept in networks) to biological networks. The exploration on the connections between structural controllability theory and the HLMN could be used to uncover valuable information on the human liver metabolism from a fresh perspective. Results We applied structural controllability analysis to the HLMN and detected driver metabolites. The driver metabolites tend to have strong ability to influence the states of other metabolites and weak susceptibility to be influenced by the states of others. In addition, the metabolites were classified into three classes: critical, high-frequency and low-frequency driver metabolites. Among the identified 36 critical driver metabolites, 27 metabolites were found to be essential; the high-frequency driver metabolites tend to participate in different metabolic pathways, which are important in regulating the whole metabolic systems. Moreover, we explored some other possible connections between the structural controllability theory and the HLMN, and find that transport reactions and the environment play important roles in the human liver metabolism. Conclusion There are interesting connections between the structural controllability theory and the human liver metabolism: driver metabolites have essential biological functions; the crucial role of extracellular metabolites and transport reactions in controlling the HLMN highlights the importance of the environment in the health of human liver metabolism. PMID:24885538

  3. Characterization of the Usage of the Serine Metabolic Network in Human Cancer

    Directory of Open Access Journals (Sweden)

    Mahya Mehrmohamadi

    2014-11-01

    Full Text Available The serine, glycine, one-carbon (SGOC metabolic network is implicated in cancer pathogenesis, but its general functions are unknown. We carried out a computational reconstruction of the SGOC network and then characterized its expression across thousands of cancer tissues. Pathways including methylation and redox metabolism exhibited heterogeneous expression indicating a strong context dependency of their usage in tumors. From an analysis of coexpression, simultaneous up- or downregulation of nucleotide synthesis, NADPH, and glutathione synthesis was found to be a common occurrence in all cancers. Finally, we developed a method to trace the metabolic fate of serine using stable isotopes, high-resolution mass spectrometry, and a mathematical model. Although the expression of single genes didn’t appear indicative of flux, the collective expression of several genes in a given pathway allowed for successful flux prediction. Altogether, these findings identify expansive and heterogeneous functions for the SGOC metabolic network in human cancer.

  4. Human-Centered Development of an Online Social Network for Metabolic Syndrome Management.

    Science.gov (United States)

    Núñez-Nava, Jefersson; Orozco-Sánchez, Paola A; López, Diego M; Ceron, Jesus D; Alvarez-Rosero, Rosa E

    2016-01-01

    According to the International Diabetes Federation (IDF), a quarter of the world's population has Metabolic Syndrome (MS). To develop (and assess the users' degree of satisfaction of) an online social network for patients who suffer from Metabolic Syndrome, based on the recommendations and requirements of the Human-Centered Design. Following the recommendations of the ISO 9241-210 for Human-Centered Design (HCD), an online social network was designed to promote physical activity and healthy nutrition. In order to guarantee the active participation of the users during the development of the social network, a survey, an in-depth interview, a focal group, and usability tests were carried out with people suffering from MS. The study demonstrated how the different activities, recommendations, and requirements of the ISO 9241-210 are integrated into a traditional software development process. Early usability tests demonstrated that the user's acceptance and the effectiveness and efficiency of the social network are satisfactory.

  5. Reconstruction and Analysis of Human Kidney-Specific Metabolic Network Based on Omics Data

    Directory of Open Access Journals (Sweden)

    Ai-Di Zhang

    2013-01-01

    Full Text Available With the advent of the high-throughput data production, recent studies of tissue-specific metabolic networks have largely advanced our understanding of the metabolic basis of various physiological and pathological processes. However, for kidney, which plays an essential role in the body, the available kidney-specific model remains incomplete. This paper reports the reconstruction and characterization of the human kidney metabolic network based on transcriptome and proteome data. In silico simulations revealed that house-keeping genes were more essential than kidney-specific genes in maintaining kidney metabolism. Importantly, a total of 267 potential metabolic biomarkers for kidney-related diseases were successfully explored using this model. Furthermore, we found that the discrepancies in metabolic processes of different tissues are directly corresponding to tissue's functions. Finally, the phenotypes of the differentially expressed genes in diabetic kidney disease were characterized, suggesting that these genes may affect disease development through altering kidney metabolism. Thus, the human kidney-specific model constructed in this study may provide valuable information for the metabolism of kidney and offer excellent insights into complex kidney diseases.

  6. Network Thermodynamic Curation of Human and Yeast Genome-Scale Metabolic Models

    Science.gov (United States)

    Martínez, Verónica S.; Quek, Lake-Ee; Nielsen, Lars K.

    2014-01-01

    Genome-scale models are used for an ever-widening range of applications. Although there has been much focus on specifying the stoichiometric matrix, the predictive power of genome-scale models equally depends on reaction directions. Two-thirds of reactions in the two eukaryotic reconstructions Homo sapiens Recon 1 and Yeast 5 are specified as irreversible. However, these specifications are mainly based on biochemical textbooks or on their similarity to other organisms and are rarely underpinned by detailed thermodynamic analysis. In this study, a to our knowledge new workflow combining network-embedded thermodynamic and flux variability analysis was used to evaluate existing irreversibility constraints in Recon 1 and Yeast 5 and to identify new ones. A total of 27 and 16 new irreversible reactions were identified in Recon 1 and Yeast 5, respectively, whereas only four reactions were found with directions incorrectly specified against thermodynamics (three in Yeast 5 and one in Recon 1). The workflow further identified for both models several isolated internal loops that require further curation. The framework also highlighted the need for substrate channeling (in human) and ATP hydrolysis (in yeast) for the essential reaction catalyzed by phosphoribosylaminoimidazole carboxylase in purine metabolism. Finally, the framework highlighted differences in proline metabolism between yeast (cytosolic anabolism and mitochondrial catabolism) and humans (exclusively mitochondrial metabolism). We conclude that network-embedded thermodynamics facilitates the specification and validation of irreversibility constraints in compartmentalized metabolic models, at the same time providing further insight into network properties. PMID:25028891

  7. Network thermodynamic curation of human and yeast genome-scale metabolic models.

    Science.gov (United States)

    Martínez, Verónica S; Quek, Lake-Ee; Nielsen, Lars K

    2014-07-15

    Genome-scale models are used for an ever-widening range of applications. Although there has been much focus on specifying the stoichiometric matrix, the predictive power of genome-scale models equally depends on reaction directions. Two-thirds of reactions in the two eukaryotic reconstructions Homo sapiens Recon 1 and Yeast 5 are specified as irreversible. However, these specifications are mainly based on biochemical textbooks or on their similarity to other organisms and are rarely underpinned by detailed thermodynamic analysis. In this study, a to our knowledge new workflow combining network-embedded thermodynamic and flux variability analysis was used to evaluate existing irreversibility constraints in Recon 1 and Yeast 5 and to identify new ones. A total of 27 and 16 new irreversible reactions were identified in Recon 1 and Yeast 5, respectively, whereas only four reactions were found with directions incorrectly specified against thermodynamics (three in Yeast 5 and one in Recon 1). The workflow further identified for both models several isolated internal loops that require further curation. The framework also highlighted the need for substrate channeling (in human) and ATP hydrolysis (in yeast) for the essential reaction catalyzed by phosphoribosylaminoimidazole carboxylase in purine metabolism. Finally, the framework highlighted differences in proline metabolism between yeast (cytosolic anabolism and mitochondrial catabolism) and humans (exclusively mitochondrial metabolism). We conclude that network-embedded thermodynamics facilitates the specification and validation of irreversibility constraints in compartmentalized metabolic models, at the same time providing further insight into network properties. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. From Network Analysis to Functional Metabolic Modeling of the Human Gut Microbiota.

    Science.gov (United States)

    Bauer, Eugen; Thiele, Ines

    2018-01-01

    An important hallmark of the human gut microbiota is its species diversity and complexity. Various diseases have been associated with a decreased diversity leading to reduced metabolic functionalities. Common approaches to investigate the human microbiota include high-throughput sequencing with subsequent correlative analyses. However, to understand the ecology of the human gut microbiota and consequently design novel treatments for diseases, it is important to represent the different interactions between microbes with their associated metabolites. Computational systems biology approaches can give further mechanistic insights by constructing data- or knowledge-driven networks that represent microbe interactions. In this minireview, we will discuss current approaches in systems biology to analyze the human gut microbiota, with a particular focus on constraint-based modeling. We will discuss various community modeling techniques with their advantages and differences, as well as their application to predict the metabolic mechanisms of intestinal microbial communities. Finally, we will discuss future perspectives and current challenges of simulating realistic and comprehensive models of the human gut microbiota.

  9. VRML metabolic network visualizer.

    Science.gov (United States)

    Rojdestvenski, Igor

    2003-03-01

    A successful date collection visualization should satisfy a set of many requirements: unification of diverse data formats, support for serendipity research, support of hierarchical structures, algorithmizability, vast information density, Internet-readiness, and other. Recently, virtual reality has made significant progress in engineering, architectural design, entertainment and communication. We experiment with the possibility of using the immersive abstract three-dimensional visualizations of the metabolic networks. We present the trial Metabolic Network Visualizer software, which produces graphical representation of a metabolic network as a VRML world from a formal description written in a simple SGML-type scripting language.

  10. Loss of variation of state detected in soybean metabolic and human myelomonocytic leukaemia cell transcriptional networks under external stimuli

    KAUST Repository

    Sakata, Katsumi

    2016-10-24

    Soybean (Glycine max) is sensitive to flooding stress, and flood damage at the seedling stage is a barrier to growth. We constructed two mathematical models of the soybean metabolic network, a control model and a flooded model, from metabolic profiles in soybean plants. We simulated the metabolic profiles with perturbations before and after the flooding stimulus using the two models. We measured the variation of state that the system could maintain from a state–space description of the simulated profiles. The results showed a loss of variation of state during the flooding response in the soybean plants. Loss of variation of state was also observed in a human myelomonocytic leukaemia cell transcriptional network in response to a phorbol-ester stimulus. Thus, we detected a loss of variation of state under external stimuli in two biological systems, regardless of the regulation and stimulus types. Our results suggest that a loss of robustness may occur concurrently with the loss of variation of state in biological systems. We describe the possible applications of the quantity of variation of state in plant genetic engineering and cell biology. Finally, we present a hypothetical “external stimulus-induced information loss” model of biological systems.

  11. Loss of variation of state detected in soybean metabolic and human myelomonocytic leukaemia cell transcriptional networks under external stimuli

    KAUST Repository

    Sakata, Katsumi; Saito, Toshiyuki; Ohyanagi, Hajime; Okumura, Jun; Ishige, Kentaro; Suzuki, Harukazu; Nakamura, Takuji; Komatsu, Setsuko

    2016-01-01

    Soybean (Glycine max) is sensitive to flooding stress, and flood damage at the seedling stage is a barrier to growth. We constructed two mathematical models of the soybean metabolic network, a control model and a flooded model, from metabolic profiles in soybean plants. We simulated the metabolic profiles with perturbations before and after the flooding stimulus using the two models. We measured the variation of state that the system could maintain from a state–space description of the simulated profiles. The results showed a loss of variation of state during the flooding response in the soybean plants. Loss of variation of state was also observed in a human myelomonocytic leukaemia cell transcriptional network in response to a phorbol-ester stimulus. Thus, we detected a loss of variation of state under external stimuli in two biological systems, regardless of the regulation and stimulus types. Our results suggest that a loss of robustness may occur concurrently with the loss of variation of state in biological systems. We describe the possible applications of the quantity of variation of state in plant genetic engineering and cell biology. Finally, we present a hypothetical “external stimulus-induced information loss” model of biological systems.

  12. Human Body Exergy Metabolism

    OpenAIRE

    Mady, Carlos Eduardo Keutenedjian

    2013-01-01

    The exergy analysis of the human body is a tool that can provide indicators of health and life quality. To perform the exergy balance it is necessary to calculate the metabolism on an exergy basis, or metabolic exergy, although there is not yet consensus in its calculation procedure. Hence, the aim of this work is to provide a general method to evaluate this physical quantity for human body based on indirect calorimetry data. To calculate the metabolism on an exergy basis it is necessary to d...

  13. Evolution of metabolic network organization

    Directory of Open Access Journals (Sweden)

    Bonchev Danail

    2010-05-01

    Full Text Available Abstract Background Comparison of metabolic networks across species is a key to understanding how evolutionary pressures shape these networks. By selecting taxa representative of different lineages or lifestyles and using a comprehensive set of descriptors of the structure and complexity of their metabolic networks, one can highlight both qualitative and quantitative differences in the metabolic organization of species subject to distinct evolutionary paths or environmental constraints. Results We used a novel representation of metabolic networks, termed network of interacting pathways or NIP, to focus on the modular, high-level organization of the metabolic capabilities of the cell. Using machine learning techniques we identified the most relevant aspects of cellular organization that change under evolutionary pressures. We considered the transitions from prokarya to eukarya (with a focus on the transitions among the archaea, bacteria and eukarya, from unicellular to multicellular eukarya, from free living to host-associated bacteria, from anaerobic to aerobic, as well as the acquisition of cell motility or growth in an environment of various levels of salinity or temperature. Intuitively, we expect organisms with more complex lifestyles to have more complex and robust metabolic networks. Here we demonstrate for the first time that such organisms are not only characterized by larger, denser networks of metabolic pathways but also have more efficiently organized cross communications, as revealed by subtle changes in network topology. These changes are unevenly distributed among metabolic pathways, with specific categories of pathways being promoted to more central locations as an answer to environmental constraints. Conclusions Combining methods from graph theory and machine learning, we have shown here that evolutionary pressures not only affects gene and protein sequences, but also specific details of the complex wiring of functional modules

  14. Control of fluxes in metabolic networks

    Science.gov (United States)

    Basler, Georg; Nikoloski, Zoran; Larhlimi, Abdelhalim; Barabási, Albert-László; Liu, Yang-Yu

    2016-01-01

    Understanding the control of large-scale metabolic networks is central to biology and medicine. However, existing approaches either require specifying a cellular objective or can only be used for small networks. We introduce new coupling types describing the relations between reaction activities, and develop an efficient computational framework, which does not require any cellular objective for systematic studies of large-scale metabolism. We identify the driver reactions facilitating control of 23 metabolic networks from all kingdoms of life. We find that unicellular organisms require a smaller degree of control than multicellular organisms. Driver reactions are under complex cellular regulation in Escherichia coli, indicating their preeminent role in facilitating cellular control. In human cancer cells, driver reactions play pivotal roles in malignancy and represent potential therapeutic targets. The developed framework helps us gain insights into regulatory principles of diseases and facilitates design of engineering strategies at the interface of gene regulation, signaling, and metabolism. PMID:27197218

  15. Synthetic dosage lethality in the human metabolic network is highly predictive of tumor growth and cancer patient survival.

    Science.gov (United States)

    Megchelenbrink, Wout; Katzir, Rotem; Lu, Xiaowen; Ruppin, Eytan; Notebaart, Richard A

    2015-09-29

    Synthetic dosage lethality (SDL) denotes a genetic interaction between two genes whereby the underexpression of gene A combined with the overexpression of gene B is lethal. SDLs offer a promising way to kill cancer cells by inhibiting the activity of SDL partners of activated oncogenes in tumors, which are often difficult to target directly. As experimental genome-wide SDL screens are still scarce, here we introduce a network-level computational modeling framework that quantitatively predicts human SDLs in metabolism. For each enzyme pair (A, B) we systematically knock out the flux through A combined with a stepwise flux increase through B and search for pairs that reduce cellular growth more than when either enzyme is perturbed individually. The predictive signal of the emerging network of 12,000 SDLs is demonstrated in five different ways. (i) It can be successfully used to predict gene essentiality in shRNA cancer cell line screens. Moving to clinical tumors, we show that (ii) SDLs are significantly underrepresented in tumors. Furthermore, breast cancer tumors with SDLs active (iii) have smaller sizes and (iv) result in increased patient survival, indicating that activation of SDLs increases cancer vulnerability. Finally, (v) patient survival improves when multiple SDLs are present, pointing to a cumulative effect. This study lays the basis for quantitative identification of cancer SDLs in a model-based mechanistic manner. The approach presented can be used to identify SDLs in species and cell types in which "omics" data necessary for data-driven identification are missing.

  16. Flux networks in metabolic graphs

    International Nuclear Information System (INIS)

    Warren, P B; Queiros, S M Duarte; Jones, J L

    2009-01-01

    A metabolic model can be represented as a bipartite graph comprising linked reaction and metabolite nodes. Here it is shown how a network of conserved fluxes can be assigned to the edges of such a graph by combining the reaction fluxes with a conserved metabolite property such as molecular weight. A similar flux network can be constructed by combining the primal and dual solutions to the linear programming problem that typically arises in constraint-based modelling. Such constructions may help with the visualization of flux distributions in complex metabolic networks. The analysis also explains the strong correlation observed between metabolite shadow prices (the dual linear programming variables) and conserved metabolite properties. The methods were applied to recent metabolic models for Escherichia coli, Saccharomyces cerevisiae and Methanosarcina barkeri. Detailed results are reported for E. coli; similar results were found for other organisms

  17. Noise effect in metabolic networks

    International Nuclear Information System (INIS)

    Zheng-Yan, Li; Zheng-Wei, Xie; Tong, Chen; Qi, Ouyang

    2009-01-01

    Constraint-based models such as flux balance analysis (FBA) are a powerful tool to study biological metabolic networks. Under the hypothesis that cells operate at an optimal growth rate as the result of evolution and natural selection, this model successfully predicts most cellular behaviours in growth rate. However, the model ignores the fact that cells can change their cellular metabolic states during evolution, leaving optimal metabolic states unstable. Here, we consider all the cellular processes that change metabolic states into a single term 'noise', and assume that cells change metabolic states by randomly walking in feasible solution space. By simulating a state of a cell randomly walking in the constrained solution space of metabolic networks, we found that in a noisy environment cells in optimal states tend to travel away from these points. On considering the competition between the noise effect and the growth effect in cell evolution, we found that there exists a trade-off between these two effects. As a result, the population of the cells contains different cellular metabolic states, and the population growth rate is at suboptimal states. (cross-disciplinary physics and related areas of science and technology)

  18. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer

    International Nuclear Information System (INIS)

    Li, Ying; Zhao, Haixia; Wang, Yuzhong; Zheng, Hao; Yu, Wei; Chai, Hongyan; Zhang, Jing; Falck, John R.; Guo, Austin M.; Yue, Jiang; Peng, Renxiu; Yang, Jing

    2013-01-01

    Arachidonic acid (AA)-derived eicosanoids and its downstream pathways have been demonstrated to play crucial roles in growth control of breast cancer. Here, we demonstrate that isoliquiritigenin, a flavonoid phytoestrogen from licorice, induces growth inhibition and apoptosis through downregulating multiple key enzymes in AA metabolic network and the deactivation of PI3K/Akt in human breast cancer. Isoliquiritigenin diminished cell viability, 5-bromo-2′-deoxyuridine (BrdU) incorporation, and clonogenic ability in both MCF-7 and MDA-MB-231cells, and induced apoptosis as evidenced by an analysis of cytoplasmic histone-associated DNA fragmentation, flow cytometry and hoechst staining. Furthermore, isoliquiritigenin inhibited mRNA expression of multiple forms of AA-metabolizing enzymes, including phospholipase A2 (PLA2), cyclooxygenases (COX)-2 and cytochrome P450 (CYP) 4A, and decreased secretion of their products, including prostaglandin E 2 (PGE 2 ) and 20-hydroxyeicosatetraenoic acid (20-HETE), without affecting COX-1, 5-lipoxygenase (5-LOX), 5-lipoxygenase activating protein (FLAP), and leukotriene B 4 (LTB 4 ). In addition, it downregulated the levels of phospho-PI3K, phospho-PDK (Ser 241 ), phospho-Akt (Thr 308 ), phospho-Bad (Ser 136 ), and Bcl-x L expression, thereby activating caspase cascades and eventually cleaving poly(ADP-ribose) polymerase (PARP). Conversely, the addition of exogenous eicosanoids, including PGE 2 , LTB 4 and a 20-HETE analog (WIT003), and caspase inhibitors, or overexpression of constitutively active Akt reversed isoliquiritigenin-induced apoptosis. Notably, isoliquiritigenin induced growth inhibition and apoptosis of MDA-MB-231 human breast cancer xenografts in nude mice, together with decreased intratumoral levels of eicosanoids and phospho-Akt (Thr 308 ). Collectively, these data suggest that isoliquiritigenin induces growth inhibition and apoptosis through downregulating AA metabolic network and the deactivation of PI3K/Akt in

  19. Uncovering transcriptional regulation of metabolism by using metabolic network topology

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Nielsen, Jens

    2005-01-01

    in the metabolic network that follow a common transcriptional response. Thus, the algorithm enables identification of so-called reporter metabolites (metabolites around which the most significant transcriptional changes occur) and a set of connected genes with significant and coordinated response to genetic......Cellular response to genetic and environmental perturbations is often reflected and/or mediated through changes in the metabolism, because the latter plays a key role in providing Gibbs free energy and precursors for biosynthesis. Such metabolic changes are often exerted through transcriptional...... therefore developed an algorithm that is based on hypothesis-driven data analysis to uncover the transcriptional regulatory architecture of metabolic networks. By using information on the metabolic network topology from genome-scale metabolic reconstruction, we show that it is possible to reveal patterns...

  20. Metabolism of phthalates in humans

    DEFF Research Database (Denmark)

    Frederiksen, Hanne; Skakkebaek, Niels E; Andersson, Anna-Maria

    2007-01-01

    on the foetal testis and they are similar to those seen in humans with testicular dysgenesis syndrome. Therefore, exposure of the human foetus and infants to phthalates via maternal exposure is a matter of concern. The metabolic pathways of phthalate metabolites excreted in human urine are partly known for some...

  1. Human drug metabolism: an introduction

    National Research Council Canada - National Science Library

    Coleman, Michael D

    2010-01-01

    Human Drug Metabolism, An Introduction, Second Edition provides an accessible introduction to the subject and will be particularly invaluable to those who already have some understanding of the life sciences...

  2. The transcriptional regulatory network of Corynebacterium jeikeium K411 and its interaction with metabolic routes contributing to human body odor formation.

    Science.gov (United States)

    Barzantny, Helena; Schröder, Jasmin; Strotmeier, Jasmin; Fredrich, Eugenie; Brune, Iris; Tauch, Andreas

    2012-06-15

    Lipophilic corynebacteria are involved in the generation of volatile odorous products in the process of human body odor formation by degrading skin lipids and specific odor precursors. Therefore, these bacteria represent appropriate model systems for the cosmetic industry to examine axillary malodor formation on the molecular level. To understand the transcriptional control of metabolic pathways involved in this process, the transcriptional regulatory network of the lipophilic axilla isolate Corynebacterium jeikeium K411 was reconstructed from the complete genome sequence. This bioinformatic approach detected a gene-regulatory repertoire of 83 candidate proteins, including 56 DNA-binding transcriptional regulators, nine two-component systems, nine sigma factors, and nine regulators with diverse physiological functions. Furthermore, a cross-genome comparison among selected corynebacterial species of the taxonomic cluster 3 revealed a common gene-regulatory repertoire of 44 transcriptional regulators, including the MarR-like regulator Jk0257, which is exclusively encoded in the genomes of this taxonomical subline. The current network reconstruction comprises 48 transcriptional regulators and 674 gene-regulatory interactions that were assigned to five interconnected functional modules. Most genes involved in lipid degradation are under the combined control of the global cAMP-sensing transcriptional regulator GlxR and the LuxR-family regulator RamA, probably reflecting the essential role of lipid degradation in C. jeikeium. This study provides the first genome-scale in silico analysis of the transcriptional regulation of metabolism in a lipophilic bacterium involved in the formation of human body odor. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Modular co-evolution of metabolic networks

    Directory of Open Access Journals (Sweden)

    Yu Zhong-Hao

    2007-08-01

    Full Text Available Abstract Background The architecture of biological networks has been reported to exhibit high level of modularity, and to some extent, topological modules of networks overlap with known functional modules. However, how the modular topology of the molecular network affects the evolution of its member proteins remains unclear. Results In this work, the functional and evolutionary modularity of Homo sapiens (H. sapiens metabolic network were investigated from a topological point of view. Network decomposition shows that the metabolic network is organized in a highly modular core-periphery way, in which the core modules are tightly linked together and perform basic metabolism functions, whereas the periphery modules only interact with few modules and accomplish relatively independent and specialized functions. Moreover, over half of the modules exhibit co-evolutionary feature and belong to specific evolutionary ages. Peripheral modules tend to evolve more cohesively and faster than core modules do. Conclusion The correlation between functional, evolutionary and topological modularity suggests that the evolutionary history and functional requirements of metabolic systems have been imprinted in the architecture of metabolic networks. Such systems level analysis could demonstrate how the evolution of genes may be placed in a genome-scale network context, giving a novel perspective on molecular evolution.

  4. Glycogen metabolism in humans

    OpenAIRE

    Adeva-Andany, María M.; González-Lucán, Manuel; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Ameneiros-Rodríguez, Eva

    2016-01-01

    In the human body, glycogen is a branched polymer of glucose stored mainly in the liver and the skeletal muscle that supplies glucose to the blood stream during fasting periods and to the muscle cells during muscle contraction. Glycogen has been identified in other tissues such as brain, heart, kidney, adipose tissue, and erythrocytes, but glycogen function in these tissues is mostly unknown. Glycogen synthesis requires a series of reactions that include glucose entrance into the cell through...

  5. Integration of Genome Scale Metabolic Networks and Gene Regulation of Metabolic Enzymes With Physiologically Based Pharmacokinetics.

    Science.gov (United States)

    Maldonado, Elaina M; Leoncikas, Vytautas; Fisher, Ciarán P; Moore, J Bernadette; Plant, Nick J; Kierzek, Andrzej M

    2017-11-01

    The scope of physiologically based pharmacokinetic (PBPK) modeling can be expanded by assimilation of the mechanistic models of intracellular processes from systems biology field. The genome scale metabolic networks (GSMNs) represent a whole set of metabolic enzymes expressed in human tissues. Dynamic models of the gene regulation of key drug metabolism enzymes are available. Here, we introduce GSMNs and review ongoing work on integration of PBPK, GSMNs, and metabolic gene regulation. We demonstrate example models. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  6. Metabolism of phthalates in humans

    DEFF Research Database (Denmark)

    Frederiksen, Hanne; Skakkebaek, Niels E; Andersson, Anna-Maria

    2007-01-01

    on the foetal testis and they are similar to those seen in humans with testicular dysgenesis syndrome. Therefore, exposure of the human foetus and infants to phthalates via maternal exposure is a matter of concern. The metabolic pathways of phthalate metabolites excreted in human urine are partly known for some...... phthalates, but our knowledge about metabolic distribution in the body and other biological fluids, including breast milk, is limited. Compared to urine, human breast milk contains relatively more of the hydrophobic phthalates, such as di-n-butyl phthalate and the longer-branched, di(2-ethylhexyl) phthalate...... (DEHP) and di-iso-nonyl phthalate (DiNP); and their monoester metabolites. Urine, however, contains relatively more of the secondary metabolites of DEHP and DiNP, as well as the monoester phthalates of the more short-branched phthalates. This differential distribution is of special concern as...

  7. Human metabolism of caesium

    International Nuclear Information System (INIS)

    Raeaef, C.L.; Falk, R.; Lauridsen, Bente; Rahola, T.; Soogard-Hansen, J.

    2006-04-01

    A study of the human biokinetics of caesium in two forms, i.) incorporated in foodstuff (137Cs in perch and mushrooms) and ii.) in ionic state ( 134 Cs in aqueous solution) has been carried out at the department of Radiation Physics in Malmoe, starting in 2001. The results of the pilot study were published in 2004, and a continuation of that study has now been carried out by means of NKS funding (NKS-B Cskinetik). The aim is to, i.) investigate whether Scandinavian populations exhibit shorter biological half-time of radiocaesium than other populations; ii.) extend the biokinetic study to additional human subjects from the other Nordic countries. Results from the continued study further indicate a near complete absorption of radiocaesium in the gastro-intestinal tract, be it in ion state or contained in food matrix. So far, the literature survey of Nordic studies on biokinetics of Cs suggests that the biological half time is somewhat shorter among Scandinavian males (84 days vs. ICRP-value of 110 days), although females do not exhibit any significant difference (64 days vs ICRP value of 65 days). (au)

  8. Human metabolism of caesium

    Energy Technology Data Exchange (ETDEWEB)

    Raeaef, C.L. [Lund Univ., Dept. of Radiation Physics in Malmoe (Sweden); Falk, R. [Swedish Radiation Protection Authority (Sweden); Lauridsen, Bente [Risoe National Lab. (Denmark); Rahola, T. [STUK - Radiation and Nuclear Safety Authority (Finland); Soogard-Hansen, J. [NRPA - Norwegian Radiation Protection Authority (Norway)

    2006-04-15

    A study of the human biokinetics of caesium in two forms, i.) incorporated in foodstuff (137Cs in perch and mushrooms) and ii.) in ionic state ({sup 134}Cs in aqueous solution) has been carried out at the department of Radiation Physics in Malmoe, starting in 2001. The results of the pilot study were published in 2004, and a continuation of that study has now been carried out by means of NKS funding (NKS-B Cskinetik). The aim is to, i.) investigate whether Scandinavian populations exhibit shorter biological half-time of radiocaesium than other populations; ii.) extend the biokinetic study to additional human subjects from the other Nordic countries. Results from the continued study further indicate a near complete absorption of radiocaesium in the gastro-intestinal tract, be it in ion state or contained in food matrix. So far, the literature survey of Nordic studies on biokinetics of Cs suggests that the biological half time is somewhat shorter among Scandinavian males (84 days vs. ICRP-value of 110 days), although females do not exhibit any significant difference (64 days vs ICRP value of 65 days). (au)

  9. Hierarchical analysis of dependency in metabolic networks.

    Science.gov (United States)

    Gagneur, Julien; Jackson, David B; Casari, Georg

    2003-05-22

    Elucidation of metabolic networks for an increasing number of organisms reveals that even small networks can contain thousands of reactions and chemical species. The intimate connectivity between components complicates their decomposition into biologically meaningful sub-networks. Moreover, traditional higher-order representations of metabolic networks as metabolic pathways, suffers from the lack of rigorous definition, yielding pathways of disparate content and size. We introduce a hierarchical representation that emphasizes the gross organization of metabolic networks in largely independent pathways and sub-systems at several levels of independence. The approach highlights the coupling of different pathways and the shared compounds responsible for those couplings. By assessing our results on Escherichia coli (E.coli metabolic reactions, Genetic Circuits Research Group, University of California, San Diego, http://gcrg.ucsd.edu/organisms/ecoli.html, 'model v 1.01. reactions') against accepted biochemical annotations, we provide the first systematic synopsis of an organism's metabolism. Comparison with operons of E.coli shows that low-level clusters are reflected in genome organization and gene regulation. Source code, data sets and supplementary information are available at http://www.mas.ecp.fr/labo/equipe/gagneur/hierarchy/hierarchy.html

  10. Proteome- and transcriptome-driven reconstruction of the human myocyte metabolic network and its use for identification of markers for diabetes

    DEFF Research Database (Denmark)

    Väremo, Leif; Scheele, Camilla; Broholm, Christa

    2015-01-01

    -analysis of six studies comparing muscle transcription in T2D versus healthy subjects. Transcriptional changes were mapped on the myocyte GEM, revealing extensive transcriptional regulation in T2D, particularly around pyruvate oxidation, branched-chain amino acid catabolism, and tetrahydrofolate metabolism......Skeletal myocytes are metabolically active and susceptible to insulin resistance and are thus implicated in type 2 diabetes (T2D). This complex disease involves systemic metabolic changes, and their elucidation at the systems level requires genome-wide data and biological networks. Genome...

  11. Network motif frequency vectors reveal evolving metabolic network organisation.

    Science.gov (United States)

    Pearcy, Nicole; Crofts, Jonathan J; Chuzhanova, Nadia

    2015-01-01

    At the systems level many organisms of interest may be described by their patterns of interaction, and as such, are perhaps best characterised via network or graph models. Metabolic networks, in particular, are fundamental to the proper functioning of many important biological processes, and thus, have been widely studied over the past decade or so. Such investigations have revealed a number of shared topological features, such as a short characteristic path-length, large clustering coefficient and hierarchical modular structure. However, the extent to which evolutionary and functional properties of metabolism manifest via this underlying network architecture remains unclear. In this paper, we employ a novel graph embedding technique, based upon low-order network motifs, to compare metabolic network structure for 383 bacterial species categorised according to a number of biological features. In particular, we introduce a new global significance score which enables us to quantify important evolutionary relationships that exist between organisms and their physical environments. Using this new approach, we demonstrate a number of significant correlations between environmental factors, such as growth conditions and habitat variability, and network motif structure, providing evidence that organism adaptability leads to increased complexities in the resultant metabolic networks.

  12. Human Environmental Disease Network

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Audouze, Karine

    2017-01-01

    During the past decades, many epidemiological, toxicological and biological studies have been performed to assess the role of environmental chemicals as potential toxicants for diverse human disorders. However, the relationships between diseases based on chemical exposure have been rarely studied...... by computational biology. We developed a human environmental disease network (EDN) to explore and suggest novel disease-disease and chemical-disease relationships. The presented scored EDN model is built upon the integration on systems biology and chemical toxicology using chemical contaminants information...... and their disease relationships from the reported TDDB database. The resulting human EDN takes into consideration the level of evidence of the toxicant-disease relationships allowing including some degrees of significance in the disease-disease associations. Such network can be used to identify uncharacterized...

  13. Human factors in network security

    OpenAIRE

    Jones, Francis B.

    1991-01-01

    Human factors, such as ethics and education, are important factors in network information security. This thesis determines which human factors have significant influence on network security. Those factors are examined in relation to current security devices and procedures. Methods are introduced to evaluate security effectiveness by incorporating the appropriate human factors into network security controls

  14. Metabolic networks in epilepsy by MR spectroscopic imaging.

    Science.gov (United States)

    Pan, J W; Spencer, D D; Kuzniecky, R; Duckrow, R B; Hetherington, H; Spencer, S S

    2012-12-01

    The concept of an epileptic network has long been suggested from both animal and human studies of epilepsy. Based on the common observation that the MR spectroscopic imaging measure of NAA/Cr is sensitive to neuronal function and injury, we use this parameter to assess for the presence of a metabolic network in mesial temporal lobe epilepsy (MTLE) patients. A multivariate factor analysis is performed with controls and MTLE patients, using NAA/Cr measures from 12 loci: the bilateral hippocampi, thalami, basal ganglia, and insula. The factor analysis determines which and to what extent these loci are metabolically covarying. We extract two independent factors that explain the data's variability in control and MTLE patients. In controls, these factors characterize a 'thalamic' and 'dominant subcortical' function. The MTLE patients also exhibit a 'thalamic' factor, in addition to a second factor involving the ipsilateral insula and bilateral basal ganglia. These data suggest that MTLE patients demonstrate a metabolic network that involves the thalami, also seen in controls. The MTLE patients also display a second set of metabolically covarying regions that may be a manifestation of the epileptic network that characterizes limbic seizure propagation. © 2012 John Wiley & Sons A/S.

  15. Interconnectivity of human cellular metabolism and disease prevalence

    International Nuclear Information System (INIS)

    Lee, Deok-Sun

    2010-01-01

    Fluctuations of metabolic reaction fluxes may cause abnormal concentrations of toxic or essential metabolites, possibly leading to metabolic diseases. The mutual binding of enzymatic proteins and ones involving common metabolites enforces distinct coupled reactions, by which local perturbations may spread through the cellular network. Such network effects at the molecular interaction level in human cellular metabolism can reappear in the patterns of disease occurrence. Here we construct the enzyme-reaction network and the metabolite-reaction network, capturing the flux coupling of metabolic reactions caused by the interacting enzymes and the shared metabolites, respectively. Diseases potentially caused by the failure of individual metabolic reactions can be identified by using the known disease–gene association, which allows us to derive the probability of an inactivated reaction causing diseases from the disease records at the population level. We find that the greater the number of proteins that catalyze a reaction, the higher the mean prevalence of its associated diseases. Moreover, the number of connected reactions and the mean size of the avalanches in the networks constructed are also shown to be positively correlated with the disease prevalence. These findings illuminate the impact of the cellular network topology on disease development, suggesting that the global organization of the molecular interaction network should be understood to assist in disease diagnosis, treatment, and drug discovery

  16. Interconnectivity of human cellular metabolism and disease prevalence

    Science.gov (United States)

    Lee, Deok-Sun

    2010-12-01

    Fluctuations of metabolic reaction fluxes may cause abnormal concentrations of toxic or essential metabolites, possibly leading to metabolic diseases. The mutual binding of enzymatic proteins and ones involving common metabolites enforces distinct coupled reactions, by which local perturbations may spread through the cellular network. Such network effects at the molecular interaction level in human cellular metabolism can reappear in the patterns of disease occurrence. Here we construct the enzyme-reaction network and the metabolite-reaction network, capturing the flux coupling of metabolic reactions caused by the interacting enzymes and the shared metabolites, respectively. Diseases potentially caused by the failure of individual metabolic reactions can be identified by using the known disease-gene association, which allows us to derive the probability of an inactivated reaction causing diseases from the disease records at the population level. We find that the greater the number of proteins that catalyze a reaction, the higher the mean prevalence of its associated diseases. Moreover, the number of connected reactions and the mean size of the avalanches in the networks constructed are also shown to be positively correlated with the disease prevalence. These findings illuminate the impact of the cellular network topology on disease development, suggesting that the global organization of the molecular interaction network should be understood to assist in disease diagnosis, treatment, and drug discovery.

  17. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network

    Directory of Open Access Journals (Sweden)

    Kim Hyun

    2011-12-01

    Full Text Available Abstract Background Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. Results We herein introduce a framework for network modularization and Bayesian network analysis (FMB to investigate organism’s metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. Conclusions After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  18. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network.

    Science.gov (United States)

    Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2011-01-01

    Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism's metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  19. Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response.

    Science.gov (United States)

    Watson, Emma; MacNeil, Lesley T; Arda, H Efsun; Zhu, Lihua Julie; Walhout, Albertha J M

    2013-03-28

    Expression profiles are tailored according to dietary input. However, the networks that control dietary responses remain largely uncharacterized. Here, we combine forward and reverse genetic screens to delineate a network of 184 genes that affect the C. elegans dietary response to Comamonas DA1877 bacteria. We find that perturbation of a mitochondrial network composed of enzymes involved in amino acid metabolism and the TCA cycle affects the dietary response. In humans, mutations in the corresponding genes cause inborn diseases of amino acid metabolism, most of which are treated by dietary intervention. We identify several transcription factors (TFs) that mediate the changes in gene expression upon metabolic network perturbations. Altogether, our findings unveil a transcriptional response system that is poised to sense dietary cues and metabolic imbalances, illustrating extensive communication between metabolic networks in the mitochondria and gene regulatory networks in the nucleus. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Human drug metabolism: an introduction

    National Research Council Canada - National Science Library

    Coleman, Michael D

    2010-01-01

    ... metabolism and its impact on patient welfare. After underlining the relationship between efficacy, toxicity and drug concentration, the book then considers how metabolizing systems operate and how they impact upon drug concentration...

  1. Human drug metabolism: an introduction

    National Research Council Canada - National Science Library

    Coleman, Michael D

    2010-01-01

    ..., both under drug pressure and during inhibition. Factors affecting drug metabolism, such as genetic polymorphisms, age and diet are discussed and how metabolism can lead to toxicity is explained. The book concludes with the role of drug metabolism in the commercial development of therapeutic agents as well as the pharmacology of some illicit drugs.

  2. NATO Human View Architecture and Human Networks

    Science.gov (United States)

    Handley, Holly A. H.; Houston, Nancy P.

    2010-01-01

    The NATO Human View is a system architectural viewpoint that focuses on the human as part of a system. Its purpose is to capture the human requirements and to inform on how the human impacts the system design. The viewpoint contains seven static models that include different aspects of the human element, such as roles, tasks, constraints, training and metrics. It also includes a Human Dynamics component to perform simulations of the human system under design. One of the static models, termed Human Networks, focuses on the human-to-human communication patterns that occur as a result of ad hoc or deliberate team formation, especially teams distributed across space and time. Parameters of human teams that effect system performance can be captured in this model. Human centered aspects of networks, such as differences in operational tempo (sense of urgency), priorities (common goal), and team history (knowledge of the other team members), can be incorporated. The information captured in the Human Network static model can then be included in the Human Dynamics component so that the impact of distributed teams is represented in the simulation. As the NATO militaries transform to a more networked force, the Human View architecture is an important tool that can be used to make recommendations on the proper mix of technological innovations and human interactions.

  3. Context-specific metabolic networks are consistent with experiments.

    Directory of Open Access Journals (Sweden)

    Scott A Becker

    2008-05-01

    Full Text Available Reconstructions of cellular metabolism are publicly available for a variety of different microorganisms and some mammalian genomes. To date, these reconstructions are "genome-scale" and strive to include all reactions implied by the genome annotation, as well as those with direct experimental evidence. Clearly, many of the reactions in a genome-scale reconstruction will not be active under particular conditions or in a particular cell type. Methods to tailor these comprehensive genome-scale reconstructions into context-specific networks will aid predictive in silico modeling for a particular situation. We present a method called Gene Inactivity Moderated by Metabolism and Expression (GIMME to achieve this goal. The GIMME algorithm uses quantitative gene expression data and one or more presupposed metabolic objectives to produce the context-specific reconstruction that is most consistent with the available data. Furthermore, the algorithm provides a quantitative inconsistency score indicating how consistent a set of gene expression data is with a particular metabolic objective. We show that this algorithm produces results consistent with biological experiments and intuition for adaptive evolution of bacteria, rational design of metabolic engineering strains, and human skeletal muscle cells. This work represents progress towards producing constraint-based models of metabolism that are specific to the conditions where the expression profiling data is available.

  4. Metabolic network prediction through pairwise rational kernels.

    Science.gov (United States)

    Roche-Lima, Abiel; Domaratzki, Michael; Fristensky, Brian

    2014-09-26

    Metabolic networks are represented by the set of metabolic pathways. Metabolic pathways are a series of biochemical reactions, in which the product (output) from one reaction serves as the substrate (input) to another reaction. Many pathways remain incompletely characterized. One of the major challenges of computational biology is to obtain better models of metabolic pathways. Existing models are dependent on the annotation of the genes. This propagates error accumulation when the pathways are predicted by incorrectly annotated genes. Pairwise classification methods are supervised learning methods used to classify new pair of entities. Some of these classification methods, e.g., Pairwise Support Vector Machines (SVMs), use pairwise kernels. Pairwise kernels describe similarity measures between two pairs of entities. Using pairwise kernels to handle sequence data requires long processing times and large storage. Rational kernels are kernels based on weighted finite-state transducers that represent similarity measures between sequences or automata. They have been effectively used in problems that handle large amount of sequence information such as protein essentiality, natural language processing and machine translations. We create a new family of pairwise kernels using weighted finite-state transducers (called Pairwise Rational Kernel (PRK)) to predict metabolic pathways from a variety of biological data. PRKs take advantage of the simpler representations and faster algorithms of transducers. Because raw sequence data can be used, the predictor model avoids the errors introduced by incorrect gene annotations. We then developed several experiments with PRKs and Pairwise SVM to validate our methods using the metabolic network of Saccharomyces cerevisiae. As a result, when PRKs are used, our method executes faster in comparison with other pairwise kernels. Also, when we use PRKs combined with other simple kernels that include evolutionary information, the accuracy

  5. Metabolite coupling in genome-scale metabolic networks

    Directory of Open Access Journals (Sweden)

    Palsson Bernhard Ø

    2006-03-01

    Full Text Available Abstract Background Biochemically detailed stoichiometric matrices have now been reconstructed for various bacteria, yeast, and for the human cardiac mitochondrion based on genomic and proteomic data. These networks have been manually curated based on legacy data and elementally and charge balanced. Comparative analysis of these well curated networks is now possible. Pairs of metabolites often appear together in several network reactions, linking them topologically. This co-occurrence of pairs of metabolites in metabolic reactions is termed herein "metabolite coupling." These metabolite pairs can be directly computed from the stoichiometric matrix, S. Metabolite coupling is derived from the matrix ŜŜT, whose off-diagonal elements indicate the number of reactions in which any two metabolites participate together, where Ŝ is the binary form of S. Results Metabolite coupling in the studied networks was found to be dominated by a relatively small group of highly interacting pairs of metabolites. As would be expected, metabolites with high individual metabolite connectivity also tended to be those with the highest metabolite coupling, as the most connected metabolites couple more often. For metabolite pairs that are not highly coupled, we show that the number of reactions a pair of metabolites shares across a metabolic network closely approximates a line on a log-log scale. We also show that the preferential coupling of two metabolites with each other is spread across the spectrum of metabolites and is not unique to the most connected metabolites. We provide a measure for determining which metabolite pairs couple more often than would be expected based on their individual connectivity in the network and show that these metabolites often derive their principal biological functions from existing in pairs. Thus, analysis of metabolite coupling provides information beyond that which is found from studying the individual connectivity of individual

  6. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network

    DEFF Research Database (Denmark)

    Förster, Jochen; Famili, I.; Fu, P.

    2003-01-01

    The metabolic network in the yeast Saccharomyces cerevisiae was reconstructed using currently available genomic, biochemical, and physiological information. The metabolic reactions were compartmentalized between the cytosol and the mitochondria, and transport steps between the compartments...

  7. New paradigms for metabolic modeling of human cells

    DEFF Research Database (Denmark)

    Mardinoglu, Adil; Nielsen, Jens

    2015-01-01

    review recent work on reconstruction of GEMs for human cell/tissue types and cancer, and the use of GEMs for identification of metabolic changes occurring in response to disease development. We further discuss how GEMs can be used for the development of efficient therapeutic strategies. Finally......, challenges in integration of cell/tissue models for simulation of whole body functions as well as integration of GEMs with other biological networks for generating complete cell/tissue models are presented.......Abnormalities in cellular functions are associated with the progression of human diseases, often resulting in metabolic reprogramming. GEnome-scale metabolic Models (GEMs) have enabled studying global metabolic reprogramming in connection with disease development in a systematic manner. Here we...

  8. Steroid metabolism by monkey and human spermatozoa

    International Nuclear Information System (INIS)

    Rajalakshmi, M.; Sehgal, A.; Pruthi, J.S.; Anand-Kumar, T.C.

    1983-01-01

    Freshly ejaculated spermatozoa from monkey and human were washed and incubated with tritium labelled androgens or estradiol to study the pattern of spermatozoa steroid metabolism. When equal concentrations of steroid substrates were used for incubation, monkey and human spermatozoa showed very similar pattern of steroid conversion. Spermatozoa from both species converted testosterone mainly to androstenedione, but reverse conversion of androstenedione to testosterone was negligible. Estradiol-17 beta was converted mainly to estrone. The close similarity between the spermatozoa of monkey and men in their steroid metabolic pattern indicates that the rhesus monkey could be an useful animal model to study the effect of drugs on the metabolic pattern of human spermatozoa

  9. Integration of metabolomics data into metabolic networks.

    Science.gov (United States)

    Töpfer, Nadine; Kleessen, Sabrina; Nikoloski, Zoran

    2015-01-01

    Metabolite levels together with their corresponding metabolic fluxes are integrative outcomes of biochemical transformations and regulatory processes and they can be used to characterize the response of biological systems to genetic and/or environmental changes. However, while changes in transcript or to some extent protein levels can usually be traced back to one or several responsible genes, changes in fluxes and particularly changes in metabolite levels do not follow such rationale and are often the outcome of complex interactions of several components. The increasing quality and coverage of metabolomics technologies have fostered the development of computational approaches for integrating metabolic read-outs with large-scale models to predict the physiological state of a system. Constraint-based approaches, relying on the stoichiometry of the considered reactions, provide a modeling framework amenable to analyses of large-scale systems and to the integration of high-throughput data. Here we review the existing approaches that integrate metabolomics data in variants of constrained-based approaches to refine model reconstructions, to constrain flux predictions in metabolic models, and to relate network structural properties to metabolite levels. Finally, we discuss the challenges and perspectives in the developments of constraint-based modeling approaches driven by metabolomics data.

  10. From genomes to in silico cells via metabolic networks

    DEFF Research Database (Denmark)

    Borodina, Irina; Nielsen, Jens

    2005-01-01

    Genome-scale metabolic models are the focal point of systems biology as they allow the collection of various data types in a form suitable for mathematical analysis. High-quality metabolic networks and metabolic networks with incorporated regulation have been successfully used for the analysis...... of phenotypes from phenotypic arrays and in gene-deletion studies. They have also been used for gene expression analysis guided by metabolic network structure, leading to the identification of commonly regulated genes. Thus, genome-scale metabolic modeling currently stands out as one of the most promising...

  11. Improving the description of metabolic networks: the TCA cycle as example

    NARCIS (Netherlands)

    Stobbe, Miranda D.; Houten, Sander M.; van Kampen, Antoine H. C.; Wanders, Ronald J. A.; Moerland, Perry D.

    2012-01-01

    To collect the ever-increasing yet scattered knowledge on metabolism, multiple pathway databases like the Kyoto Encyclopedia of Genes and Genomes have been created. A complete and accurate description of the metabolic network for human and other organisms is essential to foster new biological

  12. Metabolic Network Topology Reveals Transcriptional Regulatory Signatures of Type 2 Diabetes

    DEFF Research Database (Denmark)

    Zelezniak, Aleksej; Pers, Tune Hannes; Pinho Soares, Simao Pedro

    2010-01-01

    mechanisms underlying these transcriptional changes and their impact on the cellular metabolic phenotype is a challenging task due to the complexity of transcriptional regulation and the highly interconnected nature of the metabolic network. In this study we integrate skeletal muscle gene expression datasets...... with human metabolic network reconstructions to identify key metabolic regulatory features of T2DM. These features include reporter metabolites—metabolites with significant collective transcriptional response in the associated enzyme-coding genes, and transcription factors with significant enrichment...... factor regulatory network connecting several parts of metabolism. The identified transcription factors include members of the CREB, NRF1 and PPAR family, among others, and represent regulatory targets for further experimental analysis. Overall, our results provide a holistic picture of key metabolic...

  13. Astroglial Metabolic Networks Sustain Hippocampal Synaptic Transmission

    Science.gov (United States)

    Rouach, Nathalie; Koulakoff, Annette; Abudara, Veronica; Willecke, Klaus; Giaume, Christian

    2008-12-01

    Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks. This trafficking is regulated by glutamatergic synaptic activity mediated by AMPA receptors. In the absence of extracellular glucose, the delivery of glucose or lactate to astrocytes sustains glutamatergic synaptic transmission and epileptiform activity only when they are connected by gap junctions. These results indicate that astroglial gap junctions provide an activity-dependent intercellular pathway for the delivery of energetic metabolites from blood vessels to distal neurons.

  14. Astroglial metabolic networks sustain hippocampal synaptic transmission.

    Science.gov (United States)

    Rouach, Nathalie; Koulakoff, Annette; Abudara, Veronica; Willecke, Klaus; Giaume, Christian

    2008-12-05

    Astrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks. This trafficking is regulated by glutamatergic synaptic activity mediated by AMPA receptors. In the absence of extracellular glucose, the delivery of glucose or lactate to astrocytes sustains glutamatergic synaptic transmission and epileptiform activity only when they are connected by gap junctions. These results indicate that astroglial gap junctions provide an activity-dependent intercellular pathway for the delivery of energetic metabolites from blood vessels to distal neurons.

  15. Metabolic networks of Cucurbita maxima phloem.

    Science.gov (United States)

    Fiehn, Oliver

    2003-03-01

    Metabolomic analysis aims at a comprehensive characterization of biological samples. Yet, biologically meaningful interpretations are often limited by the poor spatial and temporal resolution of the acquired data sets. One way to remedy this is to limit the complexity of the cell types being studied. Cucurbita maxima Duch. vascular exudates provide an excellent material for metabolomics in this regard. Using automated mass spectral deconvolution, over 400 components have been detected in these exudates, but only 90 of them were tentatively identified. Many amino compounds were found in vascular exudates from leaf petioles at concentrations several orders of magnitude higher than in tissue disks from the same leaves, whereas hexoses and sucrose were found in far lower amounts. In order to find the expected impact of assimilation rates on sugar levels, total phloem composition of eight leaves from four plants was followed over 4.5 days. Surprisingly, no diurnal rhythm was found for any of the phloem metabolites that was statistically valid for all eight leaves. Instead, each leaf had its own distinct vascular exudate profile similar to leaves from the same plant, but clearly different from leaves harvested from plants at the same developmental stage. Thirty to forty per cent of all metabolite levels of individual leaves were different from the average of all metabolite profiles. Using metabolic co-regulation analysis, similarities and differences between the exudate profiles were more accurately characterized through network computation, specifically with respect to nitrogen metabolism.

  16. Environmental versatility promotes modularity in genome-scale metabolic networks.

    Science.gov (United States)

    Samal, Areejit; Wagner, Andreas; Martin, Olivier C

    2011-08-24

    The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chemical environments. For such networks, we define a network module as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of an organism's biomass compounds from nutrients in this environment. An organism's metabolism is highly versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the modularity of metabolic networks. Using recently developed techniques to randomly sample large numbers of viable metabolic networks from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules and more reactions that are organized into modules. Most or all reactions in a module are associated with the same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular than even our most versatile networks. Our work shows that modularity in metabolic networks can be a by-product of functional constraints, e.g., the need to sustain life in multiple

  17. Environmental versatility promotes modularity in genome-scale metabolic networks

    Directory of Open Access Journals (Sweden)

    Wagner Andreas

    2011-08-01

    Full Text Available Abstract Background The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chemical environments. For such networks, we define a network module as a maximal set of reactions that are fully coupled, i.e., whose fluxes can only vary in fixed proportions. This definition overcomes limitations of purely graph based analyses of metabolism by exploiting the functional links between reactions. We call a metabolic network viable in a given chemical environment if it can synthesize all of an organism's biomass compounds from nutrients in this environment. An organism's metabolism is highly versatile if it can sustain life in many different chemical environments. We here ask whether versatility affects the modularity of metabolic networks. Results Using recently developed techniques to randomly sample large numbers of viable metabolic networks from a vast space of metabolic networks, we use flux balance analysis to study in silico metabolic networks that differ in their versatility. We find that highly versatile networks are also highly modular. They contain more modules and more reactions that are organized into modules. Most or all reactions in a module are associated with the same biochemical pathways. Modules that arise in highly versatile networks generally involve reactions that process nutrients or closely related chemicals. We also observe that the metabolism of E. coli is significantly more modular than even our most versatile networks. Conclusions Our work shows that modularity in metabolic networks can be a by-product of functional

  18. Bridging humans via agent networks

    International Nuclear Information System (INIS)

    Ishida, Toru

    1994-01-01

    Recent drastic advance in telecommunication networks enabled the human organization of new class, teleorganization, which differ from any existing organization in that the organization which is easy to create by using telecommunication networks is virtual and remote, that people can join multiple organizations simultaneously, and that the organization can involve people who may not know each other. In order to enjoy the recent advance in telecommunication, the agent networks to help people organize themselves are needed. In this paper, an architecture of agent networks, in which each agent learns the preference or the utility functioin of the owner, and acts on behalf of the owner in maintaining the organization, is proposed. When an agent networks supports a human organization, the conventional human interface is divided into personal and social interfaces. The functionalities of the social interface in teleconferencing and telelearning were investigated. In both cases, the existence of B-ISDN is assumed, and the extension to the business meeting scheduling using personal handy phone (PHS) networks with personal digital assistant (PDA) terminals is expected. These circumstances are described. Mutual selection protocols (MSP) and their dynamic properties are explained. (K.I.)

  19. Human Metabolism and Interactions of Deployment-Related Chemicals

    National Research Council Canada - National Science Library

    Hodgson, Ernest

    2003-01-01

    This study examines the human-metabolism and metabolic interactions of a subset of deployment-related chemicals, including chlorpyrifos, DEET, permethrin, pyridostigmine bromide, and sulfur mustard metabolites...

  20. Enantiomeric metabolic interactions and stereoselective human methadone metabolism.

    Science.gov (United States)

    Totah, Rheem A; Allen, Kyle E; Sheffels, Pamela; Whittington, Dale; Kharasch, Evan D

    2007-04-01

    Methadone is administered as a racemate, although opioid activity resides in the R-enantiomer. Methadone disposition is stereoselective, with considerable unexplained variability in clearance and plasma R/S ratios. N-Demethylation of methadone in vitro is predominantly mediated by cytochrome P450 CYP3A4 and CYP2B6 and somewhat by CYP2C19. This investigation evaluated stereoselectivity, models, and kinetic parameters for methadone N-demethylation by recombinant CYP2B6, CYP3A4, and CYP2C19, and the potential for interactions between enantiomers during racemate metabolism. CYP2B6 metabolism was stereoselective. CYP2C19 was less active, and stereoselectivity was opposite that for CYP2B6. CYP3A4 was not stereoselective. With all three isoforms, enantiomer N-dealkylation rates in the racemate were lower than those of (R)-(6-dimethyamino-4,4-diphenyl-heptan-3-one) hydrochloride (R-methadone) or (S)-(6-dimethyamino-4,4-diphenyl-heptan-3-one) hydrochloride (S-methadone) alone, suggesting an enantiomeric interaction and mutual metabolic inhibition. For CYP2B6, the interaction between enantiomers was stereoselective, with S-methadone as a more potent inhibitor of R-methadone N-demethylation than R-of S-methadone. In contrast, enantiomer interactions were not stereoselective with CYP2C19 or CYP3A4. For all three cytochromes P450, methadone N-demethylation was best described by two-site enzyme models with competitive inhibition. There were minor model differences between cytochromes P450 to account for stereoselectivity of metabolism and enantiomeric interactions. Changes in plasma R/S methadone ratios observed after rifampin or troleandomycin pretreatment in humans in vivo were successfully predicted by CYP2B6- but not CYP3A4-catalyzed methadone N-demethylation. CYP2B6 is a predominant catalyst of stereoselective methadone metabolism in vitro. In vivo, CYP2B6 may be a major determinant of methadone metabolism and disposition, and CYP2B6 activity and stereoselective metabolic

  1. Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism

    DEFF Research Database (Denmark)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical...

  2. Horizontal and vertical growth of S. cerevisiae metabolic network.

    KAUST Repository

    Grassi, Luigi

    2011-10-14

    BACKGROUND: The growth and development of a biological organism is reflected by its metabolic network, the evolution of which relies on the essential gene duplication mechanism. There are two current views about the evolution of metabolic networks. The retrograde model hypothesizes that a pathway evolves by recruiting novel enzymes in a direction opposite to the metabolic flow. The patchwork model is instead based on the assumption that the evolution is based on the exploitation of broad-specificity enzymes capable of catalysing a variety of metabolic reactions. RESULTS: We analysed a well-studied unicellular eukaryotic organism, S. cerevisiae, and studied the effect of the removal of paralogous gene products on its metabolic network. Our results, obtained using different paralog and network definitions, show that, after an initial period when gene duplication was indeed instrumental in expanding the metabolic space, the latter reached an equilibrium and subsequent gene duplications were used as a source of more specialized enzymes rather than as a source of novel reactions. We also show that the switch between the two evolutionary strategies in S. cerevisiae can be dated to about 350 million years ago. CONCLUSIONS: Our data, obtained through a novel analysis methodology, strongly supports the hypothesis that the patchwork model better explains the more recent evolution of the S. cerevisiae metabolic network. Interestingly, the effects of a patchwork strategy acting before the Euascomycete-Hemiascomycete divergence are still detectable today.

  3. Slave nodes and the controllability of metabolic networks

    International Nuclear Information System (INIS)

    Kim, Dong-Hee; Motter, Adilson E

    2009-01-01

    Recent work on synthetic rescues has shown that the targeted deletion of specific metabolic genes can often be used to rescue otherwise non-viable mutants. This raises a fundamental biophysical question: to what extent can the whole-cell behavior of a large metabolic network be controlled by constraining the flux of one or more reactions in the network? This touches upon the issue of the number of degrees of freedom contained by one such network. Using the metabolic network of Escherichia coli as a model system, here we address this question theoretically by exploring not only reaction deletions, but also a continuum of all possible reaction expression levels. We show that the behavior of the metabolic network can be largely manipulated by the pinned expression of a single reaction. In particular, a relevant fraction of the metabolic reactions exhibits canalizing interactions, in that the specification of one reaction flux determines cellular growth as well as the fluxes of most other reactions in optimal steady states. The activity of individual reactions can thus be used as surrogates to monitor and possibly control cellular growth and other whole-cell behaviors. In addition to its implications for the study of control processes, our methodology provides a new approach to study how the integrated dynamics of the entire metabolic network emerges from the coordinated behavior of its component parts.

  4. Regulation of metabolic networks by small molecule metabolites

    Directory of Open Access Journals (Sweden)

    Kanehisa Minoru

    2007-03-01

    Full Text Available Abstract Background The ability to regulate metabolism is a fundamental process in living systems. We present an analysis of one of the mechanisms by which metabolic regulation occurs: enzyme inhibition and activation by small molecules. We look at the network properties of this regulatory system and the relationship between the chemical properties of regulatory molecules. Results We find that many features of the regulatory network, such as the degree and clustering coefficient, closely match those of the underlying metabolic network. While these global features are conserved across several organisms, we do find local differences between regulation in E. coli and H. sapiens which reflect their different lifestyles. Chemical structure appears to play an important role in determining a compounds suitability for use in regulation. Chemical structure also often determines how groups of similar compounds can regulate sets of enzymes. These groups of compounds and the enzymes they regulate form modules that mirror the modules and pathways of the underlying metabolic network. We also show how knowledge of chemical structure and regulation could be used to predict regulatory interactions for drugs. Conclusion The metabolic regulatory network shares many of the global properties of the metabolic network, but often varies at the level of individual compounds. Chemical structure is a key determinant in deciding how a compound is used in regulation and for defining modules within the regulatory system.

  5. Recon3D enables a three-dimensional view of gene variation in human metabolism

    DEFF Research Database (Denmark)

    Brunk, Elizabeth; Sahoo, Swagatika; Zielinski, Daniel C.

    2018-01-01

    Genome-scale network reconstructions have helped uncover the molecular basis of metabolism. Here we present Recon3D, a computational resource that includes three-dimensional (3D) metabolite and protein structure data and enables integrated analyses of metabolic functions in humans. We use Recon3D...

  6. Does habitat variability really promote metabolic network modularity?

    Science.gov (United States)

    Takemoto, Kazuhiro

    2013-01-01

    The hypothesis that variability in natural habitats promotes modular organization is widely accepted for cellular networks. However, results of some data analyses and theoretical studies have begun to cast doubt on the impact of habitat variability on modularity in metabolic networks. Therefore, we re-evaluated this hypothesis using statistical data analysis and current metabolic information. We were unable to conclude that an increase in modularity was the result of habitat variability. Although horizontal gene transfer was also considered because it may contribute for survival in a variety of environments, closely related to habitat variability, and is known to be positively correlated with network modularity, such a positive correlation was not concluded in the latest version of metabolic networks. Furthermore, we demonstrated that the previously observed increase in network modularity due to habitat variability and horizontal gene transfer was probably due to a lack of available data on metabolic reactions. Instead, we determined that modularity in metabolic networks is dependent on species growth conditions. These results may not entirely discount the impact of habitat variability and horizontal gene transfer. Rather, they highlight the need for a more suitable definition of habitat variability and a more careful examination of relationships of the network modularity with horizontal gene transfer, habitats, and environments.

  7. Redesign of the Human Metabolic Simulator

    Science.gov (United States)

    Duffield, Bruce; Jeng, Frank; Lange, Kevin

    2004-01-01

    The National Aeronautics and Space Administration (NASA) is currently building a Human Metabolic Simulator (HMS) at the Johnson Space Center as part of the Advanced Life Support Air Revitalization Technology Evaluation Facility (ARTEF). The purpose of ARTEF is to evaluate Environmental Control and Life Support System Technologies for Advanced Missions. The HMS is needed to reproduce the primary metabolic effects of human respiration on an enclosed atmosphere when humans cannot be present and the impact of human presence on the system is required. A HMS was designed, built and successfully operated in 2000 but larger crew size requirements and the expense of upgrade of the current system necessitate redesign. This paper addresses the redesign. Several concepts were considered, ranging from chemical oxidation of a hydrocarbon like ethanol or ethyl acetate to carbon dioxide and water, oxidation of an iron-containing compound, or by using a fuel cell. For reasons of cost, simplicity, safety and other factors, the concept chosen includes: a molecular sieve packaged as an industrial oxygen concentrator to remove oxygen from the atmosphere, with direct carbon dioxide, water and heat injection. The water injection is done via heating water to steam with a heat exchanger and thermal effects are handled by directly adding heat to the air stream with a second heat exchanger. Both heat exchangers are supplied by a hot oil loop. The amount of oxygen removal, carbon dioxide addition, water addition and heat addition were calculated using metabolic profiles for respiration and heat, calculated using a series of empirical equations developed for International Space Station (ISS). Sketches of the Human Metabolic Simulator and the hot oil bath loop used to supply heat to the heat exchangers are included

  8. Structuring evolution: biochemical networks and metabolic diversification in birds.

    Science.gov (United States)

    Morrison, Erin S; Badyaev, Alexander V

    2016-08-25

    Recurrence and predictability of evolution are thought to reflect the correspondence between genomic and phenotypic dimensions of organisms, and the connectivity in deterministic networks within these dimensions. Direct examination of the correspondence between opportunities for diversification imbedded in such networks and realized diversity is illuminating, but is empirically challenging because both the deterministic networks and phenotypic diversity are modified in the course of evolution. Here we overcome this problem by directly comparing the structure of a "global" carotenoid network - comprising of all known enzymatic reactions among naturally occurring carotenoids - with the patterns of evolutionary diversification in carotenoid-producing metabolic networks utilized by birds. We found that phenotypic diversification in carotenoid networks across 250 species was closely associated with enzymatic connectivity of the underlying biochemical network - compounds with greater connectivity occurred the most frequently across species and were the hotspots of metabolic pathway diversification. In contrast, we found no evidence for diversification along the metabolic pathways, corroborating findings that the utilization of the global carotenoid network was not strongly influenced by history in avian evolution. The finding that the diversification in species-specific carotenoid networks is qualitatively predictable from the connectivity of the underlying enzymatic network points to significant structural determinism in phenotypic evolution.

  9. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    International Nuclear Information System (INIS)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R.; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  10. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    Energy Technology Data Exchange (ETDEWEB)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R. [Division of Science and Math, New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi Institute, Abu Dhabi (United Arab Emirates); Jijakli, Kenan [Division of Science and Math, New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi Institute, Abu Dhabi (United Arab Emirates); Engineering Division, Biofinery, Manhattan, KS (United States); Salehi-Ashtiani, Kourosh, E-mail: ksa3@nyu.edu [Division of Science and Math, New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi Institute, Abu Dhabi (United Arab Emirates)

    2014-12-10

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  11. Sirtuins as regulators of the yeast metabolic network

    Directory of Open Access Journals (Sweden)

    Markus eRalser

    2012-03-01

    Full Text Available There is growing evidence that the metabolic network is an integral regulator of cellularphysiology. Dynamic changes in metabolite concentrations, metabolic flux, or networktopology act as reporters of biological or environmental signals, and are required for the cellto trigger an appropriate biological reaction. Changes in the metabolic network are recognizedby specific sensory macromolecules and translated into a transcriptional or translationalresponse. The protein family of sirtuins, discovered more than 30 years ago as regulators ofsilent chromatin, seems to fulfill the role of a metabolic sensor during aging and conditions ofcaloric restriction. NAD+/NADH interconverting metabolic enzymes glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase, as well as enzymes involved inNAD(H, synthesis provide or deprive NAD+ in close proximity to Sir2. This influence sirtuinactivity, and facilitates a dynamic response of the metabolic network to changes inmetabolism with effects on physiology and aging. The molecular network downstream Sir2,however, is complex. In just two orders, Sir2’s metabolism-related interactions span half ofthe yeast proteome, and are connected with virtually every physiological process. Thus,although it is fundamental to analyze single molecular mechanisms, it is at the same timecrucial to consider this genome-scale complexity when correlating single molecular eventswith phenotypes such as aging, cell growth, or stress resistance.

  12. Integration of metabolome data with metabolic networks reveals reporter reactions

    DEFF Research Database (Denmark)

    Çakir, Tunahan; Patil, Kiran Raosaheb; Önsan, Zeynep Ilsen

    2006-01-01

    Interpreting quantitative metabolome data is a difficult task owing to the high connectivity in metabolic networks and inherent interdependency between enzymatic regulation, metabolite levels and fluxes. Here we present a hypothesis-driven algorithm for the integration of such data with metabolic...... network topology. The algorithm thus enables identification of reporter reactions, which are reactions where there are significant coordinated changes in the level of surrounding metabolites following environmental/genetic perturbations. Applicability of the algorithm is demonstrated by using data from...... is measured. By combining the results with transcriptome data, we further show that it is possible to infer whether the reactions are hierarchically or metabolically regulated. Hereby, the reported approach represents an attempt to map different layers of regulation within metabolic networks through...

  13. Energy Metabolism and Human Dosimetry of Tritium

    International Nuclear Information System (INIS)

    Galeriu, D.; Takeda, H.; Melintescu, A.; Trivedi, A.

    2005-01-01

    In the frame of current revision of human dosimetry of 14 C and tritium, undertaken by the International Commission of Radiological Protection, we propose a novel approach based on energy metabolism and a simple biokinetic model for the dynamics of dietary intake (organic 14 C, tritiated water and Organically Bound Tritium-OBT). The model predicts increased doses for HTO and OBT comparing to ICRP recommendations, supporting recent findings

  14. Identification of Conserved Moieties in Metabolic Networks by Graph Theoretical Analysis of Atom Transition Networks

    Science.gov (United States)

    Haraldsdóttir, Hulda S.; Fleming, Ronan M. T.

    2016-01-01

    Conserved moieties are groups of atoms that remain intact in all reactions of a metabolic network. Identification of conserved moieties gives insight into the structure and function of metabolic networks and facilitates metabolic modelling. All moiety conservation relations can be represented as nonnegative integer vectors in the left null space of the stoichiometric matrix corresponding to a biochemical network. Algorithms exist to compute such vectors based only on reaction stoichiometry but their computational complexity has limited their application to relatively small metabolic networks. Moreover, the vectors returned by existing algorithms do not, in general, represent conservation of a specific moiety with a defined atomic structure. Here, we show that identification of conserved moieties requires data on reaction atom mappings in addition to stoichiometry. We present a novel method to identify conserved moieties in metabolic networks by graph theoretical analysis of their underlying atom transition networks. Our method returns the exact group of atoms belonging to each conserved moiety as well as the corresponding vector in the left null space of the stoichiometric matrix. It can be implemented as a pipeline of polynomial time algorithms. Our implementation completes in under five minutes on a metabolic network with more than 4,000 mass balanced reactions. The scalability of the method enables extension of existing applications for moiety conservation relations to genome-scale metabolic networks. We also give examples of new applications made possible by elucidating the atomic structure of conserved moieties. PMID:27870845

  15. Pathway discovery in metabolic networks by subgraph extraction.

    Science.gov (United States)

    Faust, Karoline; Dupont, Pierre; Callut, Jérôme; van Helden, Jacques

    2010-05-01

    Subgraph extraction is a powerful technique to predict pathways from biological networks and a set of query items (e.g. genes, proteins, compounds, etc.). It can be applied to a variety of different data types, such as gene expression, protein levels, operons or phylogenetic profiles. In this article, we investigate different approaches to extract relevant pathways from metabolic networks. Although these approaches have been adapted to metabolic networks, they are generic enough to be adjusted to other biological networks as well. We comparatively evaluated seven sub-network extraction approaches on 71 known metabolic pathways from Saccharomyces cerevisiae and a metabolic network obtained from MetaCyc. The best performing approach is a novel hybrid strategy, which combines a random walk-based reduction of the graph with a shortest paths-based algorithm, and which recovers the reference pathways with an accuracy of approximately 77%. Most of the presented algorithms are available as part of the network analysis tool set (NeAT). The kWalks method is released under the GPL3 license.

  16. Ensemble Kinetic Modeling of Metabolic Networks from Dynamic Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    Gengjie Jia

    2012-11-01

    Full Text Available Kinetic modeling of metabolic pathways has important applications in metabolic engineering, but significant challenges still remain. The difficulties faced vary from finding best-fit parameters in a highly multidimensional search space to incomplete parameter identifiability. To meet some of these challenges, an ensemble modeling method is developed for characterizing a subset of kinetic parameters that give statistically equivalent goodness-of-fit to time series concentration data. The method is based on the incremental identification approach, where the parameter estimation is done in a step-wise manner. Numerical efficacy is achieved by reducing the dimensionality of parameter space and using efficient random parameter exploration algorithms. The shift toward using model ensembles, instead of the traditional “best-fit” models, is necessary to directly account for model uncertainty during the application of such models. The performance of the ensemble modeling approach has been demonstrated in the modeling of a generic branched pathway and the trehalose pathway in Saccharomyces cerevisiae using generalized mass action (GMA kinetics.

  17. Preferential attachment in the evolution of metabolic networks

    Directory of Open Access Journals (Sweden)

    Elofsson Arne

    2005-11-01

    Full Text Available Abstract Background Many biological networks show some characteristics of scale-free networks. Scale-free networks can evolve through preferential attachment where new nodes are preferentially attached to well connected nodes. In networks which have evolved through preferential attachment older nodes should have a higher average connectivity than younger nodes. Here we have investigated preferential attachment in the context of metabolic networks. Results The connectivities of the enzymes in the metabolic network of Escherichia coli were determined and representatives for these enzymes were located in 11 eukaryotes, 17 archaea and 46 bacteria. E. coli enzymes which have representatives in eukaryotes have a higher average connectivity while enzymes which are represented only in the prokaryotes, and especially the enzymes only present in βγ-proteobacteria, have lower connectivities than expected by chance. Interestingly, the enzymes which have been proposed as candidates for horizontal gene transfer have a higher average connectivity than the other enzymes. Furthermore, It was found that new edges are added to the highly connected enzymes at a faster rate than to enzymes with low connectivities which is consistent with preferential attachment. Conclusion Here, we have found indications of preferential attachment in the metabolic network of E. coli. A possible biological explanation for preferential attachment growth of metabolic networks is that novel enzymes created through gene duplication maintain some of the compounds involved in the original reaction, throughout its future evolution. In addition, we found that enzymes which are candidates for horizontal gene transfer have a higher average connectivity than other enzymes. This indicates that while new enzymes are attached preferentially to highly connected enzymes, these highly connected enzymes have sometimes been introduced into the E. coli genome by horizontal gene transfer. We speculate

  18. Signatures of arithmetic simplicity in metabolic network architecture.

    Directory of Open Access Journals (Sweden)

    William J Riehl

    2010-04-01

    Full Text Available Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that properties similar to those predicted for the artificial chemistry hold also for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity.

  19. Multi-equilibrium property of metabolic networks: SSI module

    Directory of Open Access Journals (Sweden)

    Chen Luonan

    2011-06-01

    Full Text Available Abstract Background Revealing the multi-equilibrium property of a metabolic network is a fundamental and important topic in systems biology. Due to the complexity of the metabolic network, it is generally a difficult task to study the problem as a whole from both analytical and numerical viewpoint. On the other hand, the structure-oriented modularization idea is a good choice to overcome such a difficulty, i.e. decomposing the network into several basic building blocks and then studying the whole network through investigating the dynamical characteristics of the basic building blocks and their interactions. Single substrate and single product with inhibition (SSI metabolic module is one type of the basic building blocks of metabolic networks, and its multi-equilibrium property has important influence on that of the whole metabolic networks. Results In this paper, we describe what the SSI metabolic module is, characterize the rates of the metabolic reactions by Hill kinetics and give a unified model for SSI modules by using a set of nonlinear ordinary differential equations with multi-variables. Specifically, a sufficient and necessary condition is first given to describe the injectivity of a class of nonlinear systems, and then, the sufficient condition is used to study the multi-equilibrium property of SSI modules. As a main theoretical result, for the SSI modules in which each reaction has no more than one inhibitor, a sufficient condition is derived to rule out multiple equilibria, i.e. the Jacobian matrix of its rate function is nonsingular everywhere. Conclusions In summary, we describe SSI modules and give a general modeling framework based on Hill kinetics, and provide a sufficient condition for ruling out multiple equilibria of a key type of SSI module.

  20. Development of an internet based system for modeling biotin metabolism using Bayesian networks.

    Science.gov (United States)

    Zhou, Jinglei; Wang, Dong; Schlegel, Vicki; Zempleni, Janos

    2011-11-01

    Biotin is an essential water-soluble vitamin crucial for maintaining normal body functions. The importance of biotin for human health has been under-appreciated but there is plenty of opportunity for future research with great importance for human health. Currently, carrying out predictions of biotin metabolism involves tedious manual manipulations. In this paper, we report the development of BiotinNet, an internet based program that uses Bayesian networks to integrate published data on various aspects of biotin metabolism. Users can provide a combination of values on the levels of biotin related metabolites to obtain the predictions on other metabolites that are not specified. As an inherent feature of Bayesian networks, the uncertainty of the prediction is also quantified and reported to the user. This program enables convenient in silico experiments regarding biotin metabolism, which can help researchers design future experiments while new data can be continuously incorporated. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Identifying all moiety conservation laws in genome-scale metabolic networks.

    Science.gov (United States)

    De Martino, Andrea; De Martino, Daniele; Mulet, Roberto; Pagnani, Andrea

    2014-01-01

    The stoichiometry of a metabolic network gives rise to a set of conservation laws for the aggregate level of specific pools of metabolites, which, on one hand, pose dynamical constraints that cross-link the variations of metabolite concentrations and, on the other, provide key insight into a cell's metabolic production capabilities. When the conserved quantity identifies with a chemical moiety, extracting all such conservation laws from the stoichiometry amounts to finding all non-negative integer solutions of a linear system, a programming problem known to be NP-hard. We present an efficient strategy to compute the complete set of integer conservation laws of a genome-scale stoichiometric matrix, also providing a certificate for correctness and maximality of the solution. Our method is deployed for the analysis of moiety conservation relationships in two large-scale reconstructions of the metabolism of the bacterium E. coli, in six tissue-specific human metabolic networks, and, finally, in the human reactome as a whole, revealing that bacterial metabolism could be evolutionarily designed to cover broader production spectra than human metabolism. Convergence to the full set of moiety conservation laws in each case is achieved in extremely reduced computing times. In addition, we uncover a scaling relation that links the size of the independent pool basis to the number of metabolites, for which we present an analytical explanation.

  2. Identifying all moiety conservation laws in genome-scale metabolic networks.

    Directory of Open Access Journals (Sweden)

    Andrea De Martino

    Full Text Available The stoichiometry of a metabolic network gives rise to a set of conservation laws for the aggregate level of specific pools of metabolites, which, on one hand, pose dynamical constraints that cross-link the variations of metabolite concentrations and, on the other, provide key insight into a cell's metabolic production capabilities. When the conserved quantity identifies with a chemical moiety, extracting all such conservation laws from the stoichiometry amounts to finding all non-negative integer solutions of a linear system, a programming problem known to be NP-hard. We present an efficient strategy to compute the complete set of integer conservation laws of a genome-scale stoichiometric matrix, also providing a certificate for correctness and maximality of the solution. Our method is deployed for the analysis of moiety conservation relationships in two large-scale reconstructions of the metabolism of the bacterium E. coli, in six tissue-specific human metabolic networks, and, finally, in the human reactome as a whole, revealing that bacterial metabolism could be evolutionarily designed to cover broader production spectra than human metabolism. Convergence to the full set of moiety conservation laws in each case is achieved in extremely reduced computing times. In addition, we uncover a scaling relation that links the size of the independent pool basis to the number of metabolites, for which we present an analytical explanation.

  3. Variability in human metabolism of arsenic

    International Nuclear Information System (INIS)

    Loffredo, C.A.; Aposhian, H.V.; Cebrian, M.E.; Yamauchi, Hiroshi; Silbergeld, E.K.

    2003-01-01

    Estimating the nature and extent of human cancer risks due to arsenic (As) in drinking water is currently of great concern, since millions of persons worldwide are exposed to arsenic, primarily through natural enrichment of drinking water drawn from deep wells. Humans metabolize and eliminate As through oxidative methylation and subsequent urinary excretion. While there is debate as to the role of methylation in activation/detoxification, variations in arsenic metabolism may affect individual risks of toxicity and carcinogenesis. Using data from three populations, from Mexico, China, and Chile, we have analyzed the distribution in urine of total arsenic and arsenic species (inorganic arsenic (InAs), monomethyl arsenic (MMA), and dimethyl arsenic (DMA). Data were analyzed in terms of the concentration of each species and by evaluating MMA:DMA and (MMA+DMA):InAs ratios. In all persons most urinary As was present as DMA. Male:female differences were discernible in both high- and low-exposure groups from all three populations, but the gender differences varied by populations. The data also indicated bimodal distributions in the ratios of DMA to InAs and to MMA. While the gene or genes responsible for arsenic methylation are still unknown, the results of our studies among the ethnic groups in this study are consistent with the presence of functional genetic polymorphisms in arsenic methylation leading to measurable differences in toxicity. This analysis highlights the need for continuing research on the health effects of As in humans using molecular epidemiologic methods

  4. The Human Dimension of Networks

    Science.gov (United States)

    2008-06-01

    Networking Organizational Issues Authors: Bruce J. West Ph.D. Army Research Office Elizabeth K. Bowman Ph.D. Army Research Laboratory – Human...Contact: Elizabeth K.Bowman AMSRD-ARL-HR Bulding 459, Aberdeen Proving Ground, MD 21005 410-278-5924 EBowman@arl.army.mil 1 Report Documentation Page...L.E. Brus , Nature 383, 802 (1996); M. Kuno, D.P. Fromim, s.R. Hohmson, A. Gallagher and D.J. Nesbitt, Phys. Rev. B 67, 125304 (2003); K.R. Shimizu

  5. Metabolic Brain Network Analysis of Hypothyroidism Symptom Based on [18F]FDG-PET of Rats.

    Science.gov (United States)

    Wan, Hongkai; Tan, Ziyu; Zheng, Qiang; Yu, Jing

    2018-03-12

    Recent researches have demonstrated the value of using 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET) imaging to reveal the hypothyroidism-related damages in local brain regions. However, the influence of hypothyroidism on the entire brain network is barely studied. This study focuses on the application of graph theory on analyzing functional brain networks of the hypothyroidism symptom. For both the hypothyroidism and the control groups of Wistar rats, the functional brain networks were constructed by thresholding the glucose metabolism correlation matrices of 58 brain regions. The network topological properties (including the small-world properties and the nodal centralities) were calculated and compared between the two groups. We found that the rat brains, like human brains, have typical properties of the small-world network in both the hypothyroidism and the control groups. However, the hypothyroidism group demonstrated lower global efficiency and decreased local cliquishness of the brain network, indicating hypothyroidism-related impairment to the brain network. The hypothyroidism group also has decreased nodal centrality in the left posterior hippocampus, the right hypothalamus, pituitary, pons, and medulla. This observation accorded with the hypothyroidism-related functional disorder of hypothalamus-pituitary-thyroid (HPT) feedback regulation mechanism. Our research quantitatively confirms that hypothyroidism hampers brain cognitive function by causing impairment to the brain network of glucose metabolism. This study reveals the feasibility and validity of applying graph theory method to preclinical [ 18 F]FDG-PET images and facilitates future study on human subjects.

  6. Hyperthyroidism increases brown fat metabolism in humans.

    Science.gov (United States)

    Lahesmaa, Minna; Orava, Janne; Schalin-Jäntti, Camilla; Soinio, Minna; Hannukainen, Jarna C; Noponen, Tommi; Kirjavainen, Anna; Iida, Hidehiro; Kudomi, Nobuyuki; Enerbäck, Sven; Virtanen, Kirsi A; Nuutila, Pirjo

    2014-01-01

    Thyroid hormones are important regulators of brown adipose tissue (BAT) development and function. In rodents, BAT metabolism is up-regulated by thyroid hormones. The purpose of this article was to investigate the impact of hyperthyroidism on BAT metabolism in humans. This was a follow-up study using positron emission tomography imaging. Glucose uptake (GU) and perfusion of BAT, white adipose tissue, skeletal muscle, and thyroid gland were measured using [18F]2-fluoro-2-deoxy-D-glucose and [15O]H2O and positron emission tomography in 10 patients with overt hyperthyroidism and in 8 healthy participants. Five of the hyperthyroid patients were restudied after restoration of euthyroidism. Supraclavicular BAT was quantified with magnetic resonance imaging or computed tomography and energy expenditure (EE) with indirect calorimetry. Compared with healthy participants, hyperthyroid participants had 3-fold higher BAT GU (2.7±2.3 vs 0.9±0.1 μmol/100 g/min, P=.0013), 90% higher skeletal muscle GU (Phyperthyroidism, serum free T4 and free T3 were strongly associated with EE and lipid oxidation rates (Pmetabolism (PHyperthyroidism had no effect on BAT perfusion, whereas it stimulated skeletal muscle perfusion (P=.04). Thyroid gland GU did not differ between hyperthyroid and euthyroid study subjects. Hyperthyroidism increases GU in BAT independently of BAT perfusion. Hyperthyroid patients are characterized by increased skeletal muscle metabolism and lipid oxidation rates.

  7. Environmental versatility promotes modularity in large scale metabolic networks

    OpenAIRE

    Samal A.; Wagner Andreas; Martin O.C.

    2011-01-01

    Abstract Background The ubiquity of modules in biological networks may result from an evolutionary benefit of a modular organization. For instance, modularity may increase the rate of adaptive evolution, because modules can be easily combined into new arrangements that may benefit their carrier. Conversely, modularity may emerge as a by-product of some trait. We here ask whether this last scenario may play a role in genome-scale metabolic networks that need to sustain life in one or more chem...

  8. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT.

    Directory of Open Access Journals (Sweden)

    Kumari Sonal Choudhary

    2016-06-01

    Full Text Available Epithelial to mesenchymal transition (EMT is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR, are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E and mesenchymal (EGFR_M networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.

  9. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT.

    Science.gov (United States)

    Choudhary, Kumari Sonal; Rohatgi, Neha; Halldorsson, Skarphedinn; Briem, Eirikur; Gudjonsson, Thorarinn; Gudmundsson, Steinn; Rolfsson, Ottar

    2016-06-01

    Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E) and mesenchymal (EGFR_M) networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.

  10. Systems Nutrigenomics Reveals Brain Gene Networks Linking Metabolic and Brain Disorders.

    Science.gov (United States)

    Meng, Qingying; Ying, Zhe; Noble, Emily; Zhao, Yuqi; Agrawal, Rahul; Mikhail, Andrew; Zhuang, Yumei; Tyagi, Ethika; Zhang, Qing; Lee, Jae-Hyung; Morselli, Marco; Orozco, Luz; Guo, Weilong; Kilts, Tina M; Zhu, Jun; Zhang, Bin; Pellegrini, Matteo; Xiao, Xinshu; Young, Marian F; Gomez-Pinilla, Fernando; Yang, Xia

    2016-05-01

    Nutrition plays a significant role in the increasing prevalence of metabolic and brain disorders. Here we employ systems nutrigenomics to scrutinize the genomic bases of nutrient-host interaction underlying disease predisposition or therapeutic potential. We conducted transcriptome and epigenome sequencing of hypothalamus (metabolic control) and hippocampus (cognitive processing) from a rodent model of fructose consumption, and identified significant reprogramming of DNA methylation, transcript abundance, alternative splicing, and gene networks governing cell metabolism, cell communication, inflammation, and neuronal signaling. These signals converged with genetic causal risks of metabolic, neurological, and psychiatric disorders revealed in humans. Gene network modeling uncovered the extracellular matrix genes Bgn and Fmod as main orchestrators of the effects of fructose, as validated using two knockout mouse models. We further demonstrate that an omega-3 fatty acid, DHA, reverses the genomic and network perturbations elicited by fructose, providing molecular support for nutritional interventions to counteract diet-induced metabolic and brain disorders. Our integrative approach complementing rodent and human studies supports the applicability of nutrigenomics principles to predict disease susceptibility and to guide personalized medicine. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Radioiodine 131I metabolism in human

    International Nuclear Information System (INIS)

    Mori, Toru

    1976-01-01

    Metabolic fate of orally administered 131 I in human was studied. Chronological observations of whole body radioactivity distribution and thyroid 131 I uptake curve revealed that 131 I metabolism was greatly affected by the amount of dietary iodine intake. Under the high iodine intake exceeding 1 mg per day, uptake curve showed biphasic descending type, that is, rapid accumulation during 3 to 6 hours and rapid fall up to 48 hours and gradual decrease afterwards. While, ascending type, monophasic and maximal at 24 hours, was found universary under low iodine intake less than 500 μg per day. Thyroid function should not be affected by the amount of iodine intake, and we analysed 131 I metabolism using a new four compartments which included intrathyroidal inorganic iodine pool. The results, especially hormone production rate, were found quite useful even under high iodine intake. Thyroidal organic iodine contents were calculated as approximately 2.5 mg and this value was much less than previously reported values from other countries. Administered radioiodine were mixed up with stable body iodine and reached equilibration by around 10 days. From seroimmunological, histological (microscopic and electron microscopic) studies, and irradiation studies to the cultured human thyroid cells, we concluded that this unexpected phenomenon was derived from chromosomal damage which induced gradual decrease in cell population because of inability to reproduce. Carcinogenic and genetic effects were not serious, and only three leukemic patients were reported in this country and 484 normal babies were born from 7,500 treated parents. Thus, therapeutic dose of 131 I was proved rather safe, and even when exposed to radioiodine, administration of perchlorate or thiocyanate, excessive iodine and TSH seemed effective to avoid radiation injuries. (auth.)

  12. Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0.

    Directory of Open Access Journals (Sweden)

    Brian R Granger

    2016-04-01

    Full Text Available The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space, a dynamic stoichiometric modeling framework. Using VisANT's unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu.

  13. Visualization of Metabolic Interaction Networks in Microbial Communities Using VisANT 5.0.

    Science.gov (United States)

    Granger, Brian R; Chang, Yi-Chien; Wang, Yan; DeLisi, Charles; Segrè, Daniel; Hu, Zhenjun

    2016-04-01

    The complexity of metabolic networks in microbial communities poses an unresolved visualization and interpretation challenge. We address this challenge in the newly expanded version of a software tool for the analysis of biological networks, VisANT 5.0. We focus in particular on facilitating the visual exploration of metabolic interaction between microbes in a community, e.g. as predicted by COMETS (Computation of Microbial Ecosystems in Time and Space), a dynamic stoichiometric modeling framework. Using VisANT's unique metagraph implementation, we show how one can use VisANT 5.0 to explore different time-dependent ecosystem-level metabolic networks. In particular, we analyze the metabolic interaction network between two bacteria previously shown to display an obligate cross-feeding interdependency. In addition, we illustrate how a putative minimal gut microbiome community could be represented in our framework, making it possible to highlight interactions across multiple coexisting species. We envisage that the "symbiotic layout" of VisANT can be employed as a general tool for the analysis of metabolism in complex microbial communities as well as heterogeneous human tissues. VisANT is freely available at: http://visant.bu.edu and COMETS at http://comets.bu.edu.

  14. Predicting metabolic pathways by sub-network extraction.

    Science.gov (United States)

    Faust, Karoline; van Helden, Jacques

    2012-01-01

    Various methods result in groups of functionally related genes obtained from genomes (operons, regulons, syntheny groups, and phylogenetic profiles), transcriptomes (co-expression groups) and proteomes (modules of interacting proteins). When such groups contain two or more enzyme-coding genes, graph analysis methods can be applied to extract a metabolic pathway that interconnects them. We describe here the way to use the Pathway extraction tool available on the NeAT Web server ( http://rsat.ulb.ac.be/neat/ ) to piece together the metabolic pathway from a group of associated, enzyme-coding genes. The tool identifies the reactions that can be catalyzed by the products of the query genes (seed reactions), and applies sub-graph extraction algorithms to extract from a metabolic network a sub-network that connects the seed reactions. This sub-network represents the predicted metabolic pathway. We describe here the pathway prediction process in a step-by-step way, give hints about the main parametric choices, and illustrate how this tool can be used to extract metabolic pathways from bacterial genomes, on the basis of two study cases: the isoleucine-valine operon in Escherichia coli and a predicted operon in Cupriavidus (Ralstonia) metallidurans.

  15. Estimating the size of the solution space of metabolic networks

    Directory of Open Access Journals (Sweden)

    Mulet Roberto

    2008-05-01

    Full Text Available Abstract Background Cellular metabolism is one of the most investigated system of biological interactions. While the topological nature of individual reactions and pathways in the network is quite well understood there is still a lack of comprehension regarding the global functional behavior of the system. In the last few years flux-balance analysis (FBA has been the most successful and widely used technique for studying metabolism at system level. This method strongly relies on the hypothesis that the organism maximizes an objective function. However only under very specific biological conditions (e.g. maximization of biomass for E. coli in reach nutrient medium the cell seems to obey such optimization law. A more refined analysis not assuming extremization remains an elusive task for large metabolic systems due to algorithmic limitations. Results In this work we propose a novel algorithmic strategy that provides an efficient characterization of the whole set of stable fluxes compatible with the metabolic constraints. Using a technique derived from the fields of statistical physics and information theory we designed a message-passing algorithm to estimate the size of the affine space containing all possible steady-state flux distributions of metabolic networks. The algorithm, based on the well known Bethe approximation, can be used to approximately compute the volume of a non full-dimensional convex polytope in high dimensions. We first compare the accuracy of the predictions with an exact algorithm on small random metabolic networks. We also verify that the predictions of the algorithm match closely those of Monte Carlo based methods in the case of the Red Blood Cell metabolic network. Then we test the effect of gene knock-outs on the size of the solution space in the case of E. coli central metabolism. Finally we analyze the statistical properties of the average fluxes of the reactions in the E. coli metabolic network. Conclusion We propose a

  16. Computing autocatalytic sets to unravel inconsistencies in metabolic network reconstructions

    DEFF Research Database (Denmark)

    Schmidt, R.; Waschina, S.; Boettger-Schmidt, D.

    2015-01-01

    , the method we report represents a powerful tool to identify inconsistencies in large-scale metabolic networks. AVAILABILITY AND IMPLEMENTATION: The method is available as source code on http://users.minet.uni-jena.de/ approximately m3kach/ASBIG/ASBIG.zip. CONTACT: christoph.kaleta@uni-jena.de SUPPLEMENTARY...... by inherent inconsistencies and gaps. RESULTS: Here we present a novel method to validate metabolic network reconstructions based on the concept of autocatalytic sets. Autocatalytic sets correspond to collections of metabolites that, besides enzymes and a growth medium, are required to produce all biomass...... components in a metabolic model. These autocatalytic sets are well-conserved across all domains of life, and their identification in specific genome-scale reconstructions allows us to draw conclusions about potential inconsistencies in these models. The method is capable of detecting inconsistencies, which...

  17. Blueprint for antimicrobial hit discovery targeting metabolic networks.

    Science.gov (United States)

    Shen, Y; Liu, J; Estiu, G; Isin, B; Ahn, Y-Y; Lee, D-S; Barabási, A-L; Kapatral, V; Wiest, O; Oltvai, Z N

    2010-01-19

    Advances in genome analysis, network biology, and computational chemistry have the potential to revolutionize drug discovery by combining system-level identification of drug targets with the atomistic modeling of small molecules capable of modulating their activity. To demonstrate the effectiveness of such a discovery pipeline, we deduced common antibiotic targets in Escherichia coli and Staphylococcus aureus by identifying shared tissue-specific or uniformly essential metabolic reactions in their metabolic networks. We then predicted through virtual screening dozens of potential inhibitors for several enzymes of these reactions and showed experimentally that a subset of these inhibited both enzyme activities in vitro and bacterial cell viability. This blueprint is applicable for any sequenced organism with high-quality metabolic reconstruction and suggests a general strategy for strain-specific antiinfective therapy.

  18. Optimality principles in the regulation of metabolic networks.

    Science.gov (United States)

    Berkhout, Jan; Bruggeman, Frank J; Teusink, Bas

    2012-08-29

    One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular "task" of the network-its function-should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide.

  19. Thermodynamics-based Metabolite Sensitivity Analysis in metabolic networks.

    Science.gov (United States)

    Kiparissides, A; Hatzimanikatis, V

    2017-01-01

    The increasing availability of large metabolomics datasets enhances the need for computational methodologies that can organize the data in a way that can lead to the inference of meaningful relationships. Knowledge of the metabolic state of a cell and how it responds to various stimuli and extracellular conditions can offer significant insight in the regulatory functions and how to manipulate them. Constraint based methods, such as Flux Balance Analysis (FBA) and Thermodynamics-based flux analysis (TFA), are commonly used to estimate the flow of metabolites through genome-wide metabolic networks, making it possible to identify the ranges of flux values that are consistent with the studied physiological and thermodynamic conditions. However, unless key intracellular fluxes and metabolite concentrations are known, constraint-based models lead to underdetermined problem formulations. This lack of information propagates as uncertainty in the estimation of fluxes and basic reaction properties such as the determination of reaction directionalities. Therefore, knowledge of which metabolites, if measured, would contribute the most to reducing this uncertainty can significantly improve our ability to define the internal state of the cell. In the present work we combine constraint based modeling, Design of Experiments (DoE) and Global Sensitivity Analysis (GSA) into the Thermodynamics-based Metabolite Sensitivity Analysis (TMSA) method. TMSA ranks metabolites comprising a metabolic network based on their ability to constrain the gamut of possible solutions to a limited, thermodynamically consistent set of internal states. TMSA is modular and can be applied to a single reaction, a metabolic pathway or an entire metabolic network. This is, to our knowledge, the first attempt to use metabolic modeling in order to provide a significance ranking of metabolites to guide experimental measurements. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier

  20. Critical assessment of human metabolic pathway databases: a stepping stone for future integration

    Directory of Open Access Journals (Sweden)

    Stobbe Miranda D

    2011-10-01

    Full Text Available Abstract Background Multiple pathway databases are available that describe the human metabolic network and have proven their usefulness in many applications, ranging from the analysis and interpretation of high-throughput data to their use as a reference repository. However, so far the various human metabolic networks described by these databases have not been systematically compared and contrasted, nor has the extent to which they differ been quantified. For a researcher using these databases for particular analyses of human metabolism, it is crucial to know the extent of the differences in content and their underlying causes. Moreover, the outcomes of such a comparison are important for ongoing integration efforts. Results We compared the genes, EC numbers and reactions of five frequently used human metabolic pathway databases. The overlap is surprisingly low, especially on reaction level, where the databases agree on 3% of the 6968 reactions they have combined. Even for the well-established tricarboxylic acid cycle the databases agree on only 5 out of the 30 reactions in total. We identified the main causes for the lack of overlap. Importantly, the databases are partly complementary. Other explanations include the number of steps a conversion is described in and the number of possible alternative substrates listed. Missing metabolite identifiers and ambiguous names for metabolites also affect the comparison. Conclusions Our results show that each of the five networks compared provides us with a valuable piece of the puzzle of the complete reconstruction of the human metabolic network. To enable integration of the networks, next to a need for standardizing the metabolite names and identifiers, the conceptual differences between the databases should be resolved. Considerable manual intervention is required to reach the ultimate goal of a unified and biologically accurate model for studying the systems biology of human metabolism. Our comparison

  1. Parameter estimation in tree graph metabolic networks

    Directory of Open Access Journals (Sweden)

    Laura Astola

    2016-09-01

    Full Text Available We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis–Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings.

  2. Parameter estimation in tree graph metabolic networks.

    Science.gov (United States)

    Astola, Laura; Stigter, Hans; Gomez Roldan, Maria Victoria; van Eeuwijk, Fred; Hall, Robert D; Groenenboom, Marian; Molenaar, Jaap J

    2016-01-01

    We study the glycosylation processes that convert initially toxic substrates to nutritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato (Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary differential equations (ODEs) to model the enzyme kinetics. A popular choice is to use a system of linear ODEs with constant kinetic rates or to use Michaelis-Menten kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic constants and enzyme concentrations, are changing in time and with the approaches just mentioned, this phenomenon cannot be described. Another problem is that, in general these kinetic coefficients are not always identifiable. A third problem is that, it is not precisely known which enzymes are catalyzing the observed glycosylation processes. With several hundred potential gene candidates, experimental validation using purified target proteins is expensive and time consuming. We aim at reducing this task via mathematical modeling to allow for the pre-selection of most potential gene candidates. In this article we discuss a fast and relatively simple approach to estimate time varying kinetic rates, with three favorable properties: firstly, it allows for identifiable estimation of time dependent parameters in networks with a tree-like structure. Secondly, it is relatively fast compared to usually applied methods that estimate the model derivatives together with the network parameters. Thirdly, by combining the metabolite concentration data with a corresponding microarray data, it can help in detecting the genes related to the enzymatic processes. By comparing the estimated time dynamics of the catalytic rates with time series gene expression data we may assess potential candidate genes behind enzymatic reactions. As an example, we show how to apply this method to select prominent glycosyltransferase genes in tomato seedlings.

  3. Optimality Principles in the Regulation of Metabolic Networks

    Directory of Open Access Journals (Sweden)

    Jan Berkhout

    2012-08-01

    Full Text Available One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular “task” of the network—its function—should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide.

  4. Bone blood flow and metabolism in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Kemppainen, Jukka; Kaskinoro, Kimmo

    2012-01-01

    Human bone blood flow and metabolism during physical exercise remains poorly characterised. In the present study we measured femoral bone blood flow and glucose uptake in young healthy subjects by positron emission tomography in three separate protocols. In six women, blood flow was measured...... in femoral bone at rest and during one leg intermittent isometric exercise with increasing exercise intensities. In nine men, blood flow in femur was determined at rest and during dynamic one leg exercise, and two other physiological perturbations: moderate systemic hypoxia (14 O(2) ) at rest and during...... exercise, and during intra-femoral infusion of high-dose adenosine. Bone glucose uptake was measured at rest and during dynamic one leg exercise in five men. The results indicate that isometric exercise increased femoral bone blood flow from rest (1.8 ± 0.6 ml/100g/min) to low intensity exercise (4.1 ± 1...

  5. Expanded flux variability analysis on metabolic network of Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    CHEN Tong; XIE ZhengWei; OUYANG Qi

    2009-01-01

    Flux balance analysis,based on the mass conservation law in a cellular organism,has been extensively employed to study the interplay between structures and functions of cellular metabolic networks.Consequently,the phenotypes of the metabolism can be well elucidated.In this paper,we introduce the Expanded Flux Variability Analysis (EFVA) to characterize the intrinsic nature of metabolic reactions,such as flexibility,modularity and essentiality,by exploring the trend of the range,the maximum and the minimum flux of reactions.We took the metabolic network of Escherichia coli as an example and analyzed the variability of reaction fluxes under different growth rate constraints.The average variability of all reactions decreases dramatically when the growth rate increases.Consider the noise effect on the metabolic system,we thus argue that the microorganism may practically grow under a suboptimal state.Besides,under the EFVA framework,the reactions are easily to be grouped into catabolic and anabolic groups.And the anabolic groups can be further assigned to specific biomass constitute.We also discovered the growth rate dependent essentiality of reactions.

  6. Evidence that humans metabolize benzene via two pathways.

    NARCIS (Netherlands)

    Rappaport, S.M.; Kim, S.; Lan, Q.; Vermeulen, R.C.H.; Waidyanatha, S.; Zhang, L.; Li, G.; Yin, S.; Hayes, R.B.; Rothman, N.; Smith, M.T.

    2009-01-01

    BACKGROUND: Recent evidence has shown that humans metabolize benzene more efficiently at environmental air concentrations than at concentrations > 1 ppm. This led us to speculate that an unidentified metabolic pathway was mainly responsible for benzene metabolism at ambient levels. OBJECTIVE: We

  7. Gender differences of brain glucose metabolic networks revealed by FDG-PET: evidence from a large cohort of 400 young adults.

    Science.gov (United States)

    Hu, Yuxiao; Xu, Qiang; Li, Kai; Zhu, Hong; Qi, Rongfeng; Zhang, Zhiqiang; Lu, Guangming

    2013-01-01

    Gender differences of the human brain are an important issue in neuroscience research. In recent years, an increasing amount of evidence has been gathered from noninvasive neuroimaging studies supporting a sexual dimorphism of the human brain. However, there is a lack of imaging studies on gender differences of brain metabolic networks based on a large population sample. FDG PET data of 400 right-handed, healthy subjects, including 200 females (age: 25:45 years, mean age ± SD: 40.9 ± 3.9 years) and 200 age-matched males were obtained and analyzed in the present study. We first investigated the regional differences of brain glucose metabolism between genders using a voxel-based two-sample t-test analysis. Subsequently, we investigated the gender differences of the metabolic networks. Sixteen metabolic covariance networks using seed-based correlation were analyzed. Seven regions showing significant regional metabolic differences between genders, and nine regions conventionally used in the resting-state network studies were selected as regions-of-interest. Permutation tests were used for comparing within- and between-network connectivity between genders. Compared with the males, females showed higher metabolism in the posterior part and lower metabolism in the anterior part of the brain. Moreover, there were widely distributed patterns of the metabolic networks in the human brain. In addition, significant gender differences within and between brain glucose metabolic networks were revealed in the present study. This study provides solid data that reveal gender differences in regional brain glucose metabolism and brain glucose metabolic networks. These observations might contribute to the better understanding of the gender differences in human brain functions, and suggest that gender should be included as a covariate when designing experiments and explaining results of brain glucose metabolic networks in the control and experimental individuals or patients.

  8. Methods of measuring metabolism during surgery in humans: focus on the liver-brain relationship.

    Science.gov (United States)

    Battezzati, Alberto; Bertoli, Simona

    2004-09-01

    The purpose of this work is to review recent advances in setting methods and models for measuring metabolism during surgery in humans. Surgery, especially solid organ transplantation, may offer unique experimental models in which it is ethically acceptable to gain information on difficult problems of amino acid and protein metabolism. Two areas are reviewed: the metabolic study of the anhepatic phase during liver transplantation and brain microdialysis during cerebral surgery. The first model offers an innovative approach to understand the relative role of liver and extrahepatic organs in gluconeogenesis, and to evaluate whether other organs can perform functions believed to be exclusively or almost exclusively performed by the liver. The second model offers an insight to intracerebral metabolism that is closely bound to that of the liver. The recent advances in metabolic research during surgery provide knowledge immediately useful for perioperative patient management and for a better control of surgical stress. The studies during the anhepatic phase of liver transplantation have showed that gluconeogenesis and glutamine metabolism are very active processes outside the liver. One of the critical organs for extrahepatic glutamine metabolism is the brain. Microdialysis studies helped to prove that in humans there is an intense trafficking of glutamine, glutamate and alanine among neurons and astrocytes. This delicate network is influenced by systemic amino acid metabolism. The metabolic dialogue between the liver and the brain is beginning to be understood in this light in order to explain the metabolic events of brain damage during liver failure.

  9. Network analysis of metabolic enzyme evolution in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kraulis Per

    2004-02-01

    Full Text Available Abstract Background The two most common models for the evolution of metabolism are the patchwork evolution model, where enzymes are thought to diverge from broad to narrow substrate specificity, and the retrograde evolution model, according to which enzymes evolve in response to substrate depletion. Analysis of the distribution of homologous enzyme pairs in the metabolic network can shed light on the respective importance of the two models. We here investigate the evolution of the metabolism in E. coli viewed as a single network using EcoCyc. Results Sequence comparison between all enzyme pairs was performed and the minimal path length (MPL between all enzyme pairs was determined. We find a strong over-representation of homologous enzymes at MPL 1. We show that the functionally similar and functionally undetermined enzyme pairs are responsible for most of the over-representation of homologous enzyme pairs at MPL 1. Conclusions The retrograde evolution model predicts that homologous enzymes pairs are at short metabolic distances from each other. In general agreement with previous studies we find that homologous enzymes occur close to each other in the network more often than expected by chance, which lends some support to the retrograde evolution model. However, we show that the homologous enzyme pairs which may have evolved through retrograde evolution, namely the pairs that are functionally dissimilar, show a weaker over-representation at MPL 1 than the functionally similar enzyme pairs. Our study indicates that, while the retrograde evolution model may have played a small part, the patchwork evolution model is the predominant process of metabolic enzyme evolution.

  10. Genetic networks of liver metabolism revealed by integration of metabolic and transcriptional profiling.

    Directory of Open Access Journals (Sweden)

    Christine T Ferrara

    2008-03-01

    Full Text Available Although numerous quantitative trait loci (QTL influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptin(ob/ob and the diabetes-susceptible BTBR leptin(ob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines. We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes.

  11. Discovery of Boolean metabolic networks: integer linear programming based approach.

    Science.gov (United States)

    Qiu, Yushan; Jiang, Hao; Ching, Wai-Ki; Cheng, Xiaoqing

    2018-04-11

    Traditional drug discovery methods focused on the efficacy of drugs rather than their toxicity. However, toxicity and/or lack of efficacy are produced when unintended targets are affected in metabolic networks. Thus, identification of biological targets which can be manipulated to produce the desired effect with minimum side-effects has become an important and challenging topic. Efficient computational methods are required to identify the drug targets while incurring minimal side-effects. In this paper, we propose a graph-based computational damage model that summarizes the impact of enzymes on compounds in metabolic networks. An efficient method based on Integer Linear Programming formalism is then developed to identify the optimal enzyme-combination so as to minimize the side-effects. The identified target enzymes for known successful drugs are then verified by comparing the results with those in the existing literature. Side-effects reduction plays a crucial role in the study of drug development. A graph-based computational damage model is proposed and the theoretical analysis states the captured problem is NP-completeness. The proposed approaches can therefore contribute to the discovery of drug targets. Our developed software is available at " http://hkumath.hku.hk/~wkc/APBC2018-metabolic-network.zip ".

  12. Second Law of Thermodynamics Applied to Metabolic Networks

    Science.gov (United States)

    Nigam, R.; Liang, S.

    2003-01-01

    We present a simple algorithm based on linear programming, that combines Kirchoff's flux and potential laws and applies them to metabolic networks to predict thermodynamically feasible reaction fluxes. These law's represent mass conservation and energy feasibility that are widely used in electrical circuit analysis. Formulating the Kirchoff's potential law around a reaction loop in terms of the null space of the stoichiometric matrix leads to a simple representation of the law of entropy that can be readily incorporated into the traditional flux balance analysis without resorting to non-linear optimization. Our technique is new as it can easily check the fluxes got by applying flux balance analysis for thermodynamic feasibility and modify them if they are infeasible so that they satisfy the law of entropy. We illustrate our method by applying it to the network dealing with the central metabolism of Escherichia coli. Due to its simplicity this algorithm will be useful in studying large scale complex metabolic networks in the cell of different organisms.

  13. Towards metabolic mapping of the human retina.

    Science.gov (United States)

    Schweitzer, D; Schenke, S; Hammer, M; Schweitzer, F; Jentsch, S; Birckner, E; Becker, W; Bergmann, A

    2007-05-01

    Functional alterations are first signs of a starting pathological process. A device that measures parameter for the characterization of the metabolism at the human eye-ground would be a helpful tool for early diagnostics in stages when alterations are yet reversible. Measurements of blood flow and of oxygen saturation are necessary but not sufficient. The new technique of auto-fluorescence lifetime measurement (FLIM) opens in combination with selected excitation and emission ranges the possibility for metabolic mapping. FLIM not only adds an additional discrimination parameter to distinguish different fluorophores but also resolves different quenching states of the same fluorophore. Because of its high sensitivity and high temporal resolution, its capability to resolve multi-exponential decay functions, and its easy combination with laser scanner ophthalmoscopy, multi-dimensional time-correlated single photon counting was used for fundus imaging. An optimized set up for in vivo lifetime measurements at the human eye-ground will be explained. In this, the fundus fluorescence is excited at 446 or 468 nm and the time-resolved autofluorescence is detected in two spectral ranges between 510 and 560 nm as well as between 560 and 700 nm simultaneously. Exciting the fundus at 446 nm, several fluorescence maxima of lifetime t1 were detected between 100 and 220 ps in lifetime histograms of 40 degrees fundus images. In contrast, excitation at 468 nm results in a single maximum of lifetime t1 = 190 +/- 16 ps. Several fundus layers contribute to the fluorescence intensity in the short-wave emission range 510-560 nm. In contrast, the fluorescence intensity in the long-wave emission range between 560 and 700 nm is dominated by the fluorescence of lipofuscin in the retinal pigment epithelium. Comparing the lateral distribution of parameters of a tri-exponential model function in lifetime images of the fundus with the layered anatomical fundus structure, the shortest component (t1

  14. Approaching human language with complex networks

    Science.gov (United States)

    Cong, Jin; Liu, Haitao

    2014-12-01

    The interest in modeling and analyzing human language with complex networks is on the rise in recent years and a considerable body of research in this area has already been accumulated. We survey three major lines of linguistic research from the complex network approach: 1) characterization of human language as a multi-level system with complex network analysis; 2) linguistic typological research with the application of linguistic networks and their quantitative measures; and 3) relationships between the system-level complexity of human language (determined by the topology of linguistic networks) and microscopic linguistic (e.g., syntactic) features (as the traditional concern of linguistics). We show that the models and quantitative tools of complex networks, when exploited properly, can constitute an operational methodology for linguistic inquiry, which contributes to the understanding of human language and the development of linguistics. We conclude our review with suggestions for future linguistic research from the complex network approach: 1) relationships between the system-level complexity of human language and microscopic linguistic features; 2) expansion of research scope from the global properties to other levels of granularity of linguistic networks; and 3) combination of linguistic network analysis with other quantitative studies of language (such as quantitative linguistics).

  15. Developmental changes in the metabolic network of snapdragon flowers.

    Directory of Open Access Journals (Sweden)

    Joëlle K Muhlemann

    Full Text Available Evolutionary and reproductive success of angiosperms, the most diverse group of land plants, relies on visual and olfactory cues for pollinator attraction. Previous work has focused on elucidating the developmental regulation of pathways leading to the formation of pollinator-attracting secondary metabolites such as scent compounds and flower pigments. However, to date little is known about how flowers control their entire metabolic network to achieve the highly regulated production of metabolites attracting pollinators. Integrative analysis of transcripts and metabolites in snapdragon sepals and petals over flower development performed in this study revealed a profound developmental remodeling of gene expression and metabolite profiles in petals, but not in sepals. Genes up-regulated during petal development were enriched in functions related to secondary metabolism, fatty acid catabolism, and amino acid transport, whereas down-regulated genes were enriched in processes involved in cell growth, cell wall formation, and fatty acid biosynthesis. The levels of transcripts and metabolites in pathways leading to scent formation were coordinately up-regulated during petal development, implying transcriptional induction of metabolic pathways preceding scent formation. Developmental gene expression patterns in the pathways involved in scent production were different from those of glycolysis and the pentose phosphate pathway, highlighting distinct developmental regulation of secondary metabolism and primary metabolic pathways feeding into it.

  16. Human tracking over camera networks: a review

    Science.gov (United States)

    Hou, Li; Wan, Wanggen; Hwang, Jenq-Neng; Muhammad, Rizwan; Yang, Mingyang; Han, Kang

    2017-12-01

    In recent years, automated human tracking over camera networks is getting essential for video surveillance. The tasks of tracking human over camera networks are not only inherently challenging due to changing human appearance, but also have enormous potentials for a wide range of practical applications, ranging from security surveillance to retail and health care. This review paper surveys the most widely used techniques and recent advances for human tracking over camera networks. Two important functional modules for the human tracking over camera networks are addressed, including human tracking within a camera and human tracking across non-overlapping cameras. The core techniques of human tracking within a camera are discussed based on two aspects, i.e., generative trackers and discriminative trackers. The core techniques of human tracking across non-overlapping cameras are then discussed based on the aspects of human re-identification, camera-link model-based tracking and graph model-based tracking. Our survey aims to address existing problems, challenges, and future research directions based on the analyses of the current progress made toward human tracking techniques over camera networks.

  17. Transcriptional regulation and steady-state modeling of metabolic networks

    DEFF Research Database (Denmark)

    Zelezniak, Aleksej

    Biological systems are characterized by a high degree of complexity wherein the individual components (e.g. proteins) are inter-linked in a way that leads to emergent behaviors that are difficult to decipher. Uncovering system complexity requires, at least, answers to the following three questions......: what are the components of the systems, how are the different components interconnected and how do these networks perform the functions that make the resulting system behavior? Modern analytical technologies allow us to unravel the constituents and interactions happening in a given system; however......, the third question is the ultimate challenge for systems biology. The work of this thesis systematically addresses this question in the context of metabolic networks, which are arguably the most well characterized cellular networks in terms of their constituting components and interactions among them...

  18. Combined metabolomic and correlation networks analyses reveal fumarase insufficiency altered amino acid metabolism.

    Science.gov (United States)

    Hou, Entai; Li, Xian; Liu, Zerong; Zhang, Fuchang; Tian, Zhongmin

    2018-04-01

    Fumarase catalyzes the interconversion of fumarate and l-malate in the tricarboxylic acid cycle. Fumarase insufficiencies were associated with increased levels of fumarate, decreased levels of malate and exacerbated salt-induced hypertension. To gain insights into the metabolism profiles induced by fumarase insufficiency and identify key regulatory metabolites, we applied a GC-MS based metabolomics platform coupled with a network approach to analyze fumarase insufficient human umbilical vein endothelial cells (HUVEC) and negative controls. A total of 24 altered metabolites involved in seven metabolic pathways were identified as significantly altered, and enriched for the biological module of amino acids metabolism. In addition, Pearson correlation network analysis revealed that fumaric acid, l-malic acid, l-aspartic acid, glycine and l-glutamic acid were hub metabolites according to Pagerank based on their three centrality indices. Alanine aminotransferase and glutamate dehydrogenase activities increased significantly in fumarase deficiency HUVEC. These results confirmed that fumarase insufficiency altered amino acid metabolism. The combination of metabolomics and network methods would provide another perspective on expounding the molecular mechanism at metabolomics level. Copyright © 2017 John Wiley & Sons, Ltd.

  19. EDUCATIONAL NETWORKING: HUMAN VIEW TO CYBER DEFENSE

    OpenAIRE

    Oleksandr Yu. Burov

    2016-01-01

    Networks play more and more important role for human life and activity, both in critical occupations (aviation, power industry, military missions etc.), and in everyday life (home computers, education, leisure). Interaction between human and other elements of human-machine system have changed, because they coincide in the information habitat. Human-system integration has reached new level of defense needs. The paper will introduce features of information society in respect of a human and corr...

  20. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Directory of Open Access Journals (Sweden)

    Andre Terzic

    2009-04-01

    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  1. Bringing metabolic networks to life: integration of kinetic, metabolic, and proteomic data

    Directory of Open Access Journals (Sweden)

    Klipp Edda

    2006-12-01

    Full Text Available Abstract Background Translating a known metabolic network into a dynamic model requires reasonable guesses of all enzyme parameters. In Bayesian parameter estimation, model parameters are described by a posterior probability distribution, which scores the potential parameter sets, showing how well each of them agrees with the data and with the prior assumptions made. Results We compute posterior distributions of kinetic parameters within a Bayesian framework, based on integration of kinetic, thermodynamic, metabolic, and proteomic data. The structure of the metabolic system (i.e., stoichiometries and enzyme regulation needs to be known, and the reactions are modelled by convenience kinetics with thermodynamically independent parameters. The parameter posterior is computed in two separate steps: a first posterior summarises the available data on enzyme kinetic parameters; an improved second posterior is obtained by integrating metabolic fluxes, concentrations, and enzyme concentrations for one or more steady states. The data can be heterogenous, incomplete, and uncertain, and the posterior is approximated by a multivariate log-normal distribution. We apply the method to a model of the threonine synthesis pathway: the integration of metabolic data has little effect on the marginal posterior distributions of individual model parameters. Nevertheless, it leads to strong correlations between the parameters in the joint posterior distribution, which greatly improve the model predictions by the following Monte-Carlo simulations. Conclusion We present a standardised method to translate metabolic networks into dynamic models. To determine the model parameters, evidence from various experimental data is combined and weighted using Bayesian parameter estimation. The resulting posterior parameter distribution describes a statistical ensemble of parameter sets; the parameter variances and correlations can account for missing knowledge, measurement

  2. RAS signalling in energy metabolism and rare human diseases.

    Science.gov (United States)

    Dard, L; Bellance, N; Lacombe, D; Rossignol, R

    2018-05-08

    The RAS pathway is a highly conserved cascade of protein-protein interactions and phosphorylation that is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Recent findings indicate that the RAS pathway plays a role in the regulation of energy metabolism via the control of mitochondrial form and function but little is known on the participation of this effect in RAS-related rare human genetic diseases. Germline mutations that hyperactivate the RAS pathway have been discovered and linked to human developmental disorders that are known as RASopathies. Individuals with RASopathies, which are estimated to affect approximately 1/1000 human birth, share many overlapping characteristics, including cardiac malformations, short stature, neurocognitive impairment, craniofacial dysmorphy, cutaneous, musculoskeletal, and ocular abnormalities, hypotonia and a predisposition to developing cancer. Since the identification of the first RASopathy, type 1 neurofibromatosis (NF1), which is caused by the inactivation of neurofibromin 1, several other syndromes have been associated with mutations in the core components of the RAS-MAPK pathway. These syndromes include Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NSML), which was formerly called LEOPARD syndrome, Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS) and capillary malformation-arteriovenous malformation syndrome (CM-AVM). Here, we review current knowledge about the bioenergetics of the RASopathies and discuss the molecular control of energy homeostasis and mitochondrial physiology by the RAS pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Peroxisomes, lipid metabolism, and human disease

    NARCIS (Netherlands)

    Wanders, R. J.

    2000-01-01

    In the past few years, much has been learned about the metabolic functions of peroxisomes. These studies have shown that peroxisomes play a major role in lipid metabolism, including fatty acid beta-oxidation, etherphospholipid biosynthesis, and phytanic acid alpha-oxidation. This article describes

  4. NCI’s Cooperative Human Tissue Network

    Science.gov (United States)

    Quality biospecimens are a foundational resource for cancer research. One of NCI’s longest running biospecimen programs is the Cooperative Human Tissue Network, a resource mainly for basic discovery and early translational research.

  5. Carboxylesterases in lipid metabolism: from mouse to human

    Directory of Open Access Journals (Sweden)

    Jihong Lian

    2017-07-01

    Full Text Available ABSTRACT Mammalian carboxylesterases hydrolyze a wide range of xenobiotic and endogenous compounds, including lipid esters. Physiological functions of carboxylesterases in lipid metabolism and energy homeostasis in vivo have been demonstrated by genetic manipulations and chemical inhibition in mice, and in vitro through (overexpression, knockdown of expression, and chemical inhibition in a variety of cells. Recent research advances have revealed the relevance of carboxylesterases to metabolic diseases such as obesity and fatty liver disease, suggesting these enzymes might be potential targets for treatment of metabolic disorders. In order to translate pre-clinical studies in cellular and mouse models to humans, differences and similarities of carboxylesterases between mice and human need to be elucidated. This review presents and discusses the research progress in structure and function of mouse and human carboxylesterases, and the role of these enzymes in lipid metabolism and metabolic disorders.

  6. Enumeration of minimal stoichiometric precursor sets in metabolic networks.

    Science.gov (United States)

    Andrade, Ricardo; Wannagat, Martin; Klein, Cecilia C; Acuña, Vicente; Marchetti-Spaccamela, Alberto; Milreu, Paulo V; Stougie, Leen; Sagot, Marie-France

    2016-01-01

    What an organism needs at least from its environment to produce a set of metabolites, e.g. target(s) of interest and/or biomass, has been called a minimal precursor set. Early approaches to enumerate all minimal precursor sets took into account only the topology of the metabolic network (topological precursor sets). Due to cycles and the stoichiometric values of the reactions, it is often not possible to produce the target(s) from a topological precursor set in the sense that there is no feasible flux. Although considering the stoichiometry makes the problem harder, it enables to obtain biologically reasonable precursor sets that we call stoichiometric. Recently a method to enumerate all minimal stoichiometric precursor sets was proposed in the literature. The relationship between topological and stoichiometric precursor sets had however not yet been studied. Such relationship between topological and stoichiometric precursor sets is highlighted. We also present two algorithms that enumerate all minimal stoichiometric precursor sets. The first one is of theoretical interest only and is based on the above mentioned relationship. The second approach solves a series of mixed integer linear programming problems. We compared the computed minimal precursor sets to experimentally obtained growth media of several Escherichia coli strains using genome-scale metabolic networks. The results show that the second approach efficiently enumerates minimal precursor sets taking stoichiometry into account, and allows for broad in silico studies of strains or species interactions that may help to understand e.g. pathotype and niche-specific metabolic capabilities. sasita is written in Java, uses cplex as LP solver and can be downloaded together with all networks and input files used in this paper at http://www.sasita.gforge.inria.fr.

  7. Pharmacological interventions in human HDL metabolism

    NARCIS (Netherlands)

    Balder, Jan-Willem; Staels, Bart; Kuivenhoven, Jan A.

    2013-01-01

    PURPOSE OF REVIEW: This review focuses on the recent developments in the field of drugs that affect HDL metabolism. Additionally, some general (retrospective) thoughts on fighting cardiovascular disease through modulating circulating lipids are discussed. RECENT FINDINGS: Recently, the large

  8. Mimoza: web-based semantic zooming and navigation in metabolic networks.

    Science.gov (United States)

    Zhukova, Anna; Sherman, David J

    2015-02-26

    The complexity of genome-scale metabolic models makes them quite difficult for human users to read, since they contain thousands of reactions that must be included for accurate computer simulation. Interestingly, hidden similarities between groups of reactions can be discovered, and generalized to reveal higher-level patterns. The web-based navigation system Mimoza allows a human expert to explore metabolic network models in a semantically zoomable manner: The most general view represents the compartments of the model; the next view shows the generalized versions of reactions and metabolites in each compartment; and the most detailed view represents the initial network with the generalization-based layout (where similar metabolites and reactions are placed next to each other). It allows a human expert to grasp the general structure of the network and analyze it in a top-down manner Mimoza can be installed standalone, or used on-line at http://mimoza.bordeaux.inria.fr/ , or installed in a Galaxy server for use in workflows. Mimoza views can be embedded in web pages, or downloaded as COMBINE archives.

  9. HOLA: Human-like Orthogonal Network Layout.

    Science.gov (United States)

    Kieffer, Steve; Dwyer, Tim; Marriott, Kim; Wybrow, Michael

    2016-01-01

    Over the last 50 years a wide variety of automatic network layout algorithms have been developed. Some are fast heuristic techniques suitable for networks with hundreds of thousands of nodes while others are multi-stage frameworks for higher-quality layout of smaller networks. However, despite decades of research currently no algorithm produces layout of comparable quality to that of a human. We give a new "human-centred" methodology for automatic network layout algorithm design that is intended to overcome this deficiency. User studies are first used to identify the aesthetic criteria algorithms should encode, then an algorithm is developed that is informed by these criteria and finally, a follow-up study evaluates the algorithm output. We have used this new methodology to develop an automatic orthogonal network layout method, HOLA, that achieves measurably better (by user study) layout than the best available orthogonal layout algorithm and which produces layouts of comparable quality to those produced by hand.

  10. Centralized Networks to Generate Human Body Motions.

    Science.gov (United States)

    Vakulenko, Sergei; Radulescu, Ovidiu; Morozov, Ivan; Weber, Andres

    2017-12-14

    We consider continuous-time recurrent neural networks as dynamical models for the simulation of human body motions. These networks consist of a few centers and many satellites connected to them. The centers evolve in time as periodical oscillators with different frequencies. The center states define the satellite neurons' states by a radial basis function (RBF) network. To simulate different motions, we adjust the parameters of the RBF networks. Our network includes a switching module that allows for turning from one motion to another. Simulations show that this model allows us to simulate complicated motions consisting of many different dynamical primitives. We also use the model for learning human body motion from markers' trajectories. We find that center frequencies can be learned from a small number of markers and can be transferred to other markers, such that our technique seems to be capable of correcting for missing information resulting from sparse control marker settings.

  11. Genome-scale reconstruction of the Streptococcus pyogenes M49 metabolic network reveals growth requirements and indicates potential drug targets

    NARCIS (Netherlands)

    Levering, J.; Fiedler, T.; Sieg, A.; van Grinsven, K.W.A.; Hering, S.; Veith, N.; Olivier, B.G.; Klett, L.; Hugenholtz, J.; Teusink, B.; Kreikemeyer, B.; Kummer, U.

    2016-01-01

    Genome-scale metabolic models comprise stoichiometric relations between metabolites, as well as associations between genes and metabolic reactions and facilitate the analysis of metabolism. We computationally reconstructed the metabolic network of the lactic acid bacterium Streptococcus pyogenes

  12. EDUCATIONAL NETWORKING: HUMAN VIEW TO CYBER DEFENSE

    Directory of Open Access Journals (Sweden)

    Oleksandr Yu. Burov

    2016-05-01

    Full Text Available Networks play more and more important role for human life and activity, both in critical occupations (aviation, power industry, military missions etc., and in everyday life (home computers, education, leisure. Interaction between human and other elements of human-machine system have changed, because they coincide in the information habitat. Human-system integration has reached new level of defense needs. The paper will introduce features of information society in respect of a human and corresponding changes in HF/E: (1 information becomes a tool, goal, mean and environment of a human activity, (2 it becomes a part of the human nature and this makes him/her unprotected, (3 human psycho-physiological status becomes not only a basis of effective performance, but an object of control and support, and means of a human security and safety should be a part of information habitat, (4 networking environment becomes an independent actor in a human activity. Accompanying cyber-security challenges and tasks are discussed, as well as types of networking threats and Human View regarding the cyber security challenges.

  13. Systems biology from micro-organisms to human metabolic diseases: the role of detailed kinetic models.

    Science.gov (United States)

    Bakker, Barbara M; van Eunen, Karen; Jeneson, Jeroen A L; van Riel, Natal A W; Bruggeman, Frank J; Teusink, Bas

    2010-10-01

    Human metabolic diseases are typically network diseases. This holds not only for multifactorial diseases, such as metabolic syndrome or Type 2 diabetes, but even when a single gene defect is the primary cause, where the adaptive response of the entire network determines the severity of disease. The latter may differ between individuals carrying the same mutation. Understanding the adaptive responses of human metabolism naturally requires a systems biology approach. Modelling of metabolic pathways in micro-organisms and some mammalian tissues has yielded many insights, qualitative as well as quantitative, into their control and regulation. Yet, even for a well-known pathway such as glycolysis, precise predictions of metabolite dynamics from experimentally determined enzyme kinetics have been only moderately successful. In the present review, we compare kinetic models of glycolysis in three cell types (African trypanosomes, yeast and skeletal muscle), evaluate their predictive power and identify limitations in our understanding. Although each of these models has its own merits and shortcomings, they also share common features. For example, in each case independently measured enzyme kinetic parameters were used as input. Based on these 'lessons from glycolysis', we will discuss how to make best use of kinetic computer models to advance our understanding of human metabolic diseases.

  14. Metabolic heat production by human and animal populations in cities

    Science.gov (United States)

    Stewart, Iain D.; Kennedy, Chris A.

    2017-07-01

    Anthropogenic heating from building energy use, vehicle fuel consumption, and human metabolism is a key term in the urban energy budget equation. Heating from human metabolism, however, is often excluded from urban energy budgets because it is widely observed to be negligible. Few reports for low-latitude cities are available to support this observation, and no reports exist on the contribution of domestic animals to urban heat budgets. To provide a more comprehensive view of metabolic heating in cities, we quantified all terms of the anthropogenic heat budget at metropolitan scale for the world's 26 largest cities, using a top-down statistical approach. Results show that metabolic heat release from human populations in mid-latitude cities (e.g. London, Tokyo, New York) accounts for 4-8% of annual anthropogenic heating, compared to 10-45% in high-density tropical cities (e.g. Cairo, Dhaka, Kolkata). Heat release from animal populations amounts to <1% of anthropogenic heating in all cities. Heat flux density from human and animal metabolism combined is highest in Mumbai—the world's most densely populated megacity—at 6.5 W m-2, surpassing heat production by electricity use in buildings (5.8 W m-2) and fuel combustion in vehicles (3.9 W m-2). These findings, along with recent output from global climate models, suggest that in the world's largest and most crowded cities, heat emissions from human metabolism alone can force measurable change in mean annual temperature at regional scale.

  15. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis

    Directory of Open Access Journals (Sweden)

    Huthmacher Carola

    2010-08-01

    Full Text Available Abstract Background Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed. Results Here, we present a computational analysis of the metabolism of Plasmodium falciparum, the deadliest malaria pathogen. We assembled a compartmentalized metabolic model and predicted life cycle stage specific metabolism with the help of a flux balance approach that integrates gene expression data. Predicted metabolite exchanges between parasite and host were found to be in good accordance with experimental findings when the parasite's metabolic network was embedded into that of its host (erythrocyte. Knock-out simulations identified 307 indispensable metabolic reactions within the parasite. 35 out of 57 experimentally demonstrated essential enzymes were recovered and another 16 enzymes, if additionally the assumption was made that nutrient uptake from the host cell is limited and all reactions catalyzed by the inhibited enzyme are blocked. This predicted set of putative drug targets, shown to be enriched with true targets by a factor of at least 2.75, was further analyzed with respect to homology to human enzymes, functional similarity to therapeutic targets in other organisms and their predicted potency for prophylaxis and disease treatment. Conclusions The results suggest that the set of essential enzymes predicted by our flux balance approach represents a promising starting point for further drug development.

  16. Exploring photosynthesis evolution by comparative analysis of metabolic networks between chloroplasts and photosynthetic bacteria

    Directory of Open Access Journals (Sweden)

    Hou Jing

    2006-04-01

    Full Text Available Abstract Background Chloroplasts descended from cyanobacteria and have a drastically reduced genome following an endosymbiotic event. Many genes of the ancestral cyanobacterial genome have been transferred to the plant nuclear genome by horizontal gene transfer. However, a selective set of metabolism pathways is maintained in chloroplasts using both chloroplast genome encoded and nuclear genome encoded enzymes. As an organelle specialized for carrying out photosynthesis, does the chloroplast metabolic network have properties adapted for higher efficiency of photosynthesis? We compared metabolic network properties of chloroplasts and prokaryotic photosynthetic organisms, mostly cyanobacteria, based on metabolic maps derived from genome data to identify features of chloroplast network properties that are different from cyanobacteria and to analyze possible functional significance of those features. Results The properties of the entire metabolic network and the sub-network that consists of reactions directly connected to the Calvin Cycle have been analyzed using hypergraph representation. Results showed that the whole metabolic networks in chloroplast and cyanobacteria both possess small-world network properties. Although the number of compounds and reactions in chloroplasts is less than that in cyanobacteria, the chloroplast's metabolic network has longer average path length, a larger diameter, and is Calvin Cycle -centered, indicating an overall less-dense network structure with specific and local high density areas in chloroplasts. Moreover, chloroplast metabolic network exhibits a better modular organization than cyanobacterial ones. Enzymes involved in the same metabolic processes tend to cluster into the same module in chloroplasts. Conclusion In summary, the differences in metabolic network properties may reflect the evolutionary changes during endosymbiosis that led to the improvement of the photosynthesis efficiency in higher plants. Our

  17. Metabolic Modeling of Common Escherichia coli Strains in Human Gut Microbiome

    Directory of Open Access Journals (Sweden)

    Yue-Dong Gao

    2014-01-01

    Full Text Available The recent high-throughput sequencing has enabled the composition of Escherichia coli strains in the human microbial community to be profiled en masse. However, there are two challenges to address: (1 exploring the genetic differences between E. coli strains in human gut and (2 dynamic responses of E. coli to diverse stress conditions. As a result, we investigated the E. coli strains in human gut microbiome using deep sequencing data and reconstructed genome-wide metabolic networks for the three most common E. coli strains, including E. coli HS, UTI89, and CFT073. The metabolic models show obvious strain-specific characteristics, both in network contents and in behaviors. We predicted optimal biomass production for three models on four different carbon sources (acetate, ethanol, glucose, and succinate and found that these stress-associated genes were involved in host-microbial interactions and increased in human obesity. Besides, it shows that the growth rates are similar among the models, but the flux distributions are different, even in E. coli core reactions. The correlations between human diabetes-associated metabolic reactions in the E. coli models were also predicted. The study provides a systems perspective on E. coli strains in human gut microbiome and will be helpful in integrating diverse data sources in the following study.

  18. A state of the art of metabolic networks of unicellular microalgae and cyanobacteria for biofuel production.

    Science.gov (United States)

    Baroukh, Caroline; Muñoz-Tamayo, Rafael; Steyer, Jean-Philippe; Bernard, Olivier

    2015-07-01

    The most promising and yet challenging application of microalgae and cyanobacteria is the production of renewable energy: biodiesel from microalgae triacylglycerols and bioethanol from cyanobacteria carbohydrates. A thorough understanding of microalgal and cyanobacterial metabolism is necessary to master and optimize biofuel production yields. To this end, systems biology and metabolic modeling have proven to be very efficient tools if supported by an accurate knowledge of the metabolic network. However, unlike heterotrophic microorganisms that utilize the same substrate for energy and as carbon source, microalgae and cyanobacteria require light for energy and inorganic carbon (CO2 or bicarbonate) as carbon source. This double specificity, together with the complex mechanisms of light capture, makes the representation of metabolic network nonstandard. Here, we review the existing metabolic networks of photoautotrophic microalgae and cyanobacteria. We highlight how these networks have been useful for gaining insight on photoautotrophic metabolism. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  19. Heider balance in human networks

    Science.gov (United States)

    Gawroński, P.; Kułakowski, K.

    2005-07-01

    Recently, a continuous dynamics was proposed to simulate dynamics of interpersonal relations in a society represented by a fully connected graph. The final state of such a society was found to be identical with the so-called Heider balance (HB), where the society is divided into two mutually hostile groups. In the continuous model, a polarization of opinions was found in HB. Here we demonstrate that the polarization occurs also in Barabási-Albert networks, where the Heider balance is not necessarily present. In the second part of this work we demonstrate the results of our formalism, when applied to reference examples: the Southern women and the Zachary club.

  20. Neural networks of human nature and nurture

    Directory of Open Access Journals (Sweden)

    Daniel S. Levine

    2009-11-01

    Full Text Available Neural network methods have facilitated the unification of several unfortunate splits in psychology, including nature versus nurture. We review the contributions of this methodology and then discuss tentative network theories of caring behavior, of uncaring behavior, and of how the frontal lobes are involved in the choices between them. The implications of our theory are optimistic about the prospects of society to encourage the human potential for caring.

  1. Energetics of glucose metabolism: a phenomenological approach to metabolic network modeling.

    Science.gov (United States)

    Diederichs, Frank

    2010-08-12

    A new formalism to describe metabolic fluxes as well as membrane transport processes was developed. The new flux equations are comparable to other phenomenological laws. Michaelis-Menten like expressions, as well as flux equations of nonequilibrium thermodynamics, can be regarded as special cases of these new equations. For metabolic network modeling, variable conductances and driving forces are required to enable pathway control and to allow a rapid response to perturbations. When applied to oxidative phosphorylation, results of simulations show that whole oxidative phosphorylation cannot be described as a two-flux-system according to nonequilibrium thermodynamics, although all coupled reactions per se fulfill the equations of this theory. Simulations show that activation of ATP-coupled load reactions plus glucose oxidation is brought about by an increase of only two different conductances: a [Ca(2+)] dependent increase of cytosolic load conductances, and an increase of phosphofructokinase conductance by [AMP], which in turn becomes increased through [ADP] generation by those load reactions. In ventricular myocytes, this feedback mechanism is sufficient to increase cellular power output and O(2) consumption several fold, without any appreciable impairment of energetic parameters. Glucose oxidation proceeds near maximal power output, since transformed input and output conductances are nearly equal, yielding an efficiency of about 0.5. This conductance matching is fulfilled also by glucose oxidation of β-cells. But, as a price for the metabolic mechanism of glucose recognition, β-cells have only a limited capability to increase their power output.

  2. Signaling pathway networks mined from human pituitary adenoma proteomics data

    Directory of Open Access Journals (Sweden)

    Zhan Xianquan

    2010-04-01

    Full Text Available Abstract Background We obtained a series of pituitary adenoma proteomic expression data, including protein-mapping data (111 proteins, comparative proteomic data (56 differentially expressed proteins, and nitroproteomic data (17 nitroproteins. There is a pressing need to clarify the significant signaling pathway networks that derive from those proteins in order to clarify and to better understand the molecular basis of pituitary adenoma pathogenesis and to discover biomarkers. Here, we describe the significant signaling pathway networks that were mined from human pituitary adenoma proteomic data with the Ingenuity pathway analysis system. Methods The Ingenuity pathway analysis system was used to analyze signal pathway networks and canonical pathways from protein-mapping data, comparative proteomic data, adenoma nitroproteomic data, and control nitroproteomic data. A Fisher's exact test was used to test the statistical significance with a significance level of 0.05. Statistical significant results were rationalized within the pituitary adenoma biological system with literature-based bioinformatics analyses. Results For the protein-mapping data, the top pathway networks were related to cancer, cell death, and lipid metabolism; the top canonical toxicity pathways included acute-phase response, oxidative-stress response, oxidative stress, and cell-cycle G2/M transition regulation. For the comparative proteomic data, top pathway networks were related to cancer, endocrine system development and function, and lipid metabolism; the top canonical toxicity pathways included mitochondrial dysfunction, oxidative phosphorylation, oxidative-stress response, and ERK/MAPK signaling. The nitroproteomic data from a pituitary adenoma were related to cancer, cell death, lipid metabolism, and reproductive system disease, and the top canonical toxicity pathways mainly related to p38 MAPK signaling and cell-cycle G2/M transition regulation. Nitroproteins from a

  3. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ~40 and ~1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed......Interleukin (IL)-6 is chronically elevated in type 2 diabetes but also during exercise. However, the exact metabolic role, and hence the physiological significance, has not been elucidated. The objective of this study was to investigate the in vivo effect of recombinant human (rh) IL-6 on human fat...... before, during, and 2 h after cessation of the infusion. Glucose metabolism was unaffected by rhIL-6. In contrast, rhIL-6 increased systemic fatty acid oxidation approximately twofold after 60 min, and it remained elevated even 2 h after the infusion. The increase in oxidation was followed by an increase...

  4. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ∼40 and ∼1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed......Interleukin (IL)-6 is chronically elevated in type 2 diabetes but also during exercise. However, the exact metabolic role, and hence the physiological significance, has not been elucidated. The objective of this study was to investigate the in vivo effect of recombinant human (rh) IL-6 on human fat...... before, during, and 2 h after cessation of the infusion. Glucose metabolism was unaffected by rhIL-6. In contrast, rhIL-6 increased systemic fatty acid oxidation approximately twofold after 60 min, and it remained elevated even 2 h after the infusion. The increase in oxidation was followed by an increase...

  5. Integrating Data and Networks: Human Factors

    Science.gov (United States)

    Chen, R. S.

    2012-12-01

    The development of technical linkages and interoperability between scientific networks is a necessary but not sufficient step towards integrated use and application of networked data and information for scientific and societal benefit. A range of "human factors" must also be addressed to ensure the long-term integration, sustainability, and utility of both the interoperable networks themselves and the scientific data and information to which they provide access. These human factors encompass the behavior of both individual humans and human institutions, and include system governance, a common framework for intellectual property rights and data sharing, consensus on terminology, metadata, and quality control processes, agreement on key system metrics and milestones, the compatibility of "business models" in the short and long term, harmonization of incentives for cooperation, and minimization of disincentives. Experience with several national and international initiatives and research programs such as the International Polar Year, the Group on Earth Observations, the NASA Earth Observing Data and Information System, the U.S. National Spatial Data Infrastructure, the Global Earthquake Model, and the United Nations Spatial Data Infrastructure provide a range of lessons regarding these human factors. Ongoing changes in science, technology, institutions, relationships, and even culture are creating both opportunities and challenges for expanded interoperability of scientific networks and significant improvement in data integration to advance science and the use of scientific data and information to achieve benefits for society as a whole.

  6. Integration of genome-scale metabolic networks into whole-body PBPK models shows phenotype-specific cases of drug-induced metabolic perturbation.

    Science.gov (United States)

    Cordes, Henrik; Thiel, Christoph; Baier, Vanessa; Blank, Lars M; Kuepfer, Lars

    2018-01-01

    Drug-induced perturbations of the endogenous metabolic network are a potential root cause of cellular toxicity. A mechanistic understanding of such unwanted side effects during drug therapy is therefore vital for patient safety. The comprehensive assessment of such drug-induced injuries requires the simultaneous consideration of both drug exposure at the whole-body and resulting biochemical responses at the cellular level. We here present a computational multi-scale workflow that combines whole-body physiologically based pharmacokinetic (PBPK) models and organ-specific genome-scale metabolic network (GSMN) models through shared reactions of the xenobiotic metabolism. The applicability of the proposed workflow is illustrated for isoniazid, a first-line antibacterial agent against Mycobacterium tuberculosis , which is known to cause idiosyncratic drug-induced liver injuries (DILI). We combined GSMN models of a human liver with N-acetyl transferase 2 (NAT2)-phenotype-specific PBPK models of isoniazid. The combined PBPK-GSMN models quantitatively describe isoniazid pharmacokinetics, as well as intracellular responses, and changes in the exometabolome in a human liver following isoniazid administration. Notably, intracellular and extracellular responses identified with the PBPK-GSMN models are in line with experimental and clinical findings. Moreover, the drug-induced metabolic perturbations are distributed and attenuated in the metabolic network in a phenotype-dependent manner. Our simulation results show that a simultaneous consideration of both drug pharmacokinetics at the whole-body and metabolism at the cellular level is mandatory to explain drug-induced injuries at the patient level. The proposed workflow extends our mechanistic understanding of the biochemistry underlying adverse events and may be used to prevent drug-induced injuries in the future.

  7. Xenobiotic metabolism in human skin and 3D human skin reconstructs: A review

    NARCIS (Netherlands)

    Gibbs, S.; Sandt, J.J.M. van de; Merk, H.F.; Lockley, D.J.; Pendlington, R.U.; Pease, C.K.

    2007-01-01

    In this review, we discuss and compare studies of xenobiotic metabolism in both human skin and 3D human skin reconstructs. In comparison to the liver, the skin is a less studied organ in terms of characterising metabolic capability. While the skin forms the major protective barrier to environmental

  8. Microbial diversity and metabolic networks in acid mine drainage habitats

    Directory of Open Access Journals (Sweden)

    Celia eMendez-Garcia

    2015-05-01

    Full Text Available Acid mine drainage (AMD emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in diversity driven by extreme conditions was reflected in several studies on the microbial populations inhabiting the various micro-environments present in such ecosystems. Early studies based on the physiology of the autochthonous microbiota and the growing success of omics technologies have enabled a better understanding of microbial ecology and function in low-pH mine outflows; however, complementary omics-derived data should be included to completely describe their microbial ecology. Furthermore, recent updates on the distribution of eukaryotes and ultra-micro-archaea demand their inclusion in the microbial characterisation of AMD systems. In this review, we present a complete overview of the bacterial, archaeal (including ultra-micro-archaeal and eukaryotic diversity in these ecosystems and include a thorough depiction of the metabolism and element cycling in AMD habitats. We also review different metabolic network structures at the organismal level, which is necessary to disentangle the role of each member of the AMD communities described thus far.

  9. A Bayesian approach to the evolution of metabolic networks on a phylogeny.

    Directory of Open Access Journals (Sweden)

    Aziz Mithani

    2010-08-01

    Full Text Available The availability of genomes of many closely related bacteria with diverse metabolic capabilities offers the possibility of tracing metabolic evolution on a phylogeny relating the genomes to understand the evolutionary processes and constraints that affect the evolution of metabolic networks. Using simple (independent loss/gain of reactions or complex (incorporating dependencies among reactions stochastic models of metabolic evolution, it is possible to study how metabolic networks evolve over time. Here, we describe a model that takes the reaction neighborhood into account when modeling metabolic evolution. The model also allows estimation of the strength of the neighborhood effect during the course of evolution. We present Gibbs samplers for sampling networks at the internal node of a phylogeny and for estimating the parameters of evolution over a phylogeny without exploring the whole search space by iteratively sampling from the conditional distributions of the internal networks and parameters. The samplers are used to estimate the parameters of evolution of metabolic networks of bacteria in the genus Pseudomonas and to infer the metabolic networks of the ancestral pseudomonads. The results suggest that pathway maps that are conserved across the Pseudomonas phylogeny have a stronger neighborhood structure than those which have a variable distribution of reactions across the phylogeny, and that some Pseudomonas lineages are going through genome reduction resulting in the loss of a number of reactions from their metabolic networks.

  10. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology

    NARCIS (Netherlands)

    Herrgård, Markus J.; Swainston, Neil; Dobson, Paul; Dunn, Warwick B.; Arga, K. Yalçin; Arvas, Mikko; Blüthgen, Nils; Borger, Simon; Costenoble, Roeland; Heinemann, Matthias; Hucka, Michael; Novère, Nicolas Le; Li, Peter; Liebermeister, Wolfram; Mo, Monica L.; Oliveira, Ana Paula; Petranovic, Dina; Pettifer, Stephen; Simeonidis, Evangelos; Smallbone, Kieran; Spasić, Irena; Weichart, Dieter; Brent, Roger; Broomhead, David S.; Westerhoff, Hans V.; Kırdar, Betül; Penttilä, Merja; Klipp, Edda; Palsson, Bernhard Ø.; Sauer, Uwe; Oliver, Stephen G.; Mendes, Pedro; Nielsen, Jens; Kell, Douglas B.

    2008-01-01

    Genomic data allow the large-scale manual or semi-automated assembly of metabolic network reconstructions, which provide highly curated organism-specific knowledge bases. Although several genome-scale network reconstructions describe Saccharomyces cerevisiae metabolism, they differ in scope and

  11. Metabolic state alters economic decision making under risk in humans.

    Directory of Open Access Journals (Sweden)

    Mkael Symmonds

    2010-06-01

    Full Text Available Animals' attitudes to risk are profoundly influenced by metabolic state (hunger and baseline energy stores. Specifically, animals often express a preference for risky (more variable food sources when below a metabolic reference point (hungry, and safe (less variable food sources when sated. Circulating hormones report the status of energy reserves and acute nutrient intake to widespread targets in the central nervous system that regulate feeding behaviour, including brain regions strongly implicated in risk and reward based decision-making in humans. Despite this, physiological influences per se have not been considered previously to influence economic decisions in humans. We hypothesised that baseline metabolic reserves and alterations in metabolic state would systematically modulate decision-making and financial risk-taking in humans.We used a controlled feeding manipulation and assayed decision-making preferences across different metabolic states following a meal. To elicit risk-preference, we presented a sequence of 200 paired lotteries, subjects' task being to select their preferred option from each pair. We also measured prandial suppression of circulating acyl-ghrelin (a centrally-acting orexigenic hormone signalling acute nutrient intake, and circulating leptin levels (providing an assay of energy reserves. We show both immediate and delayed effects on risky decision-making following a meal, and that these changes correlate with an individual's baseline leptin and changes in acyl-ghrelin levels respectively.We show that human risk preferences are exquisitely sensitive to current metabolic state, in a direction consistent with ecological models of feeding behaviour but not predicted by normative economic theory. These substantive effects of state changes on economic decisions perhaps reflect shared evolutionarily conserved neurobiological mechanisms. We suggest that this sensitivity in human risk-preference to current metabolic state has

  12. Understanding specificity in metabolic pathways-Structural biology of human nucleotide metabolism

    International Nuclear Information System (INIS)

    Welin, Martin; Nordlund, Paer

    2010-01-01

    Interactions are the foundation of life at the molecular level. In the plethora of activities in the cell, the evolution of enzyme specificity requires the balancing of appropriate substrate affinity with a negative selection, in order to minimize interactions with other potential substrates in the cell. To understand the structural basis for enzyme specificity, the comparison of structural and biochemical data between enzymes within pathways using similar substrates and effectors is valuable. Nucleotide metabolism is one of the largest metabolic pathways in the human cell and is of outstanding therapeutic importance since it activates and catabolises nucleoside based anti-proliferative drugs and serves as a direct target for anti-proliferative drugs. In recent years the structural coverage of the enzymes involved in human nucleotide metabolism has been dramatically improved and is approaching completion. An important factor has been the contribution from the Structural Genomics Consortium (SGC) at Karolinska Institutet, which recently has solved 33 novel structures of enzymes and enzyme domains in human nucleotide metabolism pathways and homologs thereof. In this review we will discuss some of the principles for substrate specificity of enzymes in human nucleotide metabolism illustrated by a selected set of enzyme families where a detailed understanding of the structural determinants for specificity is now emerging.

  13. An architecture for human-network interfaces

    DEFF Research Database (Denmark)

    Sonnenwald, Diane H.

    1990-01-01

    Some of the issues (and their consequences) that arise when human-network interfaces (HNIs) are viewed from the perspective of people who use and develop them are examined. Target attributes of HNI architecture are presented. A high-level architecture model that supports the attributes is discussed...

  14. Genetic alterations affecting cholesterol metabolism and human fertility.

    Science.gov (United States)

    DeAngelis, Anthony M; Roy-O'Reilly, Meaghan; Rodriguez, Annabelle

    2014-11-01

    Single nucleotide polymorphisms (SNPs) represent genetic variations among individuals in a population. In medicine, these small variations in the DNA sequence may significantly impact an individual's response to certain drugs or influence the risk of developing certain diseases. In the field of reproductive medicine, a significant amount of research has been devoted to identifying polymorphisms which may impact steroidogenesis and fertility. This review discusses current understanding of the effects of genetic variations in cholesterol metabolic pathways on human fertility that bridge novel linkages between cholesterol metabolism and reproductive health. For example, the role of the low-density lipoprotein receptor (LDLR) in cellular metabolism and human reproduction has been well studied, whereas there is now an emerging body of research on the role of the high-density lipoprotein (HDL) receptor scavenger receptor class B type I (SR-BI) in human lipid metabolism and female reproduction. Identifying and understanding how polymorphisms in the SCARB1 gene or other genes related to lipid metabolism impact human physiology is essential and will play a major role in the development of personalized medicine for improved diagnosis and treatment of infertility. © 2014 by the Society for the Study of Reproduction, Inc.

  15. In silico prediction of xenobiotic metabolism in humans

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Fangping [Los Alamos National Laboratory

    2009-01-01

    Xenobiotic metabolism in humans is catalyzed by a few enzymes with broad substrate specificities, which provide the overall broad chemical specificity for nearly all xenobiotics that humans encounter. Xenobiotic metabolism are classified into functional group biotransformations. Based on bona fide reactions and negative examples for each reaction class, support vector machine (SVM) classifiers are built. The input to SVM is a set of atomic and molecular features to define the electrostatic, steric, energetic, geometrical and topological environment of the atoms in the reaction center under the molecule. Results show that the overall sensitivity and specificity of classifiers is around 87%.

  16. Coordinations between gene modules control the operation of plant amino acid metabolic networks

    Directory of Open Access Journals (Sweden)

    Galili Gad

    2009-01-01

    Full Text Available Abstract Background Being sessile organisms, plants should adjust their metabolism to dynamic changes in their environment. Such adjustments need particular coordination in branched metabolic networks in which a given metabolite can be converted into multiple other metabolites via different enzymatic chains. In the present report, we developed a novel "Gene Coordination" bioinformatics approach and use it to elucidate adjustable transcriptional interactions of two branched amino acid metabolic networks in plants in response to environmental stresses, using publicly available microarray results. Results Using our "Gene Coordination" approach, we have identified in Arabidopsis plants two oppositely regulated groups of "highly coordinated" genes within the branched Asp-family network of Arabidopsis plants, which metabolizes the amino acids Lys, Met, Thr, Ile and Gly, as well as a single group of "highly coordinated" genes within the branched aromatic amino acid metabolic network, which metabolizes the amino acids Trp, Phe and Tyr. These genes possess highly coordinated adjustable negative and positive expression responses to various stress cues, which apparently regulate adjustable metabolic shifts between competing branches of these networks. We also provide evidence implying that these highly coordinated genes are central to impose intra- and inter-network interactions between the Asp-family and aromatic amino acid metabolic networks as well as differential system interactions with other growth promoting and stress-associated genome-wide genes. Conclusion Our novel Gene Coordination elucidates that branched amino acid metabolic networks in plants are regulated by specific groups of highly coordinated genes that possess adjustable intra-network, inter-network and genome-wide transcriptional interactions. We also hypothesize that such transcriptional interactions enable regulatory metabolic adjustments needed for adaptation to the stresses.

  17. Small-worldness and gender differences of large scale brain metabolic covariance networks in young adults: a FDG PET study of 400 subjects.

    Science.gov (United States)

    Hu, Yuxiao; Xu, Qiang; Shen, Junkang; Li, Kai; Zhu, Hong; Zhang, Zhiqiang; Lu, Guangming

    2015-02-01

    Many studies have demonstrated the small-worldness of the human brain, and have revealed a sexual dimorphism in brain network properties. However, little is known about the gender effects on the topological organization of the brain metabolic covariance networks. To investigate the small-worldness and the gender differences in the topological architectures of human brain metabolic networks. FDG-PET data of 400 healthy right-handed subjects (200 women and 200 age-matched men) were involved in the present study. Metabolic networks of each gender were constructed by calculating the covariance of regional cerebral glucose metabolism (rCMglc) across subjects on the basis of AAL parcellation. Gender differences of network and nodal properties were investigated by using the graph theoretical approaches. Moreover, the gender-related difference of rCMglc in each brain region was tested for investigating the relationships between the hub regions and the brain regions showing significant gender-related differences in rCMglc. We found prominent small-world properties in the domain of metabolic networks in each gender. No significant gender difference in the global characteristics was found. Gender differences of nodal characteristic were observed in a few brain regions. We also found bilateral and lateralized distributions of network hubs in the females and males. Furthermore, we first reported that some hubs of a gender located in the brain regions showing weaker rCMglc in this gender than the other gender. The present study demonstrated that small-worldness was existed in metabolic networks, and revealed gender differences of organizational patterns in metabolic network. These results maybe provided insights into the understanding of the metabolic substrates underlying individual differences in cognition and behaviors. © The Foundation Acta Radiologica 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  18. Cranberry juice suppressed the diclofenac metabolism by human liver microsomes, but not in healthy human subjects

    Science.gov (United States)

    Ushijima, Kentarou; Tsuruoka, Shu-ichi; Tsuda, Hidetoshi; Hasegawa, Gohki; Obi, Yuri; Kaneda, Tae; Takahashi, Masaki; Maekawa, Tomohiro; Sasaki, Tomohiro; Koshimizu, Taka-aki; Fujimura, Akio

    2009-01-01

    AIM To investigate a potential interaction between cranberry juice and diclofenac, a substrate of CYP2C9. METHODS The inhibitory effect of cranberry juice on diclofenac metabolism was determined using human liver microsome assay. Subsequently, we performed a clinical trial in healthy human subjects to determine whether the repeated consumption of cranberry juice changed the diclofenac pharmacokinetics. RESULTS Cranberry juice significantly suppressed diclofenac metabolism by human liver microsomes. On the other hand, repeated consumption of cranberry juice did not influence the diclofenac pharmacokinetics in human subjects. CONCLUSIONS Cranberry juice inhibited diclofenac metabolism by human liver microsomes, but not in human subjects. Based on the present and previous findings, we think that although cranberry juice inhibits CYP2C9 activity in vitro, it does not change the pharmacokinetics of medications metabolized by CYP2C9 in clinical situations. PMID:19694738

  19. Metabolism of lipoproteins by human fetal hepatocytes

    International Nuclear Information System (INIS)

    Carr, B.R.

    1987-01-01

    The rate of clearance of lipoproteins from plasma appears to play a role in the development of atherogenesis. The liver may account for as much as two thirds of the removal of low-density lipoprotein and one third of the clearance of high-density lipoprotein in certain animal species and humans, mainly by receptor-mediated pathways. The purpose of the present investigation was to determine if human fetal hepatocytes maintained in vitro take up and degrade lipoproteins. We first determined that the maximal binding capacity of iodine 125-iodo-LDL was approximately 300 ng of low-density lipoprotein protein/mg of membrane protein and an apparent dissociation constant of approximately 60 micrograms low-density lipoprotein protein/ml in membranes prepared from human fetal liver. We found that the maximal uptake of [ 125 I]iodo-LDL and [ 125 I]iodo-HDL by fetal hepatocytes occurred after 12 hours of incubation. Low-density lipoprotein uptake preceded the appearance of degradation products by 4 hours, and thereafter the degradation of low-density lipoprotein increased linearly for at least 24 hours. In contrast, high-density lipoprotein was not degraded to any extent by fetal hepatocytes. [ 125 I]Iodo-LDL uptake and degradation were inhibited more than 75% by preincubation with low-density lipoprotein but not significantly by high-density lipoprotein, whereas [ 125 I]iodo-HDL uptake was inhibited 70% by preincubation with high-density lipoprotein but not by low-density lipoprotein. In summary, human fetal hepatocytes take up and degrade low-density lipoprotein by a receptor-mediated process similar to that described for human extrahepatic tissues

  20. Metabolic heat production by human and animal populations in cities.

    Science.gov (United States)

    Stewart, Iain D; Kennedy, Chris A

    2017-07-01

    Anthropogenic heating from building energy use, vehicle fuel consumption, and human metabolism is a key term in the urban energy budget equation. Heating from human metabolism, however, is often excluded from urban energy budgets because it is widely observed to be negligible. Few reports for low-latitude cities are available to support this observation, and no reports exist on the contribution of domestic animals to urban heat budgets. To provide a more comprehensive view of metabolic heating in cities, we quantified all terms of the anthropogenic heat budget at metropolitan scale for the world's 26 largest cities, using a top-down statistical approach. Results show that metabolic heat release from human populations in mid-latitude cities (e.g. London, Tokyo, New York) accounts for 4-8% of annual anthropogenic heating, compared to 10-45% in high-density tropical cities (e.g. Cairo, Dhaka, Kolkata). Heat release from animal populations amounts to heating in all cities. Heat flux density from human and animal metabolism combined is highest in Mumbai-the world's most densely populated megacity-at 6.5 W m -2 , surpassing heat production by electricity use in buildings (5.8 W m -2 ) and fuel combustion in vehicles (3.9 W m -2 ). These findings, along with recent output from global climate models, suggest that in the world's largest and most crowded cities, heat emissions from human metabolism alone can force measurable change in mean annual temperature at regional scale.

  1. Human Cytomegalovirus: Coordinating Cellular Stress, Signaling, and Metabolic Pathways.

    Science.gov (United States)

    Shenk, Thomas; Alwine, James C

    2014-11-01

    Viruses face a multitude of challenges when they infect a host cell. Cells have evolved innate defenses to protect against pathogens, and an infecting virus may induce a stress response that antagonizes viral replication. Further, the metabolic, oxidative, and cell cycle state may not be conducive to the viral infection. But viruses are fabulous manipulators, inducing host cells to use their own characteristic mechanisms and pathways to provide what the virus needs. This article centers on the manipulation of host cell metabolism by human cytomegalovirus (HCMV). We review the features of the metabolic program instituted by the virus, discuss the mechanisms underlying these dramatic metabolic changes, and consider how the altered program creates a synthetic milieu that favors efficient HCMV replication and spread.

  2. APP Metabolism Regulates Tau Proteostasis in Human Cerebral Cortex Neurons

    Directory of Open Access Journals (Sweden)

    Steven Moore

    2015-05-01

    Full Text Available Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer’s disease (AD. To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons.

  3. Hierarchical modularity in human brain functional networks

    Directory of Open Access Journals (Sweden)

    David Meunier

    2009-10-01

    Full Text Available The idea that complex systems have a hierarchical modular organization originates in the early 1960s and has recently attracted fresh support from quantitative studies of large scale, real-life networks. Here we investigate the hierarchical modular (or “modules-within-modules” decomposition of human brain functional networks, measured using functional magnetic resonance imaging (fMRI in 18 healthy volunteers under no-task or resting conditions. We used a customized template to extract networks with more than 1800 regional nodes, and we applied a fast algorithm to identify nested modular structure at several hierarchical levels. We used mutual information, 0 < I < 1, to estimate the similarity of community structure of networks in different subjects, and to identify the individual network that is most representative of the group. Results show that human brain functional networks have a hierarchical modular organization with a fair degree of similarity between subjects, I=0.63. The largest 5 modules at the highest level of the hierarchy were medial occipital, lateral occipital, central, parieto-frontal and fronto-temporal systems; occipital modules demonstrated less sub-modular organization than modules comprising regions of multimodal association cortex. Connector nodes and hubs, with a key role in inter-modular connectivity, were also concentrated in association cortical areas. We conclude that methods are available for hierarchical modular decomposition of large numbers of high resolution brain functional networks using computationally expedient algorithms. This could enable future investigations of Simon's original hypothesis that hierarchy or near-decomposability of physical symbol systems is a critical design feature for their fast adaptivity to changing environmental conditions.

  4. TXNIP regulates peripheral glucose metabolism in humans

    DEFF Research Database (Denmark)

    Parikh, Hemang; Carlsson, Emma; Chutkow, William A

    2007-01-01

    combined human insulin/glucose clamp physiological studies with genome-wide expression profiling to identify thioredoxin interacting protein (TXNIP) as a gene whose expression is powerfully suppressed by insulin yet stimulated by glucose. In healthy individuals, its expression was inversely correlated...... expression is consistently elevated in the muscle of prediabetics and diabetics, although in a panel of 4,450 Scandinavian individuals, we found no evidence for association between common genetic variation in the TXNIP gene and T2DM. CONCLUSIONS: TXNIP regulates both insulin-dependent and insulin......-independent pathways of glucose uptake in human skeletal muscle. Combined with recent studies that have implicated TXNIP in pancreatic beta-cell glucose toxicity, our data suggest that TXNIP might play a key role in defective glucose homeostasis preceding overt T2DM....

  5. Comprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling

    Directory of Open Access Journals (Sweden)

    Sriram Chandrasekaran

    2017-12-01

    Full Text Available Summary: Metabolism is an emerging stem cell hallmark tied to cell fate, pluripotency, and self-renewal, yet systems-level understanding of stem cell metabolism has been limited by the lack of genome-scale network models. Here, we develop a systems approach to integrate time-course metabolomics data with a computational model of metabolism to analyze the metabolic state of naive and primed murine pluripotent stem cells. Using this approach, we find that one-carbon metabolism involving phosphoglycerate dehydrogenase, folate synthesis, and nucleotide synthesis is a key pathway that differs between the two states, resulting in differential sensitivity to anti-folates. The model also predicts that the pluripotency factor Lin28 regulates this one-carbon metabolic pathway, which we validate using metabolomics data from Lin28-deficient cells. Moreover, we identify and validate metabolic reactions related to S-adenosyl-methionine production that can differentially impact histone methylation in naive and primed cells. Our network-based approach provides a framework for characterizing metabolic changes influencing pluripotency and cell fate. : Chandrasekaran et al. use computational modeling, metabolomics, and metabolic inhibitors to discover metabolic differences between various pluripotent stem cell states and infer their impact on stem cell fate decisions. Keywords: systems biology, stem cell biology, metabolism, genome-scale modeling, pluripotency, histone methylation, naive (ground state, primed state, cell fate, metabolic network

  6. Absorption and metabolic fate of bioactive dietary benzoxazinoids in humans

    DEFF Research Database (Denmark)

    Adhikari, Khem B; Laursen, Bente B; Gregersen, Per L

    2013-01-01

    benzoxazinoids with abundant HBOA-Glc (219 nmol × μmol−1 of creatinine). The sulfate and glucuronide conjugates of 2-hydroxy-1,4-benzoxazin-3-one (HBOA) and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) were detected in plasma and urine, indicating substantial phase II metabolism. Direct absorption of lactam......Scope Benzoxazinoids, which are natural compounds recently identified in mature whole grain cereals and bakery products, have been suggested to have a range of pharmacological properties and health-protecting effects. There are no published reports concerned with the absorption and metabolism...... of bioactive benzoxazinoids in humans. Methods and results The absorption, metabolism, and excretion of ten different dietary benzoxazinoids were examined by LC-MS/MS by analyzing plasma and urine from 20 healthy human volunteers after daily intake of 143 μmol of total benzoxazinoids from rye bread and rye...

  7. Lipid metabolism in peroxisomes in relation to human disease

    NARCIS (Netherlands)

    Wanders, R. J.; Tager, J. M.

    1998-01-01

    Peroxisomes were long believed to play only a minor role in cellular metabolism but it is now clear that they catalyze a number of important functions. The importance of peroxisomes in humans is stressed by the existence of a group of genetic diseases in man in which one or more peroxisomal

  8. Human meniscal proteoglycan metabolism in long-term tissue culture

    NARCIS (Netherlands)

    Verbruggen, G.; Verdonk, R.; Veys, E. M.; van Daele, P.; de Smet, P.; van den Abbeele, K.; Claus, B.; Baeten, D.

    1996-01-01

    For the purpose of human meniscal allografting, menisci have been maintained viable in in vitro culture. The influence of long-term tissue culture on the extracellular matrix metabolism of the meniscus has been studied. Fetal calf serum (FCS) was used as a supplement for the growth factors necessary

  9. Discriminating response groups in metabolic and regulatory pathway networks.

    Science.gov (United States)

    Van Hemert, John L; Dickerson, Julie A

    2012-04-01

    Analysis of omics experiments generates lists of entities (genes, metabolites, etc.) selected based on specific behavior, such as changes in response to stress or other signals. Functional interpretation of these lists often uses category enrichment tests using functional annotations like Gene Ontology terms and pathway membership. This approach does not consider the connected structure of biochemical pathways or the causal directionality of events. The Omics Response Group (ORG) method, described in this work, interprets omics lists in the context of metabolic pathway and regulatory networks using a statistical model for flow within the networks. Statistical results for all response groups are visualized in a novel Pathway Flow plot. The statistical tests are based on the Erlang distribution model under the assumption of independent and identically Exponential-distributed random walk flows through pathways. As a proof of concept, we applied our method to an Escherichia coli transcriptomics dataset where we confirmed common knowledge of the E.coli transcriptional response to Lipid A deprivation. The main response is related to osmotic stress, and we were also able to detect novel responses that are supported by the literature. We also applied our method to an Arabidopsis thaliana expression dataset from an abscisic acid study. In both cases, conventional pathway enrichment tests detected nothing, while our approach discovered biological processes beyond the original studies. We created a prototype for an interactive ORG web tool at http://ecoserver.vrac.iastate.edu/pathwayflow (source code is available from https://subversion.vrac.iastate.edu/Subversion/jlv/public/jlv/pathwayflow). The prototype is described along with additional figures and tables in Supplementary Material. julied@iastate.edu Supplementary data are available at Bioinformatics online.

  10. Estimation of the number of extreme pathways for metabolic networks

    Directory of Open Access Journals (Sweden)

    Thiele Ines

    2007-09-01

    Full Text Available Abstract Background The set of extreme pathways (ExPa, {pi}, defines the convex basis vectors used for the mathematical characterization of the null space of the stoichiometric matrix for biochemical reaction networks. ExPa analysis has been used for a number of studies to determine properties of metabolic networks as well as to obtain insight into their physiological and functional states in silico. However, the number of ExPas, p = |{pi}|, grows with the size and complexity of the network being studied, and this poses a computational challenge. For this study, we investigated the relationship between the number of extreme pathways and simple network properties. Results We established an estimating function for the number of ExPas using these easily obtainable network measurements. In particular, it was found that log [p] had an exponential relationship with log⁡[∑i=1Rd−id+ici] MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacyGGSbaBcqGGVbWBcqGGNbWzdaWadaqaamaaqadabaGaemizaq2aaSbaaSqaaiabgkHiTmaaBaaameaacqWGPbqAaeqaaaWcbeaakiabdsgaKnaaBaaaleaacqGHRaWkdaWgaaadbaGaemyAaKgabeaaaSqabaGccqWGJbWydaWgaaWcbaGaemyAaKgabeaaaeaacqWGPbqAcqGH9aqpcqaIXaqmaeaacqWGsbGua0GaeyyeIuoaaOGaay5waiaaw2faaaaa@4414@, where R = |Reff| is the number of active reactions in a network, d−i MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGKbazdaWgaaWcbaGaeyOeI0YaaSbaaWqaaiabdMgaPbqabaaaleqaaaaa@30A9@ and d+i MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb

  11. Coordinated Expression of Phosphoinositide Metabolic Genes during Development and Aging of Human Dorsolateral Prefrontal Cortex.

    Directory of Open Access Journals (Sweden)

    Stanley I Rapoport

    Full Text Available Phosphoinositides, lipid-signaling molecules, participate in diverse brain processes within a wide metabolic cascade.Gene transcriptional networks coordinately regulate the phosphoinositide cascade during human brain Development and Aging.We used the public BrainCloud database for human dorsolateral prefrontal cortex to examine age-related expression levels of 49 phosphoinositide metabolic genes during Development (0 to 20+ years and Aging (21+ years.We identified three groups of partially overlapping genes in each of the two intervals, with similar intergroup correlations despite marked phenotypic differences between Aging and Development. In each interval, ITPKB, PLCD1, PIK3R3, ISYNA1, IMPA2, INPPL1, PI4KB, and AKT1 are in Group 1, PIK3CB, PTEN, PIK3CA, and IMPA1 in Group 2, and SACM1L, PI3KR4, INPP5A, SYNJ1, and PLCB1 in Group 3. Ten of the genes change expression nonlinearly during Development, suggesting involvement in rapidly changing neuronal, glial and myelination events. Correlated transcription for some gene pairs likely is facilitated by colocalization on the same chromosome band.Stable coordinated gene transcriptional networks regulate brain phosphoinositide metabolic pathways during human Development and Aging.

  12. Temporal stability in human interaction networks

    Science.gov (United States)

    Fabbri, Renato; Fabbri, Ricardo; Antunes, Deborah Christina; Pisani, Marilia Mello; de Oliveira, Osvaldo Novais

    2017-11-01

    This paper reports on stable (or invariant) properties of human interaction networks, with benchmarks derived from public email lists. Activity, recognized through messages sent, along time and topology were observed in snapshots in a timeline, and at different scales. Our analysis shows that activity is practically the same for all networks across timescales ranging from seconds to months. The principal components of the participants in the topological metrics space remain practically unchanged as different sets of messages are considered. The activity of participants follows the expected scale-free trace, thus yielding the hub, intermediary and peripheral classes of vertices by comparison against the Erdös-Rényi model. The relative sizes of these three sectors are essentially the same for all email lists and the same along time. Typically, 45% are peripheral vertices. Similar results for the distribution of participants in the three sectors and for the relative importance of the topological metrics were obtained for 12 additional networks from Facebook, Twitter and ParticipaBR. These properties are consistent with the literature and may be general for human interaction networks, which has important implications for establishing a typology of participants based on quantitative criteria.

  13. Computational solution to automatically map metabolite libraries in the context of genome scale metabolic networks

    Directory of Open Access Journals (Sweden)

    Benjamin eMerlet

    2016-02-01

    Full Text Available This article describes a generic programmatic method for mapping chemical compound libraries on organism-specific metabolic networks from various databases (KEGG, BioCyc and flat file formats (SBML and Matlab files. We show how this pipeline was successfully applied to decipher the coverage of chemical libraries set up by two metabolomics facilities MetaboHub (French National infrastructure for metabolomics and fluxomics and Glasgow Polyomics on the metabolic networks available in the MetExplore web server. The present generic protocol is designed to formalize and reduce the volume of information transfer between the library and the network database. Matching of metabolites between libraries and metabolic networks is based on InChIs or InChIKeys and therefore requires that these identifiers are specified in both libraries and networks.In addition to providing covering statistics, this pipeline also allows the visualization of mapping results in the context of metabolic networks.In order to achieve this goal we tackled issues on programmatic interaction between two servers, improvement of metabolite annotation in metabolic networks and automatic loading of a mapping in genome scale metabolic network analysis tool MetExplore. It is important to note that this mapping can also be performed on a single or a selection of organisms of interest and is thus not limited to large facilities.

  14. Co-regulation of metabolic genes is better explained by flux coupling than by network distance.

    Directory of Open Access Journals (Sweden)

    Richard A Notebaart

    2008-01-01

    Full Text Available To what extent can modes of gene regulation be explained by systems-level properties of metabolic networks? Prior studies on co-regulation of metabolic genes have mainly focused on graph-theoretical features of metabolic networks and demonstrated a decreasing level of co-expression with increasing network distance, a naïve, but widely used, topological index. Others have suggested that static graph representations can poorly capture dynamic functional associations, e.g., in the form of dependence of metabolic fluxes across genes in the network. Here, we systematically tested the relative importance of metabolic flux coupling and network position on gene co-regulation, using a genome-scale metabolic model of Escherichia coli. After validating the computational method with empirical data on flux correlations, we confirm that genes coupled by their enzymatic fluxes not only show similar expression patterns, but also share transcriptional regulators and frequently reside in the same operon. In contrast, we demonstrate that network distance per se has relatively minor influence on gene co-regulation. Moreover, the type of flux coupling can explain refined properties of the regulatory network that are ignored by simple graph-theoretical indices. Our results underline the importance of studying functional states of cellular networks to define physiologically relevant associations between genes and should stimulate future developments of novel functional genomic tools.

  15. A Computational Solution to Automatically Map Metabolite Libraries in the Context of Genome Scale Metabolic Networks.

    Science.gov (United States)

    Merlet, Benjamin; Paulhe, Nils; Vinson, Florence; Frainay, Clément; Chazalviel, Maxime; Poupin, Nathalie; Gloaguen, Yoann; Giacomoni, Franck; Jourdan, Fabien

    2016-01-01

    This article describes a generic programmatic method for mapping chemical compound libraries on organism-specific metabolic networks from various databases (KEGG, BioCyc) and flat file formats (SBML and Matlab files). We show how this pipeline was successfully applied to decipher the coverage of chemical libraries set up by two metabolomics facilities MetaboHub (French National infrastructure for metabolomics and fluxomics) and Glasgow Polyomics (GP) on the metabolic networks available in the MetExplore web server. The present generic protocol is designed to formalize and reduce the volume of information transfer between the library and the network database. Matching of metabolites between libraries and metabolic networks is based on InChIs or InChIKeys and therefore requires that these identifiers are specified in both libraries and networks. In addition to providing covering statistics, this pipeline also allows the visualization of mapping results in the context of metabolic networks. In order to achieve this goal, we tackled issues on programmatic interaction between two servers, improvement of metabolite annotation in metabolic networks and automatic loading of a mapping in genome scale metabolic network analysis tool MetExplore. It is important to note that this mapping can also be performed on a single or a selection of organisms of interest and is thus not limited to large facilities.

  16. Effect of saccharin on metabolic cooperation between human fibroblasts

    International Nuclear Information System (INIS)

    Mosser, D.D.; Bols, N.C.

    1983-01-01

    Autoradiography was used to study the effect of saccharin on metabolic cooperation between human diploid fibroblasts. When the donors, HGPRT+ cells, and recipients, HGPRT- cells, were plated together in the presence of saccharin, all the interactions that developed in 4 and 24 h were positive for metabolic cooperation. When saccharin was added after donor cells and recipient cells had made contact, the proportion of interactions that were positive for metabolic cooperation was unchanged but the number of grains over primary recipients was reduced. However, in donor cells saccharin caused a reduction in [ 3 H]hypoxanthine incorporation into both acid-soluble and acid-insoluble fractions, although the relative distribution of radioactivity between these two fractions and between the phosphorylated and non-phosphorylated derivatives of [ 3 H]hypoxanthine was unchanged. Metabolic cooperation was studied under conditions in which the number of grains over the nuclei of both the primary recipient and the primary recipient's donor could be counted. The change in the number of grains over these two cell types in response to saccharin was compared and found to be the same. Thus in normal human fibroblasts saccharin does not appear to affect metabolic cooperation, which is a measure of cell-to-cell communication

  17. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    Directory of Open Access Journals (Sweden)

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  18. Application of chimeric mice with humanized liver for study of human-specific drug metabolism.

    Science.gov (United States)

    Bateman, Thomas J; Reddy, Vijay G B; Kakuni, Masakazu; Morikawa, Yoshio; Kumar, Sanjeev

    2014-06-01

    Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.

  19. In Vitro Drug Metabolism by Human Carboxylesterase 1

    DEFF Research Database (Denmark)

    Thomsen, Ragnar; Rasmussen, Henrik B; Linnet, Kristian

    2014-01-01

    Carboxylesterase 1 (CES1) is the major hydrolase in human liver. The enzyme is involved in the metabolism of several important therapeutic agents, drugs of abuse, and endogenous compounds. However, no studies have described the role of human CES1 in the activation of two commonly prescribed...... a panel of therapeutic drugs and drugs of abuse to assess their inhibition of the hydrolysis of p-nitrophenyl acetate by recombinant CES1 and human liver microsomes. The screening assay confirmed several known inhibitors of CES1 and identified two previously unreported inhibitors: the dihydropyridine...... calcium antagonist, isradipine, and the immunosuppressive agent, tacrolimus. CES1 plays a role in the metabolism of several drugs used in the treatment of common conditions, including hypertension, congestive heart failure, and diabetes mellitus; thus, there is a potential for clinically relevant drug-drug...

  20. Limited Influence of Oxygen on the Evolution of Chemical Diversity in Metabolic Networks

    Directory of Open Access Journals (Sweden)

    Kazuhiro Takemoto

    2013-10-01

    Full Text Available Oxygen is thought to promote species and biomolecule diversity. Previous studies have suggested that oxygen expands metabolic networks by acquiring metabolites with different chemical properties (higher hydrophobicity, for example. However, such conclusions are typically based on biased evaluation, and are therefore non-conclusive. Thus, we re-investigated the effect of oxygen on metabolic evolution using a phylogenetic comparative method and metadata analysis to reduce the bias as much as possible. Notably, we found no difference in metabolic network expansion between aerobes and anaerobes when evaluating phylogenetic relationships. Furthermore, we showed that previous studies have overestimated or underestimated the degrees of differences in the chemical properties (e.g., hydrophobicity between oxic and anoxic metabolites in metabolic networks of unicellular organisms; however, such overestimation was not observed when considering the metabolic networks of multicellular organisms. These findings indicate that the contribution of oxygen to increased chemical diversity in metabolic networks is lower than previously thought; rather, phylogenetic signals and cell-cell communication result in increased chemical diversity. However, this conclusion does not contradict the effect of oxygen on metabolic evolution; instead, it provides a deeper understanding of how oxygen contributes to metabolic evolution despite several limitations in data analysis methods.

  1. Metabolic Network Discovery by Top-Down and Bottom-Up Approaches and Paths for Reconciliation

    Energy Technology Data Exchange (ETDEWEB)

    Çakır, Tunahan, E-mail: tcakir@gyte.edu.tr [Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University (formerly known as Gebze Institute of Technology), Gebze (Turkey); Khatibipour, Mohammad Jafar [Computational Systems Biology Group, Department of Bioengineering, Gebze Technical University (formerly known as Gebze Institute of Technology), Gebze (Turkey); Department of Chemical Engineering, Gebze Technical University (formerly known as Gebze Institute of Technology), Gebze (Turkey)

    2014-12-03

    The primary focus in the network-centric analysis of cellular metabolism by systems biology approaches is to identify the active metabolic network for the condition of interest. Two major approaches are available for the discovery of the condition-specific metabolic networks. One approach starts from genome-scale metabolic networks, which cover all possible reactions known to occur in the related organism in a condition-independent manner, and applies methods such as the optimization-based Flux-Balance Analysis to elucidate the active network. The other approach starts from the condition-specific metabolome data, and processes the data with statistical or optimization-based methods to extract information content of the data such that the active network is inferred. These approaches, termed bottom-up and top-down, respectively, are currently employed independently. However, considering that both approaches have the same goal, they can both benefit from each other paving the way for the novel integrative analysis methods of metabolome data- and flux-analysis approaches in the post-genomic era. This study reviews the strengths of constraint-based analysis and network inference methods reported in the metabolic systems biology field; then elaborates on the potential paths to reconcile the two approaches to shed better light on how the metabolism functions.

  2. Metabolic Network Discovery by Top-Down and Bottom-Up Approaches and Paths for Reconciliation

    International Nuclear Information System (INIS)

    Çakır, Tunahan; Khatibipour, Mohammad Jafar

    2014-01-01

    The primary focus in the network-centric analysis of cellular metabolism by systems biology approaches is to identify the active metabolic network for the condition of interest. Two major approaches are available for the discovery of the condition-specific metabolic networks. One approach starts from genome-scale metabolic networks, which cover all possible reactions known to occur in the related organism in a condition-independent manner, and applies methods such as the optimization-based Flux-Balance Analysis to elucidate the active network. The other approach starts from the condition-specific metabolome data, and processes the data with statistical or optimization-based methods to extract information content of the data such that the active network is inferred. These approaches, termed bottom-up and top-down, respectively, are currently employed independently. However, considering that both approaches have the same goal, they can both benefit from each other paving the way for the novel integrative analysis methods of metabolome data- and flux-analysis approaches in the post-genomic era. This study reviews the strengths of constraint-based analysis and network inference methods reported in the metabolic systems biology field; then elaborates on the potential paths to reconcile the two approaches to shed better light on how the metabolism functions.

  3. Respiratory compensation to a primary metabolic alkalosis in humans.

    Science.gov (United States)

    Feldman, Mark; Alvarez, Naiara M; Trevino, Michael; Weinstein, Gary L

    2012-11-01

    There is limited and disparate information about the extent of the respiratory compensation (hypoventilation) that occurs in response to a primary metabolic alkalosis in humans. Our aim was to examine the influence of the plasma bicarbonate concentration, the plasma base excess, and the arterial pH on the arterial carbon dioxide tension in 52 adult patients with primary metabolic alkalosis, mostly due to diuretic use or vomiting. Linear regression analysis was used to correlate degrees of alkalosis with arterial carbon dioxide tensions. In this alkalotic cohort, whose arterial plasma bicarbonate averaged 31.6 mEq/l, plasma base excess averaged 7.8 mEq/l, and pH averaged 7.48, both plasma bicarbonate and base excess correlated closely with arterial carbon dioxide tensions (r = 0.97 and 0.96, respectively; p respiratory compensation (hypoventilation) to primary metabolic alkalosis than has been reported in prior smaller studies.

  4. Metabolic connectivity mapping reveals effective connectivity in the resting human brain.

    Science.gov (United States)

    Riedl, Valentin; Utz, Lukas; Castrillón, Gabriel; Grimmer, Timo; Rauschecker, Josef P; Ploner, Markus; Friston, Karl J; Drzezga, Alexander; Sorg, Christian

    2016-01-12

    Directionality of signaling among brain regions provides essential information about human cognition and disease states. Assessing such effective connectivity (EC) across brain states using functional magnetic resonance imaging (fMRI) alone has proven difficult, however. We propose a novel measure of EC, termed metabolic connectivity mapping (MCM), that integrates undirected functional connectivity (FC) with local energy metabolism from fMRI and positron emission tomography (PET) data acquired simultaneously. This method is based on the concept that most energy required for neuronal communication is consumed postsynaptically, i.e., at the target neurons. We investigated MCM and possible changes in EC within the physiological range using "eyes open" versus "eyes closed" conditions in healthy subjects. Independent of condition, MCM reliably detected stable and bidirectional communication between early and higher visual regions. Moreover, we found stable top-down signaling from a frontoparietal network including frontal eye fields. In contrast, we found additional top-down signaling from all major clusters of the salience network to early visual cortex only in the eyes open condition. MCM revealed consistent bidirectional and unidirectional signaling across the entire cortex, along with prominent changes in network interactions across two simple brain states. We propose MCM as a novel approach for inferring EC from neuronal energy metabolism that is ideally suited to study signaling hierarchies in the brain and their defects in brain disorders.

  5. Mechanistic modeling of aberrant energy metabolism in human disease

    Directory of Open Access Journals (Sweden)

    Vineet eSangar

    2012-10-01

    Full Text Available Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell.

  6. Gap-filling analysis of the iJO1366 Escherichia coli metabolic network reconstruction for discovery of metabolic functions

    Directory of Open Access Journals (Sweden)

    Orth Jeffrey D

    2012-05-01

    Full Text Available Abstract Background The iJO1366 reconstruction of the metabolic network of Escherichia coli is one of the most complete and accurate metabolic reconstructions available for any organism. Still, because our knowledge of even well-studied model organisms such as this one is incomplete, this network reconstruction contains gaps and possible errors. There are a total of 208 blocked metabolites in iJO1366, representing gaps in the network. Results A new model improvement workflow was developed to compare model based phenotypic predictions to experimental data to fill gaps and correct errors. A Keio Collection based dataset of E. coli gene essentiality was obtained from literature data and compared to model predictions. The SMILEY algorithm was then used to predict the most likely missing reactions in the reconstructed network, adding reactions from a KEGG based universal set of metabolic reactions. The feasibility of these putative reactions was determined by comparing updated versions of the model to the experimental dataset, and genes were predicted for the most feasible reactions. Conclusions Numerous improvements to the iJO1366 metabolic reconstruction were suggested by these analyses. Experiments were performed to verify several computational predictions, including a new mechanism for growth on myo-inositol. The other predictions made in this study should be experimentally verifiable by similar means. Validating all of the predictions made here represents a substantial but important undertaking.

  7. Impact of stoichiometry representation on simulation of genotype-phenotype relationships in metabolic networks

    DEFF Research Database (Denmark)

    Brochado, Ana Rita; Andrejev, Sergej; Maranas, Costas D.

    2012-01-01

    the formulation of the desired objective functions, by casting objective functions using metabolite turnovers rather than fluxes. By simulating perturbed metabolic networks, we demonstrate that the use of stoichiometry representation independent algorithms is fundamental for unambiguously linking modeling results...

  8. A review of metabolic potential of human gut microbiome in human nutrition.

    Science.gov (United States)

    Yadav, Monika; Verma, Manoj Kumar; Chauhan, Nar Singh

    2018-03-01

    The human gut contains a plethora of microbes, providing a platform for metabolic interaction between the host and microbiota. Metabolites produced by the gut microbiota act as a link between gut microbiota and its host. These metabolites act as messengers having the capacity to alter the gut microbiota. Recent advances in the characterization of the gut microbiota and its symbiotic relationship with the host have provided a platform to decode metabolic interactions. The human gut microbiota, a crucial component for dietary metabolism, is shaped by the genetic, epigenetic and dietary factors. The metabolic potential of gut microbiota explains its significance in host health and diseases. The knowledge of interactions between microbiota and host metabolism, as well as modification of microbial ecology, is really beneficial to have effective therapeutic treatments for many diet-related diseases in near future. This review cumulates the information to map the role of human gut microbiota in dietary component metabolism, the role of gut microbes derived metabolites in human health and host-microbe metabolic interactions in health and diseases.

  9. Structure of the human chromosome interaction network.

    Directory of Open Access Journals (Sweden)

    Sergio Sarnataro

    Full Text Available New Hi-C technologies have revealed that chromosomes have a complex network of spatial contacts in the cell nucleus of higher organisms, whose organisation is only partially understood. Here, we investigate the structure of such a network in human GM12878 cells, to derive a large scale picture of nuclear architecture. We find that the intensity of intra-chromosomal interactions is power-law distributed. Inter-chromosomal interactions are two orders of magnitude weaker and exponentially distributed, yet they are not randomly arranged along the genomic sequence. Intra-chromosomal contacts broadly occur between epigenomically homologous regions, whereas inter-chromosomal contacts are especially associated with regions rich in highly expressed genes. Overall, genomic contacts in the nucleus appear to be structured as a network of networks where a set of strongly individual chromosomal units, as envisaged in the 'chromosomal territory' scenario derived from microscopy, interact with each other via on average weaker, yet far from random and functionally important interactions.

  10. Assessing the Metabolic Effects of Aromatherapy in Human Volunteers

    Directory of Open Access Journals (Sweden)

    Yinan Zhang

    2013-01-01

    Full Text Available Aromatherapy, a form of complementary and alternative medicine (CAM that uses essential oils through inhalation, is believed to enhance physical and spiritual conditions. Although clinical studies suggest that the use of essential oils may have therapeutic potential, evidence for the efficacy of aromatherapy in treating medical conditions remains poor, with a particular lack of studies employing rigorous analytical methods that capture its identifiable impact on human biology. Here, we report a comprehensive metabolomics study that reveals metabolic changes in people after exposed to aroma inhalation for 10 continuous days. In this study, the metabolic alterations in urine of 31 females with mild anxiety symptoms exposed to aerial diffusion of aromas were measured by GC-TOF-MS and UPLC-Q-TOF-MS analyses. A significant alteration of metabolic profile in subjects responsive to essential oil was found, which is characterized by the increased levels of arginine, homocysteine, and betaine, as well as decreased levels of alcohols, carbohydrates, and organic acids in urine. Notably, the metabolites from tricarboxylic acid (TCA cycle and gut microbial metabolism were significantly altered. This study demonstrates that the metabolomics approach can capture the subtle metabolic changes resulting from exposure to essential oils, which may lead to an improved mechanistic understanding of aromatherapy.

  11. Metabolic interaction between toluene, trichloroethylene and n-hexane in humans

    DEFF Research Database (Denmark)

    Bælum, Jesper; Mølhave, Lars; Hansen, S H

    1998-01-01

    This human experimental study describes the mutual metabolic interaction between toluene, trichloroethylene, and n-hexane.......This human experimental study describes the mutual metabolic interaction between toluene, trichloroethylene, and n-hexane....

  12. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT

    OpenAIRE

    Choudhary, Kumari Sonal; Rohatgi, Neha; Halldorsson, Skarphedinn; Briem, Eirikur; Gudjonsson, Thorarinn; Gudmundsson, Steinn; Rolfsson, Ottar

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelli...

  13. Toward the automated generation of genome-scale metabolic networks in the SEED.

    Science.gov (United States)

    DeJongh, Matthew; Formsma, Kevin; Boillot, Paul; Gould, John; Rycenga, Matthew; Best, Aaron

    2007-04-26

    Current methods for the automated generation of genome-scale metabolic networks focus on genome annotation and preliminary biochemical reaction network assembly, but do not adequately address the process of identifying and filling gaps in the reaction network, and verifying that the network is suitable for systems level analysis. Thus, current methods are only sufficient for generating draft-quality networks, and refinement of the reaction network is still largely a manual, labor-intensive process. We have developed a method for generating genome-scale metabolic networks that produces substantially complete reaction networks, suitable for systems level analysis. Our method partitions the reaction space of central and intermediary metabolism into discrete, interconnected components that can be assembled and verified in isolation from each other, and then integrated and verified at the level of their interconnectivity. We have developed a database of components that are common across organisms, and have created tools for automatically assembling appropriate components for a particular organism based on the metabolic pathways encoded in the organism's genome. This focuses manual efforts on that portion of an organism's metabolism that is not yet represented in the database. We have demonstrated the efficacy of our method by reverse-engineering and automatically regenerating the reaction network from a published genome-scale metabolic model for Staphylococcus aureus. Additionally, we have verified that our method capitalizes on the database of common reaction network components created for S. aureus, by using these components to generate substantially complete reconstructions of the reaction networks from three other published metabolic models (Escherichia coli, Helicobacter pylori, and Lactococcus lactis). We have implemented our tools and database within the SEED, an open-source software environment for comparative genome annotation and analysis. Our method sets the

  14. Toward the automated generation of genome-scale metabolic networks in the SEED

    Directory of Open Access Journals (Sweden)

    Gould John

    2007-04-01

    Full Text Available Abstract Background Current methods for the automated generation of genome-scale metabolic networks focus on genome annotation and preliminary biochemical reaction network assembly, but do not adequately address the process of identifying and filling gaps in the reaction network, and verifying that the network is suitable for systems level analysis. Thus, current methods are only sufficient for generating draft-quality networks, and refinement of the reaction network is still largely a manual, labor-intensive process. Results We have developed a method for generating genome-scale metabolic networks that produces substantially complete reaction networks, suitable for systems level analysis. Our method partitions the reaction space of central and intermediary metabolism into discrete, interconnected components that can be assembled and verified in isolation from each other, and then integrated and verified at the level of their interconnectivity. We have developed a database of components that are common across organisms, and have created tools for automatically assembling appropriate components for a particular organism based on the metabolic pathways encoded in the organism's genome. This focuses manual efforts on that portion of an organism's metabolism that is not yet represented in the database. We have demonstrated the efficacy of our method by reverse-engineering and automatically regenerating the reaction network from a published genome-scale metabolic model for Staphylococcus aureus. Additionally, we have verified that our method capitalizes on the database of common reaction network components created for S. aureus, by using these components to generate substantially complete reconstructions of the reaction networks from three other published metabolic models (Escherichia coli, Helicobacter pylori, and Lactococcus lactis. We have implemented our tools and database within the SEED, an open-source software environment for comparative

  15. Genome-scale reconstruction of the Streptococcus pyogenes M49 metabolic network reveals growth requirements and indicates potential drug targets.

    Science.gov (United States)

    Levering, Jennifer; Fiedler, Tomas; Sieg, Antje; van Grinsven, Koen W A; Hering, Silvio; Veith, Nadine; Olivier, Brett G; Klett, Lara; Hugenholtz, Jeroen; Teusink, Bas; Kreikemeyer, Bernd; Kummer, Ursula

    2016-08-20

    Genome-scale metabolic models comprise stoichiometric relations between metabolites, as well as associations between genes and metabolic reactions and facilitate the analysis of metabolism. We computationally reconstructed the metabolic network of the lactic acid bacterium Streptococcus pyogenes M49. Initially, we based the reconstruction on genome annotations and already existing and curated metabolic networks of Bacillus subtilis, Escherichia coli, Lactobacillus plantarum and Lactococcus lactis. This initial draft was manually curated with the final reconstruction accounting for 480 genes associated with 576 reactions and 558 metabolites. In order to constrain the model further, we performed growth experiments of wild type and arcA deletion strains of S. pyogenes M49 in a chemically defined medium and calculated nutrient uptake and production fluxes. We additionally performed amino acid auxotrophy experiments to test the consistency of the model. The established genome-scale model can be used to understand the growth requirements of the human pathogen S. pyogenes and define optimal and suboptimal conditions, but also to describe differences and similarities between S. pyogenes and related lactic acid bacteria such as L. lactis in order to find strategies to reduce the growth of the pathogen and propose drug targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Multiple Substrate Usage of Coxiella burnetii to Feed a Bipartite Metabolic Network

    Directory of Open Access Journals (Sweden)

    Ina Häuslein

    2017-06-01

    Full Text Available The human pathogen Coxiella burnetii causes Q-fever and is classified as a category B bio-weapon. Exploiting the development of the axenic growth medium ACCM-2, we have now used 13C-labeling experiments and isotopolog profiling to investigate the highly diverse metabolic network of C. burnetii. To this aim, C. burnetii RSA 439 NMII was cultured in ACCM-2 containing 5 mM of either [U-13C3]serine, [U-13C6]glucose, or [U-13C3]glycerol until the late-logarithmic phase. GC/MS-based isotopolog profiling of protein-derived amino acids, methanol-soluble polar metabolites, fatty acids, and cell wall components (e.g., diaminopimelate and sugars from the labeled bacteria revealed differential incorporation rates and isotopolog profiles. These data served to decipher the diverse usages of the labeled substrates and the relative carbon fluxes into the core metabolism of the pathogen. Whereas, de novo biosynthesis from any of these substrates could not be found for histidine, isoleucine, leucine, lysine, phenylalanine, proline and valine, the other amino acids and metabolites under study acquired 13C-label at specific rates depending on the nature of the tracer compound. Glucose was directly used for cell wall biosynthesis, but was also converted into pyruvate (and its downstream metabolites through the glycolytic pathway or into erythrose 4-phosphate (e.g., for the biosynthesis of tyrosine via the non-oxidative pentose phosphate pathway. Glycerol efficiently served as a gluconeogenetic substrate and could also be used via phosphoenolpyruvate and diaminopimelate as a major carbon source for cell wall biosynthesis. In contrast, exogenous serine was mainly utilized in downstream metabolic processes, e.g., via acetyl-CoA in a complete citrate cycle with fluxes in the oxidative direction and as a carbon feed for fatty acid biosynthesis. In summary, the data reflect multiple and differential substrate usages by C. burnetii in a bipartite-type metabolic network

  17. Metabolic control of muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher

    2003-01-01

    that combined blockade of NOS and PGI2, and NOS and cytochrome P450, both attenuate exercise-induced hyperemia in humans. Combined vasodilator blockade studies offer the potential to uncover important interactions and compensatory vasodilator responses. The signaling pathways that link metabolic events evoked...... to exert control of muscle vasodilation. Adenosine, nitric oxide (NO), prostacyclin (PGI2), and endothelial-derived hyperpolarization factor (EDHF) are possible mediators of muscle vasodilation during exercise. In humans, adenosine has been shown to contribute to functional hyperemia as blood flow...... by muscle contraction to vasodilatory signals in the local vascular bed remains an important area of study....

  18. Reconstruction of genome-scale human metabolic models using omics data

    DEFF Research Database (Denmark)

    Ryu, Jae Yong; Kim, Hyun Uk; Lee, Sang Yup

    2015-01-01

    used to describe metabolic phenotypes of healthy and diseased human tissues and cells, and to predict therapeutic targets. Here we review recent trends in genome-scale human metabolic modeling, including various generic and tissue/cell type-specific human metabolic models developed to date, and methods......, databases and platforms used to construct them. For generic human metabolic models, we pay attention to Recon 2 and HMR 2.0 with emphasis on data sources used to construct them. Draft and high-quality tissue/cell type-specific human metabolic models have been generated using these generic human metabolic...... refined through gap filling, reaction directionality assignment and the subcellular localization of metabolic reactions. We review relevant tools for this model refinement procedure as well. Finally, we suggest the direction of further studies on reconstructing an improved human metabolic model....

  19. Structure versus time in the evolutionary diversification of avian carotenoid metabolic networks.

    Science.gov (United States)

    Morrison, Erin S; Badyaev, Alexander V

    2018-05-01

    Historical associations of genes and proteins are thought to delineate pathways available to subsequent evolution; however, the effects of past functional involvements on contemporary evolution are rarely quantified. Here, we examined the extent to which the structure of a carotenoid enzymatic network persists in avian evolution. Specifically, we tested whether the evolution of carotenoid networks was most concordant with phylogenetically structured expansion from core reactions of common ancestors or with subsampling of biochemical pathway modules from an ancestral network. We compared structural and historical associations in 467 carotenoid networks of extant and ancestral species and uncovered the overwhelming effect of pre-existing metabolic network structure on carotenoid diversification over the last 50 million years of avian evolution. Over evolutionary time, birds repeatedly subsampled and recombined conserved biochemical modules, which likely maintained the overall structure of the carotenoid metabolic network during avian evolution. These findings explain the recurrent convergence of evolutionary distant species in carotenoid metabolism and weak phylogenetic signal in avian carotenoid evolution. Remarkable retention of an ancient metabolic structure throughout extensive and prolonged ecological diversification in avian carotenoid metabolism illustrates a fundamental requirement of organismal evolution - historical continuity of a deterministic network that links past and present functional associations of its components. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  20. Systems biology of human metabolism - Defining the epithelial to mesenchymal transition and the activity of human gluconokinase

    OpenAIRE

    Rohatgi, Neha

    2016-01-01

    Studying human metabolism is crucial for the understanding of diseases and improvement of therapy as metabolic alterations are central to a number of human diseases. A variety of experimental disciplines, such as biochemistry, biophysics and systems biology are involved in the elucidation of metabolic pathways. The work presented in this thesis is divided into three main studies, which expand the knowledge of human metabolism using systems biology and biochemical techniques....

  1. Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae

    Science.gov (United States)

    Yong-Su Jin; Thomas W. Jeffries

    2004-01-01

    Metabolic pathway engineering is constrained by the thermodynamic and stoichiometric feasibility of enzymatic activities of introduced genes. Engineering of xylose metabolism in Saccharomyces cerevisiae has focused on introducing genes for the initial xylose assimilation steps from Pichia stipitis, a xylose-fermenting yeast, into S. cerevisiae, a yeast raditionally...

  2. Network dynamics of human face perception.

    Directory of Open Access Journals (Sweden)

    Cihan Mehmet Kadipasaoglu

    Full Text Available Prevailing theories suggests that cortical regions responsible for face perception operate in a serial, feed-forward fashion. Here, we utilize invasive human electrophysiology to evaluate serial models of face-processing via measurements of cortical activation, functional connectivity, and cortico-cortical evoked potentials. We find that task-dependent changes in functional connectivity between face-selective regions in the inferior occipital (f-IOG and fusiform gyrus (f-FG are bidirectional, not feed-forward, and emerge following feed-forward input from early visual cortex (EVC to both of these regions. Cortico-cortical evoked potentials similarly reveal independent signal propagations between EVC and both f-IOG and f-FG. These findings are incompatible with serial models, and support a parallel, distributed network underpinning face perception in humans.

  3. Optimality principles in the regulation of metabolic networks

    NARCIS (Netherlands)

    Berkhout, J.; Bruggeman, F.J.; Teusink, B.

    2012-01-01

    One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks

  4. The Importance of Transition Metals in the Expanding Network of Microbial Metabolism in the Archean Eon

    Science.gov (United States)

    Moore, E. K.; Jelen, B. I.; Giovannelli, D.; Prabhu, A.; Raanan, H.; Falkowski, P. G.

    2017-12-01

    Deep time changes in Earth surface redox conditions, particularly due to global oxygenation, has impacted the availability of different metals and substrates that are central in biology. Oxidoreductase proteins are molecular nanomachines responsible for all biological electron transfer processes across the tree of life. These enzymes largely contain transition metals in their active sites. Microbial metabolic pathways form a global network of electron transfer, which expanded throughout the Archean eon. Older metabolisms (sulfur reduction, methanogenesis, anoxygenic photosynthesis) accessed negative redox potentials, while later evolving metabolisms (oxygenic photosynthesis, nitrification/denitrification, aerobic respiration) accessed positive redox potentials. The incorporation of different transition metals facilitated biological innovation and the expansion of the network of microbial metabolism. Network analysis was used to examine the connections between microbial taxa, metabolic pathways, crucial metallocofactors, and substrates in deep time by incorporating biosignatures preserved in the geologic record. Nitrogen fixation and aerobic respiration have the highest level of betweenness among metabolisms in the network, indicating that the oldest metabolisms are not the most central. Fe has by far the highest betweenness among metals. Clustering analysis largely separates High Metal Bacteria (HMB), Low Metal Bacteria (LMB), and Archaea showing that simple un-weighted links between taxa, metabolism, and metals have phylogenetic relevance. On average HMB have the highest betweenness among taxa, followed by Archaea and LMB. There is a correlation between the number of metallocofactors and metabolic pathways in representative bacterial taxa, but Archaea do not follow this trend. In many cases older and more recently evolved metabolisms were clustered together supporting previous findings that proliferation of metabolic pathways is not necessarily chronological.

  5. APP metabolism regulates tau proteostasis in human cerebral cortex neurons.

    Science.gov (United States)

    Moore, Steven; Evans, Lewis D B; Andersson, Therese; Portelius, Erik; Smith, James; Dias, Tatyana B; Saurat, Nathalie; McGlade, Amelia; Kirwan, Peter; Blennow, Kaj; Hardy, John; Zetterberg, Henrik; Livesey, Frederick J

    2015-05-05

    Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer's disease (AD). To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Complex human mobility dynamics on a network

    International Nuclear Information System (INIS)

    Szell, M.

    2010-01-01

    Massive multiplayer online games provide a fascinating new way of observing hundreds of thousands of simultaneously interacting individuals engaged in virtual socio-economic activities. We have compiled a data set consisting of practically all actions of all players over a period of four years from an online game played by over 350,000 people. The universe of this online world is a lattice-like network on which players move in order to interact with other players. We focus on the mobility of human players on this network over a time-period of 500 days. We take a number of mobility measurements and compare them with measures of simulated random walkers on the same topology. Mobility of players is sub-diffusive - the mean squared displacement follows a power law with exponent 0.4 - and significantly deviates from mobility patterns of random walkers. Mean first passage times and transition counts relate via a power-law with slope -1/3. We compare our results with studies where human mobility was measured via mobile phone data and find striking similarities. (author)

  7. Dead end metabolites--defining the known unknowns of the E. coli metabolic network.

    Directory of Open Access Journals (Sweden)

    Amanda Mackie

    Full Text Available The EcoCyc database is an online scientific database which provides an integrated view of the metabolic and regulatory network of the bacterium Escherichia coli K-12 and facilitates computational exploration of this important model organism. We have analysed the occurrence of dead end metabolites within the database--these are metabolites which lack the requisite reactions (either metabolic or transport that would account for their production or consumption within the metabolic network. 127 dead end metabolites were identified from the 995 compounds that are contained within the EcoCyc metabolic network. Their presence reflects either a deficit in our representation of the network or in our knowledge of E. coli metabolism. Extensive literature searches resulted in the addition of 38 transport reactions and 3 metabolic reactions to the database and led to an improved representation of the pathway for Vitamin B12 salvage. 39 dead end metabolites were identified as components of reactions that are not physiologically relevant to E. coli K-12--these reactions are properties of purified enzymes in vitro that would not be expected to occur in vivo. Our analysis led to improvements in the software that underpins the database and to the program that finds dead end metabolites within EcoCyc. The remaining dead end metabolites in the EcoCyc database likely represent deficiencies in our knowledge of E. coli metabolism.

  8. Construction and analysis of a genome-scale metabolic network for Bacillus licheniformis WX-02.

    Science.gov (United States)

    Guo, Jing; Zhang, Hong; Wang, Cheng; Chang, Ji-Wei; Chen, Ling-Ling

    2016-05-01

    We constructed the genome-scale metabolic network of Bacillus licheniformis (B. licheniformis) WX-02 by combining genomic annotation, high-throughput phenotype microarray (PM) experiments and literature-based metabolic information. The accuracy of the metabolic network was assessed by an OmniLog PM experiment. The final metabolic model iWX1009 contains 1009 genes, 1141 metabolites and 1762 reactions, and the predicted metabolic phenotypes showed an agreement rate of 76.8% with experimental PM data. In addition, key metabolic features such as growth yield, utilization of different substrates and essential genes were identified by flux balance analysis. A total of 195 essential genes were predicted from LB medium, among which 149 were verified with the experimental essential gene set of B. subtilis 168. With the removal of 5 reactions from the network, pathways for poly-γ-glutamic acid (γ-PGA) synthesis were optimized and the γ-PGA yield reached 83.8 mmol/h. Furthermore, the important metabolites and pathways related to γ-PGA synthesis and bacterium growth were comprehensively analyzed. The present study provides valuable clues for exploring the metabolisms and metabolic regulation of γ-PGA synthesis in B. licheniformis WX-02. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  9. Gene expression variability in human hepatic drug metabolizing enzymes and transporters.

    Directory of Open Access Journals (Sweden)

    Lun Yang

    Full Text Available Interindividual variability in the expression of drug-metabolizing enzymes and transporters (DMETs in human liver may contribute to interindividual differences in drug efficacy and adverse reactions. Published studies that analyzed variability in the expression of DMET genes were limited by sample sizes and the number of genes profiled. We systematically analyzed the expression of 374 DMETs from a microarray data set consisting of gene expression profiles derived from 427 human liver samples. The standard deviation of interindividual expression for DMET genes was much higher than that for non-DMET genes. The 20 DMET genes with the largest variability in the expression provided examples of the interindividual variation. Gene expression data were also analyzed using network analysis methods, which delineates the similarities of biological functionalities and regulation mechanisms for these highly variable DMET genes. Expression variability of human hepatic DMET genes may affect drug-gene interactions and disease susceptibility, with concomitant clinical implications.

  10. Connexin 43-Mediated Astroglial Metabolic Networks Contribute to the Regulation of the Sleep-Wake Cycle.

    Science.gov (United States)

    Clasadonte, Jerome; Scemes, Eliana; Wang, Zhongya; Boison, Detlev; Haydon, Philip G

    2017-09-13

    Astrocytes produce and supply metabolic substrates to neurons through gap junction-mediated astroglial networks. However, the role of astroglial metabolic networks in behavior is unclear. Here, we demonstrate that perturbation of astroglial networks impairs the sleep-wake cycle. Using a conditional Cre-Lox system in mice, we show that knockout of the gap junction subunit connexin 43 in astrocytes throughout the brain causes excessive sleepiness and fragmented wakefulness during the nocturnal active phase. This astrocyte-specific genetic manipulation silenced the wake-promoting orexin neurons located in the lateral hypothalamic area (LHA) by impairing glucose and lactate trafficking through astrocytic networks. This global wakefulness instability was mimicked with viral delivery of Cre recombinase to astrocytes in the LHA and rescued by in vivo injections of lactate. Our findings propose a novel regulatory mechanism critical for maintaining normal daily cycle of wakefulness and involving astrocyte-neuron metabolic interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Human Metabolic Enzymes Deficiency: A Genetic Mutation Based Approach

    Directory of Open Access Journals (Sweden)

    Swati Chaturvedi

    2016-01-01

    Full Text Available One of the extreme challenges in biology is to ameliorate the understanding of the mechanisms which emphasize metabolic enzyme deficiency (MED and how these pretend to have influence on human health. However, it has been manifested that MED could be either inherited as inborn error of metabolism (IEM or acquired, which carries a high risk of interrupted biochemical reactions. Enzyme deficiency results in accumulation of toxic compounds that may disrupt normal organ functions and cause failure in producing crucial biological compounds and other intermediates. The MED related disorders cover widespread clinical presentations and can involve almost any organ system. To sum up the causal factors of almost all the MED-associated disorders, we decided to embark on a less traveled but nonetheless relevant direction, by focusing our attention on associated gene family products, regulation of their expression, genetic mutation, and mutation types. In addition, the review also outlines the clinical presentations as well as diagnostic and therapeutic approaches.

  12. The human NAD metabolome: Functions, metabolism and compartmentalization

    Science.gov (United States)

    Nikiforov, Andrey; Kulikova, Veronika; Ziegler, Mathias

    2015-01-01

    Abstract The metabolism of NAD has emerged as a key regulator of cellular and organismal homeostasis. Being a major component of both bioenergetic and signaling pathways, the molecule is ideally suited to regulate metabolism and major cellular events. In humans, NAD is synthesized from vitamin B3 precursors, most prominently from nicotinamide, which is the degradation product of all NAD-dependent signaling reactions. The scope of NAD-mediated regulatory processes is wide including enzyme regulation, control of gene expression and health span, DNA repair, cell cycle regulation and calcium signaling. In these processes, nicotinamide is cleaved from NAD+ and the remaining ADP-ribosyl moiety used to modify proteins (deacetylation by sirtuins or ADP-ribosylation) or to generate calcium-mobilizing agents such as cyclic ADP-ribose. This review will also emphasize the role of the intermediates in the NAD metabolome, their intra- and extra-cellular conversions and potential contributions to subcellular compartmentalization of NAD pools. PMID:25837229

  13. Hepatitis C, human immunodeficiency virus and metabolic syndrome: interactions.

    Science.gov (United States)

    Kotler, Donald P

    2009-03-01

    Significant concerns have been raised about the metabolic effects of antiretroviral medication, including the classic triad of dyslipidaemia, insulin resistance (IR) and characteristic alterations in fat distribution (lipoatrophy and lipohypertrophy). Co-infection with hepatitis C appears to exacerbate IR, reduce serum lipids and induce prothrombotic changes in the treated human immunodeficiency virus patient. The effects of co-infection are complex. While combination antiretroviral therapy has been shown to be associated with an increased risk of cardiovascular events through promotion of dyslipidaemia, IR and fat redistribution, co-infection exacerbates IR while reducing serum lipids. Co-infection also promotes a prothrombotic state characterized by endothelial dysfunction and platelet activation, which may enhance risk for cardiovascular disease. Consideration must be given to selection of appropriate treatment regimens and timing of therapy in co-infected patients to minimize metabolic derangements and, ultimately, reduce cardiovascular risk.

  14. Human folate metabolism using 14C-accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Arjomand, A; Bucholz, B A; Clifford, A J; Duecker, S R; Johnson, H; Schneider, P D; Zulim, R A.

    1999-01-01

    Folate is a water soluble vitamin required for optimal health, growth and development. It occurs naturally in various states of oxidation of the pteridine ring and with varying lengths to its glutamate chain. Folates function as one-carbon donors through methyl transferase catalyzed reactions. Low-folate diets, especially by those with suboptimal methyltransferase activity, are associated with increased risk of neural tube birth defects in children, hyperhomocysteinemic heart disease, and cancer in adults. Rapidly dividing (neoplastic) cells have a high folate need for DNA synthesis. Chemical analogs of folate (antifolates) that interfere with folate metabolism are used as therapeutic agents in cancer treatment. Although much is known about folate chemistry, metabolism of this vitamin in vivo in humans is not well understood. Since folate levels in blood and tissues are very low and methods to measure them are inadequate, the few previous studies that have examined folate metabolism used large doses of radiolabeled folic acid in patients with Hodgkins disease and cancer (Butterworth et al. 1969, Krumdieck et al. 1978). A subsequent protocol using deuterated folic acid was also insufficiently sensitive to trace a physiologic folate dose (Stites et al. 1997). Accelerator mass spectrometry (AMS) is an emerging bioanalytical tool that overcomes the limitations of traditional mass spectrometry and of decay counting of long lived radioisotopes (Vogel et al. 1995). AMS can detect attomolar concentrations of 14 C in milligram-sized samples enabling in vivo radiotracer studies in healthy humans. We used AMS to study the metabolism of a physiologic 80 nmol oral dose of 14 C-folic acid (1/6 US RDA) by measuring the 14 C-folate levels in serial plasma, urine and feces samples taken over a 150-day period after dosing a healthy adult volunteer

  15. A general model for metabolic scaling in self-similar asymmetric networks.

    Directory of Open Access Journals (Sweden)

    Alexander Byers Brummer

    2017-03-01

    Full Text Available How a particular attribute of an organism changes or scales with its body size is known as an allometry. Biological allometries, such as metabolic scaling, have been hypothesized to result from selection to maximize how vascular networks fill space yet minimize internal transport distances and resistances. The West, Brown, Enquist (WBE model argues that these two principles (space-filling and energy minimization are (i general principles underlying the evolution of the diversity of biological networks across plants and animals and (ii can be used to predict how the resulting geometry of biological networks then governs their allometric scaling. Perhaps the most central biological allometry is how metabolic rate scales with body size. A core assumption of the WBE model is that networks are symmetric with respect to their geometric properties. That is, any two given branches within the same generation in the network are assumed to have identical lengths and radii. However, biological networks are rarely if ever symmetric. An open question is: Does incorporating asymmetric branching change or influence the predictions of the WBE model? We derive a general network model that relaxes the symmetric assumption and define two classes of asymmetrically bifurcating networks. We show that asymmetric branching can be incorporated into the WBE model. This asymmetric version of the WBE model results in several theoretical predictions for the structure, physiology, and metabolism of organisms, specifically in the case for the cardiovascular system. We show how network asymmetry can now be incorporated in the many allometric scaling relationships via total network volume. Most importantly, we show that the 3/4 metabolic scaling exponent from Kleiber's Law can still be attained within many asymmetric networks.

  16. Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks.

    Science.gov (United States)

    Oh, S June; Joung, Je-Gun; Chang, Jeong-Ho; Zhang, Byoung-Tak

    2006-06-06

    To infer the tree of life requires knowledge of the common characteristics of each species descended from a common ancestor as the measuring criteria and a method to calculate the distance between the resulting values of each measure. Conventional phylogenetic analysis based on genomic sequences provides information about the genetic relationships between different organisms. In contrast, comparative analysis of metabolic pathways in different organisms can yield insights into their functional relationships under different physiological conditions. However, evaluating the similarities or differences between metabolic networks is a computationally challenging problem, and systematic methods of doing this are desirable. Here we introduce a graph-kernel method for computing the similarity between metabolic networks in polynomial time, and use it to profile metabolic pathways and to construct phylogenetic trees. To compare the structures of metabolic networks in organisms, we adopted the exponential graph kernel, which is a kernel-based approach with a labeled graph that includes a label matrix and an adjacency matrix. To construct the phylogenetic trees, we used an unweighted pair-group method with arithmetic mean, i.e., a hierarchical clustering algorithm. We applied the kernel-based network profiling method in a comparative analysis of nine carbohydrate metabolic networks from 81 biological species encompassing Archaea, Eukaryota, and Eubacteria. The resulting phylogenetic hierarchies generally support the tripartite scheme of three domains rather than the two domains of prokaryotes and eukaryotes. By combining the kernel machines with metabolic information, the method infers the context of biosphere development that covers physiological events required for adaptation by genetic reconstruction. The results show that one may obtain a global view of the tree of life by comparing the metabolic pathway structures using meta-level information rather than sequence

  17. Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks

    Directory of Open Access Journals (Sweden)

    Chang Jeong-Ho

    2006-06-01

    Full Text Available Abstract Background To infer the tree of life requires knowledge of the common characteristics of each species descended from a common ancestor as the measuring criteria and a method to calculate the distance between the resulting values of each measure. Conventional phylogenetic analysis based on genomic sequences provides information about the genetic relationships between different organisms. In contrast, comparative analysis of metabolic pathways in different organisms can yield insights into their functional relationships under different physiological conditions. However, evaluating the similarities or differences between metabolic networks is a computationally challenging problem, and systematic methods of doing this are desirable. Here we introduce a graph-kernel method for computing the similarity between metabolic networks in polynomial time, and use it to profile metabolic pathways and to construct phylogenetic trees. Results To compare the structures of metabolic networks in organisms, we adopted the exponential graph kernel, which is a kernel-based approach with a labeled graph that includes a label matrix and an adjacency matrix. To construct the phylogenetic trees, we used an unweighted pair-group method with arithmetic mean, i.e., a hierarchical clustering algorithm. We applied the kernel-based network profiling method in a comparative analysis of nine carbohydrate metabolic networks from 81 biological species encompassing Archaea, Eukaryota, and Eubacteria. The resulting phylogenetic hierarchies generally support the tripartite scheme of three domains rather than the two domains of prokaryotes and eukaryotes. Conclusion By combining the kernel machines with metabolic information, the method infers the context of biosphere development that covers physiological events required for adaptation by genetic reconstruction. The results show that one may obtain a global view of the tree of life by comparing the metabolic pathway

  18. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    Science.gov (United States)

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  19. Dynamic brain glucose metabolism identifies anti-correlated cortical-cerebellar networks at rest.

    Science.gov (United States)

    Tomasi, Dardo G; Shokri-Kojori, Ehsan; Wiers, Corinde E; Kim, Sunny W; Demiral, Şukru B; Cabrera, Elizabeth A; Lindgren, Elsa; Miller, Gregg; Wang, Gene-Jack; Volkow, Nora D

    2017-12-01

    It remains unclear whether resting state functional magnetic resonance imaging (rfMRI) networks are associated with underlying synchrony in energy demand, as measured by dynamic 2-deoxy-2-[ 18 F]fluoroglucose (FDG) positron emission tomography (PET). We measured absolute glucose metabolism, temporal metabolic connectivity (t-MC) and rfMRI patterns in 53 healthy participants at rest. Twenty-two rfMRI networks emerged from group independent component analysis (gICA). In contrast, only two anti-correlated t-MC emerged from FDG-PET time series using gICA or seed-voxel correlations; one included frontal, parietal and temporal cortices, the other included the cerebellum and medial temporal regions. Whereas cerebellum, thalamus, globus pallidus and calcarine cortex arose as the strongest t-MC hubs, the precuneus and visual cortex arose as the strongest rfMRI hubs. The strength of the t-MC linearly increased with the metabolic rate of glucose suggesting that t-MC measures are strongly associated with the energy demand of the brain tissue, and could reflect regional differences in glucose metabolism, counterbalanced metabolic network demand, and/or differential time-varying delivery of FDG. The mismatch between metabolic and functional connectivity patterns computed as a function of time could reflect differences in the temporal characteristics of glucose metabolism as measured with PET-FDG and brain activation as measured with rfMRI.

  20. Metabolism of gentiopicroside (gentiopicrin) by human intestinal bacteria.

    Science.gov (United States)

    el-Sedawy, A I; Hattori, M; Kobashi, K; Namba, T

    1989-09-01

    As a part of our studies on the metabolism of crude drug components by intestinal bacteria, gentiopicroside (a secoiridoid glucoside isolated from Gentiana lutea), was anaerobically incubated with various defined strains of human intestinal bacteria. Many species had ability to transform it to a series of metabolites. Among them, Veillonella parvula ss parvula produced five metabolites, which were identified as erythrocentaurin, gentiopicral, 5-hydroxymethylisochroman-1-one,5-hydroxymethylisochromen-1- one and trans-5,6-dihydro-5-hydroxymethyl-6-methyl-1H,3H-pyrano[3,4-c]pyra n-1-one.

  1. Richness of human gut microbiome correlates with metabolic markers

    DEFF Research Database (Denmark)

    Le Chatelier, Emmanuelle; Nielsen, Trine; Qin, Junjie

    2013-01-01

    We are facing a global metabolic health crisis provoked by an obesity epidemic. Here we report the human gut microbial composition in a population sample of 123 non-obese and 169 obese Danish individuals. We find two groups of individuals that differ by the number of gut microbial genes and thus ...... and obese participants. Our classifications based on variation in the gut microbiome identify subsets of individuals in the general white adult population who may be at increased risk of progressing to adiposity-associated co-morbidities....

  2. Validation of a metabolic network for Saccharomyces cerevisiae using mixed substrate studies.

    Science.gov (United States)

    Vanrolleghem, P A; de Jong-Gubbels, P; van Gulik, W M; Pronk, J T; van Dijken, J P; Heijnen, S

    1996-01-01

    Setting up a metabolic network model for respiratory growth of Saccharomyces cerevisiae requires the estimation of only two (energetic) stoichiometric parameters: (1) the operational PO ratio and (2) a growth-related maintenance factor k. It is shown, both theoretically and practically, how chemostat cultivations with different mixtures of two substrates allow unique values to be given to these unknowns of the proposed metabolic model. For the yeast and model considered, an effective PO ratio of 1.09 mol of ATP/mol of O (95% confidence interval 1.07-1.11) and a k factor of 0.415 mol of ATP/C-mol of biomass (0.385-0.445) were obtained from biomass substrate yield data on glucose/ethanol mixtures. Symbolic manipulation software proved very valuable in this study as it supported the proof of theoretical identifiability and significantly reduced the necessary computations for parameter estimation. In the transition from 100% glucose to 100% ethanol in the feed, four metabolic regimes occur. Switching between these regimes is determined by cessation of an irreversible reaction and initiation of an alternative reaction. Metabolic network predictions of these metabolic switches compared well with activity measurements of key enzymes. As a second validation of the network, the biomass yield of S. cerevisiae on acetate was also compared to the network prediction. An excellent agreement was found for a network in which acetate transport was modeled with a proton symport, while passive diffusion of acetate gave significantly higher yield predictions.

  3. Optimal knockout strategies in genome-scale metabolic networks using particle swarm optimization.

    Science.gov (United States)

    Nair, Govind; Jungreuthmayer, Christian; Zanghellini, Jürgen

    2017-02-01

    Knockout strategies, particularly the concept of constrained minimal cut sets (cMCSs), are an important part of the arsenal of tools used in manipulating metabolic networks. Given a specific design, cMCSs can be calculated even in genome-scale networks. We would however like to find not only the optimal intervention strategy for a given design but the best possible design too. Our solution (PSOMCS) is to use particle swarm optimization (PSO) along with the direct calculation of cMCSs from the stoichiometric matrix to obtain optimal designs satisfying multiple objectives. To illustrate the working of PSOMCS, we apply it to a toy network. Next we show its superiority by comparing its performance against other comparable methods on a medium sized E. coli core metabolic network. PSOMCS not only finds solutions comparable to previously published results but also it is orders of magnitude faster. Finally, we use PSOMCS to predict knockouts satisfying multiple objectives in a genome-scale metabolic model of E. coli and compare it with OptKnock and RobustKnock. PSOMCS finds competitive knockout strategies and designs compared to other current methods and is in some cases significantly faster. It can be used in identifying knockouts which will force optimal desired behaviors in large and genome scale metabolic networks. It will be even more useful as larger metabolic models of industrially relevant organisms become available.

  4. Artificial neural network detects human uncertainty

    Science.gov (United States)

    Hramov, Alexander E.; Frolov, Nikita S.; Maksimenko, Vladimir A.; Makarov, Vladimir V.; Koronovskii, Alexey A.; Garcia-Prieto, Juan; Antón-Toro, Luis Fernando; Maestú, Fernando; Pisarchik, Alexander N.

    2018-03-01

    Artificial neural networks (ANNs) are known to be a powerful tool for data analysis. They are used in social science, robotics, and neurophysiology for solving tasks of classification, forecasting, pattern recognition, etc. In neuroscience, ANNs allow the recognition of specific forms of brain activity from multichannel EEG or MEG data. This makes the ANN an efficient computational core for brain-machine systems. However, despite significant achievements of artificial intelligence in recognition and classification of well-reproducible patterns of neural activity, the use of ANNs for recognition and classification of patterns in neural networks still requires additional attention, especially in ambiguous situations. According to this, in this research, we demonstrate the efficiency of application of the ANN for classification of human MEG trials corresponding to the perception of bistable visual stimuli with different degrees of ambiguity. We show that along with classification of brain states associated with multistable image interpretations, in the case of significant ambiguity, the ANN can detect an uncertain state when the observer doubts about the image interpretation. With the obtained results, we describe the possible application of ANNs for detection of bistable brain activity associated with difficulties in the decision-making process.

  5. Obesity-related metabolic dysfunction in dogs: a comparison with human metabolic syndrome.

    Science.gov (United States)

    Tvarijonaviciute, Asta; Ceron, Jose J; Holden, Shelley L; Cuthbertson, Daniel J; Biourge, Vincent; Morris, Penelope J; German, Alexander J

    2012-08-28

    Recently, metabolic syndrome (MS) has gained attention in human metabolic medicine given its associations with development of type 2 diabetes mellitus and cardiovascular disease. Canine obesity is associated with the development of insulin resistance, dyslipidaemia, and mild hypertension, but the authors are not aware of any existing studies examining the existence or prevalence of MS in obese dogs.Thirty-five obese dogs were assessed before and after weight loss (median percentage loss 29%, range 10-44%). The diagnostic criteria of the International Diabetes Federation were modified in order to define canine obesity-related metabolic dysfunction (ORMD), which included a measure of adiposity (using a 9-point body condition score [BCS]), systolic blood pressure, fasting plasma cholesterol, plasma triglyceride, and fasting plasma glucose. By way of comparison, total body fat mass was measured by dual-energy X-ray absorptiometry, whilst total adiponectin, fasting insulin, and high-sensitivity C-reactive protein (hsCRP) were measured using validated assays. Systolic blood pressure (P = 0.008), cholesterol (P = 0.003), triglyceride (P = 0.018), and fasting insulin (P disease associations and outcomes of weight loss.

  6. A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.

    Science.gov (United States)

    Röhl, Annika; Bockmayr, Alexander

    2017-01-03

    Constraint-based analysis has become a widely used method to study metabolic networks. While some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement. Here we present an MILP approach for computing minimum subnetworks with the given properties. The minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10 times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones. This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative pathways. Applying complex analysis methods to genome-scale metabolic networks is often not possible in practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows computing not only one, but even all minimum subnetworks satisfying the required properties.

  7. Observability of plant metabolic networks is reflected in the correlation of metabolic profiles

    DEFF Research Database (Denmark)

    Schwahn, Kevin; Küken, Anika; Kliebenstein, Daniel James

    2016-01-01

    to obtain information about the entire system. Yet, the extent to which the data profiles reflect the role of components in the observability of the system remains unexplored. Here we first identify the sensor metabolites in the model plant Arabidopsis (Arabidopsis thaliana) by employing state...... with in silico generated metabolic profiles from a medium-size kinetic model of plant central carbon metabolism. Altogether, due to the small number of identified sensors, our study implies that targeted metabolite analyses may provide the vast majority of relevant information about plant metabolic systems....

  8. The effect of phorbols on metabolic cooperation between human fibroblasts

    International Nuclear Information System (INIS)

    Mosser, D.D.; Bols, N.C.

    1982-01-01

    Autoradiography has been used to study the effect of 12-O-tetradecanoylphorbol-13-acetate (TPA), 4-O-methyl TPA, and phorbol on metabolic cooperation between human diploid fibroblasts. When the donors, hypoxanthine-guanine phosphoribosyl transferase+ (HGPRT+) cells, and recipients, HGPRT- cells, were plated together in the presence of [ 3 H]hypoxanthine and either 4-O-methyl TPA or phorbol, nearly all interactions that developed in 4 h were positive for metabolic cooperation whereas when high concentrations of TPA were used, the number of positive interactions was significantly less than the control. If the phorbol analogs were added after the donors and recipients had made contact, the number of positive interactions was the same as the control in all cases. However, although primary recipients in the cultures that had been treated with phorbol had the same number of grains as those in the control, primary recipients in cultures that had been treated with TPA or high concentrations of 4-O-methyl TPA had significantly fewer grains than those in the control. TPA treatment for 4 h had no effect on total [ 3 H]hypoxanthine incorporation or incorporation into acid-soluble and acid-insoluble fractions. Thus, the effect of TPA on metabolic cooperation is interpreted as a reduction in the transfer of [ 3 H]nucleotides and is an indication of an interference with intercellular communication

  9. TIGER: Toolbox for integrating genome-scale metabolic models, expression data, and transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    Jensen Paul A

    2011-09-01

    Full Text Available Abstract Background Several methods have been developed for analyzing genome-scale models of metabolism and transcriptional regulation. Many of these methods, such as Flux Balance Analysis, use constrained optimization to predict relationships between metabolic flux and the genes that encode and regulate enzyme activity. Recently, mixed integer programming has been used to encode these gene-protein-reaction (GPR relationships into a single optimization problem, but these techniques are often of limited generality and lack a tool for automating the conversion of rules to a coupled regulatory/metabolic model. Results We present TIGER, a Toolbox for Integrating Genome-scale Metabolism, Expression, and Regulation. TIGER converts a series of generalized, Boolean or multilevel rules into a set of mixed integer inequalities. The package also includes implementations of existing algorithms to integrate high-throughput expression data with genome-scale models of metabolism and transcriptional regulation. We demonstrate how TIGER automates the coupling of a genome-scale metabolic model with GPR logic and models of transcriptional regulation, thereby serving as a platform for algorithm development and large-scale metabolic analysis. Additionally, we demonstrate how TIGER's algorithms can be used to identify inconsistencies and improve existing models of transcriptional regulation with examples from the reconstructed transcriptional regulatory network of Saccharomyces cerevisiae. Conclusion The TIGER package provides a consistent platform for algorithm development and extending existing genome-scale metabolic models with regulatory networks and high-throughput data.

  10. Computer modelling of HT gas metabolism in humans

    International Nuclear Information System (INIS)

    Peterman, B.F.

    1982-01-01

    A mathematical model was developed to simulate the metabolism of HT gas in humans. The rate constants of the model were estimated by fitting the calculated curves to the experimental data by Pinson and Langham in 1957. The calculations suggest that the oxidation of HT gas (which probably occurs as a result of the enzymatic action of hydrogenase present in bacteria of human gut) occurs at a relatively low rate with a half-time of 10-12 hours. The inclusion of the dose due to the production of the HT oxidation product (HTO) in the soft tissues lowers the value of derived air concentration by about 50%. Furthermore the relationship between the concentration of HTO in urine and the dose to the lung from HT in the air in lungs is linear after short HT exposures, and hence HTO concentrations in urine can be used to estimate the upper limits on the lung dose from HT exposures. (author)

  11. Metabolism of dimethylnitrosamine and 1,2-dimethylhydrazine in cultured human bronchi

    DEFF Research Database (Denmark)

    Harris, Curtis C.; Autrup, Herman; Stoner, Gary D.

    1977-01-01

    The metabolic activation of several chemical classes of procarcinogens is being studied in cultured human bronchi. Previous studies have shown that carcinogenic polynuclear aromatic hydrocarbons are metabolically activated by the bronchial epithelium. In the study reported here, dimethylnitrosami...

  12. Neural networks for perception human and machine perception

    CERN Document Server

    Wechsler, Harry

    1991-01-01

    Neural Networks for Perception, Volume 1: Human and Machine Perception focuses on models for understanding human perception in terms of distributed computation and examples of PDP models for machine perception. This book addresses both theoretical and practical issues related to the feasibility of both explaining human perception and implementing machine perception in terms of neural network models. The book is organized into two parts. The first part focuses on human perception. Topics on network model ofobject recognition in human vision, the self-organization of functional architecture in t

  13. Chronic obstructive pulmonary disease candidate gene prioritization based on metabolic networks and functional information.

    Directory of Open Access Journals (Sweden)

    Xinyan Wang

    Full Text Available Chronic obstructive pulmonary disease (COPD is a multi-factor disease, in which metabolic disturbances played important roles. In this paper, functional information was integrated into a COPD-related metabolic network to assess similarity between genes. Then a gene prioritization method was applied to the COPD-related metabolic network to prioritize COPD candidate genes. The gene prioritization method was superior to ToppGene and ToppNet in both literature validation and functional enrichment analysis. Top-ranked genes prioritized from the metabolic perspective with functional information could promote the better understanding about the molecular mechanism of this disease. Top 100 genes might be potential markers for diagnostic and effective therapies.

  14. Integration of Plant Metabolomics Data with Metabolic Networks: Progresses and Challenges.

    Science.gov (United States)

    Töpfer, Nadine; Seaver, Samuel M D; Aharoni, Asaph

    2018-01-01

    In the last decade, plant genome-scale modeling has developed rapidly and modeling efforts have advanced from representing metabolic behavior of plant heterotrophic cell suspensions to studying the complex interplay of cell types, tissues, and organs. A crucial driving force for such developments is the availability and integration of "omics" data (e.g., transcriptomics, proteomics, and metabolomics) which enable the reconstruction, extraction, and application of context-specific metabolic networks. In this chapter, we demonstrate a workflow to integrate gas chromatography coupled to mass spectrometry (GC-MS)-based metabolomics data of tomato fruit pericarp (flesh) tissue, at five developmental stages, with a genome-scale reconstruction of tomato metabolism. This method allows for the extraction of context-specific networks reflecting changing activities of metabolic pathways throughout fruit development and maturation.

  15. Norepinephrine metabolism in humans. Kinetic analysis and model

    International Nuclear Information System (INIS)

    Linares, O.A.; Jacquez, J.A.; Zech, L.A.; Smith, M.J.; Sanfield, J.A.; Morrow, L.A.; Rosen, S.G.; Halter, J.B.

    1987-01-01

    The present study was undertaken to quantify more precisely and to begin to address the problem of heterogeneity of the kinetics of distribution and metabolism of norepinephrine (NE) in humans, by using compartmental analysis. Steady-state NE specific activity in arterialized plasma during [ 3 H]NE infusion and postinfusion plasma disappearance of [ 3 H]NE were measured in eight healthy subjects in the supine and upright positions. Two exponentials were clearly identified in the plasma [ 3 H]NE disappearance curves of each subject studied in the supine (r = 0.94-1.00, all P less than 0.01) and upright (r = 0.90-0.98, all P less than 0.01) positions. A two-compartment model was the minimal model necessary to simultaneously describe the kinetics of NE in the supine and upright positions. The NE input rate into the extravascular compartment 2, estimated with the minimal model, increased with upright posture (1.87 +/- 0.08 vs. 3.25 +/- 0.2 micrograms/min per m2, P less than 0.001). Upright posture was associated with a fall in the volume of distribution of NE in compartment 1 (7.5 +/- 0.6 vs. 4.7 +/- 0.3 liters, P less than 0.001), and as a result of that, there was a fall in the metabolic clearance rate of NE from compartment 1 (1.80 +/- 0.11 vs. 1.21 +/- 0.08 liters/min per m2, P less than 0.001). We conclude that a two-compartment model is the minimal model that can accurately describe the kinetics of distribution and metabolism of NE in humans

  16. Genome scale metabolic network reconstruction of Spirochaeta cellobiosiphila

    Directory of Open Access Journals (Sweden)

    Bharat Manna

    2017-10-01

    Full Text Available Substantial rise in the global energy demand is one of the biggest challenges in this century. Environmental pollution due to rapid depletion of the fossil fuel resources and its alarming impact on the climate change and Global Warming have motivated researchers to look for non-petroleum-based sustainable, eco-friendly, renewable, low-cost energy alternatives, such as biofuel. Lignocellulosic biomass is one of the most promising bio-resources with huge potential to contribute to this worldwide energy demand. However, the complex organization of the Cellulose, Hemicellulose and Lignin in the Lignocellulosic biomass requires extensive pre-treatment and enzymatic hydrolysis followed by fermentation, raising overall production cost of biofuel. This encourages researchers to design cost-effective approaches for the production of second generation biofuels. The products from enzymatic hydrolysis of cellulose are mostly glucose monomer or cellobiose unit that are subjected to fermentation. Spirochaeta genus is a well-known group of obligate or facultative anaerobes, living primarily on carbohydrate metabolism. Spirochaeta cellobiosiphila sp. is a facultative anaerobe under this genus, which uses a variety of monosaccharides and disaccharides as energy sources. However, most rapid growth occurs on cellobiose and fermentation yields significant amount of ethanol, acetate, CO2, H2 and small amounts of formate. It is predicted to be promising microbial machinery for industrial fermentation processes for biofuel production. The metabolic pathways that govern cellobiose metabolism in Spirochaeta cellobiosiphila are yet to be explored. The function annotation of the genome sequence of Spirochaeta cellobiosiphila is in progress. In this work we aim to map all the metabolic activities for reconstruction of genome-scale metabolic model of Spirochaeta cellobiosiphila.

  17. Thermodynamic analysis of regulation in metabolic networks using constraint-based modeling

    Directory of Open Access Journals (Sweden)

    Mahadevan Radhakrishnan

    2010-05-01

    Full Text Available Abstract Background Geobacter sulfurreducens is a member of the Geobacter species, which are capable of oxidation of organic waste coupled to the reduction of heavy metals and electrode with applications in bioremediation and bioenergy generation. While the metabolism of this organism has been studied through the development of a stoichiometry based genome-scale metabolic model, the associated regulatory network has not yet been well studied. In this manuscript, we report on the implementation of a thermodynamics based metabolic flux model for Geobacter sulfurreducens. We use this updated model to identify reactions that are subject to regulatory control in the metabolic network of G. sulfurreducens using thermodynamic variability analysis. Findings As a first step, we have validated the regulatory sites and bottleneck reactions predicted by the thermodynamic flux analysis in E. coli by evaluating the expression ranges of the corresponding genes. We then identified ten reactions in the metabolic network of G. sulfurreducens that are predicted to be candidates for regulation. We then compared the free energy ranges for these reactions with the corresponding gene expression fold changes under conditions of different environmental and genetic perturbations and show that the model predictions of regulation are consistent with data. In addition, we also identify reactions that operate close to equilibrium and show that the experimentally determined exchange coefficient (a measure of reversibility is significant for these reactions. Conclusions Application of the thermodynamic constraints resulted in identification of potential bottleneck reactions not only from the central metabolism but also from the nucleotide and amino acid subsystems, thereby showing the highly coupled nature of the thermodynamic constraints. In addition, thermodynamic variability analysis serves as a valuable tool in estimating the ranges of ΔrG' of every reaction in the model

  18. Enumeration of smallest intervention strategies in genome-scale metabolic networks.

    Directory of Open Access Journals (Sweden)

    Axel von Kamp

    2014-01-01

    Full Text Available One ultimate goal of metabolic network modeling is the rational redesign of biochemical networks to optimize the production of certain compounds by cellular systems. Although several constraint-based optimization techniques have been developed for this purpose, methods for systematic enumeration of intervention strategies in genome-scale metabolic networks are still lacking. In principle, Minimal Cut Sets (MCSs; inclusion-minimal combinations of reaction or gene deletions that lead to the fulfilment of a given intervention goal provide an exhaustive enumeration approach. However, their disadvantage is the combinatorial explosion in larger networks and the requirement to compute first the elementary modes (EMs which itself is impractical in genome-scale networks. We present MCSEnumerator, a new method for effective enumeration of the smallest MCSs (with fewest interventions in genome-scale metabolic network models. For this we combine two approaches, namely (i the mapping of MCSs to EMs in a dual network, and (ii a modified algorithm by which shortest EMs can be effectively determined in large networks. In this way, we can identify the smallest MCSs by calculating the shortest EMs in the dual network. Realistic application examples demonstrate that our algorithm is able to list thousands of the most efficient intervention strategies in genome-scale networks for various intervention problems. For instance, for the first time we could enumerate all synthetic lethals in E.coli with combinations of up to 5 reactions. We also applied the new algorithm exemplarily to compute strain designs for growth-coupled synthesis of different products (ethanol, fumarate, serine by E.coli. We found numerous new engineering strategies partially requiring less knockouts and guaranteeing higher product yields (even without the assumption of optimal growth than reported previously. The strength of the presented approach is that smallest intervention strategies can be

  19. Development and analysis of an in vivo-compatible metabolic network of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Reifman Jaques

    2010-11-01

    Full Text Available Abstract Background During infection, Mycobacterium tuberculosis confronts a generally hostile and nutrient-poor in vivo host environment. Existing models and analyses of M. tuberculosis metabolic networks are able to reproduce experimentally measured cellular growth rates and identify genes required for growth in a range of different in vitro media. However, these models, under in vitro conditions, do not provide an adequate description of the metabolic processes required by the pathogen to infect and persist in a host. Results To better account for the metabolic activity of M. tuberculosis in the host environment, we developed a set of procedures to systematically modify an existing in vitro metabolic network by enhancing the agreement between calculated and in vivo-measured gene essentiality data. After our modifications, the new in vivo network contained 663 genes, 838 metabolites, and 1,049 reactions and had a significantly increased sensitivity (0.81 in predicted gene essentiality than the in vitro network (0.31. We verified the modifications generated from the purely computational analysis through a review of the literature and found, for example, that, as the analysis suggested, lipids are used as the main source for carbon metabolism and oxygen must be available for the pathogen under in vivo conditions. Moreover, we used the developed in vivo network to predict the effects of double-gene deletions on M. tuberculosis growth in the host environment, explore metabolic adaptations to life in an acidic environment, highlight the importance of different enzymes in the tricarboxylic acid-cycle under different limiting nutrient conditions, investigate the effects of inhibiting multiple reactions, and look at the importance of both aerobic and anaerobic cellular respiration during infection. Conclusions The network modifications we implemented suggest a distinctive set of metabolic conditions and requirements faced by M. tuberculosis during

  20. Metabolism of aspartame by human and pig intestinal microvillar peptidases.

    Science.gov (United States)

    Hooper, N M; Hesp, R J; Tieku, S

    1994-01-01

    The artificial sweetener aspartame (N-L-alpha-aspartyl-L-phenyl-alanine-1-methyl ester; Nutrasweet), its decomposition product alpha Asp-Phe and the related peptide alpha Asp-PheNH2 were rapidly hydrolysed by microvillar membranes prepared from human duodenum, jejunum and ileum, and from pig duodenum and kidney. The metabolism of aspartame by the human and pig intestinal microvillar membrane preparations was inhibited significantly (> 78%) by amastatin or 1,10-phenanthroline, and partially (> 38%) by actinonin or bestatin, and was activated 2.9-4.5-fold by CaCl2. The inhibition by amastatin and 1,10-phenanthroline, and the activation by CaCl2 are characteristic of the cell-surface ectoenzyme aminopeptidase A (EC 3.4.11.7) and a purified preparation of this enzyme hydrolysed aspartame with a Km of 0.25 mM and a Vmax of 126 mumol/min per mg. A purified preparation of aminopeptidase W (EC 3.4.11.16) also hydrolysed aspartame but with a Km of 4.96 mM and a Vmax of 110 mumol/min per mg. However, rentiapril, an inhibitor of aminopeptidase W, caused only slight inhibition (maximally 19%) of the hydrolysis of aspartame by the microvillar membrane preparations. Similar patterns of inhibition and kinetic parameters were observed for alpha Asp-Phe and alpha Asp-PheNH2. Two other decomposition products of aspartame, beta Asp-PheMe and cyclo-Asp-Phe, were essentially resistant to hydrolysis by both the human and pig intestinal microvillar membrane preparations and the purified preparations of aminopeptidases A and W. Although the relatively selective inhibitor of aminopeptidase N (EC 3.4.11.2), actinonin, partially inhibited the metabolism of aspartame, alpha Asp-Phe and alpha Asp-PheNH2 by the human and pig intestinal microvillar membrane preparations, these peptides were not hydrolysed by a purified preparation of aminopeptidase N. Membrane dipeptidase (EC 3.4.13.19) only hydrolysed the unblocked dipeptide, alpha Asp-Phe, but the selective inhibitor of this enzyme, cilastatin

  1. FluxVisualizer, a Software to Visualize Fluxes through Metabolic Networks

    Directory of Open Access Journals (Sweden)

    Tim Daniel Rose

    2018-04-01

    Full Text Available FluxVisualizer (Version 1.0, 2017, freely available at https://fluxvisualizer.ibgc.cnrs.fr is a software to visualize fluxes values on a scalable vector graphic (SVG representation of a metabolic network by colouring or increasing the width of reaction arrows of the SVG file. FluxVisualizer does not aim to draw metabolic networks but to use a customer’s SVG file allowing him to exploit his representation standards with a minimum of constraints. FluxVisualizer is especially suitable for small to medium size metabolic networks, where a visual representation of the fluxes makes sense. The flux distribution can either be an elementary flux mode (EFM, a flux balance analysis (FBA result or any other flux distribution. It allows the automatic visualization of a series of pathways of the same network as is needed for a set of EFMs. The software is coded in python3 and provides a graphical user interface (GUI and an application programming interface (API. All functionalities of the program can be used from the API and the GUI and allows advanced users to add their own functionalities. The software is able to work with various formats of flux distributions (Metatool, CellNetAnalyzer, COPASI and FAME export files as well as with Excel files. This simple software can save a lot of time when evaluating fluxes simulations on a metabolic network.

  2. Metabolism of 123I-FP-CIT in humans

    International Nuclear Information System (INIS)

    Tanaka, Akihiro; Okano, Kyoko; Tamagami, Hiroshi

    1999-01-01

    The metabolism of N-(3-fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl)nortropane ( 123 I) ( 123 I-FP-CIT) in healthy humans was studied. Plasma and urine samples, obtained after i.v. administration of 123 I-FP-CIT, were analyzed using the two-dimensional thin-layer chromatography technique. Eleven radiochemical components were detected in both plasma and urine, and four of them were the parent 123 I-FP-CIT and its metabolites, N-(3-fluoropropyl)-2β-carboxy-3β-(4-iodophenyl)nortropane ( 123 I) ( 123 I-acid), 2β-carboxy-3β-(4-iodophenyl)nortropane ( 123 I) ( 123 I-nor-acid) and 2β-carbomethoxy-3β-(4-iodophenyl)nortropane ( 123 I) ( 123 I-nor-CIT). These four identified radiochemical components occupied about 80% or more in ratio of the radiochemical components in the plasma and urine. In the metabolites of 123 I-FP-CIT, the high polar metabolites- 123 I-acid and 123 I-nor-acid-were found to be the major components, while lipophilic 123 I-nor-CIT was a minor component. Free iodide ( 123 I - ) was not found in the plasma or urine. Thus, the main metabolic reactions which 123 I-FP-CIT undergoes in humans seem to be hydrolysis of the ester bond and N-dealkylation. In vivo deiodination of 123 I-FP-CIT was found to be minimum. Current results suggest that the metabolites of 123 I-FP-CIT hardly influence evaluation of the dopamine transporter in the human brain. (author)

  3. Modeling the Metabolism of Arabidopsis thaliana: Application of Network Decomposition and Network Reduction in the Context of Petri Nets

    Directory of Open Access Journals (Sweden)

    Ina Koch

    2017-06-01

    Full Text Available Motivation:Arabidopsis thaliana is a well-established model system for the analysis of the basic physiological and metabolic pathways of plants. Nevertheless, the system is not yet fully understood, although many mechanisms are described, and information for many processes exists. However, the combination and interpretation of the large amount of biological data remain a big challenge, not only because data sets for metabolic paths are still incomplete. Moreover, they are often inconsistent, because they are coming from different experiments of various scales, regarding, for example, accuracy and/or significance. Here, theoretical modeling is powerful to formulate hypotheses for pathways and the dynamics of the metabolism, even if the biological data are incomplete. To develop reliable mathematical models they have to be proven for consistency. This is still a challenging task because many verification techniques fail already for middle-sized models. Consequently, new methods, like decomposition methods or reduction approaches, are developed to circumvent this problem.Methods: We present a new semi-quantitative mathematical model of the metabolism of Arabidopsis thaliana. We used the Petri net formalism to express the complex reaction system in a mathematically unique manner. To verify the model for correctness and consistency we applied concepts of network decomposition and network reduction such as transition invariants, common transition pairs, and invariant transition pairs.Results: We formulated the core metabolism of Arabidopsis thaliana based on recent knowledge from literature, including the Calvin cycle, glycolysis and citric acid cycle, glyoxylate cycle, urea cycle, sucrose synthesis, and the starch metabolism. By applying network decomposition and reduction techniques at steady-state conditions, we suggest a straightforward mathematical modeling process. We demonstrate that potential steady-state pathways exist, which provide the

  4. Obesity-related metabolic dysfunction in dogs: a comparison with human metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Tvarijonaviciute Asta

    2012-08-01

    Full Text Available Abstract Background Recently, metabolic syndrome (MS has gained attention in human metabolic medicine given its associations with development of type 2 diabetes mellitus and cardiovascular disease. Canine obesity is associated with the development of insulin resistance, dyslipidaemia, and mild hypertension, but the authors are not aware of any existing studies examining the existence or prevalence of MS in obese dogs. Thirty-five obese dogs were assessed before and after weight loss (median percentage loss 29%, range 10-44%. The diagnostic criteria of the International Diabetes Federation were modified in order to define canine obesity-related metabolic dysfunction (ORMD, which included a measure of adiposity (using a 9-point body condition score [BCS], systolic blood pressure, fasting plasma cholesterol, plasma triglyceride, and fasting plasma glucose. By way of comparison, total body fat mass was measured by dual-energy X-ray absorptiometry, whilst total adiponectin, fasting insulin, and high-sensitivity C-reactive protein (hsCRP were measured using validated assays. Results Systolic blood pressure (P = 0.008, cholesterol (P = 0.003, triglyceride (P = 0.018, and fasting insulin (P P = 0.001. However, hsCRP did not change with weight loss. Prior to weight loss, 7 dogs were defined as having ORMD, and there was no difference in total fat mass between these dogs and those who did not meet the criteria for ORMD. However, plasma adiponectin concentration was less (P = 0.031, and plasma insulin concentration was greater (P = 0.030 in ORMD dogs. Conclusions In this study, approximately 20% of obese dogs suffer from ORMD, and this is characterized by hypoadiponectinaemia and hyperinsulinaemia. These studies can form the basis of further investigations to determine path genetic mechanisms and the health significance for dogs, in terms of disease associations and outcomes of weight loss.

  5. Network-based analysis of the sphingolipid metabolism in hypertension

    DEFF Research Database (Denmark)

    Fenger, Mogens; Linneberg, Allan; Jeppesen, Jørgen

    2015-01-01

    Common diseases like essential hypertension or diabetes mellitus are complex as they are polygenic in nature, such that each genetic variation only has a small influence on the disease. Genes operates in integrated networks providing the blue-print for all biological processes and conditional...

  6. Bacterial metabolism of human polymorphonuclear leukocyte-derived arachidonic acid.

    Science.gov (United States)

    Sorrell, T C; Muller, M; Sztelma, K

    1992-05-01

    Evidence for transcellular bacterial metabolism of phagocyte-derived arachidonic acid was sought by exposing human blood polymorphonuclear leukocytes, prelabelled with [3H]arachidonic acid, to opsonized, stationary-phase Pseudomonas aeruginosa (bacteria-to-phagocyte ratio of 50:1) for 90 min at 37 degrees C. Control leukocytes were stimulated with the calcium ionophore A23187 (5 microM) for 5 min. Radiochromatograms of arachidonic acid metabolites, extracted from A23187-stimulated cultures and then separated by reverse-phase high-performance liquid chromatography, revealed leukotriene B4, its omega-oxidation products, and 5-hydroxy-eicosatetraenoic acid. In contrast, two major metabolite peaks, distinct from known polymorphonuclear leukocyte arachidonic acid products by high-performance liquid chromatography or by thin-layer chromatography, were identified in cultures of P. aeruginosa with [3H]arachidonic acid-labelled polymorphonuclear leukocytes. Respective chromatographic characteristics of these novel products were identical to those of two major metabolite peaks produced by incubation of stationary-phase P. aeruginosa with [3H]arachidonic acid. Production of the metabolites was dependent upon pseudomonal viability. UV spectral data were consistent with a conjugated diene structure. Metabolism of arachidonic acid by P. aeruginosa was not influenced by the presence of catalase, superoxide dismutase, nordihydroguaiaretic acid, ethanol, dimethyl sulfoxide, or ferrous ions but was inhibited by carbon monoxide, ketoconazole, and 1,2-epoxy-3,3,3-trichloropropane. Our data suggest that pseudomonal metabolism of polymorphonuclear leukocyte-derived arachidonic acid occurs during phagocytosis, probably by enzymatic epoxidation and hydroxylation via an oxygenase. By this means, potential proinflammatory effects of arachidonic acid or its metabolites may be modulated by P. aeruginosa at sites of infection in vivo.

  7. Flux Balance Analysis of Cyanobacterial Metabolism.The Metabolic Network of Synechocystis sp. PCC 6803

    Czech Academy of Sciences Publication Activity Database

    Knoop, H.; Gründel, M.; Zilliges, Y.; Lehmann, R.; Hoffmann, S.; Lockau, W.; Steuer, Ralf

    2013-01-01

    Roč. 9, č. 6 (2013), e1003081-e1003081 ISSN 1553-7358 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : SP STRAIN PCC-6803 * SP ATCC 51142 * photoautotrophic metabolism * anacystis-nidulans * reconstructions * pathway * plants * models * growth Subject RIV: EI - Biotechnology ; Bionics Impact factor: 4.829, year: 2013

  8. Abnormal metabolic brain networks in Parkinson's disease from blackboard to bedside.

    Science.gov (United States)

    Tang, Chris C; Eidelberg, David

    2010-01-01

    Metabolic imaging in the rest state has provided valuable information concerning the abnormalities of regional brain function that underlie idiopathic Parkinson's disease (PD). Moreover, network modeling procedures, such as spatial covariance analysis, have further allowed for the quantification of these changes at the systems level. In recent years, we have utilized this strategy to identify and validate three discrete metabolic networks in PD associated with the motor and cognitive manifestations of the disease. In this chapter, we will review and compare the specific functional topographies underlying parkinsonian akinesia/rigidity, tremor, and cognitive disturbance. While network activity progressed over time, the rate of change for each pattern was distinctive and paralleled the development of the corresponding clinical symptoms in early-stage patients. This approach is already showing great promise in identifying individuals with prodromal manifestations of PD and in assessing the rate of progression before clinical onset. Network modulation was found to correlate with the clinical effects of dopaminergic treatment and surgical interventions, such as subthalamic nucleus (STN) deep brain stimulation (DBS) and gene therapy. Abnormal metabolic networks have also been identified for atypical parkinsonian syndromes, such as multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). Using multiple disease-related networks for PD, MSA, and PSP, we have developed a novel, fully automated algorithm for accurate classification at the single-patient level, even at early disease stages. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Metabolic Effects of the Very-Low-Carbohydrate Diets: Misunderstood "Villains" of Human Metabolism

    Directory of Open Access Journals (Sweden)

    Manninen Anssi H

    2004-12-01

    Full Text Available Abstract During very low carbohydrate intake, the regulated and controlled production of ketone bodies causes a harmless physiological state known as dietary ketosis. Ketone bodies flow from the liver to extra-hepatic tissues (e.g., brain for use as a fuel; this spares glucose metabolism via a mechanism similar to the sparing of glucose by oxidation of fatty acids as an alternative fuel. In comparison with glucose, the ketone bodies are actually a very good respiratory fuel. Indeed, there is no clear requirement for dietary carbohydrates for human adults. Interestingly, the effects of ketone body metabolism suggest that mild ketosis may offer therapeutic potential in a variety of different common and rare disease states. Also, the recent landmark study showed that a very-low-carbohydrate diet resulted in a significant reduction in fat mass and a concomitant increase in lean body mass in normal-weight men. Contrary to popular belief, insulin is not needed for glucose uptake and utilization in man. Finally, both muscle fat and carbohydrate burn in an amino acid flame.

  10. Human brain networks function in connectome-specific harmonic waves.

    Science.gov (United States)

    Atasoy, Selen; Donnelly, Isaac; Pearson, Joel

    2016-01-21

    A key characteristic of human brain activity is coherent, spatially distributed oscillations forming behaviour-dependent brain networks. However, a fundamental principle underlying these networks remains unknown. Here we report that functional networks of the human brain are predicted by harmonic patterns, ubiquitous throughout nature, steered by the anatomy of the human cerebral cortex, the human connectome. We introduce a new technique extending the Fourier basis to the human connectome. In this new frequency-specific representation of cortical activity, that we call 'connectome harmonics', oscillatory networks of the human brain at rest match harmonic wave patterns of certain frequencies. We demonstrate a neural mechanism behind the self-organization of connectome harmonics with a continuous neural field model of excitatory-inhibitory interactions on the connectome. Remarkably, the critical relation between the neural field patterns and the delicate excitation-inhibition balance fits the neurophysiological changes observed during the loss and recovery of consciousness.

  11. Age-dependent metabolic model of radionuclides in Human body

    International Nuclear Information System (INIS)

    Ye Changqing

    1986-01-01

    Age-dependent metabolic model of radionuclides in human body was introduced briefly. These data are necessary in setting up the secondary dose limit of internal exposure of the general public. For the gastro-intestinal tract model, it was shown that the dose of various sections of GI tract caused by unsoluble radioactive materials were influenced by the mass of section and mean residence time, both of which are age-dependent, but the absorption fraction f 1 through gastro-intestinal tract should be corrected only for the infant less than 1 year of age. For the lung model, it was indicated that the fraction of deposition or clearance of particles in the different compartments of lung were related to age. The doses of tracheobronchial and pulmonary compartment of adult for 222 Rn or 220 Rn with their decay products were one third of that of 6-years old child who received the maximum dose in comparison with other ages. The age-dependent metabolic models in organ and/or body of Tritium, Iodine-131, Caesium-137, radioactive Strontium, Radium and Plutonium were reported. A generalized approach for estimating the effect of age on deposition fractions and retention half-time were presented. Calculated results indicated that younger ages were characterized by increased deposition fraction and decreased half-time for retention. Representative examples were provided for 21 elements of current interest in health physics

  12. Targeting NAD+ metabolism in the human malaria parasite Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Jessica K O'Hara

    Full Text Available Nicotinamide adenine dinucleotide (NAD+ is an essential metabolite utilized as a redox cofactor and enzyme substrate in numerous cellular processes. Elevated NAD+ levels have been observed in red blood cells infected with the malaria parasite Plasmodium falciparum, but little is known regarding how the parasite generates NAD+. Here, we employed a mass spectrometry-based metabolomic approach to confirm that P. falciparum lacks the ability to synthesize NAD+ de novo and is reliant on the uptake of exogenous niacin. We characterized several enzymes in the NAD+ pathway and demonstrate cytoplasmic localization for all except the parasite nicotinamidase, which concentrates in the nucleus. One of these enzymes, the P. falciparum nicotinate mononucleotide adenylyltransferase (PfNMNAT, is essential for NAD+ metabolism and is highly diverged from the human homolog, but genetically similar to bacterial NMNATs. Our results demonstrate the enzymatic activity of PfNMNAT in vitro and demonstrate its ability to genetically complement the closely related Escherichia coli NMNAT. Due to the similarity of PfNMNAT to the bacterial enzyme, we tested a panel of previously identified bacterial NMNAT inhibitors and synthesized and screened twenty new derivatives, which demonstrate a range of potency against live parasite culture. These results highlight the importance of the parasite NAD+ metabolic pathway and provide both novel therapeutic targets and promising lead antimalarial compounds.

  13. Autonomous exoskeleton reduces metabolic cost of human walking.

    Science.gov (United States)

    Mooney, Luke M; Rouse, Elliott J; Herr, Hugh M

    2014-11-03

    Passive exoskeletons that assist with human locomotion are often lightweight and compact, but are unable to provide net mechanical power to the exoskeletal wearer. In contrast, powered exoskeletons often provide biologically appropriate levels of mechanical power, but the size and mass of their actuator/power source designs often lead to heavy and unwieldy devices. In this study, we extend the design and evaluation of a lightweight and powerful autonomous exoskeleton evaluated for loaded walking in (J Neuroeng Rehab 11:80, 2014) to the case of unloaded walking conditions. The metabolic energy consumption of seven study participants (85 ± 12 kg body mass) was measured while walking on a level treadmill at 1.4 m/s. Testing conditions included not wearing the exoskeleton and wearing the exoskeleton, in both powered and unpowered modes. When averaged across the gait cycle, the autonomous exoskeleton applied a mean positive mechanical power of 26 ± 1 W (13 W per ankle) with 2.12 kg of added exoskeletal foot-shank mass (1.06 kg per leg). Use of the leg exoskeleton significantly reduced the metabolic cost of walking by 35 ± 13 W, which was an improvement of 10 ± 3% (p = 0.023) relative to the control condition of not wearing the exoskeleton. The results of this study highlight the advantages of developing lightweight and powerful exoskeletons that can comfortably assist the body during walking.

  14. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Helen P McWilliams-Koeppen

    Full Text Available Light chain (AL amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(PH-dependent oxidoreductase, without causing significant cell death. The presence of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. These data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.

  15. Glucose metabolism in cultured trophoblasts from human placenta

    International Nuclear Information System (INIS)

    Moe, A.J.; Farmer, D.R.; Nelson, D.M.; Smith, C.H.

    1990-01-01

    The development of appropriate placental trophoblast isolation and culture techniques enables the study of pathways of glucose utilization by this important cell layer in vitro. Trophoblasts from normal term placentas were isolated and cultured 24 hours and 72 hours in uncoated polystyrene culture tubes or tubes previously coated with a fibrin matrix. Trophoblasts cultured on fibrin are morphologically distinct from those cultured on plastic or other matrices and generally resemble in vivo syncytium. Cells were incubated up to 3 hours with 14 C-labeled glucose and reactions were stopped by addition of perchloric acid. 14 CO 2 production by trophoblasts increased linearly with time however the largest accumulation of label was in organic acids. Trophoblasts cultured in absence of fibrin utilized more glucose and accumulated more 14 C in metabolic products compared to cells cultured on fibrin. Glucose oxidation to CO 2 by the phosphogluconate (PG) pathway was estimated from specific yields of 14 CO 2 from [1- 14 C]-D-glucose and [6- 14 C]-D-glucose. Approximately 6% of glucose oxidation was by the PG pathway when cells were cultured on fibrin compared to approximately 1% by cells cultured in the absence of fibrin. The presence of a fibrin growth matrix appears to modulate the metabolism of glucose by trophoblast from human placenta in vitro

  16. Human macrophage hemoglobin-iron metabolism in vitro

    International Nuclear Information System (INIS)

    Custer, G.; Balcerzak, S.; Rinehart, J.

    1982-01-01

    An entirely in vitro technique was employed to characterize hemoglobin-iron metabolism by human macrophages obtained by culture of blood monocytes and pulmonary alveolar macrophages. Macrophages phagocytized about three times as many erythrocytes as monocytes and six times as many erythrocytes as pulmonary alveolar macrophages. The rate of subsequent release of 59 Fe to the extracellular transferrin pool was two- to fourfold greater for macrophages as compared to the other two cell types. The kinetics of 59 Fe-transferrin release were characterized by a relatively rapid early phase (hours 1-4) followed by a slow phase (hours 4-72) for all three cell types. Intracellular movement of iron was characterized by a rapid shift from hemoglobin to ferritin that was complete with the onset of the slow phase of extracellular release. A transient increase in 59 Fe associated with an intracellular protein eluting with transferrin was also observed within 1 hour after phagocytosis. The process of hemoglobin-iron release to extracellular transferrin was inhibited at 4 degrees C but was unaffected by inhibitory of protein synthesis, glycolysis, microtubule function, and microfilament function. These data emphasize the rapidity of macrophage hemoglobin iron metabolism, provide a model for characterization of this process in vitro, and in general confirm data obtained utilizing in vivo animal models

  17. Metabolic Vascular Syndrome: New Insights into a Multidimensional Network of Risk Factors and Diseases.

    Science.gov (United States)

    Scholz, Gerhard H; Hanefeld, Markolf

    2016-10-01

    Since 1981, we have used the term metabolic syndrome to describe an association of a dysregulation in lipid metabolism (high triglycerides, low high-density lipoprotein cholesterol, disturbed glucose homeostasis (enhanced fasting and/or prandial glucose), gout, and hypertension), with android obesity being based on a common soil (overnutrition, reduced physical activity, sociocultural factors, and genetic predisposition). We hypothesized that main traits of the syndrome occur early and are tightly connected with hyperinsulinemia/insulin resistance, procoagulation, and cardiovascular diseases. To establish a close link between the traits of the metabolic vascular syndrome, we focused our literature search on recent original work and comprehensive reviews dealing with the topics metabolic syndrome, visceral obesity, fatty liver, fat tissue inflammation, insulin resistance, atherogenic dyslipidemia, arterial hypertension, and type 2 diabetes mellitus. Recent research supports the concept that the metabolic vascular syndrome is a multidimensional and interactive network of risk factors and diseases based on individual genetic susceptibility and epigenetic changes where metabolic dysregulation/metabolic inflexibility in different organs and vascular dysfunction are early interconnected. The metabolic vascular syndrome is not only a risk factor constellation but rather a life-long abnormality of a closely connected interactive cluster of developing diseases which escalate each other and should continuously attract the attention of every clinician.

  18. Quantitative Tools for Dissection of Hydrogen-Producing Metabolic Networks-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D.; Dismukes, G.Charles.; Rabitz, Herschel A.; Amador-Noguez, Daniel

    2012-10-19

    During this project we have pioneered the development of integrated experimental-computational technologies for the quantitative dissection of metabolism in hydrogen and biofuel producing microorganisms (i.e. C. acetobutylicum and various cyanobacteria species). The application of these new methodologies resulted in many significant advances in the understanding of the metabolic networks and metabolism of these organisms, and has provided new strategies to enhance their hydrogen or biofuel producing capabilities. As an example, using mass spectrometry, isotope tracers, and quantitative flux-modeling we mapped the metabolic network structure in C. acetobutylicum. This resulted in a comprehensive and quantitative understanding of central carbon metabolism that could not have been obtained using genomic data alone. We discovered that biofuel production in this bacterium, which only occurs during stationary phase, requires a global remodeling of central metabolism (involving large changes in metabolite concentrations and fluxes) that has the effect of redirecting resources (carbon and reducing power) from biomass production into solvent production. This new holistic, quantitative understanding of metabolism is now being used as the basis for metabolic engineering strategies to improve solvent production in this bacterium. In another example, making use of newly developed technologies for monitoring hydrogen and NAD(P)H levels in vivo, we dissected the metabolic pathways for photobiological hydrogen production by cyanobacteria Cyanothece sp. This investigation led to the identification of multiple targets for improving hydrogen production. Importantly, the quantitative tools and approaches that we have developed are broadly applicable and we are now using them to investigate other important biofuel producers, such as cellulolytic bacteria.

  19. Deciphering Fur transcriptional regulatory network highlights its complex role beyond iron metabolism in Escherichia coli

    DEFF Research Database (Denmark)

    Seo, Sang Woo; Kim, Donghyuk; Latif, Haythem

    2014-01-01

    The ferric uptake regulator (Fur) plays a critical role in the transcriptional regulation of iron metabolism. However, the full regulatory potential of Fur remains undefined. Here we comprehensively reconstruct the Fur transcriptional regulatory network in Escherichia coli K-12 MG1655 in response...

  20. Limitations of a metabolic network-based reverse ecology method for inferring host-pathogen interactions.

    Science.gov (United States)

    Takemoto, Kazuhiro; Aie, Kazuki

    2017-05-25

    Host-pathogen interactions are important in a wide range of research fields. Given the importance of metabolic crosstalk between hosts and pathogens, a metabolic network-based reverse ecology method was proposed to infer these interactions. However, the validity of this method remains unclear because of the various explanations presented and the influence of potentially confounding factors that have thus far been neglected. We re-evaluated the importance of the reverse ecology method for evaluating host-pathogen interactions while statistically controlling for confounding effects using oxygen requirement, genome, metabolic network, and phylogeny data. Our data analyses showed that host-pathogen interactions were more strongly influenced by genome size, primary network parameters (e.g., number of edges), oxygen requirement, and phylogeny than the reserve ecology-based measures. These results indicate the limitations of the reverse ecology method; however, they do not discount the importance of adopting reverse ecology approaches altogether. Rather, we highlight the need for developing more suitable methods for inferring host-pathogen interactions and conducting more careful examinations of the relationships between metabolic networks and host-pathogen interactions.

  1. Random sampling of elementary flux modes in large-scale metabolic networks.

    Science.gov (United States)

    Machado, Daniel; Soons, Zita; Patil, Kiran Raosaheb; Ferreira, Eugénio C; Rocha, Isabel

    2012-09-15

    The description of a metabolic network in terms of elementary (flux) modes (EMs) provides an important framework for metabolic pathway analysis. However, their application to large networks has been hampered by the combinatorial explosion in the number of modes. In this work, we develop a method for generating random samples of EMs without computing the whole set. Our algorithm is an adaptation of the canonical basis approach, where we add an additional filtering step which, at each iteration, selects a random subset of the new combinations of modes. In order to obtain an unbiased sample, all candidates are assigned the same probability of getting selected. This approach avoids the exponential growth of the number of modes during computation, thus generating a random sample of the complete set of EMs within reasonable time. We generated samples of different sizes for a metabolic network of Escherichia coli, and observed that they preserve several properties of the full EM set. It is also shown that EM sampling can be used for rational strain design. A well distributed sample, that is representative of the complete set of EMs, should be suitable to most EM-based methods for analysis and optimization of metabolic networks. Source code for a cross-platform implementation in Python is freely available at http://code.google.com/p/emsampler. dmachado@deb.uminho.pt Supplementary data are available at Bioinformatics online.

  2. Metabolic network modeling of microbial interactions in natural and engineered environmental systems

    Directory of Open Access Journals (Sweden)

    Octavio ePerez-Garcia

    2016-05-01

    Full Text Available We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA, experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e. i lumped networks, ii compartment per guild networks, iii bi-level optimization simulations and iv dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial

  3. On the Metabolism of Exogenous Ketones in Humans

    Directory of Open Access Journals (Sweden)

    Brianna J. Stubbs

    2017-10-01

    Full Text Available Background and aims: Currently there is considerable interest in ketone metabolism owing to recently reported benefits of ketosis for human health. Traditionally, ketosis has been achieved by following a high-fat, low-carbohydrate “ketogenic” diet, but adherence to such diets can be difficult. An alternative way to increase blood D-β-hydroxybutyrate (D-βHB concentrations is ketone drinks, but the metabolic effects of exogenous ketones are relatively unknown. Here, healthy human volunteers took part in three randomized metabolic studies of drinks containing a ketone ester (KE; (R-3-hydroxybutyl (R-3-hydroxybutyrate, or ketone salts (KS; sodium plus potassium βHB.Methods and Results: In the first study, 15 participants consumed KE or KS drinks that delivered ~12 or ~24 g of βHB. Both drinks elevated blood D-βHB concentrations (D-βHB Cmax: KE 2.8 mM, KS 1.0 mM, P < 0.001, which returned to baseline within 3–4 h. KS drinks were found to contain 50% of the L-βHB isoform, which remained elevated in blood for over 8 h, but was not detectable after 24 h. Urinary excretion of both D-βHB and L-βHB was <1.5% of the total βHB ingested and was in proportion to the blood AUC. D-βHB, but not L-βHB, was slowly converted to breath acetone. The KE drink decreased blood pH by 0.10 and the KS drink increased urinary pH from 5.7 to 8.5. In the second study, the effect of a meal before a KE drink on blood D-βHB concentrations was determined in 16 participants. Food lowered blood D-βHB Cmax by 33% (Fed 2.2 mM, Fasted 3.3 mM, P < 0.001, but did not alter acetoacetate or breath acetone concentrations. All ketone drinks lowered blood glucose, free fatty acid and triglyceride concentrations, and had similar effects on blood electrolytes, which remained normal. In the final study, participants were given KE over 9 h as three drinks (n = 12 or a continuous nasogastric infusion (n = 4 to maintain blood D-βHB concentrations greater than 1 mM. Both drinks

  4. Dynamic Metabolic Footprinting Reveals the Key Components of Metabolic Network in Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Chumnanpuen, Pramote; Hansen, Michael Adsetts Edberg; Smedsgaard, Jørn

    2014-01-01

    relies on analysis at a single time point. Using direct infusion-mass spectrometry (DI-MS), we could observe the dynamic metabolic footprinting in yeast S. cerevisiae BY4709 (wild type) cultured on 3 different C-sources (glucose, glycerol, and ethanol) and sampled along 10 time points with 5 biological...... replicates. In order to analyze the dynamic mass spectrometry data, we developed the novel analysis methods that allow us to perform correlation analysis to identify metabolites that significantly correlate over time during growth on the different carbon sources. Both positive and negative electrospray...... reconstructed an interaction map that provides information of how different metabolic pathways have correlated patterns during growth on the different carbon sources....

  5. Human-Centric Wireless Communication Networks

    OpenAIRE

    Cavallari, Riccardo

    2016-01-01

    This thesis covers two main topics: the design and performance evaluation of Wireless Body Area Networks (WBANs), and the simulation and mathematical modeling of Delay Tolerant Networks (DTNs). Different Medium Access Control (MAC) protocols for WBANs are implemented on dedicated hardware in order to evaluate, through extensive measurement campaigns, the performance of the network in terms of packet loss rate, delay and energy consumption. Novel solutions to cope with bo...

  6. Elucidation of xenobiotic metabolism pathways in human skin and human skin models by proteomic profiling.

    Directory of Open Access Journals (Sweden)

    Sven van Eijl

    Full Text Available BACKGROUND: Human skin has the capacity to metabolise foreign chemicals (xenobiotics, but knowledge of the various enzymes involved is incomplete. A broad-based unbiased proteomics approach was used to describe the profile of xenobiotic metabolising enzymes present in human skin and hence indicate principal routes of metabolism of xenobiotic compounds. Several in vitro models of human skin have been developed for the purpose of safety assessment of chemicals. The suitability of these epidermal models for studies involving biotransformation was assessed by comparing their profiles of xenobiotic metabolising enzymes with those of human skin. METHODOLOGY/PRINCIPAL FINDINGS: Label-free proteomic analysis of whole human skin (10 donors was applied and analysed using custom-built PROTSIFT software. The results showed the presence of enzymes with a capacity for the metabolism of alcohols through dehydrogenation, aldehydes through dehydrogenation and oxidation, amines through oxidation, carbonyls through reduction, epoxides and carboxylesters through hydrolysis and, of many compounds, by conjugation to glutathione. Whereas protein levels of these enzymes in skin were mostly just 4-10 fold lower than those in liver and sufficient to support metabolism, the levels of cytochrome P450 enzymes were at least 300-fold lower indicating they play no significant role. Four epidermal models of human skin had profiles very similar to one another and these overlapped substantially with that of whole skin. CONCLUSIONS/SIGNIFICANCE: The proteomics profiling approach was successful in producing a comprehensive analysis of the biotransformation characteristics of whole human skin and various in vitro skin models. The results show that skin contains a range of defined enzymes capable of metabolising different classes of chemicals. The degree of similarity of the profiles of the in vitro models indicates their suitability for epidermal toxicity testing. Overall, these

  7. Porphyrin metabolisms in human skin commensal Propionibacterium acnes bacteria: potential application to monitor human radiation risk.

    Science.gov (United States)

    Shu, M; Kuo, S; Wang, Y; Jiang, Y; Liu, Y-T; Gallo, R L; Huang, C-M

    2013-01-01

    Propionibacterium acnes (P. acnes), a Gram-positive anaerobic bacterium, is a commensal organism in human skin. Like human cells, the bacteria produce porphyrins, which exhibit fluorescence properties and make bacteria visible with a Wood's lamp. In this review, we compare the porphyrin biosynthesis in humans and P. acnes. Also, since P. acnes living on the surface of skin receive the same radiation exposure as humans, we envision that the changes in porphyrin profiles (the absorption spectra and/or metabolism) of P. acnes by radiation may mirror the response of human cells to radiation. The porphyrin profiles of P. acnes may be a more accurate reflection of radiation risk to the patient than other biodosimeters/biomarkers such as gene up-/down-regulation, which may be non-specific due to patient related factors such as autoimmune diseases. Lastly, we discuss the challenges and possible solutions for using the P. acnes response to predict the radiation risk.

  8. Data-driven integration of genome-scale regulatory and metabolic network models

    Science.gov (United States)

    Imam, Saheed; Schäuble, Sascha; Brooks, Aaron N.; Baliga, Nitin S.; Price, Nathan D.

    2015-01-01

    Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert—a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or more network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. In this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system. PMID:25999934

  9. Data-driven integration of genome-scale regulatory and metabolic network models

    Directory of Open Access Journals (Sweden)

    Saheed eImam

    2015-05-01

    Full Text Available Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription and signaling have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert – a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or more network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. In this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.

  10. Professional development and human resources management in networks

    Directory of Open Access Journals (Sweden)

    Evgeniy Rudnev

    2016-05-01

    Full Text Available Social networks occupy more places in development of people and organizations. Confidence in institutions and social networking are different and based on referentiality in Internet. For communication in network persons choose a different strategies and behavior in LinkedIn, resources of whom may be in different degree are interesting in Human Resources Management for organizations. Members of different social groups and cultures demonstrate some differences in interaction with Russian identity native. There are gender differences behavior in networks. Participating in groups need ethical behavior and norms in social networking for professional development and communication in future.

  11. Molecular Networking As a Drug Discovery, Drug Metabolism, and Precision Medicine Strategy.

    Science.gov (United States)

    Quinn, Robert A; Nothias, Louis-Felix; Vining, Oliver; Meehan, Michael; Esquenazi, Eduardo; Dorrestein, Pieter C

    2017-02-01

    Molecular networking is a tandem mass spectrometry (MS/MS) data organizational approach that has been recently introduced in the drug discovery, metabolomics, and medical fields. The chemistry of molecules dictates how they will be fragmented by MS/MS in the gas phase and, therefore, two related molecules are likely to display similar fragment ion spectra. Molecular networking organizes the MS/MS data as a relational spectral network thereby mapping the chemistry that was detected in an MS/MS-based metabolomics experiment. Although the wider utility of molecular networking is just beginning to be recognized, in this review we highlight the principles behind molecular networking and its use for the discovery of therapeutic leads, monitoring drug metabolism, clinical diagnostics, and emerging applications in precision medicine. Copyright © 2016. Published by Elsevier Ltd.

  12. Metabolism of tributyltin and triphenyltin by rat, hamster and human hepatic microsomes

    Energy Technology Data Exchange (ETDEWEB)

    Ohhira, Shuji; Watanabe, Masatomo; Matsui, Hisao [Department of Hygiene, Dokkyo University School of Medicine, Mibu-machi, 321-0293, Tochigi (Japan)

    2003-03-01

    Tributyltin and triphenyltin are metabolized by cytochrome P-450 system enzymes, and their metabolic fate may contribute to the toxicity of the chemicals. In the current study, the in vitro metabolism of tributyltin and triphenyltin by rat, hamster and human hepatic microsomes was investigated to elucidate the metabolic competence for these compounds in humans. The metabolic reaction using microsome-NADPH system that is usually conducted was not applicable to in vitro metabolism of organotins, especially triphenyltin. We therefore examined the effects of dithiothreitol (DTT), one of the antioxidants for sulfhydryl groups, to determine the in vitro metabolism of tributyltin and triphenyltin. As a result, the treatment with 0.1 mM DTT in vitro increased the activity of the microsomal monooxygenase system for metabolism of tributyltin as well as triphenyltin; the total yield of tributyltin and triphenyltin metabolites as tin increased, respectively, by approximately 1.8 and 8.9 times for rat, 2.1 and 1.2 times for hamster, and 1.6 and 1.5 times for human. It is suggested that the organotins directly inactivate cytochrome P-450 because of the interaction with critical sulfhydryl groups of the hemoprotein. We confirmed the utility of this in vitro metabolic system using DTT in the hepatic microsomes of phenobarbital (PB)-pretreated and untreated hamsters. Thus, the in vitro metabolic system described here was applied to a comparative study of the metabolism of organotins in rats, hamsters and humans. Tributyltin was metabolized more readily than triphenyltin in all the species. In humans, the in vitro metabolic pattern resembled that of hamsters, which were susceptible to in vivo triphenyltin toxicity because of incompetent metabolism. It is possible that the hamster is a qualitatively and quantitatively suitable animal model for exploring the influence of tributyltin and triphenyltin in humans. (orig.)

  13. Compartmentalized metabolic network reconstruction of microbial communities to determine the effect of agricultural intervention on soils

    Science.gov (United States)

    Álvarez-Yela, Astrid Catalina; Gómez-Cano, Fabio; Zambrano, María Mercedes; Husserl, Johana; Danies, Giovanna; Restrepo, Silvia; González-Barrios, Andrés Fernando

    2017-01-01

    Soil microbial communities are responsible for a wide range of ecological processes and have an important economic impact in agriculture. Determining the metabolic processes performed by microbial communities is crucial for understanding and managing ecosystem properties. Metagenomic approaches allow the elucidation of the main metabolic processes that determine the performance of microbial communities under different environmental conditions and perturbations. Here we present the first compartmentalized metabolic reconstruction at a metagenomics scale of a microbial ecosystem. This systematic approach conceives a meta-organism without boundaries between individual organisms and allows the in silico evaluation of the effect of agricultural intervention on soils at a metagenomics level. To characterize the microbial ecosystems, topological properties, taxonomic and metabolic profiles, as well as a Flux Balance Analysis (FBA) were considered. Furthermore, topological and optimization algorithms were implemented to carry out the curation of the models, to ensure the continuity of the fluxes between the metabolic pathways, and to confirm the metabolite exchange between subcellular compartments. The proposed models provide specific information about ecosystems that are generally overlooked in non-compartmentalized or non-curated networks, like the influence of transport reactions in the metabolic processes, especially the important effect on mitochondrial processes, as well as provide more accurate results of the fluxes used to optimize the metabolic processes within the microbial community. PMID:28767679

  14. Compartmentalized metabolic network reconstruction of microbial communities to determine the effect of agricultural intervention on soils.

    Directory of Open Access Journals (Sweden)

    María Camila Alvarez-Silva

    Full Text Available Soil microbial communities are responsible for a wide range of ecological processes and have an important economic impact in agriculture. Determining the metabolic processes performed by microbial communities is crucial for understanding and managing ecosystem properties. Metagenomic approaches allow the elucidation of the main metabolic processes that determine the performance of microbial communities under different environmental conditions and perturbations. Here we present the first compartmentalized metabolic reconstruction at a metagenomics scale of a microbial ecosystem. This systematic approach conceives a meta-organism without boundaries between individual organisms and allows the in silico evaluation of the effect of agricultural intervention on soils at a metagenomics level. To characterize the microbial ecosystems, topological properties, taxonomic and metabolic profiles, as well as a Flux Balance Analysis (FBA were considered. Furthermore, topological and optimization algorithms were implemented to carry out the curation of the models, to ensure the continuity of the fluxes between the metabolic pathways, and to confirm the metabolite exchange between subcellular compartments. The proposed models provide specific information about ecosystems that are generally overlooked in non-compartmentalized or non-curated networks, like the influence of transport reactions in the metabolic processes, especially the important effect on mitochondrial processes, as well as provide more accurate results of the fluxes used to optimize the metabolic processes within the microbial community.

  15. Metabolic syndrome in human immunodeficiency virus positive patients

    Directory of Open Access Journals (Sweden)

    Sarita Bajaj

    2013-01-01

    Full Text Available Aims and Objectives : To assess the prevalence of metabolic syndrome (MetS in human immunodeficiency virus (HIV positive patients. Prevalence of MetS was compared in patients who were not on highly active antiretroviral therapy (HAART to patients who were on HAART. Materials and Methods: Seventy HIV positive cases were studied. Pregnant and lactating women, patients on drugs other than HAART known to cause metabolic abnormalities and those having diabetes or hypertension were excluded. Cases were evaluated for MetS by using National Cholesterol Education Program Adult Treatment Panel-III. Results: 47 cases were on HAART and 23 cases were not on HAART. Fasting Blood Glucose ≥100 mg/dl was present in 28.6% cases, out of whom 27.7% were on HAART and 30.4% were not on HAART (P = 0.8089. 12.9% cases had BP ≥130/≥85 mm Hg, out of whom 14.9% were on HAART and 8.7% were not on HAART (P = 0.4666. 42.9% cases had TG ≥150 mg/dl, out of whom 44.7% were on HAART and 39.1% were not on HAART (P = 0.6894. HDL cholesterol was low (males <40 mg/dl, females <50 mg/dl in 50% cases, out of whom 55.3% were on HAART and 39.1% were not on HAART (P = 0.2035. Conclusions: Prevalence of MetS was 20%. Majority of patients had only one component of MetS (32.9%. Low HDL was present in 50%, followed by raised triglycerides in 42.9%. Waist circumference was not increased in any of the patients. There was no statistically significant difference between those on HAART and those not on HAART in distribution of risk factors and individual components of MetS.

  16. Glucose Metabolism of Human Prostate Cancer Mouse Xenografts

    Directory of Open Access Journals (Sweden)

    Hossein Jadvar

    2005-04-01

    Full Text Available We hypothesized that the glucose metabolism of prostate cancer is modulated by androgen. We performed in vivo biodistribution and imaging studies of [F-18] fluorodeoxyglucose (FDG accumulation in androgen-sensitive (CWR-22 and androgen-independent (PC-3 human prostate cancer xenografts implanted in castrated and noncastrated male athymic mice. The growth pattern of the CWR-22 tumor was best approximated by an exponential function (tumor size in mm3 = 14.913 e0.108 × days, R2 = .96, n = 5. The growth pattern of the PC-3 tumor was best approximated by a quadratic function (tumor size in mm3 = 0.3511 × days2 + 49.418 × day −753.33, R2 = .96, n = 3. The FDG accumulation in the CWR-22 tumor implanted in the castrated mice was significantly lower, by an average of 55%, in comparison to that implanted in the noncastrated host (1.27 vs. 2.83, respectively, p < .05. The 3-week maximal standardized uptake value (SUVmax was 0.99 ± 0.43 (mean ± SD for CWR-22 and 1.21 ± 0.32 for PC-3, respectively. The 5-week SUVmax was 1.22 ± 0.08 for CWR-22 and 1.35 ± 0.17 for PC-3, respectively. The background muscle SUVmax was 0.53 ± 0.11. Glucose metabolism was higher in the PC-3 tumor than in the CWR-22 tumor at both the 3-week (by 18% and the 5-week (by 9.6% micro-PET imaging sessions. Our results support the notions that FDG PET may be useful in the imaging evaluation of response to androgen ablation therapy and in the early prediction of hormone refractoriness in men with metastatic prostate cancer.

  17. Brain lactate metabolism in humans with subarachnoid hemorrhage.

    Science.gov (United States)

    Oddo, Mauro; Levine, Joshua M; Frangos, Suzanne; Maloney-Wilensky, Eileen; Carrera, Emmanuel; Daniel, Roy T; Levivier, Marc; Magistretti, Pierre J; LeRoux, Peter D

    2012-05-01

    Lactate is central for the regulation of brain metabolism and is an alternative substrate to glucose after injury. Brain lactate metabolism in patients with subarachnoid hemorrhage has not been fully elucidated. Thirty-one subarachnoid hemorrhage patients monitored with cerebral microdialysis (CMD) and brain oxygen (PbtO(2)) were studied. Samples with elevated CMD lactate (>4 mmol/L) were matched to PbtO(2) and CMD pyruvate and categorized as hypoxic (PbtO(2) 119 μmol/L) versus nonhyperglycolytic. Median per patient samples with elevated CMD lactate was 54% (interquartile range, 11%-80%). Lactate elevations were more often attributable to cerebral hyperglycolysis (78%; interquartile range, 5%-98%) than brain hypoxia (11%; interquartile range, 4%-75%). Mortality was associated with increased percentage of samples with elevated lactate and brain hypoxia (28% [interquartile range 9%-95%] in nonsurvivors versus 9% [interquartile range 3%-17%] in survivors; P=0.02) and lower percentage of elevated lactate and cerebral hyperglycolysis (13% [interquartile range, 1%-87%] versus 88% [interquartile range, 27%-99%]; P=0.07). Cerebral hyperglycolytic lactate production predicted good 6-month outcome (odds ratio for modified Rankin Scale score, 0-3 1.49; CI, 1.08-2.05; P=0.016), whereas increased lactate with brain hypoxia was associated with a reduced likelihood of good outcome (OR, 0.78; CI, 0.59-1.03; P=0.08). Brain lactate is frequently elevated in subarachnoid hemorrhage patients, predominantly because of hyperglycolysis rather than hypoxia. A pattern of increased cerebral hyperglycolytic lactate was associated with good long-term recovery. Our data suggest that lactate may be used as an aerobic substrate by the injured human brain.

  18. Abnormal metabolic network activity in REM sleep behavior disorder.

    Science.gov (United States)

    Holtbernd, Florian; Gagnon, Jean-François; Postuma, Ron B; Ma, Yilong; Tang, Chris C; Feigin, Andrew; Dhawan, Vijay; Vendette, Mélanie; Soucy, Jean-Paul; Eidelberg, David; Montplaisir, Jacques

    2014-02-18

    To determine whether the Parkinson disease-related covariance pattern (PDRP) expression is abnormally increased in idiopathic REM sleep behavior disorder (RBD) and whether increased baseline activity is associated with greater individual risk of subsequent phenoconversion. For this cohort study, we recruited 2 groups of RBD and control subjects. Cohort 1 comprised 10 subjects with RBD (63.5 ± 9.4 years old) and 10 healthy volunteers (62.7 ± 8.6 years old) who underwent resting-state metabolic brain imaging with (18)F-fluorodeoxyglucose PET. Cohort 2 comprised 17 subjects with RBD (68.9 ± 4.8 years old) and 17 healthy volunteers (66.6 ± 6.0 years old) who underwent resting brain perfusion imaging with ethylcysteinate dimer SPECT. The latter group was followed clinically for 4.6 ± 2.5 years by investigators blinded to the imaging results. PDRP expression was measured in both RBD groups and compared with corresponding control values. PDRP expression was elevated in both groups of subjects with RBD (cohort 1: p abnormalities in subjects with idiopathic RBD are associated with a greater likelihood of subsequent phenoconversion to a progressive neurodegenerative syndrome.

  19. Do all roads lead to Rome? A comparison of brain networks derived from inter-subject volumetric and metabolic covariance and moment-to-moment hemodynamic correlations in old individuals.

    Science.gov (United States)

    Di, Xin; Gohel, Suril; Thielcke, Andre; Wehrl, Hans F; Biswal, Bharat B

    2017-11-01

    Relationships between spatially remote brain regions in human have typically been estimated by moment-to-moment correlations of blood-oxygen-level dependent signals in resting-state using functional MRI (fMRI). Recently, studies using subject-to-subject covariance of anatomical volumes, cortical thickness, and metabolic activity are becoming increasingly popular. However, question remains on whether these measures reflect the same inter-region connectivity and brain network organizations. In the current study, we systematically analyzed inter-subject volumetric covariance from anatomical MRI images, metabolic covariance from fluorodeoxyglucose positron emission tomography images from 193 healthy subjects, and resting-state moment-to-moment correlations from fMRI images of a subset of 44 subjects. The correlation matrices calculated from the three methods were found to be minimally correlated, with higher correlation in the range of 0.31, as well as limited proportion of overlapping connections. The volumetric network showed the highest global efficiency and lowest mean clustering coefficient, leaning toward random-like network, while the metabolic and resting-state networks conveyed properties more resembling small-world networks. Community structures of the volumetric and metabolic networks did not reflect known functional organizations, which could be observed in resting-state network. The current results suggested that inter-subject volumetric and metabolic covariance do not necessarily reflect the inter-regional relationships and network organizations as resting-state correlations, thus calling for cautions on interpreting results of inter-subject covariance networks.

  20. Chimeric mice with humanized liver: Application in drug metabolism and pharmacokinetics studies for drug discovery.

    Science.gov (United States)

    Naritomi, Yoichi; Sanoh, Seigo; Ohta, Shigeru

    2018-02-01

    Predicting human drug metabolism and pharmacokinetics (PK) is key to drug discovery. In particular, it is important to predict human PK, metabolite profiles and drug-drug interactions (DDIs). Various methods have been used for such predictions, including in vitro metabolic studies using human biological samples, such as hepatic microsomes and hepatocytes, and in vivo studies using experimental animals. However, prediction studies using these methods are often inconclusive due to discrepancies between in vitro and in vivo results, and interspecies differences in drug metabolism. Further, the prediction methods have changed from qualitative to quantitative to solve these issues. Chimeric mice with humanized liver have been developed, in which mouse liver cells are mostly replaced with human hepatocytes. Since human drug metabolizing enzymes are expressed in the liver of these mice, they are regarded as suitable models for mimicking the drug metabolism and PK observed in humans; therefore, these mice are useful for predicting human drug metabolism and PK. In this review, we discuss the current state, issues, and future directions of predicting human drug metabolism and PK using chimeric mice with humanized liver in drug discovery. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  1. Network-level architecture and the evolutionary potential of underground metabolism.

    Science.gov (United States)

    Notebaart, Richard A; Szappanos, Balázs; Kintses, Bálint; Pál, Ferenc; Györkei, Ádám; Bogos, Balázs; Lázár, Viktória; Spohn, Réka; Csörgő, Bálint; Wagner, Allon; Ruppin, Eytan; Pál, Csaba; Papp, Balázs

    2014-08-12

    A central unresolved issue in evolutionary biology is how metabolic innovations emerge. Low-level enzymatic side activities are frequent and can potentially be recruited for new biochemical functions. However, the role of such underground reactions in adaptation toward novel environments has remained largely unknown and out of reach of computational predictions, not least because these issues demand analyses at the level of the entire metabolic network. Here, we provide a comprehensive computational model of the underground metabolism in Escherichia coli. Most underground reactions are not isolated and 45% of them can be fully wired into the existing network and form novel pathways that produce key precursors for cell growth. This observation allowed us to conduct an integrated genome-wide in silico and experimental survey to characterize the evolutionary potential of E. coli to adapt to hundreds of nutrient conditions. We revealed that underground reactions allow growth in new environments when their activity is increased. We estimate that at least ∼20% of the underground reactions that can be connected to the existing network confer a fitness advantage under specific environments. Moreover, our results demonstrate that the genetic basis of evolutionary adaptations via underground metabolism is computationally predictable. The approach used here has potential for various application areas from bioengineering to medical genetics.

  2. A human protein interaction network shows conservation of aging processes between human and invertebrate species.

    Directory of Open Access Journals (Sweden)

    Russell Bell

    2009-03-01

    Full Text Available We have mapped a protein interaction network of human homologs of proteins that modify longevity in invertebrate species. This network is derived from a proteome-scale human protein interaction Core Network generated through unbiased high-throughput yeast two-hybrid searches. The longevity network is composed of 175 human homologs of proteins known to confer increased longevity through loss of function in yeast, nematode, or fly, and 2,163 additional human proteins that interact with these homologs. Overall, the network consists of 3,271 binary interactions among 2,338 unique proteins. A comparison of the average node degree of the human longevity homologs with random sets of proteins in the Core Network indicates that human homologs of longevity proteins are highly connected hubs with a mean node degree of 18.8 partners. Shortest path length analysis shows that proteins in this network are significantly more connected than would be expected by chance. To examine the relationship of this network to human aging phenotypes, we compared the genes encoding longevity network proteins to genes known to be changed transcriptionally during aging in human muscle. In the case of both the longevity protein homologs and their interactors, we observed enrichments for differentially expressed genes in the network. To determine whether homologs of human longevity interacting proteins can modulate life span in invertebrates, homologs of 18 human FRAP1 interacting proteins showing significant changes in human aging muscle were tested for effects on nematode life span using RNAi. Of 18 genes tested, 33% extended life span when knocked-down in Caenorhabditis elegans. These observations indicate that a broad class of longevity genes identified in invertebrate models of aging have relevance to human aging. They also indicate that the longevity protein interaction network presented here is enriched for novel conserved longevity proteins.

  3. Social networks and human development / Redes sociales y desarrollo humano

    Directory of Open Access Journals (Sweden)

    Sara Gallego Trijueque

    2011-10-01

    Full Text Available The aim of this work is a brief introduction to the concept of social networks and their importance in society. Social networks have been responsible over the centuries to preserve community values, in addition to being facilitators of social interaction in human development processes, through communication and relationships between individuals.

  4. Genome-scale reconstruction of metabolic networks of Lactobacillus casei ATCC 334 and 12A.

    Directory of Open Access Journals (Sweden)

    Elena Vinay-Lara

    Full Text Available Lactobacillus casei strains are widely used in industry and the utility of this organism in these industrial applications is strain dependent. Hence, tools capable of predicting strain specific phenotypes would have utility in the selection of strains for specific industrial processes. Genome-scale metabolic models can be utilized to better understand genotype-phenotype relationships and to compare different organisms. To assist in the selection and development of strains with enhanced industrial utility, genome-scale models for L. casei ATCC 334, a well characterized strain, and strain 12A, a corn silage isolate, were constructed. Draft models were generated from RAST genome annotations using the Model SEED database and refined by evaluating ATP generating cycles, mass-and-charge-balances of reactions, and growth phenotypes. After the validation process was finished, we compared the metabolic networks of these two strains to identify metabolic, genetic and ortholog differences that may lead to different phenotypic behaviors. We conclude that the metabolic capabilities of the two networks are highly similar. The L. casei ATCC 334 model accounts for 1,040 reactions, 959 metabolites and 548 genes, while the L. casei 12A model accounts for 1,076 reactions, 979 metabolites and 640 genes. The developed L. casei ATCC 334 and 12A metabolic models will enable better understanding of the physiology of these organisms and be valuable tools in the development and selection of strains with enhanced utility in a variety of industrial applications.

  5. Default, Cognitive, and Affective Brain Networks in Human Tinnitus

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-13-1-0491 TITLE: Default, Cognitive, and Affective Brain Networks in Human Tinnitus PRINCIPAL INVESTIGATOR: Jennifer R...SUBTITLE 5a. CONTRACT NUMBER Default, Cognitive and Affective Brain Networks in Human Tinnitus 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Tinnitus is a major health problem among those currently and formerly in military

  6. Chimeric mice transplanted with human hepatocytes as a model for prediction of human drug metabolism and pharmacokinetics.

    Science.gov (United States)

    Sanoh, Seigo; Ohta, Shigeru

    2014-03-01

    Preclinical studies in animal models are used routinely during drug development, but species differences of pharmacokinetics (PK) between animals and humans have to be taken into account in interpreting the results. Human hepatocytes are also widely used to examine metabolic activities mediated by cytochrome P450 (P450) and other enzymes, but such in vitro metabolic studies also have limitations. Recently, chimeric mice with humanized liver (h-chimeric mice), generated by transplantation of human donor hepatocytes, have been developed as a model for the prediction of metabolism and PK in humans, using both in vitro and in vivo approaches. The expression of human-specific metabolic enzymes and metabolic activities was confirmed in humanized liver of h-chimeric mice with high replacement ratios, and several reports indicate that the profiles of P450 and non-P450 metabolism in these mice adequately reflect those in humans. Further, the combined use of h-chimeric mice and r-chimeric mice, in which endogenous hepatocytes are replaced with rat hepatocytes, is a promising approach for evaluation of species differences in drug metabolism. Recent work has shown that data obtained in h-chimeric mice enable the semi-quantitative prediction of not only metabolites, but also PK parameters, such as hepatic clearance, of drug candidates in humans, although some limitations remain because of differences in the metabolic activities, hepatic blood flow and liver structure between humans and mice. In addition, fresh h-hepatocytes can be isolated reproducibly from h-chimeric mice for metabolic studies. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Differential network analysis reveals evolutionary complexity in secondary metabolism of Rauvolfia serpentina over Catharanthus roseus

    Directory of Open Access Journals (Sweden)

    Shivalika Pathania

    2016-08-01

    Full Text Available Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Towards these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These mechanisms may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of Rauvolfia serpentina, and key genes that contribute towards diversification of specific metabolites.

  8. Differential Network Analysis Reveals Evolutionary Complexity in Secondary Metabolism of Rauvolfia serpentina over Catharanthus roseus.

    Science.gov (United States)

    Pathania, Shivalika; Bagler, Ganesh; Ahuja, Paramvir S

    2016-01-01

    Comparative co-expression analysis of multiple species using high-throughput data is an integrative approach to determine the uniformity as well as diversification in biological processes. Rauvolfia serpentina and Catharanthus roseus, both members of Apocyanacae family, are reported to have remedial properties against multiple diseases. Despite of sharing upstream of terpenoid indole alkaloid pathway, there is significant diversity in tissue-specific synthesis and accumulation of specialized metabolites in these plants. This led us to implement comparative co-expression network analysis to investigate the modules and genes responsible for differential tissue-specific expression as well as species-specific synthesis of metabolites. Toward these goals differential network analysis was implemented to identify candidate genes responsible for diversification of metabolites profile. Three genes were identified with significant difference in connectivity leading to differential regulatory behavior between these plants. These genes may be responsible for diversification of secondary metabolism, and thereby for species-specific metabolite synthesis. The network robustness of R. serpentina, determined based on topological properties, was also complemented by comparison of gene-metabolite networks of both plants, and may have evolved to have complex metabolic mechanisms as compared to C. roseus under the influence of various stimuli. This study reveals evolution of complexity in secondary metabolism of R. serpentina, and key genes that contribute toward diversification of specific metabolites.

  9. Impact of maternal metabolic abnormalities in pregnancy on human milk and subsequent infant metabolic development: methodology and design

    Directory of Open Access Journals (Sweden)

    Hamilton Jill K

    2010-10-01

    Full Text Available Abstract Background Childhood obesity is on the rise and is a major risk factor for type 2 diabetes later in life. Recent evidence indicates that abnormalities that increase risk for diabetes may be initiated early in infancy. Since the offspring of women with diabetes have an increased long-term risk for obesity and type 2 diabetes, the impact of maternal metabolic abnormalities on early nutrition and infant metabolic trajectories is of considerable interest. Human breast milk, the preferred food during infancy, contains not only nutrients but also an array of bioactive substances including metabolic hormones. Nonetheless, only a few studies have reported concentrations of metabolic hormones in human milk specifically from women with metabolic abnormalities. We aim to investigate the impact of maternal metabolic abnormalities in pregnancy on human milk hormones and subsequently on infant development over the first year of life. The objective of this report is to present the methodology and design of this study. Methods/Design The current investigation is a prospective study conducted within ongoing cohort studies of women and their offspring. Pregnant women attending outpatient obstetrics clinics in Toronto, Canada were recruited. Between April 2009 and July 2010, a total of 216 pregnant women underwent a baseline oral glucose tolerance test and provided medical and lifestyle history. Follow-up visits and telephone interviews are conducted and expected to be completed in October 2011. Upon delivery, infant birth anthropometry measurements and human breast milk samples are collected. At 3 and 12 months postpartum, mothers and infants are invited for follow-up assessments. Interim telephone interviews are conducted during the first year of offspring life to characterize infant feeding and supplementation behaviors. Discussion An improved understanding of the link between maternal metabolic abnormalities in pregnancy and early infant nutrition may

  10. Impact of maternal metabolic abnormalities in pregnancy on human milk and subsequent infant metabolic development: methodology and design.

    Science.gov (United States)

    Ley, Sylvia H; O'Connor, Deborah L; Retnakaran, Ravi; Hamilton, Jill K; Sermer, Mathew; Zinman, Bernard; Hanley, Anthony J

    2010-10-06

    Childhood obesity is on the rise and is a major risk factor for type 2 diabetes later in life. Recent evidence indicates that abnormalities that increase risk for diabetes may be initiated early in infancy. Since the offspring of women with diabetes have an increased long-term risk for obesity and type 2 diabetes, the impact of maternal metabolic abnormalities on early nutrition and infant metabolic trajectories is of considerable interest. Human breast milk, the preferred food during infancy, contains not only nutrients but also an array of bioactive substances including metabolic hormones. Nonetheless, only a few studies have reported concentrations of metabolic hormones in human milk specifically from women with metabolic abnormalities. We aim to investigate the impact of maternal metabolic abnormalities in pregnancy on human milk hormones and subsequently on infant development over the first year of life. The objective of this report is to present the methodology and design of this study. The current investigation is a prospective study conducted within ongoing cohort studies of women and their offspring. Pregnant women attending outpatient obstetrics clinics in Toronto, Canada were recruited. Between April 2009 and July 2010, a total of 216 pregnant women underwent a baseline oral glucose tolerance test and provided medical and lifestyle history. Follow-up visits and telephone interviews are conducted and expected to be completed in October 2011. Upon delivery, infant birth anthropometry measurements and human breast milk samples are collected. At 3 and 12 months postpartum, mothers and infants are invited for follow-up assessments. Interim telephone interviews are conducted during the first year of offspring life to characterize infant feeding and supplementation behaviors. An improved understanding of the link between maternal metabolic abnormalities in pregnancy and early infant nutrition may assist in the development of optimal prevention and intervention

  11. A FDG-PET Study of Metabolic Networks in Apolipoprotein E ε4 Allele Carriers.

    Directory of Open Access Journals (Sweden)

    Zhijun Yao

    Full Text Available Recently, some studies have applied the graph theory in brain network analysis in Alzheimer's disease (AD and Mild Cognitive Impairment (MCI. However, relatively little research has specifically explored the properties of the metabolic network in apolipoprotein E (APOE ε4 allele carriers. In our study, all the subjects, including ADs, MCIs and NCs (normal controls were divided into 165 APOE ε4 carriers and 165 APOE ε4 noncarriers. To establish the metabolic network for all brain regions except the cerebellum, cerebral glucose metabolism data obtained from FDG-PET (18F-fluorodeoxyglucose positron emission tomography were segmented into 90 areas with automated anatomical labeling (AAL template. Then, the properties of the networks were computed to explore the between-group differences. Our results suggested that both APOE ε4 carriers and noncarriers showed the small-world properties. Besides, compared with APOE ε4 noncarriers, the carriers showed a lower clustering coefficient. In addition, significant changes in 6 hub brain regions were found in between-group nodal centrality. Namely, compared with APOE ε4 noncarriers, significant decreases of the nodal centrality were found in left insula, right insula, right anterior cingulate, right paracingulate gyri, left cuneus, as well as significant increases in left paracentral lobule and left heschl gyrus in APOE ε4 carriers. Increased local short distance interregional correlations and disrupted long distance interregional correlations were found, which may support the point that the APOE ε4 carriers were more similar with AD or MCI in FDG uptake. In summary, the organization of metabolic network in APOE ε4 carriers indicated a less optimal pattern and APOE ε4 might be a risk factor for AD.

  12. Network signatures of cellular immortalization in human lymphoblastoid cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Sung-Mi; Jung, So-Young; Nam, Hye-Young; Kim, Hye-Ryun; Lee, Mee-Hee; Kim, Jun-Woo; Han, Bok-Ghee [National Biobank of Korea, Center for Genome Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of); Jeon, Jae-Pil, E-mail: jaepiljeon@hanmail.net [Division of Brain Diseases, Center for Biomedical Science, Korea National Institute of Health, Osong 363-951 (Korea, Republic of)

    2013-11-15

    Highlights: •We identified network signatures of LCL immortalization from transcriptomic profiles. •More than 41% of DEGs are possibly regulated by miRNAs in LCLs. •MicroRNA target genes in LCLs are involved in apoptosis and immune-related functions. •This approach is useful to find functional miRNA targets in specific cell conditions. -- Abstract: Human lymphoblastoid cell line (LCL) has been used as an in vitro cell model in genetic and pharmacogenomic studies, as well as a good model for studying gene expression regulatory machinery using integrated genomic analyses. In this study, we aimed to identify biological networks of LCL immortalization from transcriptomic profiles of microRNAs and their target genes in LCLs. We first selected differentially expressed genes (DEGs) and microRNAs (DEmiRs) between early passage LCLs (eLCLs) and terminally differentiated late passage LCLs (tLCLs). The in silico and correlation analysis of these DEGs and DEmiRs revealed that 1098 DEG–DEmiR pairs were found to be positively (n = 591 pairs) or negatively (n = 507 pairs) correlated with each other. More than 41% of DEGs are possibly regulated by miRNAs in LCL immortalizations. The target DEGs of DEmiRs were enriched for cellular functions associated with apoptosis, immune response, cell death, JAK–STAT cascade and lymphocyte activation while non-miRNA target DEGs were over-represented for basic cell metabolisms. The target DEGs correlated negatively with miR-548a-3p and miR-219-5p were significantly associated with protein kinase cascade, and the lymphocyte proliferation and apoptosis, respectively. In addition, the miR-106a and miR-424 clusters located in the X chromosome were enriched in DEmiR–mRNA pairs for LCL immortalization. In this study, the integrated transcriptomic analysis of LCLs could identify functional networks of biologically active microRNAs and their target genes involved in LCL immortalization.

  13. Functional evolution of new and expanded attention networks in humans.

    Science.gov (United States)

    Patel, Gaurav H; Yang, Danica; Jamerson, Emery C; Snyder, Lawrence H; Corbetta, Maurizio; Ferrera, Vincent P

    2015-07-28

    Macaques are often used as a model system for invasive investigations of the neural substrates of cognition. However, 25 million years of evolution separate humans and macaques from their last common ancestor, and this has likely substantially impacted the function of the cortical networks underlying cognitive processes, such as attention. We examined the homology of frontoparietal networks underlying attention by comparing functional MRI data from macaques and humans performing the same visual search task. Although there are broad similarities, we found fundamental differences between the species. First, humans have more dorsal attention network areas than macaques, indicating that in the course of evolution the human attention system has expanded compared with macaques. Second, potentially homologous areas in the dorsal attention network have markedly different biases toward representing the contralateral hemifield, indicating that the underlying neural architecture of these areas may differ in the most basic of properties, such as receptive field distribution. Third, despite clear evidence of the temporoparietal junction node of the ventral attention network in humans as elicited by this visual search task, we did not find functional evidence of a temporoparietal junction in macaques. None of these differences were the result of differences in training, experimental power, or anatomical variability between the two species. The results of this study indicate that macaque data should be applied to human models of cognition cautiously, and demonstrate how evolution may shape cortical networks.

  14. Epstein–Barr Virus-Induced Metabolic Rearrangements in Human B-Cell Lymphomas

    Directory of Open Access Journals (Sweden)

    Pier P. Piccaluga

    2018-06-01

    Full Text Available Tumor metabolism has been the object of several studies in the past, leading to the pivotal observation of a consistent shift toward aerobic glycolysis (so-called Warburg effect. More recently, several additional investigations proved that tumor metabolism is profoundly affected during tumorigenesis, including glucose, lipid and amino-acid metabolism. It is noticeable that metabolic reprogramming can represent a suitable therapeutic target in many cancer types. Epstein–Barr virus (EBV was the first virus linked with cancer in humans when Burkitt lymphoma (BL was described. Besides other well-known effects, it was recently demonstrated that EBV can induce significant modification in cell metabolism, which may lead or contribute to neoplastic transformation of human cells. Similarly, virus-induced tumorigenesis is characterized by relevant metabolic abnormalities directly induced by the oncoviruses. In this article, the authors critically review the most recent literature concerning EBV-induced metabolism alterations in lymphomas.

  15. Yeast 5 – an expanded reconstruction of the Saccharomyces cerevisiae metabolic network

    Directory of Open Access Journals (Sweden)

    Heavner Benjamin D

    2012-06-01

    Full Text Available Abstract Background Efforts to improve the computational reconstruction of the Saccharomyces cerevisiae biochemical reaction network and to refine the stoichiometrically constrained metabolic models that can be derived from such a reconstruction have continued since the first stoichiometrically constrained yeast genome scale metabolic model was published in 2003. Continuing this ongoing process, we have constructed an update to the Yeast Consensus Reconstruction, Yeast 5. The Yeast Consensus Reconstruction is a product of efforts to forge a community-based reconstruction emphasizing standards compliance and biochemical accuracy via evidence-based selection of reactions. It draws upon models published by a variety of independent research groups as well as information obtained from biochemical databases and primary literature. Results Yeast 5 refines the biochemical reactions included in the reconstruction, particularly reactions involved in sphingolipid metabolism; updates gene-reaction annotations; and emphasizes the distinction between reconstruction and stoichiometrically constrained model. Although it was not a primary goal, this update also improves the accuracy of model prediction of viability and auxotrophy phenotypes and increases the number of epistatic interactions. This update maintains an emphasis on standards compliance, unambiguous metabolite naming, and computer-readable annotations available through a structured document format. Additionally, we have developed MATLAB scripts to evaluate the model’s predictive accuracy and to demonstrate basic model applications such as simulating aerobic and anaerobic growth. These scripts, which provide an independent tool for evaluating the performance of various stoichiometrically constrained yeast metabolic models using flux balance analysis, are included as Additional files 1, 2 and 3. Additional file 1 Function testYeastModel.m.m. Click here for file Additional file 2 Function model

  16. Habitat variability does not generally promote metabolic network modularity in flies and mammals.

    Science.gov (United States)

    Takemoto, Kazuhiro

    2016-01-01

    The evolution of species habitat range is an important topic over a wide range of research fields. In higher organisms, habitat range evolution is generally associated with genetic events such as gene duplication. However, the specific factors that determine habitat variability remain unclear at higher levels of biological organization (e.g., biochemical networks). One widely accepted hypothesis developed from both theoretical and empirical analyses is that habitat variability promotes network modularity; however, this relationship has not yet been directly tested in higher organisms. Therefore, I investigated the relationship between habitat variability and metabolic network modularity using compound and enzymatic networks in flies and mammals. Contrary to expectation, there was no clear positive correlation between habitat variability and network modularity. As an exception, the network modularity increased with habitat variability in the enzymatic networks of flies. However, the observed association was likely an artifact, and the frequency of gene duplication appears to be the main factor contributing to network modularity. These findings raise the question of whether or not there is a general mechanism for habitat range expansion at a higher level (i.e., above the gene scale). This study suggests that the currently widely accepted hypothesis for habitat variability should be reconsidered. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Proline and hydroxyproline metabolism: implications for animal and human nutrition

    Science.gov (United States)

    Bazer, Fuller W.; Burghardt, Robert C.; Johnson, Gregory A.; Kim, Sung Woo; Knabe, Darrell A.; Li, Peng; Li, Xilong; McKnight, Jason R.; Satterfield, M. Carey; Spencer, Thomas E.

    2013-01-01

    Proline plays important roles in protein synthesis and structure, metabolism (particularly the synthesis of arginine, polyamines, and glutamate via pyrroline-5-carboxylate), and nutrition, as well as wound healing, antioxidative reactions, and immune responses. On a pergram basis, proline plus hydroxyproline are most abundant in collagen and milk proteins, and requirements of proline for whole-body protein synthesis are the greatest among all amino acids. Therefore, physiological needs for proline are particularly high during the life cycle. While most mammals (including humans and pigs) can synthesize proline from arginine and glutamine/glutamate, rates of endogenous synthesis are inadequate for neonates, birds, and fish. Thus, work with young pigs (a widely used animal model for studying infant nutrition) has shown that supplementing 0.0, 0.35, 0.7, 1.05, 1.4, and 2.1% proline to a proline-free chemically defined diet containing 0.48% arginine and 2% glutamate dose dependently improved daily growth rate and feed efficiency while reducing concentrations of urea in plasma. Additionally, maximal growth performance of chickens depended on at least 0.8% proline in the diet. Likewise, dietary supplementation with 0.07, 0.14, and 0.28% hydroxyproline (a metabolite of proline) to a plant protein-based diet enhanced weight gains of salmon. Based on its regulatory roles in cellular biochemistry, proline can be considered as a functional amino acid for mammalian, avian, and aquatic species. Further research is warranted to develop effective strategies of dietary supplementation with proline or hydroxyproline to benefit health, growth, and development of animals and humans. PMID:20697752

  18. Mapping human whole-brain structural networks with diffusion MRI.

    Directory of Open Access Journals (Sweden)

    Patric Hagmann

    Full Text Available Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead, human or animal brain. This non-invasive tool enables us to study the basic and potentially complex network properties of the entire brain. For two human subjects we find that their individual brain networks have an exponential node degree distribution and that their global organization is in the form of a small world.

  19. Novel Plasmodium falciparum metabolic network reconstruction identifies shifts associated with clinical antimalarial resistance.

    Science.gov (United States)

    Carey, Maureen A; Papin, Jason A; Guler, Jennifer L

    2017-07-19

    Malaria remains a major public health burden and resistance has emerged to every antimalarial on the market, including the frontline drug, artemisinin. Our limited understanding of Plasmodium biology hinders the elucidation of resistance mechanisms. In this regard, systems biology approaches can facilitate the integration of existing experimental knowledge and further understanding of these mechanisms. Here, we developed a novel genome-scale metabolic network reconstruction, iPfal17, of the asexual blood-stage P. falciparum parasite to expand our understanding of metabolic changes that support resistance. We identified 11 metabolic tasks to evaluate iPfal17 performance. Flux balance analysis and simulation of gene knockouts and enzyme inhibition predict candidate drug targets unique to resistant parasites. Moreover, integration of clinical parasite transcriptomes into the iPfal17 reconstruction reveals patterns associated with antimalarial resistance. These results predict that artemisinin sensitive and resistant parasites differentially utilize scavenging and biosynthetic pathways for multiple essential metabolites, including folate and polyamines. Our findings are consistent with experimental literature, while generating novel hypotheses about artemisinin resistance and parasite biology. We detect evidence that resistant parasites maintain greater metabolic flexibility, perhaps representing an incomplete transition to the metabolic state most appropriate for nutrient-rich blood. Using this systems biology approach, we identify metabolic shifts that arise with or in support of the resistant phenotype. This perspective allows us to more productively analyze and interpret clinical expression data for the identification of candidate drug targets for the treatment of resistant parasites.

  20. Dopamine in the medial amygdala network mediates human bonding.

    Science.gov (United States)

    Atzil, Shir; Touroutoglou, Alexandra; Rudy, Tali; Salcedo, Stephanie; Feldman, Ruth; Hooker, Jacob M; Dickerson, Bradford C; Catana, Ciprian; Barrett, Lisa Feldman

    2017-02-28

    Research in humans and nonhuman animals indicates that social affiliation, and particularly maternal bonding, depends on reward circuitry. Although numerous mechanistic studies in rodents demonstrated that maternal bonding depends on striatal dopamine transmission, the neurochemistry supporting maternal behavior in humans has not been described so far. In this study, we tested the role of central dopamine in human bonding. We applied a combined functional MRI-PET scanner to simultaneously probe mothers' dopamine responses to their infants and the connectivity between the nucleus accumbens (NAcc), the amygdala, and the medial prefrontal cortex (mPFC), which form an intrinsic network (referred to as the "medial amygdala network") that supports social functioning. We also measured the mothers' behavioral synchrony with their infants and plasma oxytocin. The results of this study suggest that synchronous maternal behavior is associated with increased dopamine responses to the mother's infant and stronger intrinsic connectivity within the medial amygdala network. Moreover, stronger network connectivity is associated with increased dopamine responses within the network and decreased plasma oxytocin. Together, these data indicate that dopamine is involved in human bonding. Compared with other mammals, humans have an unusually complex social life. The complexity of human bonding cannot be fully captured in nonhuman animal models, particularly in pathological bonding, such as that in autistic spectrum disorder or postpartum depression. Thus, investigations of the neurochemistry of social bonding in humans, for which this study provides initial evidence, are warranted.

  1. Comparative genomic reconstruction of transcriptional networks controlling central metabolism in the Shewanella genus

    Directory of Open Access Journals (Sweden)

    Kovaleva Galina

    2011-06-01

    Full Text Available Abstract Background Genome-scale prediction of gene regulation and reconstruction of transcriptional regulatory networks in bacteria is one of the critical tasks of modern genomics. The Shewanella genus is comprised of metabolically versatile gamma-proteobacteria, whose lifestyles and natural environments are substantially different from Escherichia coli and other model bacterial species. The comparative genomics approaches and computational identification of regulatory sites are useful for the in silico reconstruction of transcriptional regulatory networks in bacteria. Results To explore conservation and variations in the Shewanella transcriptional networks we analyzed the repertoire of transcription factors and performed genomics-based reconstruction and comparative analysis of regulons in 16 Shewanella genomes. The inferred regulatory network includes 82 transcription factors and their DNA binding sites, 8 riboswitches and 6 translational attenuators. Forty five regulons were newly inferred from the genome context analysis, whereas others were propagated from previously characterized regulons in the Enterobacteria and Pseudomonas spp.. Multiple variations in regulatory strategies between the Shewanella spp. and E. coli include regulon contraction and expansion (as in the case of PdhR, HexR, FadR, numerous cases of recruiting non-orthologous regulators to control equivalent pathways (e.g. PsrA for fatty acid degradation and, conversely, orthologous regulators to control distinct pathways (e.g. TyrR, ArgR, Crp. Conclusions We tentatively defined the first reference collection of ~100 transcriptional regulons in 16 Shewanella genomes. The resulting regulatory network contains ~600 regulated genes per genome that are mostly involved in metabolism of carbohydrates, amino acids, fatty acids, vitamins, metals, and stress responses. Several reconstructed regulons including NagR for N-acetylglucosamine catabolism were experimentally validated in S

  2. Human Metabolism and Interactions of Deployment-Related Chemicals

    Science.gov (United States)

    2008-08-01

    stimulated by CPO (Fig. 6). Coincidently, α- naphthoflavone inhibited CYP1A2 metabolism of flavonoids /23/ and stimulated CYP3A4 metabolism of...by flavonoids of benzo[a]pyrene hydroxylation by cytochrome P-450 isozymes from rabbit liver microsomes, J. Biol. Chem. 1981; 256: 10897-10901. 17...P450-mediated metabolism of dietary flavonoids , Food Chem. Toxicol. 2002; 40: 609-616. 24. Cameron MD, Wen B, Allen KE, Roberts AG, Schuman JT

  3. Novel transcriptional networks regulated by CLOCK in human neurons.

    Science.gov (United States)

    Fontenot, Miles R; Berto, Stefano; Liu, Yuxiang; Werthmann, Gordon; Douglas, Connor; Usui, Noriyoshi; Gleason, Kelly; Tamminga, Carol A; Takahashi, Joseph S; Konopka, Genevieve

    2017-11-01

    The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function. © 2017 Fontenot et al.; Published by Cold Spring Harbor Laboratory Press.

  4. Brain and Social Networks: Fundamental Building Blocks of Human Experience.

    Science.gov (United States)

    Falk, Emily B; Bassett, Danielle S

    2017-09-01

    How do brains shape social networks, and how do social ties shape the brain? Social networks are complex webs by which ideas spread among people. Brains comprise webs by which information is processed and transmitted among neural units. While brain activity and structure offer biological mechanisms for human behaviors, social networks offer external inducers or modulators of those behaviors. Together, these two axes represent fundamental contributors to human experience. Integrating foundational knowledge from social and developmental psychology and sociology on how individuals function within dyads, groups, and societies with recent advances in network neuroscience can offer new insights into both domains. Here, we use the example of how ideas and behaviors spread to illustrate the potential of multilayer network models. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Human Metabolism and Interactions of Deployment-Related Chemicals

    National Research Council Canada - National Science Library

    Hodgson, Ernest; Brimfield, Alan A; Goldstein, Joyce E; Rose, Randy L; Wallace, Andrew D

    2008-01-01

    .... The metabolism of chlorpyrifos, DEET, permethrin, pyridostigmine bromide, sulfur mustard, naphthalene and nonane as well as a number of their metabolites and related chemicals was investigated...

  6. Human Face Recognition Using Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Răzvan-Daniel Albu

    2009-10-01

    Full Text Available In this paper, I present a novel hybrid face recognition approach based on a convolutional neural architecture, designed to robustly detect highly variable face patterns. The convolutional network extracts successively larger features in a hierarchical set of layers. With the weights of the trained neural networks there are created kernel windows used for feature extraction in a 3-stage algorithm. I present experimental results illustrating the efficiency of the proposed approach. I use a database of 796 images of 159 individuals from Reims University which contains quite a high degree of variability in expression, pose, and facial details.

  7. Human recognition in a video network

    Science.gov (United States)

    Bhanu, Bir

    2009-10-01

    Video networks is an emerging interdisciplinary field with significant and exciting scientific and technological challenges. It has great promise in solving many real-world problems and enabling a broad range of applications, including smart homes, video surveillance, environment and traffic monitoring, elderly care, intelligent environments, and entertainment in public and private spaces. This paper provides an overview of the design of a wireless video network as an experimental environment, camera selection, hand-off and control, anomaly detection. It addresses challenging questions for individual identification using gait and face at a distance and present new techniques and their comparison for robust identification.

  8. Ordinary differential equations and Boolean networks in application to modelling of 6-mercaptopurine metabolism.

    Science.gov (United States)

    Lavrova, Anastasia I; Postnikov, Eugene B; Zyubin, Andrey Yu; Babak, Svetlana V

    2017-04-01

    We consider two approaches to modelling the cell metabolism of 6-mercaptopurine, one of the important chemotherapy drugs used for treating acute lymphocytic leukaemia: kinetic ordinary differential equations, and Boolean networks supplied with one controlling node, which takes continual values. We analyse their interplay with respect to taking into account ATP concentration as a key parameter of switching between different pathways. It is shown that the Boolean networks, which allow avoiding the complexity of general kinetic modelling, preserve the possibility of reproducing the principal switching mechanism.

  9. Integration of expression data in genome-scale metabolic network reconstructions

    Directory of Open Access Journals (Sweden)

    Anna S. Blazier

    2012-08-01

    Full Text Available With the advent of high-throughput technologies, the field of systems biology has amassed an abundance of omics data, quantifying thousands of cellular components across a variety of scales, ranging from mRNA transcript levels to metabolite quantities. Methods are needed to not only integrate this omics data but to also use this data to heighten the predictive capabilities of computational models. Several recent studies have successfully demonstrated how flux balance analysis (FBA, a constraint-based modeling approach, can be used to integrate transcriptomic data into genome-scale metabolic network reconstructions to generate predictive computational models. In this review, we summarize such FBA-based methods for integrating expression data into genome-scale metabolic network reconstructions, highlighting their advantages as well as their limitations.

  10. Simultaneous Parameters Identifiability and Estimation of an E. coli Metabolic Network Model

    Directory of Open Access Journals (Sweden)

    Kese Pontes Freitas Alberton

    2015-01-01

    Full Text Available This work proposes a procedure for simultaneous parameters identifiability and estimation in metabolic networks in order to overcome difficulties associated with lack of experimental data and large number of parameters, a common scenario in the modeling of such systems. As case study, the complex real problem of parameters identifiability of the Escherichia coli K-12 W3110 dynamic model was investigated, composed by 18 differential ordinary equations and 35 kinetic rates, containing 125 parameters. With the procedure, model fit was improved for most of the measured metabolites, achieving 58 parameters estimated, including 5 unknown initial conditions. The results indicate that simultaneous parameters identifiability and estimation approach in metabolic networks is appealing, since model fit to the most of measured metabolites was possible even when important measures of intracellular metabolites and good initial estimates of parameters are not available.

  11. Metabolic network analysis-based identification of antimicrobial drug targets in category A bioterrorism agents.

    Directory of Open Access Journals (Sweden)

    Yong-Yeol Ahn

    Full Text Available The 2001 anthrax mail attacks in the United States demonstrated the potential threat of bioterrorism, hence driving the need to develop sophisticated treatment and diagnostic protocols to counter biological warfare. Here, by performing flux balance analyses on the fully-annotated metabolic networks of multiple, whole genome-sequenced bacterial strains, we have identified a large number of metabolic enzymes as potential drug targets for each of the three Category A-designated bioterrorism agents including Bacillus anthracis, Francisella tularensis and Yersinia pestis. Nine metabolic enzymes- belonging to the coenzyme A, folate, phosphatidyl-ethanolamine and nucleic acid pathways common to all strains across the three distinct genera were identified as targets. Antimicrobial agents against some of these enzymes are available. Thus, a combination of cross species-specific antibiotics and common antimicrobials against shared targets may represent a useful combinatorial therapeutic approach against all Category A bioterrorism agents.

  12. Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network

    DEFF Research Database (Denmark)

    Østergaard, Simon; Olsson, Lisbeth; Johnston, M.

    2000-01-01

    Increasing the flux through central carbon metabolism is difficult because of rigidity in regulatory structures, at both the genetic and the enzymatic levels. Here we describe metabolic engineering of a regulatory network to obtain a balanced increase in the activity of all the enzymes in the pat...... media. The improved galactose consumption of the gal mutants did not favor biomass formation, but rather caused excessive respiro-fermentative metabolism, with the ethanol production rate increasing linearly with glycolytic flux....... by eliminating three known negative regulators of the GAL system: Gale, Gal80, and Mig1. This led to a 41% increase in flux through the galactose utilization pathway compared with the wild-type strain. This is of significant interest within the field of biotechnology since galactose is present in many industrial...

  13. PPAR? population shift produces disease-related changes in molecular networks associated with metabolic syndrome

    OpenAIRE

    Jurkowski, W; Roomp, K; Crespo, I; Schneider, J G; del Sol, A

    2011-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipocyte differentiation and has an important role in metabolic syndrome. Phosphorylation of the receptor's ligand-binding domain at serine 273 has been shown to change the expression of a large number of genes implicated in obesity. The difference in gene expression seen when comparing wild-type phosphorylated with mutant non-phosphorylated PPARγ may have important consequences for the cellular molecular network,...

  14. Organizing smart networks and humans into augmented teams

    NARCIS (Netherlands)

    Neef, R.M.; Rijn, M. van; Keus, D.; Marck, J.W.

    2009-01-01

    This paper discusses the challenge of turning networks of sensors, computers, agents and humans into hybrid teams that are capable, effective and adaptive. We propose a functional model and illustrate how such a model can be put into practice, and augment the capabilities of the human organization.

  15. Inferring transcriptional gene regulation network of starch metabolism in Arabidopsis thaliana leaves using graphical Gaussian model

    Directory of Open Access Journals (Sweden)

    Ingkasuwan Papapit

    2012-08-01

    Full Text Available Abstract Background Starch serves as a temporal storage of carbohydrates in plant leaves during day/night cycles. To study transcriptional regulatory modules of this dynamic metabolic process, we conducted gene regulation network analysis based on small-sample inference of graphical Gaussian model (GGM. Results Time-series significant analysis was applied for Arabidopsis leaf transcriptome data to obtain a set of genes that are highly regulated under a diurnal cycle. A total of 1,480 diurnally regulated genes included 21 starch metabolic enzymes, 6 clock-associated genes, and 106 transcription factors (TF. A starch-clock-TF gene regulation network comprising 117 nodes and 266 edges was constructed by GGM from these 133 significant genes that are potentially related to the diurnal control of starch metabolism. From this network, we found that β-amylase 3 (b-amy3: At4g17090, which participates in starch degradation in chloroplast, is the most frequently connected gene (a hub gene. The robustness of gene-to-gene regulatory network was further analyzed by TF binding site prediction and by evaluating global co-expression of TFs and target starch metabolic enzymes. As a result, two TFs, indeterminate domain 5 (AtIDD5: At2g02070 and constans-like (COL: At2g21320, were identified as positive regulators of starch synthase 4 (SS4: At4g18240. The inference model of AtIDD5-dependent positive regulation of SS4 gene expression was experimentally supported by decreased SS4 mRNA accumulation in Atidd5 mutant plants during the light period of both short and long day conditions. COL was also shown to positively control SS4 mRNA accumulation. Furthermore, the knockout of AtIDD5 and COL led to deformation of chloroplast and its contained starch granules. This deformity also affected the number of starch granules per chloroplast, which increased significantly in both knockout mutant lines. Conclusions In this study, we utilized a systematic approach of microarray

  16. Characterizing steady states of genome-scale metabolic networks in continuous cell cultures.

    Directory of Open Access Journals (Sweden)

    Jorge Fernandez-de-Cossio-Diaz

    2017-11-01

    Full Text Available In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced.

  17. Multiobjective flux balancing using the NISE method for metabolic network analysis.

    Science.gov (United States)

    Oh, Young-Gyun; Lee, Dong-Yup; Lee, Sang Yup; Park, Sunwon

    2009-01-01

    Flux balance analysis (FBA) is well acknowledged as an analysis tool of metabolic networks in the framework of metabolic engineering. However, FBA has a limitation for solving a multiobjective optimization problem which considers multiple conflicting objectives. In this study, we propose a novel multiobjective flux balance analysis method, which adapts the noninferior set estimation (NISE) method (Solanki et al., 1993) for multiobjective linear programming (MOLP) problems. NISE method can generate an approximation of the Pareto curve for conflicting objectives without redundant iterations of single objective optimization. Furthermore, the flux distributions at each Pareto optimal solution can be obtained for understanding the internal flux changes in the metabolic network. The functionality of this approach is shown by applying it to a genome-scale in silico model of E. coli. Multiple objectives for the poly(3-hydroxybutyrate) [P(3HB)] production are considered simultaneously, and relationships among them are identified. The Pareto curve for maximizing succinic acid production vs. maximizing biomass production is used for the in silico analysis of various combinatorial knockout strains. This proposed method accelerates the strain improvement in the metabolic engineering by reducing computation time of obtaining the Pareto curve and analysis time of flux distribution at each Pareto optimal solution. (c) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.

  18. The role of gut microbiota in human metabolism

    NARCIS (Netherlands)

    Vrieze, A.

    2013-01-01

    This thesis supports the hypothesis that gut microbiota can be viewed as an ‘exteriorised organ’ that contributes to energy metabolism and the modulation of our immune system. Following Koch’s postulates, it has now been shown that gut microbiota are associated with metabolic disease and that these

  19. Hepatic metabolism of toluene after gastrointestinal uptake in humans

    DEFF Research Database (Denmark)

    Bælum, Jesper; Mølhave, Lars; Honoré Hansen, S

    1993-01-01

    The metabolism of toluene and the influence of small doses of ethanol were measured in eight male volunteers after gastrointestinal uptake, the toluene concentration in alveolar air and the urinary excretion of hippuric acid and ortho-cresol being used as the measures of metabolism. During toluene...

  20. Circadian rhythms, metabolism, and chrononutrition in rodents and humans

    Science.gov (United States)

    Chrononutrition is an emerging discipline that builds on the intimate relation between endogenous circadian (24-h) rhythms and metabolism. Circadian regulation of metabolic function can be observed from the level of intracellular biochemistry to whole-organism physiology and even postprandial respon...

  1. Diet-microbiota interactions as moderators of human metabolism

    DEFF Research Database (Denmark)

    Sonnenburg, Justin L; Bäckhed, Gert Fredrik

    2016-01-01

    It is widely accepted that obesity and associated metabolic diseases, including type 2 diabetes, are intimately linked to diet. However, the gut microbiota has also become a focus for research at the intersection of diet and metabolic health. Mechanisms that link the gut microbiota with obesity...

  2. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  3. Static human face recognition using artificial neural networks

    International Nuclear Information System (INIS)

    Qamar, R.; Shah, S.H.; Javed-ur-Rehman

    2003-01-01

    This paper presents a novel method of human face recognition using digital computers. A digital PC camera is used to take the BMP images of the human faces. An artificial neural network using Back Propagation Algorithm is developed as a recognition engine. The BMP images of the faces serve as the input patterns for this engine. A software 'Face Recognition' has been developed to recognize the human faces for which it is trained. Once the neural network is trained for patterns of the faces, the software is able to detect and recognize them with success rate of about 97%. (author)

  4. A regulatory network for human adenocarcinoma

    African Journals Online (AJOL)

    AJL

    2012-03-13

    Mar 13, 2012 ... Human adenocarcinoma (AC) is the most frequently diagnosed human lung cancer and its absolute incidence is increasing ... Lung carcinomas are usually classified as small-cell lung ..... such as embryonic development, reproduction, and. TYMS .... homeostatic processes including stem cell maintenance,.

  5. Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness.

    Science.gov (United States)

    Chennu, Srivas; Annen, Jitka; Wannez, Sarah; Thibaut, Aurore; Chatelle, Camille; Cassol, Helena; Martens, Géraldine; Schnakers, Caroline; Gosseries, Olivia; Menon, David; Laureys, Steven

    2017-08-01

    Recent advances in functional neuroimaging have demonstrated novel potential for informing diagnosis and prognosis in the unresponsive wakeful syndrome and minimally conscious states. However, these technologies come with considerable expense and difficulty, limiting the possibility of wider clinical application in patients. Here, we show that high density electroencephalography, collected from 104 patients measured at rest, can provide valuable information about brain connectivity that correlates with behaviour and functional neuroimaging. Using graph theory, we visualize and quantify spectral connectivity estimated from electroencephalography as a dense brain network. Our findings demonstrate that key quantitative metrics of these networks correlate with the continuum of behavioural recovery in patients, ranging from those diagnosed as unresponsive, through those who have emerged from minimally conscious, to the fully conscious locked-in syndrome. In particular, a network metric indexing the presence of densely interconnected central hubs of connectivity discriminated behavioural consciousness with accuracy comparable to that achieved by expert assessment with positron emission tomography. We also show that this metric correlates strongly with brain metabolism. Further, with classification analysis, we predict the behavioural diagnosis, brain metabolism and 1-year clinical outcome of individual patients. Finally, we demonstrate that assessments of brain networks show robust connectivity in patients diagnosed as unresponsive by clinical consensus, but later rediagnosed as minimally conscious with the Coma Recovery Scale-Revised. Classification analysis of their brain network identified each of these misdiagnosed patients as minimally conscious, corroborating their behavioural diagnoses. If deployed at the bedside in the clinical context, such network measurements could complement systematic behavioural assessment and help reduce the high misdiagnosis rate reported

  6. Dynamics of human whole body amino acid metabolism

    International Nuclear Information System (INIS)

    Young, V.R.

    1981-01-01

    The mechanism of regulation of the nitrogen metabolism in humans under various nutritional and physiological states was examined using stable isotopes. In the simultaneous continuous infusion of 1- [ 13 ] - leucine and α- [ 15 N]- lysine, their fluxed decreased when individuals received lower protein intake. The rates of oxidation and incorporation into body proteins of leucine changed in parallel with the protein intake. Such effects of diet on whole body leucine kinetics were modified by the energy state and dietary energy level. The nitrogen balance was also improved by an excess level of dietary energy. When the intake of dietary protein was lowered below the maintenance level, the whole body flux and de novo synthesis of glycine were lowered, but alanine synthesis was clearly increased. The intravenous infusion of glucose at 4 mg/kg.min, which causes increase in excess blood sugar and plasma insulin, increased the alanine flux, but had no effect on the glycine flux. The rate of albumin synthesis, determined by giving 15 N-glycine orally every 3 hr, decreased with the lowered intake of dietary protein in young men, but not in elderly men. This explains why the serum albumin synthesis increases with the increase in the intake of dietary protein in young men, but not in elderly men. The rate of whole body protein synthesis in young men receiving the L-amino acid diets providing with the required intake of specific amino acid was much lower than that in the men receiving the diets providing with generous intake of specific amino acid. Thus the control mechanism to maintain the homeostasis of body nitrogen and amino acids is related in some unknown way to the nutritional requirement of the hosts. (Kaihara, S.)

  7. Innovative methods to study human intestinal drug metabolism in vitro : Precision-cut slices compared with Ussing chamber preparations

    NARCIS (Netherlands)

    van de Kerkhof, Esther G.; Ungell, Anna-Lena B.; Sjoberg, Asa K.; de Jager, Marina H.; Hilgendorf, Constanze; de Graaf, Inge A. M.; Groothuis, Geny M. M.

    2006-01-01

    Predictive in vitro methods to investigate drug metabolism in the human intestine using intact tissue are of high importance. Therefore, we studied the metabolic activity of human small intestinal and colon slices and compared it with the metabolic activity of the same human intestinal segments

  8. XenoSite: accurately predicting CYP-mediated sites of metabolism with neural networks.

    Science.gov (United States)

    Zaretzki, Jed; Matlock, Matthew; Swamidass, S Joshua

    2013-12-23

    Understanding how xenobiotic molecules are metabolized is important because it influences the safety, efficacy, and dose of medicines and how they can be modified to improve these properties. The cytochrome P450s (CYPs) are proteins responsible for metabolizing 90% of drugs on the market, and many computational methods can predict which atomic sites of a molecule--sites of metabolism (SOMs)--are modified during CYP-mediated metabolism. This study improves on prior methods of predicting CYP-mediated SOMs by using new descriptors and machine learning based on neural networks. The new method, XenoSite, is faster to train and more accurate by as much as 4% or 5% for some isozymes. Furthermore, some "incorrect" predictions made by XenoSite were subsequently validated as correct predictions by revaluation of the source literature. Moreover, XenoSite output is interpretable as a probability, which reflects both the confidence of the model that a particular atom is metabolized and the statistical likelihood that its prediction for that atom is correct.

  9. Digital Humanities and networked digital media

    DEFF Research Database (Denmark)

    Finnemann, Niels Ole

    2014-01-01

    This article discusses digital humanities and the growing diversity of digital media, digital materials and digital methods. The first section describes the humanities computing tradition formed around the interpretation of computation as a rule-based process connected to a concept of digital...... materials centred on the digitisation of non-digital, finite works, corpora and oeuvres. The second section discusses “the big tent” of contemporary digital humanities. It is argued that there can be no unifying interpretation of digital humanities above the level of studying digital materials with the help...... of software-supported methods. This is so, in part, because of the complexity of the world and, in part, because digital media remain open to the projection of new epistemologies onto the functional architecture of these media. The third section discusses the heterogeneous character of digital materials...

  10. Cerebral energy metabolism and the brain's functional network architecture: an integrative review.

    Science.gov (United States)

    Lord, Louis-David; Expert, Paul; Huckins, Jeremy F; Turkheimer, Federico E

    2013-09-01

    Recent functional magnetic resonance imaging (fMRI) studies have emphasized the contributions of synchronized activity in distributed brain networks to cognitive processes in both health and disease. The brain's 'functional connectivity' is typically estimated from correlations in the activity time series of anatomically remote areas, and postulated to reflect information flow between neuronal populations. Although the topological properties of functional brain networks have been studied extensively, considerably less is known regarding the neurophysiological and biochemical factors underlying the temporal coordination of large neuronal ensembles. In this review, we highlight the critical contributions of high-frequency electrical oscillations in the γ-band (30 to 100 Hz) to the emergence of functional brain networks. After describing the neurobiological substrates of γ-band dynamics, we specifically discuss the elevated energy requirements of high-frequency neural oscillations, which represent a mechanistic link between the functional connectivity of brain regions and their respective metabolic demands. Experimental evidence is presented for the high oxygen and glucose consumption, and strong mitochondrial performance required to support rhythmic cortical activity in the γ-band. Finally, the implications of mitochondrial impairments and deficits in glucose metabolism for cognition and behavior are discussed in the context of neuropsychiatric and neurodegenerative syndromes characterized by large-scale changes in the organization of functional brain networks.

  11. Identification of the Consistently Altered Metabolic Targets in Human Hepatocellular CarcinomaSummary

    Directory of Open Access Journals (Sweden)

    Zeribe Chike Nwosu

    2017-09-01

    Full Text Available Background & Aims: Cancer cells rely on metabolic alterations to enhance proliferation and survival. Metabolic gene alterations that repeatedly occur in liver cancer are largely unknown. We aimed to identify metabolic genes that are consistently deregulated, and are of potential clinical significance in human hepatocellular carcinoma (HCC. Methods: We studied the expression of 2,761 metabolic genes in 8 microarray datasets comprising 521 human HCC tissues. Genes exclusively up-regulated or down-regulated in 6 or more datasets were defined as consistently deregulated. The consistent genes that correlated with tumor progression markers (ECM2 and MMP9 (Pearson correlation P < .05 were used for Kaplan-Meier overall survival analysis in a patient cohort. We further compared proteomic expression of metabolic genes in 19 tumors vs adjacent normal liver tissues. Results: We identified 634 consistent metabolic genes, ∼60% of which are not yet described in HCC. The down-regulated genes (n = 350 are mostly involved in physiologic hepatocyte metabolic functions (eg, xenobiotic, fatty acid, and amino acid metabolism. In contrast, among consistently up-regulated metabolic genes (n = 284 are those involved in glycolysis, pentose phosphate pathway, nucleotide biosynthesis, tricarboxylic acid cycle, oxidative phosphorylation, proton transport, membrane lipid, and glycan metabolism. Several metabolic genes (n = 434 correlated with progression markers, and of these, 201 predicted overall survival outcome in the patient cohort analyzed. Over 90% of the metabolic targets significantly altered at the protein level were similarly up- or down-regulated as in genomic profile. Conclusions: We provide the first exposition of the consistently altered metabolic genes in HCC and show that these genes are potentially relevant targets for onward studies in preclinical and clinical contexts. Keywords: Liver Cancer, HCC, Tumor Metabolism

  12. A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics

    NARCIS (Netherlands)

    Nikerel, I.E.; Van Winden, W.; Van Gulik, W.M.; Heijnen, J.J.

    2006-01-01

    Background: Dynamic modeling of metabolic reaction networks under in vivo conditions is a crucial step in order to obtain a better understanding of the (dis)functioning of living cells. So far dynamic metabolic models generally have been based on mechanistic rate equations which often contain so

  13. Managing uncertainty in metabolic network structure and improving predictions using EnsembleFBA.

    Directory of Open Access Journals (Sweden)

    Matthew B Biggs

    2017-03-01

    Full Text Available Genome-scale metabolic network reconstructions (GENREs are repositories of knowledge about the metabolic processes that occur in an organism. GENREs have been used to discover and interpret metabolic functions, and to engineer novel network structures. A major barrier preventing more widespread use of GENREs, particularly to study non-model organisms, is the extensive time required to produce a high-quality GENRE. Many automated approaches have been developed which reduce this time requirement, but automatically-reconstructed draft GENREs still require curation before useful predictions can be made. We present a novel approach to the analysis of GENREs which improves the predictive capabilities of draft GENREs by representing many alternative network structures, all equally consistent with available data, and generating predictions from this ensemble. This ensemble approach is compatible with many reconstruction methods. We refer to this new approach as Ensemble Flux Balance Analysis (EnsembleFBA. We validate EnsembleFBA by predicting growth and gene essentiality in the model organism Pseudomonas aeruginosa UCBPP-PA14. We demonstrate how EnsembleFBA can be included in a systems biology workflow by predicting essential genes in six Streptococcus species and mapping the essential genes to small molecule ligands from DrugBank. We found that some metabolic subsystems contributed disproportionately to the set of predicted essential reactions in a way that was unique to each Streptococcus species, leading to species-specific outcomes from small molecule interactions. Through our analyses of P. aeruginosa and six Streptococci, we show that ensembles increase the quality of predictions without drastically increasing reconstruction time, thus making GENRE approaches more practical for applications which require predictions for many non-model organisms. All of our functions and accompanying example code are available in an open online repository.

  14. Metabolic state alters economic decision making under risk in humans.

    OpenAIRE

    Mkael Symmonds; Julian J Emmanuel; Megan E Drew; Rachel L Batterham; Raymond J Dolan

    2010-01-01

    Background Animals' attitudes to risk are profoundly influenced by metabolic state (hunger and baseline energy stores). Specifically, animals often express a preference for risky (more variable) food sources when below a metabolic reference point (hungry), and safe (less variable) food sources when sated. Circulating hormones report the status of energy reserves and acute nutrient intake to widespread targets in the central nervous system that regulate feeding behaviour, including brain regio...

  15. Brain Lactate Metabolism in Humans With Subarachnoid Hemorrhage

    OpenAIRE

    Oddo M; Levine JM; Frangos S; Maloney-Wilensky E; Carrera E; Daniel RT; Levivier M; Magistretti PJ; LeRoux PD

    2012-01-01

    Abstract BACKGROUND AND PURPOSE: Lactate is central for the regulation of brain metabolism and is an alternative substrate to glucose after injury. Brain lactate metabolism in patients with subarachnoid hemorrhage has not been fully elucidated. METHODS: Thirty one subarachnoid hemorrhage patients monitored with cerebral microdialysis (CMD) and brain oxygen (PbtO(2)) were studied. Samples with elevated CMD lactate (>4 mmol/L) were matched to PbtO(2) and CMD pyruvate and categorized as hypoxi...

  16. Amygdala Volume and Social Network Size in Humans

    OpenAIRE

    Bickart, Kevin C.; Wright, Christopher I.; Dautoff, Rebecca J.; Dickerson, Bradford C.; Barrett, Lisa Feldman

    2010-01-01

    We demonstrated that amygdala volume (corrected for total intracranial volume) positively correlated with the size and complexity of social networks in adult humans ranging in age from 19 to 83 years. This relationship was specific to the amygdala as compared to other subcortical structures. An exploratory analysis of the entire cortical mantle also revealed an association between social network variables and cortical thickness in three cortical areas, two of which share dense connectivity wi...

  17. Short-term fasting alters cytochrome P450-mediated drug metabolism in humans

    NARCIS (Netherlands)

    Lammers, Laureen A.; Achterbergh, Roos; de Vries, Emmely M.; van Nierop, F. Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R.; Boelen, Anita; Romijn, Johannes A.; Mathôt, Ron A. A.

    2015-01-01

    Experimental studies indicate that short-term fasting alters drug metabolism. However, the effects of short-term fasting on drug metabolism in humans need further investigation. Therefore, the aim of this study was to evaluate the effects of short-term fasting (36 h) on P450-mediated drug

  18. Metabolism of acyclic and cyclic N-nitroamines by cultured human colon

    DEFF Research Database (Denmark)

    Autrup, Herman; Harris, Curtis C.; Trump, Benjamin F.

    1978-01-01

    Cultured human colon mucosa was found to metabolize both acyclic and cyclic N-nitrosamines as measured by 14C-CO2 formation and reaction of the activated moieties with cellular macromolecules. Dimethylnitrosamine and N-nitrosopyrrolidine were metabolized by explants from all patients studied. A p...

  19. Social Rewards and Social Networks in the Human Brain.

    Science.gov (United States)

    Fareri, Dominic S; Delgado, Mauricio R

    2014-08-01

    The rapid development of social media and social networking sites in human society within the past decade has brought about an increased focus on the value of social relationships and being connected with others. Research suggests that we pursue socially valued or rewarding outcomes-approval, acceptance, reciprocity-as a means toward learning about others and fulfilling social needs of forming meaningful relationships. Focusing largely on recent advances in the human neuroimaging literature, we review findings highlighting the neural circuitry and processes that underlie pursuit of valued rewarding outcomes across non-social and social domains. We additionally discuss emerging human neuroimaging evidence supporting the idea that social rewards provide a gateway to establishing relationships and forming social networks. Characterizing the link between social network, brain, and behavior can potentially identify contributing factors to maladaptive influences on decision making within social situations. © The Author(s) 2014.

  20. EnzDP: improved enzyme annotation for metabolic network reconstruction based on domain composition profiles.

    Science.gov (United States)

    Nguyen, Nam-Ninh; Srihari, Sriganesh; Leong, Hon Wai; Chong, Ket-Fah

    2015-10-01

    Determining the entire complement of enzymes and their enzymatic functions is a fundamental step for reconstructing the metabolic network of cells. High quality enzyme annotation helps in enhancing metabolic networks reconstructed from the genome, especially by reducing gaps and increasing the enzyme coverage. Currently, structure-based and network-based approaches can only cover a limited number of enzyme families, and the accuracy of homology-based approaches can be further improved. Bottom-up homology-based approach improves the coverage by rebuilding Hidden Markov Model (HMM) profiles for all known enzymes. However, its clustering procedure relies firmly on BLAST similarity score, ignoring protein domains/patterns, and is sensitive to changes in cut-off thresholds. Here, we use functional domain architecture to score the association between domain families and enzyme families (Domain-Enzyme Association Scoring, DEAS). The DEAS score is used to calculate the similarity between proteins, which is then used in clustering procedure, instead of using sequence similarity score. We improve the enzyme annotation protocol using a stringent classification procedure, and by choosing optimal threshold settings and checking for active sites. Our analysis shows that our stringent protocol EnzDP can cover up to 90% of enzyme families available in Swiss-Prot. It achieves a high accuracy of 94.5% based on five-fold cross-validation. EnzDP outperforms existing methods across several testing scenarios. Thus, EnzDP serves as a reliable automated tool for enzyme annotation and metabolic network reconstruction. Available at: www.comp.nus.edu.sg/~nguyennn/EnzDP .

  1. Flow distributions and spatial correlations in human brain capillary networks

    Science.gov (United States)

    Lorthois, Sylvie; Peyrounette, Myriam; Larue, Anne; Le Borgne, Tanguy

    2015-11-01

    The vascular system of the human brain cortex is composed of a space filling mesh-like capillary network connected upstream and downstream to branched quasi-fractal arterioles and venules. The distribution of blood flow rates in these networks may affect the efficiency of oxygen transfer processes. Here, we investigate the distribution and correlation properties of blood flow velocities from numerical simulations in large 3D human intra-cortical vascular network (10000 segments) obtained from an anatomical database. In each segment, flow is solved from a 1D non-linear model taking account of the complex rheological properties of blood flow in microcirculation to deduce blood pressure, blood flow and red blood cell volume fraction distributions throughout the network. The network structural complexity is found to impart broad and spatially correlated Lagrangian velocity distributions, leading to power law transit time distributions. The origins of this behavior (existence of velocity correlations in capillary networks, influence of the coupling with the feeding arterioles and draining veins, topological disorder, complex blood rheology) are studied by comparison with results obtained in various model capillary networks of controlled disorder. ERC BrainMicroFlow GA615102, ERC ReactiveFronts GA648377.

  2. Development of human brain structural networks through infancy and childhood.

    Science.gov (United States)

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-05-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Development of Human Brain Structural Networks Through Infancy and Childhood

    Science.gov (United States)

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J.; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-01-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. PMID:24335033

  4. Security Implications of Human-Trafficking Networks

    Science.gov (United States)

    2007-06-15

    to those security concerns. Background How is Human Trafficking Carried Out? While trafficking victims are often found in sweatshops , domestic...labor. This type of trafficking is often found in agricultural labor, the production of goods (typically called sweatshops ) and construction labor

  5. Evidence for Functional Networks within the Human Brain's White Matter.

    Science.gov (United States)

    Peer, Michael; Nitzan, Mor; Bick, Atira S; Levin, Netta; Arzy, Shahar

    2017-07-05

    Investigation of the functional macro-scale organization of the human cortex is fundamental in modern neuroscience. Although numerous studies have identified networks of interacting functional modules in the gray-matter, limited research was directed to the functional organization of the white-matter. Recent studies have demonstrated that the white-matter exhibits blood oxygen level-dependent signal fluctuations similar to those of the gray-matter. Here we used these signal fluctuations to investigate whether the white-matter is organized as functional networks by applying a clustering analysis on resting-state functional MRI (RSfMRI) data from white-matter voxels, in 176 subjects (of both sexes). This analysis indicated the existence of 12 symmetrical white-matter functional networks, corresponding to combinations of white-matter tracts identified by diffusion tensor imaging. Six of the networks included interhemispheric commissural bridges traversing the corpus callosum. Signals in white-matter networks correlated with signals from functional gray-matter networks, providing missing knowledge on how these distributed networks communicate across large distances. These findings were replicated in an independent subject group and were corroborated by seed-based analysis in small groups and individual subjects. The identified white-matter functional atlases and analysis codes are available at http://mind.huji.ac.il/white-matter.aspx Our results demonstrate that the white-matter manifests an intrinsic functional organization as interacting networks of functional modules, similarly to the gray-matter, which can be investigated using RSfMRI. The discovery of functional networks within the white-matter may open new avenues of research in cognitive neuroscience and clinical neuropsychiatry. SIGNIFICANCE STATEMENT In recent years, functional MRI (fMRI) has revolutionized all fields of neuroscience, enabling identifications of functional modules and networks in the human

  6. Computational Modeling of Human Metabolism and Its Application to Systems Biomedicine.

    Science.gov (United States)

    Aurich, Maike K; Thiele, Ines

    2016-01-01

    Modern high-throughput techniques offer immense opportunities to investigate whole-systems behavior, such as those underlying human diseases. However, the complexity of the data presents challenges in interpretation, and new avenues are needed to address the complexity of both diseases and data. Constraint-based modeling is one formalism applied in systems biology. It relies on a genome-scale reconstruction that captures extensive biochemical knowledge regarding an organism. The human genome-scale metabolic reconstruction is increasingly used to understand normal cellular and disease states because metabolism is an important factor in many human diseases. The application of human genome-scale reconstruction ranges from mere querying of the model as a knowledge base to studies that take advantage of the model's topology and, most notably, to functional predictions based on cell- and condition-specific metabolic models built based on omics data.An increasing number and diversity of biomedical questions are being addressed using constraint-based modeling and metabolic models. One of the most successful biomedical applications to date is cancer metabolism, but constraint-based modeling also holds great potential for inborn errors of metabolism or obesity. In addition, it offers great prospects for individualized approaches to diagnostics and the design of disease prevention and intervention strategies. Metabolic models support this endeavor by providing easy access to complex high-throughput datasets. Personalized metabolic models have been introduced. Finally, constraint-based modeling can be used to model whole-body metabolism, which will enable the elucidation of metabolic interactions between organs and disturbances of these interactions as either causes or consequence of metabolic diseases. This chapter introduces constraint-based modeling and describes some of its contributions to systems biomedicine.

  7. Metabolic clearance and production rates of human growth hormone

    Science.gov (United States)

    Taylor, Andrew L.; Finster, Joseph L.; Mintz, Daniel H.

    1969-01-01

    The metabolic clearance rate (MCR) of human growth hormone (HGH) was determined by the constant infusion to equilibrium technique utilizing HGH-125I. 22 control subjects had a MCR of 229 ±52 ml/min (mean ±SD). No difference was evident between sexes, or between various age groups. Patients with acromegaly demonstrated normal MCR's. Moreover, acute elevations of plasma growth hormone concentrations in normal subjects did not alter the MCR of HGH. The MCR was relatively constant from day to day and within the day when subjects were evaluated in the supine position. In contrast, the assumption of the upright position was associated with a mean 24% decrease in the MCR. These results were contrasted with the MCR of HGH observed in a small number of patients with altered thyroid function or diabetes mellitus. In six patients with hypothyroidism the MCR (131 ±36 ml/min) was significantly decreased (P < 0.001); whereas the MCR in eight patients with hyperthyroidism (240 ±57 ml/min) did not differ from control subjects. The MCR in eight patients with insulin-independent diabetes mellitus (IID) (185 ±41 ml/min) and in eight patients with insulin-dependent diabetes mellitus (IDD) (136 ±31 ml/min) were significantly different from control subjects (P = < 0.05 and P = < 0.001, respectively). These data were interpreted to indicate that the plasma HGH-removing mechanism(s) is not saturated at physiologic plasma HGH levels, that plasma HGH levels alone may not permit distinction between variations in pituitary release of the hormone and its rate of clearance from the plasma, and that the estimation of the MCR of HGH may help clarify the mechanism of abnormal plasma HGH responses to various stimuli. Production rates of HGH (PR) in control subjects (347 ±173 mμg/min) were contrasted with hyperthyroid patients (529 ±242 mμg/min, P < 0.05), hypothyroid patients (160 ±69 mμg/min, P < 0.02), IID (245 ±100 mμg/min, NS), and IDD (363 ±153 mμg/min, NS). Considerable

  8. Effects of network resolution on topological properties of human neocortex

    DEFF Research Database (Denmark)

    Romero-Garcia, Rafael; Atienza, Mercedes; Clemmensen, Line Katrine Harder

    2012-01-01

    Graph theoretical analyses applied to neuroimaging datasets have provided valuable insights into the large-scale anatomical organization of the human neocortex. Most of these studies were performed with different cortical scales leading to cortical networks with different levels of small-world or......Graph theoretical analyses applied to neuroimaging datasets have provided valuable insights into the large-scale anatomical organization of the human neocortex. Most of these studies were performed with different cortical scales leading to cortical networks with different levels of small...

  9. Metabolic Networks and Metabolites Underlie Associations Between Maternal Glucose During Pregnancy and Newborn Size at Birth.

    Science.gov (United States)

    Scholtens, Denise M; Bain, James R; Reisetter, Anna C; Muehlbauer, Michael J; Nodzenski, Michael; Stevens, Robert D; Ilkayeva, Olga; Lowe, Lynn P; Metzger, Boyd E; Newgard, Christopher B; Lowe, William L

    2016-07-01

    Maternal metabolites and metabolic networks underlying associations between maternal glucose during pregnancy and newborn birth weight and adiposity demand fuller characterization. We performed targeted and nontargeted gas chromatography/mass spectrometry metabolomics on maternal serum collected at fasting and 1 h following glucose beverage consumption during an oral glucose tolerance test (OGTT) for 400 northern European mothers at ∼28 weeks' gestation in the Hyperglycemia and Adverse Pregnancy Outcome Study. Amino acids, fatty acids, acylcarnitines, and products of lipid metabolism decreased and triglycerides increased during the OGTT. Analyses of individual metabolites indicated limited maternal glucose associations at fasting, but broader associations, including amino acids, fatty acids, carbohydrates, and lipids, were found at 1 h. Network analyses modeling metabolite correlations provided context for individual metabolite associations and elucidated collective associations of multiple classes of metabolic fuels with newborn size and adiposity, including acylcarnitines, fatty acids, carbohydrates, and organic acids. Random forest analyses indicated an improved ability to predict newborn size outcomes by using maternal metabolomics data beyond traditional risk factors, including maternal glucose. Broad-scale association of fuel metabolites with maternal glucose is evident during pregnancy, with unique maternal metabolites potentially contributing specifically to newborn birth weight and adiposity. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  10. Identification of the Consistently Altered Metabolic Targets in Human Hepatocellular Carcinoma.

    Science.gov (United States)

    Nwosu, Zeribe Chike; Megger, Dominik Andre; Hammad, Seddik; Sitek, Barbara; Roessler, Stephanie; Ebert, Matthias Philip; Meyer, Christoph; Dooley, Steven

    2017-09-01

    Cancer cells rely on metabolic alterations to enhance proliferation and survival. Metabolic gene alterations that repeatedly occur in liver cancer are largely unknown. We aimed to identify metabolic genes that are consistently deregulated, and are of potential clinical significance in human hepatocellular carcinoma (HCC). We studied the expression of 2,761 metabolic genes in 8 microarray datasets comprising 521 human HCC tissues. Genes exclusively up-regulated or down-regulated in 6 or more datasets were defined as consistently deregulated. The consistent genes that correlated with tumor progression markers ( ECM2 and MMP9) (Pearson correlation P < .05) were used for Kaplan-Meier overall survival analysis in a patient cohort. We further compared proteomic expression of metabolic genes in 19 tumors vs adjacent normal liver tissues. We identified 634 consistent metabolic genes, ∼60% of which are not yet described in HCC. The down-regulated genes (n = 350) are mostly involved in physiologic hepatocyte metabolic functions (eg, xenobiotic, fatty acid, and amino acid metabolism). In contrast, among consistently up-regulated metabolic genes (n = 284) are those involved in glycolysis, pentose phosphate pathway, nucleotide biosynthesis, tricarboxylic acid cycle, oxidative phosphorylation, proton transport, membrane lipid, and glycan metabolism. Several metabolic genes (n = 434) correlated with progression markers, and of these, 201 predicted overall survival outcome in the patient cohort analyzed. Over 90% of the metabolic targets significantly altered at the protein level were similarly up- or down-regulated as in genomic profile. We provide the first exposition of the consistently altered metabolic genes in HCC and show that these genes are potentially relevant targets for onward studies in preclinical and clinical contexts.

  11. Evaluation of Human Adipose Tissue Stromal Heterogeneity in Metabolic Disease Using Single Cell RNA-Seq

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0251 TITLE: “Evaluation of Human Adipose Tissue Stromal Heterogeneity in Metabolic Disease Using Single Cell RNA...Heterogeneity in Metabolic Disease Using Single- Cell RNA-Seq 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Linus Tzu-Yen...ABSTRACT We have developed a robust protocol to generate single cell transcriptional profiles from subcutaneous adipose tissue samples of both human

  12. Metabolic mapping of the brain's response to visual stimulation: studies in humans

    International Nuclear Information System (INIS)

    Phelps, M.E.; Kuhl, D.E.; Mazziotta, J.C.

    1981-01-01

    These studies demonstrated increasing glucose metabolic rates in the human primary (PVC) and associative (AVC) visual cortex as the complexity of visual scenes increased. The metabolic response of the AVC increased more rapidly with scene complexity than that of the PVC, indicating the greater involvement of the higher order AVC for complex visual interpretations. Increases in local metabolic activity by as much as a factor of 2 above that of control subjects with eyes closed indicate the wide range and metabolic reserve of the visual cortex

  13. First-pass metabolism of ethanol in human beings: effect of intravenous infusion of fructose

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Billinger, MH; Schäfer, C.

    2004-01-01

    Intravenous infusion of fructose has been shown to enhance reduced form of nicotinamide adenine dinucleotide reoxidation and, thereby, to enhance the metabolism of ethanol. In the current study, the effect of fructose infusion on first-pass metabolism of ethanol was studied in human volunteers....... A significantly higher first-pass metabolism of ethanol was obtained after administration of fructose in comparison with findings for control experiments with an equimolar dose of glucose. Because fructose is metabolized predominantly in the liver and can be presumed to have virtually no effects in the stomach...

  14. Differential neural network configuration during human path integration

    Science.gov (United States)

    Arnold, Aiden E. G. F; Burles, Ford; Bray, Signe; Levy, Richard M.; Iaria, Giuseppe

    2014-01-01

    Path integration is a fundamental skill for navigation in both humans and animals. Despite recent advances in unraveling the neural basis of path integration in animal models, relatively little is known about how path integration operates at a neural level in humans. Previous attempts to characterize the neural mechanisms used by humans to visually path integrate have suggested a central role of the hippocampus in allowing accurate performance, broadly resembling results from animal data. However, in recent years both the central role of the hippocampus and the perspective that animals and humans share similar neural mechanisms for path integration has come into question. The present study uses a data driven analysis to investigate the neural systems engaged during visual path integration in humans, allowing for an unbiased estimate of neural activity across the entire brain. Our results suggest that humans employ common task control, attention and spatial working memory systems across a frontoparietal network during path integration. However, individuals differed in how these systems are configured into functional networks. High performing individuals were found to more broadly express spatial working memory systems in prefrontal cortex, while low performing individuals engaged an allocentric memory system based primarily in the medial occipito-temporal region. These findings suggest that visual path integration in humans over short distances can operate through a spatial working memory system engaging primarily the prefrontal cortex and that the differential configuration of memory systems recruited by task control networks may help explain individual biases in spatial learning strategies. PMID:24808849

  15. Deletion of the Mitochondrial Chaperone TRAP-1 Uncovers Global Reprogramming of Metabolic Networks

    Directory of Open Access Journals (Sweden)

    Sofia Lisanti

    2014-08-01

    Full Text Available Reprogramming of metabolic pathways contributes to human disease, especially cancer, but the regulators of this process are unknown. Here, we have generated a mouse knockout for the mitochondrial chaperone TRAP-1, a regulator of bioenergetics in tumors. TRAP-1−/− mice are viable and showed reduced incidence of age-associated pathologies, including obesity, inflammatory tissue degeneration, dysplasia, and spontaneous tumor formation. This was accompanied by global upregulation of oxidative phosphorylation and glycolysis transcriptomes, causing deregulated mitochondrial respiration, oxidative stress, impaired cell proliferation, and a switch to glycolytic metabolism in vivo. These data identify TRAP-1 as a central regulator of mitochondrial bioenergetics, and this pathway could contribute to metabolic rewiring in tumors.

  16. Small-world human brain networks: Perspectives and challenges.

    Science.gov (United States)

    Liao, Xuhong; Vasilakos, Athanasios V; He, Yong

    2017-06-01

    Modelling the human brain as a complex network has provided a powerful mathematical framework to characterize the structural and functional architectures of the brain. In the past decade, the combination of non-invasive neuroimaging techniques and graph theoretical approaches enable us to map human structural and functional connectivity patterns (i.e., connectome) at the macroscopic level. One of the most influential findings is that human brain networks exhibit prominent small-world organization. Such a network architecture in the human brain facilitates efficient information segregation and integration at low wiring and energy costs, which presumably results from natural selection under the pressure of a cost-efficiency balance. Moreover, the small-world organization undergoes continuous changes during normal development and ageing and exhibits dramatic alterations in neurological and psychiatric disorders. In this review, we survey recent advances regarding the small-world architecture in human brain networks and highlight the potential implications and applications in multidisciplinary fields, including cognitive neuroscience, medicine and engineering. Finally, we highlight several challenging issues and areas for future research in this rapidly growing field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Analyzing, Modeling, and Simulation for Human Dynamics in Social Network

    Directory of Open Access Journals (Sweden)

    Yunpeng Xiao

    2012-01-01

    Full Text Available This paper studies the human behavior in the top-one social network system in China (Sina Microblog system. By analyzing real-life data at a large scale, we find that the message releasing interval (intermessage time obeys power law distribution both at individual level and at group level. Statistical analysis also reveals that human behavior in social network is mainly driven by four basic elements: social pressure, social identity, social participation, and social relation between individuals. Empirical results present the four elements' impact on the human behavior and the relation between these elements. To further understand the mechanism of such dynamic phenomena, a hybrid human dynamic model which combines “interest” of individual and “interaction” among people is introduced, incorporating the four elements simultaneously. To provide a solid evaluation, we simulate both two-agent and multiagent interactions with real-life social network topology. We achieve the consistent results between empirical studies and the simulations. The model can provide a good understanding of human dynamics in social network.

  18. A reduced cerebral metabolic ratio in exercise reflects metabolism and not accumulation of lactate within the human brain

    DEFF Research Database (Denmark)

    Dalsgaard, Mads K; Quistorff, Bjørn; Danielsen, Else R

    2003-01-01

    During maximal exercise lactate taken up by the human brain contributes to reduce the cerebral metabolic ratio, O(2)/(glucose + 1/2 lactate), but it is not known whether the lactate is metabolized or if it accumulates in a distribution volume. In one experiment the cerebral arterio-venous differe......During maximal exercise lactate taken up by the human brain contributes to reduce the cerebral metabolic ratio, O(2)/(glucose + 1/2 lactate), but it is not known whether the lactate is metabolized or if it accumulates in a distribution volume. In one experiment the cerebral arterio......-venous differences (AV) for O(2), glucose (glc) and lactate (lac) were evaluated in nine healthy subjects at rest and during and after exercise to exhaustion. The cerebrospinal fluid (CSF) was drained through a lumbar puncture immediately after exercise, while control values were obtained from six other healthy.......0 to 0.9 +/- 0.1 mM (P ratio from 6.0 +/- 0.3 to 2.8 +/- 0.2 (P

  19. Sensitivity analysis of human brain structural network construction

    Directory of Open Access Journals (Sweden)

    Kuang Wei

    2017-12-01

    Full Text Available Network neuroscience leverages diffusion-weighted magnetic resonance imaging and tractography to quantify structural connectivity of the human brain. However, scientists and practitioners lack a clear understanding of the effects of varying tractography parameters on the constructed structural networks. With diffusion images from the Human Connectome Project (HCP, we characterize how structural networks are impacted by the spatial resolution of brain atlases, total number of tractography streamlines, and grey matter dilation with various graph metrics. We demonstrate how injudicious combinations of highly refined brain parcellations and low numbers of streamlines may inadvertently lead to disconnected network models with isolated nodes. Furthermore, we provide solutions to significantly reduce the likelihood of generating disconnected networks. In addition, for different tractography parameters, we investigate the distributions of values taken by various graph metrics across the population of HCP subjects. Analyzing the ranks of individual subjects within the graph metric distributions, we find that the ranks of individuals are affected differently by atlas scale changes. Our work serves as a guideline for researchers to optimize the selection of tractography parameters and illustrates how biological characteristics of the brain derived in network neuroscience studies can be affected by the choice of atlas parcellation schemes. Diffusion tractography has been proven to be a promising noninvasive technique to study the network properties of the human brain. However, how various tractography and network construction parameters affect network properties has not been studied using a large cohort of high-quality data. We utilize data provided by the Human Connectome Project to characterize the changes to network properties induced by varying the brain parcellation atlas scales, the number of reconstructed tractography tracks, and the degree of grey

  20. A global evolutionary and metabolic analysis of human obesity gene risk variants.

    Science.gov (United States)

    Castillo, Joseph J; Hazlett, Zachary S; Orlando, Robert A; Garver, William S

    2017-09-05

    It is generally accepted that the selection of gene variants during human evolution optimized energy metabolism that now interacts with our obesogenic environment to increase the prevalence of obesity. The purpose of this study was to perform a global evolutionary and metabolic analysis of human obesity gene risk variants (110 human obesity genes with 127 nearest gene risk variants) identified using genome-wide association studies (GWAS) to enhance our knowledge of early and late genotypes. As a result of determining the mean frequency of these obesity gene risk variants in 13 available populations from around the world our results provide evidence for the early selection of ancestral risk variants (defined as selection before migration from Africa) and late selection of derived risk variants (defined as selection after migration from Africa). Our results also provide novel information for association of these obesity genes or encoded proteins with diverse metabolic pathways and other human diseases. The overall results indicate a significant differential evolutionary pattern for the selection of obesity gene ancestral and derived risk variants proposed to optimize energy metabolism in varying global environments and complex association with metabolic pathways and other human diseases. These results are consistent with obesity genes that encode proteins possessing a fundamental role in maintaining energy metabolism and survival during the course of human evolution. Copyright © 2017. Published by Elsevier B.V.

  1. Apoptosis, energy metabolism, and fraction of radiobiologically hypoxic cells: a study of human melanoma multicellular spheroids.

    Science.gov (United States)

    Rofstad, E K; Eide, K; Skøyum, R; Hystad, M E; Lyng, H

    1996-09-01

    The magnitude of the fraction of radiobiologically hypoxic cells in tumours is generally believed to reflect the efficiency of the vascular network. Theoretical studies have suggested that the hypoxic fraction might also be influenced by biological properties of the tumour cells. Quantitative experimental results of cell energy metabolism, hypoxia- induced apoptosis, and radiobiological hypoxia are reported here. Human melanoma multicellular spheroids (BEX-c and WIX-c) were used as tumour models to avoid confounding effects of the vascular network. Radiobiological studies showed that the fractions of hypoxic cells in 1000-microM spheroids were 32 +/- 12% (BEX-c) and 2.5 +/- 1.1% (WIX-c). The spheroid hypoxic volume fractions (28 +/- 6% (BEX-c) and 1.4 +/- 7% (WIX-c)), calculated from the rate of oxygen consumption per cell, the cell packing density, and the thickness of the viable rim, were similar to the fractions of radiobiologically hypoxic cells. Large differences between tumours in fraction of hypoxic cells are therefore not necessarily a result of differences in the efficiency of the vascular network. Studies of monolayer cell cultures, performed to identify the biological properties of the BEX-c and WIX-c cells leading to this large difference in fraction of hypoxic cells, gave the following results: (1) WIX-c showed lower cell surviving fractions after exposure to hypoxia than BEX-c, (2) WIX-c showed higher glucose uptake and lactate release rates than BEX-c both under aerobic and hypoxic conditions, and (3) hypoxia induced apoptosis in WIX-c but not in BEX-c. These observations suggested that the difference between BEX-c and WIX-c spheroids in fraction of hypoxic cells resulted partly from differences in cell energy metabolism and partly from a difference in capacity to retain viability under hypoxic stress. The induction of apoptosis by hypoxia was identified as a phenomenon which has an important influence on the magnitude of the fraction of

  2. Capturing the essence of a metabolic network: a flux balance analysis approach.

    Science.gov (United States)

    Murabito, Ettore; Simeonidis, Evangelos; Smallbone, Kieran; Swinton, Jonathan

    2009-10-07

    As genome-scale metabolic reconstructions emerge, tools to manage their size and complexity will be increasingly important. Flux balance analysis (FBA) is a constraint-based approach widely used to study the metabolic capabilities of cellular or subcellular systems. FBA problems are highly underdetermined and many different phenotypes can satisfy any set of constraints through which the metabolic system is represented. Two of the main concerns in FBA are exploring the space of solutions for a given metabolic network and finding a specific phenotype which is representative for a given task such as maximal growth rate. Here, we introduce a recursive algorithm suitable for overcoming both of these concerns. The method proposed is able to find the alternate optimal patterns of active reactions of an FBA problem and identify the minimal subnetwork able to perform a specific task as optimally as the whole. Our method represents an alternative to and an extension of other approaches conceived for exploring the space of solutions of an FBA problem. It may also be particularly helpful in defining a scaffold of reactions upon which to build up a dynamic model, when the important pathways of the system have not yet been well-defined.

  3. Investigating host-pathogen behavior and their interaction using genome-scale metabolic network models.

    Science.gov (United States)

    Sadhukhan, Priyanka P; Raghunathan, Anu

    2014-01-01

    Genome Scale Metabolic Modeling methods represent one way to compute whole cell function starting from the genome sequence of an organism and contribute towards understanding and predicting the genotype-phenotype relationship. About 80 models spanning all the kingdoms of life from archaea to eukaryotes have been built till date and used to interrogate cell phenotype under varying conditions. These models have been used to not only understand the flux distribution in evolutionary conserved pathways like glycolysis and the Krebs cycle but also in applications ranging from value added product formation in Escherichia coli to predicting inborn errors of Homo sapiens metabolism. This chapter describes a protocol that delineates the process of genome scale metabolic modeling for analysing host-pathogen behavior and interaction using flux balance analysis (FBA). The steps discussed in the process include (1) reconstruction of a metabolic network from the genome sequence, (2) its representation in a precise mathematical framework, (3) its translation to a model, and (4) the analysis using linear algebra and optimization. The methods for biological interpretations of computed cell phenotypes in the context of individual host and pathogen models and their integration are also discussed.

  4. Sex differences of human cortical blood flow and energy metabolism

    DEFF Research Database (Denmark)

    Aanerud, Joel; Borghammer, Per; Rodell, Anders

    2017-01-01

    cerebral blood flow and cerebral metabolic rate of oxygen as functions of age in healthy volunteers of both sexes. Cerebral metabolic rate of oxygen did not change with age for either sex and there were no differences of mean values of cerebral metabolic rate of oxygen between men and women in cerebral...... cortex. Women had significant decreases of cerebral blood flow as function of age in frontal and parietal lobes. Young women had significantly higher cerebral blood flow than men in frontal and temporal lobes, but these differences had disappeared at age 65. The absent sex difference of cerebral energy...... turnover suggests that the known differences of synaptic density between the sexes are counteracted by opposite differences of individual synaptic activity....

  5. PPARγ population shift produces disease-related changes in molecular networks associated with metabolic syndrome.

    Science.gov (United States)

    Jurkowski, W; Roomp, K; Crespo, I; Schneider, J G; Del Sol, A

    2011-08-11

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a key regulator of adipocyte differentiation and has an important role in metabolic syndrome. Phosphorylation of the receptor's ligand-binding domain at serine 273 has been shown to change the expression of a large number of genes implicated in obesity. The difference in gene expression seen when comparing wild-type phosphorylated with mutant non-phosphorylated PPARγ may have important consequences for the cellular molecular network, the state of which can be shifted from the healthy to a stable diseased state. We found that a group of differentially expressed genes are involved in bi-stable switches and form a core network, the state of which changes with disease progression. These findings support the idea that bi-stable switches may be a mechanism for locking the core gene network into a diseased state and for efficiently propagating perturbations to more distant regions of the network. A structural analysis of the PPARγ-RXRα dimer complex supports the hypothesis of a major structural change between the two states, and this may represent an important mechanism leading to the differential expression observed in the core network.

  6. Molecular networks and the evolution of human cognitive specializations.

    Science.gov (United States)

    Fontenot, Miles; Konopka, Genevieve

    2014-12-01

    Inroads into elucidating the origins of human cognitive specializations have taken many forms, including genetic, genomic, anatomical, and behavioral assays that typically compare humans to non-human primates. While the integration of all of these approaches is essential for ultimately understanding human cognition, here, we review the usefulness of coexpression network analysis for specifically addressing this question. An increasing number of studies have incorporated coexpression networks into brain expression studies comparing species, disease versus control tissue, brain regions, or developmental time periods. A clearer picture has emerged of the key genes driving brain evolution, as well as the developmental and regional contributions of gene expression patterns important for normal brain development and those misregulated in cognitive diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Metabolism

    Science.gov (United States)

    ... lin), which signals cells to increase their anabolic activities. Metabolism is a complicated chemical process, so it's not ... how those enzymes or hormones work. When the metabolism of body chemicals is ... Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism ...

  8. Systematic construction of kinetic models from genome-scale metabolic networks.

    Directory of Open Access Journals (Sweden)

    Natalie J Stanford

    Full Text Available The quantitative effects of environmental and genetic perturbations on metabolism can be studied in silico using kinetic models. We present a strategy for large-scale model construction based on a logical layering of data such as reaction fluxes, metabolite concentrations, and kinetic constants. The resulting models contain realistic standard rate laws and plausible parameters, adhere to the laws of thermodynamics, and reproduce a predefined steady state. These features have not been simultaneously achieved by previous workflows. We demonstrate the advantages and limitations of the workflow by translating the yeast consensus metabolic network into a kinetic model. Despite crudely selected data, the model shows realistic control behaviour, a stable dynamic, and realistic response to perturbations in extracellular glucose concentrations. The paper concludes by outlining how new data can continuously be fed into the workflow and how iterative model building can assist in directing experiments.

  9. Systematic Construction of Kinetic Models from Genome-Scale Metabolic Networks

    Science.gov (United States)

    Smallbone, Kieran; Klipp, Edda; Mendes, Pedro; Liebermeister, Wolfram

    2013-01-01

    The quantitative effects of environmental and genetic perturbations on metabolism can be studied in silico using kinetic models. We present a strategy for large-scale model construction based on a logical layering of data such as reaction fluxes, metabolite concentrations, and kinetic constants. The resulting models contain realistic standard rate laws and plausible parameters, adhere to the laws of thermodynamics, and reproduce a predefined steady state. These features have not been simultaneously achieved by previous workflows. We demonstrate the advantages and limitations of the workflow by translating the yeast consensus metabolic network into a kinetic model. Despite crudely selected data, the model shows realistic control behaviour, a stable dynamic, and realistic response to perturbations in extracellular glucose concentrations. The paper concludes by outlining how new data can continuously be fed into the workflow and how iterative model building can assist in directing experiments. PMID:24324546

  10. Modeling human dynamics of face-to-face interaction networks

    OpenAIRE

    Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo

    2013-01-01

    Face-to-face interaction networks describe social interactions in human gatherings, and are the substrate for processes such as epidemic spreading and gossip propagation. The bursty nature of human behavior characterizes many aspects of empirical data, such as the distribution of conversation lengths, of conversations per person, or of inter-conversation times. Despite several recent attempts, a general theoretical understanding of the global picture emerging from data is still lacking. Here ...

  11. Brain anatomical networks in early human brain development.

    Science.gov (United States)

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  12. Mapping human brain networks with cortico-cortical evoked potentials

    Science.gov (United States)

    Keller, Corey J.; Honey, Christopher J.; Mégevand, Pierre; Entz, Laszlo; Ulbert, Istvan; Mehta, Ashesh D.

    2014-01-01

    The cerebral cortex forms a sheet of neurons organized into a network of interconnected modules that is highly expanded in humans and presumably enables our most refined sensory and cognitive abilities. The links of this network form a fundamental aspect of its organization, and a great deal of research is focusing on understanding how information flows within and between different regions. However, an often-overlooked element of this connectivity regards a causal, hierarchical structure of regions, whereby certain nodes of the cortical network may exert greater influence over the others. While this is difficult to ascertain non-invasively, patients undergoing invasive electrode monitoring for epilepsy provide a unique window into this aspect of cortical organization. In this review, we highlight the potential for cortico-cortical evoked potential (CCEP) mapping to directly measure neuronal propagation across large-scale brain networks with spatio-temporal resolution that is superior to traditional neuroimaging methods. We first introduce effective connectivity and discuss the mechanisms underlying CCEP generation. Next, we highlight how CCEP mapping has begun to provide insight into the neural basis of non-invasive imaging signals. Finally, we present a novel approach to perturbing and measuring brain network function during cognitive processing. The direct measurement of CCEPs in response to electrical stimulation represents a potentially powerful clinical and basic science tool for probing the large-scale networks of the human cerebral cortex. PMID:25180306

  13. Reconstruction and in silico analysis of metabolic network for an oleaginous yeast, Yarrowia lipolytica.

    Directory of Open Access Journals (Sweden)

    Pengcheng Pan

    Full Text Available With the emergence of energy scarcity, the use of renewable energy sources such as biodiesel is becoming increasingly necessary. Recently, many researchers have focused their minds on Yarrowia lipolytica, a model oleaginous yeast, which can be employed to accumulate large amounts of lipids that could be further converted to biodiesel. In order to understand the metabolic characteristics of Y. lipolytica at a systems level and to examine the potential for enhanced lipid production, a genome-scale compartmentalized metabolic network was reconstructed based on a combination of genome annotation and the detailed biochemical knowledge from multiple databases such as KEGG, ENZYME and BIGG. The information about protein and reaction associations of all the organisms in KEGG and Expasy-ENZYME database was arranged into an EXCEL file that can then be regarded as a new useful database to generate other reconstructions. The generated model iYL619_PCP accounts for 619 genes, 843 metabolites and 1,142 reactions including 236 transport reactions, 125 exchange reactions and 13 spontaneous reactions. The in silico model successfully predicted the minimal media and the growing abilities on different substrates. With flux balance analysis, single gene knockouts were also simulated to predict the essential genes and partially essential genes. In addition, flux variability analysis was applied to design new mutant strains that will redirect fluxes through the network and may enhance the production of lipid. This genome-scale metabolic model of Y. lipolytica can facilitate system-level metabolic analysis as well as strain development for improving the production of biodiesels and other valuable products by Y. lipolytica and other closely related oleaginous yeasts.

  14. Changes in the topology of gene expression networks by human immunodeficiency virus type 1 (HIV-1) integration in macrophages.

    Science.gov (United States)

    Soto-Girón, María Juliana; García-Vallejo, Felipe

    2012-01-01

    One key step of human immunodeficiency virus type 1 (HIV-1) infection is the integration of its viral cDNA. This process is mediated through complex networks of host-virus interactions that alter several normal cell functions of the host. To study the complexity of disturbances in cell gene expression networks by HIV-1 integration, we constructed a network of human macrophage genes located close to chromatin regions rich in proviruses. To perform the network analysis, we selected 28 genes previously identified as the target of cDNA integration and their transcriptional profiles were obtained from GEO Profiles (NCBI). A total of 2770 interactions among the 28 genes located around the HIV-1 proviruses in human macrophages formed a highly dense main network connected to five sub-networks. The overall network was significantly enriched by genes associated with signal transduction, cellular communication and regulatory processes. To simulate the effects of HIV-1 integration in infected macrophages, five genes with the most number of interaction in the normal network were turned off by putting in zero the correspondent expression values. The HIV-1 infected network showed changes in its topology and alteration in the macrophage functions reflected in a re-programming of biosynthetic and general metabolic process. Understanding the complex virus-host interactions that occur during HIV-1 integration, may provided valuable genomic information to develop new antiviral treatments focusing on the management of some specific gene expression networks associated with viral integration. This is the first gene network which describes the human macrophages genes interactions related with HIV-1 integration. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Uncovering packaging features of co-regulated modules based on human protein interaction and transcriptional regulatory networks

    Directory of Open Access Journals (Sweden)

    He Weiming

    2010-07-01

    Full Text Available Abstract Background Network co-regulated modules are believed to have the functionality of packaging multiple biological entities, and can thus be assumed to coordinate many biological functions in their network neighbouring regions. Results Here, we weighted edges of a human protein interaction network and a transcriptional regulatory network to construct an integrated network, and introduce a probabilistic model and a bipartite graph framework to exploit human co-regulated modules and uncover their specific features in packaging different biological entities (genes, protein complexes or metabolic pathways. Finally, we identified 96 human co-regulated modules based on this method, and evaluate its effectiveness by comparing it with four other methods. Conclusions Dysfunctions in co-regulated interactions often occur in the development of cancer. Therefore, we focussed on an example co-regulated module and found that it could integrate a number of cancer-related genes. This was extended to causal dysfunctions of some complexes maintained by several physically interacting proteins, thus coordinating several metabolic pathways that directly underlie cancer.

  16. Quantifying interictal metabolic activity in human temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Henry, T.R.; Mazziotta, J.C.; Engel, J. Jr.; Christenson, P.D.; Zhang, J.X.; Phelps, M.E.; Kuhl, D.E.

    1990-01-01

    The majority of patients with complex partial seizures of unilateral temporal lobe origin have interictal temporal hypometabolism on [18F]fluorodeoxyglucose positron emission tomography (FDG PET) studies. Often, this hypometabolism extends to ipsilateral extratemporal sites. The use of accurately quantified metabolic data has been limited by the absence of an equally reliable method of anatomical analysis of PET images. We developed a standardized method for visual placement of anatomically configured regions of interest on FDG PET studies, which is particularly adapted to the widespread, asymmetric, and often severe interictal metabolic alterations of temporal lobe epilepsy. This method was applied by a single investigator, who was blind to the identity of subjects, to 10 normal control and 25 interictal temporal lobe epilepsy studies. All subjects had normal brain anatomical volumes on structural neuroimaging studies. The results demonstrate ipsilateral thalamic and temporal lobe involvement in the interictal hypometabolism of unilateral temporal lobe epilepsy. Ipsilateral frontal, parietal, and basal ganglial metabolism is also reduced, although not as markedly as is temporal and thalamic metabolism

  17. Regulation of Metabolic Signaling in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Albers, Peter Hjorth

    sensitivity in type I muscle fibers possibly reflects a superior effect of insulin on metabolic signaling compared to type II muscle fibers. This was investigated in the present thesis by examining muscle biopsies from lean and obese healthy subjects as well as patients with type 2 diabetes. From these muscle...

  18. Sex differences of human cortical blood flow and energy metabolism.

    Science.gov (United States)

    Aanerud, Joel; Borghammer, Per; Rodell, Anders; Jónsdottir, Kristjana Y; Gjedde, Albert

    2017-07-01

    Brain energy metabolism is held to reflect energy demanding processes in neuropil related to the density and activity of synapses. There is recent evidence that men have higher density of synapses in temporal cortex than women. One consequence of these differences would be different rates of cortical energy turnover and blood flow in men and women. To test the hypotheses that rates of oxygen consumption (CMRO 2 ) and cerebral blood flow are higher in men than in women in regions of cerebral cortex, and that the differences persist with aging, we used positron emission tomography to determine cerebral blood flow and cerebral metabolic rate of oxygen as functions of age in healthy volunteers of both sexes. Cerebral metabolic rate of oxygen did not change with age for either sex and there were no differences of mean values of cerebral metabolic rate of oxygen between men and women in cerebral cortex. Women had significant decreases of cerebral blood flow as function of age in frontal and parietal lobes. Young women had significantly higher cerebral blood flow than men in frontal and temporal lobes, but these differences had disappeared at age 65. The absent sex difference of cerebral energy turnover suggests that the known differences of synaptic density between the sexes are counteracted by opposite differences of individual synaptic activity.

  19. Human behavior understanding in networked sensing theory and applications of networks of sensors

    CERN Document Server

    Spagnolo, Paolo; Distante, Cosimo

    2014-01-01

    This unique text/reference provides a broad overview of both the technical challenges in sensor network development, and the real-world applications of distributed sensing. Important aspects of distributed computing in large-scale networked sensor systems are analyzed in the context of human behavior understanding, including such topics as systems design tools and techniques, in-network signals, and information processing. Additionally, the book examines a varied range of application scenarios, covering surveillance, indexing and retrieval, patient care, industrial safety, social and ambient

  20. Human networks in the European electric power industry

    International Nuclear Information System (INIS)

    Barjot, Dominique; Kurgan-van Hentenryk, Ginette

    2004-01-01

    Behind electrical systems, we should not forget the human networks. The European case is interesting for that matter. There were major players involved, from the pioneers up to the conceivers of national and international systems. More particularly, the engineers should be considered for their technical as well as organizational performance. Attitudes must also be stressed: in Europe, electricity has constantly been developed with both nationalist and internationalist considerations, as shown by the passage from Unternehmergeschaeft to Bankgeschaeft after 1918. Neither should we forget the role played by institutions in the formation of networks: schools, holdings, cartels, and also those frontier zones formed by small countries like Belgium and Switzerland. The human networks, finally, left long term results such as: interconnection, inter-firm cooperation, technocracy, and the growing intervention of the State

  1. MetExploreViz: web component for interactive metabolic network visualization.

    Science.gov (United States)

    Chazalviel, Maxime; Frainay, Clément; Poupin, Nathalie; Vinson, Florence; Merlet, Benjamin; Gloaguen, Yoann; Cottret, Ludovic; Jourdan, Fabien

    2017-09-15

    MetExploreViz is an open source web component that can be easily embedded in any web site. It provides features dedicated to the visualization of metabolic networks and pathways and thus offers a flexible solution to analyze omics data in a biochemical context. Documentation and link to GIT code repository (GPL 3.0 license)are available at this URL: http://metexplore.toulouse.inra.fr/metexploreViz/doc /. Tutorial is available at this URL. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  2. The human hepatocyte cell lines IHH and HepaRG : models to study glucose, lipid and lipoprotein metabolism

    NARCIS (Netherlands)

    Samanez, Carolina Huaman; Caron, Sandrine; Briand, Olivier; Dehondt, Helene; Duplan, Isabelle; Kuipers, Folkert; Hennuyer, Nathalie; Clavey, Veronique; Staels, Bart

    Metabolic diseases reach epidemic proportions. A better knowledge of the associated alterations in the metabolic pathways in the liver is necessary. These studies need in vitro human cell models. Several human hepatoma models are used, but the response of many metabolic pathways to physiological

  3. Effects of chlorinated drinking water on the xenobiotic metabolism in Cyprinus carpio treated with samples from two Italian municipal networks.

    Science.gov (United States)

    Cirillo, Silvia; Canistro, Donatella; Vivarelli, Fabio; Paolini, Moreno

    2016-09-01

    Drinking water (DW) disinfection represents a milestone of the past century, thanks to its efficacy in the reduction of risks of epidemic forms by water micro-organisms. Nevertheless, such process generates disinfection by-products (DBPs), some of which are genotoxic both in animals and in humans and carcinogenic in animals. At present, chlorination is one of the most employed strategies but the toxicological effects of several classes of DBPs are unknown. In this investigation, a multidisciplinary approach foreseeing the chemical analysis of chlorinated DW samples and the study of its effects on mixed function oxidases (MFOs) belonging to the superfamily of cytochrome P450-linked monooxygenases of Cyprinus carpio hepatopancreas, was employed. The experimental samples derived from aquifers of two Italian towns (plant 1, river water and plant 2, spring water) were obtained immediately after the disinfection (A) and along the network (R1). Animals treated with plant 1 DW-processed fractions showed a general CYP-associated MFO induction. By contrast, in plant 2, a complex modulation pattern was achieved, with a general up-regulation for the point A and a marked MFO inactivation in the R1 group, particularly for the testosterone metabolism. Together, the toxicity and co-carcinogenicity (i.e. unremitting over-generation of free radicals and increased bioactivation capability) of DW linked to the recorded metabolic manipulation, suggests that a prolonged exposure to chlorine-derived disinfectants may produce adverse health effects.

  4. In Silico Genome-Scale Reconstruction and Validation of the Corynebacterium glutamicum Metabolic Network

    DEFF Research Database (Denmark)

    Kjeldsen, Kjeld Raunkjær; Nielsen, J.

    2009-01-01

    A genome-scale metabolic model of the Gram-positive bacteria Corynebacterium glutamicum ATCC 13032 was constructed comprising 446 reactions and 411 metabolite, based on the annotated genome and available biochemical information. The network was analyzed using constraint based methods. The model...... was extensively validated against published flux data, and flux distribution values were found to correlate well between simulations and experiments. The split pathway of the lysine synthesis pathway of C. glutamicum was investigated, and it was found that the direct dehydrogenase variant gave a higher lysine...... yield than the alternative succinyl pathway at high lysine production rates. The NADPH demand of the network was not found to be critical for lysine production until lysine yields exceeded 55% (mmol lysine (mmol glucose)(-1)). The model was validated during growth on the organic acids acetate...

  5. Characterization of energy and neurotransmitter metabolism in cortical glutamatergic neurons derived from human induced pluripotent stem cells: A novel approach to study metabolism in human neurons.

    Science.gov (United States)

    Aldana, Blanca I; Zhang, Yu; Lihme, Maria Fog; Bak, Lasse K; Nielsen, Jørgen E; Holst, Bjørn; Hyttel, Poul; Freude, Kristine K; Waagepetersen, Helle S

    2017-06-01

    Alterations in the cellular metabolic machinery of the brain are associated with neurodegenerative disorders such as Alzheimer's disease. Novel human cellular disease models are essential in order to study underlying disease mechanisms. In the present study, we characterized major metabolic pathways in neurons derived from human induced pluripotent stem cells (hiPSC). With this aim, cultures of hiPSC-derived neurons were incubated with [U- 13 C]glucose, [U- 13 C]glutamate or [U- 13 C]glutamine. Isotopic labeling in metabolites was determined using gas chromatography coupled to mass spectrometry, and cellular amino acid content was quantified by high-performance liquid chromatography. Additionally, we evaluated mitochondrial function using real-time assessment of oxygen consumption via the Seahorse XF e 96 Analyzer. Moreover, in order to validate the hiPSC-derived neurons as a model system, a metabolic profiling was performed in parallel in primary neuronal cultures of mouse cerebral cortex and cerebellum. These serve as well-established models of GABAergic and glutamatergic neurons, respectively. The hiPSC-derived neurons were previously characterized as being forebrain-specific cortical glutamatergic neurons. However, a comparable preparation of predominantly mouse cortical glutamatergic neurons is not available. We found a higher glycolytic capacity in hiPSC-derived neurons compared to mouse neurons and a substantial oxidative metabolism through the mitochondrial tricarboxylic acid (TCA) cycle. This finding is supported by the extracellular acidification and oxygen consumption rates measured in the cultured human neurons. [U- 13 C]Glutamate and [U- 13 C]glutamine were found to be efficient energy substrates for the neuronal cultures originating from both mice and humans. Interestingly, isotopic labeling in metabolites from [U- 13 C]glutamate was higher than that from [U- 13 C]glutamine. Although the metabolic profile of hiPSC-derived neurons in vitro was

  6. Metabolic network model guided engineering ethylmalonyl-CoA pathway to improve ascomycin production in Streptomyces hygroscopicus var. ascomyceticus.

    Science.gov (United States)

    Wang, Junhua; Wang, Cheng; Song, Kejing; Wen, Jianping

    2017-10-03

    Ascomycin is a 23-membered polyketide macrolide with high immunosuppressant and antifungal activity. As the lower production in bio-fermentation, global metabolic analysis is required to further explore its biosynthetic network and determine the key limiting steps for rationally engineering. To achieve this goal, an engineering approach guided by a metabolic network model was implemented to better understand ascomycin biosynthesis and improve its production. The metabolic conservation of Streptomyces species was first investigated by comparing the metabolic enzymes of Streptomyces coelicolor A3(2) with those of 31 Streptomyces strains, the results showed that more than 72% of the examined proteins had high sequence similarity with counterparts in every surveyed strain. And it was found that metabolic reactions are more highly conserved than the enzymes themselves because of its lower diversity of metabolic functions than that of genes. The main source of the observed metabolic differences was from the diversity of secondary metabolism. According to the high conservation of primary metabolic reactions in Streptomyces species, the metabolic network model of Streptomyces hygroscopicus var. ascomyceticus was constructed based on the latest reported metabolic model of S. coelicolor A3(2) and validated experimentally. By coupling with flux balance analysis and using minimization of metabolic adjustment algorithm, potential targets for ascomycin overproduction were predicted. Since several of the preferred targets were highly associated with ethylmalonyl-CoA biosynthesis, two target genes hcd (encoding 3-hydroxybutyryl-CoA dehydrogenase) and ccr (encoding crotonyl-CoA carboxylase/reductase) were selected for overexpression in S. hygroscopicus var. ascomyceticus FS35. Both the mutants HA-Hcd and HA-Ccr showed higher ascomycin titer, which was consistent with the model predictions. Furthermore, the combined effects of the two genes were evaluated and the strain HA

  7. The metabolic cost of human running: is swinging the arms worth it?

    Science.gov (United States)

    Arellano, Christopher J; Kram, Rodger

    2014-07-15

    Although the mechanical function is quite clear, there is no consensus regarding the metabolic benefit of arm swing during human running. We compared the metabolic cost of running using normal arm swing with the metabolic cost of running while restricting the arms in three different ways: (1) holding the hands with the arms behind the back in a relaxed position (BACK), (2) holding the arms across the chest (CHEST) and (3) holding the hands on top of the head (HEAD). We hypothesized that running without arm swing would demand a greater metabolic cost than running with arm swing. Indeed, when compared with running using normal arm swing, we found that net metabolic power demand was 3, 9 and 13% greater for the BACK, CHEST and HEAD conditions, respectively (all Prunning without arm swing, subjects significantly increased the peak-to-peak amplitudes of both shoulder and pelvis rotation about the vertical axis, most likely a compensatory strategy to counterbalance the rotational angular momentum of the swinging legs. In conclusion, our findings support our general hypothesis that swinging the arms reduces the metabolic cost of human running. Our findings also demonstrate that arm swing minimizes torso rotation. We infer that actively swinging the arms provides both metabolic and biomechanical benefits during human running. © 2014. Published by The Company of Biologists Ltd.

  8. Metabolic signatures of cultured human adipocytes from metabolically healthy versus unhealthy obese individuals.

    Directory of Open Access Journals (Sweden)

    Anja Böhm

    Full Text Available Among obese subjects, metabolically healthy and unhealthy obesity (MHO/MUHO can be differentiated: the latter is characterized by whole-body insulin resistance, hepatic steatosis, and subclinical inflammation. Aim of this study was, to identify adipocyte-specific metabolic signatures and functional biomarkers for MHO versus MUHO.10 insulin-resistant (IR vs. 10 insulin-sensitive (IS non-diabetic morbidly obese (BMI >40 kg/m2 Caucasians were matched for gender, age, BMI, and percentage of body fat. From subcutaneous fat biopsies, primary preadipocytes were isolated and differentiated to adipocytes in vitro. About 280 metabolites were investigated by a targeted metabolomic approach intracellularly, extracellularly, and in plasma.Among others, aspartate was reduced intracellularly to one third (p = 0.0039 in IR adipocytes, pointing to a relative depletion of citric acid cycle metabolites or reduced aspartate uptake in MUHO. Other amino acids, already known to correlate with diabetes and/or obesity, were identified to differ between MUHO's and MHO's adipocytes, namely glutamine, histidine, and spermidine. Most species of phosphatidylcholines (PCs were lower in MUHO's extracellular milieu, though simultaneously elevated intracellularly, e.g., PC aa C32∶3, pointing to increased PC synthesis and/or reduced PC release. Furthermore, altered arachidonic acid (AA metabolism was found: 15(S-HETE (15-hydroxy-eicosatetraenoic acid; 0 vs. 120pM; p = 0.0014, AA (1.5-fold; p = 0.0055 and docosahexaenoic acid (DHA, C22∶6; 2-fold; p = 0.0033 were higher in MUHO. This emphasizes a direct contribution of adipocytes to local adipose tissue inflammation. Elevated DHA, as an inhibitor of prostaglandin synthesis, might be a hint for counter-regulatory mechanisms in MUHO.We identified adipocyte-inherent metabolic alterations discriminating between MHO and MUHO.

  9. Reconstruction, visualization and explorative analysis of human pluripotency network

    Directory of Open Access Journals (Sweden)

    Priyanka Narad

    2017-09-01

    Full Text Available Identification of genes/proteins involved in pluripotency and their inter-relationships is important for understanding the induction/loss and maintenance of pluripotency. With the availability of large volume of data on interaction/regulation of pluripotency scattered across a large number of biological databases and hundreds of scientific journals, it is required a systematic integration of data which will create a complete view of pluripotency network. Describing and interpreting such a network of interaction and regulation (i.e., stimulation and inhibition links are essential tasks of computational biology, an important first step in systems-level understanding of the underlying mechanisms of pluripotency. To address this, we have assembled a network of 166 molecular interactions, stimulations and inhibitions, based on a collection of research data from 147 publications, involving 122 human genes/proteins, all in a standard electronic format, enabling analyses by readily available software such as Cytoscape and its Apps (formerly called "Plugins". The network includes the core circuit of OCT4 (POU5F1, SOX2 and NANOG, its periphery (such as STAT3, KLF4, UTF1, ZIC3, and c-MYC, connections to upstream signaling pathways (such as ACTIVIN, WNT, FGF, and BMP, and epigenetic regulators (such as L1TD1, LSD1 and PRC2. We describe the general properties of the network and compare it with other literature-based networks. Gene Ontology (GO analysis is being performed to find out the over-represented GO terms in the network. We use several expression datasets to condense the network to a set of network links that identify the key players (genes/proteins and the pathways involved in transition from one state of pluripotency to other state (i.e., native to primed state, primed to non-pluripotent state and pluripotent to non-pluripotent state.

  10. Proline and hydroxyproline metabolism: implications for animal and human nutrition

    OpenAIRE

    Wu, Guoyao; Bazer, Fuller W.; Burghardt, Robert C.; Johnson, Gregory A.; Kim, Sung Woo; Knabe, Darrell A.; Li, Peng; Li, Xilong; McKnight, Jason R.; Satterfield, M. Carey; Spencer, Thomas E.

    2010-01-01

    Proline plays important roles in protein synthesis and structure, metabolism (particularly the synthesis of arginine, polyamines, and glutamate via pyrroline-5-carboxylate), and nutrition, as well as wound healing, antioxidative reactions, and immune responses. On a pergram basis, proline plus hydroxyproline are most abundant in collagen and milk proteins, and requirements of proline for whole-body protein synthesis are the greatest among all amino acids. Therefore, physiological needs for pr...

  11. Genetic adaptation of the antibacterial human innate immunity network

    Directory of Open Access Journals (Sweden)

    Lazarus Ross

    2011-07-01

    Full Text Available Abstract Background Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Results Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. Conclusions We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  12. Genetic adaptation of the antibacterial human innate immunity network.

    Science.gov (United States)

    Casals, Ferran; Sikora, Martin; Laayouni, Hafid; Montanucci, Ludovica; Muntasell, Aura; Lazarus, Ross; Calafell, Francesc; Awadalla, Philip; Netea, Mihai G; Bertranpetit, Jaume

    2011-07-11

    Pathogens have represented an important selective force during the adaptation of modern human populations to changing social and other environmental conditions. The evolution of the immune system has therefore been influenced by these pressures. Genomic scans have revealed that immune system is one of the functions enriched with genes under adaptive selection. Here, we describe how the innate immune system has responded to these challenges, through the analysis of resequencing data for 132 innate immunity genes in two human populations. Results are interpreted in the context of the functional and interaction networks defined by these genes. Nucleotide diversity is lower in the adaptors and modulators functional classes, and is negatively correlated with the centrality of the proteins within the interaction network. We also produced a list of candidate genes under positive or balancing selection in each population detected by neutrality tests and showed that some functional classes are preferential targets for selection. We found evidence that the role of each gene in the network conditions the capacity to evolve or their evolvability: genes at the core of the network are more constrained, while adaptation mostly occurred at particular positions at the network edges. Interestingly, the functional classes containing most of the genes with signatures of balancing selection are involved in autoinflammatory and autoimmune diseases, suggesting a counterbalance between the beneficial and deleterious effects of the immune response.

  13. Probiotic modulation of symbiotic gut microbial-host metabolic interactions in a humanized microbiome mouse model

    NARCIS (Netherlands)

    Martin, F.P.J.; Wang, Y.; Sprenger, N.; Yap, K.S.; Rezzi, S.; Ramadan, Z.; Peré-Trepat, E.; Rochat, F.; Cherbut, C.; Bladeren, van P.J.; Fay, L.B.; Kochhar, S.; LindOn, J.C.; Holmes, E.; Nicholson, J.K.

    2008-01-01

    The transgenomic metabolic effects of exposure to either Lactobacillus paracasei or Lactobacillus rhamnosus probiotics have been measured and mapped in humanized extended genome mice (germ-free mice colonized with human baby flora). Statistical analysis of the compartmental fluctuations in diverse

  14. Contrasting Web Robot and Human Behaviors with Network Models

    OpenAIRE

    Brown, Kyle; Doran, Derek

    2018-01-01

    The web graph is a commonly-used network representation of the hyperlink structure of a website. A network of similar structure to the web graph, which we call the session graph has properties that reflect the browsing habits of the agents in the web server logs. In this paper, we apply session graphs to compare the activity of humans against web robots or crawlers. Understanding these properties will enable us to improve models of HTTP traffic, which can be used to predict and generate reali...

  15. Large-Scale Analysis of Network Bistability for Human Cancers

    Science.gov (United States)

    Shiraishi, Tetsuya; Matsuyama, Shinako; Kitano, Hiroaki

    2010-01-01

    Protein–protein interaction and gene regulatory networks are likely to be locked in a state corresponding to a disease by the behavior of one or more bistable circuits exhibiting switch-like behavior. Sets of genes could be over-expressed or repressed when anomalies due to disease appear, and the circuits responsible for this over- or under-expression might persist for as long as the disease state continues. This paper shows how a large-scale analysis of network bistability for various human cancers can identify genes that can potentially serve as drug targets or diagnosis biomarkers. PMID:20628618

  16. Revealing the cerebral regions and networks mediating vulnerability to depression: oxidative metabolism mapping of rat brain.

    Science.gov (United States)

    Harro, Jaanus; Kanarik, Margus; Kaart, Tanel; Matrov, Denis; Kõiv, Kadri; Mällo, Tanel; Del Río, Joaquin; Tordera, Rosa M; Ramirez, Maria J

    2014-07-01

    The large variety of available animal models has revealed much on the neurobiology of depression, but each model appears as specific to a significant extent, and distinction between stress response, pathogenesis of depression and underlying vulnerability is difficult to make. Evidence from epidemiological studies suggests that depression occurs in biologically predisposed subjects under impact of adverse life events. We applied the diathesis-stress concept to reveal brain regions and functional networks that mediate vulnerability to depression and response to chronic stress by collapsing data on cerebral long term neuronal activity as measured by cytochrome c oxidase histochemistry in distinct animal models. Rats were rendered vulnerable to depression either by partial serotonergic lesion or by maternal deprivation, or selected for a vulnerable phenotype (low positive affect, low novelty-related activity or high hedonic response). Environmental adversity was brought about by applying chronic variable stress or chronic social defeat. Several brain regions, most significantly median raphe, habenula, retrosplenial cortex and reticular thalamus, were universally implicated in long-term metabolic stress response, vulnerability to depression, or both. Vulnerability was associated with higher oxidative metabolism levels as compared to resilience to chronic stress. Chronic stress, in contrast, had three distinct patterns of effect on oxidative metabolism in vulnerable vs. resilient animals. In general, associations between regional activities in several brain circuits were strongest in vulnerable animals, and chronic stress disrupted this interrelatedness. These findings highlight networks that underlie resilience to stress, and the distinct response to stress that occurs in vulnerable subjects. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Expression and Regulation of Drug Transporters and Metabolizing Enzymes in the Human Gastrointestinal Tract.

    Science.gov (United States)

    Drozdzik, M; Oswald, S

    2016-01-01

    Orally administered drugs must pass through the intestinal wall and then through the liver before reaching systemic circulation. During this process drugs are subjected to different processes that may determine the therapeutic value. The intestinal barrier with active drug metabolizing enzymes and drug transporters in enterocytes plays an important role in the determination of drug bioavailability. Accumulating information demonstrates variable distribution of drug metabolizing enzymes and transporters along the human gastrointestinal tract (GI), that creates specific barrier characteristics in different segments of the GI. In this review, expression of drug metabolizing enzymes and transporters in the healthy and diseased human GI as well as their regulatory aspects: genetic, miRNA, DNA methylation are outlined. The knowledge of unique interplay between drug metabolizing enzymes and transporters in specific segments of the GI tract allows more precise definition of drug release sites within the GI in order to assure more complete bioavailability and prediction of drug interactions.

  18. Codon based co-occurrence network motifs in human mitochondria

    Directory of Open Access Journals (Sweden)

    Pramod Shinde

    2017-10-01

    Full Text Available The nucleotide polymorphism in human mitochondrial genome (mtDNA tolled by codon position bias plays an indispensable role in human population dispersion and expansion. Herein, we constructed genome-wide nucleotide co-occurrence networks using a massive data consisting of five different geographical regions and around 3000 samples for each region. We developed a powerful network model to describe complex mitochondrial evolutionary patterns between codon and non-codon positions. It was interesting to report a different evolution of Asian genomes than those of the rest which is divulged by network motifs. We found evidence that mtDNA undergoes substantial amounts of adaptive evolution, a finding which was supported by a number of previous studies. The dominance of higher order motifs indicated the importance of long-range nucleotide co-occurrence in genomic diversity. Most notably, codon motifs apparently underpinned the preferences among codon positions for co-evolution which is probably highly biased during the origin of the genetic code. Our analyses manifested that codon position co-evolution is very well conserved across human sub-populations and independently maintained within human sub-populations implying the selective role of evolutionary processes on codon position co-evolution. Ergo, this study provided a framework to investigate cooperative genomic interactions which are critical in underlying complex mitochondrial evolution.

  19. AC Electric Field Communication for Human-Area Networking

    Science.gov (United States)

    Kado, Yuichi; Shinagawa, Mitsuru

    We have proposed a human-area networking technology that uses the surface of the human body as a data transmission path and uses an AC electric field signal below the resonant frequency of the human body. This technology aims to achieve a “touch and connect” intuitive form of communication by using the electric field signal that propagates along the surface of the human body, while suppressing both the electric field radiating from the human body and mutual interference. To suppress the radiation field, the frequency of the AC signal that excites the transmitter electrode must be lowered, and the sensitivity of the receiver must be raised while reducing transmission power to its minimally required level. We describe how we are developing AC electric field communication technologies to promote the further evolution of a human-area network in support of ubiquitous services, focusing on three main characteristics, enabling-transceiver technique, application-scenario modeling, and communications quality evaluation. Special attention is paid to the relationship between electro-magnetic compatibility evaluation and regulations for extremely low-power radio stations based on Japan's Radio Law.

  20. Ablation of Steroid Receptor Coactivator-3 resembles the human CACT metabolic myopathy

    OpenAIRE

    York, Brian; Reineke, Erin L.; Sagen, Jørn V.; Nikolai, Bryan C.; Zhou, Suoling; Louet, Jean-Francois; Chopra, Atul R.; Chen, Xian; Reed, Graham; Noebels, Jeffrey; Adesina, Adekunle M.; Yu, Hui; Wong, Lee-Jun C.; Tsimelzon, Anna; Hilsenbeck, Susan

    2012-01-01

    Oxidation of lipid substrates is essential for survival in fasting and other catabolic conditions, sparing glucose for the brain and other glucose-dependent tissues. Here we show Steroid Receptor Coactivator-3 (SRC-3) plays a central role in long chain fatty acid metabolism by directly regulating carnitine/acyl-carnitine translocase (CACT) gene expression. Genetic deficiency of CACT in humans is accompanied by a constellation of metabolic and toxicity phenotypes including hypoketonemia, hypog...

  1. Inhibition of Sphingolipid Metabolism Enhances Resveratrol Chemotherapy in Human Gastric Cancer Cells

    OpenAIRE

    Shin, Kyong-Oh; Park, Nam-Young; Seo, Cho-Hee; Hong, Seon-Pyo; Oh, Ki-Wan; Hong, Jin-Tae; Han, Sang-Kil; Lee, Yong-Moon

    2012-01-01

    Resveratrol, a chemopreventive agent, is rapidly metabolized in the intestine and liver via glucuronidation. Thus, the pharmacokinetics of resveratrol limits its efficacy. To improve efficacy, the activity of resveratrol was investigated in the context of sphingolipid metabolism in human gastric cancer cells. Diverse sphingolipid metabolites, including dihydroceramides (DHCer), were tested for their ability to induce resveratrol cytotoxicity. Exposure to resveratrol (100 ?M) for 24 hr induced...

  2. Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population

    OpenAIRE

    Ellis, James K; Athersuch, Toby J; Thomas, Laura DK; Teichert, Friederike; Pérez-Trujillo, Miriam; Svendsen, Claus; Spurgeon, David J; Singh, Rajinder; Järup, Lars; Bundy, Jacob G; Keun, Hector C

    2012-01-01

    Background: The ‘exposome’ represents the accumulation of all environmental exposures across a lifetime. Topdown strategies are required to assess something this comprehensive, and could transform our understanding of how environmental factors affect human health. Metabolic profiling (metabonomics/metabolomics) defines an individual’s metabolic phenotype, which is influenced by genotype, diet, lifestyle, health and xenobiotic exposure, and could also reveal intermediate biomarkers...

  3. Convergent evolution of modularity in metabolic networks through different community structures

    Directory of Open Access Journals (Sweden)

    Zhou Wanding

    2012-09-01

    Full Text Available Abstract Background It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. Results In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxomony. Conclusions We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct enzymes in the organism’s metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability. Further, our results

  4. Convergent evolution of modularity in metabolic networks through different community structures.

    Science.gov (United States)

    Zhou, Wanding; Nakhleh, Luay

    2012-09-14

    It has been reported that the modularity of metabolic networks of bacteria is closely related to the variability of their living habitats. However, given the dependency of the modularity score on the community structure, it remains unknown whether organisms achieve certain modularity via similar or different community structures. In this work, we studied the relationship between similarities in modularity scores and similarities in community structures of the metabolic networks of 1021 species. Both similarities are then compared against the genetic distances. We revisited the association between modularity and variability of the microbial living environments and extended the analysis to other aspects of their life style such as temperature and oxygen requirements. We also tested both topological and biological intuition of the community structures identified and investigated the extent of their conservation with respect to the taxonomy. We find that similar modularities are realized by different community structures. We find that such convergent evolution of modularity is closely associated with the number of (distinct) enzymes in the organism's metabolome, a consequence of different life styles of the species. We find that the order of modularity is the same as the order of the number of the enzymes under the classification based on the temperature preference but not on the oxygen requirement. Besides, inspection of modularity-based communities reveals that these communities are graph-theoretically meaningful yet not reflective of specific biological functions. From an evolutionary perspective, we find that the community structures are conserved only at the level of kingdoms. Our results call for more investigation into the interplay between evolution and modularity: how evolution shapes modularity, and how modularity affects evolution (mainly in terms of fitness and evolvability). Further, our results call for exploring new measures of modularity and network

  5. Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling

    DEFF Research Database (Denmark)

    Ghaffari, Pouyan; Mardinoglu, Adil; Asplund, Anna

    2015-01-01

    Human cancer cell lines are used as important model systems to study molecular mechanisms associated with tumor growth, hereunder how genomic and biological heterogeneity found in primary tumors affect cellular phenotypes. We reconstructed Genome scale metabolic models (GEMs) for eleven cell lines...... based on RNA-Seq data and validated the functionality of these models with data from metabolite profiling. We used cell line-specific GEMs to analyze the differences in the metabolism of cancer cell lines, and to explore the heterogeneous expression of the metabolic subsystems. Furthermore, we predicted...... for inhibition of cell growth may provide leads for the development of efficient cancer treatment strategies....

  6. Evolutionary Medicine: The Ongoing Evolution of Human Physiology and Metabolism.

    Science.gov (United States)

    Rühli, Frank; van Schaik, Katherine; Henneberg, Maciej

    2016-11-01

    The field of evolutionary medicine uses evolutionary principles to understand changes in human anatomy and physiology that have occurred over time in response to environmental changes. Through this evolutionary-based approach, we can understand disease as a consequence of anatomical and physiological "trade-offs" that develop to facilitate survival and reproduction. We demonstrate how diachronic study of human anatomy and physiology is fundamental for an increased understanding of human health and disease. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  7. Characterization of the human cytochrome P450 enzymes involved in the metabolism of dihydrocodeine

    Science.gov (United States)

    Kirkwood, L. C.; Nation, R. L.; Somogyi, A. A.

    1997-01-01

    Aims Using human liver microsomes from donors of the CYP2D6 poor and extensive metabolizer genotypes, the role of individual cytochromes P-450 in the oxidative metabolism of dihydrocodeine was investigated. Methods The kinetics of formation of N- and O-demethylated metabolites, nordihydrocodeine and dihydromorphine, were determined using microsomes from six extensive and one poor metabolizer and the effects of chemical inhibitors selective for individual P-450 enzymes of the 1A, 2A, 2C, 2D, 2E and 3A families and of LKM1 (anti-CYP2D6) antibodies were studied. Results Nordihydrocodeine was the major metabolite in both poor and extensive metabolizers. Kinetic constants for N-demethylation derived from the single enzyme Michaelis-Menten model did not differ between the two groups. Troleandomycin and erythromycin selectively inhibited N-demethylation in both extensive and poor metabolizers. The CYP3A inducer, α-naphthoflavone, increased N-demethylation rates. The kinetics of formation of dihydromorphine in both groups were best described by a single enzyme Michaelis-Menten model although inhibition studies in extensive metabolizers suggested involvement of two enzymes with similar Km values. The kinetic constants for O-demethylation were significantly different in extensive and poor metabolizers. The extensive metabolizers had a mean intrinsic clearance to dihydromorphine more than ten times greater than the poor metabolizer. The CYP2D6 chemical inhibitors, quinidine and quinine, and LKM1 antibodies inhibited O-demethylation in extensive metabolizers; no effect was observed in microsomes from a poor metabolizer. Conclusions CYP2D6 is the major enzyme mediating O-demethylation of dihydrocodeine to dihydromorphine. In contrast, nordihydrocodeine formation is predominantly catalysed by CYP3A. PMID:9431830

  8. Determinants of human adipose tissue gene expression: impact of diet, sex, metabolic status, and cis genetic regulation.

    Directory of Open Access Journals (Sweden)

    Nathalie Viguerie

    2012-09-01

    Full Text Available Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification of environmental and individual factors controlling AT adaptation is therefore essential. Here, expression of 271 transcripts, selected for regulation according to obesity and weight changes, was determined in 515 individuals before, after 8-week low-calorie diet-induced weight loss, and after 26-week ad libitum weight maintenance diets. For 175 genes, opposite regulation was observed during calorie restriction and weight maintenance phases, independently of variations in body weight. Metabolism and immunity genes showed inverse profiles. During the dietary intervention, network-based analyses revealed strong interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently controlled AT gene expression. These analyses help understanding the relative importance of environmental and individual factors that control the expression of human AT genes and therefore may foster strategies aimed at improving AT function in metabolic diseases.

  9. Kinetics of adenylate metabolism in human and rat myocardium

    OpenAIRE

    Tavenier, M.; Skladanowski, A.C.; Abreu, R.A. de; Jong, J.W. de

    1995-01-01

    textabstractPathways producing and converting adenosine have hardly been investigated in human heart, contrasting work in other species. We compared the kinetics of enzymes associated with purine degradation and salvage in human and rat heart cytoplasm assaying for adenosine deaminase, nucleoside phosphorylase, xanthine oxidoreductase, AMP deaminase, AMP- and IMP-specific 5′-nucleotidases, adenosine kinase and hypoxanthine guanine phosphoribosyltransferase (HGPRT). Xanthine oxidoreductase was...

  10. Network Analysis of Human Genes Influencing Susceptibility to Mycobacterial Infections

    Science.gov (United States)

    Lipner, Ettie M.; Garcia, Benjamin J.; Strong, Michael

    2016-01-01

    Tuberculosis and nontuberculous mycobacterial infections constitute a high burden of pulmonary disease in humans, resulting in over 1.5 million deaths per year. Building on the premise that genetic factors influence the instance, progression, and defense of infectious disease, we undertook a systems biology approach to investigate relationships among genetic factors that may play a role in increased susceptibility or control of mycobacterial infections. We combined literature and database mining with network analysis and pathway enrichment analysis to examine genes, pathways, and networks, involved in the human response to Mycobacterium tuberculosis and nontuberculous mycobacterial infections. This approach allowed us to examine functional relationships among reported genes, and to identify novel genes and enriched pathways that may play a role in mycobacterial susceptibility or control. Our findings suggest that the primary pathways and genes influencing mycobacterial infection control involve an interplay between innate and adaptive immune proteins and pathways. Signaling pathways involved in autoimmune disease were significantly enriched as revealed in our networks. Mycobacterial disease susceptibility networks were also examined within the context of gene-chemical relationships, in order to identify putative drugs and nutrients with potential beneficial immunomodulatory or anti-mycobacterial effects. PMID:26751573

  11. A novel strategy involved in [corrected] anti-oxidative defense: the conversion of NADH into NADPH by a metabolic network.

    Directory of Open Access Journals (Sweden)

    Ranji Singh

    Full Text Available The reduced nicotinamide adenine dinucleotide phosphate (NADPH is pivotal to the cellular anti-oxidative defence strategies in most organisms. Although its production mediated by different enzyme systems has been relatively well-studied, metabolic networks dedicated to the biogenesis of NADPH have not been fully characterized. In this report, a metabolic pathway that promotes the conversion of reduced nicotinamide adenine dinucleotide (NADH, a pro-oxidant into NADPH has been uncovered in Pseudomonas fluorescens exposed to oxidative stress. Enzymes such as pyruvate carboxylase (PC, malic enzyme (ME, malate dehydrogenase (MDH, malate synthase (MS, and isocitrate lyase (ICL that are involved in disparate metabolic modules, converged to create a metabolic network aimed at the transformation of NADH into NADPH. The downregulation of phosphoenol carboxykinase (PEPCK and the upregulation of pyruvate kinase (PK ensured that this metabolic cycle fixed NADH into NADPH to combat the oxidative stress triggered by the menadione insult. This is the first demonstration of a metabolic network invoked to generate NADPH from NADH, a process that may be very effective in combating oxidative stress as the increase of an anti-oxidant is coupled to the decrease of a pro-oxidant.

  12. Metabolic activity and mRNA levels of human cardiac CYP450s involved in drug metabolism.

    Directory of Open Access Journals (Sweden)

    Veronique Michaud

    2010-12-01

    Full Text Available Tissue-specific expression of CYP450s can regulate the intracellular concentration of drugs and explain inter-subject variability in drug action. The overall objective of our study was to determine in a large cohort of samples, mRNA levels and CYP450 activity expressed in the human heart.CYP450 mRNA levels were determined by RTPCR in left ventricular samples (n = 68 of explanted hearts from patients with end-stage heart failure. Samples were obtained from ischemic and non-ischemic hearts. In some instances (n = 7, samples were available from both the left and right ventricles. A technique for the preparation of microsomes from human heart tissue was developed and CYP450-dependent activity was determined using verapamil enantiomers as probe-drug substrates.Our results show that CYP2J2 mRNA was the most abundant isoform in all human heart left ventricular samples tested. Other CYP450 mRNAs of importance were CYP4A11, CYP2E1, CYP1A1 and CYP2C8 mRNAs while CYP2B6 and CYP2C9 mRNAs were present at low levels in only some of the hearts analyzed. CYP450 mRNAs did not differ between ischemic and non-ischemic hearts and appeared to be present at similar levels in the left and right ventricles. Incubation of verapamil with heart microsomes led to the formation of nine CYP450-dependent metabolites: a major finding was the observation that stereoselectivity was reversed compared to human liver microsomes, in which the R-enantiomer is metabolized to a greater extent.This study determined cardiac mRNA levels of various CYP450 isozymes involved in drug metabolism and demonstrated the prevalent expression of CYP2J2 mRNA. It revealed that cardiomyocytes can efficiently metabolize drugs and that cardiac CYP450s are highly relevant with regard to clearance of drugs in the heart. Our results support the claim that drug metabolism in the vicinity of a drug effector site can modulate drug effects.

  13. Social contagion theory: examining dynamic social networks and human behavior

    OpenAIRE

    Christakis, Nicholas A.; Fowler, James H.

    2012-01-01

    Here, we review the research we have done on social contagion. We describe the methods we have employed (and the assumptions they have entailed) in order to examine several datasets with complementary strengths and weaknesses, including the Framingham Heart Study, the National Longitudinal Study of Adolescent Health, and other observational and experimental datasets that we and others have collected. We describe the regularities that led us to propose that human social networks may exhibit a ...

  14. Structure, function, and control of the human musculoskeletal network.

    Directory of Open Access Journals (Sweden)

    Andrew C Murphy

    2018-01-01

    Full Text Available The human body is a complex organism, the gross mechanical properties of which are enabled by an interconnected musculoskeletal network controlled by the nervous system. The nature of musculoskeletal interconnection facilitates stability, voluntary movement, and robustness to injury. However, a fundamental understanding of this network and its control by neural systems has remained elusive. Here we address this gap in knowledge by utilizing medical databases and mathematical modeling to reveal the organizational structure, predicted function, and neural control of the musculoskeletal system. We constructed a highly simplified whole-body musculoskeletal network in which single muscles connect to multiple bones via both origin and insertion points. We demonstrated that, using this simplified model, a muscle's role in this network could offer a theoretical prediction of the susceptibility of surrounding components to secondary injury. Finally, we illustrated that sets of muscles cluster into network communities that mimic the organization of control modules in primary motor cortex. This novel formalism for describing interactions between the muscular and skeletal systems serves as a foundation to develop and test therapeutic responses to injury, inspiring future advances in clinical treatments.

  15. The human gut microbiota: metabolism and perspective in obesity.

    Science.gov (United States)

    Gomes, Aline Corado; Hoffmann, Christian; Mota, João Felipe

    2018-04-18

    The gut microbiota has been recognized as an important factor in the development of metabolic diseases such as obesity and is considered an endocrine organ involved in the maintenance of energy homeostasis and host immunity. Dysbiosis can change the functioning of the intestinal barrier and the gut-associated lymphoid tissues (GALT) by allowing the passage of structural components of bacteria, such as lipopolysaccharides (LPS), which activate inflammatory pathways that may contribute to the development of insulin resistance. Furthermore, intestinal dysbiosis can alter the production of gastrointestinal peptides related to satiety, resulting in an increased food intake. In obese people, this dysbiosis seems be related to increases of the phylum Firmicutes, the genus Clostridium, and the species Eubacterium rectale, Clostridium coccoides, Lactobacillus reuteri, Akkermansia muciniphila, Clostridium histolyticum, and Staphylococcus aureus.

  16. Partitioning the Metabolic Cost of Human Running: A Task-by-Task Approach

    Science.gov (United States)

    Arellano, Christopher J.; Kram, Rodger

    2014-01-01

    Compared with other species, humans can be very tractable and thus an ideal “model system” for investigating the metabolic cost of locomotion. Here, we review the biomechanical basis for the metabolic cost of running. Running has been historically modeled as a simple spring-mass system whereby the leg acts as a linear spring, storing, and returning elastic potential energy during stance. However, if running can be modeled as a simple spring-mass system with the underlying assumption of perfect elastic energy storage and return, why does running incur a metabolic cost at all? In 1980, Taylor et al. proposed the “cost of generating force” hypothesis, which was based on the idea that elastic structures allow the muscles to transform metabolic energy into force, and not necessarily mechanical work. In 1990, Kram and Taylor then provided a more explicit and quantitative explanation by demonstrating that the rate of metabolic energy consumption is proportional to body weight and inversely proportional to the time of foot-ground contact for a variety of animals ranging in size and running speed. With a focus on humans, Kram and his colleagues then adopted a task-by-task approach and initially found that the metabolic cost of running could be “individually” partitioned into body weight support (74%), propulsion (37%), and leg-swing (20%). Summing all these biomechanical tasks leads to a paradoxical overestimation of 131%. To further elucidate the possible interactions between these tasks, later studies quantified the reductions in metabolic cost in response to synergistic combinations of body weight support, aiding horizontal forces, and leg-swing-assist forces. This synergistic approach revealed that the interactive nature of body weight support and forward propulsion comprises ∼80% of the net metabolic cost of running. The task of leg-swing at most comprises ∼7% of the net metabolic cost of running and is independent of body weight support and forward

  17. Construction and simulation of the Bradyrhizobium diazoefficiens USDA110 metabolic network: a comparison between free-living and symbiotic states.

    Science.gov (United States)

    Yang, Yi; Hu, Xiao-Pan; Ma, Bin-Guang

    2017-02-28

    Bradyrhizobium diazoefficiens is a rhizobium able to convert atmospheric nitrogen into ammonium by establishing mutualistic symbiosis with soybean. It has been recognized as an important parent strain for microbial agents and is widely applied in agricultural and environmental fields. In order to study the metabolic properties of symbiotic nitrogen fixation and the differences between a free-living cell and a symbiotic bacteroid, a genome-scale metabolic network of B. diazoefficiens USDA110 was constructed and analyzed. The metabolic network, iYY1101, contains 1031 reactions, 661 metabolites, and 1101 genes in total. Metabolic models reflecting free-living and symbiotic states were determined by defining the corresponding objective functions and substrate input sets, and were further constrained by high-throughput transcriptomic and proteomic data. Constraint-based flux analysis was used to compare the metabolic capacities and the effects on the metabolic targets of genes and reactions between the two physiological states. The results showed that a free-living rhizobium possesses a steady state flux distribution for sustaining a complex supply of biomass precursors while a symbiotic bacteroid maintains a relatively condensed one adapted to nitrogen-fixation. Our metabolic models may serve as a promising platform for better understanding the symbiotic nitrogen fixation of this species.

  18. Vitamin D receptor and vitamin D metabolizing enzymes are expressed in the human male reproductive tract

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Nielsen, John E; Jørgensen, Anne

    2010-01-01

    , since it is not solely dependent on VDR expression, but also on cellular uptake of circulating VD and presence and activity of VD metabolizing enzymes. Expression of VD metabolizing enzymes has not previously been investigated in human testis and male reproductive tract. Therefore, we performed......The vitamin D receptor (VDR) is expressed in human testis, and vitamin D (VD) has been suggested to affect survival and function of mature spermatozoa. Indeed, VDR knockout mice and VD deficient rats show decreased sperm counts and low fertility. However, the cellular response to VD is complex...

  19. A Simplified Model of Human Alcohol Metabolism That Integrates Biotechnology and Human Health into a Mass Balance Team Project

    Science.gov (United States)

    Yang, Allen H. J.; Dimiduk, Kathryn; Daniel, Susan

    2011-01-01

    We present a simplified human alcohol metabolism model for a mass balance team project. Students explore aspects of engineering in biotechnology: designing/modeling biological systems, testing the design/model, evaluating new conditions, and exploring cutting-edge "lab-on-a-chip" research. This project highlights chemical engineering's impact on…

  20. Rhinal hypometabolism on FDG PET in healthy APO-E4 carriers: impact on memory function and metabolic networks

    International Nuclear Information System (INIS)

    Didic, Mira; Felician, Olivier; Gour, Natalina; Ceccaldi, Mathieu; Bernard, Rafaelle; Pecheux, Christophe; Mundler, Olivier; Guedj, Eric

    2015-01-01

    The ε4 allele of the apolipoprotein E (APO-E4) gene, a genetic risk factor for Alzheimer's disease (AD), also modulates brain metabolism and function in healthy subjects. The aim of the present study was to explore cerebral metabolism using FDG PET in healthy APO-E4 carriers by comparing cognitively normal APO-E4 carriers to noncarriers and to assess if patterns of metabolism are correlated with performance on cognitive tasks. Moreover, metabolic connectivity patterns were established in order to assess if the organization of neural networks is influenced by genetic factors. Whole-brain PET statistical analysis was performed at voxel-level using SPM8 with a threshold of p < 0.005, corrected for volume, with age, gender and level of education as nuisance variables. Significant hypometabolism between APO-E4 carriers (n = 11) and noncarriers (n = 30) was first determined. Mean metabolic values with clinical/neuropsychological data were extracted at the individual level, and correlations were searched using Spearman's rank test in the whole group. To evaluate metabolic connectivity from metabolic cluster(s) previously identified in the intergroup comparison, voxel-wise interregional correlation analysis (IRCA) was performed between groups of subjects. APO-E4 carriers had reduced metabolism within the left anterior medial temporal lobe (MTL), where neuropathological changes first appear in AD, including the entorhinal and perirhinal cortices. A correlation between metabolism in this area and performance on the DMS48 (delayed matching to sample-48 items) was found, in line with converging evidence involving the perirhinal cortex in object-based memory. Finally, a voxel-wise IRCA revealed stronger metabolic connectivity of the MTL cluster with neocortical frontoparietal regions in carriers than in noncarriers, suggesting compensatory metabolic networks. Exploring cerebral metabolism using FDG PET can contribute to a better understanding of the influence of

  1. Rhinal hypometabolism on FDG PET in healthy APO-E4 carriers: impact on memory function and metabolic networks

    Energy Technology Data Exchange (ETDEWEB)

    Didic, Mira; Felician, Olivier; Gour, Natalina; Ceccaldi, Mathieu [Pole de Neurosciences Cliniques, Centre Hospitalo-Universitaire de la Timone, AP-HM, Service de Neurologie and Neuropsychologie, Marseille (France); Aix Marseille Universite, Inserm, INS UMRS 1106, Marseille (France); Bernard, Rafaelle; Pecheux, Christophe [Centre Hospitalo-Universitaire de la Timone, AP-HM, et INSERM UMRS 910: ' ' Genetique Medicale et Genomique fonctionnelle' ' , Departement de Genetique Medicale, Marseille (France); Mundler, Olivier; Guedj, Eric [Centre Hospitalo-Universitaire de la Timone, AP-HM, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Aix Marseille Universite, CERIMED, CNRS UMR7289, INT, Marseille (France); Aix Marseille Universite, CNRS UMR7289, INT, Marseille (France)

    2015-09-15

    The ε4 allele of the apolipoprotein E (APO-E4) gene, a genetic risk factor for Alzheimer's disease (AD), also modulates brain metabolism and function in healthy subjects. The aim of the present study was to explore cerebral metabolism using FDG PET in healthy APO-E4 carriers by comparing cognitively normal APO-E4 carriers to noncarriers and to assess if patterns of metabolism are correlated with performance on cognitive tasks. Moreover, metabolic connectivity patterns were established in order to assess if the organization of neural networks is influenced by genetic factors. Whole-brain PET statistical analysis was performed at voxel-level using SPM8 with a threshold of p < 0.005, corrected for volume, with age, gender and level of education as nuisance variables. Significant hypometabolism between APO-E4 carriers (n = 11) and noncarriers (n = 30) was first determined. Mean metabolic values with clinical/neuropsychological data were extracted at the individual level, and correlations were searched using Spearman's rank test in the whole group. To evaluate metabolic connectivity from metabolic cluster(s) previously identified in the intergroup comparison, voxel-wise interregional correlation analysis (IRCA) was performed between groups of subjects. APO-E4 carriers had reduced metabolism within the left anterior medial temporal lobe (MTL), where neuropathological changes first appear in AD, including the entorhinal and perirhinal cortices. A correlation between metabolism in this area and performance on the DMS48 (delayed matching to sample-48 items) was found, in line with converging evidence involving the perirhinal cortex in object-based memory. Finally, a voxel-wise IRCA revealed stronger metabolic connectivity of the MTL cluster with neocortical frontoparietal regions in carriers than in noncarriers, suggesting compensatory metabolic networks. Exploring cerebral metabolism using FDG PET can contribute to a better understanding of the influence of

  2. Flavonoids: a metabolic network mediating plants adaptation to their real estate.

    Science.gov (United States)

    Mouradov, Aidyn; Spangenberg, German

    2014-01-01

    From an evolutionary perspective, the emergence of the sophisticated chemical scaffolds of flavonoid molecules represents a key step in the colonization of Earth's terrestrial environment by vascular plants nearly 500 million years ago. The subsequent evolution of flavonoids through recruitment and modification of ancestors involved in primary metabolism has allowed vascular plants to cope with pathogen invasion and damaging UV light. The functional properties of flavonoids as a unique combination of different classes of compounds vary significantly depending on the demands of their local real estate. Apart from geographical location, the composition of flavonoids is largely dependent on the plant species, their developmental stage, tissue type, subcellular localization, and key ecological influences of both biotic and abiotic origin. Molecular and metabolic cross-talk between flavonoid and other pathways as a result of the re-direction of intermediate molecules have been well investigated. This metabolic plasticity is a key factor in plant adaptive strength and is of paramount importance for early land plants adaptation to their local ecosystems. In human and animal health the biological and pharmacological activities of flavonoids have been investigated in great depth and have shown a wide range of anti-inflammatory, anti-oxidant, anti-microbial, and anti-cancer properties. In this paper we review the application of advanced gene technologies for targeted reprogramming of the flavonoid pathway in plants to understand its molecular functions and explore opportunities for major improvements in forage plants enhancing animal health and production.

  3. Flavonoids: A Metabolic Network Mediating Plants Adaptation to Their Real Estate

    Directory of Open Access Journals (Sweden)

    Aidyn eMouradov

    2014-11-01

    Full Text Available From an evolutionary perspective, the emergence of the sophisticated chemical scaffolds of flavonoid molecules represents a key step in the colonization of Earth’s terrestrial environment by vascular plants nearly 500 million years ago. The subsequent evolution of flavonoids through recruitment and modification of ancestors involved in primary metabolism has allowed vascular plants to cope with pathogen invasion and damaging UV light. The functional properties of flavonoids as a unique combination of different classes of compounds vary significantly depending on the demands of their local real estate. Apart from geographical location, the composition of flavonoids is largely dependent on the plant species, their developmental stage, tissue type, subcellular localization, and key ecological influences of both biotic and abiotic origin. Molecular and metabolic cross-talk between flavonoid and other pathways as a result of the re-direction of intermediate molecules have been well investigated. This metabolic plasticity is a key factor in plant adaptive strength and is of paramount importance for early land plants adaptation to their local ecosystems. In human and animal health the biological and pharmacological activities of flavonoids have been investigated in great depth and have shown a wide range of anti-inflammatory, anti-oxidant, anti-microbial and anti-cancer properties. In this paper we review the application of advanced gene technologies for targeted reprogramming of the flavonoid pathway in plants to understand its molecular functions and explore opportunities for major improvements in forage plants enhancing animal health and production.

  4. Mice with chimeric livers are an improved model for human lipoprotein metabolism.

    Science.gov (United States)

    Ellis, Ewa C S; Naugler, Willscott Edward; Nauglers, Scott; Parini, Paolo; Mörk, Lisa-Mari; Jorns, Carl; Zemack, Helen; Sandblom, Anita Lövgren; Björkhem, Ingemar; Ericzon, Bo-Göran; Wilson, Elizabeth M; Strom, Stephen C; Grompe, Markus

    2013-01-01

    Rodents are poor model for human hyperlipidemias because total cholesterol and low density lipoprotein levels are very low on a normal diet. Lipoprotein metabolism is primarily regulated by hepatocytes and we therefore assessed whether chimeric mice extensively repopulated with human cells can model human lipid and bile acid metabolism. FRG [ F ah(-/-) R ag2(-/-)Il2r g (-/-)]) mice were repopulated with primary human hepatocytes. Serum lipoprotein lipid composition and distribution (VLDL, LDL, and HDL) was analyzed by size exclusion chromatography. Bile was analyzed by LC-MS or by GC-MS. RNA expression levels were measured by quantitative RT-PCR. Chimeric mice displayed increased LDL and VLDL fractions and a lower HDL fraction compared to wild type, thus significantly shifting the ratio of LDL/HDL towards a human profile. Bile acid analysis revealed a human-like pattern with high amounts of cholic acid and deoxycholic acid (DCA). Control mice had only taurine-conjugated bile acids as expcted, but highly repopulated mice had glycine-conjugated cholic acid as found in human bile. RNA levels of human genes involved in bile acid synthesis including CYP7A1, and CYP27A1 were significantly upregulated as compared to human control liver. However, administration of recombinant hFGF19 restored human CYP7A1 levels to normal. Humanized-liver mice showed a typical human lipoprotein profile with LDL as the predominant lipoprotein fraction even on a normal diet. The bile acid profile confirmed presence of an intact enterohepatic circulation. Although bile acid synthesis was deregulated in this model, this could be fully normalized by FGF19 administration. Taken together these data indicate that chimeric FRG-mice are a useful new model for human lipoprotein and bile-acid metabolism.

  5. Multi-Copper Oxidases and Human Iron Metabolism

    Science.gov (United States)

    Vashchenko, Ganna; MacGillivray, Ross T. A.

    2013-01-01

    Multi-copper oxidases (MCOs) are a small group of enzymes that oxidize their substrate with the concomitant reduction of dioxygen to two water molecules. Generally, multi-copper oxidases are promiscuous with regards to their reducing substrates and are capable of performing various functions in different species. To date, three multi-copper oxidases have been detected in humans—ceruloplasmin, hephaestin and zyklopen. Each of these enzymes has a high specificity towards iron with the resulting ferroxidase activity being associated with ferroportin, the only known iron exporter protein in humans. Ferroportin exports iron as Fe2+, but transferrin, the major iron transporter protein of blood, can bind only Fe3+ effectively. Iron oxidation in enterocytes is mediated mainly by hephaestin thus allowing dietary iron to enter the bloodstream. Zyklopen is involved in iron efflux from placental trophoblasts during iron transfer from mother to fetus. Release of iron from the liver relies on ferroportin and the ferroxidase activity of ceruloplasmin which is found in blood in a soluble form. Ceruloplasmin, hephaestin and zyklopen show distinctive expression patterns and have unique mechanisms for regulating their expression. These features of human multi-copper ferroxidases can serve as a basis for the precise control of iron efflux in different tissues. In this manuscript, we review the biochemical and biological properties of the three human MCOs and discuss their potential roles in human iron homeostasis. PMID:23807651

  6. Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans.

    Science.gov (United States)

    Palego, Lionella; Betti, Laura; Rossi, Alessandra; Giannaccini, Gino

    2016-01-01

    L-Tryptophan is the unique protein amino acid (AA) bearing an indole ring: its biotransformation in living organisms contributes either to keeping this chemical group in cells and tissues or to breaking it, by generating in both cases a variety of bioactive molecules. Investigations on the biology of Trp highlight the pleiotropic effects of its small derivatives on homeostasis processes. In addition to protein turn-over, in humans the pathways of Trp indole derivatives cover the synthesis of the neurotransmitter/hormone serotonin (5-HT), the pineal gland melatonin (MLT), and the trace amine tryptamine. The breakdown of the Trp indole ring defines instead the "kynurenine shunt" which produces cell-response adapters as L-kynurenine, kynurenic and quinolinic acids, or the coenzyme nicotinamide adenine dinucleotide (NAD(+)). This review aims therefore at tracing a "map" of the main molecular effectors in human tryptophan (Trp) research, starting from the chemistry of this AA, dealing then with its biosphere distribution and nutritional value for humans, also focusing on some proteins responsible for its tissue-dependent uptake and biotransformation. We will thus underscore the role of Trp biochemistry in the pathogenesis of human complex diseases/syndromes primarily involving the gut, neuroimmunoendocrine/stress responses, and the CNS, supporting the use of -Omics approaches in this field.

  7. Brain Insulin Resistance at the Crossroads of Metabolic and Cognitive Disorders in Humans.

    Science.gov (United States)

    Kullmann, Stephanie; Heni, Martin; Hallschmid, Manfred; Fritsche, Andreas; Preissl, Hubert; Häring, Hans-Ulrich

    2016-10-01

    Ever since the brain was identified as an insulin-sensitive organ, evidence has rapidly accumulated that insulin action in the brain produces multiple behavioral and metabolic effects, influencing eating behavior, peripheral metabolism, and cognition. Disturbances in brain insulin action can be observed in obesity and type 2 diabetes (T2D), as well as in aging and dementia. Decreases in insulin sensitivity of central nervous pathways, i.e., brain insulin resistance, may therefore constitute a joint pathological feature of metabolic and cognitive dysfunctions. Modern neuroimaging methods have provided new means of probing brain insulin action, revealing the influence of insulin on both global and regional brain function. In this review, we highlight recent findings on brain insulin action in humans and its impact on metabolism and cognition. Furthermore, we elaborate on the most prominent factors associated with brain insulin resistance, i.e., obesity, T2D, genes, maternal metabolism, normal aging, inflammation, and dementia, and on their roles regarding causes and consequences of brain insulin resistance. We also describe the beneficial effects of enhanced brain insulin signaling on human eating behavior and cognition and discuss potential applications in the treatment of metabolic and cognitive disorders. Copyright © 2016 the American Physiological Society.

  8. Cunninghamella Biotransformation--Similarities to Human Drug Metabolism and Its Relevance for the Drug Discovery Process.

    Science.gov (United States)

    Piska, Kamil; Żelaszczyk, Dorota; Jamrozik, Marek; Kubowicz-Kwaśny, Paulina; Pękala, Elżbieta

    2016-01-01

    Studies of drug metabolism are one of the most significant issues in the process of drug development, its introduction to the market and also in treatment. Even the most promising molecule may show undesirable metabolic properties that would disqualify it as a potential drug. Therefore, such studies are conducted in the early phases of drug discovery and development process. Cunninghamella is a filamentous fungus known for its catalytic properties, which mimics mammalian drug metabolism. It has been proven that C. elegans carries at least one gene coding for a CYP enzyme closely related to the CYP51 family. The transformation profile of xenobiotics in Cunninghamella spp. spans a number of reactions catalyzed by different mammalian CYP isoforms. This paper presents detailed data on similar biotransformation drug products in humans and Cunninghamella spp. and covers the most important aspects of preparative biosynthesis of metabolites, since this model allows to obtain metabolites in sufficient quantities to conduct the further detailed investigations, as quantification, structure analysis and pharmacological activity and toxicity testing. The metabolic activity of three mostly used Cunninghamella species in obtaining hydroxylated, dealkylated and oxidated metabolites of different drugs confirmed its convergence with human biotransformation. Though it cannot replace the standard methods, it can provide support in the field of biotransformation and identifying metabolic soft spots of new chemicals and in predicting possible metabolic pathways. Another aspect is the biosynthesis of metabolites. In this respect, techniques using Cunninghamella spp. seem to be competitive to the chemical methods currently used.

  9. Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model

    Science.gov (United States)

    Martin, Francois-Pierre J; Wang, Yulan; Sprenger, Norbert; Yap, Ivan K S; Lundstedt, Torbjörn; Lek, Per; Rezzi, Serge; Ramadan, Ziad; van Bladeren, Peter; Fay, Laurent B; Kochhar, Sunil; Lindon, John C; Holmes, Elaine; Nicholson, Jeremy K

    2008-01-01

    The transgenomic metabolic effects of exposure to either Lactobacillus paracasei or Lactobacillus rhamnosus probiotics have been measured and mapped in humanized extended genome mice (germ-free mice colonized with human baby flora). Statistical analysis of the compartmental fluctuations in diverse metabolic compartments, including biofluids, tissue and cecal short-chain fatty acids (SCFAs) in relation to microbial population modulation generated a novel top-down systems biology view of the host response to probiotic intervention. Probiotic exposure exerted microbiome modification and resulted in altered hepatic lipid metabolism coupled with lowered plasma lipoprotein levels and apparent stimulated glycolysis. Probiotic treatments also altered a diverse range of pathways outcomes, including amino-acid metabolism, methylamines and SCFAs. The novel application of hierarchical-principal component analysis allowed visualization of multicompartmental transgenomic metabolic interactions that could also be resolved at the compartment and pathway level. These integrated system investigations demonstrate the potential of metabolic profiling as a top-down systems biology driver for investigating the mechanistic basis of probiotic action and the therapeutic surveillance of the gut microbial activity related to dietary supplementation of probiotics. PMID:18197175

  10. Modeling and Visualization of Human Activities for Multicamera Networks

    Directory of Open Access Journals (Sweden)

    Aswin C. Sankaranarayanan

    2009-01-01

    Full Text Available Multicamera networks are becoming complex involving larger sensing areas in order to capture activities and behavior that evolve over long spatial and temporal windows. This necessitates novel methods to process the information sensed by the network and visualize it for an end user. In this paper, we describe a system for modeling and on-demand visualization of activities of groups of humans. Using the prior knowledge of the 3D structure of the scene as well as camera calibration, the system localizes humans as they navigate the scene. Activities of interest are detected by matching models of these activities learnt a priori against the multiview observations. The trajectories and the activity index for each individual summarize the dynamic content of the scene. These are used to render the scene with virtual 3D human models that mimic the observed activities of real humans. In particular, the rendering framework is designed to handle large displays with a cluster of GPUs as well as reduce the cognitive dissonance by rendering realistic weather effects and illumination. We envision use of this system for immersive visualization as well as summarization of videos that capture group behavior.

  11. Scaling up: human genetics as a Cold War network.

    Science.gov (United States)

    Lindee, Susan

    2014-09-01

    In this commentary I explore how the papers here illuminate the processes of collection that have been so central to the history of human genetics since 1945. The development of human population genetics in the Cold War period produced databases and biobanks that have endured into the present, and that continue to be used and debated. In the decades after the bomb, scientists collected and transferred human biological materials and information from populations of interest, and as they moved these biological resources or biosocial resources acquired new meanings and uses. The papers here collate these practices and map their desires and ironies. They explore how a large international network of geneticists, biological anthropologists, virologists and other physicians and scientists interacted with local informants, research subjects and public officials. They also track the networks and standards that mobilized the transfer of information, genealogies, tissue and blood samples. As Joanna Radin suggests here, the massive collections of human biological materials and data were often understood to be resources for an "as-yet-unknown" future. The stories told here contain elements of surveillance, extraction, salvage and eschatology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Multilayer modeling and analysis of human brain networks

    Science.gov (United States)

    2017-01-01

    Abstract Understanding how the human brain is structured, and how its architecture is related to function, is of paramount importance for a variety of applications, including but not limited to new ways to prevent, deal with, and cure brain diseases, such as Alzheimer’s or Parkinson’s, and psychiatric disorders, such as schizophrenia. The recent advances in structural and functional neuroimaging, together with the increasing attitude toward interdisciplinary approaches involving computer science, mathematics, and physics, are fostering interesting results from computational neuroscience that are quite often based on the analysis of complex network representation of the human brain. In recent years, this representation experienced a theoretical and computational revolution that is breaching neuroscience, allowing us to cope with the increasing complexity of the human brain across multiple scales and in multiple dimensions and to model structural and functional connectivity from new perspectives, often combined with each other. In this work, we will review the main achievements obtained from interdisciplinary research based on magnetic resonance imaging and establish de facto, the birth of multilayer network analysis and modeling of the human brain. PMID:28327916

  13. Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism.

    Science.gov (United States)

    Mohammed, Akram; Guda, Chittibabu

    2015-01-01

    Enzymes are known as the molecular machines that drive the metabolism of an organism; hence identification of the full enzyme complement of an organism is essential to build the metabolic blueprint of that species as well as to understand the interplay of multiple species in an ecosystem. Experimental characterization of the enzymatic reactions of all enzymes in a genome is a tedious and expensive task. The problem is more pronounced in the metagenomic samples where even the species are not adequately cultured or characterized. Enzymes encoded by the gut microbiota play an essential role in the host metabolism; thus, warranting the need to accurately identify and annotate the full enzyme complements of species in the genomic and metagenomic projects. To fulfill this need, we develop and apply a method called ECemble, an ensemble approach to identify enzymes and enzyme classes and study the human gut metabolic pathways. ECemble method uses an ensemble of machine-learning methods to accurately model and predict enzymes from protein sequences and also identifies the enzyme classes and subclasses at the finest resolution. A tenfold cross-validation result shows accuracy between 97 and 99% at different levels in the hierarchy of enzyme classification, which is superior to comparable methods. We applied ECemble to predict the entire complements of enzymes from ten sequenced proteomes including the human proteome. We also applied this method to predict enzymes encoded by the human gut microbiome from gut metagenomic samples, and to study the role played by the microbe-derived enzymes in the human metabolism. After mapping the known and predicted enzymes to canonical human pathways, we identified 48 pathways that have at least one bacteria-encoded enzyme, which demonstrates the complementary role of gut microbiome in human gut metabolism. These pathways are primarily involved in metabolizing dietary nutrients such as carbohydrates, amino acids, lipids, cofactors and

  14. Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism

    Science.gov (United States)

    2015-01-01

    Background Enzymes are known as the molecular machines that drive the metabolism of an organism; hence identification of the full enzyme complement of an organism is essential to build the metabolic blueprint of that species as well as to understand the interplay of multiple species in an ecosystem. Experimental characterization of the enzymatic reactions of all enzymes in a genome is a tedious and expensive task. The problem is more pronounced in the metagenomic samples where even the species are not adequately cultured or characterized. Enzymes encoded by the gut microbiota play an essential role in the host metabolism; thus, warranting the need to accurately identify and annotate the full enzyme complements of species in the genomic and metagenomic projects. To fulfill this need, we develop and apply a method called ECemble, an ensemble approach to identify enzymes and enzyme classes and study the human gut metabolic pathways. Results ECemble method uses an ensemble of machine-learning methods to accurately model and predict enzymes from protein sequences and also identifies the enzyme classes and subclasses at the finest resolution. A tenfold cross-validation result shows accuracy between 97 and 99% at different levels in the hierarchy of enzyme classification, which is superior to comparable methods. We applied ECemble to predict the entire complements of enzymes from ten sequenced proteomes including the human proteome. We also applied this method to predict enzymes encoded by the human gut microbiome from gut metagenomic samples, and to study the role played by the microbe-derived enzymes in the human metabolism. After mapping the known and predicted enzymes to canonical human pathways, we identified 48 pathways that have at least one bacteria-encoded enzyme, which demonstrates the complementary role of gut microbiome in human gut metabolism. These pathways are primarily involved in metabolizing dietary nutrients such as carbohydrates, amino acids, lipids

  15. Rapid countermeasure discovery against Francisella tularensis based on a metabolic network reconstruction.

    Directory of Open Access Journals (Sweden)

    Sidhartha Chaudhury

    Full Text Available In the future, we may be faced with the need to provide treatment for an emergent biological threat against which existing vaccines and drugs have limited efficacy or availability. To prepare for this eventuality, our objective was to use a metabolic network-based approach to rapidly identify potential drug targets and prospectively screen and validate novel small-molecule antimicrobials. Our target organism was the fully virulent Francisella tularensis subspecies tularensis Schu S4 strain, a highly infectious intracellular pathogen that is the causative agent of tularemia and is classified as a category A biological agent by the Centers for Disease Control and Prevention. We proceeded with a staggered computational and experimental workflow that used a strain-specific metabolic network model, homology modeling and X-ray crystallography of protein targets, and ligand- and structure-based drug design. Selected compounds were subsequently filtered based on physiological-based pharmacokinetic modeling, and we selected a final set of 40 compounds for experimental validation of antimicrobial activity. We began screening these compounds in whole bacterial cell-based assays in biosafety level 3 facilities in the 20th week of the study and completed the screens within 12 weeks. Six compounds showed significant growth inhibition of F. tularensis, and we determined their respective minimum inhibitory concentrations and mammalian cell cytotoxicities. The most promising compound had a low molecular weight, was non-toxic, and abolished bacterial growth at 13 µM, with putative activity against pantetheine-phosphate adenylyltransferase, an enzyme involved in the biosynthesis of coenzyme A, encoded by gene coaD. The novel antimicrobial compounds identified in this study serve as starting points for lead optimization, animal testing, and drug development against tularemia. Our integrated in silico/in vitro approach had an overall 15% success rate in terms of

  16. A new kinetic model for human iodine metabolism

    International Nuclear Information System (INIS)

    Ficken, V.J.; Allen, E.W.; Adams, G.D.

    1985-01-01

    A new kinetic model of iodine metabolism incorporating preferential organification of tyrosil (TYR) residues of thyroglobulin is developed and evaluated for euthyroid (n=5) and hyperthyroid (n=11) subjects. Iodine and peripheral T4 metabolims were measured with oral /sup 131/I-NaI and intravenous /sup 125/I-74 respectively. Data (obtained over 10 days) and kinetic model are analyzed using the SAAM27 program developed by Berman (1978). Compartment rate constants (mean rate per hour +- ISD) are tabulated in this paper. Thyroid and renal iodide clearance compare favorably with values reported in the literature. TYR rate constants were not unique; however, values obtained are within the range of rate constants determined from the invitro data reported by others. Intraluminal iodine as coupled TYR is predicted to be 21% for euthyroid and 59% for hyperthyroid subjects compared to analytical chemical methods of 30% and 51% respectively determined elsewhere. The authors plan to evaluate this model as a method of predicting the thyroid radiation dose from orally administered I/sup 131/

  17. Reduced Metabolism in Brain 'Control Networks' Following Cocaine-Cues Exposure in Female Cocaine Abusers

    International Nuclear Information System (INIS)

    Volkow, N.D.; Tomasi, D.; Wang, G.-J.; Fowler, J.S.; Telang, F.; Goldstein, R.Z.; Alia-Klein, N.; Wong, C.T.

    2011-01-01

    Gender differences in vulnerability for cocaine addiction have been reported. Though the mechanisms are not understood, here we hypothesize that gender differences in reactivity to conditioned-cues, which contributes to relapse, are involved. To test this we compared brain metabolism (using PET and 18 FDG) between female (n = 10) and male (n = 16) active cocaine abusers when they watched a neutral video (nature scenes) versus a cocaine-cues video. Self-reports of craving increased with the cocaine-cue video but responses did not differ between genders. In contrast, changes in whole brain metabolism with cocaine-cues differed by gender (p<0.05); females significantly decreased metabolism (-8.6% ± 10) whereas males tended to increase it (+5.5% ± 18). SPM analysis (Cocaine-cues vs Neutral) in females revealed decreases in frontal, cingulate and parietal cortices, thalamus and midbrain (p<0.001) whereas males showed increases in right inferior frontal gyrus (BA 44/45) (only at p<0.005). The gender-cue interaction showed greater decrements with Cocaine-cues in females than males (p<0.001) in frontal (BA 8, 9, 10), anterior cingulate (BA 24, 32), posterior cingulate (BA 23, 31), inferior parietal (BA 40) and thalamus (dorsomedial nucleus). Females showed greater brain reactivity to cocaine-cues than males but no differences in craving, suggesting that there may be gender differences in response to cues that are not linked with craving but could affect subsequent drug use. Specifically deactivation of brain regions from 'control networks' (prefrontal, cingulate, inferior parietal, thalamus) in females could increase their vulnerability to relapse since it would interfere with executive function (cognitive inhibition). This highlights the importance of gender tailored interventions for cocaine addiction.

  18. Reduced metabolism in brain "control networks" following cocaine-cues exposure in female cocaine abusers.

    Directory of Open Access Journals (Sweden)

    Nora D Volkow

    2011-02-01

    Full Text Available Gender differences in vulnerability for cocaine addiction have been reported. Though the mechanisms are not understood, here we hypothesize that gender differences in reactivity to conditioned-cues, which contributes to relapse, are involved.To test this we compared brain metabolism (using PET and ¹⁸FDG between female (n = 10 and male (n = 16 active cocaine abusers when they watched a neutral video (nature scenes versus a cocaine-cues video.Self-reports of craving increased with the cocaine-cue video but responses did not differ between genders. In contrast, changes in whole brain metabolism with cocaine-cues differed by gender (p<0.05; females significantly decreased metabolism (-8.6%±10 whereas males tended to increase it (+5.5%±18. SPM analysis (Cocaine-cues vs Neutral in females revealed decreases in frontal, cingulate and parietal cortices, thalamus and midbrain (p<0.001 whereas males showed increases in right inferior frontal gyrus (BA 44/45 (only at p<0.005. The gender-cue interaction showed greater decrements with Cocaine-cues in females than males (p<0.001 in frontal (BA 8, 9, 10, anterior cingulate (BA 24, 32, posterior cingulate (BA 23, 31, inferior parietal (BA 40 and thalamus (dorsomedial nucleus.Females showed greater brain reactivity to cocaine-cues than males but no differences in craving, suggesting that there may be gender differences in response to cues that are not linked with craving but could affect subsequent drug use. Specifically deactivation of brain regions from "control networks" (prefrontal, cingulate, inferior parietal, thalamus in females could increase their vulnerability to relapse since it would interfere with executive function (cognitive inhibition. This highlights the importance of gender tailored interventions for cocaine addiction.

  19. A Physical Interaction Network of Dengue Virus and Human Proteins*

    Science.gov (United States)

    Khadka, Sudip; Vangeloff, Abbey D.; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S.; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J.; Perera, Rushika; LaCount, Douglas J.

    2011-01-01

    Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection. PMID:21911577

  20. A physical interaction network of dengue virus and human proteins.

    Science.gov (United States)

    Khadka, Sudip; Vangeloff, Abbey D; Zhang, Chaoying; Siddavatam, Prasad; Heaton, Nicholas S; Wang, Ling; Sengupta, Ranjan; Sahasrabudhe, Sudhir; Randall, Glenn; Gribskov, Michael; Kuhn, Richard J; Perera, Rushika; LaCount, Douglas J

    2011-12-01

    Dengue virus (DENV), an emerging mosquito-transmitted pathogen capable of causing severe disease in humans, interacts with host cell factors to create a more favorable environment for replication. However, few interactions between DENV and human proteins have been reported to date. To identify DENV-human protein interactions, we used high-throughput yeast two-hybrid assays to screen the 10 DENV proteins against a human liver activation domain library. From 45 DNA-binding domain clones containing either full-length viral genes or partially overlapping gene fragments, we identified 139 interactions between DENV and human proteins, the vast majority of which are novel. These interactions involved 105 human proteins, including six previously implicated in DENV infection and 45 linked to the replication of other viruses. Human proteins with functions related to the complement and coagulation cascade, the centrosome, and the cytoskeleton were enriched among the DENV interaction partners. To determine if the cellular proteins were required for DENV infection, we used small interfering RNAs to inhibit their expression. Six of 12 proteins targeted (CALR, DDX3X, ERC1, GOLGA2, TRIP11, and UBE2I) caused a significant decrease in the replication of a DENV replicon. We further showed that calreticulin colocalized with viral dsRNA and with the viral NS3 and NS5 proteins in DENV-infected cells, consistent with a direct role for calreticulin in DENV replication. Human proteins that interacted with DENV had significantly higher average degree and betweenness than expected by chance, which provides additional support for the hypothesis that viruses preferentially target cellular proteins that occupy central position in the human protein interaction network. This study provides a valuable starting point for additional investigations into the roles of human proteins in DENV infection.

  1. Novel sterol metabolic network of Trypanosoma brucei procyclic and bloodstream forms

    Science.gov (United States)

    Nes, Craigen R.; Singha, Ujjal K.; Liu, Jialin; Ganapathy, Kulothungan; Villalta, Fernando; Waterman, Michael R.; Lepesheva, Galina I.; Chaudhuri, Minu; Nes, W. David

    2012-01-01

    Trypanosoma brucei is the protozoan parasite that causes African trypanosomiasis, a neglected disease of people and animals. Co-metabolite analysis, labelling studies using [methyl-2H3]-methionine and substrate/product specificities of the cloned 24-SMT (sterol C24-methyltransferase) and 14-SDM (sterol C14-demethylase) from T. brucei afforded an uncommon sterol metabolic network that proceeds from lanosterol and 31-norlanosterol to ETO [ergosta-5,7,25(27)-trien-3β-ol], 24-DTO [dimethyl ergosta-5,7,25(27)-trienol] and ergosterol [ergosta-5,7,22(23)-trienol]. To assess the possible carbon sources of ergosterol biosynthesis, specifically 13C-labelled specimens of lanosterol, acetate, leucine and glucose were administered to T. brucei and the 13C distributions found were in accord with the operation of the acetate–mevalonate pathway, with leucine as an alternative precursor, to ergostenols in either the insect or bloodstream form. In searching for metabolic signatures of procyclic cells, we observed that the 13C-labelling treatments induce fluctuations between the acetyl-CoA (mitochondrial) and sterol (cytosolic) synthetic pathways detected by the progressive increase in 13C-ergosterol production (control sterol synthesis that is further fluctuated in the cytosol, yielding distinct sterol profiles in relation to cell demands on growth. PMID:22176028

  2. Regulatory network of secondary metabolism in Brassica rapa: insight into the glucosinolate pathway.

    Directory of Open Access Journals (Sweden)

    Dunia Pino Del Carpio

    Full Text Available Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and phenylpropanoids. Leaves from six weeks-old plants of a Brassica rapa doubled haploid population, consisting of 92 genotypes, were profiled for their secondary metabolite composition, using both targeted and LC-MS-based untargeted metabolomics approaches. Furthermore, the same population was profiled for transcript variation using a microarray containing EST sequences mainly derived from three Brassica species: B. napus, B. rapa and B. oleracea. The biochemical pathway analysis was based on the network analyses of both metabolite QTLs (mQTLs and transcript QTLs (eQTLs. Co-localization of mQTLs and eQTLs lead to the identification of candidate regulatory genes involved in the biosynthesis of carotenoids, tocopherols and glucosinolates. We subsequently focused on the well-characterized glucosinolate pathway and revealed two hotspots of co-localization of eQTLs with mQTLs in linkage groups A03 and A09. Our results indicate that such a large-scale genetical genomics approach combining transcriptomics and metabolomics data can provide new insights into the genetic regulation of metabolite composition of Brassica vegetables.

  3. Novel insights into embryonic stem cell self-renewal revealed through comparative human and mouse systems biology networks.

    Science.gov (United States)

    Dowell, Karen G; Simons, Allen K; Bai, Hao; Kell, Braden; Wang, Zack Z; Yun, Kyuson; Hibbs, Matthew A

    2014-05-01

    Embryonic stem cells (ESCs), characterized by their ability to both self-renew and differentiate into multiple cell lineages, are a powerful model for biomedical research and developmental biology. Human and mouse ESCs share many features, yet have distinctive aspects, including fundamental differences in the signaling pathways and cell cycle controls that support self-renewal. Here, we explore the molecular basis of human ESC self-renewal using Bayesian network machine learning to integrate cell-type-specific, high-throughput data for gene function discovery. We integrated high-throughput ESC data from 83 human studies (~1.8 million data points collected under 1,100 conditions) and 62 mouse studies (~2.4 million data points collected under 1,085 conditions) into separate human and mouse predictive networks focused on ESC self-renewal to analyze shared and distinct functional relationships among protein-coding gene orthologs. Computational evaluations show that these networks are highly accurate, literature validation confirms their biological relevance, and reverse transcriptase polymerase chain reaction (RT-PCR) validation supports our predictions. Our results reflect the importance of key regulatory genes known to be strongly associated with self-renewal and pluripotency in both species (e.g., POU5F1, SOX2, and NANOG), identify metabolic differences between species (e.g., threonine metabolism), clarify differences between human and mouse ESC developmental signaling pathways (e.g., leukemia inhibitory factor (LIF)-activated JAK/STAT in mouse; NODAL/ACTIVIN-A-activated fibroblast growth factor in human), and reveal many novel genes and pathways predicted to be functionally associated with self-renewal in each species. These interactive networks are available online at www.StemSight.org for stem cell researchers to develop new hypotheses, discover potential mechanisms involving sparsely annotated genes, and prioritize genes of interest for experimental validation

  4. Chemical reaction vector embeddings: towards predicting drug metabolism in the human gut microbiome.

    Science.gov (United States)

    Mallory, Emily K; Acharya, Ambika; Rensi, Stefano E; Turnbaugh, Peter J; Bright, Roselie A; Altman, Russ B

    2018-01-01

    Bacteria in the human gut have the ability to activate, inactivate, and reactivate drugs with both intended and unintended effects. For example, the drug digoxin is reduced to the inactive metabolite dihydrodigoxin by the gut Actinobacterium E. lenta, and patients colonized with high levels of drug metabolizing strains may have limited response to the drug. Understanding the complete space of drugs that are metabolized by the human gut microbiome is critical for predicting bacteria-drug relationships and their effects on individual patient response. Discovery and validation of drug metabolism via bacterial enzymes has yielded >50 drugs after nearly a century of experimental research. However, there are limited computational tools for screening drugs for potential metabolism by the gut microbiome. We developed a pipeline for comparing and characterizing chemical transformations using continuous vector representations of molecular structure learned using unsupervised representation learning. We applied this pipeline to chemical reaction data from MetaCyc to characterize the utility of vector representations for chemical reaction transformations. After clustering molecular and reaction vectors, we performed enrichment analyses and queries to characterize the space. We detected enriched enzyme names, Gene Ontology terms, and Enzyme Consortium (EC) classes within reaction clusters. In addition, we queried reactions against drug-metabolite transformations known to be metabolized by the human gut microbiome. The top results for these known drug transformations contained similar substructure modifications to the original drug pair. This work enables high throughput screening of drugs and their resulting metabolites against chemical reactions common to gut bacteria.

  5. Therapeutic Targets of Triglyceride Metabolism as Informed by Human Genetics.

    Science.gov (United States)

    Bauer, Robert C; Khetarpal, Sumeet A; Hand, Nicholas J; Rader, Daniel J

    2016-04-01

    Human genetics has contributed to the development of multiple drugs to treat hyperlipidemia and coronary artery disease (CAD), most recently including antibodies targeting PCSK9 to reduce LDL cholesterol. Despite these successes, a large burden of CAD remains. Genetic and epidemiological studies have suggested that circulating triglyceride (TG)-rich lipoproteins (TRLs) are a causal risk factor for CAD, presenting an opportunity for novel therapeutic strategies. We discuss recent unbiased human genetics testing, including genome-wide association studies (GWAS) and whole-genome or -exome sequencing, that have identified the lipoprotein lipase (LPL) and hepatic lipogenesis pathways as important mechanisms in the regulation of circulating TRLs. Further strengthening the causal relationship between TRLs and CAD, findings such as these may provide novel targets for much-needed potential therapeutic interventions. Copyright © 2016. Published by Elsevier Ltd.

  6. Fuzzy Modelling for Human Dynamics Based on Online Social Networks.

    Science.gov (United States)

    Cuenca-Jara, Jesus; Terroso-Saenz, Fernando; Valdes-Vela, Mercedes; Skarmeta, Antonio F

    2017-08-24

    Human mobility mining has attracted a lot of attention in the research community due to its multiple implications in the provisioning of innovative services for large metropolises. In this scope, Online Social Networks (OSN) have arisen as a promising source of location data to come up with new mobility models. However, the human nature of this data makes it rather noisy and inaccurate. In order to deal with such limitations, the present work introduces a framework for human mobility mining based on fuzzy logic. Firstly, a fuzzy clustering algorithm extracts the most active OSN areas at different time periods. Next, such clusters are the building blocks to compose mobility patterns. Furthermore, a location prediction service based on a fuzzy rule classifier has been developed on top of the framework. Finally, both the framework and the predictor has been tested with a Twitter and Flickr dataset in two large cities.

  7. Caffeine and human DNA metabolism: the magic and the mystery

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, William K.; Heffernan, Timothy P.; Beaulieu, Lea M.; Doherty, Sharon; Frank, Alexandra R.; Zhou Yingchun; Bryant, Miriam F.; Zhou Tong; Luche, Douglas D.; Nikolaishvili-Feinberg, Nana; Simpson, Dennis A.; Cordeiro-Stone, Marila

    2003-11-27

    The ability of caffeine to reverse cell cycle checkpoint function and enhance genotoxicity after DNA damage was examined in telomerase-expressing human fibroblasts. Caffeine reversed the ATM-dependent S and G2 checkpoint responses to DNA damage induced by ionizing radiation (IR), as well as the ATR- and Chk1-dependent S checkpoint response to ultraviolet radiation (UVC). Remarkably, under conditions in which IR-induced G2 delay was reversed by caffeine, IR-induced G1 arrest was not. Incubation in caffeine did not increase the percentage of cells entering the S phase 6-8 h after irradiation; ATM-dependent phosphorylation of p53 and transactivation of p21{sup Cip1/Waf1} post-IR were resistant to caffeine. Caffeine alone induced a concentration- and time-dependent inhibition of DNA synthesis. It inhibited the entry of human fibroblasts into S phase by 70-80% regardless of the presence or absence of wildtype ATM or p53. Caffeine also enhanced the inhibition of cell proliferation induced by UVC in XP variant fibroblasts. This effect was reversed by expression of DNA polymerase {eta}, indicating that translesion synthesis of UVC-induced pyrimidine dimers by DNA pol {eta} protects human fibroblasts against UVC genotoxic effects even when other DNA repair functions are compromised by caffeine.

  8. Caffeine and human DNA metabolism: the magic and the mystery

    International Nuclear Information System (INIS)

    Kaufmann, William K.; Heffernan, Timothy P.; Beaulieu, Lea M.; Doherty, Sharon; Frank, Alexandra R.; Zhou Yingchun; Bryant, Miriam F.; Zhou Tong; Luche, Douglas D.; Nikolaishvili-Feinberg, Nana; Simpson, Dennis A.; Cordeiro-Stone, Marila

    2003-01-01

    The ability of caffeine to reverse cell cycle checkpoint function and enhance genotoxicity after DNA damage was examined in telomerase-expressing human fibroblasts. Caffeine reversed the ATM-dependent S and G2 checkpoint responses to DNA damage induced by ionizing radiation (IR), as well as the ATR- and Chk1-dependent S checkpoint response to ultraviolet radiation (UVC). Remarkably, under conditions in which IR-induced G2 delay was reversed by caffeine, IR-induced G1 arrest was not. Incubation in caffeine did not increase the percentage of cells entering the S phase 6-8 h after irradiation; ATM-dependent phosphorylation of p53 and transactivation of p21 Cip1/Waf1 post-IR were resistant to caffeine. Caffeine alone induced a concentration- and time-dependent inhibition of DNA synthesis. It inhibited the entry of human fibroblasts into S phase by 70-80% regardless of the presence or absence of wildtype ATM or p53. Caffeine also enhanced the inhibition of cell proliferation induced by UVC in XP variant fibroblasts. This effect was reversed by expression of DNA polymerase η, indicating that translesion synthesis of UVC-induced pyrimidine dimers by DNA pol η protects human fibroblasts against UVC genotoxic effects even when other DNA repair functions are compromised by caffeine

  9. Human cancer protein-protein interaction network: a structural perspective.

    Directory of Open Access Journals (Sweden)

    Gozde Kar

    2009-12-01

    Full Text Available Protein-protein interaction networks provide a global picture of cellular function and biological processes. Some proteins act as hub proteins, highly connected to others, whereas some others have few interactions. The dysfunction of some interactions causes many diseases, including cancer. Proteins interact through their interfaces. Therefore, studying the interface properties of cancer-related proteins will help explain their role in the interaction networks. Similar or overlapping binding sites should be used repeatedly in single interface hub proteins, making them promiscuous. Alternatively, multi-interface hub proteins make use of several distinct binding sites to bind to different partners. We propose a methodology to integrate protein interfaces into cancer interaction networks (ciSPIN, cancer structural protein interface network. The interactions in the human protein interaction network are replaced by interfaces, coming from either known or predicted complexes. We provide a detailed analysis of cancer related human protein-protein interfaces and the topological properties of the cancer network. The results reveal that cancer-related proteins have smaller, more planar, more charged and less hydrophobic binding sites than non-cancer proteins, which may indicate low affinity and high specificity of the cancer-related interactions. We also classified the genes in ciSPIN according to phenotypes. Within phenotypes, for breast cancer, colorectal cancer and leukemia, interface properties were found to be discriminating from non-cancer interfaces with an accuracy of 71%, 67%, 61%, respectively. In addition, cancer-related proteins tend to interact with their partners through distinct interfaces, corresponding mostly to multi-interface hubs, which comprise 56% of cancer-related proteins, and constituting the nodes with higher essentiality in the network (76%. We illustrate the interface related affinity properties of two cancer-related hub

  10. Metabolic profiling detects early effects of environmental and lifestyle exposure to cadmium in a human population

    Directory of Open Access Journals (Sweden)

    Ellis James K

    2012-06-01

    Full Text Available Abstract Background The 'exposome' represents the accumulation of all environmental exposures across a lifetime. Top-down strategies are required to assess something this comprehensive, and could transform our understanding of how environmental factors affect human health. Metabolic profiling (metabonomics/metabolomics defines an individual's metabolic phenotype, which is influenced by genotype, diet, lifestyle, health and xenobiotic exposure, and could also reveal intermediate biomarkers for disease risk that reflect adaptive response to exposure. We investigated changes in metabolism in volunteers living near a point source of environmental pollution: a closed zinc smelter with associated elevated levels of environmental cadmium. Methods High-resolution 1H NMR spectroscopy (metabonomics was used to acquire urinary metabolic profiles from 178 human volunteers. The spectral data were subjected to multivariate and univariate analysis to identify metabolites that were correlated with lifestyle or biological factors. Urinary levels of 8-oxo-deoxyguanosine were also measured, using mass spectrometry, as a marker of systemic oxidative stress. Results Six urinary metabolites, either associated with mitochondrial metabolism (citrate, 3-hydroxyisovalerate, 4-deoxy-erythronic acid or one-carbon metabolism (dimethylglycine, creatinine, creatine, were associated with cadmium exposure. In particular, citrate levels retained a significant correlation to urinary cadmium and smoking status after controlling for age and sex. Oxidative stress (as determined by urinary 8-oxo-deoxyguanosine levels was elevated in individuals with high cadmium exposure, supporting the hypothesis that heavy metal accumulation was causing mitochondrial dysfunction. Conclusions This study shows evidence that an NMR-based metabolic profiling study in an uncontrolled human population is capable of identifying intermediate biomarkers of response to toxicants at true environmental

  11. Deep Recurrent Neural Networks for Human Activity Recognition

    Directory of Open Access Journals (Sweden)

    Abdulmajid Murad

    2017-11-01

    Full Text Available Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM and k-nearest neighbors (KNN. Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs and CNNs.

  12. Deep Recurrent Neural Networks for Human Activity Recognition.

    Science.gov (United States)

    Murad, Abdulmajid; Pyun, Jae-Young

    2017-11-06

    Adopting deep learning methods for human activity recognition has been effective in extracting discriminative features from raw input sequences acquired from body-worn sensors. Although human movements are encoded in a sequence of successive samples in time, typical machine learning methods perform recognition tasks without exploiting the temporal correlations between input data samples. Convolutional neural networks (CNNs) address this issue by using convolutions across a one-dimensional temporal sequence to capture dependencies among input data. However, the size of convolutional kernels restricts the captured range of dependencies between data samples. As a result, typical models are unadaptable to a wide range of activity-recognition configurations and require fixed-length input windows. In this paper, we propose the use of deep recurrent neural networks (DRNNs) for building recognition models that are capable of capturing long-range dependencies in variable-length input sequences. We present unidirectional, bidirectional, and cascaded architectures based on long short-term memory (LSTM) DRNNs and evaluate their effectiveness on miscellaneous benchmark datasets. Experimental results show that our proposed models outperform methods employing conventional machine learning, such as support vector machine (SVM) and k-nearest neighbors (KNN). Additionally, the proposed models yield better performance than other deep learning techniques, such as deep believe networks (DBNs) and CNNs.

  13. Mobile human network management and recommendation by probabilistic social mining.

    Science.gov (United States)

    Min, Jun-Ki; Cho, Sung-Bae

    2011-06-01

    Recently, inferring or sharing of mobile contexts has been actively investigated as cell phones have become more than a communication device. However, most of them focused on utilizing the contexts on social network services, while the means in mining or managing the human network itself were barely considered. In this paper, the SmartPhonebook, which mines users' social connections to manage their relationships by reasoning social and personal contexts, is presented. It works like an artificial assistant which recommends the candidate callees whom the users probably would like to contact in a certain situation. Moreover, it visualizes their social contexts like closeness and relationship with others in order to let the users know their social situations. The proposed method infers the social contexts based on the contact patterns, while it extracts the personal contexts such as the users' emotional states and behaviors from the mobile logs. Here, Bayesian networks are exploited to handle the uncertainties in the mobile environment. The proposed system has been implemented with the MS Windows Mobile 2003 SE Platform on Samsung SPH-M4650 smartphone and has been tested on real-world data. The experimental results showed that the system provides an efficient and informative way for mobile social networking.

  14. Cutaneous in vivo metabolism of topical lidocaine formulation in human skin

    DEFF Research Database (Denmark)

    Rolsted, K; Benfeldt, E; Kissmeyer, A-M

    2009-01-01

    Little is known about the metabolising capacity of the human skin in relation to topically applied drugs and formulations. We chose lidocaine as a model compound since the metabolic pathways are well known from studies concerning hepatic metabolism following systemic drug administration. However......, the enzymes involved are also expressed in the skin. Hence, the aim of the current study was to investigate the extent of the cutaneous in vivo metabolism of topically applied lidocaine in human volunteers. A dose of 5 mg/cm(2) of Xylocaine(R) (5% lidocaine) ointment was applied onto the buttock skin...... of the volunteers. After 2 h, residual formulation was removed, and two 4-mm punch biopsies were taken from each volunteer. The quantity of lidocaine extracted from the skin samples (epidermis + dermis) was 109 +/- 43 ng/mm(2) skin. One metabolite (monoethylglycine xylidide, MEGX) was detected in skin from 7...

  15. Colonic transit time is related to bacterial metabolism and mucosal turnover in the human gut

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Hansen, Lea Benedicte Skov; Bahl, Martin Iain

    Little is known about how colonic transit time relates to human colonic metabolism, and its importance for host health, although stool consistency, a proxy for colonic transit time, has recently been negatively associated with gut microbial richness. To address the relationships between colonic t...... imply a healthy gut microbial ecosystem and points at colonic transit time as a highly important factor to consider in microbiome and metabolomics studies.......Little is known about how colonic transit time relates to human colonic metabolism, and its importance for host health, although stool consistency, a proxy for colonic transit time, has recently been negatively associated with gut microbial richness. To address the relationships between colonic...... transit time and the gut microbial composition and metabolism, we assessed the colonic transit time of 98 subjects using radiopaque markers, and profiled their gut microbiota by16S rRNA gene sequencing and their urine metabolome by ultra performance liquid chromatography mass spectrometry. Based...

  16. Physical activity is associated with retained muscle metabolism in human myotubes challenged with palmitate

    DEFF Research Database (Denmark)

    Green, C J; Bunprajun, T; Pedersen, B K

    2013-01-01

    in satellite cells challenged with palmitate. Although the benefits of physical activity on whole body physiology have been well investigated, this paper presents novel findings that both diet and exercise impact satellite cells directly. Given the fact that satellite cells are important for muscle maintenance......  The aim of this study was to investigate whether physical activity is associated with preserved muscle metabolism in human myotubes challenged with saturated fatty acids. Human muscle satellite cells were isolated from sedentary or active individuals and differentiated into myocytes in culture...... and correlated positively to JNK phosphorylation. In conclusion, muscle satellite cells retain metabolic differences associated with physical activity. Physical activity partially protects myocytes from fatty acid-induced insulin resistance and inactivity is associated with dysregulation of metabolism...

  17. Insights on the evolution of metabolic networks of unicellular translationally biased organisms from transcriptomic data and sequence analysis.

    Science.gov (United States)

    Carbone, Alessandra; Madden, Richard

    2005-10-01

    Codon bias is related to metabolic functions in translationally biased organisms, and two facts are argued about. First, genes with high codon bias describe in meaningful ways the metabolic characteristics of the organism; important metabolic pathways corresponding to crucial characteristics of the lifestyle of an organism, such as photosynthesis, nitrification, anaerobic versus aerobic respiration, sulfate reduction, methanogenesis, and others, happen to involve especially biased genes. Second, gene transcriptional levels of sets of experiments representing a significant variation of biological conditions strikingly confirm, in the case of Saccharomyces cerevisiae, that metabolic preferences are detectable by purely statistical analysis: the high metabolic activity of yeast during fermentation is encoded in the high bias of enzymes involved in the associated pathways, suggesting that this genome was affected by a strong evolutionary pressure that favored a predominantly fermentative metabolism of yeast in the wild. The ensemble of metabolic pathways involving enzymes with high codon bias is rather well defined and remains consistent across many species, even those that have not been considered as translationally biased, such as Helicobacter pylori, for instance, reveal some weak form of translational bias for this genome. We provide numerical evidence, supported by experimental data, of these facts and conclude that the metabolic networks of translationally biased genomes, observable today as projections of eons of evolutionary pressure, can be analyzed numerically and predictions of the role of specific pathways during evolution can be derived. The new concepts of Comparative Pathway Index, used to compare organisms with respect to their metabolic networks, and Evolutionary Pathway Index, used to detect evolutionarily meaningful bias in the genetic code from transcriptional data, are introduced.

  18. Drawing Inspiration from Human Brain Networks: Construction of Interconnected Virtual Networks.

    Science.gov (United States)

    Murakami, Masaya; Kominami, Daichi; Leibnitz, Kenji; Murata, Masayuki

    2018-04-08

    Virtualization of wireless sensor networks (WSN) is widely considered as a foundational block of edge/fog computing, which is a key technology that can help realize next-generation Internet of things (IoT) networks. In such scenarios, multiple IoT devices and service modules will be virtually deployed and interconnected over the Internet. Moreover, application services are expected to be more sophisticated and complex, thereby increasing the number of modifications required for the construction of network topologies. Therefore, it is imperative to establish a method for constructing a virtualized WSN (VWSN) topology that achieves low latency on information transmission and high resilience against network failures, while keeping the topological construction cost low. In this study, we draw inspiration from inter-modular connectivity in human brain networks, which achieves high performance when dealing with large-scale networks composed of a large number of modules (i.e., regions) and nodes (i.e., neurons). We propose a method for assigning inter-modular links based on a connectivity model observed in the cerebral cortex of the brain, known as the exponential distance rule (EDR) model. We then choose endpoint nodes of these links by controlling inter-modular assortativity, which characterizes the topological connectivity of brain networks. We test our proposed methods using simulation experiments. The results show that the proposed method based on the EDR model can construct a VWSN topology with an optimal combination of communication efficiency, robustness, and construction cost. Regarding the selection of endpoint nodes for the inter-modular links, the results also show that high assortativity enhances the robustness and communication efficiency because of the existence of inter-modular links of two high-degree nodes.

  19. Drawing Inspiration from Human Brain Networks: Construction of Interconnected Virtual Networks

    Directory of Open Access Journals (Sweden)

    Masaya Murakami

    2018-04-01

    Full Text Available Virtualization of wireless sensor networks (WSN is widely considered as a foundational block of edge/fog computing, which is a key technology that can help realize next-generation Internet of things (IoT networks. In such scenarios, multiple IoT devices and service modules will be virtually deployed and interconnected over the Internet. Moreover, application services are expected to be more sophisticated and complex, thereby increasing the number of modifications required for the construction of network topologies. Therefore, it is imperative to establish a method for constructing a virtualized WSN (VWSN topology that achieves low latency on information transmission and high resilience against network failures, while keeping the topological construction cost low. In this study, we draw inspiration from inter-modular connectivity in human brain networks, which achieves high performance when dealing with large-scale networks composed of a large number of modules (i.e., regions and nodes (i.e., neurons. We propose a method for assigning inter-modular links based on a connectivity model observed in the cerebral cortex of the brain, known as the exponential distance rule (EDR model. We then choose endpoint nodes of these links by controlling inter-modular assortativity, which characterizes the topological connectivity of brain networks. We test our proposed methods using simulation experiments. The results show that the proposed method based on the EDR model can construct a VWSN topology with an optimal combination of communication efficiency, robustness, and construction cost. Regarding the selection of endpoint nodes for the inter-modular links, the results also show that high assortativity enhances the robustness and communication efficiency because of the existence of inter-modular links of two high-degree nodes.

  20. Cytochrome P450 isoform selectivity in human hepatic theobromine metabolism

    Science.gov (United States)

    Gates, Simon; Miners, John O

    1999-01-01

    Aims The plasma clearance of theobromine (TB; 3,7-dimethylxanthine) is known to be induced in cigarette smokers. To determine whether TB may serve as a model substrate for cytochrome P450 (CYP) 1A2, or possibly other isoforms, studies were undertaken to identify the individual human liver microsomal CYP isoforms responsible for the conversion of TB to its primary metabolites. Methods The kinetics of formation of the primary TB metabolites 3-methylxanthine (3-MX), 7-methylxanthine (7-MX) and 3,7-dimethyluric acid (3,7-DMU) by human liver microsomes were characterized using a specific hplc procedure. Effects of CYP isoform-selective xenobiotic inhibitor/substrate probes on each pathway were determined and confirmatory studies with recombinant enzymes were performed to define the contribution of individual isoforms to 3-MX, 7-MX and 3,7-DMU formation. Results The CYP1A2 inhibitor furafylline variably inhibited (0–65%) 7-MX formation, but had no effect on other pathways. Diethyldithiocarbamate and 4-nitrophenol, probes for CYP2E1, inhibited the formation of 3-MX, 7-MX and 3,7-DMU by ≈55–60%, 35–55% and 85%, respectively. Consistent with the microsomal studies, recombinant CYP1A2 and CYP2E1 exhibited similar apparent Km values for 7-MX formation and CYP2E1 was further shown to have the capacity to convert TB to both 3-MX and 3,7-DMU. Conclusions Given the contribution of multiple isoforms to 3-MX and 7-MX formation and the negligible formation of 3,7-DMU in vivo, TB is of little value as a CYP isoform-selective substrate in humans. PMID:10215755

  1. Understanding arsenic metabolism through spectroscopic determination of arsenic in human urine

    OpenAIRE

    Brima, Eid I.; Jenkins, Richard O.; Haris, Parvez I.

    2006-01-01

    In this review we discuss a range of spectroscopic techniques that are currently used for analysis of arsenic in human urine for understanding arsenic metabolism and toxicity, especially in relation to genetics/ethnicity, ingestion studies and exposure to arsenic through drinking water and diet. Spectroscopic techniques used for analysis of arsenic in human urine include inductively coupled plasma mass spectrometry (ICP-MS), hydride generation atomic absorption spectrometry (HG-AAS), hydride ...

  2. Glycogen Storage Disease Type Ia in Canines: A Model for Human Metabolic and Genetic Liver Disease

    OpenAIRE

    Specht, Andrew; Fiske, Laurie; Erger, Kirsten; Cossette, Travis; Verstegen, John; Campbell-Thompson, Martha; Struck, Maggie B.; Lee, Young Mok; Chou, Janice Y.; Byrne, Barry J.; Correia, Catherine E.; Mah, Cathryn S.; Weinstein, David A.; Conlon, Thomas J.

    2011-01-01

    A canine model of Glycogen storage disease type Ia (GSDIa) is described. Affected dogs are homozygous for a previously described M121I mutation resulting in a deficiency of glucose-6-phosphatase-α. Metabolic, clinicopathologic, pathologic, and clinical manifestations of GSDIa observed in this model are described and compared to those observed in humans. The canine model shows more complete recapitulation of the clinical manifestations seen in humans including “lactic acidosis”, larger size,...

  3. Genome-Wide RNAi Ionomics Screen Reveals New Genes and Regulation of Human Trace Element Metabolism

    OpenAIRE

    Malinouski, Mikalai; Hasan, Nesrin M.; Zhang, Yan; Seravalli, Javier; Lin, Jie; Avanesov, Andrei; Lutsenko, Svetlana; Gladyshev, Vadim N.

    2017-01-01

    Trace elements are essential for human metabolism and dysregulation of their homeostasis is associated with numerous disorders. Here we characterize mechanisms that regulate trace elements in human cells by designing and performing a genome-wide high-throughput siRNA/ionomics screen, and examining top hits in cellular and biochemical assays. The screen reveals high stability of the ionomes, especially the zinc ionome, and yields known regulators and novel candidates. We further uncover fundam...

  4. Metabolic mapping of functional activity in human subjects with the [18F]fluorodeoxyglucose technique

    International Nuclear Information System (INIS)

    Greenberg, J.H.; Reivich, M.; Alavi, A.

    1981-01-01

    The 2-[ 18 F]fluoro-2-deoxy-D-glucose technique was used to measure regional cerebral glucose utilization by human subjects during functional activation. Normal male volunteers subjected to one or more sensory stimuli exhibited focal increases in glucose metabolism in response to the stimulus. These results demonstrate that the technique is capable of providing functional maps in vivo related to both body region and submodality of sensory information in the human brain

  5. A Metabolic Biofuel Cell: Conversion of Human Leukocyte Metabolic Activity to Electrical Currents

    Directory of Open Access Journals (Sweden)

    Cui X Tracy

    2011-05-01

    Full Text Available Abstract An investigation of the electrochemical activity of human white blood cells (WBC for biofuel cell (BFC applications is described. WBCs isolated from whole human blood were suspended in PBS and introduced into the anode compartment of a proton exchange membrane (PEM fuel cell. The cathode compartment contained a 50 mM potassium ferricyanide solution. Average current densities between 0.9 and 1.6 μA cm-2 and open circuit potentials (Voc between 83 and 102 mV were obtained, which were both higher than control values. Cyclic voltammetry was used to investigate the electrochemical activity of the activated WBCs in an attempt to elucidate the mechanism of electron transfer between the cells and electrode. Voltammograms were obtained for the WBCs, including peripheral blood mononuclear cells (PBMCs - a lymphocyte-monocyte mixture isolated on a Ficoll gradient, a B lymphoblastoid cell line (BLCL, and two leukemia cell lines, namely K562 and Jurkat. An oxidation peak at about 363 mV vs. SCE for the PMA (phorbol ester activated primary cells, with a notable absence of a reduction peak was observed. Oxidation peaks were not observed for the BLCL, K562 or Jurkat cell lines. HPLC confirmed the release of serotonin (5-HT from the PMA activated primary cells. It is believed that serotonin, among other biochemical species released by the activated cells, contributes to the observed BFC currents.

  6. Lack of evidence for metabolism of p-phenylenediamine by human hepatic cytochrome P450 enzymes