WorldWideScience

Sample records for human mars mission

  1. Mission design options for human Mars missions

    Science.gov (United States)

    Wooster, Paul D.; Braun, Robert D.; Ahn, Jaemyung; Putnam, Zachary R.

    Trajectory options for conjunction-class human Mars missions are examined, including crewed Earth-Mars trajectories with the option for abort to Earth, with the intent of serving as a resource for mission designers. An analysis of the impact of Earth and Mars entry velocities on aeroassist systems is included, and constraints are suggested for interplanetary trajectories based upon aeroassist system capabilities.

  2. Human Mars Mission Contamination Issues

    Science.gov (United States)

    Lupisella, M. L.

    2001-01-01

    A potential challenge for a human Mars mission is that while humans are by most measures the obvious best way to search for life on Mars, we may also be the most problematic in that we could unduly compromise the search for life by contaminating relevant environments and/or possibly adversely and irreversibly affecting indigenous life. Perhaps more problematic is the fundamental epistemic challenge of the "one data point" limitation which could decrease confidence in applying terrestrially based research to extraterrestrial life issues in general. An informal decision tree is presented as one way to begin thinking about contamination issues. There are many sub-questions and distinctions not shown such as biological vs. nonbiological (but biologically relevant) contamination, viable vs. dead organisms, masking indigenous organisms vs. merely making the search more difficult, and independent origin vs. panspermia distinctions. While it may be unlikely that terrestrial microbes could survive on Mars, let alone reproduce and unduly compromise the search for life, the unpredictable potential for microbial life to survive, grow exponentially, evolve and modify (and sometimes destroy) environments, warrants focusing carefully on biologically relevant contamination as we prepare to send humans to the first planet that may have indigenous life-forms.

  3. Human Mars Missions: Cost Driven Architecture Assessments

    Science.gov (United States)

    Donahue, Benjamin

    1998-01-01

    This report investigates various methods of reducing the cost in space transportation systems for human Mars missions. The reference mission for this task is a mission currently under study at NASA. called the Mars Design Reference Mission, characterized by In-Situ propellant production at Mars. This study mainly consists of comparative evaluations to the reference mission with a view to selecting strategies that would reduce the cost of the Mars program as a whole. One of the objectives is to understand the implications of certain Mars architectures, mission modes, vehicle configurations, and potentials for vehicle reusability. The evaluations start with year 2011-2014 conjunction missions which were characterized by their abort-to-the-surface mission abort philosophy. Variations within this mission architecture, as well as outside the set to other architectures (not predicated on an abort to surface philosophy) were evaluated. Specific emphasis has been placed on identifying and assessing overall mission risk. Impacts that Mars mission vehicles might place upon the Space Station, if it were to be used as an assembly or operations base, were also discussed. Because of the short duration of this study only on a few propulsion elements were addressed (nuclear thermal, cryogenic oxygen-hydrogen, cryogenic oxygen-methane, and aerocapture). Primary ground rules and assumptions were taken from NASA material used in Marshall Space Flight Center's own assessment done in 1997.

  4. Human Mars Surface Mission Nuclear Power Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2018-01-01

    A key decision facing Mars mission designers is how to power a crewed surface field station. Unlike the solar-powered Mars Exploration Rovers (MER) that could retreat to a very low power state during a Martian dust storm, human Mars surface missions are estimated to need at least 15 kilowatts of electrical (kWe) power simply to maintain critical life support and spacecraft functions. 'Hotel' loads alone for a pressurized crew rover approach two kWe; driving requires another five kWe-well beyond what the Curiosity rover’s Radioisotope Power System (RPS) was designed to deliver. Full operation of a four-crew Mars field station is estimated at about 40 kWe. Clearly, a crewed Mars field station will require a substantial and reliable power source, beyond the scale of robotic mission experience. This paper explores the applications for both fission and RPS nuclear options for Mars.

  5. Human missions to Mars: issues and challenges

    Science.gov (United States)

    Race, M.; Kminek, G.

    Recent announcements of the planned future human exploration of Mars by both European and US space agencies have raised a host of questions and challenges that must be addressed in advance of long-duration human missions. While detailed mission planning is a long way off, numerous issues can already be identified in the broad context of planetary protection. In this session, a panel of experts will provide brief overviews of the types of challenges ahead, such as the protection of the martian environment; the integration of human and robotic mission elements and operations; precursor scientific information necessary to plan human missions; development and use of nuclear and other technologies for the protection and support of astronauts during the mission; protection of Earth upon return; and societal and ethical questions about human exploration. The session has been designed to encourage and incorporate audience participation in the discussion about the issues and challenges ahead.

  6. Dust Storm Impacts on Human Mars Mission Equipment and Operations

    Science.gov (United States)

    Rucker, M. A.

    2017-06-01

    NASA has accumulated a wealth of experience between the Apollo program and robotic Mars rover programs, but key differences between those missions and a human Mars mission that will require unique approaches to mitigate potential dust storm concerns.

  7. Planetary Protection Considerations for Human And Robotic Missions to Mars

    Science.gov (United States)

    Mogul, R.; Stabekis, P. D.; Race, M. S.; Conley, C. A.

    2012-06-01

    Incorporating planetary protection into human missions, as supported by NASA Policy Directive NPD 8020.7G, is essential to preventing the forward contamination of Mars, ensuring astronaut health, and preventing backward contamination of Earth.

  8. Planetary protection issues linked to human missions to Mars

    Science.gov (United States)

    Debus, A.

    According to United Nations Treaties and handled presently by the Committee of Space Research COSPAR the exploration of the Solar System has to comply with planetary protection requirements The goal of planetary protection is to protect celestial bodies from terrestrial contamination and also to protect the Earth environment from an eventual biocontamination carried by return samples or by space systems returning to the Earth Mars is presently one of the main target at exobiology point of view and a lot of missions are operating on travel or scheduled for its exploration Some of them include payload dedicated to the search of life or traces of life and one of the goals of these missions is also to prepare sample return missions with the ultimate objective to walk on Mars Robotic missions to Mars have to comply with planetary protection specifications well known presently and planetary protection programs are implemented with a very good reliability taking into account an experience of 40 years now For sample return missions a set of stringent requirements have been approved by the COSPAR and technical challenges have now to be won in order to preserve Earth biosphere from an eventual contamination risk Sending astronauts on Mars will gather all these constraints added with the human dimension of the mission The fact that the astronauts are huge contamination sources for Mars and that they are also potential carrier of a contamination risk back to Earth add also ethical considerations to be considered For the preparation of a such

  9. Mission Design Considerations for Mars Cargo of the Human Spaceflight Architecture Team's Evolvable Mars Campaign

    Science.gov (United States)

    Sjauw, Waldy K.; McGuire, Melissa L.; Freeh, Joshua E.

    2016-01-01

    Recent NASA interest in human missions to Mars has led to an Evolvable Mars Campaign by the agency's Human Architecture Team. Delivering the crew return propulsion stages and Mars surface landers, SEP based systems are employed because of their high specific impulse characteristics enabling missions requiring less propellant although with longer transfer times. The Earth departure trajectories start from an SLS launch vehicle delivery orbit and are spiral shaped because of the low SEP thrust. Previous studies have led to interest in assessing the divide in trip time between the Earth departure and interplanetary legs of the mission for a representative SEP cargo vehicle.

  10. Entry, Descent, and Landing for Human Mars Missions

    Science.gov (United States)

    Munk, Michelle M.; DwyerCianciolo, Alicia M.

    2012-01-01

    One of the most challenging aspects of a human mission to Mars is landing safely on the Martian surface. Mars has such low atmospheric density that decelerating large masses (tens of metric tons) requires methods that have not yet been demonstrated, and are not yet planned in future Mars missions. To identify the most promising options for Mars entry, descent, and landing, and to plan development of the needed technologies, NASA's Human Architecture Team (HAT) has refined candidate methods for emplacing needed elements of the human Mars exploration architecture (such as ascent vehicles and habitats) on the Mars surface. This paper explains the detailed, optimized simulations that have been developed to define the mass needed at Mars arrival to accomplish the entry, descent, and landing functions. Based on previous work, technology options for hypersonic deceleration include rigid, mid-L/D (lift-to-drag ratio) aeroshells, and inflatable aerodynamic decelerators (IADs). The hypersonic IADs, or HIADs, are about 20% less massive than the rigid vehicles, but both have their technology development challenges. For the supersonic regime, supersonic retropropulsion (SRP) is an attractive option, since a propulsive stage must be carried for terminal descent and can be ignited at higher speeds. The use of SRP eliminates the need for an additional deceleration system, but SRP is at a low Technology Readiness Level (TRL) in that the interacting plumes are not well-characterized, and their effect on vehicle stability has not been studied, to date. These architecture-level assessments have been used to define the key performance parameters and a technology development strategy for achieving the challenging mission of landing large payloads on Mars.

  11. Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications

    Science.gov (United States)

    Mishkin, Andrew; Lee, Young; Korth, David; LeBlanc, Troy

    2007-01-01

    For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.

  12. Radiation Protection Challenges for a Human Mission to Mars

    Science.gov (United States)

    Zeitlin, C. J.; Hassler, D.; Wimmer-Schweingruber, R. F.; Schwadron, N.; Spence, H. E.

    2015-12-01

    A human mission to Mars presents many challenges, not least of which is the radiation exposure that crew members will certainly receive in all phases of the journey, but most critically during the transits to and from Mars. Measurements from the Radiation Assessment Detector (RAD) aboard the Mars Science Laboratory Curiosity rover, made both in flight and on the surface of Mars, confirm previous estimates that crew members under reasonable shielding would receive a dose equivalent of about 1 Sievert on a 1000-day mission. In standard radiation biology, an acute exposure to 1 Sievert would be expected to increase lifetime fatal cancer risk by about 5%. This is well beyond the currently allowed 3% risk increase limit used by NASA and JAXA. Perhaps more significantly, the nature of exposure in space differs greatly from the terrestrial exposures that lead to the 5% estimate -- in space, the exposure is received at a very low dose rate, and includes a significant component from heavy ions in the Galactic Cosmic Rays (GCRs). Acute exposures to Solar Energetic Particles are also possible, but the generally lower energies of SEPs (kinetic energies typically below 100 MeV/nuc) mean that modest amounts of shielding are effective against them. Thus the greater concern for long-duration deep-space missions is the GCR exposure. In this presentation, I will briefly review the MSL-RAD data and discuss current approaches to radiation risk estimation, including the NASA limit of 3% at the 95% confidence level. Recent results from the NASA radiation biology program indicate that cancer may not be the only risk that needs to be considered, with emerging concerns about cardiovascular and central nervous system health. These health effects are not accounted for in the current methodology and could potentially be threatening to mission success if they manifest in the course of the mission, rather than appearing many years after the exposure as radiation-induced cancer typically does.

  13. Planetary protection issues related to human missions to Mars

    Science.gov (United States)

    Debus, A.; Arnould, J.

    2008-09-01

    In accordance with the United Nations Outer Space Treaties [United Nations, Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, UN doc A/RES/34/68, resolution 38/68 of December 1979], currently maintained and promulgated by the Committee on Space Research [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], missions exploring the Solar system must meet planetary protection requirements. Planetary protection aims to protect celestial bodies from terrestrial contamination and to protect the Earth environment from potential biological contamination carried by returned samples or space systems that have been in contact with an extraterrestrial environment. From an exobiology perspective, Mars is one of the major targets, and several missions are currently in operation, in transit, or scheduled for its exploration. Some of them include payloads dedicated to the detection of life or traces of life. The next step, over the coming years, will be to return samples from Mars to Earth, with a view to increasing our knowledge in preparation for the first manned mission that is likely to take place within the next few decades. Robotic missions to Mars shall meet planetary protection specifications, currently well documented, and planetary protection programs are implemented in a very reliable manner given that experience in the field spans some 40 years. With regards to sample return missions, a set of stringent requirements has been approved by COSPAR [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], and technical challenges must now be overcome in order to preserve the Earth’s biosphere from any eventual contamination risk. In addition to the human dimension of

  14. Design of human missions to Mars and robotic missions to Jupiter

    Science.gov (United States)

    Okutsu, Masataka

    We consider human missions to Mars and robotic missions to Jupiter for launch dates in the near- and far-future. For the near-future, we design trajectories for currently proposed space missions that have well-defined spacecraft and mission requirements. For example, for early human missions to Mars we assume that the constraints used in NASA's design reference missions are indicative of current and near-future technologies, which of course limit our capabilities to explore Mars--and these limits make the problem challenging. Similarly, in the case of robotic exploration of Jupiter, we consider that the technology levels assumed for the proposed Europa Orbiter mission represent reasonable limits. For the far-future (two to three decades from now), we take the best estimates from current literature about the capabilities that may be available in nuclear-powered electric propulsion. We consider hardware capabilities (in terms of specific mass, specific impulse, thrust, power, etc.) for low-thrust trajectories, which range froth near-term to far-future technologies. In designing such missions, several techniques are found useful. For example, the Tisserand Graph, which tracks the changes in orbital shapes and energies, provides insight in designing Jovian tours for the Europa Orbiter mission. The graph is also useful in analyzing abort trajectories for human missions to Mars. Furthermore, a patched-conic propagator, which can generate thousands of potential trajectories, plays a vital role in three of four chapters of this thesis. For launches in the next three decades, we discovered a class of Earth- Mars-Venus-Earth free returns (which appear only four times in the 100-year period), Jovian tours involving ten to twenty flybys of the Galilean satellites, and low-thrust trajectories to Jupiter via gravity assists from Venus, Earth, and Mars. In addition, our continuation method, in which a solution for a conic trajectory is gradually converted into that for a low

  15. Small Habitat Commonality Reduces Cost for Human Mars Missions

    Science.gov (United States)

    Griffin, Brand N.; Lepsch, Roger; Martin, John; Howard, Robert; Rucker, Michelle; Zapata, Edgar; McCleskey, Carey; Howe, Scott; Mary, Natalie; Nerren, Philip (Inventor)

    2015-01-01

    Most view the Apollo Program as expensive. It was. But, a human mission to Mars will be orders of magnitude more difficult and costly. Recently, NASA's Evolvable Mars Campaign (EMC) mapped out a step-wise approach for exploring Mars and the Mars-moon system. It is early in the planning process but because approximately 80% of the total life cycle cost is committed during preliminary design, there is an effort to emphasize cost reduction methods up front. Amongst the options, commonality across small habitat elements shows promise for consolidating the high bow-wave costs of Design, Development, Test and Evaluation (DDT&E) while still accommodating each end-item's functionality. In addition to DDT&E, there are other cost and operations benefits to commonality such as reduced logistics, simplified infrastructure integration and with inter-operability, improved safety and simplified training. These benefits are not without a cost. Some habitats are sub-optimized giving up unique attributes for the benefit of the overall architecture and because the first item sets the course for those to follow, rapidly developing technology may be excluded. The small habitats within the EMC include the pressurized crew cabins for the ascent vehicle,

  16. Ice Dragon: A Mission to Address Science and Human Exploration Objectives on Mars

    Science.gov (United States)

    Stoker, C.; Davilla, A.; Davis, S.; Glass, B.; Gonzales, A.; Heldmann, J.; Karcz, J.; Lemke, L.; Sanders, G.

    2012-06-01

    We present a mission concept where a SpaceX Dragon capsule lands a payload on Mars that samples ground ice to search for evidence of life, assess hazards to future human missions, and demonstrate use of Martian resources.

  17. An Alternative Humans to Mars Approach: Reducing Mission Mass with Multiple Mars Flyby Trajectories and Minimal Capability Investments

    Science.gov (United States)

    Whitley, Ryan J.; Jedrey, Richard; Landau, Damon; Ocampo, Cesar

    2015-01-01

    Mars flyby trajectories and Earth return trajectories have the potential to enable lower- cost and sustainable human exploration of Mars. Flyby and return trajectories are true minimum energy paths with low to zero post-Earth departure maneuvers. By emplacing the large crew vehicles required for human transit on these paths, the total fuel cost can be reduced. The traditional full-up repeating Earth-Mars-Earth cycler concept requires significant infrastructure, but a Mars only flyby approach minimizes mission mass and maximizes opportunities to build-up missions in a stepwise manner. In this paper multiple strategies for sending a crew of 4 to Mars orbit and back are examined. With pre-emplaced assets in Mars orbit, a transit habitat and a minimally functional Mars taxi, a complete Mars mission can be accomplished in 3 SLS launches and 2 Mars Flyby's, including Orion. While some years are better than others, ample opportunities exist within a given 15-year Earth-Mars alignment cycle. Building up a mission cadence over time, this approach can translate to Mars surface access. Risk reduction, which is always a concern for human missions, is mitigated by the use of flybys with Earth return (some of which are true free returns) capability.

  18. Physiological Health Challenges for Human Missions to Mars

    Science.gov (United States)

    Norsk, Peter

    2015-01-01

    During the next decades, manned space missions are expected to be aiming at the Lagrange points, near Earth asteroids, and Mars flyby and/or landing. The question is therefore: Are we ready to go? To answer this with a yes, we are currently using the International Space Station to develop an integrated human physiological countermeasure suite. The integrated countermeasure suite will most likely encounter: 1) Exercise devices for aerobic, dynamic and resistive exercise training; 2) sensory-motor computer training programs and anti-motion sickness medication for preparing EVAs and G-transitions; 3) lower limb bracelets for preventing and/or treating the VIIP (vision impairment and intracranial pressure) syndrome; 4) nutritional components for maintenance of bone, muscle, the cardiovascular system and preventing oxidative stress and damage and immune deficiencies (e. g. omega-3 fatty acids, PRO/K, anti-oxidants and less salt and iron); 5) bisphosphonates for preventing bone degradation.; 6) lower body compression garment and oral salt and fluid loading for landing on a planetary surface to combat orthostatic intolerance; 7) laboratory analysis equipment for individualized monitoring of biomarkers in blood, urine and saliva for estimation of health status in; 8) advanced ultrasound techniques for monitoring bone and cardiovascular health; and 9) computer modeling programs for individual health status assessments of efficiency and subsequent adjustments of countermeasures. In particular for future missions into deep space, we are concerned with the synergistic effects of weightlessness, radiation, operational constraints and other spaceflight environmental factors. Therefore, increased collaboration between physiological, behavioral, radiation and space vehicle design disciplines are strongly warranted. Another venue we are exploring in NASA's Human Research Program is the usefulness of artificial gravity for mitigating the health risks of long duration weightlessness.

  19. Cognitive engineering for long duration missions: Human-machine collaboration on the moon and mars

    NARCIS (Netherlands)

    Neerincx, M.A.; Lindenberg, J.; Smets, N.; Grant, T.; Bos, A.; Olmedo-Soler, A.; Brauer, U.; Wolff, M.

    2006-01-01

    For manned long-duration missions to the Moon and Mars, there is a need for a Mission Execution Crew Assistant (MECA) that empowers the cognitive capacities of human-machine teams during planetary exploration missions in order to cope autonomously with unexpected, complex and potentially hazardous s

  20. Human missions to Mars enabling technologies for exploring the red planet

    CERN Document Server

    Rapp, Donald

    2016-01-01

    A mission to send humans to explore the surface of Mars has been the ultimate goal of planetary exploration since the 1950s, when von Braun conjectured a flotilla of 10 interplanetary vessels carrying a crew of at least 70 humans. Since then, more than 1,000 studies were carried out on human missions to Mars, but after 60 years of study, we remain in the early planning stages. The second edition of this book now includes an annotated history of Mars mission studies, with quantitative data wherever possible. Retained from the first edition, Donald Rapp looks at human missions to Mars from an engineering perspective. He divides the mission into a number of stages: Earth’s surface to low-Earth orbit (LEO); departing from LEO toward Mars; Mars orbit insertion and entry, descent and landing; ascent from Mars; trans-Earth injection from Mars orbit and Earth return. For each segment, he analyzes requirements for candidate technologies. In this connection, he discusses the status and potential of a wide range of el...

  1. A Lean, Fast Mars Round-trip Mission Architecture: Using Current Technologies for a Human Mission in the 2030s

    Science.gov (United States)

    Bailey, Lora; Folta, David; Barbee, Brent W.; Vaughn, Frank; Kirchman, Frank; Englander, Jacob; Campbell, Bruce; Thronson, Harley; Lin, Tzu Yu

    2013-01-01

    We present a lean fast-transfer architecture concept for a first human mission to Mars that utilizes current technologies and two pivotal parameters: an end-to-end Mars mission duration of approximately one year, and a deep space habitat of approximately 50 metric tons. These parameters were formulated by a 2012 deep space habitat study conducted at the NASA Johnson Space Center (JSC) that focused on a subset of recognized high- engineering-risk factors that may otherwise limit space travel to destinations such as Mars or near-Earth asteroid (NEA)s. With these constraints, we model and promote Mars mission opportunities in the 2030s enabled by a combination of on-orbit staging, mission element pre-positioning, and unique round-trip trajectories identified by state-of-the-art astrodynamics algorithms.

  2. The human story of Crew 173- capturing a Mars analog mission

    Science.gov (United States)

    Shaw, Niamh; Musilova, Michaela; Pons Lorente, Arnau; Sisaid, Idriss; Naor, Roy; Blake, Richard

    2017-04-01

    An international crew of six scientists, engineers, artists and entrepreneurs with different space specialisations were selected by the Mars Society to take part in a Martian simulation in January 2017. An ambitious outreach and media strategy was developed, aimed at communicating the benefits of missions to Mars to the public and to capture the public's interest by telling the human story of the crew's mission. Entitled Crew 173 Team PRIMA, they entered the Mars Desert Research Station in the Utah Desert and conducted research in 3D printing, hydroponics, geology and astronomy. Both the scientific and community experience of this mission was documented through still image, video, audio, diary and daily journalling by the resident artist of the mission, Niamh Shaw. The full experience of the crew was documented (before, during and after the expedition), to capture each individual experience of the crew and the human experience of isolation of future human space missions.

  3. Design of Photovoltaic Power System for a Precursor Mission for Human Exploration of Mars

    Science.gov (United States)

    Mcnatt, Jeremiah; Landis, Geoffrey; Fincannon, James

    2016-01-01

    This project analyzed the viability of a photovoltaic power source for technology demonstration mission to demonstrate Mars in-situ resource utilization (ISRU) to produce propellant for a future human mission, based on technology available within the next ten years. For this assessment, we performed a power-system design study for a scaled ISRU demonstrator lander on the Mars surface based on existing solar array technologies.

  4. Evolvable Mars Campaign Long Duration Habitation Strategies: Architectural Approaches to Enable Human Exploration Missions

    Science.gov (United States)

    Simon, Matthew A.; Toups, Larry; Howe, A. Scott; Wald, Samuel I.

    2015-01-01

    The Evolvable Mars Campaign (EMC) is the current NASA Mars mission planning effort which seeks to establish sustainable, realistic strategies to enable crewed Mars missions in the mid-2030s timeframe. The primary outcome of the Evolvable Mars Campaign is not to produce "The Plan" for sending humans to Mars, but instead its intent is to inform the Human Exploration and Operations Mission Directorate near-term key decisions and investment priorities to prepare for those types of missions. The FY'15 EMC effort focused upon analysis of integrated mission architectures to identify technically appealing transportation strategies, logistics build-up strategies, and vehicle designs for reaching and exploring Mars moons and Mars surface. As part of the development of this campaign, long duration habitats are required which are capable of supporting crew with limited resupply and crew abort during the Mars transit, Mars moons, and Mars surface segments of EMC missions. In particular, the EMC design team sought to design a single, affordable habitation system whose manufactured units could be outfitted uniquely for each of these missions and reused for multiple crewed missions. This habitat system must provide all of the functionality to safely support 4 crew for long durations while meeting mass and volume constraints for each of the mission segments set by the chosen transportation architecture and propulsion technologies. This paper describes several proposed long-duration habitation strategies to enable the Evolvable Mars Campaign through improvements in mass, cost, and reusability, and presents results of analysis to compare the options and identify promising solutions. The concepts investigated include several monolithic concepts: monolithic clean sheet designs, and concepts which leverage the co-manifested payload capability of NASA's Space Launch System (SLS) to deliver habitable elements within the Universal Payload Adaptor between the SLS upper stage and the Orion

  5. Human Factors and Habitability Challenges for Mars Missions

    Science.gov (United States)

    Whitmore, Mihriban

    2015-01-01

    As NASA is planning to send humans deeper into space than ever before, adequate crew health and performance will be critical for mission success. Within the NASA Human Research Program (HRP), the Space Human Factors and Habitability (SHFH) team is responsible for characterizing the risks associated with human capabilities and limitations with respect to long-duration spaceflight, and for providing mitigations (e.g., guidelines, technologies, and tools) to promote safe, reliable and productive missions. SHFH research includes three domains: Advanced Environmental Health (AEH), Advanced Food Technology (AFT), and Space Human Factors Engineering (SHFE). The AEH portfolio focuses on understanding the risk of microbial contamination of the spacecraft and on the development of standards for exposure to potential toxins such as chemicals, bacteria, fungus, and lunar/Martian dust. The two risks that the environmental health project focuses on are adverse health effects due to changes in host-microbe interactions, and risks associated with exposure to dust in planetary surface habitats. This portfolio also proposes countermeasures to these risks by making recommendations that relate to requirements for environmental quality, foods, and crew health on spacecraft and space missions. The AFT portfolio focuses on reducing the mass, volume, and waste of the entire integrated food system to be used in exploration missions, and investigating processing methods to extend the shelf life of food items up to five years, while assuring that exploration crews will have nutritious and palatable foods. The portfolio also delivers improvements in both the food itself and the technologies for storing and preparing it. SHFE sponsors research to establish human factors and habitability standards and guidelines in five risk areas, and provides improved design concepts for advanced crew interfaces and habitability systems. These risk areas include: Incompatible vehicle/habitat design

  6. Human factors research as part of a Mars exploration analogue mission on Devon Island

    Science.gov (United States)

    Binsted, Kim; Kobrick, Ryan L.; Griofa, Marc Ó.; Bishop, Sheryl; Lapierre, Judith

    2010-06-01

    Human factors research is a critical element of space exploration as it provides insight into a crew's performance, psychology and interpersonal relationships. Understanding the way humans work in space-exploration analogue environments permits the development and testing of countermeasures for and responses to potential hazardous situations, and can thus help improve mission efficiency and safety. Analogue missions, such as the one described here, have plausible mission constraints and operational scenarios, similar to those that a real Mars crew would experience. Long duration analogue studies, such as those being conducted at the Flashline Mars Arctic Research Station (FMARS) on Devon Island, Canada, offer an opportunity to study mission operations and human factors in a semi-realistic environment, and contribute to the design of missions to explore the Moon and Mars. The FMARS XI Long Duration Mission (F-XI LDM) was, at four months, the longest designed analogue Mars mission conducted to date, and thus provides a unique insight into human factors issues for long-duration space exploration. Here, we describe the six human factors studies that took place during F-XI LDM, and give a summary of their results, where available. We also present a meta-study, which examined the impact of the human-factors research itself on crew schedule and workload. Based on this experience, we offer some lessons learnt: some aspects (perceived risk and crew motivation, for example) of analogue missions must be realistic for study results to be valid; human factors studies are time-consuming, and should be fully integrated into crew schedules; and crew-ground communication and collaboration under long-term exploration conditions can present serious challenges.

  7. Human Mars Mission Overview and Dust Storm Impacts on Site Selection

    Science.gov (United States)

    Hoffman, S. J.

    2017-01-01

    NASA has begun a process to identify and discuss candidate locations where humans could land, live and work on the martian surface. This process is being carried out as a cooperative effort by NASA's Human Exploration and Operations Mission Directorate (HEOMD), responsible for future human mission preparations, and the Science Mission Directorate (SMD), responsible for the on-going Mars Exploration Program of robotic vehicles in orbit and on the surface of Mars. Both of these Directorates have a significant interest in this process, as these candidate locations will be used by NASA as part of a multi-year effort to determine where and how humans could explore Mars. In the near term this process includes: (a) identifying locations that would maximize the potential science return from future human exploration missions, (b) identifying locations with the potential for resources required to support humans, (c) developing concepts and engineering systems needed by future human crews to conduct operations within a candidate location, and (d) identifying key characteristics of the proposed candidate locations that cannot be evaluated using existing data sets, thus helping to define precursor measurements needed in advance of human missions.

  8. Mission and Design Sensitivities for Human Mars Landers Using Hypersonic Inflatable Aerodynamic Decelerators

    Science.gov (United States)

    Polsgrove, Tara P.; Thomas, Herbert D.; Collins, Tim; Dwyer Cianciolo, Alicia; Samareh, Jamshid

    2017-01-01

    Landing humans on Mars is one of NASA's long term goals. The Evolvable Mars Campaign (EMC) is focused on evaluating architectural trade options to define the capabilities and elements needed for a sustainable human presence on the surface of Mars. The EMC study teams have considered a variety of in-space propulsion options and surface mission options. As we seek to better understand how these choices affect the performance of the lander, this work informs and influences requirements for transportation systems to deliver the landers to Mars and enable these missions. This paper presents the effects of mission and vehicle design options on lander mass and performance. Beginning with Earth launch, options include fairing size assumptions, co-manifesting other elements with the lander, and Earth-Moon vicinity operations. Capturing into Mars orbit using either aerocapture or propulsive capture is assessed. For entry, descent, and landing both storable as well as oxygen and methane propellant combinations are considered, engine thrust level is assessed, and sensitivity to landed payload mass is presented. This paper focuses on lander designs using the Hypersonic Inflatable Aerodynamic Decelerators (HIAD), one of several entry system technologies currently considered for human missions.

  9. Reporting on Strategic Considerations About the Role of Science in Initial Human Missions to Mars

    Science.gov (United States)

    Beaty, David; Bass, Deborah; Thronson, Harley; Hays, Lindsay; Carberry, Chris; Cassady, Joe; Craig, Mark; Duggan, Matt; Drake, Bret; Stern, Jennifer; Zucker, Rick

    2016-07-01

    mission prior to a Mars surface mission should be initiated. 3. A well-planned set of science objectives for a future human-landed mission to Mars is essential in order to sustain coordination among the science and human spaceflight communities. In particular, while it is clear how humans on the surface of Mars would significantly accelerate the pace of the search for past life, it is unclear how humans would play a role in (and not serve as a hindrance to) the search for extant life. Further study should be supported. 4. Sustained formal collaboration among Mars scientists, engineers, technologists, and teams developing scenarios for Mars exploration should be supported. The human and robotic sides of the Mars exploration community need to become further engaged with each other, particularly as we enter a potential period of dual-purpose (science + human precursor) missions. Central to this era is generating mutual support for a Mars sample return architecture as a goal that has crucial value to both the human preparatory program and planetary science.

  10. Space nuclear power: technology, policy, and risk considerations in human missions to Mars.

    Science.gov (United States)

    Friedensen, V P

    1998-01-01

    There is a large discrepancy between potential needs for nuclear propulsion and power systems for the human exploration of Mars and the current status of R&D funding, public opinion, and governmental support for these technologies. Mission planners and spacecraft designers, energized by the recent claims of possible discovery of life on Mars and responding to increased public interest in the human exploration of Mars, frequently propose nuclear reactors and radioisotope thermoelectric generators (RTGs) for interplanetary spacecraft propulsion and for power supply on the surface of Mars. These plans and designs typically assume that reactors will be available "on-the-shelf," and do not take the extensive R&D costs required to develop such reactors into consideration. However, it is likely that current U.S. policies, if unchanged, will prohibit the launch of nuclear reactors and large RTGs in response to a perceived risk by the public.

  11. In-Situ Cryogenic Propellant Liquefaction and Storage for a Precursor to a Human Mars Mission

    Science.gov (United States)

    Mueller, Paul; Durrant, Tom

    The current mission plan for the first human mission to Mars is based on an in-situ propellant production (ISPP) approach to reduce the amount of propellants needed to be taken to Mars and ultimately to reduce mission cost. Recent restructuring of the Mars Robotic Exploration Program has removed ISPP from the early sample return missions. A need still exists to demonstrate ISPP technologies on one or more robotic missions prior to the first human mission. This paper outlines a concept for an ISPP-based precursor mission as a technology demonstration prior to the first human mission. It will also return Martian soil samples to Earth for scientific analysis. The mission will primarily demonstrate cryogenic oxygen and fuel production, liquefaction, and storage for use as propellants for the return trip. Hydrogen will be brought from Earth as a feedstock to produce the hydrocarbon fuel (most likely methane). The analysis used to develop the mission concept includes several different thermal control and liquefaction options for the cryogens. Active cooling and liquefaction devices include Stirling, pulse tube, and Brayton-cycle cryocoolers. Insulation options include multilayer insulation, evacuated microspheres, aerogel blankets, and foam insulation. The cooling capacity and amount of insulation are traded off against each other for a minimum-mass system. In the case of hydrogen feedstock, the amount of hydrogen boiloff allowed during the trip to Mars is also included in the tradeoff. The spacecraft concept includes a Lander (including the propellant production plant) with a Mars Ascent Vehicle (MAV) mounted atop it. An option is explored where the engines on the MAV are also used for descent and landing on the Martian surface at the beginning of the mission. So the MAV propellant tanks would contain oxygen and methane during the trip from Earth. This propellant would be consumed in descent to the Martian surface, resulting in nearly-empty MAV tanks to be filled by the

  12. ``Bimodal'' NTR and LANTR propulsion for human missions to Mars/Phobos

    Science.gov (United States)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    1999-01-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars due to its high specific impulse (Isp ~850-1000 s) and attractive engine thrust-to-weight ratio (~3-10). Because only a miniscule amount of enriched uranium-235 fuel is consumed in a NTR during the primary propulsion maneuvers of a typical Mars mission, engines configured for both propulsive thrust and modest power generation (referred to as ``bimodal'' operation) provide the basis for a robust, ``power-rich'' stage enabling propulsive Mars capture and reuse capability. A family of modular ``bimodal'' NTR (BNTR) vehicles are described which utilize a common ``core'' stage powered by three 66.7 kN (~15 klbf) BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration/reliquification system for long term, ``zero-boiloff'' liquid hydrogen (LH2) storage, and high data rate communications. Compared to other propulsion options, a Mars mission architecture using BNTR transfer vehicles requires fewer transportation system elements which reduces mission mass, cost and risk because of simplified space operations. For difficult Mars options, such as a Phobos rendezvous and sample return mission, volume (not mass) constraints limit the performance of the ``all LH2'' BNTR stage. The use of ``LOX-augmented'' NTR (LANTR) engines, operating at a modest oxygen-to-hydrogen (O/H) mixture ratio (MR) of 0.5, helps to increase ``bulk'' propellant density and total thrust during the trans-Mars injection (TMI) burn. On all subsequent burns, the bimodal LANTR engines operate on LH2 only (MR=0) to maximize vehicle performance while staying within the mass limits of two ~80 t ``Magnum'' heavy lift launch vehicles (HLLVs).

  13. Lunar precursor missions for human exploration of Mars--III: studies of system reliability and maintenance

    Science.gov (United States)

    Mendell, W. W.; Heydorn, R. P.

    2004-01-01

    Discussions of future human expeditions into the solar system generally focus on whether the next explorers ought to go to the Moon or to Mars. The only mission scenario developed in any detail within NASA is an expedition to Mars with a 500-day stay at the surface. The technological capabilities and the operational experience base required for such a mission do not now exist nor has any self-consistent program plan been proposed to acquire them. In particular, the lack of an Abort-to-Earth capability implies that critical mission systems must perform reliably for 3 years or must be maintainable and repairable by the crew. As has been previously argued, a well-planned program of human exploration of the Moon would provide a context within which to develop the appropriate technologies because a lunar expedition incorporates many of the operational elements of a Mars expedition. Initial lunar expeditions can be carried out at scales consistent with the current experience base but can be expanded in any or all operational phases to produce an experience base necessary to successfully and safely conduct human exploration of Mars. Published by Elsevier Ltd.

  14. Modular Growth NTR Space Transportation System for Future NASA Human Lunar, NEA and Mars Exploration Missions

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The nuclear thermal rocket (NTR) is a proven, high thrust propulsion technology that has twice the specific impulse (I(sub sp) approx.900 s) of today's best chemical rockets. During the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs, twenty rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability - everything required for affordable human missions beyond LEO. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower IMLEO, versatile vehicle design, and growth potential. Furthermore, the NTR requires no large technology scale-ups since the smallest engine tested during the Rover program - the 25 klb(sub f) "Pewee" engine is sufficient for human Mars missions when used in a clustered engine configuration. The "Copernicus" crewed Mars transfer vehicle developed for DRA 5.0 was an expendable design sized for fast-conjunction, long surface stay Mars missions. It therefore has significant propellant capacity allowing a reusable "1-year" round trip human mission to a large, high energy near Earth asteroid (NEA) like Apophis in 2028. Using a "split mission" approach, Copernicus and its two key elements - a common propulsion stage and integrated "saddle truss" and LH2 drop tank assembly - configured as an Earth Return Vehicle / propellant tanker, can also support a short round trip (approx.18 month) / short orbital stay (60 days) Mars reconnaissance mission in the early 2030's before a landing is attempted. The same short stay orbital mission can be performed with an "all-up" vehicle by adding an "in-line" LH2 tank to Copernicus to supply the extra propellant needed for this higher energy, opposition-class mission. To transition to a

  15. A Mars 1984 mission

    Science.gov (United States)

    1977-01-01

    Mission objectives are developed for the next logical step in the investigation of the local physical and chemical environments and the search for organic compounds on Mars. The necessity of three vehicular elements: orbiter, penetrator, and rover for in situ investigations of atmospheric-lithospheric interactions is emphasized. A summary report and committee recommendations are included with the full report of the Mars Science Working Group.

  16. Entry, Descent, and Landing Guidance and Control Approaches to Satisfy Mars Human Mission Landing Criteria

    Science.gov (United States)

    Dwyer Cianciolo, Alicia; Powell, Richard W.

    2017-01-01

    Precision landing on Mars is a challenge. All Mars lander missions prior to the 2012 Mars Science Laboratory (MSL) had landing location uncertainty ellipses on the order of hundreds of kilometers. Sending humans to the surface of Mars will likely require multiple landers delivered in close proximity, which will in turn require orders of magnitude improvement in landing accuracy. MSL was the first Mars mission to use an Apollo-derived bank angle guidance to reduce the size of the landing ellipse. It utilized commanded bank angle magnitude to control total range and bank angle reversals to control cross range. A shortcoming of this bank angle guidance is that the open loop phase of flight created by use of bank reversals increases targeting errors. This paper presents a comparison of entry, descent and landing performance for a vehicle with a low lift-to-drag ratio using both bank angle control and an alternative guidance called Direct Force Control (DFC). DFC eliminates the open loop flight errors by directly controlling two forces independently, lift and side force. This permits independent control of down range and cross range. Performance results, evaluated using the Program to Optimize Simulated Trajectories (POST2), including propellant use and landing accuracy, are presented.

  17. Mission from Mars

    DEFF Research Database (Denmark)

    Dindler, Christian; Eriksson, Eva; Iversen, Ole Sejer

    2005-01-01

    In this paper a particular design method is propagated as a supplement to existing descriptive approaches to current practice studies especially suitable for gathering requirements for the design of children's technology. The Mission from Mars method was applied during the design of an electronic...

  18. Mission from Mars:

    DEFF Research Database (Denmark)

    Dindler, Christian; Eriksson, Eva; Iversen, Ole Sejer

    2005-01-01

    In this paper a particular design method is propagated as a supplement to existing descriptive approaches to current practice studies especially suitable for gathering requirements for the design of children's technology. The Mission from Mars method was applied during the design of an electronic...

  19. The Phoenix Mars Mission

    Science.gov (United States)

    Tamppari, Leslie K.; Smith, Peter H.

    2008-01-01

    This slide presentation details the Phoenix Mission which was designed to enhance our understanding of water and the potential for habitability on the north polar regions of Mars. The slides show the instruments and the robotics designed to scrape Martian surface material, and analyze it in hopes of identifying water in the form of ice, and other chemicals.

  20. The Mars Pathfinder Mission

    Science.gov (United States)

    Golombek, M. P.

    1996-09-01

    The Mars Pathfinder mission is a Discovery class mission that will place a small lander and rover on the surface of Mars on July 4, 1997. The Pathfinder flight system is a single small lander, packaged within an aeroshell and back cover with a back-pack-style cruise stage. The vehicle will be launched, fly independently to Mars, and enter the atmosphere directly on approach behind the aeroshell. The vehicle is slowed by a parachute and 3 small solid rockets before landing on inflated airbags. Petals of a small tetrahedron shaped lander open up, to right the vehicle. The lander is solar powered with batteries and will operate on the surface for up to a year, downlinking data on a high-gain antenna. Pathfinder will be the first mission to use a rover, with 3 imagers and an alpha proton X-ray spectrometer, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which will provide a calibration point or "ground truth" for orbital remote sensing observations. The rover (includes a series of technology experiments), the instruments (including a stereo multispectral surface imager on a pop up mast and an atmospheric structure instrument-surface meteorology package) and the telemetry system will allow investigations of: the surface morphology and geology at meter scale, the petrology and geochemistry of rocks and soils, the magnetic properties of dust, soil mechanics and properties, a variety of atmospheric investigations and the rotational and orbital dynamics of Mars. Landing downstream from the mouth of a giant catastrophic outflow channel, Ares Vallis, offers the potential of identifying and analyzing a wide variety of crustal materials, from the ancient heavily cratered terrain, intermediate-aged ridged plains and reworked channel deposits, thus allowing first-order scientific investigations of the early differentiation and evolution of the crust, the development of weathering products and early environments and conditions on Mars.

  1. The MARS2013 Mars analog mission.

    Science.gov (United States)

    Groemer, Gernot; Soucek, Alexander; Frischauf, Norbert; Stumptner, Willibald; Ragonig, Christoph; Sams, Sebastian; Bartenstein, Thomas; Häuplik-Meusburger, Sandra; Petrova, Polina; Evetts, Simon; Sivenesan, Chan; Bothe, Claudia; Boyd, Andrea; Dinkelaker, Aline; Dissertori, Markus; Fasching, David; Fischer, Monika; Föger, Daniel; Foresta, Luca; Fritsch, Lukas; Fuchs, Harald; Gautsch, Christoph; Gerard, Stephan; Goetzloff, Linda; Gołebiowska, Izabella; Gorur, Paavan; Groemer, Gerhard; Groll, Petra; Haider, Christian; Haider, Olivia; Hauth, Eva; Hauth, Stefan; Hettrich, Sebastian; Jais, Wolfgang; Jones, Natalie; Taj-Eddine, Kamal; Karl, Alexander; Kauerhoff, Tilo; Khan, Muhammad Shadab; Kjeldsen, Andreas; Klauck, Jan; Losiak, Anna; Luger, Markus; Luger, Thomas; Luger, Ulrich; McArthur, Jane; Moser, Linda; Neuner, Julia; Orgel, Csilla; Ori, Gian Gabriele; Paternesi, Roberta; Peschier, Jarno; Pfeil, Isabella; Prock, Silvia; Radinger, Josef; Ramirez, Barbara; Ramo, Wissam; Rampey, Mike; Sams, Arnold; Sams, Elisabeth; Sandu, Oana; Sans, Alejandra; Sansone, Petra; Scheer, Daniela; Schildhammer, Daniel; Scornet, Quentin; Sejkora, Nina; Stadler, Andrea; Stummer, Florian; Taraba, Michael; Tlustos, Reinhard; Toferer, Ernst; Turetschek, Thomas; Winter, Egon; Zanella-Kux, Katja

    2014-05-01

    We report on the MARS2013 mission, a 4-week Mars analog field test in the northern Sahara. Nineteen experiments were conducted by a field crew in Morocco under simulated martian surface exploration conditions, supervised by a Mission Support Center in Innsbruck, Austria. A Remote Science Support team analyzed field data in near real time, providing planning input for the management of a complex system of field assets; two advanced space suit simulators, four robotic vehicles, an emergency shelter, and a stationary sensor platform in a realistic work flow were coordinated by a Flight Control Team. A dedicated flight planning group, external control centers for rover tele-operations, and a biomedical monitoring team supported the field operations. A 10 min satellite communication delay and other limitations pertinent to human planetary surface activities were introduced. The fields of research for the experiments were geology, human factors, astrobiology, robotics, tele-science, exploration, and operations research. This paper provides an overview of the geological context and environmental conditions of the test site and the mission architecture, in particular the communication infrastructure emulating the signal travel time between Earth and Mars. We report on the operational work flows and the experiments conducted, including a deployable shelter prototype for multiple-day extravehicular activities and contingency situations.

  2. Mars Exploration Rover mission

    Science.gov (United States)

    Crisp, Joy A.; Adler, Mark; Matijevic, Jacob R.; Squyres, Steven W.; Arvidson, Raymond E.; Kass, David M.

    2003-10-01

    In January 2004 the Mars Exploration Rover mission will land two rovers at two different landing sites that show possible evidence for past liquid-water activity. The spacecraft design is based on the Mars Pathfinder configuration for cruise and entry, descent, and landing. Each of the identical rovers is equipped with a science payload of two remote-sensing instruments that will view the surrounding terrain from the top of a mast, a robotic arm that can place three instruments and a rock abrasion tool on selected rock and soil samples, and several onboard magnets and calibration targets. Engineering sensors and components useful for science investigations include stereo navigation cameras, stereo hazard cameras in front and rear, wheel motors, wheel motor current and voltage, the wheels themselves for digging, gyros, accelerometers, and reference solar cell readings. Mission operations will allow commanding of the rover each Martian day, or sol, on the basis of the previous sol's data. Over a 90-sol mission lifetime, the rovers are expected to drive hundreds of meters while carrying out field geology investigations, exploration, and atmospheric characterization. The data products will be delivered to the Planetary Data System as integrated batch archives.

  3. An alternative approach to solar system exploration providing safety of human mission to Mars.

    Science.gov (United States)

    Gitelson, J I; Bartsev, S I; Mezhevikin, V V; Okhonin, V A

    2003-01-01

    For systematic human Mars exploration, meeting crew safety requirements, it seems perspective to assemble into a spacecraft: an electrical rocket, a well-shielded long-term life support system, and a manipulator-robots operating in combined "presence effect" and "master-slave" mode. The electrical spacecraft would carry humans to the orbit of Mars, providing short distance (and low signal time delay) between operator and robot-manipulators, which are landed on the surface of the planet. Long-term hybrid biological and physical/chemical LSS could provide environment supporting human health and well being. Robot-manipulators operating in "presence effect" and "master-slave" mode exclude necessity of human landing on Martian surface decreasing the level of risk for crew. Since crewmen would not have direct contact with the Martian environment then the problem of mutual biological protection is essentially reduced. Lightweight robot-manipulators, without heavy life support systems and without the necessity of returning to the mother vessel, could be sent as scouts to different places on the planet surface, scanning the most interesting for exobiological research site. Some approximate estimations of electric spacecraft, long-term hybrid LSS, radiation protection and mission parameters are conducted and discussed. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  4. Nuclear Thermal Propulsion (NTP): A Proven Growth Technology for Human NEO/Mars Exploration Missions

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The nuclear thermal rocket (NTR) represents the next "evolutionary step" in high performance rocket propulsion. Unlike conventional chemical rockets that produce their energy through combustion, the NTR derives its energy from fission of Uranium-235 atoms contained within fuel elements that comprise the engine s reactor core. Using an "expander" cycle for turbopump drive power, hydrogen propellant is raised to a high pressure and pumped through coolant channels in the fuel elements where it is superheated then expanded out a supersonic nozzle to generate high thrust. By using hydrogen for both the reactor coolant and propellant, the NTR can achieve specific impulse (Isp) values of 900 seconds (s) or more - twice that of today s best chemical rockets. From 1955 - 1972, twenty rocket reactors were designed, built and ground tested in the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs. These programs demonstrated: (1) high temperature carbide-based nuclear fuels; (2) a wide range of thrust levels; (3) sustained engine operation; (4) accumulated lifetime at full power; and (5) restart capability - all the requirements needed for a human Mars mission. Ceramic metal "cermet" fuel was pursued as well, as a backup option. The NTR also has significant "evolution and growth" capability. Configured as a "bimodal" system, it can generate its own electrical power to support spacecraft operational needs. Adding an oxygen "afterburner" nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, no large technology scale-ups are required for NTP either. In fact, the smallest engine tested during the Rover program

  5. International Human Mission to Mars: Analyzing A Conceptual Launch and Assembly Campaign

    Science.gov (United States)

    Cates, Grant; Stromgren, Chel; Arney, Dale; Cirillo, William; Goodliff, Kandyce

    2014-01-01

    In July of 2013, U.S. Congressman Kennedy (D-Mass.) successfully offered an amendment to H.R. 2687, the National Aeronautics and Space Administration Authorization Act of 2013. "International Participation—The President should invite the United States partners in the International Space Station program and other nations, as appropriate, to participate in an international initiative under the leadership of the United States to achieve the goal of successfully conducting a crewed mission to the surface of Mars." This paper presents a concept for an international campaign to launch and assemble a crewed Mars Transfer Vehicle. NASA’s “Human Exploration of Mars: Design Reference Architecture 5.0” (DRA 5.0) was used as the point of departure for this concept. DRA 5.0 assumed that the launch and assembly campaign would be conducted using NASA launch vehicles. The concept presented utilizes a mixed fleet of NASA Space Launch System (SLS), U.S. commercial and international launch vehicles to accomplish the launch and assembly campaign. This concept has the benefit of potentially reducing the campaign duration. However, the additional complexity of the campaign must also be considered. The reliability of the launch and assembly campaign utilizing SLS launches augmented with commercial and international launch vehicles is analyzed and compared using discrete event simulation.

  6. Emirates Mars Mission (EMM) Overview

    Science.gov (United States)

    Sharaf, Omran; Amiri, Sarah; AlMheiri, Suhail; Alrais, Adnan; Wali, Mohammad; AlShamsi, Zakareyya; AlQasim, Ibrahim; AlHarmoodi, Khuloud; AlTeneiji, Nour; Almatroushi, Hessa; AlShamsi, Maryam; AlAwadhi, Mohsen; McGrath, Michael; Withnell, Pete; Ferrington, Nicolas; Reed, Heather; Landin, Brett; Ryan, Sean; Pramann, Brian

    2017-04-01

    United Arab Emirates (UAE) has entered the space exploration race with the announcement of Emirates Mars Mission (EMM), the first Arab Islamic mission to another planet, in 2014. Through this mission, UAE is to send an unmanned probe, called Hope probe, to be launched in summer 2020 and reach Mars by 2021 to coincide with UAE's 50th anniversary. Through a sequence of subsequent maneuvers, the spacecraft will enter a large science orbit that has a periapsis altitude of 20,000 km, an apoapsis altitude of 43,000 km, and an inclination of 25 degrees. The mission is designed to (1) characterize the state of the Martian lower atmosphere on global scales and its geographic, diurnal and seasonal variability, (2) correlate rates of thermal and photochemical atmospheric escape with conditions in the collisional Martian atmosphere, and (3) characterize the spatial structure and variability of key constituents in the Martian exosphere. These objectives will be met by four investigations with diurnal variability on sub-seasonal timescales which are (1) determining the three-dimensional thermal state of the lower atmosphere, (2) determining the geographic and diurnal distribution of key constituents in the lower atmosphere, (3) determining the abundance and spatial variability of key neutral species in the thermosphere, and (4) determining the three-dimensional structure and variability of key species in the exosphere. EMM will collect these information about the Mars atmospheric circulation and connections through a combination of three distinct instruments that image Mars in the visible, thermal infrared and ultraviolet wavelengths and they are the Emirates eXploration Imager (EXI), the Emirates Mars InfraRed Spectrometer (EMIRS), and the EMM Mars Ultraviolet Spectrometer (EMUS). EMM has passed its Mission Concept Review (MCR), System Requirements Review (SRR), System Design Review (SDR), and Preliminary Design Review (PDR) phases. The mission is led by Emiratis from Mohammed

  7. Nuclear Thermal Propulsion (NTP): A Proven, Growth Technology for Fast Transit Human Missions to Mars

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2014-01-01

    The "fast conjunction" long surface stay mission option was selected for NASA's recent Mars Design Reference Architecture (DRA) 5.0 study because it provided adequate time at Mars (approx. 540 days) for the crew to explore the planet's geological diversity while also reducing the "1-way" transit times to and from Mars to approx. 6 months. Short transit times are desirable in order to reduce the debilitating physiological effects on the human body that can result from prolonged exposure to the zero-gravity (0-gE) and radiation environments of space. Recent measurements from the RAD detector attached to the Curiosity rover indicate that astronauts would receive a radiation dose of approx. 0.66 Sv (approx. 66 rem)-the limiting value established by NASA-during their 1-year journey in deep space. Proven nuclear thermal rocket (NTR) technology, with its high thrust and high specific impulse (Isp approx. 900 s), can cut 1-way transit times by as much as 50 percent by increasing the propellant capacity of the Mars transfer vehicle (MTV). No large technology scale-ups in engine size are required for these short transit missions either since the smallest engine tested during the Rover program-the 25 klbf "Pewee" engine is sufficient when used in a clustered arrangement of three to four engines. The "Copernicus" crewed MTV developed for DRA 5.0 is a 0-gE design consisting of three basic components: (1) the NTP stage (NTPS); (2) the crewed payload element; and (3) an integrated "saddle truss" and LH2 propellant drop tank assembly that connects the two elements. With a propellant capacity of approx. 190 t, Copernicus can support 1-way transit times ranging from approx. 150 to 220 days over the 15-year synodic cycle. The paper examines the impact on vehicle design of decreasing transit times for the 2033 mission opportunity. With a fourth "upgraded" SLS/HLV launch, an "in-line" LH2 tank element can be added to Copernicus allowing 1-way transit times of 130 days. To achieve 100

  8. Nuclear Thermal Rocket/Stage Technology Options for NASA's Future Human Exploration Missions to the Moon and Mars

    Science.gov (United States)

    Borowski, Stanley K.; Corban, Robert R.; McGuire, Melissa L.; Beke, Erik G.

    1994-07-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners and designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (Isp ~ 850-1000 seconds) and engine thrust-to-weight ratio (~ 3-10), the NTR can also be configured as a ``dual mode'' system capable of generating stage electrical power. At present, NASA is examining a variety of mission applications for the NTR ranging from an expendable, ``single burn'' trans-lunar injection (TLI) stage for NASA's ``First Lunar Outpost'' (FLO) mission to all propulsive, ``multi-burn,'' spacecraft supporting a ``split cargo/piloted sprint'' Mars mission architecture. Two ``proven'' solid core NTR concepts are examined -one based on NERVA (Nuclear Engine for Rocket Vehicle Application)-derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide ``twisted ribbon'' fuel form developed by the Commonwealth of Independent States (CIS). Integrated systems and mission study results are used in designing ``aerobraked'' and ``all propulsive'' Mars vehicle concepts which are mass-, and volume-compatible with both a reference 240 metric tonne (t) heavy lift launch vehicle (HLLV) and a smaller 120 t HLLV option. For the ``aerobraked'' scenario, the 2010 piloted mission determines the size of the expendable trans-Mars injection (TMI) stage which is a growth version of the FLO TLI stage. An ``all-propulsive'' Moon/Mars mission architecture is also described which uses common ``modular'' engine and stage hardware consisting of: (1) clustered 15 thousand pounds force (klbf) NDR or CIS engines; (2) two ``standardized'' liquid hydrogen (LH2) tank sizes; and (3) ``dual mode'' NTR and refrigeration system technologies for long duration missions. The ``modular'' NTR approach can form the basis for a ``faster, safer, and cheaper'' space transportation system for tomorrow's piloted missions to the Moon and Mars.

  9. A Low-Cost, Low-Risk Mission Concept for the Return of Martian Atmospheric Dust: Relevance to Human Exploration of Mars

    Science.gov (United States)

    Wadhwa, M.; Leshin, L.; Clark, B.; Jones, S.; Jurewicz, A.; McLennan, S.; Mischna, M.; Ruff, S.; Squyres, S.; Westphal, A.

    2017-06-01

    We present a low-cost, low-risk mission concept for return of martian atmospheric dust. Such a mission would serve as a scientific, technological and operational pathfinder for future surface sample return and human exploration to Mars.

  10. Ongoing Mars Missions: Extended Mission Plans

    Science.gov (United States)

    Zurek, Richard; Diniega, Serina; Crisp, Joy; Fraeman, Abigail; Golombek, Matt; Jakosky, Bruce; Plaut, Jeff; Senske, David A.; Tamppari, Leslie; Thompson, Thomas W.; Vasavada, Ashwin R.

    2016-10-01

    Many key scientific discoveries in planetary science have been made during extended missions. This is certainly true for the Mars missions both in orbit and on the planet's surface. Every two years, ongoing NASA planetary missions propose investigations for the next two years. This year, as part of the 2016 Planetary Sciences Division (PSD) Mission Senior Review, the Mars Odyssey (ODY) orbiter project submitted a proposal for its 7th extended mission, the Mars Exploration Rover (MER-B) Opportunity submitted for its 10th, the Mars Reconnaissance Orbiter (MRO) for its 4th, and the Mars Science Laboratory (MSL) Curiosity rover and the Mars Atmosphere and Volatile Evolution (MVN) orbiter for their 2nd extended missions, respectively. Continued US participation in the ongoing Mars Express Mission (MEX) was also proposed. These missions arrived at Mars in 2001, 2004, 2006, 2012, 2014, and 2003, respectively. Highlights of proposed activities include systematic observations of the surface and atmosphere in twilight (early morning and late evening), building on a 13-year record of global mapping (ODY); exploration of a crater rim gully and interior of Endeavour Crater, while continuing to test what can and cannot be seen from orbit (MER-B); refocused observations of ancient aqueous deposits and polar cap interiors, while adding a 6th Mars year of change detection in the atmosphere and the surface (MRO); exploration and sampling by a rover of mineralogically diverse strata of Mt. Sharp and of atmospheric methane in Gale Crater (MSL); and further characterization of atmospheric escape under different solar conditions (MVN). As proposed, these activities follow up on previous discoveries (e.g., recurring slope lineae, habitable environments), while expanding spatial and temporal coverage to guide new detailed observations. An independent review panel evaluated these proposals, met with project representatives in May, and made recommendations to NASA in June 2016. In this

  11. A High Power Solar Electric Propulsion - Chemical Mission for Human Exploration of Mars

    Science.gov (United States)

    Burke, Laura M.; Martini, Michael C.; Oleson, Steven R.

    2014-01-01

    Recently Solar Electric Propulsion (SEP) as a main propulsion system has been investigated as an option to support manned space missions to near-Earth destinations for the NASA Gateway spacecraft. High efficiency SEP systems are able to reduce the amount of propellant long duration chemical missions require, ultimately reducing the required mass delivered to Low Earth Orbit (LEO) by a launch vehicle. However, for long duration interplanetary Mars missions, using SEP as the sole propulsion source alone may not be feasible due to the long trip times to reach and insert into the destination orbit. By combining an SEP propulsion system with a chemical propulsion system the mission is able to utilize the high-efficiency SEP for sustained vehicle acceleration and deceleration in heliocentric space and the chemical system for orbit insertion maneuvers and trans-earth injection, eliminating the need for long duration spirals. By capturing chemically instead of with low-thrust SEP, Mars stay time increases by nearly 200 days. Additionally, the size the of chemical propulsion system can be significantly reduced from that of a standard Mars mission because the SEP system greatly decreases the Mars arrival and departure hyperbolic excess velocities (V(sub infinity)).

  12. Next stop Mars the why, how, and when of human missions

    CERN Document Server

    Genta, Giancarlo

    2017-01-01

    This book covers the possible manned mission to Mars first discussed in the 1950s and still a topic of much debate, addressing historic and future plans to visit the Red Planet. Considering the environmental dangers and the engineering and design needed for a successful trip, it covers every aspect of a possible mission and outpost. The chapters explain the motivations behind the plan to go to Mars, as well as the physical factors that astronauts on manned missions will face on Mars and in transit. The author provides a comprehensive exposure to the infrastructure needs on Mars itself, covering an array of facilities including power sources, as well as addressing earth-based communication networks that will be necessary. Mechanisms for return to Earth are also addressed. As the reality of a manned Mars voyage becomes more concrete, the details are still largely up in the air. This book presents an overview of proposed approaches past, present, and future, both from NASA and, increasingly, from other space age...

  13. MNSM - A Future Mars Network Science Mission

    Science.gov (United States)

    Chicarro, A. F.

    2012-04-01

    partners have expressed an interest to participate (e.g., Japan, Russia, China). Also, NASA' s 2016 GEMS one-station mission could be a very valuable precursor for MNSM, if selected as NASA' s next Discovery mission. The proposed Mars Network Science Mission would focus on the early Mars, providing essential constraints on geophysical, geochemical, and geological models of Mars' evolution and a better understanding of SNC meteorites and future returned Martian samples. Measurements on the seismology, geodesy, magnetic field and surface heat flow would reveal the internal structure, activity and composition of Mars, its thermal structure and its magnetic evolution. Meteorological surface measurements would allow monitoring the atmospheric dynamics at the boundary layer (coupled with orbital measurements) to infer the climate patterns. Such mission can also provide important insights into the astrobiological conditions of Mars, in particular its magnetic field, heat flow and climate evolution. The Mars Network Science Mission represents a unique tool to perform new investigations of Mars, which could not be addressed by any other means. It would fill a longstanding gap in the scientific exploration of the Solar System by performing in-situ investigations of the interior of an Earth-like planet other than our own and provide unique and critical information about the fundamental processes of terrestrial planetary formation and evolution. The long-term goal of Mars robotic exploration in Europe remains the return of rock and soil samples from the Martian surface before eventually Humans explore Mars, but the Mars Network would provide the context in which returned samples should be interpreted.

  14. Ice Caves in Hebrus Valles: A Target Location for the First Human Mission to Mars

    Science.gov (United States)

    Schulze-Makuch, D.; Davila, A.; Fairen, A. G.; Rodriguez, A. P.; Rask, J.; Zavaleta, J.

    2016-09-01

    Caves at Hebrus Valles are an ideal exploration target on Mars as they provide shelter, water ice, more benign temperatures, and are interesting sites for astrobiology, ensuring critical resources for the establishment of a long-term human base.

  15. Cooperation and dialogical modeling for designing a safe Human space exploration mission to Mars

    Science.gov (United States)

    Grès, Stéphane; Tognini, Michel; Le Cardinal, Gilles; Zalila, Zyed; Gueydan, Guillaume

    2014-11-01

    This paper proposes an approach for a complex and innovative project requiring international contributions from different communities of knowledge and expertise. Designing a safe and reliable architecture for a manned mission to Mars or the Asteroids necessitates strong cooperation during the early stages of design to prevent and reduce risks for the astronauts at each step of the mission. The stake during design is to deal with the contradictions, antagonisms and paradoxes of the involved partners for the definition and modeling of a shared project of reference. As we see in our research which analyses the cognitive and social aspects of technological risks in major accidents, in such a project, the complexity of the global organization (during design and use) and the integration of a wide and varie d range of sciences and innovative technologies is likely to increase systemic risks as follows: human and cultural mistakes, potential defaults, failures and accidents. We identify as the main danger antiquated centralized models of organization and the operational limits of interdisciplinarity in the sciences. Beyond this, we can see that we need to take carefully into account human cooperation and the quality of relations between heterogeneous partners. Designing an open, self-learning and reliable exploration system able to self-adapt in dangerous and unforeseen situations implies a collective networked intelligence led by a safe process that organizes interaction between the actors and the aims of the project. Our work, supported by the CNES (French Space Agency), proposes an innovative approach to the coordination of a complex project.

  16. The Threat of Uncertainty: Why Using Traditional Approaches for Evaluating Spacecraft Reliability are Insufficient for Future Human Mars Missions

    Science.gov (United States)

    Stromgren, Chel; Goodliff, Kandyce; Cirillo, William; Owens, Andrew

    2016-01-01

    Through the Evolvable Mars Campaign (EMC) study, the National Aeronautics and Space Administration (NASA) continues to evaluate potential approaches for sending humans beyond low Earth orbit (LEO). A key aspect of these missions is the strategy that is employed to maintain and repair the spacecraft systems, ensuring that they continue to function and support the crew. Long duration missions beyond LEO present unique and severe maintainability challenges due to a variety of factors, including: limited to no opportunities for resupply, the distance from Earth, mass and volume constraints of spacecraft, high sensitivity of transportation element designs to variation in mass, the lack of abort opportunities to Earth, limited hardware heritage information, and the operation of human-rated systems in a radiation environment with little to no experience. The current approach to maintainability, as implemented on ISS, which includes a large number of spares pre-positioned on ISS, a larger supply sitting on Earth waiting to be flown to ISS, and an on demand delivery of logistics from Earth, is not feasible for future deep space human missions. For missions beyond LEO, significant modifications to the maintainability approach will be required.Through the EMC evaluations, several key findings related to the reliability and safety of the Mars spacecraft have been made. The nature of random and induced failures presents significant issues for deep space missions. Because spare parts cannot be flown as needed for Mars missions, all required spares must be flown with the mission or pre-positioned. These spares must cover all anticipated failure modes and provide a level of overall reliability and safety that is satisfactory for human missions. This will require a large amount of mass and volume be dedicated to storage and transport of spares for the mission. Further, there is, and will continue to be, a significant amount of uncertainty regarding failure rates for spacecraft

  17. How safe is safe enough? Radiation risk for a human mission to Mars.

    Directory of Open Access Journals (Sweden)

    Francis A Cucinotta

    Full Text Available Astronauts on a mission to Mars would be exposed for up to 3 years to galactic cosmic rays (GCR--made up of high-energy protons and high charge (Z and energy (E (HZE nuclei. GCR exposure rate increases about three times as spacecraft venture out of Earth orbit into deep space where protection of the Earth's magnetosphere and solid body are lost. NASA's radiation standard limits astronaut exposures to a 3% risk of exposure induced death (REID at the upper 95% confidence interval (CI of the risk estimate. Fatal cancer risk has been considered the dominant risk for GCR, however recent epidemiological analysis of radiation risks for circulatory diseases allow for predictions of REID for circulatory diseases to be included with cancer risk predictions for space missions. Using NASA's models of risks and uncertainties, we predicted that central estimates for radiation induced mortality and morbidity could exceed 5% and 10% with upper 95% CI near 10% and 20%, respectively for a Mars mission. Additional risks to the central nervous system (CNS and qualitative differences in the biological effects of GCR compared to terrestrial radiation may significantly increase these estimates, and will require new knowledge to evaluate.

  18. Human Factor Studies on a Mars Analogue During Crew 100b International Lunar Exploration Working Group EuroMoonMars Crew: Proposed New Approaches for Future Human Space and Interplanetary Missions.

    Science.gov (United States)

    Rai, Balwant; Kaur, Jasdeep

    2012-11-01

    Knowing the risks, costs, and complexities associated with human missions to Mars, analogue research can be a great (low-risk) tool for exploring the challenges associated with the preparation for living, operating, and undertaking research in interplanetary missions. Short-duration analogue studies, such as those being accomplished at the Mars Desert Research Station (MDRS), offer the chance to study mission operations and human factors in a simulated environment, and therefore contribute to exploration of the Moon and Mars in planned future missions. This article is based upon previously published articles, abstracts, and presentations by a series of independent authors, human factor studies performed on mars analogue station by Crew 100B. The MDRS Crew 100B performed studies over 15 days providing a unique insight into human factor issues in simulated short-duration Mars mission. In this study, 15 human factors were evaluated and analyzed by subjective and objective means, and from the summary of results it was concluded that optimum health of an individual and the crew as a whole is a necessity in order to encourage and maintain high performance and the satisfaction of project goals.

  19. A Water Rich Mars Surface Mission Scenario

    Science.gov (United States)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial Polar Regions are reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable

  20. Payload mass improvements of supersonic retropropulsive flight for human class missions to Mars

    Science.gov (United States)

    Fagin, Maxwell H.

    Supersonic retropropulsion (SRP) is the use of retrorockets to decelerate during atmospheric flight while the vehicle is still traveling in the supersonic/hypersonic flight regime. In the context of Mars exploration, subsonic retropropulsion has a robust flight heritage for terminal landing guidance and control, but all supersonic deceleration has, to date, been performed by non-propulsive (i.e. purely aerodynamic) methods, such as aeroshells and parachutes. Extending the use of retropropulsion from the subsonic to the supersonic regime has been identified as an enabling technology for high mass humans-to-Mars architectures. However, supersonic retropropulsion still poses significant design and control challenges, stemming mainly from the complex interactions between the hypersonic engine plumes, the oncoming air flow, and the vehicle's exterior surface. These interactions lead to flow fields that are difficult to model and produce counter intuitive behaviors that are not present in purely propulsive or purely aerodynamic flight. This study will provide an overview of the work done in the design of SRP systems. Optimal throttle laws for certain trajectories will be derived that leverage aero/propulsive effects to decrease propellant requirements and increase total useful landing mass. A study of the mass savings will be made for a 10 mT reference vehicle based on a propulsive version of the Orion capsule, followed by the 100 mT ellipsoid vehicle assumed by NASA's Mars Design Reference Architecture.

  1. Vehicle and Mission Design Options for the Human Exploration of Mars/Phobos Using "Bimodal" NTR and LANTR Propulsion

    Science.gov (United States)

    Borowski, Stanley K.; Dudzinski, Leonard A.; McGuire, Melissa L.

    2002-12-01

    The nuclear thermal rocket (NTR) is one of the leading propulsion options for future human missions to Mars because of its high specific impulse (1sp is approximately 850-1000 s) capability and its attractive engine thrust-to-weight ratio (approximately 3-10). To stay within the available mass and payload volume limits of a "Magnum" heavy lift vehicle, a high performance propulsion system is required for trans-Mars injection (TMI). An expendable TMI stage, powered by three 15 thousand pounds force (klbf) NTR engines is currently under consideration by NASA for its Design Reference Mission (DRM). However, because of the miniscule burnup of enriched uranium-235 during the Earth departure phase (approximately 10 grams out of 33 kilograms in each NTR core), disposal of the TMI stage and its engines after a single use is a costly and inefficient use of this high performance stage. By reconfiguring the engines for both propulsive thrust and modest power generation (referred to as "bimodal" operation), a robust, multiple burn, "power-rich" stage with propulsive Mars capture and reuse capability is possible. A family of modular bimodal NTR (BNTR) vehicles are described which utilize a common "core" stage powered by three 15 klbf BNTRs that produce 50 kWe of total electrical power for crew life support, an active refrigeration / reliquification system for long term, zero-boiloff liquid hydrogen (LH2) storage, and high data rate communications. An innovative, spine-like "saddle truss" design connects the core stage and payload element and is open underneath to allow supplemental "in-line" propellant tanks and contingency crew consumables to be easily jettisoned to improve vehicle performance. A "modified" DRM using BNTR transfer vehicles requires fewer transportation system elements, reduces IMLEO and mission risk, and simplifies space operations. By taking the next logical step--use of the BNTR for propulsive capture of all payload elements into Mars orbit--the power

  2. Overview of the Mars Reconnaissance Orbiter mission

    Science.gov (United States)

    Mateer, B.; Graf, J.; Zurek, R.; Jones, R.; Eisen, H.; Johnston, M.; Jai, D. B.

    2002-01-01

    The Mars Reconnaissance Orbiter will deliver to Mars orbit a payload to conduct remote sensing science observations, characterize sites for future landers, and provide critical telecom/navigation relay capability for follow-on missions.

  3. In-situ resource utilization for the human exploration of Mars : a Bayesian approach to valuation of precursor missions

    Science.gov (United States)

    Smith, Jeffrey H.

    2006-01-01

    The need for sufficient quantities of oxygen, water, and fuel resources to support a crew on the surface of Mars presents a critical logistical issue of whether to transport such resources from Earth or manufacture them on Mars. An approach based on the classical Wildcat Drilling Problem of Bayesian decision theory was applied to the problem of finding water in order to compute the expected value of precursor mission sample information. An implicit (required) probability of finding water on Mars was derived from the value of sample information using the expected mass savings of alternative precursor missions.

  4. Mission Mars India's quest for the red planet

    CERN Document Server

    Lele, Ajey

    2014-01-01

    The objective of the book is to find an answer to the rationale behind the human quest for the Mars exploration. As a comprehensive assessment for this query is undertaken, it is realized that the basic question ‘Why Mars?’ seeks various responses from technological, economic and geopolitical to strategic perspectives. The book is essentially targeted to understand India’s desire to reach Mars. In the process, it also undertakes some implicit questioning of Mars programmes of various other states essentially to facilitate the setting up of the context for an assessment.   The book is divided into two parts: Part I: This covers both science and politics associated with Mars missions in global scenario and discusses the salient features of various Mars Missions undertaken by various countries. Part II: This provides details in regards to India’s Mars Mission.

  5. Mars Hybrid Propulsion System Trajectory Analysis. Part II; Cargo Missions

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASA's Human Spaceflight Architecture Team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single spaceship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper shows the feasibility of the hybrid transportation architecture to pre-deploy cargo to Mars and Phobos in support of the Evolvable Mars Campaign crew missions. The analysis shows that the hybrid propulsion stage is able to deliver all of the current manifested payload to Phobos and Mars through the first three crew missions. The conjunction class trajectory also allows the hybrid propulsion stage to return to Earth in a timely fashion so it can be reused for additional cargo deployment. The 1,100 days total trip time allows the hybrid propulsion stage to deliver cargo to Mars every other Earth-Mars transit opportunity. For the first two Mars surface mission in the Evolvable Mars Campaign, the short trip time allows the hybrid propulsion stage to be reused for three round-trip journeys to Mars, which matches the hybrid propulsion stage's designed lifetime for three round-trip crew missions to the Martian sphere of influence.

  6. Optimal parking orbits for manned Mars missions

    Science.gov (United States)

    Cupples, Michael L.; Nordwall, Jill A.

    This paper summarizes a Mars parking orbit optimization effort. This parking orbit study includes the selection of optimal elliptic Mars parking orbits that meet mission constraints and that include pertinent apsidal misalignment losses. Mars missions examined are for the opportunity years of 2014, 2016, and 2018. For these mission opportunities, it is shown that the optimal parking orbits depend on the year that the mission occurs and are coupled with the outbound, Mars stay, and return phases of the mission. Constraints included in the parking orbit optimization process are periapsis lighting angle (related to a daylight landing requirement), periapsis latitude (related to a landing latitude range requirement) and the vehicle Trans-Earth-Injection stage mass. Also, effects of mission abort requirements on optimal parking orbits are investigated. Off-periapsis maneuvers for Mars orbit capture were found to be cost effective in reducing the mission delta-V for the 2016 abort from Mars capture scenario. The total capture and departure delta-V was `split' between the capture maneuver and the departure maneuver to reduce the 2016 Mars departure delta-V to below the level of the corresponding stage of the 2014 baseline mission. Landing results are provided that show Mars landing site access from the optimal elliptic parking orbits for Mars excursion vehicles with low (0.2) and high (1.3 and 1.6) lift to drag ratio.

  7. A Subjective Assessment of Alternative Mission Architecture Operations Concepts for the Human Exploration of Mars at NASA Using a Three-Dimensional Multi-Criteria Decision Making Model

    Science.gov (United States)

    Tavana, Madjid

    2003-01-01

    The primary driver for developing missions to send humans to other planets is to generate significant scientific return. NASA plans human planetary explorations with an acceptable level of risk consistent with other manned operations. Space exploration risks can not be completely eliminated. Therefore, an acceptable level of cost, technical, safety, schedule, and political risks and benefits must be established for exploratory missions. This study uses a three-dimensional multi-criteria decision making model to identify the risks and benefits associated with three alternative mission architecture operations concepts for the human exploration of Mars identified by the Mission Operations Directorate at Johnson Space Center. The three alternatives considered in this study include split, combo lander, and dual scenarios. The model considers the seven phases of the mission including: 1) Earth Vicinity/Departure; 2) Mars Transfer; 3) Mars Arrival; 4) Planetary Surface; 5) Mars Vicinity/Departure; 6) Earth Transfer; and 7) Earth Arrival. Analytic Hierarchy Process (AHP) and subjective probability estimation are used to captures the experts belief concerning the risks and benefits of the three alternative scenarios through a series of sequential, rational, and analytical processes.

  8. Mars rapid round trip mission design

    Science.gov (United States)

    Sarzi Amade', Nicola

    The present research is divided in two parts. The first part is a well defined mathematical problem, with exact rules and results, in which the basic constraints for interplanetary round trip travels are used to calculate an interplanetary train schedule (ITS) of missions to Mars, in the general case of orbits with non-zero eccentricity and non-zero inclination. Several possible options for round trip travels to Mars are considered. In particular, options at high energy, which allow rapid round trip missions, are discussed. These options have important applications for human travels to Mars. The second part of the research is about systems engineering aspects, which are intrinsically less exact, since they can change with time due, for example, to technology development or economic and political factors. For the case of a selected human rapid round trip mission to Mars, the development of a mission architecture, an assessment of the masses involved in the mission (such as the initial masses required in LEO), an estimate of the necessary number of launches, and a preliminary analysis of the radiation protection requirements, are performed. The main problem that justifies the existence of basic constraints for round trip missions is that by increasing the DeltaV of a mission, in general the total round trip time does not vary much, because a higher DeltaV can only reduce the transfer time and it simply increases the stay-time on the target planet. However, if the DeltaV is increased beyond a well-defined level, the total round trip time has a sudden drop in duration that makes fast round trips possible. This is due to the fact that the traveler can go back before the home planet makes one extra revolution around the Sun. For a sufficiently high DeltaV, a round trip to Mars can change in duration from 2.7 years to about 5 months. For Mars missions, the round trip times are calculated for different DeltaV's and for different transfer trajectories (T1, T2, etc.). An

  9. An Advanced In-Situ Resource Utilization (ISRU) Production Plant Design for Robotic and Human Mars Missions

    Science.gov (United States)

    Simon, T.; Baird, R. S.; Trevathan, J.; Clark, L.

    2002-01-01

    The ability to produce the necessary consumables, rather than relying solely on what is brought from Earth decreases the launch mass, cost, and risk associated with a Mars mission while providing capabilities that enable the commercial development of space. The idea of using natural resources, or "living off the land", is termed In-Situ Resource Utilization (ISRU). Trade studies have shown that producing and utilizing consumables such as water, breathing oxygen, and propellant can reduce the launch mass for a human or robotic mission to Mars by 20-45%. The Johnson Space Center and Lockheed Martin Astronautics are currently designing and planning assembly of a complete collection-to-storage production plant design for producing methane (fuel), oxygen, and water from carbon dioxide (Martian atmosphere) and hydrogen (electrolyzed Martian water or Earth-originated), based on lessons learned and design enhancements from a 1st generation testbed. The design and testing of the major subsystems incorporated in the 2nd generation system, including a carbon dioxide freezer, Sabatier reactor, water electrolysis unit, and vacuum-jacketed, cryogenic, common-bulkhead storage tank, will be presented in detail with the goal of increasing the awareness of the readiness level of these technologies. These technologies are mass and power efficient as well as fundamentally simple and reliable. These technologies also have potential uses in Environmental Control and Life Support System (ECLSS) applications for removing and recycling crew-exhaled carbon dioxide. Each subsystem is sized for an ISRU-assisted sample return mission, producing in an 8-hour period 0.56 kg water and 0.26 kg methane from the Sabatier reactor and 0.50 kg oxygen from electrolyzed water. The testing of these technologies to date will be discussed as well as plans for integrating the subsystems for a complete end-to-end demonstration at Mars conditions. This paper will also address the history of these subsystem

  10. [Physiological problems of manned mission to Mars].

    Science.gov (United States)

    Grigor'ev, A I

    2007-05-01

    Harsh environment and extreme factors related to the supposed exploration missions to Mars are considered as well as concomitant human organism reactions. Further investigations are required to get insight into the effects of gravity ranging from microgravity to hypogravity to hypergravity the crew will be exposed to during this voyage. A special emphasis should be placed on the studies of artificial gravity as an alternative to the existing in-flight countermeasures. Other issues to be attended include transitory states of human organism as a response to changes in gravity, effects of ionizing radiation and synergy of the variety of flight factors, and mechanisms of the hypomagnetic effects.

  11. Use of Extraterrestrial Resources for Human Space Missions to Moon or Mars

    CERN Document Server

    Rapp, Donald

    2013-01-01

    This book carries out approximate estimates of the costs of implementing ISRU on the Moon and Mars. It is found that no ISRU process on the Moon has much merit. ISRU on Mars can save a great deal of mass, but there is a significant cost in prospecting for resources and validating ISRU concepts. Mars ISRU might have merit, but not enough data are available to be certain. In addition, this book provides a detailed review of various ISRU technologies. This includes three approaches for Mars ISRU based on processing only the atmosphere: solid oxide electrolysis, reverse water gas shift reaction (RWGS), and absorbing water vapor directly from the atmosphere. It is not clear that any of these technologies are viable although the RWGS seems to have the best chance. An approach for combining hydrogen with the atmospheric resource is chemically very viable, but hydrogen is needed on Mars. This can be approached by bringing hydrogen from Earth or obtaining water from near-surface water deposits in the soil. Bringing hy...

  12. Technology Development for Human Exploration Beyond LEO in the New Millennium IAA-13-3 Strategies and Plans for Human Mars Missions

    Science.gov (United States)

    Larson, William E.; Lueck, Dale E.; Parrish, Clyde F.; Sanders, Gerald B.; Trevathan, Joseph R.; Baird, R. Scott; Simon, Tom; Peters, T.; Delgado, H. (Technical Monitor)

    2001-01-01

    As we look forward into the new millennium, the extension of human presence beyond Low-Earth Orbit (LEO) looms large in the plans of NASA. The Agency's Strategic Plan specifically calls out the need to identify and develop technologies for 100 and 1000-day class missions beyond LEO. To meet the challenge of these extended duration missions, it is important that we learn how to utilize the indigenous resources available to us on extraterrestrial bodies. This concept, known as In-Situ Resource Utilization (ISRU) can greatly reduce the launch mass & cost of human missions while reducing the risk. These technologies may also pave the way for the commercial development of space. While no specific target beyond LEO is identified in NASA's Strategic Plan, mission architecture studies have been on-going for the Moon, Mars, Near-Earth Asteroids and Earth/Moon & Earth/Sun Libration Points. As a result of these studies, the NASA Office of Space Flight (Code M) through the Johnson and Kennedy Space Centers, is leading the effort to develop ISRU technologies and systems to meet the current and future needs of human missions beyond LEO and on to Mars. This effort also receives support from the NASA Office of Biological and Physical Research (Code U), the Office of Space Science (Code S), and the Office of Aerospace Technology (Code R). This paper will present unique developments in the area of fuel and oxidizer production, breathing air production, water production, C02 collection, separation of atmospheric gases, and gas liquefaction and storage. A technology overview will be provided for each topic along with the results achieved to date, future development plans, and the mission architectures that these technologies support.

  13. "Bimodal" Nuclear Thermal Rocket (BNTR) Propulsion for Future Human Mars Exploration Missions

    Science.gov (United States)

    Borowski, Stanley K.

    2004-01-01

    The Nuclear Thermal Rocket (NTR) Propulsion program is discussed. The Rover/NERVA program from 1959-1972 is compared with the current program. A key technology description, bimodal vehicle design for Mars Cargo and the crew transfer vehicle with inflatable module and artificial gravity capability, including diagrams are included. The LOX-Augmented NTR concept/operational features and characteristics are discussed.

  14. The Electrostatic Environments of the Moon and Mars: Implications for Human Missions

    Science.gov (United States)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James; Cox, Rachel E.

    2016-01-01

    Lacking a substantial atmosphere, the moon is exposed to the full spectrum of solar radiation as well as to cosmic rays. Electrostatically, the moon is a charged body in a plasma. A Debye sheet meters high on the dayside of the moon and kilometers high on the night side envelops the moon. This sheet isolates the lunar surface from high energy particles coming from the sun. The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.

  15. Phoenix - The First Mars Scout Mission

    Science.gov (United States)

    Goldstein, Barry; Shotwell, Robert

    2008-01-01

    As the first of the new Mars Scouts missions, the Phoenix project was selected by NASA in August of 2003. Four years later, almost to the day, Phoenix was launched from Cape Canaveral Air Station and successfully injected into an interplanetary trajectory on its way to Mars. On May 25, 2008 Phoenix conducted the first successful powered decent on Mars in over 30 years. This paper will highlight some of the key changes since the 2008 IEEE paper of the same name, as well as performance through cruise, landing at the north pole of Mars and some of the preliminary results of the surface mission.

  16. Mechanical design of the Mars Pathfinder mission

    Science.gov (United States)

    Eisen, Howard Jay; Buck, Carl W.; Gillis-Smith, Greg R.; Umland, Jeffrey W.

    1997-01-01

    The Mars Pathfinder mission and the Sojourner rover is reported on, with emphasis on the various mission steps and the performance of the technologies involved. The mechanical design of mission hardware was critical to the success of the entry sequence and the landing operations. The various mechanisms employed are considered.

  17. Mars MetNet Mission Payload Overview

    Science.gov (United States)

    Harri, A.-M.; Haukka, H.; Alexashkin, S.; Guerrero, H.; Schmidt, W.; Genzer, M.; Vazquez, L.

    2012-09-01

    A new kind of planetary exploration mission for Mars is being developed in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission [1] is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide crucial scientific data about the Martian atmospheric phenomena.

  18. MMPM - Mars MetNet Precursor Mission

    Science.gov (United States)

    Harri, A.-M.; Schmidt, W.; Pichkhadze, K.; Linkin, V.; Vazquez, L.; Uspensky, M.; Polkko, J.; Genzer, M.; Lipatov, A.; Guerrero, H.; Alexashkin, S.; Haukka, H.; Savijarvi, H.; Kauhanen, J.

    2008-09-01

    We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2009/2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Detailed characterization of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatology cycles, require simultaneous in-situ measurements by a network of observation posts on the Martian surface. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe technologies have been developed and the critical subsystems have been qualified to meet the Martian environmental and functional conditions. Prototyping of the payload instrumentation with final dimensions was carried out in 2003-2006.This huge development effort has been fulfilled in collaboration between the Finnish Meteorological Institute (FMI), the Russian Lavoschkin Association (LA) and the Russian Space Research Institute (IKI) since August 2001. Currently the INTA (Instituto Nacional de Técnica Aeroespacial) from Spain is also participating in the MetNet payload development. To understand the behavior and dynamics of the Martian atmosphere, a wealth of simultaneous in situ observations are needed on varying types of Martian orography, terrain and altitude spanning all latitudes and longitudes. This will be performed by the Mars MetNet Mission. In addition to the science aspects the

  19. NASA reschedules Mars mission for 2018

    Science.gov (United States)

    Gwynne, Peter

    2016-04-01

    NASA has announced that its next mission to Mars will be launched in May 2018 following the discovery of a leak in a key scientific instrument. The mission - Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) - was originally scheduled to launch last month and reach Mars later this year, but the new launch window means it will now not land on the red planet until November 2018.

  20. Medical System Concept of Operations for Mars Exploration Missions

    Science.gov (United States)

    Urbina, Michelle; Rubin, D.; Hailey, M.; Reyes, D.; Antonsen, Eric

    2017-01-01

    Future exploration missions will be the first time humanity travels beyond Low Earth Orbit (LEO) since the Apollo program, taking us to cis-lunar space, interplanetary space, and Mars. These long-duration missions will cover vast distances, severely constraining opportunities for emergency evacuation to Earth and cargo resupply opportunities. Communication delays and blackouts between the crew and Mission Control will eliminate reliable, real-time telemedicine consultations. As a result, compared to current LEO operations onboard the International Space Station, exploration mission medical care requires an integrated medical system that provides additional in-situ capabilities and a significant increase in crew autonomy. The Medical System Concept of Operations for Mars Exploration Missions illustrates how a future NASA Mars program could ensure appropriate medical care for the crew of this highly autonomous mission. This Concept of Operations document, when complete, will document all mission phases through a series of mission use case scenarios that illustrate required medical capabilities, enabling the NASA Human Research Program (HRP) Exploration Medical Capability (ExMC) Element to plan, design, and prototype an integrated medical system to support human exploration to Mars.

  1. Emirates Mars Mission Planetary Protection Plan

    Science.gov (United States)

    Awadhi, Mohsen Al

    2016-07-01

    The United Arab Emirates is planning to launch a spacecraft to Mars in 2020 as part of the Emirates Mars Mission (EMM). The EMM spacecraft, Amal, will arrive in early 2021 and enter orbit about Mars. Through a sequence of subsequent maneuvers, the spacecraft will enter a large science orbit and remain there throughout the primary mission. This paper describes the planetary protection plan for the EMM mission. The EMM science orbit, where Amal will conduct the majority of its operations, is very large compared to other Mars orbiters. The nominal orbit has a periapse altitude of 20,000 km, an apoapse altitude of 43,000 km, and an inclination of 25 degrees. From this vantage point, Amal will conduct a series of atmospheric investigations. Since Amal's orbit is very large, the planetary protection plan is to demonstrate a very low probability that the spacecraft will ever encounter Mars' surface or lower atmosphere during the mission. The EMM team has prepared methods to demonstrate that (1) the launch vehicle targets support a 0.01% probability of impacting Mars, or less, within 50 years; (2) the spacecraft has a 1% probability or less of impacting Mars during 20 years; and (3) the spacecraft has a 5% probability or less of impacting Mars during 50 years. The EMM mission design resembles the mission design of many previous missions, differing only in the specific parameters and final destination. The following sequence describes the mission: 1.The mission will launch in July, 2020. The launch includes a brief parking orbit and a direct injection to the interplanetary cruise. The launch targets are specified by the hyperbolic departure's energy C3, and the hyperbolic departure's direction in space, captured by the right ascension and declination of the launch asymptote, RLA and DLA, respectively. The targets of the launch vehicle are biased away from Mars such that there is a 0.01% probability or less that the launch vehicle arrives onto a trajectory that impacts Mars

  2. The Long, Bumpy Road to a Mars Aeronomy Mission (Invited)

    Science.gov (United States)

    Grebowsky, J. M.; Luhmann, J. G.; Bougher, S. W.; Jakosky, B. M.

    2013-12-01

    With the advent of the space age, early focus was put into characterizing the Earth's upper atmosphere with aeronomy missions. These missions were designed to study the upper atmosphere region of a planet where the ionosphere is produced with particular attention given to the composition, properties and motion of atmosphere constituents. In particular a very successful US series of Atmosphere Explorer aeronomy spacecraft (1963-1977) was implemented. This upper atmosphere region is the envelope that all energy from the sun must penetrate and is recognized as an inseparable part of a planet's entire atmosphere. Venus was the next planet to have its upper atmosphere/ionosphere deeply probed via the Pioneer Venus Orbiter (1978-1986) that carried a complement of instruments similar to some flown on the Atmosphere Explorers. The planet which humans have long set their imagination on, Mars, has yet to be subjected to the same detailed upper atmosphere perusal until now, with MAVEN. Not that attempts have been wanting. More than 30 spacecraft launches to Mars were attempted, but half were not successful and those that attained orbit came far short of attaining the same level of knowledge of the Martian upper atmosphere. Other countries had planned Mars aeronomy missions that didn't bear fruit - e.g. Mars-96 and Nozomi and the US did studies for two missions, Mars Aeronomy Orbiter and MUADEE, that never were implemented. This is about to change. NASA's Scout Program singled out two aeronomy missions in its final competition and the selected mission, MAVEN, will fly with the needed sophistication of instruments to finally probe and understand the top of Mars' atmosphere. Was this late selection of a NASA aeronomy mission to Mars a philosophy change in US priorities or was it an accident of planning and budget constraints? Was it driven by the developing knowledge that Mars really had an early atmosphere environment conducive to life and that an aeronomy mission is indeed

  3. A Water Rich Mars Surface Mission Scenario

    Science.gov (United States)

    Hoffman, Stephen; Andrews, Alida; Joosten, Kent; Watts, Kevin

    2017-01-01

    The surface of Mars once had abundant water flowing on its surface, but now there is a general perception that this surface is completely dry. Several lines of research have shown that there are sources of potentially large quantities of water at many locations on the surface, including regions considered as candidates for future human missions. Traditionally, system designs for these human missions are constrained to tightly recycle water and oxygen, and current resource utilization strategies involve ascent vehicle oxidizer production only. But the assumption of relatively abundant extant water may change this. Several scenarios were constructed to evaluate water requirements for human Mars expeditions to assess the impact to system design if locally produced water is available. Specifically, we have assessed water resources needed for 1) ascent vehicle oxidizer and fuel production, 2) open-loop water and oxygen life support requirements along with more robust usage scenarios, and 3) crew radiation protection augmentation. In this assessment, production techniques and the associated chemistry to transform Martian water and atmosphere into these useful commodities are identified, but production mass and power requirements are left to future analyses. The figure below illustrates the type of water need assessment performed and that will be discussed. There have been several sources of feedstock material discussed in recent literature that could be used to produce these quantities of water. This paper will focus on Mars surface features that resemble glacier-like forms on Earth. Several lines of evidence indicate that some of these features are in fact buried ice, likely remnants from an earlier ice age on Mars. This paper examines techniques and hardware systems used in the polar regions of Earth to access this buried ice and withdraw water from it. These techniques and systems will be described to illustrate options available. A technique known as a Rodriguez Well

  4. New trade tree for manned mars missions

    Science.gov (United States)

    Salotti, Jean-Marc

    2014-11-01

    Recent studies on human missions to Mars suggest revisiting the parameters that have the most important impact on the complexity, the initial mass in low Earth orbit, the risks and the development costs for the first journey to the red planet. In the last NASA reference mission, a trade tree is proposed. At first level, the parameter is the class of mission, e.g., conjunction (long surface stay) or opposition (short surface stay). This parameter is important but there is an agreement on the best option (conjunction). It is therefore not a relevant parameter of the decision tree. For the other levels, the parameters are as follows: Mars orbit insertion: aerocapture or propulsive. Exploitation of local resources: yes/no. Propulsion for interplanetary flight: chemical/nuclear thermal/electric. The relevance of these parameters is questionable. It is proposed to reexamine all parameters of the mission and to study their interdependency and the complexity and the costs of possible options. The first important parameter should be the size of the crew. It should be assigned to the top node of the tree, because its impact on the initial mass in low Earth orbit, costs and risks is probably higher than any other parameter. Another parameter is the strategy for Mars orbit insertion. It is suggested here that aerocapture is very important and that it brings acceptable constraints for the architecture of the mission. The third parameter should be the strategy for entry, descent and landing. The mass of the landing vehicle is very important, because it is tightly linked to the complexity of the entry, descent and landing phase. With a low mass, a capsule shape and a rigid heat shield can be chosen for this maneuver (lowest risk, highest technology readiness level). With a heavy vehicle, an inflatable heat shield might help but the qualification of the systems would be very difficult and the entry, descent and landing phase would be more complex. This parameter is clearly a

  5. Issues of exploration: human health and wellbeing during a mission to Mars

    Science.gov (United States)

    White, R. J.; Bassingthwaighte, J. B.; Charles, J. B.; Kushmerick, M. J.; Newman, D. J.

    2003-01-01

    Today, the tools are in our hands to enable us to travel away from our home planet and become citizens of the solar system. Even now, we are seriously beginning to develop the robust infrastructure that will make the 21st century the Century of Space Travel. But this bold step must be taken with due concern for the health, safety and wellbeing of future space explorers. Our long experience with space biomedical research convinces us that, if we are to deal effectively with the medical and biomedical issues of exploration, then dramatic and bold steps are also necessary in this field. We can no longer treat the human body as if it were composed of muscles, bones, heart and brain acting independently. Instead, we must lead the effort to develop a fully integrated view of the body, with all parts connected and fully interacting in a realistic way. This paper will present the status of current (2000) plans by the National Space Biomedical Research Institute to initiate research in this area of integrative physiology and medicine. Specifically, three example projects are discussed as potential stepping stones towards the ultimate goal of producing a digital human. These projects relate to developing a functional model of the human musculoskeletal system and the heart. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  6. [Interior] Configuration options, habitability and architectural aspects of the transfer habitat module (THM) and the surface habitat on Mars (SHM)/ESA's AURORA human mission to Mars (HMM) study

    Science.gov (United States)

    Imhof, Barbara

    2007-02-01

    This paper discusses the findings for [Interior] configuration options, habitability and architectural aspects of a first human spacecraft to Mars. In 2003 the space architecture office LIQUIFER was invited by the European Space Agency's (ESA) AURORA Program committee to consult the scientists and engineers from the European Space and Technology Center (ESTEC) and other European industrial communities with developing the first human mission to Mars, which will take place in 2030, regarding the architectural issues of crewed habitats. The task was to develop an interior configuration for a transfer vehicle (TV) to Mars, especially a transfer habitation module (THM) and a surface habitat module (SHM) on Mars. The total travel time Earth—Mars and back for a crew of six amounts to approximately 900 days. After a 200-day-flight three crewmembers will land on Mars in the Mars excursion vehicle (MEV) and will live and work in the SHM for 30 days. For 500 days before the 200-day journey back the spacecraft continues to circle the Martian orbit for further exploration. The entire mission program is based on our present knowledge of technology. The project was compiled during a constant feedback-design process and trans-disciplinary collaboration sessions in the ESA-ESTEC concurrent design facility. Long-term human space flight sets new spatial conditions and requirements to the design concept. The guidelines were developed from relevant numbers and facts of recognized standards, interviews with astronauts/cosmonauts and from analyses about habitability, sociology, psychology and configuration concepts of earlier space stations in combination with the topics of the individual's perception and relation of space. Result of this study is the development of a prototype concept for the THM and SHM with detailed information and complete plans of the interior configuration, including mass calculations. In addition the study contains a detailed explanation of the development of

  7. Aram Chaos: a Long Lived Subsurface Aqueous Environment with Strong Water Resources Potential for Human Missions on Mars

    Science.gov (United States)

    Sibille, L.; Mueller, R.; Niles, P. B.; Glotch, T.; Archer, P. D.; Bell, M. S.

    2015-01-01

    preliminary indications of their potential use in civil engineering activities that involve regolith moving and hauling, while further study is needed to assess traverse-ability challenges. The widespread distribution of sulfates is also of interest as a resource for the use of sulfur as a binding compound in regolith-based concrete for constructions. The terrain depressions caused by the rock fracturing events may challenge surface mobility but also suggest the possibility of using such natural features for additional shielding from space radiation and as emplacement of nuclear surface power reactors for the same reason. The high concentration of hematite (up to 16 percent) in some of the smoother recent terrains of the central part of Aram Chaos [2] is a favorable attribute for metal extraction ISRU to create iron-based feedstock for in-situ fabrication of replacement parts or their repairs. Preliminary data on Aram Chaos indicate that it offers a combination of many critical criteria for human missions to the surface of Mars: equatorial region at low Mars Orbiter Laser Altimeter (MOLA), evidence of hydrated minerals over large areas and at high concentrations tied to historic evidence of liquid water over long periods.

  8. LANTR-based Mars missions: Go to phobos for propellant?

    Science.gov (United States)

    Stancati, Michael L.; Jacobs, Mark K.; Rauwolf, Gerald A.

    1999-01-01

    Two of the high-leverage propulsion technologies that have been proposed for human Mars missions-the Nuclear Thermal Rocket (NTR) engine and In Situ Propellant Production (ISPP)-show even greater potential when combined. Many previous studies have demonstrated the efficacy of manufacturing return propellant in situ to reduce the delivered mass requirement for the Earth launch and outbound transportation elements for any round trip mission. For human Mars exploration, this advantage may well be enabling, given current launch vehicle capability projections and reasonable expectations for a constrained program budget. NASA has proposed that the same LOX-Augmented NTR (LANTR) engine concept designed for use on lunar stages could also be used for Mars vehicle configurations, and that the tanks could be filled with propellants from Phobos for the return trip. This approach preserves the strategy of using a few common design elements for both lunar and Mars missions, while also making a significant mass performance improvement for the Mars return stage. We characterize the likely impact on performance of ``steady-state'' Earth-Mars transportation, as compared to Mars-only ISPP alternatives, and offer a preview of potential cost savings (work still in progress) for steady-state operation with Phobos propellants.

  9. Design of a Mars rover and sample return mission

    Science.gov (United States)

    Bourke, Roger D.; Kwok, Johnny H.; Friedlander, Alan

    1990-01-01

    The design of a Mars Rover Sample Return (MRSR) mission that satisfies scientific and human exploration precursor needs is described. Elements included in the design include an imaging rover that finds and certifies safe landing sites and maps rover traverse routes, a rover that operates the surface with an associated lander for delivery, and a Mars communications orbiter that allows full-time contact with surface elements. A graph of MRSR candidate launch vehice performances is presented.

  10. The ExoMars 2016 Mission arriving at Mars

    Science.gov (United States)

    Svedhem, H.; Vago, J. L.

    2016-12-01

    The ExoMars 2016 mission was launched on a Proton rocket from Baikonur, Kazakhstan, on 14 March 2016 and is scheduled to arrive at Mars on 19 October 2016. ExoMars is a joint programme of the European Space Agency (ESA) and Roscosmos, Russia. It consists of the ExoMars 2016 mission with the Trace Gas Orbiter, TGO, and the Entry Descent and Landing Demonstrator, EDM, named Schiaparelli, and the ExoMars 2020 mission, which carries a lander and a rover. The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector to search for subsurface hydrogen (as proxy for water ice and hydrated minerals). The mass of the TGO is 3700 kg, including fuel. The EDM, with a mass of 600 kg, is mounted on top of the TGO as seen in its launch configuration. The EDM is carried to Mars by the TGO and is separated three days before arrival at Mars. In addition to demonstrating the landing capability two scientific investigations are included with the EDM. The AMELIA investigation aims at characterising the Martian atmosphere during the entry and descent using technical and engineering sensors of the EDM, and the DREAMS suite of sensors that will characterise the environment of the landing site for a few days after the landing. ESA provides the TGO spacecraft and the Schiaparelli Lander demonstrator, ESA member states provide two of the TGO instruments and Roscosmos provides the launcher and the other two TGO instruments. After the arrival of the ExoMars 2020 mission at the surface of Mars, the TGO will handle all communications between the Earth and the Rover. The communication between TGO and the rover/lander is done through a UHF communications system, a contribution from NASA. This presentation will cover a description of the 2016 mission, including the spacecraft

  11. Mars MetNet Precursor Mission Status

    Science.gov (United States)

    Harri, A.-M.; Aleksashkin, S.; Guerrero, H.; Schmidt, W.; Genzer, M.; Vazquez, L.; Haukka, H.

    2013-09-01

    We are developing a new kind of planetary exploration mission for Mars in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  12. Mars MetNet Mission Status

    Science.gov (United States)

    Harri, A.-M.; Aleksashkin, S.; Arruego, I.; Schmidt, W.; Genzer, M.; Vazquez, L.; Haukka, H.; Palin, M.; Nikkanen, T.

    2015-10-01

    New kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semihard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  13. Second generation Mars landed missions

    Science.gov (United States)

    Graf, J.; Rivellini, T.; Sabahi, D.; Thurman, S.; Eisen, H.

    2000-01-01

    This paper addresses some of the candidate missions being considered for the next generation projects, discusses the new approaches being developed to implement safe and accurate entry, descent and landing to the Martian surface, and describes the rover technology that enables the long distance and duration surface mission.

  14. Robust, affordable, semi-direct Mars mission

    Science.gov (United States)

    Salotti, Jean-Marc

    2016-10-01

    A new architecture is proposed for the first manned Mars mission, based on current NASA developments (SLS and Orion), chemical propulsion for interplanetary transit, aerocapture for all vehicles, a split strategy, and a long stay on the surface. Two important choices make this architecture affordable and appropriate for the first mission. The first is splitting the Earth return vehicle into two parts that are launched separately and dock in Mars orbit. This is necessary to make aerocapture feasible and efficient, which considerably reduces mass. The second is reducing the crew to 3 astronauts. This simplifies the mission and reduces the SLS payload mass under the 45-metric ton limit for a direct TMI (trans-Mars injection) burn without LEO assembly. Only 4 SLS launches are required. The first takes the Mars ascent vehicle and in situ resource utilization systems to the planet's surface. The second takes the first part of the Earth return vehicle, the habitat, into Mars orbit. Two years later, two further SLS launches take a dual-use habitat (outbound trip and surface), Orion, and an enhanced service module to LEO, and then into Mars orbit, followed by the landing of the habitat on the surface. Transit time is demonstrated to be easily reduced to less than 6 months, with relatively low impact on propellant mass and none at all on the architecture.

  15. Dosimetric investigations on Mars-96 mission.

    Science.gov (United States)

    Semkova, J; Dachev, T s; Matviichuk, Y u; Koleva, R; Tomov, B; Baynov, P; Petrov, V; Nguyen, V; Siegrist, M; Chene, J; d'Uston, C; Cotin, F

    1994-10-01

    The dosimetric experiments Dose-M and Liulin as part of the more complex French-German-Bulgarian-Russian experiments for the investigation of the radiation environment for Mars-96 mission are described. The experiments will be realized with dosemeter-radiometer instruments, measuring absorbed dose in semiconductor detectors and the particle flux. Two detectors will be mounted on board the Mars-96 orbiter. Another detector will be on the guiderope of the Mars-96 Aerostate station. The scientific aims of Dose-M and Liulin experiments are: Analysis of the absorbed dose and the flux on the path and around Mars behind different shielding. Study of the shielding characteristics of the Martian atmosphere from galactic and solar cosmic rays including solar proton events. Together with the French gamma-spectrometer and the German neutron detectors the investigation of the radiation environment on the surface of Mars and in the atmosphere up to 4000 m altitude will be conducted.

  16. Human factor observations of the Biosphere 2, 1991-1993, closed life support human experiment and its application to a long-term manned mission to Mars.

    Science.gov (United States)

    Alling, Abigail; Nelson, Mark; Silverstone, Sally; Van Thillo, Mark

    2002-01-01

    Human factors are a key component to the success of long-term space missions such as those necessitated by the human exploration of Mars and the development of bioregenerative and eventually self-sufficient life support systems for permanent space outposts. Observations by participants living inside the 1991-1993 Biosphere 2 closed system experiment provide the following insights. (1) Crew members should be involved in the design and construction of their life support systems to gain maximum knowledge about the systems. (2) Individuals living in closed life support systems should expect a process of physiological and psychological adaptation to their new environment. (3) Far from simply being a workplace, the participants in such extended missions will discover the importance of creating a cohesive and satisfying life style. (4) The crew will be dependent on the use of varied crops to create satisfying cuisine, a social life with sufficient outlets of expression such as art and music, and to have down-time from purely task-driven work. (5) The success of the Biosphere 2 first 2-year mission suggests that crews with high cultural diversity, high commitment to task, and work democracy principles for individual responsibility may increase the probability of both mission success and personal satisfaction. (6) Remaining challenges are many, including the need for far more comprehensive real-time modeling and information systems (a "cybersphere") operating to provide real-time data necessary for decision-making in a complex life support system. (7) And, the aim will be to create a noosphere, or sphere of intelligence, where the people and their living systems are in sustainable balance.

  17. Mars Hybrid Propulsion System Trajectory Analysis. Part I; Crew Missions

    Science.gov (United States)

    Chai, Patrick R.; Merrill, Raymond G.; Qu, Min

    2015-01-01

    NASAs Human spaceflight Architecture team is developing a reusable hybrid transportation architecture in which both chemical and electric propulsion systems are used to send crew and cargo to Mars destinations such as Phobos, Deimos, the surface of Mars, and other orbits around Mars. By combining chemical and electrical propulsion into a single space- ship and applying each where it is more effective, the hybrid architecture enables a series of Mars trajectories that are more fuel-efficient than an all chemical architecture without significant increases in flight times. This paper provides the analysis of the interplanetary segments of the three Evolvable Mars Campaign crew missions to Mars using the hybrid transportation architecture. The trajectory analysis provides departure and arrival dates and propellant needs for the three crew missions that are used by the campaign analysis team for campaign build-up and logistics aggregation analysis. Sensitivity analyses were performed to investigate the impact of mass growth, departure window, and propulsion system performance on the hybrid transportation architecture. The results and system analysis from this paper contribute to analyses of the other human spaceflight architecture team tasks and feed into the definition of the Evolvable Mars Campaign.

  18. Combining meteorites and missions to explore Mars.

    Science.gov (United States)

    McCoy, Timothy J; Corrigan, Catherine M; Herd, Christopher D K

    2011-11-29

    Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions have been linked. Although the meteorite source locations are unknown, impact ejection modeling and spectral mapping of Mars suggest derivation from small craters in terrains of Amazonian to Hesperian age. Whereas most martian meteorites are young ( 4.5 Ga and formation of enriched and depleted reservoirs. However, the history inferred from martian meteorites conflicts with results from recent Mars missions, calling into doubt whether the igneous histor y inferred from the meteorites is applicable to Mars as a whole. Allan Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbonates. Accompanying debate about the mechanism and temperature of origin of the carbonates came several features suggestive of past microbial life in the carbonates. Although highly disputed, the suggestion spurred interest in habitable extreme environments on Earth and throughout the Solar System. A flotilla of subsequent spacecraft has redefined Mars from a volcanic planet to a hydrologically active planet that may have harbored life. Understanding the history and habitability of Mars depends on understanding the coupling of the atmosphere, surface, and subsurface. Sample return that brings back direct evidence from these diverse reservoirs is essential.

  19. Midlatitude Ice-Rich Ground on Mars: An Important Target for Science and In Situ Resource Utilization on Human Missions

    Science.gov (United States)

    Stoker, Carol; Heldmann, Jennifer

    2015-01-01

    The region of ROI is characterized by proven presence of near surface ground ice and numerous periglacial features. Midlatitude ground ice on Mars is of significant scientific interest for understanding the history and evolution of ice stability on Mars, the impact that changes in insolation produced by variations in Mars’ orbital parameters has on the regions climate, and could provide human exploration with a reliable and plentiful in situ resource. For both science and exploration, assessing the astrobiological potential of the ice is important in terms of (1) understanding the potential for life on Mars and (2) evaluating the presence of possible biohazards in advance of human exploration. Heldmann et al. (2014) studied locations on Mars in the Amazonis Planitia region where near surface ground ice was exposed by new impact craters (Byrne et al. 2009). The study examined whether sites in this region were suitable for human exploration including reviewing the evidence for midlatitude ground ice, discussing the possible explanations for its occurrence, assessing its potential habitability for modern life, and evaluating the resource potential. They systematically analyzed remote-sensing data sets to identify a viable landing site. Five sites where ground ice was exposed were examined with HiRise imaging and were classified according to (1) presence of polygons as a proxy for subsurface ice, (2) presence and abundance of rough topographic obstacles (e.g., large cracks, cliffs, uneven topography), (3) rock density, (4) presence and abundance of large boulders, and (5) presence of craters. A suitable landing site was found having ground ice at only 0.15m depth, and no landing site hazards within a 25 km landing ellipse. This paper presents results of that study and examines the relevance of this ROI to the workshop goals.

  20. 5 in 1 Drill For Mars Sample Return Mission Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is investigating a Mars Sample Return Mission, consisting of at least three separate missions: 1) Mars Astrobiology Explorer-Cacher, MAX-C (sample acquisition...

  1. The ExoMars 2016 Mission

    Science.gov (United States)

    Svedhem, Håkan; Vago, Jorge; de Groot, Rolf; McCoy, Don

    2016-04-01

    ExoMars is a joint programme of the European Space Agency (ESA) and Roscosmos, Russia. It consists of the ExoMars 2016 mission with the Trace Gas Orbiter, TGO, and the Entry Descent and Landing Demonstrator, EDM, named Schiaparelli, and the ExoMars 2018 mission, which carries a lander and a rover. The TGO scientific payload consists of four instruments. These are: ACS and NOMAD, both infrared spectrometers for atmospheric measurements in solar occultation mode and in nadir mode, CASSIS, a multichannel camera with stereo imaging capability, and FREND, an epithermal neutron detector to search for subsurface hydrogen (as proxy for water ice and hydrated minerals). The mass of the TGO is 3700 kg, including fuel. The EDM, with a mass of 600 kg, is mounted on top of the TGO as seen in its launch configuration. The EDM is carried to Mars by the TGO and is separated three days before arrival at Mars. In addition to demonstrating the landing capability two scientific investigations are included with the EDM. The AMELIA investigation aims at characterising the Martian atmosphere during the entry and descent using technical and engineering sensors of the EDM, and the DREAMS suite of sensors that will characterise the environment of the landing site for a few days after the landing. ESA provides the TGO spacecraft and the Schiaparelli Lander demonstrator, ESA member states provide two of the TGO instruments and Roscosmos provides the launcher and the other two TGO instruments. After the arrival of the ExoMars 2018 mission at the surface of Mars, the TGO will handle all communications between the Earth and the Rover. The communication between TGO and the rover/lander is done through a UHF communications system, a contribution from NASA. The 2016 mission will be launched by a Russian Proton rocket from Baikonur in March 2016 (launch window 14-25 March) and will arrive at Mars on 19 October. This presentation will cover a description of the 2016 mission, including the spacecraft

  2. Thermal emission spectrometer experiment - Mars Observer mission

    Science.gov (United States)

    Christensen, Philip R.; Anderson, Donald L.; Chase, Stillman C.; Clark, Roger N.; Kieffer, Hugh H.; Malin, Michael C.; Pearl, John C.; Carpenter, James; Bandiera, Nuno; Brown, F. G.

    1992-01-01

    The paper describes the thermal emission spectrometer (TES) designed for the Mars Observer mission. The TES measurements of the surface and the atmosphere of Mars will be used to determine and map the composition of the surface rocks, minerals, and the condensates. Examples of information that will be obtained from TES data include mineral abundance maps, condensate properties and their distribution in time and space, aerosol properties and their distribution in time and space, the rock abundance, the polar energy balance, and properties of gaseous species. Where appropriate, these derived parameters will be distributed in the form of gridded map, to allow direct comparison with other derived data sets.

  3. ACCESS Mars: A Mission Architecture for an initial settlement on Mars; using caves as habitation

    Science.gov (United States)

    Perez-Poch, Antoni; Gallardo, Beatriz; Laufer, Ren; Zavaleta, Jhony; Davila, Alfonso; de Carufel, Guy; Antonakopoulos, Konstantinos; Husseini, A. Al; Alvarez Sánchez, L.; Antonakopoulos, K.; Apeldoorn, J.; Ashford, K., Jr.; Atabay, D.; Barrios, I.; Baydaroglu, Y.; Bennell, K. M.; Chen, J.; Chen, X.; Cormier, D.; Crowley, P.; de Carufel, G.; Deper, B.; Drube, L.; Duffy, P.; Edwards, P.; Gutiérrez Fernandez, E.; Haider, O.; Kumar, G.; Henselowsky, C.; Hirano, D.; Hirmer, T.; Hogan, B.; Albalat, A. Jaime; Jens, E.; Jivenescu, I.; Jojaghaian, A.; Kerrigan, M.; Kodachi, Y.; Langston, S.; Macintosh, R.; Miguélez, X.; Panek, N.; Pegg, C.; Peldszus, R.; Peng, X.; Perez-Poch, A.; Perron, A.; Qiu, J.; Renten, P.; Ricardo, J.; Saraceno, T.; Sauceda, F.; Shaghaghi Varzeghani, A.; Shimmin, R.; Solaz, R.; Solé, A.; Suresh, E. R.; Mar Vaquero Escribano, T.; Vargas Muñoz, M.; Vaujour, P. D.; Zeile, D. Veilette, Y. Winetraub, O.

    This paper summarizes a team project report produced during the Summer Space Program of the International Space University, held at Nasa-Ames Research Center (CA, USA) by 56 students from 15 countries. Chair of the team project was Rene Laufer. Facilitators were Alfonso Davila and Jhonny Zavaleta, and teacher associate supporting the team was Beatriz Gallardo. The human race has evolved, grown and expanded through the exploration of Earth. After initial steps on the Moon, our next challenge is to explore the solar system. Mars shows potential for both scientific discovery and future human settlement, and therefore represents a prime candidate for the next leap of human exploration. Such a bold endeavor will be a driver for an unprecedented worldwide cooperative effort and the catalyst for a new era of international, intercultural and interdisciplinary human relations. Scientific and technological progress will also accelerate as mankind is ushered into a new era of space exploration. Currently proposed Mars missions have identified a number of challenges such as high levels of radiation, harsh climate and limited launch windows. Recently discovered lava tubes on Mars present potential solutions to some of these issues, but raise a variety of intriguing new challenges. This paper reviews existing reference missions and identifies areas of further research essential for adapting mission architectures to utilize caves. Different mission scenarios are proposed and analyzed, with a number of different recommendations given. An analysis of the feasibility of using Martian lava tubes as habitation is given in another paper by the same authors at COSPAR 2010 F34 Technical Session. Literature suggests a low radiation environment within Martian caves, allowing for extended duration missions. The ACCESS Mars Team concludes that the use of lava tubes as human habitats will be more beneficial for human Mars exploration than currently proposed surface solutions.

  4. Human Mars Ascent Configuration and Design Sensitivities

    Science.gov (United States)

    Polsgrove, Tara P.; Gernhardt, Mike; Collins, Tim; Martin, John

    2017-01-01

    Human missions to Mars may utilize several small cabins where crew members could live for days up to a couple of weeks. At the end of a Mars surface mission the Mars Ascent Vehicle (MAV) crew cabin would carry the crew to their destination in orbit in a matter of hours or days. Other small cabins in support of a Mars mission would include pressurized rovers that allow crew members to travel great distances from their primary habitat on Mars while unconstrained by time limits of typical EVAs. An orbital crew taxi could allow for exploration of the moons of Mars with minimum impact to the primary Earth-Mars transportation systems. A common crew cabin design that can perform in each of these applications is desired and could reduce the overall mission cost. However, for the MAV, the crew cabin size and mass can have a large impact on vehicle design and performance. The total ascent vehicle mass drives performance requirements for the Mars descent systems and the Earth to Mars transportation elements. Minimizing MAV mass is a priority and minimizing the crew cabin size and mass is one way to do that. This paper explores the benefits and impacts of using a common crew cabin design for the MAV. Results of a MAV configuration trade study will be presented along with mass and performance estimates for the selected design.

  5. Cryogenics and the Human Exploration of Mars

    Science.gov (United States)

    Salerno, Louis J.; Kittel, Peter; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    Current plans within NASA involve extending the human exploration of space from low earth orbit into the solar system, with the first human exploration of Mars presently planned in 2011. Integral to all hum Mars mission phases is cryogenic fluid management. Cryogenic fluids will be required both as propellant and for In-Situ Resource Utilization (ISRU). Without safe and efficient cryogen storage human Mars missions will not be possible. Effective control and handling of cryogenic fluids is the key to affordable Mars missions, and advancing active thermal control technology is synergistic with all of NASA's exploration initiatives and with existing and future instrument cooling programs, including MTPE and Origins. Present mission scenarios for human exploration require cryogenic propellant storage for up to 1700 days and for up to 60 metric tons. These requirements represent increases of an order of magnitude over previous storage masses and lifetimes. The key cryogenic terminology areas to be addressed in human Mars missions are long-term propellant storage, cryogenic refrigeration, cryogenic liquefaction, and zero gravity fluid management. Long-term storage for the thermal control of cryogenic propellants is best accomplished with a mix of passive and active technologies. Passive technologies such as advanced multilayer insulation (MLI) concepts will be combined with the development of active coolers (cryogenic refrigerators). Candidates for long-life active cooling applications include Reverse Turbo-Brayton, Stirling, and Pulse-Tube coolers. The integration of passive and active technologies will form a hybrid system optimized to minimize the launch mass while preserving the cryogenic propellants. Since cryogenic propellants are the largest mass that Mars missions must launch from earth, even a modest reduction in the percentage of propellant carried results in a significant weight saving. This paper will present a brief overview of cryogenic fluid management

  6. Biohazard potential of putative Martian organisms during missions to Mars.

    Science.gov (United States)

    Warmflash, David; Larios-Sanz, Maia; Jones, Jeffrey; Fox, George E; McKay, David S

    2007-04-01

    Exploration Class missions to Mars will require precautions against potential contamination by any native microorganisms that may be incidentally pathogenic to humans. While the results of NASA's Viking biology experiments of the 1970s have been generally interpreted as inconclusive for surface organisms, and attributed to active but nonbiological chemistries, the possibility of native surface life has never been ruled out completely. It is possible that, prior to the first human landing on Mars, robotic craft and sample return missions will provide enough data to know with certainty whether future human landing sites harbor extant life forms. If native life were found to exist, it would be problematic to determine whether any of its species might present a medical danger to astronauts. Therefore, it will become necessary to assess empirically the risk that the planet contains pathogens based on terrestrial examples of pathogenicity and to take a reasonably cautious approach to biohazard protection. A survey of terrestrial pathogens was conducted with special emphasis on those whose evolution has not depended on the presence of animal hosts. The history of the development and implementation of Apollo anti-contamination protocol and recommendations of the National Research Council's Space Studies Board regarding Mars were reviewed. Organisms can emerge in Nature in the absence of indigenous animal hosts and both infectious and non-infectious human pathogens are therefore theoretically possible on Mars. Although remote, the prospect of Martian surface life, together with the existence of a diversity of routes by which pathogenicity has emerged on Earth, suggests that the probability of human pathogens on Mars, while low, is not zero. Still, since the discovery and study of Martian life can have long-term benefits for humanity, the risk that Martian life might include pathogens should not be an obstacle to human exploration. As a precaution, it is recommended that EVA

  7. Beagle 2: Mission to Mars - Current Status

    Science.gov (United States)

    Gibson, E. K., Jr.; Pillinger, C. T.; Wright, I. P.; Morgan, G. H.; Yau, D.; Stewart, J. L. C.; Leese, M. R.; Praine, I. J.; Sheridan, S.

    2004-01-01

    Beagle 2 is a 72 kg probe (with a 32 kg lander) developed in the United Kingdom for inclusion on the European Space Agency's 2003 Mars Express. Beagle 2 was launched on June 2, 2003 with Mars Express on a Soyuz-Fregat rocket from the Baikonur Cosmodrome in Kazakhstan. Beagle 2 landed on Mars on December 25th, 2003 in Isidis Planitia (approx. 10.7 N and 268.6 W), a large sedimentary basin that overlies the boundary between ancient highlands and northern plains. Isidis Planitia, the third largest impact basin on Mars, which is possibly filled with sediment deposited at the bottom of long-standing lakes or seas, offers an ideal environment for preserving traces of life. The team is awaiting signals from the Beagle 2 lander at the time when this abstract was written. Current status of the mission will be reported. Beagle 2 was developed to search for organic material and other volatiles on and below the surface of Mars in addition to the study of the inorganic chemistry and mineralogy. Several fundamental properties can be used to determine the existence of an active or past biology on any planet, Earth or Mars. Beagle 2's targets for investigation included: (a) The presence of water, or the existence of minerals deposited from water to show that water was present, even if only transiently; (b) The detection of carbonaceous debris, the remains of organisms that might have lived in water or were washed to a final resting place by the action of water; (c) The structure of organic matter, to demonstrate that it might have been synthesized for a biological purpose; (d) The recognition of isotopic fractionation between carbonaceous phases (organic vs inorganic carbon phases), a condition which on Earth suggests that life emerged nearly 4 billion years ago.

  8. 2016 Mars Insight Mission Design and Navigation

    Science.gov (United States)

    Abilleira, Fernando; Frauenholz, Ray; Fujii, Ken; Wallace, Mark; You, Tung-Han

    2014-01-01

    Scheduled for a launch in the 2016 Earth to Mars opportunity, the Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) Mission will arrive to Mars in late September 2016 with the primary objective of placing a science lander on the surface of the Red Planet followed by the deployment of two science instruments to investigate the fundamental processes of terrestrial planet formation and evolution. In order to achieve a successful landing, the InSight Project has selected a launch/arrival strategy that satisfies the following key and driving requirements: (1) Deliver a total launch mass of 727 kg, (2) target a nominal landing site with a cumulative Delta V99 less than 30 m/s, and (3) approach EDL with a V-infinity upper limit of 3.941 km/s and (4) an entry flight-path angle (EFPA) of -12.5 +/- 0.26 deg, 3-sigma; the InSight trajectories have been designed such that they (5) provide UHF-band communications via Direct-To-Earth and MRO from Entry through landing plus 60 s, (6) with injection aimpoints biased away from Mars such that the probability of the launch vehicle upper stage impacting Mars is less than 1.0 X 10(exp 4) for fifty years after launch, and (7) non-nominal impact probabilities due to failure during the Cruise phase less than 1.0 X 10(exp 2).

  9. The Emirates Mars Mission Science Data Center

    Science.gov (United States)

    Craft, James; Hammadi, Omran Al; DeWolfe, Alexandria; Staley, Bryan; Schafer, Corey; Pankratz, Chris

    2017-04-01

    The Emirates Mars Mission (EMM), led by the Mohammed Bin Rashid Space Center (MBRSC) in Dubai, United Arab Emirates, is expected to arrive at Mars in January 2021. The EMM Science Data Center (SDC) is to be developed as a joint effort between MBRSC and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The EMM SDC is responsible for the production, management, distribution, and archiving of science data collected from the three instruments on board the Hope spacecraft. With the respective SDC teams on opposite sides of the world evolutionary techniques and cloud-based technologies are being utilized in the development of the EMM SDC. This presentation will provide a top down view of the EMM SDC, summarizing the cloud-based technologies being implemented in the design, as well as the tools, best practices, and lessons learned for software development and management in a geographically distributed team.

  10. Mars Science Laboratory Mission and Science Investigation

    Science.gov (United States)

    Grotzinger, John P.; Crisp, Joy; Vasavada, Ashwin R.; Anderson, Robert C.; Baker, Charles J.; Barry, Robert; Blake, David F.; Conrad, Pamela; Edgett, Kenneth S.; Ferdowski, Bobak; Gellert, Ralf; Gilbert, John B.; Golombek, Matt; Gómez-Elvira, Javier; Hassler, Donald M.; Jandura, Louise; Litvak, Maxim; Mahaffy, Paul; Maki, Justin; Meyer, Michael; Malin, Michael C.; Mitrofanov, Igor; Simmonds, John J.; Vaniman, David; Welch, Richard V.; Wiens, Roger C.

    2012-09-01

    Scheduled to land in August of 2012, the Mars Science Laboratory (MSL) Mission was initiated to explore the habitability of Mars. This includes both modern environments as well as ancient environments recorded by the stratigraphic rock record preserved at the Gale crater landing site. The Curiosity rover has a designed lifetime of at least one Mars year (˜23 months), and drive capability of at least 20 km. Curiosity's science payload was specifically assembled to assess habitability and includes a gas chromatograph-mass spectrometer and gas analyzer that will search for organic carbon in rocks, regolith fines, and the atmosphere (SAM instrument); an x-ray diffractometer that will determine mineralogical diversity (CheMin instrument); focusable cameras that can image landscapes and rock/regolith textures in natural color (MAHLI, MARDI, and Mastcam instruments); an alpha-particle x-ray spectrometer for in situ determination of rock and soil chemistry (APXS instrument); a laser-induced breakdown spectrometer to remotely sense the chemical composition of rocks and minerals (ChemCam instrument); an active neutron spectrometer designed to search for water in rocks/regolith (DAN instrument); a weather station to measure modern-day environmental variables (REMS instrument); and a sensor designed for continuous monitoring of background solar and cosmic radiation (RAD instrument). The various payload elements will work together to detect and study potential sampling targets with remote and in situ measurements; to acquire samples of rock, soil, and atmosphere and analyze them in onboard analytical instruments; and to observe the environment around the rover. The 155-km diameter Gale crater was chosen as Curiosity's field site based on several attributes: an interior mountain of ancient flat-lying strata extending almost 5 km above the elevation of the landing site; the lower few hundred meters of the mountain show a progression with relative age from clay-bearing to sulfate

  11. Precision Subsampling System for Mars Surface Missions

    Science.gov (United States)

    Mahaffy, P. R.; Paulsen, G.; Mellerowicz, B.; ten Kate, I. L.; Conrad, P.; Corrigan, C. M.; Li, X.

    2012-01-01

    The ability to analyze heterogeneous rock samples at fine spatial scales would represent a powerful addition to our planetary in situ analytical toolbox. This is particularly true for Mars, where the signatures of past environments and, potentially, habitability are preserved in chemical and morphological variations across sedimentary layers and among mineral pr.ases in a given rock specimen. On Earth, microbial life often associates with surfaces at the interface of chemical nutrients, and ultimately retains sub-millimeter to millimeter-scale layer confinement in fossilization. On Mars, and possibly other bodies, trace chemical markers (elemental, organic/molecular, isotopic, chiral, etc.) and fine-scale morphological markers (e.g., micro-fossils) may he too subtle, degraded, or ambiguous to be detected, using miniaturized instrumentation, without some concentration or isolation. This is because (i) instrument sensitivity may not be high enough to detect trace markers in bulk averages; and (ii) instrument slectiviry may not be sufficient to distinguish such markers from interfering/counteracting signals from the bulk. Moreover from a fundamental chemostratigraphic perspective there would be a great benefit to assessing specific chemical and stable isotopic gradients, over millimeter-to-centimeter scales and beyond, with higher precision than currently possible in situ. We have developed a precision subsampling system (PSS) that addresses this need while remaining relatively flexible to a variety of instruments that may take advantage of the capability on future missions. The PSS is relevant to a number of possible lander/rover missions, especially Mars Sample Return. Our specific PSS prototype is undergoing testing under Mars ambient conditions, on a variety of natural analog rocks and rock drill cores, using a set of complementary flight-compatible measurement techniques. The system is available for testing with other contact instruments that may benefit from

  12. Mars Conjunction Crewed Missions With a Reusable Hybrid Architecture

    Science.gov (United States)

    Merrill, Raymond G.; Strange, Nathan J.; Qu, Min; Hatten, Noble

    2015-01-01

    A new crew Mars architecture has been developed that provides many potential benefits for NASA-led human Mars moons and surface missions beginning in the 2030s or 2040s. By using both chemical and electric propulsion systems where they are most beneficial and maintaining as much orbital energy as possible, the Hybrid spaceship that carries crew round trip to Mars is pre-integrated before launch and can be delivered to orbit by a single launch. After check-out on the way to cis-lunar space, it is refueled and can travel round trip to Mars in less than 1100 days, with a minimum of 300 days in Mars vicinity (opportunity dependent). The entire spaceship is recaptured into cis-lunar space and can be reused. The spaceship consists of a habitat for 4 crew attached to the Hybrid propulsion stage which uses long duration electric and chemical in-space propulsion technologies that are in use today. The hybrid architecture's con-ops has no in-space assembly of the crew transfer vehicle and requires only rendezvous of crew in a highly elliptical Earth orbit for arrival at and departure from the spaceship. The crew transfer vehicle does not travel to Mars so it only needs be able to last in space for weeks and re-enter at lunar velocities. The spaceship can be refueled and resupplied for multiple trips to Mars (every other opportunity). The hybrid propulsion stage for crewed transits can also be utilized for cargo delivery to Mars every other opportunity in a reusable manner to pre-deploy infrastructure required for Mars vicinity operations. Finally, the Hybrid architecture provides evolution options for mitigating key long-duration space exploration risks, including crew microgravity and radiation exposure.

  13. Mars MetNet Mission Status

    Science.gov (United States)

    Harri, Ari-Matti; Aleksashkin, Sergei; Arruego, Ignacio; Schmidt, Walter; Genzer, Maria; Vazquez, Luis; Haukka, Harri

    2015-04-01

    New kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested. 1. MetNet Lander The MetNet landing vehicles are using an inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized. The landing impact will burrow the payload container into the Martian soil providing a more favorable thermal environment for the electronics and a suitable orientation of the telescopic boom with external sensors and the radio link antenna. It is planned to deploy several tens of MNLs on the Martian surface operating at least partly at the same time to allow meteorological network science. 2. Scientific Payload The payload of the two MNL precursor models includes the following instruments: Atmospheric instruments: 1. MetBaro Pressure device 2. MetHumi Humidity device 3. MetTemp Temperature sensors Optical devices: 1. PanCam Panoramic 2. MetSIS Solar irradiance sensor with OWLS optical wireless system for data transfer 3. DS Dust sensor The descent processes dynamic properties are monitored by a special 3-axis accelerometer combined with a 3-axis gyrometer. The data will be sent via auxiliary beacon antenna throughout the

  14. Robotic Precursor Missions for Mars Habitats

    Science.gov (United States)

    Huntsberger, Terry; Pirjanian, Paolo; Schenker, Paul S.; Trebi-Ollennu, Ashitey; Das, Hari; Joshi, Sajay

    2000-07-01

    Infrastructure support for robotic colonies, manned Mars habitat, and/or robotic exploration of planetary surfaces will need to rely on the field deployment of multiple robust robots. This support includes such tasks as the deployment and servicing of power systems and ISRU generators, construction of beaconed roadways, and the site preparation and deployment of manned habitat modules. The current level of autonomy of planetary rovers such as Sojourner will need to be greatly enhanced for these types of operations. In addition, single robotic platforms will not be capable of complicated construction scenarios. Precursor robotic missions to Mars that involve teams of multiple cooperating robots to accomplish some of these tasks is a cost effective solution to the possible long timeline necessary for the deployment of a manned habitat. Ongoing work at JPL under the Mars Outpost Program in the area of robot colonies is investigating many of the technology developments necessary for such an ambitious undertaking. Some of the issues that are being addressed include behavior-based control systems for multiple cooperating robots (CAMPOUT), development of autonomous robotic systems for the rescue/repair of trapped or disabled robots, and the design and development of robotic platforms for construction tasks such as material transport and surface clearing.

  15. An aeronomy mission to investigate the entry and orbiter environment of Mars

    Science.gov (United States)

    Brace, Larry H.

    1989-01-01

    The need for an aeronomy mission to Mars as a precursor to a manned Mars mission is discussed. The upper atmosphere and radiation environment of Mars are reviewed, focusing on the implications of the Martian atmosphere for a manned mission. Plans for an aeronomy mission to Mars are described, including the Mars Aeronomy Observer and the Earth/Mars Aeronomy Orbiter.

  16. Human Exploration of Mars Design Reference Architecture 5.0

    Science.gov (United States)

    Drake, Bret G.

    2010-01-01

    This paper provides a summary of the Mars Design Reference Architecture 5.0 (DRA 5.0), which is the latest in a series of NASA Mars reference missions. It provides a vision of one potential approach to human Mars exploration. The reference architecture provides a common framework for future planning of systems concepts, technology development, and operational testing as well as Mars robotic missions, research that is conducted on the International Space Station, and future lunar exploration missions. This summary the Mars DRA 5.0 provides an overview of the overall mission approach, surface strategy and exploration goals, as well as the key systems and challenges for the first three human missions to Mars.

  17. Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions

    Science.gov (United States)

    Venkatapathy, Ethiraj; Wercinski, Paul F.; Beck, Robin A. S.; Hamm, Kenneth R.; Yount, Bryan C.; Makino, A.; Smith, B.; Gage, P.; Prabhu, D.

    2012-01-01

    The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term; (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term; and (3) Heavy mass and human missions to Mars in the long term.

  18. Circadian rhythm of autonomic cardiovascular control during Mars500 simulated mission to Mars

    National Research Council Canada - National Science Library

    Vigo, Daniel E; Tuerlinckx, Francis; Ogrinz, Barbara; Wan, Li; Simonelli, Guido; Bersenev, Evgeny; Van Den Bergh, Omer; Aubert, André E

    2013-01-01

    The Mars500 project was conceived to gather knowledge about the psychological and physiological effects of living in an enclosed environment during 520 d as would be required for a real mission to Mars...

  19. Planned Environmental Microbiology Aspects of Future Lunar and Mars Missions

    Science.gov (United States)

    Ott, C. Mark; Castro, Victoria A.; Pierson, Duane L.

    2006-01-01

    With the establishment of the Constellation Program, NASA has initiated efforts designed similar to the Apollo Program to return to the moon and subsequently travel to Mars. Early lunar sorties will take 4 crewmembers to the moon for 4 to 7 days. Later missions will increase in duration up to 6 months as a lunar habitat is constructed. These missions and vehicle designs are the forerunners of further missions destined for human exploration of Mars. Throughout the planning and design process, lessons learned from the International Space Station (ISS) and past programs will be implemented toward future exploration goals. The standards and requirements for these missions will vary depending on life support systems, mission duration, crew activities, and payloads. From a microbiological perspective, preventative measures will remain the primary techniques to mitigate microbial risk. Thus, most of the effort will focus on stringent preflight monitoring requirements and engineering controls designed into the vehicle, such as HEPA air filters. Due to volume constraints in the CEV, in-flight monitoring will be limited for short-duration missions to the measurement of biocide concentration for water potability. Once long-duration habitation begins on the lunar surface, a more extensive environmental monitoring plan will be initiated. However, limited in-flight volume constraints and the inability to return samples to Earth will increase the need for crew capabilities in determining the nature of contamination problems and method of remediation. In addition, limited shelf life of current monitoring hardware consumables and limited capabilities to dispose of biohazardous trash will drive flight hardware toward non-culture based methodologies, such as hardware that rapidly distinguishes biotic versus abiotic surface contamination. As missions progress to Mars, environmental systems will depend heavily on regeneration of air and water and biological waste remediation and

  20. Connecting Robots and Humans in Mars Exploration

    Science.gov (United States)

    Friedman, Louis

    2000-07-01

    Mars exploration is a very special public interest. It's preeminence in the national space policy calling for "sustained robotic presence on the surface," international space policy (witness the now aborted international plan for sample return, and also aborted Russian "national Mars program") and the media attention to Mars exploration are two manifestations of that interest. Among a large segment of the public there is an implicit (mis)understanding that we are sending humans to Mars. Even among those who know that isn't already a national or international policy, many think it is the next human exploration goal. At the same time the resources for Mars exploration in the U.S. and other country's space programs are a very small part of space budgets. Very little is being applied to direct preparations for human flight. This was true before the 1999 mission losses in the United States, and it is more true today. The author's thesis is that the public interest and the space program response to Mars exploration are inconsistent. This inconsistency probably results from an explicit space policy contradiction: Mars exploration is popular because of the implicit pull of Mars as the target for human exploration, but no synergy is permitted between the human and robotic programs to carry out the program. It is not permitted because of narrow, political thinking. In this paper we try to lay out the case for overcoming that thinking, even while not committing to any premature political initiative. This paper sets out a rationale for Mars exploration and uses it to then define recommended elements of the programs: missions, science objectives, technology. That consideration is broader than the immediate issue of recovering from the failures of Mars Climate OrbIter, Mars Polar Lander and the Deep Space 2 microprobes in late 1999. But we cannot ignore those failures. They are causing a slow down Mars exploration. Not only were the three missions lost, with their planned

  1. The Mars Pathfinder Mission and Science Results

    Science.gov (United States)

    Golombek, M. P.

    1999-01-01

    Mars Pathfinder, the first low-cost, quick Discovery class mission to be completed, successfully landed on the surface of Mars on July 4, 1997, deployed and navigated a small rover, and collected data from 3 science instruments and 10 technology experiments. The mission operated on Mars for 3 months and returned 2.3 Gbits of new data, including over 16,500 lander and 550 rover images, 16 chemical analyses of rocks and soil, and 8.5 million individual temperature, pressure and wind measurements. The rover traversed 100 m clockwise around the lander, exploring about 200 square meters of the surface. The mission captured the imagination of the public, and garnered front page headlines during the first week. A total of about 566 million internet "hits" were registered during the first month of the mission, with 47 million "hits" on July 8th alone, making the Pathfinder landing by far the largest internet event in history at the time. Pathfinder was the first mission to deploy a rover on Mars. It carried a chemical analysis instrument, to characterize the rocks and soils in a landing area over hundreds of square meters on Mars, which provided a calibration point or "ground truth" for orbital remote sensing observations. The combination of spectral imaging of the landing area by the lander camera, chemical analyses aboard the rover, and close-up imaging of colors, textures and fabrics with the rover cameras offered the potential of identifying rocks (petrology and mineralogy). With this payload, a landing site in Ares Vallis was selected because it appeared acceptably safe and offered the prospect of analyzing a variety of rock types expected to be deposited by catastrophic floods, which enabled addressing first-order scientific questions such as differentiation of the crust, the development of weathering products, and the nature of the early Martian environment and its subsequent evolution. The 3 instruments and rover allowed seven areas of scientific investigation: the

  2. Mars Mission Concepts: SAR and Solar Electric Propulsion

    Science.gov (United States)

    Elsperman, M.; Klaus, K.; Smith, D. B.; Clifford, S. M.; Lawrence, S. J.

    2012-12-01

    Introduction: The time has come to leverage technology advances (including advances in autonomous operation and propulsion technology) to reduce the cost and increase the flight rate of planetary missions, while actively developing a scientific and engineering workforce to achieve national space objectives. Mission Science at Mars: A SAR imaging radar offers an ability to conduct high resolution investigations of the shallow (craft for multiple missions reduces costs. Solar electric propulsion (SEP) provides the flexibility required for multiple mission objectives. SEP provides the greatest payload advantage albeit at the sacrifice of mission time. Our concept involves using a SEP enabled space craft (Boeing 702SP) with a highly capable SAR imager that also conducts autonomous rendezvous and docking experiments accomplished from Mars orbit. Our concept of operations is to launch on May 5, 2018 using a launch vehicle with 2000kg launch capacity with a C3 of 7.4. After reaching Mars it takes 145 days to spiral down to a 250 km orbit above the surface of Mars when Mars SAR operations begin. Summary/Conclusions: A robust and compelling Mars mission can be designed to meet the 2018 Mars launch window opportunity. Using advanced in-space power and propulsion technologies like High Power Solar Electric Propulsion provides enormous mission flexibility to execute the baseline science mission and conduct necessary Mars Sample Return Technology Demonstrations in Mars orbit on the same mission. An observation spacecraft platform like the high power (~5Kw) 702SP at Mars also enables the use of a SAR instrument to reveal new insights and understanding of the Mars regolith for both science and future manned exploration and utilization.

  3. Human Mars Landing Site and Impacts on Mars Surface Operations

    Science.gov (United States)

    Hoffman, Stephen J.; Bussey, Ben

    2016-01-01

    This paper describes NASA's initial steps for identifying and evaluating candidate Exploration Zones (EZs) and Regions of Interests (ROIs) for the first human crews that will explore the surface of Mars. NASA's current effort to define the exploration of this planet by human crews, known as the Evolvable Mars Campaign (EMC), provides the context in which these EZs and ROIs are being considered. The EMC spans all aspects of a human Mars mission including launch from Earth, transit to and from Mars, and operations on the surface of Mars. An EZ is a collection of ROIs located within approximately 100 kilometers of a centralized landing site. ROIs are areas relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains one or more landing sites and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. With the EMC as a conceptual basis, the EZ model has been refined to a point where specific site selection criteria for scientific exploration and in situ resource utilization can be defined. In 2015 these criteria were distributed to the planetary sciences community and the in situ resource utilization and civil engineering communities as part of a call for EZ proposals. The resulting "First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars" was held in October 2015 during which 47 proposals for EZs and ROIs were presented and discussed. Proposed locations spanned all longitudes and all allowable latitudes (+/- 50 degrees). Proposed justification for selecting one of these EZs also spanned a significant portion of the scientific and resource criteria provided to the community. Several important findings resulted from this Workshop including: (a) a strong consensus that, at a scale of 100 km (radius), multiple places on Mars exist that have both sufficient scientific interest

  4. Mars MetNet Mission Payload Overview

    Science.gov (United States)

    Haukka, H.; Harri, A.-M.; Alexashkin, S.; Guerrero, H.; Schmidt, W.; Genzer, M.; Vazquez, L.

    2012-04-01

    A new kind of planetary exploration mission for Mars is being developed in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The main idea behind the MetNet landing vehicles is to use a state-of-the-art inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized and more mass and volume resources are spared for the science payload. The vehicle decelerates its entry speed using the inflatable structure and final landing sequence includes a cone headed body penetrating the Martian soil. It is planned to deploy several tens of MNLs on the Martian surface operating at least partly at the same time to allow meteorological network science. The payload of the two MNL precursor models includes the following instruments: Atmospheric instruments: - Pressure device (MetBaro): mass 100g, measurement range 0..1015 hPa. - Humidity device (MetHumi): mass 15g, measurement range 0..100%RH. - Temperature sensors (MetTemp): mass 2g each, measurement range -110C..+30C. Optical devices: - Panoramic camera (PanCam): mass 100g, FOV 4 lenses mounted at 90 deg - Solar irradiance sensor (MetSIS) with optical wireless system (OWLS) for data transfer: mass 115g (MetSIS) and 7g (OWLS module), wavelength range 190..1100nm. MetSIS equipped with 28 optical detectors, two temperature sensors and two solar incidence angle detectors. - Dust sensor (DS): mass 42g, resolution: 10 particles / cm3. Composition and structure device: - Magnetometer (MOURA): mass 80g, measurement range: ±30uT. MetNet Mission payload instruments are specially designed to operate in very low power conditions. MNL flexible solar panels provides a total of

  5. Noctis Landing: A Proposed Landing Site/Exploration Zone for Human Missions to the Surface of Mars

    Science.gov (United States)

    Lee, Pascal; Acedillo, Shannen; Braham, Stephen; Brown, Adrian; Elphic, Richard; Fong, Terry; Glass, Brian; Hoftun, Christopher; Johansen, Brage W.; Lorber, Kira; Mittlefehldt, David; Takagi, Yuta; Thomas, Peter; West, Michael; West, Stephen; Zolensky, Michael

    2015-01-01

    ) offer many such outcrop options. -­- Identifiable stratigraphic contacts and cross-cutting relationships from which relative ages can be determined. In place and collapsed canyon walls in NL, TC, and IC offer such opportunities. -­- Other types of ROIs include access points to surrounding plateau top areas for longer term regional exploration. A key attribute of the proposed Noctic Landing site is its strategic location to allow the shortest possible surface excusions to Tharsis and Valles Marineris (VM). VM is the feature and region on Mars that exposes the longest record of Mars' geology and evolution through time. Tharsis is the region of Mars that has experienced the longest and most extensive volcanic history, and might still be volcanically active. Some of the youngest lava flows on Mars have been identified on the western flanks of the Tharsis Bulge, i.e., within driving range of future longrange (500 - 1000 km) pressurized rover traverses. The proposed site also contains ROIs that offer the following Resources (incl. Civil Engineering) characteristics: -­- Access to raw material that exhibits the potential to (1) be used as feedstock for water-generating in situ resource utilization (ISRU) processes and (2) yield significant quantities (greater than 100 MT) of water. The raw material is likely in the form of hydrated minerals, and possibly ice/regolith mix. The top of the raw material deposit is at the surface. -­- Access to a region where infrastructure can be emplaced or constructed. This region is less than 5 km from the LS and contains flat, stable terrain. The region exhibits evidence for an abundant source of loose regolith. Several deep pits in the area combined with the availability of sand suggests that some natural terrain features can be adapted for construction purposes. -­- Access to raw material that exhibits the potential to be used as metal feedstock for ISRU and construction purposes. Iron and sulfur-rich mineral surface deposits have been

  6. Enabling the human mission

    Science.gov (United States)

    Bosley, John

    The duplication of earth conditions aboard a spacecraft or planetary surface habitat requires 60 lb/day/person of food, potable and hygiene water, and oxygen. A 1000-day mission to Mars would therefore require 30 tons of such supplies per crew member in the absence of a closed-cycle, or regenerative, life-support system. An account is given of the development status of regenerative life-support systems, as well as of the requisite radiation protection and EVA systems, the health-maintenance and medical care facilities, zero-gravity deconditioning measures, and planetary surface conditions protection.

  7. Advanced Technology-Based Low Cost Mars Sample Return Missions

    Science.gov (United States)

    Wallace, R. A.; Gamber, R. T.; Clark, B. C.

    1995-01-01

    Mars Sample Return (MSR) has for many years been considered one of the most ambitious as well as most scientifically interesting of the suite of desired future planetary missions. This paper defines low- cost MSR mission concepts based on several exciting new technologies planned for space missions launching over the next 10 years. Key to reducing cost is use of advanced spacecraft & electronics technology.

  8. Mars ISRU for Production of Mission Critical Consumables - Options, Recent Studies, and Current State of the Art

    Science.gov (United States)

    Sanders, G. B.; Paz, A.; Oryshchyn, L.; Araghi, K.; Muscatello, A.; Linne, D.; Kleinhenz, J.; Peters, T.

    2015-01-01

    In 1978, a ground breaking paper titled, "Feasibility of Rocket Propellant Production on Mars" by Ash, Dowler, and Varsi discussed how ascent propellants could be manufactured on the Mars surface from carbon dioxide collected from the atmosphere to reduce launch mass. Since then, the concept of making mission critical consumables such as propellants, fuel cell reactants, and life support consumables from local resources, commonly known as In-Situ Resource Utilization (ISRU), for robotic and human missions to Mars has been studied many times. In the late 1990's, NASA initiated a series of Mars Human Design Reference Missions (DRMs), the first of which was released in 1997. These studies primarily focused on evaluating the impact of making propellants on Mars for crew ascent to Mars orbit, but creating large caches of life support consumables (water & oxygen) as a backup for regenerative life support systems for long-duration surface stays (>500 days) was also considered in Mars DRM 3.0. Until science data from the Mars Odyssey orbiter and subsequent robotic missions revealed that water may be widely accessable across the surface of Mars, prior Mars ISRU studies were limited to processing Mars atmospheric resources (carbon dioxide, nitrogen, argon, oxygen, and water vapor). In December 2007, NASA completed the Mars Human Design Reference Architecture (DRA) 5.0 study which considered water on Mars as a potential resource for the first time in a human mission architecture. While knowledge of both water resources on Mars and the hardware required to excavate and extract the water were very preliminary, the study concluded that a significant reduction in mass and significant enhancements to the mission architecture were possible if Mars water resources were utilized. Two subsequent Mars ISRU studies aimed at reexamining ISRU technologies, processing options, and advancements in the state-of-the-art since 2007 and to better understand the volume and packaging associated

  9. Mars MetNet Mission Pressure and Humidity Devices

    Science.gov (United States)

    Haukka, H.; Harri, A.-M.; Schmidt, W.; Genzer, M.; Polkko, J.; Kemppinen, O.; Leinonen, J.

    2012-09-01

    A new kind of planetary exploration mission for Mars is being developed in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission [1] is based on a new semi-hard landing vehicle called MetNet Lander (MNL). MetBaro and MetHumi are part of the scientific payload of the MNL. Main scientific goal of both devices is to measure the meteorological phenomena (pressure and humidity) of the Martian atmosphere and complement the previous Mars mission atmospheric measurements (Viking and Phoenix) for better understanding of the Martian atmospheric conditions.

  10. Concepts for Mars Polar Science in Current and Future Mars Missions

    Science.gov (United States)

    Zurek, R.; Campbell, B.; Diniega, S.; Beaty, D. W.; Hamilton, V. E.

    2016-09-01

    Mars polar/non-polar ice science has been identified as a high priority for current and future Mars missions. As a guide to ongoing and future mission planning, further discussion of needs and capabilities related to ice science is warranted.

  11. Nuclear Power Systems for Manned Mission to Mars

    Science.gov (United States)

    2004-12-01

    5 Figure 4. Generic Nuclear Thermal Rocket ......................................................................7 Figure 5. Generic...Thermoelectronics, 2002,1. 7 Figure 4. Generic Nuclear Thermal Rocket NTP is currently the design of choice for the NASA Mars Design Reference Mission

  12. Human Exploration of Mars Design Reference Architecture 5.0

    Science.gov (United States)

    Drake, Bret G.

    2009-01-01

    This document reviews the Design Reference Architecture (DRA) for human exploration of Mars. The DRA represents the current best strategy for human missions. The DRA is not a formal plan, but provides a vision and context to tie current systems and technology developments to potential missions to Mars, and it also serves as a benchmark against which alternative architectures can be measured. The document also reviews the objectives and products of the 2007 study that was to update NASA's human Mars mission reference architecture, assess strategic linkages between lunar and Mars strategies, develop an understanding of methods for reducing cost/risk of human missions through investment in research, technology development and synergy with other exploration plans. There is also a review of the process by which the DRA will continue to be refined. The unique capacities of human exploration is reviewed. The possible goals and objectives of the first three human missions are presented, along with the recommendation that the mission involve a long stay visiting multiple sites.The deployment strategy is outlined and diagrammed including the pre-deployment of the many of the material requirements, and a six crew travel to Mars on a six month trajectory. The predeployment and the Orion crew vehicle are shown. The ground operations requirements are also explained. Also the use of resources found on the surface of Mars is postulated. The Mars surface exploration strategy is reviewed, including the planetary protection processes that are planned. Finally a listing of the key decisions and tenets is posed.

  13. Return to the red planet: The Mars Observer Mission

    Science.gov (United States)

    French, Bevan M.; Young, Carolynn (Editor)

    1993-01-01

    An overview of the Mars Observer Mission is discussed. Highlights include: (1) the spacecraft; (2) the instrumentation and science experiments; (3) the countries involved; (4) the flight teams; and (5) the planet Mars itself (a brief history). Photographs and flow charts are included, along with diagrams of instrumentation and a brief historical narrative of space observation and exploration.

  14. Telecommunications Relay Support of the Mars Phoenix Lander Mission

    Science.gov (United States)

    Edwards, Charles D., Jr.; Erickson, James K.; Gladden, Roy E.; Guinn, Joseph R.; Ilott, Peter A.; Jai, Benhan; Johnston, Martin D.; Kornfeld, Richard P.; Martin-Mur, Tomas J.; McSmith, Gaylon W.; hide

    2010-01-01

    The Phoenix Lander, first of NASA's Mars Scout missions, arrived at the Red Planet on May 25, 2008. From the moment the lander separated from its interplanetary cruise stage shortly before entry, the spacecraft could no longer communicate directly with Earth, and was instead entirely dependent on UHF relay communications via an international network of orbiting Mars spacecraft, including NASA's 2001 Mars Odyssey (ODY) and Mars Reconnaissance Orbiter (MRO) spacecraft, as well as ESA's Mars Express (MEX) spacecraft. All three orbiters captured critical event telemetry and/or tracking data during Phoenix Entry, Descent and Landing. During the Phoenix surface mission, ODY and MRO provided command and telemetry services, far surpassing the original data return requirements. The availability of MEX as a backup relay asset enhanced the robustness of the surface relay plan. In addition to telecommunications services, Doppler tracking observables acquired on the UHF link yielded an accurate position for the Phoenix landing site.

  15. Telecommunications Relay Support of the Mars Phoenix Lander Mission

    Science.gov (United States)

    Edwards, Charles D., Jr.; Erickson, James K.; Gladden, Roy E.; Guinn, Joseph R.; Ilott, Peter A.; Jai, Benhan; Johnston, Martin D.; Kornfeld, Richard P.; Martin-Mur, Tomas J.; McSmith, Gaylon W.; Thomas, Reid C.; Varghese, Phil; Signori, Gina; Schmitz, Peter

    2010-01-01

    The Phoenix Lander, first of NASA's Mars Scout missions, arrived at the Red Planet on May 25, 2008. From the moment the lander separated from its interplanetary cruise stage shortly before entry, the spacecraft could no longer communicate directly with Earth, and was instead entirely dependent on UHF relay communications via an international network of orbiting Mars spacecraft, including NASA's 2001 Mars Odyssey (ODY) and Mars Reconnaissance Orbiter (MRO) spacecraft, as well as ESA's Mars Express (MEX) spacecraft. All three orbiters captured critical event telemetry and/or tracking data during Phoenix Entry, Descent and Landing. During the Phoenix surface mission, ODY and MRO provided command and telemetry services, far surpassing the original data return requirements. The availability of MEX as a backup relay asset enhanced the robustness of the surface relay plan. In addition to telecommunications services, Doppler tracking observables acquired on the UHF link yielded an accurate position for the Phoenix landing site.

  16. Attracting Students to Space Science Fields: Mission to Mars

    Science.gov (United States)

    Congdon, Donald R.; Lovegrove, William P.; Samec, Ronald G.

    Attracting high school students to space science is one of the main goals of Bob Jones University's annual Mission to Mars (MTM). MTM develops interest in space exploration through a highly realistic simulated trip to Mars. Students study and learn to appreciate the challenges of space travel including propulsion life support medicine planetary astronomy psychology robotics and communication. Broken into teams (Management Spacecraft Design Communications Life Support Navigation Robotics and Science) they address the problems specific to each aspect of the mission. Teams also learn to interact and recognize that a successful mission requires cooperation. Coordinated by the Management Team the students build a spacecraft and associated apparatus connect computers and communications equipment train astronauts on the mission simulator and program a Pathfinder-type robot. On the big day the astronauts enter the spacecraft as Mission Control gets ready to support them through the expected and unexpected of their mission. Aided by teamwork the astronauts must land on Mars perform their scientific mission on a simulated surface of mars and return home. We see the success of MTM not only in successful missions but in the students who come back year after year for another MTM.

  17. Design of the ARES Mars Airplane and Mission Architecture

    Science.gov (United States)

    Braun, Robert D.; Wright, Henry S.; Croom, Mark A.; Levine, Joel S.; Spencer, David A.

    2006-01-01

    Significant technology advances have enabled planetary aircraft to be considered as viable science platforms. Such systems fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Recent efforts have produced mature mission and flight system concepts, ready for flight project implementation. This paper summarizes the development of a Mars airplane mission architecture that balances science, implementation risk and cost. Airplane mission performance, flight system design and technology maturation are described. The design, analysis and testing completed demonstrates the readiness of this science platform for use in a Mars flight project.

  18. MetNet Precursor - Network Mission to Mars

    Science.gov (United States)

    Harri, Arri-Matti

    2010-05-01

    We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The first MetNet vehicle, MetNet Precursor, slated for launch in 2011. The MetNet development work started already in 2001. The actual practical Precursor Mission development work started in January 2009 with participation from various space research institutes and agencies. The scientific rationale and goals as well as key mission solutions will be discussed. The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Time-resolved in situ Martian meteorological measurements acquired by the Viking, Mars Pathfinder and Phoenix landers and remote sensing observations by the Mariner 9, Viking, Mars Global Surveyor, Mars Odyssey and the Mars Express orbiters have provided the basis for our current understanding of the behavior of weather and climate on Mars. However, the available amount of data is still scarce and a wealth of additional in situ observations are needed on varying types of Martian orography, terrain and altitude spanning all latitudes and longitudes to address microscale and mesoscale atmospheric phenomena. Detailed characterization of the Martian atmospheric circulation patterns and climatological cycles requires simultaneous in situ atmospheric observations. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe

  19. Humans to Mars: A feasibility and cost benefit analysis

    Science.gov (United States)

    Ehlmann, Bethany L.; Chowdhury, Jeeshan; Marzullo, Timothy C.; Eric Collins, R.; Litzenberger, Julie; Ibsen, Stuart; Krauser, Wendy R.; Dekock, Brandon; Hannon, Michael; Kinnevan, Jessica; Shepard, Rebekah; Douglas Grant, F.

    2005-05-01

    Mars is a compelling astrobiological target, and a human mission would provide an opportunity to collect immense amounts of scientific data. Exploration alone, however, cannot justify the increased risk. Instead, three factors drive a human mission: economics, education, and exploration. A human mission has a unique potential to inspire the next generation of young people to enter critically needed science and engineering disciplines. A mission is economically feasible, and the research and development program put in place for a human mission would propel growth in related high-technology industries. The main hurdles are human physiological responses to 1 2 years of radiation and microgravity exposure. However, enabling technologies are sufficiently mature in these areas that they can be developed within a few decade timescale. Hence, the decision of whether or not to undertake a human mission to Mars is a political decision, and thus, educational and economic benefits are the crucial factors.

  20. Use of Web 2.0 Technologies for Public Outreach on a Simulated Mars Mission

    Science.gov (United States)

    Ferrone, Kristine; Shiro, Brian; Palaia, Joseph E., IV

    2009-01-01

    Recent advances in social media and internet communications have revolutionized the ways people interact and disseminate information. Astronauts are already taking advantage of these tools by blogging and tweeting from space, and almost all NASA missions now have presences on the major social networking sites. One priotity for future human explorers on Mars will be communicating their experiences to the people back on Earth. During July 2009, a 6-member crew of volunteers carried out a simulated Mars mission at the Flashline Mars Arctic Research Station (FMARS). The Mars Society built the mock Mars habitat in 2000-01 to help develop key knowledge and inspire the public for human Mars exploration. It is located on Devon island about 1600 km from the North Pole within the Arctic Circle. The structure is situated on the rim of Haughton Crater in an environment geologically and biologically analogous to Mars. Living in a habitat, conducting EVAs wearing spacesuits, and observing communication delays with "Earth,"the crew endured restrictions similar to those that will be faced by future human Mars explorers. Throughout the expedition, crewmembers posted daily blog entries, reports, photos, videos, and updates to their website and social media outlets Twitter, Facebook, YouTube, and Picasa Web Albums. During the sixteen EVAs of thier field science research campaign, FMARS crewmembers collected GPS track information and took geotagged photos using GPS-enabled cameras. They combined their traverse GPS tracks with photo location information into KML/KMZ files that website visitors can view in Google Earth.

  1. Geoscience in Support of a Mars Methane Analogue Mission

    Science.gov (United States)

    Boivin, Alexandre

    The Mars Methane Analogue Mission, funded by the Canadian Space Agency through its Analogue Missions program, simulates a Mars rover mission whose purpose is to detect, analyse, and determine the source of methane emissions on the planet's surface. As part of this project, both an electromagnetic induction sounder (EMIS) and a high-resolution triangulation-based 3D laser scanner were tested in the field to demonstrate the benefit of including these instruments on future rover missions. EMIS data was inverted in order to derive information on the conductivity and magnetic susceptibility of the near subsurface. 3D laser scanner data was processed with fracture detection as a goal in order to simplify the search for areas of potential methane seepage. Both instruments were found to be very valuable for future rover missions of this type.

  2. Humans to Mars: The Greatest Adventure in Human History

    Science.gov (United States)

    Levine, Joel S.; Schild,Rudy

    2011-01-01

    The reasons for a human mission to Mars are many and include (1) World technological leadership, (2) Enhanced national security, (3) Enhanced economic vitality, (4) The human urge to explore new and distant frontiers, (5) Scientific discovery (how did Mars evolve from an early Earth-like, hospitable planet to its present inhospitable state? Is there life on Mars?) (6) Inspiring the American public and the next generation of scientists and engineers (following the launch of Sputnik I by the USSR on October 4, 1957, the U. S. and the rest of the world witnessed a significant increase in the number of students going into science and engineering), (7) Develop new technologies for potential non-space spin-off applications, and, (8) Enhanced national prestige, etc. Other reasons for colonizing the Red Planet are more catastrophic in nature, including Mars as a safe haven for the survival of the human species in the event of an impact with a large asteroid (remember the demise of the dinosaurs 65-million years as a result of an asteroid impact!). Some have also suggested that the colonization of Mars may be a solution to the global exponential population explosion on our planet! A human mission to and the colonization of the Red Planet requires multi-disciplined expertise in many areas including engineering, technology, science, human health and medicine and the human psychological and behavior. To capture the relevant areas of needed expertise, we have invited a group of more than 70 U. S. and foreign experts in these areas, including astronauts, scientists, engineers, technologists, medical doctors, psychologists and economists to share their views and thoughts on a human mission to Mars.

  3. Relay Support for the Mars Science Laboratory Mission

    Science.gov (United States)

    Edwards, Charles D. Jr,; Bell, David J.; Gladden, Roy E.; Ilott, Peter A.; Jedrey, Thomas C.; Johnston, M. Daniel; Maxwell, Jennifer L.; Mendoza, Ricardo; McSmith, Gaylon W.; Potts, Christopher L.; Schratz, Brian C.; Shihabi, Mazen M.; Srinivasan, Jeffrey M.; Varghese, Phillip; Sanders, Stephen S.; Denis, Michel

    2013-01-01

    The Mars Science Laboratory (MSL) mission landed the Curiosity Rover on the surface of Mars on August 6, 2012, beginning a one-Martian-year primary science mission. An international network of Mars relay orbiters, including NASA's 2001 Mars Odyssey Orbiter (ODY) and Mars Reconnaissance Orbiter (MRO), and ESA's Mars Express Orbiter (MEX), were positioned to provide critical event coverage of MSL's Entry, Descent, and Landing (EDL). The EDL communication plan took advantage of unique and complementary capabilities of each orbiter to provide robust information capture during this critical event while also providing low-latency information during the landing. Once on the surface, ODY and MRO have provided effectively all of Curiosity's data return from the Martian surface. The link from Curiosity to MRO incorporates a number of new features enabled by the Electra and Electra-Lite software-defined radios on MRO and Curiosity, respectively. Specifically, the Curiosity-MRO link has for the first time on Mars relay links utilized frequency-agile operations, data rates up to 2.048 Mb/s, suppressed carrier modulation, and a new Adaptive Data Rate algorithm in which the return link data rate is optimally varied throughout the relay pass based on the actual observed link channel characteristics. In addition to the baseline surface relay support by ODY and MRO, the MEX relay service has been verified in several successful surface relay passes, and MEX now stands ready to provide backup relay support should NASA's orbiters become unavailable for some period of time.

  4. MMPM - Mission implementation of Mars MetNet Precursor

    Science.gov (United States)

    Harri, A.-M.

    2009-04-01

    We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The key technical aspects and solutions of the mission will be discussed. The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2009/2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Detailed characterization of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatology cycles, require simultaneous in-situ measurements by a network of observation posts on the Martian surface. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe technologies have been developed and the critical subsystems have been qualified to meet the Martian environmental and functional conditions. This development effort has been fulfilled in collaboration between the Finnish Meteorological Institute (FMI), the Russian Lavoschkin Association (LA) and the Russian Space Research Institute (IKI) since August 2001. Currently the INTA (Instituto Nacional de Técnica Aeroespacial) from Spain is also participating in the MetNet payload development.

  5. MarsTwin: an M-mission to Mars with two geophysical laboratories

    Science.gov (United States)

    Dehant, V. M.; Breuer, D.; Grott, M.; Spohn, T.; Lognonne, P.; Read, P. L.; Vennerstroem, S.; Banerdt, B.

    2010-12-01

    Mars-Twin - a mission proposed for the running ESA cosmic vision M call - if selected it will be the first European mission to focus on interior processes and the early evolution of Mars, providing essential constraints for models of the thermal, geochemical, and geologic evolution of Mars and for a better understanding of SNC meteorites and future samples from Mars. Our fundamental understanding of the interior of the Earth comes from geophysics, geodesy, geochemistry, geomagnetism, and petrology. For geophysics, seismology, geodesy, magnetic field measurements, and surface heat flow have revealed the basic internal layering of the Earth, its thermal structure, its gross compositional stratification, as well as significant lateral variations in these quantities. The landers will also provide meteorological stations to monitor the Martian meteorology and climate and to obtain new measurements in the Martian boundary layer. The Mars-Twin mission will fill a longstanding gap in the scientific exploration of the solar system by performing an in-situ investigation of the interior of an Earth-like planet other than our own. Mars-Twin will provide unique and critical information about the fundamental processes of terrestrial planet formation and evolution. This investigation has been ranked as a high priority in virtually every set of European, US and international high-level planetary science recommendations for the past 30 years, and the objectives for the Mars-Twin mission are derived directly from these recommendations. In addition to geophysics, the mission will provide important constraints for the Astrobiology of Mars by helping to understand why Mars fails to have a magnetic field, by helping to understand the evolution of the climate, and by providing a limit to the chemoautrophic biosphere through a measurement of the heat flow. The paper will also address the synergy between the lander instruments and the possible orbiter instruments.

  6. Europe and US seek collaboration on missions to Mars

    Science.gov (United States)

    Clery, Daniel

    2009-01-01

    Bosses at the European and US space agencies are to discuss plans for a joint series of missions to Mars. David Southwood, director of science at the European Space Agency (ESA), has already talked to NASA science chief Edward Weiler about the collaboration, which could lead to a samplereturn mission in about 15 years from now. "We're building towards a major US-European exploration of our nearest neighbour," says Southwood, with formal discussions set to begin later this month.

  7. Ground Contact Model for Mars Science Laboratory Mission Simulations

    Science.gov (United States)

    Raiszadeh, Behzad; Way, David

    2012-01-01

    The Program to Optimize Simulated Trajectories II (POST 2) has been successful in simulating the flight of launch vehicles and entry bodies on earth and other planets. POST 2 has been the primary simulation tool for the Entry Descent, and Landing (EDL) phase of numerous Mars lander missions such as Mars Pathfinder in 1997, the twin Mars Exploration Rovers (MER-A and MER-B) in 2004, Mars Phoenix lander in 2007, and it is now the main trajectory simulation tool for Mars Science Laboratory (MSL) in 2012. In all previous missions, the POST 2 simulation ended before ground impact, and a tool other than POST 2 simulated landing dynamics. It would be ideal for one tool to simulate the entire EDL sequence, thus avoiding errors that could be introduced by handing off position, velocity, or other fight parameters from one simulation to the other. The desire to have one continuous end-to-end simulation was the motivation for developing the ground interaction model in POST 2. Rover landing, including the detection of the postlanding state, is a very critical part of the MSL mission, as the EDL landing sequence continues for a few seconds after landing. The method explained in this paper illustrates how a simple ground force interaction model has been added to POST 2, which allows simulation of the entire EDL from atmospheric entry through touchdown.

  8. Propulsive Maneuver Design for the 2007 Mars Phoenix Lander Mission

    Science.gov (United States)

    Raofi, Behzad; Bhat, Ramachandra S.; Helfrich, Cliff

    2008-01-01

    On May 25, 2008, the Mars Phoenix Lander (PHX) successfully landed in the northern planes of Mars in order to continue and complement NASA's "follow the water" theme as its predecessor Mars missions, such as Mars Odyssey (ODY) and Mars Exploration Rovers, have done in recent years. Instruments on the lander, through a robotic arm able to deliver soil samples to the deck, will perform in-situ and remote-sensing investigations to characterize the chemistry of materials at the local surface, subsurface, and atmosphere. Lander instruments will also identify the potential history of key indicator elements of significance to the biological potential of Mars, including potential organics within any accessible water ice. Precise trajectory control and targeting were necessary in order to achieve the accurate atmospheric entry conditions required for arriving at the desired landing site. The challenge for the trajectory control maneuver design was to meet or exceed these requirements in the presence of spacecraft limitations as well as other mission constraints. This paper describes the strategies used, including the specialized targeting specifically developed for PHX, in order to design and successfully execute the propulsive maneuvers that delivered the spacecraft to its targeted landing site while satisfying the planetary protection requirements in the presence of flight system constraints.

  9. Scientific results of the Mars Pathfinder mission.

    Science.gov (United States)

    Golombek, M. P.

    1999-02-01

    The author, project scientist of the Mars Pathfinder mision, presents a summary of the most important scientific results from the space probe, which descended to the Martian surface on July 4, 1997. These results include the strong evidence for catastrophic water floods in the history of the planet; close-up studies of the morphology and mineralogy of Martian rocks; the characteristics, chemistry, and origin of the magnetic dust particles deposited on the Martian surface; and meteorological measurements of temperature fluctuations, pressure variations, and wind velocities.

  10. Planning Mars Memory: Learning from the Mer Mission

    Science.gov (United States)

    Linde, Charlotte

    2004-01-01

    Knowledge management for space exploration is part of a multi-generational effort at recognizing, preserving and transmitting learning. Each mission should be built on the learning, of both successes and failures, derived from previous missions. Knowledge management begins with learning, and the recognition that this learning has produced knowledge. The Mars Exploration Rover mission provides us with an opportunity to track how learning occurs, how it is recorded, and whether the representations of this learning will be optimally useful for subsequent missions. This paper focuses on the MER science and engineering teams during Rover operations. A NASA team conducted an observational study of the ongoing work and learning of the these teams. Learning occurred in a wide variety of areas: how to run two teams on Mars time for three months; how to use the instruments within the constraints of the martian environment, the deep space network and the mission requirements; how to plan science strategy; how best to use the available software tools. This learning is preserved in many ways. Primarily it resides in peoples memories, to be carried on to the next mission. It is also encoded in stones, in programming sequences, in published reports, and in lessons learned activities, Studying learning and knowledge development as it happens allows us to suggest proactive ways of capturing and using it across multiple missions and generations.

  11. MISSION PROFILE AND DESIGN CHALLENGES FOR MARS LANDING EXPLORATION

    Directory of Open Access Journals (Sweden)

    J. Dong

    2017-07-01

    Full Text Available An orbiter and a descent module will be delivered to Mars in the Chinese first Mars exploration mission. The descent module is composed of a landing platform and a rover. The module will be released into the atmosphere by the orbiter and make a controlled landing on Martian surface. After landing, the rover will egress from the platform to start its science mission. The rover payloads mainly include the subsurface radar, terrain camera, multispectral camera, magnetometer, anemometer to achieve the scientific investigation of the terrain, soil characteristics, material composition, magnetic field, atmosphere, etc. The landing process is divided into three phases (entry phase, parachute descent phase and powered descent phase, which are full of risks. There exit lots of indefinite parameters and design constrain to affect the selection of the landing sites and phase switch (mortaring the parachute, separating the heat shield and cutting off the parachute. A number of new technologies (disk-gap-band parachute, guidance and navigation, etc. need to be developed. Mars and Earth have gravity and atmosphere conditions that are significantly different from one another. Meaningful environmental conditions cannot be recreated terrestrially on earth. A full-scale flight validation on earth is difficult. Therefore the end-to-end simulation and some critical subsystem test must be considered instead. The challenges above and the corresponding design solutions are introduced in this paper, which can provide reference for the Mars exploration mission.

  12. Mars Missions Using Emerging Commercial Space Transportation Capabilities

    Science.gov (United States)

    Gonzales, Andrew A.

    2016-01-01

    New Discoveries regarding the Martian Environment may impact Mars mission planning. Transportation of investigation payloads can be facilitated by Commercial Space Transportation options. The development of Commercial Space Transportation. Capabilities anticipated from various commercial entities are examined objectively. The potential for one of these options, in the form of a Mars Sample Return mission, described in the results of previous work, is presented to demonstrate a high capability potential. The transportation needs of the Mars Environment Team Project at ISU 2016 may fit within the payload capabilities of a Mars Sample Return mission, but the payload elements may or may not differ. Resource Modules will help you develop a component of a strategy to address the Implications of New Discoveries in the Martian Environment using the possibility of efficient, commercial space transportation options. Opportunities for open discussions as appropriate during the team project formulation period at the end of each Resource Module. The objective is to provide information that can be incorporated into your work in the Team Project including brainstorming.

  13. Rock Sample Destruction Limits for the Mars Sample Return Mission

    Science.gov (United States)

    Weiss, D. K.; Budney, C. J.; Shiraishi, L.; Klein, K.; Gilbert, J.

    2012-12-01

    Sample return missions, including the proposed Mars Sample Return (MSR) mission, propose to collect core samples from scientifically valuable sites on Mars. These core samples would undergo extreme forces during the drilling process, and during the reentry process if the Earth Entry Vehicle (EEV) performs a hard landing on Earth. Because of the foreseen damage to the cores, it is important to evaluate each core for rock quality. However, because no planetary core sample return mission has yet been conducted, it remains unclear as to how to assess the cores for rock quality. In this report, we describe the development of a metric designed to quantitatively assess the quality of the rock cores returned from MSR. We report on the process by which we tested the metric on core samples of Mars analogue materials, and the effectiveness of the core assessment metric (CAM) in assessing rock core quality before and after the cores were subjected to shocking (g forces representative of an EEV landing). Mars-analogue Basalt rock core. Cores like this one are being used to develop a metric with which to assess rock quality before and after shock-testing. The sample canister that houses the cores during shock-testing. SolidWorks design by James Gilbert.

  14. Astrobiological aspects of Mars and human presence: pros and cons.

    Science.gov (United States)

    Horneck, G

    2008-08-01

    After the realization of the International Space Station, human exploratory missions to Moon or Mars, i.e. beyond low Earth orbit, are widely considered as the next logical step of peaceful cooperation in space on a global scale. Besides the human desire to extend the window of habitability, human exploratory missions are driven by several aspects of science, technology, culture and economy. Mars is currently considered as a major target in the search for life beyond the Earth. Understanding the history of water on Mars appears to be one of the clues to the puzzle on the probability of life on Mars. On Earth microorganisms have flourished for more than 3.5 Ga and have developed strategies to cope with so-called extreme conditions (e.g., hot vents, permafrost, subsurface regions, rocks or salt crystals). Therefore, in search for life on Mars, microorganisms are the most likely candidates for a putative biota on Mars and the search for morphological or chemical signatures of life or its relics is one of the primary and most exciting goals of Mars exploration. The presence of humans on the surface of Mars will substantially increase this research potential, e.g., by supporting deep subsurface drilling and by allowing intellectual collection and sophisticated in situ analysis of samples of astrobiological interest. On the other hand, such long-duration missions beyond LEO will add a new dimension to human space flight, concerning the distance of travel, the radiation environment, the gravity levels, the duration of the mission, and the level of confinement and isolation the crew will be exposed to. This will raise the significance of several health issues, above all radiation protection, gravity related effects as well as psychological issues. Furthermore, the import of internal and external microorganisms inevitably accompanying any human mission to Mars, or brought purposely to Mars as part of a bioregenerative life support system needs careful consideration with

  15. Southern Meridiani Planum - A candidate landing site for the first crewed mission to Mars

    Science.gov (United States)

    Clarke, J. D. A.; Willson, D.; Smith, H.; Hobbs, S. W.; Jones, E.

    2017-04-01

    Astronauts working on the surface of Mars have the capability to explore efficiently, rapidly, and flexibly, allowing them to perform a wide range of field investigations. NASA has begun an open international process to identify and evaluate candidate locations where crews could land, live and work on the martian surface, beginning with the First Landing Site/Exploration Zone Workshop for Human Missions to the Surface of Mars in October 2015. Forty seven sites were proposed, including several at or near the Meridiani area, the subject of this paper. We consider the Meridiani area an excellent candidate for the first missions to Mars. It is accessible, safe, contains potential water resources in the form of poly-hydrated magnesium sulphates, has diverse science features with high likelihood of meeting all science goals, has other potential resources and potential for further longer-ranged exploration. The presence of hardware from previous missions will be of benefit to studies of materials to martian conditions, assessing the effectiveness of historic planetary protection strategies, and engaging public interest. Lastly, parts of the Meridiani region have been well studied from the surface by the Opportunity mission, providing ground truth for orbital data. As one of the best documented regions of Mars this will allow a ;Go where you know; approach for the first crewed missions, especially with regard to safety, trafficability, and water resource potential.

  16. Propulsion engineering study for small-scale Mars missions

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, J.

    1995-09-12

    Rocket propulsion options for small-scale Mars missions are presented and compared, particularly for the terminal landing maneuver and for sample return. Mars landing has a low propulsive {Delta}v requirement on a {approximately}1-minute time scale, but at a high acceleration. High thrust/weight liquid rocket technologies, or advanced pulse-capable solids, developed during the past decade for missile defense, are therefore more appropriate for small Mars landers than are conventional space propulsion technologies. The advanced liquid systems are characterize by compact lightweight thrusters having high chamber pressures and short lifetimes. Blowdown or regulated pressure-fed operation can satisfy the Mars landing requirement, but hardware mass can be reduced by using pumps. Aggressive terminal landing propulsion designs can enable post-landing hop maneuvers for some surface mobility. The Mars sample return mission requires a small high performance launcher having either solid motors or miniature pump-fed engines. Terminal propulsion for 100 kg Mars landers is within the realm of flight-proven thruster designs, but custom tankage is desirable. Landers on a 10 kg scale also are feasible, using technology that has been demonstrated but not previously flown in space. The number of sources and the selection of components are extremely limited on this smallest scale, so some customized hardware is required. A key characteristic of kilogram-scale propulsion is that gas jets are much lighter than liquid thrusters for reaction control. The mass and volume of tanks for inert gas can be eliminated by systems which generate gas as needed from a liquid or a solid, but these have virtually no space flight history. Mars return propulsion is a major engineering challenge; earth launch is the only previously-solved propulsion problem requiring similar or greater performance.

  17. Mars MetNet Mission - Martian Atmospheric Observational Post Network

    Science.gov (United States)

    Haukka, Harri; Harri, Ari-Matti; Aleksashkin, Sergey; Arruego, Ignacio; Schmidt, Walter; Genzer, Maria; Vazquez, Luis; Siikonen, Timo; Palin, Matti

    2016-10-01

    A new kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL).The scientific payload of the Mars MetNet Precursor mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior.The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.Full Qualification Model (QM) of the MetNet landing unit with the Precursor Mission payload is currently under functional tests. In the near future the QM unit will be exposed to environmental tests with qualification levels including vibrations, thermal balance, thermal cycling and mechanical impact shock. One complete flight unit of the entry, descent and landing systems (EDLS) has been manufactured and tested with acceptance levels. Another flight-like EDLS has been exposed to most of the qualification tests, and hence it may be used for flight after refurbishments. Accordingly two flight-capable EDLS systems exist. The eventual goal is to create a network of atmospheric observational posts around the Martian surface. The next step in the MetNet Precursor Mission is the demonstration of the technical robustness and scientific capabilities of the MetNet type of landing vehicle. Definition of the Precursor Mission and discussions on launch opportunities are currently under way. The baseline program development funding exists for the next five years. Flight unit manufacture of the payload bay takes about 18 months, and it will be commenced after the Precursor Mission has been defined.

  18. Nuclear thermal rocket propulsion application to Mars missions

    Science.gov (United States)

    Emrich, W. J., Jr.; Young, A. C.; Mulqueen, J. A.

    1991-01-01

    Options for vehicle configurations are reviewed in which nuclear thermal rocket (NTR) propulsion is used for a reference mission to Mars. The scenario assumes an opposition-class Mars transfer trajectory, a 435-day mission, and the use of a single nuclear engine with 75,000 lbs of thrust. Engine parameters are examined by calculating mission variables for a range of specific impulses and thrust/weight ratios. The reference mission is found to have optimal values of 925 s for the specific impulse and thrust/weight ratios of 4.0 and 0.06 for the engine and total stage ratios respectively. When the engine thrust/weight ratio is at least 4/1 the most critical engine parameter is engine specific impulse for reducing overall stage weight. In the context of this trans-Mars three-burn maneuver the NTR engine with an expander engine cycle is considered a more effective alternative than chemical/aerobrake and other propulsion options.

  19. Motor Qualification for Long-Duration Mars Missions

    Science.gov (United States)

    Ramesham, Rajeshuni; Johnson, Michael R.; Cooper, Darren T.; Lau, Warren S.; Boykins, Kobie T.; Perret, Jonathan D.; Rainen, Richard A.; Greb, Andrea

    2013-01-01

    Qualification of motors for deep space under extreme thermal environments to be encountered during the Mars Science Laboratory (MSL) mission is required to verify the reliability and validate mission assurance requirements. The motor assembly must survive all ground operations, plus the nominal 670 Martian-day (or sol) mission that includes summer and winter seasons of the Mars environment. The motor assembly was tested and characterized under extreme temperature conditions with reference to hardware requirements. The motor assembly has been proved to be remarkably robust and displayed no sign of degradation due to the 3 X (three times per JPL design principles) thermal environmental exposure to the punishing Mars surface operations cycles. The motor characteristics obtained before, during, and post-test comparisons for the surface operations cycles are within measurement error of one another. The motors withstood/survived 2,010 extreme temperature cycles with a Delta T of 190 C deep temperature cycles, representing three times the expected thermal cycling exposure during the MSL surface operations. The qualification test hardware elements (A200 motor assembly, encoders, and resolver) have not shown any signs of degradation due to the PQV (Package Qualification and Verification) testing. The test hardware has demonstrated sufficient life to survive the deep thermal cycles associated with MSL mission surface operations for three lives.

  20. Opportunities for ISRU Applications in the Mars Reference Mission

    Science.gov (United States)

    Duke, Michael B.

    1998-01-01

    The NASA Mars Exploration Reference Mission envisions sending three crews of six astronauts to Mars, each for 500-day stays on the surface. In situ Resourse Unitlization (ISRU) has been baselined for the production of propellant for crews leaving the surface, as well as to create reservoirs of water and life-support consumables These applications improve performance (by reducing the mass of hardware and supplies that must be brought to Mars for the propulsion system) and reduce risk (by creating consumables as backups to stores brought from Earth). Similar applications of other types of ISRU-derived materials should be sought and selected if they similarly improve performance or reduce risk. Some possible concepts for consideration, based on a review of the components included in the Reference Mission, include (1) emplacement of a hardened landing pad; (2) construction of a roadway for transporting the nuclear power system to a safe distance from the habitat; (3) radiation shielding for inflatable structures; (4) tanks and plumbing for bioregenerative life-support system; (5) drilling rig; (6) additional access structures for equipment and personnel and unpressurized structures for vehicle storage; (7) utilitarian manufactured products (e.g., stools and benches) for habitat and laboratory; (8) thermal radiators; (9) photovoltaic devices and support structures; and ( 10) external structures for storage and preservation of Mars samples. These may be viewed principally as mission- enhancing concepts for the Reference Mission. Selection would require a clear rationale for performance improvement or risk reduction and a demonstration that the cost of developing and transporting the needed equipment would be recovered within the budget for the program. Additional work is also necessary to ascertain whether early applications of ISRU for these types of purposes could lead to the modification of later missions, allowing the replacement of infrastructure payloads currently

  1. A Vision for the Exploration of Mars: Robotic Precursors Followed by Humans to Mars Orbit in 2033

    Science.gov (United States)

    Sellers, Piers J.; Garvin, James B.; Kinney, Anne L.; Amato, Michael J.; White, Nicholas E.

    2012-01-01

    The reformulation of the Mars program gives NASA a rare opportunity to deliver a credible vision in which humans, robots, and advancements in information technology combine to open the deep space frontier to Mars. There is a broad challenge in the reformulation of the Mars exploration program that truly sets the stage for: 'a strategic collaboration between the Science Mission Directorate (SMD), the Human Exploration and Operations Mission Directorate (HEOMD) and the Office of the Chief Technologist, for the next several decades of exploring Mars'.Any strategy that links all three challenge areas listed into a true long term strategic program necessitates discussion. NASA's SMD and HEOMD should accept the President's challenge and vision by developing an integrated program that will enable a human expedition to Mars orbit in 2033 with the goal of returning samples suitable for addressing the question of whether life exists or ever existed on Mars

  2. Moon and Mars Analog Mission Activities for Mauna Kea 2012

    Science.gov (United States)

    Graham, Lee D.; Morris, Richard V.; Graff, Trevor G.; Yingst, R. Aileen; tenKate, I. L.; Glavin, Daniel P.; Hedlund, Magnus; Malespin, Charles A.; Mumm, Erik

    2012-01-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were recently completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration. Initial science operations were planned based on a model similar to the operations control of the Mars Exploration Rovers (MER). However, evolution of the operations process occurred as the analog mission progressed. We report here on the preliminary sensor data results, an applicable methodology for developing an optimum science input based on productive engineering and science trades discussions and the science operations approach for an investigation into the valley on the upper slopes of Mauna Kea identified as "Apollo Valley".

  3. Mission Opportunities for Human Exploration of Nearby Planetary Bodies

    CERN Document Server

    Foster, Cyrus

    2016-01-01

    We characterize mission profiles for human expeditions to near-Earth asteroids, Venus, and Mars. Near-Earth objects (NEOs) are the closest destinations beyond cis-lunar space and present a compelling target with capabilities already under development by NASA and its partners. We present manned NEO mission options that would require between 90 days and one year. We next consider planetary flyby missions for Venus along the lines of plans that were first drafted during the Apollo program for human exploration of Venus. We also characterize a Mars flyby, and a double-flyby variant that would include close passes to both Venus and Mars. Finally, we consider orbital missions to Venus and Mars with capability for rendezvous with Phobos or Deimos. This would be a truly new class of mission for astronauts and could serve as a precursor to a human landing on Mars. We present launch opportunities, transit time, requisite {\\Delta}V, and approximate radiation environment parameters for each mission class. We find that {\\...

  4. Planned Products of the Mars Structure Service for the InSight Mission to Mars

    Science.gov (United States)

    Panning, Mark P.; Lognonné, Philippe; Bruce Banerdt, W.; Garcia, Raphaël; Golombek, Matthew; Kedar, Sharon; Knapmeyer-Endrun, Brigitte; Mocquet, Antoine; Teanby, Nick A.; Tromp, Jeroen; Weber, Renee; Beucler, Eric; Blanchette-Guertin, Jean-Francois; Bozdağ, Ebru; Drilleau, Mélanie; Gudkova, Tamara; Hempel, Stefanie; Khan, Amir; Lekić, Vedran; Murdoch, Naomi; Plesa, Ana-Catalina; Rivoldini, Atillio; Schmerr, Nicholas; Ruan, Youyi; Verhoeven, Olivier; Gao, Chao; Christensen, Ulrich; Clinton, John; Dehant, Veronique; Giardini, Domenico; Mimoun, David; Thomas Pike, W.; Smrekar, Sue; Wieczorek, Mark; Knapmeyer, Martin; Wookey, James

    2016-11-01

    The InSight lander will deliver geophysical instruments to Mars in 2018, including seismometers installed directly on the surface (Seismic Experiment for Interior Structure, SEIS). Routine operations will be split into two services, the Mars Structure Service (MSS) and Marsquake Service (MQS), which will be responsible, respectively, for defining the structure models and seismicity catalogs from the mission. The MSS will deliver a series of products before the landing, during the operations, and finally to the Planetary Data System (PDS) archive. Prior to the mission, we assembled a suite of a priori models of Mars, based on estimates of bulk composition and thermal profiles. Initial models during the mission will rely on modeling surface waves and impact-generated body waves independent of prior knowledge of structure. Later modeling will include simultaneous inversion of seismic observations for source and structural parameters. We use Bayesian inversion techniques to obtain robust probability distribution functions of interior structure parameters. Shallow structure will be characterized using the hammering of the heatflow probe mole, as well as measurements of surface wave ellipticity. Crustal scale structure will be constrained by measurements of receiver function and broadband Rayleigh wave ellipticity measurements. Core interacting body wave phases should be observable above modeled martian noise levels, allowing us to constrain deep structure. Normal modes of Mars should also be observable and can be used to estimate the globally averaged 1D structure, while combination with results from the InSight radio science mission and orbital observations will allow for constraint of deeper structure.

  5. Mars Mission Optimization Based on Collocation of Resources

    Science.gov (United States)

    Chamitoff, G. E.; James, G. H.; Barker, D. C.; Dershowitz, A. L.

    2003-01-01

    This paper presents a powerful approach for analyzing Martian data and for optimizing mission site selection based on resource collocation. This approach is implemented in a program called PROMT (Planetary Resource Optimization and Mapping Tool), which provides a wide range of analysis and display functions that can be applied to raw data or imagery. Thresholds, contours, custom algorithms, and graphical editing are some of the various methods that can be used to process data. Output maps can be created to identify surface regions on Mars that meet any specific criteria. The use of this tool for analyzing data, generating maps, and collocating features is demonstrated using data from the Mars Global Surveyor and the Odyssey spacecraft. The overall mission design objective is to maximize a combination of scientific return and self-sufficiency based on utilization of local materials. Landing site optimization involves maximizing accessibility to collocated science and resource features within a given mission radius. Mission types are categorized according to duration, energy resources, and in-situ resource utilization. Optimization results are shown for a number of mission scenarios.

  6. Accessing Information on the Mars Exploration Rovers Mission

    Science.gov (United States)

    Walton, J. D.; Schreiner, J. A.

    2005-12-01

    In January 2004, the Mars Exploration Rovers (MER) mission successfully deployed two robotic geologists - Spirit and Opportunity - to opposite sides of the red planet. Onboard each rover is an array of cameras and scientific instruments that send data back to Earth, where ground-based systems process and store the information. During the height of the mission, a team of about 250 scientists and engineers worked around the clock to analyze the collected data, determine a strategy and activities for the next day and then carefully compose the command sequences that would instruct the rovers in how to perform their tasks. The scientists and engineers had to work closely together to balance the science objectives with the engineering constraints so that the mission achieved its goals safely and quickly. To accomplish this coordinated effort, they adhered to a tightly orchestrated schedule of meetings and processes. To keep on time, it was critical that all team members were aware of what was happening, knew how much time they had to complete their tasks, and could easily access the information they need to do their jobs. Computer scientists and software engineers at NASA Ames Research Center worked closely with the mission managers at the Jet Propulsion Laboratory (JPL) to create applications that support the mission. One such application, the Collaborative Information Portal (CIP), helps mission personnel perform their daily tasks, whether they work inside mission control or the science areas at JPL, or in their homes, schools, or offices. With a three-tiered, service-oriented architecture (SOA) - client, middleware, and data repository - built using Java and commercial software, CIP provides secure access to mission schedules and to data and images transmitted from the Mars rovers. This services-based approach proved highly effective for building distributed, flexible applications, and is forming the basis for the design of future mission software systems. Almost two

  7. Surface Lander Missions to Mars: Support via Analysis of the NASA Ames Mars General Circulation Model

    Science.gov (United States)

    Murphy, James R.; Bridger, Alison F.C.; Haberle, Robert M.

    1997-01-01

    We have characterized the near-surface martian wind environment as calculated with a set of numerical simulations carried out with the NASA Ames Mars General Circulation Model (Mars GCM). These wind environments are intended to offer future spacecraft missions to the martian surface a data base from which to choose those locations which meet the mission's criteria for minimal near surface winds to enable a successful landing. We also became involved in the development and testing of the wind sensor which is currently onboard the Mars-bound Pathfinder lander. We began this effort with a comparison of Mars GCM produced winds with those measured by the Viking landers during their descent through the martian atmosphere and their surface wind measurements during the 3+ martian year lifetime of the mission. Unexpected technical difficulties in implementing the sophisticated Planetary Boundary Layer (PBL) scheme of Haberle et al. (1993) within the Mars GCM precluded our carrying out this investigation with the desired improvement to the model's treatment of the PBL. Thus, our results from this effort are not as conclusive as we had anticipated. As it turns out, similar difficulties have been experienced by other Mars modelling groups in attempting to implement very similar PBL routines into their GCMs (Mars General Circulation Model Intercomparison Workshop, held at Oxford University, United Kingdom, July 22-24, 1996; organized by J. Murphy, J. Hollingsworth, M. Joshi). These problems, which arise due to the nature of the time stepping in each of the models, are near to being resolved at the present. The model discussions which follow herein are based upon results using the existing, less sophisticated PBL routine. We fully anticipate implementing the tools we have developed in the present effort to investigate GCM results with the new PBL scheme implemented, and thereafter producing the technical document detailing results from the analysis tools developed during this

  8. The mission execution crew assistant : Improving human-machine team resilience for long duration missions

    NARCIS (Netherlands)

    Neerincx, M.A.; Lindenberg, J.; Smets, N.J.J.M.; Bos, A.; Breebaart, L.; Grant, T.; Olmedo-Soler, A.; Brauer, U.; Wolff, M.

    2008-01-01

    Manned long-duration missions to the Moon and Mars set high operational, human factors and technical demands for a distributed support system, which enhances human-machine teams' capabilities to cope autonomously with unexpected, complex and potentially hazardous situations. Based on a situated Cogn

  9. India's mission to Mars cost less than the movie Gravity: Multidimensional View in Engineering Education

    Science.gov (United States)

    Rani, Meenu; Kumar, Pawan; Vandana, Vandana

    2016-07-01

    Over the years, Mars has been the centre of attraction for science fiction writers, Hollywood movie makers, astrologers, astronomers and the scientific community. For scientists and technologists, Mars continues to be an enigma. This is essentially because even tough humans have dreamt for long about human colonisation of Mars. Indian space programme had a very humble beginning during the early 1960s. India launched its first satellite in 1975 with assistance from the erstwhile USSR. India achieved the status of space-faring nation2 by 1980, and by the end of 2014 has launched around 75 satellites. India has become the first nation to reach Mars on its maiden attempt after its Mars Orbiter Mission completed its 10-month journey and successfully entered the Red Planet's orbit. The Mars Orbiter Mission, a low-cost 74 million project, blasted off from Earth on November 5, 2013, aboard an Indian Polar Satellite Launch Vehicle. At its initial stage, the rocket booster placed the probe into Earth's orbit before the craft fired the engines to break free of Earth's gravity en route to Mars. This is India's first mission into such deep space to search for evidence of life on the Red Planet. But the mission's primary objective is technological-if successful, the country will be joining an elite club of nations: the United States, Russia and Europe. India is becoming known for low-cost innovation in diverse fields such as healthcare and education. The technological capability being demonstrated and the knowledge gained from the operations of the mission will be invaluable in future developments and also in the training of the flight operations and mission control staff. All of this capability can be carried forward to future launches and operations. The sustained presence of methane observed by previous missions suggests that an active production mechanism is at work, most likely tectonic in nature, although there are some suggestions that it may point to a biological origin

  10. Autonomous Navigation Results from the Mars Exploration Rover (MER) Mission

    Science.gov (United States)

    Maimone, Mark; Johnson, Andrew; Cheng, Yang; Willson, Reg; Matthies, Larry H.

    2004-01-01

    In January, 2004, the Mars Exploration Rover (MER) mission landed two rovers, Spirit and Opportunity, on the surface of Mars. Several autonomous navigation capabilities were employed in space for the first time in this mission. ]n the Entry, Descent, and Landing (EDL) phase, both landers used a vision system called the, Descent Image Motion Estimation System (DIMES) to estimate horizontal velocity during the last 2000 meters (m) of descent, by tracking features on the ground with a downlooking camera, in order to control retro-rocket firing to reduce horizontal velocity before impact. During surface operations, the rovers navigate autonomously using stereo vision for local terrain mapping and a local, reactive planning algorithm called Grid-based Estimation of Surface Traversability Applied to Local Terrain (GESTALT) for obstacle avoidance. ]n areas of high slip, stereo vision-based visual odometry has been used to estimate rover motion, As of mid-June, Spirit had traversed 3405 m, of which 1253 m were done autonomously; Opportunity had traversed 1264 m, of which 224 m were autonomous. These results have contributed substantially to the success of the mission and paved the way for increased levels of autonomy in future missions.

  11. Advanced propulsion options for the Mars cargo mission

    Science.gov (United States)

    Frisbee, Robert H.; Blandino, John J.; Sercel, Joel C.; Sargent, Mark S.; Gowda, Nandini

    1990-01-01

    Several advanced propulsion options for a split-mission piloted Mars exploration scenario are presented. The primary study focus is on identifying concepts that can reduce total initial mass in low earth orbit (IMLEO) for the cargo delivery portion of the mission; in addition, concepts that can reduce the trip time of the piloted option are assessed. The propulsion options considered are nuclear thermal propulsion, solar sails, multimegawatt-class nuclear electric propulsion, solar electric propulsion, magnetic sails, mass drivers, rail guns, solar thermal rockets, beamed-energy propulsion systems, and tethers. For the cargo mission, solar sails are found to provide the greatest mass savings over the baseline chemical system, although they suffer from having very long trip times; a good performance compromise between a low IMLEO and a short trip time can be obtained using multimegawatt-class nuclear electric propulsion systems.

  12. Use of Web 2.0 Technologies for Public Outreach on a Simulated Mars Mission

    Science.gov (United States)

    Shiro, B.; Palaia, J.; Ferrone, K.

    2009-12-01

    Recent advances in social media and internet communications have revolutionized the ways people interact and disseminate information. Astronauts are already starting to take advantage of these tools by blogging and tweeting from space, and almost all NASA missions now have presences on the major social networking sites. One priority for future human explorers on Mars will be communicating their experiences to the people back on Earth. During July 2009, a six-member crew of volunteers carried out a simulated Mars mission at the Flashline Mars Arctic Research Station (FMARS) on Devon Island in the Canadian Arctic. Living in a habitat, conducting EVAs wearing spacesuits, and observing communication delays with “Earth,” the crew endured restrictions similar to those that will be faced by future human Mars explorers. Throughout the expedition, crewmembers posted regular blog entries, reports, photos, videos, and updates to their website and social media outlets Twitter, Facebook, YouTube, and Picasa Web Albums. During the sixteen EVAs of their field science research campaign, FMARS crewmembers collected GPS track information and took geotagged photos using GPS-enabled cameras. They combined their traverse GPS tracks with photo location information into KML/KMZ files that website visitors can view in Google Maps or Google Earth. Although the crew observed a strict 20-minute communication delay with “Earth” to simulate a real Mars mission, they broke this rule to conduct four very successful live webcasts with student groups using Skype since education and public outreach were important objectives of the endeavor. This presentation will highlight the use of Web 2.0 technologies for public outreach during the simulated Mars expedition and the implications for other remote scientific journeys. The author embarks on a "rover" to carry out an EVA near the FMARS Habitat. The satellite dish to the right of the structure was used for all communications with the remote

  13. Planetary protection and Mars: requirements and constraints on the 2016 and 2018 missions, and beyond

    Science.gov (United States)

    Rummel, J.; Kminek, G.; Conley, C.

    2011-10-01

    The suite of missions being planned currently by NASA and ESA as a partnership under the name "ExoMars" include an orbiter and an entry, descent, and landing demonstrator module (EDM) for the 2016 "ExoMars Trace Gas Orbiter" mission (ExoMars TGO), as well as a highly capable rover to be launched in 2018 to address the original ExoMars objectives (including the Pasteur payload). This 2018 ExoMars rover is expected to begin a series of missions leading to the first sample return mission from Mars, also conducted jointly between NASA, ESA, and their partners (JMSR). Each of these missions and mission components has a role in enabling future Mars exploration, including the search for life or life-related compounds on Mars, and each of them has the potential to carry confounding biological and organic materials into sensitive environments on Mars. Accordingly, this suite of missions will be subjected to joint planetary protection requirements applied by both ESA and NASA to their respective components, according to the COSPAR-delineated planetary protection policy to protect Mars from contamination, and eventually to provide for the protection of the Earth from potential life returned in a martian sample. This paper will discuss the challenges ahead for mission designers and the mission science teams, and will outline some of the potential pitfalls involved with different mission options.

  14. Microbial Ecology of a Crewed Rover Traverse in the Arctic: Low Microbial Dispersal and Implications for Planetary Protection on Human Mars Missions

    Science.gov (United States)

    Schuerger, Andrew C.; Lee, Pascal

    2015-01-01

    Between April 2009 and July 2011, the NASA Haughton-Mars Project (HMP) led the Northwest Passage Drive Expedition (NWPDX), a multi-staged long-distance crewed rover traverse along the Northwest Passage in the Arctic. In April 2009, the HMP Okarian rover was driven 496 km over sea ice along the Northwest Passage, from Kugluktuk to Cambridge Bay, Nunavut, Canada. During the traverse, crew members collected samples from within the rover and from undisturbed snow-covered surfaces around the rover at three locations. The rover samples and snow samples were stored at subzero conditions (-20C to -1C) until processed for microbial diversity in labs at the NASA Kennedy Space Center, Florida. The objective was to determine the extent of microbial dispersal away from the rover and onto undisturbed snow. Interior surfaces of the rover were found to be associated with a wide range of bacteria (69 unique taxa) and fungi (16 unique taxa). In contrast, snow samples from the upwind, downwind, uptrack, and downtrack sample sites exterior to the rover were negative for both bacteria and fungi except for two colony-forming units (cfus) recovered from one downwind (1 cfu; site A4) and one uptrack (1 cfu; site B6) sample location. The fungus, Aspergillus fumigatus (GenBank JX517279), and closely related bacteria in the genus Brevibacillus were recovered from both snow (B. agri, GenBank JX517278) and interior rover surfaces. However, it is unknown whether the microorganisms were deposited onto snow surfaces at the time of sample collection (i.e., from the clothing or skin of the human operator) or via airborne dispersal from the rover during the 12-18 h layovers at the sites prior to collection. Results support the conclusion that a crewed rover traveling over previously undisturbed terrain may not significantly contaminate the local terrain via airborne dispersal of propagules from the vehicle. Key Words: Planetary protection-Contamination-Habitability-Haughton Crater-Mars. Astrobiology

  15. Microbial Ecology of a Crewed Rover Traverse in the Arctic: Low Microbial Dispersal and Implications for Planetary Protection on Human Mars Missions

    Science.gov (United States)

    Schuerger, Andrew C.; Lee, Pascal

    2015-01-01

    Between April 2009 and July 2011, the NASA Haughton-Mars Project (HMP) led the Northwest Passage Drive Expedition (NWPDX), a multi-staged long-distance crewed rover traverse along the Northwest Passage in the Arctic. In April 2009, the HMP Okarian rover was driven 496 km over sea ice along the Northwest Passage, from Kugluktuk to Cambridge Bay, Nunavut, Canada. During the traverse, crew members collected samples from within the rover and from undisturbed snow-covered surfaces around the rover at three locations. The rover samples and snow samples were stored at subzero conditions (-20C to -1C) until processed for microbial diversity in labs at the NASA Kennedy Space Center, Florida. The objective was to determine the extent of microbial dispersal away from the rover and onto undisturbed snow. Interior surfaces of the rover were found to be associated with a wide range of bacteria (69 unique taxa) and fungi (16 unique taxa). In contrast, snow samples from the upwind, downwind, uptrack, and downtrack sample sites exterior to the rover were negative for both bacteria and fungi except for two colony-forming units (cfus) recovered from one downwind (1 cfu; site A4) and one uptrack (1 cfu; site B6) sample location. The fungus, Aspergillus fumigatus (GenBank JX517279), and closely related bacteria in the genus Brevibacillus were recovered from both snow (B. agri, GenBank JX517278) and interior rover surfaces. However, it is unknown whether the microorganisms were deposited onto snow surfaces at the time of sample collection (i.e., from the clothing or skin of the human operator) or via airborne dispersal from the rover during the 12-18 h layovers at the sites prior to collection. Results support the conclusion that a crewed rover traveling over previously undisturbed terrain may not significantly contaminate the local terrain via airborne dispersal of propagules from the vehicle. Key Words: Planetary protection-Contamination-Habitability-Haughton Crater-Mars. Astrobiology

  16. Human Mars Entry, Descent, and Landing Architecture Study Overview

    Science.gov (United States)

    Cianciolo, Alicia D.; Polsgrove, Tara T.

    2016-01-01

    The Entry, Descent, and Landing (EDL) Architecture Study is a multi-NASA center activity to analyze candidate EDL systems as they apply to human Mars landing in the context of the Evolvable Mars Campaign. The study, led by the Space Technology Mission Directorate (STMD), is performed in conjunction with the NASA's Science Mission Directorate and the Human Architecture Team, sponsored by NASA's Human Exploration and Operations Mission Directorate. The primary objective is to prioritize future STMD EDL technology investments by (1) generating Phase A-level designs for selected concepts to deliver 20 t human class payloads, (2) developing a parameterized mass model for each concept capable of examining payloads between 5 and 40 t, and (3) evaluating integrated system performance using trajectory simulations. This paper summarizes the initial study results.

  17. Mars MetNet Mission - Martian Atmospheric Observational Post Network

    Science.gov (United States)

    Hari, Ari-Matti; Haukka, Harri; Aleksashkin, Sergey; Arruego, Ignacio; Schmidt, Walter; Genzer, Maria; Vazquez, Luis; Siikonen, Timo; Palin, Matti

    2017-04-01

    A new kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested. 1. MetNet Lander The MetNet landing vehicles are using an inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized. The landing impact will burrow the payload container into the Martian soil providing a more favorable thermal environment for the electronics and a suitable orientation of the telescopic boom with external sensors and the radio link antenna. It is planned to deploy several tens of MNLs on the Martian surface operating at least partly at the same time to allow meteorological network science. 2. Strawman Scientific Payload The strawman payload of the two MNL precursor models includes the following instruments: Atmospheric instruments: - MetBaro Pressure device - MetHumi Humidity device - MetTemp Temperature sensors Optical devices: - PanCam Panoramic - MetSIS Solar irradiance sensor with OWLS optical wireless system for data transfer - DS Dust sensor Composition and Structure Devices: Tri-axial magnetometer MOURA Tri-axial System Accelerometer The descent processes dynamic properties are monitored by a special 3-axis

  18. Magnesium and Carbon Dioxide - A Rocket Propellant for Mars Missions

    Science.gov (United States)

    Shafirovich, E. IA.; Shiriaev, A. A.; Goldshleger, U. I.

    1993-01-01

    A rocket engine for Mars missions is proposed that could utilize CO2 accumulated from the Martian atmosphere as an oxidizer. For use as possible fuel, various metals, their hydrides, and mixtures with hydrogen compounds are considered. Thermodynamic calculations show that beryllium fuels ensure the most impulse but poor inflammability of Be and high toxicity of its compounds put obstacles to their applications. Analysis of the engine performance for other metals together with the parameters of ignition and combustion show that magnesium seems to be the most promising fuel. Ballistic estimates imply that a hopper with the chemical rocket engine on Mg + CO2 propellant could be readily developed. This vehicle would be able to carry out 2-3 ballistic flights on Mars before the final ascent to orbit.

  19. The MAVEN mission to Mars: Communicating science through social media

    Science.gov (United States)

    Mason, T.; Renfrow, S.

    2012-12-01

    While science literacy rates in the U.S. have recently increased, overall levels remain remarkably low.There are opportunities for the public to learn about science and to engage directly with real-life practitioners. It is the responsibility of science education and communications professionals to provide these opportunities and to assess the effectiveness of each platform. At the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP), we utilize a diverse, well-tested approach to introduce science to the public and to give scientists access to the broadest possible audience. This poster will focus on NASA's MAVEN mission to Mars and the social media outlets we have incorporated into our Education and Public Outreach (EPO) program in order to introduce rather complex science concepts to the public. We'll examine several evaluation tools that are used to provide ongoing, immediate feedback regarding our strategies and to guide long-term efforts. MAVEN educators and scientists are capitalizing on the recent excitement surrounding Mars science and the public's fascination with the search for life to bring the science of the mission directly to a variety of audiences. Our EPO professionals are using cross-platform, transportable content to maximize exposure and create pathways for two-way interactions between our audience and mission experts. We are using social media tools to build a community that will join us in the MAVEN journey and its important scientific discoveries.

  20. The Raman Laser Spectrometer for the ExoMars Rover Mission to Mars

    Science.gov (United States)

    Rull, Fernando; Maurice, Sylvestre; Hutchinson, Ian; Moral, Andoni; Perez, Carlos; Diaz, Carlos; Colombo, Maria; Belenguer, Tomas; Lopez-Reyes, Guillermo; Sansano, Antonio; Forni, Olivier; Parot, Yann; Striebig, Nicolas; Woodward, Simon; Howe, Chris; Tarcea, Nicolau; Rodriguez, Pablo; Seoane, Laura; Santiago, Amaia; Rodriguez-Prieto, Jose A.; Medina, Jesús; Gallego, Paloma; Canchal, Rosario; Santamaría, Pilar; Ramos, Gonzalo; Vago, Jorge L.; RLS Team

    2017-07-01

    The Raman Laser Spectrometer (RLS) on board the ESA/Roscosmos ExoMars 2020 mission will provide precise identification of the mineral phases and the possibility to detect organics on the Red Planet. The RLS will work on the powdered samples prepared inside the Pasteur analytical suite and collected on the surface and subsurface by a drill system. Raman spectroscopy is a well-known analytical technique based on the inelastic scattering by matter of incident monochromatic light (the Raman effect) that has many applications in laboratory and industry, yet to be used in space applications. Raman spectrometers will be included in two Mars rovers scheduled to be launched in 2020. The Raman instrument for ExoMars 2020 consists of three main units: (1) a transmission spectrograph coupled to a CCD detector; (2) an electronics box, including the excitation laser that controls the instrument functions; and (3) an optical head with an autofocus mechanism illuminating and collecting the scattered light from the spot under investigation. The optical head is connected to the excitation laser and the spectrometer by optical fibers. The instrument also has two targets positioned inside the rover analytical laboratory for onboard Raman spectral calibration. The aim of this article was to present a detailed description of the RLS instrument, including its operation on Mars. To verify RLS operation before launch and to prepare science scenarios for the mission, a simulator of the sample analysis chain has been developed by the team. The results obtained are also discussed. Finally, the potential of the Raman instrument for use in field conditions is addressed. By using a ruggedized prototype, also developed by our team, a wide range of terrestrial analog sites across the world have been studied. These investigations allowed preparing a large collection of real, in situ spectra of samples from different geological processes and periods of Earth evolution. On this basis, we are working

  1. Getting Under Mars' Skin: The InSight Mission to the Deep Interior of Mars

    Science.gov (United States)

    Banerdt, W. B.; Asmar, S.; Banfield, D. J.; Christensen, U. R.; Clinton, J. F.; Dehant, V. M. A.; Folkner, W. M.; Garcia, R.; Giardini, D.; Golombek, M. P.; Grott, M.; Hudson, T.; Johnson, C. L.; Kargl, G.; Knapmeyer-Endrun, B.; Kobayashi, N.; Lognonne, P. H.; Maki, J.; Mimoun, D.; Mocquet, A.; Morgan, P.; Panning, M. P.; Pike, W. T.; Spohn, T.; Tromp, J.; Weber, R. C.; Wieczorek, M. A.; Russell, C. T.

    2015-12-01

    The InSight mission to Mars will launch in March of 2016, landing six months later in Elysium Planitia. In contrast to the 43 previous missions to Mars, which have thoroughly explored its surface features and chemistry, atmosphere, and searched for past or present life, InSight will focus on the deep interior of the planet. InSight will investigate the fundamental processes of terrestrial planet formation and evolution by performing the first comprehensive surface-based geophysical measurements on Mars. It will provide key information on the composition and structure of an Earth-like planet that has gone through most of the evolutionary stages of the Earth up to plate tectonics. The planet Mars can play a key role in understanding early terrestrial planet formation and evolution. Unlike the Earth, its overall structure appears to be relatively unchanged since the first few hundred million years after formation; unlike the Moon, it is large enough that the P-T conditions within the planet span an appreciable fraction of the terrestrial planet range. Thus the large-scale chemical and structural evidence preserved in Mars' interior should tell us a great deal about the processes of planetary differentiation and heat transport. InSight will undertake this investigation using the "traditional" geophysical techniques of seismology, precision tracking (for rotational dynamics), and heat flow measurement. The predominant challenge, in addition to the technical problems of the remote installation and operation of instruments on a distant and harsh planetary surface, comes from the practical limitation of working with data acquired from a single station. We will discuss how we overcome these limitations through the application of single-station seismic analysis techniques, which take advantage of some of the specific attributes of Mars, and global heat flow modeling, which allows the interpretation of a single measurement of a spatially inhomogeneous surface distribution.

  2. Mars MetNet Mission - Martian Atmospheric Observational Post Network

    Science.gov (United States)

    Harri, Ari-Matti; Aleksashkin, Sergey; Arruego, Ignacio; Schmidt, Walter; Ponomarenko, Andrey; Apestigue, Victor; Genzer, Maria; Vazquez, Luis; Uspensky, Mikhail; Haukka, Harri

    2016-04-01

    A new kind of planetary exploration mission for Mars is under development in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested. MetNet Lander The MetNet landing vehicles are using an inflatable entry and descent system instead of rigid heat shields and parachutes as earlier semi-hard landing devices have used. This way the ratio of the payload mass to the overall mass is optimized. The landing impact will burrow the payload container into the Martian soil providing a more favorable thermal environment for the electronics and a suitable orientation of the telescopic boom with external sensors and the radio link antenna. It is planned to deploy several tens of MNLs on the Martian surface operating at least partly at the same time to allow meteorological network science. Strawman Scientific Payload The strawman payload of the two MNL precursor models includes the following instruments: Atmospheric instruments: • MetBaro Pressure device • MetHumi Humidity device • MetTemp Temperature sensors Optical devices: • PanCam Panoramic • MetSIS Solar irradiance sensor with OWLS optical wireless system for data transfer • DS Dust sensor Composition and Structure Devices: • Tri-axial magnetometer MOURA • Tri-axial System Accelerometer The descent processes dynamic properties are monitored by a special

  3. Workshop Report on Deep Mars: Accessing the Subsurface of Mars on Near Term Missions

    Science.gov (United States)

    Langhoff, Stephanie R. (Editor)

    2008-01-01

    The workshop encompassed three major themes. The first theme was the scientific objectives of drilling, which center on the search for clues to the existence of past life and to the geological and climate history of Mars. Key questions are where and how deep to drill? Planetary protection issues were stressed as an important consideration in the design of any drilling mission. Secondly, architectures for drilling missions were discussed, including an overview of most of the current drills in operation that would be applicable to drilling on Mars. Considerable emphasis was placed on remote operation and drilling automation technologies. Finally, alternatives to conventional drilling were discussed. These included underground moles, penetrometers, horizontal drilling, impactors, and access to the subsurface from subsurface cavities. Considerable discussion centered on the possible Mars drilling missions that could be performed in both the near and longer term. The workshop participants concluded that useful science could be obtained today using low-cost impactors, with or without a sheperding spacecraft.

  4. Nuclear Thermal Rocket/Vehicle Design Options for Future NASA Missions to the Moon and Mars

    Science.gov (United States)

    Borowski, Stanley K.; Corban, Robert R.; Mcguire, Melissa L.; Beke, Erik G.

    1995-01-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a

  5. Nuclear Thermal Rocket/vehicle design options for future NASA missions to the Moon and Mars

    Science.gov (United States)

    Borowski, Stanley K.; Corban, Robert R.; McGuire, Melissa L.; Beke, Erik G.

    1995-09-01

    The nuclear thermal rocket (NTR) provides a unique propulsion capability to planners/designers of future human exploration missions to the Moon and Mars. In addition to its high specific impulse (approximately 850-1000 s) and engine thrust-to-weight ratio (approximately 3-10), the NTR can also be configured as a 'dual mode' system capable of generating electrical power for spacecraft environmental systems, communications, and enhanced stage operations (e.g., refrigeration for long-term liquid hydrogen storage). At present the Nuclear Propulsion Office (NPO) is examining a variety of mission applications for the NTR ranging from an expendable, single-burn, trans-lunar injection (TLI) stage for NASA's First Lunar Outpost (FLO) mission to all propulsive, multiburn, NTR-powered spacecraft supporting a 'split cargo-piloted sprint' Mars mission architecture. Each application results in a particular set of requirements in areas such as the number of engines and their respective thrust levels, restart capability, fuel operating temperature and lifetime, cryofluid storage, and stage size. Two solid core NTR concepts are examined -- one based on NERVA (Nuclear Engine for Rocket Vehicle Application) derivative reactor (NDR) technology, and a second concept which utilizes a ternary carbide 'twisted ribbon' fuel form developed by the Commonwealth of Independent States (CIS). The NDR and CIS concepts have an established technology database involving significant nuclear testing at or near representative operating conditions. Integrated systems and mission studies indicate that clusters of two to four 15 to 25 klbf NDR or CIS engines are sufficient for most of the lunar and Mars mission scenarios currently under consideration. This paper provides descriptions and performance characteristics for the NDR and CIS concepts, summarizes NASA's First Lunar Outpost and Mars mission scenarios, and describes characteristics for representative cargo and piloted vehicles compatible with a

  6. Astrobiology and the Human Exploration of Mars

    Science.gov (United States)

    Levine, Joel S.; Garvin, James B.; Drake, B. G.; Beaty, David

    2010-01-01

    In March 2007, the Mars Exploration Program Analysis Group (MEPAG) chartered the Human Exploration of Mars Science Analysis Group (HEM-SAG), co-chaired by J. B. Garvin and J. S. Levine and consisting of about 30 Mars scientists from the U.S. and Europe. HEM-SAG was one of a half dozen teams charted by NASA to consider the human exploration of Mars. Other teams included: Mars Entry, Descent and Landing, Human Health and Performance, Flight and Surface Systems, and Heliospheric/Astrophysics. The results of these Mars teams and the development of an architecture for the human exploration of Mars were summarized in two recent publications: Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 (B. G. Drake, Editor), 100 pages, July 2009 and Human Exploration of Mars Design Reference Architecture 5.0, NASA Special Publication-2009-566 Addendum (B. G. Drake, Editor), 406 pages, July 2009. This presentation summarizes the HEM-SAG conclusions on astrobiology and the search for life on Mars by humans.

  7. Design of a Mars atmosphere simulation chamber and testing a Raman Laser Spectrometer (RLS) under conditions pertinent to Mars rover missions

    National Research Council Canada - National Science Library

    Motamedi, K; Colin, AP; Hooijschuur, JH; Postma, O; Lootens, R; Pruijser, D; Stoevelaar, R; Ariese, F; Hutchinson, I B; Ingley, R; Davies, GR

    2015-01-01

    .... In this context, the European Space Agency (ESA) and NASA selected a Raman spectrometer in the payload of the future ExoMars and Mars 2020 missions to identify organic compounds and mineral products indicative of biological activity on Mars...

  8. Navigation Challenges of the Mars Phoenix Lander Mission

    Science.gov (United States)

    Portock, Brian M.; Kruizinga, Gerhard; Bonfiglio, Eugene; Raofi, Behzad; Ryne, Mark

    2008-01-01

    The Mars Phoenix Lander mission was launched on August 4th, 2007. To land safely at the desired landing location on the Mars surface, the spacecraft trajectory had to be controlled to a set of stringent atmospheric entry and landing conditions. The landing location needed to be controlled to an elliptical area with dimensions of 100km by 20km. The two corresponding critical components of the atmospheric entry conditions are the entry flight path angle (target: -13.0 deg +/-0.21 deg) and the entry time (within +/-30 seconds). The purpose of this paper is to describe the navigation strategies used to overcome the challenges posed during spacecraft operations, which included an attitude control thruster calibration campaign, a trajectory control strategy, and a trajectory reconstruction strategy. Overcoming the navigation challenges resulted in final Mars atmospheric entry conditions just 0.007 deg off in entry flight path angle and 14.9 sec early in entry time. These entry dispersions in addition to the entry, descent, and landing trajectory dispersion through the atmosphere, lead to a final landing location just 7 km away from the desired landing target.

  9. Mars Analog Mission: Glacier Simulation AMADEE-15 by Austrian Space Forum

    Science.gov (United States)

    Groemer, Gernot; Losiak, Anna; Soucek, Alexander; Plank, Clemens; Zanardini, Laura; Sejkora, Nina; Sams, Sebastian

    2016-04-01

    Austrian Space Forum: The Austrian Space Forum (OeWF, Österreichisches Weltraum Forum) is a non-profit, citizen-science organization of aerospace specialists and enthusiasts. One of its specialisations is Mars analog research. Analog studies and analog instrument validation supported all planetary surface missions so far [1] and are considered as an effective tool to prepare for future missions to Mars [2,3,4,5,6,7]. Since 2006, OeWF has conducted 11 Mars analog field campaigns in diverse locations that represented: 1) average current Mars conditions (the Mars Desert Research Station (MDRS) in Utah in 2006 [8] and the Northern Sahara near Erfoud, Morocco in 2013 [9]); 2) the early and wet Mars (analog site of Rio Tinto Spain in 2011 [10]); and 3) subsurface exploration (Dachstein Ice Caves in 2012). During these campaigns, 68 experiments and major engineering tests were performed, whichwere mostly focused on astrobiology, robotics, human factors, geoscience and spacesuit operations. Major assets of OeWF include two advanced spacesuit simulators Aouda [11], an increasingly evolving Mission Support Center, a dedicated Remote Science Support team [12], and a growing set of Standard Operating Procedures defining major workflows within a mission team. The spacesuit simulators were operated by a total of 18 analog astronauts, who were selected and trained during a >6 month program. Total EVA time is nearly 600 hours, leading to a significant experience in analog field simulations. AMADEE-15: The mission took place between August 2nd and 14th 2015 at the Kaunertal Glacier in Tyrol, Austria. This glacier was selected as a study site because of its accessibility and high number of micro-landscapes analogous to those expected on Mars in locations where abundant water ice is present. As such it is considered a first-tier Mars analog [13]. The Base station was located at N 46.86320, E 10.71401 at 2800 masl, the highest reached location was on elevation of 2887 m. Eleven

  10. The MEDA's Radiometer TIRS for the MARS2020 Mission

    Science.gov (United States)

    Pérez Izquierdo, Joel; Sebastián Martínez, Eduardo; Bravo, Andrés; Ferrándiz, Ricardo; Ramos, Miguel; Martínez, Germán; Rodríguez Manfredi, Jose Antonio

    2016-10-01

    The TIRS (Thermal InfraRed Sensor) instrument is one of the payloads of NASA MARS2020 mission, that is expected to take off in 2020, and is designed to operate for at least three Martian years on surface. The TIRS is part of the Mars Environmental Dynamics Analyzer (MEDA), formed for other environmental sensors, which will be placed in the MARS2020 Rover, and is been developing by the Spanish Center of Astrobiology (CAB).The main objectives of MEDA's Thermal InfraRed Sensor are:-Characterize the net radiative forcing (within 10%), and constrain the conductive forcing at the local surface and near-surface atmosphere.-Record the surface skin temperature and the UV-VIS-NIR irradiance solar flux at an accuracy of [10%] at full range of the atmosphere.TIRS design has heritage from GTS-REMS on the Mars Science Laboratory, in the Curiosity Rover. The aim of the instrument is to measure the radiative flux emitted from the Martian surface, sky and the CO2 atmosphere using five thermopiles sensors in four wavelength bands, model TS100 provided by IPHT (Institute of Photonic Technology, Jena, Germany). The TIRS has three downward pointing thermopiles to measure the IR fluxes emitted by the surface, separating brightness surface temperature from emissivity and surface reflected upward short wave radiation, using the thermopiles IR3 (0.3-3 µm), IR4 (6.5-inf µm), IR5 (8-14 µm). Additionally, it has two more thermopiles pointing to the sky, the thermopiles IR1 (6.5-inf µm) and IR2 (14.5-15.5 µm), which captures the downward fluxes of thermal infrared radiation and air temperature nearby the sensor.Thermopiles are accommodated inside a mechanical assembly that is designed to ensure a low thermal gradient. This assembly also accommodates a calibration plate, aimed to intercept part of the thermopiles FOV, and capable to do an in-flight recalibration.

  11. Definition of exobiology experiments for future Mars missions

    Science.gov (United States)

    Mancinelli, Rocco L.

    1996-01-01

    During the past year we have concentrated on two objectives. The first objective is ongoing and is to define the experimental parameters that are necessary to conduct autonomously a mineralogical analysis of the Martian surface in situ using differential thermal analysis coupled with gas chromatography (DTA/GC). The rationale in support of this objective is that proper interpretation of the mineralogical data from the DTA/GC can be used to better describe the present and past environments of Mars, leading to a better assessment of the probability of life evolving on Mars. To meet these objectives we have analyzed a number of samples collected from nature using the DTA/GC. One of the more significant findings was that in samples of desert varnish we detected magnetite and maghemite that may serve as potential biomarkers applicable to DTA/GC analyses of Martian surface material during landed missions. The second objective follows from the first and is to better understand microbe-environment interactions by determining the response of microbes to changes in their environment, including extreme desiccation and solar UV-radiation. The rationale behind this is to develop hypotheses regarding what may have happened to life that may have arose on Mars, and microbial life that may get to the surface of Mars via spacecraft, or meteors from Earth. To accomplish this objective we have exposed microbes, collected from NaCl and gypsum-halite crystals, to the space environment aboard the ESA-German Biopan facility for 15 days. The most significant finding was that these microbes survived the exposure better than others.

  12. Mars Methane Analogue Mission (M3): Near Subsurface Electromagnetic Techniques and Analysis

    Science.gov (United States)

    Boivin, A.; Samson, C.; Holladay, J. S.; Cloutis, E. A.; Ernst, R. E.

    2012-03-01

    As part of the Canadian Space Agency's Mars Methane Analogue Mission, a micro-rover mission, an Electromagnetic Induction Sounder (EMIS) was used with the goal of demonstrating its value as a potential science instrument onboard future rovers.

  13. Boots on Mars: Earth Independent Human Exploration of Mars

    Science.gov (United States)

    Burnett, Josephine; Gill, Tracy R.; Ellis, Kim Gina

    2017-01-01

    This package is for the conduct of a workshop during the International Space University Space Studies Program in the summer of 2017 being held in Cork, Ireland. It gives publicly available information on NASA and international plans to move beyond low Earth orbit to Mars and discusses challenges and capabilities. This information will provide the participants a basic level of insight to develop a response on their perceived obstacles to a future vision of humans on Mars.

  14. Mars Mission Surface Operation Simulation Testing of Lithium-Ion Batteries

    Science.gov (United States)

    Smart, M. C.; Bugga, R.; Whitcanack, L. D.; Chin, K. B.; Davies, E. D.; Surampudi, S.

    2003-01-01

    The objectives of this program are to 1) Assess viability of using lithium-ion technology for future NASA applications, with emphasis upon Mars landers and rovers which will operate on the planetary surface; 2) Support the JPL 2003 Mars Exploration Rover program to assist in the delivery and testing of a 8 AHr Lithium-Ion battery (Lithion/Yardney) which will power the rover; 3) Demonstrate applicability of using lithium-ion technologyfor future Mars applications: Mars 09 Science Laboratory (Smart Lander) and Future Mars Surface Operations (General). Mission simulation testing was carried out for cells and batteries on the Mars Surveyor 2001 Lander and the 2003 Mars Exploration Rover.

  15. Crushable Structure for the Landing Impact of a European Mars Exploration Mission (ExoMars 2016)

    Science.gov (United States)

    del Campo, F.; Bernar, E.; Biondetti, G.; Jauregui, Y. E.; Walloschek, T.

    2012-07-01

    The first mission of the ExoMars programme, scheduled to arrive at Mars in 2016, includes an Entry, Descent and Landing Demonstrator Module (EDM). One of the EDM objectives is to demonstrate the possibility to safely absorb the landing impact by means of a deformable structure placed under the Surface Platform (SP), the EDM sub-module reaching ground. This is one of the key technologies in preparation for ESA's contribution to subsequent missions to Mars. SENER is responsible for several structures and mechanisms for the EDM, with TAS-I as Prime contractor. The paper focuses on the Crushable Structure, which is the main element affected by the impact. Its function is to absorb the landing impact after thruster switch off at around 2 meters over the Martian surface, allowing a safe landing for the equipments in terms of acceleration levels, and for the whole structure in terms of stability and non-overturning. An optimized structure has been designed for this purpose, within a restricted envelope, able to meet these requirements for a wide range of terrain configurations, including rocks and slopes.

  16. HUMAN MISSION OF EDUCATION

    Directory of Open Access Journals (Sweden)

    Suzana Miovska Spaseva

    2013-06-01

    Full Text Available The article examines the complex role and great responsibility of the education today in development of the moral strength and human values of the children and youth. At the beginning of the article the author reconsiders the pedagogical ideas of Maria Montessori and her concept of education for peace as an instrument for reconstruction of the society and for improvement of the human living. Than the analysis of the moral values in the contemporary society is made and several issues and dilemmas are discussed referring the value disorientation of the youth and the importance of the models of adult’s moral behavior in their search for personal identity. On the basis of this analysis, the human dimension of the education is elaborated enhancing the need for its understanding as support of development, which is based on several crucial elements: love, freedom and spirit of community.

  17. Updated Mars Mission Architectures Featuring Nuclear Thermal Propulsion

    Science.gov (United States)

    Rodriguez, Mitchell A.; Percy, Thomas K.

    2017-01-01

    Nuclear thermal propulsion (NTP) can potentially enable routine human exploration of Mars and the solar system. By using nuclear fission instead of a chemical combustion process, and using hydrogen as the propellant, NTP systems promise rocket efficiencies roughly twice that of the best chemical rocket engines currently available. The most recent major Mars architecture study featuring NTP was the Design Reference Architecture 5.0 (DRA 5.0), performed in 2009. Currently, the predominant transportation options being considered are solar electric propulsion (SEP) and chemical propulsion; however, given NTP's capabilities, an updated architectural analysis is needed. This paper provides a top-level overview of several different architectures featuring updated NTP performance data. New architectures presented include a proposed update to the DRA 5.0 as well as an investigation of architectures based on the current Evolvable Mars Campaign, which is the focus of NASA's current analyses for the Journey to Mars. Architectures investigated leverage the latest information relating to NTP performance and design considerations and address new support elements not available at the time of DRA 5.0, most notably the Orion crew module and the Space Launch System (SLS). The paper provides a top level quantitative comparison of key performance metrics as well as a qualitative discussion of improvements and key challenges still to be addressed. Preliminary results indicate that the updated NTP architectures can significantly reduce the campaign mass and subsequently the costs for assembly and number of launches.

  18. Autonomous Onboard Science Image Analysis for Future Mars Rover Missions

    Science.gov (United States)

    Gulick, V. C.; Morris, R. L.; Ruzon, M. A.; Roush, T. L.

    1999-01-01

    To explore high priority landing sites and to prepare for eventual human exploration, future Mars missions will involve rovers capable of traversing tens of kilometers. However, the current process by which scientists interact with a rover does not scale to such distances. Specifically, numerous command cycles are required to complete even simple tasks, such as, pointing the spectrometer at a variety of nearby rocks. In addition, the time required by scientists to interpret image data before new commands can be given and the limited amount of data that can be downlinked during a given command cycle constrain rover mobility and achievement of science goals. Experience with rover tests on Earth supports these concerns. As a result, traverses to science sites as identified in orbital images would require numerous science command cycles over a period of many weeks, months or even years, perhaps exceeding rover design life and other constraints. Autonomous onboard science analysis can address these problems in two ways. First, it will allow the rover to transmit only "interesting" images, defined as those likely to have higher science content. Second, the rover will be able to anticipate future commands. For example, a rover might autonomously acquire and return spectra of "interesting" rocks along with a high resolution image of those rocks in addition to returning the context images in which they were detected. Such approaches, coupled with appropriate navigational software, help to address both the data volume and command cycle bottlenecks that limit both rover mobility and science yield. We are developing fast, autonomous algorithms to enable such intelligent on-board decision making by spacecraft. Autonomous algorithms developed to date have the ability to identify rocks and layers in a scene, locate the horizon, and compress multi-spectral image data. Output from these algorithms could be used to autonomously obtain rock spectra, determine which images should be

  19. Future Plans for MetNet Lander Mars Missions

    Science.gov (United States)

    Harri, A.-M.; Schmidt, W.; Guerrero, H.; Vázquez, L.

    2012-04-01

    For the next decade several Mars landing missions and the construction of major installations on the Martian surface are planned. To be able to bring separate large landing units safely to the surface in sufficiently close vicinity to one another, the knowledge of the Martian weather patterns, especially dust and wind, is important. The Finnish - Russian - Spanish low-mass meteorological stations are designed to provide the necessary observation data network which can provide the in-situ observations for model verification and weather forecasts. As the requirements for a transfer vehicle are not very extensive, the MetNet Landers (MNLs) [1] could be launched with any mission going to Mars. This could be a piggy-bag solution to a Martian orbiter from ESA, NASA, Russia or China or an add-on to a planned larger Martian Lander like ExoMars. Also a dedicated launch with several units from LEO is under discussion. The data link implementation uses the UHF-band with Proximity-1 protocol as other current and future Mars lander missions which makes any Mars-orbiting satellite a potential candidate for a data relay to Earth. Currently negotiations for possible opportunities with the European and the Chinese space agencies are ongoing aiming at a launch window in the 2015/16 time frame. In case of favorable results the details will be presented at the EGU. During 2011 the Mars MetNet Precursor Mission (MMPM) has completed all flight qualifications for Lander system and payload. At least two units will be ready for launch in the 2013/14 launch window or beyond. With an entry mass of 22.2kg per unit and 4kg payload allocation the MNL(s) can be easily deployed from a wide range of transfer vehicles. The simple structure allows the manufacturing of further units on short notice and to reasonable prices. The autonomous operations concept makes the implementation of complex commanding options unnecessary while offering a flexible adaptation to different operational scenarios. This

  20. Habitation Concepts for Human Missions Beyond Low-Earth-Orbit

    Science.gov (United States)

    Smitherman, David V.

    2016-01-01

    The Advanced Concepts Office at the NASA Marshall Space Flight Center has been engaged for several years in a variety of study activities to help define various options for deep space habitation. This work includes study activities supporting asteroid, lunar and Mars mission activities for the Human spaceflight Architecture Team (HAT), the Deep Space Habitat (DSH) project, and the Exploration Augmentation Module (EAM) project through the NASA Advanced Exploration Systems (AES) Program. The missions under consideration required human habitation beyond low-Earth-orbit (LEO) including deep space habitation in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar surface missions, deep space research facilities, Mars vehicle servicing, and Mars transit missions. Additional considerations included international interest and near term capabilities through the International Space Station (ISS) and Space Launch System (SLS) programs. A variety of habitat layouts have been considered, including those derived from the existing ISS systems, those that could be fabricated from SLS components, and other approaches. This paper presents an overview of several leading designs explored in late fiscal year (FY) 2015 for asteroid, lunar, and Mars mission habitats and identifies some of the known advantages and disadvantages inherent in each. Key findings indicate that module diameters larger than those used for ISS can offer lighter structures per unit volume, and sufficient volume to accommodate consumables for long-duration missions in deep space. The information provided with the findings includes mass and volume data that should be helpful to future exploration mission planning and deep space habitat design efforts.

  1. Planning for the V&V of infused software technologies for the Mars Science Laboratory Mission

    Science.gov (United States)

    Feather, Martin S.; Fesq, Lorraine M.; Ingham, Michel D.; Klein, Suzanne L.; Nelson, Stacy D.

    2004-01-01

    NASA's Mars Science Laboratory (MSL) rover mission is planning to make use of advanced software technologies in order to support fulfillment of its ambitious science objectives. The mission plans to adopt the Mission Data System (MDS) as the mission software architecture, and plans to make significant use of on-board autonomous capabilities for the rover software.

  2. A Human Exploration Zone on the East Rim of Hellas Basin, Mars: Mesopotamia

    Science.gov (United States)

    Gallegos, Z. E.; Newsom, H. E.

    2015-10-01

    This abstract highlights a previously unexplored area in the Hellas Planitia region of Mars. The exploration zone proposed offers scientifically compelling regions of interest, as well as abundant resources for reoccurring human missions.

  3. Mission to Mars. Reliable method for liquid solutions diagnostics

    Directory of Open Access Journals (Sweden)

    Vladimir F. Krapivin

    2014-06-01

    Full Text Available Manned mission to Mars aims at solving many problems associated with operational diagnostics of liquid solutions (including drinking water, medical issues, and liquid fuels. This paper mainly proposes a new method to solve these problems both during the flight and the stay on the surface of the planet. The proposed method consists of a database development of spectral images of liquid solutions supplied by a multiple-channel spectroellipsometer and the diagnostics of liquid solutions using this database. In addition, the process of learning and the expert system for adaptive recognition of liquid solutions is described. Finally, the test of the expert system is demonstrated for a series of liquid solutions.

  4. Getting ready for the manned mission to Mars: the astronauts' risk from space radiation.

    Science.gov (United States)

    Hellweg, Christine E; Baumstark-Khan, Christa

    2007-07-01

    Space programmes are shifting towards planetary exploration and, in particular, towards missions by human beings to the Moon and to Mars. Radiation is considered to be one of the major hazards for personnel in space and has emerged as the most critical issue to be resolved for long-term missions both orbital and interplanetary. The two cosmic sources of radiation that could impact a mission outside the Earth's magnetic field are solar particle events (SPE) and galactic cosmic rays (GCR). Exposure to the types of ionizing radiation encountered during space travel may cause a number of health-related problems, but the primary concern is related to the increased risk of cancer induction in astronauts. Predictions of cancer risk and acceptable radiation exposure in space are extrapolated from minimal data and are subject to many uncertainties. The paper describes present-day estimates of equivalent doses from GCR and solar cosmic radiation behind various shields and radiation risks for astronauts on a mission to Mars.

  5. Martian Multimedia: The Agony and Ecstasy of Communicating Real-Time, Authentic Science During the Phoenix Mars Mission

    Science.gov (United States)

    Bitter, C.; Buxner, S. R.

    2009-03-01

    The Phoenix Mars Mission faced robust communication challenges requiring real-time solutions. Managing the message from Mars and ensuring the highest quality of science data and news releases were our top priorities during mission surface operations.

  6. Extraction of Atmospheric Water on Mars for the Mars Reference Mission

    Science.gov (United States)

    Adan-Plaza, Sergio; Carpenter, Kirsten; Elias, Laila; Grover, Rob; Hilstad, Mark; Hoffman, Chris; Schneider, Matt; Bruckner, Adam

    1998-01-01

    The University of Washington has designed an in situ resource utilization system to provide water to a life support system in the laboratory module of the NASA Reference Mission to Mars. This system, the Water Vapor Adsorption Reactor (WAVAR), extracts water vapor from the Martian atmosphere by adsorption in a bed of type 3A zeolite molecular sieve. The zeolite 3A adsorbs the water vapor until nearly saturated and is then heated within a sealed chamber by microwave radiation to drive off the water for collection. The water vapor flows to a condenser where it freezes and is later liquefied for use in the life support system. In the NASA Reference Mission, water, methane, and oxygen are produced for life support and propulsion via the Sabatier/Electrolysis process from seed hydrogen brought from Earth and Martian atmospheric carbon dioxide. In order for the WAVAR system to be compatible with the NASA Reference Mission, its mass must be less than that of the seed hydrogen and cryogenic tanks apportioned for life support in the Sabatier/Electrolysis process. The WAVAR system is designed for atmospheric conditions observed by the Viking missions, which measured an average global atmospheric water vapor concentration of approx. 2 x 10-6kg/cubic meter. WAVAR performance is analyzed taking into consideration hourly and daily fluctuations in Martian ambient temperature and the corresponding effects on zeolite performance.

  7. Circadian rhythm of autonomic cardiovascular control during Mars500 simulated mission to Mars.

    Science.gov (United States)

    Vigo, Daniel E; Tuerlinckx, Francis; Ogrinz, Barbara; Wan, Li; Simonelli, Guido; Bersenev, Evgeny; Van Den Bergh, Omer; Aubert, André E

    2013-10-01

    The Mars500 project was conceived to gather knowledge about the psychological and physiological effects of living in an enclosed environment during 520 d as would be required for a real mission to Mars. Our objective was to investigate the circadian profile of heart rate variability (HRV) in the context of the Mars500 study. Before, during, and after confinement, 24-h EKG records were obtained from the six crewmembers who participated in the mission. Autonomic activity was evaluated through time and frequency domain indexes of HRV analysis. Circadian rhythmicity was assessed both by averaging hourly HRV along wake and sleep scheduled periods and by fitting a 24-h harmonic to the hourly means. During confinement, wake HRV showed (mean +/- SE) a progressive increase in mean RR interval (from 778 +/- 24 ms to 916 +/- 42 ms), and in the amplitude (values are wavelet power coefficients) of very low (from 13.3 +/- 0.3 to 14.1 +/- 0.2) and high (from 7.8 +/- 0.4 to 8.3 +/- 0.3) frequency components. During sleep, the relative amplitude of the high frequency component of HRV decreased (from 11.8 +/- 1.6 to 9.4 +/- 1.8 normalized units). Overall, sleep-wake differences of HRV showed a progressive decrease of the relative amplitude of the high frequency component. Also, circadian HRV rhythms were dampened during confinement. Data revealed diminished amplitude of the rest-activity pattern of the autonomic nervous system parasympathetic function. Reduced daylight exposure and mood changes could account for this observation.

  8. Manned mars mission enhancements using Pratt & Whitney escort combined propulsion and power system

    Science.gov (United States)

    Joyner, Russell; Feller, Gerald J.

    1999-01-01

    The purpose of this paper is to describe the cost implications to manned Mars missions when a nuclear thermal combined propulsion and power unit is used for main propulsion and mission power. The paper uses a series of mission opportunities during the NASA DRM focus period and looks at how a NTR (Nuclear Thermal Rocket) can be used to increase the Mars mission payload delivery capability and mission flexibility across the entire mission spectrum. In propulsive mode, a nuclear reactor is used to heat hot hydrogen, which is expanded through a converging/diverging nozzle to generate thrust. Heat pickup in the nozzle and the radial beryllium reflectors is used to drive the turbomachinery in the ESCORT expander cycle. In electrical mode, the reactor is used to heat a mixture of helium and xenon to drive a closed-loop Brayton cycle in order to generate electrical energy. A Mars transportation system integrated performance methodology was developed to assess the sensitivity to weight, thrust and impulse to the Mars conjunction class mission requirements. Propellant tanks, propulsion system mass, shielding, and Brayton cycle power conversion unit requirements were included in this evaluation. This paper examines how the design characteristics of the ESCORT derivative propulsion and power system affect the mission payload capability and the earth launch vehicle design requirements. The same reactor design is also used for Mars surface power reactor, delivered as payload by the ESCORT derivative powered Mars transfer stage. Trade curves of mission mass and payload are presented.

  9. A low-cost approach to the exploration of Mars through a robotic technology demonstrator mission

    Science.gov (United States)

    Ellery, Alex; Richter, Lutz; Parnell, John; Baker, Adam

    2003-11-01

    We present a proposed robotic mission to Mars - Vanguard - for the Aurora Arrow programme which combines an extensive technology demonstrator with a high scientific return. The novel aspect of this technology demonstrator is the demonstration of "water mining" capabilities for in-situ resource utilisation in conjunction with high-value astrobiological investigation within a low mass lander package of 70 kg. The basic architecture comprises a small lander, a micro-rover and a number of ground-penetrating moles. This basic architecture offers the possibility of testing a wide variety of generic technologies associated with space systems and planetary exploration. The architecture provides for the demonstration of specific technologies associated with planetary surface exploration, and with the Aurora programme specifically. Technology demonstration of in-situ resource utilisation will be a necessary precursor to any future human mission to Mars. Furthermore, its modest mass overhead allows the reuse of the already built Mars Express bus, making it a very low cost option.

  10. Impact of rocket propulsion technology on the radiation risk in missions to Mars

    Science.gov (United States)

    Durante, M.; Bruno, C.

    2010-10-01

    Exposure to cosmic radiation is today acknowledged as a major obstacle to human missions to Mars. In fact, in addition to the poor knowledge on the late effects of heavy ions in the cosmic rays, simple countermeasures are apparently not available. Shielding is indeed very problematic in space, because of mass problems and the high-energy of the cosmic rays, and radio-protective drugs or dietary supplements are not effective. However, the simplest countermeasure for reducing radiation risk is to shorten the duration time, particularly the transit time to Mars, where the dose rate is higher than on the planet surface. Here we show that using nuclear electric propulsion (NEP) rockets, the transit time could be substantially reduced to a point where radiation risk could be considered acceptable even with the current uncertainty on late effects.

  11. Frontier In-Situ Resource Utilization for Enabling Sustained Human Presence on Mars

    Science.gov (United States)

    Moses, Robert W.; Bushnell, Dennis M.

    2016-01-01

    The currently known resources on Mars are massive, including extensive quantities of water and carbon dioxide and therefore carbon, hydrogen and oxygen for life support, fuels and plastics and much else. The regolith is replete with all manner of minerals. In Situ Resource Utilization (ISRU) applicable frontier technologies include robotics, machine intelligence, nanotechnology, synthetic biology, 3-D printing/additive manufacturing and autonomy. These technologies combined with the vast natural resources should enable serious, pre- and post-human arrival ISRU to greatly increase reliability and safety and reduce cost for human colonization of Mars. Various system-level transportation concepts employing Mars produced fuel would enable Mars resources to evolve into a primary center of trade for the inner solar system for eventually nearly everything required for space faring and colonization. Mars resources and their exploitation via extensive ISRU are the key to a viable, safe and affordable, human presence beyond Earth. The purpose of this paper is four-fold: 1) to highlight the latest discoveries of water, minerals, and other materials on Mars that reshape our thinking about the value and capabilities of Mars ISRU; 2) to summarize the previous literature on Mars ISRU processes, equipment, and approaches; 3) to point to frontier ISRU technologies and approaches that can lead to safe and affordable human missions to Mars; and 4) to suggest an implementation strategy whereby the ISRU elements are phased into the mission campaign over time to enable a sustainable and increasing human presence on Mars.

  12. Extraterrestrial Moessbauer spectroscopy: more than 3 years of Mars exploration and developments for future missions

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Christian, E-mail: christian.schroeder-1@nasa.gov [NASA Johnson Space Center, Astromaterials Research and Exploration Science, Mail Code KR (United States); Klingelhoefer, Goestar, E-mail: klingel@mail.uni-mainz.de [Johannes Gutenberg-Universitaet, Institut fuer Anorganische und Analytische Chemie (Germany); Morris, Richard V., E-mail: richard.v.morris@nasa.gov [NASA Johnson Space Center, Astromaterials Research and Exploration Science, Mail Code KR (United States); Rodionov, Daniel S., E-mail: rodionov@iki.rssi.ru; Fleischer, Iris, E-mail: fleischi@uni-mainz.de; Blumers, Mathias, E-mail: mblumers@uni-mainz.de [Johannes Gutenberg-Universitaet, Institut fuer Anorganische und Analytische Chemie (Germany)

    2008-02-15

    After almost 4 years of operating on the surface of Mars, Moessbauer spectroscopy has become a mature technique for robotic planetary exploration. The combination of quantitative information about the distribution of Fe among its oxidation and coordination states, identification of Fe-bearing phases, and relative distribution of Fe among those phases provides valuable contributions to the search for past water activity, the assessment of past environmental conditions, and the suitability for life of the two NASA Mars Exploration Rover landing sites. Experience from the Mars Exploration Rover Mission highlights needs for improvement of the instruments for future missions such as the Russian Phobos-Grunt and the European ExoMars rover.

  13. Mars

    CERN Document Server

    Day, Trevor

    2006-01-01

    Discusses the fundamental facts concerning this mysterious planet, including its mass, size, and atmosphere, as well as the various missions that helped planetary scientists document the geological history of Mars. This volume also describes Mars'' seasons with their surface effects on the planet and how they have changed over time.

  14. Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions: Workshop Report

    Science.gov (United States)

    Race, Margaret S. (Editor); Johnson, James E. (Editor); Spry, James A. (Editor); Siegel, Bette; Conley, Catharine A.

    2015-01-01

    This report on Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions summarizes the presentations, deliberations and findings of a workshop at NASA Ames Research Center, March 24-26, 2015, which was attended by more than 100 participants representing a diverse mix of science, engineering, technology, and policy areas. The main objective of the three-day workshop was to identify specific knowledge gaps that need to be addressed to make incremental progress towards the development of NASA Procedural Requirements (NPRs) for Planetary Protection during human missions to Mars.

  15. Using Mars and the Mer Mission to Teach Science: A Curriculum Designed for Teachers and Their Students

    Science.gov (United States)

    Aubele, J. C.; Stanley, J.; Grochowski, A.; Jones, K.; Aragon, J.

    2006-12-01

    Learning opportunities can be exceptionally successful when linked to national, newsworthy events. Planetary missions are particularly exciting in engaging teachers, and their students, because they combine the human "stories" of scientists and engineers with cutting-edge technology and new science. Planetary suface missions, such as the Mars Exploration Rover (MER) mission, return beautiful and human-scale images that can virtually transport the viewer to another world. The MER mission allows children and adults to participate in the exploration of one of our nearest neighbors in space. New discoveries in the natural history of Mars have been used as the basis of a new integrated curriculum created by Museum and class-room educators designed to serve informal (family learning) and formal (classroom) audiences. The curriculum uses Mars and the MER mission as a "hook" to teach a wide range of topics that relate to all of the sciences, mathematics, social studies (history and exploration), science and society, career readiness, language and literacy, and visual arts. The curriculum, entitled "Making Tracks on Mars: Teacher Resource and Activity Guide," includes the following key features that have contributed to its success and usefulness: (1) basic information about Mars, Mars missions, and the MER mission providing teachers with the knowledge they may lack; (2) activities that follow a standardized format and include necessary information, pre-lesson preparation and post-lesson closure and extensions, and all information and/or images needed; (3) activities that cross the curriculum and can be used to address many different standards; (4) relevant state and national standards listed for each activity; (5) annotated MER image file and PowerPoint presentation for easy classroom use; (6) lists of additional Mars-related resources; (7) emphasis on local connections to the mission to enable teachers and students to feel personally connected; (8) elementary through high

  16. Orbital Transfer Techniques for Round-Trip Mars Missions

    Science.gov (United States)

    Landau, Damon

    2013-01-01

    The human exploration of Phobos and Deimos or the retrieval of a surface sample launched to low-Mars orbit presents a highly constrained orbital transfer problem. In general, the plane of the target orbit will not be accessible from the arrival or departure interplanetary trajectories with an (energetically optimal) tangential burn at periapsis. The orbital design is further complicated by the addition of a high-energy parking orbit for the relatively massive Deep Space Vehicle to reduce propellant expenditure, while the crew transfers to and from the target orbit in a smaller Space Exploration Vehicle. The proposed strategy shifts the arrival and departure maneuvers away from periapsis so that the apsidal line of the parking orbit lies in the plane of the target orbit, permitting highly efficient plane change maneuvers at apoapsis of the elliptical parking orbit. An apsidal shift during the arrival or departure maneuver is approximately five times as efficient as maneuvering while in Mars orbit, thus significantly reducing the propellant necessary to transfer between the arrival, target, and departure orbits.

  17. Orbital Transfer Techniques for Round-Trip Mars Missions

    Science.gov (United States)

    Landau, Damon

    2013-01-01

    The human exploration of Phobos and Deimos or the retrieval of a surface sample launched to low-Mars orbit presents a highly constrained orbital transfer problem. In general, the plane of the target orbit will not be accessible from the arrival or departure interplanetary trajectories with an (energetically optimal) tangential burn at periapsis. The orbital design is further complicated by the addition of a high-energy parking orbit for the relatively massive Deep Space Vehicle to reduce propellant expenditure, while the crew transfers to and from the target orbit in a smaller Space Exploration Vehicle. The proposed strategy shifts the arrival and departure maneuvers away from periapsis so that the apsidal line of the parking orbit lies in the plane of the target orbit, permitting highly efficient plane change maneuvers at apoapsis of the elliptical parking orbit. An apsidal shift during the arrival or departure maneuver is approximately five times as efficient as maneuvering while in Mars orbit, thus significantly reducing the propellant necessary to transfer between the arrival, target, and departure orbits.

  18. Searching for life on Mars: selection of molecular targets for ESA's aurora ExoMars mission.

    Science.gov (United States)

    Parnell, John; Cullen, David; Sims, Mark R; Bowden, Stephen; Cockell, Charles S; Court, Richard; Ehrenfreund, Pascale; Gaubert, Francois; Grant, William; Parro, Victor; Rohmer, Michel; Sephton, Mark; Stan-Lotter, Helga; Steele, Andrew; Toporski, Jan; Vago, Jorge

    2007-08-01

    The European Space Agency's ExoMars mission will seek evidence of organic compounds of biological and non-biological origin at the martian surface. One of the instruments in the Pasteur payload may be a Life Marker Chip that utilizes an immunoassay approach to detect specific organic molecules or classes of molecules. Therefore, it is necessary to define and prioritize specific molecular targets for antibody development. Target compounds have been selected to represent meteoritic input, fossil organic matter, extant (living, recently dead) organic matter, and contamination. Once organic molecules are detected on Mars, further information is likely to derive from the detailed distribution of compounds rather than from single molecular identification. This will include concentration gradients beneath the surface and gradients from generic to specific compounds. The choice of biomarkers is informed by terrestrial biology but is wide ranging, and nonterrestrial biology may be evident from unexpected molecular distributions. One of the most important requirements is to sample where irradiation and oxidation are minimized, either by drilling or by using naturally excavated exposures. Analyzing regolith samples will allow for the search of both extant and fossil biomarkers, but sequential extraction would be required to optimize the analysis of each of these in turn.

  19. Astrobiology and other Mars science: how can humans help (and from where)?

    Science.gov (United States)

    Rummel, John; Conley, Catharine

    2016-07-01

    There are many advocates for the human exploration of Mars who wax poetical when discussing how good it is going to be, but there are only a few who may be willing to write requirements for how much direct human surface exploration on Mars needs to be possible before attempting it is worth the investment, or to compare modes of human exploration to see which one is most cost-efficient for the initial human missions to Mars (assuming that humans working in near-Mars space is a goal in and of itself. For example, the recent MEPAG Scientific Objectives for the Human Exploration of Mars Science Analysis Group (MEPAG HSO-SAG) [1] stated that "A defensible evaluation of surface science operations options and candidate scenarios cannot be done at this time - we recommend deferring this to a future team." Alternatively [e.g., 2], there are considerations of the science that can be done from the martian moon Phobos that do not require surface operations on Mars at all, except by robots controlled through low-latency telepresence. The promise of how to deliver better Mars science for the money (and risk) will be discussed in this paper, and some estimates made on how often a human has to step outside on Mars (and step back in) to accomplish more science than a telepresent rover. We will also look at what the estimates of contamination from on-site human explorers can mean to the search for possible indigenous life on Mars. Some [3] say that Mars is already "contaminated" by Earth organisms brought to Mars from Earth through impact-generated bolide exchanges, but (as noted in [4]) that statement suggests that they do not really hold a solid concept of what contamination is, and what it may mean to both our understanding of the pre-human past on Mars, as well as to the preservation of Mars resources for future human inhabitants. Refs. 1. Beaty et al., Candidate scientific objectives for the human exploration of Mars, and implications for the identification of Martian

  20. Academic Training: Surviving in space: the challenges of a manned mission to Mars

    CERN Multimedia

    Françoise Benz

    2005-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 26, 27, 28 October from 11:00 to 12:00 - Main Auditorium, bldg. 500 Surviving in space: the challenges of a manned mission to Mars by L. S. Pinsky / Univ. Houston, USA Program : Lecture I: Understanding the Space Radiation Environment Lecture II: Dosimetry and the Effects of the Exposure of Human Tissue to Heavily Ionizing Radiation Lecture III: Modelling the Interaction of the Space Radiation in Spacecraft & Humans, and Assessing the Risks on a Mission to Mars... ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch If you wish to participate in one of the following courses, please tell to your supervisor and apply electronically from the course description pages that can be found on the Web at: http://www.cern.ch/Training/ or fill in an 'application for training' form available from your Departmental Secretariat or from your DTO (Departmental Training Officer). Applications will be accepted in the order ...

  1. ISRU in the Context of Future European Human Mars Exploration

    Science.gov (United States)

    Baker, A. M.; Tomatis, C.

    2002-01-01

    ISRU or In-Situ Resource Utilisation is the use of Martian resources to manufacture, typically, life support consumables (e.g. water, oxygen, breathing buffer gases), and propellant for a return journey to Earth. European studies have shown that some 4kg of reaction mass must be launched to LEO to send 1kg payload to Mars orbit, with landing on the Mars surface reducing payload mass still further. This results in very high transportation costs to Mars, and still higher costs for returning payloads to Earth. There is therefore a major incentive to reduce payload mass for any form of Mars return mission (human or otherwise) by generating consumables on the surface. ESA through its GSTP programme has been investigating the system level design of a number of mission elements as potential European contributions to an international human Mars exploration mission intended for the 2020-2030 timeframe. One of these is an ISRU plant, a small chemical factory to convert feedstock brought from Earth (hydrogen), and Martian atmospheric gases (CO2 and trace quantities of nitrogen and argon) into methane and oxygen propellant for Earth return and life support consumables, in advance of the arrival of astronauts. ISRU technology has been the subject of much investigation around the world, but little detailed research or system level studies have been reported in Europe. Furthermore, the potential applicability of European expertise, technology and sub- system studies to Martian ISRU is not well quantified. Study work covered in this paper has compared existing designs (e.g. NASA's Design Reference Mission, DLR and Mars Society studies) with the latest ESA derived requirements for human Mars exploration, and has generated a system level ISRU design. This paper will review and quantify the baseline chemical reactions essential for ISRU, including CO2 collection and purification, Sabatier reduction of CO2 with hydrogen to methane and water, and electrolysis of water in the context of

  2. Six-Axis Force-Torque Transducer for Mars 2018 Mission Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A transducer element that is hearty enough for a Mars lander mission needs to be developed so that a six-axis force and torque transducer is possible. The technical...

  3. Overview of the Mars Science Laboratory mission: Bradbury Landing to Yellowknife Bay and beyond

    National Research Council Canada - National Science Library

    Vasavada, A. R; Grotzinger, J. P; Arvidson, R. E; Calef, F. J; Crisp, J. A; Gupta, S; Hurowitz, J; Mangold, N; Maurice, S; Schmidt, M. E; Wiens, R. C; Williams, R. M. E; Yingst, R. A

    2014-01-01

    The Mars Science Laboratory mission reached Bradbury Landing in August 2012. In its first 500 sols, the rover Curiosity was commissioned and began its investigation of the habitability of past and present environments within Gale Crater...

  4. Storyboard for the Medical System Concept of Operations for Mars Exploration Missions

    Science.gov (United States)

    Antonsen, Eric; Hailey, Melinda; Reyes, David; Rubin, David; Urbina, Michelle

    2017-01-01

    This storyboard conceptualizes one scenario of an integrated medical system during a Mars exploration mission. All content is for illustrative purposes only and neither defines nor implies system design requirement.

  5. Destination Deimos: A Design Reference Architecture for Initial Human Exploration of the Mars System

    Science.gov (United States)

    Logan, James S.; Adamo, D. R.

    2011-01-01

    The two biggest challenges to successful human operations in interplanetary space are flight dynamics, constrained by the cold hard physics of the rocket equation, and bioastronautics, the psychophysiological realities of human adaptation, or lack thereof, to the deep space environment. Without substantial innovation in project/mission architecture and vehicle design, human exploration of the Mars system could be problematic for decades. Although a human landing on Mars is inevitable, humans-in-the-loop telerobotic exploration from the outer Martian moon Deimos is the best way to begin. Precursor robotic missions for reconnaissance and local site preparation will be required.

  6. The Sample Handling System for the Mars Icebreaker Life Mission: from Dirt to Data

    Science.gov (United States)

    Dave, Arwen; Thompson, Sarah J.; McKay, Christopher P.; Stoker, Carol R.; Zacny, Kris; Paulsen, Gale; Mellerowicz, Bolek; Glass, Brian J.; Wilson, David; Bonaccorsi, Rosalba; hide

    2013-01-01

    The Mars icebreaker life mission will search for subsurface life on mars. It consists of three payload elements: a drill to retrieve soil samples from approx. 1 meter below the surface, a robotic sample handling system to deliver the sample from the drill to the instruments, and the instruments themselves. This paper will discuss the robotic sample handling system.

  7. An examination of emerging in-space propulsion concepts for one-year crewed mars missions

    Science.gov (United States)

    Pelaccio, Dennis G.; Rauwolf, Gerald A.; Maggio, Gaspare; Patel, Saroj; Sorensen, Kirk

    2002-01-01

    A study was completed that provides a meaningful, even-handed, comparison assessment of promising candidate, in-space, exploration propulsion concepts to support emerging ``near-term'' crewed Mars mission applications. In particular, the study examined the mission performance feasibility and risk of a number of near-, mid-, and far-term in-space propulsion concepts to support crewed Mars missions starting in 2018 that can have the crewed portion of the mission performed in one year or less. This study used exploration propulsion system team technology specialist advocates to identify seven meaningful, representative mission architecture scenarios to ``best'' demonstrate the capability of such in-space propulsion technology options to support the near-term crewed Mars mission requirement. Additionally, a common set of top-level mission/system requirements was established for the study, which was incorporated in the assessment of all the mission options considered. Mission performance for abundant chemical (Ab-Chem), bimodal nuclear thermal rocket (BNTR), high power nuclear electric propulsion (HP-NEP), momentum tether/chemical, solar electric propulsion (SEP), solar electric propulsion/chemical (SEP-Chem) and Variable Specific Impulse Magnetoplasma Rocket (VASIMR) based missions were estimated for this quick trip, 2018 crewed Mars flight opportunity. Each of these mission options are characterized in terms of their overall mission performance capability, crewed mission duration, Initial Mass to Low Earth Orbit (IMLEO), which including dry and propellant weight required, overall mission time, number of flight elements (propulsion units/tank sets), and number of Earth-to-Orbit (ETO) vehicle launches. Potential top-level development, implementation, and operational issues/risks for each mission scenario considered are also identified. .

  8. The DREAMS payload on-board the Entry and descent Demonstrator Module of the ExoMars mission

    Science.gov (United States)

    Esposito, F.; Montmessin, F.; Debei, S.; Colombatti, G.; Harri, A.-M.; Pommereau, J.-P.; Wilson, C.; Aboudan, A.; Molfese, C.; Zaccariotto, M.; Mugnuolo, R.

    2012-04-01

    DREAMS (Dust characterization, Risk assessment and Environment Analyser on the Martian Surface) is the scientific payload selected by ESA and NASA for the accommodation on the Entry and descent Demonstrator Module (EDM) of the ExoMars mission to be launched in 2016. It is a meteorological station with the additional capability to perform measurements of the electric fields close to the surface of Mars. It is an autonomous system that includes its own battery for power supply. It is constituted by the following subsystems: MarsTem (thermometer), MetBaro (pressure sensor), MetHumi (humidity sensor), MetWind (2-D wind sensor), MicroARES (electric field sensor), ODS (optical depth sensor), a triaxial accelerometer (for attitude measurements), a CEU (Central Electronic Unit) and a battery. All systems in DREAMS have a solid heritage from other missions and have very high TRL. The ExoMars 2016 EDM mission is foreseen to reach Mars during the climatological dust storm season. DREAMS will have the unique chance of making scientific measurements able to characterize the martian environment in this dust loaded scenario. Even with low resources (volume, mass, energy) DREAMS will be able to perform novel measurements that will improve our understanding of the martian environment and dust cycle. DREAMS will perform: • Meteorological measurements by monitoring pressure, temperature, wind speed and direction, humidity and dust opacity during a martian sol at its landing site. • Characterization of the martian boundary layer. • Hazard monitoring by providing a comprehensive dataset to help engineers to quantify hazards for equipments and human crew: velocity of windblown dust, electrostatic charging, existence of discharges, and electromagnetic noise potentially affecting communications. • The first ever investigation of atmospheric electric phenomena on Mars. The DREAMS experiment gathers a wide consortium of institutions led by Italy, reflecting the current involvement

  9. Solar Warning Architecture for Manned Missions to Mars

    Science.gov (United States)

    2011-06-01

    always encouraging when dealing with STK neophytes; Jennifer Jahn, Kristen Jones, and Lynn Curtis who have provided outstanding support throughout...organizations (Wilson and Clarke 2006), (Mars Society 1999), ( Ashworth 2007), and industries (Zubrin, Baker and Gwynne 1991) have produced studies of...epoch. 117 Bibliography Ashworth , Stephen. Three Ways to Mars. London: British Interplanetary Society, 2007. Bostrom, C. O., C. L. Fischer

  10. The DREAMS experiment on-board the Schiaparelli lander of ExoMars mission

    Science.gov (United States)

    Esposito, F.

    2015-10-01

    The DREAMS package is a suite of sensors for the characterization of the Martian basic state meteorology and of the atmospheric electric properties at the landing site of the Entry, descent and landing Demonstration Module (EDM) of the ExoMars mission. The EDM will land on Meridiani Planum in October 2016, during the statistical dust storm season. This will allow DREAMS to investigate the status of the atmosphere of Mars during this particular season and also to understand the role of dust as a potential source of electrical phenomena on Mars. DREAMS will be the first instrument to perform a measurement of electric field on Mars. DREAMS FM has been completely developed and tested and it has been delivered to ESA for integration on the Schiaparelli lander of the ExoMars 2016 mission. Launch is foreseen for January 2016.

  11. Joint US-USSR Long duration Antarctic Mars calibration Balloon (LAMB) mission

    Science.gov (United States)

    Floyd, S. R.; Trombka, J. I.; Evans, L. G.; Starr, R.; Squyres, S. W.; Surkov, Iu. A.; Moskaleva, L. P.; Shcheglov, O.; Mitugov, A. G.; Rester, A. C.

    1991-01-01

    The Long duration Antarctic Mars calibration Balloon (LAMB) project has been established at Goddard Space Flight Center for the evaluation and cross calibration of U.S. and USSR remote sensing gamma-ray and neutron detectors. These detectors are analogs of those flown on the Soviet Phobos mission around Mars and those to be flown on the upcoming U.S. Mars Observer mission. Cosmic rays, which are normally filtered out by the atmosphere, and the earth's magnetic field, will induce gamma-ray and neutron emissions from about a half ton of simulated Mars soil aboard the gondola. The cross calibration of these instruments should greatly facilitate the data analysis from both missions and play a role in U.S.-USSR cooperation in space.

  12. Biohazards for human activities on the Moon and Mars

    Science.gov (United States)

    Kminek, G.; Schmitt, D.

    Exobiological research on Mars is a key element of the Aurora Exploration Program. It has been acknowledged that it is essential to have a better understanding of a potential Martian biosphere before sending humans. Reason for that is not so much the fact that humans will contaminate Mars once they have landed, but to understand the presence of a biosphere on Mars as a potential hazard to human exploration. A biological hazard could come from either extinct life in the form of toxins that would only affect the crew, or from extant life in the form of pathogens that could affect the terrestrial biosphere using the human mission as a host. Both threats are very small, but cannot be neglected due to a lack of adequate information. There is no biological hazard that can be expected on the surface of the Moon. However, the Apollo missions showed clearly the problems that the all-penetrating lunar dust can generate within a few days of surface operations. Mars, like the Moon, is a dusty planet. And it is the dust that is the major carrier for any contamination - be it biological or chemical. Therefore it is of utmost importance to better understand the hazardous potential of Martian dust in order to establish risk factors for potential biological hazards. This requires dedicated in-situ and sample return missions. However, any robotic missions could realistically only assess whether biological hazards are widespread on Mars or not. They will not be capable to asses the biological hazard in areas that can only be explored by a crew. Hence, it is necessary to develop capabilities to keep the Martian dust out of the habitation area. A new ESA-study on decontamination procedures for EVA-suits, habitat areas, and waste, will partly address these issues. The logical next step would be to go to the Moon and test technologies and procedures for isolating the habitat (including the EVA-suit) from the dust on the Moon where there is no danger of biological contamination in case of

  13. Geologic overview of the Mars Science Laboratory rover mission at the Kimberley, Gale crater, Mars

    Science.gov (United States)

    Rice, Melissa S.; Gupta, Sanjeev; Treiman, Allan H.; Stack, Kathryn M.; Calef, Fred; Edgar, Lauren A.; Grotzinger, John; Lanza, Nina; Le Deit, Laetitia; Lasue, Jeremie; Siebach, Kirsten L.; Vasavada, Ashwin; Wiens, Roger C.; Williams, Joshua

    2017-01-01

    The Mars Science Laboratory (MSL) Curiosity rover completed a detailed investigation at the Kimberley waypoint within Gale crater from sols 571-634 using its full science instrument payload. From orbital images examined early in the Curiosity mission, the Kimberley region had been identified as a high-priority science target based on its clear stratigraphic relationships in a layered sedimentary sequence that had been exposed by differential erosion. Observations of the stratigraphic sequence at the Kimberley made by Curiosity are consistent with deposition in a prograding, fluvio-deltaic system during the late Noachian to early Hesperian, prior to the existence of most of Mount Sharp. Geochemical and mineralogic analyses suggest that sediment deposition likely took place under cold conditions with relatively low water-to-rock ratios. Based on elevated K2O abundances throughout the Kimberley formation, an alkali feldspar protolith is likely one of several igneous sources from which the sediments were derived. After deposition, the rocks underwent multiple episodes of diagenetic alteration with different aqueous chemistries and redox conditions, as evidenced by the presence of Ca-sulfate veins, Mn-oxide fracture fills, and erosion-resistant nodules. More recently, the Kimberley has been subject to significant aeolian abrasion and removal of sediments to create modern topography that slopes away from Mount Sharp, a process that has continued to the present day.

  14. Societal issues as Mars mission impediments: planetary protection and contamination concerns.

    Science.gov (United States)

    Race, M S

    1995-03-01

    Societal and non-scientific factors represent potentially significant impediments for future Mars missions, especially in areas involving planetary protection. This paper analyzes public concerns about forward contamination to Mars and back contamination to Earth, evaluates major areas where lack of information may lead to uncontrollable impacts on future missions, and concludes that NASA should adopt a strategy that actively plans both the generation and subsequent management of planetary protection information to ensure that key audiences obtain needed information in a timely manner. Delay or avoidance in dealing with societal issues early in mission planning will increase the likelihood of public opposition, cost increases and missed launch windows. While this analysis of social and non-scientific considerations focuses on future Mars missions, the findings are also relevant for RTG launches, nuclear propulsion and other NASA activities perceived to have health, safety or environmental implications.

  15. 78 FR 55762 - National Environmental Policy Act; Mars 2020 Mission

    Science.gov (United States)

    2013-09-11

    ... life on Mars, collect and store a compelling set of soil and rock samples that could be returned to.... Some science instruments may require the use of small quantities of radioactive material for...

  16. Mars

    CERN Document Server

    Payment, Simone

    2017-01-01

    This curriculum-based, fun, and approachable book offers everything young readers need to know to begin their study of the Red Planet. They will learn about the fundamental aspects of the Mars, including its size, mass, surface features, interior, orbit, and spin. Further, they will learn about the history of the missions to Mars, including the Viking spacecraft and the Curiosity and MAVEN rovers. Finally, readers will learn about why scientists think there's a chance that Mars is or was suitable for life. With stunning imagery from NASA itself, readers will have a front seat-view of the missi

  17. Mission to Mars using integrated propulsion concepts: considerations, opportunities, and strategies

    Energy Technology Data Exchange (ETDEWEB)

    Accettura, A.G. [Space Propulsion Design Dept., Rome (Italy); Bruno, C. [University of Rome ' ' La Sapienza' ' , Rome (Italy); Casotto, S.; Marzari, F. [University of Padua (Italy). CISAS

    2004-04-01

    The aim of this paper is to evaluate the feasibility of a mission to Mars using the Integrated Propulsion Systems (EPS) which means to couple Nuclear-MPD-ISPU propulsion systems. In particular both mission analysis and propulsion aspects are analysed together with technological aspects. Identifying possible mission scenarios will lead to the study of possible strategies for Mars Exploration and also of methods for reducing cost. As regard to IPS, the coupling between Nuclear Propulsion (Rubbia's engine) and Superconductive MPD propulsion is considered for the Earth-Mars trajectories: major emphasis is given to the advantages of such a system. The In Situ Resource Utilization (ISRU) concerns on-Mars operations; In Situ Propellant Utilization (ISPU) is foreseen particularly for LOX-CH4 engines for Mars Ascent Vehicles and this possibility is analyzed from a technological point of view. Tether Systems are also considered during interplanetary trajectories and as space elevators on Mars orbit. Finally strategic considerations associated to this mission are considered also. (author)

  18. Mission to Mars using integrated propulsion concepts: considerations, opportunities, and strategies.

    Science.gov (United States)

    Accettura, Antonio G; Bruno, Claudio; Casotto, Stefano; Marzari, Francesco

    2004-04-01

    The aim of this paper is to evaluate the feasibility of a mission to Mars using the Integrated Propulsion Systems (IPS) which means to couple Nuclear-MPD-ISPU propulsion systems. In particular both mission analysis and propulsion aspects are analyzed together with technological aspects. Identifying possible mission scenarios will lead to the study of possible strategies for Mars Exploration and also of methods for reducing cost. As regard to IPS, the coupling between Nuclear Propulsion (Rubbia's engine) and Superconductive MPD propulsion is considered for the Earth-Mars trajectories: major emphasis is given to the advantages of such a system. The In Situ Resource Utilization (ISRU) concerns on-Mars operations; In Situ Propellant Utilization (ISPU) is foreseen particularly for LOX-CH4 engines for Mars Ascent Vehicles and this possibility is analyzed from a technological point of view. Tether Systems are also considered during interplanetary trajectories and as space elevators on Mars orbit. Finally strategic considerations associated to this mission are considered also.

  19. A Phobos-Deimos Mission as an Element of the NASA Mars Design Reference Architecture 5.0

    Science.gov (United States)

    Hoffman, Stephen J.

    2011-01-01

    NASA has conducted a series of mission studies over the past 25 years examining the eventual exploration of the surface of Mars by humans. The latest version of this evolutionary series of design reference missions/architectures - Design Reference Architecture 5 or DRA-5 - was completed in 2007. This paper examines the implications of including a human mission to explore the moons of Mars and teleoperate robots in various locations, but not to land the human crews on Mars, as an element of this reference architecture. Such a mission has been proposed several times during this same 25 year evolution leading up to the completion of DRA-5 primarily as a mission of testing the in-space vehicles and operations while surface vehicles and landers are under development. But such a precursor or test mission has never been explicitly included as an element of this Architecture. This paper will first summarize the key features of the DRA-5 to provide context for the remainder of the assessment. This will include a description of the in-space vehicles that would be the subject of a shakedown test during the Mars orbital mission. A decision tree will be used to illustrate the factors that will be analyzed, and the sequence in which they will be addressed, for this assessment. The factors that will be analyzed include the type of interplanetary transfer orbit (opposition class versus conjunction class), the type of parking orbit (circular versus elliptical), and the type of propulsion technology (high thrust chemical versus nuclear thermal rocket). The manner in which each of these factors impacts an individual mission will be described. In addition to the direct impact of these factors, additional considerations impacting crew health and overall programmatic outcomes will be discussed. Numerical results for each of the factors in the decision tree will be grouped with derived qualitative impacts from crew health and programmatic consideration. These quantitative and qualitative

  20. An independent assessment of the technical feasibility of the Mars One mission plan - Updated analysis

    Science.gov (United States)

    Do, Sydney; Owens, Andrew; Ho, Koki; Schreiner, Samuel; de Weck, Olivier

    2016-03-01

    In recent years, the Mars One program has gained significant publicity for its plans to colonize the red planet. Beginning in 2025, the program plans to land four people on Mars every 26 months via a series of one-way missions, using exclusively existing technology. This one-way approach has frequently been cited as a key enabler of accelerating the first crewed landing on Mars. While the Mars One program has received considerable attention, little has been published in the technical literature regarding the formulation of its mission architecture. In light of this, we perform an independent analysis of the technical feasibility of the Mars One mission plan, focusing on the architecture of the life support and in-situ resource utilization (ISRU) systems, and their impact on sparing and space logistics. To perform this analysis, we adopt an iterative analysis approach in which we model and simulate the mission architecture, assess its feasibility, implement any applicable modifications while attempting to remain within the constraints set forth by Mars One, and then resimulate and reanalyze the revised version of the mission architecture. Where required information regarding the Mars One mission architecture is not available, we assume numerical values derived from standard spaceflight design handbooks and documents. Through four iterations of this process, our analysis finds that the Mars One mission plan, as publicly described, is not feasible. This conclusion is obtained from analyses based on mission assumptions derived from and constrained by statements made by Mars One, and is the result of the following findings: (1) several technologies including ISRU, life support, and entry, descent, and landing (EDL) are not currently "existing, validated and available" as claimed by Mars One; (2) the crop growth area described by Mars One is insufficient to feed their crew; (3) increasing the crop growth area to provide sufficient food for the crew leads to atmospheric

  1. Human Mars Entry, Descent and Landing Architectures Study Overview

    Science.gov (United States)

    Polsgrove, Tara T.; Dwyer Cianciolo, Alicia

    2016-01-01

    Landing humans on Mars will require entry, descent and landing (EDL) capability beyond the current state of the art. Nearly twenty times more delivered payload and an order of magnitude improvement in precision landing capability will be necessary. Several EDL technologies capable of meeting the human class payload delivery requirements are being considered. The EDL technologies considered include low lift-to-drag vehicles like Hypersonic Inflatable Aerodynamic Decelerators (HIAD), Adaptable Deployable Entry and Placement Technology (ADEPT), and mid range lift-to-drag vehicles like rigid aeroshell configurations. To better assess EDL technology options and sensitivities to future human mission design variations, a series of design studies has been conducted. The design studies incorporate EDL technologies with conceptual payload arrangements defined by the Evolvable Mars Campaign to evaluate the integrated system with higher fidelity than have been performed to date. This paper describes the results of the design studies for a lander design using the HIAD, ADEPT and rigid shell entry technologies and includes system and subsystem design details including mass and power estimates. This paper will review the point design for three entry configurations capable of delivering a 20 t human class payload to the surface of Mars.

  2. The Aerial Regional-Scale Environmental Surveyor (ARES): New Mars Science to Reduce Human Risk and Prepare for the Human Exploration

    Science.gov (United States)

    Levine, Joel S.; Croom, Mark A.; Wright, Henry S.; Killough, B. D.; Edwards, W. C.

    2012-01-01

    Obtaining critical measurements for eventual human Mars missions while expanding upon recent Mars scientific discoveries and deriving new scientific knowledge from a unique near surface vantage point is the focus of the Aerial Regional-scale Environmental Surveyor (ARES) exploration mission. The key element of ARES is an instrumented,rocket-powered, well-tested robotic airplane platform, that will fly between one to two kilometers above the surface while traversing hundreds of kilometers to collect and transmit previously unobtainable high spatial measurements relevant to the NASA Mars Exploration Program and the exploration of Mars by humans.

  3. Comparison of Space Propulsion Methods for a Manned Mission to Mars

    CERN Document Server

    Guerra, A G C; Gil, P J S

    2015-01-01

    We undertake a comparison of the latest developments in propulsion technologies, for a manned mission to Mars. The main objective is to assess the possibility of reducing travel time keeping the mass at departure within bounds. For the sake of comparison we used representative systems of different state of the art or proposed technologies, from the chemical engine to the "Pure Electro-Magnetic Thrust" (PEMT) concept, using a nuclear engine proposed by Rubbia. A mission architecture is suggested, based on existing mission proposals to Mars, to estimate the mass budget that influences the performance of the propulsion system. The trajectory of the spacecraft is determined by a numerical integration of the equations of motion and a partial optimization procedure, for the interplanetary phase with continuous thrust, and by conics and instant manoeuvres in the regions of influence of the departure and arrival planets. Pareto curves of the duration of the mission and time of flight versus mass of mission are drawn....

  4. Engaging Students Through Classroom Connection Webinars to Improve Their Understanding of the Mars Science Laboratory Mission

    Science.gov (United States)

    Graff, Paige V.; Achilles, Cherie

    2013-01-01

    Planetary exploration missions to other worlds, like Mars, can generate a lot of excitement and wonder for the public. The Mars Science Laboratory Mission is one of the latest planetary missions that has intrigued the public perhaps more than most. How can scientists and educational specialists capitalize on the allure of this mission and involve students and teachers in a way that not only shares the story of the mission, but actively engages classrooms with scientists and improves their understanding of the science? The Expedition Earth and Beyond (EEAB) Program [1], facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate Education Program at the NASA Johnson Space Center achieves this by facilitating MSL mission focused classroom connection webinars. Five MSL-focused webinars facilitated through EEAB during the 2012 fall semester engaged almost 3000 students and teachers. Involved STEM experts/role models helped translate the science behind the Mars Science Laboratory mission in a comprehensive, exciting, and engaging manner. These virtual events captured participants attention while increasing their science awareness and understanding of the MSL mission.

  5. Evaluation of Human and AutomationRobotics Integration Needs for Future Human Exploration Missions

    Science.gov (United States)

    Marquez, Jessica J.; Adelstein, Bernard D.; Ellis, Stephen; Chang, Mai Lee; Howard, Robert

    2016-01-01

    NASA employs Design Reference Missions (DRMs) to define potential architectures for future human exploration missions to deep space, the Moon, and Mars. While DRMs to these destinations share some components, each mission has different needs. This paper focuses on the human and automation/robotic integration needs for these future missions, evaluating them with respect to NASA research gaps in the area of space human factors engineering. The outcomes of our assessment is a human and automation/robotic (HAR) task list for each of the four DRMs that we reviewed (i.e., Deep Space Sortie, Lunar Visit/Habitation, Deep Space Habitation, and Planetary), a list of common critical HAR factors that drive HAR design.

  6. Transmission grating Validation and Qualification for Mars and Future Planetary exploration Missions

    Science.gov (United States)

    Gallego, P.; Fernández, M.; Guembe, V.; Ramos, G.; González, C.; Prieto, J. A. R.; Canchal, R.; Moral, A.; Pérez, C.; Rull, F.

    2013-09-01

    In the frame of ExoMars 2018 mission (ESARoscosmos collaboration), the Instituto Nacional de Técnica Aeroespacial (INTA) in Spain, has successfully finish validation test plan of the transmission grating, one of the key optical components that forms part of the Spectrometer Unit of the instrument Raman Laser Spectrometrer that will be on board of ExoMars 2018 and that has never being qualified before.

  7. Middleware and Web Services for the Collaborative Information Portal of NASA's Mars Exploration Rovers Mission

    Science.gov (United States)

    Sinderson, Elias; Magapu, Vish; Mak, Ronald

    2004-01-01

    We describe the design and deployment of the middleware for the Collaborative Information Portal (CIP), a mission critical J2EE application developed for NASA's 2003 Mars Exploration Rover mission. CIP enabled mission personnel to access data and images sent back from Mars, staff and event schedules, broadcast messages and clocks displaying various Earth and Mars time zones. We developed the CIP middleware in less than two years time usins cutting-edge technologies, including EJBs, servlets, JDBC, JNDI and JMS. The middleware was designed as a collection of independent, hot-deployable web services, providing secure access to back end file systems and databases. Throughout the middleware we enabled crosscutting capabilities such as runtime service configuration, security, logging and remote monitoring. This paper presents our approach to mitigating the challenges we faced, concluding with a review of the lessons we learned from this project and noting what we'd do differently and why.

  8. Research from the NASA Twins Study and Omics in Support of Mars Missions

    Science.gov (United States)

    Kundrot, C.; Shelhamer, M.; Scott, G.

    2015-01-01

    The NASA Twins Study, NASA's first foray into integrated omic studies in humans, illustrates how an integrated omics approach can be brought to bear on the challenges to human health and performance on a Mars mission. The NASA Twins Study involves US Astronaut Scott Kelly and his identical twin brother, Mark Kelly, a retired US Astronaut. No other opportunity to study a twin pair for a prolonged period with one subject in space and one on the ground is available for the foreseeable future. A team of 10 principal investigators are conducting the Twins Study, examining a very broad range of biological functions including the genome, epigenome, transcriptome, proteome, metabolome, gut microbiome, immunological response to vaccinations, indicators of atherosclerosis, physiological fluid shifts, and cognition. A novel aspect of the study is the integrated study of molecular, physiological, cognitive, and microbiological properties. Major sample and data collection from both subjects for this study began approximately six months before Scott Kelly's one year mission on the ISS, continue while Scott Kelly is in flight and will conclude approximately six months after his return to Earth. Mark Kelly will remain on Earth during this study, in a lifestyle unconstrained by this study, thereby providing a measure of normal variation in the properties being studied. An overview of initial results and the future plans will be described as well as the technological and ethical issues raised for spaceflight studies involving omics.

  9. Low-Latency Teleoperations for Human Exploration and Evolvable Mars Campaign

    Science.gov (United States)

    Lupisella, Mark; Wright, Michael; Arney, Dale; Gershman, Bob; Stillwagen, Fred; Bobskill, Marianne; Johnson, James; Shyface, Hilary; Larman, Kevin; Lewis, Ruthan; Bleacher, Jake; Gernhardt, Mike; Mueller, Rob; Sanders, Gerald; Watts, Kevin; Eigenbrode, Jen; Garry, Brent; Freeh, Joshua; Manzella, David; Hack, Kurt; Aranyos, Tom

    2015-01-01

    NASA has been analyzing a number of mission concepts and activities that involve low-latency telerobotic (LLT) operations. One mission concept that will be covered in this presentation is Crew-Assisted Sample Return which involves the crew acquiring samples (1) that have already been delivered to space, and or acquiring samples via LLT from orbit to a planetary surface and then launching the samples to space to be captured in space and then returned to the earth with the crew. Both versions of have key roles for low-latency teleoperations. More broadly, the NASA Evolvable Mars Campaign is exploring a number of other activities that involve LLT, such as: (a) human asteroid missions, (b) PhobosDeimos missions, (c) Mars human landing site reconnaissance and site preparation, and (d) Mars sample handling and analysis. Many of these activities could be conducted from Mars orbit and also with the crew on the Mars surface remotely operating assets elsewhere on the surface, e.g. for exploring Mars special regions and or teleoperating a sample analysis laboratory both of which may help address planetary protection concerns. The operational and technology implications of low-latency teleoperations will be explored, including discussion of relevant items in the NASA Technology Roadmap and also how previously deployed robotic assets from any source could subsequently be used by astronauts via LLT.

  10. Report on the COSPAR Workshop on Refining Planetary Protection Requirements for Human Missions

    Science.gov (United States)

    Spry, James Andrew; Rummel, John; Conley, Catharine; Race, Margaret; Kminek, Gerhard; Siegel, Bette

    2016-07-01

    A human mission to Mars has been the driving long-term goal for the development of the Global Exploration Roadmap by the International Space Exploration Coordination Group. Additionally, multiple national space agencies and commercial organizations have published similar plans and aspirations for human missions beyond LEO. The current COSPAR planetary protection "Guidelines for Human Missions to Mars" were developed in a series of workshops in the early 2000s and adopted into COSPAR policy at the Montreal Assembly in 2008. With changes and maturation in mission architecture concepts and hardware capabilities, the holding of a workshop provided an opportunity for timely review of these guidelines and their interpretation within current frameworks provided by ISECG and others. The COSPAR Workshop on Refining Planetary Protection Requirements for Human Missions was held in the US in spring 2016 to evaluate recent efforts and activities in the context of current COSPAR policy, as well as collect inputs from the various organizations considering crewed exploration missions to Mars and precursor robotic missions focused on surface material properties and environmental challenges. The workshop also considered potential updates to the COSPAR policy for human missions across a range of planetary destinations. This paper will report on those deliberations.

  11. Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission

    Science.gov (United States)

    Vandaele, A. C.; Neefs, E.; Drummond, R.; Thomas, I. R.; Daerden, F.; Lopez-Moreno, J.-J.; Rodriguez, J.; Patel, M. R.; Bellucci, G.; Allen, M.; Altieri, F.; Bolsée, D.; Clancy, T.; Delanoye, S.; Depiesse, C.; Cloutis, E.; Fedorova, A.; Formisano, V.; Funke, B.; Fussen, D.; Geminale, A.; Gérard, J.-C.; Giuranna, M.; Ignatiev, N.; Kaminski, J.; Karatekin, O.; Lefèvre, F.; López-Puertas, M.; López-Valverde, M.; Mahieux, A.; McConnell, J.; Mumma, M.; Neary, L.; Renotte, E.; Ristic, B.; Robert, S.; Smith, M.; Trokhimovsky, S.; Vander Auwera, J.; Villanueva, G.; Whiteway, J.; Wilquet, V.; Wolff, M.

    2015-12-01

    The NOMAD spectrometer suite on the ExoMars Trace Gas Orbiter will map the composition and distribution of Mars' atmospheric trace species in unprecedented detail, fulfilling many of the scientific objectives of the joint ESA-Roscosmos ExoMars Trace Gas Orbiter mission. The instrument is a combination of three channels, covering a spectral range from the UV to the IR, and can perform solar occultation, nadir and limb observations. In this paper, we present the science objectives of the instrument and how these objectives have influenced the design of the channels. We also discuss the expected performance of the instrument in terms of coverage and detection sensitivity.

  12. Methodology for back-contamination risk assessment for a Mars sample return mission

    Science.gov (United States)

    Merkhofer, M. W.; Quinn, D. J.

    1977-01-01

    The risk of back-contamination from Mars Surface Sample Return (MSSR) missions is assessed. The methodology is designed to provide an assessment of the probability that a given mission design and strategy will result in accidental release of Martian organisms acquired as a result of MSSR. This is accomplished through the construction of risk models describing the mission risk elements and their impact on back-contamination probability. A conceptual framework is presented for using the risk model to evaluate mission design decisions that require a trade-off between science and planetary protection considerations.

  13. Exploring the martian moons a human mission to Deimos and Phobos

    CERN Document Server

    von Ehrenfried, Manfred “Dutch”

    2017-01-01

    This book explores the once popular idea of 'Flexible Path' in terms of Mars, a strategy that would focus on a manned orbital mission to Mars's moons rather than the more risky, expensive and time-consuming trip to land humans on the Martian surface. While currently still not the most popular idea, this mission would take advantage of the operational, scientific and engineering lessons to be learned from going to Mars's moons first. Unlike a trip to the planet's surface, an orbital mission avoids the dangers of the deep gravity well of Mars and a very long stay on the surface. This is analogous to Apollo 8 and 10, which preceded the landing on the Moon of Apollo 11. Furthermore, a Mars orbital mission could be achieved at least five years, possibly 10 before a landing mission. Nor would an orbital mission require all of the extra vehicles, equipment and supplies needed for a landing and a stay on the planet for over a year. The cost difference between the two types of missions is in the order of tens of billi...

  14. Round-Trip Solar Electric Propulsion Missions for Mars Sample Return

    Science.gov (United States)

    Bailey, Zachary J.; Sturm, Erick J.; Kowalkowski, Theresa D.; Lock, Robert E.; Woolley, Ryan C.; Nicholas, Austin K.

    2014-01-01

    Mars Sample Return (MSR) missions could benefit from the high specific impulse of Solar Electric Propulsion (SEP) to achieve lower launch masses than with chemical propulsion. SEP presents formulation challenges due to the coupled nature of launch vehicle performance, propulsion system, power system, and mission timeline. This paper describes a SEP orbiter-sizing tool, which models spacecraft mass & timeline in conjunction with low thrust round-trip Earth-Mars trajectories, and presents selected concept designs. A variety of system designs are possible for SEP MSR orbiters, with large dry mass allocations, similar round-trip durations to chemical orbiters, and reduced design variability between opportunities.

  15. The planet Mars as seen at the end of the Viking mission

    Science.gov (United States)

    Snyder, C. W.

    1979-01-01

    The paper presents a summary of new knowledge about Mars obtained from Mariner and Viking missions. Specific subjects include Martian geologic features, composition of the surface, the atmosphere, and the polar caps, and Martian meteorology, including temperatures, pressures, tides, dust storms, and atmospheric water vapor. The program of further Mars exploration is outlined. The major element of the program will be a sample return mission, utilizing orbiters and limited-range rovers with enough instrumentation to identify, acquire, and return well documented samples from two or more sites.

  16. Round-Trip Solar Electric Propulsion Missions for Mars Sample Return

    Science.gov (United States)

    Bailey, Zachary J.; Sturm, Erick J.; Kowalkowski, Theresa D.; Lock, Robert E.; Woolley, Ryan C.; Nicholas, Austin K.

    2014-01-01

    Mars Sample Return (MSR) missions could benefit from the high specific impulse of Solar Electric Propulsion (SEP) to achieve lower launch masses than with chemical propulsion. SEP presents formulation challenges due to the coupled nature of launch vehicle performance, propulsion system, power system, and mission timeline. This paper describes a SEP orbiter-sizing tool, which models spacecraft mass & timeline in conjunction with low thrust round-trip Earth-Mars trajectories, and presents selected concept designs. A variety of system designs are possible for SEP MSR orbiters, with large dry mass allocations, similar round-trip durations to chemical orbiters, and reduced design variability between opportunities.

  17. Performance impact on nuclear thermal propulsion of piloted Mars missions with short transit times

    Science.gov (United States)

    Wickenheiser, T. J.; Gessner, K. S.; Alexander, S. W.

    1991-01-01

    The requirements of nuclear thermal propulsion (NTP) are examined with respect to a specific mission scenario derived from Stafford Committee recommendations. The recommended mission scenario is a split/sprint opposition mission which includes a piloted vehicle and a cargo vehicle, and the baseline mission is developed from a reference trajectory. Key mision parameters are developed from the baseline mission, including engine-thrust levels, mission opportunity, and engine burn-time requirements. The impact of engine failure is also considered in terms of burn-time requirements, and other mission-performance issues considered include propulsion-technology assumptions, triple-perigee earth-departure burns, and Mars parking-orbit selection. The engine requirements call for a 50-75-klb engine-thrust level, maximum single burn time of 0.6 hours, and a maximum total-mission burn time of 1.7 hours. For a crew of 6, a 475-day total-mission trip with a 90-day stay at Mars is possible.

  18. Manned Mars mission solar physics: Solar energetic particle prediction and warning

    Science.gov (United States)

    Suess, S. T.

    1986-01-01

    There are specific risks to the crew of the manned Mars mission from energetic particles generated by solar activity. Therefore, mission planning must provide for solar monitoring and solar activity forecasts. The main need is to be able to anticipate the energetic particle events associated with some solar flares and, occasionally, with erupting filaments. A second need may be for forecasts of solar interference with radio communication between the manned Mars mission (during any of its three phases) and Earth. These two tasks are compatible with a small solar observatory that would be used during the transit and orbital phases of the mission. Images of the Sun would be made several times per hour and, together with a solar X-ray detector, used to monitor for the occurrence of solar activity. The data would also provide a basis for research studies of the interplanetary medium utilizing observations covering more of the surface of the Sun than just the portion facing Earth.

  19. Planetary Protection Knowledge Gaps for Human Extraterrestrial Missions Workshop Booklet - 2015

    Science.gov (United States)

    Fonda, Mark L.

    2015-01-01

    Although NASA's preparations for the Apollo lunar missions had only a limited time to consider issues associated with the protection of the Moon from biological contamination and the quarantine of the astronauts returning to Earth, they learned many valuable lessons (both positive and negative) in the process. As such, those efforts represent the baseline of planetary protection preparations for sending humans to Mars. Neither the post-Apollo experience or the Shuttle and other follow-on missions of either the US or Russian human spaceflight programs could add many additional insights to that baseline. Current mission designers have had the intervening four decades for their consideration, and in that time there has been much learned about human-associated microbes, about Mars, and about humans in space that has helped prepare us for a broad spectrum of considerations regarding potential biological contamination in human Mars missions and how to control it. This paper will review the approaches used in getting this far, and highlight some implications of this history for the future development of planetary protection provisions for human missions to Mars. The role of NASA and ESA's planetary protection offices, and the aegis of COSPAR have been particularly important in the ongoing process.

  20. Development of Carbon Dioxide Removal Systems for NASA's Deep Space Human Exploration Missions 2016-2017

    Science.gov (United States)

    Knox, James C.

    2017-01-01

    NASA has embarked on an endeavor that will enable humans to explore deep space, with the ultimate goal of sending humans to Mars. This journey will require significant developments in a wide range of technical areas, as resupply is unavailable in the Mars transit phase and early return is not possible. Additionally, mass, power, volume, and other resources must be minimized for all subsystems to reduce propulsion needs. Among the critical areas identified for development are life support systems, which will require increases in reliability and reductions in resources. This paper discusses current and planned developments in the area of carbon dioxide removal to support crewed Mars-class missions.

  1. Flight Mechanics of the Entry, Descent and Landing of the ExoMars Mission

    Science.gov (United States)

    HayaRamos, Rodrigo; Boneti, Davide

    2007-01-01

    ExoMars is ESA's current mission to planet Mars. A high mobility rover and a fixed station will be deployed on the surface of Mars. This paper regards the flight mechanics of the Entry, Descent and Landing (EDL) phases used for the mission analysis and design of the Baseline and back-up scenarios of the mission. The EDL concept is based on a ballistic entry, followed by a descent under parachutes and inflatable devices (airbags) for landing. The mission analysis and design is driven by the flexibility in terms of landing site, arrival dates and the very stringent requirement in terms of landing accuracy. The challenging requirements currently imposed to the mission need innovative analysis and design techniques to support system design trade-offs to cope with the variability in entry conditions. The concept of the Global Entry Corridor has been conceived, designed, implemented and successfully validated as a key tool to provide a global picture of the mission capabilities in terms of landing site reachability.

  2. Beagle 2: The Next Exobiology Mission to Mars

    Science.gov (United States)

    Gibson, Everett K., Jr.; Pillinger, Colin T.; Wright, Ian P.; Morse, Andy; Stewart, Jenny; Morgan, G.; Praine, Ian; Leigh, Dennis; Sims, Mark R.

    2001-01-01

    Beagle 2 is a 60 kg probe (with a 30 kg lander) developed in the United Kingdom for inclusion on the European Space Agency's 2003 Mars Express. Beagle 2 will deliver to the Martian surface a payload which consists of a high percentage of science instruments to landed spacecraft mass. Beagle 2 will be launched in June, 2003 with Mars Express on a Soyuz-Fregat rocket from the Baikonur Cosmodrome in Kazakhstan. Beagle 2 will land on Mars on December 26, 2003 in the Isidis Planitia basin (approximately 10 degrees N and 275 degrees W), a large sedimentary basin that overlies the boundary between ancient highlands and northern plains. Isidis Planitia, the third largest basin on Mars, which is possibly filled with sediment deposited at the bottom of long-standing lakes or seas, offers an ideal environment for preserving traces of life. Beagle 2 was developed to search for organic material and other volatiles on and below the surface of Mars in addition to the study of the inorganic chemistry and mineralogy. Beagle 2 will utilize a mechanical mole and grinder to obtain samples from below the surface, under rocks and inside rocks. A pair of stereo cameras will image the landing site along with a microscope for examination of surface and rock samples. Analyses will include both rock and soil samples at various wavelengths, X-ray spectrometer and Mossbauer spectrometer as well as a search for organics and other light element species (e.g. carbonates and water) and measurement of their isotopic compositions. Beagle 2 has as its focus the goal of establishing whether evidence for life existed in the past on Mars at the Isidis Planitia site or at least establishing if the conditions were ever suitable. Carbonates and organic components were first recognized as existing on Mars when they were found in the Martian meteorite Nakhla. Romanek et al showed the carbonates in ALH84001 were formed at low temperatures. McKay et al noted possible evidence of early life on Mars within the

  3. Learning from the Mars Rover Mission: Scientific Discovery, Learning and Memory

    Science.gov (United States)

    Linde, Charlotte

    2005-01-01

    Purpose: Knowledge management for space exploration is part of a multi-generational effort. Each mission builds on knowledge from prior missions, and learning is the first step in knowledge production. This paper uses the Mars Exploration Rover mission as a site to explore this process. Approach: Observational study and analysis of the work of the MER science and engineering team during rover operations, to investigate how learning occurs, how it is recorded, and how these representations might be made available for subsequent missions. Findings: Learning occurred in many areas: planning science strategy, using instrumen?s within the constraints of the martian environment, the Deep Space Network, and the mission requirements; using software tools effectively; and running two teams on Mars time for three months. This learning is preserved in many ways. Primarily it resides in individual s memories. It is also encoded in stories, procedures, programming sequences, published reports, and lessons learned databases. Research implications: Shows the earliest stages of knowledge creation in a scientific mission, and demonstrates that knowledge management must begin with an understanding of knowledge creation. Practical implications: Shows that studying learning and knowledge creation suggests proactive ways to capture and use knowledge across multiple missions and generations. Value: This paper provides a unique analysis of the learning process of a scientific space mission, relevant for knowledge management researchers and designers, as well as demonstrating in detail how new learning occurs in a learning organization.

  4. 2012 Moon Mars Analog Mission Activities on Mauna Kea, Hawai'i

    NARCIS (Netherlands)

    Graham, Lee; Graff, Trevor G.; Aileen Yingst, R.; Ten Kate, Inge L.; Russell, Patrick

    2015-01-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities des

  5. Sleep-wake differences in heart rate variability during a 105-day simulated mission to Mars

    National Research Council Canada - National Science Library

    Vigo, Daniel E; Ogrinz, Barbara; Wan, Li; Bersenev, Evgeny; Tuerlinckx, Francis; Van Den Bergh, Omer; Aubert, André E

    2012-01-01

    ... the 105-d pilot study of the Earth-based Mars500 project. Before (pre), during (T1: 30, T2: 70, andT3: 100 d), and after (post) confinement, 24-h EKG records were obtained from the six crewmembers that participated in the mission...

  6. 2012 Moon Mars Analog Mission Activities on Mauna Kea, Hawai'i

    NARCIS (Netherlands)

    Graham, Lee; Graff, Trevor G.; Aileen Yingst, R.; Ten Kate, Inge L.|info:eu-repo/dai/nl/292012217; Russell, Patrick

    2015-01-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities des

  7. Mission from Mars - a method for exploring user requirements for children in a narrative space

    DEFF Research Database (Denmark)

    Dindler, Christian; Ludvigsen, Martin; Lykke-Olesen, Andreas

    2005-01-01

    In this paper a particular design method is propagated as a supplement to existing descriptive approaches to current practice studies especially suitable for gathering requirements for the design of children's technology. The Mission from Mars method was applied during the design of an electronic...

  8. Nuclear electric propulsion options for piloted Mars missions

    Science.gov (United States)

    George, Jeffrey A.

    Three nuclear electric propulsion (NEP) systems are discussed. The three systems are as follows: a system based on current SP-100 technology; a potassium Rankine-cycle based power conversion system, and an argon ion thruster system. The system will be researched for implementation in several possible vehicle configurations. The following are among the possible Mars vehicle configurations: a piloted 15 MWe multi-reactor vehicle; a piloted 10 MWe vehicle with ECCV; a piloted 10 MWe modular vehicle; piloted 10 and 15 MWe vehicles with ECCV and MEV; a piloted 5 MWe vehicle with ECCV; a 5 MWe cargo vehicle with 2 MEV's; and a 2.5 MWe vehicle with MEV.

  9. Human Factor Investigation of Waste Processing System During the HI-SEAS 4 Month Mars Analog Mission in Support of NASA's Logistic Reduction and Repurposing Project: Trash to Gas

    Science.gov (United States)

    Caraccio, Anne; Hintze, Paul; Miles, John D.

    2014-01-01

    NASAs Logistics Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is tasked with reducing total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. Trash to Gas (TtG) is a sub task to LRR with efforts focused on development of a technology that converts wastes generated during long duration space missions into high-value products such as methane, water for life support, raw material production feedstocks, and other energy sources. The reuse of discarded materials is a critical component to reducing overall mission mass. The 120 day Hawaii Space Exploration and Analog Simulation provides a unique opportunity to answer questions regarding crew interface and system analysis for designing and developing future flight-like versions of a TtG system. This paper will discuss the human factors that would affect the design of a TtG or other waste processing systems. An overview of the habitat, utility usage, and waste storage and generation is given. Crew time spent preparing trash for TtG processing was recorded. Gas concentrations were measured near the waste storage locations and at other locations in the habitat. In parallel with the analog mission, experimental processing of waste materials in a TtG reactor was performed in order to evaluate performance with realistic waste materials.

  10. Human Factor Investigation of Waste Processing System During the HI-SEAS 4-month Mars Analog Mission in Support of NASA's Logistic Reduction and Repurposing Project: Trash to Gas

    Science.gov (United States)

    Caraccio, Anne; Hintze, Paul E.; Miles, John D.

    2014-01-01

    NASA's Logistics Reduction and Repurposing (LRR) project is a collaborative effort in which NASA is tasked with reducing total logistical mass through reduction, reuse and recycling of various wastes and components of long duration space missions and habitats. Trash to Gas (TtG) is a sub task to LRR with efforts focused on development of a technology that converts wastes generated during long duration space missions into high-value products such as methane, water for life support, raw material production feedstocks, and other energy sources. The reuse of discarded materials is a critical component to reducing overall mission mass. The 120 day Hawaii Space Exploration and Analog Simulation provides a unique opportunity to answer questions regarding crew interface and system analysis for designing and developing future flight-like versions of a TtG system. This paper will discuss the human factors that would affect the design of a TtG or other waste processing systems. An overview of the habitat, utility usage, and waste storage and generation is given. Crew time spent preparing trash for TtG processing was recorded. Gas concentrations were measured near the waste storage locations and at other locations in the habitat. In parallel with the analog mission, experimental processing of waste materials in a TtG reactor was performed in order to evaluate performance with realistic waste materials.

  11. Visualization of particle flux in the human body on the surface of Mars

    Science.gov (United States)

    Saganti, Premkumar B.; Cucinotta, Francis A.; Wilson, John W.; Schimmerling, Walter

    2002-01-01

    For a given galactic cosmic ray (GCR) environment, information on the particle flux of protons, alpha particles, and heavy ions, that varies with respect to the topographical altitude on the Martian surface, are needed for planning exploration missions to Mars. The Mars Global Surveyor (MGS) mission with its Mars Orbiter Laser Altimeter (MOLA) instrument has been providing precise topographical surface map of the Mars. With this topographical data, the particle flux at the Martian surface level through the CO2 atmospheric shielding for solar minimum and solar maximum conditions are calculated. These particle flux calculations are then transported first through an anticipated shielding of a conceptual shelter with several water equivalent shield values (up to 50 g/cm2 of water in steps of 5 g/cm2) considered to represent a surface habitat, and then into the human body. Model calculations are accomplished utilizing the HZETRN, QMSFRG, and SUM-MARS codes. Particle flux calculations for 12 different locations in the human body were considered from skin depth to the internal organs including the blood-forming organs (BFO). Visualization of particle flux in the human body at different altitudes on the Martian surface behind a known shielding is anticipated to provide guidance for assessing radiation environment risk on the Martian surface for future human missions.

  12. Analytical Laboratory Science on the 2009 Mars Science Laboratory (MSL) Mission

    Science.gov (United States)

    Mahaffy, P. R.

    2005-01-01

    The Odyssey Missions orbital maps of near surface ice abundance using neutron spectroscopy (Boynton et al., 2002), the Mars Exploration Rover s confirmation of aqueous processing (Squyres et al., 2004), and the Mars Express detailed infrared maps of specific mineral types that were likely formed in aqueous environments (Bibring et al., 2005) have dramatically expanded our tool set for understanding of aqueous processes on Mars. The 2009 Mars Science Laboratory is designed to extend the "follow the water" crosscutting theme of the Mars Exploration Program toward an even more detailed exploration of habitability - the potential of the Mars environment to support life. The next steps in understanding the habitability of Mars are a more detailed in situ analysis of the chemical state of elements such as C, H, O, N, S, P, Ca, and Fe that are essential for terrestrial life. Of particular interest are experiments that establish definitive mineralogy for a wider range of compounds and those that implement a more comprehensive and sensitive search for organic molecules both in the atmosphere and in surface or near surface rocks, soils, and fines. The recent reports of atmospheric methane in the Martian atmosphere make the organics exploration even more compelling. The substantial mass and power resources of MSL combined with its mobility and powerful sample acquisition and processing tools will enable it to locate a variety of near-surface samples and analyze these in some detail. NASA is presently considering the possibility of landing a second MSL rover in 2011.

  13. A mars communication constellation for human exploration and network science

    Science.gov (United States)

    Castellini, Francesco; Simonetto, Andrea; Martini, Roberto; Lavagna, Michèle

    2010-01-01

    This paper analyses the possibility of exploiting a small spacecrafts constellation around Mars to ensure a complete and continuous coverage of the planet, for the purpose of supporting future human and robotic operations and taking advantage of optical transmission techniques. The study foresees such a communications mission to be implemented at least after 2020 and a high data-rate requirement is imposed for the return of huge scientific data from massive robotic exploration or to allow video transmissions from a possible human outpost. In addition, the set-up of a communication constellation around Mars would give the opportunity of exploiting this multi-platform infrastructure to perform network science, that would largely increase our knowledge of the planet. The paper covers all technical aspects of a feasibility study performed for the primary communications mission. Results are presented for the system trade-offs, including communication architecture, constellation configuration and transfer strategy, and the mission analysis optimization, performed through the application of a multi-objective genetic algorithm to two models of increasing difficulty for the low-thrust trajectory definition. The resulting communication architecture is quite complex and includes six 530 kg spacecrafts on two different orbital planes, plus one redundant unit per plane, that ensure complete coverage of the planet’s surface; communications between the satellites and Earth are achieved through optical links, that allow lower mass and power consumption with respect to traditional radio-frequency technology, while inter-satellite links and spacecrafts-to-Mars connections are ensured by radio transmissions. The resulting data-rates for Earth-Mars uplink and downlink, satellite-to-satellite and satellite-to-surface are respectively 13.7 Mbps, 10.2 Mbps, 4.8 Mbps and 4.3 Mbps, in worst-case. Two electric propulsion modules are foreseen, to be placed on a C3˜0 escape orbit with two

  14. Palmer Quest: A Feasible Nuclear Fission "Vision Mission" to the Mars Polar Caps

    Science.gov (United States)

    Carsey, F. D.; Beegle, L. W.; Nakagawa, R.; Elliott, J. O.; Matthews, J. B.; Coleman, M. L.; Hecht, M. H.; Ivaniov, A. B.; Head, J. W.; Milkovich, S.

    2005-01-01

    We are engaged in a NASA Vision Mission study, called Palmer Quest after the American Antarctic explorer Nathaniel Palmer, to assess the presence of life and evaluate the habitability of the basal domain of the Mars polar caps. We address this goal through four objectives: 1. Determine the presence of amino acids, nutrients, and geochemical heterogeneity in the ice sheet. 2. Quantify and characterize the provenance of the amino acids in Mars ice. 3. Assess the stratification of outcropped units for indications of habitable zones. 4. Determine the accumulation of ice, mineralogic material, and amino acids in Mars ice caps over the present epoch. Because of the defined scientific goal for the vision mission, the Palmer Quest focus is astrobiological; however, the results of the study make us optimistic that aggressive multi-platform in-situ missions that address a wide range of objectives, such as climate change, can be supported by variations of the approach used on this mission. Mission Overview: The Palmer Quest baseline

  15. Comparative study of the Martian suprathermal electron depletions based on Mars Global Surveyor, Mars Express, and Mars Atmosphere and Volatile EvolutioN mission observations

    Science.gov (United States)

    Steckiewicz, M.; Garnier, P.; André, N.; Mitchell, D. L.; Andersson, L.; Penou, E.; Beth, A.; Fedorov, A.; Sauvaud, J.-A.; Mazelle, C.; Brain, D. A.; Espley, J. R.; McFadden, J.; Halekas, J. S.; Larson, D. E.; Lillis, R. J.; Luhmann, J. G.; Soobiah, Y.; Jakosky, B. M.

    2017-01-01

    Nightside suprathermal electron depletions have been observed at Mars by three spacecraft to date: Mars Global Surveyor, Mars Express, and the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission. This spatial and temporal diversity of measurements allows us to propose here a comprehensive view of the Martian electron depletions through the first multispacecraft study of the phenomenon. We have analyzed data recorded by the three spacecraft from 1999 to 2015 in order to better understand the distribution of the electron depletions and their creation mechanisms. Three simple criteria adapted to each mission have been implemented to identify more than 134,500 electron depletions observed between 125 and 900 km altitude. The geographical distribution maps of the electron depletions detected by the three spacecraft confirm the strong link existing between electron depletions and crustal magnetic field at altitudes greater than 170 km. At these altitudes, the distribution of electron depletions is strongly different in the two hemispheres, with a far greater chance to observe an electron depletion in the Southern Hemisphere, where the strongest crustal magnetic sources are located. However, the unique MAVEN observations reveal that below a transition region near 160-170 km altitude the distribution of electron depletions is the same in both hemispheres, with no particular dependence on crustal magnetic fields. This result supports the suggestion made by previous studies that these low-altitudes events are produced through electron absorption by atmospheric CO2.

  16. Symposium keynote: Enduring the isolation of interplanetary travel. A personal account of the Mars500 mission

    Science.gov (United States)

    Urbina, Diego A.; Charles, Romain

    2014-01-01

    The Mars500 mission was a 520-day long simulation of a round trip to Mars. After going through an intense selection process, 6 individuals from various countries lived and worked for several months in a pressurized facility in Moscow, Russia, mimicking as close as possible the conditions of real space flight. The simulation concluded in November 2011 when the crew came out of the facility in seemingly good health and mood. A first person point of view description of daily life and activities is provided as well as the indication of the environmental factors that can act as stressors during such a mission as well as their change over the different periods of flight, including adaptation to the real world. Advice for the design and logistics of future exploration missions is given.

  17. The Preparation for and Execution of Engineering Operations for the Mars Curiosity Rover Mission

    Science.gov (United States)

    Samuels, Jessica A.

    2013-01-01

    The Mars Science Laboratory Curiosity Rover mission is the most complex and scientifically packed rover that has ever been operated on the surface of Mars. The preparation leading up to the surface mission involved various tests, contingency planning and integration of plans between various teams and scientists for determining how operation of the spacecraft (s/c) would be facilitated. In addition, a focused set of initial set of health checks needed to be defined and created in order to ensure successful operation of rover subsystems before embarking on a two year science journey. This paper will define the role and responsibilities of the Engineering Operations team, the process involved in preparing the team for rover surface operations, the predefined engineering activities performed during the early portion of the mission, and the evaluation process used for initial and day to day spacecraft operational assessment.

  18. Robotic Mission to Mars: Hands-on, minds-on, web-based learning

    Science.gov (United States)

    Mathers, Naomi; Goktogen, Ali; Rankin, John; Anderson, Marion

    2012-11-01

    Problem-based learning has been demonstrated as an effective methodology for developing analytical skills and critical thinking. The use of scenario-based learning incorporates problem-based learning whilst encouraging students to collaborate with their colleagues and dynamically adapt to their environment. This increased interaction stimulates a deeper understanding and the generation of new knowledge. The Victorian Space Science Education Centre (VSSEC) uses scenario-based learning in its Mission to Mars, Mission to the Orbiting Space Laboratory and Primary Expedition to the M.A.R.S. Base programs. These programs utilize methodologies such as hands-on applications, immersive-learning, integrated technologies, critical thinking and mentoring to engage students in Science, Technology, Engineering and Mathematics (STEM) and highlight potential career paths in science and engineering. The immersive nature of the programs demands specialist environments such as a simulated Mars environment, Mission Control and Space Laboratory, thus restricting these programs to a physical location and limiting student access to the programs. To move beyond these limitations, VSSEC worked with its university partners to develop a web-based mission that delivered the benefits of scenario-based learning within a school environment. The Robotic Mission to Mars allows students to remotely control a real rover, developed by the Australian Centre for Field Robotics (ACFR), on the VSSEC Mars surface. After completing a pre-mission training program and site selection activity, students take on the roles of scientists and engineers in Mission Control to complete a mission and collect data for further analysis. Mission Control is established using software developed by the ACRI Games Technology Lab at La Trobe University using the principles of serious gaming. The software allows students to control the rover, monitor its systems and collect scientific data for analysis. This program encourages

  19. Soil Analysis Micro-Mission Concepts Derived from the MSP 2001 Mars Environmental Compatibility Assessment (MECA)

    Science.gov (United States)

    Hecht, M. H.; Meloy, T. P.; Anderson, M. S.; Buehler, M. G.; Frant, M. A.; Grannan, S. M.; Fuerstenau, S. D.; Keller, H. U.; Markiewicz, W. J.; Marshall, J.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatic environment, and arrays of material patches to study abrasion and adhesion. Heritage will be all-important for low cost micro-missions, and adaptations of instruments developed for the Pathfinder, '98 and '01 Landers should be strong contenders for '03 flights. This talk has three objectives: (1) Familiarize the audience with MECA instrument capabilities; (2) present concepts for stand-alone and/or mobile versions of MECA instruments; and (3) broaden the context of the MECA instruments from human exploration to a comprehensive scientific survey of Mars. Due to time limitations, emphasis will be on the chemistry and microscopy experiments. Ion-selective electrodes and related sensors in MECA's wet-chemistry laboratory will evaluate total dissolved solids, redox potential, pH, and the concentration of many soluble ions and gases in wet Martian soil. These electrodes can detect potentially dangerous heavy-metal ions, emitted pathogenic gases, and the soil's corrosive potential, and experiments will include cyclic voltammetry and anodic stripping. For experiments beyond 2001, enhancements could allow multiple use of the cells (for mobile experiments) and reagent addition (for quantitative mineralogical and exobiological analysis). MECA's microscopy station combines optical and atomic-force microscopy (AFM) in an actively focused, controlled illumination environment to image particles from millimeters to nanometers in size. Careful selection of substrates allows controlled experiments in adhesion, abrasion, hardness, aggregation, magnetic and other properties. Special tools allow primitive manipulation (brushing and scraping) of samples

  20. Mars mission program for primary students: Building student and teacher skills in science, technology, engineering and mathematics

    Science.gov (United States)

    Mathers, Naomi; Pakakis, Michael; Christie, Ian

    2011-09-01

    The Victorian Space Science Education Centre (VSSEC) scenario-based programs, including the Mission to Mars and Mission to the Orbiting Space Laboratory, utilize methodologies such as hands-on applications, immersive learning, integrated technologies, critical thinking and mentoring. The use of a scenario provides a real-life context and purpose to what students might otherwise consider disjointed information. These programs engage students in the areas of maths and science, and highlight potential career paths in science and engineering. The introduction of a scenario-based program for primary students engages students in maths and science at a younger age, addressing the issues of basic numeracy and science literacy, thus laying the foundation for stronger senior science initiatives. Primary students absorb more information within the context of the scenario, and presenting information they can see, hear, touch and smell creates a memorable learning and sensory experience. The mission also supports development of teacher skills in the delivery of hands-on science and helps build their confidence to teach science. The Primary Mission to the Mars Base gives primary school students access to an environment and equipment not available in schools. Students wear flight suits for the duration of the program to immerse them in the experience of being an astronaut. Astronauts work in the VSSEC Space Laboratory, which is transformed into a Mars base for the primary program, to conduct experiments in areas such as robotics, human physiology, microbiology, nanotechnology and environmental science. Specialist mission control software has been developed by La Trobe University Centre for Games Technology to provide age appropriate Information and Communication Technology (ICT) based problem solving and support the concept of a mission. Students in Mission Control observe the astronauts working in the space laboratory and talk to them via the AV system. This interactive

  1. Scientific Goals and Objectives for the Human Exploration of Mars: 1. Biology and Atmosphere/Climate

    Science.gov (United States)

    Levine, Joel S.; Garvin, J. B.; Anbar, A. D.; Beaty, D. W.; Bell, M. S.; Clancy, R. T.; Cockell, C. S.; Connerney, J. E.; Doran, P. T.; Delory, G.; Dickson, J. T.; Elphic, R. C.; Eppler, D. B.; Fernandez-Remolar, D. C.; Head, J. W.; Helper, M.; Gruener, J. E.; Heldmann, J.; Hipkin, V.; Lane, M. D.; Levy, J.; Moersch, J.; Ori, G. G.; Peach, L.; Poulet, F.

    2008-01-01

    To prepare for the exploration of Mars by humans, as outlined in the new national vision for Space Exploration (VSE), the Mars Exploration Program Analysis Group (MEPAG), chartered by NASA's Mars Exploration Program (MEP), formed a Human Exploration of Mars Science Analysis Group (HEM-SAG), in March 2007. HEM-SAG was chartered to develop the scientific goals and objectives for the human exploration of Mars based on the Mars Scientific Goals, Objectives, Investigations, and Priorities.1 The HEM-SAG is one of several humans to Mars scientific, engineering and mission architecture studies chartered in 2007 to support NASA s plans for the human exploration of Mars. The HEM-SAG is composed of about 30 Mars scientists representing the disciplines of Mars biology, climate/atmosphere, geology and geophysics from the U.S., Canada, England, France, Italy and Spain. MEPAG selected Drs. James B. Garvin (NASA Goddard Space Flight Center) and Joel S. Levine (NASA Langley Research Center) to serve as HEMSAG co-chairs. The HEM-SAG team conducted 20 telecons and convened three face-to-face meetings from March through October 2007. The management of MEP and MEPAG were briefed on the HEM-SAG interim findings in May. The HEM-SAG final report was presented on-line to the full MEPAG membership and was presented at the MEPAG meeting on February 20-21, 2008. This presentation will outline the HEM-SAG biology and climate/atmosphere goals and objectives. A companion paper will outline the HEM-SAG geology and geophysics goals and objectives.

  2. ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars

    Science.gov (United States)

    Maurice, Sylvestre; Clegg, Samuel M.; Wiens, Roger C.; Gasnault, O.; Rapin, W.; Forni, O.; Cousin, Agnes; Sautter, V.; Mangold, Nicolas; Le Deit, L.; Nachon, Marion; Anderson, Ryan; Lanza, Nina; Fabre, Cecile; Payre, Valerie; Lasue, Jeremie; Meslin, Pierre-Yves; LeVeille, Richard A.; Barraclough, Bruce; Beck, Pierre; Bender, Steven C.; Berger, Gilles; Bridges, John C.; Bridges, Nathan; Dromert, Gilles; Dyar, M. Darby; Francis, Raymond; Frydenvang, Jens; Gondet, B.; Ehlmann, Bethany L.; Herkenhoff, Kenneth E.; Johnson, Jeffrey R.; Langevin, Yves; Madsen Morten B.,; Melikechi, N.; Lacour, J.-L.; Le Mouelic, Stephane; Lewin, Eric; Newsom, Horton E.; Ollila, Ann M.; Pinet, Patrick; Schroder, S.; Sirven, Jean-Baptiste; Tokar, Robert L.; Toplis, M.J.; d'Uston, Claude; Vaniman, David; Vasavada, Ashwin R.

    2016-01-01

    At Gale crater, Mars, ChemCam acquired its first laser-induced breakdown spectroscopy (LIBS) target on Sol 13 of the landed portion of the mission (a Sol is a Mars day). Up to Sol 800, more than 188000 LIBS spectra were acquired on more than 5800 points distributed over about 650 individual targets. We present a comprehensive review of ChemCam scientific accomplishments during that period, together with a focus on the lessons learned from the first use of LIBS in space. For data processing, we describe new tools that had to be developed to account for the uniqueness of Mars data. With regard to chemistry, we present a summary of the composition range measured on Mars for major-element oxides (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O) based on various multivariate models, with associated precisions. ChemCam also observed H, and the non-metallic elements C, O, P, and S, which are usually difficult to quantify with LIBS. F and Cl are observed through their molecular lines. We discuss the most relevant LIBS lines for detection of minor and trace elements (Li, Rb, Sr, Ba, Cr, Mn, Ni, and Zn). These results were obtained thanks to comprehensive ground reference datasets, which are set to mimic the expected mineralogy and chemistry on Mars. With regard to the first use of LIBS in space, we analyze and quantify, often for the first time, each of the advantages of using stand-off LIBS in space: no sample preparation, analysis within its petrological context, dust removal, sub-millimeter scale investigation, multi-point analysis, the ability to carry out statistical surveys and whole-rock analyses, and rapid data acquisition. We conclude with a discussion of ChemCam performance to survey the geochemistry of Mars, and its valuable support of decisions about selecting where and whether to make observations with more time and resource-intensive tools in the rover's instrument suite. In the end, we present a bird's-eye view of the many scientific results: discovery of felsic

  3. Sample Handling and Processing on Mars for Future Astrobiology Missions

    Science.gov (United States)

    Beegle, Luther; Kirby, James P.; Fisher, Anita; Hodyss, Robert; Saltzman, Alison; Soto, Juancarlos; Lasnik, James; Roark, Shane

    2011-01-01

    In most analytical investigations, there is a need to process complex field samples for the unique detection of analytes especially when detecting low concentration organic molecules that may identify extraterrestrial life. Sample processing for analytical instruments is time, resource and manpower consuming in terrestrial laboratories. Every step in this laborious process will have to be automated for in situ life detection. We have developed, and are currently demonstrating, an automated wet chemistry preparation system that can operate autonomously on Earth and is designed to operate under Martian ambient conditions. This will enable a complete wet chemistry laboratory as part of future missions. Our system, namely the Automated Sample Processing System (ASPS) receives fines, extracts organics through solvent extraction, processes the extract by removing non-organic soluble species and delivers sample to multiple instruments for analysis (including for non-organic soluble species).

  4. Sample Handling and Processing on Mars for Future Astrobiology Missions

    Science.gov (United States)

    Beegle, Luther; Kirby, James P.; Fisher, Anita; Hodyss, Robert; Saltzman, Alison; Soto, Juancarlos; Lasnik, James; Roark, Shane

    2011-01-01

    In most analytical investigations, there is a need to process complex field samples for the unique detection of analytes especially when detecting low concentration organic molecules that may identify extraterrestrial life. Sample processing for analytical instruments is time, resource and manpower consuming in terrestrial laboratories. Every step in this laborious process will have to be automated for in situ life detection. We have developed, and are currently demonstrating, an automated wet chemistry preparation system that can operate autonomously on Earth and is designed to operate under Martian ambient conditions. This will enable a complete wet chemistry laboratory as part of future missions. Our system, namely the Automated Sample Processing System (ASPS) receives fines, extracts organics through solvent extraction, processes the extract by removing non-organic soluble species and delivers sample to multiple instruments for analysis (including for non-organic soluble species).

  5. From Mars to Media: The Phoenix Mars Mission and the Challenges of Real-Time, Multimedia Science Communication and Public Education

    Science.gov (United States)

    Buxner, S.; Bitter, C.

    2008-12-01

    Although the Mars Exploration Rovers, Mars Reconnaissance Orbiter, and Mars Odyssey Missions set the standard for science communication and public education about Mars, the Phoenix Mission was presented with robust new communication challenges and opportunities. The new frontier includes Web 2.0, international forums, internal and external blogs, social networking sites, as well as the traditional media and education outlets for communicating science and information. We will explore the highlights and difficulties of managing the 'message from Mars' in our current multimedia saturated world while balancing authentic science discoveries, public expectations, and communication demands. Our goal is to create a more science savvy public and a more communication oriented science community for the future. The key issues are helping the public and our scientists distinguish between information and knowledge and managing the content that connects the two.

  6. Noble Gas Analysis for Mars Robotic Missions: Evaluating K-Ar Age Dating for Mars Rock Analogs and Martian Shergottites

    Science.gov (United States)

    Park, J.; Ming, D. W.; Garrison, D. H.; Jones, J. H.; Bogard, D. D.; Nagao, K.

    2009-01-01

    The purpose of this noble gas investigation was to evaluate the possibility of measuring noble gases in martian rocks and air by future robotic missions such as the Mars Science Laboratory (MSL). The MSL mission has, as part of its payload, the Sample Analysis at Mars (SAM) instrument, which consists of a pyrolysis oven integrated with a GCMS. The MSL SAM instrument has the capability to measure noble gas compositions of martian rocks and atmosphere. Here we suggest the possibility of K-Ar age dating based on noble gas release of martian rocks by conducting laboratory simulation experiments on terrestrial basalts and martian meteorites. We provide requirements for the SAM instrument to obtain adequate noble gas abundances and compositions within the current SAM instrumental operating conditions, especially, a power limit that prevents heating the furnace above approx.1100 C. In addition, Martian meteorite analyses from NASA-JSC will be used as ground truth to evaluate the feasibility of robotic experiments to constrain the ages of martian surface rocks.

  7. The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission

    Science.gov (United States)

    Mahaffy, Paul R.; Benna, Mehdi; King, Todd; Harpold, Daniel N.; Arvey, Robert; Barciniak, Michael; Bendt, Mirl; Carrigan, Daniel; Errigo, Therese; Holmes, Vincent; Kellogg, James; Jaeger, Ferzan; Raaen, Eric; Tan, Florence

    2014-01-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) of the Mars Atmosphere and Volatile Evolution Mission (MAVEN) is designed to measure the composition, structure, and variability of the upper atmosphere of Mars. The NGIMS complements two other instrument packages on the MAVEN spacecraft designed to characterize the neutral upper atmosphere and ionosphere of Mars and the solar wind input to this region of the atmosphere. The combined measurement set is designed to quantify atmosphere escape rates and provide input to models of the evolution of the martian atmosphere. The NGIMS is designed to measure both surface reactive and inert neutral species and ambient ions along the spacecraft track over the 125-500 km altitude region utilizing a dual ion source and a quadrupole analyzer.

  8. Solar-electric-propulsion cargo vehicles for split/sprint Mars mission

    Science.gov (United States)

    Callaghan, Christopher E.; Crowe, Michael D.; Swis, Matthew J.; Mickney, Marcus R.; Montgomery, C. Keith; Walters, Robert; Thoden, Scott

    1991-01-01

    In support of the proposed exploration of Mars, an unmanned cargo ferry SEMM1 (Solar Electric Mars Mission) was designed. The vehicle is based on solar electric propulsion, and required to transport a cargo of 61,000 kg. The trajectory is a combination of spirals; first, out from LEO, then around the sun, then spiral down to low Mars orbit. The spacecraft produces 3.03 MWe power using photovoltaic flexible blanket arrays. Ion thrusters using argon as a propellant were selected to drive the ship, providing about 60 Newtons of thrust in low Earth orbit. The configuration is based on two long truss beams to which the 24 individual, self-deployable, solar arrays are attached. The main body module supports the two beams and houses the computers, electrical, and control equipment. The thruster module is attached to the rear of the main body, and the cargo to the front.

  9. The Mars Reconnaissance Orbiter Mission: From Launch to the Primary Science Orbit

    Science.gov (United States)

    Johnston, Martin D.; Graf, James E.; Zurek, Richard W.; Eisen, Howard J.; Jai, Benhan; Erickson, James K.

    2007-01-01

    The Mars Reconnaissance Orbiter (MRO) was launched from Cape Canaveral Air Force Station, Florida, USA, aboard an Atlas V-401 launch vehicle on August 12, 2005. The MRO spacecraft carries a very sophisticated scientific payload. Its primary science mission is to to provide global, regional survey, and targeted observations from a low altitude orbit for one Martian year (687 Earth days). After a seven month interplanetary transit, the spacecraft fired its six main engines and established a highly elliptical capture orbit at Mars. During the post-MOI early check-out period, four instruments acquired engineering-quality data. This was followed by five months of aerobraking operations. After aerobraking was terminated, a series of propulsive maneuvers were used to establish the desired low altitude science orbit. As the spacecraft is readied for its primary science mission, spacecraft and instrument checkout and deployment activities have continued.

  10. 2012 Moon Mars Analog Mission Activities on Mauna Kea, Hawai'i

    Science.gov (United States)

    Graham, Lee; Graff, Trevor G.; Aileen Yingst, R.; ten Kate, Inge L.; Russell, Patrick

    2015-05-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) scientific investigations were completed at Mauna Kea, Hawaii. Scientific investigations, scientific input, and science operations constraints were tested in the context of an existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration. Four separate science investigations were integrated in a Martian analog environment with initial science operations planned based on a model similar to the operations control of the Mars Exploration Rovers (MER). However, evolution of the operations process occurred during the initial planning sessions and as the analog mission progressed. We review here the overall program of the investigation into the origin of the valley including preliminary sensor data results, an applicable methodology for developing an optimum science input based on productive engineering, and science trades and the science operations approach for an investigation into the valley on the upper slopes of Mauna Kea identified as “Apollo Valley”.

  11. 3D Vision on Mars: Stereo processing and visualizations for NASA and ESA rover missions

    Science.gov (United States)

    Huber, Ben

    2016-07-01

    Three dimensional (3D) vision processing is an essential component of planetary rover mission planning and scientific data analysis. Standard ground vision processing products are digital terrain maps, panoramas, and virtual views of the environment. Such processing is currently developed for the PanCam instrument of ESA's ExoMars Rover mission by the PanCam 3D Vision Team under JOANNEUM RESEARCH coordination. Camera calibration, quality estimation of the expected results and the interfaces to other mission elements such as operations planning, rover navigation system and global Mars mapping are a specific focus of the current work. The main goals of the 3D Vision team in this context are: instrument design support & calibration processing: Development of 3D vision functionality Visualization: development of a 3D visualization tool for scientific data analysis. 3D reconstructions from stereo image data during the mission Support for 3D scientific exploitation to characterize the overall landscape geomorphology, processes, and the nature of the geologic record using the reconstructed 3D models. The developed processing framework PRoViP establishes an extensible framework for 3D vision processing in planetary robotic missions. Examples of processing products and capabilities are: Digital Terrain Models, Ortho images, 3D meshes, occlusion, solar illumination-, slope-, roughness-, and hazard-maps. Another important processing capability is the fusion of rover and orbiter based images with the support of multiple missions and sensors (e.g. MSL Mastcam stereo processing). For 3D visualization a tool called PRo3D has been developed to analyze and directly interpret digital outcrop models. Stereo image products derived from Mars rover data can be rendered in PRo3D, enabling the user to zoom, rotate and translate the generated 3D outcrop models. Interpretations can be digitized directly onto the 3D surface, and simple measurements of the outcrop and sedimentary features

  12. Nuclear risk assessment for the Mars 2020 mission environmental impact statement.

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Daniel James; Bignell, John L.; Jones, Christopher Andrew; Rohe, Daniel Peter; Flores, Gregg J.; Bartel, Timothy James; Gelbard, Fred; Le, San; Morrow, Charles.; Potter, Donald L.; Young, Larry W.; Bixler, Nathan E.; Lipinski, Ronald J.

    2014-01-01

    In the summer of 2020, the National Aeronautics and Space Administration (NASA) plans to launch a spacecraft as part of the Mars 2020 mission. One option for the rover on the proposed spacecraft uses a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) to provide continuous electrical and thermal power for the mission. An alternative option being considered is a set of solar panels for electrical power with up to 80 Light-Weight Radioisotope Heater Units (LWRHUs) for local component heating. Both the MMRTG and the LWRHUs use radioactive plutonium dioxide. NASA is preparing an Environmental Impact Statement (EIS) in accordance with the National Environmental Policy Act. The EIS will include information on the risks of mission accidents to the general public and on-site workers at the launch complex. This Nuclear Risk Assessment (NRA) addresses the responses of the MMRTG or LWRHU options to potential accident and abort conditions during the launch opportunity for the Mars 2020 mission and the associated consequences. This information provides the technical basis for the radiological risks of both options for the EIS.

  13. Communications During Critical Mission Operations: Preparing for InSight's Landing on Mars

    Science.gov (United States)

    Asmar, Sami; Oudrhiri, Kamal; Kurtik, Susan; Weinstein-Weiss, Stacy

    2014-01-01

    Radio communications with deep space missions are often taken for granted due to the impressively successful records since, for decades, the technology and infrastructure have been developed for ground and flight systems to optimize telemetry and commanding. During mission-critical events such as the entry, descent, and landing of a spacecraft on the surface of Mars, the signal's level and frequency dynamics vary significantly and typically exceed the threshold of the budgeted links. The challenge is increased when spacecraft shed antennas with heat shields and other hardware during those risky few minutes. We have in the past successfully received signals on Earth during critical events even ones not intended for ground reception. These included the UHF signal transmitted by Curiosity to Marsorbiting assets. Since NASA's Deep Space Network does not operate in the UHF band, large radio telescopes around the world are utilized. The Australian CSIRO Parkes Radio Telescope supported the Curiosity UHF signal reception and DSN receivers, tools, and expertise were used in the process. In preparation for the InSight mission's landing on Mars in 2016, preparations are underway to support the UHF communications. This paper presents communication scenarios with radio telescopes, and the DSN receiver and tools. It also discusses the usefulness of the real-time information content for better response time by the mission team towards successful mission operations.

  14. Computer Interactives for the Mars Atmospheric and Volatile Evolution (MAVEN) Mission through NASA's "Project Spectra!"

    Science.gov (United States)

    Wood, E. L.

    2014-12-01

    "Project Spectra!" is a standards-based E-M spectrum and engineering program that includes paper and pencil activities as well as Flash-based computer games that help students solidify understanding of high-level planetary and solar physics. Using computer interactive games, students experience and manipulate information making abstract concepts accessible, solidifying understanding and enhancing retention of knowledge. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. As part of the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission education programming, we've developed two new interactives. The MAVEN mission will study volatiles in the upper atmosphere to help piece together Mars' climate history. In the first interactive, students explore black body radiation, albedo, and a simplified greenhouse effect to establish what factors contribute to overall planetary temperature. Students design a planet that is able to maintain liquid water on the surface. In the second interactive, students are asked to consider conditions needed for Mars to support water on the surface, keeping some variables fixed. Ideally, students will walk away with the very basic and critical elements required for climate studies, which has far-reaching implications beyond the study of Mars. These interactives were pilot tested at Arvada High School in Colorado.

  15. Missions to Mars: MSL and Mars 2020; interview with AE alumnus Gerhard Kruizinga working at JPL

    NARCIS (Netherlands)

    Wink, J.; Roos, B.; Gupta, S.

    2013-01-01

    The Jet Propulsion Laboratory (JPL) located in Pasadena, California is the leading organisation for planetary missions and a point of attraction for many Aerospace Engineers. The Leonardo Times interviewed a former student of our faculty who made the big leap overseas and dedicated his career to pla

  16. Special issue editorial - Plasma interactions with Solar System Objects: Anticipating Rosetta, Maven and Mars Orbiter Mission

    Science.gov (United States)

    Coates, A. J.; Wellbrock, A.; Yamauchi, M.

    2015-12-01

    Within our solar system, the planets, moons, comets and asteroids all have plasma interactions. The interaction depends on the nature of the object, particularly the presence of an atmosphere and a magnetic field. Even the size of the object matters through the finite gyroradius effect and the scale height of cold ions of exospheric origin. It also depends on the upstream conditions, including position within the solar wind or the presence within a planetary magnetosphere. Soon after ESA's Rosetta reached comet Churyumov-Gerasimenko, NASA's Maven and ISRO's Mars Orbiter Mission (MOM) reached Mars, and ESA's Venus Express mission was completed, this issue explores our understanding of plasma interactions with comets, Mars, Venus, and moons in the solar system. We explore the processes which characterise the interactions, such as ion pickup and field draping, and their effects such as plasma escape. Papers are based on data from current and recent space missions, modelling and theory, as we explore our local part of the 'plasma universe'.

  17. Psychological and behavioral changes during confinement in a 520-day simulated interplanetary mission to mars.

    Directory of Open Access Journals (Sweden)

    Mathias Basner

    Full Text Available Behavioral health risks are among the most serious and difficult to mitigate risks of confinement in space craft during long-duration space exploration missions. We report on behavioral and psychological reactions of a multinational crew of 6 healthy males confined in a 550 m(3 chamber for 520 days during the first Earth-based, high-fidelity simulated mission to Mars. Rest-activity of crewmembers was objectively measured throughout the mission with wrist-worn actigraphs. Once weekly throughout the mission crewmembers completed the Beck Depression Inventory-II (BDI-II, Profile of Moods State short form (POMS, conflict questionnaire, the Psychomotor Vigilance Test (PVT-B, and series of visual analogue scales on stress and fatigue. We observed substantial inter-individual differences in the behavioral responses of crewmembers to the prolonged mission confinement and isolation. The crewmember with the highest average POMS total mood disturbance score throughout the mission also reported symptoms of depression in 93% of mission weeks, which reached mild-to-moderate levels in >10% of mission weeks. Conflicts with mission control were reported five times more often than conflicts among crewmembers. Two crewmembers who had the highest ratings of stress and physical exhaustion accounted for 85% of the perceived conflicts. One of them developed a persistent sleep onset insomnia with ratings of poor sleep quality, which resulted in chronic partial sleep deprivation, elevated ratings of daytime tiredness, and frequent deficits in behavioral alertness. Sleep-wake timing was altered in two other crewmembers, beginning in the first few months of the mission and persisting throughout. Two crewmembers showed neither behavioral disturbances nor reports of psychological distress during the 17-month period of mission confinement. These results highlight the importance of identifying behavioral, psychological, and biological markers of characteristics that

  18. A One-year, Short-Stay Crewed Mars Mission Using Bimodal Nuclear Thermal Electric Propulsion (BNTEP) - A Preliminary Assessment

    Science.gov (United States)

    Burke, Laura M.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2013-01-01

    A crewed mission to Mars poses a significant challenge in dealing with the physiological issues that arise with the crew being exposed to a near zero-gravity environment as well as significant solar and galactic radiation for such a long duration. While long surface stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological effects on the crew. However, for a 1-year round trip mission, the outbound and inbound hyperbolic velocity at Earth and Mars can be very large resulting in a significant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power levels (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower specific mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for efficient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo-Newtons of thrust at reasonably high specific impulse (Isp) of 900 seconds for impulsive transplanetary injection and orbital insertion maneuvers. When in power generation/EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each

  19. A One-year, Short-Stay Crewed Mars Mission Using Bimodal Nuclear Thermal Electric Propulsion (BNTEP) - A Preliminary Assessment

    Science.gov (United States)

    Burke, Laura A.; Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2013-01-01

    A crewed mission to Mars poses a signi cant challenge in dealing with the physiolog- ical issues that arise with the crew being exposed to a near zero-gravity environment as well as signi cant solar and galactic radiation for such a long duration. While long sur- face stay missions exceeding 500 days are the ultimate goal for human Mars exploration, short round trip, short surface stay missions could be an important intermediate step that would allow NASA to demonstrate technology as well as study the physiological e ects on the crew. However, for a 1-year round trip mission, the outbound and inbound hy- perbolic velocity at Earth and Mars can be very large resulting in a signi cant propellant requirement for a high thrust system like Nuclear Thermal Propulsion (NTP). Similarly, a low thrust Nuclear Electric Propulsion (NEP) system requires high electrical power lev- els (10 megawatts electric (MWe) or more), plus advanced power conversion technology to achieve the lower speci c mass values needed for such a mission. A Bimodal Nuclear Thermal Electric Propulsion (BNTEP) system is examined here that uses three high thrust Bimodal Nuclear Thermal Rocket (BNTR) engines allowing short departure and capture maneuvers. The engines also generate electrical power that drives a low thrust Electric Propulsion (EP) system used for ecient interplanetary transit. This combined system can help reduce the total launch mass, system and operational requirements that would otherwise be required for equivalent NEP or Solar Electric Propulsion (SEP) mission. The BNTEP system is a hybrid propulsion concept where the BNTR reactors operate in two separate modes. During high-thrust mode operation, each BNTR provides 10's of kilo- Newtons of thrust at reasonably high speci c impulse (Isp) of 900 seconds for impulsive trans-planetary injection and orbital insertion maneuvers. When in power generation / EP mode, the BNTR reactors are coupled to a Brayton power conversion system allowing each

  20. Preliminary System Analysis of In Situ Resource Utilization for Mars Human Exploration

    Science.gov (United States)

    Rapp, Donald; Andringa, Jason; Easter, Robert; Smith, Jeffrey H .; Wilson, Thomas; Clark, D. Larry; Payne, Kevin

    2005-01-01

    We carried out a system analysis of processes for utilization of Mars resources to support human exploration of Mars by production of propellants from indigenous resources. Seven ISRU processes were analyzed to determine mass. power and propellant storage volume requirements. The major elements of each process include C02 acquisition, chemical conversion, and storage of propellants. Based on a figure of merit (the ratio of the mass of propellants that must be brought from Earth in a non-ISRU mission to the mass of the ISRU system. tanks and feedstocks that must be brought from Earth for a ISRU mission) the most attractive process (by far); is one where indigenous Mars water is accessible and this is processed via Sabatier/Electrolysis to methane and oxygen. These processes are technically relatively mature. Other processes with positive leverage involve reverse water gas shift and solid oxide electrolysis.

  1. Exploring Mars

    Science.gov (United States)

    Breuil, Stéphanie

    2016-04-01

    Mars is our neighbour planet and has always fascinated humans as it has been seen as a potential abode for life. Knowledge about Mars is huge and was constructed step by step through numerous missions. It could be difficult to describe these missions, the associated technology, the results, the questions they raise, that's why an activity is proposed, that directly interests students. Their production is presented in the poster. Step 1: The main Mars feature and the first Mars explorations using telescope are presented to students. It should be really interesting to present "Mars Canals" from Percival Lowell as it should also warn students against flawed interpretation. Moreover, this study has raised the big question about extra-terrestrial life on Mars for the first time. Using Google Mars is then a good way to show the huge knowledge we have on the planet and to introduce modern missions. Step 2: Students have to choose and describe one of the Mars mission from ESA and NASA. They should work in pairs. Web sites from ESA and NASA are available and the teacher makes sure the main missions will be studied. Step 3: Students have to collect different pieces of information about the mission - When? Which technology? What were the main results? What type of questions does it raise? They prepare an oral presentation in the form they want (role play, academic presentation, using a poster, PowerPoint). They also have to produce playing cards about the mission that could be put on a timeline. Step 4: As a conclusion, the different cards concerning different missions are mixed. Groups of students receive cards and they have to put them on a timeline as fast as possible. It is also possible to play the game "timeline".

  2. Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota

    NARCIS (Netherlands)

    Ehrenfreund, P.; Röling, W.F.M.; Thiel, C.S.; Quinn, R.; Sephton, M.A.; Stoker, C.; Kotler, J.M.; Direito, S.O.L.; Martins, Z.; Orzechowska, G.E.; Kidd, R.D.; Van Sluis, C.A.; Foing, B.H.

    2011-01-01

    Several robotic exploration missions will travel to Mars during this decade to investigate habitability and the possible presence of life. Field research at Mars analogue sites such as desert environments can provide important constraints for instrument calibration, landing site strategies and expec

  3. Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota

    NARCIS (Netherlands)

    Ehrenfreund, P.; Röling, W.F.M.; Thiel, C.S.; Quinn, R.; Sephton, M.A.; Stoker, C.; Kotler, J.M.; Direito, S.O.L.; Martins, Z.; Orzechowska, G.E.; Kidd, R.D.; Van Sluis, C.A.; Foing, B.H.

    2011-01-01

    Several robotic exploration missions will travel to Mars during this decade to investigate habitability and the possible presence of life. Field research at Mars analogue sites such as desert environments can provide important constraints for instrument calibration, landing site strategies and

  4. Astrobiology and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota

    NARCIS (Netherlands)

    Ehrenfreund, P.; Röling, W.F.M.; Thiel, C.S.; Quinn, R.; Sephton, M.A.; Stoker, C.; Kotler, J.M.; Direito, S.O.L.; Martins, Z.; Orzechowska, G.E.; Kidd, R.D.; Van Sluis, C.A.; Foing, B.H.

    2011-01-01

    Several robotic exploration missions will travel to Mars during this decade to investigate habitability and the possible presence of life. Field research at Mars analogue sites such as desert environments can provide important constraints for instrument calibration, landing site strategies and expec

  5. A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions

    Science.gov (United States)

    Mercer, Carolyn R.; Oleson, Steven R.; Drake, Bret G.

    2014-01-01

    The Mars Design Reference Architecture (DRA) 5.0 explored a piloted Mars mission in the 2030 timeframe, focusing on architecture and technology choices. The DRA 5.0 focused on nuclear thermal and cryogenic chemical propulsion system options for the mission. Follow-on work explored both nuclear and solar electric options. One enticing option that was found in a NASA Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) design study used a combination of a 1-MW-class solar electric propulsion (SEP) system combined with storable chemical systems derived from the planned Orion crew vehicle. It was found that by using each propulsion system at the appropriate phase of the mission, the entire SEP stage and habitat could be placed into orbit with just two planned Space Launch System (SLS) heavy lift launch vehicles assuming the crew would meet up at the Earth-Moon (E-M) L2 point on a separate heavy-lift launch. These appropriate phases use high-thrust chemical propulsion only in gravity wells when the vehicle is piloted and solar electric propulsion for every other phase. Thus the SEP system performs the spiral of the unmanned vehicle from low Earth orbit (LEO) to E-M L2 where the vehicle meets up with the multi-purpose crew vehicle. From here SEP is used to place the vehicle on a trajectory to Mars. With SEP providing a large portion of the required capture and departure changes in velocity (delta V) at Mars, the delta V provided by the chemical propulsion is reduced by a factor of five from what would be needed with chemical propulsion alone at Mars. This trajectory also allows the SEP and habitat vehicle to arrive in the highly elliptic 1-sol parking orbit compatible with envisioned Mars landing concepts. This paper explores mission options using between SEP and chemical propulsion, the design of the SEP system including the solar array and electric propulsion systems, and packaging in the SLS shroud. Design trades of stay time, power level

  6. Risk Assessment of Bone Fracture During Space Exploration Missions to the Moon and Mars

    Science.gov (United States)

    Lewandowski, Beth E.; Myers, Jerry G.; Nelson, Emily S.; Griffin, Devon

    2008-01-01

    The possibility of a traumatic bone fracture in space is a concern due to the observed decrease in astronaut bone mineral density (BMD) during spaceflight and because of the physical demands of the mission. The Bone Fracture Risk Module (BFxRM) was developed to quantify the probability of fracture at the femoral neck and lumbar spine during space exploration missions. The BFxRM is scenario-based, providing predictions for specific activities or events during a particular space mission. The key elements of the BFxRM are the mission parameters, the biomechanical loading models, the bone loss and fracture models and the incidence rate of the activity or event. Uncertainties in the model parameters arise due to variations within the population and unknowns associated with the effects of the space environment. Consequently, parameter distributions were used in Monte Carlo simulations to obtain an estimate of fracture probability under real mission scenarios. The model predicts an increase in the probability of fracture as the mission length increases and fracture is more likely in the higher gravitational field of Mars than on the moon. The resulting probability predictions and sensitivity analyses of the BFxRM can be used as an engineering tool for mission operation and resource planning in order to mitigate the risk of bone fracture in space.

  7. Acid Sulfate Weathering on Mars: Results from the Mars Exploration Rover Mission

    Science.gov (United States)

    Ming, Douglas W.; Morris, R. V.; Golden, D. C.

    2006-01-01

    Sulfur has played a major role in the formation and alteration of outcrops, rocks, and soils at the Mars Exploration Rover landing sites on Meridiani Planum and in Gusev crater. Jarosite, hematite, and evaporite sulfates (e.g., Mg and Ca sulfates) occur along with siliciclastic sediments in outcrops at Meridiani Planum. The occurrence of jarosite is a strong indicator for an acid sulfate weathering environment at Meridiani Planum. Some outcrops and rocks in the Columbia Hills in Gusev crater appear to be extensively altered as suggested by their relative softness as compared to crater floor basalts, high Fe(3+)/FeT, iron mineralogy dominated by nanophase Fe(3+) oxides, hematite and/or goethite, corundum-normative mineralogies, and the presence of Mg- and Casulfates. One scenario for aqueous alteration of these rocks and outcrops is that vapors and/or fluids rich in SO2 (volcanic source) and water interacted with rocks that were basaltic in bulk composition. Ferric-, Mg-, and Ca-sulfates, phosphates, and amorphous Si occur in several high albedo soils disturbed by the rover's wheels in the Columbia Hills. The mineralogy of these materials suggests the movement of liquid water within the host material and the subsequent evaporation of solutions rich in Fe, Mg, Ca, S, P, and Si. The presence of ferric sulfates suggests that these phases precipitated from highly oxidized, low-pH solutions. Several hypotheses that invoke acid sulfate weathering environments have been suggested for the aqueous formation of sulfate-bearing phases on the surface of Mars including (1) the oxidative weathering of ultramafic igneous rocks containing sulfides; (2) sulfuric acid weathering of basaltic materials by solutions enriched by volcanic gases (e.g., SO2); and (3) acid fog (i.e., vapors rich in H2SO4) weathering of basaltic or basaltic-derived materials.

  8. The High Resolution Stereo Camera (HRSC) Experiment onboard the European Mars Express (MEX) Mission

    Science.gov (United States)

    Neukum, G.; HRSC Team

    2003-04-01

    A major goal of the European Mars Express mission is to image the Martian surface at high spatial resolution, in stereo and in color. This task will be met by the High Resolution Stereo Camera (HRSC), a multiple-line pushbroom scanner. 9 CCD lines are mounted in parallel and simultaneously acquire images at high spatial resolution, in triple-stereo, in four colors and at five viewing angles. During the nominal mission, the HRSC will cover at least 50% of the Martian surface at 10-15 m/pixel, 70% at better than 30 m/pixel and 100% at better than 100 m/pixel resolution. The instrument is equipped with an additional super-resolution channel reaching a spatial resolution of up to 2 m/pixel. This channel is boresighted with the HRSC stereo scanner and will obtain nested-in images or image strips. Up to a few % of the Martian surface can be covered by the super-resolution channel during the mission. This channel will be of particular importance for highest-resolution coverage of landing sites such as planned for the Mars Express Beagle 2 site and the two Mars Surveyor 2003 rover sites. Scientifically, the HRSC experiment concentrates on the geological and climatological evolution of Mars with special emphasis on the role of water throughout the Martian history. An international team of 40 Co-Investigators from 28 scientific institutions and 10 countries will run the experiment and analyze the data over the two-year nominal mission with a possible extension over an additional two years. The data will be processed in such a way that they will be usable by the scientific community at large six months after receipt. The experiment hardware and software development is finished and the instrument is being assembled and tested at the ESA-MEX spacecraft. The launch of the mission is scheduled from Baikonur in late May 2003. First data from the cruise phase to Mars will be received in the June-July period of 2003.

  9. Exomars orbiter science and data-relay mission / looking for trace gases on Mars

    Science.gov (United States)

    Fratacci, Olivier

    EXOMARS Orbiter Module: looking for trace gas on Mars and providing data relay support for future Mars Surface assets O.Fratacci, M.Mesrine, H.Renault, Thales Alenia Space France B.Musetti, M.Montagna, Thales Alenia Space Italy M.Kesselmann, M.Barczewski OHB P.Mitschdoerfer, D.Dellantonio Euro-pean Space Agency / ESTEC The European Space Agency (ESA) in a joint cooperation with NASA, will launch in 2016 the EXOMARS spacecraft composite to develop European landing technologies and provide a science orbiter with data-relay capability around Mars until end 2022. The spacecraft composite is composed of the Orbitr Module (OM), provided by TAS-France, an entry descent and landing demonstrator module (EDM) provided by TAS-Italy, and a set of six scientific payloads to be selected by the JPL during 2010. Recent observations of the planet Mars have indicated detection of methane as well as temporal, perhaps spatial variability in the detected signal while current photochemical models cannot explain the presence of methane in the atmosphere of Mars nor its reported rapid variations in space and time. The triple scientific objectives that drive the selection of these six instruments for the Exomars 2016 mission is to detect trace gases in Mars atmosphere, to characterise their spatial and temporal variation and to explore the source of the key trace gases (e.g. methane) on the surface. The launch is scheduled in January 2016 from Kennedy Space Center (KSC) using an ATLAS V 421 launcher with a total launch mass of 4.4 tons. After release of the EDM on Mars, the OM will perform the Mars Orbit Insertion manoeuvre and then reduce its elliptic orbit by implementing the first European Aerobraking around Mars for about 6 to 9 months, to finally end on a circular 400x400km orbit with an altitude in the range of 350km to 420km. From this orbit, a science phase will follow lasting 2 years in which the Mars atmosphere and surface is continuously observed. Science instruments composed of

  10. The MAVEN mission to Mars: Creating pathways for connecting to science

    Science.gov (United States)

    Mason, T.; Renfrow, S.; Wood, E. L.; Christofferson, R.

    2011-12-01

    While science literacy rates in the U.S. have recently increased, overall levels remain remarkably low. There are opportunities for the public to learn about science and to engage directly with real-life practitioners. It is the responsibility of EPO professionals to provide these opportunities and to assess the effectiveness of each platform. At the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP), we utilize a diverse, well-tested approach to introducing the public to science and giving scientists access to the broadest possible audience. This poster will focus on NASA's MAVEN mission to Mars to highlight the many avenues through which we introduce rather complex science concepts to the public. Through the use of social media outlets, crowdsourcing activities, public lectures, and interactive question and answer and video sessions, MAVEN scientists are capitalizing on recent excitement surrounding Mars science and the public's fascination with the search for life to bring the science of the mission directly to a variety of audiences. Our EPO professionals are using cross-platform, transportable content to maximize exposure for the mission, while minimizing time and effort. In doing so, we are creating pathways for two-way interactions between our audience and mission experts and building a community that will join us in the MAVEN journey and its important discoveries.

  11. INTEGRITY -- Integrated Human Exploration Mission Simulation Facility

    Science.gov (United States)

    Henninger, D.; Tri, T.; Daues, K.

    It is proposed to develop a high -fidelity ground facil ity to carry out long-duration human exploration mission simulations. These would not be merely computer simulations - they would in fact comprise a series of actual missions that just happen to stay on earth. These missions would include all elements of an actual mission, using actual technologies that would be used for the real mission. These missions would also include such elements as extravehicular activities, robotic systems, telepresence and teleoperation, surface drilling technology--all using a simulated planetary landscape. A sequence of missions would be defined that get progressively longer and more robust, perhaps a series of five or six missions over a span of 10 to 15 years ranging in durat ion from 180 days up to 1000 days. This high-fidelity ground facility would operate hand-in-hand with a host of other terrestrial analog sites such as the Antarctic, Haughton Crater, and the Arizona desert. Of course, all of these analog mission simulations will be conducted here on earth in 1-g, and NASA will still need the Shuttle and ISS to carry out all the microgravity and hypogravity science experiments and technology validations. The proposed missions would have sufficient definition such that definitive requirements could be derived from them to serve as direction for all the program elements of the mission. Additionally, specific milestones would be established for the "launch" date of each mission so that R&D programs would have both good requirements and solid milestones from which to build their implementation plans. Mission aspects that could not be directly incorporated into the ground facility would be simulated via software. New management techniques would be developed for evaluation in this ground test facility program. These new techniques would have embedded metrics which would allow them to be continuously evaluated and adjusted so that by the time the sequence of missions is completed

  12. An unmanned mission to Mars with sample collection and in-situ resource utilization

    Science.gov (United States)

    1994-05-01

    The design for the Mars Analysis and Return Vehicle with In-Situ Resource Utilization (MARVIN) project is outlined. The MARVIN mission is designed to collect samples of the Martian environment; to produce fuel from local Martian resources; and to use the fuel produced to return the samples to earth. It uses only existing technologies. Exploratory Technologies' mission-design efforts have focused on methods of orbit determination, sample collection, fuel production, power, communications, control, and structural design. Lambert Targeting provided Delta-V's, launch dates, and travel times. The landing site is the Tharsis Plateau, to the southeast of Olympus Mons, chosen for its substantial scientific value. Samples of soil, dust, and atmosphere are collected with lander-based collection devices: the soil sample, with a robotic arm similar to those used in the Viking missions; the atmospheric sample, from a bleed line to the compressor in the fuel-production facility; a dust sample, from the dust-collection container in the fuel-production facility; and a redundant dust sample, with a with a passive filter system, which relies upon neither a power source nor other collection methods. The sample-return capsule (SRC) houses these samples, which are triply contained to prevent contamination. Proven technology can be used to produce methane and oxygen for fuel with relative ease at the landing site: the Sabatier reactor produces methane and water by combining carbon dioxide and hydrogen (brought from earth); the Reverse Water-Gas Shift unit combines carbon dioxide and hydrogen to form carbon monoxide and water; a water-electrolysis unit splits the water into hydrogen and oxygen. The Mars-lander vehicle (MLV) transports the equipment from earth to Mars. The Mars-ascent vehicle (MAV) contains the SRC and the engine, which is the same for both the MLV and the MAV. All equipment that is unnecessary for the Mars-Earth trajectory remains on Mars. This report presents detailed

  13. Mitigating Adverse Effects of a Human Mission on Possible Martian Indigenous Ecosystems

    Science.gov (United States)

    Lupisella, M. L.

    2000-07-01

    Although human beings are, by most standards, the most capable agents to search for and detect extraterrestrial life, we are also potentially the most harmful. While there has been substantial work regarding forward contamination with respect to robotic missions, the issue of potential adverse effects on possible indigenous Martian ecosystems, such as biological contamination, due to a human mission has remained relatively unexplored and may require our attention now as this presentation will try to demonstrate by exploring some of the relevant scientific questions, mission planning challenges, and policy issues. An informal, high-level mission planning decision tree will be discussed and is included as the next page of this abstract. Some of the questions to be considered are: (1) To what extent could contamination due to a human presence compromise possible indigenous life forms? (2) To what extent can we control contamination? For example, will it be local or global? (3) What are the criteria for assessing the biological status of Mars, both regionally and globally? For example, can we adequately extrapolate from a few strategic missions such as sample return missions? (4) What should our policies be regarding our mission planning and possible interaction with what are likely to be microbial forms of extraterrestrial life? (5) Central to the science and mission planning issues is the role and applicability of terrestrial analogs, such as Lake Vostok for assessing drilling issues, and modeling techniques. Central to many of the policy aspects are scientific value, international law, public concern, and ethics. Exploring this overall issue responsibly requires an examination of all these aspects and how they interrelate. A chart is included, titled 'Mission Planning Decision Tree for Mitigating Adverse Effects to Possible Indigenous Martian Ecosystems due to a Human Mission'. It outlines what questions scientists should ask and answer before sending humans to Mars.

  14. The Icebreaker Life Mission to Mars: a search for biomolecular evidence for life.

    Science.gov (United States)

    McKay, Christopher P; Stoker, Carol R; Glass, Brian J; Davé, Arwen I; Davila, Alfonso F; Heldmann, Jennifer L; Marinova, Margarita M; Fairen, Alberto G; Quinn, Richard C; Zacny, Kris A; Paulsen, Gale; Smith, Peter H; Parro, Victor; Andersen, Dale T; Hecht, Michael H; Lacelle, Denis; Pollard, Wayne H

    2013-04-01

    The search for evidence of life on Mars is the primary motivation for the exploration of that planet. The results from previous missions, and the Phoenix mission in particular, indicate that the ice-cemented ground in the north polar plains is likely to be the most recently habitable place that is currently known on Mars. The near-surface ice likely provided adequate water activity during periods of high obliquity, ≈ 5 Myr ago. Carbon dioxide and nitrogen are present in the atmosphere, and nitrates may be present in the soil. Perchlorate in the soil together with iron in basaltic rock provides a possible energy source for life. Furthermore, the presence of organics must once again be considered, as the results of the Viking GCMS are now suspect given the discovery of the thermally reactive perchlorate. Ground ice may provide a way to preserve organic molecules for extended periods of time, especially organic biomarkers. The Mars Icebreaker Life mission focuses on the following science goals: (1) Search for specific biomolecules that would be conclusive evidence of life. (2) Perform a general search for organic molecules in the ground ice. (3) Determine the processes of ground ice formation and the role of liquid water. (4) Understand the mechanical properties of the martian polar ice-cemented soil. (5) Assess the recent habitability of the environment with respect to required elements to support life, energy sources, and possible toxic elements. (6) Compare the elemental composition of the northern plains with midlatitude sites. The Icebreaker Life payload has been designed around the Phoenix spacecraft and is targeted to a site near the Phoenix landing site. However, the Icebreaker payload could be supported on other Mars landing systems. Preliminary studies of the SpaceX Dragon lander show that it could support the Icebreaker payload for a landing either at the Phoenix site or at midlatitudes. Duplicate samples could be cached as a target for possible return by

  15. Gamma ray spectrometer for future Mars mission: design concept and simulation study

    Science.gov (United States)

    Goyal, S. K.; Banerjee, D.; Vadawale, S.; Panda, Dipak K.; Patel, A. R.; Patinge, A.; Ladiya, T.; Sarbadhikari, A. B.

    2016-07-01

    One of the basic keys to understand the evolution and formation of any planet is the knowledge of the elemental composition of its surface. Gamma spectroscopy on Mars orbiter provides a unique opportunity to measure the elemental composition of its surface, with an atmosphere thin enough to allow detection of gamma rays produced from the near surface rock and soil materials. We are developing gamma ray spectrometer using High Purity Germanium (HPGe) detector for future Mars orbiter mission. The scientific objective of the instrument is to map the naturally occurring radioactive elements (Th, U, and K) and other major elements (Fe, Mg, Cl, Al, Si, S, Mg, Cl) over the entire Martian surface with a spatial resolution of better than 250 km. Gamma ray spectrometer will also have Anti - Coincidence Shield (ACS) detector for background subtraction from the surrounding material. This paper gives the details of the GEANT4 simulation, carried out to study the design requirements for a gamma ray spectrometer for a future Mars orbiter mission. This includes the selection of the size of HPGe detector, selection of the detector material and thickness for the ACS detector, and attenuation of gamma rays in the Martian atmosphere. Generation of gamma rays from the Martian surface due to Galactic Cosmic Rays (GCR) particles' interaction has also been simulated. Preliminary results from the standard off the shelf detector are also presented here.

  16. Mirror fusion propulsion system: A performance comparison with alternate propulsion systems for the manned Mars Mission

    Science.gov (United States)

    Schulze, Norman R.; Carpenter, Scott A.; Deveny, Marc E.; Oconnell, T.

    1993-06-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.

  17. Mirror fusion propulsion system - A performance comparison with alternate propulsion systems for the manned Mars mission

    Science.gov (United States)

    Deveny, M.; Carpenter, S.; O'Connell, T.; Schulze, N.

    1993-06-01

    The performance characteristics of several propulsion technologies applied to piloted Mars missions are compared. The characteristics that are compared are Initial Mass in Low Earth Orbit (IMLEO), mission flexibility, and flight times. The propulsion systems being compared are both demonstrated and envisioned: Chemical (or Cryogenic), Nuclear Thermal Rocket (NTR) solid core, NTR gas core, Nuclear Electric Propulsion (NEP), and a mirror fusion space propulsion system. The proposed magnetic mirror fusion reactor, known as the Mirror Fusion Propulsion System (MFPS), is described. The description is an overview of a design study that was conducted to convert a mirror reactor experiment at Lawrence Livermore National Lab (LLNL) into a viable space propulsion system. Design principles geared towards minimizing mass and maximizing power available for thrust are identified and applied to the LLNL reactor design, resulting in the MFPS. The MFPS' design evolution, reactor and fuel choices, and system configuration are described. Results of the performance comparison shows that the MFPS minimizes flight time to 60 to 90 days for flights to Mars while allowing continuous return-home capability while at Mars. Total MFPS IMLEO including propellant and payloads is kept to about 1,000 metric tons.

  18. MOMA Gas Chromatograph-Mass Spectrometer onboard the 2018 ExoMars Mission: results and performance

    Science.gov (United States)

    Buch, A.; Pinnick, V. T.; Szopa, C.; Grand, N.; Humeau, O.; van Amerom, F. H.; Danell, R.; Freissinet, C.; Brinckerhoff, W.; Gonnsen, Z.; Mahaffy, P. R.; Coll, P.; Raulin, F.; Goesmann, F.

    2015-10-01

    The Mars Organic Molecule Analyzer (MOMA) is a dual ion source linear ion trap mass spectrometer that was designed for the 2018 joint ESA-Roscosmos mission to Mars. The main scientific aim of the mission is to search for signs of extant or extinct life in the near subsurface of Mars by acquiring samples from as deep as 2 m below the surface. MOMA will be a key analytical tool in providing chemical (molecular and chiral) information from the solid samples, with particular focus on the characterization of organic content. The MOMA instrument, itself, is a joint venture for NASA and ESA to develop a mass spectrometer capable of analyzing samples from pyrolysis/chemical derivatization gas chromatography (GC) as well as ambient pressure laser desorption ionization (LDI). The combination of the two analytical techniques allows for the chemical characterization of a broad range of compounds, including volatile and non-volatile species. Generally, MOMA can provide information on elemental and molecular makeup, polarity, chirality and isotopic patterns of analyte species. Here we report on the current performance of the MOMA prototype instruments, specifically the demonstration of the gas chromatographymass spectrometry (GC-MS) mode of operation.

  19. Mission to Mars by catalyzed nuclear reactions of the commercialized cold fusion power

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Tae Ho [Yonsei University, Wonju (Korea, Republic of)

    2016-05-15

    The chemical compound source is deficient to reach to the power as much as the journey to Mars, unless the massive equipment is installed like the nuclear fusion reactor. However, there is very significant limitations of making up the facility due to the propellant power. Therefore, the light and cheap energy source, Low energy nuclear reactions (LENRs), powered rocket has been proposed. In this paper, the power conditions by LENRs are analyzed. After the successful Apollo mission to Moon of the National Aeronautics and Space Administration (NASA) in the U.S. government, the civilian companies have proposed for the manned mission to Mars for the commercial journey purposes. The nuclear power has been a critical issue for the energy source in the travel, especially, by the LENR of LENUCO, Champaign, USA. As the velocity of the rocket increases, the mass flow rate decreases. It could be imaginable to take the reasonable velocity of spacecraft. The energy of the travel system is and will be created for the better one in economical and safe method. There is the imagination of boarding pass for spacecraft ticket shows the selected companies of cold fusion products. In order to solve the limitations of the conventional power sources like the chemical and solar energies, it is reasonable to design LENR concept. Since the economical and safe spacecraft is very important in the long journey on and beyond the Mars orbit, a new energy source, LENR, should be studied much more.

  20. Human Space Exploration: The Moon, Mars, and Beyond

    Science.gov (United States)

    Sexton, Jeffrey D.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed, to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. Why the Moon? Many questions about the Moon's potential resources and how its history is linked to that of Earth were spurred by the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment for extended expeditions. The Moon also will serve as a training ground before embarking on the longer, more difficult trip to Mars. NASA plans to build a lunar outpost at one of the lunar poles, learn to live off the land, and reduce dePendence on Earth for longer missions. America needs to extend its ability to survive in hostile environments close to our home planet before astronauts will reach Mars, a planet very much like Earth. NASA has worked with scientists to define lunar exploration goals and is addressing the opportunities for a range of scientific study on Mars. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I

  1. Nuclear Thermal Rocket (Ntr) Propulsion: A Proven Game-Changing Technology for Future Human Exploration Missions

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The NTR represents the next evolutionary step in high performance rocket propulsion. It generates high thrust and has a specific impulse (Isp) of approx.900 seconds (s) or more V twice that of today s best chemical rockets. The technology is also proven. During the previous Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) nuclear rocket programs, 20 rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability V all the requirements needed for a human mission to Mars. Ceramic metal cermet fuel was also pursued, as a backup option. The NTR also has significant growth and evolution potential. Configured as a bimodal system, it can generate electrical power for the spacecraft. Adding an oxygen afterburner nozzle introduces a variable thrust and Isp capability and allows bipropellant operation. In NASA s recent Mars Design Reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, simple assembly and mission operations. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program V the 25,000 lbf (25 klbf) Pewee engine is sufficient for human Mars missions when used in a clustered engine arrangement. The Copernicus crewed spacecraft design developed in DRA 5.0 has significant capability and a human exploration strategy is outlined here that uses Copernicus and its key components for precursor near Earth asteroid (NEA) and Mars orbital missions prior to a Mars landing mission. Initially, the basic Copernicus vehicle can enable reusable 1-year round trip human missions to candidate NEAs like 1991 JW and Apophis in the late 2020 s to check out vehicle systems. Afterwards, the

  2. Comparison of the Effects of Velocity and Range Triggers on Trajectory Dispersions for the Mars 2020 Mission

    Science.gov (United States)

    Dutta, Soumyo; Way, David W.

    2017-01-01

    Mars 2020, the next planned U.S. rover mission to land on Mars, is based on the design of the successful 2012 Mars Science Laboratory (MSL) mission. Mars 2020 retains most of the entry, descent, and landing (EDL) sequences of MSL, including the closed-loop entry guidance scheme based on the Apollo guidance algorithm. However, unlike MSL, Mars 2020 will trigger the parachute deployment and descent sequence on range trigger rather than the previously used velocity trigger. This difference will greatly reduce the landing ellipse sizes. Additionally, the relative contribution of each models to the total ellipse sizes have changed greatly due to the switch to range trigger. This paper considers the effect on trajectory dispersions due to changing the trigger schemes and the contributions of these various models to trajectory and EDL performance.

  3. Options for the human exploration of Mars using Solar Electric propulsion

    Science.gov (United States)

    Gefert, Leon P.; Hack, Kurt J.; Kerslake, Thomas W.

    1999-01-01

    Solar Electric propulsion (SEP) is examined as a candidate transportation option for human missions to Mars. Focus is given to an Earth-escape staging concept. This concept uses a SEP system to transfer from low earth orbit (LEO) to a high-energy elliptical parking orbit (HEEPO) and a chemical propulsion system to transfer from the HEEPO to a hyperbolic escape trajectory. LEO to Earth escape performance of these combined transportation systems is comparable to that of a nuclear thermal rocket (NTR). As a result, a mass efficient non-nuclear transportation architecture with fast, 180 day, Earth-to-Mars piloted transit times is enabled.

  4. A U.S. perspective on the human exploration and expansion on the planet Mars

    Science.gov (United States)

    Roberts, Barney B.; Connolly, John F.

    1992-01-01

    A NASA perspective on the human exploration of Mars is presented which is based on the fundamental background available from the many previous studies. A hypothetical architecture of the Mars surface system is described which represents the complete spectrum of envisioned activities. Using the Strategic Implementation Architecture it is possible to construct a thoughtful roadmap which would enable a logical and flexible evolution of missions. Based on that architecture a suite of Martian surface elements is proposed to provide increasing levels of capability to the maturing infrastructure.

  5. Solar Power System Evaluated for the Human Exploration of Mars

    Science.gov (United States)

    Kerslake, Thomas W.

    2000-01-01

    The electric power system is a crucial element of any mission for the human exploration of the Martian surface. The bulk of the power generated will be delivered to crew life support systems, extravehicular activity suits, robotic vehicles, and predeployed in situ resource utilization (ISRU) equipment. In one mission scenario, before the crew departs for Mars, the ISRU plant operates for 435 days producing liquefied methane and oxygen for ascent-stage propellants and water for crew life support. About 200 days after ISRU production is completed, the crew arrives for a 500-day surface stay. In this scenario, the power system must operate for a total of 1130 days (equivalent to 1100 Martian "sols"), providing 400 MW-hr of energy to the ISRU plant and up to 18 kW of daytime user power. A photovoltaic power-generation system with regenerative fuel cell (RFC) energy storage has been under study at the NASA Glenn Research Center at Lewis Field. The conceptual power system is dominated by the 4000- m2 class photovoltaic array that is deployed orthogonally as four tent structures, each approximately 5 m on a side and 100-m long. The structures are composed of composite members deployed by an articulating mast, an inflatable boom, or rover vehicles, and are subsequently anchored to the ground. Array panels consist of thin polymer membranes with thin-film solar cells. The array is divided into eight independent electrical sections with solar cell strings operating at 600 V. Energy storage is provided by regenerative fuel cells based on hydrogen-oxygen proton exchange membrane technology. Hydrogen and oxygen reactants are stored in gaseous form at 3000 psi, and the water produced is stored at 14.7 psi. The fuel cell operating temperature is maintained by a 40-m2 deployable pumped-fluid loop radiator that uses water as the working fluid. The power management and distribution (PMAD) architecture features eight independent, regulated 600-Vdc channels. Power management and

  6. Raman spectroscopic analysis of geological and biogeological specimens of relevance to the ExoMars mission.

    Science.gov (United States)

    Edwards, Howell G M; Hutchinson, Ian B; Ingley, Richard; Parnell, John; Vítek, Petr; Jehlička, Jan

    2013-06-01

    A novel miniaturized Raman spectrometer is scheduled to fly as part of the analytical instrumentation package on an ESA remote robotic lander in the ESA/Roscosmos ExoMars mission to search for evidence for extant or extinct life on Mars in 2018. The Raman spectrometer will be part of the first-pass analytical stage of the sampling procedure, following detailed surface examination by the PanCam scanning camera unit on the ExoMars rover vehicle. The requirements of the analytical protocol are stringent and critical; this study represents a laboratory blind interrogation of specimens that form a list of materials that are of relevance to martian exploration and at this stage simulates a test of current laboratory instrumentation to highlight the Raman technique strengths and possible weaknesses that may be encountered in practice on the martian surface and from which future studies could be formulated. In this preliminary exercise, some 10 samples that are considered terrestrial representatives of the mineralogy and possible biogeologically modified structures that may be identified on Mars have been examined with Raman spectroscopy, and conclusions have been drawn about the viability of the unambiguous spectral identification of biomolecular life signatures. It is concluded that the Raman spectroscopic technique does indeed demonstrate the capability to identify biomolecular signatures and the mineralogy in real-world terrestrial samples with a very high degree of success without any preconception being made about their origin and classification.

  7. The subsurface geology of Río Tinto: material examined during a simulated Mars drilling mission for the Mars Astrobiology Research and Technology Experiment (MARTE).

    Science.gov (United States)

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  8. Using Mars Mission Analogs and Authentic Experiences to Stimulate STEM Learning in K-14 Students

    Science.gov (United States)

    Klug, S. L.; Grigsby, B.; Valderrama, P.; Watt, K.

    2005-12-01

    Today, in many of the classrooms across our nation, K-12 educators are finding it more difficult to engage their students in the subjects that will help them to succeed to a more productive way of life - science, technology, engineering, and math (STEM). Finally, add to this formidable task a diverse set of learners (demographically and skill level) of an average classroom and the constraints of high stakes testing. Quite a challenge, indeed! The Arizona State University (ASU) Mars Education Program, in partnership with the Jet Propulsion Laboratory Mars Public Engagement Team have created programming, curriculum, and activities that help to bridge the gap between STEM learning and student interest. Starting with the Standards in the STEM areas - the areas which teachers are tasked to teach already, our team has modeled the STEM-based curriculum after the way that NASA's Mars team conducts their work and research. There is much challenge in the statement "Science for All Americans" when it comes to applying it equally to all classrooms across the U.S. To make sure that these curricular materials and hands-on experiences are available to any teacher and student, the ASU Mars Education Program has adopted a "high-tech, low-tech, and no-tech" approach. In other words, materials and programming have to be available and doable with whatever capabilities a classroom might possess. Using this approach, successful examples of Mars-based educational materials include Marsbound and the Mars Student Imaging Project. The Marsbound simulation is based on National Technology Standards and seemingly low tech. However, the simplicity of this simulation is quickly forgotten as it follows the familiar NASA scenario of building a mission to Mars with engineering constraints. Student teams use a set of equipment cards and a playmat (both available at no cost) to build their mission and balance it according to the constraints given. Students soon realize there is a lot of complexity to

  9. Risk analysis of earth return options for the Mars rover/sample return mission

    Science.gov (United States)

    1988-01-01

    Four options for return of a Mars surface sample to Earth were studied to estimate the risk of mission failure and the risk of a sample container breach that might result in the release of Martian life forms, should such exist, in the Earth's biosphere. The probabilities calculated refer only to the time period from the last midcourse correction burn to possession of the sample on Earth. Two extreme views characterize this subject. In one view, there is no life on Mars, therefore there is no significant risk and no serious effort is required to deal with back contamination. In the other view, public safety overrides any desire to return Martian samples, and any risk of damaging contamination greater than zero is unacceptable. Zero risk requires great expense to achieve and may prevent the mission as currently envisioned from taking place. The major conclusion is that risk of sample container breach can be reduced to a very low number within the framework of the mission as now envisioned, but significant expense and effort, above that currently planned is needed. There are benefits to the public that warrant some risk. Martian life, if it exists, will be a major discovery. If it does not, there is no risk.

  10. The analysis of manned Mars mission with duration of 1000 days

    Science.gov (United States)

    Konstantinov, Mikhail S.; Petukhov, Viacheslav G.

    2012-04-01

    Results of the analysis of manned mission to Mars are presented. The project of Mars's manned complex with nuclear electric propulsion is analyzed. The paper focuses on trajectory optimization as well as on the analysis of a required level of characteristics of the main systems of the manned complex (electric power of nuclear electric power supply system, specific impulse of electric propulsion, specific mass of electric power and propulsion system). The essential characteristic of the considered project (its feature) is extremely small (200 metric tons) initial mass of spacecraft at LEO. Time of the manned mission is equal to 1000 days. The maximal specific mass of electric power and propulsion system at which it is possible to carry out the considered mission is estimated. The range of specific impulse of electric propulsion 4500-7500 s is investigated. It is shown that at considered characteristics of space transport system the optimal magnitude of a specific impulse is equal to 7000 s. At efficiency of electric propulsion 0.6 the specific mass of electric power and propulsion systems should not exceed 14.6 kg/kW. If efficiency of electric propulsion is equal to 0.7, the specific mass of electric power and propulsion systems should not exceed 17.0 kg/kW.

  11. Propulsion System and Mission Design of AMSAT P5-A Mars Probe

    Science.gov (United States)

    Peukert, M.; Riehle, M.

    2002-01-01

    The ham radio operators group AMSAT is currently preparing studies about the feasibility of developing a low cost mission to mars. The probe, called P5-A shall be mainly based on the design of the amateur radio satellite P3-D, launched in November 2000 atop Ariane 507. The satellite design team of AMSAT is lead by the German subsidiary of this international organisation and is supported by ASTRIUM in Lampolshausen, Germany. The support of ASTRIUM may encompass the delivery of major propulsion system components like the bi-propellant Apogee Engine, as already done for former AMSAT projects. Further on propulsion system experts from ASTRIUM have offered support to AMSAT during the design process and during critical satellite operations (e.g. fuelling on launch site). The present paper describes the mission design and the general layout of the P5-A mars probe with strong emphasise on the propulsion system. Probe Design Communication and development of the corresponding techniques is the main field of activities of the amateur radio operators. Thus the main payload of the probe will be an extensive and sophisticated communication equipment. Other organisations even have shown interest to use this mars probe as data relay for their own missions. To save costs, the design of the recently developed satellite P3-D shall be used as far as possible. One side of the hexagonal shaped structure of the satellite will be occupied by a dish antenna to establish from mars orbit a high data download rate of 50,000 bits/sec at the frequency of 10.5 GHz. As counterpart on ground the 20 m Cassegrain-reflector of Bochum University will be used. Due to the fixed antenna the probe has to be 3- axis stabilised. Therefore the use of magnetic wheels in conjunction with thrusters is foreseen. The paper will describe the propulsion system layout and design. For impulsive manoeuvres the ASTRIUM built 400N Apogee Engine is foreseen. For interplanetary corrections or thrust phases the use of an

  12. Field Experiments using Telepresence and Virtual Reality to Control Remote Vehicles: Application to Mars Rover Missions

    Science.gov (United States)

    Stoker, Carol

    1994-01-01

    This paper will describe a series of field experiments to develop and demonstrate file use of Telepresence and Virtual Reality systems for controlling rover vehicles on planetary surfaces. In 1993, NASA Ames deployed a Telepresence-Controlled Remotely Operated underwater Vehicle (TROV) into an ice-covered sea environment in Antarctica. The goal of the mission was to perform scientific exploration of an unknown environment using a remote vehicle with telepresence and virtual reality as a user interface. The vehicle was operated both locally, from above a dive hole in the ice through which it was launched, and remotely over a satellite communications link from a control room at NASA's Ames Research center, for over two months. Remote control used a bidirectional Internet link to the vehicle control computer. The operator viewed live stereo video from the TROV along with a computer-gene rated graphic representation of the underwater terrain showing file vehicle state and other related information. Tile actual vehicle could be driven either from within the virtual environment or through a telepresence interface. In March 1994, a second field experiment was performed in which [lie remote control system developed for the Antarctic TROV mission was used to control the Russian Marsokhod Rover, an advanced planetary surface rover intended for launch in 1998. Marsokhod consists of a 6-wheel chassis and is capable of traversing several kilometers of terrain each day, The rover can be controlled remotely, but is also capable of performing autonomous traverses. The rover was outfitted with a manipulator arm capable of deploying a small instrument, collecting soil samples, etc. The Marsokhod rover was deployed at Amboy Crater in the Mojave desert, a Mars analog site, and controlled remotely from Los Angeles. in two operating modes: (1) a Mars rover mission simulation with long time delay and (2) a Lunar rover mission simulation with live action video. A team of planetary

  13. Design, qualification and operation of nuclear rockets for safe Mars missions

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Madsen, W.W.; Olson, T.S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Redd, L.R. [USDOE Idaho Field Office, Idaho Falls, ID (United States)

    1993-04-01

    Nuclear thermal propulsion modules planned for use on crew missions to Mars improve mission reliability and overall safety of the mission. This, as well as all other systems, are greatly enhanced if the system specifications take into account safety from design initiation, and operational considerations are well thought through and applied. For instance, the use of multiple engines in the propulsion module can lead to very high system safety and reliability. Operational safety enhancements may include: the use of multiple perigee burns, thus allowing time to ensure that all systems are functioning properly prior to departure from Earth orbit; the ability to perform all other parts of the mission in a degraded mode with little or no degradation of the mission; and the safe disposal of the nuclear propulsion module in a heliocentric orbit out of the ecliptic plane. The standards used to qualify nuclear rockets are one of the main cost drivers of the program. Concepts and systems that minimize cost and risk will rely on use of the element and component levels to demonstrate technology readiness and validation. Subsystem or systems testing then is only needed for verification of performance. Also, these will be the safest concepts because they will be more thoroughly understood and the safety margins will be well established and confirmed by tests.

  14. Design, qualification and operation of nuclear rockets for safe Mars missions

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.; Madsen, W.W.; Olson, T.S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Redd, L.R. (USDOE Idaho Field Office, Idaho Falls, ID (United States))

    1993-01-01

    Nuclear thermal propulsion modules planned for use on crew missions to Mars improve mission reliability and overall safety of the mission. This, as well as all other systems, are greatly enhanced if the system specifications take into account safety from design initiation, and operational considerations are well thought through and applied. For instance, the use of multiple engines in the propulsion module can lead to very high system safety and reliability. Operational safety enhancements may include: the use of multiple perigee burns, thus allowing time to ensure that all systems are functioning properly prior to departure from Earth orbit; the ability to perform all other parts of the mission in a degraded mode with little or no degradation of the mission; and the safe disposal of the nuclear propulsion module in a heliocentric orbit out of the ecliptic plane. The standards used to qualify nuclear rockets are one of the main cost drivers of the program. Concepts and systems that minimize cost and risk will rely on use of the element and component levels to demonstrate technology readiness and validation. Subsystem or systems testing then is only needed for verification of performance. Also, these will be the safest concepts because they will be more thoroughly understood and the safety margins will be well established and confirmed by tests.

  15. The High Resolution Stereo Camera (HRSC) Experiment On The European Mars Express Mission

    Science.gov (United States)

    Neukum, G.; Hoffmann, H.; HRSC Science Experiment Team

    Imaging Mars is one of the main goals of the European Mars Express mission and will be performed by the German High Resolution Stereo Camera (HRSC). The HRSC ex- periment is a pushbroom scanning instrument with 9 CCD line detectors mounted in parallel on the focal plane. Its unique feature is the ability to obtain nearly simul- taneously imaging data of a specific site at high resolution, with along-track triple stereo, with four colours, and at five different phase angles, thus avoiding any time- dependent variations of the observation conditions. An additional Super-Resolution Channel (HRSC-SRC), a framing device, will yield nested-in images in the meter- range thus serving as the sharpening eye for detailed photogeologic studies. The spa- tial resolution from the nominal periapsis altitude of 250 km will be 10 m/pixel and 2.3 m/pixel for the HRSC-SRC. The manufacture of the flight hardware has been ac- complished. Before delivery of the flight model to ESA in January 2002, tests of the instrument were performed demonstrating its imaging capabilities and performances. During the nominal operational lifetime of the mission of 1 Martian year, it will be possible to cover at least 50% of the Martian surface at a spatial resolution of better than 15 m/pixel. More than 70% of the Martian surface can be observed at a spatial resolution of better than 30 m/pixel, while more than 1% of the surface will be im- aged at about 2.5 m/pixel. HRSC on Mars Express will be able to close the existing gap between medium to low-resolution coverage on the one hand and the very high resolution images of Mars Global Surveyor as well as the in-situ observations and measurements by landers on the other hand. The HRSC on Mars Express will make a major contribution to the study of Martian geosciences with special emphasis on the evolution of the Martian surface in general, the evolution of volcanism, and the role of water throughout the Martian history. The instrument will obtain images

  16. New space vehicle archetypes for human planetary missions

    Science.gov (United States)

    Sherwood, Brent

    1991-01-01

    Contemporary, archetypal, crew-carrying spacecraft concepts developed for NASA are presented for: a lunar transportation system, two kinds of Mars landers, and five kinds of Mars transfer vehicles. These cover the range of propulsion technologies and mission modes of interest for the Space Exploration Initiative, and include both aerobraking and artificial gravity as appropriate. They comprise both upgrades of extant archetypes and completely new ones. Computer solid models, configurations and mass statements are presented for each.

  17. Mission from Mars - a method for exploring user requirements for children in a narrative space

    DEFF Research Database (Denmark)

    Dindler, Christian; Ludvigsen, Martin; Lykke-Olesen, Andreas;

    2005-01-01

    In this paper a particular design method is propagated as a supplement to existing descriptive approaches to current practice studies especially suitable for gathering requirements for the design of children's technology. The Mission from Mars method was applied during the design of an electronic...... school bag (eBag). The three-hour collaborative session provides a first-hand insight into children's practice in a fun and intriguing way. The method is proposed as a supplement to existing descriptive design methods for interaction design and children....

  18. Human Exploration on the Moon, Mars and NEOs: PEX.2/ICEUM12B

    Science.gov (United States)

    Foing, Bernard H.

    2016-07-01

    The session COSPAR-16-PEX.2: "Human Exploration on the Moon, Mars and NEOs", co-sponsored by Commissions B, F will include solicited and contributed talks and poster/interactive presentations. It will also be part of the 12th International Conference on Exploration and Utilisation of the Moon ICEUM12B from the ILEWG ICEUM series started in 1994. It will address various themes and COSPAR communities: - Sciences (of, on, from) the Moon enabled by humans - Research from cislunar and libration points - From robotic villages to international lunar bases - Research from Mars & NEOs outposts - Humans to Phobos/Deimos, Mars and NEOS - Challenges and preparatory technologies, field research operations - Human and robotic partnerships and precursor missions - Resource utilisation, life support and sustainable exploration - Stakeholders for human exploration One half-day session will be dedicated to a workshop format and meetings/reports of task groups: Science, Technology, Agencies, Robotic village, Human bases, Society & Commerce, Outreach, Young Explorers. COSPAR has provided through Commissions, Panels and Working Groups (such as ILEWG, IMEWG) an international forum for supporting and promoting the robotic and human exploration of the Moon, Mars and NEOS. Proposed sponsors : ILEWG, ISECG, IKI, ESA, NASA, DLR, CNES, ASI, UKSA, JAXA, ISRO, SRON, CNSA, SSERVI, IAF, IAA, Lockheed Martin, Google Lunar X prize, UNOOSA

  19. Overview of the Mars Science Laboratory mission: Bradbury Landing to Yellowknife Bay and beyond

    Science.gov (United States)

    Vasavada, A. R.; Grotzinger, J. P.; Arvidson, R. E.; Calef, F. J.; Crisp, J. A.; Gupta, S.; Hurowitz, J.; Mangold, N.; Maurice, S.; Schmidt, M. E.; Wiens, R. C.; Williams, R. M. E.; Yingst, R. A.

    2014-06-01

    The Mars Science Laboratory mission reached Bradbury Landing in August 2012. In its first 500 sols, the rover Curiosity was commissioned and began its investigation of the habitability of past and present environments within Gale Crater. Curiosity traversed eastward toward Glenelg, investigating a boulder with a highly alkaline basaltic composition, encountering numerous exposures of outcropping pebble conglomerate, and sampling aeolian sediment at Rocknest and lacustrine mudstones at Yellowknife Bay. On sol 324, the mission turned its focus southwest, beginning a year-long journey to the lower reaches of Mt. Sharp, with brief stops at the Darwin and Cooperstown waypoints. The unprecedented complexity of the rover and payload systems posed challenges to science operations, as did a number of anomalies. Operational processes were revised to include additional opportunities for advance planning by the science and engineering teams.

  20. Design and Development of a Methane Cryogenic Propulsion Stage for Human Mars Exploration

    Science.gov (United States)

    Percy, Thomas K.; Polsgrove, Tara; Turpin, Jason; Alexander, Leslie

    2016-01-01

    NASA is currently working on the Evolvabe Mars Campaign (EMC) study to outline transportation and mission options for human exploration of Mars. One of the key aspects of the EMC is leveraging current and planned near-term technology investments to build an affordable and evolvable approach to Mars exploration. This leveraging of investments includes the use of high-power Solar Electric Propulsion (SEP) systems, evolved from those currently under development in support of the Asteroid Redirect Mission (ARM), to deliver payloads to Mars. The EMC is considering several transportation options that combine solar electric and chemical propulsion technologies to deliver crew and cargo to Mars. In one primary architecture option, the SEP propulsion system is used to pre-deploy mission elements to Mars while a high-thrust chemical propulsion system is used to send crew on faster ballistic transfers between Earth and Mars. This high-thrust chemical system uses liquid oxygen - liquid methane main propulsion and reaction control systems integrated into the Methane Cryogenic Propulsion Stage (MCPS). Over the past year, there have been several studies completed to provide critical design and development information related to the MCPS. This paper is intended to provide a summary of these efforts. A summary of the current point of departure design for the MCPS is provided as well as an overview of the mission architecture and concept of operations that the MCPS is intended to support. To leverage the capabilities of solar electric propulsion to the greatest extent possible, the EMC architecture pre-deploys to Mars orbit the stages required for returning crew from Mars. While this changes the risk posture of the architecture, it can provide some mass savings by using higher-efficiency systems for interplanetary transfer. However, this does introduce significantly longer flight times to Mars which, in turn, increases the overall lifetime of the stages to as long as 2500 days. This

  1. The resources of Mars for human settlement

    Science.gov (United States)

    Meyer, Thomas R.; Mckay, Christopher P.

    1989-01-01

    Spacecraft exploration of Marshas shown that the essential resources necessary for life support are present on the Martian surface. The key life-support compounds O2, N2, and H2O are available on Mars. The soil could be used as radiation shielding and could provide many useful industrial and construction materials. Compounds with high chemical energy, such as rocket fuels, can be manufactured in-situ on Mars. Solar power, and possibly wind power, are available and practical on Mars. Preliminary engineering studies indicate that fairly autonomous processes can be designed to extract and stockpile Martian consumables.

  2. Development of origami-style solar panels for use in support of a Mars mission

    Science.gov (United States)

    Holland, Alexander; Straub, Jeremy

    2016-05-01

    This paper presents work on the development of an Origami-style solar panel technology. This approach increases a satellite's solar array's power generation surface area, given constrained space and mass. The same deployable structure (used for the solar panels) can also house a phased array on the reverse side. For a proposed Mars demonstration mission, this array is used for communications and microwave wireless power transmission. The design of the solution is presented in detail, including a discussion of the pre-deployment configuration, the deployment process, and the final configuration. The panels, prior to deployment, are folded around the square base of the spacecraft, covering all four of its sides. To deploy them, a slight circular motion can be introduced to use centrifugal force to cause each side to fold out from the side of the satellite. A simple hinge mechanism is used to interconnect the panels and inflatable tubes or wire that is designed to stiffen in a straightened orientation when electrified, are used to move the panels into their final position and provide rigidity. The efficacy of the proposed technology is considered in the context of the Martian mission. This demonstrates its mass and volume efficiency as well as the utility of the approach for enabling the mission. A qualitative analysis of the benefits and drawbacks of the approach is presented. A discussion of the technology's overall impact on mission design is presented, before concluding with a discussion of the next steps for the research.

  3. AFM Studies of Lunar Soils and Application to the Mars 2001 Mission

    Science.gov (United States)

    Weitz, C. M.; Anderson, M. S.; Marshall, J.

    1999-01-01

    The upcoming Mars 01 mission will carry an Atomic Force Microscope (AFM) as part of the Mars Environmental Compatibility Assessment (MECA) instrument. By operating in a tapping mode, the AFM is capable of sub-nanometer resolution in three dimensions and can distinguish between substances of different compositions by employing phase contrast imaging. To prepare for the Mars 01 mission, we are testing the AFM on a lunar soil to determine its ability to define particle shapes and sizes and grain-surface textures. The test materials are from the Apollo 17 soil 79221, which is a mixture of agglutinates, impact and volcanic beads, and mare and highland rock and mineral fragments. The majority of the lunar soil particles are less than 100 microns in size, comparable to the sizes estimated for martian dust. We have used the AFM to examine several different soil particles at various resolutions. The instrument has demonstrated the ability to identify parallel ridges characteristic of twinning on a 150 micron plagioclase feldspar particle. Extremely small (10-100 nanometer) adhering particles are visible on the surface of the feldspar grain, and they appear elongate with smooth surfaces. Phase contrast imaging of the nanometer particles shows several compositions to be present. When the AFM was applied to a 100 micron glass spherule, it was possible to define an extremely smooth surface; this is in clear contrast to results from a basalt fragment which exhibited a rough surface texture. Also visible on the surface of the glass spherule were chains of 100 nanometer and smaller impact melt droplets. For the '01 Mars mission, the AFM is intended to define the size and shape distributions of soil particles, in combination with the NMCA optical microscope system and images from the Robot Arm Camera (RAC). These three data sets will provide a means of assessing potentially hazardous soil and dust properties. The study that we have conducted on the lunar soils now suggests that the

  4. Multi-Mission Radioisotope Thermoelectric Generator Heat Exchangers for the Mars Science Laboratory Rover

    Science.gov (United States)

    Mastropietro, A. J.; Beatty, John S.; Kelly, Frank P.; Bhandari, Pradeep; Bame, David P.; Liu, Yuanming; Birux, Gajanana C.; Miller, Jennifer R.; Pauken, Michael T.; Illsley, Peter M.

    2012-01-01

    The addition of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) to the Mars Science Laboratory (MSL) Rover requires an advanced thermal control system that is able to both recover and reject the waste heat from the MMRTG as needed in order to maintain the onboard electronics at benign temperatures despite the extreme and widely varying environmental conditions experienced both on the way to Mars and on the Martian surface. Based on the previously successful Mars landed mission thermal control schemes, a mechanically pumped fluid loop (MPFL) architecture was selected as the most robust and efficient means for meeting the MSL thermal requirements. The MSL heat recovery and rejection system (HRS) is comprised of two Freon (CFC-11) MPFLs that interact closely with one another to provide comprehensive thermal management throughout all mission phases. The first loop, called the Rover HRS (RHRS), consists of a set of pumps, thermal control valves, and heat exchangers (HXs) that enables the transport of heat from the MMRTG to the rover electronics during cold conditions or from the electronics straight to the environment for immediate heat rejection during warm conditions. The second loop, called the Cruise HRS (CHRS), is thermally coupled to the RHRS during the cruise to Mars, and provides a means for dissipating the waste heat more directly from the MMRTG as well as from both the cruise stage and rover avionics by promoting circulation to the cruise stage radiators. A multifunctional structure was developed that is capable of both collecting waste heat from the MMRTG and rejecting the waste heat to the surrounding environment. It consists of a pair of honeycomb core sandwich panels with HRS tubes bonded to both sides. Two similar HX assemblies were designed to surround the MMRTG on the aft end of the rover. Heat acquisition is accomplished on the interior (MMRTG facing) surface of each HX while heat rejection is accomplished on the exterior surface of

  5. Relativistic transformation between τ and TCG for Mars missions under IAU Resolutions

    Science.gov (United States)

    Pan, Jun-Yang; Xie, Yi

    2014-02-01

    Considering the fact that the general theory of relativity has become an inextricable part of deep space missions, we investigate the relativistic transformation between the proper time of an onboard clock τ and the Geocentric Coordinate Time (TCG) for Mars missions. By connecting τ with this local timescale associated with the Earth, we extend previous works which focus on the transformation between τ and the Barycentric Coordinate Time (TCB). (TCB is the global coordinate time for the whole solar system.) For practical convenience, the relation between τ and TCG is recast to directly depend on quantities which can be read from ephemerides. We find that the difference between τ and TCG can reach the level of about 0.2 seconds in a year. To distinguish various sources in the transformation, we numerically calculate the contributions caused by the Sun, eight planets, three large asteroids and the spacecraft. It is found that if the threshold of 1 microsecond is adopted, this transformation must include effects due to the Sun, Venus, the Moon, Mars, Jupiter, Saturn and the velocities of the spacecraft and Earth.

  6. Managing Lunar and Mars Mission Radiation Risks. Part 1; Cancer Risks, Uncertainties, and Shielding Effectiveness

    Science.gov (United States)

    Cucinotta, Francis A.; Kim, Myung-Hee Y.; Ren, Lei

    2005-01-01

    This document addresses calculations of probability distribution functions (PDFs) representing uncertainties in projecting fatal cancer risk from galactic cosmic rays (GCR) and solar particle events (SPEs). PDFs are used to test the effectiveness of potential radiation shielding approaches. Monte-Carlo techniques are used to propagate uncertainties in risk coefficients determined from epidemiology data, dose and dose-rate reduction factors, quality factors, and physics models of radiation environments. Competing mortality risks and functional correlations in radiation quality factor uncertainties are treated in the calculations. The cancer risk uncertainty is about four-fold for lunar and Mars mission risk projections. For short-stay lunar missins (shielding. For long-duration (>180 d) lunar or Mars missions, GCR risks may exceed radiation risk limits. While shielding materials are marginally effective in reducing GCR cancer risks because of the penetrating nature of GCR and secondary radiation produced in tissue by relativisitc particles, polyethylene or carbon composite shielding cannot be shown to significantly reduce risk compared to aluminum shielding. Therefore, improving our knowledge of space radiobiology to narrow uncertainties that lead to wide PDFs is the best approach to ensure radiation protection goals are met for space exploration.

  7. Assessing the Biohazard Potential of Putative Martian Organisms for Exploration Class Human Space Missions

    Science.gov (United States)

    Warmflash, David; Larios-Sanz, Maia; Jones, Jeffrey; Fox, George E.; McKay, David S.

    2007-01-01

    Exploration Class missions to Mars will require precautions against potential contamination by any native microorganisms that may be incidentally pathogenic to humans. While the results of NASA's Viking biology experiments of 1976 have been generally interpreted as inconclusive for surface organisms, the possibility of native surface life has never been ruled out and more recent studies suggest that the case for biological interpretation of the Viking Labeled Release data may now be stronger than it was when the experiments were originally conducted. It is possible that, prior to the first human landing on Mars, robotic craft and sample return missions will provide enough data to know with certainty whether or not future human landing sites harbor extant life forms. However, if native life is confirmed, it will be problematic to determine whether any of its species may present a medical risk to astronauts. Therefore, it will become necessary to assess empirically the risk that the planet contains pathogens based on terrestrial examples of pathogenicity and to take a reasonably cautious approach to bio-hazard protection. A survey of terrestrial pathogens was conducted with special emphasis on those pathogens whose evolution has not depended on the presence of animal hosts. The history of the development and implementation of Apollo anticontamination protocol and recent recommendations of the NRC Space Studies Board regarding Mars were reviewed. Organisms can emerge in nature in the absence of indigenous animal hosts and both infectious and non-infectious human pathogens are theoretically possible on Mars. The prospect of Martian surface life, together with the existence of a diversity of routes by which pathogenicity has emerged on Earth, suggests that the possibility of human pathogens on Mars, while low, is not zero. Since the discovery and study of Martian life can have long-term benefits for humanity, the risk that Martian life might include pathogens should not

  8. Performance of the MOMA Gas Chromatograph-Mass Spectrometer onboard the 2018 ExoMars Mission

    Science.gov (United States)

    Buch, Arnaud; Pinnick, Veronica; Szopa, Cyril; Grand, Noël; Freissinet, Caroline; Danell, Ryan; van Ameron, Friso; Arevalo, Ricardo; Brinckerhoff, William; Raulin, François; Mahaffy, Paul; Goesmann, Fred

    2015-04-01

    The Mars Organic Molecule Analyzer (MOMA) is a dual ion source linear ion trap mass spectrometer that was designed for the 2018 joint ESA-Roscosmos mission to Mars. The main scientific aim of the mission is to search for signs of extant or extinct life in the near subsurface of Mars by acquir-ing samples from as deep as 2 m below the surface. MOMA will be a key analytical tool in providing chemical (molecular) information from the solid samples, with particular focus on the characterization of organic content. The MOMA instrument, itself, is a joint venture for NASA and ESA to develop a mass spectrometer capable of analyzing samples from pyrolysis gas chromatograph (GC) as well as ambient pressure laser desorption ionization (LDI). The combination of the two analytical techniques allows for the chemical characterization of a broad range of compounds, including volatile and non-volatile species. Generally, MOMA can provide in-formation on elemental and molecular makeup, po-larity, chirality and isotopic patterns of analyte spe-cies. Here we report on the current performance of the MOMA prototype instruments, specifically the demonstration of the gas chromatography-mass spec-trometry (GC-MS) mode of operation. Both instruments have been tested separately first and have been coupled in order to test the efficiency of the future MOMA GC-MS instrument. The main objective of the second step has been to test the quantitative response of both instruments while they are coupled and to characterize the combined instrument detection limit for several compounds. A final experiment has been done in order to test the feasibility of the separation and detection of a mixture contained in a soil sample introduced in the MOMA oven.

  9. Evolutionary Space Communications Architectures for Human/Robotic Exploration and Science Missions

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeffrey L.

    2004-01-01

    NASA enterprises have growing needs for an advanced, integrated, communications infrastructure that will satisfy the capabilities needed for multiple human, robotic and scientific missions beyond 2015. Furthermore, the reliable, multipoint infrastructure is required to provide continuous, maximum coverage of areas of concentrated activities, such as around Earth and in the vicinity of the Moon or Mars, with access made available on demand of the human or robotic user. As a first step, the definitions of NASA's future space communications and networking architectures are underway. Architectures that describe the communications and networking needed between the nodal regions consisting of Earth, Moon, Lagrange points, Mars, and the places of interest within the inner and outer solar system have been laid out. These architectures will need the modular flexibility that must be included in the communication and networking technologies to enable the infrastructure to grow in capability with time and to transform from supporting robotic missions in the solar system to supporting human ventures to Mars, Jupiter, Jupiter's moons, and beyond. The protocol-based networking capability seamlessly connects the backbone, access, inter-spacecraft and proximity network elements of the architectures employed in the infrastructure. In this paper, we present the summary of NASA's near and long term needs and capability requirements that were gathered by participative methods. We describe an integrated architecture concept and model that will enable communications for evolutionary robotic and human science missions. We then define the communication nodes, their requirements, and various options to connect them.

  10. Proactive Integration of Planetary Protection Needs Into Early Design Phases of Human Exploration Missions

    Science.gov (United States)

    Race, Margaret; Conley, Catharine

    Planetary protection (PP) policies established by the Committee on Space Research (COSPAR) of the International Council for Science have been in force effectively for five decades, ensuring responsible exploration and the integrity of science activities, for both human and robotic missions in the Solar System beyond low Earth orbit (LEO). At present, operations on most bodies in the solar system are not constrained by planetary protection considerations because they cannot be contaminated by Earth life in ways that impact future space exploration. However, operations on Mars, Europa, and Enceladus, which represent locations with biological potential, are subject to strict planetary protection constraints for missions of all types because they can potentially be contaminated by organisms brought from Earth. Forward contamination control for robotic missions is generally accomplished through a combination of activities that reduce the bioload of microbial hitchhikers on outbound spacecraft prior to launch. Back contamination control for recent robotic missions has chiefly been accomplished by selecting sample-return targets that have little or no potential for extant life (e.g., cometary particles returned by Stardust mission). In the post-Apollo era, no human missions have had to deal with planetary protection constraints because they have never left Earth orbit. Future human missions to Mars, for example, will experience many of the challenges faced by the Apollo lunar missions, with the added possibility that astronauts on Mars may encounter habitable environments in their exploration or activities. Current COSPAR PP Principles indicate that safeguarding the Earth from potential back contamination is the highest planetary protection priority in Mars exploration. While guidelines for planetary protection controls on human missions to Mars have been established by COSPAR, detailed engineering constraints and processes for implementation of these guidelines have not

  11. Designing remote operations strategies to optimize science mission goals : Lessons learned from the Moon Mars Analog Mission Activities Mauna Kea 2012 field test

    NARCIS (Netherlands)

    Yingst, R. A.; Russell, P.; Ten Kate, I. L.|info:eu-repo/dai/nl/292012217; Noble, S.; Graff, T.; Graham, L. D.; Eppler, D.

    2015-01-01

    The Moon Mars Analog Mission Activities Mauna Kea 2012 (MMAMA 2012) field campaign aimed to assess how effectively an integrated science and engineering rover team operating on a 24-h planning cycle facilitates high-fidelity science products. The science driver of this field campaign was to determin

  12. Designing remote operations strategies to optimize science mission goals : Lessons learned from the Moon Mars Analog Mission Activities Mauna Kea 2012 field test

    NARCIS (Netherlands)

    Yingst, R. A.; Russell, P.; Ten Kate, I. L.; Noble, S.; Graff, T.; Graham, L. D.; Eppler, D.

    2015-01-01

    The Moon Mars Analog Mission Activities Mauna Kea 2012 (MMAMA 2012) field campaign aimed to assess how effectively an integrated science and engineering rover team operating on a 24-h planning cycle facilitates high-fidelity science products. The science driver of this field campaign was to determin

  13. Pandora - Discovering the origin of the moons of Mars (a proposed Discovery mission)

    Science.gov (United States)

    Raymond, C. A.; Diniega, S.; Prettyman, T. H.

    2015-12-01

    After decades of intensive exploration of Mars, fundamental questions about the origin and evolution of the martian moons, Phobos and Deimos, remain unanswered. Their spectral characteristics are similar to C- or D-class asteroids, suggesting that they may have originated in the asteroid belt or outer solar system. Perhaps these ancient objects were captured separately, or maybe they are the fragments of a captured asteroid disrupted by impact. Various lines of evidence hint at other possibilities: one alternative is co-formation with Mars, in which case the moons contain primitive martian materials. Another is that they are re-accreted ejecta from a giant impact and contain material from the early martian crust. The Pandora mission, proposed in response to the 2014 NASA Discovery Announcement of Opportunity, will acquire new information needed to determine the provenance of the moons of Mars. Pandora will travel to and successively orbit Phobos and Deimos to map their chemical and mineral composition and further refine their shape and gravity. Geochemical data, acquired by nuclear- and infrared-spectroscopy, can distinguish between key origin hypotheses. High resolution imaging data will enable detailed geologic mapping and crater counting to determine the timing of major events and stratigraphy. Data acquired will be used to determine the nature of and relationship between "red" and "blue" units on Phobos, and determine how Phobos and Deimos are related. After identifying material representative of each moons' bulk composition, analysis of the mineralogical and elemental composition of this material will allow discrimination between the formation hypotheses for each moon. The information acquired by Pandora can then be compared with similar data sets for other solar system bodies and from meteorite studies. Understanding the formation of the martian moons within this larger context will yield a better understanding of processes acting in the early solar system

  14. Use of human MAR elements to improve retroviral vector production.

    Science.gov (United States)

    Buceta, M; Galbete, J L; Kostic, C; Arsenijevic, Y; Mermod, N

    2011-01-01

    Retroviral vectors have many favorable properties for gene therapies, but their use remains limited by safety concerns and/or by relatively lower titers for some of the safer self-inactivating (SIN) derivatives. In this study, we evaluated whether increased production of SIN retroviral vectors can be achieved from the use of matrix attachment region (MAR) epigenetic regulators. Two MAR elements of human origin were found to increase and to stabilize the expression of the green fluorescent protein transgene in stably transfected HEK-293 packaging cells. Introduction of one of these MAR elements in retroviral vector-producing plasmids yielded higher expression of the viral vector RNA. Consistently, viral titers obtained from transient transfection of MAR-containing plasmids were increased up to sixfold as compared with the parental construct, when evaluated in different packaging cell systems and transfection conditions. Thus, use of MAR elements opens new perspectives for the efficient generation of gene therapy vectors.

  15. Design and Development of a Methane Cryogenic Propulsion Stage for Human Mars Exploration

    Science.gov (United States)

    Percy, Thomas K.; Polsgrove, Tara; Turpin, Jason; Alexander, Leslie

    2016-01-01

    NASA is currently working on the Evolvabe Mars Campaign (EMC) study to outline transportation and mission options for human exploration of Mars. One of the key aspects of the EMC is leveraging current and planned near-term technology investments to build an affordable and evolvable approach to Mars exploration. This leveraging of investments includes the use of high-power Solar Electric Propulsion (SEP) systems evolved from those currently under development in support of the Asteroid Redirect Mission to deliver payloads to Mars. The EMC is considering several transportation options that combine solar electric and chemical propulsion technologies to deliver crew and cargo to Mars. In one primary architecture option, the SEP propulsion system is used to pre-deploy mission elements to Mars while a high-thrust chemical propulsion system is used to send crew on faster ballistic transfers between Earth and Mars. This high-thrust chemical system uses liquid oxygen - liquid methane main propulsion and reaction control systems integrated into the Methane Cryogenic Propulsion Stage (MCPS). Over the past year, there have been several studies completed to provide critical design and development information related to the MCPS. This paper is intended to provide a summary of these efforts. A summary of the current point of departure design for the MCPS is provided as well as an overview of the mission architecture and concept of operations that the MCPS is intended to support. To leverage the capabilities of solar electric propulsion to the greatest extent possible, the EMC architecture pre-deploys the required stages for returning crew from Mars. While this changes the risk posture of the architecture, it provides mass savings by using higher-efficiency systems for interplanetary transfer. However, this does introduce significantly longer flight times to Mars which, in turn, increases the overall lifetime of the stages to as long as 3000 days. This unique aspect to the concept

  16. Surface release of methane on Mars: A model study in the framework of the future NOMAD mission

    Science.gov (United States)

    Viscardy, S.; Daerden, F.; Neary, L.; García Muñoz, A.; Vandaele, A.-C.

    2015-10-01

    Two connected tasks are tackled in this work in order to provide useful information for the highly sensitive NOMAD solar occultation channel [1] on the future ExoMars Trace Gas Orbiter mission. Firstly,an analysis of potential chemical by-products of methane is carried out using a 1D model for atmospheric chemistry. Secondly, we aim to investigate the time and space evolution of methane after different surface release scenarios using a 3D Global Circulation Model (GCM) for the atmosphere of Mars(GEM-Mars), focusing specifically on the vertical distribution of methane.

  17. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    Science.gov (United States)

    Mulugeta,Lealem; Myers, Jerry G.; Lewandowski, Beth; Platts, Steven H.

    2011-01-01

    Mars and NEO missions will expose astronaut to extended durations of reduced reduced gravity, isolation and higher radiation. These new operation conditions pose health risks that are not well understood and perhaps unanticipated. Advanced computational simulation environments can beneficially augment research to predict, assess and mitigate potential hazards to astronaut health. The NASA Digital Astronaut Project (DAP), within the NASA Human Research Program, strives to achieve this goal.

  18. The Need for Analogue Missions in Scientific Human and Robotic Planetary Exploration

    Science.gov (United States)

    Snook, K. J.; Mendell, W. W.

    2004-01-01

    With the increasing challenges of planetary missions, and especially with the prospect of human exploration of the moon and Mars, the need for earth-based mission simulations has never been greater. The current focus on science as a major driver for planetary exploration introduces new constraints in mission design, planning, operations, and technology development. Analogue missions can be designed to address critical new integration issues arising from the new science-driven exploration paradigm. This next step builds on existing field studies and technology development at analogue sites, providing engineering, programmatic, and scientific lessons-learned in relatively low-cost and low-risk environments. One of the most important outstanding questions in planetary exploration is how to optimize the human and robotic interaction to achieve maximum science return with minimum cost and risk. To answer this question, researchers are faced with the task of defining scientific return and devising ways of measuring the benefit of scientific planetary exploration to humanity. Earth-based and spacebased analogue missions are uniquely suited to answer this question. Moreover, they represent the only means for integrating science operations, mission operations, crew training, technology development, psychology and human factors, and all other mission elements prior to final mission design and launch. Eventually, success in future planetary exploration will depend on our ability to prepare adequately for missions, requiring improved quality and quantity of analogue activities. This effort demands more than simply developing new technologies needed for future missions and increasing our scientific understanding of our destinations. It requires a systematic approach to the identification and evaluation of the categories of analogue activities. This paper presents one possible approach to the classification and design of analogue missions based on their degree of fidelity in ten

  19. Performance Testing of Yardney Li-Ion Cells and Batteries in Support of JPL's 2009 Mars Science Laboratory Mission

    Science.gov (United States)

    Smart, M.C.; Ratnakumar, B.V.; Whitcanack, L. D.; Dewell, E. A.; Jones, L. E.; Salvo, C. G.; Puglia, F. J.; Cohen, S.; Gitzendanner, R.

    2008-01-01

    In 2009, JPL is planning to launch an unmanned rover mission to the planet Mars. This mission, referred to as the Mars Science Laboratory (MSL), will involve the use of a rover that is much larger than the previously developed Spirit and Opportunity Rovers for the 2003 Mars Exploration Rover (MER) mission, that are currently still in operation on the surface of the planet after more than three years. Part of the reason that the MER rovers have operated so successfully, far exceeding the required mission duration of 90 sols, is that they possess robust Li-ion batteries, manufactured by Yardney Technical Products, which have demonstrated excellent life characteristics. Given the excellent performance characteristics displayed, similar lithium-ion batteries have been projected to successfully meet the mission requirements of the up-coming MSL mission. Although comparable in many facets, such as being required to operate over a wide temperature range (-20 to 40 C), the MSL mission has more demanding performance requirements compared to the MER mission, including much longer mission duration (approx. 687 sols vs. 90 sols), higher power capability, and the need to withstand higher temperature excursions. In addition, due to the larger rover size, the MSL mission necessitates the use of a much larger battery to meet the energy, life, and power requirements. In order to determine the viability of meeting these requirements, a number of performance verification tests were performed on 10 Ah Yardney lithium-ion cells (MER design) under MSL-relevant conditions, including mission surface operation simulation testing. In addition, the performance of on-going ground life testing of 10 Ah MER cells and 8-cell batteries will be discussed in the context of capacity loss and impedance growth predictions.

  20. Design of a Four Degree_of_Freedom Manipulator for Northern Light Mars Mission

    Science.gov (United States)

    Lee, Regina; Quine, Brendan; Sathiyanathan, Kartheephan; Roberts, Caroline

    Northern Light is a Canadian mission to Mars, currently developed by a team of engineers, scientists and industrial organizations. The mission objectives include scientific goals such as the search for life and water, preparation for a sample return and engineering goals including the demonstration of interplanetary travel, an entry, descent and landing system, a rover design, a manipulator/drilling system, and semi-autonomous control in remote operations. The Northern Light team at York University is developing a four degree-of-freedom manipulator system, specifically for this remote operation. The Northern Light manipulator system will be mounted directly on the lander (not on the rover), providing an opportunity to perform scientific missions directly from the lander. The drilling instrument, to be mounted on the manipulator, is currently under development by Dr. Tze Chuen Ng now with the help of Hong Kong's Polytechnics University. The operation concept is based on a “single command cycle” approach. The operation plans are designed to handle exceptions, failures and unforeseen events using local intelligence and a contingency planner.

  1. Photogrammetric processing of rover imagery of the 2003 Mars Exploration Rover mission

    Science.gov (United States)

    Di, Kaichang; Xu, Fengliang; Wang, Jue; Agarwal, Sanchit; Brodyagina, Evgenia; Li, Rongxing; Matthies, Larry

    In the 2003 Mars Exploration Rover (MER) mission, the twin rovers, Spirit and Opportunity, carry identical Athena instrument payloads and engineering cameras for exploration of the Gusev Crater and Meridiani Planum landing sites. This paper presents the photogrammetric processing techniques for high accuracy topographic mapping and rover localization at the two landing sites. Detailed discussions about camera models, reference frames, interest point matching, automatic tie point selection, image network construction, incremental bundle adjustment, and topographic product generation are given. The developed rover localization method demonstrated the capability of correcting position errors caused by wheel slippages, azimuthal angle drift and other navigation errors. A comparison was also made between the bundle-adjusted rover traverse and the rover track imaged from the orbit. Mapping products including digital terrain models, orthophotos, and rover traverse maps have been generated for over two years of operations, and disseminated to scientists and engineers of the mission through a web-based GIS. The maps and localization information have been extensively used to support tactical operations and strategic planning of the mission.

  2. Mars Atmosphere and Volatile EvolutioN (MAVEN) mission's Red Planet program: Bridging the gap in elementary school science through climate studies of Mars

    Science.gov (United States)

    Wood, E. L.

    2012-12-01

    Although reading, writing, and math examinations are often conducted early in elementary school, science is not typically tested until 4th or 5th grade. The result is a refocus on the tested topics at the expense of the untested ones, despite that standards exist for each topic at all grades. On a national level, science instruction is relegated to a matter of a few hours per week. A 2007 Education Policy study states that elementary school students spend an average of 178 minutes a week on science while spending 500 minutes on literacy. A recent NSTA report in July of 2011 of elementary and middle school teachers confirms that teachers feel pressured to teach math and literacy at the expense of other programs. In our interaction with elementary teachers, it is also apparent that many are uncomfortable with science concepts. In order for us to successfully address the Next Generation Science Standards, teachers must be able to reconcile all of the different requirements placed on them in a given school day and in a given school environment. A unique way to combat the lack of science instruction at elementary grades is to combine literacy into an integrated science program, thereby increasing the number of science contact hours. The Red Planet: Read, Write, Explore program, developed for the MAVEN mission, is a science, art, and literacy program designed to easily fit into a typical 3rd-5th grade instructional day. Red Planet tackles climate change through Mars' geologic history and makes Mars-Earth comparisons, while encouraging students to reflect on the environmental requirements needed to keep a biological organisms (including humans) happy, healthy, and alive. The Red Planet program is currently being pilot tested at Acres Green Elementary School in Colorado.

  3. Asteroid Redirect Mission - Next Major stepping-stone to Human Exploration of NEOs and beyond

    Science.gov (United States)

    Sanchez, Natalia

    2016-07-01

    In response to NASA's Asteroid Initiative, an Asteroid Redirect and Robotic Mission (ARRM) is being studied by a NASA cohort, led by JPL, to enable the capture a multi-ton boulder from the surface of a Near-Earth Asteroid and return it to cislunar space for subsequent human and robotic exploration. The mission would boost our understanding of NEOs and develop technological capabilities for Planetary Defense, shall a NEO come up on a collision course. The benefits of this mission can extend our capabilities to explore farther into space, as well as create a new commercial sector in Space Mining, which would make materials in Space available for our use. ARRM would leverage and advance current knowledge of higher-efficiency propulsion systems with a new Solar Electric Propulsion demonstration (similar to that on the Dawn spacecraft) to be incorporated into future Mars Missions.

  4. Human exploration and settlement of Mars - The roles of humans and robots

    Science.gov (United States)

    Duke, Michael B.

    1991-01-01

    The scientific objectives and strategies for human settlement on Mars are examined in the context of the Space Exploration Initiative (SEI). An integrated strategy for humans and robots in the exploration and settlement of Mars is examined. Such an effort would feature robotic, telerobotic, and human-supervised robotic phases.

  5. Dual-mode, high energy utilization system concept for mars missions

    Science.gov (United States)

    El-Genk, Mohamed S.

    2000-01-01

    This paper describes a dual-mode, high energy utilization system concept based on the Pellet Bed Reactor (PeBR) to support future manned missions to Mars. The system uses proven Closed Brayton Cycle (CBC) engines to partially convert the reactor thermal power to electricity. The electric power generated is kept the same during the propulsion and the power modes, but the reactor thermal power in the former could be several times higher, while maintaining the reactor temperatures almost constant. During the propulsion mode, the electric power of the system, minus ~1-5 kWe for house keeping, is used to operate a Variable Specific Impulse Magnetoplasma Rocket (VASIMR). In addition, the reactor thermal power, plus more than 85% of the head load of the CBC engine radiators, are used to heat hydrogen. The hot hydrogen is mixed with the high temperature plasma in a VASIMR to provide both high thrust and Isp>35,000 N.s/kg, reducing the travel time to Mars to about 3 months. The electric power also supports surface exploration of Mars. The fuel temperature and the inlet temperatures of the He-Xe working fluid to the nuclear reactor core and the CBC turbine are maintained almost constant during both the propulsion and power modes to minimize thermal stresses. Also, the exit temperature of the He-Xe from the reactor core is kept at least 200 K below the maximum fuel design temperature. The present system has no single point failure and could be tested fully assembled in a ground facility using electric heaters in place of the nuclear reactor. Operation and design parameters of a 40-kWe prototype are presented and discussed to illustrate the operation and design principles of the proposed system. .

  6. Foods for a Mission to Mars: Investigations of Low-Dose Gamma Radiation Effects

    Science.gov (United States)

    Gandolph, J.; Shand, A.; Stoklosa, A.; Ma, A.; Weiss, I.; Alexander, D.; Perchonok, M.; Mauer, L. J.

    2007-01-01

    Food must be safe, nutritious, and acceptable throughout a long duration mission to maintain the health, well-being, and productivity of the astronauts. In addition to a developing a stable pre-packaged food supply, research is required to better understand the ability to convert edible biomass into safe, nutritious, and acceptable food products in a closed system with many restrictions (mass, volume, power, crew time, etc.). An understanding of how storage conditions encountered in a long-term space mission, such as elevated radiation, will impact food quality is also needed. The focus of this project was to contribute to the development of the highest quality food system possible for the duration of a mission, considering shelf-stable extended shelf-life foods, bulk ingredients, and crops to be grown in space. The impacts of space-relevant radiation doses on food, bulk ingredient, and select candidate crop quality and antioxidant capacity were determined. Interestingly, increasing gamma-radiation doses (0 to 1000 Gy) did not always increase dose-related effects in foods. Intermediate radiation doses (10 to 800Gy) often had significantly larger impact on the stability of bulk ingredient oils than higher (1000Gy) radiation doses. Overall, most food, ingredient, and crop systems investigated showed no significant differences between control samples and those treated with 3 Gy of gamma radiation (the upper limit estimated for a mission to Mars). However, this does not mean that all foods will be stable for 3-5 years, nor does it mean that foods are stable to space radiation comprising more than gamma rays.

  7. Aqueous history of Mars as inferred from landed mission measurements of rocks, soils, and water ice

    Science.gov (United States)

    Arvidson, Raymond E.

    2016-09-01

    The missions that have operated on the surface of Mars acquired data that complement observations acquired from orbit and provide information that would not have been acquired without surface measurements. Data from the Viking Landers demonstrated that soils have basaltic compositions, containing minor amounts of salts and one or more strong oxidants. Pathfinder with its rover confirmed that the distal portion of Ares Vallis is the site of flood-deposited boulders. Spirit found evidence for hydrothermal deposits surrounding the Home Plate volcanoclastic feature. Opportunity discovered that the hematite signature on Meridiani Planum as seen from orbit is due to hematitic concretions concentrated on the surface as winds eroded sulfate-rich sandstones that dominate the Burns formation. The sandstones originated as playa muds that were subsequently reworked by wind and rising groundwater. Opportunity also found evidence on the rim of the Noachian Endurance Crater for smectites, with extensive leaching along fractures. Curiosity acquired data at the base of Mount Sharp in Gale Crater that allows reconstruction of a sustained fluvial-deltaic-lacustrine system prograding into the crater. Smectites and low concentrations of chlorinated hydrocarbons have been identified in the lacustrine deposits. Phoenix, landing above the Arctic Circle, found icy soils, along with low concentrations of perchlorate salt. Perchlorate is considered to be a strong candidate for the oxidant found by the Viking Landers. It is also a freezing point depressant and may play a role in allowing brines to exist at and beneath the surface in more modern periods of time on Mars.

  8. Performance comparisons of nuclear thermal rocket and chemical propulsion systems for piloted missions to Phobos/Mars

    Science.gov (United States)

    Borowski, S. K.; Mulac, M. W.; Spurlock, O. F.

    1989-01-01

    Performance capability of nuclear thermal rocket (NTR) and chemical propulsion systems, operating with and without aerobraking, are compared for a selected set of Mars mission opportunities in the 2000 to 2020 timeframe. Both high- and low-energy mission opportunities are investigated. Results are presented as the required initial mass in low earth orbit (IMLEO) to perform the missions. Missions exclusively using chemical propulsion systems have the greatest initial masses. Significant mass reductions are realized by utilizing either aerobrake or NTR technology or both. As mission energy requirements increase, the benefit of implementing aerobrake or NTR technology increases, resulting in IMLEO mass reductions on the order of 60 to 75 percent when compared with all-propulsive chemical missions. By combining both advanced technologies, still greater mass reductions are possible.

  9. MOURA magnetometer for Mars MetNet Precursor Mission. Its potential for an in situ magnetic environment and surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Michelena, M.; Sanz, R.; Fernandez, A.B.; Manuel, V. de; Cerdan, M.F.; Apestigue, V.; Arruego, I.; Azcue, J.; Dominguez, J.A.; Gonzalez, M.; Guerrero, H.; Sabau, M.; Kilian, R.; Baeza, O.; Ros, F.; Vazquez, M.; Tordesillas, J.M.; Covisa, P.; Aguado, J.

    2016-07-01

    MOURA magnetometer and gradiometer is part of the scientific instrumentation for Mars MetNet Precursor mission. This work describes the objective of the investigation, summarizes the work done in the design and development of the sensor as well as its calibration, and shows the demonstration campaigns to show the potential of such instrument for planetary landers and rovers. (Author)

  10. Finite Difference Simulations of Acoustic and Gravity Wave Propagation in Mars Atmosphere: Applications to INSIGHT NASA Mission and Mars Microphone Experiments

    Science.gov (United States)

    Garcia, R.; Brissaud, Q.; Martin, R.; Rolland, L. M.; Komatitsch, D.

    2015-12-01

    A simulation tool of acoustic and gravity wave propagation through finite differences is applied to the case of Mars atmosphere.The details of the code and its validation for Earth atmosphere are presented in session SA003.The simulations include the modeling of both acoustic and gravity waves in the same run, an effects of exponential density decrease, winds and attenuation.The application to Mars requires the inclusion of a specific attenuation effect related to the relaxation induced by vibrational modes of carbon dioxide molecules.Two different applications are presented demonstrating the ability of the simulation tool to work at very different scale length and frequencies.First the propagation of acoustic and gravity waves due to a bolide explosion in the atmosphere of Mars are simulated.This case has a direct application to the atmospheric pressure and seismic measurements that will be performed by INSIGHT NASA discovery mission next year.Then, we also present simulations of sound wave propagation on a scale of meters that can be used to infer the feasability microphone measurements for future Mars missions.

  11. Electromagnetic induction sounding and 3D laser imaging in support of a Mars methane analogue mission

    Science.gov (United States)

    Boivin, A.; Lai, P.; Samson, C.; Cloutis, E.; Holladay, S.; Monteiro Santos, F. A.

    2013-07-01

    The Mars Methane Analogue Mission simulates a micro-rover mission whose purpose is to detect, analyze, and determine the source of methane emissions on the planet's surface. As part of this project, both an electromagnetic induction sounder (EMIS) and a high-resolution triangulation-based 3D laser scanner were tested at the Jeffrey open-pit asbestos mine to identify and characterize geological environments favourable to the occurrence of methane. The presence of serpentinite in the form of chrysotile (asbestos), magnesium carbonate, and iron oxyhydroxides make the mine a likely location for methane production. The EMIS clearly delineated the contacts between the two geological units found at the mine, peridotite and slate, which are separated by a shear zone. Both the peridotite and slate units have low and uniform apparent electrical conductivity and magnetic susceptibility, while the shear zone has much higher conductivity and susceptibility, with greater variability. The EMIS data were inverted and the resulting model captured lateral conductivity variations through the different bedrock geological units buried beneath a gravel road. The 3D point cloud data acquired by the laser scanner were fitted with triangular meshes where steeply dipping triangles were plotted in dark grey to accentuate discontinuities. The resulting images were further processed using Sobel edge detection to highlight networks of fractures which are potential pathways for methane seepage.

  12. Investigations using Laboratory Testbeds to Interpret Flight Instrument Datasets from Mars Robotic Missions

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.; Sutter, B.; Archer, P. D., Jr.; Achilles, C.

    2012-12-01

    The Astromaterials Research and Exploration Science Directorate at the NASA Johnson Space Center (JSC) has laboratory instrumentation that mimic the capabilities of corresponding flight instruments to enable interpretation of datasets returned from Mars robotic missions. The lab instruments have been and continue to be applied to datasets for the Mössbauer Spectrometer (MB) on the Mars Exploration Rovers (MER), the Thermal & Evolved Gas Analyzer (TEGA) on the Mars Phoenix Scout, the CRISM instrument on the Mars Reconnaissance Orbiter and will be applied to datasets for the Sample Analysis at Mars (SAM), Chemistry and Mineralogy (CheMin) and Chemistry & Camera (ChemCam) instruments onboard the Mars Science Laboratory (MSL). The laboratory instruments can analyze analog samples at costs that are substantially lower than engineering models of flight instruments, but their success to enable interpretation of flight data depends on how closely their capabilities mimic those of the flight instrument. The JSC lab MB instruments are equivalent to the MER instruments except without flight qualified components and no reference channel Co-57 source. Data from analog samples were critical for identification of Mg-Fe carbonate at Gusev crater. Fiber-optic VNIR spectrometers are used to obtain CRISM-like spectral data over the range 350-2500 nm, and data for Fe-phyllosilicates show irreversible behavior in the electronic transition region upon dessication. The MB and VNIR instruments can be operated within chambers where, for example, the absolute H2O concentration can be measured and controlled. Phoenix's TEGA consisted of a calorimeter coupled to a mass spectrometer (MS). The JSC laboratory testbed instrument consisted of a differential scanning calorimeter (DSC) coupled to a MS configured to operate under total pressure (12 mbar), heating rate (20 °C/min), and purge gas composition (N2) analogous to the flight TEGA. TEGA detected CO2 release at both low (400-680 °C) and

  13. Entry Descent and Landing Systems for small planetary missions: parametric comparison of parachutes and inflatable systems for the proposed Vanguard Mars mission

    Science.gov (United States)

    Allouis, E.; Ellery, A.; Welch, C. S.

    2003-11-01

    Here the feasibility of a post-Beagle2 robotic Mars mission of modest size, mass and cost with a high scientific return is assessed. Based on a triad of robotics comprising a lander, a rover and three penetrating moles, the mission is astrobiology focussed, but also provides a platform for technology demonstration. The study is investigating two Entry, Descent and Landing Systems (EDLS) for the 120kg - mission based on the conventional heatshield/parachute duo and on the use of inflatable technologies as demonstrated by the IRDT/IRDT2 projects. Moreover, to make use of existing aerodynamic databases, both EDLS are considered with two geometries: the Mars Pathfinder (MPF) and Huygens/Beagle2 (B2) configurations. A versatile EDL model has been developed to provide a preliminary sizing for the different EDL systems such as heatshield, parachute, and inflatables for small to medium planetary missions. With a landed mass of 65 kg, a preliminary mass is derived for each system of the mission to provide a terminal velocity compatible with the use of airbags. On both conventional and inflatable options, the MPF configuration performs slightly better mass-wise since its cone half-angle is flatter at 70 degrees. Overall, the Inflatable Braking Device (IBD) option performs better than the conventional one and would provide in this particular case a decrease in mass of the EDLS of about 15-18% that can be redistributed to the payload.

  14. Preliminary Comparison Between Nuclear-Electric and Solar-Electric Propulsion Systems for Future Mars Missions

    Science.gov (United States)

    Koppel, Christophe R.; Valentian, Dominique; Latham, Paul; Fearn, David; Bruno, Claudio; Nicolini, David; Roux, Jean-Pierre; Paganucci, F.; Saverdi, Massimo

    2004-02-01

    Recent US and European initiatives in Nuclear Propulsion lend themselves naturally to raising the question of comparing various options and particularly Nuclear Electric Propulsion (NEP) with Solar Electric Propulsion (SEP). SEP is in fact mentioned in one of the latest versions of the NASA Mars Manned Mission as a possible candidate. The purpose of this paper is to compare NEP, for instance, using high power MPD, Ion or Plasma thrusters, with SEP systems. The same payload is assumed in both cases. The task remains to find the final mass ratios and cost estimates and to determine the particular features of each technology. Each technology has its own virtues and vices: NEP implies orbiting a sizeable nuclear reactor and a power generation system capable of converting thermal into electric power, with minimum mass and volumes compatible with Ariane 5 or the Space Shuttle bay. Issues of safety and launch risks are especially important to public opinion, which is a factor to be reckoned with. Power conversion in space, including thermal cycle efficiency and radiators, is a technical issue in need of attention if power is large, i.e., of order 0.1 MW and above, and so is power conditioning and other ancillary systems. Type of mission, Isp and thrust will ultimately determine a large fraction of the mass to be orbited, as they drive propellant mass. For manned missions, the trade-off also involves consumables and travel time because of exposure to Solar wind and cosmic radiation. Future manned NEP missions will probably need superconducting coils, entailing cryostat technology. The on-board presence of cryogenic propellant (e.g., LH2) may reassure the feasibility of this technology, implying, however, a trade-off between propellant volume to be orbited and reduced thruster mass. SEP is attractive right now in the mind of the public, but also of scientists involved in Solar system exploration. Some of the appeal derives from the hope of reducing propellant mass because

  15. Economical Mars Exploration Supported by a Nuclear Thermal Rocket

    Science.gov (United States)

    Howe, S. D.; O'Brien, R. C.

    2012-06-01

    A nuclear thermal rocket (NTR) developed for human Mars missions could act as a "mother ship" and carry multiple unmanned platforms to Mars for independent deployment. Use of the NTR could increase the science per dollar for each Earth launch.

  16. Automation and Robotics for Human Mars Exploration (AROMA)

    Science.gov (United States)

    Hofmann, Peter; von Richter, Andreas

    2003-01-01

    Automation and Robotics (A&R) systems are a key technology for Mars exploration. All over the world initiatives in this field aim at developing new A&R systems and technologies for planetary surface exploration. From December 2000 to February 2002 Kayser-Threde GmbH, Munich, Germany lead a study called AROMA (Automation and Robotics for Human Mars Exploration) under ESA contract in order to define a reference architecture of A&R elements in support of a human Mars exploration program. One of the goals of this effort is to initiate new developments and to maintain the competitiveness of European industry within this field. c2003 Published by Elsevier Science Ltd.

  17. Water extraction on Mars for an expanding human colony.

    Science.gov (United States)

    Ralphs, M; Franz, B; Baker, T; Howe, S

    2015-11-01

    In-situ water extraction is necessary for an extended human presence on Mars. This study looks at the water requirements of an expanding human colony on Mars and the general systems needed to supply that water from the martian atmosphere and regolith. The proposed combination of systems in order to supply the necessary water includes a system similar to Honeybee Robotics' Mobile In-Situ Water Extractor (MISWE) that uses convection, a system similar to MISWE but that directs microwave energy down a borehole, a greenhouse or hothouse type system, and a system similar to the Mars Atmospheric Resource Recovery System (MARRS). It is demonstrated that a large water extraction system that can take advantage of large deposits of water ice at site specific locations is necessary to keep up with the demands of a growing colony.

  18. Implementation of a complex of measures to fulfill the planetary protection requirements of the ExoMars-2016 mission

    Science.gov (United States)

    Khamidullina, Natalia; Novikova, Nataliya; Deshevaya, Elena; Orlov, Oleg; Guridov, Alexander; Zakharenko, Dmitry; Zaytseva, Olga

    2016-07-01

    The major purpose of the planetary protection program in the ExoMars-2016 mission is to forestall Mars contamination by terrestrial microorganisms. Since Martian descent module is not intended for biological experiments, ExoMars-2016 mission falls under COSPAR category IVa. Within the joint project co-sponsored by ESA and Roscosmos the European side holds full responsibility for ensuring a prescribed level of SC microbiological purity, while the Russian side is charged with compliance of the launch services provided on Baikonur technical complex with the planetary protection requirements that is, specifically, prevention of SC recontamination. To this end, a complex of measures was executed to control microbial contamination of cosmodrome facilities on the prescribed level which included: - regular decontamination of clean rooms using an effective disinfectant and impulse ultraviolet radiation that created favorable conditions for reliable functioning of the ESA clean tent, - replacement of airline filters in the Thermal Conditioning Unit (TCU) air duct for SC conditioning with pure air. The results of microbiological tests performed in the period of 2015 - 2016 lead to the conclusion that the Baikonur clean rooms (ISO class 8), TCU air ducts and Air Thermal Control System (ATCS) at launch site are ready for the launch campaign and that the Russian side fulfilled the planetary protection requirements of the ExoMars-2016 mission.

  19. Near Earth Asteroid Human Mission Possibilities Using Nuclear Thermal Rocket (NTR) Propulsion

    Science.gov (United States)

    Borowski, Stanley; McCurdy, David R.; Packard, Thomas W.

    2012-01-01

    The NTR is a proven technology that generates high thrust and has a specific impulse (Isp (is) approximately 900 s) twice that of today's best chemical rockets. During the Rover and NERVA (Nuclear Engine for Rocket Vehicle Applications) programs, twenty rocket reactors were designed, built and ground tested. These tests demonstrated: (1) a wide range of thrust; (2) high temperature carbide-based nuclear fuel; (3) sustained engine operation; (4) accumulated lifetime; and (5) restart capability - all the requirements needed for a human mission to Mars. Ceramic metal fuel was also evaluated as a backup option. In NASA's recent Mars Design reference Architecture (DRA) 5.0 study, the NTR was selected as the preferred propulsion option because of its proven technology, higher performance, lower launch mass, versatile vehicle design, simple assembly, and growth potential. In contrast to other advanced propulsion options, NTP requires no large technology scale-ups. In fact, the smallest engine tested during the Rover program - the 25 klbf 'Pewee' engine is sufficient for a human Mars mission when used in a clustered engine configuration. The 'Copernicus crewed NTR Mars transfer vehicle design developed for DRA 5.0 has significant capability that can enable reusable '1-year' round trip human missions to candidate near Earth asteroids (NEAs) like 1991 JW in 2027, or 2000 SG344 and Apophis in 2028. A robotic precursor mission to 2000 SG344 in late 2023 could provide an attractive Flight Technology Demonstration of a small NTR engine that is scalable to the 25 klbf-class engine used for human missions 5 years later. In addition to the detailed scientific data gathered from on-site inspection, human NEA missions would also provide a valuable 'check out' function for key elements of the NTR transfer vehicle (its propulsion module, TransHab and life support systems, etc.) in a 'deep space' environment prior to undertaking the longer duration Mars orbital and landing missions that

  20. Sample Acquisition and Caching architecture for the Mars Sample Return mission

    Science.gov (United States)

    Zacny, K.; Chu, P.; Cohen, J.; Paulsen, G.; Craft, J.; Szwarc, T.

    This paper presents a Mars Sample Return (MSR) Sample Acquisition and Caching (SAC) study developed for the three rover platforms: MER, MER+, and MSL. The study took into account 26 SAC requirements provided by the NASA Mars Exploration Program Office. For this SAC architecture, the reduction of mission risk was chosen by us as having greater priority than mass or volume. For this reason, we selected a “ One Bit per Core” approach. The enabling technology for this architecture is Honeybee Robotics' “ eccentric tubes” core breakoff approach. The breakoff approach allows the drill bits to be relatively small in diameter and in turn lightweight. Hence, the bits could be returned to Earth with the cores inside them with only a modest increase to the total returned mass, but a significant decrease in complexity. Having dedicated bits allows a reduction in the number of core transfer steps and actuators. It also alleviates the bit life problem, eliminates cross contamination, and aids in hermetic sealing. An added advantage is faster drilling time, lower power, lower energy, and lower Weight on Bit (which reduces Arm preload requirements). Drill bits are based on the BigTooth bit concept, which allows re-use of the same bit multiple times, if necessary. The proposed SAC consists of a 1) Rotary-Percussive Core Drill, 2) Bit Storage Carousel, 3) Cache, 4) Robotic Arm, and 5) Rock Abrasion and Brushing Bit (RABBit), which is deployed using the Drill. The system also includes PreView bits (for viewing of cores prior to caching) and Powder bits for acquisition of regolith or cuttings. The SAC total system mass is less than 22 kg for MER and MER+ size rovers and less than 32 kg for the MSL-size rover.

  1. Rover imaging system for the Mars rover/sample return mission

    Science.gov (United States)

    1993-02-01

    In the past year, the conceptual design of a panoramic imager for the Mars Environmental Survey (MESUR) Pathfinder was finished. A prototype camera was built and its performace in the laboratory was tested. The performance of this camera was excellent. Based on this work, we have recently proposed a small, lightweight, rugged, and highly capable Mars Surface Imager (MSI) instrument for the MESUR Pathfinder mission. A key aspect of our approach to optimization of the MSI design is that we treat image gathering, coding, and restoration as a whole, rather than as separate and independent tasks. Our approach leads to higher image quality, especially in the representation of fine detail with good contrast and clarity, without increasing either the complexity of the camera or the amount of data transmission. We have made significant progress over the past year in both the overall MSI system design and in the detailed design of the MSI optics. We have taken a simple panoramic camera and have upgraded it substantially to become a prototype of the MSI flight instrument. The most recent version of the camera utilizes miniature wide-angle optics that image directly onto a 3-color, 2096-element CCD line array. There are several data-taking modes, providing resolution as high as 0.3 mrad/pixel. Analysis tasks that were performed or that are underway with the test data from the prototype camera include the following: construction of 3-D models of imaged scenes from stereo data, first for controlled scenes and later for field scenes; and checks on geometric fidelity, including alignment errors, mast vibration, and oscillation in the drive system. We have outlined a number of tasks planned for Fiscal Year '93 in order to prepare us for submission of a flight instrument proposal for MESUR Pathfinder.

  2. NOMAD on the ExoMars TGO 2016 mission: MAIT and characterisation testing

    Science.gov (United States)

    Vandaele, Ann C.; Neefs, Eddy; Lopez-Moreno, J. J.; Rodriguez Gomez, Julio; Drummond, Rachel; Patel, Manish; Thomas, Ian; Gissot, Samuel; Depiesse, Cedric; Ben Moussa, Ali; Giordanengo, Boris; Bellucci, Giancarlo

    NOMAD, the “Nadir and Occultation for MArs Discovery” spectrometer suite has been selected by ESA and NASA to be part of the payload of the ExoMars Trace Gas Orbiter mission 2016. This instrument suite will conduct a spectroscopic survey of Mars’ atmosphere in the UV, visible and IR regions covering the 0.2-0.65 and 2.2-4.3 μm spectral ranges. NOMAD’s observation modes include solar occultation, nadir and limb observations. The NOMAD instrument is composed of 3 channels: a solar occultation only channel (SO) operating in the infrared wavelength domain, a second infrared channel capable of observing nadir, solar occultation and limb observations (LNO), and an ultraviolet/visible channel (UVIS) that can work in all observation modes. The spectral resolution of SO and LNO surpasses previous surveys in the infrared by more than one order of magnitude. NOMAD offers an integrated instrument combination of a flight-proven concept (SO is a copy of SOIR on Venus Express), and innovations based on existing and proven instrumentation (LNO is based on SOIR/VEX and UVIS has heritage from the ExoMars lander), that will provide mapping and vertical profile information at high spatio-temporal resolution. The three channels have each their own ILS and optical bench, but share the same single interface to the S/C. The NOMAD flight model is due for delivery to ESA in January 2015. We will present results so far of the manufacturing, assembly and especially testing of the various components. The UV CCDs have been characterised in thermal-vacuum; optical fibres have been studied with UV exposure to look at transmission degradation; the IR AOTFs have been tested for their transfer functions; lifetime and vibration testing has been carried out on the flip mirror mechanism. These are all vital inputs to the scientific results from NOMAD. Acknowledgements - The research program was supported by the Belgian Federal Science Policy Office and the European Space Agency (ESA PRODEX

  3. Blind tests of methods for InSight Mars mission: Open scientific challenge

    Science.gov (United States)

    Clinton, John; Ceylan, Savas; Giardini, Domenico; Khan, Amir; van Driel, Martin; Böse, Maren; Euchner, Fabian; Garcia, Raphael F.; Drilleau, Mélanie; Lognonné, Philippe; Panning, Mark; Banerdt, Bruce

    2017-04-01

    The Marsquake Service (MQS) will be the ground segment service within the InSight mission to Mars, which will deploy a single seismic station on Elysium Planitia in November 2018. The main tasks of the MQS are the identification and characterisation of seismicity, and managing the Martian seismic event catalogue. In advance of the mission, we have developed a series of single station event location methods that rely on a priori 1D and 3D structural models. In coordination with the Mars Structural Service, we expect to use iterative inversion techniques to revise these structural models and event locations. In order to seek methodological advancements and test our current approaches, we have designed a blind test case using Martian synthetics combined with realistic noise models for the Martian surface. We invite all scientific parties that are interested in single station approaches and in exploring the Martian time-series to participate and contribute to our blind test. We anticipate the test will can improve currently developed location and structural inversion techniques, and also allow us explore new single station techniques for moment tensor and magnitude determination. The waveforms for our test case are computed employing AxiSEM and Instaseis for a randomly selected 1D background model and event catalogue that is statistically consistent with our current expectation of Martian seismicity. Realistic seismic surface noise is superimposed to generate a continuous time-series spanning 6 months. The event catalog includes impacts as well as Martian quakes. The temporal distribution of the seismicity in the timeseries, as well as the true structural model, are not be known to any participating parties including MQS till the end of competition. We provide our internal tools such as event location codes, suite of background models, seismic phase travel times, in order to support researchers who are willing to use/improve our current methods. Following the deadline

  4. Next Gen NEAR: Near Earth Asteroid Human Robotic Precursor Mission Concept

    Science.gov (United States)

    Rivkin, Andrew S.; Kirby, Karen; Cheng, Andrew F.; Gold, Robert; Kelly, Daniel; Reed, Cheryl; Abell, Paul; Garvin, James; Landis, Rob

    2012-01-01

    Asteroids have long held the attention of the planetary science community. In particular, asteroids that evolve into orbits near that of Earth, called near-Earth objects (NEO), are of high interest as potential targets for exploration due to the relative ease (in terms of delta V) to reach them. NASA's Flexible Path calls for missions and experiments to be conducted as intermediate steps towards the eventual goal of human exploration of Mars; piloted missions to NEOs are such example. A human NEO mission is a valuable exploratory step beyond the Earth-Moon system enhancing capabilities that surpass our current experience, while also developing infrastructure for future mars exploration capabilities. To prepare for a human rendezvous with an NEO, NASA is interested in pursuing a responsible program of robotic NEO precursor missions. Next Gen NEAR is such a mission, building on the NEAR Shoemaker mission experience at the JHU/APL Space Department, to provide an affordable, low risk solution with quick data return. Next Gen NEAR proposes to make measurements needed for human exploration to asteroids: to demonstrate proximity operations, to quantify hazards for human exploration and to characterize an environment at a near-Earth asteroid representative of those that may be future human destinations. The Johns Hopkins University Applied Physics Laboratory has demonstrated exploration-driven mission feasibility by developing a versatile spacecraft design concept using conventional technologies that satisfies a set of science, exploration and mission objectives defined by a concept development team in the summer of 2010. We will describe the mission concept and spacecraft architecture in detail. Configuration options were compared with the mission goals and objectives in order to select the spacecraft design concept that provides the lowest cost, lowest implementation risk, simplest operation and the most benefit for the mission implementation. The Next Gen NEAR

  5. A Mission Concept Based on the ISECG Human Lunar Surface Architecture

    Science.gov (United States)

    Gruener, J. E.; Lawrence, S. J.

    2017-01-01

    The National Aeronautics and Space Administration (NASA) is participating in the International Space Exploration Coordination Group (ISECG), working together with 13 other space agencies to advance a long-range human space exploration strategy. The ISECG has developed a Global Exploration Roadmap (GER) that reflects the coordinated international dialog and continued preparation for exploration beyond low-Earth orbit - beginning with the International Space Station (ISS) and continuing to the Moon, near-Earth asteroids, and Mars [1]. The roadmap demonstrates how initial capabilities can enable a variety of missions in the lunar vicinity, responding to individual and common goals and objectives, while contributing to building partnerships required for sustainable human space exploration that delivers value to the public. The current GER includes three different near-term themes: exploration of a near-Earth asteroid, extended duration crew missions in cis-lunar space, and humans to the lunar surface.

  6. Human Mission to Asteroids in the Context of Future Space Exploration Studies .

    Science.gov (United States)

    Messidoro, P.; Fenoglio, F.; Pasquinelli, M.; Gottlieb, J.

    The final goal, for the foreseeable future, of the Human Exploration of the Solar System is to land a crew on the Mars Surface (and to bring it back). A wide array of capabilities has to be developed and demonstrated before attempting such a risky endeavor; intermediate steps are therefore needed, also to comply with budget constraints. Human missions to Near Earth Objects (NEOs) and specifically Asteroids (NEAs) are among the most suitable candidates, thanks to high scientific interest, good opportunities for testing technologies and crew operations, and to mature Earth protection capabilities. In the following, a review of existing NEA Human mission concepts is provided and a new one, characterized by the exploitation of Nuclear Thermal Propulsion to reduce overall lift-off mass, is proposed.

  7. Greenhouse production analysis of early mission scenarios for Moon and Mars habitats

    Directory of Open Access Journals (Sweden)

    Schubert D.

    2017-02-01

    Full Text Available The establishment of planetary outposts and habitats on the Moon and Mars will help foster further exploration of the solar system. The crews that operate, live, and work in these artificial constructions will rely on bio-regenerative closed-loop systems and principles, such as algae reactors and higher plant chambers, in order to minimize resupply needs and improve system resiliency. Greenhouse modules will play a major role in closing not only the oxygen, carbon-dioxide, and water supply loops, but also by providing fresh food for the crew. In early mission scenarios, when the habitat is still in its build-up phase, only small greenhouse systems will be deployed, providing a supplemental food strategy. Small quantities of high water content crops (e.g. lettuce, cucumber, tomato will be cultivated, improving the crew’s diet plan with an add-on option to the pre-packed meals. The research results of a 400-day biomass and crew time simulation of an adapted EDEN ISS Future Exploration Greenhouse are presented. This greenhouse is an experimental cultivation system that will be used in an analogue test mission to Antarctica (2018-2019 to test plant cultivation technologies for space. The Future Exploration Greenhouse is a high-level analogue for cultivation systems of early mission scenarios on Moon/ Mars. Applying a net cultivation area of 11.9 m², 11 crops have been simulated. Biomass output values were tailored to a tray cultivation (batch strategy, where 34 trays (0.4x0.6 m have been integrated into the overall production plan. Detailed work procedures were established for each crop according to its production lifecycle requirements. Seven basic crew time requiring work procedures (e.g. seeding, pruning and training, harvesting, cleaning, post-harvesting were simulated. Two cultivation principles were the focus of the analysis: The In-Phase Cultivation approach where all trays start at the same time, and the Shifted Cultivation approach

  8. Research Objectives for Human Missions in the Proving Ground of Cis-Lunar Space

    Science.gov (United States)

    Spann, James; Niles, Paul; Eppler, Dean; Kennedy, Kriss; Lewis, Ruthan; Sullivan, Thomas

    2016-07-01

    Introduction: This talk will introduce the preliminary findings in support of NASA's Future Capabilities Team. In support of the ongoing studies conducted by NASA's Future Capabilities Team, we are tasked with collecting re-search objectives for the Proving Ground activities. The objectives could include but are certainly not limited to: demonstrating crew well being and performance over long duration missions, characterizing lunar volatiles, Earth monitoring, near Earth object search and identification, support of a far-side radio telescope, and measuring impact of deep space environment on biological systems. Beginning in as early as 2023, crewed missions beyond low Earth orbit will be enabled by the new capabilities of the SLS and Orion vehicles. This will initiate the "Proving Ground" phase of human exploration with Mars as an ultimate destination. The primary goal of the Proving Ground is to demonstrate the capability of suitably long dura-tion spaceflight without need of continuous support from Earth, i.e. become Earth Independent. A major component of the Proving Ground phase is to conduct research activities aimed at accomplishing major objectives selected from a wide variety of disciplines including but not limited to: Astronomy, Heliophysics, Fun-damental Physics, Planetary Science, Earth Science, Human Systems, Fundamental Space Biology, Microgravity, and In Situ Resource Utilization. Mapping and prioritizing the most important objectives from these disciplines will provide a strong foundation for establishing the architecture to be utilized in the Proving Ground. Possible Architectures: Activities and objectives will be accomplished during the Proving Ground phase using a deep space habitat. This habitat will potentially be accompanied by a power/propulsion bus capable of moving the habitat to accomplish different objectives within cis-lunar space. This architecture can also potentially support stag-ing of robotic and tele-robotic assets as well as

  9. A High-Heritage Blunt-Body Entry, Descent, and Landing Concept for Human Mars Exploration

    Science.gov (United States)

    Price, Humphrey; Manning, Robert; Sklyanskiy, Evgeniy; Braun, Robert

    2016-01-01

    Human-scale landers require the delivery of much heavier payloads to the surface of Mars than is possible with entry, descent, and landing (EDL) approaches used to date. A conceptual design was developed for a 10 m diameter crewed Mars lander with an entry mass of approx.75 t that could deliver approx.28 t of useful landed mass (ULM) to a zero Mars areoid, or lower, elevation. The EDL design centers upon use of a high ballistic coefficient blunt-body entry vehicle and throttled supersonic retro-propulsion (SRP). The design concept includes a 26 t Mars Ascent Vehicle (MAV) that could support a crew of 2 for approx.24 days, a crew of 3 for approx.16 days, or a crew of 4 for approx.12 days. The MAV concept is for a fully-fueled single-stage vehicle that utilizes a single pump-fed 250 kN engine using Mono-Methyl Hydrazine (MMH) and Mixed Oxides of Nitrogen (MON-25) propellants that would deliver the crew to a low Mars orbit (LMO) at the end of the surface mission. The MAV concept could potentially provide abort-to-orbit capability during much of the EDL profile in response to fault conditions and could accommodate return to orbit for cases where the MAV had no access to other Mars surface infrastructure. The design concept for the descent stage utilizes six 250 kN MMH/MON-25 engines that would have very high commonality with the MAV engine. Analysis indicates that the MAV would require approx.20 t of propellant (including residuals) and the descent stage would require approx.21 t of propellant. The addition of a 12 m diameter supersonic inflatable aerodynamic decelerator (SIAD), based on a proven flight design, was studied as an optional method to improve the ULM fraction, reducing the required descent propellant by approx.4 t.

  10. Practical Considerations of Waste Heat Reuse for a Mars Mission Advanced Life Support System

    Science.gov (United States)

    Levri, Julie; Finn, Cory; Luna, Bernadette (Technical Monitor)

    2000-01-01

    Energy conservation is a key issue in design optimization of Advanced Life Support Systems (ALSS) for long-term space missions. By considering designs for conservation at the system level, energy saving opportunities arise that would otherwise go unnoticed. This paper builds on a steady-state investigation of system-level waste heat reuse in an ALSS with a low degree of crop growth for a Mars mission. In past studies, such a system has been defined in terms of technology types, hot and cold stream identification and stream energy content. The maximum steady-state potential for power and cooling savings within the system was computed via the Pinch Method. In this paper, several practical issues are considered for achieving a pragmatic estimate of total system savings in terms of equivalent system mass (ESM), rather than savings solely in terms of power and cooling. In this paper, more realistic ESM savings are computed by considering heat transfer inefficiencies during material transfer. An estimate of the steady-state mass, volume and crewtime requirements associated with heat exchange equipment is made by considering heat exchange equipment material type and configuration, stream flow characteristics and associated energy losses during the heat exchange process. Also, previously estimated power and cooling savings are adjusted to reflect the impact of such energy losses. This paper goes one step further than the traditional Pinch Method of considering waste heat reuse in heat exchangers to include ESM savings that occur with direct reuse of a stream. For example, rather than exchanging heat between crop growth lamp cooling air and air going to a clothes dryer, air used to cool crop lamps might be reused directly for clothes drying purposes. When thermodynamically feasible, such an approach may increase ESM savings by minimizing the mass, volume and crewtime requirements associated with stream routing equipment.

  11. Issues of health evaluation during simulated space mission to Mars. Part 1. Research methodology and methods used in experiment Mars-500

    Directory of Open Access Journals (Sweden)

    Roman М. Baevsky

    2013-05-01

    Full Text Available Research methodology and methods used in experiment Mars-500 held at the Institute of Biomedical Problems of the Russian Academy of Sciences in 2009-2011 are considered. 6 volunteers were isolated during 520 days in a sealed ground-based facility simulating space ship. Along with studies of the Martian crew, a number of satellite research were also carried out, which were devoted to the long-term program of medical and ecological investigations. This program was aimed at the study of the dynamics of adaptation abilities of the organism during its long stay in the natural social, living and industrial environments. For physiological investigations in experiment Mars-500, including the main experiment in a sealed ground-based facility and parallel long-term medical and ecological investigations in different regions of the world, the specialized hardwaresoftware complex "Ecosan-2007" was used. The methodology was based on the principles of prenosological diagnostics that have been further developed in the concept of adaptation risks and in the probabilistic approach to their evaluation. For evaluation of various components of the autonomous regulation state the method of heart rate variability (HRV was used. It was concluded that the most important field in experiment Mars-500 was the investigation of the methodology of prenosological diagnostic in the preparation of a space mission to Mars.

  12. Small Step or Giant Leap - Human Locomotion on Mars

    Science.gov (United States)

    Hawkey, A.

    Human locomotion on Mars will be considerably different from on Earth. Optimum walking speeds will be approximately 30% lower and transitioning from a walk to a run will occur at a speed 25% slower. Peak vertical forces will be reduced by as much as 50%, and although ground contact time will remain constant with locomotion in 1g, stride length and stride time will increase. During running on Mars airborne time will increase by approximately 80% in comparison to running on the Earth. On Mars, half as much energy will be required to travel the equivalent distance on Earth and it will be 65% more economical to run rather than to walk. Crews will, therefore, find themselves using a loping gait - a running-like action, with a slight upper body lean and an extended aerial phase, an unfamiliar gait in terrestrial locomotion.

  13. Mars

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    Mars exploration has never been more active, and our understanding of the planet is advancing rapidly. New discoveries reveal gullies carved by recent groundwater flow, thick ice deposits protected by rocks and soil even at the equator, and new evidence for lakes and seas in Mars' past. The Martian surface has some of the oldest planetary crust in the solar system, containing clues to conditions in early planets that cannot be obtained elsewhere.Beginning with a discussion of Mars as a planet in orbit, Mars, Revised Edition covers fundamental facts about this planet, including its mass and siz

  14. Manned Mars mission Earth-To-Orbit (ETO) delivery and orbit assembly of the manned Mars vehicle

    Science.gov (United States)

    Barisa, B.; Solmon, G.

    1986-01-01

    The initial concepts developed for the in-orbit assembly of a Manned Mars Vehicle and for the Earth-to-Orbit (ETO) delivery of the required hardware and propellant are presented. Two (2) Mars vehicle concepts (all-propulsive and all-aerobrake) and two (2) ETO Vehicle concepts were investigated. Both Mars Vehicle concepts are described in Reference 1, and both ETO Vehicle concepts are described in Reference 2. The all-aerobrake configuration reduces the number of launches and time required to deliver the necessary hardware/propellent to orbit. Use of the larger of the 2 ETO Vehicles (HLLV) further reduces the number of launches and delivery time; however, this option requires a completely new vehicle and supporting facilities.

  15. Food System Trade Study for a Near-Term Mars Mission

    Science.gov (United States)

    Levri, Julie; Luna, Bernadette (Technical Monitor)

    2000-01-01

    This paper evaluates several food system options for a near-term Mars mission, based on plans for the 120-day BIO-Plex test. Food systems considered in the study are based on the International Space Station (ISS) Assembly Phase and Assembly Complete food systems. The four systems considered are: 1) ISS assembly phase food system (US portion) with individual packaging without salad production; 2) ISS assembly phase food system (US portion) with individual packaging, with salad production; 3) ISS assembly phase food system (US portion) with bulk packaging, with salad production; 4) ISS assembly complete food system (US portion) with bulk packaging with salad and refrigeration/freezing. The food system options are assessed using equivalent system mass (ESM), which evaluates each option based upon the mass, volume, power, cooling and crewtime requirements that are associated with each food system option. However, since ESM is unable to elucidate the differences in psychological benefits between the food systems, a qualitative evaluation of each option is also presented.

  16. Performance Testing of Lithium Li-ion Cells and Batteries in Support of JPL's 2003 Mars Exploration Rover Mission

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; Ewell, R. C.; Whitcanack, L. D.; Surampudi, S.; Puglia, F.; Gitzendanner, R.

    2007-01-01

    In early 2004, JPL successfully landed two Rovers, named Spirit and Opportunity, on the surface of Mars after traveling > 300 million miles over a 6-7 month period. In order to operate for extended duration on the surface of Mars, both Rovers are equipped with rechargeable Lithium-ion batteries, which were designed to aid in the launch, correct anomalies during cruise, and support surface operations in conjunction with a triple-junction deployable solar arrays. The requirements of the Lithium-ion battery include the ability to provide power at least 90 sols on the surface of Mars, operate over a wide temperature range (-20(super 0)C to +40(super 0)C), withstand long storage periods (e.g., including pre-launch and cruise period), operate in an inverted position, and support high currents (e.g., firing pyro events). In order to determine the inability of meeting these requirements, ground testing was performed on a Rover Battery Assembly Unit RBAU), consisting of two 8-cell 8 Ah lithium-ion batteries connected in parallel. The RBAU upon which the performance testing was performed is nearly identical to the batteries incorporated into the two Rovers currently on Mars. The primary focus of this paper is to communicate the latest results regarding Mars surface operation mission simulation testing, as well as, the corresponding performance capacity loss and impedance characteristics as a function of temperature and life. As will be discussed, the lithium-ion batteries (fabricated by Yardney Technical Products, Inc.) have been demonstrated to far exceed the requirements defined by the mission, being able to support the operation of the rovers for over three years, and are projected to support an even further extended mission.

  17. Analogue Simulation of human and psychosocial factors for MoonMars bases

    Science.gov (United States)

    Davidová, Lucie; Foing, Bernard

    2017-04-01

    Several courageous plans regarding future human space exploration have been proposed. Both main future targets, ESA's Moon village, as well as journey to Mars represent huge challenge for humans. Appropriate research on psychological aspects of humans in extreme conditions is needed. Analogue simulations represent valuable source of information that help us to understand how to provide an adequate support to astronauts in specific conditions of isolation and limited resources. The psychosocial investigation was designed to builds on combination of several methods based on subjective as well as objective assessments, namely observation, sociomapping, content analysis of interviews etc. Research on several simulations provided lessons learned and various insights. The attention was paid particularly to the interpersonal interactions among crew members, intragroup as well as intergroup communication, cooperation, and performance. This comprehensive approach enables early detection of hidden structures and potential insufficiencies of an astronaut team. The sociomapping of interpersonal communication as well as analysis of interviews with participants revealed insufficiencies especially in communication between the analogue astronauts and mission control. Another important finding was gain by investigation of the relationship between the astronaut crew and mission control. Astronauts low trust to mission control can have a great negative impact to the performance and well-being of astronauts. The findings of the psychosocial studies are very important for designing astronaut training and planning future mission.

  18. The Mission Assessment Post Processor (MAPP): A New Tool for Performance Evaluation of Human Lunar Missions

    Science.gov (United States)

    Williams, Jacob; Stewart, Shaun M.; Lee, David E.; Davis, Elizabeth C.; Condon, Gerald L.; Senent, Juan

    2010-01-01

    The National Aeronautics and Space Administration s (NASA) Constellation Program paves the way for a series of lunar missions leading to a sustained human presence on the Moon. The proposed mission design includes an Earth Departure Stage (EDS), a Crew Exploration Vehicle (Orion) and a lunar lander (Altair) which support the transfer to and from the lunar surface. This report addresses the design, development and implementation of a new mission scan tool called the Mission Assessment Post Processor (MAPP) and its use to provide insight into the integrated (i.e., EDS, Orion, and Altair based) mission cost as a function of various mission parameters and constraints. The Constellation architecture calls for semiannual launches to the Moon and will support a number of missions, beginning with 7-day sortie missions, culminating in a lunar outpost at a specified location. The operational lifetime of the Constellation Program can cover a period of decades over which the Earth-Moon geometry (particularly, the lunar inclination) will go through a complete cycle (i.e., the lunar nodal cycle lasting 18.6 years). This geometry variation, along with other parameters such as flight time, landing site location, and mission related constraints, affect the outbound (Earth to Moon) and inbound (Moon to Earth) translational performance cost. The mission designer must determine the ability of the vehicles to perform lunar missions as a function of this complex set of interdependent parameters. Trade-offs among these parameters provide essential insights for properly assessing the ability of a mission architecture to meet desired goals and objectives. These trades also aid in determining the overall usable propellant required for supporting nominal and off-nominal missions over the entire operational lifetime of the program, thus they support vehicle sizing.

  19. ESCORT: A Pratt & Whitney nuclear thermal propulsion and power system for manned mars missions

    Science.gov (United States)

    Feller, Gerald J.; Joyner, Russell

    1999-01-01

    The purpose of this paper is to describe the conceptual design of an upgrade to the Pratt & Whitney ESCORT nuclear thermal rocket engine. The ESCORT is a bimodal engine capable of supporting a wide range of vehicle propulsive and electrical power requirements. The ESCORT engine is powered by a fast-spectrum beryllium-reflected CERMET-fueled nuclear reactor. In propulsive mode, the reactor is used to heat hot hydrogen to approximately 2700 K which is expanded through a converging/diverging nozzle to generate thrust. Heat pickup in the nozzle and the radial beryllium reflectors is used to drive the turbomachinery in the ESCORT expander cycle. In electrical mode, the reactor is used to heat a mixture of helium and xenon to drive a closed-loop Brayton cycle in order to generate electrical energy. This closed loop system has the additional function of a decay heat removal system after the propulsive mode operation is discontinued. The original ESCORT design was capable of delivering 4448.2 N (1000 lbf) of thrust at a vacuum impulse level of approximately 900 s. Design Reference Mission requirements (DRM) from NASA Johnson Space Center and NASA Lewis Research Center studies in 1997 and 1998 have detailed upgraded requirements for potential manned Mars missions. The current NASA DRM requires a nuclear thermal propulsion system capable of delivering total mission requirements of 200170 N (45000 lbf) thrust and 50 kWe of spacecraft electrical power. This is met assuming three engines capable of each delivering 66723 N (15000 lbf) of vacuum thrust and 25 kWe of electrical power. The individual engine requirements were developed assuming three out of three engine reliability for propulsion and two out of three engine reliability for spacecraft electrical power. The approximate target vacuum impulse is 925 s. The Pratt & Whitney ESCORT concept was upgraded to meet these requirements. The hexagonal prismatic fuel elements were modified to address the uprated power requirements

  20. Synthetic biology meets bioprinting: enabling technologies for humans on Mars (and Earth)

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    Human exploration off planet is severely limited by the cost of launching materials into space and by re-supply. Thus materials brought from Earth must be light, stable and reliable at destination. Using traditional approaches, a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because life can replicate and repair itself, and perform a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing through bioprinting will make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. This new approach and the resulting novel products will enable human exploration and settlement on Mars, while providing new manufacturing approaches for life on Earth. PMID:27528764

  1. Synthetic biology meets bioprinting: enabling technologies for humans on Mars (and Earth).

    Science.gov (United States)

    Rothschild, Lynn J

    2016-08-15

    Human exploration off planet is severely limited by the cost of launching materials into space and by re-supply. Thus materials brought from Earth must be light, stable and reliable at destination. Using traditional approaches, a lunar or Mars base would require either transporting a hefty store of metals or heavy manufacturing equipment and construction materials for in situ extraction; both would severely limit any other mission objectives. Long-term human space presence requires periodic replenishment, adding a massive cost overhead. Even robotic missions often sacrifice science goals for heavy radiation and thermal protection. Biology has the potential to solve these problems because life can replicate and repair itself, and perform a wide variety of chemical reactions including making food, fuel and materials. Synthetic biology enhances and expands life's evolved repertoire. Using organisms as feedstock, additive manufacturing through bioprinting will make possible the dream of producing bespoke tools, food, smart fabrics and even replacement organs on demand. This new approach and the resulting novel products will enable human exploration and settlement on Mars, while providing new manufacturing approaches for life on Earth.

  2. Direct Fusion Drive for a Human Mars Orbital Mission

    Energy Technology Data Exchange (ETDEWEB)

    Paluszek, Michael [Princeton Satellite Systems; Pajer, Gary [Princeton Satellite Systems; Razin, Yosef [Princeton Satellite Systems; Slonaker, James [Princeton Satellite Systems; Cohen, Samuel [PPPL; Feder, Russ [PPPL; Griffin, Kevin [Princeton University; Walsh, Matthew [Princeton University

    2014-08-01

    The Direct Fusion Drive (DFD) is a nuclear fusion engine that produces both thrust and electric power. It employs a field reversed configuration with an odd-parity rotating magnetic field heating system to heat the plasma to fusion temperatures. The engine uses deuterium and helium-3 as fuel and additional deuterium that is heated in the scrape-off layer for thrust augmentation. In this way variable exhaust velocity and thrust is obtained.

  3. Curiosity explores the base of Aeolis Mons, Gale crater, Mars: Recent Geological and Geochemical Mission Results

    Science.gov (United States)

    Gupta, Sanjeev; Vasavada, Ashwin; Crisp, Joy; Grotzinger, John

    2016-04-01

    The Mars Science Laboratory (MSL) Curiosity rover has been exploring sedimentary rocks at the foothills of Aolis Mons since August 2014. Here, an array of fluvial, lacustrine and aeolian strata that show a complex pattern of post-depositional alteration are present. This presentation will summarize the most recent geological and geochemical findings of the MSL mission. Basal outcrops that form the lowest stratigraphic unit of Aeolis Mons, the Murray formation, are characterized predominantly by mudstones with minor intercalated sandstones. The mudstone facies, originally identified at the Pahrump Hills field site, show abundant fine-scale planar laminations throughout the Murray formation succession and is interpreted to record deposition in an ancient lacustrine system in Gale crater. Interbedded cross-stratified sandstones are considered to record fluvio-deltaic incursions into the lake. The lacustrine deposits of the Murray formation are unconformably overlain by much younger sandstones of the Stimson formation. Orbital mapping and in situ observations indicate that the basal strata of the Stimson formation show complex onlap relationships with the underlying Murray formation strata signifying that there was metre-scale palaeotopographic relief on the unconformity surface upon which the Stimson accumulated. The Stimson formation itself is characterized by cross-bedded sandstones with cross-bed sets tens of centimetres in thickness. Sedimentological observations suggest that the Stimson dominantly records deposition by aeolian dunes. Curiosity has made detailed measurements of the geochemistry of the Murray and Stimson formations and associated diagenetic features. Perhaps most surprising has been the discovery of extensive silica enrichment both within mudstones of the Murray formation, perhaps of primary sedimentary or later diagenetic origin, also in as fracture-related diagenetic halos within the Stimson formation. We will describe the nature of this silica

  4. Design Considerations for Spacecraft Operations During Uncrewed Dormant Phases of Human Exploration Missions

    Science.gov (United States)

    Williams-Byrd, Julie; Antol, Jeff; Jefferies, Sharon; Goodliff, Kandyce; Williams, Phillip; Ambrose, Rob; Sylvester, Andre; Anderson, Molly; Dinsmore, Craig; Hoffman, Stephen; Lawrence, James; Seibert, Marc; Schier, Jim; Frank, Jeremy; Alexander, Leslie; Ruff, Gary; Soeder, Jim; Guinn, Joseph; Stafford, Matthew

    2016-01-01

    NASA is transforming human spaceflight. The Agency is shifting from an exploration-based program with human activities in low Earth orbit (LEO) and targeted robotic missions in deep space to a more sustainable and integrated pioneering approach. However, pioneering space involves daunting technical challenges of transportation, maintaining health, and enabling crew productivity for long durations in remote, hostile, and alien environments. Subject matter experts from NASA's Human Exploration and Operations Mission Directorate (HEOMD) are currently studying a human exploration campaign that involves deployment of assets for planetary exploration. This study, called the Evolvable Mars Campaign (EMC) study, explores options with solar electric propulsion as a central component of the transportation architecture. This particular in-space transportation option often results in long duration transit to destinations. The EMC study is also investigating deployed human rated systems like landers, habitats, rovers, power systems and ISRU system to the surface of Mars, which also will involve long dormant periods when these systems are staged on the surface. In order to enable the EMC architecture, campaign and element design leads along with system and capability development experts from HEOMD's System Maturation Team (SMT) have identified additional capabilities, systems and operation modes that will sustain these systems especially during these dormant phases of the mission. Dormancy is defined by the absence of crew and relative inactivity of the systems. For EMC missions, dormant periods could range from several months to several years. Two aspects of uncrewed dormant operations are considered herein: (1) the vehicle systems that are placed in a dormant state and (2) the autonomous vehicle systems and robotic capabilities that monitor, maintain, and repair the vehicle and systems. This paper describes the mission stages of dormancy operations, phases of dormant

  5. Groundbreaking Mars Sample Return for Science and Human Exploration

    Science.gov (United States)

    Cohen, Barbara; Draper, David; Eppler, Dean; Treiman, Allan

    2012-01-01

    Partnerships between science and human exploration have recent heritage for the Moon (Lunar Precursor Robotics Program, LPRP) and nearearth objects (Exploration Precursor Robotics Program, xPRP). Both programs spent appreciable time and effort determining measurements needed or desired before human missions to these destinations. These measurements may be crucial to human health or spacecraft design, or may be desired to better optimize systems designs such as spacesuits or operations. Both LPRP and xPRP recommended measurements from orbit, by landed missions and by sample return. LPRP conducted the Lunar Reconnaissance Orbiter (LRO) and Lunar Crater Observation and Sensing Satellite (LCROSS) missions, providing high-resolution visible imagery, surface and subsurface temperatures, global topography, mapping of possible water ice deposits, and the biological effects of radiation [1]. LPRP also initiated a landed mission to provide dust and regolith properties, local lighting conditions, assessment of resources, and demonstration of precision landing [2]. This mission was canceled in 2006 due to funding shortfalls. For the Moon, adequate samples of rocks and regolith were returned by the Apollo and Luna programs to conduct needed investigations. Many near-earth asteroids (NEAs) have been observed from the Earth and several have been more extensively characterized by close-flying missions and landings (NEAR, Hayabusa, Rosetta). The current Joint Robotic Precursor Activity program is considering activities such as partnering with the New Frontiers mission OSIRIS-Rex to visit a NEA and return a sample to the Earth. However, a strong consensus of the NEO User Team within xPRP was that a dedicated mission to the asteroid targeted by humans is required [3], ideally including regolith sample return for more extensive characterization and testing on the Earth.

  6. Sleep-wake differences in heart rate variability during a 105-day simulated mission to Mars.

    Science.gov (United States)

    Vigo, Daniel E; Ogrinz, Barbara; Wan, Li; Bersenev, Evgeny; Tuerlinckx, Francis; Van Den Bergh, Omer; Aubert, André E

    2012-02-01

    In prolonged spaceflights the effect of long-term confinement on the autonomic regulation of the heart is difficult to separate from the effect of prolonged exposure to microgravity or other space-related stressors. Our objective was to investigate whether the sleep-wake variations in the autonomic control of the heart are specifically altered by long-term confinement during the 105-d pilot study of the Earth-based Mars500 project. Before (pre), during (T1: 30, T2: 70, andT3: 100 d), and after (post) confinement, 24-h EKG records were obtained from the six crewmembers that participated in the mission. Sleep and wake periods were determined by fitting a square wave to the data. Autonomic activity was evaluated through time and frequency domain indexes of heart rate variability (HRV) analysis during wake and sleep periods. During confinement, wake HRV showed decreased mean heart rate and increased amplitude at all frequency levels, particularly in the very low (pre: 13.3 +/- 0.2; T1: 13.9 +/- 0.3; T2: 13.9 +/- 0.2; T3: 13.9 +/- 0.2; post: 13.2 +/- 0.2) and high (pre: 7.6 +/- 0.4; T1: 8.3 +/- 0.5; T2: 8.2 +/- 0.4; T3: 8.1 +/- 0.4; post: 7.6 +/- 0.3) frequency components (values expressed as mean +/- SE of wavelet power coefficients). Sleep HRV remained constant, while sleep-wake high frequency HRV differences diminished. The observed autonomic changes during confinement reflect an increase in parasympathetic activity during wake periods. Several factors could account for this observation, including reduced daylight exposure related to the confinement situation.

  7. The potential impact of bystander effects on radiation risks in a Mars mission

    Science.gov (United States)

    Brenner, D. J.; Elliston, C. D.; Hall, E. I. (Principal Investigator)

    2001-01-01

    Densely ionizing (high-LET) galactic cosmic rays (GCR) contribute a significant component of the radiation risk in free space. Over a period of a few months-sufficient for the early stages of radiation carcinogenesis to occur-a significant proportion of cell nuclei will not be traversed. There is convincing evidence, at least in vitro, that irradiated cells can send out signals that can result in damage to nearby unirradiated cells. This observation can hold even when the unirradiated cells have been exposed to low doses of low-LET radiation. We discuss here a quantitative model based on the a formalism, an approach that incorporates radiobiological damage both from a bystander response to signals emitted by irradiated cells, and also from direct traversal of high-LET radiations through cell nuclei. The model produces results that are consistent with those of a series of studies of the bystander phenomenon using a high-LET microbeam, with the end point of in vitro oncogenic transformation. According to this picture, for exposure to high-LET particles such as galactic cosmic rays other than protons, the bystander effect is significant primarily at low fluences, i.e., exposures where there are significant numbers of untraversed cells. If the mechanisms postulated here were applicable in vivo, using a linear extrapolation of risks derived from studies using intermediate doses of high-LET radiation (where the contribution of the bystander effect may be negligible) to estimate risks at very low doses (where the bystander effect may be dominant) could underestimate the true risk from low doses of high-LET radiation. It would be highly premature simply to abandon current risk projections for high-LET, low-dose radiation; however, these considerations would suggest caution in applying results derived from experiments using high-LET radiation at fluences above approximately 1 particle per nucleus to risk estimation for a Mars mission.

  8. Computer simulations for the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission through NASA's 'Project Spectra!'

    Science.gov (United States)

    Wood, E. L.

    2013-12-01

    'Project Spectra!' is a standards-based light science and engineering program on solar system exploration that includes both hands-on paper and pencil activities as well as Flash-based computer games that help students solidify understanding of high-level planetary and solar physics. Using computer interactive games where students experience and manipulate the information makes abstract concepts accessible. Visualizing lessons with multi-media tools solidifies understanding and retention of knowledge. Since students can choose what to watch and explore, the interactives accommodate a broad range of learning styles. Students can go back and forth through the interactives if they've missed a concept or wish to view something again. In the end, students are asked critical thinking questions and conduct web-based research. As a part of the Mars Atmospheric and Volatile EvolutioN (MAVEN) mission education programming, we've developed two new 'Project Spectra!' interactives that go hand-in-hand with a paper and pencil activity. The MAVEN mission will study volatiles in the upper atmosphere to help piece together Mars' climate history. In the first interactive, students explore black body radiation, albedo, and a simplified greenhouse effect to establish what factors contribute to overall planetary temperature and how they contribute. Students are asked to create a scenario in which a planet they build and design is able to maintain liquid water on the surface. In the second interactive, students are asked to consider Mars and the conditions needed for Mars to support water on the surface, keeping some variables fixed. Ideally, students will walk away with the very basic and critical elements required for climate studies, which has far-reaching implications beyond the study of Mars. These interactives were pilot tested at Arvada High School in Colorado.

  9. InSight/SEIS@Mars Educational program : Sharing the InSight NASA mission and the Seismic Discovery of Mars with a International Network of classes

    Science.gov (United States)

    Lognonne, P. H.; Berenguer, J. L.; Sauron, A.; Denton, P.; Carrer, D.; Taber, J.; Bravo, T. K.; Gaboriaud, A.; Houston Jones, J.; Banerdt, W. B.; Martinuzzi, J. M.

    2015-12-01

    The InSIght mission will deploy in September 2016 a Geophysical Station on Mars, equipped with a suite of geophysical instruments, including 3 axis Very Broad Band Seismometer, 3 axis Short Period Seismometer, 3 axis Flux gate Magnetometer, Heat flow probe, geodetic beacon, infrasound/microbarometer, wind sensors and cameras. As for all NASA missions, Children and teenagers will be associated to the mission in the framework of the K12 InSight program, part of it being associated to the SEIS instrument.The two faces of the InSight/SEIS Education program are directed toward the promotion of Space Technologies and of Space Science.For Space technologies, this has already started with the InSight Elysium Educational project. The goal of the project, supported by CNES and performed by Technical High School near Toulouse, was the fabrication of a full scale mockup of the lander (see more at https://jeunes.cnes.fr/fr/elysium-le-jumeau-terrestre-dinsight ). The mockup was exhibited during the June, 2015 Paris air show. More than 300 students participated to the Elysium project.For Space Science, this will be made with the SEIS@Mars Educational project. Its plan is to transmit the SEIS data to a network of several hundred of middle and high schools worldwide, associated to existing "seismo(graph) at school" programs in the United States (https://www.iris.edu/hq/sis), France (www.edusismo.org) Switzerland (www.seismoatschool.ethz.ch) and United Kingdom (http://www.bgs.ac.uk/schoolseismology/). If the transmission of these data to the SEIS@school network will be automatic after their release by the NASA Planetary Data System, an earlier transmission will be made, especially after mid 2017, but also before through the integration of selected Schools to the project activities: the selected classrooms will perform the same activities as the project scientists. They will have to process rapidly the proprietary data in order to identify MarsQuake(s) and will be allowed to perform

  10. What We Might Know About Gusev Crater if the Mars Exploration Rover Spirit Mission were Coupled with a Mars Sample Return Mission

    Science.gov (United States)

    Morris, Richard V.

    2008-01-01

    The science instruments on the Mars Exploration Rover (MER) Spirit have provided an enormous amount of chemical and mineralogical data during more than 1450 sols of exploration at Gusev crater. The Moessbauer (MB) instrument identified 10 Fe-bearing phases at Gusev Crater: olivine, pyroxene, ilmenite, chromite, and magnetite as primary igneous phases and nanophase ferric oxide (npOx), goethite, hematite, a ferric sulfate, and pyrite/marcusite as secondary phases. The Miniature Thermal Emission Spectrometer (Mini-TES) identified some of these Fe-bearing phases (olivine and pyroxene), non- Fe-bearing phases (e.g., feldspar), and an amorphous high-SiO2 phase near Home Plate. Chemical data from the Alpha Particle X-Ray Spectrometer (APXS) provided the framework for rock classification, chemical weathering/alteration, and mineralogical constraints. APXS-based mineralogical constraints include normative calculations (with Fe(3+)/FeT from MB), elemental associations, and stoichiometry (e.g., 90% SiO2 implicates opalline silica). If Spirit had cached a set of representative samples and if those samples were returned to the Earth for laboratory analysis, what value is added by Mars Sample return (MSR) over and above the mineralogical and chemical data provided by MER?

  11. Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission

    CERN Document Server

    Lemmon, Mark T; Bell, James F; Smith, Michael D; Cantor, Bruce A; Smith, Peter H

    2014-01-01

    Dust aerosol plays a fundamental role in the behavior and evolution of the Martian atmosphere. The first five Mars years of Mars Exploration Rover data provide an unprecedented record of the dust load at two sites. This record is useful for characterization of the atmosphere at the sites and as ground truth for orbital observations. Atmospheric extinction optical depths have been derived from solar images after calibration and correction for time-varying dust that has accumulated on the camera windows. The record includes local, regional, and globally extensive dust storms. Comparison with contemporaneous thermal infrared data suggests significant variation in the size of the dust aerosols, with a 1 {\\mu}m effective radius during northern summer and a 2 {\\mu}m effective radius at the onset of a dust lifting event. The solar longitude (LS) 20-136{\\deg} period is also characterized by the presence of cirriform clouds at the Opportunity site, especially near LS=50 and 115{\\deg}. In addition to water ice clouds, ...

  12. Dust Aerosol, Clouds, and the Atmospheric Optical Depth Record over 5 Mars Years of the Mars Exploration Rover Mission

    Science.gov (United States)

    Lemmon, Mark T.; Wolff, Michael J.; Bell, James F., III; Smith, Michael D.; Cantor, Bruce A.; Smith, Peter H.

    2014-01-01

    Dust aerosol plays a fundamental role in the behavior and evolution of the Martian atmosphere. The first five Mars years of Mars Exploration Rover data provide an unprecedented record of the dust load at two sites. This record is useful for characterization of the atmosphere at the sites and as ground truth for orbital observations. Atmospheric extinction optical depths have been derived from solar images after calibration and correction for time-varying dust that has accumulated on the camera windows. The record includes local, regional, and globally extensive dust storms. Comparison with contemporaneous thermal infrared data suggests significant variation in the size of the dust aerosols, with a 1 micrometer effective radius during northern summer and a 2 micrometer effective radius at the onset of a dust lifting event. The solar longitude (L (sub s)) 20-136 degrees period is also characterized by the presence of cirriform clouds at the Opportunity site, especially near LS = 50 and 115 degrees. In addition to water ice clouds, a water ice haze may also be present, and carbon dioxide clouds may be present early in the season. Variations in dust opacity are important to the energy balance of each site, and work with seasonal variations in insolation to control dust devil frequency at the Spirit site.

  13. Bimodal Nuclear Thermal Rocket Sizing and Trade Matrix for Lunar, Near Earth Asteroid and Mars Missions

    Science.gov (United States)

    McCurdy, David R.; Krivanek, Thomas M.; Roche, Joseph M.; Zinolabedini, Reza

    2006-01-01

    The concept of a human rated transport vehicle for various near earth missions is evaluated using a liquid hydrogen fueled Bimodal Nuclear Thermal Propulsion (BNTP) approach. In an effort to determine the preliminary sizing and optimal propulsion system configuration, as well as the key operating design points, an initial investigation into the main system level parameters was conducted. This assessment considered not only the performance variables but also the more subjective reliability, operability, and maintainability attributes. The SIZER preliminary sizing tool was used to facilitate rapid modeling of the trade studies, which included tank materials, propulsive versus an aero-capture trajectory, use of artificial gravity, reactor chamber operating pressure and temperature, fuel element scaling, engine thrust rating, engine thrust augmentation by adding oxygen to the flow in the nozzle for supersonic combustion, and the baseline turbopump configuration to address mission redundancy and safety requirements. A high level system perspective was maintained to avoid focusing solely on individual component optimization at the expense of system level performance, operability, and development cost.

  14. Scientific Investigations To Prepare For The Potential Human Exploration Of Mars

    Science.gov (United States)

    Hays, Lindsay; Beaty, David; Whitley, Ryan

    2016-07-01

    In order for human missions to the martian system to be successful and safe, we need a certain minimum set of knowledge. Comparison of what we need to know with what we already know defines what we refer to as "Strategic Knowledge Gaps (SKGs)". The SKG list needs to be the driving force behind the robotic precursor program. The Mars SKG list was first constructed by the Precursor Strategy Analysis Group (P-SAG) in 2012. It consisted of 17 SKGs that could be addressed by about 60 gap-filling activities (GFA). These GFAs were split into three groups based on where and how they could be carried out: requires a Mars flight/mission, addressed on Earth, or technology demonstration. Those GFAs that require a Mars mission were incorporated into the revision of the 2012 Goals Document of the Mars Exploration Program Analysis Group (MEPAG) as "investigations" under Goal IV: Prepare for Human Exploration. In 2015, MEPAG updated the Goals Document, and comparison of the 2012 and 2015 versions shows that significant and encouraging overall progress has been made on a number of the investigations. We note three specific kinds of changes: 1) Complete retirement of several investigations, 2) Decreased investigation priority based on partial progress, and 3) Addition of a few new investigations. Some of these changes are detailed below: Retired: • Simultaneous spectra of solar energetic particles in space and ion the surface • Spectra of galactic cosmic rays on the surface • Trace gas abundances • Determine traction/cohesion in martian regolith • Determine vertical variation in regolith • High spatial resolution maps of mineral composition and abundance • High spatial resolution maps of subsurface ice depth and concentration Decreased Priority: • Making long-term measurements of winds and wind directions (improvements in EDL technologies have decreased the importance of this measurement) • Profile the near-surface winds (improvements in EDL technologies have

  15. Thermal and Evolved Gas Analysis of Geologic Samples Containing Organic Materials: Implications for the 2007 Mars Phoenix Scout Mission

    Science.gov (United States)

    Lauer, H. V., Jr.; Ming, Douglas W.; Golden, D. C.; Boynton, W. V.

    2006-01-01

    The Thermal and Evolved Gas Analyzer (TEGA) instrument scheduled to fly onboard the 2007 Mars Phoenix Scout Mission will perform differential scanning calorimetry (DSC) and evolved gas analysis (EGA) of soil samples and ice collected from the surface and subsurface at a northern landing site on Mars. We have been developing a sample characterization data library using a laboratory DSC integrated with a quadrupole mass spectrometer to support the interpretations of TEGA data returned during the mission. The laboratory TEGA test-bed instrument has been modified to operate under conditions similar to TEGA, i.e., reduced pressure (e.g., 100 torr) and reduced carrier gas flow rates. We have previously developed a TEGA data library for a variety of volatile-bearing mineral phases, including Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates. Here we examine the thermal and evolved gas properties of samples that contain organics. One of the primary objectives of the Phoenix Scout Mission is to search for habitable zones by assessing organic or biologically interesting materials in icy soil. Nitrogen is currently the carrier gas that will be used for TEGA. In this study, we examine two possible modes of detecting organics in geologic samples; i.e., pyrolysis using N2 as the carrier gas and combustion using O2 as the carrier gas.

  16. The Nuclear Thermal Propulsion Stage (NTPS): A Key Space Asset for Human Exploration and Commercial Missions to the Moon

    Science.gov (United States)

    Borowski, Stanley K.; McCurdy, David R.; Burke, Laura M.

    2014-01-01

    The nuclear thermal rocket (NTR) has frequently been discussed as a key space asset that can bridge the gap between a sustained human presence on the Moon and the eventual human exploration of Mars. Recently, a human mission to a near Earth asteroid (NEA) has also been included as a "deep space precursor" to an orbital mission of Mars before a landing is attempted. In his "post-Apollo" Integrated Space Program Plan (1970 to 1990), Wernher von Braun, proposed a reusable Nuclear Thermal Propulsion Stage (NTPS) to deliver cargo and crew to the Moon to establish a lunar base initially before sending human missions to Mars. The NTR was selected because it was a proven technology capable of generating both high thrust and high specific impulse (Isp approx. 900 s)-twice that of today's best chemical rockets. During the Rover and NERVA programs, 20 rocket reactors were designed, built and successfully ground tested. These tests demonstrated the (1) thrust levels; (2) high fuel temperatures; (3) sustained operation; (4) accumulated lifetime; and (5) restart capability needed for an affordable in-space transportation system. In NASA's Mars Design Reference Architecture (DRA) 5.0 study, the "Copernicus" crewed NTR Mars transfer vehicle used three 25 klbf "Pewee" engines-the smallest and highest performing engine tested in the Rover program. Smaller lunar transfer vehicles-consisting of a NTPS with three approx. 16.7 klbf "SNRE-class" engines, an in-line propellant tank, plus the payload-can be delivered to LEO using a 70 t to LEO upgraded SLS, and can support reusable cargo delivery and crewed lunar landing missions. The NTPS can play an important role in returning humans to the Moon to stay by providing an affordable in-space transportation system that can allow initial lunar outposts to evolve into settlements capable of supporting commercial activities. Over the next decade collaborative efforts between NASA and private industry could open up new exploration and commercial

  17. The Evolution of Mission Architectures for Human Lunar Exploration

    Science.gov (United States)

    Everett, S. F.

    1995-01-01

    Defining transportation architectures for the human exploration of the Moon is a complex task due to the multitude of mission scenarios available. The mission transportation architecture recently proposed for the First Lunar Outpost (FLO) was not designed from carefully predetermined mission requirements and goals, but evolved from an initial set of requirements, which were continually modified as studies revealed that some early assumptions were not optimal. This paper focuses on the mission architectures proposed for FLO and investigates how these transportation architectures evolved. A comparison of the strengths and weaknesses of the three distinct mission architectures are discussed, namely (1) Lunar Orbit Rendezvous, (2) staging from the Cislunar Libration Point, and (3) direct to the lunar surface. In addition, several new and revolutionary architectures are discussed.

  18. The Evolution of Mission Architectures for Human Lunar Exploration

    Science.gov (United States)

    Everett, S. F.

    1995-01-01

    Defining transportation architectures for the human exploration of the Moon is a complex task due to the multitude of mission scenarios available. The mission transportation architecture recently proposed for the First Lunar Outpost (FLO) was not designed from carefully predetermined mission requirements and goals, but evolved from an initial set of requirements, which were continually modified as studies revealed that some early assumptions were not optimal. This paper focuses on the mission architectures proposed for FLO and investigates how these transportation architectures evolved. A comparison of the strengths and weaknesses of the three distinct mission architectures are discussed, namely (1) Lunar Orbit Rendezvous, (2) staging from the Cislunar Libration Point, and (3) direct to the lunar surface. In addition, several new and revolutionary architectures are discussed.

  19. Creating Communications, Computing, and Networking Technology Development Road Maps for Future NASA Human and Robotic Missions

    Science.gov (United States)

    Bhasin, Kul; Hayden, Jeffrey L.

    2005-01-01

    For human and robotic exploration missions in the Vision for Exploration, roadmaps are needed for capability development and investments based on advanced technology developments. A roadmap development process was undertaken for the needed communications, and networking capabilities and technologies for the future human and robotics missions. The underlying processes are derived from work carried out during development of the future space communications architecture, an d NASA's Space Architect Office (SAO) defined formats and structures for accumulating data. Interrelationships were established among emerging requirements, the capability analysis and technology status, and performance data. After developing an architectural communications and networking framework structured around the assumed needs for human and robotic exploration, in the vicinity of Earth, Moon, along the path to Mars, and in the vicinity of Mars, information was gathered from expert participants. This information was used to identify the capabilities expected from the new infrastructure and the technological gaps in the way of obtaining them. We define realistic, long-term space communication architectures based on emerging needs and translate the needs into interfaces, functions, and computer processing that will be required. In developing our roadmapping process, we defined requirements for achieving end-to-end activities that will be carried out by future NASA human and robotic missions. This paper describes: 10 the architectural framework developed for analysis; 2) our approach to gathering and analyzing data from NASA, industry, and academia; 3) an outline of the technology research to be done, including milestones for technology research and demonstrations with timelines; and 4) the technology roadmaps themselves.

  20. Performances of the Mars Organic Molecule Analyzer (MOMA) GC-MS suite aboard ExoMars Mission

    Science.gov (United States)

    Buch, A.; Grand, N.; Pinnick, V. T.; Szopa, C.; Humeau, O.; Danell, R.; van Amerom, F. H. W.; Freissinet, C.; Glavin, D. P.; Belmahdi, I.; Coll, P. J.; Lustrement, B.; Brinckerhoff, W. B.; Arevalo, R. D., Jr.; Stalport, F.; Steininger, H.; Goesmann, F.; Raulin, F.; Mahaffy, P. R.

    2014-12-01

    The Mars Organic Molecule Analyzer (MOMA) aboard the ExoMars rover (Pasteur) will be a key analytical tool in providing chemical (molecular) information from the solid samples collected by the rover, with a particular focus on the characterization of the organic content. Samples will be extracted as deep as 2 meters below the martian surface to minimize effects of radiation and oxidation on organic materials. The core of the MOMA instrument is a dual source UV laser desorption / ionization (LDI) and pyrolysis gas chromatography (pyr-GC) ion trap mass spectrometer (ITMS) which provides the unique capability to characterize a broad range of compounds, including both of volatile and non-volatile species. Samples which undergo GC-ITMS analysis may be submitted to a derivatization process, consisting of the reaction of the sample components with specific reactants (MTBSTFA [1], DMF-DMA [2] or TMAH [3]) which increase the volatility of complex organic species. With the goal to optimize this instrumentation, and especially the GC-ITMS coupling, a series of tests is currently being carried out with prototypes of MOMA instrumentation and with the ETU models wich is similar to the flight model. The MOMA oven and tapping station are also part of these end-to-end experiments. Qualitative and quantitative tests has been done on gas, liquid and solid samples. The results obtained demonstrate the current status of the end-to-end performance of the gas chromatography-mass spectrometry mode of operation. Both prototypes individually meet the performance requirements, but this work particularly demonstrates the capabilities of the critical GC-MS interface. References: [1] Buch, A. et al. (2009) J chrom. A, 43, 143-151. [2] Freissinet et al. (2011) J Chrom A, 1306, 59-71. [3] Geffroy-Rodier, C. et al. (2009) JAAP, 85, 454-459. Acknowledgements: Funding provided by the Mars Exploration Program (point of contact, George Tahu, NASA/HQ). MOMA is a collaboration between NASA and ESA (PI

  1. The WISDOM Radar onboard the Rover of the ExoMars mission (Invited)

    Science.gov (United States)

    Ciarletti, V.; Corbel, C.; Plettemeier, D.; Clifford, S. M.; Cais, P.; Hamran, S.

    2009-12-01

    The most fundamental and basic aspect of the geologic characterization of any environment is understanding its stratigraphy and structure - which provides invaluable insights into its origin, the processes and events by which it evolved, and (through the examination of superpositional and cross-cutting relationships) their relative timing. The WISDOM GPR onboard the Rover of the ESA ExoMars mission (2016) has the ability to investigate and characterize the nature of the subsurface remotely, providing high-resolution (several cm-scale) data on subsurface stratigraphy, structure, and the magnitude and scale of spatial heterogeneity, to depths in excess of 3 m. Unlike traditional imaging systems or spectrometers, which are limited to characterization of the visible surface, WISDOM can access what lies beneath - providing an understanding of the 3-dimensional geologic context of the landing site along the Rover path. WISDOM will address a variety of high-priority scientific objectives: (1) Understand the geology and geologic evolution of the landing site, including local lithology, stratigraphy and structure. (2) Characterize the 3-D electromagnetic properties of the Landing Site - including the scale and magnitude of spatial heterogeneity - for comparison with those measured at larger scales by MARSIS, SHARAD and any future orbital radars. (3) Understand the local distribution and state of shallow subsurface H2O and other volatiles, including the potential presence of segregated ground ice (as ice lenses and wedges), the persistent or transient occurrence of liquid water/brine, and deposits of methane hydrate and (4) identify the most promising locations for drilling that combine targets of high scientific interest. In addition to these objectives, there are also clear scientific and operational benefits when WISDOM is operated in concert with the rover’s drill and its associated analytical instruments, which will determine the compositional and physical properties

  2. O2/CO Ignition System for Mars Sample Return Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Returning a geological sample from the surface of Mars will require an ascent propulsion system with a comparatively large velocity change (delta-V) capability due...

  3. Solid Rocket Motor for Ultralow Temperature Operation During the Mars Sample Return Mission Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A small Mars (or other celestial body) ascent vehicle is unlikely to achieve the necessary propellant fraction required to achieve orbit. Scaling down of liquid...

  4. Space Mission Human Reliability Analysis (HRA) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to extend current ground-based Human Reliability Analysis (HRA) techniques to a long-duration, space-based tool to more effectively...

  5. Mars dust mineralogy and structure obtained by a simple Mars rover instrumentation development - suggestions for future missions.

    Science.gov (United States)

    Nørnberg, Per

    2016-04-01

    Selective spectroscopic observations of the dust on the surface of Mars have neither been possible from Earth nor from orbiters as ESA, Mars Express or NASA, MRO. Even in surface soil sampling detailed chemical or mineralogical information about Martian dust cannot be separated from the soil. Remote spectroscopic data contain a mixture of mineralogical components which do not provide any specific information on the dust. Information about chemical composition and mineralogy of the Martian airborne dust was derived from APXS and Mössbauer data from the MER rovers by Goetz et al. (2005). This paper concluded that magnetite and not maghemite is the magnetic phase of the dust, and also that the presence of olivine indicates that liquid water did not play a dominant role in the formation of atmospheric dust. The dust is most likely formed by mechanical comminution comparable to the fine fractions of dust in dune sand on Earth (Nørnberg, P. 2002). Our Mars dust model operates with particles (2-3 μm) that inside consists of primary minerals which are either oxidized down to tenths of nm below the surface or have captured electrically charged nanoparticles of hematite on the surface giving the dust its red colour. Experiments done by Merrison, J.P. et al. ( 2010) showed that mechanical tumbling (abrasion)of a mixture of 10g quartz and 1 g magnetite in a dry process in a Martian atmosphere transformed magnetite to hematite. This experiment supports the dry comminution process indicated by Goetz et al (2005). The XRD analyses on the NASA, MSL are done on a mixture of soil material in which the dust accounts for only a minor part. However, if dust could have been captured separately from the atmosphere e.g. by magnets on the MSL and taken off by e.g. tape or another mechanism that could be transferred into the target holder of the XRD diffractometer on the rover, it could by Rietveld analyses have provided valuable quantitative information on the mineral content of the

  6. Potential Applications for Radioisotope Power Systems in Support of Human Exploration Missions

    Science.gov (United States)

    Cataldo, Robert L.; Colozza, Anthony J.; Schmitz, Paul C.

    2013-01-01

    Radioisotope power systems (RPS) for space applications have powered over 27 U.S. space systems, starting with Transit 4A and 4B in 1961, and more recently with the successful landing of the Mars Science Laboratory rover Curiosity in August 2012. RPS enable missions with destinations far from the Sun with faint solar flux, on planetary surfaces with dense or dusty atmospheres, and at places with long eclipse periods where solar array sizes and energy storage mass become impractical. RPS could also provide an enabling capability in support of human exploration activities. It is envisioned that with the higher power needs of most human mission concepts, a high efficiency thermal-to-electric technology would be required such as the Advanced Stirling Radioisotope generator (ASRG). The ASRG should be capable of a four-fold improvement in efficiency over traditional thermoelectric RPS. While it may be impractical to use RPS as a main power source, many other applications could be considered, such as crewed pressurized rovers, in-situ resource production of propellants, back-up habitat power, drilling, any mobile or remote activity from the main base habitat, etc. This paper will identify potential applications and provide concepts that could be a practical extension of the current ASRG design in providing for robust and flexible use of RPS on human exploration missions.

  7. Monte Carlo simulation of the radiation environment encountered by a biochip during a space mission to Mars.

    Science.gov (United States)

    Le Postollec, A; Incerti, S; Dobrijevic, M; Desorgher, L; Santin, G; Moretto, P; Vandenabeele-Trambouze, O; Coussot, G; Dartnell, L; Nieminen, P

    2009-04-01

    Simulations with a Monte Carlo tool kit have been performed to determine the radiation environment a specific device, called a biochip, would face if it were placed into a rover bound to explore Mars' surface. A biochip is a miniaturized device that can be used to detect organic molecules in situ. Its specific detection part is constituted of proteins whose behavior under cosmic radiation is completely unknown and must be investigated to ensure a good functioning of the device under space conditions. The aim of this study is to define particle species and energy ranges that could be relevant to investigate during experiments on irradiation beam facilities. Several primary particles have been considered for galactic cosmic ray (GCR) and solar energetic particle (SEP) contributions. Ionizing doses accumulated in the biochip and differential fluxes of protons, alphas, neutrons, gammas, and electrons have been established for both the Earth-Mars transit and the journey at Mars' surface. Neutrons and gammas appear as dominant species on martian soil, whereas protons dominate during the interplanetary travel. Depending on solar event occurrence during the mission, an ionizing dose of around a few Grays (1 Gy = 100 rad) is expected.

  8. The viscous Fluid Mechanical Particle Barrier for the prevention of sample contamination on the Mars 2020 mission

    Science.gov (United States)

    Mikellides, Ioannis G.; Steltzner, Adam D.; Blakkolb, Brian K.; Matthews, Rebecca C.; Kipp, Kristina A.; Bernard, Douglas E.; Stricker, Moogega; Benardini, James N.; Shah, Parthiv; Robinson, Albert

    2017-08-01

    The Mars 2020 mission will land a rover on the surface of Mars that will acquire, encapsulate, and cache scientifically selected samples of martian material for possible return to Earth by a future mission. The samples will be individually encapsulated and sealed in sample tubes. Each sample, and therefore each sample tube, must be kept clean of viable organisms with a terrestrial origin, which may adhere to the rover on their own and/or on other abiological particles. It is shown that contamination of the tubes by such terrestrial remnant particles as small as 0.15 μm on the rover will be prevented using the Fluid Mechanical Particle Barrier (FMPB), a cylindrical enclosure within which each tube will be housed. The FMPB takes advantage of fluid viscosity to slow down the speed of the flow through a main thin annular orifice at the bottom of the device. An analytical solution of the fluid and particle dynamics in the FMPB has been developed and validated using 2-D and 3-D CFD simulations. Water tunnel tests have also been conducted that demonstrate the effectiveness of the FMPB to slow down the fluid through the orifice. It is found that for the flow speeds expected at the various phases of the mission, penetration of the smallest particles is not expected to exceed 10% of the orifice height. No penetration of particles >5 μm is expected inside the orifice. Large margins on the already low contamination probability of the tubes are allowed by the presence of a large-volume cavity immediately downstream of the long annular orifice. The cavity further slows down the expanding flow and, in turn, minimizes particle penetration even at the most extreme conditions expected on Mars. For example at wind speeds of 75 m/s, characteristic of the largest and rarest dust devils that can form on Mars, 0.15-μm particles are not expected to exceed a height larger than 3% of the cavity.

  9. Collection of Human Wastes on Long Missions

    Science.gov (United States)

    Jennings, D. C.; Lewis, T. A.; Brose, H. F.

    1986-01-01

    Report evaluates and compares three alternative approaches to hygienic containment of human wastes. Three practical means of waste collection: filter-bag collection with compaction by fan suction, canister collection with compaction by force applied to compaction cups or disks, and sleeve collection with compaction by rollers and winding on reel. Potentially useful in airplanes, buses, boats, trains, and campers and temporary toilets for construction sites and outdoor gatherings.

  10. A Dual Launch Robotic and Human Lunar Mission Architecture

    Science.gov (United States)

    Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David

    2010-01-01

    This paper describes a comprehensive lunar exploration architecture developed by Marshall Space Flight Center's Advanced Concepts Office that features a science-based surface exploration strategy and a transportation architecture that uses two launches of a heavy lift launch vehicle to deliver human and robotic mission systems to the moon. The principal advantage of the dual launch lunar mission strategy is the reduced cost and risk resulting from the development of just one launch vehicle system. The dual launch lunar mission architecture may also enhance opportunities for commercial and international partnerships by using expendable launch vehicle services for robotic missions or development of surface exploration elements. Furthermore, this architecture is particularly suited to the integration of robotic and human exploration to maximize science return. For surface operations, an innovative dual-mode rover is presented that is capable of performing robotic science exploration as well as transporting human crew conducting surface exploration. The dual-mode rover can be deployed to the lunar surface to perform precursor science activities, collect samples, scout potential crew landing sites, and meet the crew at a designated landing site. With this approach, the crew is able to evaluate the robotically collected samples to select the best samples for return to Earth to maximize the scientific value. The rovers can continue robotic exploration after the crew leaves the lunar surface. The transportation system for the dual launch mission architecture uses a lunar-orbit-rendezvous strategy. Two heavy lift launch vehicles depart from Earth within a six hour period to transport the lunar lander and crew elements separately to lunar orbit. In lunar orbit, the crew transfer vehicle docks with the lander and the crew boards the lander for descent to the surface. After the surface mission, the crew returns to the orbiting transfer vehicle for the return to the Earth. This

  11. Investigation of Bio-Regenerative Life Support and Trash-To-Gas Experiment on a 4 Month Mars Simulation Mission

    Science.gov (United States)

    Caraccio, Anne; Poulet, Lucie; Hintze, Paul E.; Miles, John D.

    2014-01-01

    Future crewed missions to other planets or deep space locations will require regenerative Life Support Systems (LSS) as well as recycling processes for mission waste. Constant resupply of many commodity materials will not be a sustainable option for deep space missions, nor will storing trash on board a vehicle or at a lunar or Martian outpost. The habitable volume will decline as the volume of waste increases. A complete regenerative environmentally controlled life support system (ECLSS) on an extra-terrestrial outpost will likely include physico-chemical and biological technologies, such as bioreactors and greenhouse modules. Physico-chemical LSS do not enable food production and bio-regenerative LSS are not stable enough to be used alone in space. Mission waste that cannot be recycled into the bio-regenerative ECLSS can include excess food, food packaging, clothing, tape, urine and fecal waste. This waste will be sent to a system for converting the trash into the high value products. Two crew members on a 120 day Mars analog simulation, in collaboration with Kennedy Space Centers (KSC) Trash to Gas (TtG) project investigated a semi-closed loop system that treated non-edible biomass and other logistical waste for volume reduction and conversion into useful commodities. The purposes of this study are to show the how plant growth affects the amount of resources required by the habitat and how spent plant material can be recycled. Real-time data was sent to the reactor at KSC in Florida for replicating the analog mission waste for laboratory operation. This paper discusses the 120 day mission plant growth activity, logistical and plant waste management, power and water consumption effects of the plant and logistical waste, and potential energy conversion techniques using KSCs TtG reactor technology.

  12. Investigation of Bio-Regenerative Life Support and Trash-to-Gas Experiment on a 4-Month Mars Simulation Mission

    Science.gov (United States)

    Caraccio, Anne; Poulet, Lucie; Hintze, Paul E.; Miles, John D.

    2014-01-01

    Future crewed missions to other planets or deep space locations will require regenerative Life Support Systems (LSS) as well as recycling processes for mission waste. Constant resupply of many commodity materials will not be a sustainable option for deep space missions, nor will stowing trash on board a vehicle or at a lunar or Martian outpost. The habitable volume will decline as the volume of waste increases. A complete regenerative environmentally controlled life support system (ECLSS) on an extra-terrestrial outpost will likely include physico-chemical and biological technologies, such as bioreactors and greenhouse modules. Physico-chemical LSS do not enable food production and bio-regenerative LSS are not stable enough to be used alone in space. Mission waste that cannot be recycled into the bio-regenerative ECLSS can include excess food, food packaging, clothing, tape, urine and fecal waste. This waste will be sent to a system for converting the trash into high value products. Two crew members on a 120 day Mars analog simulation, in collaboration with Kennedy Space Centers (KSC) Trash to Gas (TtG) project investigated a semi-closed loop system that treated non-edible biomass and other logistical waste for volume reduction and conversion into useful commodities. The purpose of this study is to show how plant growth affects the amount of resources required by the habitat and how spent plant material can be recycled. Real-time data was sent to the reactor at KSC in Florida for replicating the analog mission waste for laboratory operation. This paper discusses the 120 day mission plant growth activity, logistical and plant waste management, power and water consumption effects of the plant and logistical waste, and potential energy conversion techniques using KSCs TtG technology.

  13. SHARAD, the SHAllow RADar on board the MRO mission: a new insight into Mars

    Science.gov (United States)

    Seu, Roberto

    SHARAD is a subsurface sounding radar, ASI (Italian Space Agency) facility instrument on board the NASA Mars Reconnaissance Orbiter (MRO) mission. It has been designed, devel-oped and it is now operated by a joint Sapienza University of Rome and Thales Alenia Space Italy team under different Italian Space Agency (ASI) contracts. The primary objective of the SHARAD experiment is to map, in selected locales, dielectric interfaces in the martian sub-surface and to interpret these results in terms of the occurrence and distribution of expected materials, including competent rock, regolith, water and ice. To meet this objective SHARAD transmits a linear frequency modulated waveform of 10 MHz bandwidth, which allows 15 m of range resolution in free space, on a carrier frequency of 20 MHz, which in practice does allow a penetration depth of up to a kilometer or more, depending on the nature of the subsurface material. The ground resolution is on the order of 300 m along-track, achieved by means of an advanced synthetic aperture processing, and about 3 km across-track. With these char-acteristics and performance SHARAD has provided the science team with a large number of radargrams with high SNR as it observes selected science targets. The scientific results achieved analyzing the data collected by SHARAD are described in several papers published in different international journals. A few science highlights are summarized in the following. Martian sur-face features identified as lobate debris aprons (LDAs) are thick (100s of m) masses of material that extend up to several 10s of km from high relief slopes and terminate in lobate fronts. Their geomorphic expression and restricted occurrence in latitude has led numerous workers to conclude that LDAs contain water ice, but the suggested amount of ice involved in their forma-tion and evolution has ranged from minor interstitial ice in rocky talus to predominantly ice in debris-covered glaciers. SHARAD data have provided

  14. The Mars Astrobiology Explorer-Cacher (MAX-C): a potential rover mission for 2018. Final report of the Mars Mid-Range Rover Science Analysis Group (MRR-SAG) October 14, 2009.

    Science.gov (United States)

    2010-03-01

    This report documents the work of the Mid-Range Rover Science Analysis Group (MRR-SAG), which was assigned to formulate a concept for a potential rover mission that could be launched to Mars in 2018. Based on programmatic and engineering considerations as of April 2009, our deliberations assumed that the potential mission would use the Mars Science Laboratory (MSL) sky-crane landing system and include a single solar-powered rover. The mission would also have a targeting accuracy of approximately 7 km (semimajor axis landing ellipse), a mobility range of at least 10 km, and a lifetime on the martian surface of at least 1 Earth year. An additional key consideration, given recently declining budgets and cost growth issues with MSL, is that the proposed rover must have lower cost and cost risk than those of MSL--this is an essential consideration for the Mars Exploration Program Analysis Group (MEPAG). The MRR-SAG was asked to formulate a mission concept that would address two general objectives: (1) conduct high priority in situ science and (2) make concrete steps toward the potential return of samples to Earth. The proposed means of achieving these two goals while balancing the trade-offs between them are described here in detail. We propose the name Mars Astrobiology Explorer-Cacher(MAX-C) to reflect the dual purpose of this potential 2018 rover mission.

  15. A Global Map of Thermal Inertia from Mars Global Surveyor Mapping-Mission Data

    Science.gov (United States)

    Mellon, M. T.; Kretke, K. A.; Smith, M. D.; Pelkey, S. M.

    2002-01-01

    TES (thermal emission spectrometry) has obtained high spatial resolution surface temperature observations from which thermal inertia has been derived. Seasonal coverage of these data now provides a nearly global view of Mars, including the polar regions, at high resolution. Additional information is contained in the original extended abstract.

  16. Evaluation of human operator visual performance capability for teleoperator missions.

    Science.gov (United States)

    Huggins, C. T.; Malone, T. B.; Shields, N. L., Jr.

    1973-01-01

    Investigation of the human operator visual performance demands of teleoperator system applications to earth-orbital missions involving visual system requirements for satellite retrieval and satellite servicing functions. The first phase of an experimental program implementing this investigation is described in terms of the overall test apparatus and procedures used, the specific tests performed, and the test results obtained.

  17. Approach to Mars Field Geology

    Science.gov (United States)

    Muehlberger, William; Rice, James W.; Parker, Timothy; Lipps, Jere H.; Hoffman, Paul; Burchfiel, Clark; Brasier, Martin

    1998-01-01

    The goals of field study on Mars are nothing less than to understand the processes and history of the planet at whatever level of detail is necessary. A manned mission gives us an unprecedented opportunity to use the immense power of the human mind to comprehend Mars in extraordinary detail. To take advantage of this opportunity, it is important to examine how we should approach the field study of Mars. In this effort, we are guided by over 200 years of field exploration experience on Earth as well as six manned missions exploring the Moon.

  18. Designing remote operations strategies to optimize science mission goals: Lessons learned from the Moon Mars Analog Mission Activities Mauna Kea 2012 field test

    Science.gov (United States)

    Yingst, R. A.; Russell, P.; ten Kate, I. L.; Noble, S.; Graff, T.; Graham, L. D.; Eppler, D.

    2015-08-01

    The Moon Mars Analog Mission Activities Mauna Kea 2012 (MMAMA 2012) field campaign aimed to assess how effectively an integrated science and engineering rover team operating on a 24-h planning cycle facilitates high-fidelity science products. The science driver of this field campaign was to determine the origin of a glacially-derived deposit: was the deposit the result of (1) glacial outwash from meltwater; or (2) the result of an ice dam breach at the head of the valley? Lessons learned from MMAMA 2012 science operations include: (1) current rover science operations scenarios tested in this environment provide adequate data to yield accurate derivative products such as geologic maps; (2) instrumentation should be selected based on both engineering and science goals; and chosen during, rather than after, mission definition; and (3) paralleling the tactical and strategic science processes provides significant efficiencies that impact science return. The MER-model concept of operations utilized, in which rover operators were sufficiently facile with science intent to alter traverse and sampling plans during plan execution, increased science efficiency, gave the Science Backroom time to develop mature hypotheses and science rationales, and partially alleviated the problem of data flow being greater than the processing speed of the scientists.

  19. Six-Axis Force-Torque Transducer for Mars 2018 Mission Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The use of automated robotic tooling is required in a number of space missions. It is possible to have better tool control if the robotic arm could report loads...

  20. Objectives and Model Payload Definition for NEO Human Mission Studies

    Science.gov (United States)

    Carnelli, I.; Galvez, A.; Carpenter, J.

    2011-10-01

    ESA has supported studies on NEO threat assessment systems and deflection concepts in the context of the General Studies Programme and in close cooperation with the directorates of Technical and Quality Management and of the Scientific Programme. This work has made it possible to identify a project for Europe to make a significant - yet realistic - contribution to the international efforts in this field: the Don Quijote NEO technology demonstration mission. This paper describes what such a small mission can do to prepare future human exploration and what is the in-situ data that can be obtained through such a project.

  1. Aerodynamic Analysis of a Manned Space Vehicle for Missions to Mars

    Directory of Open Access Journals (Sweden)

    Giuseppe Pezzella

    2011-01-01

    Full Text Available The paper deals with the aerodynamic analysis of a manned braking system entering the Mars atmosphere with the aim to support planetary entry system design studies. The exploration vehicle is an axisymmetric blunt body close to the Apollo capsule. Several fully three-dimensional computational fluid dynamics analyses have been performed to address the capsule aerodynamic performance. To this end, a wide range of flow conditions including reacting and nonreacting flow, different angles of attack, and Mach numbers have been investigated and compared. Moreover, nonequilibrium effects on the flow field around the entry vehicle have also been investigated. Results show that real-gas effects, for all the angles of attack considered, increase both the aerodynamic drag and pitching moment whereas the lift is only slighted affected. Finally, results comparisons highlight that experimental and CFD aerodynamic findings available for the Apollo capsule in air adequately represent the static coefficients of the capsule in the Mars atmosphere.

  2. Dust Separation and Measurement System for Mars ISRU Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has recognized that in future exploration and human missions to Mars, the problem of Martian dust contaminating gas processing systems and human habitats will...

  3. Avoiding Human Error in Mission Operations: Cassini Flight Experience

    Science.gov (United States)

    Burk, Thomas A.

    2012-01-01

    Operating spacecraft is a never-ending challenge and the risk of human error is ever- present. Many missions have been significantly affected by human error on the part of ground controllers. The Cassini mission at Saturn has not been immune to human error, but Cassini operations engineers use tools and follow processes that find and correct most human errors before they reach the spacecraft. What is needed are skilled engineers with good technical knowledge, good interpersonal communications, quality ground software, regular peer reviews, up-to-date procedures, as well as careful attention to detail and the discipline to test and verify all commands that will be sent to the spacecraft. Two areas of special concern are changes to flight software and response to in-flight anomalies. The Cassini team has a lot of practical experience in all these areas and they have found that well-trained engineers with good tools who follow clear procedures can catch most errors before they get into command sequences to be sent to the spacecraft. Finally, having a robust and fault-tolerant spacecraft that allows ground controllers excellent visibility of its condition is the most important way to ensure human error does not compromise the mission.

  4. Automated science target selection for future Mars rovers: A machine vision approach for the future ESA ExoMars 2018 rover mission

    Science.gov (United States)

    Tao, Yu; Muller, Jan-Peter

    2013-04-01

    The ESA ExoMars 2018 rover is planned to perform autonomous science target selection (ASTS) using the approaches described in [1]. However, the approaches shown to date have focused on coarse features rather than the identification of specific geomorphological units. These higher-level "geoobjects" can later be employed to perform intelligent reasoning or machine learning. In this work, we show the next stage in the ASTS through examples displaying the identification of bedding planes (not just linear features in rock-face images) and the identification and discrimination of rocks in a rock-strewn landscape (not just rocks). We initially detect the layers and rocks in 2D processing via morphological gradient detection [1] and graph cuts based segmentation [2] respectively. To take this further requires the retrieval of 3D point clouds and the combined processing of point clouds and images for reasoning about the scene. An example is the differentiation of rocks in rover images. This will depend on knowledge of range and range-order of features. We show demonstrations of these "geo-objects" using MER and MSL (released through the PDS) as well as data collected within the EU-PRoViScout project (http://proviscout.eu). An initial assessment will be performed of the automated "geo-objects" using the OpenSource StereoViewer developed within the EU-PRoViSG project (http://provisg.eu) which is released in sourceforge. In future, additional 3D measurement tools will be developed within the EU-FP7 PRoViDE2 project, which started on 1.1.13. References: [1] M. Woods, A. Shaw, D. Barnes, D. Price, D. Long, D. Pullan, (2009) "Autonomous Science for an ExoMars Rover-Like Mission", Journal of Field Robotics Special Issue: Special Issue on Space Robotics, Part II, Volume 26, Issue 4, pages 358-390. [2] J. Shi, J. Malik, (2000) "Normalized Cuts and Image Segmentation", IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 22. [3] D. Shin, and J.-P. Muller (2009

  5. Space Resource Utilization: Near-Term Missions and Long-Term Plans for Human Exploration

    Science.gov (United States)

    Sanders, Gerald B.

    2015-01-01

    A primary goal of all major space faring nations is to explore space: from the Earth with telescopes, with robotic probes and space telescopes, and with humans. For the US National Aeronautics and Space Administration (NASA), this pursuit is captured in three important strategic goals: 1. Ascertain the content, origin, and evolution of the solar system and the potential for life elsewhere, 2. Extend and sustain human activities across the solar system (especially the surface of Mars), and 3. Create innovative new space technologies for exploration, science, and economic future. While specific missions and destinations are still being discussed as to what comes first, it is imperative for NASA that it foster the development and implementation of new technologies and approaches that make space exploration affordable and sustainable. Critical to achieving affordable and sustainable human exploration beyond low Earth orbit (LEO) is the development of technologies and systems to identify, extract, and use resources in space instead of bringing everything from Earth. To reduce the development and implementation costs for space resource utilization, often called In Situ Resource Utilization (ISRU), it is imperative to work with terrestrial mining companies to spin-in/spin-off technologies and capabilities, and space mining companies to expand our economy beyond Earth orbit. In the last two years, NASA has focused on developing and implementing a sustainable human space exploration program with the ultimate goal of exploring the surface of Mars with humans. The plan involves developing technology and capability building blocks critical for sustained exploration starting with the Space Launch System (SLS) and Orion crew spacecraft and utilizing the International Space Station as a springboard into the solar system. The evolvable plan develops and expands human exploration in phases starting with missions that are reliant on Earth, to performing ever more challenging and

  6. Dawn Mission Education and Public Outreach: Science as Human Endeavor

    Science.gov (United States)

    Cobb, W. H.; Wise, J.; Schmidt, B. E.; Ristvey, J.

    2012-12-01

    general public into the thrill of NASA science. Helping teachers develop a picture of the history and evolution of our understanding of the solar system, and honing in on the place of asteroids in helping us answer old questions and discover new ones, students and the general public sees the power and excitement underlying planetary science as human endeavor. Research indicates that science inquiry is powerful in the classroom and mission scientists are real-life models of science inquiry in action. Cross-curricular elements include examining research-based strategies for enhancing English language learners' ability to engage in higher order questions and a professional astronomy artist's insight into how visual analysis requires not just our eyes engaged, but our brains: comparing, synthesizing, questioning, evaluating, and wondering. Dawn Education and Public Outreach will share out perspectives and lessons learned, backed by extensive evaluation examining the efficacy of the mission's efforts.

  7. Study of individual and group affective processes in the crew of a simulated mission to Mars: Positive affectivity as a valuable indicator of changes in the crew affectivity

    Science.gov (United States)

    Poláčková Šolcová, Iva; Lačev, Alek; Šolcová, Iva

    2014-07-01

    The success of a long-duration space mission depends on various technical demands as well as on the psychological (cognitive, affective, and motivational) adaptation of crewmembers and the quality of interactions within the crew. We examined the ways crewmembers of a 520-day simulated spaceflight to Mars (held in the Institute for Biomedical Problems, in Moscow) experienced and regulated their moods and emotions. Results show that crewmembers experienced predominantly positive emotions throughout their 520-day isolation and the changes in mood of the crewmembers were asynchronous and balanced. The study suggests that during the simulation, crewmembers experienced and regulated their emotions differently than they usually do in their everyday life. In isolation, crewmembers preferred to suppress and neutralize their negative emotions and express overtly only emotions with positive valence. Although the affective processes were almost invariable throughout the simulation, two periods of time when the level of positive emotions declined were identified. Regarding the findings, the paper suggests that changes in positive affectivity could be a more valuable indicator of human experience in demanding but professional environments than changes in negative affectivity. Finally, the paper discusses the phenomenology of emotions during a real space mission.

  8. Rotorcrafts for Mars Exploration

    Science.gov (United States)

    Balaram, J.; Tokumaru, P. T.

    2014-06-01

    Rotorcraft mobility provides a number of useful capabilities to potential Mars missions. We present some recent results relating to the design and test of Mars rotorcraft mobility elements, and aspects of rotorcraft system and mission design.

  9. The Value of Biomedical Simulation Environments to Future Human Space Flight Missions

    Science.gov (United States)

    Mulugeta, Lealem; Myers, Jerry G.; Skytland, Nicholas G.; Platts, Steven H.

    2010-01-01

    With the ambitious goals to send manned missions to asteroids and onto Mars, substantial work will be required to ensure the well being of the men and women who will undertake these difficult missions. Unlike current International Space Station or Shuttle missions, astronauts will be required to endure long-term exposure to higher levels of radiation, isolation and reduced gravity. These new operation conditions will pose health risks that are currently not well understood and perhaps unanticipated. Therefore, it is essential to develop and appl