WorldWideScience

Sample records for human melanoma cell

  1. PPARalpha/gamma expression and activity in mouse and human melanocytes and melanoma cells.

    Science.gov (United States)

    Eastham, Linda L; Mills, Caroline N; Niles, Richard M

    2008-06-01

    We examined the expression of PPARs and the effects of PPARalpha and PPARgamma agonists on growth of mouse and human melanocytes and melanoma cells. PPARalpha,beta, and PPARgamma mRNA qualitative expression in melan-a mouse melanocytes, B16 mouse melanoma, human melanocytes, and A375 and SK-mel28 human melanoma cells was determined by RT-PCR, while quantitative PPARalpha mRNA levels were determined by QuantiGene assay. PPARalpha and PPARgamma protein was assessed by Western blotting. The effect of natural and synthetic PPAR ligands on cell growth was determined by either hemocytometer counting or crystal violet assay. PPAR transcriptional activity was determined by a PPRE-reporter gene assay, while knockdown of PPARalpha expression was achieved by transient transfection of siRNA. Both mouse and human melanoma cells produced more PPARalpha and PPARgamma protein compared to melanocytes. PPARalpha mRNA levels were elevated in human melanoma cells, but not in mouse melanoma cells relative to melanocytes. Silencing of PPARalpha in human melanoma cells did not alter cell proliferation or morphology. PPARgamma-selective agonists inhibited the growth of both mouse and human melanoma cells, while PPARalpha-selective agonists had limited effects. Increased expression of PPARalpha in melanoma relative to melanocytes may be a common occurrence, however its biologic significance remains to be determined. PPARgamma agonists may be useful for arresting the growth of some melanomas.

  2. SOX2 regulates self-renewal and tumorigenicity of human melanoma-initiating cells.

    Science.gov (United States)

    Santini, R; Pietrobono, S; Pandolfi, S; Montagnani, V; D'Amico, M; Penachioni, J Y; Vinci, M C; Borgognoni, L; Stecca, B

    2014-09-18

    Melanoma is one of the most aggressive types of human cancer, characterized by enhanced heterogeneity and resistance to conventional therapy at advanced stages. We and others have previously shown that HEDGEHOG-GLI (HH-GLI) signaling is required for melanoma growth and for survival and expansion of melanoma-initiating cells (MICs). Recent reports indicate that HH-GLI signaling regulates a set of genes typically expressed in embryonic stem cells, including SOX2 (sex-determining region Y (SRY)-Box2). Here we address the function of SOX2 in human melanomas and MICs and its interaction with HH-GLI signaling. We find that SOX2 is highly expressed in melanoma stem cells. Knockdown of SOX2 sharply decreases self-renewal in melanoma spheres and in putative melanoma stem cells with high aldehyde dehydrogenase activity (ALDH(high)). Conversely, ectopic expression of SOX2 in melanoma cells enhances their self-renewal in vitro. SOX2 silencing also inhibits cell growth and induces apoptosis in melanoma cells. In addition, depletion of SOX2 progressively abrogates tumor growth and leads to a significant decrease in tumor-initiating capability of ALDH(high) MICs upon xenotransplantation, suggesting that SOX2 is required for tumor initiation and for continuous tumor growth. We show that SOX2 is regulated by HH signaling and that the transcription factors GLI1 and GLI2, the downstream effectors of HH-GLI signaling, bind to the proximal promoter region of SOX2 in primary melanoma cells. In functional studies, we find that SOX2 function is required for HH-induced melanoma cell growth and MIC self-renewal in vitro. Thus SOX2 is a critical factor for self-renewal and tumorigenicity of MICs and an important mediator of HH-GLI signaling in melanoma. These findings could provide the basis for novel therapeutic strategies based on the inhibition of SOX2 for the treatment of a subset of human melanomas.

  3. Modulation of SOCS protein expression influences the interferon responsiveness of human melanoma cells

    International Nuclear Information System (INIS)

    Lesinski, Gregory B; Zimmerer, Jason M; Kreiner, Melanie; Trefry, John; Bill, Matthew A; Young, Gregory S; Becknell, Brian; Carson, William E III

    2010-01-01

    Endogenously produced interferons can regulate the growth of melanoma cells and are administered exogenously as therapeutic agents to patients with advanced cancer. We investigated the role of negative regulators of interferon signaling known as suppressors of cytokine signaling (SOCS) in mediating interferon-resistance in human melanoma cells. Basal and interferon-alpha (IFN-α) or interferon-gamma (IFN-γ)-induced expression of SOCS1 and SOCS3 proteins was evaluated by immunoblot analysis in a panel of n = 10 metastatic human melanoma cell lines, in human embryonic melanocytes (HEM), and radial or vertical growth phase melanoma cells. Over-expression of SOCS1 and SOCS3 proteins in melanoma cells was achieved using the PINCO retroviral vector, while siRNA were used to inhibit SOCS1 and SOCS3 expression. Tyr 701 -phosphorylated STAT1 (P-STAT1) was measured by intracellular flow cytometry and IFN-stimulated gene expression was measured by Real Time PCR. SOCS1 and SOCS3 proteins were expressed at basal levels in melanocytes and in all melanoma cell lines examined. Expression of the SOCS1 and SOCS3 proteins was also enhanced following stimulation of a subset of cell lines with IFN-α or IFN-γ. Over-expression of SOCS proteins in melanoma cell lines led to significant inhibition of Tyr 701 -phosphorylated STAT1 (P-STAT1) and gene expression following stimulation with IFN-α (IFIT2, OAS-1, ISG-15) or IFN-γ (IRF1). Conversely, siRNA inhibition of SOCS1 and SOCS3 expression in melanoma cells enhanced their responsiveness to interferon stimulation. These data demonstrate that SOCS proteins are expressed in human melanoma cell lines and their modulation can influence the responsiveness of melanoma cells to IFN-α and IFN-γ

  4. Melanoma cells treated with GGTI and IFN-gamma allow murine vaccination and enhance cytotoxic response against human melanoma cells.

    Directory of Open Access Journals (Sweden)

    Guillaume Sarrabayrouse

    Full Text Available BACKGROUND: Suboptimal activation of T lymphocytes by melanoma cells is often due to the defective expression of class I major histocompatibility antigens (MHC-I and costimulatory molecules. We have previously shown that geranylgeranyl transferase inhibition (done with GGTI-298 stimulates anti-melanoma immune response through MHC-I and costimulatory molecule expression in the B16F10 murine model [1]. METHODOLOGY/PRINCIPAL FINDINGS: In this study, it is shown that vaccination with mIFN-gand GGTI-298 pretreated B16F10 cells induces a protection against untreated tumor growth and pulmonary metastases implantation. Furthermore, using a human melanoma model (LB1319-MEL, we demonstrated that in vitro treatment with hIFN-gamma and GGTI-298 led to the up regulation of MHC-I and a costimulatory molecule CD86 and down regulation of an inhibitory molecule PD-1L. Co-culture experiments with peripheral blood mononuclear cells (PBMC revealed that modifications induced by hIFN-gamma and GGTI-298 on the selected melanoma cells, enables the stimulation of lymphocytes from HLA compatible healthy donors. Indeed, as compared with untreated melanoma cells, pretreatment with hIFN-gamma and GGTI-298 together rendered the melanoma cells more efficient at inducing the: i activation of CD8 T lymphocytes (CD8+/CD69+; ii proliferation of tumor-specific CD8 T cells (MelanA-MART1/TCR+; iii secretion of hIFN-gamma; and iv anti-melanoma specific cytotoxic cells. CONCLUSIONS/SIGNIFICANCE: These data indicate that pharmacological treatment of melanoma cell lines with IFN-gamma and GGTI-298 stimulates their immunogenicity and could be a novel approach to produce tumor cells suitable for vaccination and for stimulation of anti-melanoma effector cells.

  5. Hedgehog-GLI signaling drives self-renewal and tumorigenicity of human melanoma-initiating cells.

    Science.gov (United States)

    Santini, Roberta; Vinci, Maria C; Pandolfi, Silvia; Penachioni, Junia Y; Montagnani, Valentina; Olivito, Biagio; Gattai, Riccardo; Pimpinelli, Nicola; Gerlini, Gianni; Borgognoni, Lorenzo; Stecca, Barbara

    2012-09-01

    The question of whether cancer stem/tumor-initiating cells (CSC/TIC) exist in human melanomas has arisen in the last few years. Here, we have used nonadherent spheres and the aldehyde dehydrogenase (ALDH) enzymatic activity to enrich for CSC/TIC in a collection of human melanomas obtained from a broad spectrum of sites and stages. We find that melanomaspheres display extensive in vitro self-renewal ability and sustain tumor growth in vivo, generating human melanoma xenografts that recapitulate the phenotypic composition of the parental tumor. Melanomaspheres express high levels of Hedgehog (HH) pathway components and of embryonic pluripotent stem cell factors SOX2, NANOG, OCT4, and KLF4. We show that human melanomas contain a subset of cells expressing high ALDH activity (ALDH(high)), which is endowed with higher self-renewal and tumorigenic abilities than the ALDH(low) population. A good correlation between the number of ALDH(high) cells and sphere formation efficiency was observed. Notably, both pharmacological inhibition of HH signaling by the SMOOTHENED (SMO) antagonist cyclopamine and GLI antagonist GANT61 and stable expression of shRNA targeting either SMO or GLI1 result in a significant decrease in melanoma stem cell self-renewal in vitro and a reduction in the number of ALDH(high) melanoma stem cells. Finally, we show that interference with the HH-GLI pathway through lentiviral-mediated silencing of SMO and GLI1 drastically diminishes tumor initiation of ALDH(high) melanoma stem cells. In conclusion, our data indicate an essential role of the HH-GLI1 signaling in controlling self-renewal and tumor initiation of melanoma CSC/TIC. Targeting HH-GLI1 is thus predicted to reduce the melanoma stem cell compartment. Copyright © 2012 AlphaMed Press.

  6. Lansoprazole and carbonic anhydrase IX inhibitors sinergize against human melanoma cells.

    Science.gov (United States)

    Federici, Cristina; Lugini, Luana; Marino, Maria Lucia; Carta, Fabrizio; Iessi, Elisabetta; Azzarito, Tommaso; Supuran, Claudiu T; Fais, Stefano

    2016-01-01

    Proton Pump Inhibitors (PPIs) reduce tumor acidity and therefore resistance of tumors to drugs. Carbonic Anhydrase IX (CA IX) inhibitors have proven to be effective against tumors, while tumor acidity might impair their full effectiveness. To analyze the effect of PPI/CA IX inhibitors combined treatment against human melanoma cells. The combination of Lansoprazole (LAN) and CA IX inhibitors (FC9-399A and S4) has been investigated in terms of cell proliferation inhibition and cell death in human melanoma cells. The combination of these inhibitors was more effective than the single treatments in both inhibiting cell proliferation and in inducing cell death in human melanoma cells. These results represent the first successful attempt in combining two different proton exchanger inhibitors. This is the first evidence on the effectiveness of a new approach against tumors based on the combination of PPI and CA IX inhibitors, thus providing an alternative strategy against tumors.

  7. Melanotransferrin induces human melanoma SK-Mel-28 cell invasion in vivo

    International Nuclear Information System (INIS)

    Bertrand, Yanick; Demeule, Michel; Michaud-Levesque, Jonathan; Beliveau, Richard

    2007-01-01

    The expression of melanotransferrin (MTf), a membrane-bound glycoprotein highly expressed in melanomas, is correlated with tumor vascularization and progression, suggesting a proinvasive function associated with MTf in malignant tumors. To test this hypothesis, we silenced MTf in human melanoma SK-MEL-28 cells using small interfering RNA (siRNA) and examined the plasmin activity and invasiveness of MTf-silenced melanoma. In vitro, the siRNA-mediated MTf knockdown inhibited by 58% the cell surface activation of plasminogen into plasmin. In addition, decreased expression of MTf in melanoma cells reduced cell migration. In vivo, we used a nude mice invasion model in which tissue factor (TF) induces vascular [ 125 I]-fibrin deposition following injection. Using this metastasis model, the invasive potential of MTf-silenced cells into the lungs was reduced by fivefold. Altogether, these findings strongly suggest that MTf overexpression in melanoma cells contributes to tumor progession by stimulating plasmin generation as well as cell migration and invasion

  8. Molecular mechanism implicated in Pemetrexed-induced apoptosis in human melanoma cells

    Directory of Open Access Journals (Sweden)

    Buqué Aitziber

    2012-04-01

    Full Text Available Abstract Background Metastatic melanoma is a lethal skin cancer and its incidence is rising every year. It represents a challenge for oncologist, as the current treatment options are non-curative in the majority of cases; therefore, the effort to find and/or develop novel compounds is mandatory. Pemetrexed (Alimta®, MTA is a multitarget antifolate that inhibits folate-dependent enzymes: thymidylate synthase, dihydrofolate reductase and glycinamide ribonucleotide formyltransferase, required for de novo synthesis of nucleotides for DNA replication. It is currently used in the treatment of mesothelioma and non-small cell lung cancer (NSCLC, and has shown clinical activity in other tumors such as breast, colorectal, bladder, cervical, gastric and pancreatic cancer. However, its effect in human melanoma has not been studied yet. Results In the current work we studied the effect of MTA on four human melanoma cell lines A375, Hs294T, HT144 and MeWo and in two NSCLC cell lines H1299 and Calu-3. We have found that MTA induces DNA damage, S-phase cell cycle arrest, and caspase- dependent and –independent apoptosis. We show that an increment of the intracellular reactive oxygen species (ROS and p53 is required for MTA-induced cytotoxicity by utilizing N-Acetyl-L-Cysteine (NAC to blockage of ROS and p53-defective H1299 NSCLC cell line. Pretreatment of melanoma cells with NAC significantly decreased the DNA damage, p53 up-regulation and cytotoxic effect of MTA. MTA was able to induce p53 expression leading to up-regulation of p53-dependent genes Mcl-1 and PIDD, followed by a postranscriptional regulation of Mcl-1 improving apoptosis. Conclusions We found that MTA induced DNA damage and mitochondrial-mediated apoptosis in human melanoma cells in vitro and that the associated apoptosis was both caspase-dependent and –independent and p53-mediated. Our data suggest that MTA may be of therapeutic relevance for the future treatment of human malignant melanoma.

  9. Functional analysis of the human calcyclin gene promoter in a panel of human melanoma cell lines

    NARCIS (Netherlands)

    van Groningen, J. J.; Weterman, M. A.; Swart, G. W.; Bloemers, H. P.

    1995-01-01

    By comparing two subsequent human tumor stages we previously described calcyclin as a new potential melanoma associated neoplastic progression marker positively linked with metastasis. In this study the calcyclin expression levels in a representative panel of human melanoma cell lines were

  10. Sporadic naturally occurring melanoma in dogs as a preclinical model for human melanoma.

    Science.gov (United States)

    Simpson, R Mark; Bastian, Boris C; Michael, Helen T; Webster, Joshua D; Prasad, Manju L; Conway, Catherine M; Prieto, Victor M; Gary, Joy M; Goldschmidt, Michael H; Esplin, D Glen; Smedley, Rebecca C; Piris, Adriano; Meuten, Donald J; Kiupel, Matti; Lee, Chyi-Chia R; Ward, Jerrold M; Dwyer, Jennifer E; Davis, Barbara J; Anver, Miriam R; Molinolo, Alfredo A; Hoover, Shelley B; Rodriguez-Canales, Jaime; Hewitt, Stephen M

    2014-01-01

    Melanoma represents a significant malignancy in humans and dogs. Different from genetically engineered models, sporadic canine melanocytic neoplasms share several characteristics with human disease that could make dogs a more relevant preclinical model. Canine melanomas rarely arise in sun-exposed sites. Most occur in the oral cavity, with a subset having intra-epithelial malignant melanocytes mimicking the in situ component of human mucosal melanoma. The spectrum of canine melanocytic neoplasia includes benign lesions with some analogy to nevi, as well as invasive primary melanoma, and widespread metastasis. Growing evidence of distinct subtypes in humans, differing in somatic and predisposing germ-line genetic alterations, cell of origin, epidemiology, relationship to ultraviolet radiation and progression from benign to malignant tumors, may also exist in dogs. Canine and human mucosal melanomas appear to harbor BRAF, NRAS, and c-kit mutations uncommonly, compared with human cutaneous melanomas, although both species share AKT and MAPK signaling activation. We conclude that there is significant overlap in the clinical and histopathological features of canine and human mucosal melanomas. This represents opportunity to explore canine oral cavity melanoma as a preclinical model. © 2013 The Authors. Pigment Cell & Melanoma Research published by John Wiley & Sons Ltd.

  11. Microculture-based chemosensitivity testing: a feasibility study comparing freshly explanted human melanoma cells with human melanoma cell lines.

    Science.gov (United States)

    Marshall, E S; Finlay, G J; Matthews, J H; Shaw, J H; Nixon, J; Baguley, B C

    1992-03-04

    The culture of cancer cells has many applications in chemosensitivity testing and new drug development. Our goal was to adapt simple semiautomated microculture methods for testing the chemosensitivity of melanoma cells freshly recovered from patients' tumors. Cells were cultured on a substrate of agarose and exposed continuously to cytotoxic drugs, the effects of which were measured by determining the uptake of [3H]thymidine 4-7 days later. Immunocytochemical staining of cells cultured with 5-bromo-2'-deoxyuridine demonstrated that tumor cells were responsible for the measured thymidine incorporation. The effects of cytotoxic drugs were calculated as logarithmic 50% inhibitory concentrations and expressed as divergences from the mean in a log-mean graph. The inhibitory effects of amsacrine, etoposide, doxorubicin, cisplatin, mitomycin C, and fluorouracil were tested. Tumors differed widely in their sensitivity to these drugs, although sensitivity to the three topoisomerase-II-directed agents was highly correlated. Cells from two non-neoplastic hematopoietic progenitor cell lines (FT and 32D) showed chemosensitivity patterns distinct from those in the melanoma cells, indicating tissue selectivity. Two established melanoma cell lines, MM-96 and FME, were tested under the same conditions and showed sensitivity typical of at least some fresh specimens. These results support the validity of melanoma cell lines as models of freshly resected melanoma cells. If successfully applied to other tumor types, such semiautomated approaches could find wide application in routine hospital laboratories for the chemosensitivity testing of patients' tumor cells.

  12. Morphological changes in human melanoma cells following irradiation with thermal neutrons.

    Science.gov (United States)

    Barkla, D H; Allen, B J; Brown, J K; Mountford, M; Mishima, Y; Ichihashi, M

    1989-01-01

    Morphological changes in two human melanoma cell lines, MM96 and MM418, following irradiation with thermal neutrons, were studied using light and electron microscopy. The results show that the response of human malignant melanoma cells to neutron irradiation is both cell line dependent and dose dependent, and that in any given cell line, some cells are more resistant to irradiation than others, thus demonstrating heterogeneity in respect to radiosensitivity. Cells repopulating MM96 flasks after irradiation were morphologically similar to the cells of origin whereas in MM418 flasks cells differentiated into five morphologically distinct subgroups and showed increased melanization. The results also show that radiation causes distinctive morphological patterns of damage although ultrastructural changes unique to the high LET particles released from boron 10 neutron capture are yet to be identified.

  13. Morphological changes in human melanoma cells following irradiation with thermal neutrons

    International Nuclear Information System (INIS)

    Barkla, D.H.; Allen, B.J.; Brown, J.K.; Mountford, M.; Mishima, Y.; Ichihashi, M.

    1989-01-01

    Morphological changes in two human melanoma cell lines, MM96 and MM418, following irradiation with thermal neutrons, were studied using light and electron microscopy. The results show that the response of human malignant melanoma cells to neutron irradiation is both cell line dependent and dose dependent, and that in any given cell line, some cells are more resistant to irradiation than others, thus demonstrating heterogeneity in respect to radiosensitivity. Cells repopulating MM96 flasks after irradiation were morphologically similar to the cells of origin whereas in MM418 flasks cells differentiated into five morphologically distinct subgroups and showed increased melanization. The results also show that radiation causes distinctive morphological patterns of damage although ultrastructural changes unique to the high LET particles released from boron 10 neutron capture are yet to be identified

  14. The Efficacy of Dandelion Root Extract in Inducing Apoptosis in Drug-Resistant Human Melanoma Cells

    Directory of Open Access Journals (Sweden)

    S. J. Chatterjee

    2011-01-01

    Full Text Available Notoriously chemoresistant melanoma has become the most prevalent form of cancer for the 25–29 North American age demographic. Standard treatment after early detection involves surgical excision (recurrence is possible, and metastatic melanoma is refractory to immuno-, radio-, and most harmful chemotherapies. Various natural compounds have shown efficacy in killing different cancers, albeit not always specifically. In this study, we show that dandelion root extract (DRE specifically and effectively induces apoptosis in human melanoma cells without inducing toxicity in noncancerous cells. Characteristic apoptotic morphology of nuclear condensation and phosphatidylserine flipping to the outer leaflet of the plasma membrane of A375 human melanoma cells was observed within 48 hours. DRE-induced apoptosis activates caspase-8 in A375 cells early on, demonstrating employment of an extrinsic apoptotic pathway to kill A375 cells. Reactive Oxygen Species (ROS generated from DRE-treated isolated mitochondria indicates that natural compounds in DRE can also directly target mitochondria. Interestingly, the relatively resistant G361 human melanoma cell line responded to DRE when combined with the metabolism interfering antitype II diabetic drug metformin. Therefore, treatment with this common, yet potent extract of natural compounds has proven novel in specifically inducing apoptosis in chemoresistant melanoma, without toxicity to healthy cells.

  15. Effect of Genistein on vasculogenic mimicry formation by human uveal melanoma cells

    Directory of Open Access Journals (Sweden)

    Gu Haijuan

    2009-09-01

    Full Text Available Abstract Background Vasculogenic mimicry (VM was increasingly recognized as a form of aggressive melanoma acquiring blood supply. Genistein had attracted much attention as a potential anticancer agent. Therefore, we examined the effect of Genistein on VM in human uveal melanoma cells. Methods VM structure was detected by periodic acid-Schiff (PAS staining for uveal melanoma C918 cells cultured on the three-dimensional type I collagen gels after exposed to Genistein. We used reverse transcription polymerase chain reaction (RT-PCR and Western Blot analysis to examine the effect of Genistein on vascular endothelial cadherin (VE-cadherin mRNA and protein expression. The nude mice models of human uveal melanoma C918 cells were established to assess the number of VM using immunohistochemical and PAS double-staining. Results Genistein inhibited the survival of C918 cells in vitro. The ectopic model study showed that VM in tumor tissue sections were significantly reduced by Genistein in vivo. In vitro, the VM structure was found in control, 25 and 50 μM Genistein-treatment groups but not in 100 and 200 μM. RT-PCR and Western Blot showed that 100 and 200 μM concentration of Genistein could significantly decrease VE-cadherin mRNA and protein expression of C918 cells compared with control (P 0.05. Conclusion Genistein inhibits VM formation of uveal melanoma cells in vivo and in vitro. One possible underlying molecular mechanism by which Genistein could inhibit VM formation of uveal melanoma is related to down-regulation of VE-cadherin.

  16. Theranostic properties of a survivin-directed molecular beacon in human melanoma cells.

    Directory of Open Access Journals (Sweden)

    Sara Carpi

    Full Text Available Survivin is an inhibitor of apoptosis overexpressed in different types of tumors and undetectable in most terminally differentiated normal tissues. In the current study, we sought to evaluate the in vitro theranostic properties of a molecular beacon-oligodeoxynucleotide (MB that targets survivin mRNA. We used laser scanning confocal microscopy to study MB delivery in living cells and real-time PCR and western blot to assess selective survivin-targeting in human malignant melanoma cells. We further assess the pro-apoptotic effect of MB by measuring internucleosomal DNA fragmentation, dissipation of mitochondrial membrane potential (MMP and changes in nuclear morphology. Transfection of MB into A375 and 501 Mel cells generated high signal intensity from the cytoplasm, while no signal was detected in the extracellular environment and in survivin-negative cells (i.e., human melanocytes and monocytes. MB time dependently decreased survivin mRNA and protein expression in melanoma cells with the maximum effect reached at 72 h. Treatment of melanoma cells with MB induced apoptosis by significant changes in MMP, accumulation of histone-complexed DNA fragments in the cytoplasm and nuclear condensation. MB also enhanced the pro-apoptotic effect of standard chemotherapeutic drugs tested at clinically relevant concentrations. The MB tested in the current study conjugates the ability of imaging with the pharmacological silencing activity against survivin mRNA in human melanoma cells and may represent an innovative approach for cancer diagnosis and treatment.

  17. Analysis of the Antitumor Activity of Clotrimazole on A375 Human Melanoma Cells

    DEFF Research Database (Denmark)

    Adinolfi, Barbara; Carpi, Sara; Romanini, Antonella

    2015-01-01

    AIM: The current study was designed to characterize the anticancer effects of clotrimazole on human cutaneous melanoma cells. MATERIALS AND METHODS: The v-raf murine sarcoma viral oncogene homolog B1 V600E mutant melanoma cell line A375 was used as an in vitro model. Characterization tools includ...

  18. Effects of gamma radiation on the OM431 human ocular melanoma cell line

    International Nuclear Information System (INIS)

    Logani, S.; Cho, A.S.; Su, L.D.; Withers, H.R.; McBride, W.H.; Hall, M.O.; Lee, D.A.; Milani, J.K.; Straatsma, B.R.

    1995-01-01

    In order to determine the dose responsiveness to radiation of ocular melanoma, we conducted an in vitro dose-response study on a monolayer cell culture using a clonogenic assay. The effects on cell survival were determined relative to unirradiated controls. A human epithelioid ocular melanoma cell line, OM431, was maintained in tissue culture and serial dilutions of viable cells were plated in flasks, allowed to settle and attach for 48 h, and subsequently irradiated with 1-10 Gy in single fractions. After 2 weeks, the number of reproducing clones (forming colonies with greater than 32 cells or five generations) were counted. The surviving fractions of cells were plotted on a cell survival curve using the linear quadratic model. The survival curve showed a large initial shoulder followed by an exponential decline in growth. Our data suggest that the OM431 ocular melanoma cell line responds to irradiation in a manner similar to other melanoma cell lines and is relatively radioresistent especially at lower doses. (author)

  19. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment

    Energy Technology Data Exchange (ETDEWEB)

    Sustarsic, Elahu G. [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Department of Biological Sciences, Ohio University, Athens, OH (United States); Junnila, Riia K. [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Kopchick, John J., E-mail: kopchick@ohio.edu [Edison Biotechnology Institute, 1 Watertower Drive, Athens, OH (United States); Department of Biological Sciences, Ohio University, Athens, OH (United States); Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH (United States)

    2013-11-08

    Highlights: •Most cancer types of the NCI60 have sub-sets of cell lines with high GHR expression. •GHR is highly expressed in melanoma cell lines. •GHR is elevated in advanced stage IV metastatic tumors vs. stage III. •GH treatment of metastatic melanoma cell lines alters growth and cell signaling. -- Abstract: Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute’s NCI60 panel includes 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation. Based on

  20. Laminin-dependent and laminin-independent adhesion of human melanoma cells to sulfatides

    DEFF Research Database (Denmark)

    Roberts, D D; Wewer, U M; Liotta, L A

    1988-01-01

    Sulfatides (galactosylceramide-I3-sulfate) but not neutral glycolipids or gangliosides adsorbed on plastic promote adhesion of the human melanoma cell line G361. Direct adhesion of G361 cells requires densities of sulfatide greater than 1 pmol/mm2. In the presence of laminin, however, specific...... adhesion of G361 cells to sulfatide or seminolipid (galactosylalkylacyl-glycerol-I3-sulfate) but not to other lipids is strongly stimulated and requires only 25 fmol/mm2 of adsorbed lipid. The effects of laminin and sulfatide on adhesion are synergistic, suggesting that laminin is mediating adhesion...... by cross-linking receptors on the melanoma cell surface to sulfatide adsorbed on the plastic. Although thrombospondin binds to sulfatides and G361 cells, it does not enhance, but rather inhibits direct and laminin-dependent G361 cell adhesion to sulfatide. In contrast, C32 melanoma cells also adhere...

  1. MicroRNAs as tumour suppressors in canine and human melanoma cells and as a prognostic factor in canine melanomas.

    Science.gov (United States)

    Noguchi, S; Mori, T; Hoshino, Y; Yamada, N; Maruo, K; Akao, Y

    2013-06-01

    Malignant melanoma (MM) is one of the most aggressive cancers in dogs and in humans. However, the molecular mechanisms of its development and progression remain unclear. Presently, we examined the expression profile of microRNAs (miRs) in canine oral MM tissues and paired normal oral mucosa tissues by using the microRNA-microarray assay and quantitative RT-PCR. Importantly, a decreased expression of miR-203 was significantly associated with a shorter survival time. Also, miR-203 and -205 were markedly down-regulated in canine and human MM cell lines tested. Furthermore, the ectopic expression of miR-205 had a significant inhibitory effect on the cell growth of canine and human melanoma cells tested by targeting erbb3. Our data suggest that miR-203 is a new prognostic factor in canine oral MMs and that miR-205 functions as a tumour suppressor by targeting erbb3 in both canine and human MM cells. © 2011 John Wiley & Sons Ltd.

  2. Cytotoxic effects of local anesthesia through lidocaine/ropivacaine on human melanoma cell lines

    Directory of Open Access Journals (Sweden)

    Ding-Kun Kang

    Full Text Available Abstract Background: Local anesthetics (LAs are generally considered as safe, but cytotoxicity has been reported for several local anesthetics used in humans, which is not well investigated. In the present study, the cytotoxicity of lidocaine, ropivacaine and the combination of lidocaine and ropivacaine were evaluated on human melanoma cell lines. Melphalan, a nitrogen mustard alkylating agent, was used as a control agent for comparison of cytotoxic activity. Methods: Melanoma cell lines, A375 and Hs294T, were exposed to 1 h to different concentrations of above agents. Cell-viability after exposure was determined by flow cytometry. Results: Investigated LAs showed detrimental cytotoxicity on studied melanoma cell lines in time- (p < 0.001, concentration- (p < 0.001, and agent dependant. In both A375 and Hs294T cell lines, minimum cell viability rates were found after 72 h of exposure to these agents. Lidocaine 2% caused a reduction of vital cells to 10% ± 2% and 14% ± 2% in A375 and Hs294T, respectively after 72 h of exposure. Ropivacaine 0.75% after 72 h reduced viable cells to 15% ± 3% and 25% ± 3% in A375 and Hs294T, respectively. Minimum cell viability after 72 h exposure to the combination was 10% ± 2% and 18% ± 2% in A375 and Hs294T, respectively. Minimum cell viability after 72 h exposure to melphalan was 8% ± 1% and 12% ± 2%, in A375 and Hs294T, respectively. Conclusion: LAs have cytotoxic activity on human melanoma cell lines in a time-, concentration- and agent-dependant manner. Apoptosis in the cell lines was mediated through activity of caspases-3 and caspases-8.

  3. The Functional Characterization of Long Noncoding RNA SPRY4-IT1 in Human Melanoma Cells

    OpenAIRE

    Mazar, Joseph; Zhao, Wei; Khalil, Ahmad M.; Lee, Bongyong; Shelley, John; Govindarajan, Subramaniam S.; Yamamoto, Fumiko; Ratnam, Maya; Aftab, Muhammad Nauman; Collins, Sheila; Finck, Brian N.; Han, Xianlin; Mattick, John S.; Dinger, Marcel E.; Perera, Ranjan J.

    2014-01-01

    Expression of the long noncoding RNA (lncRNA) SPRY4-IT1 is low in normal human melanocytes but high in melanoma cells. siRNA knockdown of SPRY4-IT1 blocks melanoma cell invasion and proliferation, and increases apoptosis. To investigate its function further, we affinity purified SPRY4-IT1 from melanoma cells and used mass spectrometry to identify the protein lipin 2, an enzyme that converts phosphatidate to diacylglycerol (DAG), as a major binding partner. SPRY4-IT1 knockdown increases the ac...

  4. Pleiotropic function of ezrin in human metastatic melanomas.

    Science.gov (United States)

    Federici, Cristina; Brambilla, Daria; Lozupone, Francesco; Matarrese, Paola; de Milito, Angelo; Lugini, Luana; Iessi, Elisabetta; Cecchetti, Serena; Marino, Marialucia; Perdicchio, Maurizio; Logozzi, Mariantonia; Spada, Massimo; Malorni, Walter; Fais, Stefano

    2009-06-15

    The membrane cytoskeleton cross-linker, ezrin, has recently been depicted as a key regulator in the progression and metastasis of several pediatric tumors. Less defined appears the role of ezrin in human adult tumors, especially melanoma. We therefore addressed ezrin involvement in the metastatic phenotype of human adult metastatic melanoma cells. Our results show that cells resected from melanoma metastatic lesions of patients, display marked metastatic spreading capacity in SCID mice organs. Stable transfection of human melanoma cells with an ezrin deletion mutant comprising only 146 N-terminal aminoacids led to the abolishment of metastatic dissemination. In vitro experiments revealed ezrin direct molecular interactions with molecules related to metastatic functions such as CD44, merlin and Lamp-1, consistent with its participation to the formation of phagocitic vacuoles, vesicular sorting and migration capacities of melanoma cells. Moreover, the ezrin fragment capable of binding to CD44 was shorter than that previously reported, and transfection with the ezrin deletion mutant abrogated plasma membrane Lamp-1 recruitment. This study highlights key involvement of ezrin in a complex machinery, which allows metastatic cancer cells to migrate, invade and survive in very unfavorable conditions. Our in vivo and in vitro data reveal that ezrin is the hub of the metastatic behavior also in human adult tumors. Copyright 2008 UICC.

  5. CD63 tetraspanin is a negative driver of epithelial-to-mesenchymal transition in human melanoma cells.

    Science.gov (United States)

    Lupia, Antonella; Peppicelli, Silvia; Witort, Ewa; Bianchini, Francesca; Carloni, Vinicio; Pimpinelli, Nicola; Urso, Carmelo; Borgognoni, Lorenzo; Capaccioli, Sergio; Calorini, Lido; Lulli, Matteo

    2014-12-01

    The CD63 tetraspanin is highly expressed in the early stages of melanoma and decreases in advanced lesions, suggesting it as a possible suppressor of tumor progression. We employed loss- and gain-of-gene-function approaches to investigate the role of CD63 in melanoma progression and acquisition of the epithelial-to-mesenchymal transition (EMT) program. We used two human melanoma cell lines derived from primary tumors and one primary human melanoma cell line isolated from a cutaneous metastasis, differing by levels of CD63 expression. CD63-silenced melanoma cells showed enhanced motility and invasiveness with downregulation of E-cadherin and upregulation of N-cadherin and Snail. In parallel experiments, transient and stable ectopic expression of CD63 resulted in a robust reduction of cell motility, invasiveness, and protease activities, which was proportional to the increase in CD63 protein level. Transfected cells overexpressing the highest level of CD63 when transplanted into immunodeficient mice showed a reduced incidence and rate of tumor growth. Moreover, these cells showed a reduction of N-cadherin, Vimentin, Zeb1, and a-SMA, and a significant resistance to undergo an EMT program both in basal condition and in the following stimulation with TGFβ. Thus, our results establish a previously unreported mechanistic link between the tetraspanin CD63 and EMT abrogation in melanoma.

  6. Biflorin induces cytotoxicity by DNA interaction in genetically different human melanoma cell lines.

    Science.gov (United States)

    Ralph, Ana Carolina Lima; Calcagno, Danielle Queiroz; da Silva Souza, Luciana Gregório; de Lemos, Telma Leda Gomes; Montenegro, Raquel Carvalho; de Arruda Cardoso Smith, Marília; de Vasconcellos, Marne Carvalho

    2016-08-01

    Cancer is a public health problem and the second leading cause of death worldwide. The incidence of cutaneous melanoma has been notably increasing, resulting in high aggressiveness and poor survival rates. Taking into account the antitumor activity of biflorin, a substance isolated from Capraria biflora L. roots that is cytotoxic in vitro and in vivo, this study aimed to demonstrate the action of biflorin against three established human melanoma cell lines that recapitulate the molecular landscape of the disease in terms of genetic alterations and mutations, such as the TP53, NRAS and BRAF genes. The results presented here indicate that biflorin reduces the viability of melanoma cell lines by DNA interactions. Biflorin causes single and double DNA strand breaks, consequently inhibiting cell cycle progression, replication and DNA repair and promoting apoptosis. Our data suggest that biflorin could be considered as a future therapeutic option for managing melanoma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Radioimmunodetection of human melanoma tumor xenografts with human monoclonal antibodies

    International Nuclear Information System (INIS)

    Gomibuchi, Makoto; Saxton, R.E.; Lake, R.R.; Katano, Mitsuo; Irie, R.F.

    1986-01-01

    A human IgM monoclonal antibody has been established that defines a tumor-associated membrane antigen expressed on human melanoma cells. The antigen has been identified as the ganglioside GD2. In this paper, the authors describe the potential usefulness of the human monoclonal antibody for radioimaging. Nude mice bearing tumors derived from a human melanoma cell line were used as a model. Antibody activity was degradated significantly after labeling with 131 I by the use of a modified chloramine-T method. After testing various concentrations, labeled antibody of a specific activity of 2.8μCi/μg produced the best results. Balb/c nude mice bearing a GD2-positive M14 melanoma cell line were injected with 10-30μg of labeled antibody, and its radiolocalization in different organs and in the whole body were evaluated. The best tumor image was obtained on Day 6. The labeled antibody uptake ratio between tumor and muscle was 9.2:1; the ratio between tumor and liver was 1.4:1. These studies represent the first report of experimental tumor imaging with human monoclonal antibody. Human monoclonals will probably prove to be superior reagents for tumor imaging in melanoma patients if the problem of anti-body radiolysis is resolved. (author)

  8. Pigment Production Analysis in Human Melanoma Cells.

    Science.gov (United States)

    Hopkin, Amelia Soto; Paterson, Elyse K; Ruiz, Rolando; Ganesan, Anand K

    2016-05-25

    The human epidermal melanocyte is a highly specialized pigmented cell that serves to protect the epidermis from ultraviolet (UV) damage through the production of melanin, or melanogenesis. Misregulation in melanogenesis leading to either hyper- or hypo-pigmentation is found in human diseases such as malasma and vitiligo. Current therapies for these diseases are largely unsuccessful and the need for new therapies is necessary. In order to identify genes and or compounds that can alter melanogenesis, methods are required that can detect changes in pigment production as well as expression of key melanogenesis transcription factors and enzymes. Here we describe methods to detect changes in melanogenesis in a human melanoma cell line, MNT-1, by (1) analyzing pigment production by measuring the absorbance of melanin present by spectrophotometry, (2) analyzing transcript expression of potent regulators of melanogenesis by qunatitative reverse-transcription (RT)PCR and (3) analyzing protein expression of potent regulators of melanogenesis by Western blot (WB).

  9. Monitoring the systemic human memory B cell compartment of melanoma patients for anti-tumor IgG antibodies.

    Directory of Open Access Journals (Sweden)

    Amy E Gilbert

    Full Text Available Melanoma, a potentially lethal skin cancer, is widely thought to be immunogenic in nature. While there has been much focus on T cell-mediated immune responses, limited knowledge exists on the role of mature B cells. We describe an approach, including a cell-based ELISA, to evaluate mature IgG antibody responses to melanoma from human peripheral blood B cells. We observed a significant increase in antibody responses from melanoma patients (n = 10 to primary and metastatic melanoma cells compared to healthy volunteers (n = 10 (P<0.0001. Interestingly, we detected a significant reduction in antibody responses to melanoma with advancing disease stage in our patient cohort (n = 21 (P<0.0001. Overall, 28% of melanoma patient-derived B cell cultures (n = 1,800 compared to 2% of cultures from healthy controls (n = 600 produced antibodies that recognized melanoma cells. Lastly, a patient-derived melanoma-specific monoclonal antibody was selected for further study. This antibody effectively killed melanoma cells in vitro via antibody-mediated cellular cytotoxicity. These data demonstrate the presence of a mature systemic B cell response in melanoma patients, which is reduced with disease progression, adding to previous reports of tumor-reactive antibodies in patient sera, and suggesting the merit of future work to elucidate the clinical relevance of activating humoral immune responses to cancer.

  10. Monitoring the Systemic Human Memory B Cell Compartment of Melanoma Patients for Anti-Tumor IgG Antibodies

    Science.gov (United States)

    Gilbert, Amy E.; Karagiannis, Panagiotis; Dodev, Tihomir; Koers, Alexander; Lacy, Katie; Josephs, Debra H.; Takhar, Pooja; Geh, Jenny L. C.; Healy, Ciaran; Harries, Mark; Acland, Katharine M.; Rudman, Sarah M.; Beavil, Rebecca L.; Blower, Philip J.; Beavil, Andrew J.; Gould, Hannah J.; Spicer, James; Nestle, Frank O.; Karagiannis, Sophia N.

    2011-01-01

    Melanoma, a potentially lethal skin cancer, is widely thought to be immunogenic in nature. While there has been much focus on T cell-mediated immune responses, limited knowledge exists on the role of mature B cells. We describe an approach, including a cell-based ELISA, to evaluate mature IgG antibody responses to melanoma from human peripheral blood B cells. We observed a significant increase in antibody responses from melanoma patients (n = 10) to primary and metastatic melanoma cells compared to healthy volunteers (n = 10) (P<0.0001). Interestingly, we detected a significant reduction in antibody responses to melanoma with advancing disease stage in our patient cohort (n = 21) (P<0.0001). Overall, 28% of melanoma patient-derived B cell cultures (n = 1,800) compared to 2% of cultures from healthy controls (n = 600) produced antibodies that recognized melanoma cells. Lastly, a patient-derived melanoma-specific monoclonal antibody was selected for further study. This antibody effectively killed melanoma cells in vitro via antibody-mediated cellular cytotoxicity. These data demonstrate the presence of a mature systemic B cell response in melanoma patients, which is reduced with disease progression, adding to previous reports of tumor-reactive antibodies in patient sera, and suggesting the merit of future work to elucidate the clinical relevance of activating humoral immune responses to cancer. PMID:21559411

  11. The NK-1 Receptor Antagonist L-732,138 Induces Apoptosis and Counteracts Substance P-Related Mitogenesis in Human Melanoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Miguel Muñoz

    2010-04-01

    Full Text Available It has been recently demonstrated that substance P (SP and neurokinin-1 (NK-1 receptor antagonists induce cell proliferation and cell inhibition in human melanoma cells, respectively. However, the antitumor action of the NK-1 receptor antagonist L-732,138 on such cells is unknown. The aim of this study was to demonstrate an antitumor action of L-732,138 against three human melanoma cell lines (COLO 858, MEL HO, COLO 679. We found that L-732,138 elicits cell growth inhibition in a concentration dependent manner in the melanoma cells studied. Moreover, L-732,138 blocks SP mitogen stimulation. The specific antitumor action of L-732,138 occurred through the NK-1 receptor and melanoma cell death was by apoptosis. These findings indicate that the NK-1 receptor antagonist L-732,138 could be a new antitumor agent in the treatment of human melanoma.

  12. The NK-1 Receptor Antagonist L-732,138 Induces Apoptosis and Counteracts Substance P-Related Mitogenesis in Human Melanoma Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Miguel, E-mail: mmunoz@cica.es; Rosso, Marisa; González-Ortega, Ana [Research Laboratory on Neuropeptides, Virgen del Rocío University Hospital, Sevilla (Spain); Coveñas, Rafael [Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems (Laboratory 14), Salamanca (Spain)

    2010-04-20

    It has been recently demonstrated that substance P (SP) and neurokinin-1 (NK-1) receptor antagonists induce cell proliferation and cell inhibition in human melanoma cells, respectively. However, the antitumor action of the NK-1 receptor antagonist L-732,138 on such cells is unknown. The aim of this study was to demonstrate an antitumor action of L-732,138 against three human melanoma cell lines (COLO 858, MEL HO, COLO 679). We found that L-732,138 elicits cell growth inhibition in a concentration dependent manner in the melanoma cells studied. Moreover, L-732,138 blocks SP mitogen stimulation. The specific antitumor action of L-732,138 occurred through the NK-1 receptor and melanoma cell death was by apoptosis. These findings indicate that the NK-1 receptor antagonist L-732,138 could be a new antitumor agent in the treatment of human melanoma.

  13. An evolved ribosome-inactivating protein targets and kills human melanoma cells in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Green David E

    2010-02-01

    Full Text Available Abstract Background Few treatment options exist for patients with metastatic melanoma, resulting in poor prognosis. One standard treatment, dacarbazine (DTIC, shows low response rates ranging from 15 to 25 percent with an 8-month median survival time. The development of targeted therapeutics with novel mechanisms of action may improve patient outcome. Ribosome-inactivating proteins (RIPs such as Shiga-like Toxin 1 (SLT-1 represent powerful scaffolds for developing selective anticancer agents. Here we report the discovery and properties of a single chain ribosome-inactivating protein (scRIP derived from the cytotoxic A subunit of SLT-1 (SLT-1A, harboring the 7-amino acid peptide insertion IYSNKLM (termed SLT-1AIYSNKLM allowing the toxin variant to selectively target and kill human melanoma cells. Results SLT-1AIYSNKLM was able to kill 7 of 8 human melanoma cell lines. This scRIP binds to 518-A2 human melanoma cells with a dissociation constant of 18 nM, resulting in the blockage of protein synthesis and apoptosis in such cells. Biodistribution and imaging studies of radiolabeled SLT-1AIYSNKLM administered intravenously into SCID mice bearing a human melanoma xenograft indicate that SLT-1AIYSNKLM readily accumulates at the tumor site as opposed to non-target tissues. Furthermore, the co-administration of SLT-1AIYSNKLM with DTIC resulted in tumor regression and greatly increased survival in this mouse xenograft model in comparison to DTIC or SLT-1AIYSNKLM treatment alone (115 day median survival versus 46 and 47 days respectively; P values IYSNKLM is stable in serum and its intravenous administration resulted in modest immune responses following repeated injections in CD1 mice. Conclusions These results demonstrate that the evolution of a scRIP template can lead to the discovery of novel cancer cell-targeted compounds and in the case of SLT-1AIYSNKLM can specifically kill human melanoma cells in vitro and in vivo.

  14. Gene expression of panaxydol-treated human melanoma cells using radioactive cDNA microarrays

    International Nuclear Information System (INIS)

    Cho, Joong Youn; Yu, Su Jin; Soh, Jeong Won; Kim, Meyoung Kon

    2001-01-01

    Polyacetylenic alcohols derived from Panax ginseng have been studied to be an anticancer reagent previously. One of the Panax ginseng polyacetylenic alcohols, i.e., panaxydol, has been studied to possess an antiproliferative effect on human melanoma cell line (SK-MEL-1). In ths study, radioactive cDNA microarrays enabled an efficient approach to analyze the pattern of gene expression (3.194 genes in a total) simultaneously. The bioinformatics selection of human cDNAs, which is specifically designed for immunology, apoptosis and signal transduction, were arrayed on nylon membranes. Using with 33 P labeled probes, this method provided highly sensitive gene expression profiles of our interest including apoptosis, cell proliferation, cell cycle, and signal transduction. Gene expression profiles were also classified into several categories in accordance with the duration of panaxydol treatment. Consequently, the gene profiles of our interest were significantly up (199 genes, > 2.0 of Z-ratio) or down-(196 genes, < 2.0 of Z-ratio) regulated in panaxydol-treated human melanoma cells

  15. Gene expression of panaxydol-treated human melanoma cells using radioactive cDNA microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Joong Youn; Yu, Su Jin; Soh, Jeong Won; Kim, Meyoung Kon [College of Medicine, Korea Univ., Seoul (Korea, Republic of)

    2001-07-01

    Polyacetylenic alcohols derived from Panax ginseng have been studied to be an anticancer reagent previously. One of the Panax ginseng polyacetylenic alcohols, i.e., panaxydol, has been studied to possess an antiproliferative effect on human melanoma cell line (SK-MEL-1). In ths study, radioactive cDNA microarrays enabled an efficient approach to analyze the pattern of gene expression (3.194 genes in a total) simultaneously. The bioinformatics selection of human cDNAs, which is specifically designed for immunology, apoptosis and signal transduction, were arrayed on nylon membranes. Using with {sup 33}P labeled probes, this method provided highly sensitive gene expression profiles of our interest including apoptosis, cell proliferation, cell cycle, and signal transduction. Gene expression profiles were also classified into several categories in accordance with the duration of panaxydol treatment. Consequently, the gene profiles of our interest were significantly up (199 genes, > 2.0 of Z-ratio) or down-(196 genes, < 2.0 of Z-ratio) regulated in panaxydol-treated human melanoma cells.

  16. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells.

    Directory of Open Access Journals (Sweden)

    Rouzbeh Taghizadeh

    2010-12-01

    Full Text Available A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+.We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone.The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.

  17. Dissection of T-cell antigen specificity in human melanoma

    DEFF Research Database (Denmark)

    Andersen, Rikke Sick; Albæk Thrue, Charlotte; Junker, Niels

    2012-01-01

    Tumor-infiltrating lymphocytes (TIL) isolated from melanoma patients and expanded in vitro by interleukin (IL)-2 treatment can elicit therapeutic response after adoptive transfer, but the antigen specificities of the T cells transferred have not been determined. By compiling all known melanoma-as...... from different fragments of resected melanoma lesions. In summary, our findings provide an initial definition of T-cell populations contributing to tumor recognition in TILs although the specificity of many tumor-reactive TILs remains undefined....

  18. Proteomic Analysis of Laser Microdissected Melanoma Cells from Skin Organ Cultures

    Science.gov (United States)

    Hood, Brian L.; Grahovac, Jelena; Flint, Melanie S.; Sun, Mai; Charro, Nuno; Becker, Dorothea; Wells, Alan; Conrads, Thomas P

    2010-01-01

    Gaining insights into the molecular events that govern the progression from melanoma in situ to advanced melanoma, and understanding how the local microenvironment at the melanoma site influences this progression, are two clinically pivotal aspects that to date are largely unexplored. In an effort to identify key regulators of the crosstalk between melanoma cells and the melanoma-skin microenvironment, primary and metastatic human melanoma cells were seeded into skin organ cultures (SOCs), and grown for two weeks. Melanoma cells were recovered from SOCs by laser microdissection and whole-cell tryptic digests analyzed by nanoflow liquid chromatography-tandem mass spectrometry with an LTQ-Orbitrap. The differential protein abundances were calculated by spectral counting, the results of which provides evidence that cell-matrix and cell-adhesion molecules that are upregulated in the presence of these melanoma cells recapitulate proteomic data obtained from comparative analysis of human biopsies of invasive melanoma and a tissue sample of adjacent, non-involved skin. This concordance demonstrates the value of SOCs for conducting proteomic investigations of the melanoma microenvironment. PMID:20459140

  19. Interferon-β gene transfer induces a strong cytotoxic bystander effect on melanoma cells.

    Science.gov (United States)

    Rossi, Úrsula A; Gil-Cardeza, María L; Villaverde, Marcela S; Finocchiaro, Liliana M E; Glikin, Gerardo C

    2015-05-01

    A local gene therapy scheme for the delivery of type I interferons could be an alternative for the treatment of melanoma. We evaluated the cytotoxic effects of interferon-β (IFNβ) gene lipofection on tumor cell lines derived from three human cutaneous and four canine mucosal melanomas. The cytotoxicity of human IFNβ gene lipofection resulted higher or equivalent to that of the corresponding addition of the recombinant protein (rhIFNβ) to human cells. IFNβ gene lipofection was not cytotoxic for only one canine melanoma cell line. When cultured as monolayers, three human and three canine IFNβ-lipofected melanoma cell lines displayed a remarkable bystander effect. As spheroids, the same six cell lines were sensitive to IFNβ gene transfer, two displaying a significant multicell resistance phenotype. The effects of conditioned IFNβ-lipofected canine melanoma cell culture media suggested the release of at least one soluble thermolabile cytotoxic factor that could not be detected in human melanoma cells. By using a secretion signal-free truncated human IFNβ, we showed that its intracellular expression was enough to induce cytotoxicity in two human melanoma cell lines. The lower cytoplasmatic levels of reactive oxygen species detected after intracellular IFNβ expression could be related to the resistance displayed by one human melanoma cell line. As IFNβ gene transfer was effective against most of the assayed melanomas in a way not limited by relatively low lipofection efficiencies, the clinical potential of this approach is strongly supported. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Characterization of a plasminogen activator from human melanoma cells cultured in vitro

    International Nuclear Information System (INIS)

    Heussen, C.

    1982-08-01

    This thesis describes the work that have been done on the isolation and characterization of a plasminogen activator, Mel-PA, that is released by human melanoma cells cultured in vitro. This enzyme was compared to the urinary plasminogen activator, urokinase. The human melanoma cell line released large amounts of Mel-PA into the surrounding medium when cultured under serum-free conditions. These cells released only one type of plasminogen activator. A technique was developed in which plasminogen activators were seperated electrophoretically and detected in polyacrylamide gel slabs. Mel-PA was concentrated and partially purified by affinity chromatography on benzamidine-sepharose. A study of the distribution of plasminogen activators in tissues and body fluids showed that all mammals examined had two immunochemically distinct plasminogen activators that corresponded, in their distribution, to the urokinase-like and Mel-PA like enzymes of man. A comparitive study of the kinetic behaviour of Mel-PA and urokinase showed numerous differences between the catalytic activities of these two enzymes

  1. Control of differentiation of melanoma cells

    International Nuclear Information System (INIS)

    Eguchi, Goro

    1980-01-01

    To develop the method to induce the appearance of differentiation in amelanotic melanoma, experimental control of differentiation in B-16 melanoma cells of mice was discussed. Human melanoma cells and yellow melanin pigment cells useful for a fundamental study of radiotherapy for cancer were cultured and were differentiated into some lines. Melanotic B-16 cells and amelanotic B-16 cells were irradiated with thermal neutron (neutron: 2.7 x 10 12 , γ-dose: 32.3 rad) after they were cultured in culture solution containing 10 γ/ml of 10 B-dopa for 13 hours. A fine structure 5 hours after the irradiation in one of 5 experimental cases showed aggregated disintegration of melanin pigment particles, markedly deformed and fragmentized nucleus, and structural changes in cell membrane. (Tsunoda, M.)

  2. Differential response of human melanoma and Ehrlich ascites cells in vitro to the ribosome-inactivating protein luffin.

    Science.gov (United States)

    Poma, A; Miranda, M; Spanò, L

    1998-10-01

    The cytotoxicity and inhibitory effect on proliferation of the type 1 ribosome-inactivating protein luffin purified from the seeds of Luffa aegyptiaca were investigated both in human metastatic melanoma cells and in murine Ehrlich ascites tumour cells. Results indicate that luffin from the seeds of Luffa aegyptiaca is cytotoxic to the cell lines tested, with approximately 10 times greater potency in Ehrlich cells. Luffin was found to induce an increase in cytosolic oligonucleosome-bound DNA in both melanoma and Ehrlich ascites tumour cells, the level of DNA fragmentation in the former cell line being higher than in the latter. Experiments with melanoma cells indicate that an increase in cytosolic nucleosomes could be supportive of apoptosis as the type of cell death induced by luffin.

  3. Thymoquinone suppresses metastasis of melanoma cells by inhibition of NLRP3 inflammasome

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Israr; Muneer, Kashiff M.; Tamimi, Iman A.; Chang, Michelle E.; Ata, Muhammad O. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, AL (United States); Yusuf, Nabiha, E-mail: nabiha@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, AL (United States); Veteran Affairs Medical Center, Birmingham, University of Alabama at Birmingham, AL (United States); Comprehensive Cancer Center, University of Alabama at Birmingham, AL (United States)

    2013-07-01

    The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β and IL-18 secretion. The NLRP3 (NACHT, LRR, and pyrin domain-containing protein 3) inflammasome is constitutively assembled and activated in human melanoma cells. We have examined the inhibitory effect of thymoquinone (2-isopropyl-5-methylbenzo-1,4-quinone), a major ingredient of black seed obtained from the plant Nigella sativa on metastatic human (A375) and mouse (B16F10) melanoma cell lines. We have assessed whether thymoquinone inhibits metastasis of melanoma cells by targeting NLRP3 subunit of inflammasomes. Using an in vitro cell migration assay, we found that thymoquinone inhibited the migration of both human and mouse melanoma cells. The inhibitory effect of thymoquinone on metastasis was also observed in vivo in B16F10 mouse melanoma model. The inhibition of migration of melanoma cells by thymoquinone was accompanied by a decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by thymoquinone resulted in inhibition of IL-1β and IL-18. Treatment of mouse melanoma cells with thymoquinone also inhibited NF-κB activity. Furthermore, inhibition of reactive oxygen species (ROS) by thymoquinone resulted in partial inactivation of NLRP3 inflammasome. Thus, thymoquinone exerts its inhibitory effect on migration of human and mouse melanoma cells by inhibition of NLRP3 inflammasome. Thus, our results indicate that thymoquinone can be a potential immunotherapeutic agent not only as an adjuvant therapy for melanoma, but also, in the control and prevention of metastatic melanoma. - Highlights: • Thymoquinone causes inhibition of migration of melanoma cells. • Thymoquinone causes inhibition of metastasis in vivo. • Thymoquinone causes inhibition of migration by activation of NLRP3 inflammasome.

  4. Lauroside B, a megastigmane glycoside from Laurus nobilis (bay laurel) leaves, induces apoptosis in human melanoma cell lines by inhibiting NF-κB activation.

    Science.gov (United States)

    Panza, Elisabetta; Tersigni, Mariaroberta; Iorizzi, Maria; Zollo, Franco; De Marino, Simona; Festa, Carmen; Napolitano, Maria; Castello, Giuseppe; Ialenti, Armando; Ianaro, Angela

    2011-02-25

    Malignant melanoma is a highly aggressive tumor that frequently resists chemotherapy, so the search for new agents for its treatment is of great importance. In the present study, the antiproliferative propensity against human melanoma cell lines of lauroside B (1), a megastigmane glycoside isolated from Laurus nobilis (bay laurel) leaves, was investigated. This compound suppressed the proliferation of three human melanoma cell lines, namely, A375, WM115, and SK-Mel-28. The 1-induced inhibition of human melanoma cell proliferation was due to the induction of apoptosis, as demonstrated by FACS analysis with annexin V/PI staining and confirmed by activation of caspase-3 and by the cleavage of poly(ADP-ribose) polymerase (PARP). Growing evidence implicates NF-κB as an important contributor to metastasis and increased chemoresistance of melanoma. Thus, it was hypothesized that 1-induced apoptosis could be associated with suppression of NF-κB activation. The results showed that exposure of human melanoma cells to 1 inhibited IκB-α degradation and constitutive NF-κB DNA-binding activity as well as the expression, regulated by NF-κB, of two antiapoptotic genes, XIAP and c-FLIP. Induction of apoptosis by 1 in human aggressive melanoma cell lines has a potential high biological value.

  5. Fisetin induces apoptosis through mitochondrial apoptosis pathway in human uveal melanoma cells.

    Science.gov (United States)

    Wang, Kai; Hu, Dan-Ning; Lin, Hui-Wen; Yang, Wei-En; Hsieh, Yi-Hsien; Chien, Hsiang-Wen; Yang, Shun-Fa

    2018-05-01

    Fisetin, a diatery flavonoid, been reported that possess anticancer effects in various cancers. The purpose of the study was to investigate the antitumor effects of fisetin in cultured uveal melanoma cell lines and compared with normal retinal pigment epithelial (RPE) cells. MTT assay was used for evaluating cytotoxic effects of fisetin. Flow cytometry study was used for the determination of apoptosis. JC-1 fluorescent reader was used to determine mitochondrial transmembrane potential changes. The results shown that fisetin dose-dependently decreased the cell viability of uveal melanoma cells but not influenced the cell viability of RPE cells. Apoptosis of uveal melanoma cells was induced by fisetin efficiently. Fisetin inhibited antiapoptotic Bcl-2 family proteins and damaged the mitochondrial transmembrane potential. The levels of proapoptotic Bcl-2 proteins, cytochrome c, and various caspase activities were increased by fisetin. In conclusion, fisetin induces apoptosis of uveal melanoma cells selectively and may be a promising agent to be explored for the treatment of uveal melanoma. © 2018 Wiley Periodicals, Inc.

  6. Structurally modified curcumin analogs inhibit STAT3 phosphorylation and promote apoptosis of human renal cell carcinoma and melanoma cell lines.

    Directory of Open Access Journals (Sweden)

    Matthew A Bill

    Full Text Available The Janus kinase-2 (Jak2-signal transducer and activator of transcription-3 (STAT3 pathway is critical for promoting an oncogenic and metastatic phenotype in several types of cancer including renal cell carcinoma (RCC and melanoma. This study describes two small molecule inhibitors of the Jak2-STAT3 pathway, FLLL32 and its more soluble analog, FLLL62. These compounds are structurally distinct curcumin analogs that bind selectively to the SH2 domain of STAT3 to inhibit its phosphorylation and dimerization. We hypothesized that FLLL32 and FLLL62 would induce apoptosis in RCC and melanoma cells and display specificity for the Jak2-STAT3 pathway. FLLL32 and FLLL62 could inhibit STAT3 dimerization in vitro. These compounds reduced basal STAT3 phosphorylation (pSTAT3, and induced apoptosis in four separate human RCC cell lines and in human melanoma cell lines as determined by Annexin V/PI staining. Apoptosis was also confirmed by immunoblot analysis of caspase-3 processing and PARP cleavage. Pre-treatment of RCC and melanoma cell lines with FLLL32/62 did not inhibit IFN-γ-induced pSTAT1. In contrast to FLLL32, curcumin and FLLL62 reduced downstream STAT1-mediated gene expression of IRF1 as determined by Real Time PCR. FLLL32 and FLLL62 significantly reduced secretion of VEGF from RCC cell lines in a dose-dependent manner as determined by ELISA. Finally, each of these compounds inhibited in vitro generation of myeloid-derived suppressor cells. These data support further investigation of FLLL32 and FLLL62 as lead compounds for STAT3 inhibition in RCC and melanoma.

  7. Evaluation of radiation-induced genotoxicity on human melanoma cells (SK-MEL-37) by flow cytometry

    International Nuclear Information System (INIS)

    Bonfim, Leticia; Carvalho, Luma Ramirez de; Vieira, Daniel Perez

    2017-01-01

    Micronucleus assay is a test used to evaluate genotoxic damage in cells, which can be caused by various factors, like ionizing radiation. Interactions between radiation energies and DNA can cause breakage, leading to use chromosomal mutations or loss of genetic material, important events that could be induced in solid tumors to mitigate its expansion within human body. Melanoma has been described as a tumor with increased radio resistance. This work evaluated micronuclei percentages (%MN) in human melanoma cells (SK-MEL-37), irradiated by gamma radiation, with doses between 0 and 16Gy. Cell suspensions were irradiated in PBS by a "6"0Co source in doses between 0 and 16Gy, and incubated by 48h. Then cell membranes were lysed in the presence of SYTOX Green and EMA dyes, preserving nuclear membranes. Using this method, EMA-stained nuclei could be discriminated as those derived from dead cells, and SYTOX nuclei and micronuclei could be quantified. Micronuclei percentages were found to be proportional to dose, (R2 = 0.997). Only the highest dose (16Gy) could induce statistically significant increase of MN (p<0.0001), although cultures irradiated by 4, 8 and 16Gy showed significant increase of dead cell fractions. Calculation of the nuclei-to-beads ratio showed that 8 and 16Gy could reduce melanoma cell proliferation. Results showed that although cell death and loss of proliferative capacity could be observed on cultures irradiated at lower doses, genotoxic damage could be induced only on a higher dose. Resistance to radiation-induced genotoxicity could explain a relatively high radio resistance of melanoma tumors. (author)

  8. Evaluation of radiation-induced genotoxicity on human melanoma cells (SK-MEL-37) by flow cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Bonfim, Leticia; Carvalho, Luma Ramirez de; Vieira, Daniel Perez, E-mail: leticia.bonfim@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    Micronucleus assay is a test used to evaluate genotoxic damage in cells, which can be caused by various factors, like ionizing radiation. Interactions between radiation energies and DNA can cause breakage, leading to use chromosomal mutations or loss of genetic material, important events that could be induced in solid tumors to mitigate its expansion within human body. Melanoma has been described as a tumor with increased radio resistance. This work evaluated micronuclei percentages (%MN) in human melanoma cells (SK-MEL-37), irradiated by gamma radiation, with doses between 0 and 16Gy. Cell suspensions were irradiated in PBS by a {sup 60}Co source in doses between 0 and 16Gy, and incubated by 48h. Then cell membranes were lysed in the presence of SYTOX Green and EMA dyes, preserving nuclear membranes. Using this method, EMA-stained nuclei could be discriminated as those derived from dead cells, and SYTOX nuclei and micronuclei could be quantified. Micronuclei percentages were found to be proportional to dose, (R2 = 0.997). Only the highest dose (16Gy) could induce statistically significant increase of MN (p<0.0001), although cultures irradiated by 4, 8 and 16Gy showed significant increase of dead cell fractions. Calculation of the nuclei-to-beads ratio showed that 8 and 16Gy could reduce melanoma cell proliferation. Results showed that although cell death and loss of proliferative capacity could be observed on cultures irradiated at lower doses, genotoxic damage could be induced only on a higher dose. Resistance to radiation-induced genotoxicity could explain a relatively high radio resistance of melanoma tumors. (author)

  9. Curcumin inhibited growth of human melanoma A375 cells via inciting oxidative stress.

    Science.gov (United States)

    Liao, Wang; Xiang, Wei; Wang, Fei-Fei; Wang, Rui; Ding, Yan

    2017-11-01

    Curcumin, a polyphenol compound, possesses potent pharmacological properties in preventing cancers, which make it as a potential anti-cancer mediator. However, it is still unknown that whether Curcumin induced melanoma A375 cell was associated with oxidative stress. Here, we firstly found a fascinating result that Curcumin could reduce the proliferation and induced apoptosis of human melanoma A375 cells. Meanwhile, IC 50 of Curcumin on A375 cells is 80μM at 48h. In addition, Curcumin caused oxidative stress through inducing further ROS burst, decreasing GSH, and wrecking mitochondria membrane potential (MMP), which were reversed by ROS inhibitor N-acetylcysteine (NAC). Moreover, MMP disruption led to the release of Cytochrome c from mitochondria and subsequently led to intracellular apoptosis. Furthermore, we found that ROS-dependent HIF-1α and its downstream proteins also play an important role on Curcumin induced apoptosis. In conclusion, our results shed new lights on the therapy of melanoma that Curcumin may be a promising candidate. Copyright © 2017. Published by Elsevier Masson SAS.

  10. Fisetin inhibits human melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways.

    Directory of Open Access Journals (Sweden)

    Harish Chandra Pal

    Full Text Available Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60-70% of malignant melanomas. The BRAF-MEK-ERK (MAPK pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5-20 µM resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059 or of NFκB (caffeic acid phenethyl ester also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin and an increase in epithelial markers (E-cadherin and desmoglein. Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that

  11. Fisetin Inhibits Human Melanoma Cell Invasion through Promotion of Mesenchymal to Epithelial Transition and by Targeting MAPK and NFκB Signaling Pathways

    Science.gov (United States)

    Pal, Harish Chandra; Sharma, Samriti; Strickland, Leah Ray; Katiyar, Santosh K.; Ballestas, Mary E.; Athar, Mohammad; Elmets, Craig A.; Afaq, Farrukh

    2014-01-01

    Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK) signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60–70% of malignant melanomas. The BRAF-MEK-ERK (MAPK) pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5–20 µM) resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059) or of NFκB (caffeic acid phenethyl ester) also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin) and an increase in epithelial markers (E-cadherin and desmoglein). Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that fisetin

  12. Intracellular coexpression of CXC- and CC– chemokine receptors and their ligands in human melanoma cell lines and dynamic variations after xenotransplantation

    International Nuclear Information System (INIS)

    Pinto, Sandra; Martínez-Romero, Alicia; O’Connor, José-Enrique; Gil-Benso, Rosario; San-Miguel, Teresa; Terrádez, Liria; Monteagudo, Carlos; Callaghan, Robert C

    2014-01-01

    Chemokines have been implicated in tumor progression and metastasis. In melanoma, chemokine receptors have been implicated in organ selective metastasis by regulating processes such as chemoattraction, adhesion and survival. In this study we have analyzed, using flow cytometry, the systems formed by the chemokine receptors CXCR3, CXCR4, CXCR7, CCR7 and CCR10 and their ligands in thirteen human melanoma cell lines (five established from primary tumors and eight established from metastasis from different tissues). WM-115 and WM-266.4 melanoma cell lines (obtained from a primary and a metastatic melanoma respectively) were xenografted in nude mice and the tumors and cell lines derived from them were also analyzed. Our results show that the melanoma cell lines do not express or express in a low degree the chemokine receptors on their cell surface. However, melanoma cell lines show intracellular expression of all the aforementioned receptors and most of their respective ligands. When analyzing the xenografts and the cell lines obtained from them we found variations in the intracellular expression of chemokines and chemokine receptors that differed between the primary and metastatic cell lines. However, as well as in the original cell lines, minute or no expression of the chemokine receptors was observed at the cell surface. Coexpression of chemokine receptors and their ligands was found in human melanoma cell lines. However, this expression is intracellular and receptors are not found at the cell membrane nor chemokines are secreted to the cell medium. The levels of expressed chemokine receptors and their ligands show dynamic variations after xenotransplantation that differ depending on the origin of the cell line (from primary tumor or from metastasis)

  13. The human homologue of Dictyostelium discoideum phg1A is expressed by human metastatic melanoma cells.

    Science.gov (United States)

    Lozupone, Francesco; Perdicchio, Maurizio; Brambilla, Daria; Borghi, Martina; Meschini, Stefania; Barca, Stefano; Marino, Maria Lucia; Logozzi, Mariantonia; Federici, Cristina; Iessi, Elisabetta; de Milito, Angelo; Fais, Stefano

    2009-12-01

    Tumour cannibalism is a characteristic of malignancy and metastatic behaviour. This atypical phagocytic activity is a crucial survival option for tumours in conditions of low nutrient supply, and has some similarities to the phagocytic activity of unicellular microorganisms. In fact, Dictyostelium discoideum has been used widely as a model to study phagocytosis. Recently, phg1A has been described as a protein that is primarily involved in the phagocytic process of this microorganism. The closest human homologue to phg1A is transmembrane 9 superfamily protein member 4 (TM9SF4). Here, we report that TM9SF4 is highly expressed in human malignant melanoma cells deriving from metastatic lesions, whereas it is undetectable in healthy human tissues and cells. TM9SF4 is predominantly expressed in acidic vesicles of melanoma cells, in which it co-localizes with the early endosome antigens Rab5 and early endosome antigen 1. TM9SF4 silencing induced marked inhibition of cannibal activity, which is consistent with a derangement of intracellular pH gradients, with alkalinization of acidic vesicles and acidification of the cell cytosol. We propose TM9SF4 as a new marker of malignancy, representing a potential new target for anti-tumour strategies with a specific role in tumour cannibalism and in the establishment of a metastatic phenotype.

  14. Proteomic analysis of proton beam irradiated human melanoma cells.

    Directory of Open Access Journals (Sweden)

    Sylwia Kedracka-Krok

    Full Text Available Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH, (ii cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70, (iii cell metabolism (TIM, GAPDH, VCP, and (iv cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B. A substantial decrease (2.3 x was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma.

  15. Cisplatin-induced apoptosis inhibits autophagy, which acts as a pro-survival mechanism in human melanoma cells.

    Science.gov (United States)

    Del Bello, Barbara; Toscano, Marzia; Moretti, Daniele; Maellaro, Emilia

    2013-01-01

    The interplay between a non-lethal autophagic response and apoptotic cell death is still a matter of debate in cancer cell biology. In the present study performed on human melanoma cells, we investigate the role of basal or stimulated autophagy in cisplatin-induced cytotoxicity, as well as the contribution of cisplatin-induced activation of caspases 3/7 and conventional calpains. The results show that, while down-regulating Beclin-1, Atg14 and LC3-II, cisplatin treatment inhibits the basal autophagic response, impairing a physiological pro-survival response. Consistently, exogenously stimulated autophagy, obtained with trehalose or calpains inhibitors (MDL-28170 and calpeptin), protects from cisplatin-induced apoptosis, and such a protection is reverted by inhibiting autophagy with 3-methyladenine or ATG5 silencing. In addition, during trehalose-stimulated autophagy, the cisplatin-induced activation of calpains is abrogated, suggesting the existence of a feedback loop between the autophagic process and calpains. On the whole, our results demonstrate that in human melanoma cells autophagy may function as a beneficial stress response, hindered by cisplatin-induced death mechanisms. In a therapeutic perspective, these findings suggest that the efficacy of cisplatin-based polychemotherapies for melanoma could be potentiated by inhibitors of autophagy.

  16. H Ferritin Gene Silencing in a Human Metastatic Melanoma Cell Line: A Proteomic Analysis

    DEFF Research Database (Denmark)

    Di Sanzo, Maddalena; Gaspari, Marco; Misaggi, Roberta

    2011-01-01

    Ferritin, the major intracellular iron-storage protein, is made of 24 subunits of two types, H and L. Besides regulating intracellular iron homeostasis, it has been found that ferritin, in particular the H subunit (FHC), is involved in different biological events such as cell differentiation...... and pathologic states (i.e., neurodegeneration and cancer). This study is aimed at investigating the whole-cell proteome of FHC-expressing and sh-RNA-silenced human metastatic melanoma cells (MM07(m)) in the attempt to identify and classify the highest number of proteins directly or indirectly controlled...... of H ferritin signaling pathways and lend support to the hypothesis that specific targeting of this gene might be an attractive and potentially effective strategy for the management of metastatic melanoma....

  17. The molecule HLA-G: radiosensitivity indicator of a human melanoma cell line

    International Nuclear Information System (INIS)

    Michelin, S.C.; Gallegos, C.E.; Dubner, D.L.; Baffa Trasci, S.; Favier, B.; Carosella, E.D.

    2010-01-01

    The physiological and pathological relevance of the HLA-G molecule (non-classical Human Leukocyte Antigen) has been motif of important research studies. Its distribution is restricted to only few tissues. HLA-G takes part in the implantation after in vitro fecundation, in graft tolerance, in auto-immune diseases, and in tumoral immune escape. Its expression has been demonstrated in more than 30% of tumors of 15 different histological types. Gamma radiation modulates HLA-G expression at the cell surface. However, its involvement in tumoral radiosensitivity has not been demonstrated yet. The objective of this work was to demonstrate if the HLA-G molecule intervenes in the radiosensibility of human melanoma cells cultured in vitro. For this purpose we used the human melanoma cell line M8, which was transfected with the plasmid containing the HLA-G gene (M8 HLA-G+) or with the plasmid alone, without the HLA-G gene (M8 pc DNA). Both cell lines were irradiated with 0, 2, 5 y 10 Gy and in all cases survival frequency was determined with the clonogenic assay. We observed a significant reduction in M8 HLA-G+ survival with respect to M8 pc DNA for all irradiation doses and was independent of doses. These results, if confirmed in other histological types, could postulate the HLA-G molecule as a tumoral radiosensitivity marker. The specific mechanism involved in the radiosensibility modification exerted by HLA-G has not been elucidated yet. (authors) [es

  18. The effects of a cyclooxygenase-2 (COX-2 expression and inhibition on human uveal melanoma cell proliferation and macrophage nitric oxide production

    Directory of Open Access Journals (Sweden)

    Marshall Jean-Claude

    2007-01-01

    Full Text Available Abstract Background Cyclooxygenase-2 (COX-2 expression has previously been identified in uveal melanoma although the biological role of COX-2 in this intraocular malignancy has not been elucidated. This study aimed to investigate the effect of a COX-2 inhibitor on the proliferation rate of human uveal melanoma cells, as well as its effect on the cytotoxic response of macrophages. Methods Human uveal melanoma cell lines were transfected to constitutively express COX-2 and the proliferative rate of these cells using two different methods, with and without the addition of Amfenac, was measured. Nitric oxide production by macrophages was measured after exposure to melanoma-conditioned medium from both groups of cells as well as with and without Amfenac, the active metabolite of Nepafenac. Results Cells transfected to express COX-2 had a higher proliferation rate than those that did not. The addition of Amfenac significantly decreased the proliferation rate of all cell lines. Nitric oxide production by macrophages was inhibited by the addition of melanoma conditioned medium, the addition of Amfenac partially overcame this inhibition. Conclusion Amfenac affected both COX-2 transfected and non-transfected uveal melanoma cells in terms of their proliferation rates as well as their suppressive effects on macrophage cytotoxic activity.

  19. Influence of 28-O-propynoylbetulin on proliferation and apoptosis of melanotic and amelanotic human melanoma cells

    Directory of Open Access Journals (Sweden)

    Anna Kaps

    2016-12-01

    Full Text Available Introduction: A relatively new approach in treatment of malignant melanoma is the use of betulin and its synthetic derivatives that have anticancer properties. The aim of the study was to determine the effect of an acetylenic derivative of betulin, 28-O-propynoylbetulin, on cell growth and apoptosis induction in human melanotic and amelanotic melanoma cells.Materials and methods: The A2058 and C32 cell lines were incubated with 28-O-propynoylbetulin (working solutions from 0.1 to 10 μg/ml. To evaluate cell proliferation, a sulforhodamine B based assay was conducted. In order to elucidate the early stages of apoptosis in both melanoma cell lines, caspase-3 activity was evaluated.Results: The administration of 28-O-propynoylbetulin at a concentration equal to or less than 1 μg/ml did not cause a statistically significant change in the cell proliferation in either melanoma cell line (compared to control, p>0.05. Higher concentrations of the compound (3 and 10 μg/ml inhibited the cell growth (in comparison to control, p<0.05. These results corresponded with caspase-3 activity results that revealed an increase of enzyme activity after 24-hour incubation with 3 and 10 μg/ml of the compound (compared to control, p<0.05.Discussion: The study revealed that 28-O-propynoylbetulin may have diverse effects on melanoma cells and could be a strong inhibitor of cell growth (C32 cells or exert a more potent proapoptotic effect (A2058 cells. These findings support the possibility of the use of EB5 in different antimelanoma approaches.

  20. c-FLIP and the NOXA/Mcl-1 axis participate in the synergistic effect of pemetrexed plus cisplatin in human choroidal melanoma cells.

    Science.gov (United States)

    Zhao, Xiaofei; Kong, Feng; Wang, Lei; Zhang, Han

    2017-01-01

    Choroidal melanoma is the most common primary malignant intraocular tumor, and very few effective therapies are available to treat it. Our study aimed to understand whether pemetrexed plus cisplatin exerts a beneficial synergistic effect in human choroidal melanoma cells and to delineate the underlying molecular mechanism. To accomplish these aims, we treated choroidal melanoma cells with pemetrexed and cisplatin and assessed cell survival with SRB and MTT assays. Proteins were detected using western blotting analysis. NOXA and CHOP were knocked down with siRNA. We found that pemetrexed or cisplatin alone inhibited survival and induced apoptosis in human choroidal melanoma cells. Furthermore, the expression levels of c-FLIP, an anti-apoptotic protein in the extrinsic apoptosis pathway, and Mcl-1, an anti-apoptotic protein in the intrinsic apoptosis pathway, were decreased by pemetrexed or cisplatin respectively, while the expression of a pro-apoptotic protein in the intrinsic apoptosis pathway, NOXA, was up-regulated. Moreover, pemetrexed or cisplatin alone increased the protein expression of the endoplasmic reticulum stress markers IRE1α, Bip and CHOP. Silencing CHOP expression reduced NOXA expression. These findings suggest that the pemetrexed or cisplatin induced intrinsic apoptosis via activation of the ER stress response. Importantly, combining the two compounds more strongly induced apoptosis. Following the cotreatment, CHOP and NOXA expression increased, while c-FLIP and Mcl-1 expression decreased, and these effects were more pronounced than when using either compound alone. This result suggests that pemetrexed and cisplatin synergistically activate ER stress response-induced apoptosis in choroidal melanoma cells. To summarize, the c-FLIP and NOXA/Mcl-1 axis participated in the synergistic effect of pemetrexed plus cisplatin in human choroidal melanoma cells. Intrinsic apoptosis was induced via activation of the ER stress response. Our study provides

  1. Ionizing radiation modulates the surface expression of human leukocyte antigen-G in a human melanoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Michelin, S.; Gallegos, C.E.; Dubner, D. [Radiopathology Laboratory, Nuclear Regulatory Authority, Buenos Aires (Argentina); Favier, B.; Carosella, E.D. [CEA, I2BM, Hopital Saint-Louis, IUH, Service de Recherches en Hemato-Immunologie, Paris (France)

    2009-07-01

    Human leukocyte antigen G (HLA-G) is a nonclassical HLA class I molecule involved in fetus protection from the maternal immune system, transplant tolerance, and viral and tumoral immune escape. Tumor-specific HLA-G expression has been described for a wide variety of malignancies, including melanomas. The aim of this study was to evaluate whether ionizing radiation (IR) could modulate the surface expression of HLA-G1 in a human melanoma cell line that expresses endogenously membrane-bound HLA-G1. For this purpose, cells were exposed to increasing doses of {gamma}-irradiation (0-20 Gy) and HLA-G1 levels at the plasma membrane were analyzed at different times postirradiation by flow cytometry. HLA-G total expression and the presence of the soluble form of HLA-G1 (sHLA-G1) in the culture medium of irradiated cells were also evaluated. IR was capable of down regulating cell surface and total HLA-G levels, with a concomitant increase of sHLA-G1 in the medium. These results could indicate that {gamma}-irradiation decreases HLA-G1 surface levels by enhancing the proteolytic cleavage of this molecule. (authors)

  2. Ionizing radiation modulates the surface expression of human leukocyte antigen-G in a human melanoma cell line

    International Nuclear Information System (INIS)

    Michelin, S.; Gallegos, C.E.; Dubner, D.; Favier, B.; Carosella, E.D.

    2009-01-01

    Human leukocyte antigen G (HLA-G) is a nonclassical HLA class I molecule involved in fetus protection from the maternal immune system, transplant tolerance, and viral and tumoral immune escape. Tumor-specific HLA-G expression has been described for a wide variety of malignancies, including melanomas. The aim of this study was to evaluate whether ionizing radiation (IR) could modulate the surface expression of HLA-G1 in a human melanoma cell line that expresses endogenously membrane-bound HLA-G1. For this purpose, cells were exposed to increasing doses of γ-irradiation (0-20 Gy) and HLA-G1 levels at the plasma membrane were analyzed at different times postirradiation by flow cytometry. HLA-G total expression and the presence of the soluble form of HLA-G1 (sHLA-G1) in the culture medium of irradiated cells were also evaluated. IR was capable of down regulating cell surface and total HLA-G levels, with a concomitant increase of sHLA-G1 in the medium. These results could indicate that γ-irradiation decreases HLA-G1 surface levels by enhancing the proteolytic cleavage of this molecule. (authors)

  3. Lebein, a Snake Venom Disintegrin, Induces Apoptosis in Human Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Manel B. Hammouda

    2016-07-01

    Full Text Available Melanoma, the most threatening form of skin cancer, has a very poor prognosis and is characterized by its very invasive and chemoresistant properties. Despite the recent promising news from the field of immunotherapy, there is an urgent need for new therapeutic approaches that are free of resistance mechanisms and side effects. Anti-neoplasic properties have been highlighted for different disintegrins from snake venom including Lebein; however, the exact effect of Lebein on melanoma has not yet been defined. In this study, we showed that Lebein blocks melanoma cell proliferation and induces a more differentiated phenotype with inhibition of extracellular signal-regulated kinase (ERK phosphorylation and microphthalmia-associated transcription factor (MITF overexpression. Melanoma cells became detached but were less invasive with upregulation of E-cadherin after Lebein exposure. Lebein induced a caspase-independent apoptotic program with apoptosis inducing factor (AIF, BCL-2-associated X protein (BAX and Bim overexpression together with downregulation of B-cell lymphoma-2 (BCL-2. It generated a distinct response in reactive oxygen species (ROS generation and p53 levels depending on the p53 cell line status (wild type or mutant. Therefore, we propose Lebein as a new candidate for development of potential therapies for melanoma.

  4. AMPK promotes survival of c-Myc-positive melanoma cells by suppressing oxidative stress.

    Science.gov (United States)

    Kfoury, Alain; Armaro, Marzia; Collodet, Caterina; Sordet-Dessimoz, Jessica; Giner, Maria Pilar; Christen, Stefan; Moco, Sofia; Leleu, Marion; de Leval, Laurence; Koch, Ute; Trumpp, Andreas; Sakamoto, Kei; Beermann, Friedrich; Radtke, Freddy

    2018-03-01

    Although c-Myc is essential for melanocyte development, its role in cutaneous melanoma, the most aggressive skin cancer, is only partly understood. Here we used the Nras Q61K INK4a -/- mouse melanoma model to show that c-Myc is essential for tumor initiation, maintenance, and metastasis. c-Myc-expressing melanoma cells were preferentially found at metastatic sites, correlated with increased tumor aggressiveness and high tumor initiation potential. Abrogation of c-Myc caused apoptosis in primary murine and human melanoma cells. Mechanistically, c-Myc-positive melanoma cells activated and became dependent on the metabolic energy sensor AMP-activated protein kinase (AMPK), a metabolic checkpoint kinase that plays an important role in energy and redox homeostasis under stress conditions. AMPK pathway inhibition caused apoptosis of c-Myc-expressing melanoma cells, while AMPK activation protected against cell death of c-Myc-depleted melanoma cells through suppression of oxidative stress. Furthermore, TCGA database analysis of early-stage human melanoma samples revealed an inverse correlation between C-MYC and patient survival, suggesting that C-MYC expression levels could serve as a prognostic marker for early-stage disease. © 2018 The Authors.

  5. Bortezomib Enhances the Antitumor Effects of Interferon-β Gene Transfer on Melanoma Cells.

    Science.gov (United States)

    Rossi, Ursula A; Finocchiaro, Liliana M E; Glikin, Gerardo C

    2017-01-01

    Malignant melanoma is a fast growing form of skin cancer with increasing global incidence. Clinically, canine malignant melanoma and human melanoma share comparable treatment-resistances, metastatic phenotypes and site selectivity. Both interferon-β (IFNβ) and bortezomib (BTZ) display inhibitory activities on melanoma cells. Here, we evaluated the cytotoxic effects of the combination of BTZ and IFNβ gene lipofection on cultured melanoma cell lines. Cell viability determined by the acid phosphatase method, cell migration mesasured by the wound healing assay, DNA fragmentation and cell cycle by flow cytometry after propidium iodide staining and reactive oxygen species (ROS) production by H2DCF-DA fluorescence. Four canine mucosal (Ak, Br, Bk and Ol) and two human dermal (A375 and SB2) melanoma cell lines were assayed. BTZ sub-pharmacological concentrations (5 nM) enhanced the cytotoxic effects of IFNβ transgene expression on melanoma cells monolayers and spheroids. The combination was also more effective than the single treatments when assayed for clonogenic survival and cell migration. The combined treatment produced a significant raise of apoptosis evidenced by DNA fragmentation as compared to either BTZ or IFNβ gene lipofection single treatments. Furthermore, BTZ significantly increased the intracellular ROS generation induced by IFNβ gene transfer in melanoma cells, an effect that was reversed by the addition of the ROS inhibitor N-acetyl-L-cystein. The present work encourages further studies about the potential of the combination of interferon gene transfer with proteasome inhibitors as a new combined therapy for malignant melanoma, both in veterinary and/or human clinical settings. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Sinclair swine melanoma

    International Nuclear Information System (INIS)

    Hook, R.R.; Berkelhammer, J.; Hamby, C.V.

    1986-01-01

    Sinclair(S-1) miniature swine spontaneously develop melanomas which have many biologic and histologic features in common with human superficial spreading melanoma. Host control of this neoplasm was indicated by the high incidence of spontaneous regression, a decrease in tumor development with age and a decrease in progressive growth of the tumor as age of tumor development increases. Immunologic mechanisms were implicated in host control by histologic observation of a mononuclear inflammatory infiltration of tumors which lead to depigmentation and fibrosis. In vitro immunologic studies revealed that leukocytes from melanoma swine were sensitized specifically to a tumor associated antigen like substance present in extracts of cutaneous melanomas and cultured swine melanoma cells and that melanoma swine leukocytes were cytotoxic for swine melanoma cells. Furthermore, these studies suggested the existence of a common cross reactive, melanoma associated antigen shared by human and swine melanomas. Antigenic analyses of swine melanomas with mouse monoclonal antibodies developed to a single swine melanoma cell culture and with rabbit antisera developed to pooled extracts of cutaneous melanomas demonstrated the presence of tumor associated antigens in swine melanoma cell culture and cutaneous melanomas. The failure of mouse monoclonal antibodies to detect antigens in cutaneous melanoma extracts and the failure of rabbit antisera to detect antigens in melanoma cell culture extracts suggested a differential in antigen expression between swine melanoma cells grown in vitro and in vivo

  7. Inactivation of HTB63 human melanoma cells by irradiation with protons and gamma rays.

    Science.gov (United States)

    Ristic-Fira, Aleksandra; Petrovic, Ivan; Todorovic, Danijela; Koricanac, Lela; Vujèic, Miroslava; Demajo, Miroslav; Sabini, Gabriella; Cirrone, Pablo; Cuttone, Giacomo

    2004-12-01

    The effects of single irradiation with gamma rays and protons on HTB63 human melanoma cell growth were compared. The exponentially growing cells were irradiated with gamma rays or protons using doses ranging from 2-20 Gy. At 48 h of post-irradiation incubation under standard conditions, cell survival and induction of apoptotic cell death were examined. The best effect of the single irradiation with gamma rays was the reduction of cell growth by up to 26% (p=0.048, irradiation vs. control), obtained using the dose of 16 Gy. The same doses of proton irradiation, having energy at the target of 22.6 MeV, significantly inhibited melanoma cell growth. Doses of 12 and 16 Gy of protons provoked growth inhibition of 48.9% (p=0.003, irradiation vs. control) and 51.2% (p=0.012, irradiation vs. control) respectively. Irradiation with 12 and 16 Gy protons, compared to the effects of the same doses of gamma rays, significantly reduced melanoma cell growth (p=0.015 and p=0.028, protons vs. gamma rays, respectively). Estimated RBEs for growth inhibition of HTB63 cells ranged from 1.02 to 1.45. The electrophoretical analyses of DNA samples and flow cytometric evaluation have shown a low percentage of apoptotic cells after both types of irradiation. The better inhibitory effect achieved by protons in contrast to gamma rays, can be explained considering specific physical properties of protons, especially taking into account the highly localized energy deposition (high LET).

  8. Radiation of different human melanoma cell lines increased expression of RHOB. Level of this tumor suppressor gene in different cell lines

    International Nuclear Information System (INIS)

    Notcovich, C.; Molinari, B.; Duran, H.; Delgado González, D.; Sánchez Crespo, R.

    2013-01-01

    Previous results of our group show that a correlation exists between intrinsic radiosensitivity of human melanoma cells and cell death by apoptosis. RhoB is a small GTPase that regulates cytoskeletal organization. Besides, is related to the process of apoptosis in cells exposed to DNA damage as radiation. Also, RhoB levels decrease in a wide variety of tumors with the tumor stage, being considered a tumor suppressor gene due to its antiproliferative and proapoptotic effect. The aim of this study was to analyze the expression of RhoB in different human melanoma cell lines in relation to melanocytes, and evaluate the effect of gamma radiation on the expression of RhoB. We used the A375, SB2 and Meljcell lines, and the derived from melanocytes Pig1. It was found for all three tumor lines RhoB expression levels significantly lower than those of Pig1 (p <0.05), as assessed by semiquantitative RT-PCR . When tumor cells were irradiated to a dose of 2Gyinduction was observed at 3 hours RhoB irradiation. RhoB expression increased in all lines relative to non-irradiated control, showing a greater induction ( p< 0.05) for the more radiosensitive line SB2, consistent with apoptosis in response to radiation. The results allow for the first time in melanoma demonstrate that RhoB, as well as in other tumor types, has a lower expression in tumor cells than their normal counterparts. Moreover, induction in the expression of RhoB in irradiated cells may be associated with the process of radiation-induced apoptosis. The modulation of RhoB could be a new tool to sensitize radioresistant melanoma. (author)

  9. PAX2 regulates ADAM10 expression and mediates anchorage-independent cell growth of melanoma cells.

    Directory of Open Access Journals (Sweden)

    Sophia Boyoung Lee

    Full Text Available PAX transcription factors play an important role during development and carcinogenesis. In this study, we investigated PAX2 protein levels in melanocytes and melanoma cells by Western Blot and immunofluorescence analysis and characterized the role of PAX2 in the pathogenesis of melanoma. In vitro we found weak PAX2 protein expression in keratinocytes and melanocytes. Compared to melanocytes increased PAX2 protein levels were detectable in melanoma cell lines. Interestingly, in tissue sections of melanoma patients nuclear PAX2 expression strongly correlated with nuclear atypia and the degree of prominent nucleoli, indicating an association of PAX2 with a more atypical cellular phenotype. In addition, with chromatin immunoprecipitation assay, PAX2 overexpression and PAX2 siRNA we present compelling evidence that PAX2 can regulate ADAM10 expression, a metalloproteinase known to play important roles in melanoma metastasis. In human tissue samples we found co-expression of PAX2 and ADAM10 in melanocytes of benign nevi and in melanoma cells of patients with malignant melanoma. Importantly, the downregulation of PAX2 by specific siRNA inhibited the anchorage independent cell growth and decreased the migratory and invasive capacity of melanoma cells. Furthermore, the downregulation of PAX2 abrogated the chemoresistance of melanoma cells against cisplatin, indicating that PAX2 expression mediates cell survival and plays important roles during melanoma progression.

  10. Cytokines and Growth Factors Expressed by Human Cutaneous Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Elias G., E-mail: george.elias@medstar.net; Hasskamp, Joanne H.; Sharma, Bhuvnesh K. [Maryland Melanoma Center, Weinberg Cancer Institute, Franklin Square Hospital Center, Baltimore, MD (United States)

    2010-05-07

    Cytokines and growth factors have biologic effects that could stimulate tumor growth, invasion and angiogenesis. The incidence of 24 factors was investigated in 25 cultured human melanoma cell lines and in 62 fixed tissues at different stages of the disease. Over 80% of the human melanoma cell lines expressed TGF-β, IL-8, IL-6, VEGF, PDGF-AA and OPN. Significantly higher TGF-β, IGF-1 and IL-15 were determined in primary lesions compared to distant metastases by immunohistochemistry. Illustrating the complexity of the milieu of the tumor microenvironment, some of these factors may have to be considered in targeted therapy.

  11. Melanoma Cells Can Adopt the Phenotype of Stromal Fibroblasts and Macrophages by Spontaneous Cell Fusion in Vitro.

    Science.gov (United States)

    Kemény, Lajos V; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B

    2016-06-02

    After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells' nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma-stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments.

  12. A natural product-like JAK2/STAT3 inhibitor induces apoptosis of malignant melanoma cells.

    Directory of Open Access Journals (Sweden)

    Ke-Jia Wu

    Full Text Available The JAK2/STAT3 signaling pathway plays a critical role in tumorigenesis, and has been suggested as a potential molecular target for anti-melanoma therapeutics. However, few JAK2 inhibitors were being tested for melanoma therapy. In this study, eight amentoflavone analogues were evaluated for their activity against human malignant melanoma cells. The most potent analogue, compound 1, inhibited the phosphorylation of JAK2 and STAT3 in human melanoma cells, but had no discernible effect on total JAK2 and STAT3 levels. A cellular thermal shift assay was performed to identify that JAK2 is engaged by 1 in cell lysates. Moreover, compound 1 showed higher antiproliferative activity against human melanoma A375 cells compared to a panel of cancer and normal cell lines. Compound 1 also activated caspase-3 and cleaved PARP, which are markers of apoptosis, and suppressed the anti-apoptotic Bcl-2 level. Finally, compound 1 induced apoptosis in 80% of treated melanoma cells. To our knowledge, compound 1 is the first amentoflavone-based JAK2 inhibitor to be investigated for use as an anti-melanoma agent.

  13. Extract of Cordyceps militaris inhibits angiogenesis and suppresses tumor growth of human malignant melanoma cells.

    Science.gov (United States)

    Ruma, I Made Winarsa; Putranto, Endy Widya; Kondo, Eisaku; Watanabe, Risayo; Saito, Ken; Inoue, Yusuke; Yamamoto, Ken-Ichi; Nakata, Susumu; Kaihata, Masaji; Murata, Hitoshi; Sakaguchi, Masakiyo

    2014-07-01

    Angiogenesis is essential for tumor development and metastasis. Among several angiogenic factors, vascular endothelial growth factor receptor (VEGF) is important for tumor-derived angiogenesis and commonly overexpressed in solid tumors. Thus, many antitumor strategies targeting VEGF have been developed to inhibit cancer angiogenesis, offering insights into the successful treatment of solid cancers. However, there are a number of issues such as harmful effects on normal vascularity in clinical trials. Taking this into consideration, we employed Cordyceps militaris as an antitumor approach due to its biological safety in vivo. The herbal medicinal mushroom Cordyceps militaris has been reported to show potential anticancer properties including anti-angiogenic capacity; however, its concrete properties have yet to be fully demonstrated. In this study, we aimed to elucidate the biological role of Cordyceps militaris extract in tumor cells, especially in regulating angiogenesis and tumor growth of a human malignant melanoma cell line. We demonstrated that Cordyceps militaris extract remarkably suppressed tumor growth via induction of apoptotic cell death in culture that links to the abrogation of VEGF production in melanoma cells. This was followed by mitigation of Akt1 and GSK-3β activation, while p38α phosphorylation levels were increased. Extract treatment in mouse model xenografted with human melanoma cells resulted in a dramatic antitumor effect with down-regulation of VEGF expression. The results suggest that suppression of tumor growth by Cordyceps militaris extract is, at least, mediated by its anti-angiogenicity and apoptosis induction capacities. Cordyceps militaris extract may be a potent antitumor herbal drug for solid tumors.

  14. Hypoxia-induced resistance to doxorubicin and methotrexate in human melanoma cell lines in vitro.

    Science.gov (United States)

    Sanna, K; Rofstad, E K

    1994-07-15

    Rodent cell lines can develop resistance to doxorubicin and methotrexate during hypoxic stress. This has so far not been observed in human tumor cell lines. The purpose of our communication is to show that doxorubicin and methotrexate resistance can also develop in human melanoma cells during exposure to hypoxia. Four cell lines (BEX-c, COX-c, SAX-c, WIX-c) have been studied. Cells were exposed to hypoxia (O2 concentration WIX-c. BEX-c and SAX-c were sensitive to methotrexate without hypoxia pre-treatment, whereas COX-c and WIX-c were resistant initially. Hypoxia-induced drug resistance was present immediately after reoxygenation and tended to decrease with time but remained statistically significant even 42 hr after reoxygenation.

  15. Characterization of the melanoma brain metastatic niche in mice and humans

    International Nuclear Information System (INIS)

    Amit, Moran; Laider-Trejo, Leonor; Shalom, Vardit; Shabtay-Orbach, Ayelet; Krelin, Yakov; Gil, Ziv

    2013-01-01

    Brain metastases occur in 15% of patients with melanoma and are associated with a dismal prognosis. Here, we investigate the architectural phenotype and stromal reaction of melanoma brain metastasis in mice and humans. A syngeneic, green fluorescence protein (GFP)-expressing murine B16-F1 melanoma clone was introduced via intracardiac injection, and was examined in vivo in comparison with human specimens. Immunofluorescence analyses of the brain metastases revealed that F4/80 + macrophages/microglia were most abundant at the tumor front, but rare in its core, where they were found only around blood vessels (P = 0.01). Similar pattern of infiltration was found in CD3 + T cells (P < 0.01). Infiltrating T cells were prominently CD4 + compared with CD8 + T cells (P < 0.001). Blood vessels (CD31 + ) were less abundant at the tumor front than in its center (12 ± 1 vs. 4 ± 0.6 vessels per high-power field [HPF], P < 0.001). In contrast, there were few vessels at the tumor front, but their diameter was significantly larger at the front (8236 μm 2 vs. 4617 μm 2 average cross-sectional area, P < 0.005). This is the first comparative analysis of melanoma brain metastases showing similar stromal reaction in murine models and human specimens. Our results validate the utility of this murine model of melanoma brain metastases for investigating the mechanism of the human disease

  16. Cytokines and Growth Factors Expressed by Human Cutaneous Melanoma

    Directory of Open Access Journals (Sweden)

    Elias G. Elias

    2010-05-01

    Full Text Available Cytokines and growth factors have biologic effects that could stimulate tumor growth, invasion and angiogenesis. The incidence of 24 factors was investigated in 25 cultured human melanoma cell lines and in 62 fixed tissues at different stages of the disease. Over 80% of the human melanoma cell lines expressed TGF-β, IL-8, IL-6, VEGF, PDGF-AA and OPN. Significantly higher TGF-β, IGF-1 and IL-15 were determined in primary lesions compared to distant metastases by immunohistochemistry. Illustrating the complexity of the milieu of the tumor microenvironment, some of these factors may have to be considered in targeted therapy.

  17. Effect of radiation on the induction of cell death in melanoma cells

    International Nuclear Information System (INIS)

    Notcovich, C; Delgado Gonzalez, D; Salguero, N; Bracalente, C; Molinari, B; Duran H

    2012-01-01

    Apoptosis is one of the desired effects of radiation during tumor treatment with radiotherapy. However, cutaneous melanoma cells are highly resistant to this kind of treatment. In order to understand the impact of radiation on melanoma cells apoptosis, the aim of this study was to characterize the radiobiological response of human melanoma cells, and to study whether a correlation between intrinsic radiosensitivity and apoptosis exists. The human melanoma cell lines A375, MELJ and SB2 were gamma-irradiated ( 137 Cs) and their radiosensitivity was evaluated through the α parameter and surviving fraction at 2 Gy (SF2) of a clonogenic assay, adjusted to the Linear-Quadratic (LQ) survival model. MELJ resulted the most radioresistant (α= 0,150±0,034 SF2= 0,71), while A375 and SB2 were the most sensitive (α=0,45±0,028 SF2=0,29 and α=0,41±0,004 SF2=0,21 respectively). Apoptotic process was evaluated at 0, 2, 6, 24 and 48 hs post irradiation at 2 and 4 Gy. Nuclear morphology was analyzed by Hoechst staining, and PARP-1 cleavage by western blot. The three cell lines nucleus with apoptotic morphology were found, being A375 and SB2 percentage of apoptotic nucleus higher than MELJ (p<0.01%). Besides, PARP-1 western blot showed for MEL-J a low presence of the cleaved forms (apoptosis indicator) compared to A375 and SB2 cell lines. Our results indicate that MELJ, the most radioresistant cell line in this study, is the less radiation induced apoptotic, demonstrating a correlation between cellular intrinsic radiosensitivity and apoptosis. Understanding melanoma radioresistance mechanism becomes extremely important in the search of new therapeutic targets that allow cell sensitization to radiotherapy (author)

  18. Expression and migratory analysis of 5 human uveal melanoma cell lines for CXCL12, CXCL8, CXCL1, and HGF

    Directory of Open Access Journals (Sweden)

    Di Cesare Sebastian

    2007-01-01

    Full Text Available Abstract Background The aim of this study was to characterize the presence and roles of CXCL12, CXCL8, CXCL1, and HGF in five human uveal melanoma cell lines, using different methods, in order to ascertain their significance in this disease. Methods Five human uveal melanoma cell lines (92.1, SP6.5, MKT-BR, OCM-1, and UW-1 of known proliferative, invasive, and metastatic potential were used in this experiment. A migration assay was used in order to assess the responsiveness of each cell line towards the four chosen chemotactic factors. Immunohistochemistry was then performed for all five cell lines (cytospins using antibodies directed toward CXCL1, CXCL8 and their receptors CXCR2 and CXCR1 respectively. Quantitative real-time PCR was then performed on all five cell lines in order to establish the presence of these four chemotactic factors. Results All five human uveal melanoma cell lines migrated towards the four chosen chemotactic factors at a level greater than that of the negative control. Chemokines CXCL1 and CXCL8 resulted in the greatest number of migrating cells in all five of our cell lines. Immunohistochemistry confirmed the expression of CXCL1, CXCL8, and their receptors CXCR2 and CXCR1 in all five of the cell lines. Quantitative real-time PCR results established expression of CXCL8, CXCL1, and HGF in all 5 cell lines tested. CXCL1 and CXCL8 are highly expressed in SP6.5 and UW-1. None of the five cell lines expressed any detectable levels of CXCL12. Conclusion The migratory ability of the 5 human uveal melanoma cell lines was positively influenced by the four chemotactic factors tested, namely CXCL12, CXCL8, CXCL1, and HGF. Self-expression of chemotactic factors CXCL8, CXCL1, and HGF may indicate an autocrine system, which perhaps contributes to the cells' metastatic ability in vivo.

  19. High-throughput miRNA profiling of human melanoma blood samples

    Directory of Open Access Journals (Sweden)

    Rass Knuth

    2010-06-01

    Full Text Available Abstract Background MicroRNA (miRNA signatures are not only found in cancer tissue but also in blood of cancer patients. Specifically, miRNA detection in blood offers the prospect of a non-invasive analysis tool. Methods Using a microarray based approach we screened almost 900 human miRNAs to detect miRNAs that are deregulated in their expression in blood cells of melanoma patients. We analyzed 55 blood samples, including 20 samples of healthy individuals, 24 samples of melanoma patients as test set, and 11 samples of melanoma patients as independent validation set. Results A hypothesis test based approch detected 51 differentially regulated miRNAs, including 21 miRNAs that were downregulated in blood cells of melanoma patients and 30 miRNAs that were upregulated in blood cells of melanoma patients as compared to blood cells of healthy controls. The tets set and the independent validation set of the melanoma samples showed a high correlation of fold changes (0.81. Applying hierarchical clustering and principal component analysis we found that blood samples of melanoma patients and healthy individuals can be well differentiated from each other based on miRNA expression analysis. Using a subset of 16 significant deregulated miRNAs, we were able to reach a classification accuracy of 97.4%, a specificity of 95% and a sensitivity of 98.9% by supervised analysis. MiRNA microarray data were validated by qRT-PCR. Conclusions Our study provides strong evidence for miRNA expression signatures of blood cells as useful biomarkers for melanoma.

  20. Biological activity and binding of estradiol to SK-Mel 23 human melanoma cells

    Directory of Open Access Journals (Sweden)

    Sarti M.S.M.V.

    2004-01-01

    Full Text Available Patients expressing estradiol receptors in melanoma cells have been reported to have a better prognosis. We therefore decided to investigate the in vitro effects of ß-estradiol and tamoxifen on the growth and tyrosinase activity of SK-Mel 23 human melanoma cells. Twenty-four-hour treatment with 0.4 nM ß-estradiol inhibited cell proliferation in 30% (0.70 ± 0.03 x 10(5 cells and increased tyrosinase activity in 50% (7130.5 ± 376.5 cpm/10(5 cells, as compared to untreated cells (1.0 ± 0.05 x 10(5 cells and 4769 ± 25.5 cpm/10(5 cells, respectively. Both responses were completely (100% blocked by 1 µM tamoxifen. Higher concentrations (up to 1.6 nM or longer treatments (up to 72 h did not result in a larger effect of the hormone on proliferation or tyrosinase activity. Competition binding assays demonstrated the presence of binding sites to [2,4,6,7-³H]-ß-estradiol, and that the tritiated analogue was displaced by the unlabeled hormone (1 nM to 100 µM, Kd = 0.14 µM, maximal displacement of 93% or by 10 µM tamoxifen (displacement of 60%. ß-estradiol also increased the phosphorylated state of two proteins of 16 and 46 kDa, after 4-h treatment, as determined by Western blot. The absorbance of each band was 1.9- and 4-fold the controls, respectively, as determined with Image-Pro Plus software. Shorter incubation periods with ß-estradiol did not enhance phosporylation; after 6-h treatment with the hormone, the two proteins returned to the control phosphorylation levels. The growth inhibition promoted by estradiol may explain the better prognosis of melanoma-bearing women as compared to men, and open new perspectives for drug therapy.

  1. Radiosensitizing effect of RHOB protein in melanoma cells

    International Nuclear Information System (INIS)

    Notcovich, C.; Grissi, C.; Sánchez Crespo, R.; Delgado, D.C.; Molinari, B.; Ibañez, I.L.; Durán, H.

    2015-01-01

    Melanoma cells are highly resistant to chemo or radiotherapy. DNA damage agents such as ionizing radiation induce apoptosis involving RhoB protein. In a great variety of tumors the levels of this protein decrease along tumor progression. RhoB is considered a tumor suppressor gene due to its antiproliferative and proapoptotic effect. Considering the aforementioned, the aim of this study was to characterize the radiobiological response of different human melanoma cell lines, and to evaluate the possible correlation between RhoB expression and radiosensitivity. The human melanoma cell lines A375, MELJ and SB2 were gamma-irradiated ( 137 Cs). Survival curves were obtained by clonogenic assay and fitted to the Linear-Quadratic (LQ) model. Radiosensitivity was evaluated by surviving fraction at 2 Gy (SF2). Results showed that MELJ was significantly more radioresistant (SF2=0.71) than A375 and SB2 (0.29 and 0.21 respectively. Expression levels of RhoB, evaluated by western blot, increased in all lines vs. non-irradiated control. SB2, the most radiosensitive cells, showed a greater induction (p<0.05) of RhoB. Finally, to study whether RhoB has a radiosensitizing effect, these cell lines were stably transfected with a wild type RhoB construction, a constitutively active RhoB mutant V14, or with the empty plasmid as control. For all cell lines higher expression level of this protein was found in RhoB or V14 transfected cells (p<0.05). Sensitization was evaluated by SF2. Significant radiosensitization was demonstrated in clones derived from A375 and SB2 ((p<0.05), while for MELJ cells, radio-sensitization was only found in clones overexpressing V14. In conclusion, the increase of RhoB in melanoma cell lines, either by radiation or transfection has a radiosensitizing effect. Thus, we propose RhoB modulation as a potential therapeutic tool to improve the radiation response of radioresistant melanoma. (authors)

  2. 3'-Hydroxy-3,4'-dimethoxyflavone blocks tubulin polymerization and is a potent apoptotic inducer in human SK-MEL-1 melanoma cells.

    Science.gov (United States)

    Estévez-Sarmiento, Francisco; Said, Mercedes; Brouard, Ignacio; León, Francisco; García, Celina; Quintana, José; Estévez, Francisco

    2017-11-01

    Flavonoids are naturally occurring polyphenolic compounds and are among the most promising anticancer agents. A series of flavonols and their 3-methyl ether derivatives were synthesized and assessed for cytotoxicity. It was found that 3'-hydroxy-3,4'-dimethoxyflavone (flavonoid 7a) displayed strong cytotoxicity against human SK-MEL-1 melanoma cells and blocked tubulin polymerization, but had no significant cytotoxic effects against quiescent or proliferating human peripheral blood mononuclear cells. Our analyses showed that flavonoid 7a induces G 2 -M cell cycle arrest and apoptosis in melanoma cells which is associated with cytochrome c release and activation of both extrinsic and intrinsic apoptotic pathways of cell death. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    International Nuclear Information System (INIS)

    Rappa, Germana; Mercapide, Javier; Anzanello, Fabio; Le, Thuc T.; Johlfs, Mary G.; Fiscus, Ronald R.; Wilsch-Bräuninger, Michaela; Corbeil, Denis; Lorico, Aurelio

    2013-01-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤40 nm; intermediates ∼40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. - Highlights: ► First report of release of prominin-1–containing microvesicles from cancer cells. ► Pro-metastatic role of prominin-1–containing microvesicles in

  4. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Rappa, Germana [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); College of Pharmacy, Roseman University of Health Sciences, Henderson, NV 89104 (United States); Mercapide, Javier; Anzanello, Fabio [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); Le, Thuc T. [Nevada Cancer Institute, Las Vegas, NV 89135 (United States); Johlfs, Mary G. [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); Center for Diabetes and Obesity Prevention, Treatment, Research and Education, Roseman University of Health Sciences, Henderson, NV 89104 (United States); Fiscus, Ronald R. [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); College of Pharmacy, Roseman University of Health Sciences, Henderson, NV 89104 (United States); Center for Diabetes and Obesity Prevention, Treatment, Research and Education, Roseman University of Health Sciences, Henderson, NV 89104 (United States); Wilsch-Bräuninger, Michaela [Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden (Germany); Corbeil, Denis [Tissue Engineering Laboratories (BIOTEC) and DFG Research Center and Cluster of Excellence for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Tatzberg 47–49, 01307 Dresden, Germany Technische Universitat Dresden, Dresden (Germany); Lorico, Aurelio, E-mail: alorico@roseman.edu [Cancer Research Program, Roseman University of Health Sciences, 10530 Discovery Drive. Las Vegas, NV 89135 (United States); College of Pharmacy, Roseman University of Health Sciences, Henderson, NV 89104 (United States)

    2013-04-01

    Prominin-1 (CD133) is the first identified gene of a novel class of pentaspan membrane glycoproteins. It is expressed by various epithelial and non-epithelial cells, and notably by stem and cancer stem cells. In non-cancerous cells such as neuro-epithelial and hematopoietic stem cells, prominin-1 is selectively concentrated in plasma membrane protrusions, and released into the extracellular milieu in association with small vesicles. Previously, we demonstrated that prominin-1 contributes to melanoma cells pro-metastatic properties and suggested that it may constitute a molecular target to prevent prominin-1-expressing melanomas from colonizing and growing in lymph nodes and distant organs. Here, we report that three distinct pools of prominin-1 co-exist in cultures of human FEMX-I metastatic melanoma. Morphologically, in addition to the plasma membrane localization, prominin-1 is found within the intracellular compartments, (e.g., Golgi apparatus) and in association with extracellular membrane vesicles. The latter prominin-1–positive structures appeared in three sizes (small, ≤40 nm; intermediates ∼40–80 nm, and large, >80 nm). Functionally, the down-regulation of prominin-1 in FEMX-I cells resulted in a significant reduction of number of lipid droplets as observed by coherent anti-Stokes Raman scattering image analysis and Oil red O staining, and surprisingly in a decrease in the nuclear localization of beta-catenin, a surrogate marker of Wnt activation. Moreover, the T-cell factor/lymphoid enhancer factor (TCF/LEF) promoter activity was 2 to 4 times higher in parental than in prominin-1-knockdown cells. Collectively, our results point to Wnt signaling and/or release of prominin-1–containing membrane vesicles as mediators of the pro-metastatic activity of prominin-1 in FEMX-I melanoma. - Highlights: ► First report of release of prominin-1–containing microvesicles from cancer cells. ► Pro-metastatic role of prominin-1–containing microvesicles in

  5. The fragile X mental retardation protein regulates tumor invasiveness-related pathways in melanoma cells.

    Science.gov (United States)

    Zalfa, Francesca; Panasiti, Vincenzo; Carotti, Simone; Zingariello, Maria; Perrone, Giuseppe; Sancillo, Laura; Pacini, Laura; Luciani, Flavie; Roberti, Vincenzo; D'Amico, Silvia; Coppola, Rosa; Abate, Simona Osella; Rana, Rosa Alba; De Luca, Anastasia; Fiers, Mark; Melocchi, Valentina; Bianchi, Fabrizio; Farace, Maria Giulia; Achsel, Tilmann; Marine, Jean-Christophe; Morini, Sergio; Bagni, Claudia

    2017-11-16

    The fragile X mental retardation protein (FMRP) is lacking or mutated in patients with the fragile X syndrome (FXS), the most frequent form of inherited intellectual disability. FMRP affects metastasis formation in a mouse model for breast cancer. Here we show that FMRP is overexpressed in human melanoma with high Breslow thickness and high Clark level. Furthermore, meta-analysis of the TCGA melanoma data revealed that high levels of FMRP expression correlate significantly with metastatic tumor tissues, risk of relapsing and disease-free survival. Reduction of FMRP in metastatic melanoma cell lines impinges on cell migration, invasion and adhesion. Next-generation sequencing in human melanoma cells revealed that FMRP regulates a large number of mRNAs involved in relevant processes of melanoma progression. Our findings suggest an association between FMRP levels and the invasive phenotype in melanoma and might open new avenues towards the discovery of novel therapeutic targets.

  6. The use of gamma-irradiation and ultraviolet-irradiation in the preparation of human melanoma cells for use in autologous whole-cell vaccines

    International Nuclear Information System (INIS)

    Deacon, Donna H; Slingluff, Craig L Jr; Hogan, Kevin T; Swanson, Erin M; Chianese-Bullock, Kimberly A; Denlinger, Chadrick E; Czarkowski, Andrea R; Schrecengost, Randy S; Patterson, James W; Teague, Mark W

    2008-01-01

    Human cancer vaccines incorporating autologous tumor cells carry a risk of implantation and subsequent metastasis of viable tumor cells into the patient who is being treated. Despite the fact that the melanoma cell preparations used in a recent vaccine trial (Mel37) were gamma-irradiated (200 Gy), approximately 25% of the preparations failed quality control release criteria which required that the irradiated cells incorporate 3 H-thymidine at no more than 5% the level seen in the non-irradiated cells. We have, therefore, investigated ultraviolet (UV)-irradiation as a possible adjunct to, or replacement for gamma-irradiation. Melanoma cells were gamma- and/or UV-irradiated. 3 H-thymidine uptake was used to assess proliferation of the treated and untreated cells. Caspase-3 activity and DNA fragmentation were measured as indicators of apoptosis. Immunohistochemistry and Western blot analysis was used to assess antigen expression. UV-irradiation, either alone or in combination with gamma-irradiation, proved to be extremely effective in controlling the proliferation of melanoma cells. In contrast to gamma-irradiation, UV-irradiation was also capable of inducing significant levels of apoptosis. UV-irradiation, but not gamma-irradiation, was associated with the loss of tyrosinase expression. Neither form of radiation affected the expression of gp100, MART-1/MelanA, or S100. These results indicate that UV-irradiation may increase the safety of autologous melanoma vaccines, although it may do so at the expense of altering the antigenic profile of the irradiated tumor cells

  7. Imaging human melanoma using a novel Tc-99m-labeled lactam bridge-cyclized alpha-MSH peptide.

    Science.gov (United States)

    Liu, Liqin; Xu, Jingli; Yang, Jianquan; Feng, Changjian; Miao, Yubin

    2016-10-01

    In this study, the human melanoma targeting property of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex {hydrazinonicotinamide-8-aminooctanoic acid-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2} was determined in M21 human melanoma-xenografts to demonstrate its potential for human melanoma imaging. The IC50 value of HYNIC-AocNle-CycMSHhex was 0.48±0.01nM in M21 human melanoma cells (1281receptors/cell). The M21 human melanoma uptake of (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex was 4.03±1.25, 3.26±1.23 and 3.36±1.48%ID/g at 0.5, 2 and 4h post-injection, respectively. Approximately 92% of injected dose cleared out the body via urinary system at 2h post-injection. (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex showed high tumor/blood, tumor/muscle and tumor/skin uptake ratios after 2h post-injection. The M21 human melanoma-xenografted tumor lesions were clearly visualized by SPECT/CT using (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex as an imaging probe at 2h post-injection. Overall, (99m)Tc(EDDA)-HYNIC-AocNle-CycMSHhex exhibited favorable human melanoma imaging property, highlighting its potential as an imaging probe for human metastatic melanoma detection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity.

    Science.gov (United States)

    De Milito, Angelo; Canese, Rossella; Marino, Maria Lucia; Borghi, Martina; Iero, Manuela; Villa, Antonello; Venturi, Giulietta; Lozupone, Francesco; Iessi, Elisabetta; Logozzi, Mariantonia; Della Mina, Pamela; Santinami, Mario; Rodolfo, Monica; Podo, Franca; Rivoltini, Licia; Fais, Stefano

    2010-07-01

    Metastatic melanoma is associated with poor prognosis and still limited therapeutic options. An innovative treatment approach for this disease is represented by targeting acidosis, a feature characterizing tumor microenvironment and playing an important role in cancer malignancy. Proton pump inhibitors (PPI), such as esomeprazole (ESOM) are prodrugs functionally activated by acidic environment, fostering pH neutralization by inhibiting proton extrusion. We used human melanoma cell lines and xeno-transplated SCID mice to provide preclinical evidence of ESOM antineoplastic activity. Human melanoma cell lines, characterized by different mutation and signaling profiles, were treated with ESOM in different pH conditions and evaluated for proliferation, viability and cell death. SCID mice engrafted with human melanoma were used to study ESOM administration effects on tumor growth and tumor pH by magnetic resonance spectroscopy (MRS). ESOM inhibited proliferation of melanoma cells in vitro and induced a cytotoxicity strongly boosted by low pH culture conditions. ESOM-induced tumor cell death occurred via rapid intracellular acidification and activation of several caspases. Inhibition of caspases activity by pan-caspase inhibitor z-vad-fmk completely abrogated the ESOM-induced cell death. ESOM administration (2.5 mg kg(-1)) to SCID mice engrafted with human melanoma reduced tumor growth, consistent with decrease of proliferating cells and clear reduction of pH gradients in tumor tissue. Moreover, systemic ESOM administration dramatically increased survival of human melanoma-bearing animals, in absence of any relevant toxicity. These data show preclinical evidence supporting the use of PPI as novel therapeutic strategy for melanoma, providing the proof of concept that PPI target human melanoma modifying tumor pH gradients.

  9. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma

    International Nuclear Information System (INIS)

    Ungerer, Christopher; Doberstein, Kai; Buerger, Claudia; Hardt, Katja; Boehncke, Wolf-Henning; Boehm, Beate; Pfeilschifter, Josef; Dummer, Reinhard; Mihic-Probst, Daniela; Gutwein, Paul

    2010-01-01

    Research highlights: → Strong ADAM15 expression is found in normal melanocytes. → ADAM15 expression is significantly downregulated in patients with melanoma metastasis. → TGF-β can downregulate ADAM15 expression in melanoma cells. → Overexpression of ADAM15 in melanoma cells inhibits migration, proliferation and invasion of melanoma cells. → Conclusion: ADAM15 represents an tumor suppressor protein in melanoma. -- Abstract: In a mouse melanoma metastasis model it has been recently shown that ADAM15 overexpression in melanoma cells significantly reduced the number of metastatic nodules on the lung. Unfortunately, the expression of ADAM15 in human melanoma tissue has not been determined so far. In our study, we characterized the expression of ADAM15 in tissue micro-arrays of patients with primary melanoma with melanoma metastasis. ADAM15 was expressed in melanocytes and endothelial cells of benign nevi and melanoma tissue. Importantly, ADAM15 was significantly downregulated in melanoma metastasis compared to primary melanoma. We further demonstrate that IFN-γ and TGF-β downregulate ADAM15 protein levels in melanoma cells. To investigate the role of ADAM15 in melanoma progression, we overexpressed ADAM15 in melanoma cells. Importantly, overexpression of ADAM15 in melanoma cells reduced the migration, invasion and the anchorage dependent and independent cell growth of melanoma cells. In summary, the downregulation of ADAM15 plays an important role in melanoma progression and ADAM15 act as a tumorsuppressor in melanoma.

  10. ADAM15 expression is downregulated in melanoma metastasis compared to primary melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Ungerer, Christopher; Doberstein, Kai [Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt, Frankfurt am Main (Germany); Buerger, Claudia; Hardt, Katja; Boehncke, Wolf-Henning [Department of Dermatology, Clinic of the Goethe-University, Theodor-Stern-Kai, Frankfurt (Germany); Boehm, Beate [Division of Rheumatology, Goethe University, Frankfurt am Main (Germany); Pfeilschifter, Josef [Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt, Frankfurt am Main (Germany); Dummer, Reinhard [Department of Pathology, Institute of Surgical Pathology, University Hospital, Zurich (Switzerland); Mihic-Probst, Daniela [Department of Dermatology, University Hospital Zurich (Switzerland); Gutwein, Paul, E-mail: p.gutwein@med.uni-frankfurt.de [Pharmazentrum Frankfurt/ZAFES, University Hospital Goethe University Frankfurt, Frankfurt am Main (Germany)

    2010-10-22

    Research highlights: {yields} Strong ADAM15 expression is found in normal melanocytes. {yields} ADAM15 expression is significantly downregulated in patients with melanoma metastasis. {yields} TGF-{beta} can downregulate ADAM15 expression in melanoma cells. {yields} Overexpression of ADAM15 in melanoma cells inhibits migration, proliferation and invasion of melanoma cells. {yields} Conclusion: ADAM15 represents an tumor suppressor protein in melanoma. -- Abstract: In a mouse melanoma metastasis model it has been recently shown that ADAM15 overexpression in melanoma cells significantly reduced the number of metastatic nodules on the lung. Unfortunately, the expression of ADAM15 in human melanoma tissue has not been determined so far. In our study, we characterized the expression of ADAM15 in tissue micro-arrays of patients with primary melanoma with melanoma metastasis. ADAM15 was expressed in melanocytes and endothelial cells of benign nevi and melanoma tissue. Importantly, ADAM15 was significantly downregulated in melanoma metastasis compared to primary melanoma. We further demonstrate that IFN-{gamma} and TGF-{beta} downregulate ADAM15 protein levels in melanoma cells. To investigate the role of ADAM15 in melanoma progression, we overexpressed ADAM15 in melanoma cells. Importantly, overexpression of ADAM15 in melanoma cells reduced the migration, invasion and the anchorage dependent and independent cell growth of melanoma cells. In summary, the downregulation of ADAM15 plays an important role in melanoma progression and ADAM15 act as a tumorsuppressor in melanoma.

  11. Experimental research of radiogenic therapy on human melanoma

    International Nuclear Information System (INIS)

    Min Fengling; Chinese Academy of Sciences, Beijing; Zhang Hong; Li Wenjiang; Liu Bing; Zhou Qingming; Duan Xin; Zhou Guangming; Gao Qingxiang

    2006-01-01

    To investigate the effect of low dose irradiation on gene transfer efficiency and the effect of adenoviral-mediated exogenous P53 overexpression on radiosensitivity of radioresistant human melanoma cell line A375 with wild type p53, control vector, a replication deficient recombinant adenoviral vector containing a CMV promoter and green fluorescent protein (AdCMV-GFP), was used to transfect the A375 cells preirradiated with or without 1 Gy X-ray radiation. The transduction efficiency of GFP gene was determined with fluorescence microscope directly. A375 cells radiated by 1 Gy X-ray were transfected with a replication deficient recombinant adenoviral vector carrying human wild p53 were detected using flow cytometry (FCM) at different time after transfection. The radiosensitivity of A375 cells after p53 transduction was assayed by clonoy formation. The authors found that 1 Gy exposure increased the gene transfer efficiency of A375 cells. The expression of exogenous P53 was found to be 60% to 80% of transfected cells during the first three days after transduction and then declined continuously down to the control level on the day 10. The G1 cell cycle arrest was also observed after p53 gene transfer. A375 cells that were transfected with p53 showed higher sensitivity of X-ray-induced cell killing than those cells that either were transfected with the viral vector carrying a green fluorescent protein gene or were not transfected at all. Low dose ionizing radiation can improve gene transfer efficiency of A375 cells mediated by adenovirus vector. Althrough the overexpresion of exogenous P53 may not inhibit cell growth and induce apoptosis of melanoma cell line A375 in vitro, it made the tumor cells much sensitive to death by irradiation. the data suggested that p53 gene might be a potential gene for melanoma therapy and provide the experimental evidences to clinically using the combination of radiation with gene therapy on melanoma. Namely, there may be a reduction of

  12. Lansoprazole induces sensitivity to suboptimal doses of paclitaxel in human melanoma.

    Science.gov (United States)

    Azzarito, Tommaso; Venturi, Giulietta; Cesolini, Albino; Fais, Stefano

    2015-01-28

    Tumor acidity is now considered an important determinant of drug-resistance and tumor progression, and anti-acidic approaches, such as Proton Pump inhibitors (PPIs), have demonstrated promising antitumor and chemo-sensitizing efficacy. The main purpose of the present study was to evaluate the possible PPI-induced sensitization of human melanoma cells to Paclitaxel (PTX). Our results show that PTX and the PPI Lansoprazole (LAN) combination was extremely efficient against metastatic melanoma cells, as compared to the single treatments, both in vitro and in vivo. We also showed that acidity plays an important role on the anti-tumor activity of these drugs, being detrimental for PTX activity, while crucial for the synergistic effect of PTX following pretreatment with LAN, due to its nature of pro-drug needing protonation for a full activation. We obtained straightforward results in a human melanoma xenograft model combining well tolerated LAN doses with suboptimal and poorly toxic doses of PTX. With this study we provide a clear evidence that the PPI LAN may be included in new combined therapy of human melanoma together with low doses of PTX. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Involvement of Transglutaminase-2 in α-MSH-Induced Melanogenesis in SK-MEL-2 Human Melanoma Cells.

    Science.gov (United States)

    Kim, Hyun Ji; Lee, Hye Ja; Park, Mi Kyung; Gang, Kyung Jin; Byun, Hyun Jung; Park, Jeong Ho; Kim, Mi Kyung; Kim, Soo Youl; Lee, Chang Hoon

    2014-05-01

    Skin hyperpigmentation is one of the most common skin disorders caused by abnormal melanogenesis. The mechanism and key factors at play are not fully understood. Previous reports have indicated that cystamine (CTM) inhibits melanin synthesis, though its molecular mechanism in melanogenesis remains unclear. In the present study, we investigated the effect of CTM on melanin production using ELISA reader and the expression of proteins involved in melanogenesis by Western blotting, and examined the involvement of transglutaminase-2 (Tgase-2) in SK-MEL-2 human melanoma cells by gene silencing. In the results, CTM dose-dependently suppressed melanin production and dendrite extension in α-MSH-induced melanogenesis of SK-MEL-2 human melanoma cells. CTM also suppressed α-MSH-induced chemotactic migration as well as the expressions of melanogenesis factors TRP-1, TRP-2 and MITF in α-MSH-treated SK-MEL-2 cells. Meanwhile, gene silencing of Tgase-2 suppressed dendrite extension and the expressions of TRP-1 and TRP-2 in α-MSH-treated SK-MEL-2 cells. Overall, these findings suggested that CTM suppresses α-MSH-induced melanogenesis via Tgase-2 inhibition and that therefore, Tgase-2 might be a new target in hyperpigmentation disorder therapy.

  14. Naturally occurring melanomas in dogs as models for non-UV pathways of human melanomas.

    Science.gov (United States)

    Gillard, Marc; Cadieu, Edouard; De Brito, Clotilde; Abadie, Jérôme; Vergier, Béatrice; Devauchelle, Patrick; Degorce, Frédérique; Dréano, Stephane; Primot, Aline; Dorso, Laetitia; Lagadic, Marie; Galibert, Francis; Hédan, Benoit; Galibert, Marie-Dominique; André, Catherine

    2014-01-01

    Spontaneously occurring melanomas are frequent in dogs. They appear at the same localizations as in humans, i.e. skin, mucosal sites, nail matrix and eyes. They display variable behaviors: tumors at oral localizations are more frequent and aggressive than at other anatomical sites. Interestingly, dog melanomas are associated with strong breed predispositions and overrepresentation of black-coated dogs. Epidemiological analysis of 2350 affected dogs showed that poodles are at high risk of developing oral melanoma, while schnauzers or Beauce shepherds mostly developped cutaneous melanoma. Clinical and histopathological analyses were performed on a cohort of 153 cases with a 4-yr follow-up. Histopathological characterization showed that most canine tumors are intradermal and homologous to human rare morphological melanomas types - 'nevocytoid type' and 'animal type'-. Tumor cDNA sequencing data, obtained from 95 dogs for six genes, relevant to human melanoma classification, detected somatic mutations in oral melanoma, in NRAS and PTEN genes, at human hotspot sites, but not in BRAF. Altogether, these findings support the relevance of the dog model for comparative oncology of melanomas, especially for the elucidation of non-UV induced pathways. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Epigenetic regulation of the transcription factor Foxa2 directs differential elafin expression in melanocytes and melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Kyung Sook [Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Jo, Ji Yoon; Kim, Su Jin [Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Lee, Yangsoon [Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Bae, Jong Hwan [NeoPharm Co. Ltd., Daejeon 305-510 (Korea, Republic of); Chung, Young-Hwa [Department of Cogno-Mechatronics Engineering, BK21 Nanofusion Technology Team, Pusan National University, Busan 609-736 (Korea, Republic of); Koh, Sang Seok, E-mail: sskoh@kribb.re.kr [Therapeutic Antibody Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of)

    2011-04-29

    Highlights: {yields} Elafin expression is epigenetically silenced in human melanoma cells. {yields} Foxa2 expression in melanoma cells is silenced by promoter hypermethylation. {yields} Foxa2 directs activation of the elafin promoter in vivo. {yields} Foxa2 expression induces apoptosis of melanoma cells via elafin re-expression. -- Abstract: Elafin, a serine protease inhibitor, induces the intrinsic apoptotic pathway in human melanoma cells, where its expression is transcriptionally silenced. However, it remains unknown how the elafin gene is repressed in melanoma cells. We here demonstrate that elafin expression is modulated via epigenetically regulated expression of the transcription factor Foxa2. Treatment of melanoma cells with a DNA methyltransferase inhibitor induced elafin expression, which was specifically responsible for reduced proliferation and increased apoptosis. Suppression of Foxa2 transcription, mediated by DNA hypermethylation in its promoter region, was released in melanoma cells upon treatment with the demethylating agent. Luciferase reporter assays indicated that the Foxa2 binding site in the elafin promoter was critical for the activation of the promoter. Chromatin immunoprecipitation assays further showed that Foxa2 bound to the elafin promoter in vivo. Analyses of melanoma cells with varied levels of Foxa2 revealed a correlated expression between Foxa2 and elafin and the ability of Foxa2 to induce apoptosis. Our results collectively suggest that, in melanoma cells, Foxa2 expression is silenced and therefore elafin is maintained unexpressed to facilitate cell proliferation in the disease melanoma.

  16. In vitro efficiency and mechanistic role of indocyanine green as photodynamic therapy agent for human melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Mamoon, A.M.; Miller, L.; Gamal-Eldeen, A. M.; Ruppel, M. E.; Smith, R. J.; Tsang, T.; Miller, L. M.

    2009-05-02

    Photodynamic therapy (PDT) is a promising treatment for superficial cancer. However, poor therapeutic results have been reported for melanoma, due to the high melanin content. Indocyanine green (ICG) has near infrared absorption (700-800 nm) and melanins do not absorb strongly in this area. This study explores the efficiency of ICG as a PDT agent for human melanoma, and its mechanistic role in the cell death pathway. Human skin melanoma cells (Sk-Mel-28) were incubated with ICG and exposed to a low power Ti:Sapphire laser. Synchrotron-assisted Fourier transform infrared microspectroscopy and hierarchical cluster analysis were used to assess the cell damage and changes in lipid, protein, and nucleic acids. The cell death pathway was determined by analysis of cell viability and apoptosis and necrosis markers. In the cell death pathway, {sup 1}O{sub 2} generation evoked rapid multiple consequences that trigger apoptosis after laser exposure for only 15min including the release of cytochrome c, the activation of total caspases, caspase-3, and caspase-9, the inhibition of NF-{Kappa}B P65, and the enhancement of DNA fragmentation, and histone acetylation. ICG/PDT can efficiently and rapidly induce apoptosis in human melanoma cells and it can be considered as a new therapeutic approach for topical treatment of melanoma.

  17. Nestin is expressed in HMB-45 negative melanoma cells in dermal parts of nodular melanoma.

    Science.gov (United States)

    Kanoh, Maho; Amoh, Yasuyuki; Tanabe, Kenichi; Maejima, Hideki; Takasu, Hiroshi; Katsuoka, Kensei

    2010-06-01

    Nestin, a marker of neural stem cells, is expressed in the stem cells of the mouse hair follicle. The nestin-expressing hair follicle stem cells can differentiate into neurons, glia, keratocytes, smooth muscle cells and melanocytes in vitro. These pluripotent nestin-expressing stem cells are keratin 15 (K15)-negative, suggesting that they are in a relatively undifferentiated state. Recent studies suggest that the epithelial stem cells are important in tumorigenesis, and nestin expression is thought to be important in tumorigenesis. In the present study, we examined the expression of the hair follicle and neural stem cell marker nestin, as well as S-100 and HMB-45, in melanoma. Nestin immunoreactivity was observed in the HMB-45-negative melanoma cells in all five cases of amelanotic nodular melanomas. Moreover, nestin immunoreactivity was observed in the dermal parts in seven of 10 cases of melanotic nodular melanomas. Especially, nestin immunoreactivity was observed in the HMB-45-negative melanoma cells in the dermal parts of all 10 cases of HMB-45-negative amelanotic and melanotic nodular melanomas. On the other hand, nestin expression was negative in 10 of 12 cases of superficial spreading melanoma. These results suggest that nestin is an important marker of HMB-45-negative melanoma cells in the dermal parts of patients with nodular melanoma.

  18. Role of β-catenin signaling in the anti-invasive effect of the omega-3 fatty acid DHA in human melanoma cells.

    Science.gov (United States)

    Serini, Simona; Zinzi, Antonio; Ottes Vasconcelos, Renata; Fasano, Elena; Riillo, Maria Greca; Celleno, Leonardo; Trombino, Sonia; Cassano, Roberta; Calviello, Gabriella

    2016-11-01

    We previously found that docosahexaenoic acid (DHA), a dietary polyunsaturated fatty acid present at high level in fatty fish, inhibited cell growth and induced differentiation of melanoma cells in vitro by increasing nuclear β-catenin content. An anti-neoplastic role of nuclear β-catenin was suggested in melanoma, and related to the presence in the melanocyte lineage of the microphtalmia transcription factor (MITF), which interferes with the transcription of β-catenin/TCF/LEF pro-invasive target genes. In the present work we investigated if DHA could inhibit the invasive potential of melanoma cells, and if this effect could be related to DHA-induced alterations of the Wnt/β-catenin signaling, including changes in MITF expression. WM115 and WM266-4 human melanoma, and B16-F10 murine melanoma cell lines were used. Cell invasion was evaluated by Wound Healing and Matrigel transwell assays. Protein expression was analyzed by Western Blotting and β-catenin phosphorylation by immunoprecipitation. The role of MITF in the anti-invasive effect of DHA was analyzed by siRNA gene silencing. We found that DHA inhibited anchorage-independent cell growth, reduced their migration/invasion in vitro and down-regulated several Matrix Metalloproteinases (MMP: MMP-2, MT1-MMP and MMP-13), known to be involved in melanoma invasion. We related these effects to the β-catenin increased nuclear expression and PKA-dependent phosphorylation, as well as to the increased expression of MITF. The data obtained further support the potential role of dietary DHA as suppressor of melanoma progression to invasive malignancy through its ability to enhance MITF expression and PKA-dependent nuclear β-catenin phosphorylation. Copyright © 2016. Published by Elsevier Ireland Ltd.

  19. Melanoma stem cells in experimental melanoma are killed by radioimmunotherapy

    International Nuclear Information System (INIS)

    Jandl, Thomas; Revskaya, Ekaterina; Jiang, Zewei; Harris, Matthew; Dorokhova, Olena; Tsukrov, Dina; Casadevall, Arturo; Dadachova, Ekaterina

    2013-01-01

    Introduction: In spite of recently approved B-RAF inhibitors and immunomodulating antibodies, metastatic melanoma has poor prognosis and novel treatments are needed. Melanoma stem cells (MSC) have been implicated in the resistance of this tumor to chemotherapy. Recently we demonstrated in a Phase I clinical trial in patients with metastatic melanoma that radioimmunotherapy (RIT) with 188-Rhenium( 188 Re)-6D2 antibody to melanin was a safe and effective modality. Here we investigated the interaction of MSC with RIT as a possible mechanism for RIT efficacy. Methods: Mice bearing A2058 melanoma xenografts were treated with either 1.5 mCi 188 Re-6D2 antibody, saline, unlabeled 6D2 antibody or 188 Re-labeled non-specific IgM. Results: On Day 28 post-treatment the tumor size in the RIT group was 4-times less than in controls (P < 0.001). The tumors were analyzed by immunohistochemistry and FACS for two MSC markers — chemoresistance mediator ABCB5 and H3K4 demethylase JARID1B. There were no significant differences between RIT and control groups in percentage of ABCB5 or JARID1B-positive cells in the tumor population. Our results demonstrate that unlike chemotherapy, which kills tumor cells but leaves behind MSC leading to recurrence, RIT kills MSC at the same rate as the rest of tumor cells. Conclusions: These results have two main implications for melanoma treatment and possibly other cancers. First, the susceptibility of ABCB5 + and JARID1B + cells to RIT in melanoma might be indicative of their susceptibility to antibody-targeted radiation in other cancers where they are present as well. Second, specifically targeting cancer stem cells with radiolabeled antibodies to ABCB5 or JARID1B might help to completely eradicate cancer stem cells in various cancers

  20. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Goto, Yamafumi [Department of Dermatology, Shinshu University School of Medicine, Matsumoto (Japan); Takata, Minoru [Department of Dermatology, Okayama University Graduate School of Medical Dentistry and Pharmaceutical Sciences, Okayama (Japan); Turkson, James; Li, Xiaoman Shawn [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Zervos, Antonis S., E-mail: azervos@mail.ucf.edu [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States)

    2011-01-07

    Research highlights: {yields} THAP5 is a DNA-binding protein and a transcriptional repressor. {yields} THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. {yields} THAP5 induction correlates with the degree of apoptosis in melanoma cell population. {yields} THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  1. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    International Nuclear Information System (INIS)

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla; Goto, Yamafumi; Takata, Minoru; Turkson, James; Li, Xiaoman Shawn; Zervos, Antonis S.

    2011-01-01

    Research highlights: → THAP5 is a DNA-binding protein and a transcriptional repressor. → THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. → THAP5 induction correlates with the degree of apoptosis in melanoma cell population. → THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  2. Effect of Chlorogenic Acid on Melanogenesis of B16 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Hao-Rong Li

    2014-08-01

    Full Text Available Chlorogenic acid (CGA, the ester formed between caffeic acid and l-quinic acid, is a widespread phenolic compound. It is part of the human diet, found in foods such as coffee, apples, pears, etc. CGA is also was widely used in cosmetics, but the effects of CGA on melanogenesis are unknown. In this study, we analyzed the effects of CGA on cell proliferation, melanin content and tyrosinase of B16 murine melanoma cells. Additionally, the enzymatic reactions of CGA in B16 melanoma cells lytic solution were detected by UV spectrophotometry. Results showed CGA at 30 and 60 μM significantly suppresses cell proliferation. 8-MOP at 100 μM significantly promotes cell proliferation, but CGA can counter this. Incubated for 24 h, CGA (500 μM improves melanogenesis while suppressing tyrosinase activity in B16 melanoma cells or 8-methoxypsoralen (8-MOP co-incubated B16 melanoma cells. After 12 h, B16 melanoma cell treatment with CGA leads to an increase in melanin accumulation, however, after 48 h there is a decrease in melanin production which correlates broadly with a decrease in tyrosinase activity. CGA incubated with lytic solution 24 h turned brown at 37 °C. The formation of new products (with a maximum absorption at 295 nm is associated with reduction of CGA (maximum absorption at 326 nm. Therefore, CGA has its two sidesroles in melanogenesis of B16 melanoma cells. CGA is a likely a substrate of melanin, but the metabolic product(s of CGA may suppress melanogenesis in B16 melanoma cells by inhibiting tyrosinase activity.

  3. Transcriptome profiling of whole blood cells identifies PLEK2 and C1QB in human melanoma.

    Directory of Open Access Journals (Sweden)

    Yuchun Luo

    Full Text Available Developing analytical methodologies to identify biomarkers in easily accessible body fluids is highly valuable for the early diagnosis and management of cancer patients. Peripheral whole blood is a "nucleic acid-rich" and "inflammatory cell-rich" information reservoir and represents systemic processes altered by the presence of cancer cells.We conducted transcriptome profiling of whole blood cells from melanoma patients. To overcome challenges associated with blood-based transcriptome analysis, we used a PAXgene™ tube and NuGEN Ovation™ globin reduction system. The combined use of these systems in microarray resulted in the identification of 78 unique genes differentially expressed in the blood of melanoma patients. Of these, 68 genes were further analyzed by quantitative reverse transcriptase PCR using blood samples from 45 newly diagnosed melanoma patients (stage I to IV and 50 healthy control individuals. Thirty-nine genes were verified to be differentially expressed in blood samples from melanoma patients. A stepwise logit analysis selected eighteen 2-gene signatures that distinguish melanoma from healthy controls. Of these, a 2-gene signature consisting of PLEK2 and C1QB led to the best result that correctly classified 93.3% melanoma patients and 90% healthy controls. Both genes were upregulated in blood samples of melanoma patients from all stages. Further analysis using blood fractionation showed that CD45(- and CD45(+ populations were responsible for the altered expression levels of PLEK2 and C1QB, respectively.The current study provides the first analysis of whole blood-based transcriptome biomarkers for malignant melanoma. The expression of PLEK2, the strongest gene to classify melanoma patients, in CD45(- subsets illustrates the importance of analyzing whole blood cells for biomarker studies. The study suggests that transcriptome profiling of blood cells could be used for both early detection of melanoma and monitoring of patients

  4. LFA-1 and ICAM-1 expression induced during melanoma-endothelial cell co-culture favors the transendothelial migration of melanoma cell lines in vitro

    International Nuclear Information System (INIS)

    Ghislin, Stephanie; Obino, Dorian; Middendorp, Sandrine; Boggetto, Nicole; Alcaide-Loridan, Catherine; Deshayes, Frederique

    2012-01-01

    Patients with metastatic melanoma have a poor median rate of survival. It is therefore necessary to increase our knowledge about melanoma cell dissemination which includes extravasation, where cancer cells cross the endothelial barrier. Extravasation is well understood during travelling of white blood cells, and involves integrins such as LFA-1 (composed of two chains, CD11a and CD18) expressed by T cells, while ICAM-1 is induced during inflammation by endothelial cells. Although melanoma cell lines cross endothelial cell barriers, they do not express LFA-1. We therefore hypothesized that melanoma-endothelial cell co-culture might induce the LFA-1/ICAM ligand/receptor couple during melanoma transmigration. A transwell approach has been used as well as blocking antibodies against CD11a, CD18 and ICAM-1. Data were analyzed with an epifluorescence microscope. Fluorescence intensity was quantified with the ImageJ software. We show here that HUVEC-conditioned medium induce cell-surface expression of LFA-1 on melanoma cell lines. Similarly melanoma-conditioned medium activates ICAM-1 expression in endothelial cells. Accordingly blocking antibodies of ICAM-1, CD11a or CD18 strongly decrease melanoma transmigration. We therefore demonstrate that melanoma cells can cross endothelial monolayers in vitro due to the induction of ICAM-1 and LFA-1 occurring during the co-culture of melanoma and endothelial cells. Our data further suggest a role of LFA-1 and ICAM-1 in the formation of melanoma cell clumps enhancing tumor cell transmigration. Melanoma-endothelial cell co-culture induces LFA-1 and ICAM-1 expression, thereby favoring in vitro melanoma trans-migration

  5. LFA-1 and ICAM-1 expression induced during melanoma-endothelial cell co-culture favors the transendothelial migration of melanoma cell lines in vitro

    Directory of Open Access Journals (Sweden)

    Ghislin Stephanie

    2012-10-01

    Full Text Available Abstract Background Patients with metastatic melanoma have a poor median rate of survival. It is therefore necessary to increase our knowledge about melanoma cell dissemination which includes extravasation, where cancer cells cross the endothelial barrier. Extravasation is well understood during travelling of white blood cells, and involves integrins such as LFA-1 (composed of two chains, CD11a and CD18 expressed by T cells, while ICAM-1 is induced during inflammation by endothelial cells. Although melanoma cell lines cross endothelial cell barriers, they do not express LFA-1. We therefore hypothesized that melanoma-endothelial cell co-culture might induce the LFA-1/ICAM ligand/receptor couple during melanoma transmigration. Methods A transwell approach has been used as well as blocking antibodies against CD11a, CD18 and ICAM-1. Data were analyzed with an epifluorescence microscope. Fluorescence intensity was quantified with the ImageJ software. Results We show here that HUVEC-conditioned medium induce cell-surface expression of LFA-1 on melanoma cell lines. Similarly melanoma-conditioned medium activates ICAM-1 expression in endothelial cells. Accordingly blocking antibodies of ICAM-1, CD11a or CD18 strongly decrease melanoma transmigration. We therefore demonstrate that melanoma cells can cross endothelial monolayers in vitro due to the induction of ICAM-1 and LFA-1 occurring during the co-culture of melanoma and endothelial cells. Our data further suggest a role of LFA-1 and ICAM-1 in the formation of melanoma cell clumps enhancing tumor cell transmigration. Conclusion Melanoma-endothelial cell co-culture induces LFA-1 and ICAM-1 expression, thereby favoring in vitro melanoma trans-migration.

  6. Radioimmunoscintigraphy of human malignant melanoma. I

    International Nuclear Information System (INIS)

    Svec, J.; Makaiova, I.; Veselovska, Z.; Keszeghova, V.; Reinerova, M.

    1989-01-01

    The novel RG-12 monoclonal antibody (MoAb) recognizing a high-molecular-weight antigen of human melanoma cells was radioiodinated and its biodistribution and tumor imaging was determined in immunosuppressed mice bearing xenografted human malignant melanoma HMB-2. Control and tumor-bearing mice were injected with 6 μg of 125 I-labeled RG-12 IgG (8.9 MBq 125 I-IgG/animal). Clearance of the MoAb from plasma had a mean half life of 20.6 hours. At day 2 after injection, radiolabeled RG-12 IgG localized in the tumor was 1.43% of the injected dose bound per gram tissue (ID/g), whereas the localization in the healthy kidney was below 0.5%. Tumor to tissue ratio of MoAb accumulation was low for hepatic tissue (1.25) but high for spleen (3.30) and kidney (3.25). Scanning with a gamma camera localized tumor mass in the right kidney and implanted peritoneal metastases. (author). 3 figs., 1 tab., 9 refs

  7. Human malignant melanomas in nude mice

    International Nuclear Information System (INIS)

    Atlas, S.W.; Braffman, B.H.; Lo Brutto, R.; Elder, D.E.; Herlyn, D.

    1988-01-01

    The purpose of this study was to correlate signal intensities and relaxation times on MR images in malignant melanomas with histopathologic features and electron paramagnetic resonance (EPR) spectra. Cell lines from human malignant melanomas in tissue culture were implanted subcutaneously into nude mice. MR imaging was performed in vivo at 1.9 T to assess 12 separate lesions in ten mice using spin-echo and inversion-recovery techniques. T1,T2, and N(H) were calculated in all cases. Histopathologic examination was performed on specimens resected immediately after imaging, using hematoxylin and eosin, Prussian blue, and Fontan stains to assess for tumor necrosis, iron, and melanin content. EPR spectra were also obtained on four resected specimens. The authors' results indicate that the relaxation behavior of nonhemorrhagic malignant melanomas cannot be explained solely by the presence of necrosis, water content, or iron content. The degree of melanin within these tumors did correlate with T1 relaxation enhancement. T2 relaxation times did not correlate with the sole presence of either iron, melanin, or necrosis. Although the unique relaxation behavior of nonhemorrhagic malignant melanoma seems to have many causes, their data suggest that, contrary to previous investigations, it is influenced by the presence of melanin rather than iron

  8. Intracranial Tumor Cell Migration and the Development of Multiple Brain Metastases in Malignant Melanoma

    Directory of Open Access Journals (Sweden)

    Trude G. Simonsen

    2016-06-01

    Full Text Available INTRODUCTION: A majority of patients with melanoma brain metastases develop multiple lesions, and these patients show particularly poor prognosis. To develop improved treatment strategies, detailed insights into the biology of melanoma brain metastases, and particularly the development of multiple lesions, are needed. The purpose of this preclinical investigation was to study melanoma cell migration within the brain after cell injection into a well-defined intracerebral site. METHODS: A-07, D-12, R-18, and U-25 human melanoma cells transfected with green fluorescent protein were injected stereotactically into the right cerebral hemisphere of nude mice. Moribund mice were killed and autopsied, and the brain was evaluated by fluorescence imaging or histological examination. RESULTS: Intracerebral inoculation of melanoma cells produced multiple lesions involving all regions of the brain, suggesting that the cells were able to migrate over substantial distances within the brain. Multiple modes of transport were identified, and all transport modes were observed in all four melanoma lines. Thus, the melanoma cells were passively transported via the flow of cerebrospinal fluid in the meninges and ventricles, they migrated actively along leptomeningeal and brain parenchymal blood vessels, and they migrated actively along the surfaces separating different brain compartments. CONCLUSION: Migration of melanoma cells after initial arrest, extravasation, and growth at a single location within the brain may contribute significantly to the development of multiple melanoma brain metastases.

  9. Marked differences in human melanoma antigen-specific T cell responsiveness after vaccination using a functional microarray.

    Directory of Open Access Journals (Sweden)

    Daniel S Chen

    2005-10-01

    Full Text Available In contrast to many animal model studies, immunotherapeutic trials in humans suffering from cancer invariably result in a broad range of outcomes, from long-lasting remissions to no discernable effect.In order to study the T cell responses in patients undergoing a melanoma-associated peptide vaccine trial, we have developed a high-throughput method using arrays of peptide-major histocompatibility complexes (pMHC together with antibodies against secreted factors. T cells were specifically immobilized and activated by binding to particular pMHCs. The antibodies, spotted together with the pMHC, specifically capture cytokines secreted by the T cells. This technique allows rapid, simultaneous isolation and multiparametric functional characterization of antigen-specific T cells present in clinical samples. Analysis of CD8+ lymphocytes from ten melanoma patients after peptide vaccination revealed a diverse set of patient- and antigen-specific profiles of cytokine secretion, indicating surprising differences in their responsiveness. Four out of four patients who showed moderate or greater secretion of both interferon-gamma (IFNgamma and tumor necrosis factor-alpha (TNFalpha in response to a gp100 antigen remained free of melanoma recurrence, whereas only two of six patients who showed discordant secretion of IFNgamma and TNFalpha did so.Such multiparametric analysis of T cell antigen specificity and function provides a valuable tool with which to dissect the molecular underpinnings of immune responsiveness and how this information correlates with clinical outcome.

  10. A novel interaction between calcium-modulating cyclophilin ligand and Basigin regulates calcium signaling and matrix metalloproteinase activities in human melanoma cells.

    Science.gov (United States)

    Long, Tingting; Su, Juan; Tang, Wen; Luo, Zhongling; Liu, Shuang; Liu, Zhaoqian; Zhou, Honghao; Qi, Min; Zeng, Weiqi; Zhang, Jianglin; Chen, Xiang

    2013-10-01

    Intracellular free calcium is a ubiquitous second messenger regulating a multitude of normal and pathogenic cellular responses, including the development of melanoma. Upstream signaling pathways regulating the intracellular free calcium concentration ([Ca2+]i) may therefore have a significant impact on melanoma growth and metastasis. In this study, we demonstrate that the endoplasmic reticulum (ER)-associated protein calcium-modulating cyclophilin ligand (CAML) is bound to Basigin, a widely expressed integral plasma membrane glycoprotein and extracellular matrix metalloproteinase inducer (EMMPRIN, or CD147) implicated in melanoma proliferation, invasiveness, and metastasis. This interaction between CAML and Basigin was first identified using yeast two-hybrid screening and further confirmed by co-immunoprecipitation. In human A375 melanoma cells, CAML and Basigin were co-localized to the ER. Knockdown of Basigin in melanoma cells by siRNA significantly decreased resting [Ca2+]i and the [Ca2+]i increase induced by the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) inhibitor thapsigargin (TG), indicating that the interaction between CAML and Basigin regulates ER-dependent [Ca2+]i signaling. Meanwhile upregulating the [Ca2+]i either by TG or phorbol myristate acetate (PMA) could stimulate the production of MMP-9 in A375 cells with the expression of Basigin. Our study has revealed a previously uncharacterized [Ca2+]i signaling pathway that may control melanoma invasion, and metastasis. Disruption of this pathway may be a novel therapeutic strategy for melanoma treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. An Endogenous Electron Spin Resonance (ESR signal discriminates nevi from melanomas in human specimens: a step forward in its diagnostic application.

    Directory of Open Access Journals (Sweden)

    Eleonora Cesareo

    Full Text Available Given the specific melanin-associated paramagnetic features, the Electron Spin Resonance (ESR, called also Electron Paramagnetic Resonance, EPR analysis has been proposed as a potential tool for non-invasive melanoma diagnosis. However, studies comparing human melanoma tissues to the most appropriate physiological counterpart (nevi have not been performed, and ESR direct correlation with melanoma clinical features has never been investigated. ESR spectrum was obtained from melanoma and non-melanoma cell-cultures as well as mouse melanoma and non-melanoma tissues and an endogenous ESR signal (g = 2.005 was found in human melanoma cells and in primary melanoma tissues explanted from mice, while it was always absent in non-melanoma samples. These characteristics of the measured ESR signal strongly suggested its connection with melanin. Quantitative analyses were then performed on paraffin-embedded human melanoma and nevus sections, and validated on an independent larger validation set, for a total of 112 sections (52 melanomas, 60 nevi. The ESR signal was significantly higher in melanomas (p = 0.0002 and was significantly different between "Low Breslow's and "High Breslow's" depth melanomas (p<0.0001. A direct correlation between ESR signal and Breslow's depth, expressed in millimetres, was found (R = 0.57; p<0.0001. The eu/pheomelanin ratio was found to be significantly different in melanomas "Low Breslow's" vs melanomas "High Breslow's" depth and in nevi vs melanomas "High Breslow's depth". Finally, ROC analysis using ESR data discriminated melanomas sections from nevi sections with up to 90% accuracy and p<0.0002. In the present study we report for the first time that ESR signal in human paraffin-embedded nevi is significantly lower than signal in human melanomas suggesting that spectrum variations may be related to qualitative melanin differences specifically occurring in melanoma cells. We therefore conclude that this ESR signal

  12. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    International Nuclear Information System (INIS)

    Takabe, Piia; Bart, Geneviève; Ropponen, Antti; Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna

    2015-01-01

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma

  13. Hyaluronan synthase 3 (HAS3) overexpression downregulates MV3 melanoma cell proliferation, migration and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Takabe, Piia, E-mail: piia.takabe@uef.fi [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Bart, Geneviève [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland); Ropponen, Antti [University of Eastern Finland, Institute of Clinical Medicine, 70211 Kuopio (Finland); Rilla, Kirsi; Tammi, Markku; Tammi, Raija; Pasonen-Seppänen, Sanna [University of Eastern Finland, Institute of Biomedicine, 70211 Kuopio (Finland)

    2015-09-10

    Malignant skin melanoma is one of the most deadly human cancers. Extracellular matrix (ECM) influences the growth of malignant tumors by modulating tumor cells adhesion and migration. Hyaluronan is an essential component of the ECM, and its amount is altered in many tumors, suggesting an important role for hyaluronan in tumorigenesis. Nonetheless its role in melanomagenesis is not understood. In this study we produced a MV3 melanoma cell line with inducible expression of the hyaluronan synthase 3 (HAS3) and studied its effect on the behavior of the melanoma cells. HAS3 overexpression expanded the cell surface hyaluronan coat and decreased melanoma cell adhesion, migration and proliferation by cell cycle arrest at G1/G0. Melanoma cell migration was restored by removal of cell surface hyaluronan by Streptomyces hyaluronidase and by receptor blocking with hyaluronan oligosaccharides, while the effect on cell proliferation was receptor independent. Overexpression of HAS3 decreased ERK1/2 phosphorylation suggesting that inhibition of MAP-kinase signaling was responsible for these suppressive effects on the malignant phenotype of MV3 melanoma cells. - Highlights: • Inducible HAS3-MV3 melanoma cell line was generated using Lentiviral transduction. • HAS3 overexpression inhibits MV3 cell migration via hyaluronan–receptor interaction. • HAS3 overexpression decreases MV3 melanoma cell proliferation and adhesion. • ERK1/2 phosphorylation is downregulated by 50% in HAS3 overexpressing cells. • The results suggest that hyaluronan has anti-cancer like effects in melanoma.

  14. Differentiation of Human Malignant Melanoma Cells that Escape Apoptosis After Treatment with 9-Nitrocamptothecin In Vitro

    Directory of Open Access Journals (Sweden)

    Panayotis Pantazis

    1999-08-01

    Full Text Available After in-vitro exposure to 0.05 μmol/L 9-nitrocamptothecin (9NC for periods of time longer than 5 days, 65% to 80% of the human malignant melanoma SB1 B cells die by apoptosis, whereas the remaining cells are arrested at the G2-phase of the cell cycle. Upon discontinuation of exposure to 9NC the G2-arrested cells resume cell cycling or remain arrested depending on the duration of 9NC exposure. In contrast to cycling malignant cells, the cells irreversibly arrested at G2 exhibit features of normal-like cells, the melanocytes, as assessed by the appearance of dendrite-like structures; loss of proliferative activity; synthesis of the characteristic pigment, melanin; and, particularly, loss of tumorigenic ability after xenografting in immunodeficient mice. Further, the expression of the cyclin-dependent kinase inhibitor p16 is upregulated in the 9NC-treated, G1-arrested, but downregulated in density G1-arrested cells, whereas the reverse is observed in the expression of another cyclin-dependent kinase inhibitor, p21. These results suggest that malignant melanoma SB1B cells that escape 9NC-induced death by apoptosis undergo differentiation toward nonmalignant, normal-like cells.

  15. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation.

    Science.gov (United States)

    Bald, Tobias; Landsberg, Jennifer; Lopez-Ramos, Dorys; Renn, Marcel; Glodde, Nicole; Jansen, Philipp; Gaffal, Evelyn; Steitz, Julia; Tolba, Rene; Kalinke, Ulrich; Limmer, Andreas; Jönsson, Göran; Hölzel, Michael; Tüting, Thomas

    2014-06-01

    Infiltration of human melanomas with cytotoxic immune cells correlates with spontaneous type I IFN activation and a favorable prognosis. Therapeutic blockade of immune-inhibitory receptors in patients with preexisting lymphocytic infiltrates prolongs survival, but new complementary strategies are needed to activate cellular antitumor immunity in immune cell-poor melanomas. Here, we show that primary melanomas in Hgf-Cdk4(R24C) mice, which imitate human immune cell-poor melanomas with a poor outcome, escape IFN-induced immune surveillance and editing. Peritumoral injections of immunostimulatory RNA initiated a cytotoxic inflammatory response in the tumor microenvironment and significantly impaired tumor growth. This critically required the coordinated induction of type I IFN responses by dendritic, myeloid, natural killer, and T cells. Importantly, antibody-mediated blockade of the IFN-induced immune-inhibitory interaction between PD-L1 and PD-1 receptors further prolonged the survival. These results highlight important interconnections between type I IFNs and immune-inhibitory receptors in melanoma pathogenesis, which serve as targets for combination immunotherapies. Using a genetically engineered mouse melanoma model, we demonstrate that targeted activation of the type I IFN system with immunostimulatory RNA in combination with blockade of immune-inhibitory receptors is a rational strategy to expose immune cell-poor tumors to cellular immune surveillance. ©2014 American Association for Cancer Research.

  16. Generation of blood-derived dendritic cells in dogs with oral malignant melanoma.

    Science.gov (United States)

    Catchpole, B; Stell, A J; Dobson, J M

    2002-01-01

    Advances in treatment of human melanoma indicate that immunotherapy, particularly dendritic cell (DC) immunization, may prove useful. The aim of this study was to investigate whether blood-derived DCs could be generated from canine melanoma patients. Peripheral blood mononuclear cells were isolated from three such dogs and cultured with recombinant canine granulocyte-macrophage colony stimulating factor (GM-CSF), canine interleukin 4 and human Flt3-ligand for 7 days. The resulting cells demonstrated a typical dendritic morphology, and were enriched for cells expressing CD1a, CD11c and MHC II by flow cytometric analysis. Thus, canine blood-derived DCs can be generated in vitro and DC immunization should be feasible in dogs. Copyright Harcourt Publishers Ltd.

  17. Expression and functions of galectin-7 in human and murine melanomas.

    Directory of Open Access Journals (Sweden)

    Katherine Biron-Pain

    Full Text Available The identification of galectin-7 as a p53-induced gene and its ability to induce apoptosis in many cell types support the hypothesis that galectin-7 has strong antitumor activity. This has been well documented in colon cancer. However, in some cases, such as breast cancer and lymphoma, its high expression level correlates with aggressive subtypes of cancer, suggesting that galectin-7 may have a dual role in cancer progression. In fact, in breast cancer, overexpression of galectin-7 alone is sufficient to promote metastasis to the bone and lung. In the present work, we investigated the expression and function of galectin-7 in melanoma. An analysis of datasets obtained from whole-genome profiling of human melanoma tissues revealed that galectin-7 mRNA was detected in more than 90% of biopsies of patients with nevi while its expression was more rarely found in biopsies collected from patients with malignant melanoma. This frequency, however, was likely due to the presence of normal epidermis tissues in biopsies, as shown our studies at the protein level by immunohistochemical analysis. Using the experimental melanoma B16F1 cell line, we found that melanoma cells can express galectin-7 at the primary tumor site and in lung metastasis. Moreover, we found that overexpression of galectin-7 increased the resistance of melanoma cells to apoptosis while inducing de novo egr-1 expression. Overexpression of galectin-7, however, was insufficient to modulate the growth of tumors induced by the subcutaneous injection of B16F1 cells. It also failed to modulate the dissemination of B16F1 cells to the lung.

  18. EMMPRIN regulates β1 integrin-mediated adhesion through Kindlin-3 in human melanoma cells.

    Science.gov (United States)

    Delyon, Julie; Khayati, Farah; Djaafri, Ibtissem; Podgorniak, Marie-Pierre; Sadoux, Aurélie; Setterblad, Niclas; Boutalbi, Zineb; Maouche, Kamel; Maskos, Uwe; Menashi, Suzanne; Lebbé, Céleste; Mourah, Samia

    2015-06-01

    EMMPRIN is known to promote tumor invasion through extracellular matrix (ECM) degradation. Here we report that EMMPRIN can regulate melanoma cell adhesion to the ECM through an interaction with β1 integrin involving kindlin-3. In this study, EMMPRIN knockdown in the human melanoma cell line M10 using siRNA decreased cell invasion and significantly increased cell adhesion and spreading. A morphological change from a round to a spread shape was observed associated with enhanced phalloidin-labelled actin staining. In situ proximity ligation assay and co-immunoprecipitation revealed that EMMPRIN silencing increased the interaction of β1 integrin with kindlin-3, a focal adhesion protein. This was associated with an increase in β1 integrin activation and a decrease in the phosphorylation of the downstream integrin kinase FAK. Moreover, the expression at both the transcript and protein level of kindlin-3 and of β1 integrin was inversely regulated by EMMPRIN. EMMPRIN did not regulate either talin expression or its interaction with β1 integrin. These results are consistent with our in vivo demonstration that EMMPRIN inhibition increased β1 integrin activation and its interaction with kindlin-3. To conclude, these findings reveal a new role of EMMPRIN in tumor cell migration through ß1 integrin/kindlin-3-mediated adhesion pathway. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Sub-apoptotic dosages of pro-oxidant vitamin cocktails sensitize human melanoma cells to NK cell lysis.

    Science.gov (United States)

    Tremante, Elisa; Santarelli, Lory; Lo Monaco, Elisa; Sampaoli, Camilla; Ingegnere, Tiziano; Guerrieri, Roberto; Tomasetti, Marco; Giacomini, Patrizio

    2015-10-13

    Alpha-tocopheryl succinate (αTOS), vitamin K3 (VK3) and vitamin C (ascorbic acid, AA) were previously shown to synergistically promote different death pathways in carcinoma cells, depending on their concentrations and combinations. Similar effects were observed herein in melanoma cells, although αTOS behaved as an antagonist. Interestingly, suboptimal cell death-inducing concentrations (1.5 μM αTOS/20 μM AA/0.2 μM VK3) effectively up-regulated activating Natural Killer (NK) cell ligands, including MICA (the stress-signaling ligand of the NKG2D receptor), and/or the ligands of at least one of the natural cytotoxicity receptors (NKp30, NKp44 and NKp46) in 5/6 melanoma cell lines. Only an isolated MICA down-regulation was seen. HLA class I, HLA class II, ULBP1, ULBP2, ULBP3, Nectin-2, and PVR displayed little, if any, change in expression. Ligand up-regulation resulted in improved lysis by polyclonal NK cells armed with the corresponding activating receptors. These results provide the first evidence for concerted induction of cell death by cell-autonomous and extrinsic (immune) mechanisms. Alarming the immune system much below the cell damage threshold may have evolved as a sensitive readout of neoplastic transformation and oxidative stress. Cocktails of vitamin analogues at slightly supra-physiological dosages may find application as mild complements of melanoma treatment, and in chemoprevention.

  20. Development, characterization, and photocytotoxicity assessment on human melanoma of chloroaluminum phthalocyanine nanocapsules

    International Nuclear Information System (INIS)

    Siqueira-Moura, Marigilson P.; Primo, Fernando L.; Espreafico, Enilza M.; Tedesco, Antonio C.

    2013-01-01

    In this work we have developed nanocapsules containing chloroaluminum phthalocyanine (ClAlPc) and assessed their phototoxic action on WM1552C, WM278, and WM1617 human melanoma cell lines. The ClAlPc-loaded nanocapsules were prepared by the nanoprecipitation method and optimized by means of a 2 3 full factorial design. The ClAlPc nanocapsules were characterized by particle size and distribution, zeta potential, morphology, encapsulation efficiency, singlet oxygen production, stability, and phototoxic action on melanoma cells. Both the development and optimization studies revealed that stable colloidal formulations could be obtained by using 1.75% (w/v) soybean lecithin, 1.25% (w/v) Poloxamer 188, 2.5% (v/v) soybean oil, and 0.75% (w/v) poly(D,L-lactide-co-glycolide). The nanocapsules had a mean diameter of 230 nm, homogeneous size distribution (polydispersity index −1 ) under light irradiation at 20 mJ cm −2 . On the other hand, the cell survival percentage for all the melanoma cell lines treated with the highest light dose (150 mJ cm −2 ) was lower than 10%. In summary, ClAlPc nanoencapsulation could enable application of this hydrophobic photosensitizer in the treatment of malignant melanoma with the use of both low sensitizer drug concentration and light dose. - Highlights: ► Nanocapsules containing a hydrophobic metallophthalocyanine (ClAlPc) were developed. ► The colloidal formulations were characterized by their physicochemical parameters. ► ClAlPc nanocapsules were used for the photosensitization of human melanoma cell lines. ► Phototoxicity was achieved with low ClAlPc nanocapsules concentration and light dose

  1. MicroRNA miR-125b induces senescence in human melanoma cells.

    Science.gov (United States)

    Glud, Martin; Manfé, Valentina; Biskup, Edyta; Holst, Line; Dirksen, Anne Marie Ahlburg; Hastrup, Nina; Nielsen, Finn C; Drzewiecki, Krzysztof T; Gniadecki, Robert

    2011-06-01

    MicroRNAs (miRNAs) are small noncoding RNA molecules involved in gene regulation. Aberrant expression of miRNA has been associated with the development or progression of several diseases, including cancer. In a previous study, we found that the expression of miRNA-125b (miR-125b) was two-fold lower in malignant melanoma producing lymph node micrometastases than in nonmetastasizing tumors. To get further insight into the functional role of miR-125b, we assessed whether its overexpression or silencing affects apoptosis, proliferation, or senescence in melanoma cell lines. We showed that overexpression of miR-125b induced typical senescent cell morphology, including increased cytoplasmatic/nucleus ratio and intensive cytoplasmatic β-galactosidase expression. In contrast, inhibition of miR-125b resulted in 30-35% decreased levels of spontaneous apoptosis. We propose that downregulation of miR-125b in an early cutaneous malignant melanoma can contribute to the increased metastatic capability of this tumor.

  2. Characterisation of Human Keratinocytes by Measuring Cellular Repair Capacity of UVB-Induced DNA Damage and Monitoring of Cytogenetic Changes in Melanoma Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Greinert, R.; Breibart, E.W.; Mitchell, D.; Smida, J.; Volkmer, B

    2000-07-01

    The molecular mechanisms for UV-induced photocarcinogenesis are far from being understood in detail, especially in the case of malignant melanoma of the skin. Nevertheless, it is known that deficiencies in cellular repair processes of UV-induced DNA damage (e.g. in the case of Xeroderma pigmentosum) represent important aetiological factors in the multistep development of skin cancer. The repair kinetics have therefore been studied of an established skin cell line (HaCaT), primary human keratinocytes, melanocytes and melanoma cell lines, using fluorescence microscopy and flow cytometry. Our data show a high degree of interindividual variability in cellular repair capacity for UV-induced DNA lesions, which might be due to individual differences in the degree of tolerable damage and/or the onsets of saturation of the enzymatic repair system. The cytogenetic analysis of melanoma cell lines, using spectral karyotyping (SKY) furthermore proves that malignant melanoma of the skin are characterised by high numbers of chromosomal aberrations. (author)

  3. Cell proliferation and expression of connexins differ in melanotic and amelanotic canine oral melanomas.

    Science.gov (United States)

    Teixeira, Tarso Felipe; Gentile, Luciana Boffoni; da Silva, Tereza Cristina; Mennecier, Gregory; Chaible, Lucas Martins; Cogliati, Bruno; Roman, Marco Antonio Leon; Gioso, Marco Antonio; Dagli, Maria Lucia Zaidan

    2014-03-01

    Melanoma is a malignant neoplasm occurring in several animal species, and is the most frequently found tumor in the oral cavity in dogs. Melanomas are classified into two types: melanotic and amelanotic. Prior research suggests that human amelanotic melanomas are more aggressive than their melanotic counterparts. This study evaluates the behavior of canine melanotic and amelanotic oral cavity melanomas and quantifies cell proliferation and the expression of connexins. Twenty-five melanomas (16 melanotic and 9 amelanotic) were collected from dogs during clinical procedures at the Veterinary Hospital of the School of Veterinary Medicine and Animal Science of the University of São Paulo, Brazil. After diagnosis, dogs were followed until death or euthanasia. Histopathology confirmed the gross melanotic or amelanotic characteristics and tumors were classified according to the WHO. HMB45 or Melan A immunostainings were performed to confirm the diagnosis of amelanotic melanomas. Cell proliferation was quantified both by counting mitotic figures and PCNA positive nuclei. Expressions of connexins 26 and 43 were evaluated by immunohistochemistry, qRT-PCR and Western blot. Dogs bearing amelanotic melanomas presented a shorter lifespan in comparison to those with melanotic melanomas. Cell proliferation was significantly higher in amelanotic melanomas. Expressions of Connexins 26 and 43 were significantly reduced in amelanotic melanomas. The results presented here suggest that oral cavity melanotic and amelanotic melanomas differ regarding their behavior, cell proliferation and connexin expression in dogs, indicating a higher aggressiveness of amelanotic variants.

  4. In vitro and in vivo cytotoxic activity of human lactoferricin derived antitumor peptide R-DIM-P-LF11-334 on human malignant melanoma.

    Science.gov (United States)

    Riedl, Sabrina; Rinner, Beate; Schaider, Helmut; Liegl-Atzwanger, Bernadette; Meditz, Katharina; Preishuber-Pflügl, Julia; Grissenberger, Sarah; Lohner, Karl; Zweytick, Dagmar

    2017-09-22

    Di-peptides derived from the human host defense peptide lactoferricin were previously described to specifically interact with the negatively charged lipid phosphatidylserine exposed by cancer cells. In this study one further derivative, namely R-DIM-P-LF11-334 is shown to exhibit even increased cancer toxicity in vitro and in vivo while non-neoplastic cells are not harmed. In liposomal model systems composed of phosphatidylserine mimicking cancerous and phosphatidylcholine mimicking non-cancerous membranes the specific interaction with the cancer marker PS was confirmed by specific induction of membrane perturbation and permeabilization in presence of the peptide. In vitro studies with cell lines of human malignant melanoma, such as A375, or primary cells of human melanoma metastases to the brain, as MUG Mel1, and non-neoplastic human dermal fibroblasts NHDF revealed high cytotoxic effect of R-DIM-P-LF11-334 on melanoma cells of A375 and MUG Mel1, whereas only minor effect on the dermal fibroblasts NHDF was observed, yielding an about 20-fold killing-specificity for A375 and MUG-Mel1. The LC 50 values for melanoma A375 and MUG Mel1 were about 10 μM. Analysis of secondary structure of the peptide revealed an increase in the proportion of β-sheets exclusively in presence of the cancer mimic. Stability studies further indicated a potential adequate stability in blood or under stringent conditions. Importantly the cytotoxic effect on cancer cells was also proven in vivo in mouse xenografts of human melanoma, where peptide treatment induced strong tumor regression and in average a tumor area reduction of 85% compared to tumors of control mice without peptide treatment.

  5. Targeting of T Lymphocytes to Melanoma Cells Through Chimeric Anti-GD3 Immunoglobulin T-Cell Receptors

    Directory of Open Access Journals (Sweden)

    C.O. Yun

    2000-09-01

    Full Text Available Immunoglobulin T-cell receptors (IgTCRs combine the specificity of antibodies with the potency of cellular killing by grafting antibody recognition domains onto TCR signaling chains. IgTCR-modified T cells are thus redirected to kill tumor cells based on their expression of intact antigen on cell surfaces, bypassing the normal mechanism of activation through TCR—peptide—major histocompatibility complex (MHC recognition. Melanoma is one of the most immunoresponsive of human cancers and has served as a prototype for the development of a number of immunotherapies. The target antigen for this study is the ganglioside GD3, which is highly expressed on metastatic melanoma with only minor immunologic cross-reaction with normal tissues. To determine an optimal configuration for therapy, four combinations of IgTCRs were prepared and studied: sFv-ɛ, sFv-ζ, Fab-ɛ, Fab-ζ. These were expressed on the surface of human T cells by retroviral transduction. IgTCR successfully redirected T-cell effectors in an MHC-unrestricted manner, in this case against a non—T-dependent antigen, with specific binding, activation, and cytotoxicity against GD3+ melanoma cells. Soluble GD3 in concentrations up to 100 μg/ml did not interfere with recognition and binding of membrane-bound antigen. Based on the outcomes of these structural and functional tests, the sFv-ζ construct was selected for clinical development. These results demonstrate key features that emphasize the potential of anti-GD3 IgTCR-modified autologous T cells for melanoma therapies.

  6. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma.

    Science.gov (United States)

    Syed, Deeba N; Lall, Rahul K; Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-12-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytotoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up-regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMP-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity.

  7. Strong antitumor activities of IgG3 antibodies to a human melanoma-associated ganglioside

    International Nuclear Information System (INIS)

    Hellstroem, I.; Brankovan, V.; Hellstroem, K.E.

    1985-01-01

    Three mouse monoclonal IgG3 antibodies, 2B2, IF4, and MG-21, recognize a G/sub D3/ ganglioside antigen that is expressed at the cell surface of most human melanomas. All three antibodies mediate antibody-dependent cellular cytotoxicity (ADCC) in vitro when tested with human lymphocytes or effector cells in a 2-hr or 4-hr 51 Cr-release test, and one antibody, MG-21, also gives strong complement-dependent cytotoxicity with human serum. Antibody 2B2, which gives ADDC also in the presence of mouse lymphocytes, inhibited the outgrowth of a human melanoma in nude mice, but antibody IF4, which showed no ADCC with mouse lymphocyte effectors, did not

  8. Vascular endothelial growth factor regulates melanoma cell adhesion and growth in the bone marrow microenvironment via tumor cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    Crende Olatz

    2011-08-01

    Full Text Available Abstract Background Human melanoma frequently colonizes bone marrow (BM since its earliest stage of systemic dissemination, prior to clinical metastasis occurrence. However, how melanoma cell adhesion and proliferation mechanisms are regulated within bone marrow stromal cell (BMSC microenvironment remain unclear. Consistent with the prometastatic role of inflammatory and angiogenic factors, several studies have reported elevated levels of cyclooxygenase-2 (COX-2 in melanoma although its pathogenic role in bone marrow melanoma metastasis is unknown. Methods Herein we analyzed the effect of cyclooxygenase-2 (COX-2 inhibitor celecoxib in a model of generalized BM dissemination of left cardiac ventricle-injected B16 melanoma (B16M cells into healthy and bacterial endotoxin lipopolysaccharide (LPS-pretreated mice to induce inflammation. In addition, B16M and human A375 melanoma (A375M cells were exposed to conditioned media from basal and LPS-treated primary cultured murine and human BMSCs, and the contribution of COX-2 to the adhesion and proliferation of melanoma cells was also studied. Results Mice given one single intravenous injection of LPS 6 hour prior to cancer cells significantly increased B16M metastasis in BM compared to untreated mice; however, administration of oral celecoxib reduced BM metastasis incidence and volume in healthy mice, and almost completely abrogated LPS-dependent melanoma metastases. In vitro, untreated and LPS-treated murine and human BMSC-conditioned medium (CM increased VCAM-1-dependent BMSC adherence and proliferation of B16M and A375M cells, respectively, as compared to basal medium-treated melanoma cells. Addition of celecoxib to both B16M and A375M cells abolished adhesion and proliferation increments induced by BMSC-CM. TNFα and VEGF secretion increased in the supernatant of LPS-treated BMSCs; however, anti-VEGF neutralizing antibodies added to B16M and A375M cells prior to LPS-treated BMSC-CM resulted in a

  9. Quantifying rates of cell migration and cell proliferation in co-culture barrier assays reveals how skin and melanoma cells interact during melanoma spreading and invasion.

    Science.gov (United States)

    Haridas, Parvathi; Penington, Catherine J; McGovern, Jacqui A; McElwain, D L Sean; Simpson, Matthew J

    2017-06-21

    Malignant spreading involves the migration of cancer cells amongst other native cell types. For example, in vivo melanoma invasion involves individual melanoma cells migrating through native skin, which is composed of several distinct subpopulations of cells. Here, we aim to quantify how interactions between melanoma and fibroblast cells affect the collective spreading of a heterogeneous population of these cells in vitro. We perform a suite of circular barrier assays that includes: (i) monoculture assays with fibroblast cells; (ii) monoculture assays with SK-MEL-28 melanoma cells; and (iii) a series of co-culture assays initiated with three different ratios of SK-MEL-28 melanoma cells and fibroblast cells. Using immunostaining, detailed cell density histograms are constructed to illustrate how the two subpopulations of cells are spatially arranged within the spreading heterogeneous population. Calibrating the solution of a continuum partial differential equation to the experimental results from the monoculture assays allows us to estimate the cell diffusivity and the cell proliferation rate for the melanoma and the fibroblast cells, separately. Using the parameter estimates from the monoculture assays, we then make a prediction of the spatial spreading in the co-culture assays. Results show that the parameter estimates obtained from the monoculture assays lead to a reasonably accurate prediction of the spatial arrangement of the two subpopulations in the co-culture assays. Overall, the spatial pattern of spreading of the melanoma cells and the fibroblast cells is very similar in monoculture and co-culture conditions. Therefore, we find no clear evidence of any interactions other than cell-to-cell contact and crowding effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Qin, J.-Z.; Xin, H. [Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University of Chicago Medical Center (United States); Nickoloff, B.J., E-mail: bnickol@lumc.edu [Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University of Chicago Medical Center (United States)

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  11. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines.

    Science.gov (United States)

    Qin, J-Z; Xin, H; Nickoloff, B J

    2010-05-28

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  12. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    International Nuclear Information System (INIS)

    Qin, J.-Z.; Xin, H.; Nickoloff, B.J.

    2010-01-01

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  13. T-Cell Mediated Immune Responses Induced in ret Transgenic Mouse Model of Malignant Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Abschuetz, Oliver [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany); Osen, Wolfram [Division of Translational Immunology, German Cancer Center, Heidelberg 69120 (Germany); Frank, Kathrin [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany); Kato, Masashi [Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi 487-8501 (Japan); Schadendorf, Dirk [Department of Dermatology, University Hospital Essen, Essen 45122 (Germany); Umansky, Viktor, E-mail: v.umansky@dkfz.de [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany)

    2012-04-26

    Poor response of human malignant melanoma to currently available treatments requires a development of innovative therapeutic strategies. Their evaluation should be based on animal models that resemble human melanoma with respect to genetics, histopathology and clinical features. Here we used a transgenic mouse model of spontaneous skin melanoma, in which the ret transgene is expressed in melanocytes under the control of metallothionein-I promoter. After a short latency, around 25% mice develop macroscopic skin melanoma metastasizing to lymph nodes, bone marrow, lungs and brain, whereas other transgenic mice showed only metastatic lesions without visible skin tumors. We found that tumor lesions expressed melanoma associated antigens (MAA) tyrosinase, tyrosinase related protein (TRP)-1, TRP-2 and gp100, which could be applied as targets for the immunotherapy. Upon peptide vaccination, ret transgenic mice without macroscopic melanomas were able to generate T cell responses not only against a strong model antigen ovalbumin but also against typical MAA TRP-2. Although mice bearing macroscopic primary tumors could also display an antigen-specific T cell reactivity, it was significantly down-regulated as compared to tumor-free transgenic mice or non-transgenic littermates. We suggest that ret transgenic mice could be used as a pre-clinical model for the evaluation of novel strategies of melanoma immunotherapy.

  14. Expression and function of hypoxia inducible factor-1 alpha in human melanoma under non-hypoxic conditions

    Directory of Open Access Journals (Sweden)

    Joshi Sandeep S

    2009-11-01

    Full Text Available Abstract Background Hypoxia inducible factor-1 alpha (HIF-1α protein is rapidly degraded under normoxic conditions. When oxygen tensions fall HIF-1α protein stabilizes and transactivates genes involved in adaptation to hypoxic conditions. We have examined the normoxic expression of HIF-1α RNA and protein in normal human melanocytes and a series of human melanoma cell lines isolated from radial growth phase (RGP, vertical growth phase (VGP and metastatic (MET melanomas. Results HIF-1α mRNA and protein was increased in RGP vs melanocytes, VGP vs RGP and MET vs VGP melanoma cell lines. We also detected expression of a HIF-1α mRNA splice variant that lacks part of the oxygen-dependent regulation domain in WM1366 and WM9 melanoma cells. Over-expression of HIF-1α and its splice variant in the RGP cell line SbCl2 resulted in a small increase in soft agar colony formation and a large increase in matrigel invasion relative to control transfected cells. Knockdown of HIF-1α expression by siRNA in the MET WM9 melanoma cell line resulted in a large decrease in both soft agar colony formation and matrigel invasion relative to cells treated with non-specific siRNA. There is a high level of ERK1/2 phosphorylation in WM9 cells, indicating an activated Ras-Raf-MEK-ERK1/2 MAPK pathway. Treatment of WM9 cells with 30 μM U0126 MEK inhibitor, decreased ERK1/2 phosphorylation and resulted in a decrease in HIF-1α expression. However, a 24 h treatment with 10 μM U0126 totally eliminated Erk1/2 phosphorylation, but did not change HIF-1alpha levels. Furthermore, siRNA knockdown of MEK siRNA did not change HIF-1alpha levels. Conclusion We speculate that metabolic products of U0126 decrease HIF-1alpha expression through "off target" effects. Overall our data suggest that increased HIF-1α expression under normoxic conditions contributes to some of the malignant phenotypes exhibited by human melanoma cells. The expanded role of HIF-1α in melanoma biology increases

  15. FOXP3 expression is modulated by TGF-β1/NOTCH1 pathway in human melanoma

    Science.gov (United States)

    Skarmoutsou, Eva; Bevelacqua, Valentina; D'Amico, Fabio; Russo, Angela; Spandidos, Demetrios A.; Scalisi, Aurora

    2018-01-01

    Forkhead box protein 3 (FOXP3) transcription factor is expressed by immune cells and several human cancers and is associated with tumor aggressiveness and unfavorable clinical outcomes. NOTCH and transforming growth factor-β (TGF-β) protumorigenic effects are mediated by FOXP3 expression in several cancer models; however, their interaction and role in melanoma is unknown. We investigated TGF-β-induced FOXP3 gene expression during NOTCH1 signaling inactivation. Primary (WM35) and metastatic melanoma (A375 and A2058) cell lines and normal melanocytes (NHEM) were used. FOXP3 subcellular distribution was evaluated by immuno cytochemical analysis. Gene expression levels were assessed by reverse transcription-quantitative polymerase chain reaction. Protein levels were assessed by western blot analysis. The γ-secretase inhibitor (GSI) was used for NOTCH1 inhibition and recombinant human (rh)TGF-β was used for melanoma cell stimulation. Cell proliferation and viability were respectively assessed by MTT and Trypan blue dye assays. FOXP3 mRNA and protein levels were progressively higher in WM35, A375 and A2058 cell lines compared to NHEM and their levels were further increased after stimulation with rh-TGF-β. TGF-β-mediated FOXP3 expression was mediated by NOTCH1 signaling. Inhibition of NOTCH1 with concomitant rh-TGF-β stimulation determined the reduction in gene expression and protein level of FOXP3. Finally, melanoma cell line proliferation and viability were reduced by NOTCH1 inhibition. The results show that nn increase in FOXP3 expression in metastatic melanoma cell lines is a potential marker of tumor aggressiveness and metastasis. NOTCH1 is a central mediator of TGF-β-mediated FOXP3 expression and NOTCH1 inhibition produces a significant reduction of melanoma cell proliferation and viability. PMID:29620159

  16. Differential Regulation of cGMP Signaling in Human Melanoma Cells at Altered Gravity: Simulated Microgravity Down-Regulates Cancer-Related Gene Expression and Motility

    Science.gov (United States)

    Ivanova, Krassimira; Eiermann, Peter; Tsiockas, Wasiliki; Hemmersbach, Ruth; Gerzer, Rupert

    2018-03-01

    Altered gravity is known to affect cellular function by changes in gene expression and cellular signaling. The intracellular signaling molecule cyclic guanosine-3',5'-monophosphate (cGMP), a product of guanylyl cyclases (GC), e.g., the nitric oxide (NO)-sensitive soluble GC (sGC) or natriuretic peptide-activated GC (GC-A/GC-B), is involved in melanocyte response to environmental stress. NO-sGC-cGMP signaling is operational in human melanocytes and non-metastatic melanoma cells, whereas up-regulated expression of GC-A/GC-B and inducible NO synthase (iNOS) are found in metastatic melanoma cells, the deadliest skin cancer. Here, we investigated the effects of altered gravity on the mRNA expression of NOS isoforms, sGC, GC-A/GC-B and multidrug resistance-associated proteins 4/5 (MRP4/MRP5) as selective cGMP exporters in human melanoma cells with different metastatic potential and pigmentation. A specific centrifuge (DLR, Cologne Germany) was used to generate hypergravity (5 g for 24 h) and a fast-rotating 2-D clinostat (60 rpm) to simulate microgravity values ≤ 0.012 g for 24 h. The results demonstrate that hypergravity up-regulates the endothelial NOS-sGC-MRP4/MRP5 pathway in non-metastatic melanoma cells, but down-regulates it in simulated microgravity when compared to 1 g. Additionally, the suppression of sGC expression and activity has been suggested to correlate inversely to tumor aggressiveness. Finally, hypergravity is ineffective in highly metastatic melanoma cells, whereas simulated microgravity down-regulates predominantly the expression of the cancer-related genes iNOS and GC-A/GC-B (shown additionally on protein levels) as well as motility in comparison to 1 g. The results suggest that future studies in real microgravity can benefit from considering GC-cGMP signaling as possible factor for melanocyte transformation.

  17. Reprogramming human A375 amelanotic melanoma cells by catalase overexpression: Reversion or promotion of malignancy by inducing melanogenesis or metastasis

    Science.gov (United States)

    Bracalente, Candelaria; Salguero, Noelia; Notcovich, Cintia; Müller, Carolina B.; da Motta, Leonardo L.; Klamt, Fabio; Ibañez, Irene L.; Durán, Hebe

    2016-01-01

    Advanced melanoma is the most aggressive form of skin cancer. It is highly metastatic and dysfunctional in melanogenesis; two processes that are induced by H2O2. This work presents a melanoma cell model with low levels of H2O2 induced by catalase overexpression to study differentiation/dedifferentiation processes. Three clones (A7, C10 and G10) of human A375 amelanotic melanoma cells with quite distinct phenotypes were obtained. These clones faced H2O2 scavenging by two main strategies. One developed by clone G10 where ROS increased. This resulted in G10 migration and metastasis associated with the increased of cofilin-1 and CAP1. The other strategy was observed in clone A7 and C10, where ROS levels were maintained reversing malignant features. Particularly, C10 was not tumorigenic, while A7 reversed the amelanotic phenotype by increasing melanin content and melanocytic differentiation markers. These clones allowed the study of potential differentiation and migration markers and its association with ROS levels in vitro and in vivo, providing a new melanoma model with different degree of malignancy. PMID:27206672

  18. Evaluation of Depigmenting Activity by 8-Hydroxydaidzein in Mouse B16 Melanoma Cells and Human Volunteers

    Directory of Open Access Journals (Sweden)

    Ching-Gong Lin

    2009-09-01

    Full Text Available In our previous study, 8-hydroxydaidzein (8-OHDe was demonstrated to be a potent and unique suicide substrate of mushroom tyrosinase. In this study, the compound was evaluated for in vitro cellular tyrosinase and melanogenesis inhibitory activities in mouse B16 melanoma cells and for in vivo skin-whitening activity in human volunteers. Tyrosinase activity and melanogenesis in the cell culture incubated with 10 µM of 8-OHDe were decreased to 20.1% and 51.8% of control, respectively, while no obvious cytotoxicity was observed in this concentration. In contrast, a standard tyrosinase inhibitor, kojic acid, showed 69.9% and 71.3% of control in cellular tyrosinase and melanogenesis activity, respectively, at a concentration as high as 100 µM. Hence, 8-OHDe exhibited more than an inhibitory effects on melanin production in B16 cells 10-fold stronger than kojic acid. In addition, when a cream containing 4% 8-OHDe was applied to human skin in an in vivo study, significant increases in the dL*-values were observed after three weeks. Moreover, the increase in the dL*-values after 8-week treatment with 4% 8-OHDe (from -0.57 to 1.94 is stronger than those of 2% 8-OHDe treatment (from 0.26 to 0.94 and 2% ascorbic acid-2-glucoside treatment (from 0.07 to 1.54. From the results of the study, it was concluded that 8-OHDe, the potent suicide substrate of mushroom tyrosinase, has depigmenting activities in both mouse melanoma cells and in human volunteers. Thus, the compound has significant potential for use in cosmetics as a skin-whitening ingredient.

  19. Development, characterization, and photocytotoxicity assessment on human melanoma of chloroaluminum phthalocyanine nanocapsules

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira-Moura, Marigilson P. [Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo, Ribeirão Preto-SP (Brazil); Departamento de Química, Laboratório de Fotobiologia e Fotomedicina, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo, Ribeirão Preto-SP (Brazil); Primo, Fernando L. [Departamento de Química, Laboratório de Fotobiologia e Fotomedicina, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo, Ribeirão Preto-SP (Brazil); Espreafico, Enilza M. [Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo, Ribeirão Preto-SP (Brazil); Tedesco, Antonio C., E-mail: atedesco@usp.br [Departamento de Química, Laboratório de Fotobiologia e Fotomedicina, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (FFCLRP), Universidade de São Paulo, Ribeirão Preto-SP (Brazil)

    2013-04-01

    In this work we have developed nanocapsules containing chloroaluminum phthalocyanine (ClAlPc) and assessed their phototoxic action on WM1552C, WM278, and WM1617 human melanoma cell lines. The ClAlPc-loaded nanocapsules were prepared by the nanoprecipitation method and optimized by means of a 2{sup 3} full factorial design. The ClAlPc nanocapsules were characterized by particle size and distribution, zeta potential, morphology, encapsulation efficiency, singlet oxygen production, stability, and phototoxic action on melanoma cells. Both the development and optimization studies revealed that stable colloidal formulations could be obtained by using 1.75% (w/v) soybean lecithin, 1.25% (w/v) Poloxamer 188, 2.5% (v/v) soybean oil, and 0.75% (w/v) poly(D,L-lactide-co-glycolide). The nanocapsules had a mean diameter of 230 nm, homogeneous size distribution (polydispersity index < 0.3), and negative zeta potential (about − 30 mV). Their morphology was spherical, with evident polymer membrane coating droplet. The encapsulation efficiency was 70%, as expected for hydrophobic drugs, and the nanoencapsulated ClAlPc was able to produce high singlet oxygen quantum yield. ClAlPc nanocapsules exhibited good physical stability over a 12-month period. WM1552C primary melanoma cells were more sensitive (p < 0.05) to the phototoxic effect elicited by ClAlPc nanocapsules (0.3 μg ml{sup −1}) under light irradiation at 20 mJ cm{sup −2}. On the other hand, the cell survival percentage for all the melanoma cell lines treated with the highest light dose (150 mJ cm{sup −2}) was lower than 10%. In summary, ClAlPc nanoencapsulation could enable application of this hydrophobic photosensitizer in the treatment of malignant melanoma with the use of both low sensitizer drug concentration and light dose. - Highlights: ► Nanocapsules containing a hydrophobic metallophthalocyanine (ClAlPc) were developed. ► The colloidal formulations were characterized by their physicochemical parameters

  20. MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma.

    Science.gov (United States)

    Chen, Jiamin; Feilotter, Harriet E; Paré, Geneviève C; Zhang, Xiao; Pemberton, Joshua G W; Garady, Cherif; Lai, Dulcie; Yang, Xiaolong; Tron, Victor A

    2010-05-01

    Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi. Notably, miR-193b was significantly down-regulated in the melanoma tissues examined. To understand the role of miR-193b in melanoma, functional studies were undertaken. Overexpression of miR-193b in melanoma cell lines repressed cell proliferation. Gene expression profiling identified 314 genes down-regulated by overexpression of miR-193b in Malme-3M cells. Eighteen of these down-regulated genes, including cyclin D1 (CCND1), were also identified as putative miR-193b targets by TargetScan. Overexpression of miR-193b in Malme-3M cells down-regulated CCND1 mRNA and protein by > or = 50%. A luciferase reporter assay confirmed that miR-193b directly regulates CCND1 by binding to the 3'untranslated region of CCND1 mRNA. These studies indicate that miR-193b represses cell proliferation and regulates CCND1 expression and suggest that dysregulation of miR-193b may play an important role in melanoma development.

  1. IQGAP1 is an oncogenic target in canine melanoma.

    Directory of Open Access Journals (Sweden)

    Becky H Lee

    Full Text Available Canine oral mucosal melanoma is an aggressive malignant neoplasm and is characterized by local infiltration and a high metastatic potential. The disease progression is similar to that of human oral melanomas. Whereas human cutaneous melanoma is primarily driven by activating mutations in Braf (60% or Nras (20%, human mucosal melanoma harbors these mutations much less frequently. This makes therapeutic targeting and research modeling of the oral form potentially different from that of the cutaneous form in humans. Similarly, research has found only rare Nras mutations and no activating Braf mutations in canine oral melanomas, but they are still reliant on MAPK signaling. IQGAP1 is a signaling scaffold that regulates oncogenic ERK1/2 MAPK signaling in human Ras- and Raf- driven cancers, including melanomas. To investigate whether IQGAP1 is a potential target in canine melanoma, we examined the expression and localization of IQGAP1 in primary canine melanomas and canine oral melanoma cell lines obtained from the University of California-Davis. Using CRISPR/Cas9 knockout of IQGAP1, we examined effects on downstream ERK1/2 pathway activity and assayed proliferation of cell lines when treated with a peptide that blocks the interaction between IQGAP1 and ERK1/2. We observed that canine IQGAP1 is expressed and localizes to a similar extent in both human and canine melanoma by qPCR, Western blot, and immunofluorescence. Deletion of IQGAP1 reduces MAPK pathway activation in cell lines, similar to effects seen in human BrafV600E cell lines. Additionally, we demonstrated reduced proliferation when these cells are treated with a blocking peptide in vitro.

  2. Regulation of apoptosis in human melanoma and neuroblastoma cells by statins, sodium arsenite and TRAIL: a role of combined treatment versus monotherapy

    Science.gov (United States)

    Ivanov, Vladimir N.; Hei, Tom K.

    2015-01-01

    Treatment of melanoma cells by sodium arsenite or statins (simvastatin and lovastatin) dramatically modified activities of the main cell signaling pathways resulting in the induction of heme oxygenase-1 (HO-1) and in a downregulation of cyclooxygenase-2 (COX-2) protein levels. Through heme degradation and the production of carbon monoxide and biliverdin, HO-1 plays a protective role in different scenario of oxidative stress followed by mitochondrial apoptosis. Both sodium arsenite and statins could be efficient inducers of apoptosis in some melanoma cell lines, but often exhibited only modest proapoptotic activity in others, due to numerous protective mechanisms. We demonstrated in the present study that treatment by sodium arsenite or statins with an additional inhibition of HO-1 expression (or activation) caused a substantial upregulation of apoptosis in melanoma cells. Sodium arsenite- or statin-induced apoptosis was independent of BRAF status (wild type versus V600E) in melanoma lines. Monotreatment required high doses of statins (20–40 μM) for effective induction of apoptosis. As an alternative approach, pretreatment of melanoma cells with statin at decreased doses (5–20 μM) dramatically enhanced TRAIL-induced apoptosis, due to suppression of the NF-κB and STAT3-transcriptional targets (including COX-2) and downregulation of cFLIP-L (a caspase-8 inhibitor) protein levels. Furthermore, combined treatment with sodium arsenite and TRAIL or simvastatin and TRAIL efficiently induced apoptotic commitment in human neuroblastoma cells. In summary, our findings on enhancing effects of combined treatment of cancer cells using statin and TRAIL provide the rationale for further preclinical evaluation. PMID:21910007

  3. The fibrinolytic system facilitates tumor cell migration across the blood-brain barrier in experimental melanoma brain metastasis

    International Nuclear Information System (INIS)

    Perides, George; Zhuge, Yuzheng; Lin, Tina; Stins, Monique F; Bronson, Roderick T; Wu, Julian K

    2006-01-01

    Patients with metastatic tumors to the brain have a very poor prognosis. Increased metastatic potential has been associated with the fibrinolytic system. We investigated the role of the fibrinolytic enzyme plasmin in tumor cell migration across brain endothelial cells and growth of brain metastases in an experimental metastatic melanoma model. Metastatic tumors to the brain were established by direct injection into the striatum or by intracarotid injection of B16F10 mouse melanoma cells in C57Bl mice. The role of plasminogen in the ability of human melanoma cells to cross a human blood-brain barrier model was studied on a transwell system. Wild type mice treated with the plasmin inhibitor epsilon-aminocaproic acid (EACA) and plg -/- mice developed smaller tumors and survived longer than untreated wild type mice. Tumors metastasized to the brain of wild type mice treated with EACA and plg -/- less efficiently than in untreated wild type mice. No difference was observed in the tumor growth in any of the three groups of mice. Human melanoma cells were able to cross the human blood-brain barrier model in a plasmin dependent manner. Plasmin facilitates the development of tumor metastasis to the brain. Inhibition of the fibrinolytic system could be considered as means to prevent tumor metastasis to the brain

  4. Nonlethal Levels of Zeaxanthin Inhibit Cell Migration, Invasion, and Secretion of MMP-2 via NF-κB Pathway in Cultured Human Uveal Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Ming-Chao Bi

    2016-01-01

    Full Text Available Zeaxanthin at nonlethal dosages (3–10 μM significantly inhibited the cell migration of cultured uveal melanoma cells (C918 cell line as determined by wound healing assay and Boyden chamber assay. Matrigel invasion assay showed that cell invasion of uveal melanoma cells could be significantly inhibited by zeaxanthin. Secretion of MMP-2 by melanoma cells was significantly inhibited by zeaxanthin in a dose-dependent manner as measured by ELISA kit. Zeaxanthin also significantly inhibited the NF-κB levels in nuclear extracts of the UM cells, which is the upstream of the MMP-2 secretion. These results suggest that zeaxanthin might be a potentially therapeutic approach in the prevention of metastasis in uveal melanoma.

  5. Cure of malignant melanoma by single thermal neutron capture treatment using melanoma-seeking compounds

    International Nuclear Information System (INIS)

    Mishima, Yutaka; Ichihashi, Masamitsu; Nakanishi, Takafumi

    1985-01-01

    Since not only malignant melanomas but also many kinds of human cancers, for example thyroid cancer and squamous cell carcinoma, synthesize their specific protein, much attention has been paid to the establishment of selective thermal neutron capture treatment of malignant melanoma as a prototype of such cancer cells. This paper presents 10 B chlorpromazine compounds and 10 B 1 -para-boronophenylalanine ( 10 B 1 -BPA) as tumor-seeking 10 B compounds which themselves possess selective affinity for the specific metabolic activity of the target cancer cells. An overview of the following studies on the effects of 10 B 1 -BPA in the thermal neutron capture treatment of melanoma is provided: 1) in vitro studies on specific enhanced melanoma cell killing effects of 10 B 1 -BPA; 2) in vivo studies on therapeutic effects of 10 B 1 -BPA using melanoma-bearing hamsters; and 3) preclinical therapeutic experiments using spontaneously occurring malignant melanoma in Duroc pig skin, including experiments in which melanoma was successfully cured. (Namekawa, K.)

  6. Variant G6PD levels promote tumor cell proliferation or apoptosis via the STAT3/5 pathway in the human melanoma xenograft mouse model

    International Nuclear Information System (INIS)

    Hu, Tao; Zhang, Chunhua; Tang, Qiongling; Su, Yanan; Li, Bo; Chen, Long; Zhang, Zheng; Cai, Tianchi; Zhu, Yuechun

    2013-01-01

    Glucose-6-phosphate dehydrogenase (G6PD), elevated in tumor cells, catalyzes the first reaction in the pentose-phosphate pathway. The regulation mechanism of G6PD and pathological change in human melanoma growth remains unknown. HEM (human epidermal melanocyte) cells and human melanoma cells with the wild-type G6PD gene (A375-WT), G6PD deficiency (A375-G6PD∆), G6PD cDNA overexpression (A375-G6PD∆-G6PD-WT), and mutant G6PD cDNA (A375-G6PD∆-G6PD-G487A) were subcutaneously injected into 5 groups of nude mice. Expressions of G6PD, STAT3, STAT5, cell cycle-related proteins, and apoptotic proteins as well as mechanistic exploration of STAT3/STAT5 were determined by quantitative real-time PCR (qRT-PCR), immunohistochemistry and western blot. Delayed formation and slowed growth were apparent in A375-G6PD∆ cells, compared to A375-WT cells. Significantly decreased G6PD expression and activity were observed in tumor tissues induced by A375-G6PD∆, along with down-regulated cell cycle proteins cyclin D1, cyclin E, p53, and S100A4. Apoptosis-inhibited factors Bcl-2 and Bcl-xl were up-regulated; however, apoptosis factor Fas was down-regulated, compared to A375-WT cells. Moderate protein expressions were observed in A375-G6PD∆-G6PD-WT and A375-G6PD∆-G6PD-G487A cells. G6PD may regulate apoptosis and expression of cell cycle-related proteins through phosphorylation of transcription factors STAT3 and STAT5, thus mediating formation and growth of human melanoma cells. Further study will, however, be required to determine potential clinical applications

  7. Intercellular crosstalk in human malignant melanoma

    Czech Academy of Sciences Publication Activity Database

    Dvořánková, Barbora; Szabo, Pavol; Kodet, O.; Strnad, Hynek; Kolář, Michal; Lacina, L.; Krejčí, E.; Nanka, O.; Sedo, A.; Smetana, K.

    2017-01-01

    Roč. 254, č. 3 (2017), s. 1143-1150 ISSN 0033-183X R&D Projects: GA ČR GA16-05534S; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:GA MŠk(CZ) LM2015042 Institutional support: RVO:68378050 Keywords : Melanocyte * Melanoma cells * Melanoma ecosystem * cancer -associated fibroblast * Keratinocyte * Cytokine Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 2.870, year: 2016

  8. Gene expression in SK-Mel-28 human melanoma cells treated with the snake venom jararhagin.

    Science.gov (United States)

    Klein, Anelise; Capitanio, Juliana Silva; Maria, Durvanei Augusto; Ruiz, Itamar Romano Garcia

    2011-01-01

    Alternative approaches to improve the treatment of advanced melanomas are highly needed. The disintegrin domain of metalloproteinases binds integrin receptors on tumor cells, blocking migration, invasion, and metastatization. Previous studies showed that jararhagin, from the Bothrops jararaca snake venom, induces changes in the morphology and viability of SK-Mel-28 human melanoma cells, and decreases the number of metastases in mice injected with pre-treated cells. The purpose of this study was to evaluate the molecular effects of jararhagin on SK-Mel-28 cells and fibroblasts, concerning the expression of integrins, cadherins, caspases, and TP53 genes. Sub-toxic doses of jararhagin were administered to confluent cells. RT-PCR was performed following extraction of total RNA. Jararhagin treatments induced similar morphological alterations in both normal and tumor cells, with higher IC50 values for fibroblasts. Integrin genes were downregulated in untreated cells, except for ITGA6a,b, ITGAv, and ITGB3 which were highly expressed in SK-Mel-28. The integrin expression profiles were not affected by the toxin. However, jararhagin 30ng/μl upregulated genes TP53, CDKN1A, CDKN2A, CASP3, CASP5, CASP6, CASP8, and E-CDH in SK-Mel-28, and genes ITGB6, ITGB7, CASP3, TP53, and CDKN1B in fibroblasts. Appropriate jararhagin concentration can have apoptotic and suppressant effects on SK-Mel-28 cells, rather than on fibroblasts, and can be used to develop potential anti-cancer drugs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Correlation of cytotoxicity with elimination of iodine-125 from nude mice inoculated with prelabeled human melanoma cells

    International Nuclear Information System (INIS)

    Lockshin, A.; Giovanella, B.C.; Quian, C.; Mendoza, J.T.; Vardeman, D.M.; Stehlin, J.S. Jr.

    1984-01-01

    BRO human melanoma cells were prelabeled in vitro with [125I]5-iodo-2'-deoxyuridine ([125I]IdUrd) and inoculated into NIH-II nude mice ip, im, sc, or iv. Saline or diphtheria toxin (DT), which is selectively toxic to human cells compared to those of mice, was injected, and the loss of 125I from the animals was monitored daily with a whole-body gamma scintillation detector. For most of the inoculation sites DT accelerated the rate of 125I excretion and in all cases was cytotoxic for the inoculated cells as determined by host survival or measurement of visible tumor growth. Differences between the rates of 125I loss for DT-treated mice compared to untreated mice were most evident for cells inoculated ip or im. These results indicate that [125I]IdUrd prelabeling of human tumor cells inoculated in nude mice offers a rapid method for determination of cytotoxicity in vivo

  10. Comprehensive expression profiling of tumor cell lines identifies molecular signatures of melanoma progression.

    Directory of Open Access Journals (Sweden)

    Byungwoo Ryu

    2007-07-01

    Full Text Available Gene expression profiling has revolutionized our ability to molecularly classify primary human tumors and significantly enhanced the development of novel tumor markers and therapies; however, progress in the diagnosis and treatment of melanoma over the past 3 decades has been limited, and there is currently no approved therapy that significantly extends lifespan in patients with advanced disease. Profiling studies of melanoma to date have been inconsistent due to the heterogeneous nature of this malignancy and the limited availability of informative tissue specimens from early stages of disease.In order to gain an improved understanding of the molecular basis of melanoma progression, we have compared gene expression profiles from a series of melanoma cell lines representing discrete stages of malignant progression that recapitulate critical characteristics of the primary lesions from which they were derived. Here we describe the unsupervised hierarchical clustering of profiling data from melanoma cell lines and melanocytes. This clustering identifies two distinctive molecular subclasses of melanoma segregating aggressive metastatic tumor cell lines from less-aggressive primary tumor cell lines. Further analysis of expression signatures associated with melanoma progression using functional annotations categorized these transcripts into three classes of genes: 1 Upregulation of activators of cell cycle progression, DNA replication and repair (CDCA2, NCAPH, NCAPG, NCAPG2, PBK, NUSAP1, BIRC5, ESCO2, HELLS, MELK, GINS1, GINS4, RAD54L, TYMS, and DHFR, 2 Loss of genes associated with cellular adhesion and melanocyte differentiation (CDH3, CDH1, c-KIT, PAX3, CITED1/MSG-1, TYR, MELANA, MC1R, and OCA2, 3 Upregulation of genes associated with resistance to apoptosis (BIRC5/survivin. While these broad classes of transcripts have previously been implicated in the progression of melanoma and other malignancies, the specific genes identified within each class

  11. lncRNA H19 predicts poor prognosis in patients with melanoma and regulates cell growth, invasion, migration and epithelial–mesenchymal transition in melanoma cells

    Directory of Open Access Journals (Sweden)

    Shi G

    2018-06-01

    Full Text Available Gaofeng Shi,1,2 Hu Li,2 Fengshan Gao,2 Qian Tan1 1Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, People’s Republic of China; 2Department of Plastic Surgery, the Affiliated Wuxi No 4 People’s Hospital of Jiangnan University, Wuxi, People’s Republic of China Introduction: Melanoma is a deadly malignancy and the poor prognosis of patients with advanced disease is relatively poor. Recent studies indicate that long non-coding RNAs are involved in the pathogenesis of malignant melanoma. This study aims to investigate the role of the long non-coding RNA H19 in melanoma and to explore the underlying molecular mechanisms. Materials and methods: The expression levels of H19 in clinical samples and melanoma cells were determined by quantitative real-time PCR. The cell growth and cell metastasis were assessed by Cell Counting Kit 8, cell invasion and wound healing assays. Cell apoptosis and cell cycle were determined by flow cytometry. Protein levels were determined by Western blotting assay. Results: H19 was highly expressed in melanoma tissues compared to normal adjacent skin tissues, and the tissue expression level of H19 from melanoma patients with metastasis was significantly higher than that from patients without distant metastasis. In addition, the high expression of H19 in melanoma tissues was associated with advanced tumor invasion and TNM stage, distal metastasis, lymph node metastasis and shorter overall survival in patients with melanoma. The in vitro functional assays showed that knockdown of H19 inhibited cell growth, invasion and migration and also induced cell apoptosis as well as G0/G1 arrest in melanoma cells. Further quantitative real-time PCR and Western blot experiments showed that knockdown of H19 differentially regulated the epithelial–mesenchymal transition (EMT-related gene expressions and reversed EMT in melanoma cell lines. Knockdown of H19 suppressed in vivo tumor growth and modulated the

  12. DMEM enhances tyrosinase activity in B16 mouse melanoma cells and human melanocytes

    Directory of Open Access Journals (Sweden)

    Panpen Diawpanich

    2008-07-01

    Full Text Available Media components may affect the activities of cultured cells. In this study, tyrosinase activity was evaluated by using B16-F10 mouse melanoma cell lines (B16-F10 and primary human melanocytes cultured in different media. An optical density measurement and a L-dopa reaction assay were used as the determination of the tyrosinase activity. The study of B16-F10 found the optical density to be 2010, 2246 and 2961 in cells cultured in RPMI Medium 1640 (RPMI1640,Minimum Essential Medium (MEM and Dulbecco’s Modified Eagle Medium (DMEM, respectively. Moreover, compared to RPMI 1640 and MEM, DMEM showed the darkest color of melanin formation in culture media and in cells after the L-dopa reaction assay. Addition of kojic acid showed a significant inhibitory effect on tyrosinase activity in all media.Whereas MCDB153 showed no significant effect on human melanocytes, DMEM caused a dramatic increase in tyrosinase activity after 4 days of cultivation. Addition of kojic acid showed a significant tyrosinase inhibitory effect in DMEM only. Furthermore, an active ingredient in green tea, epigallocathechin gallate (EGCG could inhibit tyrosinase activity in both B16-F10 and human melanocytes cultured in DMEM. In summary, these results suggest that DMEM is a suitable medium that provides high detection sensitivity in a tyrosinase inhibition assay.

  13. Dihydromyricetin induces cell cycle arrest and apoptosis in melanoma SK-MEL-28 cells.

    Science.gov (United States)

    Zeng, Guofang; Liu, Jie; Chen, Hege; Liu, Bin; Zhang, Qingyu; Li, Mingyi; Zhu, Runzhi

    2014-06-01

    Dihydromyricetin (DHM) exhibits multiple pharmacological activities; however, the role of DHM in anti-melanoma activities and the underlying molecular mechanisms are unclear. The aim of the present study was to evaluate the effects of DHM on cell proliferation, cell cycle distribution and apoptosis in the human melanoma SK-MEL-28 cell line, and to explore the related mechanisms. The effect of DHM on cell proliferation was investigated by MTT assay, and cell cycle distribution was determined by flow cytometry. TUNEL assay was used to evaluate DHM-mediated apoptosis, and western blotting was applied to examine expression levels of p53, p21, Cdc25A, Cdc2, P-Cdc2, Bax, IKK-α, NF-κB p65, p38 and P-p38 proteins. The results revealed that DHM suppressed cell proliferation of SK-MEL-28 cells in a concentration- and time-dependent manner, and caused cell cycle arrest at the G1/S phase. DHM increased the production of p53 and p21 proteins and downregulated the production of Cdc25A, Cdc2 and P-Cdc2 proteins, which induced cell cycle arrest. Additionally, DHM significantly induced the apoptosis of SK-MEL-28 cells, and enhanced the expression levels of Bax proteins and decreased the protein levels of IKK-α, NF-κB (p65) and P-p38. The results suggest that DHM may be a novel and effective candidate agent to inhibit the growth of melanoma.

  14. Relative biological effectiveness of high energy protons for a human melanoma

    International Nuclear Information System (INIS)

    Petrovic, I.; Ristic-Fira, A.; Todorovic, D.; Valastro, I.; Cirrone, P.; Cuttone, G.

    2005-01-01

    Relative biological effectiveness (RBE) for the survival of human melanoma cells induced by high linear energy transfer (LET) protons was investigated. Exponentially growing HTB140 cells were irradiated close to the Bragg peak maximum of the 62 MeV protons, as well as with 60 Co γ-rays, over single doses, ranging from 8-24 Gy. Clonogenic survival and cell viability were assessed up to 48 h post-irradiation, therefore considered as early inactivation effects. Dose dependent cell inactivation induced by high LET protons was observed. Surviving fractions have shown great overlapping with estimated cell viability, both with the increase of dose and with prolonged cell incubation. Evaluated RBEs were higher with the rise of dose, being in the range from 2 to 3. All analyzes performed have demonstrated a very radio-resistant nature of HTB140 melanoma cells. However, high LET protons are able to inactivate these cells in a larger extent compared to the effects of γ-rays. (author)

  15. Up-regulation of hepatoma-derived growth factor facilitates tumor progression in malignant melanoma [corrected].

    Directory of Open Access Journals (Sweden)

    Han-En Tsai

    Full Text Available Cutaneous malignant melanoma is the fastest increasing malignancy in humans. Hepatoma-derived growth factor (HDGF is a novel growth factor identified from human hepatoma cell line. HDGF overexpression is correlated with poor prognosis in various types of cancer including melanoma. However, the underlying mechanism of HDGF overexpression in developing melanoma remains unclear. In this study, human melanoma cell lines (A375, A2058, MEL-RM and MM200 showed higher levels of HDGF gene expression, whereas human epidermal melanocytes (HEMn expressed less. Exogenous application of HDGF stimulated colony formation and invasion of human melanoma cells. Moreover, HDGF overexpression stimulated the degree of invasion and colony formation of B16-F10 melanoma cells whereas HDGF knockdown exerted opposite effects in vitro. To evaluate the effects of HDGF on tumour growth and metastasis in vivo, syngeneic mouse melanoma and metastatic melanoma models were performed by manipulating the gene expression of HDGF in melanoma cells. It was found that mice injected with HDGF-overexpressing melanoma cells had greater tumour growth and higher metastatic capability. In contrast, mice implanted with HDGF-depleted melanoma cells exhibited reduced tumor burden and lung metastasis. Histological analysis of excised tumors revealed higher degree of cell proliferation and neovascularization in HDGF-overexpressing melanoma. The present study provides evidence that HDGF promotes tumor progression of melanoma and targeting HDGF may constitute a novel strategy for the treatment of melanoma.

  16. Regulation of pigmentation by substrate elasticity in normal human melanocytes and melanotic MNT1 human melanoma cells.

    Science.gov (United States)

    Choi, Hyunjung; Kim, Mina; Ahn, Song Ih; Cho, Eun-Gyung; Lee, Tae Ryong; Shin, Jennifer H

    2014-03-01

    The elasticity of the cellular microenvironment is a key regulator of cellular physiology in many cell types. To investigate the effects of substrate stiffness on the pigmentation process, we cultured normal human melanocytes (NHM) and MNT1 melanoma cells on laminin-coated polydimethylsiloxane (PDMS) substrates of different stiffness. The dendricity of NHM and MNT1 cells was reduced as the substrate stiffness decreased, and the degree of melanosome transfer from NHM or MNT1 cells to normal human keratinocytes was decreased on softer substrates with the reduced dendricity. Gene and protein expressions of MITF, tyrosinase, TRP2, and gp100/PMEL17 exhibited a consistent decreasing trend with the decreasing stiffness. Because the stiffness sensing is mediated by focal adhesion complex through integrin receptors, we checked laminin specific integrin alpha 6 and p-FAK for MNT1 cells to observe that the substrate adhesion was weakened as the substrate stiffness decreased. Weaker adhesion on a softer substrate was accompanied by dynamic shape changes in MNT1 cells with higher speed and larger scattering. Dendritic MNT1 cells cultured on a stiffer substrate exhibited lower migration with smaller root mean squared displacement. These results demonstrate the possibility that skin pigmentation can be influenced by mechanical properties of the cellular microenvironment and can increase when the skin becomes stiff. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. A novel approach for the detection and genetic analysis of live melanoma circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Melody J Xu

    Full Text Available Circulating tumor cell (CTC detection and genetic analysis may complement currently available disease assessments in patients with melanoma to improve risk stratification and monitoring. We therefore sought to establish the feasibility of a telomerase-based assay for detecting and isolating live melanoma CTCs.The telomerase-based CTC assay utilizes an adenoviral vector that, in the presence of elevated human telomerase activity, drives the amplification of green fluorescent protein. Tumor cells are then identified via an image processing system. The protocol was tested on melanoma cells in culture or spiked into control blood, and on samples from patients with metastatic melanoma. Genetic analysis of the isolated melanoma CTCs was then performed for BRAF mutation status.The adenoviral vector was effective for all melanoma cell lines tested with sensitivity of 88.7% (95%CI 85.6-90.4% and specificity of 99.9% (95%CI 99.8-99.9%. In a pilot trial of patients with metastatic disease, CTCs were identified in 9 of 10 patients, with a mean of 6.0 CTCs/mL. At a cutoff of 1.1 CTCs/mL, the telomerase-based assay exhibits test performance of 90.0% sensitivity and 91.7% specificity. BRAF mutation analysis of melanoma cells isolated from culture or spiked control blood, or from pilot patient samples was found to match the known BRAF mutation status of the cell lines and primary tumors.To our knowledge, this is the first report of a telomerase-based assay effective for detecting and isolating live melanoma CTCs. These promising findings support further studies, including towards integrating into the management of patients with melanoma receiving multimodality therapy.

  18. Anticancer effects of kaempferol in A375 human malignant melanoma cells are mediated via induction of apoptosis, cell cycle arrest, inhibition of cell migration and downregulation of m-TOR/PI3K/AKT pathway.

    Science.gov (United States)

    Yang, Jia; Xiao, Peng; Sun, Jiaming; Guo, Liang

    2018-01-01

    Melanoma is an aggressive form of human cancer with limited treatment options currently available. The present study was aimed to evaluate the anticancer activity of kaempferol (KAM) against the human malignant melanoma A375 cell line along with evaluation of its effects on apoptosis, cell cycle, cell migration and m-TOR/PI3K/AKT pathway. Effects on cell viability were assessed by MTT assay while clonogenic assay measured the effects of KAM on colony formation. Annexin V assay evaluated the apoptotic effects of KAM in these cells using flow cytometry. Effects on cell cycle were determined by using flow cytometry with propidium iodide (PI) as probe. The effects of KAM on m-TOR/ PI3K/AKT signalling pathway were evaluated by western blot assay. MTT assay indicated that KAM exhibits a significant anticancer activity against A375 cells with an IC50 of 20 μM. These antiproliferative effects of KAM were also supported by the colony formation assay wherein KAM reduced the colony formation in a dose-dependent manner. The anticancer effect of KAM was found to be due to the initiation of apoptosis in human malignant melanoma A375 cells. Additionally, KAM also exhibited the capacity to trigger G2/M cell cycle arrest and to inhibit the cell migratory potential of A375 cells. KAM caused significant downregulation of m-TOR, phosphorylated (p) m-TOR, PI3K, p-PI3K and Akt protein levels in A375 malignantmelanoma cells. KAM exerts potent anticancer effects via induction of apoptosis, G2/M cell cycle arrest, cell migration inhibition and downregulation of m-TOR, pm-TOR, PI3K, p-PI3K and Akt protein levels.

  19. UVB-Stimulated TNFα Release from Human Melanocyte and Melanoma Cells Is Mediated by p38 MAPK

    Directory of Open Access Journals (Sweden)

    Visalini Muthusamy

    2013-08-01

    Full Text Available Ultraviolet (UV radiation activates cell signaling pathways in melanocytes. As a result of altered signaling pathways and UV-induced cellular damage, melanocytes can undergo oncogenesis and develop into melanomas. In this study, we investigated the effect of UV-radiation on p38 MAPK (mitogen-activated protein kinase, JNK and NFκB pathways to determine which plays a major role in stimulating TNFα secretion in human HEM (melanocytes and MM96L (melanoma cells. MM96L cells exhibited 3.5-fold higher p38 activity than HEM cells at 5 min following UVA + B radiation and 1.6-fold higher JNK activity at 15–30 min following UVB+A radiation, while NFκB was minimally activated in both cells. Irradiated HEM cells had the greatest fold of TNFα secretion (UVB: 109-fold, UVA + B: 103-fold & UVB+A: 130-fold when co-exposed to IL1α. The p38 inhibitor, SB202190, inhibited TNFα release by 93% from UVB-irradiated HEM cells. In the UVB-irradiated MM96L cells, both SB202190 and sulfasalazine (NFκB inhibitor inhibited TNFα release by 52%. Although, anisomycin was a p38 MAPK activator, it inhibited TNFα release in UV-irradiated cells. This suggests that UV-mediated TNFα release may occur via different p38 pathway intermediates compared to those stimulated by anisomycin. As such, further studies into the functional role p38 MAPK plays in regulating TNFα release in UV-irradiated melanocyte-derived cells are warranted.

  20. Electron Paramagnetic Resonance Spectrometry and Imaging in Melanomas: Comparison between Pigmented and Nonpigmented Human Malignant Melanomas

    Directory of Open Access Journals (Sweden)

    Quentin Godechal

    2013-06-01

    Full Text Available It has been known for a long time that the melanin pigments present in normal skin, hair, and most of malignant melanomas can be detected by electron paramagnetic resonance (EPR spectrometry. In this study, we used EPR imaging as a tool to map the concentration of melanin inside ex vivo human pigmented and nonpigmented melanomas and correlated this cartography with anatomopathology. We obtained accurate mappings of the melanin inside pigmented human melanoma samples. The signal intensity observed on the EPR images correlated with the concentration of melanin within the tumors, visible on the histologic sections. In contrast, no EPR signal coming from melanin was observed from nonpigmented melanomas, therefore demonstrating the absence of EPR-detectable pigments inside these particular cases of skin cancer and the importance of pigmentation for further EPR imaging studies on melanoma.

  1. Circulating tumor cells in melanoma patients.

    Directory of Open Access Journals (Sweden)

    Gary A Clawson

    Full Text Available Circulating tumor cells (CTCs are of recognized importance for diagnosis and prognosis of cancer patients. With melanoma, most studies do not show any clear relationship between CTC levels and stage of disease. Here, CTCs were enriched (∼400X from blood of melanoma patients using a simple centrifugation device (OncoQuick, and 4 melanocyte target RNAs (TYR, MLANA, MITF, and MIF were quantified using QPCR. Approximately one-third of melanoma patients had elevated MIF and MLANA transcripts (p<0.0001 and p<0.001, respectively compared with healthy controls. In contrast, healthy controls had uniformly higher levels of TYR and MITF than melanoma patients (p<0.0001. There was a marked shift of leukocytes into the CTC-enriched fractions (a 430% increase in RNA recovery, p<0.001, and no relationship between CTC levels and stage of disease was found. CTCs were captured on microfabricated filters and cultured. Captured melanoma CTCs were large cells, and consisted of 2 subpopulations, based on immunoreactivity. One subpopulation (∼50% stained for both pan-cytokeratin (KRT markers and the common leukocyte marker CD-45, whereas the second subpopulation stained for only KRT. Since similar cells are described in many cancers, we also examined blood from colorectal and pancreatic cancer patients. We observed analogous results, with most captured CTCs staining for both CD-45/KRT markers (and for the monocyte differentiation marker CD-14. Our results suggest that immature melanocyte-related cells (expressing TYR and MITF RNA may circulate in healthy controls, although they are not readily detectable without considerable enrichment. Further, as early-stage melanomas develop, immature melanocyte migration into the blood is somehow curtailed, whereas a significant proportion of patients develop elevated CTC levels (based on MIF and MLANA RNAs. The nature of the captured CTCs is consistent with literature describing leukocyte/macrophage-tumor cell fusion hybrids

  2. Antitumor effects of celecoxib in COX-2 expressing and non-expressing canine melanoma cell lines.

    Science.gov (United States)

    Seo, Kyoung-Won; Coh, Ye-Rin; Rebhun, Robert B; Ahn, Jin-Ok; Han, Sei-Myung; Lee, Hee-Woo; Youn, Hwa-Young

    2014-06-01

    Cyclooxygenase-2 (COX-2) is a potential target for chemoprevention and cancer therapy. Celecoxib, a selective COX-2 inhibitor, inhibits cell growth of various types of human cancer including malignant melanoma. In dogs, oral malignant melanoma represents the most common oral tumor and is often a fatal disease. Therefore, there is a desperate need to develop additional therapeutic strategies. The purpose of this study was to investigate the anticancer effects of celecoxib on canine malignant melanoma cell lines that express varying levels of COX-2. Celecoxib induced a significant anti-proliferative effect in both LMeC and CMeC-1 cells. In the CMeC cells, treatment of 50 μM celecoxib caused an increase in cells in the G0/G1 and a decreased proportion of cells in G-2 phase. In the LMeC cells, 50 μM of celecoxib led to an increase in the percentage of cells in the sub-G1 phase and a significant activation of caspase-3 when compared to CMeC-1 cells. In conclusion, these results demonstrate that celecoxib exhibits antitumor effects on canine melanoma LMeC and CMeC-1 cells by induction of G1-S cell cycle arrest and apoptosis. Our data suggest that celecoxib might be effective as a chemotherapeutic agent against canine malignant melanoma. Copyright © 2014. Published by Elsevier Ltd.

  3. The combination of MLN2238 (ixazomib) with interferon-alpha results in enhanced cell death in melanoma.

    Science.gov (United States)

    Suarez-Kelly, Lorena P; Kemper, Gregory M; Duggan, Megan C; Stiff, Andrew; Noel, Tiffany C; Markowitz, Joseph; Luedke, Eric A; Yildiz, Vedat O; Yu, Lianbo; Jaime-Ramirez, Alena Cristina; Karpa, Volodymyr; Zhang, Xiaoli; Carson, William E

    2016-12-06

    The ubiquitin-proteasome signaling pathway is critical for cell cycle regulation and neoplastic growth. Proteasome inhibition can activate apoptotic pathways. Bortezomib, a selective proteasome inhibitor, has anti-melanoma activity. MLN2238 (ixazomib), an oral proteasome inhibitor, has improved pharmacotherapeutic parameters compared to bortezomib. Interferon-alpha (IFN-α), an immune boosting agent, is FDA-approved for treatment of melanoma. In this study in vitro and in vivo evaluation of the antitumor potential of ixazomib and combination treatments with ixazomib and IFN-α were performed. Apoptosis induced by ixazomib was first observed at 12 hours and was maximal at 48 hours with similar levels of cell death compared to bortezomib. IFN-α alone had little effect on cell viability in vitro. However, the combination of ixazomib with IFN-α significantly enhanced ixazomib's ability to induce apoptotic cell death in BRAF V600E mutant and BRAF wild-type human melanoma tumor cells. The combination of ixazomib and IFN-α also enhanced inhibition of cell proliferation in BRAF V600E mutant melanoma tumor cells; however, this was not seen in BRAF wild-type cells. Ixazomib-induced apoptosis was associated with processing of the pro-apoptotic proteins procaspase-3, -7, -8, and -9, and cleavage of poly-ADP-ribose polymerase (PARP). In an in vivo xenograft model of human melanoma, combination treatment with IFN-α-2b and ixazomib demonstrated a significant reduction in tumor volume when compared to vehicle (p = 0.005) and single therapy ixazomib (p = 0.017) and IFN-α-2b (p = 0.036). These pre-clinical results support further evaluation of combination treatment with ixazomib and IFN-α for the treatment of advanced BRAF V600E mutant melanoma.

  4. Detection of melanoma cells suspended in mononuclear cells and blood plasma using photoacoustic generation

    Science.gov (United States)

    Spradling, Emily M.; Viator, John A.

    2009-02-01

    Melanoma is the deadliest form of skin cancer. Although the initial malignant cells are removed, it is impossible to determine whether or not the cancer has metastasized until a secondary tumor forms that is large enough to detect with conventional imaging. Photoacoustic detection of circulating melanoma cells in the bloodstream has shown promise for early detection of metastasis that may aid in treatment of this aggressive cancer. When blood is irradiated with energy from an Nd:YAG laser at 532 nm, photoacoustic signals are created and melanoma cells can be differentiated from the surrounding cells based on waveforms produced by an oscilloscope. Before this can be used as a diagnostic technique, however, we needed to investigate several parameters. Specifically, the current technique involves the in vitro separation of blood through centrifugation to isolate and test only the white blood cell layer. Using this method, we have detected a single cultured melanoma cell among a suspension of white blood cells. However, the process could be made simpler if the plasma layer were used for detection instead of the white blood cell layer. This layer is easier to obtain after blood separation, the optical difference between plasma and melanoma cells is more pronounced in this layer than in the white blood cell layer, and the possibility that any stray red blood cells could distort the results is eliminated. Using the photoacoustic apparatus, we detected no melanoma cells within the plasma of whole blood samples spiked with cultured melanoma cells.

  5. Pro-oxidative and pro-apoptotic action of defatted seeds of Oenothera paradoxa on human skin melanoma cells.

    Science.gov (United States)

    Jaszewska, Edyta; Kośmider, Anita; Kiss, Anna K; Naruszewicz, Marek

    2009-09-23

    Three extracts of defatted seeds of Oenothera paradoxa Hudziok, aqueous extract, 60% ethanolic extract, and 30% isopropanolic extract, differing by their total content of phenolic compounds and by their contents of individual polyphenols, were investigated in this study. The extracts exerted cytotoxic action on HTB-140 human skin melanoma cells. After 24 h of incubation, IC(50) values of 169.7 +/- 5.9 micog/mL, 72.4 +/- 3.8 microg/mL, and 155.3 +/- 6.3 microg/mL were obtained for HTB-140 cells with the aqueous extract, 60% ethanolic extract, and 30% isopropanolic extract at the tested concentrations (5-200 microg/mL), respectively, while IC(50) for normal fibroblast cells NHDFs was not attained. Moreover, for HTB-140 cells, LD(50) (concentration at which 50% of cells were dead) of 89.2 +/- 4.3 microg/mL and 181.4 +/- 6.5 microg/mL were obtained with 60% ethanolic extract and 30% isopropanolic extract, respectively. In melanoma cells, all three extracts caused a concentration-dependent increase of ROS production, GSH, and ATP lowering, and appearance of phosphatidylserine on the external surface of cellular membranes where it was bound to annexin V-FITC; furthermore, apoptosis without activation of caspase-3 took place. The most effective was 60% ethanolic extract, which had the greatest total content of phenolic compounds and the greatest content of pentagalloyloglucose (PGG).

  6. Isoegomaketone induces apoptosis in SK-MEL-2 human melanoma cells through mitochondrial apoptotic pathway via activating the PI3K/Akt pathway.

    Science.gov (United States)

    Kwon, Soon-Jae; Lee, Ju-Hye; Moon, Kwang-Deog; Jeong, Il-Yun; Yee, Sung-Tae; Lee, Mi-Kyung; Seo, Kwon-Il

    2014-11-01

    Isoegomaketone (IK) is a major biologically active component of Perilla frutescens. In this study, we investigated the contribution of reactive oxygen species (ROS) to IK-induced apoptosis in human melanoma SK-MEL-2 cells. We found that IK inhibited the proliferation of SK-MEL-2 human melanoma cells in a dose-dependent manner. IK also induced sub-G1 DNA accumulation, formation of apoptotic bodies, nuclear condensation, and a DNA ladder in SK-MEL-2 cells. IK also induced activation of caspase-3 and -9, whereas caspase‑8 was unaffected. Further, N-acetyl-L-cysteine (NAC, ROS scavenger) treatment to SK-MEL-2 cells significantly reduced IK-induced cell death. Pretreatment of NAC to SK-MEL-2 cells followed by 100 µM IK reduced the protein levels of Bax and cytochrome c as well as PARP cleavage, whereas the protein level of Bcl-2 increased. Moreover, IK inhibited the phosphorylation of AKT/mTOR protein and cell proliferation induced by LY294002, a PI3K inhibitor. In conclusion, IK-induced ROS generation regulates cell growth inhibition and it induces apoptosis through caspase‑dependent and -independent pathways via modulation of PI3K/AKT signaling in SK-MEL-2 cells.

  7. Detection and capture of single circulating melanoma cells using photoacoustic flowmetry

    Science.gov (United States)

    O'Brien, Christine; Mosley, Jeffrey; Goldschmidt, Benjamin S.; Viator, John A.

    2010-02-01

    Photoacoustic flowmetry has been used to detect single circulating melanoma cells in vitro. Circulating melanoma cells are those cells that travel in the blood and lymph systems to create secondary tumors and are the hallmark of metastasis. This technique involves taking blood samples from patients, separating the white blood and melanoma cells from whole blood and irradiating them with a pulsed laser in a flowmetry set up. Rapid, visible wavelength laser pulses on the order of 5 ns can induce photoacoustic waves in melanoma cells due to their melanin content, while surrounding white blood cells remain acoustically passive. We have developed a system that identifies rare melanoma cells and captures them in 50 microliter volumes using suction applied near the photoacoustic detection chamber. The 50 microliter sample is then diluted and the experiment is repeated using the new sample until only a melanoma cell remains. We have tested this system on dyed microspheres ranging in size from 300 to 500 microns. Capture of circulating melanoma cells may provide the opportunity to study metastatic cells for basic understanding of the spread of cancer and to optimize patient specific therapies.

  8. Biologic effect of exogenous wild p53 combined with irradiation on human melanoma cell lines with different p53 status

    International Nuclear Information System (INIS)

    Min Fengling; Zhang Hong; Li Wenjian; Liu Bing; Zhou Qingming; Duan Xin; Gao Qingxiang

    2007-01-01

    Objective: To investigate the effect of low dose irradiation on gene transfer efficiency and the effect of adenoviral-mediated exogenous P53 overexpression on apoptosis and radiosensitivity of radioresistant human melanoma cell lines A375(wild type p53)and WM983a(mutant type p53). Methods: Control vector, a replication deficient recombinant adenoviral vector containing a CMV promoter and green fluorescent protein (AdCMV-GFP), was used to transfect A375 cells and WM983a cells preirradiated with or without 1 Gy X-ray. The transduction efficiency of GFP gene was determined with fluorescence microscope directly. These two types of cells irradiated by 1 Gy X-ray were transfected with a replication deficient recombinant adenoviral vector carrying human wild p53 (AdCMV-p53), and mRNA level was detected by RT-PCR. The cell cycle delay and the expression of exogenous P53 were detected using flow cytometry (FCM) at different times after transfection. Tunel technique was used to detect cell apoptosis. The radiosensivity of A375 and WM983a cells after p53 transduction was analyzed by colony formation. Results: It is found that 1 Gy irradiation increased the gene transfection efficiency of A375 and WM983a cells. The expression of exogenous P53 was found to range from 60% to 80% among transfected cells during the first three days after transduction and then declined continuously down to the control level on day 10. G 1 cell cycle arrest was also observed after p53 gene transduction. WM983a cells transfected with p53 showed higher sensitivity to X-ray-induced cell killing than A375 cells. Conclusions: It is indicated that low dose of ionizing radiation can improve gene transfection efficiency of A375 and WM983a cells mediated by adenovirus vector. Althrough the overexpresion of exogenous p53 may not inhibit cell growth and induce apoptosis of melanoma cell line A375 and WM983a irt vitro, the two cell lines are much more sensitive to cell death induced by irradiation. It is

  9. Membrane-type-3 matrix metalloproteinase (MT3-MMP functions as a matrix composition-dependent effector of melanoma cell invasion.

    Directory of Open Access Journals (Sweden)

    Olga Tatti

    Full Text Available In primary human melanoma, the membrane-type matrix metalloproteinase, MT3-MMP, is overexpressed in the most aggressive nodular-type tumors. Unlike MT1-MMP and MT2-MMP, which promote cell invasion through basement membranes and collagen type I-rich tissues, the function of MT3-MMP in tumor progression remains unclear. Here, we demonstrate that MT3-MMP inhibits MT1-MMP-driven melanoma cell invasion in three-dimensional collagen, while yielding an altered, yet MT1-MMP-dependent, form of expansive growth behavior that phenocopies the formation of nodular cell colonies. In melanoma cell lines originating from advanced primary or metastatic lesions, endogenous MT3-MMP expression was associated with limited collagen-invasive potential. In the cell lines with highest MT3-MMP expression relative to MT1-MMP, collagen-invasive activity was increased following stable MT3-MMP gene silencing. Consistently, MT3-MMP overexpression in cells derived from less advanced superficially spreading melanoma lesions, or in the MT3-MMP knockdown cells, reduced MT1-MMP-dependent collagen invasion. Rather than altering MT1-MMP transcription, MT3-MMP interacted with MT1-MMP in membrane complexes and reduced its cell surface expression. By contrast, as a potent fibrinolytic enzyme, MT3-MMP induced efficient invasion of the cells in fibrin, a provisional matrix component frequently found at tumor-host tissue interfaces and perivascular spaces of melanoma. Since MT3-MMP was significantly upregulated in biopsies of human melanoma metastases, these results identify MT3-MMP as a matrix-dependent modifier of the invasive tumor cell functions during melanoma progression.

  10. Specific pesticide-dependent increases in α-synuclein levels in human neuroblastoma (SH-SY5Y) and melanoma (SK-MEL-2) cell lines.

    Science.gov (United States)

    Chorfa, Areski; Bétemps, Dominique; Morignat, Eric; Lazizzera, Corinne; Hogeveen, Kevin; Andrieu, Thibault; Baron, Thierry

    2013-06-01

    Epidemiological studies indicate a role of genetic and environmental factors in Parkinson's disease involving alterations of the neuronal α-synuclein (α-syn) protein. In particular, a relationship between Parkinson's disease and occupational exposure to pesticides has been repeatedly suggested. Our objective was to precisely assess changes in α-syn levels in human neuroblastoma (SH-SY5Y) and melanoma (SK-MEL-2) cell lines following acute exposure to pesticides (rotenone, paraquat, maneb, and glyphosate) using Western blot and flow cytometry. These human cell lines express α-syn endogenously, and overexpression of α-syn (wild type or mutated A53T) can be obtained following recombinant adenoviral transduction. We found that endogenous α-syn levels in the SH-SY5Y neuroblastoma cell line were markedly increased by paraquat, and to a lesser extent by rotenone and maneb, but not by glyphosate. Rotenone also clearly increased endogenous α-syn levels in the SK-MEL-2 melanoma cell line. In the SH-SY5Y cell line, similar differences were observed in the α-syn adenovirus-transduced cells, with a higher increase of the A53T mutated protein. Paraquat markedly increased α-syn in the SK-MEL-2 adenovirus-transduced cell line, similarly for the wild-type or A53T proteins. The observed differences in the propensities of pesticides to increase α-syn levels are in agreement with numerous reports that indicate a potential role of exposure to certain pesticides in the development of Parkinson's disease. Our data support the hypothesis that pesticides can trigger some molecular events involved in this disease and also in malignant melanoma that consistently shows a significant but still unexplained association with Parkinson's disease.

  11. The role of autophagy inhibition in the enhanced cytotoxicity of temozolomide on melanoma cell lines

    Directory of Open Access Journals (Sweden)

    O. O. Ryabaya

    2017-01-01

    Full Text Available Background. Despite advantages in treatment of metastatic melanoma it remains resistant to current therapy. Recent evidence indicates that tumor cells could overcome death through autophagy, a process that degrades cellular proteins and organelles to maintain cellular biosynthesis during nutrient deprivation or lack of energy. Objective: to investigate the involvement of autophagy inhibitors chloroquine (CQ and LY-294.002 (LY in temozolomide (TMZ cytotoxicity in human melanoma cell lines.Materials and methods. The study was performed on patient-derived melanoma cell lines Mel Z, Mel IL and Mel MTP. The antiproliferative activity of combined TMZ and autophagy inhibitors treatment was determined by MTT assay and colony-forming assay. Cell cycle analysis, apoptosis activation and expression analysis of key autophagy markers under combined treatment was evaluated.Results. CQ and LY enhanced the cytotoxicity of TMZ and reduced colony formation in 3 melanoma cell lines, moreover both inhibitors increased cell population in G0 / G1 phase of cell cycle in Mel Z, Mel IL cell lines, but not in Mel MTP. CQ and LY synergistically activated apoptosis in all cell lines. The matrix RNA expression analysis of key autophagy genes showed autophagy involvement in enhanced cytotoxicity.Conclusions. Thus, autophagy inhibition on different stages of this process could overcome resistance to TMZ and be applicable as potent target in metastatic melanoma treatment.

  12. Moringa oleifera fruit induce apoptosis via reactive oxygen species-dependent activation of mitogen-activated protein kinases in human melanoma A2058 cells.

    Science.gov (United States)

    Guon, Tae Eun; Chung, Ha Sook

    2017-08-01

    The present study was performed to determine the effect of Moringa oleifera fruit extract on the apoptosis of human melanoma A2058 cells. A2058 cells were treated for 72 h with Moringa oleifera fruit extract at 50-100 µg/ml, and cell viability with apoptotic changes was examined. The involvement of reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) was examined. It was revealed that Moringa oleifera fruit extract significantly inhibited the cell viability and promoted apoptosis of A2058 cells in a concentration-dependent manner. Moringa oleifera fruit extract-treated A2058 cells exhibited increased activities of cleaved caspase-9 and caspase-3. It also caused an enhancement of MAPK phosphorylation and ROS production. The pro-apoptotic activity of Moringa oleifera fruit extract was significantly reversed by pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125, extracellular-signal-regulated kinase (ERK) inhibitor PD98058 or ROS inhibitor N-acetyl-L-cysteine. Taken together, Moringa oleifera fruit extract is effective in inducing mitochondrial apoptosis of A2058 cells, which is mediated through induction of ROS formation, and JNK and ERK activation. Moringa oleifera fruit extract may thus have therapeutic benefits for human melanoma A2058 cells.

  13. Hibiscus sabdariffa leaf polyphenolic extract induces human melanoma cell death, apoptosis, and autophagy.

    Science.gov (United States)

    Chiu, Chun-Tang; Hsuan, Shu-Wen; Lin, Hui-Hsuan; Hsu, Cheng-Chin; Chou, Fen-Pi; Chen, Jing-Hsien

    2015-03-01

    Melanoma is the least common but most fatal form of skin cancer. Previous studies have indicated that an aqueous extract of Hibiscus sabdariffa leaves possess hypoglycemic, hypolipidemic, and antioxidant effects. In this study, we want to investigate the anticancer activity of Hibiscus leaf polyphenolic (HLP) extract in melanoma cells. First, HLP was exhibited to be rich in epicatechin gallate (ECG) and other polyphenols. Apoptotic and autophagic activities of HLP and ECG were further evaluated by DAPI stain, cell-cycle analysis, and acidic vascular organelle (AVO) stain. Our results revealed that both HLP and ECG induced the caspases cleavages, Bcl-2 family proteins regulation, and Fas/FasL activation in A375 cells. In addition, we also revealed that the cells presented AVO-positive after HLP treatments. HLP could increase the expressions of autophagy-related proteins autophagy-related gene 5 (ATG5), Beclin1, and light chain 3-II (LC3-II), and induce autophagic cell death in A375 cells. These data indicated that the anticancer effect of HLP, partly contributed by ECG, in A375 cells. HLP potentially could be developed as an antimelanoma agent. © 2015 Institute of Food Technologists®

  14. Balloon Cell Urethral Melanoma: Differential Diagnosis and Management

    Directory of Open Access Journals (Sweden)

    M. McComiskey

    2015-01-01

    Full Text Available Introduction. Primary malignant melanoma of the urethra is a rare tumour (0.2% of all melanomas that most commonly affects the meatus and distal urethra and is three times more common in women than men. Case. A 76-year-old lady presented with vaginal pain and discharge. On examination, a 4 cm mass was noted in the vagina and biopsy confirmed melanoma of a balloon type. Preoperative CT showed no distant metastases and an MRI scan of the pelvis demonstrated no associated lymphadenopathy. She underwent anterior exenterative surgery and vaginectomy also. Histology confirmed a urethral nodular malignant melanoma. Discussion. First-line treatment of melanoma is often surgical. Adjuvant treatment including chemotherapy, radiotherapy, or immunotherapy has also been reported. Even with aggressive management, malignant melanoma of the urogenital tract generally has a poor prognosis. Recurrence rates are high and the mean period between diagnosis and recurrence is 12.5 months. A 5-year survival rate of less than 20% has been reported in balloon cell melanomas along with nearly 20% developing local recurrence. Conclusion. To the best of our knowledge, this case is the first report of balloon cell melanoma arising in the urethra. The presentation and surgical management has been described and a literature review provided.

  15. Inhibition of cell proliferation, migration and invasion of B16-F10 melanoma cells by α-mangostin

    Energy Technology Data Exchange (ETDEWEB)

    Beninati, Simone, E-mail: beninati@bio.uniroma2.it [Department of Biology, University “Tor Vergata”, Rome (Italy); Oliverio, Serafina [Department of Biology, University “Tor Vergata”, Rome (Italy); Cordella, Martina [Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome (Italy); Rossi, Stefania; Senatore, Cinzia [Regina Elena National Cancer Institute, Rome (Italy); Liguori, Immacolata; Lentini, Alessandro; Piredda, Lucia [Department of Biology, University “Tor Vergata”, Rome (Italy); Tabolacci, Claudio [Department of Biology, University “Tor Vergata”, Rome (Italy); Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome (Italy)

    2014-08-08

    Highlights: • We studied the anticancer potential of a new emerging molecule, α-mangostin (α-M). • We provide first evidences on the effects of α-M on transglutaminase activity. • We deeply examined the antimetastatic effects of α-M through many in vitro assays. • Proteomic analysis revealed that α-M promotes a reorganization at cellular level. - Abstract: In this study, we have evaluated the potential antineoplastic effects of α-mangostin (α-M), the most representative xanthone in Garcinia mangostana pericarp, on melanoma cell lines. This xanthone markedly inhibits the proliferation of high-metastatic B16-F10 melanoma cells. Furthermore, by deeply analyzing which steps in the metastatic process are influenced by xanthone it was observed that α-M strongly interferes with homotypic aggregation, adhesion, plasticity and invasion ability of B16-F10 cells, probably by the observed reduction of metalloproteinase-9 activity. The antiproliferative and antimetastatic properties of α-M have been established in human SK-MEL-28 and A375 melanoma cells. In order to identify pathways potentially involved in the antineoplastic properties of α-M, a comparative mass spectrometry proteomic approach was employed. These findings may improve our understanding of the molecular mechanisms underlying the anti-cancer effects of α-M on melanoma.

  16. Is Melanoma a stem cell tumor? Identification of neurogenic proteins in trans-differentiated cells

    Directory of Open Access Journals (Sweden)

    Chan Linda S

    2005-03-01

    Full Text Available Abstract Background Although several genes and proteins have been implicated in the development of melanomas, the molecular mechanisms involved in the development of these tumors are not well understood. To gain a better understanding of the relationship between the cell growth, tumorigenesis and differentiation, we have studied a highly malignant cat melanoma cell line that trans-differentiates into neuronal cells after exposure to a feline endogenous retrovirus RD114. Methods To define the repertoire of proteins responsible for the phenotypic differences between melanoma and its counterpart trans-differentiated neuronal cells we have applied proteomics technology and compared protein profiles of the two cell types and identified differentially expressed proteins by 2D-gel electrophoresis, image analyses and mass spectrometry. Results The melanoma and trans-differentiated neuronal cells could be distinguished by the presence of distinct sets of proteins in each. Although approximately 60–70% of the expressed proteins were shared between the two cell types, twelve proteins were induced de novo after infection of melanoma cells with RD114 virus in vitro. Expression of these proteins in trans-differentiated cells was significantly associated with concomitant down regulation of growth promoting proteins and up-regulation of neurogenic proteins (p = 95% proteins expressed in trans-differentiated cells could be associated with the development, differentiation and regulation of nervous system cells. Conclusion Our results indicate that the cat melanoma cells have the ability to differentiate into distinct neuronal cell types and they express proteins that are essential for self-renewal. Since melanocytes arise from the neural crest of the embryo, we conclude that this melanoma arose from embryonic precursor stem cells. This model system provides a unique opportunity to identify domains of interactions between the expressed proteins that halt the

  17. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces matrix metalloproteinase (MMP) expression and invasion in A2058 melanoma cells

    International Nuclear Information System (INIS)

    Villano, C.M.; Murphy, K.A.; Akintobi, A.; White, L.A.

    2006-01-01

    There has been a 34% increase in melanoma related mortality in the United States from 1973 to 1992. Although few successful treatments for malignant melanoma exist, it is known that genetic susceptibility and environmental factors contribute to the initiation and progression of melanoma. Excessive UV exposure is considered the main etiological factor in melanoma initiation, however, epidemiological and experimental evidence suggests that exposure to environmental carcinogens contribute to melanoma. We propose that exposure to environmental chemicals that activate the aryl hydrocarbon receptor pathway contribute to melanoma progression, specifically through stimulation of the expression and activity of the matrix metalloproteinases (MMPs). Therefore, we investigated the effect of AhR activation on normal human melanocytes and several melanoma cell lines. The data presented here demonstrate that normal melanocytes and melanoma cells express the AhR and Arnt and are responsive to activation by TCDD. Furthermore, activation of this pathway in transformed melanoma cells (A2058) results in increased expression and activity of MMP-1, MMP-2 and MMP-9, as well as increased invasion using in vitro invasion assays. Furthermore, TCDD-induced expression of the MMP-1 promoter in melanoma cells appears to require different elements than those required in untransformed cells, indicating that this pathway may have multiple mechanisms for activation of MMP expression

  18. In vitro radiobiological evaluation of selective killing effects of 10B1-paraboronophenylalanine.HCl in the thermal neutron capture therapy of malignant melanoma cells

    International Nuclear Information System (INIS)

    Ichihashi, M.; Ueda, M.; Hayashibe, K.; Hatta, S.; Tsuji, M.; Mishima, Y.; Fukuda, H.; Kobayashi, T.; Kanda, K.

    1985-01-01

    In order to clarify the specific affinity of 10 B 1 -p-boronophenylalanine.HCl ( 10 B 1 -BPA) to melanoma cells, the killing effects of 10 B 1 -BPA in the thermal neutron capture treatment on both cultured melanotic and amelanotic melanoma cells were compared with those on non-melanoma cells, such as Alexander cells, HeLa cells and normal human fibroblasts. Cells in the plateau phase cultured in the usual medium for 4-7 days were incubated with the medium containing 50 μg/ml 10 B 1 -BPA for 20 hours until 2 hours before thermal neutron irradiation. After thermal neutron irradiation, the number of colonies consisting of more than 50 cells was counted to obtain the dose-survival curves. The melanotic cells pre-incubated with 10 B 1 -BPA had more enhanced killing sensitivity to thermal neutron irradiation than amelanotic melanoma cells pre-incubated similarly with 10 B 1 -BPA. 10 B 1 -BPA pre-incubation had no enhanced killing effects on Alexander cells, but had slightly enhanced killing effects on HeLa cells. These results indicate that 10 B 1 -BPA could be incorporated by a specific uptake mechanism of melanoma cells and accumulated within melanotic melanoma cells and that 10 B 1 -BPA at present could be the best chemical for the thermal neutron capture therapy of human malignant melanoma. (Namekawa, K.)

  19. HTB140 melanoma cells under proton irradiation and/or alkylating agents

    Science.gov (United States)

    Korićanac, L.; Petrović, I.; Privitera, G.; Cuttone, G.; Ristić-Fira, A.

    2007-09-01

    Chemoresistance is a major problem in the treatment of malignant melanoma. The mainstay of treatment for melanoma is the DNA-alkylating agent dacarbazine (DTIC). Fotemustine (FM), a member of the chloroethylnitrosourea group of alkylating agents, has also demonstrated significant antitumor effects in malignant melanoma. However, the intrinsic and acquired resistance of melanoma limits the clinical application of these drugs. Melanomas are also extremely radioresistant. With the objective of enhancing growth inhibition of melanoma cells, combined treatments of FM or DTIC with proton irradiation have been investigated. These effects were studied on HTB140 melanoma cell viability and proliferation. Cells exposed to treatment with FM and protons have shown inhibition of cell growth and significant reduction of proliferation capacity compared to single irradiation or drug treatment. Treatment with DTIC and protons has shown improved growth inhibition compared to appropriate single drug treatment, while the effects of single proton irradiation have been the most pronounced.

  20. Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24): Novel gene therapeutic for metastatic melanoma

    International Nuclear Information System (INIS)

    Fisher, Paul B.; Sarkar, Devanand; Lebedeva, Irina V.; Emdad, Luni; Gupta, Pankaj; Sauane, Moira; Su Zaozhong; Grant, Steven; Dent, Paul; Curiel, David T.; Senzer, Neil; Nemunaitis, John

    2007-01-01

    A potentially less toxic approach for cancer therapy comprises induction of tumor cells to lose growth potential irreversibly and terminally differentiate. Combining this scheme termed 'differentiation therapy of cancer' with subtraction hybridization to human melanoma cells resulted in the cloning of melanoma differentiation associated (mda) genes displaying elevated expression as a consequence of induction of terminal differentiation. One originally novel gene, mda-7, was found to display elevated expression in normal melanocytes and nevi with progressive loss of expression as a consequence of melanoma development and progression to metastasis. Based on structure, biochemical properties and chromosomal location, mda-7 has now been reclassified as interleukin (IL)-24, a member of the expanding IL-10 family of cytokines. In vitro cell culture and in vivo animal studies indicate that mda-7/IL-24 selectively induces programmed cell death (apoptosis) in multiple human cancers (including melanomas), without harming normal cells, and promotes profound anti-tumor activity in nude mice containing human tumor xenografts. Based on these remarkable properties, a Phase I clinical trial was conducted to test the safety of administration of mda-7/IL-24 by a replication incompetent adenovirus (Ad.mda-7; INGN 241) in patients with advanced solid cancers including melanoma. mda-7/IL-24 was found to be safe and to promote significant clinical activity, particularly in the context of patients with metastatic melanoma. These results provide an impetus for further clinical studies and document a central paradigm of cancer therapy, namely translation of basic science from the 'bench to the bedside.'

  1. Immunohistochemical Analysis of Collagen IV and Laminin Expression in Spontaneous Melanoma Regression in the Melanoma-Bearing Libechov Minipig

    International Nuclear Information System (INIS)

    Planska, Daniela; Burocziova, Monika; Strnadel, Jan; Horak, Vratislav

    2015-01-01

    Spontaneous regression (SR) of human melanoma is a rare, well-documented phenomenon that is not still fully understood. Its detailed study cannot be performed in patients due to ethical reasons. Using the Melanoma-bearing Libechov Minipig (MeLiM) animals of various ages (from 3 weeks to 8 months) we implemented a long-term monitoring of melanoma growth and SR. We focused on immunohistochemical detection of two important extracellular matrix proteins, collagen IV and laminin, which are associated with cancer. We showed that SR of melanoma is a highly dynamic process. The expression of collagen IV and laminin correlated with changes in population of melanoma cells. Tumours of 3-week-old animals consisted primarily of melanoma cells with a granular expression of collagen IV and laminin around them. Thereafter, melanoma cells were gradually destroyed and tumour tissue was rebuilt into the connective tissue. Collagen IV expression slightly increased in tumours of 10-week-old pigs showing extracellular fibrous appearance. In tumours of older animals, areas lacking melanoma cells demonstrated a low expression and areas still containing melanoma cells a high expression of both proteins. We considered the age of 10 weeks as a turning point in the transition between tumour growth and SR of the MeLiM melanoma

  2. Immunogenicity of oncolytic vaccinia viruses JX-GFP and TG6002 in a human melanoma in vitro model: studying immunogenic cell death, dendritic cell maturation and interaction with cytotoxic T lymphocytes

    Directory of Open Access Journals (Sweden)

    Heinrich B

    2017-05-01

    Full Text Available B Heinrich,1 J Klein,1 M Delic,1 K Goepfert,1 V Engel,1 L Geberzahn,1 M Lusky,2 P Erbs,2 X Preville,3 M Moehler1 1First Department of Internal Medicine, University Medical Center Mainz, Mainz, Germany; 2Transgene SA, Illkirch-Graffenstaden, 3Amoneta Diagnostics, Huningue, France Abstract: Oncolytic virotherapy is an emerging immunotherapeutic modality for cancer treatment. Oncolytic viruses with genetic modifications can further enhance the oncolytic effects on tumor cells and stimulate antitumor immunity. The oncolytic vaccinia viruses JX-594-GFP+/hGM-CSF (JX-GFP and TG6002 are genetically modified by secreting granulocyte-macrophage colony-stimulating factor (GM-CSF or transforming 5-fluorocytosine (5-FC into 5-fluorouracil (5-FU. We compared their properties to kill tumor cells and induce an immunogenic type of cell death in a human melanoma cell model using SK29-MEL melanoma cells. Their influence on human immune cells, specifically regarding the activation of dendritic cells (DCs and the interaction with the autologous cytotoxic T lymphocyte (CTL clone, was investigated. Melanoma cells were infected with either JX-GFP or TG6002 alone or in combination with 5-FC and 5-FU. The influence of viral infection on cell viability followed a time- and multiplicity of infection dependent manner. Combination of virus treatment with 5-FU resulted in stronger reduction of cell viability. TG6002 in combination with 5-FC did not significantly strengthen the reduction of cell viability in this setting. Expression of calreticulin and high mobility group 1 protein (HMGB1, markers of immunogenic cell death (ICD, could be detected after viral infection. Accordingly, DC maturation was noted after viral oncolysis. DCs presented stronger expression of activation and maturation markers. The autologous CTL clone IVSB expressed the activation marker CD69, but viral treatment failed to enhance cytotoxicity marker. In summary, vaccinia viruses JX-GFP and TG6002 lyse

  3. Genetic Engineering of T Cells to Target HERV-K, an Ancient Retrovirus on Melanoma.

    Science.gov (United States)

    Krishnamurthy, Janani; Rabinovich, Brian A; Mi, Tiejuan; Switzer, Kirsten C; Olivares, Simon; Maiti, Sourindra N; Plummer, Joshua B; Singh, Harjeet; Kumaresan, Pappanaicken R; Huls, Helen M; Wang-Johanning, Feng; Cooper, Laurence J N

    2015-07-15

    The human endogenous retrovirus (HERV-K) envelope (env) protein is a tumor-associated antigen (TAA) expressed on melanoma but not normal cells. This study was designed to engineer a chimeric antigen receptor (CAR) on T-cell surface, such that they target tumors in advanced stages of melanoma. Expression of HERV-K protein was analyzed in 220 melanoma samples (with various stages of disease) and 139 normal organ donor tissues using immunohistochemical (IHC) analysis. HERV-K env-specific CAR derived from mouse monoclonal antibody was introduced into T cells using the transposon-based Sleeping Beauty (SB) system. HERV-K env-specific CAR(+) T cells were expanded ex vivo on activating and propagating cells (AaPC) and characterized for CAR expression and specificity. This includes evaluating the HERV-K-specific CAR(+) T cells for their ability to kill A375-SM metastasized tumors in a mouse xenograft model. We detected HERV-K env protein on melanoma but not in normal tissues. After electroporation of T cells and selection on HERV-K(+) AaPC, more than 95% of genetically modified T cells expressed the CAR with an effector memory phenotype and lysed HERV-K env(+) tumor targets in an antigen-specific manner. Even though there is apparent shedding of this TAA from tumor cells that can be recognized by HERV-K env-specific CAR(+) T cells, we observed a significant antitumor effect. Adoptive cellular immunotherapy with HERV-K env-specific CAR(+) T cells represents a clinically appealing treatment strategy for advanced-stage melanoma and provides an approach for targeting this TAA on other solid tumors. ©2015 American Association for Cancer Research.

  4. Effectiveness of anticancer drugs determined in nude mice inoculated with [125I]5-iodo-2'-deoxyuridine-prelabeled human melanoma cells

    International Nuclear Information System (INIS)

    Lockshin, A.; Giovanella, B.C.; Vardeman, D.M.; Mendoza, J.T.; Quian, C.; Kozielski, T.; Stehlin, J.S. Jr.

    1985-01-01

    Anticancer drugs were tested on NIH-2 nude mice inoculated ip with BRO human melanoma cells, which are rapidly lethal for these hosts. Criteria for drug activity were a) increased host survival and b) an increased rate of radioactivity loss from mice bearing BRO cells prelabeled with [ 125 I]5-iodo-2'-deoxyuridine. Diphtheria toxin, which is selectively toxic to human cells compared to mouse cells, prolonged host survival and accelerated 125 I elimination in a dose-dependent manner. Drugs that increased the rate of 125 I loss compared to the rate of untreated mice also prolonged the lives of treated mice. With one exception, drugs that did not accelerate 125 I elimination had little or no effect on the length of survival

  5. Natural compounds' activity against cancer stem-like or fast-cycling melanoma cells.

    Directory of Open Access Journals (Sweden)

    Malgorzata Sztiller-Sikorska

    Full Text Available BACKGROUND: Accumulating evidence supports the concept that melanoma is highly heterogeneous and sustained by a small subpopulation of melanoma stem-like cells. Those cells are considered as responsible for tumor resistance to therapies. Moreover, melanoma cells are characterized by their high phenotypic plasticity. Consequently, both melanoma stem-like cells and their more differentiated progeny must be eradicated to achieve durable cure. By reevaluating compounds in heterogeneous melanoma populations, it might be possible to select compounds with activity not only against fast-cycling cells but also against cancer stem-like cells. Natural compounds were the focus of the present study. METHODS: We analyzed 120 compounds from The Natural Products Set II to identify compounds active against melanoma populations grown in an anchorage-independent manner and enriched with cells exerting self-renewing capacity. Cell viability, cell cycle arrest, apoptosis, gene expression, clonogenic survival and label-retention were analyzed. FINDINGS: Several compounds efficiently eradicated cells with clonogenic capacity and nanaomycin A, streptonigrin and toyocamycin were effective at 0.1 µM. Other anti-clonogenic but not highly cytotoxic compounds such as bryostatin 1, siomycin A, illudin M, michellamine B and pentoxifylline markedly reduced the frequency of ABCB5 (ATP-binding cassette, sub-family B, member 5-positive cells. On the contrary, treatment with maytansine and colchicine selected for cells expressing this transporter. Maytansine, streptonigrin, toyocamycin and colchicine, even if highly cytotoxic, left a small subpopulation of slow-dividing cells unaffected. Compounds selected in the present study differentially altered the expression of melanocyte/melanoma specific microphthalmia-associated transcription factor (MITF and proto-oncogene c-MYC. CONCLUSION: Selected anti-clonogenic compounds might be further investigated as potential adjuvants

  6. Targeting melanoma stem cells with the Vitamin E derivative δ-tocotrienol.

    Science.gov (United States)

    Marzagalli, Monica; Moretti, Roberta Manuela; Messi, Elio; Marelli, Marina Montagnani; Fontana, Fabrizio; Anastasia, Alessia; Bani, Maria Rosa; Beretta, Giangiacomo; Limonta, Patrizia

    2018-01-12

    The prognosis of metastatic melanoma is very poor, due to the development of drug resistance. Cancer stem cells (CSCs) may play a crucial role in this mechanism, contributing to disease relapse. We first characterized CSCs in melanoma cell lines. We observed that A375 (but not BLM) cells are able to form melanospheres and show CSCs traits: expression of the pluripotency markers SOX2 and KLF4, higher invasiveness and tumor formation capability in vivo with respect to parental adherent cells. We also showed that a subpopulation of autofluorescent cells expressing the ABCG2 stem cell marker is present in the A375 spheroid culture. Based on these data, we investigated whether δ-TT might target melanoma CSCs. We demonstrated that melanoma cells escaping the antitumor activity of δ-TT are completely devoid of the ability to form melanospheres. In contrast, cells that escaped vemurafenib treatment show a higher ability to form melanospheres than control cells. δ-TT also induced disaggregation of A375 melanospheres and reduced the spheroidogenic ability of sphere-derived cells, reducing the expression of the ABCG2 marker. These data demonstrate that δ-TT exerts its antitumor activity by targeting the CSC subpopulation of A375 melanoma cells and might represent a novel chemopreventive/therapeutic strategy against melanoma.

  7. Insulin receptor internalization defect in an insulin-resistant mouse melanoma cell line

    International Nuclear Information System (INIS)

    Androlewicz, M.J.; Straus, D.S.; Brandenburg, D.F.

    1989-01-01

    Previous studies from this laboratory demonstrated that the PG19 mouse melanoma cell line does not exhibit a biological response to insulin, whereas melanoma x mouse embryo fibroblast hybrids do respond to insulin. To investigate the molecular basis of the insulin resistance of the PG19 melanoma cells, insulin receptors from the insulin-resistant melanoma cells and insulin-sensitive fibroblast x melanoma hybrid cells were analyzed by the technique of photoaffinity labeling using the photoprobe 125 I-NAPA-DP-insulin. Photolabeled insulin receptors from the two cell types have identical molecular weights as determined by SDS gel electrophoresis under reducing and nonreducing conditions, indicating that the receptors on the two cell lines are structurally similar. Insulin receptor internalization studies revealed that the hybrid cells internalize receptors to a high degree at 37 degree C, whereas the melanoma cells internalize receptors to a very low degree or not at all. The correlation between ability to internalize insulin receptors and sensitivity to insulin action in this system suggests that uptake of the insulin-receptor complex may be required for insulin action in these cells. Insulin receptors from the two cell lines autophosphorylate in a similar insulin-dependent manner both in vitro and in intact cells, indicating that insulin receptors on the melanoma and hybrid cells have functional tyrosine protein kinase activity. Therefore, the block in insulin action in the PG19 melanoma cells appears to reside at a step beyond insulin-stimulated receptor autophosphorylation

  8. uPA/uPAR system activation drives a glycolytic phenotype in melanoma cells.

    Science.gov (United States)

    Laurenzana, Anna; Chillà, Anastasia; Luciani, Cristina; Peppicelli, Silvia; Biagioni, Alessio; Bianchini, Francesca; Tenedini, Elena; Torre, Eugenio; Mocali, Alessandra; Calorini, Lido; Margheri, Francesca; Fibbi, Gabriella; Del Rosso, Mario

    2017-09-15

    In this manuscript, we show the involvement of the uPA/uPAR system in the regulation of aerobic glycolysis of melanoma cells. uPAR over-expression in human melanoma cells controls an invasive and glycolytic phenotype in normoxic conditions. uPAR down-regulation by siRNA or its uncoupling from integrins, and hence from integrin-linked tyrosine kinase receptors (IL-TKRs), by an antagonist peptide induced a striking inhibition of the PI3K/AKT/mTOR/HIF1α pathway, resulting into impairment of glucose uptake, decrease of several glycolytic enzymes and of PKM2, a checkpoint that controls metabolism of cancer cells. Further, binding of uPA to uPAR regulates expression of molecules that govern cell invasion, including extracellular matrix metallo-proteinases inducer (EMPPRIN) and enolase, a glycolytyc enzyme that also serves as a plasminogen receptor, thus providing a common denominator between tumor metabolism and phenotypic invasive features. Such effects depend on the α5β1-integrin-mediated uPAR connection with EGFR in melanoma cells with engagement of the PI3K-mTOR-HIFα pathway. HIF-1α trans-activates genes whose products mediate tumor invasion and glycolysis, thus providing the common denominator between melanoma metabolism and its invasive features. These findings unveil a unrecognized interaction between the invasion-related uPAR and IL-TKRs in the control of glycolysis and disclose a new pharmacological target (i.e., uPAR/IL-TKRs axis) for the therapy of melanoma. © 2017 UICC.

  9. Killing of Human Melanoma Cells Induced by Activation of Class I Interferon–Regulated Signaling Pathways via MDA-7/IL-24

    Science.gov (United States)

    Ekmekcioglu, Suhendan; Mumm, John B.; Udtha, Malini; Chada, Sunil; Grimm, Elizabeth A.

    2008-01-01

    Restoration of the tumor-suppression function by gene transfer of the melanoma differentiation-associated gene 7 (MDA7)/interleukin 24 (IL-24) successfully induces apoptosis in melanoma tumors in vivo. To address the molecular mechanisms involved, we previously revealed that MDA7/IL-24 treatment of melanoma cells down-regulates interferon regulatory factor (IRF)-1 expression and concomitantly up-regulates IRF-2 expression, which competes with the activity of IRF-1 and reverses the induction of IRF-1–regulated inducible nitric oxide synthase (iNOS). Interferons (IFNs) influence melanoma cell survival by modulating apoptosis. A class I IFN (IFN alfa) has been approved for the treatment of advanced melanoma with some limited success. A class II IFN (IFN gamma), on the other hand, supports melanoma cell survival, possibly through constitutive activation of iNOS expression. We therefore conducted this study to explore the molecular pathways of MDA7/IL-24 regulation of apoptosis via the intracellular induction of IFNs in melanoma. We hypothesized that the restoration of the MDA7/IL-24 axis leads to upregulation of Class I IFNs and induction of the apoptotic cascade. We found that MDA7/IL-24 induces the secretion of endogenous IFN beta, another class I IFN, leading to the arrest of melanoma cell growth and apoptosis. We also identified a series of apoptotic markers that play a role in this pathway, including the regulation of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) and Fas-FasL. In summary, we described a novel pathway of MDA7/IL-24 regulation of apoptosis in melanoma tumors via endogenous IFN beta induction followed by IRF regulation and TRAIL/FasL system activation. PMID:18511292

  10. Gingival osteogenic melanoma in two dogs.

    Science.gov (United States)

    Ellis, Angela E; Harmon, Barry G; Miller, Debra L; Northrup, Nicole C; Latimer, Kenneth S; Uhl, Elizabeth W

    2010-01-01

    Osteogenic melanoma is a rare variant of metaplastic malignant melanoma in human medicine and appears to be a similarly rare variant in dogs. Two dogs with oral malignant melanoma with neoplastic bone formation are reported in this study. Both tumors were characterized by malignant melanocytes that transitioned into neoplastic bone at the deep margins of the neoplasm. Immunohistochemical analysis revealed S100- and Melan-A-positive neoplastic cells adjacent to, and occasionally embedded within, an osteoid and chondroblastic matrix. Scattered clusters of neoplastic cells were also positive for osteocalcin. The findings indicate that in dogs, as in humans, neoplastic melanocytes have metaplastic potential and can be osteogenic.

  11. Anti-Melanogenic Activity and Cytotoxicity of Pistacia vera Hull on Human Melanoma SKMEL-3 Cells.

    Science.gov (United States)

    Sarkhail, Parisa; Salimi, Mona; Sarkheil, Pantea; Mostafapour Kandelous, Hirsa

    2017-07-01

    Pistacia vera seed is a common food and medicinal seed in Iran. It's hull (outer skin) as a significant byproduct of pistachio, is traditionally used as tonic, sedative and antidiarrheal and has been shown to be a rich source of antioxidants. The aim of the present study is to evaluate the anti-melanogenic activity of the pistachio hulls in order to discover a new alternative herbal agent to treat skin hyperpigmentation disorders. In this work, antioxidant and anti-tyrosinase activity of MeOH extract from Pistacia vera hull (MPH) were evaluated in vitro, respectively, by DPPH radical scavenging and mushroom tyrosinase activity assays. Then the effect of MPH on the melanin content, cellular tyrosinase activity and cytotoxicity (MTT assay) on human melanoma SKMEL-3 cell were determined followed by 72 h incubation. The results indicated that MPH had valuable DPPH radical scavenging effect and weak anti-tyrosinase activity when compared to the well-known antioxidant (BHT) and tyrosinase inhibitor (kojic acid), respectively. MPH, at a high dose (0.5 mg/mL), showed significant cytotoxic activity (~63%) and strong anti-melanogenic effect (~57%) on SKMEL-3 cells. The effect of MPH in the reduction of melanin content may be related to its cytotoxicity. The results obtained suggest that MPH can be used as an effective agent in the treatment of some skin hyperpigmentation disorders such as melanoma.

  12. Modulation of human melanoma cell proliferation and apoptosis by hydatid cyst fluid of Echinococcus granulosus

    Directory of Open Access Journals (Sweden)

    Gao X

    2018-03-01

    Full Text Available Xiang-Yang Gao,1,* Guang-Hui Zhang,2,* Li Huang3 1Department of Laboratory Medicine, Pu’er People’s Hospital, Pu’er, 2Department of Clinical Laboratory, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 3Department of General Surgery, Shanghai General Hospital, Shanghai, China *These authors contributed equally to this work Objective: The objective of this paper was to assess the effects of hydatid cyst fluid (HCF of Echinococcus granulosus on melanoma A375 cell proliferation and apoptosis.Methods: A375 cells were classified into five groups by in vitro culture: normal group, control group, 10% HCF group, 20% HCF group and 30% HCF group. Trypan blue staining method was employed to detect the toxicity of HCF. Effects of different concentrations of HCF on melanoma A375 cell proliferation at different time points were evaluated using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Flow cytometry and propidium iodide (PI staining were used to detect cell cycle, and Annexin-V/PI double staining method was used to determine A375 cell apoptotic rate. Western blotting was applied to detect the expression of phosphorylated extracellular regulated protein kinases, proliferating cell nuclear antigen (PCNA, cell-cycle-related proteins (cyclin A, cyclin B1, cyclin D1 and cyclin E and apoptosis-related proteins (Bcl-2, Bax and caspase-3.Results: HCF with a high concentration was considered as atoxic to A375 cells. HCF promoted A375 cell proliferation, and the effects got stronger with an increase in concentrations but was retarded after reaching a certain range of concentrations. HCF increased phosphorylation level and expression of extracellular regulated protein kinase, as well as PCNA expression. HCF also promoted the transferring progression of A375 cells from the G0/G1 phase to the S phase to increase the cell number in S phase and increased the expression of cyclin A, cyclin D1 and

  13. Primary malignant melanoma

    Directory of Open Access Journals (Sweden)

    A. Ferhat Mısır

    2016-04-01

    Full Text Available Malignant melanomas (MM of the oral cavity are extremely rare, accounting for 0.2% to 8.0% of all malignant melanomas. Malignant melanomas is more frequently seen at the level of the hard palate and gingiva. Early diagnosis and treatment are important for reducing morbidity. Malignant melanoma cells stain positively with antibodies to human melanoma black 45, S-100 protein, and vimentin; therefore, immunohistochemistry can play an important role in evaluating the depth of invasion and the location of metastases. A 76-year-old man developed an oral malignant melanoma, which was originally diagnosed as a bluish reactive denture hyperplasia caused by an ill-fitting lower denture. The tumor was removed surgically, and histopathological examination revealed a nodular-type MM. There was no evidence of recurrence over a 4-year follow-up period.

  14. Clinical significance of the molecular detection of melanoma cells circulating in the peripheral blood in melanoma patients.

    Science.gov (United States)

    Konstantopoulos, K; Psatha, M; Kalotychou, V; Frangia, N; Ioannovits, I; Meletis, I; Loukopoulos, D

    2001-06-01

    Blood circulating melanoma cells may be important for the spread of the disease. The current methods are not sensitive in detecting micro metastases. Tyrosinase mRNA can be detected in peripheral blood by a molecular test. As tyrosinase is expressed only in melanocytes and melanocytes normally do not circulate in the blood, the test may prove reliable in detecting circulating melanoma cells. we used a reverse-transcription polymerase chain reaction (RT-PCR) detecting tyrosinase mRNA in the blood. A prospective investigation in melanoma patients undergoing surgery was conducted; follow-up duration was 12 months. University Department Laboratory and Melanoma Clinic of a Tertiary Hospital. a total of 27 Greek patients with a diagnosis of malignant melanoma at different stages of the disease; 12 months follow-up after surgery. Samples form 12 healthy volunteers and 13 patients with chronic myelogenous leukemia served as controls. none. none. We detected mRNA tyrosinase in the peripheral blood in 16 out of 27 melanoma patients studied. No tyrosinase mRNA was detected in any of the 25 samples from the controls. Two of the 16 positive cases developed a metastasis within the next 12 months following testing. The other 14 positive cases remain metastasis free for this period, as also did the test negative cases. Detection of blood circulating melanoma cells by a RT-PCR technique, may be helpful in defining melanoma patients who are at risk for the spread of the disease.

  15. Survival curves after X-ray and heat treatments for melanoma cells derived directly from surgical specimens of tumours in man

    International Nuclear Information System (INIS)

    Rofstad, E.K.; Wahl, A.; Tveit, K.M.; Monge, O.R.; Brustad, T.

    1985-01-01

    X-ray and heat survival curves were established for melanoma cells derived directly from surgical specimens of tumours in man by using the Courtenay soft agar colony assay. The plating efficiency for 11 of the 14 melanomas studied was sufficiently high (PE = 0.3-58%) to measure cell survival over at least two decades. Experiments repeated with cells stored in liquid nitrogen showed that the survival assay gave highly reproducible results. The melanomas exhibited individual and characteristic survival curves whether exposed to radiation or heat (43.5 0 C). The D 0 -values were in the ranges 0.63-1.66 Gy (X-rays) and 33-58 min (heat). The survival curves were similar to those reported previously for human melanoma xenografts. The radiation sensitivity of the cells was not correlated to the heat sensitivity. Since the melanomas appeared to be very heterogeneous in radiation response in vitro as melanomas are known to be clinically, it is suggested that melanomas may be suitable for prospective studies aimed at establishing whether clinical radioreponsiveness somehow is related to in vitro survival curve parameters. (orig.)

  16. Natural Killer cell recognition of melanoma: new clues for a more effective immunotherapy

    Directory of Open Access Journals (Sweden)

    Raquel eTarazona

    2016-01-01

    Full Text Available Natural killer cells participate in the early immune response against melanoma and also contribute to the development of an adequate adaptive immune response by their crosstalk with dendritic cells and cytokine secretion. Melanoma resistance to conventional therapies together with its high immunogenicity justifies the development of novel therapies aimed to stimulate effective immune responses against melanoma. However, melanoma cells frequently escape to CD8 T cell recognition by the down-regulation of major histocompatibility complex class I molecules. In this scenario, Natural killer cells emerge as potential candidates for melanoma immunotherapy due to their capacity to recognize and destroy melanoma cells expressing low levels of major histocompatibility complex class I molecules. In addition, the possibility to combine immune checkpoint blockade with other NK cell potentiating strategies (e.g. cytokine induction of activating receptors has opened new perspectives in the potential use of adoptive NK cell-based immunotherapy in melanoma.

  17. Expression of human papilloma virus type 16 E5 protein in amelanotic melanoma cells regulates endo-cellular pH and restores tyrosinase activity

    Directory of Open Access Journals (Sweden)

    Coccia Raffaella

    2009-01-01

    Full Text Available Abstract Background Melanin synthesis, the elective trait of melanocytes, is regulated by tyrosinase activity. In tyrosinase-positive amelanotic melanomas this rate limiting enzyme is inactive because of acidic endo-melanosomal pH. The E5 oncogene of the Human Papillomavirus Type 16 is a small transmembrane protein with a weak transforming activity and a role during the early steps of viral infections. E5 has been shown to interact with 16 kDa subunit C of the trans-membrane Vacuolar ATPase proton pump ultimately resulting in its functional suppressions. However, the cellular effects of such an interaction are still under debate. With this work we intended to explore whether the HPV16 E5 oncoprotein does indeed interact with the vacuolar ATPase proton pump once expressed in intact human cells and whether this interaction has functional consequences on cell metabolism and phenotype. Methods The expression of the HPV16-E5 oncoproteins was induced in two Tyrosinase-positive amelanotic melanomas (the cell lines FRM and M14 by a retroviral expression construct. Modulation of the intracellular pH was measured with Acridine orange and fluorescence microscopy. Expression of tyrosinase and its activity was followed by RT-PCR, Western Blot and enzyme assay. The anchorage-independence growth and the metabolic activity of E5 expressing cells were also monitored. Results We provide evidence that in the E5 expressing cells interaction between E5 and V-ATPase determines an increase of endo-cellular pH. The cellular alkalinisation in turn leads to the post-translational activation of tyrosinase, melanin synthesis and phenotype modulation. These effects are associated with an increased activation of tyrosine analogue anti-blastic drugs. Conclusion Once expressed within intact human cells the HPV16-E5 oncoprotein does actually interact with the vacuolar V-ATPase proton pump and this interaction induces a number of functional effects. In amelanotic melanomas these

  18. Effects of Wnt-10b on proliferation and differentiation of murine melanoma cells

    International Nuclear Information System (INIS)

    Misu, Masayasu; Ouji, Yukiteru; Kawai, Norikazu; Nishimura, Fumihiko; Nakamura-Uchiyama, Fukumi; Yoshikawa, Masahide

    2015-01-01

    In spite of the strong expression of Wnt-10b in melanomas, its role in melanoma cells has not been elucidated. In the present study, the biological effects of Wnt-10b on murine B16F10 (B16) melanoma cells were investigated using conditioned medium from Wnt-10b-producing COS cells (Wnt-CM). After 2 days of culture in the presence of Wnt-CM, proliferation of B16 melanoma cells was inhibited, whereas tyrosinase activity was increased. An in vitro wound healing assay demonstrated that migration of melanoma cells to the wound area was inhibited with the addition of Wnt-CM. Furthermore, evaluation of cellular senescence revealed prominent induction of SA-β-gal-positive senescent cells in cultures with Wnt-CM. Finally, the growth of B16 melanoma cell aggregates in collagen 3D-gel cultures was markedly suppressed in the presence of Wnt-CM. These results suggest that Wnt-10b represses tumor cell properties, such as proliferation and migration of B16 melanoma cells, driving them toward a more differentiated state along a melanocyte lineage. - Highlights: • Wnt-10b inhibited proliferation and migration of melanoma cells. • Wnt-10b induced tyrosinase activity and senescence of melanoma cells. • Wnt-10b suppressed growth of cell aggregates in collagen 3D-gel cultures. • Wnt-10b represses tumor cell properties, driving them toward a more differentiated state along a melanocyte lineage

  19. Effects of Wnt-10b on proliferation and differentiation of murine melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Misu, Masayasu [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ouji, Yukiteru, E-mail: oujix@naramed-u.ac.jp [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Kawai, Norikazu [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Nishimura, Fumihiko [Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Nakamura-Uchiyama, Fukumi [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Yoshikawa, Masahide, E-mail: myoshika@naramed-u.ac.jp [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan)

    2015-08-07

    In spite of the strong expression of Wnt-10b in melanomas, its role in melanoma cells has not been elucidated. In the present study, the biological effects of Wnt-10b on murine B16F10 (B16) melanoma cells were investigated using conditioned medium from Wnt-10b-producing COS cells (Wnt-CM). After 2 days of culture in the presence of Wnt-CM, proliferation of B16 melanoma cells was inhibited, whereas tyrosinase activity was increased. An in vitro wound healing assay demonstrated that migration of melanoma cells to the wound area was inhibited with the addition of Wnt-CM. Furthermore, evaluation of cellular senescence revealed prominent induction of SA-β-gal-positive senescent cells in cultures with Wnt-CM. Finally, the growth of B16 melanoma cell aggregates in collagen 3D-gel cultures was markedly suppressed in the presence of Wnt-CM. These results suggest that Wnt-10b represses tumor cell properties, such as proliferation and migration of B16 melanoma cells, driving them toward a more differentiated state along a melanocyte lineage. - Highlights: • Wnt-10b inhibited proliferation and migration of melanoma cells. • Wnt-10b induced tyrosinase activity and senescence of melanoma cells. • Wnt-10b suppressed growth of cell aggregates in collagen 3D-gel cultures. • Wnt-10b represses tumor cell properties, driving them toward a more differentiated state along a melanocyte lineage.

  20. Enhanced therapeutic effect on murine melanoma and angiosarcoma cells by boron neutron capture therapy using a boronated metalloporphyrin

    International Nuclear Information System (INIS)

    Yamada, Yoshihiko; Ichihashi, Masamitsu; Kahl, S.B.; Toda, Ken-ichi.

    1994-01-01

    We have already achieved successful treatment of several human patients with malignant melanoma by boron neutron capture therapy (BNCT) using 10 B 1 -paraboronophenylalanine ( 10 B 1 -BPA·HCl). In this study we used a new compound, a manganese boronated protoporphyrin (Mn- 10 BOPP), and compared it to 10 B 1 -BPA·HCl with respect to uptake in murine melanoma and angiosarcoma cells as well as to their cell killing effect. 10 B uptake was measured in a new method, and the new compound was much more incorporated into both cells than 10 B 1 -BPA·HCl. Furthermore, melanoma and angiosarcoma cells preincubated with the new compound were 15 to 20 times more efficiently killed by BNCT than cells preincubated with 10 B 1 -BPA·HCl. (author)

  1. Immunotherapy of metastatic melanoma by reversal of immune suppression

    Energy Technology Data Exchange (ETDEWEB)

    Biggs, M.W.; Eiselein, J.E.

    1997-01-01

    Beginning with the observation that the human enteorvirus, Poliovirus Sabin 1, will lyse human melanoma cells in culture, clinical trials involving two patients with advance melanoma were performed. Parenteral injection of the viable Poliovirus into cutaneous melanoma metastases followed in 24 hours by oral administration of cyclophosphamide. The results of these two trials are described.

  2. Cloning and Characterization of the Genes Encoding the Murine Homologues of the Human Melanoma Antigens MART1 and gp100

    Science.gov (United States)

    Zhai, Yifan; Yang, James C.; Spiess, Paul; Nishimura, Michael I.; Overwijk, Willem W.; Roberts, Bruce; Restifo, Nicholas P.; Rosenberg, Steven A.

    2008-01-01

    The recent identification of genes encoding melanoma-associated antigens has opened new possibilities for the development of cancer vaccines designed to cause the rejection of established tumors. To develop a syngeneic animal model for evaluating antigen-specific vaccines in cancer therapy, the murine homologues of the human melanoma antigens MART1 and gp 100, which were specifically recognized by tumor-infiltrating lymphocytes from patients with melanoma, were cloned and sequenced from a murine B16 melanoma cDNA library. The open reading frames of murine MART1 and gp 100 encode proteins of 113- and 626-amino acids with 68.8 and 77% identity to the respective human proteins. Comparison of the DNA sequences of the murine MART1 genes, derived from normal melanocytes, the immortalized nontumorgenic melanocyte line Melan-a and the B16 melanoma, showed all to be identical. Northern and Western blot analyses confirmed that both genes encoded products that were melanocyte lineage proteins. Mice immunized with murine MART1 or gp 100 using recombinant vaccinia virus failed to produce any detectable T-cell responses or protective immunity against B16 melanoma. In contrast, immunization of mice with human gp 100 using recombinant adenoviruses elicited T cells specific for hgp100, but these T cells also cross reacted with B16 tumor in vitro and induced significant but weak protection against B16 challenge. Immunization with human and mouse gp100 together [adenovirus type 2 (Ad2)-hep100 plus recombinant vaccinia virus (rVV)-mgp100], or immunization with human gp100 (Ad2-hgp100) and boosting with heterologous vector (rVV-hgp100 or rVV-mgp100) or homologous vector (Ad2-hgp100), did not significantly enhance the protective response against B16 melanoma. These results may suggest that immunization with heterologous tumor antigen, rather than self, may be more effective as an immunotherapeutic reagent in designing antigen-specific cancer vaccines. PMID:9101410

  3. Transplantable Melanomas in Hamsters and Gerbils as Models for Human Melanoma. Sensitization in Melanoma Radiotherapy—From Animal Models to Clinical Trials

    Directory of Open Access Journals (Sweden)

    Martyna Śniegocka

    2018-04-01

    Full Text Available The focus of the present review is to investigate the role of melanin in the radioprotection of melanoma and attempts to sensitize tumors to radiation by inhibiting melanogenesis. Early studies showed radical scavenging, oxygen consumption and adsorption as mechanisms of melanin radioprotection. Experimental models of melanoma in hamsters and in gerbils are described as well as their use in biochemical and radiobiological studies, including a spontaneously metastasizing ocular model. Some results from in vitro studies on the inhibition of melanogenesis are presented as well as radio-chelation therapy in experimental and clinical settings. In contrast to cutaneous melanoma, uveal melanoma is very successfully treated with radiation, both using photon and proton beams. We point out that the presence or lack of melanin pigmentation should be considered, when choosing therapeutic options, and that both the experimental and clinical data suggest that melanin could be a target for radiosensitizing melanoma cells to increase efficacy of radiotherapy against melanoma.

  4. Impact of MAPK Pathway Activation in BRAFV600 Melanoma on T Cell and Dendritic Cell Function

    Directory of Open Access Journals (Sweden)

    Patrick A. Ott

    2013-10-01

    Full Text Available Constitutive upregulation of the MAPK pathway by a BRAFV600 mutation occurs in about half of melanomas. This leads to increased oncogenic properties such as tumor cell invasion, metastatic potential, and resistance to apoptosis. Blockade of the MAPK pathway with highly specific kinase inhibitors induces unprecedented tumor response rates in patients with advanced BRAFV600 mutant melanoma. Immune checkpoint blockade with monoclonal antibodies targeting cytotoxic T-lymphocyte antigen 4 and programed death-1/PD-L1 has also demonstrated striking anti-tumor activity in patients with advanced melanoma. Tumor responses are likely limited by multiple additional layers of immune suppression in the tumor microenvironment. There is emerging preclinical and clinical evidence suggesting that MAPK inhibition has a beneficial effect on the immunosuppressive tumor microenvironment, providing a strong rationale for combined immunotherapy and MAPK pathway inhibition in melanoma. The T cell response has been the main focus in the studies reported to date. Since dendritic cells (DCs are important in the induction of tumor-specific T cell responses, the impact of MAPK pathway activation in melanoma on DC function is critical for the melanoma directed immune response. BRAFV600E melanoma cells modulate DCs through the MAPK pathway because its blockade in melanoma cells can reverse suppression of DC function. As both MEK/BRAF inhibition and immune checkpoint blockade have recently taken center stage in the treatment of melanoma, a deeper understanding of how MAPK pathway inhibition affects the tumor immune response is needed.

  5. Pre-clinical assessment of A-674563 as an anti-melanoma agent

    International Nuclear Information System (INIS)

    Zou, Ying; Fan, Guobiao; Wang, Xuemin

    2016-01-01

    The present study aims to investigate the anti-melanoma activity by an Akt1 specific inhibitor A-674563. We showed that A-674563 was anti-proliferative and cytotoxic when added to human melanoma cells (A375, WM-115 and SK-Mel-2 lines). A-674563 induced caspase-dependent apoptotic death of human melanoma cells, and its cytotoxicity was inhibited with pre-treatment of caspase inhibitors. Further, A-674563 treatment blocked Akt and its downstream S6 Kinase 1 (S6K1) activation in A375 melanoma cells. Significantly, restoring Akt-S6K1 activation via introduction of constitutively-active Akt1 (ca-Akt1) only partially attenuated A-674563's cytotoxicity against A375 cells. Further, A-674563 induced pro-apoptotic ceramide production in A375 cells. Significantly, sphingosine-1-phosphate (S1P) inhibited A-674563-induced ceramide production and subsequent A375 cell apoptosis. On the other hand, co-treatment with the glucosylceramide synthase (GCS) inhibitor PDMP or the cell permeable short-chain ceramide (C6) potentiated A-674563's cytotoxicity against A375 cells. In vivo, A-674563 oral gavage inhibited A375 xenograft growth in severe combined immunodeficiency (scid) mice. Akt inactivation, caspase-3 activation and ceramide production were also observed in A-674563-treated A375 xenografts. Together, these results suggest that A-674563 exerts potent anti-melanoma activity, involving Akt-dependent and Akt-independent mechanisms. - Highlights: • A-674563 inhibits human melanoma cell survival and proliferation. • A-674563 induces melanoma cell apoptotic death, inhibited by caspase inhibitors. • A-674563 inhibits melanoma cells via Akt-dependent and -independent mechanisms. • A-674563 induces ceramide production in melanoma cells, independent of Akt inhibition. • A-674563 oral administration potently inhibits A375 xenograft growth in mice.

  6. Pre-clinical assessment of A-674563 as an anti-melanoma agent

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ying; Fan, Guobiao; Wang, Xuemin, E-mail: wangxuemeidr@yeah.net

    2016-08-12

    The present study aims to investigate the anti-melanoma activity by an Akt1 specific inhibitor A-674563. We showed that A-674563 was anti-proliferative and cytotoxic when added to human melanoma cells (A375, WM-115 and SK-Mel-2 lines). A-674563 induced caspase-dependent apoptotic death of human melanoma cells, and its cytotoxicity was inhibited with pre-treatment of caspase inhibitors. Further, A-674563 treatment blocked Akt and its downstream S6 Kinase 1 (S6K1) activation in A375 melanoma cells. Significantly, restoring Akt-S6K1 activation via introduction of constitutively-active Akt1 (ca-Akt1) only partially attenuated A-674563's cytotoxicity against A375 cells. Further, A-674563 induced pro-apoptotic ceramide production in A375 cells. Significantly, sphingosine-1-phosphate (S1P) inhibited A-674563-induced ceramide production and subsequent A375 cell apoptosis. On the other hand, co-treatment with the glucosylceramide synthase (GCS) inhibitor PDMP or the cell permeable short-chain ceramide (C6) potentiated A-674563's cytotoxicity against A375 cells. In vivo, A-674563 oral gavage inhibited A375 xenograft growth in severe combined immunodeficiency (scid) mice. Akt inactivation, caspase-3 activation and ceramide production were also observed in A-674563-treated A375 xenografts. Together, these results suggest that A-674563 exerts potent anti-melanoma activity, involving Akt-dependent and Akt-independent mechanisms. - Highlights: • A-674563 inhibits human melanoma cell survival and proliferation. • A-674563 induces melanoma cell apoptotic death, inhibited by caspase inhibitors. • A-674563 inhibits melanoma cells via Akt-dependent and -independent mechanisms. • A-674563 induces ceramide production in melanoma cells, independent of Akt inhibition. • A-674563 oral administration potently inhibits A375 xenograft growth in mice.

  7. Identification of progenitor cancer stem cell in lentigo maligna melanoma.

    Science.gov (United States)

    Bongiorno, M R; Doukaki, S; Malleo, F; Aricò, M

    2008-07-01

    The potential role of stem cells in neoplasia has aroused considerable interest over the past few years. A number of known biologic characteristics of melanomas support the theory that they may originate in a mutated stem cell. Melanocytic stem cell markers have been described recently. Moreover, the CD133 cells that show surface markers for CD34 are stem cells primitive. These stem cells are capable of differentiating into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. The identification of cancer stem/initiating cells with a crucial role in tumor formation may open up new pharmacologic perspectives. The purpose of this study is to detect the expression of CD133 and CD34, two putative markers of cancer stem cells in the lentigo maligna melanoma. Thirty cases of lentigo maligna melanoma were analyzed using indirect immunohistochemical staining. The vast majority of the samples analyzed showed the presence of rare cells, which were clearly positive for CD133 and CD34. Strong CD133 and CD34 staining was found in the outer root sheath of the mid-lower hair follicles, intermixed with atypical melanocytes extending along layers of the hair follicles. A number of these staminal cells were adjacent and intermixed with melanoma cells. This study supports the stem cell origin of this tumor and suggests that the precursor of the melanoma in question is a stem-like cell rather than the primitive melanoblast committed to be exclusively involved in melanocytic differentiation.

  8. The immunodominant HLA-A2-restricted MART-1 epitope is not presented on the surface of many melanoma cell lines

    DEFF Research Database (Denmark)

    Sørensen, Rikke Baek; Junker, Niels; Kirkin, Alexei

    2009-01-01

    Among the relatively large number of known tumor-associated antigens (TAA) which are recognized by human CD8 T-cells, Melan-A/MART-1 is one of the most-if not the most-frequently used target for anti-cancer vaccines in HLA-A2 + melanoma patients. In this study, we analyzed the killing of a large...... panel of melanoma cells by a high avidity, MART-1-specific T-cell clone or a MART-1-specific, polyclonal T-cell culture. Strikingly, we observed that the MART-1-specific T-cells only killed around half of the analyzed melanoma cell lines. In contrast a Bcl-2-specific T-cell clone killed all melanoma...... cell lines, although the T-cell avidity of this clone was significantly lower. The MART-1-specific T-cell clone expressed NKG-2D and was fully capable of releasing both perforin and Granzyme B. Notably, the resistance to killing by the MART-1-specific T-cells could be overcome by pulsing...

  9. Comparison of responses of human melanoma cell lines to MEK and BRAF inhibitors

    Directory of Open Access Journals (Sweden)

    Clare Judith Stones

    2013-05-01

    Full Text Available The NRAS and BRAF genes are frequently mutated in melanoma, suggesting that the NRAS-BRAF-MEK-ERK signalling pathway is an important target for therapy. Two classes of drugs, one targeting activated BRAF and one targeting MEK, are currently undergoing clinical evaluation. We have analysed the NRAS and BRAF mutational status of a series of 44 early passage lines developed from New Zealand patients with metastatic melanoma. 41% of the lines analysed had BRAF mutations, 23% had NRAS mutations and 36% had neither. We then determined IC50 values (drug concentrations for 50% growth inhibition for CI-1040, a commonly used inhibitor of MEK kinase; trametinib, a clinical agent targeting MEK kinase; and vemurafenib, an inhibitor of mutant BRAF kinase. Cell lines with activating BRAF mutations were significantly more sensitive to vemurafenib than lines with NRAS mutations or lines lacking either mutation (p < 0.001. IC50 values for CI-1040 and trametinib were strongly correlated (r = 0.98 with trametinib showing ~100-fold greater potency. Cell lines sensitive to vemurafenib were also sensitive to CI-1040 and trametinib, but there was no relationship between IC50 values and NRAS mutation status. A small number of lines lacking a BRAF mutation were sensitive to CI-1040 but resistant to vemurafenib. We used western blotting to investigate the effect on ERK phosphorylation of CI-1040 in four lines, of vemurafenib in two lines and of trametinib in two lines. The results support the view that MEK inhibitors might be combined with BRAF inhibitors in the treatment melanomas of with activated BRAF. The high sensitivity to trametinib of some lines with wild-type BRAF status also suggests that MEK inhibitors could have a therapeutic effect against some melanomas as single agents.

  10. The antimicrobial peptide nisin Z induces selective toxicity and apoptotic cell death in cultured melanoma cells.

    Science.gov (United States)

    Lewies, Angélique; Wentzel, Johannes Frederik; Miller, Hayley Christy; Du Plessis, Lissinda Hester

    2018-01-01

    Reprogramming of cellular metabolism is now considered one of the hallmarks of cancer. Most malignant cells present with altered energy metabolism which is associated with elevated reactive oxygen species (ROS) generation. This is also evident for melanoma, the leading cause of skin cancer related deaths. Altered mechanisms affecting mitochondrial bioenergetics pose attractive targets for novel anticancer therapies. Antimicrobial peptides have been shown to exhibit selective anticancer activities. In this study, the anti-melanoma potential of the antimicrobial peptide, nisin Z, was evaluated in vitro. Nisin Z was shown to induce selective toxicity in melanoma cells compared to non-malignant keratinocytes. Furthermore, nisin Z was shown to negatively affect the energy metabolism (glycolysis and mitochondrial respiration) of melanoma cells, increase reactive oxygen species generation and cause apoptosis. Results also indicate that nisin Z can decrease the invasion and proliferation of melanoma cells demonstrating its potential use against metastasis associated with melanoma. As nisin Z seems to place a considerable extra burden on the energy metabolism of melanoma cells, combination therapies with known anti-melanoma agents may be effective treatment options. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. Biologic activity of the novel orally bioavailable selective inhibitor of nuclear export (SINE) KPT-335 against canine melanoma cell lines

    Science.gov (United States)

    2014-01-01

    Background Exportin 1 (XPO1, also known as CRM1), is a chaperone protein responsible for the export of over 200 target proteins out of the nucleus. The expression and activity of XPO1 is upregulated in several human cancers and its expression is also linked to the development of chemotherapy resistance. Recent studies using both human and murine cancer cell lines have demonstrated that XPO1 is a relevant target for therapeutic intervention. The present study sought to characterize the biologic activity of an orally bioavailable selective inhibitor of nuclear export (SINE), KPT-335, against canine melanoma cell lines as a prelude to future clinical trials in dogs with melanoma. Results We evaluated the effects of KPT-335 on 4 canine malignant melanoma cell lines and found that KPT-335 inhibited proliferation, blocked colony formation, and induced apoptosis of treated cells at biologically relevant concentrations of drug. Additionally, KPT-335 downregulated XPO1 protein while inducing a concomitant increase in XPO1 messenger RNA. Lastly, KPT-335 treatment of cell lines upregulated the expression of both protein and mRNA for the tumor suppressor proteins p53 and p21, and promoted their nuclear localization. Conclusions KPT-335 demonstrates biologic activity against canine melanoma cell lines at physiologically relevant doses, suggesting that KPT-335 may represent a viable treatment option for dogs with malignant melanoma. PMID:25022346

  12. IGF-1 contributes to the expansion of melanoma-initiating cells through an epithelial-mesenchymal transition process.

    Science.gov (United States)

    Le Coz, Vincent; Zhu, Chaobin; Devocelle, Aurore; Vazquez, Aimé; Boucheix, Claude; Azzi, Sandy; Gallerne, Cindy; Eid, Pierre; Lecourt, Séverine; Giron-Michel, Julien

    2016-12-13

    Melanoma is a particularly virulent human cancer, due to its resistance to conventional treatments and high frequency of metastasis. Melanomas contain a fraction of cells, the melanoma-initiating cells (MICs), responsible for tumor propagation and relapse. Identification of the molecular pathways supporting MICs is, therefore, vital for the development of targeted treatments. One factor produced by melanoma cells and their microenvironment, insulin-like growth factor-1 (IGF- 1), is linked to epithelial-mesenchymal transition (EMT) and stemness features in several cancers.We evaluated the effect of IGF-1 on the phenotype and chemoresistance of B16-F10 cells. IGF-1 inhibition in these cells prevented malignant cell proliferation, migration and invasion, and lung colony formation in immunodeficient mice. IGF-1 downregulation also markedly inhibited EMT, with low levels of ZEB1 and mesenchymal markers (N-cadherin, CD44, CD29, CD105) associated with high levels of E-cadherin and MITF, the major regulator of melanocyte differentiation. IGF-1 inhibition greatly reduced stemness features, including the expression of key stem markers (SOX2, Oct-3/4, CD24 and CD133), and the functional characteristics of MICs (melanosphere formation, aldehyde dehydrogenase activity, side population). These features were associated with a high degree of sensitivity to mitoxantrone treatment.In this study, we deciphered new connections between IGF-1 and stemness features and identified IGF-1 as instrumental for maintaining the MIC phenotype. The IGF1/IGF1-R nexus could be targeted for the development of more efficient anti-melanoma treatments. Blocking the IGF-1 pathway would improve the immune response, decrease the metastatic potential of tumor cells and sensitize melanoma cells to conventional treatments.

  13. NAD(P)H:Quinone Oxidoreductase-1 Expression Sensitizes Malignant Melanoma Cells to the HSP90 Inhibitor 17-AAG.

    Science.gov (United States)

    Kasai, Shuya; Arakawa, Nobuyuki; Okubo, Ayaka; Shigeeda, Wataru; Yasuhira, Shinji; Masuda, Tomoyuki; Akasaka, Toshihide; Shibazaki, Masahiko; Maesawa, Chihaya

    2016-01-01

    The KEAP1-NRF2 pathway regulates cellular redox homeostasis by transcriptional induction of genes associated with antioxidant synthesis and detoxification in response to oxidative stress. Previously, we reported that KEAP1 mutation elicits constitutive NRF2 activation and resistance to cisplatin (CDDP) and dacarbazine (DTIC) in human melanomas. The present study was conducted to clarify whether an HSP90 inhibitor, 17-AAG, efficiently eliminates melanoma with KEAP1 mutation, as the NRF2 target gene, NQO1, is a key enzyme in 17-AAG bioactivation. In melanoma and non-small cell lung carcinoma cell lines with or without KEAP1 mutations, NQO1 expression and 17-AAG sensitivity are inversely correlated. NQO1 is highly expressed in normal melanocytes and in several melanoma cell lines despite the presence of wild-type KEAP1, and the NQO1 expression is dependent on NRF2 activation. Because either CDDP or DTIC produces reactive oxygen species that activate NRF2, we determined whether these agents would sensitize NQO1-low melanoma cells to 17-AAG. Synergistic cytotoxicity of the 17-AAG and CDDP combination was detected in four out of five NQO1-low cell lines, but not in the cell line with KEAP1 mutation. These data indicate that 17-AAG could be a potential chemotherapeutic agent for melanoma with KEAP1 mutation or NQO1 expression.

  14. Effects of dipotassium-trioxohydroxytetrafluorotriborate, K2[B3O3F4OH], on cell viability and gene expression of common human cancer drug targets in a melanoma cell line.

    Science.gov (United States)

    Pojskic, Lejla; Haveric, Sanin; Lojo-Kadric, Naida; Hadzic, Maida; Haveric, Anja; Galic, Zoran; Galic, Borivoj; Vullo, Daniela; Supuran, Claudiu T; Milos, Mladen

    2016-12-01

    Recently it was found that dipotassium-trioxohydroxytetrafluorotriborate, K2(B3O3F4OH), is a potent and highly specific inhibitor of precancerous cell processes. We conducted gene expression profiling of human melanoma cells before and after treatment with two concentrations (0.1 and 1 mM) of this boron inorganic derivative in order to assess its effects on deregulation of genes associated with tumor pathways. Parallel trypan blue exclusion assay was performed to assess the cytotoxicity effects of this chemical. Treatment with K2(B3O3F4OH) induced a significant decrease of cell viability in melanoma cellline at both tested concentrations. Furthermore, these treatments caused deregulation of more than 30 genes known as common anti-tumor drug targets. IGF-1 and hTERT were found to be significantly downregulated and this result may imply potential use of K2(B3O3F4OH) as an inhibitor or human telomerase and insulin-like growth factor 1, both of which are associated with various tumor pathways.

  15. Sensitization of recombinant human tumor necrosis factor-related apoptosis-inducing ligand-resistant malignant melanomas by quercetin.

    Science.gov (United States)

    Turner, Katherine A; Manouchehri, Jasmine M; Kalafatis, Michael

    2018-03-28

    Malignant melanoma is the most commonly diagnosed skin cancer associated with a high rate of metastasis. Low-stage melanoma is easily treated, but metastatic malignant melanoma is an extremely treatment-resistant malignancy with low survival rates. The application of recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL) for the treatment of metastatic malignant melanoma holds considerable promise because of its selective proapoptotic activity towards cancer cells and not nontransformed cells. Unfortunately, the clinical utilization of rhTRAIL has been terminated due to the resistance of many cancer cells to undergo apoptosis in response to rhTRAIL. However, rhTRAIL-resistance can be abrogated through the cotreatment with compounds derived from 'Mother Nature' such as quercetin that can modulate cellular components responsible for rhTRAIL-resistance. Here, we show that rhTRAIL-resistant malignant melanomas are sensitized by quercetin. Quercetin action is manifested by the upregulation of rhTRAIL-binding receptors DR4 and DR5 on the surface of cancer cells and by increased rate of the proteasome-mediated degradation of the antiapoptotic protein FLIP. Our data provide for a new efficient and nontoxic treatment of malignant melanoma.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/.

  16. Alterations in transcription factor binding in radioresistant human melanoma cells after ionizing radiation

    International Nuclear Information System (INIS)

    Sahijdak, W.M.; Yang, Chin-Rang; Zuckerman, J.S.; Meyers, M.; Boothman, D.A.

    1994-01-01

    We analyzed alterations in transcription factor binding to specific, known promoter DNA consensus sequences between irradiated and unirradiated radioresistant human melanoma (U1-Mel) cells. The goal of this study was to begin to investigate which transcription factors and DNA-binding sites are responsible for the induction of specific transcripts and proteins after ionizing radiation. Transcription factor binding was observed using DNA band-shift assays and oligonucleotide competition analyses. Confluence-arrested U1-Mel cells were irradiated (4.5 Gy) and harvested at 4 h. Double-stranded oligonucleotides containing known DNA-binding consensus sites for specific transcription factors were used. Increased DNA binding activity after ionizing radiation was noted with oligonucleotides containing the CREB, NF-kB and Sp1 consensus sites. No changes in protein binding to AP-1, AP-2, AP-3, or CTF/NF1, GRE or Oct-1 consensus sequences were noted. X-ray activation of select transcription factors, which bind certain consensus sites in promoters, may cause specific induction or repression of gene transcription. 22 refs., 2 figs

  17. In Vitro Efficacy and Mechanistic Role of Indocyanine Green as a Photodynamic Therapy Agent for Human Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Mamoon, A.; Gamal-Eldeen, A; Ruppel, M; Smith, R; Tsang, T; Miller, L

    2009-01-01

    Photodynamic therapy (PDT) is a promising treatment for superficial cancer. However, poor therapeutic results have been reported for melanoma, due to the high melanin content. Indocyanine green (ICG) has near infrared absorption (700-800nm) and melanins do not absorb strongly in this area. This study explores the efficiency of ICG as a PDT agent for human melanoma, and its mechanistic role in the cell death pathway.

  18. Ipilimumab: A First-in-Class T-Cell Potentiator for Metastatic Melanoma

    International Nuclear Information System (INIS)

    Chmielowski, B.

    2013-01-01

    Ipilimumab, a fully human anti-cytotoxic T-lymphocyte antigen-4 monoclonal antibody that potentiate s antitumor T-cell responses, has demonstrated improved survival in previously treated and treatment-naive patients with unresectable stage III/IV melanoma. Survival benefit has also been shown in diverse patient populations, including those with brain metastases. In 2011, ipilimumab (3 mg/kg every 3 weeks for 4 doses) was approved by the Food and Drug Administration for unresectable or metastatic melanoma. Ipilimumab can induce novel response patterns for which immune-related response criteria have been proposed. irAEs are common but are usually low grade; higher grades can be severe and life-threatening. irAEs are usually manageable using established guidelines emphasizing vigilance and prompt intervention. This agent provides an additional therapeutic option in metastatic melanoma, and guidelines for management of adverse events facilitate clinical implementation of this new agent.

  19. 7-Piperazinethylchrysin inhibits melanoma cell proliferation by ...

    African Journals Online (AJOL)

    PEC) on melanoma cell lines. Methods: Cell viability was analyzed by trypan blue exclusion assays and the cell cycle by flow cytometry using ModFit LT software. Specifically, cells were stained with propidium iodide (0.5 mg/mL) supplemented ...

  20. THE STUDY OF MECHANISMS OF PHOTOINDUCED APOPTOSIS IN THE SKIN MALIGNANT MELANOMA CELL MODEL

    Directory of Open Access Journals (Sweden)

    M. L. Gelfond

    2016-01-01

    Full Text Available The results of the experimental study of immune response of human skin malignant melanoma cells Mel 226 on photodynamic exposure are represented in the article. Photoinduced apoptosis of skin malignant melanoma was studied in vitro. The study showed that irradiation with the agent fotoditazin at dose of 0.5–2.5 µg/ml (6 and 10 min exposure 30 min before irradiation; irradiation parameters: wavelength of 662 nm, total light dose from 40 to 60 J/cm2 induced early apoptosis. The increase of the time of laser irradiation significantly accelerates the conversion of photosensitized tumor cells from early to late apoptosis.

  1. Fisetin inhibits human melanoma cell growth through direct binding to p70S6K and mTOR: findings from 3-D melanoma skin equivalents and computational modeling.

    Science.gov (United States)

    Syed, Deeba N; Chamcheu, Jean-Christopher; Khan, Mohammad Imran; Sechi, Mario; Lall, Rahul K; Adhami, Vaqar M; Mukhtar, Hasan

    2014-06-01

    The incidence of melanoma continues to rise. Inspite of treatment advances, the prognosis remains grim once the disease has metastasized, emphasizing the need to explore additional therapeutic strategies. One such approach is through the use of mechanism-based dietary intervention. We previously showed that the flavonoid fisetin inhibits melanoma cell proliferation, in vitro and in vivo. Here, we studied fisetin-mediated regulation of kinases involved in melanoma growth and progression. Time-course analysis in 3-D melanoma constructs that transitioned from radial to vertical growth showed that fisetin treatment resulted in significant decrease in melanocytic lesions in contrast to untreated controls that showed large tumor nests and invading disseminated cells. Further studies in melanoma cultures and mouse xenografts showed that fisetin-mediated growth inhibition was associated with dephosphorylation of AKT, mTOR and p70S6K proteins. In silico modeling indicated direct interaction of fisetin with mTOR and p70S6K with favorable free energy values. These findings were validated by cell-free competition assays that established binding of fisetin to p70S6K and mTOR while little affinity was detected with AKT. Kinase activity studies reflected similar trend with % inhibition observed for p70S6K and mTOR at lower doses than AKT. Our studies characterized, for the first time, the differential interactions of any botanical agent with kinases involved in melanoma growth and demonstrate that fisetin inhibits mTOR and p70S6K through direct binding while the observed inhibitory effect of fisetin on AKT is mediated indirectly, through targeting interrelated pathways. Published by Elsevier Inc.

  2. Targeted alpha therapy for melanoma : from bench to bedside

    International Nuclear Information System (INIS)

    Allen, B.J.; Rizvi, S.M.A.; Li, Y.; Tsui, W.; Douglas, S.; Raja, C.; Graham, P.; Smart, R.; Butler, P.; Kearsley, J.; Thompson, J.

    2001-01-01

    Full text: The control of metastatic melanoma remains an elusive objective. Targeted alpha therapy (TAT) offers a new approach to the control of micrometastases and regression of tumours. The alpha emitting immunoconjugate (AIC) against malignant melanoma has been prepared by chelating Bi-213 to the anti-melanoma antibody 9.2.27, and injected locally at 2 d post-inoculation of 1.5 million melanoma cells, or intralesionally into skin tumours. Human subjects receive 50μCi intralesional dose, escalating to 1 mCi. The clearances from the tumour, kidneys and bladder are monitored by a NaI detector that detects the 440 keV gamma ray. Blood samples and tumour photographs are taken at O. 2 and 4 weeks; tumours are excised at 4 weeks. Isolated cancer cells and preangiogenic cell clusters in mice can be eliminated with 25 μCi local AIC injection, and intra-lesional injections of 100 μCi are sufficient to completely regress melanomas with volumes up to 300 mm 3 without side-effects. Systemic TAT with a single administration is less effective with 100% growth delay of tumours observed, and ∼20% complete inhibition. The clinical TAT trial for recurrent subcutaneous melanoma has been approved by the NSW Radiation Advisory Committee and the SES Human Ethics Committee. In a world first phase 1 study, the first 5 subjects have been treated by intralesional injection, 3 at 50 μCi, and 2 at 150 μCi. All subjects having unchanged blood profiles at 2 and 4 weeks post-therapy. Tumour volumes appear little changed. However, histology of a 3 cm melanoma shows that almost complete cell kill occurred at 150 μCi, with only a few small cell clusters surviving. Local TAT inhibits tumourogenesis and intralesional TAT completely regresses melanoma in mice. Intralesional TAT for melanoma in human subjects is non-toxic so far and appears to be a promising modality. The ultimate objective is to apply systemic TAT for the control of melanoma micrometastases. Copyright (2001) Australasian

  3. Uptake in melanoma cells of N-(2-diethylaminoethyl)-2-iodobenzamide (BZA2), an imaging agent for melanoma staging: relation to pigmentation

    International Nuclear Information System (INIS)

    Mansard, Sandrine; Papon, Janine; Moreau, Marie-France; Miot-Noirault, Elisabeth; Labarre, Pierre; Bayle, Martine; Veyre, Annie; Madelmont, Jean-Claude; Moins, Nicole

    2005-01-01

    N-(2-diethylaminoethyl)-2-iodobenzamide (BZA 2 ) has been singled out as the most efficacious melanoma scintigraphy imaging agent. Our work was designed to assess the mechanisms of the specific affinity of the radioiodinated iodobenzamide for melanoma tissue. We studied the cellular uptake and retention of [ 125 I]-BZA 2 on various cell lines. In vitro, cellular [ 125 I]-BZA 2 uptake was related to the pigmentation status of the cells: higher in pigmented melanoma cell lines (M4 Beu, IPC 227, B 16) than in a nonpigmented one (M3 Dau) and nonmelanoma cell lines (MCF 7 and L 929). Two mechanisms were assessed: binding of the tracer to melanin or to sigma receptors of melanoma cells. First, the uptake of [ 125 I]-BZA 2 after melanogenesis stimulation by α-melanocyte-stimulating hormone and L-tyrosine increased in the B 16 melanoma cell line both in vitro and in vivo according to melanin concentration. Moreover, the binding of [ 125 I]-BZA 2 to synthetic melanin was dependent on melanin concentration and could be saturated. Second, no competition was evidenced on M4 Beu cells between [ 125 I]-BZA 2 and haloperidol, a sigma ligand, at concentrations ≤10 -6 M. We show that the specificity and sensibility of BZA 2 as a melanoma scintigraphic imaging agent are mostly due to interactions with melanic pigments

  4. Exploiting cannabinoid-induced cytotoxic autophagy to drive melanoma cell death.

    Science.gov (United States)

    Armstrong, Jane L; Hill, David S; McKee, Christopher S; Hernandez-Tiedra, Sonia; Lorente, Mar; Lopez-Valero, Israel; Eleni Anagnostou, Maria; Babatunde, Fiyinfoluwa; Corazzari, Marco; Redfern, Christopher P F; Velasco, Guillermo; Lovat, Penny E

    2015-06-01

    Although the global incidence of cutaneous melanoma is increasing, survival rates for patients with metastatic disease remain viability, and activation of apoptosis, whereas cotreatment with chloroquine or knockdown of Atg7, but not Beclin-1 or Ambra1, prevented THC-induced autophagy and cell death in vitro. Administration of Sativex-like (a laboratory preparation comprising equal amounts of THC and cannabidiol (CBD)) to mice bearing BRAF wild-type melanoma xenografts substantially inhibited melanoma viability, proliferation, and tumor growth paralleled by an increase in autophagy and apoptosis compared with standard single-agent temozolomide. Collectively, our findings suggest that THC activates noncanonical autophagy-mediated apoptosis of melanoma cells, suggesting that cytotoxic autophagy induction with Sativex warrants clinical evaluation for metastatic disease.

  5. 7-Piperazinethylchrysin inhibits melanoma cell proliferation by ...

    African Journals Online (AJOL)

    In B16F10 and A375 cells, treatment with PEC caused the inhibition ... Conclusion: PEC inhibited melanoma cell proliferation, apparently by blocking the cell cycle at G0/G1 .... all statistical analyses. .... Financial support from the Department of.

  6. Suppression of immune surveillance in melanoma [Immunotherapy of metastatic melanoma by reversal of immune suppression

    Energy Technology Data Exchange (ETDEWEB)

    Biggs, M. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eiselein, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2001-06-01

    In this paper we develop the hypothesis that a significant fraction of patients with advanced melanoma can be successfully treated with immunotherapy. Reversal of antigen-specific immune suppression to melanoma polypeptide antigens is an essential, first step. We postulate the key regulation of CTL responses resides within the CD4+ T-lymphocytes and macrophage/dendritic cells. There is a pluri-potential cell within this regulatory arm that functions either as a Th1 cell or as a suppressor T-cell, Ths, depending on how antigen is presented. We have shown that poliovirus 1 Sabin will lyse human melanoma cells in tissue culture, and a special "vaccine" prepared from this lysis actively stimulates Ths cell function. The Ths arm of the regulatory system can be down-regulated with cyclophosphamide given 24 hours after the vaccine. The capacity to generate a CTL response is retained. The summary conclusion is that a phase 1 clinical trial in advanced melanoma using the special viral-tumor-lysate followed by cyclophosphamide, plus expanded autologous dendritic cells sensitized with the polypeptide epitopes captained in the viral-lysate will produce beneficial results.

  7. Relationships among cell survival, O6-alkylguanine-DNA alkyltransferase activity, and reactivation of methylated adenovirus 5 and herpes simplex virus type 1 in human melanoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Maynard, K.; Parsons, P.G.; Cerny, T.; Margison, G.P. (Queensland Institute of Medical Research, Herston (Australia))

    1989-09-01

    O6-Alkylguanine-DNA alkyltransferase (ATase) activity and host cell reactivation (HCR) of 5-(3-methyl-1-triazeno)imidazole-4-carboxamide (MTIC)-methylated viruses were compared in human melanoma cell lines that were sensitive or resistant to killing by the antitumor DNA-methylating agent MTIC. Enhanced HCR of adenovirus 5 (defined as the Mer+ phenotype) generally showed a semiquantitative correlation with the natural or induced resistance of the host cells to the toxic effects of MTIC and to the level of ATase activity. However, one MTIC-resistant cell line was found (MM170) which had a low level of ATase and intermediate HCR of adenovirus. The HCR of herpes simplex virus type 1 (HSV-1) was enhanced in the Mer+ cells that had natural resistance to MTIC compared with Mer- cells. On the other hand, HCR of HSV-1 in Mer+ cells with induced resistance to MTIC was similar to that in Mer- cells. Neither adenovirus 5 nor HSV-1 infection induced ATase activity in Mer- cells. This indicates that resistance to the toxic effects of methylating agents is not invariably associated with high levels of ATase activity in human melanoma cells. Furthermore, while induction of the Mer+ phenotype from Mer- cells was usually accompanied by the recovery of ATase activity, induced Mer+ cells had less proficient repair than natural Mer+ cells, as judged quantitatively by slightly lower cellular resistance and qualitatively by deficient HCR response for HSV-1. These results suggest that the Mer- and induced Mer+ cells lack an ATase-independent DNA repair mechanism. No differences in MTIC-induced DNA repair synthesis or strand breaks were found between the Mer-, natural Mer+, and induced Mer+ phenotypes. However, UV-induced DNA repair synthesis was higher in the natural Mer+ than in the Mer- or induced Mer+ cells, both of which had increased cellular sensitivity to the antimetabolites methotrexate and hydroxyurea.

  8. Relationships among cell survival, O6-alkylguanine-DNA alkyltransferase activity, and reactivation of methylated adenovirus 5 and herpes simplex virus type 1 in human melanoma cell lines

    International Nuclear Information System (INIS)

    Maynard, K.; Parsons, P.G.; Cerny, T.; Margison, G.P.

    1989-01-01

    O6-Alkylguanine-DNA alkyltransferase (ATase) activity and host cell reactivation (HCR) of 5-(3-methyl-1-triazeno)imidazole-4-carboxamide (MTIC)-methylated viruses were compared in human melanoma cell lines that were sensitive or resistant to killing by the antitumor DNA-methylating agent MTIC. Enhanced HCR of adenovirus 5 (defined as the Mer+ phenotype) generally showed a semiquantitative correlation with the natural or induced resistance of the host cells to the toxic effects of MTIC and to the level of ATase activity. However, one MTIC-resistant cell line was found (MM170) which had a low level of ATase and intermediate HCR of adenovirus. The HCR of herpes simplex virus type 1 (HSV-1) was enhanced in the Mer+ cells that had natural resistance to MTIC compared with Mer- cells. On the other hand, HCR of HSV-1 in Mer+ cells with induced resistance to MTIC was similar to that in Mer- cells. Neither adenovirus 5 nor HSV-1 infection induced ATase activity in Mer- cells. This indicates that resistance to the toxic effects of methylating agents is not invariably associated with high levels of ATase activity in human melanoma cells. Furthermore, while induction of the Mer+ phenotype from Mer- cells was usually accompanied by the recovery of ATase activity, induced Mer+ cells had less proficient repair than natural Mer+ cells, as judged quantitatively by slightly lower cellular resistance and qualitatively by deficient HCR response for HSV-1. These results suggest that the Mer- and induced Mer+ cells lack an ATase-independent DNA repair mechanism. No differences in MTIC-induced DNA repair synthesis or strand breaks were found between the Mer-, natural Mer+, and induced Mer+ phenotypes. However, UV-induced DNA repair synthesis was higher in the natural Mer+ than in the Mer- or induced Mer+ cells, both of which had increased cellular sensitivity to the antimetabolites methotrexate and hydroxyurea

  9. FANCD2 functions as a critical factor downstream of MiTF to maintain the proliferation and survival of melanoma cells.

    Science.gov (United States)

    Bourseguin, Julie; Bonet, Caroline; Renaud, Emilie; Pandiani, Charlotte; Boncompagni, Marina; Giuliano, Sandy; Pawlikowska, Patrycja; Karmous-Benailly, Houda; Ballotti, Robert; Rosselli, Filippo; Bertolotto, Corine

    2016-11-09

    Proteins involved in genetic stability maintenance and safeguarding DNA replication act not only against cancer initiation but could also play a major role in sustaining cancer progression. Here, we report that the FANC pathway is highly expressed in metastatic melanoma harboring the oncogenic microphthalmia-associated transcription factor (MiTF). We show that MiTF downregulation in melanoma cells lowers the expression of several FANC genes and proteins. Moreover, we observe that, similarly to the consequence of MiTF downregulation, FANC pathway silencing alters proliferation, migration and senescence of human melanoma cells. We demonstrate that the FANC pathway acts downstream MiTF and establish the existence of an epistatic relationship between MiTF and the FANC pathway. Our findings point to a central role of the FANC pathway in cellular and chromosomal resistance to both DNA damage and targeted therapies in melanoma cells. Thus, the FANC pathway is a promising new therapeutic target in melanoma treatment.

  10. Activation of the Canonical Wnt/β-Catenin Signalling Pathway is Rare in Canine Malignant Melanoma Tissue and Cell Lines

    Science.gov (United States)

    Chon, E.; Thompson, V.; Schmid, S.; Stein, T. J.

    2012-01-01

    Summary Canine malignant melanoma is a highly aggressive tumour associated with a poor overall survival rate due to both local disease recurrence and its highly metastatic nature. Similar to advanced melanoma in man, canine oral melanoma is poorly responsive to conventional anti-cancer therapies. The lack of sustainable disease control warrants investigation of novel therapies, preferably targeting features specific to the tumour and different from normal cells. The Wnt signalling pathway is known to contribute to melanocytic lineage development in vertebrates and perturbation of the Wnt/β-catenin pathway has been implicated in numerous cancer types. Alterations of the Wnt/β-catenin pathway are suggested to occur in a subset of human melanomas, although the precise role of the Wnt/β-catenin pathway in melanoma is yet to be defined. This study investigates the activation status of the canonical Wnt/β-catenin pathway in canine malignant melanoma and its potential as a therapeutic target for treating this disease. The data indicate canonical Wnt/β-catenin pathway activation is a rare event in canine oral malignant melanoma tissue and canine malignant melanoma cell lines. PMID:22901430

  11. Retrotransposon hypomethylation in melanoma and expression of a placenta-specific gene.

    Directory of Open Access Journals (Sweden)

    Erin C Macaulay

    Full Text Available In the human placenta, DNA hypomethylation permits the expression of retrotransposon-derived genes that are normally silenced by methylation in somatic tissues. We previously identified hypomethylation of a retrotransposon-derived transcript of the voltage-gated potassium channel gene KCNH5 that is expressed only in human placenta. However, an RNA sequence from this placental-specific transcript has been reported in melanoma. This study examined the promoter methylation and expression of the retrotransposon-derived KCNH5 transcript in 25 melanoma cell lines to determine whether the acquisition of 'placental' epigenetic marks is a feature of melanoma. Methylation and gene expression analysis revealed hypomethylation of this retrotransposon in melanoma cell lines, particularly in those samples that express the placental KCNH5 transcript. Therefore we propose that hypomethylation of the placental-specific KCNH5 promoter is frequently associated with KCNH5 expression in melanoma cells. Our findings show that melanoma can develop hypomethylation of a retrotransposon-derived gene; a characteristic notably shared with the normal placenta.

  12. Embryonic chicken transplantation is a promising model for studying the invasive behaviour of melanoma cells.

    Directory of Open Access Journals (Sweden)

    Aparna eJayachandran

    2015-02-01

    Full Text Available Epithelial-to-mesenchymal transition is a hallmark event in the metastatic cascade conferring invasive ability to tumor cells. There are ongoing efforts to replicate the physiological events occurring during mobilization of tumor cells in model systems. However, few systems are able to capture these complex in vivo events. The embryonic chicken transplantation model has emerged as a useful system to assess melanoma cells including functions that are relevant to the metastatic process, namely invasion and plasticity. The chicken embryo represents an accessible and economical 3-dimensional in vivo model for investigating melanoma cell invasion as it exploits the ancestral relationship between melanoma and its precursor neural crest cells. We describe a methodology which enables the interrogation of melanoma cell motility within the developing avian embryo. This model involves the injection of melanoma cells into the neural tube of chicken embryos. Melanoma cells are labelled using fluorescent tracker dye, Vybrant DiO, then cultured as hanging drops for 24 hours to aggregate the cells. Groups of approximately 700 cells are placed into the neural tube of chicken embryos prior to the onset of neural crest migration at the hindbrain level (embryonic day 1.5 or trunk level (embryonic day 2.5. Chick embryos are reincubated and analysed after 48 hours for the location of melanoma cells using fluorescent microscopy on whole mounts and cross-sections of the embryos. Using this system, we compared the in vivo invasive behavior of epithelial-like and mesenchymal-like melanoma cells. We report that the developing embryonic microenvironment confers motile abilities to both types of melanoma cells. Hence the embryonic chicken transplantation model has potential to become a valuable tool for in vivo melanoma invasion studies. Importantly, it may provide novel insights into and reveal previously unknown mediators of the metastatic steps of invasion and

  13. Macrovipecetin, a C-type lectin from Macrovipera lebetina venom, inhibits proliferation migration and invasion of SK-MEL-28 human melanoma cells and enhances their sensitivity to cisplatin.

    Science.gov (United States)

    Hammouda, Manel B; Riahi-Chebbi, Ichrak; Souid, Soumaya; Othman, Houcemeddine; Aloui, Zohra; Srairi-Abid, Najet; Karoui, Habib; Gasmi, Ammar; Magnenat, Edith M; Wells, Timothy N C; Clemetson, Kenneth J; Rodríguez-López, José Neptuno; Essafi-Benkhadir, Khadija

    2018-03-01

    The resistance of melanoma cells to cisplatin restricts its clinical use. Therefore, the search for novel tumor inhibitors and effective combination treatments that sensitize tumor cells to this drug are still needed. We purified macrovipecetin, a novel heterodimeric C-type lectin, from Macrovipera lebetina snake venom and investigated its anti-tumoral effect on its own or combined with cisplatin, in human melanoma cells. Biochemical characterization, in vitro cells assays such as viability, apoptosis, adhesion, migration, invasion, Western blotting and in silico analysis were used in this study. Macrovipecetin decreased melanoma cell viability 100 times more than cisplatin. Interestingly, when combined with the drug, macrovipecetin enhanced the sensitivity of SK-MEL-28 cells by augmenting their apoptosis through increased expression of the apoptosis inducing factor (AIF) and activation of ERK 1/2 , p38, AKT and NF-κB. Moreover, macrovipecetin alone or combined with cisplatin induced the expression of TRADD, p53, Bax, Bim and Bad and down-regulated the Bcl-2 expression and ROS levels in SK-MEL-28 cells. Interestingly, these treatments impaired SK-MEL-28 cell adhesion, migration and invasion through modulating the function and expression of αvβ3 integrin along with regulating E-cadherin, vimentin, β-catenin, c-Src and RhoA expression. In silico study suggested that only the α chain of macrovipecetin interacts with a region overlapping the RGD motif binding site on this integrin. We validated the antitumor effect of macrovipecetin when combined, or not, with cisplatin on SK-MEL-28 cells. The presented work proposes the potential use of macrovipecetin and cisplatin in combination as an effective anti-melanoma treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Basal cell carcinoma, squamous cell carcinoma and melanoma of the head and face.

    Science.gov (United States)

    Feller, L; Khammissa, R A G; Kramer, B; Altini, M; Lemmer, J

    2016-02-05

    Ultraviolet light (UV) is an important risk factor for cutaneous basal cell carcinoma, cutaneous squamous cell carcinoma and cutaneous melanoma of the skin. These cancers most commonly affect persons with fair skin and blue eyes who sunburn rather than suntan. However, each of these cancers appears to be associated with a different pattern of UV exposure and to be mediated by different intracellular molecular pathways.Some melanocortin 1 receptor (MC1R) gene variants play a direct role in the pathogenesis of cutaneous basal cell carcinoma, cutaneous squamous cell carcinoma and cutaneous melanoma apart from their role in determining a cancer-prone pigmentory phenotype (fair skin, red hair, blue eyes) through their interactions with other genes regulating immuno-inflammatory responses, DNA repair or apoptosis.In this short review we focus on the aetiological role of UV in cutaneous basal cell carcinoma, cutaneous squamous cell carcinoma and cutaneous melanoma of the skin, and on some associated biopathological events.

  15. EMMPRIN promotes melanoma cells malignant properties through a HIF-2alpha mediated up-regulation of VEGF-receptor-2.

    Directory of Open Access Journals (Sweden)

    Faten Bougatef

    Full Text Available EMMPRIN's expression in melanoma tissue was reported to be predictive of poor prognosis. Here we demonstrate that EMMPRIN up-regulated VEGF receptor-2 (VEGFR-2 in two different primary melanoma cell lines and consequently increased migration and proliferation of these cells while inhibiting their apoptosis. SiRNA inhibition of VEGFR-2 expression abrogated these EMMPRIN effects. EMMPRIN regulation of VEGFR-2 was mediated through the over-expression of HIF-2alpha and its translocation to the nucleus where it forms heterodimers with HIF-1beta. These results were supported by an in vivo correlation between the expression of EMMPRIN with that of VEGFR-2 in human melanoma tissues as well as with the extent of HIF-2alpha localization in the nucleus. They demonstrate a novel mechanism by which EMMPRIN promotes tumor progression through HIF-2alpha/VEGFR-2 mediated mechanism, with an autocrine role in melanoma cell malignancy. The inhibition of EMMPRIN in cancer may thus simultaneously target both the VEGFR-2/VEGF system and the matrix degrading proteases to block tumor cell growth and invasion.

  16. MAGE-A1 promotes melanoma proliferation and migration through C-JUN activation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong [Department of Dermatology, General Hospital of People' s Liberation Army, Beijing 100853 (China); The 309th Hospital of China People' s Liberation Army, Beijing 100091 (China); Wang, Junyun; Ding, Nan [CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Yongjun; Yang, Yaran [CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); Fang, Xiangdong, E-mail: fangxd@big.ac.cn [CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); Zhao, Hua, E-mail: luckhua301@163.com [Department of Dermatology, General Hospital of People' s Liberation Army, Beijing 100853 (China)

    2016-05-13

    MAGE-A1 belongs to the chromosome X-clustered genes of cancer-testis antigen family and is normally expressed in the human germ line but is also overexpressed in various tumors. Previous studies of MAGE-A1 in melanoma mainly focused on methylation changes or its role in immunotherapy, however, its biological functions in melanoma have remained unknown. In order to determine the role of MAGE-A1 in melanoma growth and metastasis, we manipulated melanoma cell lines with overexpression and knockdown of MAGE-A1. Integration of cell proliferation assays, transwell migration and invasion assays, and RNA-Seq analysis revealed that up-regulation of MAGE-A1 dramatically promoted proliferation, migration, and invasion of human melanoma cell lines in vitro, while down-regulation of MAGE-A1 inhibited those characteristics associated with tumor cells. Furthermore, transcriptome sequencing revealed that MAGE-A1 exerts its tumor promoting activity by activating p-C-JUN directly or through ERK-MAPK signaling pathways. Based on our findings, we propose that MAGE-A1 may be a potential therapeutic target for melanoma patients. - Highlights: • MAGE-A1 promotes proliferation and clone formation in melanoma cell lines. • MAGE-A1 enhances tumor cell migration and invasion in melanoma cell lines. • Network including C-JUN, IL8, and ARHGAP29 play critical role in malignant melanoma. • Oncogenic MAGE-A1 increases p-C-JUN levels, possibly via ERK-MAPK signaling pathway.

  17. The oncolytic peptide LTX-315 induces cell death and DAMP release by mitochondria distortion in human melanoma cells

    Science.gov (United States)

    Eike, Liv-Marie; Yang, Nannan; Rekdal, Øystein; Sveinbjørnsson, Baldur

    2015-01-01

    Host defense peptides (HDPs) are naturally occurring molecules found in most species, in which they play a significant role in the first line defense against intruding pathogens, and several HDPs have been shown to possess anticancer activity. Structure-activity relationship studies on the HDP bovine lactoferricin revealed a de novo design of a nonamer peptide LTX-315, with oncolytic properties. In the present study, we investigated the oncolytic activity of LTX-315 in human melanoma cells (A375). LTX-315 induced a rapid plasma membrane disruption and cell death within 2 hours. At a low concentration, fluorescence-labeled LTX-315 was internalized and accumulated in cytoplasmic vacuoles in close proximity to the mitochondria. The mitochondrial membrane potential was shown to depolarize as a consequence of LTX-315 treatment and at ultrastructural level, the mitochondria morphology was significantly altered. Release of danger signals (DAMPs) such as ATP, Cytochrome C and HMGB1 into the cell supernatant of cultured cells was evident minutes after peptide treatment. The oncolytic effect of LTX-315 involving perturbation of both the cell membrane and the mitochondria with subsequent release of DAMPs may highlight the ability of LTX-315 to induce complete regression and long-term protective immune responses as previously reported in experimental animal models. PMID:26472184

  18. A new ceramide from Suillus luteus and its cytotoxic activity against human melanoma cells.

    Science.gov (United States)

    León, Francisco; Brouard, Ignacio; Torres, Fernando; Quintana, José; Rivera, Augusto; Estévez, Francisco; Bermejo, Jaime

    2008-01-01

    A new phytosphingosine-type ceramide, suillumide (1), was isolated from the EtOH extract of the basidiomycete Suillus luteus (L.) S. F. Gray, along with ten known compounds: ergosta-4,6,8(14),22-tetraen-3-one, ergosterol, ergosterol peroxide, suillin, (E)-3,4,5-trimethoxycinnamic alcohol, 5 alpha,6 alpha-epoxyergosta-8,22-diene-3beta,7 beta-diol, (R)-1-palmitoylglycerol, ergosta-7,9(11),22-triene-3beta,5 alpha,6 beta-triol, cerevisterol, and 4-hydroxybenzoic acid. The structure of 1 was determined on the basis of spectroscopic and mass-spectrometric analyses, as well as by chemical methods. Compound 1 and its synthetic diacetyl derivative 2 were tested for their cytotoxic activities against the human melanoma cell line SK-MEL-1. Both drugs showed IC(50) values of ca. 10 microM after 72 h of exposure.

  19. Bioactive Constituents of Zanthoxylum rhetsa Bark and Its Cytotoxic Potential against B16-F10 Melanoma Cancer and Normal Human Dermal Fibroblast (HDF Cell Lines

    Directory of Open Access Journals (Sweden)

    Ramesh Kumar Santhanam

    2016-05-01

    Full Text Available Zanthoxylum rhetsa is an aromatic tree, known vernacularly as “Indian Prickly Ash”. It has been predominantly used by Indian tribes for the treatment of many infirmities like diabetes, inflammation, rheumatism, toothache and diarrhea. In this study, we identified major volatile constituents present in different solvent fractions of Z. rhetsa bark using GC-MS analysis and isolated two tetrahydrofuran lignans (yangambin and kobusin, a berberine alkaloid (columbamine and a triterpenoid (lupeol from the bioactive chloroform fraction. The solvent fractions and purified compounds were tested for their cytotoxic potential against human dermal fibroblasts (HDF and mouse melanoma (B16-F10 cells, using the MTT assay. All the solvent fractions and purified compounds were found to be non-cytotoxic to HDF cells. However, the chloroform fraction and kobusin exhibited cytotoxic effect against B16-F10 melanoma cells. The presence of bioactive lignans and alkaloids were suggested to be responsible for the cytotoxic property of Z. rhetsa bark against B16-F10 cells.

  20. Calotropis procera extract induces apoptosis and cell cycle arrest at G2/M phase in human skin melanoma (SK-MEL-2) cells.

    Science.gov (United States)

    Joshi, Aparna L; Roham, Pratiksha H; Mhaske, Rooth; Jadhav, Mahadev; Krishnadas, Kavitha; Kharat, Amol; Hardikar, Bhagyashree; Kharat, Kiran R

    2015-01-01

    Calotropis procera (family: Asclepiadaceae) contains cardiac glycosides which are cytotoxic to cancer cells. The extracts of C. procera have been reported to be cytotoxic to many cancer cell lines and this is the first report against the human skin melanoma cells (SK-MEL-2). The SK-MEL-2 cells treated with C. procera methanolic extract (CPME) were analysed for growth inhibition and apoptosis. The exposure of phosphatidylserine in apoptotic SK-MEL-2 was analysed by using the Annexin-V FITC flow cytometry method. In CPME-treated SK-MEL-2 cells, 19.6% of apoptotic and 58.3% dead cells were observed. The 15.97% and 15.85% of early apoptotic cells were found at 20 μg/mL of the ouabain and paclitaxel, respectively. Active caspases, nuclear degradation confirmed apoptotic SK-MEL-2 cells in time- and dose-dependent manner. The cell cycle analysis shows that CPME treated cells halt at G2/M phase. Significant cytotoxic activity of CPME against SK-MEL-2 may be attributed to its high cardenolide content.

  1. Resistance to ursolic acid-induced apoptosis through involvement of melanogenesis and COX-2/PGE2 pathways in human M4Beu melanoma cancer cells

    International Nuclear Information System (INIS)

    Hassan, Lama; Pinon, Aline; Limami, Youness; Seeman, Josiane; Fidanzi-Dugas, Chloe; Martin, Frederique; Badran, Bassam; Simon, Alain; Liagre, Bertrand

    2016-01-01

    Melanoma is one of the most aggressive forms of cancer with a continuously growing incidence worldwide and is usually resistant to chemotherapy agents, which is due in part to a strong resistance to apoptosis. Previously, we had showed that B16-F0 murine melanoma cells undergoing apoptosis are able to delay their own death induced by ursolic acid (UA), a natural pentacyclic triterpenoid compound. We had demonstrated that tyrosinase and TRP-1 up-regulation in apoptotic cells and the subsequent production of melanin were implicated in an apoptosis resistance mechanism. Several resistance mechanisms to apoptosis have been characterized in melanoma such as hyperactivation of DNA repair mechanisms, drug efflux systems, and reinforcement of survival signals (PI3K/Akt, NF-κB and Raf/MAPK pathways). Otherwise, other mechanisms of apoptosis resistance involving different proteins, such as cyclooxygenase-2 (COX-2), have been described in many cancer types. By using a strategy of specific inhibition of each ways, we suggested that there was an interaction between melanogenesis and COX-2/PGE 2 pathway. This was characterized by analyzing the COX-2 expression and activity, the expression of tyrosinase and melanin production. Furthermore, we showed that anti-proliferative and proapoptotic effects of UA were mediated through modulation of multiple signaling pathways including Akt and ERK-1/2 proteins. Our study not only uncovers underlying molecular mechanisms of UA action in human melanoma cancer cells but also suggest its great potential as an adjuvant in treatment and cancer prevention.

  2. Gene expression patterns in CD4+ peripheral blood cells in healthy subjects and stage IV melanoma patients.

    Science.gov (United States)

    Felts, Sara J; Van Keulen, Virginia P; Scheid, Adam D; Allen, Kathleen S; Bradshaw, Renee K; Jen, Jin; Peikert, Tobias; Middha, Sumit; Zhang, Yuji; Block, Matthew S; Markovic, Svetomir N; Pease, Larry R

    2015-11-01

    Melanoma patients exhibit changes in immune responsiveness in the local tumor environment, draining lymph nodes, and peripheral blood. Immune-targeting therapies are revolutionizing melanoma patient care increasingly, and studies show that patients derive clinical benefit from these newer agents. Nonetheless, predicting which patients will benefit from these costly therapies remains a challenge. In an effort to capture individual differences in immune responsiveness, we are analyzing patterns of gene expression in human peripheral blood cells using RNAseq. Focusing on CD4+ peripheral blood cells, we describe multiple categories of immune regulating genes, which are expressed in highly ordered patterns shared by cohorts of healthy subjects and stage IV melanoma patients. Despite displaying conservation in overall transcriptome structure, CD4+ peripheral blood cells from melanoma patients differ quantitatively from healthy subjects in the expression of more than 2000 genes. Moreover, 1300 differentially expressed genes are found in transcript response patterns following activation of CD4+ cells ex vivo, suggesting that widespread functional discrepancies differentiate the immune systems of healthy subjects and melanoma patients. While our analysis reveals that the transcriptome architecture characteristic of healthy subjects is maintained in cancer patients, the genes expressed differentially among individuals and across cohorts provide opportunities for understanding variable immune states as well as response potentials, thus establishing a foundation for predicting individual responses to stimuli such as immunotherapeutic agents.

  3. Phase I study of GC1008 (fresolimumab: a human anti-transforming growth factor-beta (TGFβ monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma.

    Directory of Open Access Journals (Sweden)

    John C Morris

    Full Text Available In advanced cancers, transforming growth factor-beta (TGFβ promotes tumor growth and metastases and suppresses host antitumor immunity. GC1008 is a human anti-TGFβ monoclonal antibody that neutralizes all isoforms of TGFβ. Here, the safety and activity of GC1008 was evaluated in patients with advanced malignant melanoma and renal cell carcinoma.In this multi-center phase I trial, cohorts of patients with previously treated malignant melanoma or renal cell carcinoma received intravenous GC1008 at 0.1, 0.3, 1, 3, 10, or 15 mg/kg on days 0, 28, 42, and 56. Patients achieving at least stable disease were eligible to receive Extended Treatment consisting of 4 doses of GC1008 every 2 weeks for up to 2 additional courses. Pharmacokinetic and exploratory biomarker assessments were performed.Twenty-nine patients, 28 with malignant melanoma and 1 with renal cell carcinoma, were enrolled and treated, 22 in the dose-escalation part and 7 in a safety cohort expansion. No dose-limiting toxicity was observed, and the maximum dose, 15 mg/kg, was determined to be safe. The development of reversible cutaneous keratoacanthomas/squamous-cell carcinomas (4 patients and hyperkeratosis was the major adverse event observed. One malignant melanoma patient achieved a partial response, and six had stable disease with a median progression-free survival of 24 weeks for these 7 patients (range, 16.4-44.4 weeks.GC1008 had no dose-limiting toxicity up to 15 mg/kg. In patients with advanced malignant melanoma and renal cell carcinoma, multiple doses of GC1008 demonstrated acceptable safety and preliminary evidence of antitumor activity, warranting further studies of single agent and combination treatments.Clinicaltrials.gov NCT00356460.

  4. Comparative study of angio genesis radiopharmaceuticals for melanoma detection; Estudo comparativo de radiofarmacos para angiogenese na deteccao de melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Erica Aparecida de

    2011-07-01

    Early diagnosis and treatment of melanoma, a cutaneous tumor with a serious prognosis, is extremely important for optimal clinical outcome. Phage display peptide libraries are a useful screening resource for identifying bioactive peptides that interact with cancer targets. The aim of this study was the evaluation of two technetium-99m tracers for angio genesis detection in melanoma model, using cyclic peguilated pentapeptide with RGD and NGR motifs conjugated with bifunctional chelator MAG3. The conjugated peptides (10 {mu}L of a {mu}g/{mu}L solution) were labeled with technetium-99m using a sodium tartrate buffer. Radiochemical evaluation was done by ITLC and confirmed by HPLC. Partition coefficient was determined and internalization assays were performed in two melanoma cells (B16F10 and SKMEL28). Biodistribution evaluation of the tracers was done in healthy animals at different times and also in mice bearing the tumor cells at 120 min post injection. Blocking studies were also conducted by co-injection of cold peptides. The conjugated showed the same profile in many evaluations. They were radiolabeled with high radiochemical purity (>97%). Both were hydrophilic, with preferential renal excretion. Tumor uptake was higher for human melanoma cells than for murinic melanoma cells, specially for {sup 99m}Tc-MAG3-PEG{sub 8}-c(RGDyK) (7.85{+-}{+-}2.34 %ID/g) at 120 min post injection. The performance of {sup 99m}Tc-MAG{sub 3}-PEG{sub 8}-c(RGDyk) was much better than NGR tracer concerning human melanoma uptake and might be considered in future investigations focusing radiotracers for melanoma diagnosis. (author)

  5. Comparison of thermoradiosensitization in two human melanoma cell lines and one fibroblast cell line by concurrent mild hyperthermia and low-dose-rate irradiation

    International Nuclear Information System (INIS)

    Raaphorst, G.P.; Bussey, A.; Heller, D.P.; Ng, C.E.

    1994-01-01

    Two human melanoma cell lines, one radioresistant (Sk-MEL-3) and one radiosensitive (HT-144), and a normal human fibroblast line (AG1522) were evaluated for thermoradiosensitization of low-dose-rate irradiation by concurrent mild hyperthermia (39-41 degrees C). None of the cell lines expressed chronic thermotolerance during heating at 39-41 degrees C. The SK-MEL-3 cells were the most heat sensitive, while AG1522 and HT-144 cells had the same sensitivity at 39 and 40 degrees C but HT-144 cells were more sensitive at 41 degrees C. All cell lines expressed thermal enhancement of radiosensitivity with heating during irradiation which increased with heating temperature. The SK-MEL-3 cells, which were the most resistant to radiation and demonstrated the greatest repair of sublethal damage (SLD) during low-dose-rate irradiation, had the greatest thermal enhancement of radiosensitivity, while the HT144 cells, which were the most sensitive and expressed little repair of SLD during low-dose-rate irradiation, had the smallest thermal enhancement of radiosensitivity. These data show that concurrent mild hyperthermia during low-dose-rate irradiation may be most efficacious in radiation-resistant tumor cells which express resistance through an enhanced capacity for repair of SLD. 24 refs., 5 figs., 1 tab

  6. Claudin11 Promoter Hypermethylation Is Frequent in Malignant Melanoma of the Skin, but Uncommon in Nevus Cell Nevi

    Energy Technology Data Exchange (ETDEWEB)

    Walesch, Sara K.; Richter, Antje M. [Institute for Genetics, Justus-Liebig-University Giessen, D-35392 Giessen (Germany); Helmbold, Peter [Department of Dermatology, University of Heidelberg, D-69120 Heidelberg (Germany); Dammann, Reinhard H., E-mail: reinhard.dammann@gen.bio.uni-giessen.de [Institute for Genetics, Justus-Liebig-University Giessen, D-35392 Giessen (Germany)

    2015-07-07

    Epigenetic inactivation of tumor-related genes is an important characteristic in the pathology of human cancers, including melanomagenesis. We analyzed the epigenetic inactivation of Claudin 11 (CLDN11) in malignant melanoma (MM) of the skin, including six melanoma cell lines, 39 primary melanoma, 41 metastases of MM and 52 nevus cell nevi (NCN). CLDN11 promoter hypermethylation was found in 19 out of 39 (49%) of the primary MM and in 21 out of 41 (51%) of the MM metastases, but only in eight out of 52 (15%) of NCN (p = 0.001 and p = 0.0003, respectively). Moreover, a significant increase in the methylation level of CLDN11 from primary melanomas to MM metastases was revealed (p = 0.003). Methylation of CLDN11 was significantly more frequent in skin metastases (79%) compared to brain metastases (31%; p = 0.007). CLDN11 methylation was also found in five out of six MM cell lines (83%) and its promoter hypermethylation correlated with a reduced expression. Treatment of MM cell lines with a DNA methylation inhibitor reactivated CLDN11 transcription by its promoter demethylation. In summary, CLDN11 proved to be an epigenetically inactivated tumor related gene in melanomagenesis, and analysis of CLDN11 methylation level represents a potential tool for assisting in the discrimination between malignant melanoma and nevus cell nevi.

  7. The anti-apoptotic BAG3 protein is involved in BRAF inhibitor resistance in melanoma cells.

    Science.gov (United States)

    Guerriero, Luana; Palmieri, Giuseppe; De Marco, Margot; Cossu, Antonio; Remondelli, Paolo; Capunzo, Mario; Turco, Maria Caterina; Rosati, Alessandra

    2017-10-06

    BAG3 protein, a member of BAG family of co-chaperones, has a pro-survival role in several tumour types. BAG3 anti-apoptotic properties rely on its characteristic to bind several intracellular partners, thereby modulating crucial events such as apoptosis, differentiation, cell motility, and autophagy. In human melanomas, BAG3 positivity is correlated with the aggressiveness of the tumour cells and can sustain IKK-γ levels, allowing a sustained activation of NF-κB. Furthermore, BAG3 is able to modulate BRAFV600E levels and activity in thyroid carcinomas. BRAFV600E is the most frequent mutation detected in malignant melanomas and is targeted by Vemurafenib, a specific inhibitor found to be effective in the treatment of advanced melanoma. However, patients with BRAF-mutated melanoma may result insensitive ab initio or, mostly, develop acquired resistance to the treatment with this molecule. Here we show that BAG3 down-modulation interferes with BRAF levels in melanoma cells and sensitizes them to Vemurafenib treatment. Furthermore, the down-modulation of BAG3 protein in an in vitro model of acquired resistance to Vemurafenib can induce sensitization to the BRAFV600E specific inhibition by interfering with BRAF pathway through reduction of ERK phosphorylation, but also on parallel survival pathways. Future studies on BAG3 molecular interactions with key proteins responsible of acquired BRAF inhibitor resistance may represent a promising field for novel multi-drugs treatment design.

  8. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    International Nuclear Information System (INIS)

    Teutschbein, Janka; Haydn, Johannes M; Samans, Birgit; Krause, Michael; Eilers, Martin; Schartl, Manfred; Meierjohann, Svenja

    2010-01-01

    Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase) triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1), early growth response 1 (Egr1), osteopontin (Opn), insulin-like growth factor binding protein 3 (Igfbp3), dual-specificity phosphatase 4 (Dusp4), and tumor-associated antigen L6 (Taal6). Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute new possible molecular players in melanoma development

  9. Gene expression analysis after receptor tyrosine kinase activation reveals new potential melanoma proteins

    Directory of Open Access Journals (Sweden)

    Krause Michael

    2010-07-01

    Full Text Available Abstract Background Melanoma is an aggressive tumor with increasing incidence. To develop accurate prognostic markers and targeted therapies, changes leading to malignant transformation of melanocytes need to be understood. In the Xiphophorus melanoma model system, a mutated version of the EGF receptor Xmrk (Xiphophorus melanoma receptor kinase triggers melanomagenesis. Cellular events downstream of Xmrk, such as the activation of Akt, Ras, B-Raf or Stat5, were also shown to play a role in human melanomagenesis. This makes the elucidation of Xmrk downstream targets a useful method for identifying processes involved in melanoma formation. Methods Here, we analyzed Xmrk-induced gene expression using a microarray approach. Several highly expressed genes were confirmed by realtime PCR, and pathways responsible for their induction were revealed using small molecule inhibitors. The expression of these genes was also monitored in human melanoma cell lines, and the target gene FOSL1 was knocked down by siRNA. Proliferation and migration of siRNA-treated melanoma cell lines were then investigated. Results Genes with the strongest upregulation after receptor activation were FOS-like antigen 1 (Fosl1, early growth response 1 (Egr1, osteopontin (Opn, insulin-like growth factor binding protein 3 (Igfbp3, dual-specificity phosphatase 4 (Dusp4, and tumor-associated antigen L6 (Taal6. Interestingly, most genes were blocked in presence of a SRC kinase inhibitor. Importantly, we found that FOSL1, OPN, IGFBP3, DUSP4, and TAAL6 also exhibited increased expression levels in human melanoma cell lines compared to human melanocytes. Knockdown of FOSL1 in human melanoma cell lines reduced their proliferation and migration. Conclusion Altogether, the data show that the receptor tyrosine kinase Xmrk is a useful tool in the identification of target genes that are commonly expressed in Xmrk-transgenic melanocytes and melanoma cell lines. The identified molecules constitute

  10. Antitumor potential induction and free radicals production in melanoma cells by Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Faiao-Flores, F. [Biochemical and Biophysical Laboratory, Butantan Institute, 1500 Vital Brasil Avenue, Sao Paulo (Brazil)] [Faculty of Medicine, University of Sao Paulo, 455 Doutor Arnaldo Avenue, Sao Paulo (Brazil); Coelho, P.R.P.; Muniz, R.O.R.; Souza, G.S. [Institute for Nuclear and Energy Research, 2242 Lineu Prestes Avenue, Sao Paulo (Brazil); Arruda-Neto, J. [Physics Institute, University of Sao Paulo, 187 Matao Street, Sao Paulo (Brazil)] [FESP, Sao Paulo Engineering School, 5520 Nove de Julho Avenue, Sao Paulo (Brazil); Maria, Durvanei A., E-mail: durvaneiaugusto@yahoo.com.br [Biochemical and Biophysical Laboratory, Butantan Institute, 1500 Vital Brasil Avenue, Sao Paulo (Brazil)

    2011-12-15

    Antiproliferative and oxidative damage effects occurring in Boron Neutron Capture Therapy (BNCT) in normal fibroblasts and melanoma cell lines were analyzed. Melanoma cells and normal fibroblasts were treated with different concentrations of Boronophenylalanine and irradiated with thermal neutron flux. The cellular viability and the oxidative stress were determined. BNCT induced free radicals production and proliferative potential inhibition in melanoma cells. Therefore, this therapeutic technique could be considered efficient to inhibit growth of melanoma with minimal effects on normal tissues. - Highlights: Black-Right-Pointing-Pointer Boron Neutron Capture Therapy (BNCT) induces melanoma cell death. Black-Right-Pointing-Pointer BNCT stimulates free radicals production and proliferative inhibition in melanoma cells. Black-Right-Pointing-Pointer It produces tumor membrane degeneration and destruction with apoptotic bodies formation. Black-Right-Pointing-Pointer This therapy damages tumor cells selectively, with minimum effects on normal adjacent tissue.

  11. Casticin Inhibits A375.S2 Human Melanoma Cell Migration/Invasion through Downregulating NF-κB and Matrix Metalloproteinase-2 and -1

    Directory of Open Access Journals (Sweden)

    Zih-Yun Wu

    2016-03-01

    Full Text Available Casticin is one of the main components from Fructus Viticis, which is widely used as an anti-inflammatory agent. The mechanism of how casticin affects melanoma cell migration and invasion is still not well known. Here we studied the anti-metastasis effects of casticin on A375.S2 melanoma cells by using a non-lethal concentration. First; we used an adhesion assay to test the A375.S2 cells’ adhesion ability after treatment with casticin. We next investigated the cell migration ability after casticin treatment by using a wound healing assay to prove that the migration of A375.S2 cells can be inhibited by casticin and double checked the results using the transwell-migration assay. The suppressive effects on matrix metalloproteinase-2; and -9 (MMP-2; and -9 activities were examined by gelatin zymography. Furthermore, western blotting was used to investigate the protein level changes in A375.S2 cells. We found that p-EGFR; Ras and p-ERK1/2 are decreased by casticin, indicating that casticin can down-regulate the migration and invasion ability of A375.S2 cells via the p-EGFR/Ras/p-ERK pathway. The NF-κB p65 and p-ERK levels in nuclear proteins are also decreased by treatment with casticin. An EMSA assay also discovered that the NF-κB p65 and DNA interaction is decreased. NF-κB p65 protein level was examined by immunofluorescence staining and also decreased. Our findings suggest that casticin has anti-metastatic potential by decreasing the invasiveness of A375.S2 cells. We also found that casticin suppressed A375.S2 cell proliferation and cell adhesion ability, but did not affect cell death, as examined using cytometry and a collagen adhesion assay. Based on these observations, casticin could be used as an inhibitor of migration and invasion of human melanoma cells in the future.

  12. Establishment and characterization of human uveal malignant melanoma xenografts in nude mice

    DEFF Research Database (Denmark)

    Heegaard, S; Spang-Thomsen, M; Prause, J U

    2003-01-01

    the characteristic properties of malignant melanoma. However, the transplanted cells demonstrated vimentin reactivity, whereas the primary tumour cells were negative for vimentin. It can be concluded that a new experimental model of malignant uveal melanoma with tumours that were easy to observe and access...... model. Tumour tissue blocks (2 x 2 x 2 mm) from enucleated eyes with choroidal malignant melanoma were transplanted subcutaneously into the flanks of nude mice. The growing tumours were measured and serially transplanted. The tumour samples were investigated by histology, immunohistochemistry....... The transplanted tumour cells were epithelioid and slightly larger than the primary tumour cells and had prominent nucleoli. However, the transplanted tumour retained a morphological appearance similar to that of the primary tumour. Immunohistochemical examinations demonstrated that the cells preserved...

  13. Amino acid substitutions in the melanoma antigen recognized by T cell 1 peptide modulate cytokine responses in melanoma-specific T cells

    DEFF Research Database (Denmark)

    Nielsen, M B; Kirkin, A F; Loftus, D

    2000-01-01

    enhances the production of mRNA for interleukin (IL)-5, IL-10, IL-13, IL-15, and interferon-gamma and significantly enhances release of IL-13 and IL-10 from anti-MART-1 cytotoxic T cells. Another heteroclitic peptide, 1L, with an A to L substitution in MART-1(27-35), also enhances the tyrosine...... phosphorylation response in anti-MART-1 cytotoxic CD8+ T cells. Yet, 1L does not enhance the production of T helper cell type 2-like cytokines (IL-10 and IL-13). Together these data show that minor amino acid modifications of immunodominant melanoma peptides profoundly influence the cytokine response in melanoma...

  14. Eradication of Human Hepatic and Pulmonary Melanoma Metastases in SCID Mice by Antibody--Interleukin 2 Fusion Proteins

    Science.gov (United States)

    Becker, Jurgen C.; Pancook, James D.; Gillies, Stephen D.; Mendelsohn, John; Reisfeld, Ralph A.

    1996-04-01

    Antibody--cytokine fusion proteins combine the unique targeting ability of antibodies with the multifunctional activity of cytokines. Here, we demonstrate the therapeutic efficacy of such constructs for the treatment of hepatic and pulmonary metastases of different melanoma cell lines. Two antibody--interleukin 2 (IL-2) fusion proteins, ch225-IL2 and ch14.18-IL2, constructed by fusion of a synthetic sequence coding for human IL-2 to the carboxyl end of the Cγ 1 gene of the corresponding antibodies, were tested for their therapeutic efficacy against xenografted human melanoma in vivo. Tumorspecific fusion proteins completely inhibited the growth of hepatic and pulmonary metastases in C.B-17 scid/scid mice previously reconstituted with human lymphokine-activated killer cells, whereas treatment with combinations of the corresponding antibodies plus recombinant IL-2 only reduced the tumor load. Even when treatment with fusion proteins was delayed up to 8 days after inoculation of tumor cells, it still resulted in complete eradication of micrometastases that were established at that time point. Selection of tumor cell lines expressing or lacking the targeted antigen of the administered fusion protein proved the specificity of the observed antitumor effect. Biodistribution analysis demonstrated that the tumorspecific fusion protein accumulated not only in subcutaneous tumors but also in lungs and livers affected with micrometastases. Survival times of animals treated with the fusion protein were more than doubled as compared to those treated with the combination of the corresponding antibody plus IL-2. Our data demonstrate that an immunotherapeutic approach using cytokines targeted by antibodies to tumor sites has potent effects against disseminated human melanoma.

  15. Roles of different IRES-dependent FGF2 isoforms in the acquisition of the major aggressive features of human metastatic melanoma.

    Science.gov (United States)

    Andreucci, Elena; Bianchini, Francesca; Biagioni, Alessio; Del Rosso, Mario; Papucci, Laura; Schiavone, Nicola; Magnelli, Lucia

    2017-01-01

    Fibroblast growth factor 2 (FGF2) is involved in many physiological and pathological processes. Fgf2 deregulation contributes to the acquisition of malignant features of melanoma and other cancers. FGF2 is an alternative translation product expressed as five isoforms, a low-molecular-weight (18 KDa) and four high-molecular-weight (22, 22.5, 24, 34 KDa) isoforms, with different subcellular distributions. An internal ribosomal entry site (IRES) in its mRNA controls the translation of all the isoforms with the exception for the cap-dependent 34 KDa. The 18-KDa isoform has been extensively studied, while very few is known about the roles of high molecular weight isoforms. FGF2 is known to promote melanoma development and progression. To disclose the differential contribution of FGF2 isoforms in melanoma, we forced the expression of IRES-dependent low-molecular-weight (LMW, 18 KDa) and high-molecular-weight (HMW, 22, 22.5, 24 KDa) isoforms in a human metastatic melanoma cell line. This comparative study highlights that, while LMW isoform confers stem-like features to melanoma cells and promotes angiogenesis, HMW isoforms induce higher migratory ability and contribute to tumor perfusion by promoting vasculogenic mimicry (VM) when endothelial cell-driven angiogenesis is lacking. To conclude, FGF2 isoforms mainly behave in specific, antithetical manners, but can cooperate in different steps of tumor progression, providing melanoma cells with major malignant features. FGF2 is an alternative translation product expressed as different isoforms termed LMW and HMW. FGF2 is involved in melanoma development and progression. HMW FGF2 isoforms enhance in vitro motility of melanoma cells. LMW FGF2 confers stem-like features and increases in vivo metastasization. LMW FGF2 promotes angiogenesis while HMW FGF2 induces vasculogenic mimicry.

  16. Regulation of cell cycle checkpoint kinase WEE1 by miR-195 in malignant melanoma.

    Science.gov (United States)

    Bhattacharya, A; Schmitz, U; Wolkenhauer, O; Schönherr, M; Raatz, Y; Kunz, M

    2013-06-27

    WEE1 kinase has been described as a major gate keeper at the G2 cell cycle checkpoint and to be involved in tumour progression in different malignant tumours. Here we analysed the expression levels of WEE1 in a series of melanoma patient samples and melanoma cell lines using immunoblotting, quantitative real-time PCR and immunohistochemistry. WEE1 expression was significantly downregulated in patient samples of metastatic origin as compared with primary melanomas and in melanoma cell lines of high aggressiveness as compared with cell lines of low aggressiveness. Moreover, there was an inverse correlation between the expression of WEE1 and WEE1-targeting microRNA miR-195. Further analyses showed that transfection of melanoma cell lines with miR-195 indeed reduced WEE1 mRNA and protein expression in these cells. Reporter gene analysis confirmed direct targeting of the WEE1 3' untranslated region (3'UTR) by miR-195. Overexpression of miR-195 in SK-Mel-28 melanoma cells was accompanied by WEE1 reduction and significantly reduced stress-induced G2-M cell cycle arrest, which could be restored by stable overexpression of WEE1. Moreover, miR-195 overexpression and WEE1 knockdown, respectively, increased melanoma cell proliferation. miR-195 overexpression also enhanced migration and invasiveness of melanoma cells. Taken together, the present study shows that WEE1 expression in malignant melanoma is directly regulated by miR-195. miR-195-mediated downregulation of WEE1 in metastatic lesions may help to overcome cell cycle arrest under stress conditions in the local tissue microenvironment to allow unrestricted growth of tumour cells.

  17. Does Melanoma Begin in a Melanocyte Stem Cell

    International Nuclear Information System (INIS)

    Hoerter, J. D.; Bradley, P.; Casillas, A.; Chambers, D.; Weiswasser, B.; Clements, L.; Gilbert, S.; Jiao, A.

    2012-01-01

    What is the cellular origin of melanoma? What role do melanocyte stem cells (MSC) and other melanocyte precursors play in the development of melanoma? Are MSCs and other latent melanocyte precursors more susceptible to solar radiation? These and many other questions can be very effectively addressed using the zebra fish model. Zebra fish have a robust regenerative capability, permitting the study of how MSCs are regulated and recruited at specific times and places to generate the pigment pattern following fin amputation or melanocyte ablation. They can be used to determine the effects of environmental radiation on the proliferation, survival, repair, and differentiation of MSCs. Our lab is using zebra fish to investigate how UVA- (320-400nm) and UVB- (290-320nm) induced damage to MSCs may contribute to the development of melanoma. A review is given of MSCs in zebrafish as well as experimental techniques and drugs for manipulating MSC populations. These techniques can be used to design experiments to help answer many questions regarding the role of MSCs or melanocyte precursors in the formation of melanoma stem cells and tumors following exposure to UVA/UVB radiation.

  18. Differential responses to radiation and hyperthermia of cloned cell lines derived from a single human melanoma xenograft

    International Nuclear Information System (INIS)

    Rofstad, E.K.; Brustad, T.

    1984-01-01

    One uncloned and five cloned cell lines were derived from a single human melanoma xenograft. Cells from passages 7-12 were exposed to either radiation or hyperthermia (42.5 0 C, pH = 7.4) under aerobic conditions and the colony forming ability of the cells was assayed in soft agar. The five cloned lines showed individual and characteristic responses to radiation as well as to hyperthermia. The variation in the response to radiation was mainly reflected in the size of the shoulders of the survival curves rather than in the D 0 -values. The variation in the response to hyperthermia was mainly reflected in the terminal slopes of the survival curves. The survival curve of cells from the uncloned line, both when exposed to radiation and hyperthermia, was positioned in the midst of those of the cloned lines. The response of the cloned lines to radiation did not correlate with the response to hyperthermia, indicating that tumor cell subpopulations which are resistant to radiation may respond well to hyperthermia

  19. Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma

    Science.gov (United States)

    Bald, Tobias; Quast, Thomas; Landsberg, Jennifer; Rogava, Meri; Glodde, Nicole; Lopez-Ramos, Dorys; Kohlmeyer, Judith; Riesenberg, Stefanie; van den Boorn-Konijnenberg, Debby; Hömig-Hölzel, Cornelia; Reuten, Raphael; Schadow, Benjamin; Weighardt, Heike; Wenzel, Daniela; Helfrich, Iris; Schadendorf, Dirk; Bloch, Wilhelm; Bianchi, Marco E.; Lugassy, Claire; Barnhill, Raymond L.; Koch, Manuel; Fleischmann, Bernd K.; Förster, Irmgard; Kastenmüller, Wolfgang; Kolanus, Waldemar; Hölzel, Michael; Gaffal, Evelyn; Tüting, Thomas

    2014-03-01

    Intermittent intense ultraviolet (UV) exposure represents an important aetiological factor in the development of malignant melanoma. The ability of UV radiation to cause tumour-initiating DNA mutations in melanocytes is now firmly established, but how the microenvironmental effects of UV radiation influence melanoma pathogenesis is not fully understood. Here we report that repetitive UV exposure of primary cutaneous melanomas in a genetically engineered mouse model promotes metastatic progression, independent of its tumour-initiating effects. UV irradiation enhanced the expansion of tumour cells along abluminal blood vessel surfaces and increased the number of lung metastases. This effect depended on the recruitment and activation of neutrophils, initiated by the release of high mobility group box 1 (HMGB1) from UV-damaged epidermal keratinocytes and driven by Toll-like receptor 4 (TLR4). The UV-induced neutrophilic inflammatory response stimulated angiogenesis and promoted the ability of melanoma cells to migrate towards endothelial cells and use selective motility cues on their surfaces. Our results not only reveal how UV irradiation of epidermal keratinocytes is sensed by the innate immune system, but also show that the resulting inflammatory response catalyses reciprocal melanoma-endothelial cell interactions leading to perivascular invasion, a phenomenon originally described as angiotropism in human melanomas by histopathologists. Angiotropism represents a hitherto underappreciated mechanism of metastasis that also increases the likelihood of intravasation and haematogenous dissemination. Consistent with our findings, ulcerated primary human melanomas with abundant neutrophils and reactive angiogenesis frequently show angiotropism and a high risk for metastases. Our work indicates that targeting the inflammation-induced phenotypic plasticity of melanoma cells and their association with endothelial cells represent rational strategies to specifically interfere

  20. Regulation of miR-21 expression in human melanoma via UV-ray-induced melanin pigmentation.

    Science.gov (United States)

    Lin, Kuan-Yu; Chen, Chien-Min; Lu, Cheng-You; Cheng, Chun-Yuan; Wu, Yu-Hsin

    2017-08-01

    Excessive environmental ultraviolet (UV) radiation produces genetic mutations that can lead to skin cancer. This study was designed to assess the potential inhibitory activity of microRNA-21 (miR-21) on the UV irradiation-stimulated melanogenesis signal pathway in melanoma cells. The molecular mechanism of miR-21-induced inhibitory activity on UV-ray-stimulated melanogenesis-regulating proteins was examined in A375.S2 human melanoma and B16F10 mouse melanoma cells. UV irradiation for 30 min induced melanogenesis signal pathway by increasing melanin production and the number of A375.S2 cells. Similarly, UV radiation increased the expression of α-melanocyte-stimulating hormone (α-MSH) protein and decreased the melanogenesis-regulating signal, such as EGFR and Akt phosphorylation. Notably, miR-21 overexpression in UV-ray-stimulated A375.S2 cells decreased α-MSH expression and increased EGFR and Akt phosphorylation levels. Furthermore, miR-21 on UV-ray- induced melanogenesis was down-regulated by the Akt inhibitor and the EGFR inhibitor (Gefitinib). Results suggest that the suppressive activity of miR-21 on UV-ray-stimulated melanogenesis may involve the down-regulation of α-MSH and the activation in both of EGFR and Akt. © 2017 Wiley Periodicals, Inc.

  1. Acridine Orange/exosomes increase the delivery and the effectiveness of Acridine Orange in human melanoma cells: A new prototype for theranostics of tumors.

    Science.gov (United States)

    Iessi, Elisabetta; Logozzi, Mariantonia; Lugini, Luana; Azzarito, Tommaso; Federici, Cristina; Spugnini, Enrico Pierluigi; Mizzoni, Davide; Di Raimo, Rossella; Angelini, Daniela F; Battistini, Luca; Cecchetti, Serena; Fais, Stefano

    2017-12-01

    Specifically targeted drug delivery systems with low immunogenicity and toxicity are deemed to increase efficacy of cancer chemotherapy. Acridine Orange (AO) is an acidophilic dye with a strong tumoricidal action following excitation with a light source at 466 nm. However, to date the clinical use of AO is limited by the potential side effects elicited by systemic administration. The endogenous nanocarrier exosomes have been recently introduced as a natural delivery system for therapeutic molecules. In this article, we show the outcome of the administration to human melanoma cells of AO charged Exosomes (Exo-AO), in both monolayer and spheroid models. The results showed an extended drug delivery time of Exo-AO to melanoma cells as compared to the free AO, improving the cytotoxicity of AO. This study shows that Exo-AO have a great potential for a real exploitation as a new theranostic approach against tumors based on AO delivered through the exosomes.

  2. Resistance to ursolic acid-induced apoptosis through involvement of melanogenesis and COX-2/PGE{sub 2} pathways in human M4Beu melanoma cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Lama; Pinon, Aline [Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges (France); Limami, Youness [Laboratoire National de Référence (LNR), Université Mohammed VI des Sciences de la Santé, Casablanca (Morocco); Seeman, Josiane; Fidanzi-Dugas, Chloe; Martin, Frederique [Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges (France); Badran, Bassam [Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Beirut (Lebanon); Simon, Alain [Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges (France); Liagre, Bertrand, E-mail: bertrand.liagre@unilim.fr [Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges (France)

    2016-07-01

    Melanoma is one of the most aggressive forms of cancer with a continuously growing incidence worldwide and is usually resistant to chemotherapy agents, which is due in part to a strong resistance to apoptosis. Previously, we had showed that B16-F0 murine melanoma cells undergoing apoptosis are able to delay their own death induced by ursolic acid (UA), a natural pentacyclic triterpenoid compound. We had demonstrated that tyrosinase and TRP-1 up-regulation in apoptotic cells and the subsequent production of melanin were implicated in an apoptosis resistance mechanism. Several resistance mechanisms to apoptosis have been characterized in melanoma such as hyperactivation of DNA repair mechanisms, drug efflux systems, and reinforcement of survival signals (PI3K/Akt, NF-κB and Raf/MAPK pathways). Otherwise, other mechanisms of apoptosis resistance involving different proteins, such as cyclooxygenase-2 (COX-2), have been described in many cancer types. By using a strategy of specific inhibition of each ways, we suggested that there was an interaction between melanogenesis and COX-2/PGE{sub 2} pathway. This was characterized by analyzing the COX-2 expression and activity, the expression of tyrosinase and melanin production. Furthermore, we showed that anti-proliferative and proapoptotic effects of UA were mediated through modulation of multiple signaling pathways including Akt and ERK-1/2 proteins. Our study not only uncovers underlying molecular mechanisms of UA action in human melanoma cancer cells but also suggest its great potential as an adjuvant in treatment and cancer prevention.

  3. Carbon ions of different linear energy transfer (LET values induce apoptosis & G2 cell cycle arrest in radio-resistant melanoma cells

    Directory of Open Access Journals (Sweden)

    Žakula Jelena

    2016-01-01

    Full Text Available Background & objectives: The main goal when treating malignancies with radiation is to deprive tumour cells of their reproductive potential. One approach is to induce tumour cell apoptosis. This study was conducted to evaluate the ability of carbon ions ( [12] C to induce apoptosis and cell cycle arrest in human HTB140 melanoma cells. Methods: In this in vitro study, human melanoma HTB140 cells were irradiated with the 62 MeV/n carbon ( [12] C ion beam, having two different linear energy transfer (LET values: 197 and 382 keV/μm. The dose range was 2 to 16 Gy. Cell viability was estimated by the sulforhodamine B assay seven days after irradiation. The cell cycle and apoptosis were evaluated 48 h after irradiation using flow cytometry. At the same time point, protein and gene expression of apoptotic regulators were estimated using the Western blot and q-PCR methods, respectively. Results: Cell viability experiments indicated strong anti-tumour effects of [12] C ions. The analysis of cell cycle showed that [12] C ions blocked HTB140 cells in G2 phase and induced the dose dependent increase of apoptosis. The maximum value of 21.8 per cent was attained after irradiation with LET of 197 keV/μm at the dose level of 16 Gy. Pro-apoptotic effects of [12] C ions were confirmed by changes of key apoptotic molecules: the p53, Bax, Bcl-2, poly ADP ribose polymerase (PARP as well as nuclear factor kappa B (NFκB. At the level of protein expression, the results indicated significant increases of p53, NFκB and Bax/Bcl-2 ratio and PARP cleavage. The Bax/Bcl-2 mRNA ratio was also increased, while no change was detected in the level of NFκB mRNA. Interpretation & conclusions: The present results indicated that anti-tumour effects of [12] C ions in human melanoma HTB140 cells were accomplished through induction of the mitochondrial apoptotic pathway as well as G2 arrest.

  4. A DC-81-indole conjugate agent suppresses melanoma A375 cell migration partially via interrupting VEGF production and stromal cell-derived factor-1α-mediated signaling

    International Nuclear Information System (INIS)

    Hsieh, Ming-Chu; Hu, Wan-Ping; Yu, Hsin-Su; Wu, Wen-Chuan; Chang, Long-Sen; Kao, Ying-Hsien; Wang, Jeh-Jeng

    2011-01-01

    Pyrrolo[2,1-c][1,4]benzodiazepine (PBD) chemicals are antitumor antibiotics inhibiting nucleic acid synthesis. An indole carboxylate-PBD hybrid with six-carbon spacer structure (IN6CPBD) has been previously demonstrated to induce melanoma cell apoptosis and reduce metastasis in mouse lungs. This study aimed at investigating the efficacy of the other hybrid compound with four-carbon spacer (IN4CPBD) and elucidating its anti-metastatic mechanism. Human melanoma A375 cells with IN4CPBD treatment underwent cytotoxicity and apoptosis-associated assays. Transwell migration assay, Western blotting, and ELISA were used for mechanistic study. IN4CPBD exhibited potent melanoma cytotoxicity through interrupting G1/S cell cycle progression, increasing DNA fragmentation and hypodipoidic DNA contents, and reducing mitochondrial membrane potential. Caspase activity elevation suggested that both intrinsic and extrinsic pathways were involved in IN4CPBD-induced melanoma apoptosis. IN4CPBD up-regulated p53 and p21, thereby concomitantly derailing the equilibrium between Bcl-2 and Bax levels. Transwell migration assay demonstrated that stromal cell-derived factor-1α (SDF-1α) stimulated A375 cell motility, while kinase inhibitors treatment confirmed that Rho/ROCK, Akt, ERK1/2, and p38 MAPK pathways were involved in SDF-1α-enhanced melanoma migration. IN4CPBD not only abolished the SDF-1α-enhanced chemotactic motility but also suppressed constitutive MMP-9 and VEGF expression. Mechanistically, IN4CPBD down-regulated Akt, ERK1/2, and p38 MAPK total proteins and MYPT1 phosphorylation. In conclusion, beyond the fact that IN4CPBD induces melanoma cell apoptosis at cytotoxic dose, the interruption in the VEGF expression and the SDF-1α-related signaling at cytostatic dose may partially constitute the rationale for its in vivo anti-metastatic potency. - Research highlights: → A novel carboxylate-PBD hybrid as anti-melanoma drug. → IN4CPBD interrupts melanoma cell cycle progression

  5. Cell cycle-tailored targeting of metastatic melanoma: Challenges and opportunities.

    Science.gov (United States)

    Haass, Nikolas K; Gabrielli, Brian

    2017-07-01

    The advent of targeted therapies of metastatic melanoma, such as MAPK pathway inhibitors and immune checkpoint antagonists, has turned dermato-oncology from the "bad guy" to the "poster child" in oncology. Current targeted therapies are effective, although here is a clear need to develop combination therapies to delay the onset of resistance. Many antimelanoma drugs impact on the cell cycle but are also dependent on certain cell cycle phases resulting in cell cycle phase-specific drug insensitivity. Here, we raise the question: Have combination trials been abandoned prematurely as ineffective possibly only because drug scheduling was not optimized? Firstly, if both drugs of a combination hit targets in the same melanoma cell, cell cycle-mediated drug insensitivity should be taken into account when planning combination therapies, timing of dosing schedules and choice of drug therapies in solid tumors. Secondly, if the combination is designed to target different tumor cell subpopulations of a heterogeneous tumor, one drug effective in a particular subpopulation should not negatively impact on the other drug targeting another subpopulation. In addition to the role of cell cycle stage and progression on standard chemotherapeutics and targeted drugs, we discuss the utilization of cell cycle checkpoint control defects to enhance chemotherapeutic responses or as targets themselves. We propose that cell cycle-tailored targeting of metastatic melanoma could further improve therapy outcomes and that our real-time cell cycle imaging 3D melanoma spheroid model could be utilized as a tool to measure and design drug scheduling approaches. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Components in aqueous Hibiscus rosa-sinensis flower extract inhibit in vitro melanoma cell growth

    Directory of Open Access Journals (Sweden)

    Karina H. Goldberg

    2017-01-01

    Full Text Available Skin cancer is extremely common, and melanoma causes about 80% of skin cancer deaths. In fact, melanoma kills over 50 thousand people around the world each year, and these numbers are rising. Clearly, standard treatments are not effectively treating melanoma, and alternative therapies are needed to address this problem. Hibiscus tea has been noted to have medicinal properties, including anticancer effects. Extracts from Hibiscus have been shown to inhibit the growth of a variety of cancer cells. In particular, recent studies found that polyphenols extracted from Hibiscus sabdariffa by organic solvents can inhibit melanoma cell growth. However, effects of aqueous extracts from Hibiscus rosa-sinesis flowers, which are commonly used to make traditional medicinal beverages, have not been examined on melanoma cells. Here, we report that aqueous H. rosa-sinesis flower extract contains compounds that inhibit melanoma cell growth in a dose dependent manner at concentrations that did not affect the growth of nontransformed cells. In addition, these extracts contain low molecular weight growth inhibitory compounds below 3 kD in size that combine with larger compounds to more effectively inhibit melanoma cell growth. Future work should identify these compounds, and evaluate their potential to prevent and treat melanoma and other cancers.

  7. The role of alpha-synuclein in melanin synthesis in melanoma and dopaminergic neuronal cells.

    Directory of Open Access Journals (Sweden)

    Tianhong Pan

    Full Text Available The relatively high co-occurrence of Parkinson's disease (PD and melanoma has been established by a large number of epidemiological studies. However, a clear biological explanation for this finding is still lacking. Ultra-violet radiation (UVR-induced skin melanin synthesis is a defense mechanism against UVR-induced damage relevant to the initiation of melanoma, whereas, increased neuromelanin (NM, the melanin synthesized in dopaminergic neurons, may enhance the susceptibility to oxidative stress-induced neuronal injury relevant to PD. SNCA is a PD-causing gene coding for alpha-Synuclein (α-Syn that expresses not only in brain, but also in skin as well as in tumors, such as melanoma. The findings that α-Syn can interact with tyrosinase (TYR and inhibit tyrosine hydroxylase (TH, both of which are enzymes involved in the biosynthesis of melanin and dopamine (DA, led us to propose that α-Syn may participate in the regulation of melanin synthesis. In this study, by applying ultraviolet B (UVB light, a physiologically relevant stimulus of melanogenesis, we detected melanin synthesis in A375 and SK-MEL-28 melanoma cells and in SH-SY5Y and PC12 dopaminergic neuronal cells and determined effects of α-Syn on melanin synthesis. Our results showed that UVB light exposure increased melanin synthesis in all 4 cell lines. However, we found that α-Syn expression reduced UVB light-induced increase of melanin synthesis and that melanin content was lower when melanoma cells were expressed with α-Syn, indicating that α-Syn may have inhibitory effects on melanin synthesis in melanoma cells. Different from melanoma cells, the melanin content was higher in α-Syn-over-expressed dopaminergic neuronal SH-SY5Y and PC12 cells, cellular models of PD, than that in non-α-Syn-expressed control cells. We concluded that α-Syn could be one of the points responsible for the positive association between PD and melanoma via its differential roles in melanin synthesis in

  8. Methods to Improve Adoptive T-Cell Therapy for Melanoma

    DEFF Research Database (Denmark)

    Donia, Marco; Hansen, Morten; Sendrup, Sarah L

    2013-01-01

    desirable. In this study, we demonstrated that a high in vitro tumor reactivity of infusion products was associated with clinical responses upon adoptive transfer. In addition, we systematically characterized the responses of a series of TIL products to relevant autologous short term-cultured melanoma cell...... lines from 12 patients. We provide evidence that antitumor reactivity of both CD8(+) and CD4(+) T cells could be enhanced in most TIL products by autologous melanoma sensitization by pretreatment with low-dose IFN-γ. IFN-γ selectively enhanced responses to tumor-associated antigens other than melanoma...... differentiation antigens. In addition, IFN-γ treatment was invariably associated with restored/increased cancer immunogenicity as demonstrated by upregulation of major histocompatibility complex molecules. These findings suggest a potential synergism between IFN-γ and ACT, and have important implications...

  9. Comparative study of angio genesis radiopharmaceuticals for melanoma detection

    International Nuclear Information System (INIS)

    Oliveira, Erica Aparecida de

    2011-01-01

    Early diagnosis and treatment of melanoma, a cutaneous tumor with a serious prognosis, is extremely important for optimal clinical outcome. Phage display peptide libraries are a useful screening resource for identifying bioactive peptides that interact with cancer targets. The aim of this study was the evaluation of two technetium-99m tracers for angio genesis detection in melanoma model, using cyclic peguilated pentapeptide with RGD and NGR motifs conjugated with bifunctional chelator MAG3. The conjugated peptides (10 μL of a μg/μL solution) were labeled with technetium-99m using a sodium tartrate buffer. Radiochemical evaluation was done by ITLC and confirmed by HPLC. Partition coefficient was determined and internalization assays were performed in two melanoma cells (B16F10 and SKMEL28). Biodistribution evaluation of the tracers was done in healthy animals at different times and also in mice bearing the tumor cells at 120 min post injection. Blocking studies were also conducted by co-injection of cold peptides. The conjugated showed the same profile in many evaluations. They were radiolabeled with high radiochemical purity (>97%). Both were hydrophilic, with preferential renal excretion. Tumor uptake was higher for human melanoma cells than for murinic melanoma cells, specially for 99m Tc-MAG3-PEG 8 -c(RGDyK) (7.85±±2.34 %ID/g) at 120 min post injection. The performance of 99m Tc-MAG 3 -PEG 8 -c(RGDyk) was much better than NGR tracer concerning human melanoma uptake and might be considered in future investigations focusing radiotracers for melanoma diagnosis. (author)

  10. Ligand-directed targeting of lymphatic vessels uncovers mechanistic insights in melanoma metastasis.

    Science.gov (United States)

    Christianson, Dawn R; Dobroff, Andrey S; Proneth, Bettina; Zurita, Amado J; Salameh, Ahmad; Dondossola, Eleonora; Makino, Jun; Bologa, Cristian G; Smith, Tracey L; Yao, Virginia J; Calderone, Tiffany L; O'Connell, David J; Oprea, Tudor I; Kataoka, Kazunori; Cahill, Dolores J; Gershenwald, Jeffrey E; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata

    2015-02-24

    Metastasis is the most lethal step of cancer progression in patients with invasive melanoma. In most human cancers, including melanoma, tumor dissemination through the lymphatic vasculature provides a major route for tumor metastasis. Unfortunately, molecular mechanisms that facilitate interactions between melanoma cells and lymphatic vessels are unknown. Here, we developed an unbiased approach based on molecular mimicry to identify specific receptors that mediate lymphatic endothelial-melanoma cell interactions and metastasis. By screening combinatorial peptide libraries directly on afferent lymphatic vessels resected from melanoma patients during sentinel lymphatic mapping and lymph node biopsies, we identified a significant cohort of melanoma and lymphatic surface binding peptide sequences. The screening approach was designed so that lymphatic endothelium binding peptides mimic cell surface proteins on tumor cells. Therefore, relevant metastasis and lymphatic markers were biochemically identified, and a comprehensive molecular profile of the lymphatic endothelium during melanoma metastasis was generated. Our results identified expression of the phosphatase 2 regulatory subunit A, α-isoform (PPP2R1A) on the cell surfaces of both melanoma cells and lymphatic endothelial cells. Validation experiments showed that PPP2R1A is expressed on the cell surfaces of both melanoma and lymphatic endothelial cells in vitro as well as independent melanoma patient samples. More importantly, PPP2R1A-PPP2R1A homodimers occur at the cellular level to mediate cell-cell interactions at the lymphatic-tumor interface. Our results revealed that PPP2R1A is a new biomarker for melanoma metastasis and show, for the first time to our knowledge, an active interaction between the lymphatic vasculature and melanoma cells during tumor progression.

  11. Anti-tumor angiogenesis effect of aminopeptidase inhibitor bestatin against B16-BL6 melanoma cells orthotopically implanted into syngeneic mice.

    Science.gov (United States)

    Aozuka, Yasushi; Koizumi, Keiichi; Saitoh, Yurika; Ueda, Yasuji; Sakurai, Hiroaki; Saiki, Ikuo

    2004-12-08

    We investigated the effect of bestatin, an inhibitor of aminopeptidase N (APN)/CD13 and aminopeptidase B, on the angiogenesis induced by B16-BL6 melanoma cells. Oral administration of bestatin (100-200 mg/kg/day) was found to significantly inhibit the melanoma cell-induced angiogenesis in a mouse dorsal air sac assay. Additionally, anti-APN/CD13 mAb (WM15), which neutralizes the aminopeptidase activity in tumor cells, as well as bestatin inhibited the tube-like formation of human umbilical vein endothelial cells (HUVECs) in vitro. Furthermore, the intraperitoneal administration of bestatin (50-100 mg/kg/day) after the orthotopic implantation of B16-BL6 melanoma cells into mice reduced the number of vessels oriented towards the established primary tumor mass on the dorsal side of mice. These findings suggest that bestatin is an active anti-angiogenic agent that may inhibit tumor angiogenesis in vivo and tube-like formation of endothelial cells in vitro through its inhibition of APN/CD13 activity.

  12. Human melanocytes form a PAX3-expressing melanocyte cluster on Matrigel by the cell migration process.

    Science.gov (United States)

    Choi, Hyunjung; Jin, Sun Hee; Han, Mi Hwa; Lee, Jinyoung; Ahn, Seyeon; Seong, Minjeong; Choi, Hyun; Han, Jiyeon; Cho, Eun-Gyung; Lee, Tae Ryong; Noh, Minsoo

    2014-10-01

    The interactions between human epidermal melanocytes and their cellular microenvironment are important in the regulation of human melanocyte functions or in their malignant transformation into melanoma. Although the basement membrane extracellular matrix (BM-ECM) is one of major melanocyte microenvironments, the effects of BM-ECM on the human melanocyte functions are not fully explained at a molecular level. This study was aimed to characterize the molecular and cellular interactions between normal human melanocytes (NHMs) and BM-ECM. We investigated cell culture models of normal human melanocytes or melanoma cells on three-dimensional (3D) Matrigel to understand the roles of the basement membrane microenvironment in human melanocyte functions. Melanogenesis and melanobast biomarker expression in both primary human melanocytes and melanoma cells on 3D Matrigel were evaluated. We found that NHMs migrated and formed reversible paired box 3 (PAX3) expressing cell clusters on three-dimensional (3D) Matrigel. The melanogenesis was significantly decreased in the PAX3 expressing cell cluster. The expression profile of PAX3, SOX10, and MITF in the melanocyte cluster on 3D Matrigel was similar to that of melanoblasts. Interestingly, PAX3 and SOX10 showed an inverse expression profile in NHMs, whereas the inverse expression pattern of PAX3 and SOX10 was disrupted in melanoma MNT1 and WM266-4 cells. The human melanocyte culture on 3D Matrigel provides an alternative model system to study functions of human melanoblasts. In addition, this system will contribute to the elucidation of PAX3-related tumorigenic mechanisms to understand human melanoma. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Phenotypic and functional characteristics of blood natural killer cells from melanoma patients at different clinical stages.

    Directory of Open Access Journals (Sweden)

    Giulia Fregni

    Full Text Available Melanomas are aggressive skin tumors characterized by high metastatic potential. Immunotherapy is a valuable alternative for metastatic melanoma patients resistant to chemotherapy. Natural Killer (NK cells are efficient anti-tumor cytotoxic effectors. We previously showed that blood NK cells from stage IV metastatic melanoma patients display decreased NK receptors and that chemotherapy modifies the functional status of blood NK cells. To investigate the role of NK cells along melanoma progression, we have here studied NK cells from patients at different stages of the disease. First, we showed that ex vivo NK cells from certain stage III-IV patients displayed low degranulation potential. Using a dynamic label-free assay, we found that immunoselected IL-2 activated blood NK cells from patients efficiently lysed melanoma cells through NKp46 and NKG2D receptors, independently to the clinical stage. Moreover, the ex vivo phenotype of circulating NK cells from 33 patients (stage I to IV was extensively analyzed. NK cells from patients displayed higher variability in the percentages of Natural Cytotoxicity Receptors (NCR and Natural Killer Group 2D (NKG2D receptor expression compared to donor NK cells. The main defect was the decreased expression of NCR1 (NKp46 by NK cells from metastatic patients. Interestingly, we found a positive correlation between the NK cell percentages of NKp46 and the duration of stage IV in melanoma patients. Finally, we showed that NK cells infiltrated primary melanomas and displayed a predominant peritumoral distribution. These results are new arguments for the development of NK-based therapies in melanoma patients.

  14. Cytotoxicity of Labruscol, a New Resveratrol Dimer Produced by Grapevine Cell Suspensions, on Human Skin Melanoma Cancer Cell Line HT-144

    Directory of Open Access Journals (Sweden)

    Laetitia Nivelle

    2017-11-01

    Full Text Available A new resveratrol dimer (1 called labruscol, has been purified by centrifugal partition chromatography of a crude ethyl acetate stilbene extract obtained from elicited grapevine cell suspensions of Vitis labrusca L. cultured in a 14-liter stirred bioreactor. One dimensional (1D and two dimensional (2D nuclear magnetic resonance (NMR analyses including 1H, 13C, heteronuclear single-quantum correlation (HSQC, heteronuclear multiple bond correlation (HMBC, and correlation spectroscopy (COSY as well as high-resolution electrospray ionisation mass spectrometry (HR-ESI-MS were used to characterize this compound and to unambiguously identify it as a new stilbene dimer, though its relative stereochemistry remained unsolved. Labruscol was recovered as a pure compound (>93% in sufficient amounts (41 mg to allow assessment of its biological activity (cell viability, cell invasion and apoptotic activity on two different cell lines, including one human skin melanoma cancer cell line HT-144 and a healthy human dermal fibroblast (HDF line. This compound induced almost 100% of cell viability inhibition in the cancer line at a dose of 100 μM within 72 h of treatment. However, at all tested concentrations and treatment times, resveratrol displayed an inhibition of the cancer line viability higher than that of labruscol in the presence of fetal bovine serum. Both compounds also showed differential activities on healthy and cancer cell lines. Finally, labruscol at a concentration of 1.2 μM was shown to reduce cell invasion by 40%, although no similar activity was observed with resveratrol. The cytotoxic activity of this newly-identified dimer is discussed.

  15. Oxygen consumption rate and mitochondrial density in human melanoma monolayer cultures and multicellular spheroids.

    Science.gov (United States)

    Hystad, M E; Rofstad, E K

    1994-05-15

    Rate of oxygen consumption per cell has been shown in previous studies to decrease with increasing depth in the viable rim of multicellular spheroids initiated from rodent cells, human colon-carcinoma cells, and human glioma cells, due to progressive accumulation of quiescent cells during spheroid growth. The purpose of our work was to determine oxygen-consumption profiles in human melanoma spheroids. Monolayer cultures of 4 lines (BEX-c, COX-c, SAX-c, and WIX-c) and spheroid cultures of 2 lines (BEX-c and WIX-c) were subjected to investigation. Spheroids were initiated from monolayer cell cultures and grown in spinner flasks. Rate of oxygen consumption was measured with a Clarke-type electrode. Mitochondrial density was determined by stereological analysis of transmission electron micrographs. Thickness of viable rim and cell packing density were assessed by light microscopy of central spheroid sections. Cell-cycle distribution was determined by analysis of DNA histograms measured by flow cytometry. Cell volume was measured by an electronic particle counter. Rate of oxygen consumption per cell differed by a factor of approximately 1.8 between the 4 cell lines and was positively correlated to total volume of mitochondria per cell. Rate of oxygen consumption per cell and total volume of mitochondria per cell were equal for monolayer cell cultures, 600-microns spheroids and 1,200-microns spheroids of the same line. Mitochondrial density and location in the cell did not differ between cells at the spheroid surface, in the middle of the viable rim and adjacent to the central necrosis. Cell-cycle distribution, cell volume, and cell-packing density in the outer and inner halves of the viable rim were not significantly different. Consequently, the rate of oxygen consumption per cell in inner regions of the viable rim was probably equal to that at the spheroid surface, suggesting that oxygen diffusion distances may be shorter in some melanomas than in many other tumor

  16. Ocular Melanoma

    Science.gov (United States)

    ... is Ocular Melanoma? Leer en Español: ¿Qué es el melanoma ocular? Written By: Daniel Porter Reviewed By: Robert H Janigian Jr MD Sep. 01, 2017 Ocular melanoma (melanoma in or around the eye) is a type of cancer that develops in the cells that produce pigment. ...

  17. In vitro anticancer activity of Betulinic acid and derivatives thereof on equine melanoma cell lines from grey horses and in vivo safety assessment of the compound NVX-207 in two horses.

    Science.gov (United States)

    Liebscher, G; Vanchangiri, K; Mueller, Th; Feige, K; Cavalleri, J-M V; Paschke, R

    2016-02-25

    Betulinic acid, a pentacyclic triterpene, and its derivatives are promising compounds for cancer treatment in humans. Melanoma is not only a problem for humans but also for grey horses as they have a high potential of developing melanoma lesions coupled to the mutation causing their phenotype. Current chemotherapeutic treatment carries the risk of adverse health effects for the horse owner or the treating veterinarian by exposure to antineoplastic compounds. Most treatments have low prospects for systemic tumor regression. Thus, a new therapy is needed. In this in vitro study, Betulinic acid and its two derivatives B10 and NVX-207, both with an improved water solubility compared to Betulinic acid, were tested on two equine melanoma cell lines (MelDuWi and MellJess/HoMelZh) and human melanoma (A375) cell line. We could demonstrate that all three compounds especially NVX-207 show high cytotoxicity on both equine melanoma cell lines. The treatment with these compounds lead to externalization of phosphatidylserines on the cell membrane (AnnexinV-staining), DNA-fragmentation (cell cycle analysis) and activation of initiator and effector caspases (Caspase assays). Our results indicate that the apoptosis is induced in the equine melanoma cells by all three compounds. Furthermore, we succeed in encapsulating the most active compound NVX-207 in 2-Hydroxyprolyl-β-cyclodextrine without a loss of its activity. This formulation can be used as a promising antitumor agent for treating grey horse melanoma. In a first tolerability evaluation in vivo the formulation was administered every one week for 19 consecutive weeks and well tolerated in two adult melanoma affected horses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Quantitative Proteomics Identifies Activation of Hallmark Pathways of Cancer in Patient Melanoma.

    Science.gov (United States)

    Byrum, Stephanie D; Larson, Signe K; Avaritt, Nathan L; Moreland, Linley E; Mackintosh, Samuel G; Cheung, Wang L; Tackett, Alan J

    2013-03-01

    Molecular pathways regulating melanoma initiation and progression are potential targets of therapeutic development for this aggressive cancer. Identification and molecular analysis of these pathways in patients has been primarily restricted to targeted studies on individual proteins. Here, we report the most comprehensive analysis of formalin-fixed paraffin-embedded human melanoma tissues using quantitative proteomics. From 61 patient samples, we identified 171 proteins varying in abundance among benign nevi, primary melanoma, and metastatic melanoma. Seventy-three percent of these proteins were validated by immunohistochemistry staining of malignant melanoma tissues from the Human Protein Atlas database. Our results reveal that molecular pathways involved with tumor cell proliferation, motility, and apoptosis are mis-regulated in melanoma. These data provide the most comprehensive proteome resource on patient melanoma and reveal insight into the molecular mechanisms driving melanoma progression.

  19. Aberrant Cx43 Expression and Mislocalization in Metastatic Human Melanomas.

    Science.gov (United States)

    Alaga, Katanya C; Crawford, Melissa; Dagnino, Lina; Laird, Dale W

    2017-01-01

    At present, it is unclear if melanocytes contain Cx43 gap junctions and whether Cx43 expression is regulated in melanoma onset and progression. To this end, we cultured pure populations of mouse melanocytes and found that they had no detectable Cx43 and exhibited an inability for dye transfer indicating they were devoid of functional gap junctions. Given the evidence that melanomas acquire the expression of other connexin isoforms during tumor progression, we assessed if Cx43 was also expressed and assembled into gap junctions at any stage of human melanoma onset and progression to distant metastases. Nearly all primary melanomas within the epidermis lacked Cx43. In contrast, nodal metastases expressed low levels of Cx43 which was markedly higher in distant metastases that had invaded vital organs. Importantly, in all stages of melanoma progression, Cx43 could be detected in intracellular compartments but was rarely assembled into gap junctions indicative of functional gap junction channels. Overall, these studies suggest that melanocytes do not form Cx43 homocellular gap junctions and even though Cx43 levels increase during melanoma progression, this connexin rarely assembles into gap junction structures.

  20. Resveratrol sensitizes melanomas to TRAIL through modulation of antiapoptotic gene expression

    International Nuclear Information System (INIS)

    Ivanov, Vladimir N.; Partridge, Michael A.; Johnson, Geoffrey E.; Huang, Sarah X.L.; Zhou, Hongning; Hei, Tom K.

    2008-01-01

    Although many human melanomas express the death receptors TRAIL-R2/DR5 or TRAIL-R1/DR4 on cell surface, they often exhibit resistance to exogenous TRAIL. One of the main contributors to TRAIL-resistance of melanoma cells is upregulation of transcription factors STAT3 and NF-κB that control the expression of antiapoptotic genes, including cFLIP and Bcl-xL. On the other hand, the JNK-cJun pathway is involved in the negative regulation of cFLIP (a caspase-8 inhibitor) expression. Our observations indicated that resveratrol, a polyphenolic phytoalexin, decreased STAT3 and NF-κB activation, while activating JNK-cJun that finally suppressed expression of cFLIP and Bcl-xL proteins and increased sensitivity to exogenous TRAIL in DR5-positive melanomas. Interestingly, resveratrol did not increase surface expression of DR5 in human melanomas, while γ-irradiation or sodium arsenite treatment substantially upregulated DR5 expression. Hence, an initial increase in DR5 surface expression (either by γ-irradiation or arsenite), and subsequent downregulation of antiapoptotic cFLIP and Bcl-xL (by resveratrol), appear to constitute an efficient approach to reactivate apoptotic death pathways in TRAIL-resistant human melanomas. In spite of partial suppression of mitochondrial function and the mitochondrial death pathway, melanoma cells still retain the potential to undergo the DR5-mediated, caspase-8-dependent death pathway that could be accelerated by either an increase in DR5 surface expression or suppression of cFLIP. Taken together, these results suggest that resveratrol, in combination with TRAIL, may have a significant efficacy in the treatment of human melanomas

  1. The quinone methide aurin is a heat shock response inducer that causes proteotoxic stress and Noxa-dependent apoptosis in malignant melanoma cells.

    Science.gov (United States)

    Davis, Angela L; Qiao, Shuxi; Lesson, Jessica L; Rojo de la Vega, Montserrat; Park, Sophia L; Seanez, Carol M; Gokhale, Vijay; Cabello, Christopher M; Wondrak, Georg T

    2015-01-16

    Pharmacological induction of proteotoxic stress is rapidly emerging as a promising strategy for cancer cell-directed chemotherapeutic intervention. Here, we describe the identification of a novel drug-like heat shock response inducer for the therapeutic induction of proteotoxic stress targeting malignant human melanoma cells. Screening a focused library of compounds containing redox-directed electrophilic pharmacophores employing the Stress & Toxicity PathwayFinder(TM) PCR Array technology as a discovery tool, a drug-like triphenylmethane-derivative (aurin; 4-[bis(p-hydroxyphenyl)methylene]-2,5-cyclohexadien-1-one) was identified as an experimental cell stress modulator that causes (i) heat shock factor transcriptional activation, (ii) up-regulation of heat shock response gene expression (HSPA6, HSPA1A, DNAJB4, HMOX1), (iii) early unfolded protein response signaling (phospho-PERK, phospho-eIF2α, CHOP (CCAAT/enhancer-binding protein homologous protein)), (iv) proteasome impairment with increased protein-ubiquitination, and (v) oxidative stress with glutathione depletion. Fluorescence polarization-based experiments revealed that aurin displays activity as a geldanamycin-competitive Hsp90α-antagonist, a finding further substantiated by molecular docking and ATPase inhibition analysis. Aurin exposure caused caspase-dependent cell death in a panel of human malignant melanoma cells (A375, G361, LOX-IMVI) but not in non-malignant human skin cells (Hs27 fibroblasts, HaCaT keratinocytes, primary melanocytes) undergoing the aurin-induced heat shock response without impairment of viability. Aurin-induced melanoma cell apoptosis depends on Noxa up-regulation as confirmed by siRNA rescue experiments demonstrating that siPMAIP1-based target down-regulation suppresses aurin-induced cell death. Taken together, our data suggest feasibility of apoptotic elimination of malignant melanoma cells using the quinone methide-derived heat shock response inducer aurin. © 2015 by The

  2. Cancer immunology and canine malignant melanoma: A comparative review.

    Science.gov (United States)

    Atherton, Matthew J; Morris, Joanna S; McDermott, Mark R; Lichty, Brian D

    2016-01-01

    Oral canine malignant melanoma (CMM) is a spontaneously occurring aggressive tumour with relatively few medical treatment options, which provides a suitable model for the disease in humans. Historically, multiple immunotherapeutic strategies aimed at provoking both innate and adaptive anti-tumour immune responses have been published with varying levels of activity against CMM. Recently, a plasmid DNA vaccine expressing human tyrosinase has been licensed for the adjunct treatment of oral CMM. This article reviews the immunological similarities between CMM and the human counterpart; mechanisms by which tumours evade the immune system; reasons why melanoma is an attractive target for immunotherapy; the premise of whole cell, dendritic cell (DC), viral and DNA vaccination strategies alongside preliminary clinical results in dogs. Current "gold standard" treatments for advanced human malignant melanoma are evolving quickly with remarkable results being achieved following the introduction of immune checkpoint blockade and adoptively transferred cell therapies. The rapidly expanding field of cancer immunology and immunotherapeutics means that rational targeting of this disease in both species should enhance treatment outcomes in veterinary and human clinics. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Investigating the role of melanin in UVA/UVB- and hydrogen peroxide-induced cellular and mitochondrial ROS production and mitochondrial DNA damage in human melanoma cells.

    Science.gov (United States)

    Swalwell, Helen; Latimer, Jennifer; Haywood, Rachel M; Birch-Machin, Mark A

    2012-02-01

    Skin cancer incidence is dramatically increasing worldwide, with exposure to ultraviolet radiation (UVR) a predominant factor. The UVA component initiates oxidative stress in human skin, although its exact role in the initiation of skin cancer, particularly malignant melanoma, remains unclear and is controversial because there is evidence for a melanin-dependent mechanism in UVA-linked melanoma studies. Nonpigmented (CHL-1, A375), moderately pigmented (FM55, SKmel23), and highly pigmented (FM94, hyperpigmented FM55) human melanoma cell lines have been used to investigate UVA-induced production of reactive oxygen species using FACS analysis, at both the cellular (dihydrorhodamine-123) and the mitochondrial (MitoSOX) level, where most cellular stress is generated. For the first time, downstream mtDNA damage (utilizing a quantitative long-PCR assay) has been investigated. Using UVA, UVB, and H(2)O(2) as cellular stressors, we have explored the dual roles of melanin as a photoprotector and photosensitizer. The presence of melanin has no influence over cellular oxidative stress generation, whereas, in contrast, melanin protects against mitochondrial superoxide generation and mtDNA damage (one-way ANOVA with post hoc Tukey's analysis, Pmelanin binds directly to DNA, it acts as a direct photosensitizer of mtDNA damage during UVA irradiation (Pmelanin. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin.

    Directory of Open Access Journals (Sweden)

    Cristina Federici

    Full Text Available Intrinsic resistance to cytotoxic drugs has been a main issue in cancer therapy for decades. Microenvironmental acidity is a simple while highly efficient mechanism of chemoresistance, exploited through impairment of drug delivery. The latter is achieved by extracellular protonation and/or sequestration into acidic vesicles. This study investigates the importance of extracellular acidosis and nanovesicle (exosome release in the resistance of human tumour cell to cisplatin (CisPt; in parallel to proton pump inhibitors (PPI ability of interfering with these tumour cell features. The results showed that CisPt uptake by human tumour cells was markedly impaired by low pH conditions. Moreover, exosomes purified from supernatants of these cell cultures contained various amounts of CisPt, which correlated to the pH conditions of the culture medium. HPLC-Q-ICP-MS analysis revealed that exosome purified from tumour cell culture supernatants contained CisPt in its native form. PPI pre-treatment increased cellular uptake of CisPt, as compared to untreated cells, in an acidic-depend manner. Furthermore, it induced a clear inhibition of exosome release by tumour cells. Human tumours obtained from xenografts pretreated with PPI contained more CisPt as compared to tumours from xenografts treated with CisPt alone. Further analysis showed that in vivo PPI treatment induced a clear reduction in the plasmatic levels of tumour-derived exosomes which also contained lower level of CisPt. Altogether, these findings point to the identification of a double mechanism that human malignant melanoma use in resisting to a dreadful cellular poison such as cisplatin. This framework of resistance includes both low pH-dependent extracellular sequestration and an exosome-mediated elimination. Both mechanisms are markedly impaired by proton pump inhibition, leading to an increased CisPt-dependent cytotoxicity.

  5. Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin.

    Science.gov (United States)

    Federici, Cristina; Petrucci, Francesco; Caimi, Stefano; Cesolini, Albino; Logozzi, Mariantonia; Borghi, Martina; D'Ilio, Sonia; Lugini, Luana; Violante, Nicola; Azzarito, Tommaso; Majorani, Costanza; Brambilla, Daria; Fais, Stefano

    2014-01-01

    Intrinsic resistance to cytotoxic drugs has been a main issue in cancer therapy for decades. Microenvironmental acidity is a simple while highly efficient mechanism of chemoresistance, exploited through impairment of drug delivery. The latter is achieved by extracellular protonation and/or sequestration into acidic vesicles. This study investigates the importance of extracellular acidosis and nanovesicle (exosome) release in the resistance of human tumour cell to cisplatin (CisPt); in parallel to proton pump inhibitors (PPI) ability of interfering with these tumour cell features. The results showed that CisPt uptake by human tumour cells was markedly impaired by low pH conditions. Moreover, exosomes purified from supernatants of these cell cultures contained various amounts of CisPt, which correlated to the pH conditions of the culture medium. HPLC-Q-ICP-MS analysis revealed that exosome purified from tumour cell culture supernatants contained CisPt in its native form. PPI pre-treatment increased cellular uptake of CisPt, as compared to untreated cells, in an acidic-depend manner. Furthermore, it induced a clear inhibition of exosome release by tumour cells. Human tumours obtained from xenografts pretreated with PPI contained more CisPt as compared to tumours from xenografts treated with CisPt alone. Further analysis showed that in vivo PPI treatment induced a clear reduction in the plasmatic levels of tumour-derived exosomes which also contained lower level of CisPt. Altogether, these findings point to the identification of a double mechanism that human malignant melanoma use in resisting to a dreadful cellular poison such as cisplatin. This framework of resistance includes both low pH-dependent extracellular sequestration and an exosome-mediated elimination. Both mechanisms are markedly impaired by proton pump inhibition, leading to an increased CisPt-dependent cytotoxicity.

  6. What Does Melanoma Look Like?

    Science.gov (United States)

    ... begins in melanocytes ( cells that make the pigment melanin ). Below are photos of melanoma that formed on ... Services Website Linking U.S. Department of Health and Human Services National Institutes of Health National Cancer Institute ...

  7. Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes in Advanced Melanoma Patients

    OpenAIRE

    Mélanie Saint-Jean; Anne-Chantal Knol; Christelle Volteau; Gaëlle Quéreux; Lucie Peuvrel; Anabelle Brocard; Marie-Christine Pandolfino; Soraya Saiagh; Jean-Michel Nguyen; Christophe Bedane; Nicole Basset-Seguin; Amir Khammari; Brigitte Dréno

    2018-01-01

    Immunotherapy for melanoma includes adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TILs). This monocenter retrospective study was undertaken to evaluate the efficacy and safety of this treatment of patients with advanced melanoma. All advanced melanoma patients treated with TILs using the same TIL expansion methodology and same treatment interleukin-2 (IL-2) regimen between 2009 and 2012 were included. After sterile intralesional excision of a cutaneous or subcutaneous ...

  8. CD147-targeting siRNA inhibits cell-matrix adhesion of human malignant melanoma cells by phosphorylating focal adhesion kinase.

    Science.gov (United States)

    Nishibaba, Rie; Higashi, Yuko; Su, Juan; Furukawa, Tatsuhiko; Kawai, Kazuhiro; Kanekura, Takuro

    2012-01-01

    CD147/basigin, highly expressed on the surface of malignant tumor cells including malignant melanoma (MM) cells, plays a critical role in the invasiveness and metastasis of MM. Metastasis is an orchestrated process comprised of multiple steps including adhesion and invasion. Integrin, a major adhesion molecule, co-localizes with CD147/basigin on the cell surface. Using the human MM cell line A375 that highly expresses CD147/basigin, we investigated whether CD147/basigin is involved in adhesion in association with integrin. CD147/basigin was knocked-down using siRNA targeting CD147 to elucidate the role of CD147/basigin. Cell adhesion was evaluated by adhesion assay on matrix-coated plates. The localization of integrin was inspected under a confocal microscope and the expression and phosphorylation of focal adhesion kinase (FAK), a downstream kinase of integrin, were examined by western blot analysis. Silencing of CD147/basigin in A375 cells by siRNA induced the phosphorylation of FAK at Y397. Integrin identified on the surface of parental cells was distributed in a speckled fashion in the cytoplasm of CD147 knockdown cells, resulting in morphological changes from a round to a polygonal shape with pseudopodial protrusions. Silencing of CD147/basigin in A375 cells clearly weakened their adhesiveness to collagen I and IV. Our results suggest that CD147/basigin regulates the adhesion of MM cells to extracellular matrices and of integrin β1 signaling via the phosphorylation of FAK. © 2011 Japanese Dermatological Association.

  9. Antitumor agent 25-epi Ritterostatin GN1N induces endoplasmic reticulum stress and autophagy mediated cell death in melanoma cells.

    Science.gov (United States)

    Riaz Ahmed, Kausar Begam; Kanduluru, Ananda Kumar; Feng, Li; Fuchs, Philip L; Huang, Peng

    2017-05-01

    Metastatic melanoma is the most aggressive of all skin cancers and is associated with poor prognosis owing to lack of effective treatments. 25-epi Ritterostatin GN1N is a novel antitumor agent with yet undefined mechanisms of action. We sought to delineate the antitumor mechanisms of 25-epi Ritterostatin GN1N in melanoma cells to determine the potential of this compound as a treatment for melanoma. Activation of the endoplasmic reticulum (ER) stress protein glucose-regulated protein 78 (GRP78) has been associated with increased melanoma progression, oncogenic signaling, drug resistance, and suppression of cell death. We found that 25-epi Ritterostatin GN1N induced cell death in melanoma cells at nanomolar concentrations, and this cell death was characterized by inhibition of GRP78 expression, increased expression of the ER stress marker CHOP, loss of mitochondrial membrane potential, and lipidation of the autophagy marker protein LC3B. Importantly, normal melanocytes exhibited limited sensitivity to 25-epi Ritterostatin GN1N. Subsequent in vivo results demonstrated that 25-epi Ritterostatin GN1N reduced melanoma growth in mouse tumor xenografts and did not affect body weight, suggesting minimal toxicity. In summary, our findings indicate that 25-epi Ritterostatin GN1N causes ER stress and massive autophagy, leading to collapse of mitochondrial membrane potential and cell death in melanoma cells, with minimal effects in normal melanocytes. Thus, 25-epi Ritterostatin GN1N is a promising anticancer agent that warrants further investigation.

  10. Blue light inhibits the growth of B16 melanoma cells

    International Nuclear Information System (INIS)

    Ohara, Masayuki; Katoh, Osamu; Watanabe, Hiromitsu

    2002-01-01

    Although a number of studies have been carried out to examine the biological effects of radiation and ultraviolet radiation (UV), little is known concerning the effects of visible light. In the present study, exposure of B16 melanoma cells to blue light (wavelength 470 nm, irradiance 5.7 mW/cm 2 ) from a light-emitting diode (LED) inhibited cell growth in proportion to the period of exposure, with no increase observed in the number of dead cells. The number of B16 melanoma colonies that formed after exposure to blue light for 20 min was only slightly less than that in non-exposed controls, but the colony size as assessed by the area covered by colonies and cell counts per colony were markedly decreased. The percentages of G0/G1 and G2/M phase cells were markedly increased, with a reduction in S phase cells as determined by flow cytometry after exposure to blue light. Furthermore, analysis of the incorporation of 5-bromo-2'-deoxyuridine (BrdU) into DNA also showed a reduction in the percentage of S phase cells after exposure. These results indicate that blue light exerts cytostatic effects, but not a cytocidal action, on B16 melanoma cells. (author)

  11. Blue light inhibits the growth of B16 melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, Masayuki; Katoh, Osamu; Watanabe, Hiromitsu [Hiroshima Univ. (Japan). Research Inst. for Radiation Biology and Medicine; Kawashima, Yuzo [Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima (Japan)

    2002-05-01

    Although a number of studies have been carried out to examine the biological effects of radiation and ultraviolet radiation (UV), little is known concerning the effects of visible light. In the present study, exposure of B16 melanoma cells to blue light (wavelength 470 nm, irradiance 5.7 mW/cm{sup 2}) from a light-emitting diode (LED) inhibited cell growth in proportion to the period of exposure, with no increase observed in the number of dead cells. The number of B16 melanoma colonies that formed after exposure to blue light for 20 min was only slightly less than that in non-exposed controls, but the colony size as assessed by the area covered by colonies and cell counts per colony were markedly decreased. The percentages of G0/G1 and G2/M phase cells were markedly increased, with a reduction in S phase cells as determined by flow cytometry after exposure to blue light. Furthermore, analysis of the incorporation of 5-bromo-2'-deoxyuridine (BrdU) into DNA also showed a reduction in the percentage of S phase cells after exposure. These results indicate that blue light exerts cytostatic effects, but not a cytocidal action, on B16 melanoma cells. (author)

  12. NKT cells act through third party bone marrow-derived cells to suppress NK cell activity in the liver and exacerbate hepatic melanoma metastases.

    Science.gov (United States)

    Sadegh, Leila; Chen, Peter W; Brown, Joseph R; Han, Zhiqiang; Niederkorn, Jerry Y

    2015-09-01

    Uveal melanoma (UM) is the most common intraocular tumor in adults and liver metastasis is the leading cause of death in UM patients. We have previously shown that NKT cell-deficient mice develop significantly fewer liver metastases from intraocular melanomas than do wild-type (WT) mice. Here, we examine the interplay between liver NKT cells and NK cells in resistance to liver metastases from intraocular melanomas. NKT cell-deficient CD1d(-/-) mice and WT C57BL/6 mice treated with anti-CD1d antibody developed significantly fewer liver metastases than WT mice following either intraocular or intrasplenic injection of B16LS9 melanoma cells. The increased number of metastases in WT mice was associated with reduced liver NK cytotoxicity and decreased production of IFN-γ. However, liver NK cell-mediated cytotoxic activity was identical in non-tumor bearing NKT cell-deficient mice and WT mice, indicating that liver metastases were crucial for the suppression of liver NK cells. Depressed liver NK cytotoxicity in WT mice was associated with production of IL-10 by bone marrow-derived liver cells that were neither Kupffer cells nor myeloid-derived suppressor cells and by increased IL-10 receptor expression on liver NK cells. IL-10(-/-) mice had significantly fewer liver metastases than WT mice, but were not significantly different from NKT cell-deficient mice. Thus, development of melanoma liver metastases is associated with upregulation of IL-10 in the liver and an elevated expression of IL-10 receptor on liver NK cells. This impairment of liver NK activity is NKT cell-dependent and only occurs in hosts with melanoma liver metastases. © 2015 UICC.

  13. Genetic and Genomic Characterization of 462 Melanoma Patient-Derived Xenografts, Tumor Biopsies, and Cell Lines

    Directory of Open Access Journals (Sweden)

    Bradley Garman

    2017-11-01

    Full Text Available Summary: Tumor-sequencing studies have revealed the widespread genetic diversity of melanoma. Sequencing of 108 genes previously implicated in melanomagenesis was performed on 462 patient-derived xenografts (PDXs, cell lines, and tumors to identify mutational and copy number aberrations. Samples came from 371 unique individuals: 263 were naive to treatment, and 108 were previously treated with targeted therapy (34, immunotherapy (54, or both (20. Models of all previously reported major melanoma subtypes (BRAF, NRAS, NF1, KIT, and WT/WT/WT were identified. Multiple minor melanoma subtypes were also recapitulated, including melanomas with multiple activating mutations in the MAPK-signaling pathway and chromatin-remodeling gene mutations. These well-characterized melanoma PDXs and cell lines can be used not only as reagents for a large array of biological studies but also as pre-clinical models to facilitate drug development. : Garman et al. have characterized melanoma PDXs and cell lines described in Krepler et al. (see the related paper in this issue of Cell Reports, identifying major and minor subtypes, some of which were previously not well defined, targeted and immunotherapy resistance, and tumor heterogeneity, creating a set of reagents for future drug discovery and biological studies. Keywords: melanoma, patient-derived xenografts, massively parallel sequencing, cell lines

  14. Effect of dabrafenib on melanoma cell lines harbouring the BRAFV600D/R mutations

    Directory of Open Access Journals (Sweden)

    Gentilcore Giusy

    2013-01-01

    Full Text Available Abstract Background Conventional therapeutic agents are largely unsatisfactory into the treatment of malignant melanoma. Recently, an innovative approach based on inhibitors of the mutated BRAF gene (which represents the most prevalent alteration in melanoma patients appears very promising from the clinical point of view. On this regard, a new compound, dabrafenib (GSK2118436, has been demonstrated to be effective in patients carrying the BRAFV600E/K mutations. We here tested dabrafenib for its capability to inhibit cell growth on primary melanoma cell lines, established from patients' tumour tissues and carrying the BRAFV600D/R mutations. Methods Three melanoma cell lines were tested: M257 wild-type BRAF, LCP BRAFV600R and WM266 BRAFV600D. The MTT assays were performed using standardized approaches. To evaluate the inhibition of MAPK pathway and the consequent inhibition of cellular proliferation, the phosphorylation of ERK was examined by Western Blot analysis performed on total protein extracts from cell lines after treatment with dabrafenib. Results Our experiments demonstrated an effective action of Dabrafenib (GSK2118436 and the inhibition of MAPK pathway in melanoma cell lines carrying BRAFV600D/R mutations. Conclusion These results could be helpful to enlarge the number of melanoma patients who may benefit of a more effective targeted treatment.

  15. Adherence of B16-F10 melanoma cells to elastin

    International Nuclear Information System (INIS)

    Zetter, B.R.; Netland, P.A.

    1986-01-01

    B16-F10 melanoma cells selectivity colonize lung tissue in vivo. The authors have previously shown that these cells adhere preferentially to lung tissue in vitro. To quantify the binding of B16-F10 cells to isolated components of lung tissue, the authors devised a dot-blot cell adhesion assay. Samples were absorbed to 4 mm dots of nylon based paper under non-denaturing conditions, blocked with albumin or hemoglobin, and incubated with radiolabelled cells for 30 min. at 4 0 C. 125 -I labelled B16-F10 cells demonstrated a dose dependent binding to mouse lung elastin. Autoradiography and scanning electron microscopy demonstrated that cells localized preferentially to the elastin dots. The melanoma cells bound more strongly to elastin relative to laminin, fibronectin, collagen types I and IV or heparan sulfate. Neither elastin-associated microfibrillar protein nor fragments of elastin produced by alkali or acid treatment demonstrated significant binding activity for these cells. The findings demonstrate that in addition to its unique mechanical properties that confer elasticity to tissues, elastin can also function as a cell adhesion molecule. The localization of elastin in the lung and its adhesive properties reported here suggest that elastin may facilitate the arrest and eventual colonization of circulating B16-F10 melanoma cells in the mouse lung

  16. The Angiotensin II Type 1 Receptor Antagonist Losartan Affects NHE1-Dependent Melanoma Cell Behavior

    Directory of Open Access Journals (Sweden)

    Daniel Navin Olschewski

    2018-03-01

    Full Text Available Background/Aims: The peptide hormone angiotensin II (ATII plays a prominent role in regulating vasoconstriction and blood pressure. Its primary target is the angiotensin II receptor type 1 (AT1, the stimulation of which induces an increase in cytosolic [Ca2+] and calmodulin activation. Ca2+-bound (activated calmodulin stimulates the activity of the Na+/ H+ exchanger isoform 1 (NHE1; and increased NHE1 activity is known to promote melanoma cell motility. The competitive AT1 receptor inhibitor losartan is often used to lower blood pressure in hypertensive patients. Since AT1 mediates ATII-stimulated NHE1 activity, we set out to investigate whether ATII and losartan have an impact on NHE1-dependent behavior of human melanoma (MV3 cells. Methods: ATII receptor expression was verified by PCR, F-actin was visualized using fluorescently labeled phalloidin, and cytosolic [Ca2+] and pH were determined ratiometrically using Fura-2 and BCECF, respectively. MV3 cell behavior was analyzed using migration, adhesion, invasion and proliferation assays. Results: MV3 cells express both AT1 and the angiotensin II receptor type 2 (AT2. Stimulation of MV3 cells with ATII increased NHE1 activity which could be counteracted by both losartan and the Ca2+/ calmodulin inhibitor ophiobolin-A. ATII stimulation induced a decrease in MV3 cell migration and a more spherical cell morphology accompanied by an increase in the density of F-actin. Independently of the presence of ATII, both NHE1 and migratory activity were reduced when AT1 was blocked by losartan. On the other hand, losartan clearly increased cell adhesion to, and the invasion of, a collagen type I substrate. The AT2 inhibitor PD123319 did not affect NHE1 activity, proliferation and migration, but increased adhesion and invasion. Conclusion: Losartan inhibits NHE1 activity and the migration of human melanoma cells. At the same time, losartan promotes MV3 cell adhesion and invasion. The therapeutic use of AT1

  17. Ethanol inhibits B16-BL6 melanoma metastasis and cell phenotypes associated with metastasis.

    Science.gov (United States)

    Kushiro, Kyoko; Núñez, Nomelí P

    2012-01-01

    Every year, approximately 68,000 new cases of malignant melanoma are diagnosed in the US. Ethanol consumption inhibits metastasis of melanoma in mice, but the mechanism is not well understood. C57BL/6J ob/+ mice, given either water or 20% ethanol, were injected intravenously with B16-BL6 melanoma cells to determine pulmonary metastasis. The effects of ethanol on cell phenotypes and markers of the epithelial-to-mesenchymal transition were determined in cell culture. In mice, ethanol consumption inhibited experimental pulmonary metastasis. This inhibition was associated with decreased body weight, and levels of systemic leptin, and insulin. In cell culture, ethanol inhibited B16-BL6 cell motility, invasion, and anchorage-independent growth. Additionally, ethanol reduced Snai1 expression and increased E-cadherin expression. Lastly, ethanol increased the expression of Kiss1 metastasis-suppressor and the metastasis suppressor Nm23/nucleoside diphosphate kinase. In both animal and in cell culture conditions, ethanol inhibited the metastatic ability of B16-BL6 melanoma cells.

  18. Technetium-99m-labeled Arg-Gly-Asp-conjugated alpha-melanocyte stimulating hormone hybrid peptides for human melanoma imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jianquan; Guo Haixun [College of Pharmacy, University of New Mexico, Albuquerque, NM 87131 (United States); Miao Yubin, E-mail: ymiao@salud.unm.ed [College of Pharmacy, University of New Mexico, Albuquerque, NM 87131 (United States); Cancer Research and Treatment Center, University of New Mexico, Albuquerque, NM 87131 (United States); Department of Dermatology, University of New Mexico, Albuquerque, NM 87131 (United States)

    2010-11-15

    Introduction: The purpose of this study was to examine whether {sup 99m}Tc-labeled Arg-Gly-Asp (RGD)-conjugated alpha-melanocyte stimulating hormone ({alpha}-MSH) hybrid peptide targeting both melanocortin-1 (MC1) and {alpha}{sub v{beta}3} integrin receptors was superior in melanoma targeting to {sup 99m}Tc-labeled {alpha}-MSH or RGD peptide targeting only the MC1 or {alpha}{sub v{beta}3} integrin receptor. Methods: RGD-Lys-(Arg{sup 11})CCMSH, RAD-Lys-(Arg{sup 11})CCMSH and RGD-Lys-(Arg{sup 11})CCMSHscramble were designed to target both MC1 and {alpha}{sub v{beta}3} integrin receptors, MC1 receptor only and {alpha}{sub v{beta}3} integrin receptor only, respectively. The MC1 or {alpha}{sub v{beta}3} integrin receptor binding affinities of three peptides were determined in M21 human melanoma cells. The melanoma targeting properties of {sup 99m}Tc-labeled RGD-Lys-(Arg{sup 11})CCMSH, RAD-Lys-(Arg{sup 11})CCMSH and RGD-Lys-(Arg{sup 11})CCMSHscramble were determined in M21 human melanoma-xenografted nude mice. Meanwhile, the melanoma uptake of {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSH was blocked with various non-radiolabeled peptides in M21 melanoma xenografts. Results: RGD-Lys-(Arg{sup 11})CCMSH displayed 2.0 and 403 nM binding affinities to both MC1 and {alpha}{sub v{beta}3} integrin receptors, whereas RAD-Lys-(Arg{sup 11})CCMSH or RGD-Lys-(Arg{sup 11})CCMSHscramble lost their {alpha}{sub v{beta}3} integrin receptor binding affinity by greater than 248-fold or MC1 receptor binding affinity by more than 100-fold, respectively. The melanoma uptake of {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSH was 2.49 and 2.24 times (P < .05) the melanoma uptakes of {sup 99m}Tc-RAD-Lys-(Arg{sup 11})CCMSH and {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSHscramble at 2 h post-injection, respectively. Either RGD or (Arg{sup 11})CCMSH peptide co-injection could block 42% and 57% of the tumor uptake of {sup 99m}Tc-RGD-Lys-(Arg{sup 11})CCMSH, whereas the coinjection of RGD+(Arg{sup 11})CCMSH peptide mixture

  19. Identification of melanoma cells: a method based in mean variance of signatures via spectral densities.

    Science.gov (United States)

    Guerra-Rosas, Esperanza; Álvarez-Borrego, Josué; Angulo-Molina, Aracely

    2017-04-01

    In this paper a new methodology to detect and differentiate melanoma cells from normal cells through 1D-signatures averaged variances calculated with a binary mask is presented. The sample images were obtained from histological sections of mice melanoma tumor of 4 [Formula: see text] in thickness and contrasted with normal cells. The results show that melanoma cells present a well-defined range of averaged variances values obtained from the signatures in the four conditions used.

  20. Studies on the uptake of para-boronophenylalanine in melanoma cells

    International Nuclear Information System (INIS)

    Papageorges, M.; Elstad, C.A.; Meadows, G.G.; Gavin, P.R.; Sande, R.D.; Bauer, W.F.

    1992-01-01

    Cell-associated boron levels adequate for neutron capture therapy (NCT) have been demonstrated in-vitro using cultured melanoma cells and in-vivo using xenografts in mice. Preliminary in-vivo studies performed by researchers at the College of Veterinary Medicine, Washington State University (WSU), using a spontaneous canine melanoma model, showed subtherapeutic tumor concentrations of para-boronophenylananine (p-BPA) in a large proportion of dogs. Possible explanations include poor solubility of p-BPA at physiological pH, physiological differences between transplanted and spontaneous tumors, and lack of metabolic incorporation at the cellular level. Reports of in-vitro p-BPA uptake studies are few and contradictory, and the kinetics of boron uptake at the average p-BOA blood concentration achieved in dogs (100 mg/L) is unknown. In-vitro and in-vivo experiments were designed to study boron loading in melanoma cells and to test the hypothesis that short-term tyrosine and phenylalanine deprivation can increase the uptake of p-BPA

  1. Growth inhibitory activity of Ankaferd hemostat on primary melanoma cells and cell lines

    Directory of Open Access Journals (Sweden)

    Seyhan Turk

    2017-02-01

    Full Text Available Objective: Ankaferd hemostat is the first topical hemostatic agent about the red blood cell–fibrinogen relations tested in the clinical trials. Ankaferd hemostat consists of standardized plant extracts including Alpinia officinarum, Glycyrrhiza glabra, Thymus vulgaris, Urtica dioica, and Vitis vinifera. The aim of this study was to determine the effect of Ankaferd hemostat on viability of melanoma cell lines. Methods: Dissimilar melanoma cell lines and primary cells were used in this study. These cells were treated with different concentrations of Ankaferd hemostat to assess the impact of different dosages of the drug. All cells treated with different concentrations were incubated for different time intervals. After the data had been obtained, one-tailed T-test was used to determine whether the Ankaferd hemostat would have any significant inhibitory impact on cell growth. Results: We demonstrated in this study that cells treated with Ankaferd hemostat showed a significant decrease in cell viability compared to control groups. The cells showed different resistances against Ankaferd hemostat which depended on the dosage applied and the time treated cells had been incubated. We also demonstrated an inverse relationship between the concentration of the drug and the incubation time on one hand and the viability of the cells on the other hand, that is, increasing the concentration of the drug and the incubation time had a negative impact on cell viability. Conclusion: The findings in our study contribute to our knowledge about the anticancer impact of Ankaferd hemostat on different melanoma cells.

  2. Monoclonal antibody OKM5 inhibits the in vitro binding of Plasmodium falciparum-infected erythrocytes to monocytes, endothelial, and C32 melanoma cells

    International Nuclear Information System (INIS)

    Barnwell, J.W.; Ockenhouse, C.F.; Knowles, D.M. II

    1985-01-01

    Plasmodium falciparum-infected erythrocytes bind in vitro to human endothelial cells, monocytes, and a certain melanoma cell line. Evidence suggests that this interaction is mediated by similar mechanisms which lead to the sequestration of parasitized erythrocytes in vivo through their attachment to endothelial cells of small blood vessels. They show here the monoclonal antibody OKM5, previously shown to react with the membranes of endothelial cells, monocyte,s and platelets, also reacts with the C32 melanoma cell line which also binds P. falciparum-infected erythrocytes. At relatively low concentrations, OKM5 inhibits and reverses the in vitro adherence of infected erythrocytes to target cells. As with monocytes, OKM5 antibody recognizes an 125 I-labeled protein of approximately 88 Kd on the surface of C32 melanoma cells. It seems likely, therefore, that the 88 Kd polypeptide plays a role in cytoadherence, possibly as the receptor or part of a receptor for a ligand on the surface of infected erythrocytes

  3. Effects of Tyrosine Kinase inhibitor Imatinib (Glivec) on PDGFR-positive primary and metastatic melanoma cells

    International Nuclear Information System (INIS)

    Straface, E.; Gambardella, L.; Vona, R.

    2009-01-01

    In summary these preliminary results indicate that Imatinib is able to induce apoptosis in metastatic cells and to sensitize these cells to pro-apoptotic agents commonly used in melanoma therapy, e.g. radiation or Cisplatin. Conversely, primary melanoma cells seem to be intrinsically resistant either to Imatinib given alone or in combination with Cisplatin or radiation. By contrast, these cells underwent autophagy and replicative senescence boostering their survival. Interestingly, the use of Imatinib in combination with anti-CD95/Fas antibodies sensitizes primary melanoma cells to apoptosis

  4. Eradication of melanoma in vitro and in vivo via targeting with a Killer-Red-containing telomerase-dependent adenovirus.

    Science.gov (United States)

    Takehara, Kiyoto; Yano, Shuya; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Narii, Nobuhiro; Mizuguchi, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M

    2017-08-18

    Melanoma is a highly recalcitrant cancer and transformative therapy is necessary for the cure of this disease. We recently developed a telomerase-dependent adenovirus containing the fluorescent protein Killer-Red. In the present report, we first determined the efficacy of Killer-Red adenovirus combined with laser irradiation on human melanoma cell lines in vitro. Cell viability of human melanoma cells was reduced in a dose-dependent and irradiation-time-dependent manner. We used an intradermal xenografted melanoma model in nude mice to determine efficacy of the Killer-Red adenovirus. Intratumoral injection of Killer-Red adenovirus, combined with laser irradiation, eradicated the melanoma indicating the potential of a new paradigm of cancer therapy.

  5. The occurrence of non-melanoma malignant skin lesions and non-cutaneous squamous-cell carcinoma among metastatic melanoma patients: an observational cohort study in Denmark.

    Science.gov (United States)

    Li, Haojie; Pedersen, Lars; Nørgaard, Mette; Ulrichsen, Sinna P; Thygesen, Sandra K; Nelson, Jeanenne J

    2016-05-03

    Inhibitors of mutant BRAF are emerging as standard of care in patients with metastatic melanoma who carry relevant oncogenic mutations. However, BRAF inhibitors are found to induce cutaneous squamous cell carcinoma (cuSCC). Population-based background rates of cuSCC and non-cutaneous squamous cell carcinoma (non-cuSCC) in the metastatic melanoma population may contextualize safety signals from randomized clinical trials or the clinics. However, these background rates are lacking. We conducted a historical cohort study to evaluate the background rates of new-onset non-melanoma skin lesions and non-cuSCC among 2,814 metastatic malignant melanoma patients diagnosed in 1997-2010, identified through the Danish Cancer Registry and the National Pathology Registry. Patients were excluded if they had a history of cancer before the metastatic melanoma diagnosis, other than skin cancers. We determined the incidence of non-melanoma malignant skin lesions and non-cuSCC that occurred post metastatic melanoma diagnosis, censoring patients at death, emigration, or December 31, 2011 (end of study period), whichever came first. The median age at metastatic melanoma diagnosis was 64 years. Over 40% of patients died within one year of metastatic diagnosis and ~70% died within 5 years. The percentages of patients with prior history or prevalent disease at metastatic melanoma diagnosis included: 8.6% with cuSCC or basal cell carcinoma (BCC), 3.9% with actinic keratosis (AK), and 0.7% with Bowen's disease. No patients had past or current non-cuSCC per study exclusion criterion. The incidence of non-melanoma skin lesions during the 6 months post-metastatic melanoma diagnosis was as follows: BCC, 1.8% (42.5 per 1000 person-years [PY]); AK, 0.8% (18.6 per 1000 PY); cuSCC, 0.1% (1.7 per 1000 PY); Bowen's disease, 0.04% (0.8 per 1000 PY); and keratoacanthoma (KA), 0%. Non-cuSCC was observed in 3 patients (0.1%; 2.5 per 1000 PY) at 3 sites: bronchi, heart and lung. CuSCC and non-cuSCC were

  6. The occurrence of non-melanoma malignant skin lesions and non-cutaneous squamous-cell carcinoma among metastatic melanoma patients: an observational cohort study in Denmark

    International Nuclear Information System (INIS)

    Li, Haojie; Pedersen, Lars; Nørgaard, Mette; Ulrichsen, Sinna P.; Thygesen, Sandra K.; Nelson, Jeanenne J.

    2016-01-01

    Inhibitors of mutant BRAF are emerging as standard of care in patients with metastatic melanoma who carry relevant oncogenic mutations. However, BRAF inhibitors are found to induce cutaneous squamous cell carcinoma (cuSCC). Population-based background rates of cuSCC and non-cutaneous squamous cell carcinoma (non-cuSCC) in the metastatic melanoma population may contextualize safety signals from randomized clinical trials or the clinics. However, these background rates are lacking. We conducted a historical cohort study to evaluate the background rates of new-onset non-melanoma skin lesions and non-cuSCC among 2,814 metastatic malignant melanoma patients diagnosed in 1997–2010, identified through the Danish Cancer Registry and the National Pathology Registry. Patients were excluded if they had a history of cancer before the metastatic melanoma diagnosis, other than skin cancers. We determined the incidence of non-melanoma malignant skin lesions and non-cuSCC that occurred post metastatic melanoma diagnosis, censoring patients at death, emigration, or December 31, 2011 (end of study period), whichever came first. The median age at metastatic melanoma diagnosis was 64 years. Over 40 % of patients died within one year of metastatic diagnosis and ~70 % died within 5 years. The percentages of patients with prior history or prevalent disease at metastatic melanoma diagnosis included: 8.6 % with cuSCC or basal cell carcinoma (BCC), 3.9 % with actinic keratosis (AK), and 0.7 % with Bowen’s disease. No patients had past or current non-cuSCC per study exclusion criterion. The incidence of non-melanoma skin lesions during the 6 months post-metastatic melanoma diagnosis was as follows: BCC, 1.8 % (42.5 per 1000 person-years [PY]); AK, 0.8 % (18.6 per 1000 PY); cuSCC, 0.1 % (1.7 per 1000 PY); Bowen’s disease, 0.04 % (0.8 per 1000 PY); and keratoacanthoma (KA), 0 %. Non-cuSCC was observed in 3 patients (0.1 %; 2.5 per 1000 PY) at 3 sites: bronchi, heart and lung. CuSCC and

  7. Odontogenic ameloblast-associated protein (ODAM) inhibits growth and migration of human melanoma cells and elicits PTEN elevation and inactivation of PI3K/AKT signaling

    International Nuclear Information System (INIS)

    Foster, James S; Fish, Lindsay M; Phipps, Jonathan E; Bruker, Charles T; Lewis, James M; Bell, John L; Solomon, Alan; Kestler, Daniel P

    2013-01-01

    The Odontogenic Ameloblast-associated Protein (ODAM) is expressed in a wide range of normal epithelial, and neoplastic tissues, and we have posited that ODAM serves as a novel prognostic biomarker for breast cancer and melanoma. Transfection of ODAM into breast cancer cells yields suppression of cellular growth, motility, and in vivo tumorigenicity. Herein we have extended these studies to the effects of ODAM on cultured melanoma cell lines. The A375 and C8161 melanoma cell lines were stably transfected with ODAM and assayed for properties associated with tumorigenicity including cell growth, motility, and extracellular matrix adhesion. In addition, ODAM–transfected cells were assayed for signal transduction via AKT which promotes cell proliferation and survival in many neoplasms. ODAM expression in A375 and C8161 cells strongly inhibited cell growth and motility in vitro, increased cell adhesion to extracellular matrix, and yielded significant cytoskeletal/morphologic rearrangement. Furthermore, AKT activity was downregulated by ODAM expression while an increase was noted in expression of the PTEN (phosphatase and tensin homolog on chromosome 10) tumor suppressor gene, an antagonist of AKT activation. Increased PTEN in ODAM-expressing cells was associated with increases in PTEN mRNA levels and de novo protein synthesis. Silencing of PTEN expression yielded recovery of AKT activity in ODAM-expressing melanoma cells. Similar PTEN elevation and inhibition of AKT by ODAM was observed in MDA-MB-231 breast cancer cells while ODAM expression had no effect in PTEN-deficient BT-549 breast cancer cells. The apparent anti-neoplastic effects of ODAM in cultured melanoma and breast cancer cells are associated with increased PTEN expression, and suppression of AKT activity. This association should serve to clarify the clinical import of ODAM expression and any role it may serve as an indicator of tumor behavior

  8. Detection of circulating tumor lysate-reactive CD4+ T cells in melanoma patients

    DEFF Research Database (Denmark)

    Ladekarl, Morten; Agger, Ralf; Fleischer, Charlotte C

    2004-01-01

    PURPOSE: We wanted to study whether an allogeneic melanoma lysate would be a feasible stimulatory antigen source for detection of a peripheral CD4+ T-cell immune response in patients with medically untreated malignant melanoma. The lysate was produced from a melanoma cell line (FM3.29) which...... was found in 1 of 4 patients radically operated for localized disease, whereas no responders were seen among 7 healthy donors. The fraction of circulating lysate-activated T cells ranged from 0.0037% to 0.080% of the CD4+ population. A negative result of the assay was found occasionally, especially...... expresses high amounts of melanoma antigens. METHODS: Fresh peripheral blood was incubated with and without lysate for 6 h in the presence of anti-CD28/anti-CD49d MoAb (for costimulation). After flow cytometric estimation of the frequency of CD69+/IFN-gamma+ cells in the CD4+ population, the response...

  9. Germ Cell Proteins in Melanoma: Prognosis, Diagnosis, Treatment, and Theories on Expression

    International Nuclear Information System (INIS)

    Rosa, A. M.; Dabas, N.; Byrnes, D. M.; Eller, M. S.; Grichnik, J. M.; Grichnik, J M.; Grichnik, J M.

    2012-01-01

    Germ cell protein expression in melanoma has been shown to correlate with malignancy, severity of disease and to serve as an immunologic target for therapy. However, very little is known about the role that germ cell proteins play in cancer development. Unique germ cell pathways include those involved in immortalization, genetic evolution, and energy metabolism. There is an ever increasing recognition that within tumors there is a subpopulation of cells with stem-cell-like characteristics that play a role in driving tumor genesis. Stem cell and germ cell biology is intertwined. Given the enormous potential and known expression of germ cell proteins in melanoma, it is possible that they represent a largely untapped resource that may play a fundamental role in tumor development and progression. The purpose of this paper is to provide an update on the current value of germ cell protein expression in melanoma diagnosis, prognosis, and therapy, as well as to review critical germ cell pathways and discuss the potential roles these pathways may play in malignant transformation

  10. Quantification of B16 Melanoma Cells in Lungs Using Triplex Q-PCR - A New Approach to Evaluate Melanoma Cell Metastasis and Tumor Control

    DEFF Research Database (Denmark)

    Sorensen, Maria R; Pedersen, Sara R; Lindkvist, Annika

    2014-01-01

    of survival once the tumor has metastasized. In the present study, we have developed a new assay for quantitative analysis of B16 melanoma metastasis in the lungs. We have used a triplex Q-PCR to determine the expression of the melanoma genes GP100/Pmel and tyrosinase-related protein 2 (TRP-2), and found...... that B16.F10gp cells were detectable in the lungs as early as 2 hours after intravenous challenge with ≥10(4) tumor cells. When investigating the gene expression as a function of time, we observed a gradual decrease from 2-24 hours post tumor challenge followed by an increase of approximately 2 log10...... the outgrowth of subcutaneous melanomas. Results obtained using Q-PCR were compared to conventional counting of metastatic foci under a dissection microscope. A marked reduction in gene expression was observed in the lungs after vaccination with both vectors; however, Ad-Ii-GP showed the highest protection...

  11. CD147 silencing inhibits tumor growth by suppressing glucose transport in melanoma.

    Science.gov (United States)

    Su, Juan; Gao, Tianyuan; Jiang, Minghao; Wu, Lisha; Zeng, Weiqi; Zhao, Shuang; Peng, Cong; Chen, Xiang

    2016-10-04

    Melanoma is a very malignant disease and there are still no effective treatments. CD147 participates in the carcinogenesis of multiple human cancers and GLUT-1, as a glucose transporter, is associated with tumor growth. However, the function of CD147 and GLUT-1 in melanoma have not been completely understood. Thus, in this study we investigated the expression of CD147 and GLUT-1 in melanoma tissue, which were overexpressed compared with that in nevus tissue. In addition, CD147 and GLUT-1 were co-localized in the cytoplasm of human melanoma A375 cells. Immunoprecipitation proved that CD147 interacted with GLUT-1 at D105-199. Silencing CD147 by specific siRNA could downregulate GLUT-1 level via inhibiting PI3K/Akt signaling and decrease glucose uptake in A375 cells. In vivo experiments also supported that CD147 knockdown suppressed the tumor growth in melanoma subcutaneous mice model, observed by micro PET/CT. Our results could help validate CD147 as a new therapeutic target for treating melanoma.

  12. Micronucleus formation compared to the survival rate of human melanoma cells after X-ray and neutron irradiation and hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    van Beuningen, D.; Streffer, C.; Bertholdt, G.

    1981-09-01

    After neutron and X-ray irradiation and combined X-ray irradiation and hyperthermia (3 hours, 42/sup 0/C), the survival rate of human melanoma cells was measured by means of the colony formation test and compared to the formation of micronuclei. Neutrons had a stronger effect on the formation of micronuclei than the combination of X-rays and hyperthermia. X-rays had the lowest effect. The dose effect curve showed a break at that dose level at which a reduction of cells was observed in the cultures. A good relation between survival rate and formation of micronuclei was found for the X-ray irradiation, but not for the neutron irradiation and the combined treatment. These observations are discussed. At least for X-rays, the micronucleus test has turned out to be a good screening method for the radiosensitivity of a biologic system.

  13. Autologous cytokine-induced killer cell immunotherapy may improve overall survival in advanced malignant melanoma patients.

    Science.gov (United States)

    Zhang, Yong; Zhu, Yu'nan; Zhao, Erjiang; He, Xiaolei; Zhao, Lingdi; Wang, Zibing; Fu, Xiaomin; Qi, Yalong; Ma, Baozhen; Song, Yongping; Gao, Quanli

    2017-11-01

    Our study was conducted to explore the efficacy of autologous cytokine-induced killer (CIK) cells in patients with advanced malignant melanoma. Materials & Methods: Here we reviewed 113 stage IV malignant melanoma patients among which 68 patients received CIK cell immunotherapy alone, while 45 patients accepted CIK cell therapy combined with chemotherapy. Results: We found that the median survival time in CIK cell group was longer than the combined therapy group (21 vs 15 months, p = 0.07). In addition, serum hemoglobin level as well as monocyte proportion and lymphocyte count were associated with patients' survival time. These indicated that CIK cell immunotherapy might extend survival time in advanced malignant melanoma patients. Furthermore, serum hemoglobin level, monocyte proportion and lymphocyte count could be prognostic indicators for melanoma.

  14. Uveal melanoma: Estimating prognosis

    Directory of Open Access Journals (Sweden)

    Swathi Kaliki

    2015-01-01

    Full Text Available Uveal melanoma is the most common primary malignant tumor of the eye in adults, predominantly found in Caucasians. Local tumor control of uveal melanoma is excellent, yet this malignancy is associated with relatively high mortality secondary to metastasis. Various clinical, histopathological, cytogenetic features and gene expression features help in estimating the prognosis of uveal melanoma. The clinical features associated with poor prognosis in patients with uveal melanoma include older age at presentation, male gender, larger tumor basal diameter and thickness, ciliary body location, diffuse tumor configuration, association with ocular/oculodermal melanocytosis, extraocular tumor extension, and advanced tumor staging by American Joint Committee on Cancer classification. Histopathological features suggestive of poor prognosis include epithelioid cell type, high mitotic activity, higher values of mean diameter of ten largest nucleoli, higher microvascular density, extravascular matrix patterns, tumor-infiltrating lymphocytes, tumor-infiltrating macrophages, higher expression of insulin-like growth factor-1 receptor, and higher expression of human leukocyte antigen Class I and II. Monosomy 3, 1p loss, 6q loss, and 8q and those classified as Class II by gene expression are predictive of poor prognosis of uveal melanoma. In this review, we discuss the prognostic factors of uveal melanoma. A database search was performed on PubMed, using the terms "uvea," "iris," "ciliary body," "choroid," "melanoma," "uveal melanoma" and "prognosis," "metastasis," "genetic testing," "gene expression profiling." Relevant English language articles were extracted, reviewed, and referenced appropriately.

  15. Melanoma cells revive an embryonic transcriptional network to dictate phenotypic heterogeneity.

    Science.gov (United States)

    Vandamme, Niels; Berx, Geert

    2014-01-01

    Compared to the overwhelming amount of literature describing how epithelial-to-mesenchymal transition (EMT)-inducing transcription factors orchestrate cellular plasticity in embryogenesis and epithelial cells, the functions of these factors in non-epithelial contexts, such as melanoma, are less clear. Melanoma is an aggressive tumor arising from melanocytes, endowed with unique features of cellular plasticity. The reversible phenotype-switching between differentiated and invasive phenotypes is increasingly appreciated as a mechanism accounting for heterogeneity in melanoma and is driven by oncogenic signaling and environmental cues. This phenotypic switch is coupled with an intriguing and somewhat counterintuitive signaling switch of EMT-inducing transcription factors. In contrast to carcinomas, different EMT-inducing transcription factors have antagonizing effects in melanoma. Balancing between these different EMT transcription factors is likely the key to successful metastatic spread of melanoma.

  16. A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections.

    Directory of Open Access Journals (Sweden)

    Elton Rexhepaj

    Full Text Available AIMS: Immunohistochemistry is a routine practice in clinical cancer diagnostics and also an established technology for tissue-based research regarding biomarker discovery efforts. Tedious manual assessment of immunohistochemically stained tissue needs to be fully automated to take full advantage of the potential for high throughput analyses enabled by tissue microarrays and digital pathology. Such automated tools also need to be reproducible for different experimental conditions and biomarker targets. In this study we present a novel supervised melanoma specific pattern recognition approach that is fully automated and quantitative. METHODS AND RESULTS: Melanoma samples were immunostained for the melanocyte specific target, Melan-A. Images representing immunostained melanoma tissue were then digitally processed to segment regions of interest, highlighting Melan-A positive and negative areas. Color deconvolution was applied to each region of interest to separate the channel containing the immunohistochemistry signal from the hematoxylin counterstaining channel. A support vector machine melanoma classification model was learned from a discovery melanoma patient cohort (n = 264 and subsequently validated on an independent cohort of melanoma patient tissue sample images (n = 157. CONCLUSION: Here we propose a novel method that takes advantage of utilizing an immuhistochemical marker highlighting melanocytes to fully automate the learning of a general melanoma cell classification model. The presented method can be applied on any protein of interest and thus provides a tool for quantification of immunohistochemistry-based protein expression in melanoma.

  17. A new O6-alkylguanine-DNA alkyltransferase inhibitor associated with a nitrosourea (cystemustine) validates a strategy of melanoma-targeted therapy in murine B16 and human-resistant M4Beu melanoma xenograft models.

    Science.gov (United States)

    Rapp, Maryse; Maurizis, Jean C; Papon, Janine; Labarre, Pierre; Wu, Ting-Di; Croisy, Alain; Guerquin-Kern, Jean L; Madelmont, Jean C; Mounetou, Emmanuelle

    2008-07-01

    Chemoresistance to O(6)-alkylating agents is a major barrier to successful treatment of melanoma. It is mainly due to a DNA repair suicide protein, O(6)-alkylguanine-DNA alkyltransferase (AGT). Although AGT inactivation is a powerful clinical strategy for restoring tumor chemosensitivity, it was limited by increased toxicity to nontumoral cells resulting from a lack of tumor selectivity. Achieving enhanced chemosensitization via AGT inhibition preferably in the tumor should protect normal tissue. To this end, we have developed a strategy to target AGT inhibitors. In this study, we tested a new potential melanoma-directed AGT inhibitor [2-amino-6-(4-iodobenzyloxy)-9-[4-(diethylamino) ethylcarbamoylbenzyl] purine; IBgBZ] designed as a conjugate of O(6)-(4-iododbenzyl)guanine (IBg) as the AGT inactivator and a N,N-diethylaminoethylenebenzamido (BZ) moiety as the carrier to the malignant melanocytes. IBgBZ demonstrated AGT inactivation ability and potentiation of O(6)-alkylating agents (cystemustine, a chloroethylnitrosourea) in M4Beu highly chemoresistant human melanoma cells both in vitro and in tumor models. The biodisposition study on mice bearing B16 melanoma, the standard model for the evaluation of melanoma-directed agents, and the secondary ion mass spectrometry imaging confirmed the concentration of IBgBZ in the tumor and in particular in the intracytoplasmic melanosomes. These results validate the potential of IBgBZ as a new, more tumor-selective, AGT inhibitor in a strategy of melanoma-targeted therapy.

  18. Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model

    DEFF Research Database (Denmark)

    Jespersen, Henrik; Lindberg, Mattias F; Donia, Marco

    2017-01-01

    Immune checkpoint inhibitors and adoptive cell transfer (ACT) of autologous tumor-infiltrating T cells have shown durable responses in patients with melanoma. To study ACT and immunotherapies in a humanized model, we have developed PDXv2.0 - a melanoma PDX model where tumor cells and tumor...

  19. Inhibition of human melanoma cell growth by dietary flavonoid fisetin is associated with disruption of Wnt/β-catenin signaling and decreased Mitf levels

    Science.gov (United States)

    Syed, Deeba N.; Afaq, Farrukh; Maddodi, Nityanand; Johnson, Jeremy J.; Sarfaraz, Sami; Ahmad, Adeel; Setaluri, Vijayasaradhi; Mukhtar, Hasan

    2011-01-01

    The prognosis of advanced melanoma remains poor in spite of treatment advances, emphasizing the importance of additional preventive measures. Flavonoids, natural components of our diet are being investigated for their chemopreventive/therapeutic properties. Microphthalmia-associated transcription factor (Mitf), downstream of Wnt/β-catenin pathway has become an important prognostic marker of melanoma. Here, we show that treatment of 451Lu melanoma cells with the dietary flavonoid fisetin resulted in decreased cell viability with G1-phase arrest and disruption of Wnt/β-catenin signaling. This was accompanied with a decrease in expression of Wnt protein and its co-receptors and a parallel increase in the expression of endogenous Wnt inhibitors. Fisetin-treated cells showed increased cytosolic levels of Axin and β-TrCP and decreased phosphorylation of GSK3-β assocaited with decreased β-catenin stabilization. Fisetin-mediated interference with the functional cooperation between β-catenin and LEF/TCF-2 resulted in downregulation of positively regulated TCF targets such as c-myc, Brn-2 and Mitf. Flowcytometric analysis of Mitf overexpressing cells showed that fisetin repressed Mitf-induced cell proliferation. Finally, administration of fisetin to 451Lu xenografted nude mice resulted in inhibition of tumor development and decreased Mitf expression. Our data suggest that fisetin can be developed as an effective agent against melanoma due to its potential inhibitory effect on β-catenin/Mitf signaling. PMID:21346776

  20. Fisetin, a phytochemical, potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells.

    Science.gov (United States)

    Pal, Harish Chandra; Baxter, Ronald D; Hunt, Katherine M; Agarwal, Jyoti; Elmets, Craig A; Athar, Mohammad; Afaq, Farrukh

    2015-09-29

    Melanoma is the most deadly form of cutaneous malignancy, and its incidence rates are rising worldwide. In melanoma, constitutive activation of the BRAF/MEK/ERK (MAPK) and PI3K/AKT/mTOR (PI3K) signaling pathways plays a pivotal role in cell proliferation, survival and tumorigenesis. A combination of compounds that lead to an optimal blockade of these critical signaling pathways may provide an effective strategy for prevention and treatment of melanoma. The phytochemical fisetin is known to possess anti-proliferative and pro-apoptotic activities. We found that fisetin treatment inhibited PI3K signaling pathway in melanoma cells. Therefore, we investigated the effect of fisetin and sorafenib (an RAF inhibitor) alone and in combination on cell proliferation, apoptosis and tumor growth. Combination treatment (fisetin + sorafenib) more effectively reduced the growth of BRAF-mutated human melanoma cells at lower doses when compared to individual agents. In addition, combination treatment resulted in enhanced (i) apoptosis, (ii) cleavage of caspase-3 and PARP, (iii) expression of Bax and Bak, (iv) inhibition of Bcl2 and Mcl-1, and (v) inhibition of expression of PI3K, phosphorylation of MEK1/2, ERK1/2, AKT and mTOR. In athymic nude mice subcutaneously implanted with melanoma cells (A375 and SK-MEL-28), we found that combination therapy resulted in greater reduction of tumor growth when compared to individual agents. Furthermore, combination therapy was more effective than monotherapy in: (i) inhibition of proliferation and angiogenesis, (ii) induction of apoptosis, and (iii) inhibition of the MAPK and PI3K pathways in xenograft tumors. These data suggest that simultaneous inhibition of both these signaling pathways using combination of fisetin and sorafenib may serve as a therapeutic option for the management of melanoma.

  1. The induction, characterization and reversibility of a dormant state of Murine Melanoma cells

    International Nuclear Information System (INIS)

    Theron, E.J.

    1983-11-01

    One of the most neglected areas of tumour biology is the enigmatic process of tumour cell dormancy, whereby transformed cells survive within the hosts body for extended periods in a clinically undetected state. A tissue culture system has been developed whereby aggressive, fast growing, malignant mouse melanoma cells can be manipulated to become dormant. Dormancy was characterized by an inhibition of cell growth and was induced by conditioned media from benign rat hepatoma cells. After two weeks of dormancy, melanoma cells could be aroused to grow rapidly exposure to fresh medium. After 30 days of dormancy the melanoma cells could not be aroused with fresh medium but could resume growth after removal from plastic with trypsin. These cells showed no growth and morphological characteristics, i.e. low saturation density and fibroblast-like, parallel morphology. These characteristics persisted after subsequent sub-culturing and the cells were consequently regarded as a new line and designated F10-BL6-LTD. Conditioned media from F10-BL6-LTD cells could also induce F10-BL6 control melanoma cells to become dormant, even after extensive dialysis against fresh medium. Dormant melanoma cells could survive for extended periods in tissue culture media which had become totally depleted of glucose and contaminated with lactate. The capacity of F10-BL6-LTD conditioned medium to induce dormancy was significantly reduced by ultracentrifugation for longer than one hour at 40 000 r.p.m. Analyses of proteins sedimented at different times and labelled with 35 S-methionine, using SDS-polyacrylamide gel electro phoresis, revealed a polypeptide of 33 000 daltons that may be involved in the induction of dormancy. This model system may be useful in elucidating the induction and characteristics of dormant cells

  2. Differential effects of vascular endothelial growth factor A isoforms in a mouse brain metastasis model of human melanoma.

    NARCIS (Netherlands)

    Kusters, B.; Waal, R.M.W. de; Wesseling, P.; Verrijp, K.; Maass, C.N.; Heerschap, A.; Barentsz, J.O.; Sweep, C.G.J.; Ruiter, D.J.; Leenders, W.P.J.

    2003-01-01

    We reported previously that vascular endothelial growth factor isoform A (VEGF-A) expression by Mel57 human melanoma cells led to tumor progression in a murine brain metastasis model in an angiogenesis-independent fashion by dilation of co-opted, pre-existing vessels and concomitant enhanced blood

  3. Antiproliferative effects of Plumbago rosea and its purified constituent plumbagin on SK-MEL 28 melanoma cell lines.

    Science.gov (United States)

    Anuf, Alexander Ronaldo; Ramachandran, Rajesh; Krishnasamy, Rajaram; Gandhi, P S Sudhakar; Periyasamy, Sureshkumar

    2014-10-01

    Plumbago rosea is used in traditional systems of medicine for the preparation of formulations used for treating inflammations, cough, bronchitis, and gastrointestinal disorders, and also in conjunction with cancer chemotherapy. In the present study, the cytotoxic and anti-proliferative effects of plumbagin, and the ethanolic root extract of P. rosea (ETPR) was evaluated on SK-MEL 28 melanoma cell lines and human lymphocytes. MTT and apoptotic assays were used for the evaluation of cytotoxic and anti-proliferative effects, respectively. In addition, the effect of Plumbagin and ETPR in down regulation of BCL-2 expression is investigated using RT-PCR analysis. Both plumbagin and ETPR dose-dependently decreased the cell viability more potently in melanoma cell lines. P. rosea extract demonstrated significant synergy in inhibiting BCL-2 expression than plumbagin. Moreover plumbagin showed more toxicity in human lymphocytes. Plumbagin has anti-cancer potential, but the side effects limits its use; yet plumbagin, in combination with other ingredients in Plumbago rosea extract, displays significant synergy leading to a stronger anticancer effect with significantly less toxicity.

  4. Recombinant interleukin-24 lacks apoptosis-inducing properties in melanoma cells.

    Directory of Open Access Journals (Sweden)

    Stephanie Kreis

    Full Text Available IL-24, also known as melanoma differentiation antigen 7 (mda-7, is a member of the IL-10 family of cytokines and is mainly produced by Th(2 cells as well as by activated monocytes. Binding of IL-24 to either of its two possible heterodimeric receptors IL-20R1/IL-20R2 and IL-22R/IL-20R2 activates STAT3 and/or STAT1 in target tissues such as lung, testis, ovary, keratinocytes and skin. To date, the physiological properties of IL-24 are still not well understood but available data suggest that IL-24 affects epidermal functions by increasing proliferation of dermal cells. In stark contrast to its "normal" and physiological behaviour, IL-24 has been reported to selectively and efficiently kill a vast variety of cancer cells, especially melanoma cells, independent of receptor expression and Jak-STAT signalling. These intriguing properties have led to the development of adenovirally-expressed IL-24, which is currently being evaluated in clinical trials. Using three different methods, we have analysed a large panel of melanoma cell lines with respect to IL-24 and IL-24 receptor expression and found that none of the investigated cell lines expressed sufficient amounts of functional receptor pairs and therefore did not react to IL-24 stimulation with Jak/STAT activation. Results for three cell lines contrasted with previous studies, which reported presence of IL-24 receptors and activation of STAT3 following IL-24 stimulation. Furthermore, evaluating four different sources and modes of IL-24 administration (commercial recombinant IL-24, bacterially expressed GST-IL-24 fusion protein, IL-24 produced from transfected Hek cells, transiently over-expressed IL-24 no induction or increase in cell death was detected when compared to appropriate control treatments. Thus, we conclude that the cytokine IL-24 itself has no cancer-specific apoptosis-inducing properties in melanoma cells.

  5. Identification of DRG-1 As a Melanoma-Associated Antigen Recognized by CD4+ Th1 Cells.

    Directory of Open Access Journals (Sweden)

    Yukiko Kiniwa

    Full Text Available Immunotherapy has emerged as a promising strategy for the treatment of metastatic melanoma. Clinical studies have demonstrated the feasibility of cancer immunotherapy using tumor antigens recognized by CD8(+ T cells. However, the overall immune responses induced by these antigens are too weak and transient to induce tumor regression in the majority of patients who received immunization. A growing body of evidence suggests that CD4(+ T helper (Th cells play an important role in antitumor immunity. Therefore, the identification of MHC class II-restricted tumor antigens capable of stimulating CD4(+ T cells may provide opportunities for developing effective cancer vaccines. To this end, we describe the identification of developmentally regulated GTP-binding protein 1 (DRG-1 as a melanoma-associated antigen recognized by HLA-DR11-restricted CD4(+ Th1 cells. Epitope mapping analysis showed that the DRG1248-268 epitope of DRG-1 was required for T cell recognition. Reverse transcription-polymerase chain reaction revealed that DRG-1 was highly expressed in melanoma cell lines but not in normal tissues. DRG-1 knockdown by lentiviral-based shRNA suppressed melanoma cell proliferation and soft agar colony formation. Taken together, these data suggest that DRG-1 plays an important role in melanoma cell growth and transformation, indicating that DRG1 may represent a novel target for CD4(+ T cell-mediated immunotherapy in melanoma.

  6. Identification of DRG-1 As a Melanoma-Associated Antigen Recognized by CD4+ Th1 Cells.

    Science.gov (United States)

    Kiniwa, Yukiko; Li, Jiang; Wang, Mingjun; Sun, Chuang; Lee, Jeffrey E; Wang, Rong-Fu; Wang, Helen Y

    2015-01-01

    Immunotherapy has emerged as a promising strategy for the treatment of metastatic melanoma. Clinical studies have demonstrated the feasibility of cancer immunotherapy using tumor antigens recognized by CD8(+) T cells. However, the overall immune responses induced by these antigens are too weak and transient to induce tumor regression in the majority of patients who received immunization. A growing body of evidence suggests that CD4(+) T helper (Th) cells play an important role in antitumor immunity. Therefore, the identification of MHC class II-restricted tumor antigens capable of stimulating CD4(+) T cells may provide opportunities for developing effective cancer vaccines. To this end, we describe the identification of developmentally regulated GTP-binding protein 1 (DRG-1) as a melanoma-associated antigen recognized by HLA-DR11-restricted CD4(+) Th1 cells. Epitope mapping analysis showed that the DRG1248-268 epitope of DRG-1 was required for T cell recognition. Reverse transcription-polymerase chain reaction revealed that DRG-1 was highly expressed in melanoma cell lines but not in normal tissues. DRG-1 knockdown by lentiviral-based shRNA suppressed melanoma cell proliferation and soft agar colony formation. Taken together, these data suggest that DRG-1 plays an important role in melanoma cell growth and transformation, indicating that DRG1 may represent a novel target for CD4(+) T cell-mediated immunotherapy in melanoma.

  7. Ocular melanoma metastatic to skin: the value of HMB-45 staining.

    Science.gov (United States)

    Schwartz, Robert A; Kist, Joseph M; Thomas, Isabelle; Fernández, Geover; Cruz, Manuel A; Koziorynska, Ewa I; Lambert, W Clark

    2004-06-01

    Cutaneous metastatic disease is an important finding that may represent the first sign of systemic cancer, or, if already known, that may change tumor staging and thus dramatically altered therapeutic plans. Although cutaneous metastases are relatively frequent in patients with cutaneous melanoma, they are less so from ocular melanoma. To demonstrate the value of HMB-45, staining in the detection of ocular melanoma metastatic to skin. The immunohistochemical stain HMB-45 a monoclonal antibody directed against intact human melanoma cells, was employed on a skin biopsy specimen from a cutaneous tumor. HMB-45 staining was positive in the atypical hyperchromatic cells of the deep dermis. HMB-45 may be of value in the detection of ocular melanoma metastatic to skin. Cutaneous metastatic disease is a somewhat common and extremely important diagnosis. Although cutaneous metastases from cutaneous melanoma are relatively frequent, those from ocular melanomas are less so. Use of histochemical staining, especially the HMB-45 stain, allows confirmation of the diagnosis.

  8. Effects of fotemustine or dacarbasine on a melanoma cell line pretreated with therapeutic proton irradiation

    Directory of Open Access Journals (Sweden)

    Privitera Giuseppe

    2009-04-01

    Full Text Available Abstract Background Considering that HTB140 melanoma cells have shown a poor response to either protons or alkylating agents, the effects of a combined use of these agents have been analysed. Methods Cells were irradiated in the middle of the therapeutic 62 MeV proton spread out Bragg peak (SOBP. Irradiation doses were 12 or 16 Gy and are those frequently used in proton therapy. Four days after irradiation cells were treated with fotemustine (FM or dacarbazine (DTIC. Drug concentrations were 100 and 250 μM, values close to those that produce 50% of growth inhibition. Cell viability, proliferation, survival and cell cycle distribution were assessed 7 days after irradiation that corresponds to more than six doubling times of HTB140 cells. In this way incubation periods providing the best single effects of drugs (3 days and protons (7 days coincided at the same time. Results Single proton irradiations have reduced the number of cells to ~50%. FM caused stronger cell inactivation due to its high toxicity, while the effectiveness of DTIC, that was important at short term, almost vanished with the incubation of 7 days. Cellular mechanisms triggered by proton irradiation differently influenced the final effects of combined treatments. Combination of protons and FM did not improve cell inactivation level achieved by single treatments. A low efficiency of the single DTIC treatment was overcome when DTIC was introduced following proton irradiation, giving better inhibitory effects with respect to the single treatments. Most of the analysed cells were in G1/S phase, viable, active and able to replicate DNA. Conclusion The obtained results are the consequence of a high resistance of HTB140 melanoma cells to protons and/or drugs. The inactivation level of the HTB140 human melanoma cells after protons, FM or DTIC treatments was not enhanced by their combined application.

  9. Active immunotherapy with ultraviolet B-irradiated autologous whole melanoma cells plus DETOX in patients with metastatic melanoma.

    Science.gov (United States)

    Eton, O; Kharkevitch, D D; Gianan, M A; Ross, M I; Itoh, K; Pride, M W; Donawho, C; Buzaid, A C; Mansfield, P F; Lee, J E; Legha, S S; Plager, C; Papadopoulos, N E; Bedikian, A Y; Benjamin, R S; Balch, C M

    1998-03-01

    Our objective was to determine the clinical activity, toxicity, and immunological effects of active immunotherapy using UVB-irradiated (UVR) autologous tumor (AT) cells plus adjuvant DETOX in metastatic melanoma patients. Eligibility included nonanergic patients fully recovered after resection of 5 or more grams of metastatic melanoma. Treatment consisted of intradermal injections of 10(7) UVR-AT plus 0.25 ml of DETOX every 2 weeks x 6, then monthly. Peripheral blood mononuclear cells (PBMCs) were harvested for cytotoxicity assays, and skin testing was performed for delayed-type hypersensitivity (DTH) determinations before the first, fourth, seventh, and subsequent treatments. Forty-two patients were treated, 18 in the adjuvant setting and 24 with measurable disease. Among the latter group, there were two durable responses in soft-tissue sites and in a bone metastasis. Treatment was well tolerated. Thirty-five patients were assessable for immunological parameters; 10 of these patients, including the 2 responders, demonstrated early induction of PBMC cytotoxicity against AT cells that persisted up to 10 months on treatment before falling to background levels. In five of seven patients, the fall-off heralded progressive disease. Late induction of a weak DTH reaction to AT cells was observed in eight patients. Active immunotherapy with UVR-AT + DETOX had modest but definite clinical activity in advanced melanoma. The induction of both PBMC cytotoxicity and DTH reactivity to AT cells supported a specific systemic immune effect of treatment, although the former more closely followed disease course in this study.

  10. Gene transfer-applied BNCT (g-BNCT) for amelanotic melanoma in brain. Further upregulation of 10B uptake by cell modulation

    International Nuclear Information System (INIS)

    Iwakura, M.; Tamaki, N.; Hiratsuka, J.

    2000-01-01

    Our success in eradicating melanoma by single BNCT with BPA led to the next urgent theme, i.e. application of such BNCT for currently uncurable melanoma metastasis in brain. In order to establish 10 B-BPA-BNCT for melanoma in brain, we have investigated the pharmacokinetics of BPA which is most critical factor for successful BNCT, in melanotic and amelanotic and further tyrosinase gene-transfected amelanotic melanoma proliferating in brain having blood-brain-barrier, as compared to melanoma proliferating in skin. We have established three implanted models for melanoma in brain: 1) A1059 cells, amelanotic melanoma, 2) B16B15b cells, melanotic melanoma cells, highly metastatic to brain, and 3) TA1059 cells, with active melanogenesis induced by tyrosinase gene transfection. We would like to report the results of comparative analysis of the BPA uptake ability in these melanoma cells in both brain and skin. Based on these findings, we are further investigating to enhance 10 B-BPA uptake by not only g-BNCT but also by additional melanogenesis upregulating cell modulation. (author)

  11. [Effect of Spatholobus suberctus on adhesion, invasion, migration and metastasis of melanoma cells].

    Science.gov (United States)

    Xu, Jian-Ya; Gu, Qin; Xia, Wei-Jun

    2010-10-01

    To study the effect of Spatholobus suberctus, a kind of Chinese Traditional Medicine which can dissolve the stasis by activating the blood circulation, on invasion, adhesion, migration and metastasis of B16-BL6 metastatic mouse melanoma cells and its mechanism. The proliferation, adhesion, invasion and migration capacity of B16-BL6 metastatic cells was evaluated by MTP assay, adhesion assay and reconstituted basement membrane invasion and migration assay in vitro respectively. Mouse spontaneous motility melanoma model was used to study the effect of Spatholobus suberctus on metastasis in vivo. At the highest innoxious concentration, the extracts of Spatholobus suberctus inhibited the adhesion and invasion capacity of B16-BL6 metastatic cells significantly. In the mouse spontaneous melanoma model, the lung metastatic nodes number and its volume were significantly decreased after continuously treated with the extracts of Spatholobus suberctu. The extracts of Spatholobus suberctu can inhibit the metastasis of of B16-BI6 metastatic mouse melanoma cells and its mechanism may be inhibiting the capability of B16-BL6 cells in adhering to the ECM and invading the basement membrane.

  12. Evaluation of antitumor effects of folate-conjugated methyl-β-cyclodextrin in melanoma.

    Science.gov (United States)

    Motoyama, Keiichi; Onodera, Risako; Tanaka, Nao; Kameyama, Kazuhisa; Higashi, Taishi; Kariya, Ryusho; Okada, Seiji; Arima, Hidetoshi

    2015-01-01

    Melanoma is a life-threatening disorder and its incidence is increasing gradually. Despite the numerous treatment approaches, conventional systemic chemotherapy has not reduced the mortality rate among melanoma patients, probably due to the induction of toxicity to normal tissues. Recently, we have developed folate-conjugated methyl-β-cyclodextrin (FA-M-β-CyD) and clarified its potential as a new antitumor agent involved in autophagic cell death. However, it remains uncertain whether FA-M-β-CyD exerts anticancer effects against melanomas. Therefore, in this study, we investigated the effects of FA-M-β-CyD on the folate receptor-α (FR-α)-expressing melanoma cell-selective cytotoxic effect. FA-M-β-CyD showed cytotoxic effects in Ihara cells, a human melanoma cell line expressing FR-α. In sharp contrast to methyl-β-cyclodextrin, FA-M-β-CyD entered Ihara cells [FR-α(+)] through FR-α-mediated endocytosis. Additionally, FA-M-β-CyD elicited the formation of autophagosomes in Ihara cells. Notably, FA-M-β-CyD suppressed melanoma growth in BALB/c nude recombinase-activating gene-2 (Rag-2)/Janus kinase 3 (Jak3) double deficient mice bearing Ihara cells. Therefore, these results suggest that FA-M-β-CyD could be utilized as a potent anticancer agent for melanoma chemotherapy by regulating autophagy.

  13. MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells

    International Nuclear Information System (INIS)

    Yu, Teng; Ji, Jiang; Guo, Yong-li

    2013-01-01

    Highlights: •Curcumin activates MST1 in melanoma cells. •MST1 mediates curcumin-induced apoptosis of melanoma cells. •ROS production is involved in curcumin-induced MST1 activation. •MST1 mediates curcumin-induced JNK activation in melanoma cells. •MST1 mediates curcumin-induced Foxo3a nuclear translocation and Bim expression. -- Abstract: Different groups including ours have shown that curcumin induces melanoma cell apoptosis, here we focused the role of mammalian Sterile 20-like kinase 1 (MST1) in it. We observed that curcumin activated MST1-dependent apoptosis in cultured melanoma cells. MST1 silencing by RNA interference (RNAi) suppressed curcumin-induced cell apoptosis, while MST1 over-expressing increased curcumin sensitivity. Meanwhile, curcumin induced reactive oxygen species (ROS) production in melanoma cells, and the ROS scavenger, N-acetyl-cysteine (NAC), almost blocked MST1 activation to suggest that ROS might be required for MST1 activation by curcumin. c-Jun N-terminal protein kinase (JNK) activation by curcumin was dependent on MST1, since MST1 inhibition by RNAi or NAC largely inhibited curcumin-induced JNK activation. Further, curcumin induced Foxo3 nuclear translocation and Bim-1 (Foxo3 target gene) expression in melanoma cells, such an effect by curcumin was inhibited by MST1 RNAi. In conclusion, we suggested that MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells

  14. MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Teng, E-mail: tengyu33@yahoo.com [Department of Dermatology, Shandong Ji-ning No. 1 People’s Hospital, Shandong Province 272011 (China); Ji, Jiang [Department of Dermatology, The Second Hospital Affiliated of Soochow University, SuZhou, Jiangsu Province 215000 (China); Guo, Yong-li [Department of Oncology, Shandong Ji-ning No. 1 People’s Hospital, Shandong Province 272011 (China)

    2013-11-08

    Highlights: •Curcumin activates MST1 in melanoma cells. •MST1 mediates curcumin-induced apoptosis of melanoma cells. •ROS production is involved in curcumin-induced MST1 activation. •MST1 mediates curcumin-induced JNK activation in melanoma cells. •MST1 mediates curcumin-induced Foxo3a nuclear translocation and Bim expression. -- Abstract: Different groups including ours have shown that curcumin induces melanoma cell apoptosis, here we focused the role of mammalian Sterile 20-like kinase 1 (MST1) in it. We observed that curcumin activated MST1-dependent apoptosis in cultured melanoma cells. MST1 silencing by RNA interference (RNAi) suppressed curcumin-induced cell apoptosis, while MST1 over-expressing increased curcumin sensitivity. Meanwhile, curcumin induced reactive oxygen species (ROS) production in melanoma cells, and the ROS scavenger, N-acetyl-cysteine (NAC), almost blocked MST1 activation to suggest that ROS might be required for MST1 activation by curcumin. c-Jun N-terminal protein kinase (JNK) activation by curcumin was dependent on MST1, since MST1 inhibition by RNAi or NAC largely inhibited curcumin-induced JNK activation. Further, curcumin induced Foxo3 nuclear translocation and Bim-1 (Foxo3 target gene) expression in melanoma cells, such an effect by curcumin was inhibited by MST1 RNAi. In conclusion, we suggested that MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells.

  15. Boron neutron capture therapy induces cell cycle arrest and DNA fragmentation in murine melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Faiao-Flores, F. [Biochemical and Biophysical Laboratory, Butantan Institute, 1500 Vital Brasil Avenue, Sao Paulo (Brazil)] [Faculty of Medicine, University of Sao Paulo, 455 Doutor Arnaldo Avenue, Sao Paulo (Brazil); Coelho, P.R.P. [Institute for Nuclear and Energy Research, 2242 Lineu Prestes Avenue, Sao Paulo (Brazil); Arruda-Neto, J. [Physics Institute, University of Sao Paulo, 187 Matao Street, Sao Paulo (Brazil)] [FESP, Sao Paulo Engineering School, 5520 Nove de Julho Avenue, Sao Paulo (Brazil); Maria, Durvanei A., E-mail: durvaneiaugusto@yahoo.br [Biochemical and Biophysical Laboratory, Butantan Institute, 1500 Vital Brasil Avenue, Sao Paulo (Brazil)

    2011-12-15

    The melanoma is a highly lethal skin tumor, with a high incidence. Boron Neutron Capture Therapy (BNCT) is a radiotherapy which combines Boron with thermal neutrons, constituting a binary system. B16F10 melanoma and L929 fibroblasts were treated with Boronophenylalanine and irradiated with thermal neutron flux. The electric potential of mitochondrial membrane, cyclin D1 and caspase-3 markers were analyzed. BNCT induced a cell death increase and cyclin D1 amount decreased only in B16F10 melanoma. Besides, there was not caspase-3 phosphorylation.

  16. GPNMB expression in uveal melanoma: a potential for targeted therapy.

    Science.gov (United States)

    Williams, Michelle D; Esmaeli, Bita; Soheili, Aydin; Simantov, Ronit; Gombos, Dan S; Bedikian, Agop Y; Hwu, Patrick

    2010-06-01

    Uveal melanoma is an aggressive disease without effective adjuvant therapy for metastases. Despite genomic differences between cutaneous and uveal melanomas, therapies based on shared biological factors could be effective against both tumor types. High expression of glycoprotein-NMB (GPNMB) in cutaneous melanomas led to the development of CDX-011 (glembatumumab vedotin), a fully human monoclonal antibody against the extracellular domain of GPNMB conjugated to the cytotoxic microtubule toxin monomethylauristatin E. Ongoing phase II trials suggest that CDX-011 has activity against advanced cutaneous melanomas. To determine the potential role of CDX-011 in uveal melanomas, we studied their GPNMB expression. Paraffin-embedded tissues from 22 uveal melanomas treated by enucleation from 2004-2007 at one institution were evaluated immunohistochemically for expression of GPNMB using biotinylated CDX-011 (unconjugated) antibody. Melanoma cells were evaluated for percentage and intensity of expression. Spectral imaging was used in one case with high melanin content. Clinical data were reviewed. Twelve women and 10 men with a median age of 58.7 years (range: 28-83 years) were included. Eighteen of 21 tumors evaluated immunohistochemically (85.7%) expressed GPNMB in 10-90% of tumor cells with variable intensity (5 tumors, 1+; 11, 2+; and 2, 3+). Eleven of 18 tumors (61.1%) expressed GPNMB in >or=50% of cells. Spectral imaging showed diffuse CDX-011 (unconjugated) reactivity in the remaining case. Uveal melanoma, like cutaneous melanoma, commonly expresses GPNMB. Ongoing clinical trials of CDX-011 should be extended to patients with metastatic uveal melanoma to determine potential efficacy in this subset of patients with melanoma.

  17. The in-vitro and in-vivo inhibitory activity of biflorin in melanoma.

    Science.gov (United States)

    Vasconcellos, Marne C; Bezerra, Daniel P; Fonseca, Aluísio M; Araújo, Ana Jérsia; Pessoa, Cláudia; Lemos, Telma L G; Costa-Lotufo, Letícia V; de Moraes, Manoel Odorico; Montenegro, Raquel C

    2011-04-01

    Biflorin, an ortho-naphthoquinone, is an active compound found in the roots of Capraria biflora L. It has been reported that biflorin presents anticancer activity, inhibiting both tumor cell line growth in culture and tumor development in mice. The aim of this study was to examine the effectiveness of biflorin treatment using both in-vitro and in-vivo melanoma models. Biflorin displayed considerable cytotoxicity against all tested cell lines, with half maximal inhibitory concentration values ranging from 0.58 μg/ml in NCI H23 (human lung adenocarcinoma) to 14.61 μg/ml in MDA-MB-231 (human breast cancer) cell lines. In a second set of experiments using B16 melanoma cells as a model, biflorin reduced cell viability but did not cause significant increase in the number of nonviable cells. In addition, the DNA synthesis was significantly inhibited. Flow cytometry analysis showed that biflorin may lead to an apoptotic death in melanoma cells, inducing DNA fragmentation and mitochondria depolarization, without affecting membrane integrity. In B16 melanoma-bearing mice, administration of biflorin (25mg/day) for 10 days inhibited tumor growth, and also increased the mean survival rate from 33.3±0.9 days (control) to 44.5±3.4 days (treated). Our findings suggest that biflorin may be considered as a promising lead compound for designing new drugs to be used in the treatment of melanoma.

  18. Pro-inflammatory cytokine/chemokine production by reovirus treated melanoma cells is PKR/NF-κB mediated and supports innate and adaptive anti-tumour immune priming

    Directory of Open Access Journals (Sweden)

    Coffey Matt

    2011-02-01

    Full Text Available Abstract Background As well as inducing direct oncolysis, reovirus treatment of melanoma is associated with activation of innate and adaptive anti-tumour immune responses. Results Here we characterise the effects of conditioned media from reovirus-infected, dying human melanoma cells (reoTCM, in the absence of live virus, to address the immune bystander potential of reovirus therapy. In addition to RANTES, IL-8, MIP-1α and MIP-1β, reovirus-infected melanoma cells secreted eotaxin, IP-10 and the type 1 interferon IFN-β. To address the mechanisms responsible for the inflammatory composition of reoTCM, we show that IL-8 and IFN-β secretion by reovirus-infected melanoma cells was associated with activation of NF-κB and decreased by pre-treatment with small molecule inhibitors of NF-κB and PKR; specific siRNA-mediated knockdown further confirmed a role for PKR. This pro-inflammatory milieu induced a chemotactic response in isolated natural killer (NK cells, dendritic cells (DC and anti-melanoma cytotoxic T cells (CTL. Following culture in reoTCM, NK cells upregulated CD69 expression and acquired greater lytic potential against tumour targets. Furthermore, melanoma cell-loaded DC cultured in reoTCM were more effective at priming adaptive anti-tumour immunity. Conclusions These data demonstrate that the PKR- and NF-κB-dependent induction of pro-inflammatory molecules that accompanies reovirus-mediated killing can recruit and activate innate and adaptive effector cells, thus potentially altering the tumour microenvironment to support bystander immune-mediated therapy as well as direct viral oncolysis.

  19. Integrative Genome Comparison of Primary and Metastatic Melanomas

    Science.gov (United States)

    Feng, Bin; Nazarian, Rosalynn M.; Bosenberg, Marcus; Wu, Min; Scott, Kenneth L.; Kwong, Lawrence N.; Xiao, Yonghong; Cordon-Cardo, Carlos; Granter, Scott R.; Ramaswamy, Sridhar; Golub, Todd; Duncan, Lyn M.; Wagner, Stephan N.; Brennan, Cameron; Chin, Lynda

    2010-01-01

    A cardinal feature of malignant melanoma is its metastatic propensity. An incomplete view of the genetic events driving metastatic progression has been a major barrier to rational development of effective therapeutics and prognostic diagnostics for melanoma patients. In this study, we conducted global genomic characterization of primary and metastatic melanomas to examine the genomic landscape associated with metastatic progression. In addition to uncovering three genomic subclasses of metastastic melanomas, we delineated 39 focal and recurrent regions of amplification and deletions, many of which encompassed resident genes that have not been implicated in cancer or metastasis. To identify progression-associated metastasis gene candidates, we applied a statistical approach, Integrative Genome Comparison (IGC), to define 32 genomic regions of interest that were significantly altered in metastatic relative to primary melanomas, encompassing 30 resident genes with statistically significant expression deregulation. Functional assays on a subset of these candidates, including MET, ASPM, AKAP9, IMP3, PRKCA, RPA3, and SCAP2, validated their pro-invasion activities in human melanoma cells. Validity of the IGC approach was further reinforced by tissue microarray analysis of Survivin showing significant increased protein expression in thick versus thin primary cutaneous melanomas, and a progression correlation with lymph node metastases. Together, these functional validation results and correlative analysis of human tissues support the thesis that integrated genomic and pathological analyses of staged melanomas provide a productive entry point for discovery of melanoma metastases genes. PMID:20520718

  20. Energy metabolism in human melanoma cells under hypoxic and acidic conditions in vitro.

    Science.gov (United States)

    Skøyum, R; Eide, K; Berg, K; Rofstad, E K

    1997-01-01

    The response to treatment and the malignant progression of tumours are influenced by the ability of the tumour cells to withstand severe energy deprivation during prolonged exposure to hypoxia at normal or low extracellular pH (pHe). The objective of the present work was to demonstrate intertumour heterogeneity under conditions of microenvironment-induced energy deprivation and to investigate whether the heterogeneity can be attributed to differences in the capacity of the tumour cells to generate energy in an oxygen-deficient microenvironment. Cultures of four human melanoma cell lines (BEX-c, COX-c, SAX-c, WIX-c) were exposed to hypoxia in vitro at pHe 7.4, 7.0 or 6.6 for times up to 31 h by using the steel-chamber method. High-performance liquid chromatography was used to assess adenylate energy charge as a function of exposure time. Cellular rates of glucose uptake and lactate release were determined by using standard enzymatic test kits. The adenylate energy charge decreased with time under hypoxia in all cell lines. The decrease was most pronounced shortly after the treatment had been initiated and then tapered off. BEX-c and SAX-c showed a significantly higher adenylate energy charge under hypoxic conditions than did COX-c and WIX-c whether the pHe was 7.4, 7.0 or 6.6, showing that tumours can differ in the ability to avoid energy deprivation during microenvironmental stress. There was no correlation between the adenylate energy charge and the rates of glucose uptake and lactate release. Intertumour heterogeneity in the ability to withstand energy deprivation in an oxygen-deficient microenvironment cannot therefore be attributed mainly to differences in the capacity of the tumour cells to generate energy by anaerobic metabolism. The data presented here suggest that the heterogeneity is rather caused by differences in the capacity of the tumour cells to reduce the rate of energy consumption when exposed to hypoxia.

  1. Podoplanin Expression in Canine Melanoma.

    Science.gov (United States)

    Ogasawara, Satoshi; Honma, Ryusuke; Kaneko, Mika K; Fujii, Yuki; Kagawa, Yumiko; Konnai, Satoru; Kato, Yukinari

    2016-12-01

    A type I transmembrane protein, podoplanin (PDPN), is expressed in several normal cells such as lymphatic endothelial cells or pulmonary type I alveolar cells. We recently demonstrated that anticanine PDPN monoclonal antibody (mAb), PMab-38, recognizes canine PDPN of squamous cell carcinomas, but does not react with lymphatic endothelial cells. Herein, we investigated whether PMab-38 reacts with canine melanoma. PMab-38 reacted with 90% of melanoma cells (9/10 cases) using immunohistochemistry. Of interest, PMab-38 stained the lymphatic endothelial cells and cancer-associated fibroblasts in melanoma tissues, although it did not stain any lymphatic endothelial cells in normal tissues. PMab-38 could be useful for uncovering the function of PDPN in canine melanomas.

  2. Interleukin 1-induced augmentation of experimental metastases from a human melanoma in nude mice

    International Nuclear Information System (INIS)

    Giavazzi, R.; Garofalo, A.; Bani, M.R.; Abbate, M.; Ghezzi, P.; Boraschi, D.; Mantovani, A.; Dejana, E.

    1990-01-01

    This study has examined the effect of the cytokine interleukin 1 (IL-1) on metastasis formation by the human melanoma A375M in nude mice. We have found that human recombinant IL-1 beta (a single injection greater than 0.01 micrograms per mouse i.v. given before tumor cells) induced an augmentation of experimental lung metastases from the A375M tumor cells in nude mice. This effect was rapidly induced and reversible within 24 h after IL-1 injection. A similar effect was induced by human recombinant IL-1 alpha and human recombinant tumor necrosis factor, but not by human recombinant interleukin 6. 5-[125I]odo-2'-deoxyuridine-radiolabeled A375M tumor cells injected i.v. remained at a higher level in the lungs of nude mice receiving IL-1 than in control mice. In addition, IL-1 injected 1 h, but not 24 h, after tumor cells enhanced lung colonization as well, thus suggesting an effect of IL-1 on the vascular transit of tumor cells. These findings may explain the observation of enhanced secondary localization of tumor cells at inflammatory sites and suggest that modulation of secondary spread should be carefully considered when assessing the ability of this cytokine to complement cytoreductive therapies

  3. Suppression subtractive hybridization profiles of radial growth phase and metastatic melanoma cell lines reveal novel potential targets

    International Nuclear Information System (INIS)

    Sousa, Josane F; Espreafico, Enilza M

    2008-01-01

    Melanoma progression occurs through three major stages: radial growth phase (RGP), confined to the epidermis; vertical growth phase (VGP), when the tumor has invaded into the dermis; and metastasis. In this work, we used suppression subtractive hybridization (SSH) to investigate the molecular signature of melanoma progression, by comparing a group of metastatic cell lines with an RGP-like cell line showing characteristics of early neoplastic lesions including expression of the metastasis suppressor KISS1, lack of αvβ3-integrin and low levels of RHOC. Two subtracted cDNA collections were obtained, one (RGP library) by subtracting the RGP cell line (WM1552C) cDNA from a cDNA pool from four metastatic cell lines (WM9, WM852, 1205Lu and WM1617), and the other (Met library) by the reverse subtraction. Clones were sequenced and annotated, and expression validation was done by Northern blot and RT-PCR. Gene Ontology annotation and searches in large-scale melanoma expression studies were done for the genes identified. We identified 367 clones from the RGP library and 386 from the Met library, of which 351 and 368, respectively, match human mRNA sequences, representing 288 and 217 annotated genes. We confirmed the differential expression of all genes selected for validation. In the Met library, we found an enrichment of genes in the growth factors/receptor, adhesion and motility categories whereas in the RGP library, enriched categories were nucleotide biosynthesis, DNA packing/repair, and macromolecular/vesicular trafficking. Interestingly, 19% of the genes from the RGP library map to chromosome 1 against 4% of the ones from Met library. This study identifies two populations of genes differentially expressed between melanoma cell lines from two tumor stages and suggests that these sets of genes represent profiles of less aggressive versus metastatic melanomas. A search for expression profiles of melanoma in available expression study databases allowed us to point to a

  4. Expression of leptin and iNOS in oral melanomas in dogs.

    Science.gov (United States)

    Greene, V R; Wilson, H; Pfent, C; Roethele, J; Carwile, J; Qin, Y; Grimm, E; Ellerhorst, J A

    2013-01-01

    Oral melanoma (OM) in dogs is an aggressive malignancy, with clinical behavior resembling cutaneous melanomas in humans. Melanoma in humans is promoted by an inflammatory environment that is contributed to by leptin and inducible nitric oxide synthase (iNOS). To determine if the patterns of leptin and iNOS expression are similar in OM in dogs and cutaneous melanomas in humans. Twenty client-owned dogs. Retrospective case study. Immunostaining of the OM tumors from each dog was scored for percentage and intensity of leptin and iNOS expression. Mitotic index was used as an indicator of tumor aggression. Leptin was detected in ≥75% of the tumor cells in specimens from 11 dogs. One tumor expressed leptin in ≤25% of the cells. The intensity of leptin expression was variable with 6, 9, and 5 cases exhibiting low-, moderate-, and high-intensity staining, respectively. OM with the lowest percentage of iNOS positive cells displayed the highest mitotic indices (P = .006, ANOVA). The expression of leptin is a common finding in melanomas in dogs. These data suggest that the possibility of future clinical applications, such as measuring the concentrations of plasma leptin as a screening tool or leptin as a target for therapy. The relevance of iNOS is not as clear in dogs with OM, for which other directed therapeutics might be more appropriate. Copyright © 2013 by the American College of Veterinary Internal Medicine.

  5. Radiosensitivity of different human tumor cells lines grown as multicellular spheroids determined from growth curves and survival data

    International Nuclear Information System (INIS)

    Schwachoefer, J.H.C.; Crooijmans, R.P.; van Gasteren, J.J.; Hoogenhout, J.; Jerusalem, C.R.; Kal, H.B.; Theeuwes, A.G.

    1989-01-01

    Five human tumor cell lines were grown as multicellular tumor spheroids (MTS) to determine whether multicellular tumor spheroids derived from different types of tumors would show tumor-type dependent differences in response to single-dose irradiation, and whether these differences paralleled clinical behavior. Multicellular tumor spheroids of two neuroblastoma, one lung adenocarcinoma, one melanoma, and a squamous cell carcinoma of the oral tongue, were studied in terms of growth delay, calculated cell survival, and spheroid control dose50 (SCD50). Growth delay and cell survival analysis for the tumor cell lines showed sensitivities that correlated well with clinical behavior of the tumor types of origin. Similar to other studies on melanoma multicellular tumor spheroids our spheroid control dose50 results for the melanoma cell line deviated from the general pattern of sensitivity. This might be due to the location of surviving cells, which prohibits proliferation of surviving cells and hence growth of melanoma multicellular tumor spheroids. This study demonstrates that radiosensitivity of human tumor cell lines can be evaluated in terms of growth delay, calculated cell survival, and spheroid control dose50 when grown as multicellular tumor spheroids. The sensitivity established from these evaluations parallels clinical behavior, thus offering a unique tool for the in vitro analysis of human tumor radiosensitivity

  6. Nucleoli cytomorphology in cutaneous melanoma cells - a new prognostic approach to an old concept.

    Science.gov (United States)

    Donizy, Piotr; Biecek, Przemyslaw; Halon, Agnieszka; Maciejczyk, Adam; Matkowski, Rafal

    2017-12-29

    The nucleolus is an organelle that is an ultrastructural element of the cell nucleus observed in H&E staining as a roundish body stained with eosin due to its high protein content. Changes in the nucleoli cytomorphology were one of the first histopathological characteristics of malignant tumors. The aim of this study was to assess the relationship between the cytomorphological characteristics of nucleoli and detailed clinicopathological parameters of melanoma patients. Moreover, we analyzed the correlation between cytomorphological parameters of nucleoli and immunoreactivity of selected proteins responsible for, among others, regulation of epithelial-mesenchymal transition (SPARC, N-cadherin), cell adhesion and motility (ALCAM, ADAM-10), mitotic divisions (PLK1), cellular survival (FOXP1) and the functioning of Golgi apparatus (GOLPH3, GP73). Three characteristics of nucleoli - presence, size and number - of cancer cells were assessed in H&E-stained slides of 96 formalin-fixed paraffin-embedded primary cutaneous melanoma tissue specimens. The results were correlated with classical clinicopathological features and patient survival. Immunohistochemical analysis of the above mentioned proteins was described in details in previous studies. Higher prevalence and size of nucleoli were associated with thicker and mitogenic tumors. All three nucleolar characteristics were related to the presence of ulceration. Moreover, microsatellitosis was strongly correlated with the presence of macronucleoli and polynucleolization (presence of two or more nucleoli). Lack of immunologic response manifested as no TILs in primary tumor was associated with high prevalence of melanoma cells with distinct nucleoli. Interestingly, in nodular melanoma a higher percentage of melanoma cells with prominent nucleoli was observed. In Kaplan-Meier analysis, increased prevalence and amount, but not size of nucleoli, were connected with shorter cancer-specific and disease-free survival. (1) High

  7. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves.

    Science.gov (United States)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-01-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW’s are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  8. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves

    Science.gov (United States)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J.; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-07-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW's are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  9. Sensitivity to sodium arsenite in human melanoma cells depends upon susceptibility to arsenite-induced mitotic arrest

    International Nuclear Information System (INIS)

    McNeely, Samuel C.; Belshoff, Alex C.; Taylor, B. Frazier; Fan, Teresa W-M.; McCabe, Michael J.; Pinhas, Allan R.

    2008-01-01

    Arsenic induces clinical remission in patients with acute promyelocytic leukemia and has potential for treatment of other cancers. The current study examines factors influencing sensitivity to arsenic using human malignant melanoma cell lines. A375 and SK-Mel-2 cells were sensitive to clinically achievable concentrations of arsenite, whereas SK-Mel-3 and SK-Mel-28 cells required supratherapeutic levels for toxicity. Inhibition of glutathione synthesis, glutathione S-transferase (GST) activity, and multidrug resistance protein (MRP) transporter function attenuated arsenite resistance, consistent with studies suggesting that arsenite is extruded from the cell as a glutathione conjugate by MRP-1. However, MRP-1 was not overexpressed in resistant lines and GST-π was only slightly elevated. ICP-MS analysis indicated that arsenite-resistant SK-Mel-28 cells did not accumulate less arsenic than arsenite-sensitive A375 cells, suggesting that resistance was not attributable to reduced arsenic accumulation but rather to intrinsic properties of resistant cell lines. The mode of arsenite-induced cell death was apoptosis. Arsenite-induced apoptosis is associated with cell cycle alterations. Cell cycle analysis revealed arsenite-sensitive cells arrested in mitosis whereas arsenite-resistant cells did not, suggesting that induction of mitotic arrest occurs at lower intracellular arsenic concentrations. Higher intracellular arsenic levels induced cell cycle arrest in the S-phase and G 2 -phase in SK-Mel-3 and SK-Mel-28 cells, respectively. The lack of arsenite-induced mitotic arrest in resistant cell lines was associated with a weakened spindle checkpoint resulting from reduced expression of spindle checkpoint protein BUBR1. These data suggest that arsenite has potential for treatment of solid tumors but a functional spindle checkpoint is a prerequisite for a positive response to its clinical application

  10. Antiproliferative and proapoptotic actions of okra pectin on B16F10 melanoma cells

    NARCIS (Netherlands)

    Vayssade, M.; Sengkhamparn, N.; Verhoef, R.P.; Delaigue, C.; Goundiam, O.; Vigneron, P.; Voragen, A.G.J.; Schols, H.A.; Nagel, M.D.

    2010-01-01

    The proliferation and apoptosis of metastatic melanoma cells are often abnormal. We have evaluated the action of a pectic rhamnogalacturonan obtained by hot buffer extraction of okra pods (okra RG-I) on melanoma cell growth and survival in vitro. We added okra RG-I containing an almost pure RG-I

  11. Burden of Melanoma

    NARCIS (Netherlands)

    C. Holterhues (Cynthia)

    2011-01-01

    markdownabstract__Abstract__ Melanoma is a type of skin cancer that arises from melanocytes. More than 95% of all melanomas occur in the skin, but rarely in the pigmented cells of the eye, meninges or mucosa. This thesis will only regard the invasive cutaneous malignant melanomas.

  12. Acquired IFNγ resistance impairs anti-tumor immunity and gives rise to T-cell-resistant melanoma lesions

    Science.gov (United States)

    Sucker, Antje; Zhao, Fang; Pieper, Natalia; Heeke, Christina; Maltaner, Raffaela; Stadtler, Nadine; Real, Birgit; Bielefeld, Nicola; Howe, Sebastian; Weide, Benjamin; Gutzmer, Ralf; Utikal, Jochen; Loquai, Carmen; Gogas, Helen; Klein-Hitpass, Ludger; Zeschnigk, Michael; Westendorf, Astrid M.; Trilling, Mirko; Horn, Susanne; Schilling, Bastian; Schadendorf, Dirk; Griewank, Klaus G.; Paschen, Annette

    2017-01-01

    Melanoma treatment has been revolutionized by antibody-based immunotherapies. IFNγ secretion by CD8+ T cells is critical for therapy efficacy having anti-proliferative and pro-apoptotic effects on tumour cells. Our study demonstrates a genetic evolution of IFNγ resistance in different melanoma patient models. Chromosomal alterations and subsequent inactivating mutations in genes of the IFNγ signalling cascade, most often JAK1 or JAK2, protect melanoma cells from anti-tumour IFNγ activity. JAK1/2 mutants further evolve into T-cell-resistant HLA class I-negative lesions with genes involved in antigen presentation silenced and no longer inducible by IFNγ. Allelic JAK1/2 losses predisposing to IFNγ resistance development are frequent in melanoma. Subclones harbouring inactivating mutations emerge under various immunotherapies but are also detectable in pre-treatment biopsies. Our data demonstrate that JAK1/2 deficiency protects melanoma from anti-tumour IFNγ activity and results in T-cell-resistant HLA class I-negative lesions. Screening for mechanisms of IFNγ resistance should be considered in therapeutic decision-making. PMID:28561041

  13. Sigma-1 and Sigma-2 receptor ligands induce apoptosis and autophagy but have opposite effect on cell proliferation in uveal melanoma.

    Science.gov (United States)

    Longhitano, Lucia; Castracani, Carlo Castruccio; Tibullo, Daniele; Avola, Roberto; Viola, Maria; Russo, Giuliano; Prezzavento, Orazio; Marrazzo, Agostino; Amata, Emanuele; Reibaldi, Michele; Longo, Antonio; Russo, Andrea; Parrinello, Nunziatina Laura; Volti, Giovanni Li

    2017-10-31

    Uveal melanoma is the most common primary intraocular tumor in adults, with about 1200-1500 new cases occurring per year in the United States. Metastasis is a frequent occurrence in uveal melanoma, and outcomes are poor once distant spread occurs and no clinically significant chemotherapeutic protocol is so far available. The aim of the present study was to test the effect of various σ 1 and σ 2 receptor ligands as a possible pharmacological strategy for this rare tumor. Human uveal melanoma cells (92.1) were treated with various concentrations of different σ 2 ligands (haloperidol and haloperidol metabolite II) and σ 1 ligand ((+)-pentazocine) at various concentrations (1, 10 and 25 μM) and time points (0, 4 h, 8 h, 24 h and 48 h). Cell proliferation and migration were evaluated respectively by continuous cell monitoring by xCELLigence analysis, clonogenic assay and wound healing. Apoptosis and autophagy were also measured by cytofluorimetric and microscopy analysis. Our results showed that σ 2 receptor ligands significantly reduced cell proliferation whereas (+)-pentazocine exhibited opposite results. All tested ligands showed significant decrease in cell migration. Interestingly, both σ 1 and σ 2 receptor ligands showed significant increase of autophagy and apoptosis at all concentrations. Taken all together these results suggest that sigma receptors mediates opposite biological effects but they also share common pharmacological effect on apoptosis and autophagy in uveal melanoma. In conclusion, these data provide the first evidence that sigma receptors may represent a "druggable" target to develop new chemotherapic agent for uveal melanoma.

  14. Heat shock protein 90 inhibitor enhances apoptosis by inhibiting the AKT pathway in thermal-stimulated SK-MEL-2 human melanoma cell line.

    Science.gov (United States)

    Shin, Min Kyung; Jeong, Ki-Heon; Choi, Hyeongwon; Ahn, Hye-Jin; Lee, Mu-Hyoung

    2018-02-08

    Heat shock proteins (Hsps) are chaperone proteins, which are upregulated after various stresses. Hsp90 inhibitors have been investigated as adjuvant therapies for the treatment of melanoma. Thermal ablation could be a treatment option for surgically unresectable melanoma or congenital nevomelanocytic nevi, however, there is a limitation such as the possibility of recurrence. We evaluated apoptosis in a melanoma cell line treated with the Hsp90 inhibitor 17-Dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), in hyperthermic conditions. SK-MEL-2 cells were stimulated at 43 °C for 1 h and treated with 0, 0.1 and 1 μM 17-DMAG. We evaluated the cell viability using MTT and apoptosis with HSP 90 inhibitor. We studied the protein expression of AKT, phospho-AKT, ERK, phospho-ERK, MAPK, and phospho-MAPK, caspase 3,7,9, and anti-poly (ADP-ribose) polymerase. 17-DMAG significantly inhibited the proliferation of the SK-MEL-2 cells at 37 °C (0.1 μM: 44.47% and 1 μM: 61.23%) and 43 °C (0.1 μM: 49.21% and 1 μM: 63.60%), suggesting synergism between thermal stimulation and 17-DMAG. 17-DMAG treatment increased the frequency of apoptotic cell populations to 2.17% (0.1 μM) and 3.05% (1 μM) in 37 °C controls, and 4.40% (0.1 μM) and 4.97% (1 μM) in the group stimulated at 43 °C. AKT phosphorylation were activated by thermal stimulation and inhibited by 17-DMAG. Hsp90 inhibitor treatment may be clinically applicable to enhance the apoptosis of melanoma cells in hyperthermic condition. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  15. O6-methylguanine DNA-methyltransferase (MGMT) overexpression in melanoma cells induces resistance to nitrosoureas and temozolomide but sensitizes to mitomycin C

    International Nuclear Information System (INIS)

    Passagne, Isabelle; Evrard, Alexandre; Depeille, Philippe; Cuq, Pierre; Cupissol, Didier; Vian, Laurence

    2006-01-01

    Alkylating agents play an important role in the chemotherapy of malignant melanomas. The activity of alkylating agents depends on their capacity to form alkyl adducts with DNA, in some cases causing cross-linking of DNA strands. However, the use of these agents is limited by cellular resistance induced by the DNA repair enzyme O 6 -methylguanine DNA-methyltransferase (MGMT) which removes alkyl groups from alkylated DNA strands. To determine to what extent the expression of MGMT in melanoma cells induces resistance to alkylating agents, the human cell line CAL77 Mer- (i.e., MGMT deficient) were transfected with pcMGMT vector containing human MGMT cDNA. Several clones expressing MGMT at a high level were selected to determine their sensitivity to chemotherapeutic drugs. Melanoma-transfected cells were found to be significantly less sensitive to nitrosoureas (carmustine, fotemustine, streptozotocin) and temozolomide with an increase of IC 5 values between 3 and 14 when compared to parent cells. No difference in cell survival rates between MGMT-proficient and -deficient cells was observed for melphalan, chlorambucil, busulphan, thiotepa and cisplatin which preferentially induce N 7 guanine lesions. Surprisingly, MGMT overexpression increased the sensitivity of CAL77 cells to mitomycin C by approximately 10-fold. Treatment of clonal cell lines with buthionine-[S,R]-sulfoximine (BSO), an inhibitor of γ-glutamylcysteine synthetase which depletes cellular glutathione, completely reversed this unexpected increase in sensitivity to mitomycin C. This observation suggests that glutathione is involved in the sensitivity of MGMT-transfected cells to mitomycin C and may act synergistically with MGMT via an unknown mechanism

  16. O(6)-methylguanine DNA-methyltransferase (MGMT) overexpression in melanoma cells induces resistance to nitrosoureas and temozolomide but sensitizes to mitomycin C.

    Science.gov (United States)

    Passagne, Isabelle; Evrard, Alexandre; Depeille, Philippe; Cuq, Pierre; Cupissol, Didier; Vian, Laurence

    2006-03-01

    Alkylating agents play an important role in the chemotherapy of malignant melanomas. The activity of alkylating agents depends on their capacity to form alkyl adducts with DNA, in some cases causing cross-linking of DNA strands. However, the use of these agents is limited by cellular resistance induced by the DNA repair enzyme O(6)-methylguanine DNA-methyltransferase (MGMT) which removes alkyl groups from alkylated DNA strands. To determine to what extent the expression of MGMT in melanoma cells induces resistance to alkylating agents, the human cell line CAL77 Mer- (i.e., MGMT deficient) were transfected with pcMGMT vector containing human MGMT cDNA. Several clones expressing MGMT at a high level were selected to determine their sensitivity to chemotherapeutic drugs. Melanoma-transfected cells were found to be significantly less sensitive to nitrosoureas (carmustine, fotemustine, streptozotocin) and temozolomide with an increase of IC(50) values between 3 and 14 when compared to parent cells. No difference in cell survival rates between MGMT-proficient and -deficient cells was observed for melphalan, chlorambucil, busulphan, thiotepa and cisplatin which preferentially induce N(7) guanine lesions. Surprisingly, MGMT overexpression increased the sensitivity of CAL77 cells to mitomycin C by approximately 10-fold. Treatment of clonal cell lines with buthionine-[S,R]-sulfoximine (BSO), an inhibitor of gamma-glutamylcysteine synthetase which depletes cellular glutathione, completely reversed this unexpected increase in sensitivity to mitomycin C. This observation suggests that glutathione is involved in the sensitivity of MGMT-transfected cells to mitomycin C and may act synergistically with MGMT via an unknown mechanism.

  17. The emerging epidemic of melanoma and squamous cell skin cancer

    International Nuclear Information System (INIS)

    Glass, A.G.; Hoover, R.N.

    1989-01-01

    Squamous cell skin cancer, though common, remains largely unreported and unstudied, with little known about its incidence and time trends. The authors have used a unique resource--a continuous population-based registry of cases of squamous cell skin cancer within a single prepaid health plant--to describe basic epidemiologic features of this malignancy and compare it with the more widely studied melanoma. Both malignancies are considerably more common in this population than they expected based on previous reports from the general population. From the 1960s to the 1980s, the incidence of squamous cell skin cancer increased 2.6 times in men and 3.1 times in women, while incidence of melanoma rose 3.5-fold and 4.6-fold in men and women, respectively. Skin cancers of both types involving the head and neck or the extremities increased essentially in parallel over these 27 years. Melanomas of the trunk, however, appeared to increase at a faster rate in both sexes. These observations are consistent with the impression that the rising incidence of both malignancies may be attributable to increased voluntary exposure to the sun over an extended period

  18. Aldehyde dehydrogenase (ALDH activity does not select for cells with enhanced aggressive properties in malignant melanoma.

    Directory of Open Access Journals (Sweden)

    Lina Prasmickaite

    Full Text Available BACKGROUND: Malignant melanoma is an exceptionally aggressive, drug-resistant and heterogeneous cancer. Recently it has been shown that melanoma cells with high clonogenic and tumourigenic abilities are common, but markers distinguishing such cells from cells lacking these abilities have not been identified. There is therefore no definite evidence that an exclusive cell subpopulation, i.e. cancer stem cells (CSC, exists in malignant melanoma. Rather, it is suggested that multiple cell populations are implicated in initiation and progression of the disease, making it of importance to identify subpopulations with elevated aggressive properties. METHODS AND FINDINGS: In several other cancer forms, Aldehyde Dehydrogenase (ALDH, which plays a role in stem cell biology and resistance, is a valuable functional marker for identification of cells that show enhanced aggressiveness and drug-resistance. Furthermore, the presence of ALDH(+ cells is linked to poor clinical prognosis in these cancers. By analyzing cell cultures, xenografts and patient biopsies, we showed that aggressive melanoma harboured a large, distinguishable ALDH(+ subpopulation. In vivo, ALDH(+ cells gave rise to ALDH(- cells, while the opposite conversion was rare, indicating a higher abilities of ALDH(+ cells to reestablish tumour heterogeneity with respect to the ALDH phenotype. However, both ALDH(+ and ALDH(- cells demonstrated similarly high abilities for clone formation in vitro and tumour initiation in vivo. Furthermore, both subpopulations showed similar sensitivity to the anti-melanoma drugs, dacarbazine and lexatumumab. CONCLUSIONS: These findings suggest that ALDH does not distinguish tumour-initiating and/or therapy-resistant cells, implying that the ALDH phenotype is not associated with more-aggressive subpopulations in malignant melanoma, and arguing against ALDH as a "universal" marker. Besides, it was shown that the ability to reestablish tumour heterogeneity is not

  19. Study of melanoma invasion by FTIR spectroscopy

    Science.gov (United States)

    Yang, Y.; Sulé-Suso, J.; Sockalingum, G. D.

    2008-02-01

    Compared to other forms of skin cancer, a malignant melanoma has a high risk of spreading to other parts of the body. Melanoma invasion is a complex process involving changes in cell-extracellular matrix (ECM) interaction and cell-cell interactions. To fully understand the factors which control the invasion process, a human skin model system was reconstructed. HBL (a commercially available cell line) melanoma cells were seeded on a skin model with and without the presence of keratinocytes and/or fibroblasts. After 14 days culture, the skin specimens were fixed, parafin embedded and cut into 7 µm sections. The de-parafinised sections were investigated by synchrotron Fourier transformed infrared (FTIR) microspectroscopy to study skin cell invasion behaviour. The advantage of using FTIR is its ability to obtain the fingerprint information of the invading cells in terms of protein secondary structure in comparison to non-invading cells and the concentration of the enzyme (matrix-metalloproteinase) which digests protein matrix, near the invading cells. With aid of the spectral mapping images, it is possible to pinpoint the cells in non-invasion and invasion area and analyse the respective spectra. It has been observed that the protein bands in cells and matrix shifted between non-invasive and invasive cells in the reconstructed skin model. We hypothesise that by careful analysis of the FTIR data and validation by other models, FTIR studies can reveal information on which type of cells and proteins are involved in melanoma invasion. Thus, it is possible to trace the cell invasion path by mapping the spectra along the interface of cell layer and matrix body by FTIR spectroscopy.

  20. Primary Tr1 cells from metastatic melanoma eliminate tumor-promoting macrophages through granzyme B- and perforin-dependent mechanisms.

    Science.gov (United States)

    Yan, Hongxia; Zhang, Ping; Kong, Xue; Hou, Xianglian; Zhao, Li; Li, Tianhang; Yuan, Xiaozhou; Fu, Hongjun

    2017-04-01

    In malignant melanoma, tumor-associated macrophages play multiple roles in promoting tumor growth, such as inducing the transformation of melanocytes under ultraviolet irradiation, increasing angiogenesis in melanomas, and suppressing antitumor immunity. Because granzyme B- and perforin-expressing Tr1 cells could specifically eliminate antigen-presenting cells of myeloid origin, we examined whether Tr1 cells in melanoma could eliminate tumor-promoting macrophages and how the interaction between Tr1 cells and macrophages could affect the growth of melanoma cells. Tr1 cells were characterized by high interleukin 10 secretion and low Foxp3 expression and were enriched in the CD4 + CD49b + LAG-3 + T-cell fraction. Macrophages derived from peripheral blood monocytes in the presence of modified melanoma-conditioned media demonstrated tumor-promoting capacity, exemplified by improving the proliferation of cocultured A375 malignant melanoma cells. But when primary Tr1 cells were present in the macrophage-A375 coculture, the growth of A375 cells was abrogated. The conventional CD25 + Treg cells, however, were unable to inhibit macrophage-mediated increase in tumor cell growth. Further analyses showed that Tr1 cells did not directly eliminate A375 cells, but mediated the killing of tumor-promoting macrophages through the secretion of granzyme B and perforin. The tumor-infiltrating interleukin 10 + Foxp3 - CD4 + T cells expressed very low levels of granzyme B and perforin, possibly suggested the downregulation of Tr1 cytotoxic capacity in melanoma tumors. Together, these data demonstrated an antitumor function of Tr1 cells through the elimination of tumor-promoting macrophages, which was not shared by conventional Tregs.

  1. Glucocorticoid effect on melphalan cytotoxicity, cell-cycle position, cell size, and [3H]uridine incorporation in one of three human melanoma cell lines

    International Nuclear Information System (INIS)

    Benckhuijsen, C.; Osman, A.M.; Hillebrand, M.J.; Smets, L.A.

    1987-01-01

    Three human melanoma cell lines of known content of specific glucocorticoid-binding sites were studied for colony formation after a microM dose of glucocorticoid combined with melphalan. In one of the three cell lines, M-5A, subcloned from M-5 (formerly designated RPMI 8322), the effect of combined treatment was markedly increased compared to that of melphalan even if the glucocorticoid was applied for 1 h only, 10 h before the melphalan. Semilogarithmic dose-effect plots for a reduction of final plating efficiency by glucocorticoid were curvilinear, according to a receptor-mediated process. The effects of glucocorticoid, melphalan, and their combination were linearized by bilogarithmic median-effect plotting which allowed the quantitation of a synergism which was more marked in case of glucocorticoid pretreatment, for 1 or 24 h, than on simultaneous exposure. According to sequential DNA per cell cytophotometry, melphalan abolished in M-5A a glucocorticoid-induced arrest in the G1 phase of the cell cycle. The cytotoxic synergism correlated with an apparent stimulation by glucocorticoid of the rate of acid-insoluble incorporation of [ 3 H]uridine and [ 14 C]leucine and an increase in cell size and protein content in M-5A cells but not in the other two cell lines. The way in which glucocorticoids induce an enhanced susceptibility to melphalan is not clear. Our results appear compatible with a hypothesis that chromatin in a transcriptionally activated state is more vulnerable to cytotoxic attack by an alkylating agent than under average conditions

  2. Melanogenesis inhibits respiration in B16-F10 melanoma cells whereas enhances mitochondrial cell content

    International Nuclear Information System (INIS)

    Meira, Willian Vanderlei; Heinrich, Tassiele Andréa; Cadena, Silvia Maria Suter Correia; Martinez, Glaucia Regina

    2017-01-01

    Melanoma is a rare and aggressive skin tumor; the survival of patients diagnosed late is fairly low. This high mortality rate is due to the characteristics of the cells that allow them to be resistant to radiotherapy and conventional chemotherapy, besides of being able to evade the immune system. Melanin, the pigment responsible for skin, hair and eye color, seems to be involved in this resistance. The main function of melanin is to protect the cells against ultraviolet (UV) light by absorbing this radiation and reactive oxygen species (ROS) scavenging. But this pigment may have also a role as photosensitizer, because when it is irradiated with UVA light (320-400 nm), the generation of ROS was detected. Besides, the melanogenesis stimulation on B16-F10 cells resulted in cell cycle arrest, induction of a quiescent state, change in the expression of several proteins and alterations on ADP/ATP ratio. The present study aimed to investigate the influence of melanogenesis stimulation in mitochondrial function of B16-F10 melanoma cells. Therefore, we analyzed cells respiration, mitochondrial membrane potential (Δψ_m) and mitochondria mass in B16-F10 melanoma cells stimulated with 0.4 mM L-tyrosine and 10 mM NH_4Cl. Our results showed that the induction of melanin synthesis was able to reduce significantly the oxygen consumption after 48 h of stimulation, without changes of mitochondrial membrane potential when compared to non-stimulated cells. Despite of respiration inhibition, the mitochondria mass was higher in cells with melanogenesis stimulation. We suggest that the stimulation in the melanin synthesis might be promoting the inhibition of electrons transport chain by some intermediate compound from the synthesis of the pigment and this effect could contribute to explain the entry in the quiescent state. - Highlights: • Melanoma pigmentation alters mitochondrial respiration. • Induction of melanin synthesis by 48 h do not change mitochondrial membrane potential

  3. Melanogenesis inhibits respiration in B16-F10 melanoma cells whereas enhances mitochondrial cell content

    Energy Technology Data Exchange (ETDEWEB)

    Meira, Willian Vanderlei; Heinrich, Tassiele Andréa; Cadena, Silvia Maria Suter Correia; Martinez, Glaucia Regina, E-mail: grmartinez@ufpr.br

    2017-01-01

    Melanoma is a rare and aggressive skin tumor; the survival of patients diagnosed late is fairly low. This high mortality rate is due to the characteristics of the cells that allow them to be resistant to radiotherapy and conventional chemotherapy, besides of being able to evade the immune system. Melanin, the pigment responsible for skin, hair and eye color, seems to be involved in this resistance. The main function of melanin is to protect the cells against ultraviolet (UV) light by absorbing this radiation and reactive oxygen species (ROS) scavenging. But this pigment may have also a role as photosensitizer, because when it is irradiated with UVA light (320-400 nm), the generation of ROS was detected. Besides, the melanogenesis stimulation on B16-F10 cells resulted in cell cycle arrest, induction of a quiescent state, change in the expression of several proteins and alterations on ADP/ATP ratio. The present study aimed to investigate the influence of melanogenesis stimulation in mitochondrial function of B16-F10 melanoma cells. Therefore, we analyzed cells respiration, mitochondrial membrane potential (Δψ{sub m}) and mitochondria mass in B16-F10 melanoma cells stimulated with 0.4 mM L-tyrosine and 10 mM NH{sub 4}Cl. Our results showed that the induction of melanin synthesis was able to reduce significantly the oxygen consumption after 48 h of stimulation, without changes of mitochondrial membrane potential when compared to non-stimulated cells. Despite of respiration inhibition, the mitochondria mass was higher in cells with melanogenesis stimulation. We suggest that the stimulation in the melanin synthesis might be promoting the inhibition of electrons transport chain by some intermediate compound from the synthesis of the pigment and this effect could contribute to explain the entry in the quiescent state. - Highlights: • Melanoma pigmentation alters mitochondrial respiration. • Induction of melanin synthesis by 48 h do not change mitochondrial membrane

  4. Noscapine alters microtubule dynamics in living cells and inhibits the progression of melanoma.

    Science.gov (United States)

    Landen, Jaren W; Lang, Roland; McMahon, Steve J; Rusan, Nasser M; Yvon, Anne-Marie; Adams, Ashley W; Sorcinelli, Mia D; Campbell, Ross; Bonaccorsi, Paola; Ansel, John C; Archer, David R; Wadsworth, Patricia; Armstrong, Cheryl A; Joshi, Harish C

    2002-07-15

    Cellular microtubules, polymers of tubulin, alternate relentlessly between phases of growth and shortening. We now show that noscapine, a tubulin-binding agent, increases the time that cellular microtubules spend idle in a paused state. As a result, most mammalian cell types observed arrest in mitosis in the presence of noscapine. We demonstrate that noscapine-treated murine melanoma B16LS9 cells do not arrest in mitosis but rather become polyploid followed by cell death, whereas primary melanocytes reversibly arrest in mitosis and resume a normal cell cycle after noscapine removal. Furthermore, in a syngeneic murine model of established s.c. melanoma, noscapine treatment resulted in an 85% inhibition of tumor volume on day 17 when delivered by gavage compared with untreated animals (P melanoma progression by 83% on day 18 when delivered in drinking water (P melanoma cells through alterations in microtubule dynamics, with no detected toxicity to the host. Consequently, noscapine could be a valuable chemotherapeutic agent, alone or in combination, for the treatment of advanced melanoma.

  5. The histone deacetylase inhibitor butyrate inhibits melanoma cell invasion of Matrigel.

    Science.gov (United States)

    Kuwajima, Akiko; Iwashita, Jun; Murata, Jun; Abe, Tatsuya

    2007-01-01

    Histone deacetylase (HDAC) inhibitors have anticancer effects. Their effects on expression of cell adhesion molecules might be related to their effects on tumor cell invasion. Murine B16-BL6 cells were treated with the HDAC inhibitors, butyrate or trichostatin A. Melanoma cell invasion of the artificial basement membrane, Matrigel, was examined by Transwell chamber assay. Butyrate as well as trichostatin A inhibited the cell growth mainly by arresting the cell cycle. The cell invasion of Matrigel was inhibited by butyrate and trichostatin A. The butyrate treatment increased the cell-cell aggregation, although neither E-cadherin nor N-cadherin mRNA were up-regulated. Both mRNA expression and protein levels of the immunoglobulin superfamily cell adhesion molecules, Mel-CAM and L1-CAM, were increased in the butyrate-treated cells. The HDAC inhibitor butyrate blocked the B16-BL6 melanoma cell invasion of Matrigel, although it increased the expression of Mel-CAM and L1-CAM which are important to the metastatic potential.

  6. [The effect of Angelica sinensis on adhesion, invasion, migration and metastasis of melanoma cells].

    Science.gov (United States)

    Gu, Qin; Xu, Jian-ya; Cheng, Luo-gen; Xia, Wei-jun

    2007-03-01

    To study the effect of Angelica sinensis on invasion, adhesion, migration and metastasis of B16-BL6 metastatic mouse melanoma cells and discuss its functional mechanism. The proliferation, adhesion, invasion and migration capacity of B16-BL6 metastatic cells was evaluated by MTT assay, adhesion assay and reconstituted basement membrane invasion and migration assay in vitro respectively. Mouse spontaneous melanoma model was used to study the effect of Angelica sinensis on metastasis in vivo. The extract of Angelica sinensis inhibited the proliferation of B16-BL6 metastatic cells and its migration capacity significantly. It regulated bidirectionally the adhesion of B16-BL6 metastatic cells to the basement component laminin while it had no effect on the invasion capacity. In the mouse spotaneous melanoma model, the lung metastatic nodes number and its volume were significantly decreased after continuously treated with the extract of Angelica sinensis at the concentration of 3.67 mg/kg. The extract of Angelica sinensis can inhibit the metastasis of of B16-BL6 metastatic mouse melanoma cells and its mechanism is maybe that Angelica sinensis can inhibit the B16-BL6 cells adhering to the ECM and reduce the migration of B16-BL6 cells.

  7. Inhibitory effect of fentanyl citrate on the release of endothlin-1 induced by bradykinin in melanoma cells.

    Science.gov (United States)

    Andoh, Tsugunobu; Shinohara, Akira; Kuraishi, Yasushi

    2017-02-01

    Our previous study showed that the μ-opioid receptor agonist fentanyl citrate inhibits endothelin-1-and bradykinin-mediated pain responses in mice orthotopically inoculated with melanoma cells. We also demonstrated that bradykinin induces endothelin-1 secretion in melanoma cells. However, the analgesic mechanisms of fentanyl citrate remain unclear. Thus, the present study was conducted to determine whether fentanyl citrate affects bradykinin-induced endothelin-1 secretion in B16-BL6 melanoma cells. The amount of endothelin-1 in the culture medium was measured using an enzyme immunoassay. The expression of endothelin-1, kinin B 2 receptors, and μ-opioid receptors in B16-BL/6 melanoma cells was determined using immunocytochemistry. Fentanyl citrate inhibited bradykinin-induced endothelin-1 secretion. The inhibitory effect of fentanyl citrate on the secretion of endothelin-1 was attenuated by the μ-opioid receptor antagonist naloxone methiodide. The immunoreactivities of endothelin-1, kinin B 2 receptors, and μ-opioid receptors in B16-BL6 melanoma cells were observed. These results suggest that fentanyl citrate regulates bradykinin-induced endothelin-1 secretion through μ-opioid receptors in melanoma cells. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Killing of melanoma cells and their metastases by human lactoferricin derivatives requires interaction with the cancer marker phosphatidylserine.

    Science.gov (United States)

    Riedl, Sabrina; Rinner, Beate; Schaider, Helmut; Lohner, Karl; Zweytick, Dagmar

    2014-10-01

    Despite favorable advancements in therapy cancer is still not curative in many cases, which is often due to inadequate specificity for tumor cells. In this study derivatives of a short cationic peptide derived from the human host defense peptide lactoferricin were optimized in their selective toxicity towards cancer cells. We proved that the target of these peptides is the negatively charged membrane lipid phosphatidylserine (PS), specifically exposed on the surface of cancer cells. We have studied the membrane interaction of three peptides namely LF11-322, its N-acyl derivative 6-methyloctanoyl-LF11-322 and its retro repeat derivative R(etro)-DIM-P-LF11-322 with liposomes mimicking cancerous and non-cancerous cell membranes composed of PS and phosphatidylcholine (PC), respectively. Calorimetric and permeability studies showed that N-acylation and even more the repeat derivative of LF11-322 leads to strongly improved interaction with the cancer mimic PS, whereas only the N-acyl derivative also slightly affects PC. Tryptophan fluorescence of selective peptide R-DIM-P-LF11-322 revealed specific peptide penetration into the PS membrane interface and circular dichroism showed change of its secondary structure by increase of proportion of β-sheets just in the presence of the cancer mimic. Data correlated with in vitro studies with cell lines of human melanomas, their metastases and melanocytes, revealing R-DIM-P-LF11-322 to exhibit strongly increased specificity for cancer cells. This indicates the need of high affinity to the target PS, a minimum length and net positive charge, an adequate but moderate hydrophobicity, and capability of adoption of a defined structure exclusively in presence of the target membrane for high antitumor activity.

  9. Inhibition of p38 MAPK enhances ABT-737-induced cell death in melanoma cell lines: novel regulation of PUMA.

    Science.gov (United States)

    Keuling, Angela M; Andrew, Susan E; Tron, Victor A

    2010-06-01

    The mitogen-activated protein kinase (MAPK) pathway is constitutively activated in the majority of melanomas, promoting cell survival, proliferation and migration. In addition, anti-apoptotic Bcl-2 family proteins Mcl-1, Bcl-xL and Bcl-2 are frequently overexpressed, contributing to melanoma's well-documented chemoresistance. Recently, it was reported that the combination of MAPK pathway inhibition by specific MEK inhibitors and Bcl-2 family inhibition by BH3-mimetic ABT-737 synergistically induces apoptotic cell death in melanoma cell lines. Here we provide the first evidence that inhibition of another key MAPK, p38, synergistically induces apoptosis in melanoma cells in combination with ABT-737. We also provide novel mechanistic data demonstrating that inhibition of p38 increases expression of pro-apoptotic Bcl-2 protein PUMA. Furthermore, we demonstrate that PUMA can be cleaved by a caspase-dependent mechanism during apoptosis and identify what appears to be the PUMA cleavage product. Thus, our findings suggest that the combination of ABT-737 and inhibition of p38 is a promising, new treatment strategy that acts through a novel PUMA-dependent mechanism.

  10. Periostin Is a Key Niche Component for Wound Metastasis of Melanoma.

    Directory of Open Access Journals (Sweden)

    Keitaro Fukuda

    Full Text Available Tissue injury promotes metastasis of several human cancers, although factors associated with wound healing that attract circulating tumor cells have remained unknown. Here, we examined the primary and metastatic lesions that appeared 1 month after trauma in a patient with acral lentiginous melanoma. The levels of mRNA for periostin (POSTN, type 1 collagen, and fibronectin were significantly increased in the metastatic lesion relative to the primary lesion. The increase of these extracellular matrix proteins at the wound site was reproduced in a mouse model of wound healing, with the upregulation of Postn mRNA persisting the longest. POSTN was expressed in the region surrounding melanoma cell nests in metastatic lesions of both wounded mice and the patient. POSTN attenuated the cell adhesion and promoted the migration of melanoma cells without affecting their proliferation in vitro. In the mouse model, the wound site as well as subcutaneously injected osteoblasts that secrete large amounts of POSTN invited the metastasis of remotely-transplanted melanoma cells on the sites. Osteoblasts with suppression of POSTN by shRNA showed a greatly reduced ability to promote such metastasis. Our results suggest that POSTN is a key factor in promoting melanoma cell metastasis to wound sites by providing a premetastatic niche.

  11. Radiation biology of malignant melanoma

    International Nuclear Information System (INIS)

    Rofstad, E.K.; Norwegian Cancer Society, Oslo)

    1986-01-01

    The survival curves for melanoma cells exposed to single radiation doses in vitro and the specific growth delays for melanoma xenografts irradiated with single doses in vivo were found to differ considerably among individual cell lines and tumours. In fact, the differences could be almost as large as the largest differences observed among cell lines and xenografts from tumours of different histology with very different clinical radiocurability. Moreover, radiobiologic parameters that may have significant influence on tumour response to fractionated irradiation, e.g. growth rate, hypoxic fraction, reoxygenation ability, PLD-repair capacity and contact repair capacity, were found to differ greatly in magnitude among individual melanomas. This review therefore concludes that malignant melanoma is a tumour type that is very heterogeneous in radioresponsiveness, i.e. malignant melanomas should no longer be considered to be radiation resistant in general. The values of the α/β ratio derived from cell survival curves for melanoma cells irradiated in vitro and melanoma xenografts irradiated in vivo were found to cover a wide range relative to those for acutely and late responding normal tissues. Although these α/β ratios are no more than estimates of the effective α/β ratios in a clinical situation, they still indicated that hyperfractionation may be beneficial in the treatment of some melanomas, whereas others may be more efficiently treated by use of conventional fractionation regimes, either based on 2 Gy or higher doses per fraction. Consequently, optimum radiation therapy of malignant melanoma will probably require an individualized treatment strategy. In vitro assays for prediction of radiocurability and choice of treatment strategy for individual melanoma patients seem therefore highly warranted. (orig.)

  12. Vascular abnormalities associated with acute hypoxia in human melanoma xenografts

    International Nuclear Information System (INIS)

    Simonsen, Trude G.; Gaustad, Jon-Vidar; Leinaas, Marit N.; Rofstad, Einar K.

    2012-01-01

    Background and purpose: The fraction of hypoxic cells has been shown to differ substantially among human tumors of the same histological type. In this study, a window chamber model was used to identify possible mechanisms leading to the development of highly different hypoxic fractions in A-07 and R-18 human melanoma xenografts. Materials and methods: Chronic and acute hypoxia was assessed in intradermal tumors using an immunohistochemical and a radiobiological assay. Functional and morphological parameters of the vascular networks of tumors growing in dorsal window chambers were assessed with intravital microscopy. Results: R-18 tumors showed significantly higher hypoxic fractions than A-07 tumors, and the difference was mostly due to acute hypoxia. Compared to A-07 tumors, R-18 tumors showed low vascular densities, low vessel diameters, long vessel segments, low blood flow velocities, frequent fluctuations in blood flow, and a high fraction of narrow vessels with absent or very low and varying flux of red blood cells. Conclusion: The high fraction of acute hypoxia in R-18 tumors was a consequence of frequent fluctuations in blood flow and red blood cell flux combined with low vascular density. The fluctuations were most likely caused by high geometric resistance to blood flow in the tumor microvasculature.

  13. Selenium for the Prevention of Cutaneous Melanoma

    Science.gov (United States)

    Cassidy, Pamela B.; Fain, Heidi D.; Cassidy, James P.; Tran, Sally M.; Moos, Philip J.; Boucher, Kenneth M.; Gerads, Russell; Florell, Scott R.; Grossman, Douglas; Leachman, Sancy A.

    2013-01-01

    The role of selenium (Se) supplementation in cancer prevention is controversial; effects often depend on the nutritional status of the subject and on the chemical form in which Se is provided. We used a combination of in vitro and in vivo models to study two unique therapeutic windows for intervention in the process of cutaneous melanomagenisis, and to examine the utility of two different chemical forms of Se for prevention and treatment of melanoma. We studied the effects of Se in vitro on UV-induced oxidative stress in melanocytes, and on apoptosis and cell cycle progression in melanoma cells. In vivo, we used the HGF transgenic mouse model of UV-induced melanoma to demonstrate that topical treatment with l-selenomethionine results in a significant delay in the time required for UV-induced melanoma development, but also increases the rate of growth of those tumors once they appear. In a second mouse model, we found that oral administration of high dose methylseleninic acid significantly decreases the size of human melanoma xenografts. Our findings suggest that modestly elevation of selenium levels in the skin might risk acceleration of growth of incipient tumors. Additionally, certain Se compounds administered at very high doses could have utility for the treatment of fully-malignant tumors or prevention of recurrence. PMID:23470450

  14. Oncogenesis of melanoma B16 cell clones mutagenized by space environment

    International Nuclear Information System (INIS)

    Guo Yupeng; Yang Hongsheng; Tang Jingtian; Xu Mei; Geng Chuanying; Fang Qing; Xu Bo; Li Hongyan; Xiang Xing; Pan Lin

    2005-01-01

    Objective: To explore the oncogenesis of the melanoma B16 cell clones mutagenized by space environment, and find the B16 cell clones with remarkably mutated immunogenicity. Methods: B16 cells were carried by the Chinese 20th recoverable satellite to the outer space, and were harvested after 18 days' spaceflight and then monocloned. Four cell clones, which were randomly selected from the total 110 clones obtained , and the control clone were routinely cultured. The cultured cells were injected to 10 groups of C57BL/6J mice, 82.1 mice in each group. Five groups of mice received hypodermic injection and another 5 groups of mice received abdominal injection. The survival time was observed in abdominal injection groups. The mice in hypodermic injection groups were sacrificed after 14 days, the tumor, spleen and thymus were weighted, and the serum IL-2 concentration was determined. Moreover, the melanoma tumor tissues were examined histopathologically. Results: An experiment program suitable to screening space mutagenesis of B16 tumor cell clones in vivo and the observation indices were basically established. One clone was found out which was remarkably different from the control clone in latent period of tumor formation, tumor weight, survival time of the tumor-bearing mice and the expression of IL-2. Conclusions: Cultured melanoma B16 cells could be mutated by outer space environment. The further study will be focused on the influence of space environment on immunogenicity of mutagenized B16 cells. (authors)

  15. Effects of nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) on melanoma cell adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Huiwen [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States); Mollica, Molly Y.; Lee, Shin Hee [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Wang, Lei [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States); Velázquez-Martínez, Carlos A., E-mail: velazque@ualberta.ca [Chemistry Section, Laboratory of Comparative Carcinogenesis and Basic Research Program, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederick, MD 21702 (United States); Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton Alberta, Canada T6G 2N8 (Canada); Wu, Shiyong, E-mail: wus1@ohio.edu [Edison Biotechnology Institute, Ohio University, Athens, OH 45701 (United States); Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701 (United States)

    2012-10-15

    A new class of nitric oxide (NO•)-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) were developed in recent years and have shown promising potential as NSAID substitutes due to their gentle nature on cardiovascular and gastrointestinal systems. Since nitric oxide plays a role in regulation of cell adhesion, we assessed the potential use of NONO-NSAIDs as anti-metastasis drugs. In this regard, we compared the effects of NONO-aspirin and a novel NONO-naproxen to those exerted by their respective parent NSAIDs on avidities of human melanoma M624 cells. Both NONO-NSAIDs, but not the corresponding parent NSAIDs, reduced M624 adhesion on vascular cellular adhesion molecule-1 (VCAM-1) by 20–30% and fibronectin by 25–44% under fluid flow conditions and static conditions, respectively. Only NONO-naproxen reduced (∼ 56%) the activity of β1 integrin, which binds to α4 integrin to form very late antigen-4 (VLA-4), the ligand of VCAM-1. These results indicate that the diazeniumdiolate (NO•)-donor moiety is critical for reducing the adhesion between VLA-4 and its ligands, while the NSAID moiety can impact the regulation mechanism of melanoma cell adhesion. -- Highlights: ► NONO-naproxen, a novel nitric oxide-releasing NSAID, was synthesized. ► NONO-NSAIDs, but not their parent NSAIDs, reduced melanoma adhesion. ► NONO-naproxen, but not NONO-aspirin and NSAIDs, reduced activity of β1 integrin.

  16. Anticancer potential of benzothiazolic derivative (E)-2-((2-(benzo[d]thiazol-2-yl)hydrazono)methyl)-4-nitrophenol against melanoma cells.

    Science.gov (United States)

    Vasconcelos, Zanair Soares; Ralph, Ana Carolina Lima; Calcagno, Danielle Queiroz; Dos Santos Barbosa, Gleyce; do Nascimento Pedrosa, Tatiana; Antony, Lucas Pio; de Arruda Cardoso Smith, Marília; de Lucas Chazin, Eliza; Vasconcelos, Thatyana Rocha Alves; Montenegro, Raquel Carvalho; de Vasconcellos, Marne Carvalho

    2018-08-01

    Malignant melanoma is an important type of cancer worldwide due to its aggressiveness and poor survival rate. Significant efforts to understand the biology of melanoma and approaches to treat the advanced disease are focused on targeted gene inhibitors. Frequently mutated genes, such as NRAS, B-RAF and TP53, significantly exceed the frequency of mutations of other genes, emphasizing their importance for future targeted therapies. Considering the antitumor activity of benzothiazolic derivatives, this study aimed to demonstrate the action of benzothiazolic (E)-2-((2-(benzo[d]thiazol-2-yl)hydrazono)methyl)-4-nitrophenol (AFN01) against three established human melanoma cell lines that recapitulate the molecular landscape of the disease in terms of its genetic alterations and mutations, such as the TP53, NRAS and B-RAF genes. The results presented here indicate that AFN01, as a significant cytostatic and cytotoxic drug due to its induction of DNA fragmentation, causes single and double DNA strand breaks, consequently inhibiting cell proliferation, migration and invasion by promoting apoptosis. Our data suggest that AFN01 might be considered as a future therapeutic option for managing melanoma. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Imidazopyridine-fused [1,3]-diazepinones part 2: Structure-activity relationships and antiproliferative activity against melanoma cells.

    Science.gov (United States)

    Bellet, Virginie; Lichon, Laure; Arama, Dominique P; Gallud, Audrey; Lisowski, Vincent; Maillard, Ludovic T; Garcia, Marcel; Martinez, Jean; Masurier, Nicolas

    2017-01-05

    We recently described a pyrido-imidazodiazepinone derivative which could be a promising hit compound for the development of new drugs acting against melanoma cells. In this study, a series of 28 novel pyrido-imidazodiazepinones were synthesized and screened for their in vitro cytotoxic activities against the melanoma MDA-MB-435 cell line. Among the derivatives, seven of them showed 50% growth inhibitory activity at 1 μM concentration, and high selectivity against the melanoma cell line MDA-MB-435. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Genética molecular aplicada ao câncer cutâneo não melanoma Molecular genetics of non-melanoma skin cancer

    Directory of Open Access Journals (Sweden)

    Marcos Antonio Rodrigues Martinez

    2006-10-01

    Full Text Available Os cânceres cutâneos não melanoma são as neoplasias malignas mais comuns em humanos. O carcinoma basocelular e o carcinoma espinocelular representam cerca de 95% dos cânceres cutâneos não melanoma, o que os torna um crescente problema para a saúde p��blica mundial devido a suas prevalências cada vez maiores. As alterações genéticas que ocorrem no desenvolvimento dessas malignidades cutâneas são apenas parcialmente compreendidas, havendo muito interesse no conhecimento e determinação das bases genéticas dos cânceres cutâneos não melanoma que expliquem seus fenótipos, comportamentos biológicos e potenciais metastáticos distintos. Apresenta-se uma revisão atualizada da genética molecular aplicada aos cânceres cutâneos não melanoma, em especial ao carcinoma basocelular e carcinoma espinocelular, enfatizando os mais freqüentes genes e os principais mecanismos de instabilidade genômica envolvidos no desenvolvimento dessas malignidades cutâneas.Non-melanoma skin cancers are the most common malignant neoplasms in humans. About 95% of all non-melanoma skin cancers are represented by basal cell carcinoma and squamous cell carcinoma. Their prevalences are still increasing worldwide, representing an important public health problem. The genetic alterations underlying basal cell carcinoma and squamous cell carcinoma development are only partly understood. Much interest lies in determining the genetic basis of non-melanoma skin cancers, to explain their distinctive phenotypes, biological behaviors and metastatic potential. We present here a molecular genetic update, focusing on the most frequent genes and genomic instability involved in the development and progression of non-melanoma skin cancers.

  19. Inhibition of melanoma cell proliferation by resveratrol is correlated with upregulation of quinone reductase 2 and p53

    International Nuclear Information System (INIS)

    Hsieh Tzechen; Wang Zhirong; Hamby, Carl V.; Wu, Joseph M.

    2005-01-01

    Resveratrol (trans-3,4',5-trihydroxystilbene) is a grape-derived polyphenol under intensive study for its potential in cancer prevention. In the case of cultured human melanoma cells, no one to our knowledge has investigated whether resveratrol exerts similar anti-proliferative activities in cells with different metastatic potential. Therefore, we examined the effects of this polyphenol on the growth of weakly metastatic Line IV clone 3 and on autologous, highly metastatic Line IV clone 1 cultured melanoma cells. Comparable inhibition of growth and colony formation resulted from treatment by resveratrol in both cell lines. Flow cytometric analysis revealed that resveratrol-treated clone 1 cells had a dose-dependent increase in S phase and a concomitant reduction in the G 1 phase. No detectable change in cell cycle phase distribution was found in similarly treated clone 3 cells. Western blots demonstrated a significant increase in the expression of the tumor suppressor gene p53, without a commensurate change in p21 and several other cell cycle regulatory proteins in both cell types. Chromatography of Line IV clone 3 and clone 1 cell extracts on resveratrol affinity columns revealed that the basal expression of dihydronicotinamide riboside quinone reductase 2 (NQO2) was higher in Line IV clone 1 than clone 3 cells. Levels of NQO2 but not its structural analog NQO1 were dose-dependently increased by resveratrol in both cell lines. We propose that induction of NQO2 may relate to the observed increased expression of p53 that, in turn, contributes to the observed suppression of cell growth in both melanoma cell lines

  20. Amelanotic Melanoma Masquerading as a Granular Cell Lesion

    Directory of Open Access Journals (Sweden)

    Deepak Pandiar

    2013-01-01

    Full Text Available Amelanotic melanoma (AM presents a diagnostic challenge due to its wide clinical presentations, lack of pigmentation, and varied histological appearances. Immunohistochemistry plays a crucial role in the diagnosis of these lesions. Amelanotic melanoma of oral mucosa is an uncommon lesion. We report a case of a 50-year-old male patient with a growth on the anterior mandibular gingiva of seven-month duration. In the present case, histologically, the tumour resembled a granular cell lesion, which has not been reported previously in AM. Diagnosis was possible by a sequential panel of immunohistochemical markers, of which finally vimentin, S100, HMB45, and Melan-A were positive. The tumor was surgically excised, and postsurgical radiotherapy was given.

  1. X-ray sensitivity of human tumor cells in vitro

    International Nuclear Information System (INIS)

    Weichselbaum, R.R.; Nove, J.; Little, J.B.

    1980-01-01

    Clonally-derived cells from ten human malignant tumors considered radiocurable (breast, neuroblastoma, medulloblastoma) or non-radiocurable (osteosarcoma, hypernephroma, glioblastoma, melanoma) were studied in cell culture and their in vitro x-ray survival curve parameters determined (anti n, D 0 ). There were no significant differences among the tumor cell lines suggesting that survival parameters in vitro do not explain differences in clinical radiocurability. Preliminary investigation with density inhibited human tumor cells indicate that such an approach may yield information regarding inherent cellular differences in radiocurability

  2. miR-125b induces cellular senescence in malignant melanoma

    DEFF Research Database (Denmark)

    Nyholm, Anne Marie; Lerche, Catharina M; Manfé, Valentina

    2014-01-01

    transfected melanoma cell line Mel-Juso and then investigated the effect of the presence of a stable overexpression of miR-125b on growth by western blotting, flow cytometry and β-galactosidase staining. The tumourogenicity of the transfected cells was tested using a murine model and the tumours were further...... examined with in-situ-hybridization. RESULTS: In primary human tumours and in lymph node metastases increased expression of miR-125b was found in single, large tumour cells with abundant cytoplasm. A stable overexpression of miR-125b in human melanoma cell line Mel-Juso resulted in a G0/G1 cell cycle block...... and emergence of large cells expressing senescence markers: senescence-associated beta-galactosidase, p21, p27 and p53. Mel-Juso cells overexpressing miR-125b were tumourigenic in mice, but the tumours exhibited higher level of cell senescence and decreased expression of proliferation markers, cyclin D1 and Ki...

  3. Induction of arginosuccinate synthetase (ASS) expression affects the antiproliferative activity of arginine deiminase (ADI) in melanoma cells.

    Science.gov (United States)

    Manca, Antonella; Sini, Maria Cristina; Izzo, Francesco; Ascierto, Paolo A; Tatangelo, Fabiana; Botti, Gerardo; Gentilcore, Giusy; Capone, Marilena; Mozzillo, Nicola; Rozzo, Carla; Cossu, Antonio; Tanda, Francesco; Palmieri, Giuseppe

    2011-06-01

    Arginine deiminase (ADI), an arginine-degrading enzyme, has been used in the treatment of tumours sensitive to arginine deprivation, such as malignant melanoma (MM) and hepatocellular carcinoma (HCC). Endogenous production of arginine is mainly dependent on activity of ornithine transcarbamylase (OTC) and argininosuccinate synthetase (ASS) enzymes. We evaluated the effect of ADI treatment on OTC and ASS expression in a series of melanoma cell lines. Twenty-five primary melanoma cell lines and normal fibroblasts as controls underwent cell proliferation assays and Western blot analyses in the presence or absence of ADI. Tissue sections from primary MMs (N = 20) and HCCs (N = 20) were investigated by immunohistochemistry for ASS expression. Overall, 21/25 (84%) MM cell lines presented a cell growth inhibition by ADI treatment; none of them presented constitutive detectable levels of the ASS protein. However, 7/21 (33%) ADI-sensitive melanoma cell lines presented markedly increased expression levels of the ASS protein following ADI treatment, with a significantly higher IC50 median value. Growth was not inhibited and the IC50 was not reached among the remaining 4/25 (16%) MM cell lines; all of them showed constitutive ASS expression. The OTC protein was found expressed in all melanoma cell lines before and after the ADI treatment. Lack of ASS immunostaining was observed in all analyzed in vivo specimens. Our findings suggest that response to ADI treatment in melanoma is significantly correlated with the ability of cells to express ASS either constitutively at basal level (inducing drug resistance) or after the treatment (reducing sensitivity to ADI).

  4. Use of human tissue to assess the oncogenic activity of melanoma-associated mutations.

    Science.gov (United States)

    Chudnovsky, Yakov; Adams, Amy E; Robbins, Paul B; Lin, Qun; Khavari, Paul A

    2005-07-01

    Multiple genetic alterations occur in melanoma, a lethal skin malignancy of increasing incidence. These include mutations that activate Ras and two of its effector cascades, Raf and phosphoinositide 3-kinase (PI3K). Induction of Ras and Raf can be caused by active N-Ras and B-Raf mutants as well as by gene amplification. Activation of PI3K pathway components occurs by PTEN loss and by AKT3 amplification. Melanomas also commonly show impairment of the p16(INK4A)-CDK4-Rb and ARF-HDM2-p53 tumor suppressor pathways. CDKN2A mutations can produce p16(INK4A) and ARF protein loss. Rb bypass can also occur through activating CDK4 mutations as well as by CDK4 amplification. In addition to ARF deletion, p53 pathway disruption can result from dominant negative TP53 mutations. TERT amplification also occurs in melanoma. The extent to which these mutations can induce human melanocytic neoplasia is unknown. Here we characterize pathways sufficient to generate human melanocytic neoplasia and show that genetically altered human tissue facilitates functional analysis of mutations observed in human tumors.

  5. Monoclonal anti-melanoma antibodies and their possible clinical use

    International Nuclear Information System (INIS)

    Hellstroem, K.E.; Hellstroem, Ingegerd; Washington Univ., Seattle; Washington Univ., Seattle

    1985-01-01

    Cell surface antigens of human melanoma, as defined by monoclonal antibodies, are discussed and in particular the three antigens p97, a GD3 ganglioside and a proteoglycan. The potential diagnostic uses of antibodies to melanoma antigens are reviewed including in vitro diagnosis by immuno-histology, in vitro diagnosis by serum assays and in vivo diagnosis by tumour imaging using radioactively labelled antibodies. The potential therapeutic uses of monoclonal antibodies to melanoma antigens are also reviewed including targets for antibody therapy, the use of antibodies alone, radiolabelled antibodies, antibody-toxin conjugates, antibody-drug conjugates, anti-idiotypic antibodies and vaccines. (UK)

  6. Resistance to the ionizing radiation in cells of human melanoma. Role of the antioxidant enzymes and of the free radicals of the oxygen

    International Nuclear Information System (INIS)

    Medina, V.; Cricco, G.; Massari, N.; Nunez, M.; Martin, G.; Mohanad, N.; Gutierrez, A.; Bergoc, R.; Rivera, E.; Crescenti, E.; Croci, M.

    2006-01-01

    The malignant melanoma is a highly aggressive and potentially lethal type of skin cancer. Previously we have reported that the cellular human lines of melanoma WM35 and M15 are resistant to the ionizing radiation (IR). The histamine (HA) although it has a regulator effect of the cellular proliferation in these lines, it is not capable of to modify the response to the IR like it makes with other malignant cellular lines. To investigate the bases of the radioresistance of the melanoma lines we have studied in the WM35 the production of free radicals of oxygen (ROS), the activity of the antioxidant enzymes and their modifications by action of the IR and of the HA. In studies in vitro the cells were treated with HA 10 μM from 20 hs before being irradiated with a dose of 2 Gy (source 137 Cs, dose rate 7.7 Gy/min). The ROS levels, superoxide anion (O 2 - ) and hydrogen peroxide (H 2 O 2 ) its were measured by flow cytometry using fluorescent coloring and the activity of dismutase superoxide (SOD), Catalase (CAT) and Glutathion Peroxidase (GPx) its were determined by spectrophotometric techniques and the protein levels by Western blot. The results indicate that in the cells WM35 the HA increases the production of H 2 O 2 in 96% and it diminishes lightly (17%) the levels of O 2 - . On the contrary, the IR diminishes the levels of H 2 O-2 in 47% and it increases in 46% those of O 2 - . In the irradiated cells the HA power the decrease of H 2 O 2 produced by the IR. The variation of the enzymes activity is coincident with these changes in the levels of ROS: the treatment with HA increases the activity of SOD and it diminishes that of CAT in cells without irradiating; on the other hand, in the irradiated cells the HA it diminishes the SOD significantly. On the base of these results we can conclude that the levels of H 2 O 2 are directly related with the sensitivity of the cells WM35 to the IR. The HA is able to modulate the activity of the antioxidant enzymes and the levels

  7. Xeroderma Pigmentosum Group A Promotes Autophagy to Facilitate Cisplatin Resistance in Melanoma Cells through the Activation of PARP1.

    Science.gov (United States)

    Ge, Rui; Liu, Lin; Dai, Wei; Zhang, Weigang; Yang, Yuqi; Wang, Huina; Shi, Qiong; Guo, Sen; Yi, Xiuli; Wang, Gang; Gao, Tianwen; Luan, Qi; Li, Chunying

    2016-06-01

    Xeroderma pigmentosum group A (XPA), a key protein in the nucleotide excision repair pathway, has been shown to promote the resistance of tumor cells to chemotherapeutic drugs by facilitating the DNA repair process. However, the role of XPA in the resistance of melanoma to platinum-based drugs like cisplatin is largely unknown. In this study, we initially found that XPA was expressed at higher levels in cisplatin-resistant melanoma cells than in cisplatin-sensitive ones. Furthermore, the knockdown of XPA not only increased cellular apoptosis but also inhibited cisplatin-induced autophagy, which rendered the melanoma cells more sensitive to cisplatin. Moreover, we discovered that the increased XPA in resistant melanoma cells promoted poly(adenosine diphosphate-ribose) polymerase 1 (PARP1) activation and that the inhibition of PARP1 could attenuate the cisplatin-induced autophagy. Finally, we proved that the inhibition of PARP1 and the autophagy process made resistant melanoma cells more susceptible to cisplatin treatment. Our study shows that XPA can promote cell-protective autophagy in a DNA repair-independent manner by enhancing the activation of PARP1 in melanoma cells resistant to cisplatin and that the XPA-PARP1-mediated autophagy process can be targeted to overcome cisplatin resistance in melanoma chemotherapy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. [Combined effect of cisplatin and caffeine on murine B16-BL6 melanoma cells].

    Science.gov (United States)

    Yasutake, H; Tsuchiya, H; Sugihara, M; Tomita, K; Ueda, Y; Tanaka, M; Sasaki, T

    1989-05-01

    Combined effect of cisplatin and caffeine on murine B16-BL6 melanoma cells was studied. Synergistic inhibition of the cell growth was observed when caffeine (2 mM) was added continuously after one hour exposure of cisplatin. On the other hand, when caffeine was added before one hour exposure of cisplatin or one hour simultaneous exposure with cisplatin, synergistic effect was not shown. In the analysis of DNA histogram obtained from flow cytometry, S and G2/M accumulation was observed by the treatment of cisplatin and that accumulation was reduced by the combination of cisplatin and caffeine. From this findings, it was suggested that caffeine would inhibit DNA repair process. Furthermore, according to morphological studies with hematoxylin-eosin stain and Fontana-Masson stain, the addition of caffeine alone resulted in mild swelling of melanoma cells and the decrease of nuclear-cytoplasmic ratio. The combination of cisplatin and caffeine caused marked swelling of melanoma cells and remarkable increase of dendrite-like processes. Melanogenesis was also enhanced by the addition of these two drugs. Many matured melanosomes, increases of mitochondria, Golgi's apparatus and endoplasmic reticula were observed by the use of electron microscope. These findings implied that the combination of cisplatin and caffeine induced a differentiation of murine melanoma cells.

  9. Detection of Melanoma Metastases in Resected Human Lymph Nodes by Noninvasive Multispectral Photoacoustic Imaging

    Directory of Open Access Journals (Sweden)

    Gerrit Cornelis Langhout

    2014-01-01

    Full Text Available Objective. Sentinel node biopsy in patients with cutaneous melanoma improves staging, provides prognostic information, and leads to an increased survival in node-positive patients. However, frozen section analysis of the sentinel node is not reliable and definitive histopathology evaluation requires days, preventing intraoperative decision-making and immediate therapy. Photoacoustic imaging can evaluate intact lymph nodes, but specificity can be hampered by other absorbers such as hemoglobin. Near infrared multispectral photoacoustic imaging is a new approach that has the potential to selectively detect melanin. The purpose of the present study is to examine the potential of multispectral photoacoustic imaging to identify melanoma metastasis in human lymph nodes. Methods. Three metastatic and nine benign lymph nodes from eight melanoma patients were scanned ex vivo using a Vevo LAZR© multispectral photoacoustic imager and were spectrally analyzed per pixel. The results were compared to histopathology as gold standard. Results. The nodal volume could be scanned within 20 minutes. An unmixing procedure was proposed to identify melanoma metastases with multispectral photoacoustic imaging. Ultrasound overlay enabled anatomical correlation. The penetration depth of the photoacoustic signal was up to 2 cm. Conclusion. Multispectral three-dimensional photoacoustic imaging allowed for selective identification of melanoma metastases in human lymph nodes.

  10. Engagement of αIIbβ3 (GPIIb/IIIa) with ανβ3 Integrin Mediates Interaction of Melanoma Cells with Platelets

    Science.gov (United States)

    Lonsdorf, Anke S.; Krämer, Björn F.; Fahrleitner, Manuela; Schönberger, Tanja; Gnerlich, Stephan; Ring, Sabine; Gehring, Sarah; Schneider, Stefan W.; Kruhlak, Michael J.; Meuth, Sven G.; Nieswandt, Bernhard; Gawaz, Meinrad; Enk, Alexander H.; Langer, Harald F.

    2012-01-01

    A mutual relationship exists between metastasizing tumor cells and components of the coagulation cascade. The exact mechanisms as to how platelets influence blood-borne metastasis, however, remain poorly understood. Here, we used murine B16 melanoma cells to observe functional aspects of how platelets contribute to the process of hematogenous metastasis. We found that platelets interfere with a distinct step of the metastasis cascade, as they promote adhesion of melanoma cells to the endothelium in vitro under shear conditions. Constitutively active platelet receptor GPIIb/IIIa (integrin αIIbβ3) expressed on Chinese hamster ovary cells promoted melanoma cell adhesion in the presence of fibrinogen, whereas blocking antibodies to aνβ3 integrin on melanoma cells or to GPIIb/IIIa significantly reduced melanoma cell adhesion to platelets. Furthermore, using intravital microscopy, we observed functional platelet-melanoma cell interactions, as platelet depletion resulted in significantly reduced melanoma cell adhesion to the injured vascular wall in vivo. Using a mouse model of hematogenous metastasis to the lung, we observed decreased metastasis of B16 melanoma cells to the lung by treatment with a mAb blocking the aν subunit of aνβ3 integrin. This effect was significantly reduced when platelets were depleted in vivo. Thus, the engagement of GPIIb/IIIa with aνβ3 integrin interaction mediates tumor cell-platelet interactions and highlights how this interaction is involved in hematogenous tumor metastasis. PMID:22102277

  11. Pathway aberrations of murine melanoma cells observed in Paired-End diTag transcriptomes

    Directory of Open Access Journals (Sweden)

    Liu Edison

    2007-06-01

    Full Text Available Abstract Background Melanoma is the major cause of skin cancer deaths and melanoma incidence doubles every 10 to 20 years. However, little is known about melanoma pathway aberrations. Here we applied the robust Gene Identification Signature Paired End diTag (GIS-PET approach to investigate the melanoma transcriptome and characterize the global pathway aberrations. Methods GIS-PET technology directly links 5' mRNA signatures with their corresponding 3' signatures to generate, and then concatenate, PETs for efficient sequencing. We annotated PETs to pathways of KEGG database and compared the murine B16F1 melanoma transcriptome with three non-melanoma murine transcriptomes (Melan-a2 melanocytes, E14 embryonic stem cells, and E17.5 embryo. Gene expression levels as represented by PET counts were compared across melanoma and melanocyte libraries to identify the most significantly altered pathways and investigate the expression levels of crucial cancer genes. Results Melanin biosynthesis genes were solely expressed in the cells of melanocytic origin, indicating the feasibility of using the PET approach for transcriptome comparison. The most significantly altered pathways were metabolic pathways, including upregulated pathways: purine metabolism, aminophosphonate metabolism, tyrosine metabolism, selenoamino acid metabolism, galactose utilization, nitrobenzene degradation, and bisphenol A degradation; and downregulated pathways: oxidative phosphorylation, ATPase synthesis, TCA cycle, pyruvate metabolism, and glutathione metabolism. The downregulated pathways concurrently indicated a slowdown of mitochondrial activities. Mitochondrial permeability was also significantly altered, as indicated by transcriptional activation of ATP/ADP, citrate/malate, Mg++, fatty acid and amino acid transporters, and transcriptional repression of zinc and metal ion transporters. Upregulation of cell cycle progression, MAPK, and PI3K/Akt pathways were more limited to certain

  12. Standardized Cannabis sativa extract attenuates tau and stathmin gene expression in the melanoma cell line.

    Science.gov (United States)

    Vaseghi, Golnaz; Taki, Mohamad Javad; Javanmard, Shaghayegh Haghjooy

    2017-10-01

    Metastasis is the main cause of death in patients with melanoma. Cannabis-based medicines are effective adjunctive drugs in cancer patients. Tau and Stathmin proteins are the key proteins in cancer metastasis. Here we have investigated the effect of a standardized Cannabis sativa extract on cell migration and Tau and Stathmin gene expression in the melanoma cell line. In the treatment group, melanoma (B1617) was treated 48 hr with various concentrations of standardized C. sativa extract. Cells with no treatment were considered as the control group, then study was followed by Quantitative RT-Real Time PCR assay. Relative gene expression was calculated by the ΔΔct method. Migration assay was used to evaluate cancer metastasis. Tau and stathmin gene expression was significantly decreased compared to the control group. Cell migration was also significantly reduced compared to controls. C. sativa decreased tau and stathmin gene expression and cancer metastasis. The results may have some clinical relevance for the use of cannabis-based medicines in patients with metastatic melanoma.

  13. Apoptosis, energy metabolism, and fraction of radiobiologically hypoxic cells: a study of human melanoma multicellular spheroids.

    Science.gov (United States)

    Rofstad, E K; Eide, K; Skøyum, R; Hystad, M E; Lyng, H

    1996-09-01

    The magnitude of the fraction of radiobiologically hypoxic cells in tumours is generally believed to reflect the efficiency of the vascular network. Theoretical studies have suggested that the hypoxic fraction might also be influenced by biological properties of the tumour cells. Quantitative experimental results of cell energy metabolism, hypoxia- induced apoptosis, and radiobiological hypoxia are reported here. Human melanoma multicellular spheroids (BEX-c and WIX-c) were used as tumour models to avoid confounding effects of the vascular network. Radiobiological studies showed that the fractions of hypoxic cells in 1000-microM spheroids were 32 +/- 12% (BEX-c) and 2.5 +/- 1.1% (WIX-c). The spheroid hypoxic volume fractions (28 +/- 6% (BEX-c) and 1.4 +/- 7% (WIX-c)), calculated from the rate of oxygen consumption per cell, the cell packing density, and the thickness of the viable rim, were similar to the fractions of radiobiologically hypoxic cells. Large differences between tumours in fraction of hypoxic cells are therefore not necessarily a result of differences in the efficiency of the vascular network. Studies of monolayer cell cultures, performed to identify the biological properties of the BEX-c and WIX-c cells leading to this large difference in fraction of hypoxic cells, gave the following results: (1) WIX-c showed lower cell surviving fractions after exposure to hypoxia than BEX-c, (2) WIX-c showed higher glucose uptake and lactate release rates than BEX-c both under aerobic and hypoxic conditions, and (3) hypoxia induced apoptosis in WIX-c but not in BEX-c. These observations suggested that the difference between BEX-c and WIX-c spheroids in fraction of hypoxic cells resulted partly from differences in cell energy metabolism and partly from a difference in capacity to retain viability under hypoxic stress. The induction of apoptosis by hypoxia was identified as a phenomenon which has an important influence on the magnitude of the fraction of

  14. Canine oral melanoma.

    Science.gov (United States)

    Bergman, Philip J

    2007-05-01

    Melanoma is the most common oral malignancy in the dog. Oral and/or mucosal melanoma has been routinely considered an extremely malignant tumor with a high degree of local invasiveness and high metastatic propensity. Primary tumor size has been found to be extremely prognostic. The World Health Organization staging scheme for dogs with oral melanoma is based on size, with stage I = or = 4cm tumor and/or lymph node metastasis, and stage IV = distant metastasis. Median survival times for dogs with oral melanoma treated with surgery are approximately 17 to 18, 5 to 6, and 3 months with stage I, II, and III disease, respectively. Significant negative prognostic factors include stage, size, evidence of metastasis, and a variety of histologic criteria. Standardized treatments such as surgery, coarse-fractionation radiation therapy, and chemotherapy have afforded minimal to modest stage-dependent clinical benefits and death is usually due to systemic metastasis. Numerous immunotherapeutic strategies have been employed to date with limited clinical efficacy; however, the use of xenogeneic DNA vaccines may represent a leap forward in clinical efficacy. Oral melanoma is a spontaneous syngeneic cancer occurring in outbred, immunocompetent dogs and appears to be a more clinically faithful therapeutic model for human melanoma; further use of canine melanoma as a therapeutic model for human melanoma is strongly encouraged. In addition, the development of an expanded but clinically relevant staging system incorporating the aforementioned prognostic factors is also strongly encouraged.

  15. [Telomerase activity in uveal melanomas].

    Science.gov (United States)

    Rohrbach, J M; Riedinger, C; Wild, M; Partsch, M

    2000-05-01

    The maximum number of cell divisions of a certain cell population is genetically fixed so that aging cells become non-dividing (senescent) at least. This replicative life span, also known as "Hayflick limit", is probably defined by a "critical" length of the telomeres. Telomeres are special DNA-sequences located at the four ends of the chromosomes which are shortened with each cell cycle. Cells of most, but not all malignant tumours have been shown to reactivate the enzyme telomerase so that telomeres can be reconstructed, "Hayflick limit" can be overcome, and unlimited cell division can be established. This study was undertaken to elucidate whether telomerase reactivation is used by uveal melanoma cells. Fresh tumour tissue was removed from 10 untreated uveal melanomas after enucleation. Telomerase activity was determined using a PCR ELISA according to the Telomeric Repeat Amplification Protocol (TRAP). Normal tissue of the skin and the conjunctiva served as control. Telomerase activity was detectable in 90% of the investigated uveal melanomas. All control specimens were telomerase negative. Uveal melanoma growth seems to depend on telomerase reactivation. Thus, telomerase inhibition could offer a new principle for uveal melanoma therapy in the future.

  16. Adoptive Cell Therapy with Tumor-Infiltrating Lymphocytes in Advanced Melanoma Patients

    Directory of Open Access Journals (Sweden)

    Mélanie Saint-Jean

    2018-01-01

    Full Text Available Immunotherapy for melanoma includes adoptive cell therapy with autologous tumor-infiltrating lymphocytes (TILs. This monocenter retrospective study was undertaken to evaluate the efficacy and safety of this treatment of patients with advanced melanoma. All advanced melanoma patients treated with TILs using the same TIL expansion methodology and same treatment interleukin-2 (IL-2 regimen between 2009 and 2012 were included. After sterile intralesional excision of a cutaneous or subcutaneous metastasis, TILs were produced according to a previously described method and then infused into the patient who also received a complementary subcutaneous IL-2 regimen. Nine women and 1 man were treated for unresectable stage IIIC (n=4 or IV (n=6 melanoma. All but 1 patient with unresectable stage III melanoma (1st line had received at least 2 previous treatments, including anti-CTLA-4 antibody for 4. The number of TILs infused ranged from 0.23 × 109 to 22.9 × 109. Regarding safety, no serious adverse effect was reported. Therapeutic responses included a complete remission, a partial remission, 2 stabilizations, and 6 progressions. Among these 4 patients with clinical benefit, 1 is still alive with 9 years of follow-up and 1 died from another cause after 8 years of follow-up. Notably, patients treated with high percentages of CD4 + CD25 + CD127lowFoxp3+ T cells among their TILs had significantly shorter OS. The therapeutic effect of combining TILs with new immunotherapies needs further investigation.

  17. The kin17 Protein in Murine Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Anelise C. Ramos

    2015-11-01

    Full Text Available kin17 has been described as a protein involved in the processes of DNA replication initiation, DNA recombination, and DNA repair. kin17 has been studied as a potential molecular marker of breast cancer. This work reports the detection and localization of this protein in the murine melanoma cell line B16F10-Nex2 and in two derived subclones with different metastatic potential, B16-8HR and B16-10CR. Nuclear and chromatin-associated protein fractions were analyzed, and kin17 was detected in all fractions, with an elevated concentration observed in the chromatin-associated fraction of the clone with low metastatic potential, suggesting that the kin17 expression level could be a marker of melanoma.

  18. Benzofuroxan derivatives N-Br and N-I induce intrinsic apoptosis in melanoma cells by regulating AKT/BIM signaling and display anti metastatic activity in vivo

    International Nuclear Information System (INIS)

    Farias, C. F.; Massaoka, M. H.; Girola, N.; Azevedo, R. A.; Ferreira, A. K.; Jorge, S. D.; Tavares, L. C.; Figueiredo, C. R.; Travassos, L. R.

    2015-01-01

    Malignant melanoma is an aggressive type of skin cancer, and despite recent advances in treatment, the survival rate of the metastatic form remains low. Nifuroxazide analogues are drugs based on the substitution of the nitrofuran group by benzofuroxan, in view of the pharmacophore similarity of the nitro group, improving bioavailability, with higher intrinsic activity and less toxicity. Benzofuroxan activity involves the intracellular production of free-radical species. In the present work, we evaluated the antitumor effects of different benzofuroxan derivatives in a murine melanoma model. B16F10-Nex2 melanoma cells were used to investigate the antitumor effects of Benzofuroxan derivatives in vitro and in a syngeneic melanoma model in C57Bl/6 mice. Cytotoxicity, morphological changes and reactive oxygen species (ROS) were assessed by a diphenyltetrasolium reagent, optical and fluorescence microscopy, respectively. Annexin-V binding and mitochondrial integrity were analyzed by flow cytometry. Western blotting and colorimetry identified cell signaling proteins. Benzofuroxan N-Br and N-I derivatives were active against murine and human tumor cell lines, exerting significant protection against metastatic melanoma in a syngeneic model. N-Br and N-I induce apoptosis in melanoma cells, evidenced by specific morphological changes, DNA condensation and degradation, and phosphatidylserine translocation in the plasma membrane. The intrinsic mitochondrial pathway in B16F10-Nex2 cells is suggested owing to reduced outer membrane potential in mitochondria, followed by caspase −9, −3 activation and cleavage of PARP. The cytotoxicity of N-Br and N-I in B16F10-Nex2 cells is mediated by the generation of ROS, inhibited by pre-incubation of the cells with N-acetylcysteine (NAC). The induction of ROS by N-Br and N-I resulted in the inhibition of AKT activation, an important molecule related to tumor cell survival, followed by upregulation of BIM. We conclude that N-Br and N-I are

  19. Benzofuroxan derivatives N-Br and N-I induce intrinsic apoptosis in melanoma cells by regulating AKT/BIM signaling and display anti metastatic activity in vivo.

    Science.gov (United States)

    Farias, C F; Massaoka, M H; Girola, N; Azevedo, R A; Ferreira, A K; Jorge, S D; Tavares, L C; Figueiredo, C R; Travassos, L R

    2015-10-27

    Malignant melanoma is an aggressive type of skin cancer, and despite recent advances in treatment, the survival rate of the metastatic form remains low. Nifuroxazide analogues are drugs based on the substitution of the nitrofuran group by benzofuroxan, in view of the pharmacophore similarity of the nitro group, improving bioavailability, with higher intrinsic activity and less toxicity. Benzofuroxan activity involves the intracellular production of free-radical species. In the present work, we evaluated the antitumor effects of different benzofuroxan derivatives in a murine melanoma model. B16F10-Nex2 melanoma cells were used to investigate the antitumor effects of Benzofuroxan derivatives in vitro and in a syngeneic melanoma model in C57Bl/6 mice. Cytotoxicity, morphological changes and reactive oxygen species (ROS) were assessed by a diphenyltetrasolium reagent, optical and fluorescence microscopy, respectively. Annexin-V binding and mitochondrial integrity were analyzed by flow cytometry. Western blotting and colorimetry identified cell signaling proteins. Benzofuroxan N-Br and N-I derivatives were active against murine and human tumor cell lines, exerting significant protection against metastatic melanoma in a syngeneic model. N-Br and N-I induce apoptosis in melanoma cells, evidenced by specific morphological changes, DNA condensation and degradation, and phosphatidylserine translocation in the plasma membrane. The intrinsic mitochondrial pathway in B16F10-Nex2 cells is suggested owing to reduced outer membrane potential in mitochondria, followed by caspase -9, -3 activation and cleavage of PARP. The cytotoxicity of N-Br and N-I in B16F10-Nex2 cells is mediated by the generation of ROS, inhibited by pre-incubation of the cells with N-acetylcysteine (NAC). The induction of ROS by N-Br and N-I resulted in the inhibition of AKT activation, an important molecule related to tumor cell survival, followed by upregulation of BIM. We conclude that N-Br and N-I are

  20. Effects of space environment on biological characteristics of melanoma B16 cells

    International Nuclear Information System (INIS)

    Geng Chuanying; Xiang Qing; Xu Mei; Li Hongyan; Xu Bo; Fang Qing; Tang Jingtian; Guo Yupeng

    2006-01-01

    Objective: To examine the effects of space environment on biological characteristics of melanoma B16 Cells. Methods: B16 cells were carried to the space (in orbit for 8 days, circle the earth 286 times) by the 20th Chinese recoverable satellite, and then harvested and monocloned. 110 strains of space B16 cells were obtained in total. Ten strains of space B16 cells were selected and its morphological changes were examined with the phasecontrast microscope. Flow cytometry and MTT assay were carried out to evaluate the cell cycle and cell viability. Results Morphological changes were observed in the space cells, and melainin granules on the surface in some cells. It was demonstrated by MTF assay that space cells viability varied muti- directionally. It was showed by flow cytometry analysis that G1 phase of space cells was prolonged, S phase shortened. Conclusion: Space environment may change the biological characteristics of melanoma B16 cells. (authors)

  1. Adipocytes Promote B16BL6 Melanoma Cell Invasion and the Epithelial-to-Mesenchymal Transition

    OpenAIRE

    Kushiro, Kyoko; Chu, Randy A.; Verma, Akanksha; Núñez, Nomelí P.

    2011-01-01

    Metastatic melanoma is one of the most deadly and evasive types of cancer. On average, cancer patients with metastatic melanoma survive only 6–9 months after diagnosis. Epidemiological and animal studies suggest that obesity increases the metastatic ability of malignant melanoma, though the mechanism is not known. In the present studies, we assessed the ability of 3T3L1 adipocytes to modulate B16BL6 melanoma cell invasion and the Epithelial-to-Mesenchymal Transition (EMT). For this purpose, w...

  2. Selenium for the Prevention of Cutaneous Melanoma

    Directory of Open Access Journals (Sweden)

    Douglas Grossman

    2013-03-01

    Full Text Available The role of selenium (Se supplementation in cancer prevention is controversial; effects often depend on the nutritional status of the subject and on the chemical form in which Se is provided. We used a combination of in vitro and in vivo models to study two unique therapeutic windows for intervention in the process of cutaneous melanomagenisis, and to examine the utility of two different chemical forms of Se for prevention and treatment of melanoma. We studied the effects of Se in vitro on UV-induced oxidative stress in melanocytes, and on apoptosis and cell cycle progression in melanoma cells. In vivo, we used the HGF transgenic mouse model of UV-induced melanoma to demonstrate that topical treatment with l-selenomethionine results in a significant delay in the time required for UV-induced melanoma development, but also increases the rate of growth of those tumors once they appear. In a second mouse model, we found that oral administration of high dose methylseleninic acid significantly decreases the size of human melanoma xenografts. Our findings suggest that modestly elevation of selenium levels in the skin might risk acceleration of growth of incipient tumors. Additionally, certain Se compounds administered at very high doses could have utility for the treatment of fully-malignant tumors or prevention of recurrence.

  3. miR-137 suppresses tumor growth of malignant melanoma by targeting aurora kinase A

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Xiao; Zhang, Haiping [Department of Dermatology and Venereal Disease, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China); Lian, Shi [Department of Dermatology and Venereal Disease, Capital Medical University, Beijing 100069 (China); Zhu, Wei, E-mail: zhuwei_2020@163.com [Department of Dermatology and Venereal Disease, Xuanwu Hospital, Capital Medical University, Beijing 100053 (China)

    2016-07-01

    As an oncogene, aurora kinase A (AURKA) is overexpressed in various types of human cancers. However, the expression and roles of AURKA in malignant melanoma are largely unknown. In this study, a miR-137-AURKA axis was revealed to regulate melanoma growth. We found a significant increase in levels of AURKA in melanoma. Both genetic knockdown and pharmacologic inhibition of AURKA decreased tumor cell growth in vitro and in vivo. Further found that miR-137 reduced AURKA expression through interaction with its 3′ untranslated region (3′UTR) and that miR-137 was negatively correlated with AURKA expression in melanoma specimens. Overexpression of miR-137 decreased cell proliferation and colony formation in vitro. Notably, re-expression of AURKA significantly rescued miR-137-mediated suppression of cell growth and clonality. In summary, these results reveal that miR-137 functions as a tumor suppressor by targeting AURKA, providing new insights into investigation of therapeutic strategies against malignant melanoma. -- Highlights: •First reported overexpression of AURKA in melanoma. •Targeting AURKA inhibits melanoma growth in vitro and in vivo. •Further found miR-137 suppressed cell growth by binding to AURKA 3′UTR. •Re-expression of AURKA rescued miR-137-mediated suppression. •miR-137-AURKA axis may be potential therapeutic targets of melanoma.

  4. Loss of retrovirus production in JB/RH melanoma cells transfected with H-2Kb and TAP-1 genes.

    Science.gov (United States)

    Li, M; Xu, F; Muller, J; Huang, X; Hearing, V J; Gorelik, E

    1999-01-20

    JB/RH1 melanoma cells, as well as other melanomas of C57BL/6 mice (B16 and JB/MS), express a common melanoma-associated antigen (MAA) encoded by an ecotropic melanoma-associated retrovirus (MelARV). JB/RH1 cells do not express the H-2Kb molecules due to down-regulation of the H-2Kb and TAP-1 genes. When JB/RH1 cells were transfected with the H-2Kb and cotransfected with the TAP-1 gene, it resulted in the appearance of H-2Kb molecules and an increase in their immunogenicity, albeit they lost expression of retrovirus-encoded MAA recognized by MM2-9B6 mAb. Loss of MAA was found to result from a complete and stable elimination of ecotropic MelARV production in the H-2Kb/TAP-1-transfected JB/RH1 cells. Northern blot analysis showed no differences in ecotropic retroviral messages in MelARV-producing and -nonproducing melanoma cells, suggesting that loss of MelARV production was not due to down-regulation of MelARV transcription. Southern blot analysis revealed several rearrangements in the proviral DNA of H-2Kb-positive JB/RH1 melanoma cells. Sequence analysis of the ecotropic proviral DNA from these cells showed numerous nucleotide substitutions, some of which resulted in the appearance of a novel intraviral PstI restriction site and the loss of a HindIII restriction site in the pol region. PCR amplification of the proviral DNAs indicates that an ecotropic provirus found in the H-2Kb-positive cells is novel and does not preexist in the parental H-2Kb-negative melanoma cells. Conversely, the ecotropic provirus of the parental JB/RH1 cells was not amplifable from the H-2Kb-positive cells. Our data indicate that stable loss of retroviral production in the H-2Kb/TAP-1-transfected melanoma cells is probably due to the induction of recombination between a productive ecotropic MelARV and a defective nonecotropic provirus leading to the generation of a defective ecotropic provirus and the loss of MelARV production and expression of the retrovirus-encoded MAA. Copyright 1999

  5. Expansion of CD16-Negative Natural Killer Cells in the Peripheral Blood of Patients with Metastatic Melanoma

    Directory of Open Access Journals (Sweden)

    Shernan G. Holtan

    2011-01-01

    Full Text Available Altered natural killer (NK cell function is a component of the global immune dysregulation that occurs in advanced malignancies. Another condition associated with altered NK homeostasis is normal pregnancy, where robust infiltration with CD16− CD9+ NK cells can be identified in decidual tissues, along with a concomitant expansion of CD16− NK cells in the maternal peripheral blood. In metastatic melanoma, we identified a similar expansion of peripheral blood CD16− NK cells (median 7.4% in 41 patients with melanoma compared with 3.0% in 29 controls, P<.001. A subset of NK cells in melanoma patients also expresses CD9, which is characteristically expressed only on NK cells within the female reproductive tract. Expansion of CD16− NK cells was associated with elevated plasma transforming growth factor-beta (TGF-β levels (median 20 ng/ml, Spearman's ρ=0.81,P=.015. These findings suggest the possibility of exploring anti-TGF-β therapy to restore NK function in melanoma.

  6. miR-137 inhibits the invasion of melanoma cells through downregulation of multiple oncogenic target genes.

    Science.gov (United States)

    Luo, Chonglin; Tetteh, Paul W; Merz, Patrick R; Dickes, Elke; Abukiwan, Alia; Hotz-Wagenblatt, Agnes; Holland-Cunz, Stefan; Sinnberg, Tobias; Schittek, Birgit; Schadendorf, Dirk; Diederichs, Sven; Eichmüller, Stefan B

    2013-03-01

    MicroRNAs are small noncoding RNAs that regulate gene expression and have important roles in various types of cancer. Previously, miR-137 was reported to act as a tumor suppressor in different cancers, including malignant melanoma. In this study, we show that low miR-137 expression is correlated with poor survival in stage IV melanoma patients. We identified and validated two genes (c-Met and YB1) as direct targets of miR-137 and confirmed two previously known targets, namely enhancer of zeste homolog 2 (EZH2) and microphthalmia-associated transcription factor (MITF). Functional studies showed that miR-137 suppressed melanoma cell invasion through the downregulation of multiple target genes. The decreased invasion caused by miR-137 overexpression could be phenocopied by small interfering RNA knockdown of EZH2, c-Met, or Y box-binding protein 1 (YB1). Furthermore, miR-137 inhibited melanoma cell migration and proliferation. Finally, miR-137 induced apoptosis in melanoma cell lines and decreased BCL2 levels. In summary, our study confirms that miR-137 acts as a tumor suppressor in malignant melanoma and reveals that miR-137 regulates multiple targets including c-Met, YB1, EZH2, and MITF.

  7. 31P-NMR spectroscopy in measurements of physiological parameters and response to therapy of human melanoma xenografts

    International Nuclear Information System (INIS)

    Olsen, Dag Rune

    1999-01-01

    The aim of the study was to investigate whether ''31P-NMR spectroscopy can be utilized in prediction and monitoring of response to therapy or tumours. The specific aims were: 1) To investigate possible correlations between on the one hand bio energetics status, phospholipids resonance ratios, intracellular pH and phosphorus T 1 s and on the other hand tumour blood supply and oxygenation, tumour proliferation and necrotic fraction across tumour lines. 2) Reveal possible correlations between changes in tumour bio energetics status and phosphorus T 1 s and the changes in tumour blood flow, tumour oxygenation and necrotic fraction. 3) To investigate whether irradiation and hyperthermia treatment of tumours affect bio energetics status and phosphorus T 1 s. 4) To identify the tumour physiological factors that is effected by the treatment and influence the bio energetics status and phosphorus T 1 s. The results are presented in 8 papers with titles: 1)''31P-nuclear magnetic resonance spectroscopy in vivo of six human melanoma zeno graft lines: Tumour bio energetic status and blood supply. 2) ''31P NMR spectroscopy studies of phospholipid metabolism in human melanoma xenograft lines differing in rate of tumour cell proliferation. 3) ''31P-nuclear magnetic resonance spectroscopy in vivo of four human melanoma xenograft lines: Spin-lattice relaxation times. 4) Effect of melanin on phosphorus T 1 s in human melanoma xenografts studied by ''31P MRS 5) Spin-lattice relaxation time of inorganic phosphate in human tumour xenografts measured in vivo by ''31P-magnetic resonance spectroscopy influence of oxygen tension. 6) Effects of hyperthermia on bio energetic status and phosphorus T 1 s in human melanoma xenografts monitored by ''31P-MRS. 7) Monitoring of tumour reoxygenation following irradiation by ''31P magnetic resonance spectroscopy an experimental study of human melanoma xenografts. 8) Radiation-induced changes in phosphorus T 1 values in human melanoma xenografts studied

  8. Antitumoral, antioxidant, and antimelanogenesis potencies of Hawthorn, a potential natural agent in the treatment of melanoma.

    Science.gov (United States)

    Mustapha, Nadia; Mokdad-Bzéouich, Imèn; Maatouk, Mouna; Ghedira, Kamel; Hennebelle, Thierry; Chekir-Ghedira, Leila

    2016-06-01

    The lack of an efficient agent that does not have the disadvantage of low activity (kojic acid), high cytotoxicity, and mutagenicity (hydroquinone), poor skin penetration (arbutin), or low stability in formulation (glabridin) led us to continue our research on new antipigmentation/skin-lightening agents. Therefore, research of natural products that can modulate the metabolism of pigmentation is of great interest. Otherwise, malignant melanoma is one of the most aggressive forms of skin cancer, with high metastatic potential, and currently, there is no effective chemotherapy against invasive melanoma. Therefore, it is necessary to develop new drugs with potent activity and weak side effects against melanoma. The in-vitro anticancer effect of hawthorn was analyzed against B16F10 melanoma cells using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The effect of isolated compounds from hawthorn on melanogenesis in B16F10 melanoma cells was investigated by measuring the amounts of melanin and tyrosinase spectrophotometrically at 475 nm. Balb/c mice models inoculated with B16F10 mouse tumor cells were used to evaluate the in-vivo antitumoral potential of hawthorn by assessing its effect on the growth of transplanted tumors. The antioxidant potential of tested samples was evaluated in B16F10 and primary human keratinocyte cells using a cellular antioxidant activity assay. Hawthorn tested samples inhibited effectively the growth of melanoma cells in vitro. Furthermore, it appears that tested samples from hawthorn reduced melanogenesis by inhibiting the tyrosinase activity of B16F10 cells in a dose-dependent manner. In-vivo studies showed that hawthorn total oligomer flavonoids extract treatment at a dose of 150 mg/kg body weight for 21 days in implanted tumor mice resulted in significant inhibition of the tumor growth volume and weight. In addition, tested samples showed significant cellular antioxidant capacity against the reactive oxygen species

  9. Adoptive cell transfer in the treatment of metastatic melanoma

    DEFF Research Database (Denmark)

    Straten, Per thor; Becker, Jürgen C

    2009-01-01

    Adoptive cell therapy (ACT) for metastatic cancer is the focus of considerable research effort. Rosenberg's laboratory demonstrated a 50% response rate in stage IV melanoma patients treated with in vitro expanded tumor-infiltrating lymphocytes (TILs) and high-dose IL-2 administered after...

  10. Combination therapy with vemurafenib (PLX4032/RG7204 and metformin in melanoma cell lines with distinct driver mutations

    Directory of Open Access Journals (Sweden)

    Recio Juan A

    2011-05-01

    Full Text Available Abstract Background A molecular linkage between the MAPK and the LKB1-AMPK energy sensor pathways suggests that combined MAPK oncogene inhibition and metabolic modulation of AMPK would be more effective than either manipulation alone in melanoma cell lines. Materials and methods The combination of the BRAF inhibitor vemurafenib (formerly PLX4032 and metformin were tested against a panel of human melanoma cell lines with defined BRAF and NRAS mutations for effects on viability, cell cycle and apoptosis. Signaling molecules in the MAPK, PI3K-AKT and LKB1-AMPK pathways were studied by Western blot. Results Single agent metformin inhibited proliferation in 12 out of 19 cell lines irrespective of the BRAF mutation status, but in one NRASQ61K mutant cell line it powerfully stimulated cell growth. Synergistic anti-proliferative effects of the combination of metformin with vemurafenib were observed in 6 out of 11 BRAFV600E mutants, including highly synergistic effects in two BRAFV600E mutant melanoma cell lines. Antagonistic effects were noted in some cell lines, in particular in BRAFV600E mutant cell lines resistant to single agent vemurafenib. Seven out of 8 BRAF wild type cell lines showed marginally synergistic anti-proliferative effects with the combination, and one cell line had highly antagonistic effects with the combination. The differential effects were not dependent on the sensitivity to each drug alone, effects on cell cycle or signaling pathways. Conclusions The combination of vemurafenib and metformin tended to have stronger anti-proliferative effects on BRAFV600E mutant cell lines. However, determinants of vemurafenib and metformin synergism or antagonism need to be understood with greater detail before any potential clinical utility of this combination.

  11. The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, simvastatin, lovastatin and mevastatin inhibit proliferation and invasion of melanoma cells

    International Nuclear Information System (INIS)

    Glynn, Sharon A; O'Sullivan, Dermot; Eustace, Alex J; Clynes, Martin; O'Donovan, Norma

    2008-01-01

    A number of recent studies have suggested that cancer incidence rates may be lower in patients receiving statin treatment for hypercholesterolemia. We examined the effects of statin drugs on in vitro proliferation, migration and invasion of melanoma cells. The ability of lovastatin, mevastatin and simvastatin to inhibit the melanoma cell proliferation was examined using cytotoxicity and apoptosis assays. Effects on cell migration and invasion were assessed using transwell invasion and migration chambers. Hypothesis testing was performed using 1-way ANOVA, and Student's t-test. Lovastatin, mevastatin and simvastatin inhibited the growth, cell migration and invasion of HT144, M14 and SK-MEL-28 melanoma cells. The concentrations required to inhibit proliferation of melanoma cells (0.8–2.1 μM) have previously been achieved in a phase I clinical trial of lovastatin in patients with solid tumours, (45 mg/kg/day resulted in peak plasma concentrations of approximately 3.9 μM). Our results suggest that statin treatment is unlikely to prevent melanoma development at standard doses. However, higher doses of statins may have a role to play in adjuvant therapy by inhibiting growth and invasion of melanoma cells

  12. Oxyfadichalcone C inhibits melanoma A375 cell proliferation and metastasis via suppressing PI3K/Akt and MAPK/ERK pathways.

    Science.gov (United States)

    Peng, Xiaolin; Wang, Zhengming; Liu, Yang; Peng, Xin; Liu, Yao; Zhu, Shan; Zhang, Zhe; Qiu, Yuling; Jin, Meihua; Wang, Ran; Zhang, Qingying; Kong, Dexin

    2018-08-01

    Melanoma remains to be one of the most incurable cancers. Discovery of novel antitumor agent for melanoma therapy is expected. We recently isolated Oxyfadichalcone C from Oxytropis falcate and investigated the anti-proliferative and anti-metastatic activity on human melanoma A375 cells in vitro. Cell viability was determined using MTT assay and soft agar cloning formation assay. The effect of Oxyfadichalcone C on cell cycle distribution and apoptosis were analyzed by flow cytometry. Cell metastasis was determined by wound healing assay, Transwell assay and Gelatin zymography assay. The effect of Oxyfadichalcone C on signal proteins of PI3K/Akt and MAPK/ERK pathways was examined by western blot analysis. Synergism assay was employed to determine whether combination of Oxyfadichalcone C with Vemurafenib would enhance the anti-proliferative effect. Oxyfadichalcone C potently inhibited proliferation, induced G1 phase arrest and weak apoptosis in A375 cells. Anti-migration and anti-invasion activities were also indicated. Such effects were associated with upregulation of p27, reduction of cyclin D1, p-pRb, p-Integrin β1, as well as the proteolytic activity of metalloproteinase (MMP)-2/9. Meanwhile, key molecules of PI3K/Akt and MAPK/ERK pathways were downregulated, which might be involved in the inhibition against proliferation and metastasis of A375 cells by Oxyfadichalcone C. In addition, combination of Oxyfadichalcone C with Vemurafenib at a ratio of IC50 Oxyfadichalcone C : 5 × IC 50 Vemurafenib exhibited synergistic anti-proliferative effect on A375 cells. Our findings suggest that Oxyfadichalcone C has the potential to be developed as a promising drug candidate for the treatment of melanoma. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. The induction of apoptosis in human melanoma, breast and ovarian cancer cell lines using an essential oil extract from the conifer Tetraclinis articulata.

    Science.gov (United States)

    Buhagiar, J A; Podesta, M T; Wilson, A P; Micallef, M J; Ali, S

    1999-01-01

    The cytotoxic effect of conifer Tetraclinis articulata essential oil (TAEO) on a number of human cancer cell lines and peripheral blood lymphocytes was assessed at various concentrations and time exposures. The cytotoxic effect showed the hallmarks of apoptosis confirmed by a variety of techniques including flow cytometry, an apoptosis- specific marker combined to fluorescent staining and DNA laddering. All cell lines tested were inhibited in a dose-dependent fashion and within a contact time of less than eight hours for the higher concentrations. Melanoma, breast and ovarian cancer cells gave IC50s of around 80 micrograms/ml whilst the IC50s on peripheral blood lymphocytes was almost double this value. We conclude that the essential oil contains components that are effective at inducing apoptosis. The advantages of using a mixture of monoterpenes (C10) as present in an EO over a single component, are discussed.

  14. Quantitative analysis of genes regulating sensitivity to heavy ion irradiation in cultured cell lines of malignant choroid melanoma

    International Nuclear Information System (INIS)

    Kumagai, Ken; Adachi, Nanao; Nimura, Yoshinori

    2004-01-01

    As a treatment strategy for malignant melanoma, heavy ion irradiation has been planned in National Institute of Radiological Sciences (NIRS). However, the molecular biology of the malignant melanoma cell after irradiation of heavy ion is still unknown. In this study, we used resistant and sensitive cell lines of malignant melanoma to study the effects of heavy ion irradiation. Furthermore, gene expression profiling of early response genes for heavy ion irradiation was carried out on these cell lines using microarray technology. (author)

  15. Quantitative analysis of genes regulating sensitivity to heavy ion irradiation in cultured cell lines of malignant choroid melanoma

    International Nuclear Information System (INIS)

    Kumagai, Ken; Nimura, Yoshinori; Kato, Masaki; Seki, Naohiko; Miyahara, Nobuyuki; Aoki, Mizuho; Shino, Yayoi; Furusawa, Yoshiya; Mizota, Atsushi

    2005-01-01

    As a treatment strategy for malignant melanoma, heavy ion irradiation has been planned in National Institute of Radiological Sciences (NIRS). However, the molecular biology of the malignant melanoma cell after irradiation of heavy ion is still unknown. In this study, we used resistant and sensitive cell lines of malignant melanoma to study the effects of heavy ion irradiation. Furthermore, gene expression profiling of early response genes for heavy ion irradiation was carried out on these cell lines using microarray technology. (author)

  16. Cytoplasmic BRMS1 expression in malignant melanoma is associated with increased disease-free survival

    Directory of Open Access Journals (Sweden)

    Slipicevic Ana

    2012-02-01

    Full Text Available Abstract Background/aims Breast cancer metastasis suppressor 1 (BRMS1 blocks metastasis in melanoma xenografts; however, its usefulness as a biomarker in human melanomas has not been widely studied. The goal was to measure BRMS1 expression in benign nevi, primary and metastatic melanomas and evaluate its impact on disease progression and prognosis. Methods Paraffin-embedded tissue from 155 primary melanomas, 69 metastases and 15 nevi was examined for BRMS1 expression using immunohistochemistry. siRNA mediated BRMS1 down-regulation was used to study impact on invasion and migration in melanoma cell lines. Results A significantly higher percentage of nevi (87%, compared to primary melanomas (20% and metastases (48%, expressed BRMS1 in the nucelus (p Waf1/Cip1 (p = 0.009. Cytoplasmic score index was inversely associated with nuclear p-Akt (p = 0.013 and positively associated with cytoplasmic p-ERK1/2 expression (p = 0.033. Nuclear BRMS1 expression in ≥ 10% of primary melanoma cells was associated with thicker tumors (p = 0.016 and decreased relapse-free period (p = 0.043. Nuclear BRMS1 was associated with expression of fatty acid binding protein 7 (FABP7; p = 0.011, a marker of invasion in melanomas. In line with this, repression of BRMS1 expression reduced the ability of melanoma cells to migrate and invade in vitro. Conclusion Our data suggest that BRMS1 is localized in cytoplasm and nucleus of melanocytic cells and that cellular localization determines its in vivo effect. We hypothesize that cytoplasmic BRMS1 restricts melanoma progression while nuclear BRMS1 possibly promotes melanoma cell invasion. Please see related article: http://www.biomedcentral.com/1741-7015/10/19

  17. Anti-Melanogenic Property of Geoditin A in Murine B16 Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Chun-Tao Che

    2012-02-01

    Full Text Available Geoditin A, an isomalabaricane triterpene isolated from marine sponge Geodia japonica, has been demonstrated to induce apoptosis in leukemia HL60 cells and human colon HT29 cancer cells through an oxidative stress, a process also interfering with normal melanogenesis in pigment cells. Treatment of murine melanoma B16 cells with geoditin A decreased expression of melanogenic proteins and cell melanogenesis which was aggravated with adenylate cyclase inhibitor SQ22536, indicating melanogenic inhibition was mediated through a cAMP-dependent signaling pathway. Immunofluorescence microscopy and glycosylation studies revealed abnormal glycosylation patterns of melanogenic proteins (tyrosinase and tyrosinase-related protein 1, and a co-localization of tyrosinase with calnexin (CNX and lysosome-associated membrane protein 1 (LAMP-1, implicating a post-translational modification in the ER and a degradation of tyrosinase in the lysosome. Taken together, potent anti-melanogenic property and the relatively low cytotoxicity of geoditin A have demonstrated its therapeutic potential as a skin lightening agent.

  18. Targeting Glutamatergic Signaling and the PI3 Kinase Pathway to Halt Melanoma Progression

    Directory of Open Access Journals (Sweden)

    Stephen A. Rosenberg

    2015-02-01

    Full Text Available Our group has previously reported that the majority of human melanomas (>60% express the metabotropic glutamate receptor 1 (GRM1 and that the glutamate release inhibitor riluzole, a drug currently used to treat amyotrophic lateral sclerosis, can induce apoptosis in GRM1-expressing melanoma cells. Our group previously reported that in vitro riluzole treatment reduces cell growth in three-dimensional (3D soft agar colony assays by 80% in cells with wildtype phosphoinositide 3-kinase (PI3K pathway activation. However, melanoma cell lines harboring constitutive activating mutations of the PI3K pathway (PTEN and NRAS mutations showed only a 35% to 40% decrease in colony formation in soft agar in the presence of riluzole. In this study, we have continued our preclinical studies of riluzole and its effect on melanoma cells alone and in combination with inhibitors of the PI3 kinase pathway: the AKT inhibitor, API-2, and the mammalian target of rapamycin (mTOR inhibitor, rapamycin. We modeled these combinatorial therapies on various melanoma cell lines in 3D and 2D systems and in vivo. Riluzole combined with mTOR inhibition is more effective at halting melanoma anchorage-independent growth and xenograft tumor progression than either agent alone. PI3K signaling changes associated with this combinatorial treatment shows that 3D (nanoculture modeling of cell signaling more closely resembles in vivo signaling than monolayer models. Riluzole combined with mTOR inhibition is effective at halting tumor cell progression independent of BRAF mutational status. This makes this combinatorial therapy a potentially viable alternative for metastatic melanoma patients who are BRAF WT and are therefore ineligible for vemurafenib therapy.

  19. Identification of an Immunogenic Subset of Metastatic Uveal Melanoma.

    Science.gov (United States)

    Rothermel, Luke D; Sabesan, Arvind C; Stephens, Daniel J; Chandran, Smita S; Paria, Biman C; Srivastava, Abhishek K; Somerville, Robert; Wunderlich, John R; Lee, Chyi-Chia R; Xi, Liqiang; Pham, Trinh H; Raffeld, Mark; Jailwala, Parthav; Kasoji, Manjula; Kammula, Udai S

    2016-05-01

    Uveal melanoma is a rare melanoma variant with no effective therapies once metastases develop. Although durable cancer regression can be achieved in metastatic cutaneous melanoma with immunotherapies that augment naturally existing antitumor T-cell responses, the role of these treatments for metastatic uveal melanoma remains unclear. We sought to define the relative immunogenicity of these two melanoma variants and determine whether endogenous antitumor immune responses exist against uveal melanoma. We surgically procured liver metastases from uveal melanoma (n = 16) and cutaneous melanoma (n = 35) patients and compared the attributes of their respective tumor cell populations and their infiltrating T cells (TIL) using clinical radiology, histopathology, immune assays, and whole-exomic sequencing. Despite having common melanocytic lineage, uveal melanoma and cutaneous melanoma metastases differed in their melanin content, tumor differentiation antigen expression, and somatic mutational profile. Immunologic analysis of TIL cultures expanded from these divergent forms of melanoma revealed cutaneous melanoma TIL were predominantly composed of CD8(+) T cells, whereas uveal melanoma TIL were CD4(+) dominant. Reactivity against autologous tumor was significantly greater in cutaneous melanoma TIL compared with uveal melanoma TIL. However, we identified TIL from a subset of uveal melanoma patients which had robust antitumor reactivity comparable in magnitude with cutaneous melanoma TIL. Interestingly, the absence of melanin pigmentation in the parental tumor strongly correlated with the generation of highly reactive uveal melanoma TIL. The discovery of this immunogenic group of uveal melanoma metastases should prompt clinical efforts to determine whether patients who harbor these unique tumors can benefit from immunotherapies that exploit endogenous antitumor T-cell populations. Clin Cancer Res; 22(9); 2237-49. ©2015 AACR. ©2015 American Association for Cancer Research.

  20. Standardized Cannabis sativa extract attenuates tau and stathmin gene expression in the melanoma cell line

    Directory of Open Access Journals (Sweden)

    Golnaz Vaseghi

    2017-10-01

    Full Text Available Objective(s: Metastasis is the main cause of death in patients with melanoma. Cannabis-based medicines are effective adjunctive drugs in cancer patients. Tau and Stathmin proteins are the key proteins in cancer metastasis. Here we have investigated the effect of a standardized Cannabis sativa extract on cell migration and Tau and Stathmin gene expression in the melanoma cell line. Materials and Methods: In the treatment group, melanoma (B1617 was treated 48 hr with various concentrations of standardized C. sativa extract. Cells with no treatment were considered as the control group, then study was followed by Quantitative RT-Real Time PCR assay. Relative gene expression was calculated by the ΔΔct method. Migration assay was used to evaluate cancer metastasis. Results: Tau and stathmin gene expression was significantly decreased compared to the control group. Cell migration was also significantly reduced compared to controls.  Conclusion: C. sativa decreased tau and stathmin gene expression and cancer metastasis.  The results may have some clinical relevance for the use of cannabis-based medicines in patients with metastatic melanoma.

  1. Uveal Melanoma Cell Lines: Where do they come from? (An American Ophthalmological Society Thesis).

    Science.gov (United States)

    Jager, Martine J; Magner, J Antonio Bermudez; Ksander, Bruce R; Dubovy, Sander R

    2016-08-01

    To determine whether some of the most often used uveal melanoma cell lines resemble their original tumor. Analysis of the literature, patient charts, histopathology, mutations, chromosome status, HLA type, and expression of melanocyte markers on cell lines and their primary tumors. We examined five cell lines and the primary tumors from which they were derived. Four of the five examined primary tumors were unusual: one occupied the orbit, two were recurrences after prior irradiation, and one developed in an eye with a nevus of Ota. One cell line did not contain the GNA11 mutation, but it was present in the primary tumor. Three of the primary tumors had monosomy 3 (two of these lacked BAP1 expression); however, all five cell lines showed disomy 3 and BAP1 expression. All of the cell lines had gain of 8q. Two cell lines lacked expression of melanocyte markers, although these were present in the corresponding primary tumor. All cell lines could be traced back to their original uveal melanoma. Four of the five primary tumors were unusual. Cell lines often differed from their primary tumor in chromosome status and melanocyte markers. However, their specific chromosome aberrations and capacity to continue proliferation characterize them as uveal melanoma cell lines.

  2. Resveratrol prevents endothelial cells injury in high-dose interleukin-2 therapy against melanoma.

    Directory of Open Access Journals (Sweden)

    Hongbing Guan

    Full Text Available Immunotherapy with high-dose interleukin-2 (HDIL-2 is an effective treatment for patients with metastatic melanoma and renal cell carcinoma. However, it is accompanied by severe toxicity involving endothelial cell injury and induction of vascular leak syndrome (VLS. In this study, we found that resveratrol, a plant polyphenol with anti-inflammatory and anti-cancer properties, was able to prevent the endothelial cell injury and inhibit the development of VLS while improving the efficacy of HDIL-2 therapy in the killing of metastasized melanoma. Specifically, C57BL/6 mice were injected with B16F10 cells followed by resveratrol by gavage the next day and continued treatment with resveratrol once a day. On day 9, mice received HDIL-2. On day 12, mice were evaluated for VLS and tumor metastasis. We found that resveratrol significantly inhibited the development of VLS in lung and liver by protecting endothelial cell integrity and preventing endothelial cells from undergoing apoptosis. The metastasis and growth of the tumor in lung were significantly inhibited by HDIL-2 and HDIL-2 + resveratrol treatment. Notably, HDIL-2 + resveratrol co-treatment was more effective in inhibiting tumor metastasis and growth than HDIL-2 treatment alone. We also analyzed the immune status of Gr-1(+CD11b(+ myeloid-derived suppressor cells (MDSC and FoxP3(+CD4(+ regulatory T cells (Treg. We found that resveratrol induced expansion and suppressive function of MDSC which inhibited the development of VLS after adoptive transfer. However, resveratrol suppressed the HDIL-2-induced expansion of Treg cells. We also found that resveratrol enhanced the susceptibility of melanoma to the cytotoxicity of IL-2-activated killer cells, and induced the expression of the tumor suppressor gene FoxO1. Our results suggested the potential use of resveratrol in HDIL-2 treatment against melanoma. We also demonstrated, for the first time, that MDSC is the dominant suppressor cell than regulatory

  3. Platelet-derived growth factor (PDGF) in oncogenesis: development of a vascular connective tissue stroma in xenotransplanted human melanoma producing PDGF-BB.

    OpenAIRE

    Forsberg, K; Valyi-Nagy, I; Heldin, C H; Herlyn, M; Westermark, B

    1993-01-01

    Human WM9 melanoma cells, previously shown to be devoid of PDGF expression, were stably transfected with a PDGF-B cDNA under the transcriptional control of a cytomegalovirus promoter. Northern blot analysis revealed high expression of an mRNA of the expected size in the PDGF-B-transfected cells. Synthesis and secretion of PDGF-BB was confirmed by immunoprecipitation. Furthermore, conditioned medium from PDGF-B-transfected cells contained a mitogenic activity for fibroblasts. For analysis of t...

  4. Study of the radiosensitivity of three melanomas grown in vitro

    International Nuclear Information System (INIS)

    Weininger, J.

    1978-05-01

    This work studies the response to gamma irradiation of three human melanoma stems. Two cellular lines come from two ganglion metastases, the third from a primitive tumor. The influence of ''out-of-cycle''(quiescent cells on the radiosenitivity of a tumoral population was investigated in parallel with ''in cycle'' cells. The materials and methods used are described, and a number of cynetic parameters of the populations are given. The results of a series of experiments carried out on the IGR 11 stem are presented; this enables the evaluation of the repair capability of potentially lethal lesions of cells remaining in the plateau phase, after irradiation, without removal of the nutritional medium. The survival curves of the 3 stems, in both the exponential growth and the ''plateau phase'', are presented. A heterotransplant model of a human melanoma to ''nude'' mice is considered. (B.G.)

  5. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment

    Science.gov (United States)

    Xiao, Deyi; Barry, Samantha; Kmetz, Daniel; Egger, Michael; Pan, Jianmin; Rai, Shesh N; Qu, Jifu; McMasters, Kelly M.; Hao, Hongying

    2016-01-01

    The tumor microenvironment is abundant with exosomes that are secreted by the cancer cells themselves. Exosomes are nanosized, organelle-like membranous structures that are increasingly being recognized as major contributors in the progression of malignant neoplasms. A critical element in melanoma progression is its propensity to metastasize, but little is known about how melanoma cell-derived exosomes modulate the microenvironment to optimize conditions for tumor progression and metastasis. Here, we provide evidence that melanoma cell-derived exosomes promote phenotype switching in primary melanocytes through paracrine/autocrine signaling. We found that the mitogen-activated protein kinase (MAPK) signaling pathway was activated during the exosome-mediated epithelial-to-mesenchymal transition (EMT)-resembling process, which promotes metastasis. Let-7i, an miRNA modulator of EMT, was also involved in this process. We further defined two other miRNA modulators of EMT (miR-191 and let-7a) in serum exosomes for differentiating stage I melanoma patients from non-melanoma subjects. These results provide the first strong molecular evidence that melanoma cell-derived exosomes promote the EMT-resembling process in the tumor microenvironment. Thus, novel strategies targeting EMT and modulating the tumor microenvironment may emerge as important approaches for the treatment of metastatic melanoma. PMID:27063098

  6. Inhibitors of pan PI3K signaling synergize with BRAF or MEK inhibitors to prevent BRAF-mutant melanoma cell growth

    Directory of Open Access Journals (Sweden)

    Melanie eSweetlove

    2015-06-01

    Full Text Available BRAF and MEK inhibitors have improved outcomes for patients with BRAF-mutant melanoma, but their efficacy is limited by both intrinsic and acquired resistance. Activation of the PI3K pathway can mediate resistance to these agents, providing a strong rationale for combination therapy in melanoma. Here, a panel of 9 low passage human metastatic melanoma cell lines with BRAF mutations were tested in cell proliferation and protein expression assays for sensitivity to inhibitors of MEK (selumetinib and BRAF (vemurafenib as single agents and in combination with inhibitors of pan-PI3K (ZSTK474, pan-PI3K/mTOR (BEZ235, individual PI3K isoforms (p110α, A66; p110β, TGX-221; p110γ, AS-252424; p110δ, idelalisib, or mTORC1/2 (KU-0063794. Selumetinib and vemurafenib potently inhibited cell proliferation in all cell lines, especially in those that expressed low levels of pAKT. ZSTK474 and BEZ235 also inhibited cell proliferation in all cell lines and enhanced the antitumor activity of selumetinib and vemurafenib in the majority of lines by either interacting synergistically or additively to increase potency or by inducing cytotoxicity by significantly increasing the magnitude of cell growth inhibition. Furthermore, ZSTK474 or BEZ235 combined with selumetinib to produce robust inhibition of pERK, pAKT and pS6 expression and synergistic inhibition of NZM20 tumor growth. The inhibitors of individual PI3K isoforms or mTORC1/2 were less effective at inhibiting cell proliferation either as single agents or in combination with selumetinib or vemurafenib, although KU-0063794 synergistically interacted with vemurafenib and increased the magnitude of cell growth inhibition with selumetinib or vemurafenib in certain cell lines. Overall, these results suggest that the sensitivity of BRAF-mutant melanoma cells to BRAF or MEK inhibitors is at least partly mediated by activation of the PI3K pathway and can be enhanced by combined inhibition of the BRAF/MEK and PI3K

  7. Authentication of M14 melanoma cell line proves misidentification of MDA‐MB‐435 breast cancer cell line

    Science.gov (United States)

    Korch, Christopher; Hall, Erin M.; Dirks, Wilhelm G.; Ewing, Margaret; Faries, Mark; Varella‐Garcia, Marileila; Robinson, Steven; Storts, Douglas; Turner, Jacqueline A.; Wang, Ying; Burnett, Edward C.; Healy, Lyn; Kniss, Douglas; Neve, Richard M.; Nims, Raymond W.; Reid, Yvonne A.; Robinson, William A.

    2017-01-01

    A variety of analytical approaches have indicated that melanoma cell line UCLA‐SO‐M14 (M14) and breast carcinoma cell line MDA‐MB‐435 originate from a common donor. This indicates that at some point in the past, one of these cell lines became misidentified, meaning that it ceased to correspond to the reported donor and instead became falsely identified (through cross‐contamination or other means) as a cell line from a different donor. Initial studies concluded that MDA‐MB‐435 was the misidentified cell line and M14 was the authentic cell line, although contradictory evidence has been published, resulting in further confusion. To address this question, we obtained early samples of the melanoma cell line (M14), a lymphoblastoid cell line from the same donor (ML14), and donor serum preserved at the originator's institution. M14 samples were cryopreserved in December 1975, before MDA‐MB‐435 cells were established in culture. Through a series of molecular characterizations, including short tandem repeat (STR) profiling and cytogenetic analysis, we demonstrated that later samples of M14 and MDA‐MB‐435 correspond to samples of M14 frozen in 1975, to the lymphoblastoid cell line ML14, and to the melanoma donor's STR profile, sex and blood type. This work demonstrates conclusively that M14 is the authentic cell line and MDA‐MB‐435 is misidentified. With clear provenance information and authentication testing of early samples, it is possible to resolve debates regarding the origins of problematic cell lines that are widely used in cancer research. PMID:28940260

  8. Comparative studies on the correlation between pyrimidine dimer formation and tyrosinase activity in Cloudman S91 melanoma cells after ultraviolet-irradiation

    International Nuclear Information System (INIS)

    Niggli, H.J.

    1990-01-01

    The authors compared the induction of pyrimidine dimer densities after UV-irradiation in mouse melanoma cells before and after treatment with cholera toxin. Treatment with cholera toxin stimulated tyrosinase activity up to 50-fold, leading to a marked, visually apparent increase in cellular melanin concentrations. Results indicate that de novo melanin pigmentation induced via the c-AMP pathway is not involved in protection against UV-induced thymine-containing pyrimidine dimers. In separate experiments, irradiation of toxin-treated and untreated mouse melanoma cells with UVC or UVB light produced a 20-30% lower dimer density compared to irradiated human skin fibroblasts. This finding suggests that melanin has some protection properties against UV-induced pyrimidine dimers, although the exact defense mechanism seems highly complex. (author)

  9. Analysis of Vδ1 T cells in clinical grade melanoma-infiltrating lymphocytes

    DEFF Research Database (Denmark)

    Donia, Marco; Ellebaek, Eva; Andersen, Mads Hald

    2012-01-01

    . In this study, we have detected low frequencies of Vδ1 T cells among tumor-infiltrating lymphocyte (TIL) products for adoptive cell transfer generated from melanoma metastases. An increased frequency of Vδ1 T cells was found among the cell products from patients with an advanced disease stage. Vδ1 T cells...

  10. BRAFV600E negatively regulates the AKT pathway in melanoma cell lines.

    Science.gov (United States)

    Chen, Brenden; Tardell, Christine; Higgins, Brian; Packman, Kathryn; Boylan, John F; Niu, Huifeng

    2012-01-01

    Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167) or mTORC1 inhibitor (rapamycin) induced AKT phosphorylation (pAKT) and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2) and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways.

  11. BRAFV600E negatively regulates the AKT pathway in melanoma cell lines.

    Directory of Open Access Journals (Sweden)

    Brenden Chen

    Full Text Available Cross-feedback activation of MAPK and AKT pathways is implicated as a resistance mechanism for cancer therapeutic agents targeting either RAF/MEK or PI3K/AKT/mTOR. It is thus important to have a better understanding of the molecular resistance mechanisms to improve patient survival benefit from these agents. Here we show that BRAFV600E is a negative regulator of the AKT pathway. Expression of BRAFV600E in NIH3T3 cells significantly suppresses MEK inhibitor (RG7167 or mTORC1 inhibitor (rapamycin induced AKT phosphorylation (pAKT and downstream signal activation. Treatment-induced pAKT elevation is found in BRAF wild type melanoma cells but not in a subset of melanoma cell lines harboring BRAFV600E. Knock-down of BRAFV600E in these melanoma cells elevates basal pAKT and downstream signals, whereas knock-down of CRAF, MEK1/2 or ERK1/2 or treatment with a BRAF inhibitor have no impact on pAKT. Mechanistically, we show that BRAFV600E interacts with rictor complex (mTORC2 and regulates pAKT through mTORC2. BRAFV600E is identified in mTORC2 after immunoprecipitation of rictor. Knock-down of rictor abrogates BRAFV600E depletion induced pAKT. Knock-down of BRAFV600E enhances cellular enzyme activity of mTORC2. Aberrant activation of AKT pathway by PTEN loss appears to override the negative impact of BRAFV600E on pAKT. Taken together, our findings suggest that in a subset of BRAFV600E melanoma cells, BRAFV600E negatively regulates AKT pathway in a rictor-dependent, MEK/ERK and BRAF kinase-independent manner. Our study reveals a novel molecular mechanism underlying the regulation of feedback loops between the MAPK and AKT pathways.

  12. Melanin-targeting antibody as a potential agent for radioimmunotherapy of melanoma

    International Nuclear Information System (INIS)

    Dadachova, E.; Nosanchuk, J.D.; Shi, L.; Casadevall, A.

    2002-01-01

    Aim: Melanoma is a cancer of increasing incidence for which new methods of treatment and imaging are urgently needed. Currently there is no effective therapy for metastatic melanoma as this tumor is resistant to radiation and chemotherapy. The majority of human melanomas are pigmented with melanin. Here we investigated the possibility of using a melanin-binding antibody (mAb 6D2) which was originally developed against fungal melanin as a delivery vehicle for RIT of pigmented melanoma. Materials and Methods: MAb 6D2 (IgM type) was generated from hybridomas obtained from mice immunized with melanin isolated from Cryptococcus neoformans. The mAb was radiolabeled with 213 Bi or 111 In via bifunctional chelator CHXA'' and with 188 Re - via 'direct labeling'. The immunoreactivity of radiolabeled 6D2 mAb towards fungal melanin was tested by immunofluorescence. Cell binding of 213 Bi-6D2, 188 Re-6D2 and irrelevant IgM 12A1 was evaluated by incubating 2 μg/mL mAb with 0.23-2 x 10 6 human slightly pigmented melanoma cells SK-28-MEL (whole or lysed) which were grown with or without 110 μM L-tyrosine to promote melanin formation. In vivo binding of 111 In-6D2 was studied by scintigraphic imaging in nude mice injected IP with 2.8 x 10 6 SK-28-MEL cells 24 h before 111 In-6D2; biodistribution of 188 Re-6D2 was performed in nude mice bearing SK-28-MEL xenografted tumors. Results: The immunoreactivity of radiolabeled 6D2 mAb to melanin was demonstrated by immunofluorescence. Cell binding of 213 Bi-6D2 and 188 Re-6D2 was higher for the melanoma cells grown with 110 μM L-tyrosine suggesting melanin-specific binding. There was no significant difference (P>0.05) in binding to the whole or lysed cells which may be due to reactivity with melanin or precursors found on the cell surface. In mice injected IP with SK-28-MEL cells there was more retention of 111 In-6D2 in intraperitoneal cavity compared to irrelevant 111 In-IgM and control animals with no tumor cells. The biodistribution

  13. A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44, is involved in type I collagen-mediated melanoma cell motility and invasion

    DEFF Research Database (Denmark)

    Faassen, A E; Schrager, J A; Klein, D J

    1992-01-01

    The metastatic spread of tumor cells occurs through a complex series of events, one of which involves the adhesion of tumor cells to extracellular matrix (ECM) components. Multiple interactions between cell surface receptors of an adherent tumor cell and the surrounding ECM contribute to cell...... collagen could also be inhibited by removing cell surface chondroitin sulfate with chondroitinase. In contrast, type I collagen-mediated melanoma cell adhesion and spreading were not affected by either beta-D-xyloside or chondroitinase treatments. These results suggest that mouse melanoma CSPG...... was shown to be mediated, at least in part, by chondroitin sulfate. Additionally we have determined that mouse melanoma CSPG is composed of a 110-kD core protein that is recognized by anti-CD44 antibodies on Western blots. Collectively, our data suggests that interactions between a cell surface CD44-related...

  14. Biochanin A induces anticancer effects in SK-Mel-28 human malignant melanoma cells via induction of apoptosis, inhibition of cell invasion and modulation of NF-κB and MAPK signaling pathways.

    Science.gov (United States)

    Xiao, Peng; Zheng, Bowen; Sun, Jiaming; Yang, Jia

    2017-11-01

    The present study aimed to investigate the antitumor activity of Biochanin A in SK-Mel-28 human malignant melanoma cells. An MTT assay was used to study the cytotoxic effects of Biochanin A. In vitro wound healing and invasion assays were used to investigate the effects on cell migration and invasion. Fluorescence microscopy using acridine orange/propidium iodide was used to study effects on cell morphology and apoptosis. Nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) protein expression levels were determined by western blot analysis. The results indicated that Biochanin A significantly inhibited the growth of SK-Mel-28 cells in a dose and time dependent manner. Treatment of the cells with Biochanin A induced apoptosis in a dose dependent manner. Additionally, Biochanin A led to inhibition of cell migration and invasion in a dose-dependent manner and upregulated the expression of key proteins in the NF-κB and MAPK signaling pathways.

  15. In-depth characterization of microRNA transcriptome in melanoma.

    Directory of Open Access Journals (Sweden)

    James Kozubek

    Full Text Available The full repertoire of human microRNAs (miRNAs that could distinguish common (benign nevi from cutaneous (malignant melanomas remains to be established. In an effort to gain further insight into the role of miRNAs in melanoma, we applied Illumina next-generation sequencing (NGS platform to carry out an in-depth analysis of miRNA transcriptome in biopsies of nevi, thick primary (>4.0 mm and metastatic melanomas with matched normal skin in parallel to melanocytes and melanoma cell lines (both primary and metastatic (n=28. From this data representing 698 known miRNAs, we defined a set of top-40 list, which properly classified normal from cancer; also confirming 23 (58% previously discovered miRNAs while introducing an additional 17 (42% known and top-15 putative novel candidate miRNAs deregulated during melanoma progression. Surprisingly, the miRNA signature distinguishing specimens of melanoma from nevus was significantly different than that of melanoma cell lines from melanocytes. Among the top list, miR-203, miR-204-5p, miR-205-5p, miR-211-5p, miR-23b-3p, miR-26a-5p and miR-26b-5p were decreased in melanomas vs. nevi. In a validation cohort (n=101, we verified the NGS results by qRT-PCR and showed that receiver-operating characteristic curves for miR-211-5p expression accurately discriminated invasive melanoma (AUC=0.933, melanoma in situ (AUC=0.933 and dysplastic (atypical nevi (AUC=0.951 from common nevi. Target prediction analysis of co-transcribed miRNAs showed a cooperative regulation of key elements in the MAPK signaling pathway. Furthermore, we found extensive sequence variations (isomiRs and other non-coding small RNAs revealing a complex melanoma transcriptome. Deep-sequencing small RNAs directly from clinically defined specimens provides a robust strategy to improve melanoma diagnostics.

  16. BAP1 PLAYS A SURVIVAL ROLE IN CUTANEOUS MELANOMA

    Science.gov (United States)

    Kumar, Raj; Taylor, Michael; Miao, Benchun; Ji, Zhenyu; Njauw, Jenny Ching-Ni; Jönsson, Göran; Frederick, Dennie Tompers; Tsao, Hensin

    2014-01-01

    Although the pattern of BAP1 inactivation in ocular melanoma specimens and in the BAP1 cutaneous/ocular melanoma (CM/OM) predisposition syndrome suggests a tumor suppressor function, the specific role of this gene in the pathogenesis of cutaneous melanoma is not fully understood. We thus set out to characterize BAP1 in cutaneous melanoma and discovered an unexpected pro-survival effect of this protein. Tissue and cell lines analysis showed that BAP1 expression was maintained, rather than lost, in primary melanomas compared to nevi and normal skin. Genetic depletion of BAP1 in melanoma cells reduced proliferation and colony forming capability, induced apoptosis and inhibited melanoma tumor growth in vivo. On the molecular level, suppression of BAP1 led to a concomitant drop in the protein levels of survivin a member of anti-apoptotic proteins and a known mediator of melanoma survival. Restoration of survivin in melanoma cells partially rescued the growth-retarding effects of BAP1 loss. In contrast to melanoma cells, stable overexpression of BAP1 into immortalized but non-transformed melanocytes did suppress proliferation and reduce survivin. Taken together, these studies demonstrate that BAP1 may play a growth-sustaining role in melanoma cells, but that its impact on ubiquitination underpins a complex physiology which is context and cell dependent. PMID:25521456

  17. BAP1 has a survival role in cutaneous melanoma.

    Science.gov (United States)

    Kumar, Raj; Taylor, Michael; Miao, Benchun; Ji, Zhenyu; Njauw, Jenny C-N; Jönsson, Göran; Frederick, Dennie T; Tsao, Hensin

    2015-04-01

    Although the pattern of BAP1 inactivation in ocular melanoma specimens and in the BAP1 cutaneous melanoma (CM)/ocular melanoma predisposition syndrome suggests a tumor suppressor function, the specific role of this gene in the pathogenesis of CM is not fully understood. We thus set out to characterize BAP1 in CM and discovered an unexpected pro-survival effect of this protein. Tissue and cell lines analysis showed that BAP1 expression was maintained, rather than lost, in primary melanomas compared with nevi and normal skin. Genetic depletion of BAP1 in melanoma cells reduced proliferation and colony-forming capability, induced apoptosis, and inhibited melanoma tumor growth in vivo. On the molecular level, suppression of BAP1 led to a concomitant drop in the protein levels of survivin, a member of anti-apoptotic proteins and a known mediator of melanoma survival. Restoration of survivin in melanoma cells partially rescued the growth-retarding effects of BAP1 loss. In contrast to melanoma cells, stable overexpression of BAP1 into immortalized but non-transformed melanocytes did suppress proliferation and reduce survivin. Taken together, these studies demonstrate that BAP1 may have a growth-sustaining role in melanoma cells, but that its impact on ubiquitination underpins a complex physiology, which is context and cell dependent.

  18. pO2 Fluctuation Pattern and Cycling Hypoxia in Human Cervical Carcinoma and Melanoma Xenografts

    International Nuclear Information System (INIS)

    Ellingsen, Christine; Øvrebø, Kirsti Marie; Galappathi, Kanthi; Mathiesen, Berit; Rofstad, Einar K.

    2012-01-01

    Purpose: Blood perfusion in tumors is spatially and temporally heterogeneous, resulting in local fluctuations in tissue oxygen tension (pO 2 ) and tissue regions showing cycling hypoxia. In this study, we investigated whether the pO 2 fluctuation pattern and the extent of cycling hypoxia differ between tumor types showing high (e.g., cervical carcinoma xenograft) and low (e.g., melanoma xenograft) fractions of connective tissue-associated blood vessels. Methods and Materials: Two cervical carcinoma lines (CK-160 and TS-415) and two melanoma lines (A-07 and R-18) transplanted into BALB/c nu/nu mice were included in the study. Tissue pO 2 was measured simultaneously in two positions in each tumor by using a two-channel OxyLite fiber-optic oxygen-sensing device. The extent of acute and chronic hypoxia was assessed by combining a radiobiological and a pimonidazole-based immunohistochemical assay of tumor hypoxia. Results: The proportion of tumor regions showing pO 2 fluctuations, the pO 2 fluctuation frequency in these regions, and the relative amplitude of the pO 2 fluctuations were significantly higher in the melanoma xenografts than in the cervical carcinoma xenografts. Cervical carcinoma and melanoma xenografts did not differ significantly in the fraction of acutely hypoxic cells or the fraction of chronically hypoxic cells. However, the ratio between fraction of acutely hypoxic cells and fraction of chronically hypoxic cells was significantly higher in melanoma than in cervical carcinoma xenografts. Conclusions: Temporal heterogeneity in blood flow and tissue pO 2 in tumors may depend on tumor histology. Connective tissue surrounding microvessels may stabilize blood flow and pO 2 and, thus, protect tumor tissue from cycling hypoxia.

  19. Inhibition of CSF-1R supports T-cell mediated melanoma therapy.

    Directory of Open Access Journals (Sweden)

    Marjolein Sluijter

    Full Text Available Tumor associated macrophages (TAM can promote angiogenesis, invasiveness and immunosuppression. The cytokine CSF-1 (or M-CSF is an important factor of TAM recruitment and differentiation and several pharmacological agents targeting the CSF-1 receptor (CSF-1R have been developed to regulate TAM in solid cancers. We show that the kinase inhibitor PLX3397 strongly dampened the systemic and local accumulation of macrophages driven by B16F10 melanomas, without affecting Gr-1(+ myeloid derived suppressor cells. Removal of intratumoral macrophages was remarkably efficient and a modest, but statistically significant, delay in melanoma outgrowth was observed. Importantly, CSF-1R inhibition strongly enhanced tumor control by immunotherapy using tumor-specific CD8 T cells. Elevated IFNγ production by T cells was observed in mice treated with the combination of PLX3397 and immunotherapy. These results support the combined use of CSF-1R inhibition with CD8 T cell immunotherapy, especially for macrophage-stimulating tumors.

  20. Notch4 Signaling Induces a Mesenchymal–Epithelial–like Transition in Melanoma Cells to Suppress Malignant Behaviors

    Science.gov (United States)

    Rad, Ehsan Bonyadi; Hammerlindl, Heinz; Wels, Christian; Popper, Ulrich; Menon, Dinoop Ravindran; Breiteneder, Heimo; Kitzwoegerer, Melitta; Hafner, Christine; Herlyn, Meenhard; Bergler, Helmut; Schaider, Helmut

    2016-01-01

    The effects of Notch signaling are context-dependent and both oncogenic and tumor-suppressive functions have been described. Notch signaling in melanoma is considered oncogenic, but clinical trials testing Notch inhibition in this malignancy have not proved successful. Here, we report that expression of the constitutively active intracellular domain of Notch4 (N4ICD) in melanoma cells triggered a switch from a mesenchymal-like parental phenotype to an epithelial-like phenotype. The epithelial-like morphology was accompanied by strongly reduced invasive, migratory, and proliferative properties concomitant with the downregulation of epithelial–mesenchymal transition markers Snail2 (SNAI2), Twist1, vimentin (VIM), and MMP2 and the reexpression of E-cadherin (CDH1). The N4ICD-induced phenotypic switch also resulted in significantly reduced tumor growth in vivo. Immunohistochemical analysis of primary human melanomas and cutaneous metastases revealed a significant correlation between Notch4 and E-cadherin expression. Mechanistically, we demonstrate that N4ICD induced the expression of the transcription factors Hey1 and Hey2, which bound directly to the promoter regions of Snail2 and Twist1 and repressed gene transcription, as determined by EMSA and luciferase assays. Taken together, our findings indicate a role for Notch4 as a tumor suppressor in melanoma, uncovering a potential explanation for the poor clinical efficacy of Notch inhibitors observed in this setting. PMID:26801977

  1. Interleukins 1alpha and 1beta secreted by some melanoma cell lines strongly reduce expression of MITF-M and melanocyte differentiation antigens.

    Science.gov (United States)

    Kholmanskikh, Olga; van Baren, Nicolas; Brasseur, Francis; Ottaviani, Sabrina; Vanacker, Julie; Arts, Nathalie; van der Bruggen, Pierre; Coulie, Pierre; De Plaen, Etienne

    2010-10-01

    We report that melanoma cell lines expressing the interleukin-1 receptor exhibit 4- to 10-fold lower levels of mRNA of microphthalmia-associated transcription factor (MITF-M) when treated with interleukin-1beta. This effect is NF-kappaB and JNK-dependent. MITF-M regulates the expression of melanocyte differentiation genes such as MLANA, tyrosinase and gp100, which encode antigens recognized on melanoma cells by autologous cytolytic T lymphocytes. Accordingly, treating some melanoma cells with IL-1beta reduced by 40-100% their ability to activate such antimelanoma cytolytic T lymphocytes. Finally, we observed large amounts of biologically active IL-1alpha or IL-1beta secreted by two melanoma cell lines that did not express MITF-M, suggesting an autocrine MITF-M downregulation. We estimate that approximately 13% of melanoma cell lines are MITF-M-negative and secrete IL-1 cytokines. These results indicate that the repression of melanocyte-differentiation genes by IL-1 produced by stromal cells or by tumor cells themselves may represent an additional mechanism of melanoma immune escape.

  2. Inducibility of STAT 1/SOCS 3 transcripts and proteins by interferon-alpha/gamma in human melanoma cell lines

    Czech Academy of Sciences Publication Activity Database

    Kovařík, Aleš; Fojtová, Miloslava; Boudný, V.; Adamková, L.; Kovařík, J.

    2004-01-01

    Roč. 14, Suppl. 1 (2004), s. S87 ISSN 1107-3756. [World Congress on Advances in Oncology /9./ and International Symposium on Molecular Medicine /7./. 14.10.2004-16.10.2004, Hersonissos] R&D Projects: GA MZd NC7139; GA ČR GA301/03/0370; GA AV ČR IBS5004010 Keywords : melanoma cells * STAT 1 * SOCS 3 Subject RIV: BO - Biophysics

  3. T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules

    Directory of Open Access Journals (Sweden)

    Kseniya A. Rubina

    2015-07-01

    Full Text Available T-cadherin is a glycosyl-phosphatidylinositol (GPI anchored member of the cadherin superfamily involved in the guidance of migrating cells. We have previously shown that in vivo T-cadherin overexpression leads to increased melanoma primary tumor growth due to the recruitment of mesenchymal stromal cells as well as the enhanced metastasis. Since tumor progression is highly dependent upon cell migration and invasion, the aim of the present study was to elucidate the mechanisms of T-cadherin participation in these processes. Herein we show that T-cadherin expression results in the increased invasive potential due to the upregulated expression of pro-oncogenic integrins, chemokines, adhesion molecules and extracellular matrix components. The detected increase in chemokine expression could be responsible for the stromal cell recruitment. At the same time our previous data demonstrated that T-cadherin expression inhibited neoangiogenesis in the primary tumors. We demonstrate molecules and reduction in pro-angiogenic factors. Thus, T-cadherin plays a dual role in melanoma growth and progression: T-cadherin expression results in anti-angiogenic effects in melanoma, however, this also stimulates transcription of genes responsible for migration and invasion of melanoma cells.

  4. Melanoma cells show a heterogeneous range of sensitivity to ionizing radiation and are radiosensitized by inhibition of B-RAF with PLX-4032

    International Nuclear Information System (INIS)

    Sambade, Maria J.; Peters, Eldon C.; Thomas, Nancy E.; Kaufmann, William K.; Kimple, Randall J.; Shields, Janiel M.

    2011-01-01

    Purpose: To assess the relative radiosensitivities of a large collection of melanoma cell lines and to determine whether pharmacologic inhibition of mutant B-RAF with PLX-4032 can radiosensitize B-Raf+ melanoma cells. Materials and methods: A large collection of melanoma cell lines (n = 37) were treated with 0-8 Gy IR and clonogenic survival assays used to generate survival curves to rank relative radiosensitivities among the cell lines. The ability of a B-RAF inhibitor, PLX-4032, to radiosensitize highly radioresistant B-Raf+ cells was also assessed by clonogenic cell survival and spheroid invasion assays and the effects of treatment on the cell cycle assessed by FACS. Results: Melanoma cell lines displayed a very large, heterogeneous range of SF2 values (1.002-0.053) with a mean of 0.51. Cell lines with surviving fractions of 0.29 or less at SF2 and SF4 were observed at a high frequency of 18.9% and 70.2%, respectively. Treatment of B-Raf+ cells with the B-RAF inhibitor PLX-4032 in combination with radiation provided enhanced inhibition of both colony formation and invasion, and radiosensitized cells through an increase in G 1 arrest. Conclusions: Our data suggest that melanomas are not uniformly radioresistant with a significant subset displaying inherent radiosensitivity. Pharmacologic inhibition of B-RAF with PLX-4032 effectively radiosensitized B-Raf+ melanoma cells suggesting that this combination approach could provide improved radiotherapeutic response in B-Raf+ melanoma patients.

  5. AMP kinase-related kinase NUAK2 affects tumor growth, migration, and clinical outcome of human melanoma.

    Science.gov (United States)

    Namiki, Takeshi; Tanemura, Atsushi; Valencia, Julio C; Coelho, Sergio G; Passeron, Thierry; Kawaguchi, Masakazu; Vieira, Wilfred D; Ishikawa, Masashi; Nishijima, Wataru; Izumo, Toshiyuki; Kaneko, Yasuhiko; Katayama, Ichiro; Yamaguchi, Yuji; Yin, Lanlan; Polley, Eric C; Liu, Hongfang; Kawakami, Yutaka; Eishi, Yoshinobu; Takahashi, Eishi; Yokozeki, Hiroo; Hearing, Vincent J

    2011-04-19

    The identification of genes that participate in melanomagenesis should suggest strategies for developing therapeutic modalities. We used a public array comparative genomic hybridization (CGH) database and real-time quantitative PCR (qPCR) analyses to identify the AMP kinase (AMPK)-related kinase NUAK2 as a candidate gene for melanomagenesis, and we analyzed its functions in melanoma cells. Our analyses had identified a locus at 1q32 where genomic gain is strongly associated with tumor thickness, and we used real-time qPCR analyses and regression analyses to identify NUAK2 as a candidate gene at that locus. Associations of relapse-free survival and overall survival of 92 primary melanoma patients with NUAK2 expression measured using immunohistochemistry were investigated using Kaplan-Meier curves, log rank tests, and Cox regression models. Knockdown of NUAK2 induces senescence and reduces S-phase, decreases migration, and down-regulates expression of mammalian target of rapamycin (mTOR). In vivo analysis demonstrated that knockdown of NUAK2 suppresses melanoma tumor growth in mice. Survival analysis showed that the risk of relapse is greater in acral melanoma patients with high levels of NUAK2 expression than in acral melanoma patients with low levels of NUAK2 expression (hazard ratio = 3.88; 95% confidence interval = 1.44-10.50; P = 0.0075). These data demonstrate that NUAK2 expression is significantly associated with the oncogenic features of melanoma cells and with the survival of acral melanoma patients. NUAK2 may provide a drug target to suppress melanoma progression. This study further supports the importance of NUAK2 in cancer development and tumor progression, while AMPK has antioncogenic properties.

  6. The Effect of Bornyl cis-4-Hydroxycinnamate on Melanoma Cell Apoptosis Is Associated with Mitochondrial Dysfunction and Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Tzu-Yen Yang

    2018-05-01

    pathways was activated upon bornyl cis-4-hydroxycinnamate treatment. Altogether, our results support the conclusion that bornyl cis-4-hydroxycinnamate-induced apoptosis in melanoma cells is associated with mechanisms correlated with the activation of caspase cascades, mitochondrial dysfunction, and endoplasmic reticulum stress, and indicate that this molecule has the potential to be developed as a chemotherapeutic agent for human melanoma.

  7. The Effect of Bornyl cis-4-Hydroxycinnamate on Melanoma Cell Apoptosis Is Associated with Mitochondrial Dysfunction and Endoplasmic Reticulum Stress

    Science.gov (United States)

    Yang, Tzu-Yen; Wu, Yu-Jen; Chang, Chi-I; Wu, Mei-Li

    2018-01-01

    was activated upon bornyl cis-4-hydroxycinnamate treatment. Altogether, our results support the conclusion that bornyl cis-4-hydroxycinnamate-induced apoptosis in melanoma cells is associated with mechanisms correlated with the activation of caspase cascades, mitochondrial dysfunction, and endoplasmic reticulum stress, and indicate that this molecule has the potential to be developed as a chemotherapeutic agent for human melanoma. PMID:29734677

  8. Nuclear envelope-distributed CD147 interacts with and inhibits the transcriptional function of RING1 and promotes melanoma cell motility.

    Directory of Open Access Journals (Sweden)

    Junchen Chen

    Full Text Available Melanoma accounts for nearly 80% of all deaths associated with skin cancer.CD147 plays a very important role in melanoma progression and the expression level may correlate with tumor malignancy. RING1 can bind DNA and act as a transcriptional repressor, play an important role in the aggressive phenotype in melanoma. The interactions between CD147 and RING1 were identified with a yeast two-hybrid and RING1 interacted with CD147 through the transmembrane domain. RING1 inhibits CD147's capability promoting melanoma cell migration. In conclusion, the study identified novel interactions between CD147 and RING1, recovered CD147 nuclear envelope distribution in melanoma cells, and suggested a new mechanism underlying how cytoplasmic CD147 promotes melanoma development.

  9. Nuclear envelope-distributed CD147 interacts with and inhibits the transcriptional function of RING1 and promotes melanoma cell motility.

    Science.gov (United States)

    Chen, Junchen; Peng, Cong; Lei, Li; Zhang, Jianglin; Zeng, Weiqi; Chen, Xiang

    2017-01-01

    Melanoma accounts for nearly 80% of all deaths associated with skin cancer.CD147 plays a very important role in melanoma progression and the expression level may correlate with tumor malignancy. RING1 can bind DNA and act as a transcriptional repressor, play an important role in the aggressive phenotype in melanoma. The interactions between CD147 and RING1 were identified with a yeast two-hybrid and RING1 interacted with CD147 through the transmembrane domain. RING1 inhibits CD147's capability promoting melanoma cell migration. In conclusion, the study identified novel interactions between CD147 and RING1, recovered CD147 nuclear envelope distribution in melanoma cells, and suggested a new mechanism underlying how cytoplasmic CD147 promotes melanoma development.

  10. Downregulation of Melanoma Cell Adhesion Molecule (MCAM/CD146) Accelerates Cellular Senescence in Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells.

    Science.gov (United States)

    Jin, Hye Jin; Kwon, Ji Hye; Kim, Miyeon; Bae, Yun Kyung; Choi, Soo Jin; Oh, Wonil; Yang, Yoon Sun; Jeon, Hong Bae

    2016-04-01

    Therapeutic applications of mesenchymal stem cells (MSCs) for treating various diseases have increased in recent years. To ensure that treatment is effective, an adequate MSC dosage should be determined before these cells are used for therapeutic purposes. To obtain a sufficient number of cells for therapeutic applications, MSCs must be expanded in long-term cell culture, which inevitably triggers cellular senescence. In this study, we investigated the surface markers of human umbilical cord blood-derived MSCs (hUCB-MSCs) associated with cellular senescence using fluorescence-activated cell sorting analysis and 242 cell surface-marker antibodies. Among these surface proteins, we selected the melanoma cell adhesion molecule (MCAM/CD146) for further study with the aim of validating observed expression differences and investigating the associated implications in hUCB-MSCs during cellular senescence. We observed that CD146 expression markedly decreased in hUCB-MSCs following prolonged in vitro expansion. Using preparative sorting, we found that hUCB-MSCs with high CD146 expression displayed high growth rates, multilineage differentiation, expression of stemness markers, and telomerase activity, as well as significantly lower expression of the senescence markers p16, p21, p53, and senescence-associated β-galactosidase, compared with that observed in hUCB-MSCs with low-level CD146 expression. In contrast, CD146 downregulation with small interfering RNAs enhanced the senescence phenotype. In addition, CD146 suppression in hUCB-MSCs caused downregulation of other cellular senescence regulators, including Bmi-1, Id1, and Twist1. Collectively, our results suggest that CD146 regulates cellular senescence; thus, it could be used as a therapeutic marker to identify senescent hUCB-MSCs. One of the fundamental requirements for mesenchymal stem cell (MSC)-based therapies is the expansion of MSCs during long-term culture because a sufficient number of functional cells is required

  11. Podoplanin Expression in Canine Melanoma

    OpenAIRE

    Ogasawara, Satoshi; Honma, Ryusuke; Kaneko, Mika K.; Fujii, Yuki; Kagawa, Yumiko; Konnai, Satoru; Kato, Yukinari

    2016-01-01

    A type I transmembrane protein, podoplanin (PDPN), is expressed in several normal cells such as lymphatic endothelial cells or pulmonary type I alveolar cells. We recently demonstrated that anticanine PDPN monoclonal antibody (mAb), PMab-38, recognizes canine PDPN of squamous cell carcinomas, but does not react with lymphatic endothelial cells. Herein, we investigated whether PMab-38 reacts with canine melanoma. PMab-38 reacted with 90% of melanoma cells (9/10 cases) using immunohistochemistr...

  12. Photothermal sensitization of amelanotic melanoma cells by Ni(II)-octabutoxy-naphthalocyanine.

    Science.gov (United States)

    Busetti, A; Soncin, M; Reddi, E; Rodgers, M A; Kenney, M E; Jori, G

    1999-01-01

    Incubation of B78H1 amelanotic melanoma cells with a potential photothermal sensitizer, namely, liposome-incorporated Ni(II)-octabutoxy-naphthalocyanine (NiNc), induces an appreciable cellular accumulation of the naphthalocyanine, which is dependent on both the NiNc concentration and the incubation time. No detectable decrease in cell survival occurs upon red-light irradiation (corresponding to the longest-wavelength absorption bands of NiNc) in a continuous-wave (c.w.) regime of the naphthalocyanine-loaded cells. On the other hand, 850 nm irradiation with a Q-switched Ti:sapphire laser operating in a pulsed mode (30 ns pulses, 10 Hz, 200 mJ/pulse) induces an efficient cell death. Thus, ca. 98% decrease in cell survival is obtained upon 5 min irradiation of cells that have been incubated for 48 h with 5.1 microM NiNc. The efficiency of the photoprocess is strongly influenced by the NiNc cell incubation time prior to irradiation. Photothermal sensitization with NiNc appears to open new perspectives for therapeutic applications, as suggested by preliminary in vivo studies with C57/BL6 mice bearing a subcutaneously implanted amelanotic melanoma.

  13. Ex Vivo and In Vivo Imaging and Biodistribution of Aptamers Targeting the Human Matrix MetalloProtease-9 in Melanomas.

    Directory of Open Access Journals (Sweden)

    David Kryza

    Full Text Available The human Matrix MetalloProtease-9 (hMMP-9 is overexpressed in tumors where it promotes the release of cancer cells thus contributing to tumor metastasis. We raised aptamers against hMMP-9, which constitutes a validated marker of malignant tumors, in order to design probes for imaging tumors in human beings. A chemically modified RNA aptamer (F3B, fully resistant to nucleases was previously described. This compound was subsequently used for the preparation of F3B-Cy5, F3B-S-acetylmercaptoacetyltriglycine (MAG and F3B-DOTA. The binding properties of these derivatives were determined by surface plasmon resonance and electrophoretic mobility shift assay. Optical fluorescence imaging confirmed the binding to hMMP-9 in A375 melanoma bearing mice. Quantitative biodistribution studies were performed at 30 min, 1h and 2 h post injection of 99mTc-MAG-aptamer and 111In-DOTA-F3B. 99mTc radiolabeled aptamer specifically detected hMMP-9 in A375 melanoma tumors but accumulation in digestive tract was very high. Following i.v. injection of 111In-DOTA-F3B, high level of radioactivity was observed in kidneys and bladder but digestive tract uptake was very limited. Tumor uptake was significantly (student t test, p<0.05 higher for 111In-DOTA-F3B with 2.0%ID/g than for the 111In-DOTA-control oligonucleotide (0.7%ID/g with tumor to muscle ratio of 4.0. Such difference in tumor accumulation has been confirmed by ex vivo scintigraphic images performed at 1h post injection and by autoradiography, which revealed the overexpression of hMMP-9 in sections of human melanomas. These results demonstrate that F3B aptamer is of interest for detecting hMMP-9 in melanoma tumor.

  14. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma

    DEFF Research Database (Denmark)

    Lauss, Martin; Donia, Marco; Harbst, Katja

    2017-01-01

    Adoptive T-cell therapy (ACT) is a highly intensive immunotherapy regime that has yielded remarkable response rates and many durable responses in clinical trials in melanoma; however, 50-60% of the patients have no clinical benefit. Here, we searched for predictive biomarkers to ACT in melanoma. ...

  15. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients.

    Science.gov (United States)

    Logozzi, Mariantonia; De Milito, Angelo; Lugini, Luana; Borghi, Martina; Calabrò, Luana; Spada, Massimo; Perdicchio, Maurizio; Marino, Maria Lucia; Federici, Cristina; Iessi, Elisabetta; Brambilla, Daria; Venturi, Giulietta; Lozupone, Francesco; Santinami, Mario; Huber, Veronica; Maio, Michele; Rivoltini, Licia; Fais, Stefano

    2009-01-01

    Metastatic melanoma is an untreatable cancer lacking reliable and non-invasive markers of disease progression. Exosomes are small vesicles secreted by normal as well as tumor cells. Human tumor-derived exosomes are involved in malignant progression and we evaluated the presence of exosomes in plasma of melanoma patients as a potential tool for cancer screening and follow-up. We designed an in-house sandwich ELISA (Exotest) to capture and quantify exosomes in plasma based on expression of housekeeping proteins (CD63 and Rab-5b) and a tumor-associated marker (caveolin-1). Western blot and flow cytometry analysis of exosomes were used to confirm the Exotest-based findings. The Exotest allowed sensitive detection and quantification of exosomes purified from human tumor cell culture supernatants and plasma from SCID mice engrafted with human melanoma. Plasma levels of exosomes in melanoma-engrafted SCID mice correlated to tumor size. We evaluated the levels of plasma exosomes expressing CD63 and caveolin-1 in melanoma patients (n = 90) and healthy donors (n = 58). Consistently, plasma exosomes expressing CD63 (504+/-315) or caveolin-1 (619+/-310) were significantly increased in melanoma patients as compared to healthy donors (223+/-125 and 228+/-102, respectively). While the Exotest for CD63+ plasma exosomes had limited sensitivity (43%) the Exotest for detection of caveolin-1+ plasma exosomes showed a higher sensitivity (68%). Moreover, caveolin-1+ plasma exosomes were significantly increased with respect to CD63+ exosomes in the patients group. We describe a new non-invasive assay allowing detection and quantification of human exosomes in plasma of melanoma patients. Our results suggest that the Exotest for detection of plasma exosomes carrying tumor-associated antigens may represent a novel tool for clinical management of cancer patients.

  16. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients.

    Directory of Open Access Journals (Sweden)

    Mariantonia Logozzi

    Full Text Available BACKGROUND: Metastatic melanoma is an untreatable cancer lacking reliable and non-invasive markers of disease progression. Exosomes are small vesicles secreted by normal as well as tumor cells. Human tumor-derived exosomes are involved in malignant progression and we evaluated the presence of exosomes in plasma of melanoma patients as a potential tool for cancer screening and follow-up. METHODOLOGY/PRINCIPAL FINDINGS: We designed an in-house sandwich ELISA (Exotest to capture and quantify exosomes in plasma based on expression of housekeeping proteins (CD63 and Rab-5b and a tumor-associated marker (caveolin-1. Western blot and flow cytometry analysis of exosomes were used to confirm the Exotest-based findings. The Exotest allowed sensitive detection and quantification of exosomes purified from human tumor cell culture supernatants and plasma from SCID mice engrafted with human melanoma. Plasma levels of exosomes in melanoma-engrafted SCID mice correlated to tumor size. We evaluated the levels of plasma exosomes expressing CD63 and caveolin-1 in melanoma patients (n = 90 and healthy donors (n = 58. Consistently, plasma exosomes expressing CD63 (504+/-315 or caveolin-1 (619+/-310 were significantly increased in melanoma patients as compared to healthy donors (223+/-125 and 228+/-102, respectively. While the Exotest for CD63+ plasma exosomes had limited sensitivity (43% the Exotest for detection of caveolin-1+ plasma exosomes showed a higher sensitivity (68%. Moreover, caveolin-1+ plasma exosomes were significantly increased with respect to CD63+ exosomes in the patients group. CONCLUSIONS/SIGNIFICANCE: We describe a new non-invasive assay allowing detection and quantification of human exosomes in plasma of melanoma patients. Our results suggest that the Exotest for detection of plasma exosomes carrying tumor-associated antigens may represent a novel tool for clinical management of cancer patients.

  17. Primary ovarian malignant melanoma

    Directory of Open Access Journals (Sweden)

    Kostov Miloš

    2010-01-01

    Full Text Available Background. Primary ovarian malignant melanoma is extremely rare. It usually appears in the wall of a dermoid cyst or is associated with another teratomatous component. Metastatic primary malignant melanoma to ovary from a primary melanoma elsewhere is well known and has been often reported especially in autopsy studies. Case report. We presented a case of primary ovarian malignant melanoma in a 45- year old woman, with no evidence of extraovarian primary melanoma nor teratomatous component. The tumor was unilateral, macroscopically on section presented as solid mass, dark brown to black color. Microscopically, tumor cells showed positive immunohistochemical reaction for HMB-45, melan-A and S-100 protein, and negative immunoreactivity for estrogen and progesteron receptors. Conclusion. Differentiate metastatic melanoma from rare primary ovarian malignant melanoma, in some of cases may be a histopathological diagnostic problem. Histopathological diagnosis of primary ovarian malignant melanoma should be confirmed by immunohistochemical analyses and detailed clinical search for an occult primary tumor.

  18. Photodynamic effect of aluminium and zinc tetrasulfophthalocyanines on melanoma cancer cells

    CSIR Research Space (South Africa)

    Maduray, K

    2010-06-01

    Full Text Available Aluminium and zinc tetrasulfophthalocyanines were activated with a 672nm wavelength laser to investigate the photodynamic effects on melanoma cancer, dermal fibroblast and epidermal keratinocyte cells. Aluminium tetrasulfophthalocyanine was more...

  19. Increased NY-ESO-1 Expression and Reduced Infiltrating CD3+ T Cells in Cutaneous Melanoma

    Directory of Open Access Journals (Sweden)

    Mara Giavina-Bianchi

    2015-01-01

    Full Text Available NY-ESO-1 is a cancer-testis antigen aberrantly expressed in melanomas, which may serve as a robust and specific target in immunotherapy. NY-ESO-1 antigen expression, tumor features, and the immune profile of tumor infiltrating lymphocytes were assessed in primary cutaneous melanoma. NY-ESO-1 protein was detected in 20% of invasive melanomas (16/79, rarely in in situ melanoma (1/10 and not in benign nevi (0/20. Marked intratumoral heterogeneity of NY-ESO-1 protein expression was observed. NY-ESO-1 expression was associated with increased primary tumor thickness (P=0.007 and inversely correlated with superficial spreading melanoma (P<0.02. NY-ESO-1 expression was also associated with reduced numbers and density of CD3+ tumor infiltrating lymphocytes (P=0.017. When NY-ESO-1 protein was expressed, CD3+ T cells were less diffusely infiltrating the tumor and were more often arranged in small clusters (P=0.010 or as isolated cells (P=0.002 than in large clusters of more than five lymphocytes. No correlation of NY-ESO-1 expression with gender, age, tumor site, ulceration, lymph node sentinel status, or survival was observed. NY-ESO-1 expression in melanoma was associated with tumor progression, including increased tumor thickness, and with reduced tumor infiltrating lymphocytes.

  20. Analysis of T cell receptor alpha beta variability in lymphocytes infiltrating melanoma primary tumours and metastatic lesions

    DEFF Research Database (Denmark)

    Schøller, J; thor Straten, P; Jakobsen, Annette Birck

    1994-01-01

    The T cell receptor (TCR) alpha beta variable (V) gene family usage of tumour-infiltrating lymphocytes (TIL) in four different primary human malignant melanomas and their corresponding metastatic lesions was characterized using a recently developed method based on the reverse-transcription-couple......The T cell receptor (TCR) alpha beta variable (V) gene family usage of tumour-infiltrating lymphocytes (TIL) in four different primary human malignant melanomas and their corresponding metastatic lesions was characterized using a recently developed method based on the reverse...... usage of the TCR V gene families V alpha 4, V alpha 5, V alpha 22 and V beta 8, whereas the V beta 3 gene family appeared to be expressed together with HLA-A1. Other highly expressed V gene families, apparently not restricted to either HLA-A1 or -A2, were V alpha 1 (expressed in three of four primary...... tumours) and V alpha 21 (expressed in two of four tumours). We found no evidence suggesting any correlations between the haplotypes HLA-A1 and -A2 and preferential V gene family expression in the metastatic lesions, and the only common feature was V alpha 8, which was found to be highly expressed in two...

  1. Expression of the chondroitin sulphate proteoglycan molecular complex in six human melanoma xenograft lines studied by flow cytometry and immunohistochemistry.

    Science.gov (United States)

    Nagelhus, T A; Rofstad, E K

    1993-06-01

    The expression of the chondroitin sulphate proteoglycan (CSP) molecular complex in six human melanoma xenograft lines (BEX-t, COX-t, HUX-t, ROX-t, SAX-t, WIX-t) was studied by flow cytometry and immunohistochemistry using the monoclonal antibodies 9.2.27, ME31.3, G7A5, and NKI.M6. The two methods and the four antibodies gave consistent results. The six melanoma lines could be divided into three distinct groups of two lines each; expression was high in the HUX-t and ROX-t lines and intermediate in the BEX-t and SAX-t lines, whereas the COX-t and WIX-t lines were negative. The mean number of epitopes per cell for 9.2.27 was approximately twice as high as for ME31.3, G7A5, and NKI.M6 and was estimated to range from 0.8 +/- 0.1 x 10(5) to 1.9 +/- 0.2 x 10(5) in the positive xenograft lines. The expression of the CSP complex was heterogeneous. The immunofluorescence histograms measured by flow cytometry were therefore broad for all tumour lines. A significant fraction of the HUX-t cells was negative or weakly stained. These cells appeared as clear negative patches in the immunohistochemical preparations. Moreover, most morphologically intact tumour cells adjacent to necrotic areas did not show significant expression of the CSP complex, irrespective of tumour line. These cells were probably hypoxic and thus resistant to radiation therapy. The expression of the CSP complex in the xenograft lines was similar to that reported for melanoma in man.

  2. Kinome-wide transcriptional profiling of uveal melanoma reveals new vulnerabilities to targeted therapeutics.

    Science.gov (United States)

    Bailey, Fiona P; Clarke, Kim; Kalirai, Helen; Kenyani, Jenna; Shahidipour, Haleh; Falciani, Francesco; Coulson, Judy M; Sacco, Joseph J; Coupland, Sarah E; Eyers, Patrick A

    2018-03-01

    Metastatic uveal melanoma (UM) is invariably fatal, usually within a year of diagnosis. There are currently no effective therapies, and clinical studies employing kinase inhibitors have so far demonstrated limited success. This is despite common activating mutations in GNAQ/11 genes, which trigger signalling pathways that might predispose tumours to a variety of targeted drugs. In this study, we have profiled kinome expression network dynamics in various human ocular melanomas. We uncovered a shared transcriptional profile in human primary UM samples and across a variety of experimental cell-based models. The poor overall response of UM cells to FDA-approved kinase inhibitors contrasted with much higher sensitivity to the bromodomain inhibitor JQ1, a broad transcriptional repressor. Mechanistically, we identified a repressed FOXM1-dependent kinase subnetwork in JQ1-exposed cells that contained multiple cell cycle-regulated protein kinases. Consistently, we demonstrated vulnerability of UM cells to inhibitors of mitotic protein kinases within this network, including the investigational PLK1 inhibitor BI6727. We conclude that analysis of kinome-wide signalling network dynamics has the potential to reveal actionable drug targets and inhibitors of potential therapeutic benefit for UM patients. © 2017 The Authors. Pigment Cell & Melanoma Research Published by John Wiley & Sons.

  3. Melanoma cells influence the differentiation pattern of human epidermal keratinocytes

    Czech Academy of Sciences Publication Activity Database

    Kodet, O.; Lacina, L.; Krejčí, E.; Dvořáková, B.; Grim, M.; Štork, J.; Kodetová, D.; Vlček, Čestmír; Šáchová, Jana; Kolář, Michal; Strnad, Hynek; Smetana, K.

    2015-01-01

    Roč. 14, č. 1 (2015), s. 1-1 ISSN 1476-4598 R&D Projects: GA ČR GAP304/12/1333; GA MZd(CZ) NT13488; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:Charles University in Prague(CZ) PRVOUK 27 – 1; Charles University in Prague(CZ) UNCE 204013 Institutional support: RVO:68378050 Keywords : Melanoma * Cancer microenvironment * Melanocyte Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.888, year: 2015

  4. T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules

    International Nuclear Information System (INIS)

    Rubina, Kseniya A.; Surkova, Ekaterina I.; Semina, Ekaterina V.; Sysoeva, Veronika Y.; Kalinina, Natalia I.; Poliakov, Alexei A.; Treshalina, Helena M.; Tkachuk, Vsevolod A.

    2015-01-01

    T-cadherin is a glycosyl-phosphatidylinositol (GPI) anchored member of the cadherin superfamily involved in the guidance of migrating cells. We have previously shown that in vivo T-cadherin overexpression leads to increased melanoma primary tumor growth due to the recruitment of mesenchymal stromal cells as well as the enhanced metastasis. Since tumor progression is highly dependent upon cell migration and invasion, the aim of the present study was to elucidate the mechanisms of T-cadherin participation in these processes. Herein we show that T-cadherin expression results in the increased invasive potential due to the upregulated expression of pro-oncogenic integrins, chemokines, adhesion molecules and extracellular matrix components. The detected increase in chemokine expression could be responsible for the stromal cell recruitment. At the same time our previous data demonstrated that T-cadherin expression inhibited neoangiogenesis in the primary tumors. We demonstrate that T-cadherin overexpression leads to the increase in the expression of anti-angiogenic molecules and reduction in pro-angiogenic factors. Thus, T-cadherin plays a dual role in melanoma growth and progression: T-cadherin expression results in anti-angiogenic effects in melanoma, however, this also stimulates transcription of genes responsible for migration and invasion of melanoma cells

  5. T-Cadherin Expression in Melanoma Cells Stimulates Stromal Cell Recruitment and Invasion by Regulating the Expression of Chemokines, Integrins and Adhesion Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Rubina, Kseniya A., E-mail: rkseniya@mail.ru; Surkova, Ekaterina I.; Semina, Ekaterina V.; Sysoeva, Veronika Y.; Kalinina, Natalia I. [Department of Biochemistry and Molecular Medicine, Faculty of Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky av., 31/5, Moscow 119192 (Russian Federation); Poliakov, Alexei A. [Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA (United Kingdom); Treshalina, Helena M. [Federal State Budgetary Scietific Institution «N.N. Blokhin Russian Cancer Research Center» (FSBSI “N.N.Blokhin RCRC”), Kashirskoe Shosse 24, Moscow 115478 (Russian Federation); Tkachuk, Vsevolod A. [Department of Biochemistry and Molecular Medicine, Faculty of Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky av., 31/5, Moscow 119192 (Russian Federation)

    2015-07-21

    T-cadherin is a glycosyl-phosphatidylinositol (GPI) anchored member of the cadherin superfamily involved in the guidance of migrating cells. We have previously shown that in vivo T-cadherin overexpression leads to increased melanoma primary tumor growth due to the recruitment of mesenchymal stromal cells as well as the enhanced metastasis. Since tumor progression is highly dependent upon cell migration and invasion, the aim of the present study was to elucidate the mechanisms of T-cadherin participation in these processes. Herein we show that T-cadherin expression results in the increased invasive potential due to the upregulated expression of pro-oncogenic integrins, chemokines, adhesion molecules and extracellular matrix components. The detected increase in chemokine expression could be responsible for the stromal cell recruitment. At the same time our previous data demonstrated that T-cadherin expression inhibited neoangiogenesis in the primary tumors. We demonstrate that T-cadherin overexpression leads to the increase in the expression of anti-angiogenic molecules and reduction in pro-angiogenic factors. Thus, T-cadherin plays a dual role in melanoma growth and progression: T-cadherin expression results in anti-angiogenic effects in melanoma, however, this also stimulates transcription of genes responsible for migration and invasion of melanoma cells.

  6. Lifetime prevalence of non-melanoma and melanoma skin cancer in Australian recreational and competitive surfers.

    Science.gov (United States)

    Climstein, Mike; Furness, James; Hing, Wayne; Walsh, Joe

    2016-07-01

    Surfing is one of the most popular outdoor aquatic activities in Australia with an estimated 2.7 million recreational surfers; however, Australia has long been recognized as having the highest incidence of melanoma in the world, and it is the most common type of cancer in young Australians. The aim of this study was to investigate the lifetime prevalence of non-melanoma [basal cell carcinoma (BCC), squamous cell carcinoma (SCC)] and melanoma skin cancers in Australian recreational and competitive surfers. Australian surfers were invited to complete an online surveillance survey to determine the lifetime prevalence of non-melanoma and melanoma skin cancers. A total of 1348 surfers (56.9% recreational) participated in this study, of which 184 surfers reported a skin cancer (competitive n = 96, recreational n = 87). Of non-melanoma and melanoma cancers reported, BCC was the most common (6.8%), followed by melanoma (1.4%) and SCC (0.6%). The relative risk was higher (P well as significantly (P surf are advised to regularly utilize sun protection strategies (avoid peak ultraviolet radiation (10 am-3 pm), rashvest, hat and sunscreen) and primary care physicians are recommended to regularly screen their patients who surf. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. The importance of bystander effects in radiation therapy in melanoma skin-cancer cells and umbilical-cord stromal stem cells

    International Nuclear Information System (INIS)

    Gómez-Millán, Jaime; Katz, Iana Suly Santos; Farias, Virgínea de Araujo; Linares-Fernández, Jose-Luis; López-Peñalver, Jesús; Ortiz-Ferrón, Gustavo; Ruiz-Ruiz, Carmen; Oliver, Francisco Javier; Ruiz de Almodóvar, José Mariano

    2012-01-01

    Purpose: To examine direct and bystander radiation-induced effects in normal umbilical-cord stromal stem cell (HCSSC) lines and in human cancer cells. Materials and methods: The UCSSC lines used in this study were obtained in our laboratory. Two cell lines (UCSSC 35 and UCSSC 37) and two human melanoma skin-cancer cells (A375 and G361) were exposed to ionizing radiation to measure acute radiation-dosage cell-survival curves and radiation-induced bystander cell-death response. Normal cells, although extremely sensitive to ionizing radiation, were resistant to the bystander effect whilst tumor cells were sensitive to irradiated cell-conditioned media, showing a dose–response relationship that became saturated at relatively low doses. We applied a biophysical model to describe bystander cell-death through the binding of a ligand to the cells. This model allowed us to calculate the maximum cell death (χ max ) produced by the bystander effect together with its association constant (K By ) in terms of dose equivalence (Gy). The values obtained for K By in A375 and G361 cells were 0.23 and 0.29 Gy, respectively. Conclusion: Our findings help to understand how anticancer therapy could have an additional decisive effect in that the response of sub-lethally hit tumor cells to damage might be required for therapy to be successful because the survival of cells communicating with irradiated cells is reduced.

  8. Effect of fucoidan on B16 murine melanoma cell melanin formation ...

    African Journals Online (AJOL)

    Background:Fucoidan is a complex sulfated polysaccharide extracted from brown seaweed and has a wide variety of biological activities. It not only inhibits cancer cell growth but also inhibits tyrosinase in vitro. Therefore, it is of interest to investigate the effect of fucoidan on B16 murine melanoma cells as the findings may ...

  9. Protein expression changes induced in a malignant melanoma cell line by the curcumin analogue compound D6

    International Nuclear Information System (INIS)

    Pisano, Marina; Palomba, Antonio; Tanca, Alessandro; Pagnozzi, Daniela; Uzzau, Sergio; Addis, Maria Filippa; Dettori, Maria Antonietta; Fabbri, Davide; Palmieri, Giuseppe; Rozzo, Carla

    2016-01-01

    We have previously demonstrated that the hydroxylated biphenyl compound D6 (3E,3′E)-4,4′-(5,5′,6,6′-tetramethoxy-[1,1′-biphenyl]-3,3′-diyl)bis (but-3-en-2-one), a structural analogue of curcumin, exerts a strong antitumor activity on melanoma cells both in vitro and in vivo. Although the mechanism of action of D6 is yet to be clarified, this compound is thought to inhibit cancer cell growth by arresting the cell cycle in G2/M phase, and to induce apoptosis through the mitochondrial intrinsic pathway. To investigate the changes in protein expression induced by exposure of melanoma cells to D6, a differential proteomic study was carried out on D6-treated and untreated primary melanoma LB24Dagi cells. Proteins were fractionated by SDS-PAGE and subjected to in gel digestion. The peptide mixtures were analyzed by liquid chromatography coupled with tandem mass spectrometry. Proteins were identified and quantified using database search and spectral counting. Proteomic data were finally uploaded into the Ingenuity Pathway Analysis software to find significantly modulated networks and pathways. Analysis of the differentially expressed protein profiles revealed the activation of a strong cellular stress response, with overexpression of several HSPs and stimulation of ubiquitin-proteasome pathways. These were accompanied by a decrease of protein synthesis, evidenced by downregulation of proteins involved in mRNA processing and translation. These findings are consistent with our previous results on gene expression profiling in melanoma cells treated with D6. Our findings confirm that the curcumin analogue D6 triggers a strong stress response in melanoma cells, turning down majority of cell functions and finally driving cells to apoptosis. The online version of this article (doi:10.1186/s12885-016-2362-6) contains supplementary material, which is available to authorized users

  10. Comparison of growth factor signalling pathway utilisation in cultured normal melanocytes and melanoma cell lines

    International Nuclear Information System (INIS)

    Kim, Ji Eun; Stones, Clare; Joseph, Wayne R; Leung, Euphemia; Finlay, Graeme J; Shelling, Andrew N; Phillips, Wayne A; Shepherd, Peter R; Baguley, Bruce C

    2012-01-01

    The phosphatidylinositol-3-kinase (PI3K-PKB), mitogen activated protein kinase (MEK-ERK) and the mammalian target of rapamycin (mTOR- p70S6K), are thought to regulate many aspects of tumour cell proliferation and survival. We have examined the utilisation of these three signalling pathways in a number of cell lines derived from patients with metastatic malignant melanoma of known PIK3CA, PTEN, NRAS and BRAF mutational status. Western blotting was used to compare the phosphorylation status of components of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways, as indices of pathway utilisation. Normal melanocytes could not be distinguished from melanoma cells on the basis of pathway utilisation when grown in the presence of serum, but could be distinguished upon serum starvation, where signalling protein phosphorylation was generally abrogated. Surprisingly, the differential utilisation of individual pathways was not consistently associated with the presence of an oncogenic or tumour suppressor mutation of genes in these pathways. Utilisation of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways in melanoma, as determined by phosphorylation of signalling components, varies widely across a series of cell lines, and does not directly reflect mutation of genes coding these components. The main difference between cultured normal melanocytes and melanoma cells is not the pathway utilisation itself, but rather in the serum dependence of pathway utilisation

  11. Curcumin and treatment of melanoma: The potential role of microRNAs.

    Science.gov (United States)

    Lelli, Diana; Pedone, Claudio; Sahebkar, Amirhosssein

    2017-04-01

    Melanoma is the most aggressive type of skin cancer and is characterized by poor prognosis in its advanced stages because treatments are poorly effective and burdened with severe adverse effects. MicroRNAs (miRNAs) are small non-coding RNAs that are implicated in several cellular processes; they are categorized as oncogenic and tumor suppressor miRNAs. Several miRNAs are implicated in the pathogenesis and progression of melanoma, such as the tumor suppressor miR-let7b that targets cyclin D and regulates cell cycle. Curcumin is a natural compound derived from Curcuma longa L. (turmeric) with anti-cancer properties, documented also in melanoma, and is well tolerated in humans. Pharmacological activity of curcumin is mediated by modulation of several pathways, such as JAK-2/STAT3, thus inhibiting melanoma cell migration and invasion and enhancing apoptosis of these cells. The low oral bioavailability of curcumin has led to the development of curcumin analogues, such as EF24, with greater anti-tumor efficacy and metabolic stability. Potential anti-cancer activity of curcumin and its analogues is also mediated by modulation of miRNAs such as miR21, that is implicated in cell cycle regulation and apoptosis through down-regulation of PTEN and PDCD4 proteins. Curcumin has a potential role in the treatment of melanoma, though further studies are necessary to explore its clinical efficacy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Cudraflavone C Induces Apoptosis of A375.S2 Melanoma Cells through Mitochondrial ROS Production and MAPK Activation.

    Science.gov (United States)

    Lee, Chiang-Wen; Yen, Feng-Lin; Ko, Horng-Huey; Li, Shu-Yu; Chiang, Yao-Chang; Lee, Ming-Hsueh; Tsai, Ming-Horng; Hsu, Lee-Fen

    2017-07-13

    Melanoma is the most malignant form of skin cancer and is associated with a very poor prognosis. The aim of this study was to evaluate the apoptotic effects of cudraflavone C on A375.S2 melanoma cells and to determine the underlying mechanisms involved in apoptosis. Cell viability was determined using the MTT and real-time cytotoxicity assays. Flow cytometric evaluation of apoptosis was performed after staining the cells with Annexin V-FITC and propidium iodide. The mitochondrial membrane potential was evaluated using the JC-1 assay. Cellular ROS production was measured using the CellROX assay, while mitochondrial ROS production was evaluated using the MitoSOX assay. It was observed that cudraflavone C inhibited growth in A375.S2 melanoma cells, and promoted apoptosis via the mitochondrial pathway mediated by increased mitochondrial ROS production. In addition, cudraflavone C induced phosphorylation of MAPKs (p38, ERK, and JNK) and up-regulated the expression of apoptotic proteins (Puma, Bax, Bad, Bid, Apaf-1, cytochrome C, caspase-9, and caspase-3/7) in A375.S2 cells. Pretreatment of A375.S2 cells with MitoTEMPOL (a mitochondria-targeted antioxidant) attenuated the phosphorylation of MAPKs, expression of apoptotic proteins, and the overall progression of apoptosis. In summary, cudraflavone C induced apoptosis in A375.S2 melanoma cells by increasing mitochondrial ROS production; thus, activating p38, ERK, and JNK; and increasing the expression of apoptotic proteins. Therefore, cudraflavone C may be regarded as a potential form of treatment for malignant melanoma.

  13. UVA Irradiation Enhances Brusatol-Mediated Inhibition of Melanoma Growth by Downregulation of the Nrf2-Mediated Antioxidant Response

    Science.gov (United States)

    Wang, Mei; Shi, Guangwei; Bian, Chunxiang; Nisar, Muhammad Farrukh; Guo, Yingying; Wu, Yan; Li, Wei; Huang, Xiao; Jiang, Xuemei; Bartsch, Jörg W.

    2018-01-01

    Brusatol (BR) is a potent inhibitor of Nrf2, a transcription factor that is highly expressed in cancer tissues and confers chemoresistance. UVA-generated reactive oxygen species (ROS) can damage both normal and cancer cells and may be of potential use in phototherapy. In order to provide an alternative method to treat the aggressive melanoma, we sought to investigate whether low-dose UVA with BR is more effective in eliminating melanoma cells than the respective single treatments. We found that BR combined with UVA led to inhibition of A375 melanoma cell proliferation by cell cycle arrest in the G1 phase and triggers cell apoptosis. Furthermore, inhibition of Nrf2 expression attenuated colony formation and tumor development from A375 cells in heterotopic mouse models. In addition, cotreatment of UVA and BR partially suppressed Nrf2 and its downstream target genes such as HO-1 along with the PI3K/AKT pathway. We propose that cotreatment increased ROS-induced cell cycle arrest and cellular apoptosis and inhibits melanoma growth by regulating the AKT-Nrf2 pathway in A375 cells which offers a possible therapeutic intervention strategy for the treatment of human melanoma. PMID:29670684

  14. In vitro and in vivo studies in boron neutron capture therapy of malignant melanoma

    International Nuclear Information System (INIS)

    Allen, B.J.

    1982-01-01

    A multidisciplinary research project in boron neutron capture therapy of malignant melanoma is under consideration by the Australian Atomic Energy Commission. This paper reviews the biochemistry of melanoma and the properties of some melanoma-affined radiopharmaceuticals and their boron analogues. Human cell lines are being used for in vitro tests of uptake and incorporation of some of these compounds, and selected lines will then be implanted in nude mice for in vivo distribution studies. The fidelity of human melanoma xenografts in nude mice has been well studied, and results are reviewed in this paper. Boron concentration will be measured directly by plasma arc emission spectroscopy or liquid scintillation counting with 14 C-labelled boron analogues. Track-etch techniques will be used for the microscopic determination of boron in tumor sections. Neutron irradiation and radiobiology experiments are outlined

  15. Vemurafenib for the treatment of melanoma.

    LENUS (Irish Health Repository)

    Jordan, Emmet John

    2012-12-01

    Metastatic melanoma is an aggressive disease resistant to chemotherapy. Recent clinical trials have reported improved survival for two novel agents; ipilimumab, a humanized, IgG1 monoclonal antibody that blocks cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and vemurafenib , a BRAF (v-raf murine sarcoma viral oncogene homolog B1) inhibitor targeting an activating mutation in the serine-threonine-protein kinase BRAF gene. AREAS COVERED: The authors reviewed preclinical and clinical data examining the safety of vemurafenib in melanoma. MEDLINE and EMBASE were searched using the medical subject heading \\'vemurafenib\\' and the following text terms: melanoma, BRAF inhibition, vemurafenib. This review provides the reader with an overview of current data examining the efficacy and safety of vemurafenib in metastatic melanoma. EXPERT OPINION: Vemurafenib is an oral agent licensed for patients with BRAF V600E mutation-positive inoperable and metastatic melanoma. The most common adverse effects observed in Phase III clinical trials were dermatological events, arthralgia and fatigue. Specific dermatological toxicities included development of cutaneous squamous cell cancers and keratoacanthomas. Prolongation of the QT interval was also reported. Regular dermatological assessments and electrocardiograms are recommended. Ongoing trials are examining vemurafenib in both the adjuvant setting and metastatic setting in combination with ipilimumab and MEK inhibitors (mitogen-activated protein kinase\\/extracellular signal-regulated kinase). Understanding and overcoming mechanisms of resistance to BRAF inhibitors is the focus of ongoing research.

  16. Alpha particles for treatment of disseminated melanoma

    International Nuclear Information System (INIS)

    Link, E.M.

    2010-01-01

    Invading melanoma spreads to local and unpredictable distant location at the early stages of its development. It is justifiable, therefore, to classify the disease as a systemic disorder. This requires a systemic treatment that reaches all melanoma cells irrespective of whether they are singly dispersed and in circulation or already forming solid tumours of various sizes. Targeted radiotherapy affects directly and selectively cancer cells provided an appropriate radionuclide and its carrier are chosen. Melanoma is a pigmented tumour. Methylene blue (MTB)) accumulates selectively in melanoma cells due to its exceptionally high affinity to melanin. MTB serves, therefore, as a carrier for radionuclides. 211 At-MTB has proved to be particularly effective in treating disseminated melanoma when administered systemically and, at the same time, non-toxic to normal non-pigmented and pigmented organs. (authors)

  17. Neoantigen landscape dynamics during human melanoma-T cell interactions

    DEFF Research Database (Denmark)

    Verdegaal, Els M. E.; De Miranda, Noel F. C. C.; Visser, Marten

    2016-01-01

    Recognition of neoantigens that are formed as a consequence of DNA damage is likely to form a major driving force behind the clinical activity of cancer immunotherapies such as T-cell checkpoint blockade and adoptive T-cell therapy. Therefore, strategies to selectively enhance T-cell reactivity...... against genetically defined neoantigens are currently under development. In mouse models, T-cell pressure can sculpt the antigenicity of tumours, resulting in the emergence of tumours that lack defined mutant antigens. However, whether the T-cell-recognized neoantigen repertoire in human cancers...... by overall reduced expression of the genes or loss of the mutant alleles. Notably, loss of expression of T-cell-recognized neoantigens was accompanied by development of neoantigen-specific T-cell reactivity in tumour-infiltrating lymphocytes. These data demonstrate the dynamic interactions between cancer...

  18. Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Li Bo [National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610064 (China); Guo Bo [National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610064 (China); West China Eye Center of Huaxi Hospital, Sichuan University, Chengdu 610064 (China); Fan Hongsong [National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610064 (China)], E-mail: leewave@126.com; Zhang Xingdong [National Engineering Research Center for Biomaterial, Sichuan University, Chengdu 610064 (China)

    2008-11-15

    To investigate the effects of nano-hydroxyapatite (HA) particles with different morphology on highly malignant melanoma cells, three kinds of HA particles with different morphology were synthesized and co-cultured with highly malignant melanoma cells using phosphate-buffered saline (PBS) as control. A precipitation method with or without citric acid addition as surfactant was used to produce rod-like hydroxyapatite (HA) particles with nano- and micron size, respectively, and a novel oil-in-water emulsion method was employed to prepare ellipse-like nano-HA particles. Particle morphology and size distribution of the as prepared HA powders were characterized by transmission electron microscope (TEM) and dynamic light scattering technique. The nano- and micron HA particles with different morphology were co-cultured with highly malignant melanoma cells. Immunofluorescence analysis and MTT assay were employed to evaluate morphological change of nucleolus and proliferation of tumour cells, respectively. To compare the effects of HA particles on cell response, the PBS without HA particles was used as control. The experiment results indicated that particle nanoscale effect rather than particle morphology of HA was more effective for the inhibition on highly malignant melanoma cells proliferation.

  19. Xeroderma Pigmentosum with Mailgnant Melanoma and Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    N R Nagbhushana

    1989-01-01

    Full Text Available A 25 year old female with xeroderma pigmentosum since 3 ye4ws of age, developed a nodular growth on the left ala of the nose since 4 months. Histopathology revealed m ant melanoma of the nodular variety. A squamous cell carcinoma was also detected at the fimbus in the right eye. There were no metastases.

  20. RGD-conjugated gold nanorods induce radiosensitization in melanoma cancer cells by downregulating αvβ3 expression

    Directory of Open Access Journals (Sweden)

    Pang B

    2012-02-01

    Full Text Available Wencai Xu1, Teng Luo2, Ping Li1, Chuanqing Zhou2, Daxiang Cui3, Bo Pang4, Qiushi Ren4, Shen Fu11Department of Radiation Oncology, Shanghai Sixth People's Hospital, 2School of Biomedical Engineering, and 3National Key Laboratory of Nano/Micro Fabrication Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, Institute of Micro-Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 4Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, People's Republic of ChinaBackground: Melanoma is known to be radioresistant and traditional treatments have been intractable. Therefore, novel approaches are required to improve the therapeutic efficacy of melanoma treatment. In our study, gold nanorods conjugated with Arg-Gly-Asp peptides (RGD-GNRs were used as a sensitizer to enhance the response of melanoma cells to 6 mV radiation.Methods and materials: A375 melanoma cells were treated by gold nanorods or RGD-GNRs with or without irradiation. The antiproliferative impact of the treatments was measured by MTT assay. Radiosensitizing effects were determined by colony formation assay. Apoptosis and cell cycle data were measured by flow cytometry. Integrin αvβ3expression was also investigated by flow cytometry.Results: Addition of RGD-GNRs enhanced the radiosensitivity of A375 cells with a dose-modifying factor of 1.35, and enhanced radiation-induced apoptosis. DNA flow cytometric analysis indicated that RGD-GNRs plus irradiation induced significant G2/M phase arrest in A375 cells. Both spontaneous and radiation-induced expressions of integrin αvβ3 were downregulated by RGD-GNRs.Conclusion: Our study indicated that RGD-GNRs could sensitize melanoma A375 cells to irradiation. It was hypothesized that this was mainly through downregulation of radiation-induced αvβ3, in addition to induction of a higher proportion of cells within the G2/M phase. The combination of RGD-GNRs and

  1. Evaluation of a multi-marker immunomagnetic enrichment assay for the quantification of circulating melanoma cells

    Directory of Open Access Journals (Sweden)

    Freeman James B

    2012-09-01

    Full Text Available Abstract Background Circulating melanoma cells (CMCs are thought to be valuable in improving measures of prognosis in melanoma patients and may be a useful marker of residual disease to identify non-metastatic patients requiring adjuvant therapy. We investigated whether immunomagnetic enrichment targeting multiple markers allows more efficient enrichment of CMCs from patient peripheral blood than targeting a single marker. Furthermore, we aimed to determine whether the number of CMCs in patient blood was associated with disease stage. Methods We captured CMCs by targeting the melanoma associated markers MCSP and MCAM as well as the melanoma stem cell markers ABCB5 and CD271, both individually and in combination, by immunomagnetic enrichment. CMCs were enriched and quantified from the peripheral blood of 10 non-metastatic and 13 metastatic melanoma patients. Results Targeting all markers in combination resulted in the enrichment of more CMCs than when any individual marker was targeted (p  Conclusions Our results demonstrated that a combination of markers should be targeted for optimal isolation of CMCs. In addition, there are significantly more CMCs in metastatic patients compared with non-metastatic patients and therefore quantification of CMCs may prove to be a useful marker of disease progression.

  2. Sodium arsenite accelerates TRAIL-mediated apoptosis in melanoma cells through upregulation of TRAIL-R1/R2 surface levels and downregulation of cFLIP expression

    International Nuclear Information System (INIS)

    Ivanov, Vladimir N.; Hei, Tom K.

    2006-01-01

    AP-1/cJun, NF-κB and STAT3 transcription factors control expression of numerous genes, which regulate critical cell functions including proliferation, survival and apoptosis. Sodium arsenite is known to suppress both the IKK-NF-κB and JAK2-STAT3 signaling pathways and to activate the MAPK/JNK-cJun pathways, thereby committing some cancers to undergo apoptosis. Indeed, sodium arsenite is an effective drug for the treatment of acute promyelocytic leukemia with little nonspecific toxicity. Malignant melanoma is highly refractory to conventional radio- and chemotherapy. In the present study, we observed strong effects of sodium arsenite treatment on upregulation of TRAIL-mediated apoptosis in human and mouse melanomas. Arsenite treatment upregulated surface levels of death receptors, TRAIL-R1 and TRAIL-R2, through increased translocation of these proteins from cytoplasm to the cell surface. Furthermore, activation of cJun and suppression of NF-κB by sodium arsenite resulted in upregulation of the endogenous TRAIL and downregulation of the cFLIP gene expression (which encodes one of the main anti-apoptotic proteins in melanomas) followed by cFLIP protein degradation and, finally, by acceleration of TRAIL-induced apoptosis. Direct suppression of cFLIP expression by cFLIP RNAi also accelerated TRAIL-induced apoptosis in these melanomas, while COX-2 suppression substantially increased levels of both TRAIL-induced and arsenite-induced apoptosis. In contrast, overexpression of permanently active AKTmyr inhibited TRAIL-mediated apoptosis via downregulation of TRAIL-R1 levels. Finally, AKT overactivation increased melanoma survival in cell culture and dramatically accelerated growth of melanoma transplant in vivo, highlighting a role of AKT suppression for effective anticancer treatment

  3. R-Ras regulates migration through an interaction with filamin A in melanoma cells.

    Directory of Open Access Journals (Sweden)

    Joanna E Gawecka

    2010-06-01

    Full Text Available Changes in cell adhesion and migration in the tumor microenvironment are key in the initiation and progression of metastasis. R-Ras is one of several small GTPases that regulate cell adhesion and migration on the extracellular matrix, however the mechanism has not been completely elucidated. Using a yeast two-hybrid approach we sought to identify novel R-Ras binding proteins that might mediate its effects on integrins.We identified Filamin A (FLNa as a candidate interacting protein. FLNa is an actin-binding scaffold protein that also binds to integrin beta1, beta2 and beta7 tails and is associated with diverse cell processes including cell migration. Indeed, M2 melanoma cells require FLNa for motility. We further show that R-Ras and FLNa interact in co-immunoprecipitations and pull-down assays. Deletion of FLNa repeat 3 (FLNaDelta3 abrogated this interaction. In M2 melanoma cells active R-Ras co-localized with FLNa but did not co-localize with FLNa lacking repeat 3. Thus, activated R-Ras binds repeat 3 of FLNa. The functional consequence of this interaction was that active R-Ras and FLNa coordinately increased cell migration. In contrast, co-expression of R-Ras and FLNaDelta3 had a significantly reduced effect on migration. While there was enhancement of integrin activation and fibronectin matrix assembly, cell adhesion was not altered. Finally, siRNA knockdown of endogenous R-Ras impaired FLNa-dependent fibronectin matrix assembly.These data support a model in which R-Ras functionally associates with FLNa and thereby regulates integrin-dependent migration. Thus in melanoma cells R-Ras and FLNa may cooperatively promote metastasis by enhancing cell migration.

  4. Balloon cell melanoma of the anal canal: A wolf in sheep′s clothing?

    Directory of Open Access Journals (Sweden)

    Munita Meenu Bal

    2013-01-01

    Full Text Available Balloon cell melanoma (BCM is a rare histologic variant of cutaneous malignant melanoma with exceptional reports of occurrences at non-cutaneous sites. Herein we present a case of primary amelanotic BCM of anal canal, a heretofore undescribed location. Histologically, the tumor was characterized by sheets of pale cells that bore striking resemblance to foamy macrophages. Presence of rare atypical mitoses confirmed the malignant nature of the cells. Neoplastic cells were immunoreactive for S100, Melan-A, and focally for HMB-45 while were negative for myogenic, gastrointestinal stromal tumor, epithelial and neuroendocrine markers. Resemblance to foamy macrophages, bland cytology and absence of pigment imparts this tumor a deceptively benign histological appearance making it prone to diagnostic pitfalls. Awareness of this rare entity and judicious employment of immunohistochemistry is imperative in segregating it from its diverse mimics.

  5. U1 Adaptor Oligonucleotides Targeting BCL2 and GRM1 Suppress Growth of Human Melanoma Xenografts In Vivo

    Directory of Open Access Journals (Sweden)

    Rafal Goraczniak

    2013-01-01

    Full Text Available U1 Adaptor is a recently discovered oligonucleotide-based gene-silencing technology with a unique mechanism of action that targets nuclear pre-mRNA processing. U1 Adaptors have two distinct functional domains, both of which must be present on the same oligonucleotide to exert their gene-silencing function. Here, we present the first in vivo use of U1 Adaptors by targeting two different human genes implicated in melanomagenesis, B-cell lymphoma 2 (BCL2 and metabotropic glutamate receptor 1 (GRM1, in a human melanoma cell xenograft mouse model system. Using a newly developed dendrimer delivery system, anti-BCL2 U1 Adaptors were very potent and suppressed tumor growth at doses as low as 34 µg/kg with twice weekly intravenous (iv administration. Anti-GRM1 U1 Adaptors suppressed tumor xenograft growth with similar potency. Mechanism of action was demonstrated by showing target gene suppression in tumors and by observing that negative control U1 Adaptors with just one functional domain show no tumor suppression activity. The anti-BCL2 and anti-GRM1 treatments were equally effective against cell lines harboring either wild-type or a mutant V600E B-RAF allele, the most common mutation in melanoma. Treatment of normal immune-competent mice (C57BL6 indicated no organ toxicity or immune stimulation. These proof-of-concept studies represent an in-depth (over 800 mice in ~108 treatment groups validation that U1 Adaptors are a highly potent gene-silencing therapeutic and open the way for their further development to treat other human diseases.

  6. Born to be Alive: A Role for the BCL-2 Family in Melanoma Tumor Cell Survival, Apoptosis, and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Anvekar, Rina A.; Asciolla, James J.; Missert, Derek J.; Chipuk, Jerry E., E-mail: jerry.chipuk@mssm.edu [Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY (United States); Department of Dermatology, Mount Sinai School of Medicine, New York, NY (United States); The Tisch Cancer Institute, Mount Sinai Medical Center, New York, NY (United States)

    2011-10-13

    The global incidence of melanoma has dramatically increased during the recent decades, yet the advancement of primary and adjuvant therapies has not kept a similar pace. The development of melanoma is often centered on cellular signaling that hyper-activates survival pathways, while inducing a concomitant blockade to cell death. Aberrations in cell death signaling not only promote tumor survival and enhanced metastatic potential, but also create resistance to anti-tumor strategies. Chemotherapeutic agents target melanoma tumor cells by inducing a form of cell death called apoptosis, which is governed by the BCL-2 family of proteins. The BCL-2 family is comprised of anti-apoptotic proteins (e.g., BCL-2, BCL-xL, and MCL-1) and pro-apoptotic proteins (e.g., BAK, BAX, and BIM), and their coordinated regulation and function are essential for optimal responses to chemotherapeutics. Here we will discuss what is currently known about the mechanisms of BCL-2 family function with a focus on the signaling pathways that maintain melanoma tumor cell survival. Importantly, we will critically evaluate the literature regarding how chemotherapeutic strategies directly impact on BCL-2 family function and offer several suggestions for future regimens to target melanoma and enhance patient survival.

  7. Quercetin abrogates chemoresistance in melanoma cells by modulating ΔNp73

    International Nuclear Information System (INIS)

    Thangasamy, Thilakavathy; Sittadjody, Sivanandane; Mitchell, Geoffrey C; Mendoza, Erin E; Radhakrishnan, Vijayababu M; Limesand, Kirsten H; Burd, Randy

    2010-01-01

    The alkylating agent Dacarbazine (DTIC) has been used in the treatment of melanoma for decades, but when used as a monotherapy for cancer only moderate response rates are achieved. Recently, the clinical use of Temozolomide (TMZ) has become the more commonly used analog of DTIC-related oral agents because of its greater bioavailability and ability to cross the blood brain barrier. The response rates achieved by TMZ are also unsatisfactory, so there is great interest in identifying compounds that could be used in combination therapy. We have previously demonstrated that the bioflavonoid quercetin (Qct) promoted a p53-mediated response and sensitized melanoma to DTIC. Here we demonstrate that Qct also sensitizes cells to TMZ and propose a mechanism that involves the modulation of a truncated p53 family member, ΔNp73. DB-1 melanoma (p53 wildtype), and SK Mel 28 (p53 mutant) cell lines were treated with TMZ (400 μM) for 48 hrs followed by Qct (75 μM) for 24 hrs. Cell death was determined by Annexin V-FITC staining and immunocytochemical analysis was carried out to determine protein translocation. After treatment with TMZ, DB-1 cells demonstrated increased phosphorylation of Ataxia telangiectasia mutated (ATM) and p53. However, the cells were resistant to TMZ-induced apoptosis and the resistance was associated with an increase in nuclear localization of ΔNp73. Qct treatment in combination with TMZ abolished drug insensitivity and caused a more than additive induction of apoptosis compared to either treatment alone. Treatment with Qct, caused redistribution of ΔNp73 into the cytoplasm and nucleus, which has been associated with increased p53 transcriptional activity. Knockdown of ΔNp73 restored PARP cleavage in the TMZ treated cells, confirming its anti-apoptotic role. The response to treatment was predominantly p53 mediated as the p53 mutant SK Mel 28 cells showed no significant enhancement of apoptosis. This study demonstrates that Qct can sensitize cells to TMZ

  8. Melanoma NOS1 expression promotes dysfunctional IFN signaling.

    Science.gov (United States)

    Liu, Qiuzhen; Tomei, Sara; Ascierto, Maria Libera; De Giorgi, Valeria; Bedognetti, Davide; Dai, Cuilian; Uccellini, Lorenzo; Spivey, Tara; Pos, Zoltan; Thomas, Jaime; Reinboth, Jennifer; Murtas, Daniela; Zhang, Qianbing; Chouchane, Lotfi; Weiss, Geoffrey R; Slingluff, Craig L; Lee, Peter P; Rosenberg, Steven A; Alter, Harvey; Yao, Kaitai; Wang, Ena; Marincola, Francesco M

    2014-05-01

    In multiple forms of cancer, constitutive activation of type I IFN signaling is a critical consequence of immune surveillance against cancer; however, PBMCs isolated from cancer patients exhibit depressed STAT1 phosphorylation in response to IFN-α, suggesting IFN signaling dysfunction. Here, we demonstrated in a coculture system that melanoma cells differentially impairs the IFN-α response in PBMCs and that the inhibitory potential of a particular melanoma cell correlates with NOS1 expression. Comparison of gene transcription and array comparative genomic hybridization (aCGH) between melanoma cells from different patients indicated that suppression of IFN-α signaling correlates with an amplification of the NOS1 locus within segment 12q22-24. Evaluation of NOS1 levels in melanomas and IFN responsiveness of purified PBMCs from patients indicated a negative correlation between NOS1 expression in melanomas and the responsiveness of PBMCs to IFN-α. Furthermore, in an explorative study, NOS1 expression in melanoma metastases was negatively associated with patient response to adoptive T cell therapy. This study provides a link between cancer cell phenotype and IFN signal dysfunction in circulating immune cells.

  9. Prognosis of patients with transected melanomas.

    Science.gov (United States)

    Martires, Kathryn J; Nandi, Tina; Honda, Kord; Cooper, Kevin D; Bordeaux, Jeremy S

    2013-04-01

    The management of melanoma is directly related to Breslow's depth. Biopsying melanomas in a fashion that transects the deep margin precludes an accurate measurement of the true depth. To examine the prognosis of melanomas transected along the deep margins, as well as cases where no residual melanoma was seen on re-excision after transection. Records from a cohort of patients at one institution were examined from 1996 through 2007. Patients were considered to have "transected" melanomas if tumor cells were present on the deep margin of the biopsy. Overall survival was determined. Seven hundred fourteen patients were examined. 171 (24%) of all melanomas were transected. 101(59%) of those lacked tumor cells on re-excision. Patients with transected melanomas were older (OR = 1.03, p < .001), and had higher Breslow's depths (OR = 1.21, p < .001) than those without transected tumors. Those with no residual melanoma after transection were younger (OR = 0.98, p = .010) and more likely to have no lymph node involvement (OR = 2.23, p = .037). Neither transection (p = .760), nor lack of residual melanoma on re-excision after transection (p = .793) influenced survival. A high number of melanomas are transected at diagnosis, many of which lack visible tumor. The original Breslow's depth of transected melanomas without residual tumor on re-excision accurately predicts survival and prognosis. © 2013 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  10. Reflectance confocal microscopy features of thin versus thick melanomas.

    Science.gov (United States)

    Kardynal, Agnieszka; Olszewska, Małgorzata; de Carvalho, Nathalie; Walecka, Irena; Pellacani, Giovanni; Rudnicka, Lidia

    2018-01-24

    In vivo reflectance confocal microscopy (RCM) plays an increasingly important role in differential diagnosis of melanoma. The aim of the study was to assess typical confocal features of thin (≤1mm according to Breslow index) versus thick (>1mm) melanomas. 30 patients with histopathologically confirmed cutaneous melanoma were included in the study. Reflectance confocal microscopy was performed with Vivascope equipment prior to excision. Fifteen melanomas were thin (Breslow thickness ≤ 1mm) and 15 were thick melanomas (Breslow thickness >1mm). In the RCM examination, the following features were more frequently observed in thin compared to thick melanomas: edged papillae (26.7% vs 0%, p=0.032) and areas with honeycomb or cobblestone pattern (33.3% vs 6.7%, p=0.068). Both features are present in benign melanocytic lesions, so in melanoma are good prognostic factors. The group of thick melanomas compared to the group of thin melanomas in the RCM images presented with greater frequency of roundish cells (100% vs 40%, p=0.001), non-edged papillae (100% vs 60%, p=0.006), numerous pagetoid cells (73.3% vs 33.3%, p=0.028), numerous atypical cells at dermal-epidermal junction (53.3% vs 20%, p=0.058) and epidermal disarray (93.3% vs 66.7%, p=0.068). Non-invasive imaging methods helps in deepening of knowledge about the evolution and biology of melanoma. The most characteristic features for thin melanomas in confocal examination are: fragments of cobblestone or honeycomb pattern and edged papillae (as good prognostic factors). The features of thick melanomas in RCM examination are: roundish cells, non-edged papillae, numerous pagetoid cells at dermal-epidermal junction and epidermal disarray.

  11. Relationship between regulatory and type 1 T cells in dogs with oral malignant melanoma.

    Science.gov (United States)

    Horiuchi, Yutaka; Tominaga, Makiko; Ichikawa, Mika; Yamashita, Masao; Okano, Kumiko; Jikumaru, Yuri; Nariai, Yoko; Nakajima, Yuko; Kuwabara, Masato; Yukawa, Masayoshi

    2010-03-01

    Recent data suggest a decreased prevalence of IFN-gamma-producing T lymphocytes (Type 1 T cells) in tumor-bearing hosts. Moreover, it has been reported that Treg have a strong impact on the activation and proliferation of CD4 (+) and CD8 (+) lymphocytes; however, no previous reports have described the relationship between Treg and the progression of tumor, or Type 1 T cell populations in dogs with malignant tumor. In this study, the percentage of Treg, Th1, and Tc1 in the peripheral blood of dogs with oral malignant melanoma and healthy dogs was measured and compared. Although the percentages of Th1 and Tc1 in dogs with oral malignant melanoma were less than those in healthy dogs (Th1: P dogs with oral malignant melanoma. In dogs, Treg appears to suppress Type 1 immunity, which may be responsible for anti-tumor responses.

  12. The Air Liquid-interface, a Skin Microenvironment, Promotes Growth of Melanoma Cells, but not Their Apoptosis and Invasion, through Activation of Mitogen-activated Protein Kinase

    International Nuclear Information System (INIS)

    Hong Yee, Chong; Aoki, Shigehisa; Uchihashi, Kazuyoshi; Matsunobu, Aki; Yamasaki, Fumio; Misago, Noriyuki; Piao, Meihua; Tetsuji, Uemura; Yonemitsu, Nobuhisa; Sugihara, Hajime; Toda, Shuji

    2010-01-01

    The air-liquid interface (ALI) is a common microenvironment of the skin, but it is unknown whether the ALI affects melanoma cell behaviors. Using a collagen gel invasion assay, immunohistochemistry, and Western blots, here we show that melanoma cell proliferation in cultures with an ALI is higher than melanoma cell proliferation in submerged cultures. Bromodeoxyuridine (BrdU) uptake, an indicator of cell proliferation, of melanoma cells at the ALI was about 3 times that of submerged cells, while ALI and submerged melanoma cells had similar levels of single-stranded DNA (a marker of apoptosis). The ALI enhanced the expression of Raf-1, MEK-1 and pERK-1/2 components of the mitogen-activated protein kinase (MAPK) cascade, in cells more than the submerged condition did. The increases in BrdU uptake and pERK-1/2 expression promoted by ALI was abolished by the MEK inhibitor, PD-98059. ALI-treated and submerged melanoma cells did not infiltrate into the collagen gel, and they showed no significant difference in the expression of the invasion- and motility-related molecules, matrix metalloproteinase-1 and -9, laminin 5, and filamin A. Our data indicate that the ALI, a skin microenvironment, accelerates the growth, but not the apoptosis or invasion, of melanoma cells through MAPK activation

  13. 31P NMR spectroscopy studies of phospholipid metabolism in human melanoma xenograft lines differing in rate of tumour cell proliferation.

    Science.gov (United States)

    Lyng, H; Olsen, D R; Petersen, S B; Rofstad, E K

    1995-04-01

    The concentration of phospholipid metabolites in tumours has been hypothesized to be related to rate of cell membrane turnover and may reflect rate of cell proliferation. The purpose of the study reported here was to investigate whether 31P NMR resonance ratios involving the phosphomonoester (PME) or phosphodiester (PDE) resonance are correlated to fraction of cells in S-phase or volume-doubling time in experimental tumours. Four human melanoma xenograft lines (BEX-t, HUX-t, SAX-t, WIX-t) were included in the study. The tumours were grown subcutaneously in male BALB/c-nu/nu mice. 31P NMR spectroscopy was performed at a magnetic field strength of 4.7 T. Fraction of cells in S-phase was measured by flow cytometry. Tumour volume-doubling time was determined by Gompertzian analysis of volumetric growth data. BEX-t and SAX-t tumours differed in fraction of cells in S-phase and volume-doubling time, but showed similar 31P NMR resonance ratios. BEX-t and WIX-t tumours showed significantly different 31P NMR resonance ratios but similar fractions of cells in S-phase. The 31P NMR resonance ratios were significantly different for small and large HUX-t tumours even though fraction of cells in S-phase and volume-doubling time did not differ with tumour volume. None of the 31P NMR resonance ratios showed significant increase with increasing fraction of cells in S-phase or significant decrease with increasing tumour volume-doubling time across the four xenograft lines.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Rate of oxygen consumption of hamster melanoma cells as a factor influencing their radioresistance

    International Nuclear Information System (INIS)

    Pajak, S.; Subczynski, W.; Panz, T.; Lukiewicz, S.

    1980-01-01

    It has been reported in recent years that the level of radiosensitivity of neoplasmic cells in vivo and of sphaeroids in vitro can be modified by controlling their rate of oxygen consumption. Thus, an attempt was made to compare this rate in the case of the melanotic and amelanotic lines of Bomirski hamster melanoma in vitro, as it is known that these two lines distinctly differ in their reactivity to ionizing radiations. The measurements carried out by the use of a new ESR method revealed that pigmented and pigmentless cells consume oxygen at significantly different rates. This means that oxygen utilization may contribute to the overall level of radioresistance of melanoma cells. (author)

  15. Factors influencing [F-18]2-fluoro-2-deoxy-D-glucose (F-18 FDG) uptake in melanoma cells. The role of proliferation rate, viability, glucose transporter expression and hexokinase activity

    International Nuclear Information System (INIS)

    Yamada, Kiyoshi; Brink, I.; Bisse, E.; Epting, T.; Engelhardt, R.

    2005-01-01

    Using human (SK-MEL 23, SK-MEL 24 and G361) and murine (B16) melanoma cell lines, the coregulatory potential of the uptake of the positron emission tomography (PET) tracer, [Fluorine-18]2-fluoro-2-deoxy-D-glucose (F-18 FDG) has been investigated in relationship to tumor characteristics. Comparative studies among the four melanoma cell lines demonstrated that the lowest FDG uptake in SK-MEL 24 corresponded strongly to the data for DT (population doubling time) and MTT (tetrazolium salt) cell viability as well as hexokinase (HK) activity, but was not related to the glucose transporter 1 (GLUT 1) expression level. Furthermore, the FDG uptake in each melanoma cell line measured by cell cycle kinetics was significantly positively correlated to both the proliferation index (PI=S/G 2 M phase fractions) and the cell viability, though with one exception relating to the proliferation index (PI) of the lowest FDG uptake cell line, SK-MEL 24. No positive correlation was found between the expression of GLUT 1 and FDG uptake in any individual cell line. However, the HK activities in SK-MEL 23 and 24 showed considerable positive relationships with FDG uptake. Our present study suggests that both the proliferation rate and the cell viability of melanoma cells may be key factors for FDG uptake and that HK activity, rather than GLUT 1 expression, seems to be a major factor. (author)

  16. Electroporation increases antitumoral efficacy of the bcl-2 antisense G3139 and chemotherapy in a human melanoma xenograft

    Directory of Open Access Journals (Sweden)

    Baldi Alfonso

    2011-07-01

    Full Text Available Abstract Background Nucleic acids designed to modulate the expression of target proteins remain a promising therapeutic strategy in several diseases, including cancer. However, clinical success is limited by the lack of efficient intracellular delivery. In this study we evaluated whether electroporation could increase the delivery of antisense oligodeoxynucleotides against bcl-2 (G3139 as well as the efficacy of combination chemotherapy in human melanoma xenografts. Methods Melanoma-bearing nude mice were treated i.v. with G3139 and/or cisplatin (DDP followed by the application of trains of electric pulses to tumors. Western blot, immunohistochemistry and real-time PCR were performed to analyze protein and mRNA expression. The effect of electroporation on muscles was determined by histology, while tumor apoptosis and the proliferation index were analyzed by immunohistochemistry. Antisense oligodeoxynucleotides tumor accumulation was measured by FACS and confocal microscopy. Results The G3139/Electroporation combined therapy produced a significant inhibition of tumor growth (TWI, more than 50% accompanied by a marked tumor re-growth delay (TRD, about 20 days. The efficacy of this treatment was due to the higher G3139 uptake in tumor cells which led to a marked down-regulation of bcl-2 protein expression. Moreover, the G3139/EP combination treatment resulted in an enhanced apoptotic index and a decreased proliferation rate of tumors. Finally, an increased tumor response was observed after treatment with the triple combination G3139/DDP/EP, showing a TWI of about 75% and TRD of 30 days. Conclusions These results demonstrate that electroporation is an effective strategy to improve the delivery of antisense oligodeoxynucleotides within tumor cells in vivo and it may be instrumental in optimizing the response of melanoma to chemotherapy. The high response rate observed in this study suggest to apply this strategy for the treatment of melanoma patients.

  17. Oncolysis of malignant human melanoma tumors by Coxsackieviruses A13, A15 and A18

    Directory of Open Access Journals (Sweden)

    Barry Richard D

    2011-01-01

    Full Text Available Abstract Many RNA viruses are displaying great promise in the field of oncolytic virotherapy. Previously, we reported that the picornavirus Coxsackievirus A21 (CVA21 possessed potent oncolytic activity against cultured malignant melanoma cells and melanoma xenografts in mice. In the present study, we demonstrate that three additional Group A Coxsackieviruses; Coxsackievirus A13 (CVA13, Coxsackievirus A15 (CVA15 and Coxsackievirus A18 (CVA18, also have similar oncolytic activity against malignant melanoma. Each of the viruses grew quickly to high titers in cancer cells expressing ICAM-1 and intratumoral injection of preformed subcutaneous SK-Mel-28 xenografts in mice with CVA13, CVA15 and CVA18 resulted in significant tumor volume reduction. As preexisting immunity could potentially hinder oncolytic virotherapy, sera from stage IV melanoma patients and normal controls were tested for levels of protective antibody against the panel of oncolytic Coxsackieviruses. Serum neutralization assays revealed that 3 of 21 subjects possessed low levels of anti-CVA21 antibodies, while protective antibodies for CVA13, CVA15 and CVA18 were not detected in any sample. Serum from individuals who were seropositive for CVA21 failed to exhibit cross-neutralization of CVA13, CVA15 and CVA18. From these studies it can be concluded that the administration of CVA13, CVA15 or CVA18 could be employed as a potential multivalent oncolytic therapy against malignant melanoma.

  18. Distinct mechanisms of loss of IFN-gamma mediated HLA class I inducibility in two melanoma cell lines

    International Nuclear Information System (INIS)

    Rodríguez, Teresa; Méndez, Rosa; Del Campo, Ana; Jiménez, Pilar; Aptsiauri, Natalia; Garrido, Federico; Ruiz-Cabello, Francisco

    2007-01-01

    The inability of cancer cells to present antigen on the cell surface via MHC class I molecules is one of the mechanisms by which tumor cells evade anti-tumor immunity. Alterations of Jak-STAT components of interferon (IFN)-mediated signaling can contribute to the mechanism of cell resistance to IFN, leading to lack of MHC class I inducibility. Hence, the identification of IFN-γ-resistant tumors may have prognostic and/or therapeutic relevance. In the present study, we investigated a mechanism of MHC class I inducibility in response to IFN-γ treatment in human melanoma cell lines. Basal and IFN-induced expression of HLA class I antigens was analyzed by means of indirect immunofluorescence flow cytometry, Western Blot, RT-PCR, and quantitative real-time RT-PCR (TaqMan ® Gene Expression Assays). In demethylation studies cells were cultured with 5-aza-2'-deoxycytidine. Electrophoretic Mobility Shift Assay (EMSA) was used to assay whether IRF-1 promoter binding activity is induced in IFN-γ-treated cells. Altered IFN-γ mediated HLA-class I induction was observed in two melanoma cells lines (ESTDAB-004 and ESTDAB-159) out of 57 studied, while treatment of these two cell lines with IFN-α led to normal induction of HLA class I antigen expression. Examination of STAT-1 in ESTDAB-004 after IFN-γ treatment demonstrated that the STAT-1 protein was expressed but not phosphorylated. Interestingly, IFN-α treatment induced normal STAT-1 phosphorylation and HLA class I expression. In contrast, the absence of response to IFN-γ in ESTDAB-159 was found to be associated with alterations in downstream components of the IFN-γ signaling pathway. We observed two distinct mechanisms of loss of IFN-γ inducibility of HLA class I antigens in two melanoma cell lines. Our findings suggest that loss of HLA class I induction in ESTDAB-004 cells results from a defect in the earliest steps of the IFN-γ signaling pathway due to absence of STAT-1 tyrosine-phosphorylation, while absence

  19. pO{sub 2} Fluctuation Pattern and Cycling Hypoxia in Human Cervical Carcinoma and Melanoma Xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Ellingsen, Christine; Ovrebo, Kirsti Marie; Galappathi, Kanthi; Mathiesen, Berit [Radiation Biology and Tumor Physiology Group, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo (Norway); Rofstad, Einar K., E-mail: einar.k.rofstad@rr-research.no [Radiation Biology and Tumor Physiology Group, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo (Norway)

    2012-07-15

    Purpose: Blood perfusion in tumors is spatially and temporally heterogeneous, resulting in local fluctuations in tissue oxygen tension (pO{sub 2}) and tissue regions showing cycling hypoxia. In this study, we investigated whether the pO{sub 2} fluctuation pattern and the extent of cycling hypoxia differ between tumor types showing high (e.g., cervical carcinoma xenograft) and low (e.g., melanoma xenograft) fractions of connective tissue-associated blood vessels. Methods and Materials: Two cervical carcinoma lines (CK-160 and TS-415) and two melanoma lines (A-07 and R-18) transplanted into BALB/c nu/nu mice were included in the study. Tissue pO{sub 2} was measured simultaneously in two positions in each tumor by using a two-channel OxyLite fiber-optic oxygen-sensing device. The extent of acute and chronic hypoxia was assessed by combining a radiobiological and a pimonidazole-based immunohistochemical assay of tumor hypoxia. Results: The proportion of tumor regions showing pO{sub 2} fluctuations, the pO{sub 2} fluctuation frequency in these regions, and the relative amplitude of the pO{sub 2} fluctuations were significantly higher in the melanoma xenografts than in the cervical carcinoma xenografts. Cervical carcinoma and melanoma xenografts did not differ significantly in the fraction of acutely hypoxic cells or the fraction of chronically hypoxic cells. However, the ratio between fraction of acutely hypoxic cells and fraction of chronically hypoxic cells was significantly higher in melanoma than in cervical carcinoma xenografts. Conclusions: Temporal heterogeneity in blood flow and tissue pO{sub 2} in tumors may depend on tumor histology. Connective tissue surrounding microvessels may stabilize blood flow and pO{sub 2} and, thus, protect tumor tissue from cycling hypoxia.

  20. Antitumor Activity of Kielmeyera Coriacea Leaf Constituents in Experimental Melanoma, Tested in Vitro and in Vivo in Syngeneic Mice

    Directory of Open Access Journals (Sweden)

    Carlos Rogério Figueiredo

    2014-10-01

    Full Text Available Purpose: The antitumor activity of Kielmeyera coriacea (Clusiaceae, a medicinal plant used in the treatment of parasitic, as well as fungal and bacterial infections by the Brazilian Cerrado population, was investigated. Methods: A chloroform extract (CE of K. coriacea was tested in the murine melanoma cell line (B16F10-Nex2 and a panel of human tumor cell lines. Tumor cell migration was determined by the wound-healing assay and the in vivo antitumor activity of CE was investigated in a melanoma cell metastatic model. 1H NMR and GC/MS were used to determine CE chemical composition. Results: We found that CE exhibited strong cytotoxic activity against murine melanoma cells and a panel of human tumor cell lines in vitro. CE also inhibited growth of B16F10-Nex2 cells at sub lethal concentrations, inducing cell cycle arrest at S phase, and inhibition of tumor cell migration. Most importantly, administration of CE significantly reduced the number of melanoma metastatic nodules in vivo. Chemical analysis of CE indicated the presence of the long chain fatty compounds, 1-eicosanol, 1-docosanol, and 2-nonadecanone as main constituents. Conclusion: These results indicate that K. coriacea is a promising medicinal plant in cancer therapy exhibiting antitumor activity both in vitro and in vivo against different tumor cell lines.