WorldWideScience

Sample records for human lung parenchyma

  1. Dissimilarity Representations in Lung Parenchyma Classification

    DEFF Research Database (Denmark)

    Sørensen, Lauge Emil Borch Laurs; de Bruijne, Marleen

    2009-01-01

    parenchyma classification. This allows for the classifiers to work on dissimilarities between objects, which might be a more natural way of representing lung parenchyma. In this context, dissimilarity is defined between CT regions of interest (ROI)s. ROIs are represented by their CT attenuation histogram...... and ROI dissimilarity is defined as a histogram dissimilarity measure between the attenuation histograms. In this setting, the full histograms are utilized according to the chosen histogram dissimilarity measure. We apply this idea to classification of different emphysema patterns as well as normal...... are built in this representation. This is also the general trend in lung parenchyma classification in computed tomography (CT) images, where the features often are measures on feature histograms. Instead, we propose to build normal density based classifiers in dissimilarity representations for lung...

  2. Micromechanical model of lung parenchyma hyperelasticity

    Science.gov (United States)

    Concha, Felipe; Sarabia-Vallejos, Mauricio; Hurtado, Daniel E.

    2018-03-01

    Mechanics plays a key role in respiratory physiology, as lung tissue cyclically deforms to bring air in and out the lung, a life-long process necessary for respiration. The study of regional mechanisms of deformation in lung parenchyma has received great attention to date due to its clinical relevance, as local overstretching and stress concentration in lung tissue is currently associated to pathological conditions such as lung injury during mechanical ventilation therapy. This mechanical approach to lung physiology has motivated the development of constitutive models to better understand the relation between stress and deformation in the lung. While material models proposed to date have been key in the development of whole-lung simulations, either they do not directly relate microstructural properties of alveolar tissue with coarse-scale behavior, or they require a high computational effort when based on real alveolar geometries. Furthermore, most models proposed to date have not been thoroughly validated for anisotropic deformation states, which are commonly found in normal lungs in-vivo. In this work, we develop a novel micromechanical model of lung parenchyma hyperelasticity using the framework of finite-deformation homogenization. To this end, we consider a tetrakaidecahedron unit cell with incompressible Neo-Hookean structural elements that account for the alveolar wall tissue responsible for the elastic response, and derive expressions for its effective coarse-scale behavior that directly depend on the alveolar wall elasticity, reference porosity, and two other geometrical coefficients. To validate the proposed model, we simulate the non-linear elastic response of twelve representative volume elements (RVEs) of lung parenchyma with micrometric dimensions, whose geometry is obtained from micrometric computed-tomography reconstructions of murine lungs. We show that the proposed micromechanical model accurately captures the RVEs response not only for isotropic

  3. Characterization of the Lung Parenchyma Using Ultrasound Multiple Scattering.

    Science.gov (United States)

    Mohanty, Kaustav; Blackwell, John; Egan, Thomas; Muller, Marie

    2017-05-01

    The purpose of the study described here was to showcase the application of ultrasound to quantitative characterization of the micro-architecture of the lung parenchyma to predict the extent of pulmonary edema. The lung parenchyma is a highly complex and diffusive medium for which ultrasound techniques have remained qualitative. The approach presented here is based on ultrasound multiple scattering and exploits the complexity of ultrasound propagation in the lung structure. The experimental setup consisted of a linear transducer array with an 8-MHz central frequency placed in contact with the lung surface. The diffusion constant D and transport mean free path L* of the lung parenchyma were estimated by separating the incoherent and coherent intensities in the near field and measuring the growth of the incoherent diffusive halo over time. Significant differences were observed between the L* values obtained in healthy and edematous rat lungs in vivo. In the control rat lung, L* was found to be 332 μm (±48.8 μm), whereas in the edematous lung, it was 1040 μm (±90 μm). The reproducibility of the measurements of L* and D was tested in vivo and in phantoms made of melamine sponge with varying air volume fractions. Two-dimensional finite difference time domain numerical simulations were carried out on rabbit lung histology images with varying degrees of lung collapse. Significant correlations were observed between air volume fraction and L* in simulation (r = -0.9542, p lung in which edema was simulated by adding phosphate-buffered saline revealed a linear relationship between the fluid volume fraction and L*. These results illustrate the potential of methods based on ultrasound multiple scattering for the quantitative characterization of the lung parenchyma. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  4. Quantitative computed tomography of lung parenchyma in patients with emphysema: analysis of higher-density lung regions

    Science.gov (United States)

    Lederman, Dror; Leader, Joseph K.; Zheng, Bin; Sciurba, Frank C.; Tan, Jun; Gur, David

    2011-03-01

    Quantitative computed tomography (CT) has been widely used to detect and evaluate the presence (or absence) of emphysema applying the density masks at specific thresholds, e.g., -910 or -950 Hounsfield Unit (HU). However, it has also been observed that subjects with similar density-mask based emphysema scores could have varying lung function, possibly indicating differences of disease severity. To assess this possible discrepancy, we investigated whether density distribution of "viable" lung parenchyma regions with pixel values > -910 HU correlates with lung function. A dataset of 38 subjects, who underwent both pulmonary function testing and CT examinations in a COPD SCCOR study, was assembled. After the lung regions depicted on CT images were automatically segmented by a computerized scheme, we systematically divided the lung parenchyma into different density groups (bins) and computed a number of statistical features (i.e., mean, standard deviation (STD), skewness of the pixel value distributions) in these density bins. We then analyzed the correlations between each feature and lung function. The correlation between diffusion lung capacity (DLCO) and STD of pixel values in the bin of -910HU lung parenchyma and lung function, which indicates that similar to the conventional density mask method, the pixel value distribution features in "viable" lung parenchyma areas may also provide clinically useful information to improve assessments of lung disease severity as measured by lung functional tests.

  5. Improved pulmonary nodule classification utilizing quantitative lung parenchyma features.

    Science.gov (United States)

    Dilger, Samantha K N; Uthoff, Johanna; Judisch, Alexandra; Hammond, Emily; Mott, Sarah L; Smith, Brian J; Newell, John D; Hoffman, Eric A; Sieren, Jessica C

    2015-10-01

    Current computer-aided diagnosis (CAD) models for determining pulmonary nodule malignancy characterize nodule shape, density, and border in computed tomography (CT) data. Analyzing the lung parenchyma surrounding the nodule has been minimally explored. We hypothesize that improved nodule classification is achievable by including features quantified from the surrounding lung tissue. To explore this hypothesis, we have developed expanded quantitative CT feature extraction techniques, including volumetric Laws texture energy measures for the parenchyma and nodule, border descriptors using ray-casting and rubber-band straightening, histogram features characterizing densities, and global lung measurements. Using stepwise forward selection and leave-one-case-out cross-validation, a neural network was used for classification. When applied to 50 nodules (22 malignant and 28 benign) from high-resolution CT scans, 52 features (8 nodule, 39 parenchymal, and 5 global) were statistically significant. Nodule-only features yielded an area under the ROC curve of 0.918 (including nodule size) and 0.872 (excluding nodule size). Performance was improved through inclusion of parenchymal (0.938) and global features (0.932). These results show a trend toward increased performance when the parenchyma is included, coupled with the large number of significant parenchymal features that support our hypothesis: the pulmonary parenchyma is influenced differentially by malignant versus benign nodules, assisting CAD-based nodule characterizations.

  6. A tree-parenchyma coupled model for lung ventilation simulation.

    Science.gov (United States)

    Pozin, Nicolas; Montesantos, Spyridon; Katz, Ira; Pichelin, Marine; Vignon-Clementel, Irene; Grandmont, Céline

    2017-11-01

    In this article, we develop a lung ventilation model. The parenchyma is described as an elastic homogenized media. It is irrigated by a space-filling dyadic resistive pipe network, which represents the tracheobronchial tree. In this model, the tree and the parenchyma are strongly coupled. The tree induces an extra viscous term in the system constitutive relation, which leads, in the finite element framework, to a full matrix. We consider an efficient algorithm that takes advantage of the tree structure to enable a fast matrix-vector product computation. This framework can be used to model both free and mechanically induced respiration, in health and disease. Patient-specific lung geometries acquired from computed tomography scans are considered. Realistic Dirichlet boundary conditions can be deduced from surface registration on computed tomography images. The model is compared to a more classical exit compartment approach. Results illustrate the coupling between the tree and the parenchyma, at global and regional levels, and how conditions for the purely 0D model can be inferred. Different types of boundary conditions are tested, including a nonlinear Robin model of the surrounding lung structures. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Pulmonary lymphangioleiomyomatosis: Analysis of disease manifestation by region-based quantification of lung parenchyma

    Energy Technology Data Exchange (ETDEWEB)

    Theilig, D., E-mail: dorothea.theilig@charite.de [Charité, Universitätsmedizin Berlin, Department of Radiology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin (Germany); Doellinger, F. [Charité, Universitätsmedizin Berlin, Department of Radiology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin (Germany); Kuhnigk, J.M. [Fraunhofer MEVIS, Universitaetsallee 29, 28359 Bremen (Germany); Temmesfeld-Wollbrueck, B.; Huebner, R.H. [Charité, Department of Pneumology, Augustenburger Platz 1, 13353 Berlin (Germany); Schreiter, N.; Poellinger, A. [Charité, Universitätsmedizin Berlin, Department of Radiology, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin (Germany)

    2015-04-15

    Highlights: •The distribution of cystic lesions in LAM was evaluated with quantitative CT. •There were more cystic lesions in the central lung compared to peripheral areas. •Cystic changes were more frequent in apical two thirds compared to lower third. •Results might help to obviate the need for biopsy in more cases. -- Abstract: Purpose: Lymphangioleiomyomatosis (LAM) is characterized by proliferation of smooth muscle tissue that causes bronchial obstruction and secondary cystic destruction of lung parenchyma. The aim of this study was to evaluate the typical distribution of cystic defects in LAM with quantitative volumetric chest computed tomography (CT). Materials and methods: CT examinations of 20 patients with confirmed LAM were evaluated with region-based quantification of lung parenchyma. Additionally, 10 consecutive patients were identified who had recently undergone CT imaging of the lung at our institution, in which no pathologies of the lung were found, to serve as a control group. Each lung was divided into three regions (upper, middle and lower thirds) with identical number of slices. In addition, we defined a “peel” and “core” of the lung comprising the 2 cm subpleural space and the remaining inner lung area. Computerized detection of lung volume and relative emphysema was performed with the PULMO 3D software (v3.42, Fraunhofer MEVIS, Bremen, Germany). This software package enables the quantification of emphysematous lung parenchyma by calculating the pixel index, which is defined as the ratio of lung voxels with a density <−950 HU to the total number of voxels in the lung. Results: Cystic changes accounted for 0.1–39.1% of the total lung volume in patients with LAM. Disease manifestation in the central lung was significantly higher than in peripheral areas (peel median: 15.1%, core median: 20.5%; p = 0.001). Lower thirds of lung parenchyma showed significantly less cystic changes than upper and middle lung areas combined (lower

  8. Correlation between alveolar ventilation and electrical properties of lung parenchyma

    OpenAIRE

    Roth, J. C., Ehrl, A., Becher, T., Frerichs, I., Schittny, J., Weller, N., Wall W. A.

    2016-01-01

    One key problem in modern medical imaging is linking measured data and actual physiological quantities. In this article we derive such a link between the electrical bioimpedance of lung parenchyma, which can be measured by electrical impedance tomography (EIT), and the magnitude of regional ventilation, a key towards understanding lung mechanics and developing novel protective ventilation strategies. Two rat-derived three-dimensional alveolar microstructures obtained from synchrotron-ba...

  9. T2 relaxation time in MR imaging of normal and abnormal lung parenchyma

    International Nuclear Information System (INIS)

    Mayo, J.R.; McKay, A.; Mueller, N.L.

    1990-01-01

    To measure the T2 relaxation times of normal and abnormal lung parenchyma and to evaluate the influence of field strength and lung inflation on T2. Five healthy volunteers and five patients with diffuse lung disease were imaged at 0.15 and 1.5 T. Excised normal pig lung was imaged at 0.15 and 1.5 T and analyzed in a spectrometer at 2.0 T. Single-echo (Hahn) pulse sequences (TR, 2,000 msec; TE, 20, 40, 60, 80, and 100 msec) were compared with multiecho trains (Carr-Purcell-Meiboom-Gill [CPMG] at 0.15 T (TR, 2,000 msec; TE, 20-40-60... 240 msec) and 2.0 T (TR, 2,000 msec; TE, 1, 2, 3,..., 10msec). T2 relaxation times calculated from single-echo sequences showed considerable variation between 0.15 and 2.0 T. T2 also changed with lung inflation. However, the T2 measurements on CPMG sequences did not change significantly (P > .05) with field strength and were only minimally affected by lung inflation. The mean ± SD T2 values for normal lung were 99 ± 8 and for abnormal lung were 84 ± 17. Lung parenchyma T2 measurements obtained with the use of conventional single-echo pulse sequences are variable and inaccurate because of inflation and field strength dependent magnetic susceptibility effects that lead to rapid nonrecoverable dephasing. The results indicate that multiecho sequences with appropriately short echo spacings yield more reproducible determinations of T2, which are independent of field strength and less dependent on lung inflation

  10. Contribution of computed tomography (CT) in affections of the lung parenchyma in HIV positive patients

    International Nuclear Information System (INIS)

    Neuwirth, J.; Stankova, M.; Spala, J.; Strof, J.

    1996-01-01

    CT findings in HIV positive patients with respiratory complaints were analyzed. The predominant morphological type of changes is a 'ground glass' increased density. Minimal changes of the lung parenchyma were recorded on high resolution computed tomography (HRCT) even in patients with a negative or doubtful finding on plain chest radiographs. Also the range of affections on HRCT scans was wider than on simple scans. The morphological changes on HRCT scans alone, however, are not an adequate basis for differentiation of various infectious agents in inflammatory changes of the lung parenchyma, and frequently mixed infections are involved. When at the same time clinical symptoms are considered, it frequently is possible to considerably reduce the number of possible pathogenic organisms and to start treatment. (author) 4 figs., 11 refs

  11. Correlation between alveolar ventilation and electrical properties of lung parenchyma.

    Science.gov (United States)

    Roth, Christian J; Ehrl, Andreas; Becher, Tobias; Frerichs, Inéz; Schittny, Johannes C; Weiler, Norbert; Wall, Wolfgang A

    2015-06-01

    One key problem in modern medical imaging is linking measured data and actual physiological quantities. In this article we derive such a link between the electrical bioimpedance of lung parenchyma, which can be measured by electrical impedance tomography (EIT), and the magnitude of regional ventilation, a key to understanding lung mechanics and developing novel protective ventilation strategies. Two rat-derived three-dimensional alveolar microstructures obtained from synchrotron-based x-ray tomography are each exposed to a constant potential difference for different states of ventilation in a finite element simulation. While the alveolar wall volume remains constant during stretch, the enclosed air volume varies, similar to the lung volume during ventilation. The enclosed air, serving as insulator in the alveolar ensemble, determines the resulting current and accordingly local tissue bioimpedance. From this we can derive a relationship between lung tissue bioimpedance and regional alveolar ventilation. The derived relationship shows a linear dependence between air content and tissue impedance and matches clinical data determined from a ventilated patient at the bedside.

  12. Chronic diseases of lung parenchyma in children: the role of imaging

    International Nuclear Information System (INIS)

    Haran Jogeesvaran, K.; Owens, Catherine M.

    2010-01-01

    Chronic diseases of the lung parenchyma (CDoLP) in children encompass a vast number of distinct clinico-pathological conditions. The prevalence of CDoLP has continued to increase in the last 10-15 years and the paediatric radiologist will therefore have to become more familiar with the imaging appearances of CDoLP. This review highlights some of the key imaging appearances of CDoLP, focussing mainly on airways disease. We also explore issues around technique optimisation and dose minimisation that remain of paramount importance in children. (orig.)

  13. Hot-clot artifacts in the lung parenchyma on F-18-fluorodeoxyglucose position emission tomography/CT due to faulty injection techniques: Two case report

    Energy Technology Data Exchange (ETDEWEB)

    Ozdemir, Elif; Yildirim, Nilufer; Keskin, Mutlay; Kandemir, Zuhai; Turkolmez, Seyda [Dept. of Nuclear Medicine, Ataturk Training and Research Hospital, Ankara (Turkmenistan)

    2014-08-15

    F-18-fluorodeoxyglucose (FDG) positron emission tomography/CT is an important whole-body imaging tool in the oncology and widely utilized to stage and restage various malignancies. The findings of significant focal accumulation of FDG in the lung parenchyma in the absence of corresponding CT abnormalities are related to the lung microembolism and known as hot-clot artifacts. Herein we present two cases with focal FDG uptake in the lung parenchyma with no structural lesions on the CT scan and discuss the possible mechanisms.

  14. Hot-clot artifacts in the lung parenchyma on F-18-fluorodeoxyglucose position emission tomography/CT due to faulty injection techniques: Two case report

    International Nuclear Information System (INIS)

    Ozdemir, Elif; Yildirim, Nilufer; Keskin, Mutlay; Kandemir, Zuhai; Turkolmez, Seyda

    2014-01-01

    F-18-fluorodeoxyglucose (FDG) positron emission tomography/CT is an important whole-body imaging tool in the oncology and widely utilized to stage and restage various malignancies. The findings of significant focal accumulation of FDG in the lung parenchyma in the absence of corresponding CT abnormalities are related to the lung microembolism and known as hot-clot artifacts. Herein we present two cases with focal FDG uptake in the lung parenchyma with no structural lesions on the CT scan and discuss the possible mechanisms.

  15. Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon

    International Nuclear Information System (INIS)

    Shapiro, S.D.; Endicott, S.K.; Province, M.A.; Pierce, J.A.; Campbell, E.J.

    1991-01-01

    Normal structure and function of the lung parenchyma depend upon elastic fibers. Amorphous elastin is biochemically stable in vitro, and may provide a metabolically stable structural framework for the lung parenchyma. To test the metabolic stability of elastin in the normal human lung parenchyma, we have (a) estimated the time elapsed since the synthesis of the protein through measurement of aspartic acid racemization and (b) modeled the elastin turnover through measurement of the prevalence of nuclear weapons-related 14 C. Elastin purified by a new technique from normal lung parenchyma was hydrolyzed; then the prevalences of D-aspartate and 14 C were measured by gas chromatography and accelerator-mass spectrometry, respectively. D-aspartate increased linearly with age; Kasp (1.76 x 10 - 3 yr - 1 ) was similar to that previously found for extraordinarily stable human tissues, indicating that the age of lung parenchymal elastin corresponded with the age of the subject. Radiocarbon prevalence data also were consistent with extraordinary metabolic stability of elastin; the calculated mean carbon residence time in elastin was 74 yr (95% confidence limits, 40-174 yr). These results indicate that airspace enlargement characteristic of 'aging lung' is not associated with appreciable new synthesis of lung parenchymal elastin. The present study provides the first tissue-specific evaluation of turnover of an extracellular matrix component in humans and underscores the potential importance of elastin for maintenance of normal lung structure. Most importantly, the present work provides a foundation for strategies to directly evaluate extracellular matrix injury and repair in diseases of lung (especially pulmonary emphysema), vascular tissue, and skin

  16. Single source dual energy CT: What is the optimal monochromatic energy level for the analysis of the lung parenchyma?

    Energy Technology Data Exchange (ETDEWEB)

    Ohana, M., E-mail: mickael.ohana@gmail.com [iCube Laboratory, Université de Strasbourg/CNRS, UMR 7357, 67400 Illkirch (France); Service de Radiologie B, Nouvel Hôpital Civil – Hôpitaux Universitaires de Strasbourg, 1 place de l’hôpital, 67000 Strasbourg (France); Labani, A., E-mail: aissam.labani@chru-strasbourg.fr [Service de Radiologie B, Nouvel Hôpital Civil – Hôpitaux Universitaires de Strasbourg, 1 place de l’hôpital, 67000 Strasbourg (France); Severac, F., E-mail: francois.severac@chru-strasbourg.fr [Département de Biostatistiques et d’Informatique Médicale, Hôpital Civil – Hôpitaux Universitaires de Strasbourg,1 place de l’hôpital, 67000 Strasbourg (France); Jeung, M.Y., E-mail: Mi-Young.Jeung@chru-strasbourg.fr [Service de Radiologie B, Nouvel Hôpital Civil – Hôpitaux Universitaires de Strasbourg, 1 place de l’hôpital, 67000 Strasbourg (France); Gaertner, S., E-mail: Sebastien.Gaertner@chru-strasbourg.fr [Service de Médecine Vasculaire, Nouvel Hôpital Civil – Hôpitaux Universitaires de Strasbourg,1 place de l’hôpital, 67000 Strasbourg (France); and others

    2017-03-15

    Highlights: • Lung parenchyma aspect varies with the monochromatic energy level in spectral CT. • Optimal diagnostic and image quality is obtained at 50–55 keV. • Mediastinum and parenchyma could be read on the same monochromatic energy level. - Abstract: Objective: To determine the optimal monochromatic energy level for lung parenchyma analysis in spectral CT. Methods: All 50 examinations (58% men, 64.8 ± 16yo) from an IRB-approved prospective study on single-source dual energy chest CT were retrospectively included and analyzed. Monochromatic images in lung window reconstructed every 5 keV from 40 to 140 keV were independently assessed by two chest radiologists. Based on the overall image quality and the depiction/conspicuity of parenchymal lesions, each reader had to designate for every patient the keV level providing the best diagnostic and image quality. Results: 72% of the examinations exhibited parenchymal lesions. Reader 1 picked the 55 keV monochromatic reconstruction in 52% of cases, 50 in 30% and 60 in 18%. Reader 2 chose 50 keV in 52% cases, 55 in 40%, 60 in 6% and 40 in 2%. The 50 and 55 keV levels were chosen by at least one reader in 64% and 76% of all patients, respectively. Merging 50 and 55 keV into one category results in an optimal setting selected by reader 1 in 82% of patients and by reader 2 in 92%, with a 74% concomitant agreement. Conclusion: The best image quality for lung parenchyma in spectral CT is obtained with the 50–55 keV monochromatic reconstructions.

  17. Physiological and biochemical aspects of the effect of ionizing radiations on the lung parenchyma

    International Nuclear Information System (INIS)

    Pasquier, Christian.

    1975-03-01

    Concerning the biochemical reactions of the lung parenchyma to irradiation the following points have been developed. Role of biochemically active substances (histamine, serotonin, kinins, catecholamines, prostaglandins) in the early reaction of the lung to irradiation, their common feature being their vascular impact point. Lung irradiation and lipids (fatty acids and lipid metabolism in general); irradiation, by raising the proportion of unsaturated at the expense of saturated fatty acids, may give rise to serious physiological respiratory disorders. Lung irradiation and blood fluidity (fibrinolytic activity, heparin, platelet factors). Pulmonary interstitium and irradiation (of the three interstitium components collagen plays a preferential part). Irradiation and immunological lung reaction (reasons behind the immunological theory, immunological assistance, immunological mechanism of pulmonary reactions towards pollutants). Enzymatic lung radiolesion indicators. Three kinds of physiological changes have been considered. Vascular physiology disturbances caused by the initial biochemical reactions; anomalies of physiological or functional trials, images of the lesion formed; disorders of the cell physiology of carcinogenesis [fr

  18. Local Effects on Lung Parenchyma Using a 600 µm Bare Fiber with the Diode-Pumped Nd:YAG Laser LIMAX® 120

    Directory of Open Access Journals (Sweden)

    Peter Rexin

    2015-12-01

    Full Text Available Lung metastases are frequently removed with an Nd:YAG laser. The aim is to perform a non-anatomic resection of all intraoperatively palpable lung metastases completely in order to preserve the largest possible amount of healthy lung parenchyma. The surgeon can either work with a focusing handpiece or use a laser fiber of the so-called bare fiber with direct contact to the lung parenchyma. We currently use a 600 µm bare fiber for applications involving the lung parenchyma. Precise data on the local effect of the laser fiber on the lung parenchyma are not available, especially with regard to an increase in the laser energy. We want to study this question within the scope of an experimental model in pig lungs by means of systematic and reproducible tests. The lung lobes were removed from animals recently slaughtered in the abattoir and taken to the laboratory immediately, where the lobes were stored such that the surface of the lungs was parallel to the floor. A 600 µm bare fiber was attached to a mounting bracket vertically above the lung surface at a distance of either 0, 5, or 10 mm. This mounting bracket was in turn connected to a hydraulic feed motor. The feed motor is capable of moving the bare fiber forward across the lungs consistently at three different speeds (5 mm/s, 10 mm/s, or 20 mm/s. The bare fiber itself was connected to the diode-pumped Nd: YAG Laser LIMAX® 120 (Gebrüder Martin GmbH & Co KG, Tuttlingen, Germany. We carried out the tests using three different laser powers: 20 W, 60 W, and 120 W. The lung lesions caused by the laser in each of the lungs were resected and sent in for histological analysis. The exact size of the vaporization and coagulation zone was measured using the HE sections, and the respective mean values (with standard deviations were ascertained. For all laser powers, the extent of the vaporization was greatest with a motion speed of 5 mm/s for the respective laser power: 756.4 ± 1.2 µm (20 W, 1411.0 ± 2

  19. Contribution of Human Lung Parenchyma and Leukocyte Influx to Oxidative Stress and Immune System-Mediated Pathology following Nipah Virus Infection.

    Science.gov (United States)

    Escaffre, Olivier; Saito, Tais B; Juelich, Terry L; Ikegami, Tetsuro; Smith, Jennifer K; Perez, David D; Atkins, Colm; Levine, Corri B; Huante, Matthew B; Nusbaum, Rebecca J; Endsley, Janice J; Freiberg, Alexander N; Rockx, Barry

    2017-08-01

    Nipah virus (NiV) is a zoonotic emerging paramyxovirus that can cause fatal respiratory illness or encephalitis in humans. Despite many efforts, the molecular mechanisms of NiV-induced acute lung injury (ALI) remain unclear. We previously showed that NiV replicates to high titers in human lung grafts in NOD-SCID/γ mice, resulting in a robust inflammatory response. Interestingly, these mice can undergo human immune system reconstitution by the bone marrow, liver, and thymus (BLT) reconstitution method, in addition to lung tissue engraftment, giving altogether a realistic model to study human respiratory viral infections. Here, we characterized NiV Bangladesh strain (NiV-B) infection of human lung grafts from human immune system-reconstituted mice in order to identify the overall effect of immune cells on NiV pathogenesis of the lung. We show that NiV-B replicated to high titers in human lung grafts and caused similar cytopathic effects irrespective of the presence of human leukocytes in mice. However, the human immune system interfered with virus spread across lung grafts, responded to infection by leukocyte migration to small airways and alveoli of the lung grafts, and accelerated oxidative stress in lung grafts. In addition, the presence of human leukocytes increased the expression of cytokines and chemokines that regulate inflammatory influx to sites of infection and tissue damage. These results advance our understanding of how the immune system limits NiV dissemination and contributes to ALI and inform efforts to identify therapeutic targets. IMPORTANCE Nipah virus (NiV) is an emerging paramyxovirus that can cause a lethal respiratory and neurological disease in humans. Only limited data are available on NiV pathogenesis in the human lung, and the relative contribution of the innate immune response and NiV to acute lung injury (ALI) is still unknown. Using human lung grafts in a human immune system-reconstituted mouse model, we showed that the NiV Bangladesh

  20. Pulmonary parenchyma segmentation in thin CT image sequences with spectral clustering and geodesic active contour model based on similarity

    Science.gov (United States)

    He, Nana; Zhang, Xiaolong; Zhao, Juanjuan; Zhao, Huilan; Qiang, Yan

    2017-07-01

    While the popular thin layer scanning technology of spiral CT has helped to improve diagnoses of lung diseases, the large volumes of scanning images produced by the technology also dramatically increase the load of physicians in lesion detection. Computer-aided diagnosis techniques like lesions segmentation in thin CT sequences have been developed to address this issue, but it remains a challenge to achieve high segmentation efficiency and accuracy without much involvement of human manual intervention. In this paper, we present our research on automated segmentation of lung parenchyma with an improved geodesic active contour model that is geodesic active contour model based on similarity (GACBS). Combining spectral clustering algorithm based on Nystrom (SCN) with GACBS, this algorithm first extracts key image slices, then uses these slices to generate an initial contour of pulmonary parenchyma of un-segmented slices with an interpolation algorithm, and finally segments lung parenchyma of un-segmented slices. Experimental results show that the segmentation results generated by our method are close to what manual segmentation can produce, with an average volume overlap ratio of 91.48%.

  1. Reduced-dose chest CT with 3D automatic exposure control vs. standard chest CT: Quantitative assessment of emphysematous changes in smokers’ lung parenchyma

    International Nuclear Information System (INIS)

    Koyama, Hisanobu; Ohno, Yoshiharu; Yamazaki, Youichi; Matsumoto, Keiko; Onishi, Yumiko; Takenaka, Daisuke; Yoshikawa, Takeshi; Nishio, Mizuho; Matsumoto, Sumiaki; Murase, Kenya; Nishimura, Yoshihiro

    2012-01-01

    Objectives: To determine the capability of reduced-dose chest CT with three-dimensional (3D) automatic exposure control (AEC) on quantitative assessment of emphysematous change in smoker’ lung parenchyma, compared to standard chest CT. Methods: Twenty consecutive smoker patients (mean age 62.8 years) underwent CT examinations using a standard protocol (150 mAs) and a protocol with 3D-AEC. In this study, the targeted standard deviations number was set to 160. For quantitative assessment of emphysematous change in lung parenchyma in each subject using the standard protocol, a percentage of voxels less than −950 HU in the lung (%LAA −950 ) was calculated. The 3D-AEC protocol's %LAA was computed from of voxel percentages under selected threshold CT value. The differences of radiation doses between these two protocols were evaluated, and %LAAs −950 was compared with the 3D-AEC protocol %LAAs. Results: Mean dose length products were 780.2 ± 145.5 mGy cm (standard protocol), and 192.0 ± 95.9 (3D-AEC protocol). There was significant difference between them (paired Student's t test, p −950 and 3D-AEC protocol %LAAs. In adopting the feasible threshold CT values of the 3D-AEC protocol, the 3D-AEC protocol %LAAs were significantly correlated with %LAAs −950 (r = 0.98, p < 0.001) and limits of agreement from Bland–Altman analysis was 0.52 ± 4.3%. Conclusions: Changing threshold CT values demonstrated that reduced-dose chest CT with 3D-AEC can substitute for the standard protocol in assessments of emphysematous change in smoker’ lung parenchyma.

  2. Effects of lung elasticity on the sound propagation in the lung

    International Nuclear Information System (INIS)

    Yoneda, Takahiro; Wada, Shigeo; Nakamura, Masanori; Horii, Noriaki; Mizushima, Koichiro

    2011-01-01

    Sound propagation in the lung was simulated for gaining insight into its acoustic properties. A thorax model consisting of lung parenchyma, thoracic bones, trachea and other tissues was made from human CT images. Acoustic nature of the lung parenchyma and bones was expressed with the Biot model of poroelastic material, whereas trachea and tissues were modeled with gas and an elastic material. A point sound source of white noises was placed in the first bifurcation of trachea. The sound propagation in the thorax model was simulated in a frequency domain. The results demonstrated the significant attenuation of sound especially in frequencies larger than 1,000 Hz. Simulations with a stiffened lung demonstrated suppression of the sound attenuation for higher frequencies observed in the normal lung. These results indicate that the normal lung has the nature of a low-pass filter, and stiffening helps the sound at higher frequencies to propagate without attenuations. (author)

  3. Effect of remote ischemic postconditioning in inflammatory changes of the lung parenchyma of rats submitted to ischemia and reperfusion

    Directory of Open Access Journals (Sweden)

    Rafael Cantero Dorsa

    2015-09-01

    Full Text Available AbstractObjective:To assess the effects of postconditioning remote in ischemia-reperfusion injury in rat lungs.Methods:Wistar rats (n=24 divided into 3 groups: GA (I/R n=8, GB (R-Po n=8, CG (control n=8, underwent ischemia for 30 minutes artery occlusion abdominal aorta, followed by reperfusion for 60 minutes. Resected lungs and performed histological analysis and classification of morphological findings in accordance with the degree of tissue injury. Statistical analysis of the mean rating of the degree of tissue injury.Results:GA (3.6, GB (1.3 and CG (1.0. (GA GB X P<0.05.Conclusion:The remote postconditioning was able to minimize the inflammatory lesion of the lung parenchyma of rats undergoing ischemia and reperfusion process.

  4. Resistance to alveolar shape change limits range of force propagation in lung parenchyma.

    Science.gov (United States)

    Ma, Baoshun; Smith, Bradford J; Bates, Jason H T

    2015-06-01

    We have recently shown that if the lung parenchyma is modeled in 2 dimensions as a network of springs arranged in a pattern of repeating hexagonal cells, the distortional forces around a contracting airway propagate much further from the airway wall than classic continuum theory predicts. In the present study we tested the hypothesis that this occurs because of the negligible shear modulus of a hexagonal spring network. We simulated the narrowing of an airway embedded in a hexagonal network of elastic alveolar walls when the hexagonal cells of the network offered some resistance to a change in shape. We found that as the forces resisting shape change approach about 10% of the forces resisting length change of an individual spring the range of distortional force propagation in the spring network fell of rapidly as in an elastic continuum. We repeated these investigations in a 3-dimensional spring network composed of space-filling polyhedral cells and found similar results. This suggests that force propagation away from a point of local parenchymal distortion also falls off rapidly in real lung tissue. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Magnetic resonance elastography of the lung parenchyma in an in situ porcine model with a noninvasive mechanical driver: correlation of shear stiffness with trans-respiratory system pressures.

    Science.gov (United States)

    Mariappan, Yogesh K; Kolipaka, Arunark; Manduca, Armando; Hubmayr, Rolf D; Ehman, Richard L; Araoz, Philip; McGee, Kiaran P

    2012-01-01

    Quantification of the mechanical properties of lung parenchyma is an active field of research due to the association of this metric with normal function, disease initiation and progression. A phase contrast MRI-based elasticity imaging technique known as magnetic resonance elastography is being investigated as a method for measuring the shear stiffness of lung parenchyma. Previous experiments performed with small animals using invasive drivers in direct contact with the lungs have indicated that the quantification of lung shear modulus with (1) H based magnetic resonance elastography is feasible. This technique has been extended to an in situ porcine model with a noninvasive mechanical driver placed on the chest wall. This approach was tested to measure the change in parenchymal stiffness as a function of airway opening pressure (P(ao) ) in 10 adult pigs. In all animals, shear stiffness was successfully quantified at four different P(ao) values. Mean (±STD error of mean) pulmonary parenchyma density corrected stiffness values were calculated to be 1.48 (±0.09), 1.68 (±0.10), 2.05 (±0.13), and 2.23 (±0.17) kPa for P(ao) values of 5, 10, 15, and 20 cm H2O, respectively. Shear stiffness increased with increasing P(ao) , in agreement with the literature. It is concluded that in an in situ porcine lung shear stiffness can be quantitated with (1) H magnetic resonance elastography using a noninvasive mechanical driver and that it is feasible to measure the change in shear stiffness due to change in P(ao) . Copyright © 2011 Wiley-Liss, Inc.

  6. Three-dimensional T1 and T2* mapping of human lung parenchyma using interleaved saturation recovery with dual echo ultrashort echo time imaging (ITSR-DUTE).

    Science.gov (United States)

    Gai, Neville D; Malayeri, Ashkan A; Bluemke, David A

    2017-04-01

    To develop and assess a new technique for three-dimensional (3D) full lung T1 and T2* mapping using a single free breathing scan during a clinically feasible time. A 3D stack of dual-echo ultrashort echo time (UTE) radial acquisition interleaved with and without a WET (water suppression enhanced through T1 effects) saturation pulse was used to map T1 and T2* simultaneously in a single scan. Correction for modulation due to multiple views per segment was derived. Bloch simulations were performed to study saturation pulse excitation profile on lung tissue. Optimization of the saturation delay time (for T1 mapping) and echo time (for T2* mapping) was performed. Monte Carlo simulation was done to predict accuracy and precision of the sequence with signal-to-noise ratio of in vivo images used in the simulation. A phantom study was carried out using the 3D interleaved saturation recovery with dual echo ultrashort echo time imaging (ITSR-DUTE) sequence and reference standard inversion recovery spin echo sequence (IR-SE) to compare accuracy of the sequence. Nine healthy volunteers were imaged and mean (SD) of T1 and T2* in lung parenchyma at 3T were estimated through manually assisted segmentation. 3D lung coverage with a resolution of 2.5 × 2.5 × 6 mm 3 was performed and nominal scan time was recorded for the scans. Repeatability was assessed in three of the volunteers. Regional differences in T1/T2* values were also assessed. The phantom study showed accuracy of T1 values to be within 2.3% of values obtained from IR-SE. Mean T1 value in lung parenchyma was 1002 ± 82 ms while T2* was 0.85 ± 0.1 ms. Scan time was ∼10 min for volunteer scans. Mean coefficient of variation (CV) across slices was 0.057 and 0.09, respectively. Regional variation along the gravitational direction and between right and left lung were not significant (P = 0.25 and P = 0.06, respectively) for T1. T2* showed significant variation (P = 0.03) along the

  7. Viscoelastic Model for Lung Parenchyma for Multi-Scale Modeling of Respiratory System Phase I: Hypo-Elastic Model for CFD Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Freed, Alan D.; Einstein, Daniel R.

    2011-04-14

    An isotropic constitutive model for the parenchyma of lung has been derived from the theory of hypo-elasticity. The intent is to use it to represent the mechanical response of this soft tissue in sophisticated, computational, fluid-dynamic models of the lung. This demands that the continuum model be accurate, yet simple and effcient. An objective algorithm for its numeric integration is provided. The response of the model is determined for several boundary-value problems whose experiments are used for material characterization. The effective elastic, bulk, and shear moduli, and Poisson’s ratio, as tangent functions, are also derived. The model is characterized against published experimental data for lung. A bridge between this continuum model and a dodecahedral model of alveolar geometry is investigated, with preliminary findings being reported.

  8. Expression and function of human hemokinin-1 in human and guinea pig airways.

    Science.gov (United States)

    Grassin-Delyle, Stanislas; Naline, Emmanuel; Buenestado, Amparo; Risse, Paul-André; Sage, Edouard; Advenier, Charles; Devillier, Philippe

    2010-10-07

    Human hemokinin-1 (hHK-1) and endokinins are peptides of the tachykinin family encoded by the TAC4 gene. TAC4 and hHK-1 expression as well as effects of hHK-1 in the lung and airways remain however unknown and were explored in this study. RT-PCR analysis was performed on human bronchi to assess expression of tachykinin and tachykinin receptors genes. Enzyme immunoassay was used to quantify hHK-1, and effects of hHK-1 and endokinins on contraction of human and guinea pig airways were then evaluated, as well as the role of hHK-1 on cytokines production by human lung parenchyma or bronchi explants and by lung macrophages. In human bronchi, expression of the genes that encode for hHK-1, tachykinin NK1-and NK2-receptors was demonstrated. hHK-1 protein was found in supernatants from explants of human bronchi, lung parenchyma and lung macrophages. Exogenous hHK-1 caused a contractile response in human bronchi mainly through the activation of NK2-receptors, which blockade unmasked a NK1-receptor involvement, subject to a rapid desensitization. In the guinea pig trachea, hHK-1 caused a concentration-dependant contraction mainly mediated through the activation of NK1-receptors. Endokinin A/B exerted similar effects to hHK-1 on both human bronchi and guinea pig trachea, whereas endokinins C and D were inactive. hHK-1 had no impact on the production of cytokines by explants of human bronchi or lung parenchyma, or by human lung macrophages. We demonstrate endogenous expression of TAC4 in human bronchi, the encoded peptide hHK-1 being expressed and involved in contraction of human and guinea pig airways.

  9. Expression and function of human hemokinin-1 in human and guinea pig airways

    Directory of Open Access Journals (Sweden)

    Sage Edouard

    2010-10-01

    Full Text Available Abstract Background Human hemokinin-1 (hHK-1 and endokinins are peptides of the tachykinin family encoded by the TAC4 gene. TAC4 and hHK-1 expression as well as effects of hHK-1 in the lung and airways remain however unknown and were explored in this study. Methods RT-PCR analysis was performed on human bronchi to assess expression of tachykinin and tachykinin receptors genes. Enzyme immunoassay was used to quantify hHK-1, and effects of hHK-1 and endokinins on contraction of human and guinea pig airways were then evaluated, as well as the role of hHK-1 on cytokines production by human lung parenchyma or bronchi explants and by lung macrophages. Results In human bronchi, expression of the genes that encode for hHK-1, tachykinin NK1-and NK2-receptors was demonstrated. hHK-1 protein was found in supernatants from explants of human bronchi, lung parenchyma and lung macrophages. Exogenous hHK-1 caused a contractile response in human bronchi mainly through the activation of NK2-receptors, which blockade unmasked a NK1-receptor involvement, subject to a rapid desensitization. In the guinea pig trachea, hHK-1 caused a concentration-dependant contraction mainly mediated through the activation of NK1-receptors. Endokinin A/B exerted similar effects to hHK-1 on both human bronchi and guinea pig trachea, whereas endokinins C and D were inactive. hHK-1 had no impact on the production of cytokines by explants of human bronchi or lung parenchyma, or by human lung macrophages. Conclusions We demonstrate endogenous expression of TAC4 in human bronchi, the encoded peptide hHK-1 being expressed and involved in contraction of human and guinea pig airways.

  10. Quantification of human lung structure and physiology using hyperpolarized 129Xe.

    Science.gov (United States)

    Chang, Yulin V; Quirk, James D; Ruset, Iulian C; Atkinson, Jeffrey J; Hersman, F William; Woods, Jason C

    2014-01-01

    To present in vivo, human validation of a previously proposed method to measure key pulmonary parameters related to lung microstructure and physiology. Some parameters, such as blood-air barrier thickness, cannot be measured readily by any other noninvasive modality. Healthy volunteers (n = 12) were studied in 1.5T and 3T whole body human scanners using hyperpolarized xenon. Xenon uptake by lung parenchyma and blood was measured using a chemical shift saturation recovery sequence. Both dissolved-xenon peaks at 197 ppm and 217-218 ppm were fitted against a model of xenon exchange (MOXE) as functions of exchange time. Parameters related to lung function and structure can be obtained by fitting to this model. The following results were obtained from xenon uptake (averaged over all healthy volunteers): surface-area-to-volume ratio = 210 ± 50 cm(-1) ; total septal wall thickness = 9.2 ± 6.5 μm; blood-air barrier thickness = 1.0 ± 0.3 μm; hematocrit = 27 ± 4%; pulmonary capillary blood transit time = 1.3 ± 0.3 s, in good agreement with literature values from invasive experiments. More detailed fitting results are listed in the text. The initial in vivo human results demonstrate that our proposed methods can be used to noninvasively determine lung physiology by simultaneous quantification of a few important pulmonary parameters. This method is highly promising to become a versatile screening method for lung diseases. Copyright © 2013 Wiley Periodicals, Inc.

  11. Assessment of pulmonary parenchyma perfusion with FAIR in comparison with DCE-MRI-Initial results

    Energy Technology Data Exchange (ETDEWEB)

    Fan Li [Department of Radiology, ChangZheng Hospital Affiliated to Second Military Medical University, No. 415 Fengyang Road, Shanghai 200003 (China)], E-mail: fanli0930@163.com; Liu Shiyuan [Department of Radiology, ChangZheng Hospital Affiliated to Second Military Medical University, No. 415 Fengyang Road, Shanghai 200003 (China); Sun Fei [GE Healthcare China (China)], E-mail: Fei.sun@med.ge.com; Xiao Xiangsheng [Department of Radiology, ChangZheng Hospital Affiliated to Second Military Medical University, No. 415 Fengyang Road, Shanghai 200003 (China)], E-mail: lizhaobin79@163.com

    2009-04-15

    Objective: The aim of this study was to assess pulmonary parenchyma perfusion with flow-sensitive alternating inversion recovery (FAIR) in comparison with 3D dynamic contrast-enhanced (DCE) imaging in healthy volunteers and in patients with pulmonary embolism or lung cancer. Materials and methods: Sixteen healthy volunteers and 16 patients with pulmonary embolism (5 cases) or lung cancer (11 cases) were included in this study. Firstly, the optimized inversion time of FAIR (TI) was determined in 12 healthy volunteers. Then, FAIR imaging with the optimized TI was performed followed by DCE-MRI on the other 4 healthy volunteers and 16 patients. Tagging efficiency of lung and SNR of perfusion images were calculated with different TI values. In the comparison of FAIR with DCE-MRI, the homogeneity of FAIR and DCE-MRI perfusion was assessed. In the cases of perfusion abnormality, the contrast between normal lung and perfusion defects was quantified by calculating a normalized signal intensity ratio. Results: One thousand milliseconds was the optimal TI, which generated the highest lung tagging efficiency and second highest PBF SNR. In the volunteers, the signal intensity of perfusion images acquired with both FAIR and DCE-MRI was homogeneous. Wedged-shaped or triangle perfusion defects were visualized in five pulmonary embolisms and three lung cancer cases. There was no significant statistical difference in signal intensity ratio between FAIR and DCE-MRI (P > 0.05). In the rest of eight lung cancers, all the lesions showed low perfusion against the higher perfused pulmonary parenchyma in both FAIR and DCE-MRI. Conclusion: Pulmonary parenchyma perfusion imaging with FAIR was feasible, consistent and could obtain similar functional information to that from DCE-MRI.

  12. Assessment of pulmonary parenchyma perfusion with FAIR in comparison with DCE-MRI-Initial results

    International Nuclear Information System (INIS)

    Fan Li; Liu Shiyuan; Sun Fei; Xiao Xiangsheng

    2009-01-01

    Objective: The aim of this study was to assess pulmonary parenchyma perfusion with flow-sensitive alternating inversion recovery (FAIR) in comparison with 3D dynamic contrast-enhanced (DCE) imaging in healthy volunteers and in patients with pulmonary embolism or lung cancer. Materials and methods: Sixteen healthy volunteers and 16 patients with pulmonary embolism (5 cases) or lung cancer (11 cases) were included in this study. Firstly, the optimized inversion time of FAIR (TI) was determined in 12 healthy volunteers. Then, FAIR imaging with the optimized TI was performed followed by DCE-MRI on the other 4 healthy volunteers and 16 patients. Tagging efficiency of lung and SNR of perfusion images were calculated with different TI values. In the comparison of FAIR with DCE-MRI, the homogeneity of FAIR and DCE-MRI perfusion was assessed. In the cases of perfusion abnormality, the contrast between normal lung and perfusion defects was quantified by calculating a normalized signal intensity ratio. Results: One thousand milliseconds was the optimal TI, which generated the highest lung tagging efficiency and second highest PBF SNR. In the volunteers, the signal intensity of perfusion images acquired with both FAIR and DCE-MRI was homogeneous. Wedged-shaped or triangle perfusion defects were visualized in five pulmonary embolisms and three lung cancer cases. There was no significant statistical difference in signal intensity ratio between FAIR and DCE-MRI (P > 0.05). In the rest of eight lung cancers, all the lesions showed low perfusion against the higher perfused pulmonary parenchyma in both FAIR and DCE-MRI. Conclusion: Pulmonary parenchyma perfusion imaging with FAIR was feasible, consistent and could obtain similar functional information to that from DCE-MRI.

  13. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma.

    Science.gov (United States)

    de Castro, Ligia Lins; Xisto, Debora Gonçalves; Kitoko, Jamil Zola; Cruz, Fernanda Ferreira; Olsen, Priscilla Christina; Redondo, Patricia Albuquerque Garcia; Ferreira, Tatiana Paula Teixeira; Weiss, Daniel Jay; Martins, Marco Aurélio; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo

    2017-06-24

    Asthma is a chronic inflammatory disease that can be difficult to treat due to its complex pathophysiology. Most current drugs focus on controlling the inflammatory process, but are unable to revert the changes of tissue remodeling. Human mesenchymal stromal cells (MSCs) are effective at reducing inflammation and tissue remodeling; nevertheless, no study has evaluated the therapeutic effects of extracellular vesicles (EVs) obtained from human adipose tissue-derived MSCs (AD-MSC) on established airway remodeling in experimental allergic asthma. C57BL/6 female mice were sensitized and challenged with ovalbumin (OVA). Control (CTRL) animals received saline solution using the same protocol. One day after the last challenge, each group received saline, 10 5 human AD-MSCs, or EVs (released by 10 5  AD-MSCs). Seven days after treatment, animals were anesthetized for lung function assessment and subsequently euthanized. Bronchoalveolar lavage fluid (BALF), lungs, thymus, and mediastinal lymph nodes were harvested for analysis of inflammation. Collagen fiber content of airways and lung parenchyma were also evaluated. In OVA animals, AD-MSCs and EVs acted differently on static lung elastance and on BALF regulatory T cells, CD3 + CD4 + T cells, and pro-inflammatory mediators (interleukin [IL]-4, IL-5, IL-13, and eotaxin), but similarly reduced eosinophils in lung tissue, collagen fiber content in airways and lung parenchyma, levels of transforming growth factor-β in lung tissue, and CD3 + CD4 + T cell counts in the thymus. No significant changes were observed in total cell count or percentage of CD3 + CD4 + T cells in the mediastinal lymph nodes. In this immunocompetent mouse model of allergic asthma, human AD-MSCs and EVs effectively reduced eosinophil counts in lung tissue and BALF and modulated airway remodeling, but their effects on T cells differed in lung and thymus. EVs may hold promise for asthma; however, further studies are required to elucidate the different

  14. Radiology of nodular lesions of the lung parenchyma

    International Nuclear Information System (INIS)

    Meschan, I.; Pugatch, R.D.

    1987-01-01

    The authors have arbitrarily classified these nodular lesions as (1) single, (2) coarsely nodular throughout one or both lungs, and (3) finely granular and irregularly or homogeneously distributed throughout both lungs. They have further classified pulmonary and nodular lesions as being most likely single as against those that may be either single or multiple throughout the lung fields

  15. Abnormalities of the airways and lung parenchyma in asthmatics: CT observations in 50 patients and inter- and intraobserver variability

    International Nuclear Information System (INIS)

    Grenier, P.; Mourey-Gerosa, I.; Benali, K.; Brauner, M.W.; Leung, A.N.; Lenoir, S..; Cordeau, M.P.; Mazoyer, B.

    1996-01-01

    The purpose of the study was to evaluate the CT abnormalities of airways and lung parenchyma in asthmatic patients and to assess inter- and intraobserver variability for these abnormalities. The CT scans of 50 asthmatic patients and 10 healthy volunteers were assessed independently by four independent chest radiologists who were masked with respect to the clinical informations. Bronchiectasis involving mostly subsegmental and destal bronchi was noted in 28.5% of the asthmatic subjects and none of the non-asthmatics. Bronchial wall thickening, small centrilobular opacities and decreased lung attenuation were observed in 82%, 21% and 31% of asthmatic patients respectively, compared with 7%, 5% and 7% of healthy subjects. The intra- and interobserver agreements for these four CT abnormalities were measured by the kappa statistic and ranged from 0.60 to 0.79 and from 0.40 to 0.64, respectively. It is concluded that asthmatic patients may exhibit bronchial wall thickening, bronchiectasis and morphological abnormalities suggestive of distal airways disease that can be assessed on CT scans with a clinically acceptable observer variability. (orig.)

  16. Volume-controlled histographic analysis of pulmonary parenchyma in normal and diffuse parenchymal lung disease: a pilot study

    International Nuclear Information System (INIS)

    Park, Hyo Yong; Lee, Jongmin; Kim, Jong Seob; Won, Chyl Ho; Kang, Duk Sik; Kim, Myoung Nam

    2000-01-01

    To evaluate the clinical usefulness of a home-made histographic analysis system using a lung volume controller. Our study involved ten healthy volunteers, ten emphysema patients, and two idiopathic pulmonary fibrosis (IPF) patients. Using a home-made lung volume controller, images were obtained in the upper, middle, and lower lung zones at 70%, 50%, and 20% of vital capacity. Electron beam tomography was used and scanning parameters were single slice mode, 10-mm slice thickness, 0.4-second scan time, and 35-cm field of view. Usinga home-made semi-automated program, pulmonary parenchyma was isolated and a histogrm then obtained. Seven histographic parameters, namely mean density (MD), density at maximal frequency (DMF), maximal ascending gradient (MAG),maximal ascending gradient density (MAGD), maximal sescending gradient (MDG), maximal descending gradient density (MDGD), and full width at half maximum (FWHM) were derived from the histogram. We compared normal controls with abnormal groups including emphysema and IPF patients at the same respiration levels. A normal histographic zone with ± 1 standard deviation was obtained. Histographic curves of normal controls shifted toward the high density level, and the width of the normal zone increased as the level of inspiration decreased. In ten normal controls, MD, DMF, MAG, MAGD, MDG, MDGD, and FWHM readings at a 70% inspiration level were lower than those at 20% (p less than0.05). At the same level of inspiration, histograms of emphysema patients were locatedat a lower density area than those of normal controls. As inspiration status decreased, histograms of emphysema patients showed diminished shift compared with those of normal controls. At 50% and 20% inspiration levels, the MD, DMF, and MAGD readings of emphysema patients were significantly lower than those of normal controls (p less than 0.05). Compared with those of normal controls, histogrms of the two IPF patients obtained at three inspiration levels were

  17. Volume-controlled histographic analysis of pulmonary parenchyma in normal and diffuse parenchymal lung disease: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyo Yong; Lee, Jongmin; Kim, Jong Seob; Won, Chyl Ho; Kang, Duk Sik [School of Medicine, Kyungpook National University, Taegu (Korea, Republic of); Kim, Myoung Nam [The University of Iowa (United States)

    2000-06-01

    To evaluate the clinical usefulness of a home-made histographic analysis system using a lung volume controller. Our study involved ten healthy volunteers, ten emphysema patients, and two idiopathic pulmonary fibrosis (IPF) patients. Using a home-made lung volume controller, images were obtained in the upper, middle, and lower lung zones at 70%, 50%, and 20% of vital capacity. Electron beam tomography was used and scanning parameters were single slice mode, 10-mm slice thickness, 0.4-second scan time, and 35-cm field of view. Usinga home-made semi-automated program, pulmonary parenchyma was isolated and a histogrm then obtained. Seven histographic parameters, namely mean density (MD), density at maximal frequency (DMF), maximal ascending gradient (MAG),maximal ascending gradient density (MAGD), maximal sescending gradient (MDG), maximal descending gradient density (MDGD), and full width at half maximum (FWHM) were derived from the histogram. We compared normal controls with abnormal groups including emphysema and IPF patients at the same respiration levels. A normal histographic zone with {+-} 1 standard deviation was obtained. Histographic curves of normal controls shifted toward the high density level, and the width of the normal zone increased as the level of inspiration decreased. In ten normal controls, MD, DMF, MAG, MAGD, MDG, MDGD, and FWHM readings at a 70% inspiration level were lower than those at 20% (p less than0.05). At the same level of inspiration, histograms of emphysema patients were locatedat a lower density area than those of normal controls. As inspiration status decreased, histograms of emphysema patients showed diminished shift compared with those of normal controls. At 50% and 20% inspiration levels, the MD, DMF, and MAGD readings of emphysema patients were significantly lower than those of normal controls (p less than 0.05). Compared with those of normal controls, histogrms of the two IPF patients obtained at three inspiration levels were

  18. Common-path Fourier domain optical coherence tomography of irradiated human skin and ventilated isolated rabbit lungs

    Science.gov (United States)

    Popp, A.; Wendel, M.; Knels, L.; Knuschke, P.; Mehner, M.; Koch, T.; Boller, D.; Koch, P.; Koch, E.

    2005-08-01

    A compact common path Fourier domain optical coherence tomography (FD-OCT) system based on a broadband superluminescence diode is used for biomedical imaging. The epidermal thickening of human skin after exposure to ultraviolet radiation is measured to proof the feasibility of FD-OCT for future substitution of invasive biopsies in a long term study on natural UV skin protection. The FD-OCT system is also used for imaging lung parenchyma. FD-OCT images of a formalin fixated lung show the same alveolar structure as scanning electron microscopy images. In the ventilated and blood-free perfused isolated rabbit lung FD-OCT is used for real-time cross-sectional image capture of alveolar mechanics throughout tidal ventilation. The alveolar mechanics changing from alternating recruitment-derecruitment at zero positive end-expiratory pressure (PEEP) to persistent recruitment after applying a PEEP of 5 cm H2O is observed in the OCT images.

  19. Early invasion of brain parenchyma by African trypanosomes.

    Directory of Open Access Journals (Sweden)

    Ute Frevert

    Full Text Available Human African trypanosomiasis or sleeping sickness is a vector-borne parasitic disease that has a major impact on human health and welfare in sub-Saharan countries. Based mostly on data from animal models, it is currently thought that trypanosome entry into the brain occurs by initial infection of the choroid plexus and the circumventricular organs followed days to weeks later by entry into the brain parenchyma. However, Trypanosoma brucei bloodstream forms rapidly cross human brain microvascular endothelial cells in vitro and appear to be able to enter the murine brain without inflicting cerebral injury. Using a murine model and intravital brain imaging, we show that bloodstream forms of T. b. brucei and T. b. rhodesiense enter the brain parenchyma within hours, before a significant level of microvascular inflammation is detectable. Extravascular bloodstream forms were viable as indicated by motility and cell division, and remained detectable for at least 3 days post infection suggesting the potential for parasite survival in the brain parenchyma. Vascular inflammation, as reflected by leukocyte recruitment and emigration from cortical microvessels, became apparent only with increasing parasitemia at later stages of the infection, but was not associated with neurological signs. Extravascular trypanosomes were predominantly associated with postcapillary venules suggesting that early brain infection occurs by parasite passage across the neuroimmunological blood brain barrier. Thus, trypanosomes can invade the murine brain parenchyma during the early stages of the disease before meningoencephalitis is fully established. Whether individual trypanosomes can act alone or require the interaction from a quorum of parasites remains to be shown. The significance of these findings for disease development is now testable.

  20. Viscoelastic Model for Lung Parenchyma for Multi-Scale Modeling of Respiratory System, Phase II: Dodecahedral Micro-Model

    Energy Technology Data Exchange (ETDEWEB)

    Freed, Alan D.; Einstein, Daniel R.; Carson, James P.; Jacob, Rick E.

    2012-03-01

    In the first year of this contractual effort a hypo-elastic constitutive model was developed and shown to have great potential in modeling the elastic response of parenchyma. This model resides at the macroscopic level of the continuum. In this, the second year of our support, an isotropic dodecahedron is employed as an alveolar model. This is a microscopic model for parenchyma. A hopeful outcome is that the linkage between these two scales of modeling will be a source of insight and inspiration that will aid us in the final year's activity: creating a viscoelastic model for parenchyma.

  1. Validation of an elastic registration technique to estimate anatomical lung modification in Non-Small-Cell Lung Cancer Tomotherapy

    International Nuclear Information System (INIS)

    Faggiano, Elena; Cattaneo, Giovanni M; Ciavarro, Cristina; Dell'Oca, Italo; Persano, Diego; Calandrino, Riccardo; Rizzo, Giovanna

    2011-01-01

    The study of lung parenchyma anatomical modification is useful to estimate dose discrepancies during the radiation treatment of Non-Small-Cell Lung Cancer (NSCLC) patients. We propose and validate a method, based on free-form deformation and mutual information, to elastically register planning kVCT with daily MVCT images, to estimate lung parenchyma modification during Tomotherapy. We analyzed 15 registrations between the planning kVCT and 3 MVCT images for each of the 5 NSCLC patients. Image registration accuracy was evaluated by visual inspection and, quantitatively, by Correlation Coefficients (CC) and Target Registration Errors (TRE). Finally, a lung volume correspondence analysis was performed to specifically evaluate registration accuracy in lungs. Results showed that elastic registration was always satisfactory, both qualitatively and quantitatively: TRE after elastic registration (average value of 3.6 mm) remained comparable and often smaller than voxel resolution. Lung volume variations were well estimated by elastic registration (average volume and centroid errors of 1.78% and 0.87 mm, respectively). Our results demonstrate that this method is able to estimate lung deformations in thorax MVCT, with an accuracy within 3.6 mm comparable or smaller than the voxel dimension of the kVCT and MVCT images. It could be used to estimate lung parenchyma dose variations in thoracic Tomotherapy

  2. EFFECTS OF CONSTRICTION IN A MECHANICAL MODEL OF LUNG PARENCHYMA

    Directory of Open Access Journals (Sweden)

    Clara Ionescu

    2011-02-01

    Full Text Available The demands on materials’ properties, for medical purposes, largely depend on the site of application and the function it has to restore. Ideally a replacement material should mimic the living tissue from a mechanical, chemical, biological, and functional point of view. The estimation of the mechanical characteristics of blood vessel walls, the values of modulus of elasticity and the coefficient of transversal strain serve to determine some aspects of reconstruction of blood vessels. The tissue growth, the blood clotting and the affecting blood elements are influenced by surface energy. In this study, we address the possibility to investigate the mechanical properties of the airways in a simulation study of the human lungs.

  3. Distribution of polonium-210 in the human lung

    International Nuclear Information System (INIS)

    Cohen, Beverly S.; Eisenbud, Merril; Wrenn, McDonald E.; Harley, Naomi H.

    1978-01-01

    Knowledge of the distribution of 210 Po in the lungs of cigarette smokers is essential if the role of this alpha emitter in smoking related carcinogenesis is to be understood. To resolve this question the tracheobronchial tree is separated from the parenchyma and both are analyzed for 210 Po. Some polonium is cleared to the blood and systemically redistributed. Since systemic distribution should produce the same partition of the nuclide in smokers and nonsmokers, an excess found in either fraction would indicate retention of inhaled 210 Po or its grandparent 210 Pb. We will report the results of these analyses in five smokers and 5 nonsmokers. (author)

  4. Altered Pulmonary Lymphatic Development in Infants with Chronic Lung Disease

    Science.gov (United States)

    McNellis, Emily M.; Mabry, Sherry M.; Taboada, Eugenio; Ekekezie, Ikechukwu I.

    2014-01-01

    Pulmonary lymphatic development in chronic lung disease (CLD) has not been investigated, and anatomy of lymphatics in human infant lungs is not well defined. Hypothesis. Pulmonary lymphatic hypoplasia is present in CLD. Method. Autopsy lung tissues of eighteen subjects gestational ages 22 to 40 weeks with and without history of respiratory morbidity were stained with monoclonal antipodoplanin and reviewed under light microscopy. Percentage of parenchyma podoplanin stained at the acinar level was determined using computerized image analysis; 9 CLD and 4 control subjects gestational ages 27 to 36 weeks were suitable for the analysis. Results. Distinct, lymphatic-specific staining with respect to other vascular structures was appreciated in all gestations. Infants with and without respiratory morbidity had comparable lymphatic distribution which extended to the alveolar ductal level. Podoplanin staining per parenchyma was increased and statistically significant in the CLD group versus controls at the alveolar ductal level (0.06% ± 0.02% versus 0.04% ± 0.01%, 95% CI −0.04% to −0.002%, P CLD. It is suggested that the findings, by expanding current knowledge of CLD pathology, may offer insight into the development of more effective therapies to tackle CLD. PMID:24527433

  5. Inhaled tobacco sterols: uptake by the lungs and disposition to selected organs of rats

    International Nuclear Information System (INIS)

    Holden, W.E.; Maier, J.M.; Liebler, J.M.; Malinow, M.R.

    1988-01-01

    Tobacco sterols (cholesterol, beta-sitosterol, campesterol, and stigmasterol) are present in tobacco smoke and appear in plasma of mammals exposed to cigarette smoke. Because tobacco sterols may be important in the pathogenesis of smoking-induced lung and vascular diseases, we studied the pattern of deposition of cigarette sterols in the lungs and appearance of cigarette sterols in plasma and body organs of rats. After exposure to twenty 5 ml puffs of smoke from tobacco labeled with [4- 14 C]cholesterol or beta-[4- 14 C]sitosterol, rats were killed just after exposure (day 0) and on days 2, 5, 8, 11, 15, and 30, and the lungs and selected body organs analyzed for activity. We found that cigarette sterols are associated with particulates in cigarette smoke, deposited mostly in distal airspaces and parenchyma of the lungs, and appear in plasma and several body organs for more than 30 days after this single exposure to cigarette smoke. Bronchoalveolar lavage fluid contained relatively small amounts of radiolabel for only the first few days, suggesting that most of the sterols were rapidly incorporated in lung parenchyma. Because disorders of sterol metabolism have been implicated in a variety of diseases including atherosclerosis and cancer, the significance of tobacco sterols to human smoking-induced diseases deserves further study

  6. Useful radiologic sign in diagnosis of peripheral lung cancer: Nucleohalo sign and its pathologic basis

    International Nuclear Information System (INIS)

    Wang, H.; Shi, D.

    1994-01-01

    The authors investigated the x-ray findings of 117 patients with peripheral lung cancer proved by operation and pathology, of them 35(29.9%) cases were found to have the 'nucleohalo sign', 6(13.6%) in 44 cases of solitary metastatic lung cancers, but none in 167 cases of benign lung nodular lesions and 4 cases of primary lung sarcoma and lymphoma. Radiologic and pathologic correlative study of the nucleohalo sign with surgical specimens of 14 lung cancers suggested that the cancerous parenchymas in nuclear areas were more than the interstitices in 12 cases and the other 2 were equal in both parenchymas and interstitices. Instead, the cancerous parenchymas in halo areas were less than cancerous interstitices in all cases. Dynamic observation of the 'nucleohalo sign' showed that this sign was an appearance of a stage in cancer growth. It is considered a very important sign in x-ray diagnosis of peripheral lung cancer, especially in the early diagnosis of lung cancer under or equal to 3 cm in diameter

  7. Lung abscess

    International Nuclear Information System (INIS)

    Ha, H.K.; Kang, M.W.; Park, J.M.; Yang, W.J.; Shinn, K.S.; Bahk, Y.W.

    1993-01-01

    Lung abscess was successfully treated with percutaneous drainage in 5 of 6 patients. Complete abscess resolution occurred in 4 patients, partial resolution in one, and no response in one. The duration of drainage ranged from 7 to 18 days (mean 15.5 days) in successful cases. The failure of drainage in one neurologicall impaired patient was attributed to persistent aspiration. In 2 patients, concurrent pleural empyema was also cured. CT provided the anatomic details necessary for choosing the puncture site and avoiding puncture of the lung parenchyma. Percutaneous catheter drainage is a safe and effective method for treating lung abscess. (orig.)

  8. Dexmedetomidine effect to lung injury in abdominal hypertension

    Directory of Open Access Journals (Sweden)

    Ozlem Boybeyi and #775;

    2016-06-01

    Conclusion: IAP of 15 mmHg in rats causes mild injury in lung parenchyma. The administration of DEX in clinical doses does not seem to significantly affect the lungs of rats. [Arch Clin Exp Surg 2016; 5(2.000: 100-104

  9. Diode-Pumped Laser for Lung-Sparing Surgical Treatment of Malignant Pleural Mesothelioma.

    Science.gov (United States)

    Bölükbas, Servet; Biancosino, Christian; Redwan, Bassam; Eberlein, Michael

    2017-06-01

    Surgical resection represents one of the essential cornerstones in multimodal treatment of malignant pleural mesothelioma. In cases of tumor infiltration of the lung, lung-scarifying procedures such as lobectomies or pneumonectomies might be necessary to achieve macroscopic complete resection. However, this increases the morbidity of the patients because it leads to possible delay of the planned chemotherapy or radiotherapy. Innovative surgical techniques are therefore required to enable salvage of the lung parenchyma and optimization of surgical treatment. Here we report our first experience with a diode-pumped neodymium-doped yttrium aluminium garnet laser for parenchyma-sparing lung resection during surgery for malignant pleural mesothelioma. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  10. Magnetic resonance imaging of respiratory movement and lung function

    International Nuclear Information System (INIS)

    Tetzlaff, R.; Eichinger, M.

    2009-01-01

    Lung function measurements are the domain of spirometry or plethysmography. These methods have proven their value in clinical practice, nevertheless, being global measurements the functional indices only describe the sum of all functional units of the lung. Impairment of only a single component of the respiratory pump or of a small part of lung parenchyma can be compensated by unaffected lung tissue. Dynamic imaging can help to detect such local changes and lead to earlier adapted therapy. Magnetic resonance imaging (MRI) seems to be perfect for this application as it is not hampered by image distortion as is projection radiography and it does not expose the patient to potentially harmful radiation like computed tomography. Unfortunately, lung parenchyma is not easy to image using MRI due to its low signal intensity. For this reason first applications of MRI in lung function measurements concentrated on the movement of the thoracic wall and the diaphragm. Recent technical advances in MRI however might allow measurements of regional dynamics of the lungs. (orig.) [de

  11. Human amnion as a biological dressing used to prevent prolonged air leakage in thoracic surgery

    International Nuclear Information System (INIS)

    Mijewski, M.; Uhrynowska-Tyszkiewicz, I.; Piech, K.; Gogowski, M.

    2008-01-01

    Full text: Prolonged air leakage lasting 7 days or more is one of the most common complications in thoracic surgery. This complication may result in increased morbidity and prolonged hospital stay. Amnion allografts have been used to minimise this complication. The aim of our study was to evaluate the usefulness of human amnion grafts in the treatment of air leakage following thoracic surgery. Deep-frozen, radiation-sterilized (35 kGy) human amnion grafts prepared at the Central Tissue Bank in Warsaw (Poland) were used. Amnion allografts were applied to 69 patients who had surgery: 36 thoracotomies, and 33 rethoracotomies had been performed. During lung ventilation the air leakage sites were identified and covered by the amnion flap. Air leakage were evaluated during the postoperative period. Retrospectively we analysed air leakage duration in 170 thoracothomies and rethoracotomies without amnion transplantation. The separation of lung tissue and the liberation of pleural adhesions may be result in the lung and visceral pleura injury. Deep-frozen and radiation-sterilized human amnion is biocompatible, flexible, strong and airtight. It may be easily attached to the lung parenchyma and allows coverage of the area of the lung parenchyma deprived of the visceral pleura. The use of human amnion allografts is simple and safe. After treatment with amnion in 85% of the cases air leakage last less than 7 days, and only its traces were observed. Our results suggest that the human amnion grafts applied for the prevention of air leakage in lung surgery is a safe, simple and effective method. (Author)

  12. The extracellular matrix - the under-recognized element in lung disease?

    NARCIS (Netherlands)

    Burgess, Janette K.; Mauad, Thais; Tjin, Gavin; Karlsson, Jenny C.; Westergren-Thorsson, Gunilla

    2016-01-01

    The lung is composed of airways and lung parenchyma, and the extracellular matrix (ECM) contains the main building blocks of both components. The ECM provides physical support and stability to the lung, and as such it has in the past been regarded as an inert structure. More recent research has

  13. Stochastic rat lung dosimetry for inhaled radon progeny: a surrogate for the human lung for lung cancer risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Winkler-Heil, R.; Hofmann, W. [University of Salzburg, Division of Physics and Biophysics, Department of Materials Research and Physics, Salzburg (Austria); Hussain, M. [University of Salzburg, Division of Physics and Biophysics, Department of Materials Research and Physics, Salzburg (Austria); Higher Education Commission of Pakistan, Islamabad (Pakistan)

    2015-05-15

    Laboratory rats are frequently used in inhalation studies as a surrogate for human exposures. The objective of the present study was therefore to develop a stochastic dosimetry model for inhaled radon progeny in the rat lung, to predict bronchial dose distributions and to compare them with corresponding dose distributions in the human lung. The most significant difference between human and rat lungs is the branching structure of the bronchial tree, which is relatively symmetric in the human lung, but monopodial in the rat lung. Radon progeny aerosol characteristics used in the present study encompass conditions typical for PNNL and COGEMA rat inhalation studies, as well as uranium miners and human indoor exposure conditions. It is shown here that depending on exposure conditions and modeling assumptions, average bronchial doses in the rat lung ranged from 5.4 to 7.3 mGy WLM{sup -1}. If plotted as a function of airway generation, bronchial dose distributions exhibit a significant maximum in large bronchial airways. If, however, plotted as a function of airway diameter, then bronchial doses are much more uniformly distributed throughout the bronchial tree. Comparisons between human and rat exposures indicate that rat bronchial doses are slightly higher than human bronchial doses by about a factor of 1.3, while lung doses, averaged over the bronchial (BB), bronchiolar (bb) and alveolar-interstitial (AI) regions, are higher by about a factor of about 1.6. This supports the current view that the rat lung is indeed an appropriate surrogate for the human lung in case of radon-induced lung cancers. Furthermore, airway diameter seems to be a more appropriate morphometric parameter than airway generations to relate bronchial doses to bronchial carcinomas. (orig.)

  14. New estimates for human lung dimensions

    International Nuclear Information System (INIS)

    Kennedy, Christine; Sidavasan, Sivalal; Kramer, Gary

    2008-01-01

    Full text: The currently used lung dimensions in dosimetry were originally estimated in the 1940s from Army recruits. This study provides new estimates of lung dimensions based on images acquired from a sample from the general population (varying age and sex). Building accurate models, called phantoms, of the human lung requires that the spatial dimensions (length, width, and depth) be quantified, in addition to volume. Errors in dose estimates may result from improperly sized lungs as the counting efficiency of externally mounted detectors (e.g., in a lung counter) is dependent on the position of internally deposited radioactive material (i.e., the size of the lung). This study investigates the spatial dimensions of human lungs. Lung phantoms have previously been made in one of two sizes. The Lawrence Livermore National Laboratory Torso Phantom (LLNL) has deep, short lungs whose dimensions do not comply well with the data published in Report 23 (Reference Man) issued by the International Commission on Radiological Protection (ICRP). The Japanese Atomic Energy Research Institute Torso Phantom(JAERI), has longer, shallower lungs that also deviate from the ICRP values. However, careful examination of the ICRP recommended values shows that they are soft. In fact, they have been dropped from the ICRP's Report 89 which updates Report 23. Literature surveys have revealed a wealth of information on lung volume, but very little data on the spatial dimensions of human lungs. Better lung phantoms need to be constructed to more accurately represent a person so that dose estimates may be quantified more accurately in view of the new, lower, dose limits for occupationally exposed workers and the general public. Retrospective chest images of 60 patients who underwent imaging of the chest- lungs as part of their healthy persons occupational screening for lung disease were chosen. The chosen normal lung images represent the general population). Ages, gender and weight of the

  15. Traumatic lung hernia

    International Nuclear Information System (INIS)

    Rabaza, M. J.; Alcazar, P. P.; Touma, C.

    2001-01-01

    Lung hernia is an uncommon entity that is defined as the protrusion of the lung parenchyma through a defect in the thoracic cavity. It is classified on the basis of its location (cervical, intercostal and diaphragmatic) and etiology (congenital and acquired). Acquired lung hernias can be further grouped as spontaneous, traumatic or pathological, depending on the responsible mechanism. Nearly half of them are secondary to chest trauma, whether penetrating or blunt. We present a case of lung hernia in a patient with penetrating chest trauma. The diagnosis was suspected from the radiographic images and was confirmed by computed tomography. We also review the literature concerning its classification and incidence, diagnostic methods used and treatment. (Author) 9 refs

  16. Unusual congenital pulmonary anomaly with presumed left lung hypoplasia in a young dog.

    Science.gov (United States)

    Lee, C M; Kim, J H; Kang, M H; Eom, K D; Park, H M

    2014-05-01

    A seven-month-old, entire, male miniature schnauzer dog was referred with acute vomiting, inappetence and depression primarily as a result of a gastric foreign body (pine cones). During investigations, thoracic radiographs revealed increased volume of the right lung lobes, deviated cardiomediastinal structures and elevation of the heart from the sternum. Thoracic computed tomography revealed left cranial lung lobe hypoplasia and extension of the right cranial lung parenchyma across the midline to the left hemithorax. Branches of the right pulmonary vessels and bronchi also crossed the midline and extended to the left caudal lung lobe. These findings suggested that the right and left lungs were fused. In humans this finding is consistent with horseshoe lung, which is an uncommon congenital malformation. To the authors' knowledge, this case represents the first report of such a pulmonary anomaly in a dog. © 2014 British Small Animal Veterinary Association.

  17. Antigen-Induced but Not Innate Memory CD8 T Cells Express NKG2D and Are Recruited to the Lung Parenchyma upon Viral Infection.

    Science.gov (United States)

    Grau, Morgan; Valsesia, Séverine; Mafille, Julien; Djebali, Sophia; Tomkowiak, Martine; Mathieu, Anne-Laure; Laubreton, Daphné; de Bernard, Simon; Jouve, Pierre-Emmanuel; Ventre, Erwan; Buffat, Laurent; Walzer, Thierry; Leverrier, Yann; Marvel, Jacqueline

    2018-05-15

    The pool of memory-phenotype CD8 T cells is composed of Ag-induced (AI) and cytokine-induced innate (IN) cells. IN cells have been described as having properties similar to those of AI memory cells. However, we found that pathogen-induced AI memory cells can be distinguished in mice from naturally generated IN memory cells by surface expression of NKG2D. Using this marker, we described the increased functionalities of AI and IN memory CD8 T cells compared with naive cells, as shown by comprehensive analysis of cytokine secretion and gene expression. However, AI differed from IN memory CD8 T cells by their capacity to migrate to the lung parenchyma upon inflammation or infection, a process dependent on their expression of ITGA1/CD49a and ITGA4/CD49d integrins. Copyright © 2018 by The American Association of Immunologists, Inc.

  18. Abscess of residual lobe after pulmonary resection for lung cancer.

    Science.gov (United States)

    Ligabue, Tommaso; Voltolini, Luca; Ghiribelli, Claudia; Luzzi, Luca; Rapicetta, Cristian; Gotti, Giuseppe

    2008-04-01

    Abscess of the residual lobe after lobectomy is a rare but potentially lethal complication. Between January 1975 and December 2006, 1,460 patients underwent elective pulmonary lobectomy for non-small-cell lung cancer at our institution. Abscess of the residual lung parenchyma occurred in 5 (0.3%) cases (4 bilobectomies and 1 lobectomy). Postoperative chest radiography showed incomplete expansion and consolidation of residual lung parenchyma. Flexible bronchoscopy revealed persistent bronchial occlusion from purulent secretions and/or bronchial collapse. Computed tomography in 3 patients demonstrated lung abscess foci. Surgical treatment included completion right pneumonectomy in 3 patients and a middle lobectomy in one. Complications after repeat thoracotomy comprised contralateral pneumonia and sepsis in 1 patient. Residual lobar abscess after lobectomy should be suspected in patients presenting with fever, leukocytosis, bronchial obstruction and lung consolidation despite antibiotic therapy, physiotherapy and bronchoscopy. Computed tomography is mandatory for early diagnosis. Surgical resection of the affected lobe is recommended.

  19. Intraarticular and intravenous administration of 99MTc-HMPAO-labeled human mesenchymal stem cells (99MTC-AH-MSCS): In vivo imaging and biodistribution

    International Nuclear Information System (INIS)

    Meseguer-Olmo, Luis; Montellano, Antonio Jesús; Martínez, Teresa; Martínez, Carlos M.; Revilla-Nuin, Beatriz; Roldán, Marta; Mora, Cristina Fuente; López-Lucas, Maria Dolores; Fuente, Teodomiro

    2017-01-01

    Introduction: Therapeutic application of intravenous administered (IV) human bone marrow-derived mesenchymal stem cells (ahMSCs) appears to have as main drawback the massive retention of cells in the lung parenchyma, questioning the suitability of this via of administration. Intraarticular administration (IAR) could be considered as an alternative route for therapy in degenerative and traumatic joint lesions. Our work is outlined as a comparative study of biodistribution of 99m Tc-ahMSCs after IV and IAR administration, via scintigraphic study in an animal model. Methods: Isolated primary culture of adult human mesenchymal stem cells was labeled with 99m Tc-HMPAO for scintigraphic study of in vivo distribution after intravenous and intra-articular (knee) administration in rabbits. Results: IV administration of radiolabeled ahMSCs showed the bulk of radioactivity in the lung parenchyma while IAR images showed activity mainly in the injected cavity and complete absence of uptake in pulmonary bed. Conclusions: Our study shows that IAR administration overcomes the limitations of IV injection, in particular, those related to cells destruction in the lung parenchyma. After IAR administration, cells remain within the joint cavity, as expected given its size and adhesion properties. Advances in knowledge: Intra-articular administration of adult human mesenchymal stem cells could be a suitable route for therapeutic effect in joint lesions. Implications for patient care: Local administration of adult human mesenchymal stem cells could improve their therapeutic effects, minimizing side effects in patients.

  20. Giant solitary fibrous tumor of the lung: A case report

    OpenAIRE

    Xiao, Ping; Sun, Linlin; Zhong, Diansheng; Lian, Linjuan; Xu, Dongbo

    2014-01-01

    A solitary fibrous tumor arising from the lung parenchyma is rarely described. Here, we present the clinical, imaging, and histological features of a case of a 54-year-old woman with an incidental lung mass of the right lower lobe on a chest radiograph.

  1. Creation of a Tumor-Mimic Model Using a Muscle Paste for Radiofrequency Ablation of the Lung

    International Nuclear Information System (INIS)

    Kawai, T.; Kaminou, T.; Sugiura, K.; Hashimoto, M.; Ohuchi, Y.; Adachi, A.; Fujioka, S.; Ito, H.; Nakamura, K.; Ogawa, T.

    2009-01-01

    The purpose of this study was to develop an easily created tumor-mimic model and evaluate its efficacy for radiofrequency ablation (RFA) of the lung. The bilateral lungs of eight living adult swine were used. A tumor-mimic model was made by percutaneous injection of 1.0 ml muscle paste through the bone biopsy needle into the lung. An RFA probe was then inserted into the tumor mimics immediately after tumor creation. Ablation time, tissue impedance, and temperature were recorded. The tumor mimics and their coagulated regions were evaluated microscopically and macroscopically. The muscle paste was easily injected into the lung parenchyma through the bone biopsy needle and well visualized under fluoroscopy. In 10 of 12 sites the tumor mimics were oval shaped, localized, and homogeneous on gross specimens. Ten tumor mimics were successfully ablated, and four locations were ablated in the normal lung parenchyma as controls. In the tumor and normal lung parenchyma, ablation times were 8.9 ± 3.5 and 4.4 ± 1.6 min, respectively; tissue impedances at the start of ablation were 100.6 ± 16.6 and 145.8 ± 26.8 Ω, respectively; and temperatures at the end of ablation were 66.0 ± 7.9 and 57.5 ± 7.6 o C, respectively. The mean size of tumor mimics was 13.9 x 8.2 mm, and their coagulated area was 18.8 x 13.1 mm. In the lung parenchyma, the coagulated area was 15.3 x 12.0 mm. In conclusion, our tumor-mimic model using muscle paste can be easily and safely created and can be ablated using the ablation algorithm in the clinical setting.

  2. Effect of parenchymal stiffness on canine airway size with lung inflation.

    Directory of Open Access Journals (Sweden)

    Robert H Brown

    2010-04-01

    Full Text Available Although airway patency is partially maintained by parenchymal tethering, this structural support is often ignored in many discussions of asthma. However, agonists that induce smooth muscle contraction also stiffen the parenchyma, so such parenchymal stiffening may serve as a defense mechanism to prevent airway narrowing or closure. To quantify this effect, specifically how changes in parenchymal stiffness alter airway size at different levels of lung inflation, in the present study, we devised a method to separate the effect of parenchymal stiffening from that of direct airway narrowing. Six anesthetized dogs were studied under four conditions: baseline, after whole lung aerosol histamine challenge, after local airway histamine challenge, and after complete relaxation of the airways. In each of these conditions, we used High resolution Computed Tomography to measure airway size and lung volume at five different airway pressures (0, 12, 25, 32, and 45 cm H(2O. Parenchymal stiffening had a protective effect on airway narrowing, a fact that may be important in the airway response to deep inspiration in asthma. When the parenchyma was stiffened by whole lung aerosol histamine challenge, at every lung volume above FRC, the airways were larger than when they were directly challenged with histamine to the same initial constriction. These results show for the first time that a stiff parenchyma per se minimizes the airway narrowing that occurs with histamine challenge at any lung volume. Thus in clinical asthma, it is not simply increased airway smooth muscle contraction, but perhaps a lack of homogeneous parenchymal stiffening that contributes to the symptomatic airway hyperresponsiveness.

  3. MRI contrast enhancement of the lung using as Gd-DTPA aerosol

    International Nuclear Information System (INIS)

    Bockisch, A.; Harvey, R.C.; Davis, M.A.; Kabalka, G.W.

    1993-01-01

    The efficacy of a Gd-DTPA aerosol to enhance ventilated lung parenchyma was evaluated in an MR study in anesthetized female beagle dogs. Ventilation of a 1.0-M Gd-DTPA solution was performed using a commercially available atomizer. MR imaging was performed at a 1.9 T whole body imager with an acquisition mode that was gated to respiration. To quantify the amount of ventilated Gd-DTPA experiments were repeated with 99m Tc-DTPA under identical conditions. Using ventral and dorsal digital scintigraphy, the amount of Gd-DTPA in both lungs were determined. MR imaging showed on increase of signal intensity of 70% following Gd-DTPA ventilation. Because of the inherently low signal intensity of lung parenchyma this degree of contrast enhancement is too small to be clinically useful. (orig.) [de

  4. Effects of emissions from sugar cane burning on the trachea and lungs of Wistar rats

    Directory of Open Access Journals (Sweden)

    Verena Sampaio Barbosa Matos

    Full Text Available ABSTRACT Objective: To evaluate the effects of exposure to emissions from sugar cane burning on inflammatory mechanisms in tissues of the trachea and lung parenchyma in Wistar rats after different periods of exposure. Methods: This was an experimental open randomized study. The animals were divided into four groups: a control group (CG underwent standard laboratory conditions, and three experimental groups were exposed to emissions from sugar cane burning over different periods of time, in days-1 (EG1, 7 (EG7, and 21 (EG21. After euthanasia with 200 mg/kg of ketamine/xylazine, fragments of trachea and lung were collected and fixed in 10% formalin. Histological analyses were performed with H&E and picrosirius red staining. Results: No inflammatory infiltrates were found in the tissues of CG rats. The histological examination of tissues of the trachea and lung parenchyma revealed that the inflammatory process was significantly more intense in EG7 than in the CG (p < 0.05 and p < 0.01, respectively. In comparison with the CG and EG1, angiogenesis in the lung parenchyma and collagen deposition in tracheal tissues were significantly greater only in EG21 (p < 0.001 and p < 0.01, respectively. Conclusions: In this sample, emissions from sugar cane burning induced acute focal and diffuse inflammation in the lamina propria of tracheal tissues, with no loss of ciliated epithelial tissue. In the lung parenchyma of the animals in the experimental groups, there was interstitial and alveolar edema, together with polymorphonuclear cell infiltrates.

  5. Mechanical interactions between adjacent airways in the lung.

    Science.gov (United States)

    Ma, Baoshun; Bates, Jason H T

    2014-03-15

    The forces of mechanical interdependence between the airways and the parenchyma in the lung are powerful modulators of airways responsiveness. Little is known, however, about the extent to which adjacent airways affect each other's ability to narrow due to distortional forces generated within the intervening parenchyma. We developed a two-dimensional computational model of two airways embedded in parenchyma. The parenchyma itself was modeled in three ways: 1) as a network of hexagonally arranged springs, 2) as a network of triangularly arranged springs, and 3) as an elastic continuum. In all cases, we determined how the narrowing of one airway was affected when the other airway was relaxed vs. when it narrowed to the same extent as the first airway. For the continuum and triangular network models, interactions between airways were negligible unless the airways lay within about two relaxed diameters of each other, but even at this distance the interactions were small. By contrast, the hexagonal spring network model predicted that airway-airway interactions mediated by the parenchyma can be substantial for any degree of airway separation at intermediate values of airway contraction forces. Evidence to date suggests that the parenchyma may be better represented by the continuum model, which suggests that the parenchyma does not mediate significant interactions between narrowing airways.

  6. Effect of primarily cultured human lung cancer-associated fibroblasts on radiosensitivity of lung cancer cells

    International Nuclear Information System (INIS)

    Ji Xiaoqin; Ji Jiang; Chen Yongbing; Shan Fang; Lu Xueguan

    2014-01-01

    Objective: To investigate the effect of human lung cancer-associated fibroblasts (CAF) on the radiosensitivity of lung cancer cells when CAF is placed in direct contact co-culture with lung cancer cells. Methods: Human lung CAF was obtained from fresh human lung adenocarcinoma tissue specimens by primary culture and subculture and was then identified by immunofluorescence staining. The CAF was placed in direct contact co-culture with lung cancer A 549 and H 1299 cells, and the effects of CAF on the radiosensitivity of A 549 and H 1299 cells were evaluated by colony-forming assay. Results: The human lung CAF obtained by adherent culture could stably grow and proliferate, and it had specific expression of α-smooth muscle actin, vimentin, and fibroblast activation protein,but without expression of cytokeratin-18. The plating efficiency (PE, %) of A 549 cells at 0 Gy irradiation was (20.0 ± 3.9)% when cultured alone versus (32.3 ± 5.5)% when co-cultured with CAF (t=3.16, P<0.05), and the PE of H 1299 cells at 0 Gy irradiation was (20.6 ± 3.1)% when cultured alone versus (35.2 ± 2.3)% when co-cultured with CAF (t=6.55, P<0.05). The cell survival rate at 2 Gy irradiation (SF 2 ) of A 549 cells was 0.727 ±0.061 when cultured alone versus 0.782 ± 0.089 when co-cultured with CAF (t=0.88, P>0.05), and the SF 2 of H 1299 cells was 0.692 ±0.065 when cultured alone versus 0.782 ± 0.037 when co-cultured with CAF (t=2.08, P>0.05). The protection enhancement ratios of human lung CAF for A 549 cells and H 1299 cells were 1.29 and 1.25, respectively. Conclusions: Human lung CAF reduces the radiosensitivity of lung cancer cells when placed in direct contact co-culture with them, and the radioprotective effect may be attributed to CAF promoting the proliferation of lung cancer cells. (authors)

  7. Lung abscess; Percutaneous catheter therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ha, H.K. (Depts. of Radiology and Internal Medicine, Catholic Univ. Medical Coll., Seoul (Korea, Republic of)); Kang, M.W. (Depts. of Radiology and Internal Medicine, Catholic Univ. Medical Coll., Seoul (Korea, Republic of)); Park, J.M. (Depts. of Radiology and Internal Medicine, Catholic Univ. Medical Coll., Seoul (Korea, Republic of)); Yang, W.J. (Depts. of Radiology and Internal Medicine, Catholic Univ. Medical Coll., Seoul (Korea, Republic of)); Shinn, K.S. (Depts. of Radiology and Internal Medicine, Catholic Univ. Medical Coll., Seoul (Korea, Republic of)); Bahk, Y.W. (Depts. of Radiology and Internal Medicine, Catholic Univ. Medical Coll., Seoul (Korea, Republic of))

    1993-07-01

    Lung abscess was successfully treated with percutaneous drainage in 5 of 6 patients. Complete abscess resolution occurred in 4 patients, partial resolution in one, and no response in one. The duration of drainage ranged from 7 to 18 days (mean 15.5 days) in successful cases. The failure of drainage in one neurologicall impaired patient was attributed to persistent aspiration. In 2 patients, concurrent pleural empyema was also cured. CT provided the anatomic details necessary for choosing the puncture site and avoiding puncture of the lung parenchyma. Percutaneous catheter drainage is a safe and effective method for treating lung abscess. (orig.).

  8. Automatic system for quantification and visualization of lung aeration on chest computed tomography images: the Lung Image System Analysis - LISA

    International Nuclear Information System (INIS)

    Felix, John Hebert da Silva; Cortez, Paulo Cesar; Holanda, Marcelo Alcantara

    2010-01-01

    High Resolution Computed Tomography (HRCT) is the exam of choice for the diagnostic evaluation of lung parenchyma diseases. There is an increasing interest for computational systems able to automatically analyze the radiological densities of the lungs in CT images. The main objective of this study is to present a system for the automatic quantification and visualization of the lung aeration in HRCT images of different degrees of aeration, called Lung Image System Analysis (LISA). The secondary objective is to compare LISA to the Osiris system and also to specific algorithm lung segmentation (ALS), on the accuracy of the lungs segmentation. The LISA system automatically extracts the following image attributes: lungs perimeter, cross sectional area, volume, the radiological densities histograms, the mean lung density (MLD) in Hounsfield units (HU), the relative area of the lungs with voxels with density values lower than -950 HU (RA950) and the 15th percentile of the least density voxels (PERC15). Furthermore, LISA has a colored mask algorithm that applies pseudo-colors to the lung parenchyma according to the pre-defined radiological density chosen by the system user. The lungs segmentations of 102 images of 8 healthy volunteers and 141 images of 11 patients with Chronic Obstructive Pulmonary Disease (COPD) were compared on the accuracy and concordance among the three methods. The LISA was more effective on lungs segmentation than the other two methods. LISA's color mask tool improves the spatial visualization of the degrees of lung aeration and the various attributes of the image that can be extracted may help physicians and researchers to better assess lung aeration both quantitatively and qualitatively. LISA may have important clinical and research applications on the assessment of global and regional lung aeration and therefore deserves further developments and validation studies. (author)

  9. Automatic system for quantification and visualization of lung aeration on chest computed tomography images: the Lung Image System Analysis - LISA

    Energy Technology Data Exchange (ETDEWEB)

    Felix, John Hebert da Silva; Cortez, Paulo Cesar, E-mail: jhsfelix@gmail.co [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia de Teleinformatica; Holanda, Marcelo Alcantara [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Hospital Universitario Walter Cantidio. Dept. de Medicina Clinica

    2010-12-15

    High Resolution Computed Tomography (HRCT) is the exam of choice for the diagnostic evaluation of lung parenchyma diseases. There is an increasing interest for computational systems able to automatically analyze the radiological densities of the lungs in CT images. The main objective of this study is to present a system for the automatic quantification and visualization of the lung aeration in HRCT images of different degrees of aeration, called Lung Image System Analysis (LISA). The secondary objective is to compare LISA to the Osiris system and also to specific algorithm lung segmentation (ALS), on the accuracy of the lungs segmentation. The LISA system automatically extracts the following image attributes: lungs perimeter, cross sectional area, volume, the radiological densities histograms, the mean lung density (MLD) in Hounsfield units (HU), the relative area of the lungs with voxels with density values lower than -950 HU (RA950) and the 15th percentile of the least density voxels (PERC15). Furthermore, LISA has a colored mask algorithm that applies pseudo-colors to the lung parenchyma according to the pre-defined radiological density chosen by the system user. The lungs segmentations of 102 images of 8 healthy volunteers and 141 images of 11 patients with Chronic Obstructive Pulmonary Disease (COPD) were compared on the accuracy and concordance among the three methods. The LISA was more effective on lungs segmentation than the other two methods. LISA's color mask tool improves the spatial visualization of the degrees of lung aeration and the various attributes of the image that can be extracted may help physicians and researchers to better assess lung aeration both quantitatively and qualitatively. LISA may have important clinical and research applications on the assessment of global and regional lung aeration and therefore deserves further developments and validation studies. (author)

  10. Respiratory bronchiolitis-associated interstitial lung disease secondary to electronic nicotine delivery system use confirmed with open lung biopsy.

    Science.gov (United States)

    Flower, Mark; Nandakumar, Lakshmy; Singh, Mahendra; Wyld, David; Windsor, Morgan; Fielding, David

    2017-05-01

    As a modern phenomenon, there is currently limited understanding of the possible toxic effects and broader implications of electronic nicotine delivery systems (ENDS). Large volumes of aerosolized particles are inhaled during "vaping" and there are now an increasing number of case reports demonstrating toxic effects of ENDS, as well as human studies demonstrating impaired lung function in users. This article presents a case of respiratory bronchiolitis interstitial lung disease (RB-ILD) precipitated by vaping in a 33-year-old male with 10 pack years of traditional cigarette and prior treatment for mixed germ cell tumour. The patient had started vaping 10-15 times per day while continuing to smoke 10 traditional cigarettes per day. After 3 months of exposure to e-cigarette vapour, chest computed tomography demonstrated multiple new poorly defined pulmonary nodules with fluffy parenchyma opacification centred along the terminal bronchovascular units. Video-assisted thoracoscopy with lung biopsy of the right upper and right middle lobes was undertaken. The microscopic findings were overall consistent with RB-ILD. This case demonstrates toxicity with use of ENDS on open lung biopsy with resolution of radiographic findings on cessation. We believe that this is the first case where open lung biopsy has demonstrated this and our findings are consistent with RB-ILD.

  11. Serological assessment of neutrophil elastase activity on elastin during lung ECM remodeling

    DEFF Research Database (Denmark)

    Kristensen, Jacob Hull; Karsdal, Morten A.; Sand, Jannie M. B.

    2015-01-01

    Background: During the pathological destruction of lung tissue, neutrophil elastase (NE) degrades elastin, one of the major constituents of lung parenchyma. However there are no non-invasive methods to quantify NE degradation of elastin. We selected specific elastin fragments generated by NE for ...

  12. Tracheobronchial Cast Production and Use in an Undergraduate Human Anatomy Course

    Science.gov (United States)

    Cope, Lee Anne

    2008-01-01

    Silastic E RTV silicone was used to produce tracheobronchial cast for use in an undergraduate human anatomy course. Following air-drying, the trachea and lungs were injected with E RTV silicone and allowed to cure for 24 hr. The parenchyma was then removed from the tracheobronchial cast by maceration and boiling and then whitened in a 10% solution…

  13. Proteomic profiling of human pleural effusion using two-dimensional nano liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Tyan, Yu-Chang; Wu, Hsin-Yi; Lai, Wu-Wei; Su, Wu-Chou; Liao, Pao-Chi

    2005-01-01

    Pleural effusion, an accumulation of pleural fluid, contains proteins originated from plasma filtrate and, especially when tissues are damaged, parenchyma interstitial spaces of lungs and/or other organs. This study details protein profiles in human pleural effusion from 43 lung adenocarcinoma patients by a two-dimensional nano-high performance liquid chromatography electrospray ionization tandem mass spectrometry (2D nano-HPLC-ESI-MS/MS) system. The experimental results revealed the identification of 1415 unique proteins from human pleural effusion. Among these 124 proteins identified with higher confidence levels, some proteins have not been reported in plasma and may represent proteins specifically present in pleural effusion. These proteins are valuable for mass identification of differentially expressed proteins involved in proteomics database and screening biomarker to further study in human lung adenocarcinoma. The significance of the use of proteomics analysis of human pleural fluid for the search of new lung cancer marker proteins, and for their simultaneous display and analysis in patients suffering from lung disorders has been examined.

  14. Dynamic Gd-DTPA enhanced breath-hold 1.5 t MRI of normal lungs and patients with interstitial lung disease and pulmonary nodules: preliminary results

    International Nuclear Information System (INIS)

    Semelka, R.C.; Maycher, B.; Shoenut, J.P.; Kroeker, R.; Griffin, P.; Lertzman, M.

    1992-01-01

    A FLASH technique was used, which encompassed the entire thorax in the transverse plane, before and after dynamic intravenous injection of godalinium DTPA (Gd-DTPA) to study 7 patients with normal lungs, 12 patients with interstitial lung disease (ILD), and 11 patients with pulmonary nodules. Comparative CT studies were obtained within 2 weeks of the MRI study in the patients with lung disease. Quantitative signal intensity (SI) measurements were performed. Qualitative evaluation of lung parenchyma was determined in a prospective blinded fashion, and in the normal group comparison was made with the CT images. In normal patients, SI of lung parenchyma increased by 7.7±1.3%. On precontrast images, second-order pulmonary branchings were visible while post-contrast, fifth- to sixth-order branches were apparent. In patients with ILD, interstitial changes enhanced to a variable extent, increases in SI ranging from minimal (49.9%) to substantial (308.4%). Detection of pulmonary nodules improved following contrast injection. The minimum lesion size detectable decreased from 8 mm precontrast to 5 mm post-contrast. Percentage contrast enhancement was greater for malignant nodules (124.2±79.7%) than benign nodules (5.8±4.7%) (p<0.01). (orig.)

  15. Bronchoscopic cryobiopsy for the diagnosis of diffuse parenchymal lung disease.

    Directory of Open Access Journals (Sweden)

    Jonathan A Kropski

    Full Text Available Although in some cases clinical and radiographic features may be sufficient to establish a diagnosis of diffuse parenchymal lung disease (DPLD, surgical lung biopsy is frequently required. Recently a new technique for bronchoscopic lung biopsy has been developed using flexible cryo-probes. In this study we describe our clinical experience using bronchoscopic cryobiopsy for diagnosis of diffuse lung disease.A retrospective study of subjects who had undergone bronchoscopic cryobiopsy for evaluation of DPLD at an academic tertiary care center from January 1, 2012 through January 15, 2013 was performed. The procedure was performed using a flexible bronchoscope to acquire biopsies of lung parenchyma. H&E stained biopsies were reviewed by an expert lung pathologist.Twenty-five eligible subjects were identified. With a mean area of 64.2 mm(2, cryobiopsies were larger than that typically encountered with traditional transbronchial forceps biopsy. In 19 of the 25 subjects, a specific diagnosis was obtained. In one additional subject, biopsies demonstrating normal parenchyma were felt sufficient to exclude diffuse lung disease as a cause of dyspnea. The overall diagnostic yield of bronchoscopic cryobiopsy was 80% (20/25. The most frequent diagnosis was usual interstitial pneumonia (UIP (n = 7. Three of the 25 subjects ultimately required surgical lung biopsy. There were no significant complications.In patients with suspected diffuse parenchymal lung disease, bronchoscopic cryobiopsy is a promising and minimally invasive approach to obtain lung tissue with high diagnostic yield.

  16. 99Tcm-N(NOEt2 Uptake Kinetics Difference among KMB17 Human Embryonic Lung Diploid Fibroblast and Different Human Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wei JIA

    2010-04-01

    Full Text Available Background and objective PET/CT imaging is expensive, so searching the tumor imaging agent for SPECT/CT is necessary. 99Tcm-N(NOEt2 [bis (N-ethoxy-N-ethyl dithiocarbamato nitrido99Tcm (V] can be uptaken by lung cancer cells and other cells alike. The aim of this study is to evaluate the distinctive value in lung tumor with 99Tcm-N(NOEt2, the difference in its uptake kinetics in human embryonic lung diploid fibroblasts KMB17 and several kinds of lung cancer cells lines. Methods Firstly, six different cell culture medium which contained YTMLC Gejiu human lung squamous carcinoma cell, SPC-A1 human lung adenocarcinoma cell, AGZY low metastatic human lung adenocarcinoma, 973 high metastatic human lung adenocarcinoma cell, GLC-82 Gejiu human lung adenocarcinoma cell, and KMB17 human embryonic lung diploid fibroblast, respectively with equal cell density of 1×106/mL and the same volume were prepared; secondly, the same radioactive dose of 99Tcm-N(NOEt2 was added into each sample and then 300 μL mixed sample was taken out respectively and cultured in 37 oC culture box; Finally, 5 min, 15 min, 30 min, 45 min, 60 min, 75 min, 90 min after cultivation, centrifuged each cultured sample and determined the intracellular radiocounts of each sample, calculated each cell sample’s uptake rate of 99Tcm-N(NOEt2 at different time. Results Statistical difference was found among six cell samples, and the uptake rate sequence from high to low is 973 and SPC-A1>YTMLC>GLC-82>AGZY>KMB17 respectively; furthermore, 30 min-45 min after culture, the uptake rate reached stability, and the 45 min uptake rate of each sample was higher than its 96.7% uptake peak. Conclusion Based on the results above mentioned, it is supposed that there are discriminative clinical value when using 99Tcm-N(NOEt2 as a tumor targeting imaging agent, and 30 min or so after injection may be the best imaging time in the early imaging stage.

  17. Primary leiomyoma of the lung: an exceptional localization.

    Science.gov (United States)

    Zidane, Abdelfettah; Elktaibi, Abderahim; Benjelloun, Amine; Arsalane, Adil; Afandi, Oussama; Bouchentouf, Rachid

    2016-05-01

    Leiomyoma is a benign smooth muscle tumor usually encountered in the uterus. Primary pulmonary localization is extremely rare in adults and children. However, it must be included in the differential diagnosis of any nodular lung lesion. Its treatment is surgical, with good long-term results. Here, we report a case of leiomyoma of lung parenchyma diagnosed in a 26-year-old man. © The Author(s) 2016.

  18. Morphological variation of the kidney secondary to junctional parenchyma on ultrasound

    International Nuclear Information System (INIS)

    Lee, Ji Yoon; Park, Byeong Ho; Nam, Kyeong Jin; Choi, Jong Cheol; Koo, Bong Sig; Kim, Jou Yeoun; Ahn, Seung Eon; Lee, Yung Il

    1996-01-01

    To evaluate the prevalance of morphological variation of the kidney secondary to junctional parenchyma, as well as to analyze the ultrasonographic features of junctional parenchyma. Two hundred and eighty two kidneys of 141 patient without clinical or radiologic evidence of renal disease were prospectively analysed using ultrasound. In all patients, ultrasonograms were obtained in sagittal, coronal and transaxial planes. The kidney was considered to have morphological variation if the ultrasonogram demonstrated junctional parenchymal defect of line ; those showing such variation were classified as one of three types : continuous, discontinuous, or junctional parenchymal line or defect without junctional parenchyma. The prevalance and ultrasonographic features of the kidneys were evaluated. Morphological variation was noted in 71 cases(25%). the continuous type accounted for 54% of these, the discontinuous type for 38%, and junctional parenchymal defect or line without junctional parenchyma for 8%. In all cases, junctional parenchyma was located approximately at the junction of the upper and middle third of the kidney, and had the same echogenecity as the renal cortex. An understanding of the morphological variation of the kidney resulting from junctional renal parenchyma would be helpful in differentiating pseudotumor from true renal neoplasm

  19. [Lung Abscess with Acute Empyema Which Improved after Performing by Video Assissted Thoracic Surgery( Including Pneumonotomy and Lung Abscess Drainage);Report of a Case].

    Science.gov (United States)

    Gabe, Atsushi; Nagamine, Naoji

    2017-05-01

    We herein report the case of a patient demonstrating a lung abscess with acute empyema which improved after performing pnemumonotomy and lung abscess drainage. A 60-year-old male was referred to our hospital to receive treatment for a lung abscess with acute empyema. At surgery, the lung parenchyma was slightly torn with pus leakage. After drainage of lung abscess by enlarging the injured part, curettage in the thoracic cavity and decortication were performed. The postoperative course was uneventful. Direct drainage of an abscess into the thoracic cavity is thought to be a choice for the treatment of lung abscesses.

  20. Areas of normal pulmonary parenchyma on HRCT exhibit increased FDG PET signal in IPF patients

    International Nuclear Information System (INIS)

    Win, Thida; Thomas, Benjamin A.; Lambrou, Tryphon; Hutton, Brian F.; Endozo, Raymondo; Shortman, Robert I.; Afaq, Asim; Ell, Peter J.; Groves, Ashley M.; Screaton, Nicholas J.; Porter, Joanna C.; Maher, Toby M.; Lukey, Pauline

    2014-01-01

    Patients with idiopathic pulmonary fibrosis (IPF) show increased PET signal at sites of morphological abnormality on high-resolution computed tomography (HRCT). The purpose of this investigation was to investigate the PET signal at sites of normal-appearing lung on HRCT in IPF. Consecutive IPF patients (22 men, 3 women) were prospectively recruited. The patients underwent 18 F-FDG PET/HRCT. The pulmonary imaging findings in the IPF patients were compared to the findings in a control population. Pulmonary uptake of 18 F-FDG (mean SUV) was quantified at sites of morphologically normal parenchyma on HRCT. SUVs were also corrected for tissue fraction (TF). The mean SUV in IPF patients was compared with that in 25 controls (patients with lymphoma in remission or suspected paraneoplastic syndrome with normal PET/CT appearances). The pulmonary SUV (mean ± SD) uncorrected for TF in the controls was 0.48 ± 0.14 and 0.78 ± 0.24 taken from normal lung regions in IPF patients (p 18 F-FDG on PET in areas of lung with a normal morphological appearance on HRCT. This may have implications for determining disease mechanisms and treatment monitoring. (orig.)

  1. Traumatic lung hernia; Hernia pulmonar traumatica

    Energy Technology Data Exchange (ETDEWEB)

    Rabaza, M. J.; Alcazar, P. P.; Touma, C. [Hospital Universitario Virgen de las Nieves. Granada (Spain)

    2001-07-01

    Lung hernia is an uncommon entity that is defined as the protrusion of the lung parenchyma through a defect in the thoracic cavity. It is classified on the basis of its location (cervical, intercostal and diaphragmatic) and etiology (congenital and acquired). Acquired lung hernias can be further grouped as spontaneous, traumatic or pathological, depending on the responsible mechanism. Nearly half of them are secondary to chest trauma, whether penetrating or blunt. We present a case of lung hernia in a patient with penetrating chest trauma. The diagnosis was suspected from the radiographic images and was confirmed by computed tomography. We also review the literature concerning its classification and incidence, diagnostic methods used and treatment. (Author) 9 refs.

  2. Comparative study between ultrahigh spatial frequency algorithm and high spatial frequency algorithm in high-resolution CT of the lungs

    International Nuclear Information System (INIS)

    Oh, Yu Whan; Kim, Jung Kyuk; Suh, Won Hyuck

    1994-01-01

    To date, the high spatial frequency algorithm (HSFA) which reduces image smoothing and increases spatial resolution has been used for the evaluation of parenchymal lung diseases in thin-section high-resolution CT. In this study, we compared the ultrahigh spatial frequency algorithm (UHSFA) with the high spatial frequency algorithm in the assessment of thin section images of the lung parenchyma. Three radiologists compared the UHSFA and HSFA on identical CT images in a line-pair resolution phantom, one lung specimen, 2 patients with normal lung and 18 patients with abnormal lung parenchyma. Scanning of a line-pair resolution phantom demonstrated no difference in resolution between two techniques but it showed that outer lines of the line pairs with maximal resolution looked thicker on UHSFA than those on HSFA. Lung parenchymal detail with UHSFA was judged equal or superior to HSFA in 95% of images. Lung parenchymal sharpness was improved with UHSFA in all images. Although UHSFA resulted in an increase in visible noise, observers did not found that image noise interfered with image interpretation. The visual CT attenuation of normal lung parenchyma is minimally increased in images with HSFA. The overall visual preference of the images reconstructed on UHSFA was considered equal to or greater than that of those reconstructed on HSFA in 78% of images. The ultrahigh spatial frequency algorithm improved the overall visual quality of the images in pulmonary parenchymal high-resolution CT

  3. Tiny plastic lung mimics human pulmonary function

    Science.gov (United States)

    Careers Inclusion & Diversity Work-Life Balance Career Resources Apply for a Job Postdocs Students Goals Recycling Green Purchasing Pollution Prevention Reusing Water Resources Environmental Management Releases - 2016 » April » Tiny plastic lung mimics human pulmonary function Tiny plastic lung mimics

  4. Human models of acute lung injury

    Directory of Open Access Journals (Sweden)

    Alastair G. Proudfoot

    2011-03-01

    Full Text Available Acute lung injury (ALI is a syndrome that is characterised by acute inflammation and tissue injury that affects normal gas exchange in the lungs. Hallmarks of ALI include dysfunction of the alveolar-capillary membrane resulting in increased vascular permeability, an influx of inflammatory cells into the lung and a local pro-coagulant state. Patients with ALI present with severe hypoxaemia and radiological evidence of bilateral pulmonary oedema. The syndrome has a mortality rate of approximately 35% and usually requires invasive mechanical ventilation. ALI can follow direct pulmonary insults, such as pneumonia, or occur indirectly as a result of blood-borne insults, commonly severe bacterial sepsis. Although animal models of ALI have been developed, none of them fully recapitulate the human disease. The differences between the human syndrome and the phenotype observed in animal models might, in part, explain why interventions that are successful in models have failed to translate into novel therapies. Improved animal models and the development of human in vivo and ex vivo models are therefore required. In this article, we consider the clinical features of ALI, discuss the limitations of current animal models and highlight how emerging human models of ALI might help to answer outstanding questions about this syndrome.

  5. Effect of increases in lung volume on clearance of aerosolized solute from human lungs

    Energy Technology Data Exchange (ETDEWEB)

    Marks, J.D.; Luce, J.M.; Lazar, N.M.; Wu, J.N.; Lipavsky, A.; Murray, J.F.

    1985-10-01

    To study the effect of increases in lung volume on solute uptake, we measured clearance of /sup 99m/Tc-diethylenetriaminepentaacetic acid (Tc-DTPA) at different lung volumes in 19 healthy humans. Seven subjects inhaled aerosols (1 micron activity median aerodynamic diam) at ambient pressure; clearance and functional residual capacity (FRC) were measured at ambient pressure (control) and at increased lung volume produced by positive pressure (12 cmH2O continuous positive airway pressure (CPAP)) or negative pressure (voluntary breathing). Six different subjects inhaled aerosol at ambient pressure; clearance and FRC were measured at ambient pressure and CPAP of 6, 12, and 18 cmH2O pressure. Six additional subjects inhaled aerosol at ambient pressure or at CPAP of 12 cmH2O; clearance and FRC were determined at CPAP of 12 cmH2O. According to the results, Tc-DTPA clearance from human lungs is accelerated exponentially by increases in lung volume, this effect occurs whether lung volume is increased by positive or negative pressure breathing, and the effect is the same whether lung volume is increased during or after aerosol administration. The effect of lung volume must be recognized when interpreting the results of this method.

  6. Effect of increases in lung volume on clearance of aerosolized solute from human lungs

    International Nuclear Information System (INIS)

    Marks, J.D.; Luce, J.M.; Lazar, N.M.; Wu, J.N.; Lipavsky, A.; Murray, J.F.

    1985-01-01

    To study the effect of increases in lung volume on solute uptake, we measured clearance of /sup 99m/Tc-diethylenetriaminepentaacetic acid (Tc-DTPA) at different lung volumes in 19 healthy humans. Seven subjects inhaled aerosols (1 micron activity median aerodynamic diam) at ambient pressure; clearance and functional residual capacity (FRC) were measured at ambient pressure (control) and at increased lung volume produced by positive pressure [12 cmH 2 O continuous positive airway pressure (CPAP)] or negative pressure (voluntary breathing). Six different subjects inhaled aerosol at ambient pressure; clearance and FRC were measured at ambient pressure and CPAP of 6, 12, and 18 cmH 2 O pressure. Six additional subjects inhaled aerosol at ambient pressure or at CPAP of 12 cmH 2 O; clearance and FRC were determined at CPAP of 12 cmH 2 O. According to the results, Tc-DTPA clearance from human lungs is accelerated exponentially by increases in lung volume, this effect occurs whether lung volume is increased by positive or negative pressure breathing, and the effect is the same whether lung volume is increased during or after aerosol administration. The effect of lung volume must be recognized when interpreting the results of this method

  7. A human lung xenograft mouse model of Nipah virus infection.

    Directory of Open Access Journals (Sweden)

    Gustavo Valbuena

    2014-04-01

    Full Text Available Nipah virus (NiV is a member of the genus Henipavirus (family Paramyxoviridae that causes severe and often lethal respiratory illness and encephalitis in humans with high mortality rates (up to 92%. NiV can cause Acute Lung Injury (ALI in humans, and human-to-human transmission has been observed in recent outbreaks of NiV. While the exact route of transmission to humans is not known, we have previously shown that NiV can efficiently infect human respiratory epithelial cells. The molecular mechanisms of NiV-associated ALI in the human respiratory tract are unknown. Thus, there is an urgent need for models of henipavirus infection of the human respiratory tract to study the pathogenesis and understand the host responses. Here, we describe a novel human lung xenograft model in mice to study the pathogenesis of NiV. Following transplantation, human fetal lung xenografts rapidly graft and develop mature structures of adult lungs including cartilage, vascular vessels, ciliated pseudostratified columnar epithelium, and primitive "air" spaces filled with mucus and lined by cuboidal to flat epithelium. Following infection, NiV grows to high titers (10(7 TCID50/gram lung tissue as early as 3 days post infection (pi. NiV targets both the endothelium as well as respiratory epithelium in the human lung tissues, and results in syncytia formation. NiV infection in the human lung results in the production of several cytokines and chemokines including IL-6, IP-10, eotaxin, G-CSF and GM-CSF on days 5 and 7 pi. In conclusion, this study demonstrates that NiV can replicate to high titers in a novel in vivo model of the human respiratory tract, resulting in a robust inflammatory response, which is known to be associated with ALI. This model will facilitate progress in the fundamental understanding of henipavirus pathogenesis and virus-host interactions; it will also provide biologically relevant models for other respiratory viruses.

  8. Host lung immunity is severely compromised during tropical pulmonary eosinophilia: role of lung eosinophils and macrophages.

    Science.gov (United States)

    Sharma, Pankaj; Sharma, Aditi; Vishwakarma, Achchhe Lal; Agnihotri, Promod Kumar; Sharma, Sharad; Srivastava, Mrigank

    2016-04-01

    Eosinophils play a central role in the pathogenesis of tropical pulmonary eosinophilia, a rare, but fatal, manifestation of filariasis. However, no exhaustive study has been done to identify the genes and proteins of eosinophils involved in the pathogenesis of tropical pulmonary eosinophilia. In the present study, we established a mouse model of tropical pulmonary eosinophilia that mimicked filarial manifestations of human tropical pulmonary eosinophilia pathogenesis and used flow cytometry-assisted cell sorting and real-time RT-PCR to study the gene expression profile of flow-sorted, lung eosinophils and lung macrophages during tropical pulmonary eosinophilia pathogenesis. Our results show that tropical pulmonary eosinophilia mice exhibited increased levels of IL-4, IL-5, CCL5, and CCL11 in the bronchoalveolar lavage fluid and lung parenchyma along with elevated titers of IgE and IgG subtypes in the serum. Alveolar macrophages from tropical pulmonary eosinophilia mice displayed decreased phagocytosis, attenuated nitric oxide production, and reduced T-cell proliferation capacity, and FACS-sorted lung eosinophils from tropical pulmonary eosinophilia mice upregulated transcript levels of ficolin A and anti-apoptotic gene Bcl2,but proapoptotic genes Bim and Bax were downregulated. Similarly, flow-sorted lung macrophages upregulated transcript levels of TLR-2, TLR-6, arginase-1, Ym-1, and FIZZ-1 but downregulated nitric oxide synthase-2 levels, signifying their alternative activation. Taken together, we show that the pathogenesis of tropical pulmonary eosinophilia is marked by functional impairment of alveolar macrophages, alternative activation of lung macrophages, and upregulation of anti-apoptotic genes by eosinophils. These events combine together to cause severe lung inflammation and compromised lung immunity. Therapeutic interventions that can boost host immune response in the lungs might thus provide relief to patients with tropical pulmonary eosinophilia.

  9. Lung sound intensity in patients with emphysema and in normal subjects at standardised airflows

    NARCIS (Netherlands)

    Schreur, H. J.; Sterk, P. J.; Vanderschoot, J.; van Klink, H. C.; van Vollenhoven, E.; Dijkman, J. H.

    1992-01-01

    A common auscultatory finding in pulmonary emphysema is a reduction of lung sounds. This might be due to a reduction in the generation of sounds due to the accompanying airflow limitation or to poor transmission of sounds due to destruction of parenchyma. Lung sound intensity was investigated in

  10. Pulmonary Extramedullary Hematopoiesis in a Patient with Chronic Asthma Resembling Lung Cancer: A Case Report

    Directory of Open Access Journals (Sweden)

    Massood Hosseinzadeh

    2012-01-01

    Full Text Available Background. Extramedullary hematopoiesis is most often seen in reticuloendothelial organs specially spleen, liver, or lymph nodes, and it is rarely seen in lung parenchyma. Almost all reported cases of pulmonary extramedullary hematopoiesis occurred following myeloproliferative disorders specially myelofibrosis. Other less common underlying causes are thalassemia syndromes and other hemoglobinopathies. There was not any reported case of pulmonary extramedullary hematopoiesis in asthmatic patients in the medical literature. Case. Here we reported a 65-year-old lady who was a known case of bronchial asthma with recent developed right lower lobe lung mass. Chest X-ray and CT studies showed an infiltrating mass resembling malignancy. Fine needle aspiration cytology of mass revealed pulmonary extramedullary hematopoiesis. The patient followed for 10 months with serial physical examination and laboratory evaluations which were unremarkable. Conclusion. Extramedullary hematopoiesis of lung parenchyma can be mistaken for lung cancer radiologically. Although previous reported cases occurred with myelofibrosis or hemoglobinopathies, we are reporting the first case of asthma-associated extramedullary hematopoiesis.

  11. Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.

    Science.gov (United States)

    Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P

    2015-10-01

    Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.

  12. Repeated intratracheal instillation of PM10 induces lipid reshaping in lung parenchyma and in extra-pulmonary tissues.

    Directory of Open Access Journals (Sweden)

    Angela Maria Rizzo

    Full Text Available Adverse health effects of air pollution attributed mainly to airborne particulate matter have been well documented in the last couple of decades. Short term exposure, referring to a few hours exposure, to high ambient PM10 concentration is linked to increased hospitalization rates for cardiovascular events, typically 24 h after air pollution peaks. Particulate matter exposure is related to pulmonary and cardiovascular diseases, with increased oxidative stress and inflammatory status. Previously, we have demonstrated that repeated intratracheal instillation of PM10sum in BALB/c mice leads to respiratory tract inflammation, creating in lung a condition which could potentially evolve in a systemic toxic reaction. Additionally, plasma membrane and tissue lipids are easily affected by oxidative stress and directly correlated with inflammatory products. With this aim, in the present investigation using the same model, we analyzed the toxic potential of PM10sum exposure on lipid plasma membrane composition, lipid peroxidation and the mechanisms of cells protection in multiple organs such as lung, heart, liver and brain. Obtained results indicated that PM10 exposure led to lung lipid reshaping, in particular phospholipid and cholesterol content increases; concomitantly, the generation of oxidative stress caused lipid peroxidation. In liver we found significant changes in lipid content, mainly due to an increase of phosphatidylcholine, and in total fatty acid composition with a more pronounced level of docosahexaenoic acid; these changes were statistically correlated to lung molecular markers. Heart and brain were similarly affected; heart was significantly enriched in triglycerides in half of the PM10sum treated mice. These results demonstrated a direct involvement of PM10sum in affecting lipid metabolism and oxidative stress in peripheral tissues that might be related to the serious systemic air-pollution effects on human health.

  13. Effects of smoking and irradiated volume on inflammatory response in the lung of irradiated breast cancer patients evaluated with bronchoalveolar lavage

    International Nuclear Information System (INIS)

    Bjermer, L.; Franzen, L.; Littbrand, B.; Nilsson, K.; Angstroem, T.H.; Henriksson, R.

    1990-01-01

    Quantitative measurements of the effects of irradiation on normal tissues in humans have been hard to obtain because most tissues are inaccessible and/or direct responses are difficult to quantify in a nondestructive manner. Pneumonitis and fibrotic lung disease are adverse effects seen in varying intensity in patients treated with radiotherapy for carcinomas of the thorax, e.g., breast cancer. In the present study the aim was to evaluate the inflammatory reaction in the underlying parenchyma following postoperative irradiation with bronchoalveolar lavage technique. Twenty-one patients with breast cancer stage T1N0M0 received radiotherapy with photons to a target dose of 56 Gy following breast conservative surgery. Nineteen healthy controls were also included. The results showed a clear elevation of neutrophils, mast cells, eosinophils, and lymphocytes in the total irradiated groups, compared to controls. When subclassifying the material according to smoking habit, it was obvious that the smokers displayed a significantly decreased inflammatory reaction, i.e., reduced levels of mast cells and lymphocytes, compared to both nonsmoking controls and patients. Eosinophils were seen in an elevated number in all irradiated patients. Radiological signs of pneumonitis were observed in three patients, all in the nonsmoking group. No correlation was found between the volume of lung irradiated and the inflammatory response. It is concluded that bronchoalveolar lavage is a suitable and sensitive method for investigating radiotherapy-induced reactions in the human lung. Furthermore, ongoing smoking during the treatment depressed the inflammatory response in the lung parenchyma induced by irradiation. The present study as well as earlier observations justify further studies concerning the possibility of interaction of smoking with cancer treatment

  14. Influence of quartz exposure on lung cancer types in cases of lymph node-only silicosis and lung silicosis in German uranium miners.

    Science.gov (United States)

    Mielke, Stefan; Taeger, Dirk; Weitmann, Kerstin; Brüning, Thomas; Hoffmann, Wolfgang

    2018-05-04

    Inhaled crystalline quartz is a carcinogen. Analyses show differences in the distribution of lung cancer types depending on the status of silicosis. Using 2,524 lung tumor cases from the WISMUT autopsy repository database, silicosis was differentiated into cases without silicosis in lung parenchyma and its lymph nodes, with lymph node-only silicosis, or with lung silicosis including lymph node silicosis. The proportions of adenocarcinoma, squamous cell carcinoma, and small-cell lung carcinoma mortality for increasing quartz exposures were estimated in a multinomial logistic regression model. The relative proportions of the lung cancer subtypes in lymph node-only silicosis were more similar to lung silicosis than without any silicosis. The results support the hypothesis that quartz-related carcinogenesis in case of lymph node-only silicosis is more similar to that in lung silicosis than in without silicosis.

  15. First experience with energy dispersive X-ray analysis (EDXA) in lung fibrosis

    International Nuclear Information System (INIS)

    Liebetrau, G.; Wiesner, B.; Strausz, J.; Zglinicki, T. von

    1987-01-01

    Biopsies from 68 patients suffering from interstitial lung disease were examined with regard to minerals using energy dispersive X-ray analysis. In 31 patients a higher portion of minerals or elements were found as pigments. The interpretation of these findings is difficult. If there is a occupational exposure and a reaction of the lung parenchyma the findings could be of clinical value. (author)

  16. Expression analysis of asthma candidate genes during human and murine lung development.

    Science.gov (United States)

    Melén, Erik; Kho, Alvin T; Sharma, Sunita; Gaedigk, Roger; Leeder, J Steven; Mariani, Thomas J; Carey, Vincent J; Weiss, Scott T; Tantisira, Kelan G

    2011-06-23

    Little is known about the role of most asthma susceptibility genes during human lung development. Genetic determinants for normal lung development are not only important early in life, but also for later lung function. To investigate the role of expression patterns of well-defined asthma susceptibility genes during human and murine lung development. We hypothesized that genes influencing normal airways development would be over-represented by genes associated with asthma. Asthma genes were first identified via comprehensive search of the current literature. Next, we analyzed their expression patterns in the developing human lung during the pseudoglandular (gestational age, 7-16 weeks) and canalicular (17-26 weeks) stages of development, and in the complete developing lung time series of 3 mouse strains: A/J, SW, C57BL6. In total, 96 genes with association to asthma in at least two human populations were identified in the literature. Overall, there was no significant over-representation of the asthma genes among genes differentially expressed during lung development, although trends were seen in the human (Odds ratio, OR 1.22, confidence interval, CI 0.90-1.62) and C57BL6 mouse (OR 1.41, CI 0.92-2.11) data. However, differential expression of some asthma genes was consistent in both developing human and murine lung, e.g. NOD1, EDN1, CCL5, RORA and HLA-G. Among the asthma genes identified in genome wide association studies, ROBO1, RORA, HLA-DQB1, IL2RB and PDE10A were differentially expressed during human lung development. Our data provide insight about the role of asthma susceptibility genes during lung development and suggest common mechanisms underlying lung morphogenesis and pathogenesis of respiratory diseases.

  17. Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury.

    Science.gov (United States)

    Spieth, Peter M; Carvalho, Alysson R; Pelosi, Paolo; Hoehn, Catharina; Meissner, Christoph; Kasper, Michael; Hübler, Matthias; von Neindorff, Matthias; Dassow, Constanze; Barrenschee, Martina; Uhlig, Stefan; Koch, Thea; de Abreu, Marcelo Gama

    2009-04-15

    Noisy ventilation with variable Vt may improve respiratory function in acute lung injury. To determine the impact of noisy ventilation on respiratory function and its biological effects on lung parenchyma compared with conventional protective mechanical ventilation strategies. In a porcine surfactant depletion model of lung injury, we randomly combined noisy ventilation with the ARDS Network protocol or the open lung approach (n = 9 per group). Respiratory mechanics, gas exchange, and distribution of pulmonary blood flow were measured at intervals over a 6-hour period. Postmortem, lung tissue was analyzed to determine histological damage, mechanical stress, and inflammation. We found that, at comparable minute ventilation, noisy ventilation (1) improved arterial oxygenation and reduced mean inspiratory peak airway pressure and elastance of the respiratory system compared with the ARDS Network protocol and the open lung approach, (2) redistributed pulmonary blood flow to caudal zones compared with the ARDS Network protocol and to peripheral ones compared with the open lung approach, (3) reduced histological damage in comparison to both protective ventilation strategies, and (4) did not increase lung inflammation or mechanical stress. Noisy ventilation with variable Vt and fixed respiratory frequency improves respiratory function and reduces histological damage compared with standard protective ventilation strategies.

  18. Influences of lung parenchyma density and thoracic fluid on ventilatory EIT measurements

    NARCIS (Netherlands)

    Kunst, P. W.; Vonk Noordegraaf, A.; Straver, B.; Aarts, R. A.; Tesselaar, C. D.; Postmus, P. E.; de Vries, P. M.

    1998-01-01

    Ventilatory impedance changes can be measured by electrical impedance tomography (EIT). Several studies have pointed out that the ventilatory-induced impedance change measured over the lungs shows a linear relationship with tidal volume. However, EIT measures the ventilatory impedance changes

  19. Gene Expression Analysis to Assess the Relevance of Rodent Models to Human Lung Injury.

    Science.gov (United States)

    Sweeney, Timothy E; Lofgren, Shane; Khatri, Purvesh; Rogers, Angela J

    2017-08-01

    The relevance of animal models to human diseases is an area of intense scientific debate. The degree to which mouse models of lung injury recapitulate human lung injury has never been assessed. Integrating data from both human and animal expression studies allows for increased statistical power and identification of conserved differential gene expression across organisms and conditions. We sought comprehensive integration of gene expression data in experimental acute lung injury (ALI) in rodents compared with humans. We performed two separate gene expression multicohort analyses to determine differential gene expression in experimental animal and human lung injury. We used correlational and pathway analyses combined with external in vitro gene expression data to identify both potential drivers of underlying inflammation and therapeutic drug candidates. We identified 21 animal lung tissue datasets and three human lung injury bronchoalveolar lavage datasets. We show that the metasignatures of animal and human experimental ALI are significantly correlated despite these widely varying experimental conditions. The gene expression changes among mice and rats across diverse injury models (ozone, ventilator-induced lung injury, LPS) are significantly correlated with human models of lung injury (Pearson r = 0.33-0.45, P human lung injury. Predicted therapeutic targets, peptide ligand signatures, and pathway analyses are also all highly overlapping. Gene expression changes are similar in animal and human experimental ALI, and provide several physiologic and therapeutic insights to the disease.

  20. The detection, diagnosis and therapy of human lung cancer

    International Nuclear Information System (INIS)

    1978-01-01

    The Cancergram covers clinical aspects of cancers of the lung and tracheo-bronchial tree, i.e., the lower respiratory tract. This includes primary lung cancer in both early and advanced disease status. The topic includes clinically relevant aspects of the prevention, detection, diagnosis, evaluation, and therapy of lung cancer. Certain aspects of metastatic lung disease treatment or therapy which involve aspects of interest to primary lung cancer are included. With certain exceptions, general pre-clinical or animal studies not directly related to the primary human disease are excluded

  1. Areas of normal pulmonary parenchyma on HRCT exhibit increased FDG PET signal in IPF patients

    Energy Technology Data Exchange (ETDEWEB)

    Win, Thida [Lister Hospital, Respiratory Medicine, Stevenage (United Kingdom); Thomas, Benjamin A.; Lambrou, Tryphon; Hutton, Brian F.; Endozo, Raymondo; Shortman, Robert I.; Afaq, Asim; Ell, Peter J.; Groves, Ashley M. [University College London, Institute of Nuclear Medicine, University College Hospital, London (United Kingdom); Screaton, Nicholas J. [Papworth Hospital, Radiology Department, Papworth Everard (United Kingdom); Porter, Joanna C. [University College London, Centre for Respiratory Diseases, University College Hospital, London (United Kingdom); Maher, Toby M. [Royal Brompton Hospital, Interstitial Lung Disease Unit, London (United Kingdom); Lukey, Pauline [GSK, Fibrosis DPU, Research and Development, Stevenage (United Kingdom)

    2014-02-15

    Patients with idiopathic pulmonary fibrosis (IPF) show increased PET signal at sites of morphological abnormality on high-resolution computed tomography (HRCT). The purpose of this investigation was to investigate the PET signal at sites of normal-appearing lung on HRCT in IPF. Consecutive IPF patients (22 men, 3 women) were prospectively recruited. The patients underwent {sup 18}F-FDG PET/HRCT. The pulmonary imaging findings in the IPF patients were compared to the findings in a control population. Pulmonary uptake of {sup 18}F-FDG (mean SUV) was quantified at sites of morphologically normal parenchyma on HRCT. SUVs were also corrected for tissue fraction (TF). The mean SUV in IPF patients was compared with that in 25 controls (patients with lymphoma in remission or suspected paraneoplastic syndrome with normal PET/CT appearances). The pulmonary SUV (mean ± SD) uncorrected for TF in the controls was 0.48 ± 0.14 and 0.78 ± 0.24 taken from normal lung regions in IPF patients (p < 0.001). The TF-corrected mean SUV in the controls was 2.24 ± 0.29 and 3.24 ± 0.84 in IPF patients (p < 0.001). IPF patients have increased pulmonary uptake of {sup 18}F-FDG on PET in areas of lung with a normal morphological appearance on HRCT. This may have implications for determining disease mechanisms and treatment monitoring. (orig.)

  2. Effect of gamma irradiated parenchyma on the growth of irradiated potato tuber buds

    International Nuclear Information System (INIS)

    Fernandez Gonzalez, J.; Garcia Collantes, M. A.

    1976-01-01

    The development of buds greffed on irradiated potato parenchyma was studied. The irradiated parenchyma does not influence the sprouting capacity of buds, but it affects the way they develop. (Author) 9 refs

  3. Autoradiographic visualization of muscarinic receptor subtypes in human and guinea pig lung

    International Nuclear Information System (INIS)

    Mak, J.C.; Barnes, P.J.

    1990-01-01

    Muscarinic receptor subtypes have been localized in human and guinea pig lung sections by an autoradiographic technique, using [3H](-)quinuclidinyl benzilate [( 3H]QNB) and selective muscarinic antagonists. [3H]QNB was incubated with tissue sections for 90 min at 25 degrees C, and nonspecific binding was determined by incubating adjacent serial sections in the presence of 1 microM atropine. Binding to lung sections had the characterization expected for muscarinic receptors. Autoradiography revealed that muscarinic receptors were widely distributed in human lung, with dense labeling over submucosal glands and airway ganglia, and moderate labeling over nerves in intrapulmonary bronchi and of airway smooth muscle of large and small airways. In addition, alveolar walls were uniformly labeled. In guinea pig lung, labeling of airway smooth muscle was similar, but in contrast to human airways, epithelium was labeled but alveolar walls were not. The muscarinic receptors of human airway smooth muscle from large to small airways were entirely of the M3-subtype, whereas in guinea pig airway smooth muscle, the majority were the M3-subtype with a very small population of the M2-subtype present. In human bronchial submucosal glands, M1- and M3-subtypes appeared to coexist in the proportions of 36 and 64%, respectively. In human alveolar walls the muscarinic receptors were entirely of the M1-subtype, which is absent from the guinea pig lung. No M2-receptors were demonstrated in human lung. The localization of M1-receptors was confirmed by direct labeling with [3H]pirenzepine. With the exception of the alveolar walls in human lung, the localization of muscarinic receptor subtypes on structures in the lung is consistent with known functional studies

  4. Complication rates of CT-guided transthoracic lung biopsy: meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Heerink, W.J.; Vliegenthart, R. [University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, University of Groningen, Groningen (Netherlands); University Medical Center Groningen, Department of Radiology, University of Groningen, Groningen (Netherlands); Bock, G.H. de [University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, University of Groningen, Groningen (Netherlands); University Medical Center Groningen, Department of Epidemiology, University of Groningen, Groningen (Netherlands); Jonge, G.J. de [University Medical Center Groningen, Department of Radiology, University of Groningen, Groningen (Netherlands); Groen, H.J.M. [University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, University of Groningen, Groningen (Netherlands); University Medical Center Groningen, Department of Pulmonary Medicine, University of Groningen, Groningen (Netherlands); Oudkerk, M. [University Medical Center Groningen, Center for Medical Imaging-North East Netherlands, University of Groningen, Groningen (Netherlands)

    2017-01-15

    To meta-analyze complication rate in computed tomography (CT)-guided transthoracic lung biopsy and associated risk factors. Four databases were searched from 1/2000 to 8/2015 for studies reporting complications in CT-guided lung biopsy. Overall and major complication rates were pooled and compared between core biopsy and fine needle aspiration (FNA) using the random-effects model. Risk factors for complications in core biopsy and FNA were identified in meta-regression analysis. For core biopsy, 32 articles (8,133 procedures) were included and for FNA, 17 (4,620 procedures). Pooled overall complication rates for core biopsy and FNA were 38.8 % (95 % CI: 34.3-43.5 %) and 24.0 % (95 % CI: 18.2-30.8 %), respectively. Major complication rates were 5.7 % (95 % CI: 4.4-7.4 %) and 4.4 % (95 % CI: 2.7-7.0 %), respectively. Overall complication rate was higher for core biopsy compared to FNA (p < 0.001). For FNA, larger needle diameter was a risk factor for overall complications, and increased traversed lung parenchyma and smaller lesion size were risk factors for major complications. For core biopsy, no significant risk factors were identified. In CT-guided lung biopsy, minor complications were common and occurred more often in core biopsy than FNA. Major complication rate was low. For FNA, smaller nodule diameter, larger needle diameter and increased traversed lung parenchyma were risk factors for complications. (orig.)

  5. Sex-specific differences in hyperoxic lung injury in mice: Implications for acute and chronic lung disease in humans

    Energy Technology Data Exchange (ETDEWEB)

    Lingappan, Krithika, E-mail: lingappa@bcm.edu [Department of Pediatrics, Section of Neonatology, Texas Children' s Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030 (United States); Jiang, Weiwu; Wang, Lihua; Couroucli, Xanthi I. [Department of Pediatrics, Section of Neonatology, Texas Children' s Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030 (United States); Barrios, Roberto [Department of Pathology and Genomic Medicine, The Methodist Hospital Physician Organization, 6565 Fannin Street, Suite M227, Houston, TX 77030 (United States); Moorthy, Bhagavatula [Department of Pediatrics, Section of Neonatology, Texas Children' s Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030 (United States)

    2013-10-15

    Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO{sub 2} > 0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F{sub 2} alpha (8-iso-PGF 2α) (LC–MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. Cytochrome P450 (CYP)1A expression in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F > M) and VEGF (M > F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans. - Highlights: • Male mice were more susceptible to hyperoxic lung injury than females. • Sex differences in inflammatory markers were observed. • CYP1A expression was higher in females after hyperoxia exposure.

  6. Sex-specific differences in hyperoxic lung injury in mice: Implications for acute and chronic lung disease in humans

    International Nuclear Information System (INIS)

    Lingappan, Krithika; Jiang, Weiwu; Wang, Lihua; Couroucli, Xanthi I.; Barrios, Roberto; Moorthy, Bhagavatula

    2013-01-01

    Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO 2 > 0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F 2 alpha (8-iso-PGF 2α) (LC–MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. Cytochrome P450 (CYP)1A expression in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F > M) and VEGF (M > F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans. - Highlights: • Male mice were more susceptible to hyperoxic lung injury than females. • Sex differences in inflammatory markers were observed. • CYP1A expression was higher in females after hyperoxia exposure

  7. Gene Therapy for Human Lung Adenocarcinoma Using a Suicide Gene Driven by a Lung-Specific Promoter Delivered by JC Virus-Like Particles.

    Directory of Open Access Journals (Sweden)

    Chun-Nun Chao

    Full Text Available Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV infection. Therefore, we designed that the JCPyV virus-like particle (VLP packaged with an SP-B promoter-driven thymidine kinase suicide gene (pSPB-tk for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp or thymidine kinase gene (pSPB-tk under the control of the human SP-B promoter were constructed. The promoter's tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP's gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter-driven GFP was specifically expressed in human lung adenocarcinoma (A549 and large cell carcinoma (H460 cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk-carrying JCPyV VLPs. In mice injected with pSPB-tk-carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV, a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma.

  8. Gene Therapy for Human Lung Adenocarcinoma Using a Suicide Gene Driven by a Lung-Specific Promoter Delivered by JC Virus-Like Particles.

    Science.gov (United States)

    Chao, Chun-Nun; Lin, Mien-Chun; Fang, Chiung-Yao; Chen, Pei-Lain; Chang, Deching; Shen, Cheng-Huang; Wang, Meilin

    2016-01-01

    Lung adenocarcinoma, the most commonly diagnosed type of lung cancer, has a poor prognosis even with combined surgery, chemotherapy, or molecular targeted therapies. Most patients are diagnosed with an in-operable advanced or metastatic disease, both pointing to the necessity of developing effective therapies for lung adenocarcinoma. Surfactant protein B (SP-B) has been found to be overexpressed in lung adenocarcinoma. In addition, it has also been demonstrated that human lung adenocarcinoma cells are susceptible to the JC polyomavirus (JCPyV) infection. Therefore, we designed that the JCPyV virus-like particle (VLP) packaged with an SP-B promoter-driven thymidine kinase suicide gene (pSPB-tk) for possible gene therapy of human lung adenocarcinoma. Plasmids expressing the GFP (pSPB-gfp) or thymidine kinase gene (pSPB-tk) under the control of the human SP-B promoter were constructed. The promoter's tissue specificity was tested by transfection of pSPB-gfp into A549, CH27, and H460 human lung carcinoma cells and non-lung cells. The JCPyV VLP's gene transfer efficiency and the selective cytotoxicity of pSPB-tk combined with ganciclovir (GCV) were tested in vitro and in a xenograft mouse model. In the current study, we found that SP-B promoter-driven GFP was specifically expressed in human lung adenocarcinoma (A549) and large cell carcinoma (H460) cells. JCPyV VLPs were able to deliver a GFP reporter gene into A549 cells for expression. Selective cytotoxicity was observed in A549 but not non-lung cells that were transfected with pSPB-tk or infected with pSPB-tk-carrying JCPyV VLPs. In mice injected with pSPB-tk-carrying JCPyV VLPs through the tail vein and treated with ganciclovir (GCV), a potent 80% inhibition of growth of human lung adenocarcinoma nodules resulted. The JCPyV VLPs combined with the use of SP-B promoter demonstrates effectiveness as a potential gene therapy against human lung adenocarcinoma.

  9. Selective localization of IgG from cerebrospinal fluid to brain parenchyma

    DEFF Research Database (Denmark)

    Mørch, Marlene Thorsen; Forsberg Sørensen, Sofie; Khorooshi, Reza M. H.

    2018-01-01

    the cerebrospinal fluid and induce subpial and periventricular NMO-like lesions and blood-brain barrier breakdown, in a complement-dependent manner. To investigate how IgG trafficking from cerebrospinal fluid to brain parenchyma can be influenced by injury. IgG from healthy donors was intrathecally injected...... into the cerebrospinal fluid via cisterna magna at 1, 2, 4, or 7 days after a distal stereotactic sterile needle insertion to the striatum. Antibody deposition, detected by staining for human IgG, peaked 1 day after the intrathecal injection and was selectively seen close to the needle insertion. When NMO...

  10. Characterizing the lung tissue mechanical properties using a micromechanical model of alveolar sac

    Science.gov (United States)

    Karami, Elham; Seify, Behzad; Moghadas, Hadi; Sabsalinejad, Masoomeh; Lee, Ting-Yim; Samani, Abbas

    2017-03-01

    According to statistics, lung disease is among the leading causes of death worldwide. As such, many research groups are developing powerful tools for understanding, diagnosis and treatment of various lung diseases. Recently, biomechanical modeling has emerged as an effective tool for better understanding of human physiology, disease diagnosis and computer assisted medical intervention. Mechanical properties of lung tissue are important requirements for methods developed for lung disease diagnosis and medical intervention. As such, the main objective of this study is to develop an effective tool for estimating the mechanical properties of normal and pathological lung parenchyma tissue based on its microstructure. For this purpose, a micromechanical model of the lung tissue was developed using finite element (FE) method, and the model was demonstrated to have application in estimating the mechanical properties of lung alveolar wall. The proposed model was developed by assembling truncated octahedron tissue units resembling the alveoli. A compression test was simulated using finite element method on the created geometry and the hyper-elastic parameters of the alveoli wall were calculated using reported alveolar wall stress-strain data and an inverse optimization framework. Preliminary results indicate that the proposed model can be potentially used to reconstruct microstructural images of lung tissue using macro-scale tissue response for normal and different pathological conditions. Such images can be used for effective diagnosis of lung diseases such as Chronic Obstructive Pulmonary Disease (COPD).

  11. Evaluation of potential changes in liver and lung tissue of rats in an ischemia-reperfusion injury model (modified pringle maneuver.

    Directory of Open Access Journals (Sweden)

    Silvio Henrique Freitas

    Full Text Available In surgical procedures involving the liver, such as transplantation, resection, and trauma, a temporary occlusion of hepatic vessels may be required. This study was designed to analyze the lesions promoted by ischemia and reperfusion injury of the hepatic pedicle, in the liver and lung, using histopathological and immunohistochemical techniques. In total, 39 Wistar rats were divided into four groups: control group (C n = 3 and ischemia groups subjected to 10, 20, and 30 minutes of hepatic pedicle clamping (I10, n = 12; I20, n = 12; I30, n = 12. Each ischemia group was subdivided into four subgroups of reperfusion (R15, n = 3; R30, n = 3; R60, n = 3; R120, n = 3, after 15, 30, 60, and 120 minutes of reperfusion, respectively. Significant differences were observed in the liver parenchyma (P 0.05. In the lung parenchyma, a significant difference was observed (P 0.05 at different times of ischemia and reperfusion. In the pulmonary parenchyma, the immunoreactivity was not specific, and was not quantified. This study demonstrated that the longer the duration of ischemia and reperfusion, the greater are the morphological lesions found in the hepatic and pulmonary parenchyma.

  12. Polymorphonuclear neutrophil in brain parenchyma after experimental intracerebral hemorrhage.

    Science.gov (United States)

    Zhao, Xiurong; Sun, Guanghua; Zhang, Han; Ting, Shun-Ming; Song, Shen; Gonzales, Nicole; Aronowski, Jaroslaw

    2014-10-01

    Polymorphonuclear neutrophils (PMNs) infiltration into brain parenchyma after cerebrovascular accidents is viewed as a key component of secondary brain injury. Interestingly, a recent study of ischemic stroke suggests that after ischemic stroke, PMNs do not enter brain parenchyma and as such may cause no harm to the brain. Thus, the present study was designed to determine PMNs' behavior after intracerebral hemorrhage (ICH). Using the autologous blood injection model of ICH in rats and immunohistochemistry for PMNs and vascular components, we evaluated the temporal and spatial PMNs distribution in the ICH-affected brain. We found that, similar to ischemia, there is a robust increase in presence of PMNs in the ICH-injured tissue that lasts for at least 1 to 2 weeks. However, in contrast to what was suggested for ischemia, besides PMNs that stay in association with the vasculature, after ICH, we found abundance of intraparenchymal PMNs (with no obvious association with vessels) in the ICH core and hematoma border, especially between 1 and 7 days after the ictus. Interestingly, the increased presence of intraparenchymal PMNs after ICH coincided with the massive loss of microvascular integrity, suggesting vascular disruption as a potential cause of PMNs presence in the brain parenchyma. Our study indicates that in contrast to ischemic stroke, after ICH, PMNs target not only vascular compartment but also brain parenchyma in the affected brain. As such, it is possible that the pathogenic role and therapeutic implications of targeting PMNs after ICH could be different from these after ischemic stroke. Our work suggests the needs for more studies addressing the role of PMNs in ICH.

  13. Development of fibre and parenchyma cells in the bamboo Phyllostachys viridi-glaucescens

    International Nuclear Information System (INIS)

    Crow, E.

    2000-02-01

    The development of the shoot apex and the ontogeny of fibre and parenchyma cells in elongating shoots of the bamboo Phyllostachys viridi-glaucescens (Carr.) Riv. and Riv., seen under the light microscope is described. Fibre cells differentiated from cells of the procambium, whilst the parenchyma cells differentiated from cells of the primary thickening meristem which surround the procambium strands. Three stages of early fibre and parenchyma cell development were identified and these are referred to in subsequent studies of cell wall development. The cytology of developing internodal fibre and parenchyma cells seen under the transmission electron microscope (TEM) is described. There were few ultrastructural features to distinguish the two cell types. Thiery's PATAg test was performed to identify organelles which may be associated with the synthesis of polysaccharides destined for the cell wall. The ultrastructural results are discussed in terms of the process of cell wall deposition. Observations were made of cytoskeletal elements using indirect immunofluorescence techniques. Orientations of cortical microtubules differed from those of the microfilaments throughout early development. Filaments on the inner walls of cells seen under the conventional scanning electron microscope (SEM) were cytoskeletal-like in their orientation and form. Immunogold labelling techniques were performed in an attempt to confirm their identity. Staining with safranin and alcian blue allowed an anatomical description of wall development in fibre and parenchyma cells. These studies were coupled with observations using polarizing optics where cellulose microfibril orientations of the primary and secondary wall layers were established. The field emission scanning electron microscope (FESEM) was used to describe microfibril orientations seen on the inner wall of developing and maturing fibre and parenchyma cells. Chemical extraction of wall matrix materials was necessary for maturing tissue

  14. Standardisation of liver MDCT by tracking liver parenchyma enhancement to trigger imaging

    International Nuclear Information System (INIS)

    Brodoefel, H.; Tognolini, A.; Zamboni, G.A.; Gourtsoyianni, S.; Raptopoulos, V.; Claussen, C.D.

    2012-01-01

    To assess parenchymal bolus-triggering in terms of liver enhancement, lesion-to-liver conspicuity and inter-image variability across serial follow-up MDCTs. We reviewed MDCTs of 50 patients with hepatic metastases who had a baseline CT and two follow-up examinations. In 25 consecutive patients CT data acquisition was initiated by liver parenchyma triggering at a 50-HU enhancement threshold. In a matched control group, imaging was performed with an empirical delay of 65 s. CT attenuation values were assessed in vessels, liver parenchyma and metastasis. Target lesions were classified according to five enhancement patterns. Compared with the control group, liver enhancement was significantly higher with parenchyma triggering (59.8 ± 7.6 HU vs. 48.8 ± 11.2 HU, P = 0.0002). The same was true for conspicuity (liver parenchyma - lesion attenuation) of hypo-enhancing lesions (72.2 ± 15.9 HU vs. 52.7 ± 19.4 HU, P = 0.0006). Liver triggering was associated with reduced variability for liver enhancement among different patients (P = 0.035) and across serial follow-up examinations in individual patients (P < 0.0001). The number of patients presenting with uniform lesion enhancement pattern across serial examinations was significantly higher in the triggered group (20 vs. 11; P = 0.018). Liver parenchyma triggering provides superior lesion conspicuity and improves standardisation of image quality across follow-up examinations with greater uniformity of enhancement patterns. (orig.)

  15. Radiation-Induced Differentiation in Human Lung Fibroblast

    International Nuclear Information System (INIS)

    Park, Sa-Rah; Ahn, Ji-Yeon; Han, Young-Soo; Shim, Jie-Young; Yun, Yeon-Sook; Song, Jie-Young

    2007-01-01

    One of the most common tumors in many countries is lung cancer and patients with lung cancer may take radiotherapy. Although radiotherapy may have its own advantages, it can also induce serious problems such as acute radiation pneumonitis and pulmonary fibrosis. Pulmonary fibrosis is characterized by excessive production of α-SMA and accumulation of extracellular matrix (ECM) such as collagen and fibronectin. There has been a great amount of research about fibrosis but the exact mechanism causing the reaction is not elucidated especially in radiation-induced fibrosis. Until now it has been known that several factors such as transforming growth factor (TGF-β), tumor necrosis factor (TNF), interleukin (IL)-1, IL-6, platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) are related to fibrosis. Among them TGF-β with Smad signaling is known to be the main stream and other signaling molecules such as MAPK, ERK and JNK (3) also participates in the process. In addition to those above factors, it is thought that more diverse and complicate mechanisms may involve in the radiationinduced fibrosis. Therefore, to investigate the underlying mechanisms in radiation induced fibrosis, first of all, we confirmed whether radiation induces trans differentiation in human normal lung fibroblasts. Here, we suggest that not only TGF-β but also radiation can induce trans differentiation in human lung fibroblast WI-38 and IMR-90

  16. Boron absorption imaging in rat lung colon adenocarcinoma metastases

    Energy Technology Data Exchange (ETDEWEB)

    Altieri, S [Dipartimento di Fisica Nucleare e Teorica Universita degli Studi di Pavia (Italy); Bortolussi, S [Dipartimento di Fisica Nucleare e Teorica Universita degli Studi di Pavia (Italy); Bruschi, P [Dipartimento di Fisica Nucleare e Teorica Universita degli Studi di Pavia (Italy); Fossati, F [Dipartimento di Fisica Nucleare e Teorica Universita degli Studi di Pavia (Italy); Vittor, K [Dipartimento di Fisica Nucleare e Teorica Universita degli Studi di Pavia (Italy); Nano, R [Dipartimento di Biologia Animale Universita degli Studi di Pavia (Italy); Facoetti, A [Dipartimento di Biologia Animale Universita degli Studi di Pavia (Italy); Chiari, P [Dipartimento di Fisica Nucleare e Teorica Universita degli Studi di Pavia (Italy); Bakeine, J [Dipartimento di Scienze Biomediche e Biotecnologie Universita degli Studi di Brescia (Italy); Clerici, A [Dipartimento di Chirurgia Universita degli Studi di Pavia (Italy); Ferrari, C [Dipartimento di Chirurgia Universita degli Studi di Pavia (Italy); Salvucci, O [Dipartimento di Scienze Biomediche e Biotecnologie Universita degli Studi di Brescia (Italy)

    2006-05-15

    Given the encouraging results from our previous work on the clinical application of BNCT on non-resectable, chemotherapy resistant liver metastases, we explore the possibility to extend our technique to lung metastases. A fundamental requirement for BNCT is achieving higher {sup 10}B concentrations in the metastases compared to those in healthy tissue. For this reason we developed a rat model with lung metastases in order to study the temporal distribution of {sup 10}B concentration in tissues and tumoral cells. Rats with induced lung metastases from colon adenocarcinoma were sacrificed two hours after intraperitoneal Boronphenylalanine infusion. The lungs were harvested, frozen in liquid nitrogen and subsequently histological sections underwent neutron autoradiography in the nuclear reactor Triga Mark II, University of Pavia. Our findings demonstrate higher Boron uptake in tumoral nodules compared to healthy lung parenchyma 2 hours after Boronphenylalanine infusion.

  17. Comparison of lung preservation solutions in human lungs using an ex vivo lung perfusion experimental model

    Directory of Open Access Journals (Sweden)

    Israel L. Medeiros

    2012-09-01

    Full Text Available OBJECTIVE: Experimental studies on lung preservation have always been performed using animal models. We present ex vivo lung perfusion as a new model for the study of lung preservation. Using human lungs instead of animal models may bring the results of experimental studies closer to what could be expected in clinical practice. METHOD: Brain-dead donors whose lungs had been declined by transplantation teams were used. The cases were randomized into two groups. In Group 1, Perfadex®was used for pulmonary preservation, and in Group 2, LPDnac, a solution manufactured in Brazil, was used. An ex vivo lung perfusion system was used, and the lungs were ventilated and perfused after 10 hours of cold ischemia. The extent of ischemic-reperfusion injury was measured using functional and histological parameters. RESULTS: After reperfusion, the mean oxygenation capacity was 405.3 mmHg in Group 1 and 406.0 mmHg in Group 2 (p = 0.98. The mean pulmonary vascular resistance values were 697.6 and 378.3 dyn·s·cm-5, respectively (p =0.035. The mean pulmonary compliance was 46.8 cm H20 in Group 1 and 49.3 ml/cm H20 in Group 2 (p =0.816. The mean wet/dry weight ratios were 2.06 and 2.02, respectively (p=0.87. The mean Lung Injury Scores for the biopsy performed after reperfusion were 4.37 and 4.37 in Groups 1 and 2, respectively (p = 1.0, and the apoptotic cell counts were 118.75/mm² and 137.50/mm², respectively (p=0.71. CONCLUSION: The locally produced preservation solution proved to be as good as Perfadex®. The clinical use of LPDnac may reduce costs in our centers. Therefore, it is important to develop new models to study lung preservation.

  18. The fetal MR appearance of 'nutmeg lung': findings in 8 cases linked to pulmonary lymphangiectasia

    Energy Technology Data Exchange (ETDEWEB)

    Victoria, Teresa [The Children' s Hospital of Philadelphia, Radiology Department, Center for Fetal Diagnosis and Treatment, Philadelphia, PA (United States); Andronikou, Savvas [University of the Witwatersrand, Department of Radiology, Faculty of Health Sciences, Cape Town (South Africa)

    2014-10-15

    A pattern of abnormal signal at fetal MRI may be seen in the setting of primary or secondary congenital lymphangiectasia, manifested as a heterogeneous appearance of the lung parenchyma and the presence of subtle T2-hyperintense branching tubular structures that emanate from the hila. We have named this pattern the nutmeg lung. We describe the nutmeg lung appearance seen in fetal MRI scans, with discussion of possible etiologies and outcomes in a series of eight fetuses. We retrospectively reviewed imaging from a database of patients demonstrating features of nutmeg lung on fetal MRI. Medical records were used to determine the postnatal diagnosis, clinical course and outcome. Among the eight fetal cases of nutmeg lung, two had postnatal confirmation of primary lymphangiectasia and the remaining six had secondary lymphangiectasia, presumably secondary to congenital cardiac anomalies. There were various-size pleural effusions in all cases. Only one of the cases demonstrated hydrops fetalis. We present the description of the nutmeg lung sign on fetal MRI as T2-hyperintense heterogeneous lungs with fluid-filled, serpiginous branching structures that extend from the pulmonary hila to the periphery of the lung, often accompanied by pleural effusions. The sign denotes findings of primary or secondary lymphangiectasia. Findings of secondary lymphangiectasia in our series were a result of cardiac insufficiency. Recognizing this sign might be helpful in the diagnostic algorithm of the fetus with abnormal lung parenchyma. (orig.)

  19. Intravenous augmentation treatment and lung density in severe α1 antitrypsin deficiency (RAPID)

    DEFF Research Database (Denmark)

    Chapman, Kenneth R; Burdon, Jonathan G W; Piitulainen, Eeva

    2015-01-01

    BACKGROUND: The efficacy of α1 proteinase inhibitor (A1PI) augmentation treatment for α1 antitrypsin deficiency has not been substantiated by a randomised, placebo-controlled trial. CT-measured lung density is a more sensitive measure of disease progression in α1 antitrypsin deficiency emphysema...... of emphysema, a finding that could not be substantiated by lung density measurement at FRC alone or by the two measurements combined. These findings should prompt consideration of augmentation treatment to preserve lung parenchyma in individuals with emphysema secondary to severe α1 antitrypsin deficiency...

  20. Long T2 suppression in native lung 3-D imaging using k-space reordered inversion recovery dual-echo ultrashort echo time MRI.

    Science.gov (United States)

    Gai, Neville D; Malayeri, Ashkan A; Bluemke, David A

    2017-08-01

    Long T2 species can interfere with visualization of short T2 tissue imaging. For example, visualization of lung parenchyma can be hindered by breathing artifacts primarily from fat in the chest wall. The purpose of this work was to design and evaluate a scheme for long T2 species suppression in lung parenchyma imaging using 3-D inversion recovery double-echo ultrashort echo time imaging with a k-space reordering scheme for artifact suppression. A hyperbolic secant (HS) pulse was evaluated for different tissues (T1/T2). Bloch simulations were performed with the inversion pulse followed by segmented UTE acquisition. Point spread function (PSF) was simulated for a standard interleaved acquisition order and a modulo 2 forward-reverse acquisition order. Phantom and in vivo images (eight volunteers) were acquired with both acquisition orders. Contrast to noise ratio (CNR) was evaluated in in vivo images prior to and after introduction of the long T2 suppression scheme. The PSF as well as phantom and in vivo images demonstrated reduction in artifacts arising from k-space modulation after using the reordering scheme. CNR measured between lung and fat and lung and muscle increased from -114 and -148.5 to +12.5 and 2.8 after use of the IR-DUTE sequence. Paired t test between the CNRs obtained from UTE and IR-DUTE showed significant positive change (p lung-fat CNR and p = 0.03 for lung-muscle CNR). Full 3-D lung parenchyma imaging with improved positive contrast between lung and other long T2 tissue types can be achieved robustly in a clinically feasible time using IR-DUTE with image subtraction when segmented radial acquisition with k-space reordering is employed.

  1. Automatic Approach for Lung Segmentation with Juxta-Pleural Nodules from Thoracic CT Based on Contour Tracing and Correction

    Directory of Open Access Journals (Sweden)

    Jinke Wang

    2016-01-01

    Full Text Available This paper presents a fully automatic framework for lung segmentation, in which juxta-pleural nodule problem is brought into strong focus. The proposed scheme consists of three phases: skin boundary detection, rough segmentation of lung contour, and pulmonary parenchyma refinement. Firstly, chest skin boundary is extracted through image aligning, morphology operation, and connective region analysis. Secondly, diagonal-based border tracing is implemented for lung contour segmentation, with maximum cost path algorithm used for separating the left and right lungs. Finally, by arc-based border smoothing and concave-based border correction, the refined pulmonary parenchyma is obtained. The proposed scheme is evaluated on 45 volumes of chest scans, with volume difference (VD 11.15±69.63 cm3, volume overlap error (VOE 3.5057±1.3719%, average surface distance (ASD 0.7917±0.2741 mm, root mean square distance (RMSD 1.6957±0.6568 mm, maximum symmetric absolute surface distance (MSD 21.3430±8.1743 mm, and average time-cost 2 seconds per image. The preliminary results on accuracy and complexity prove that our scheme is a promising tool for lung segmentation with juxta-pleural nodules.

  2. First clinical evaluation of radioimmunoimaging using anti-human lung cancer monoclonal antibodies

    International Nuclear Information System (INIS)

    Zhou Qian

    1991-01-01

    Anti-human large cell lung cancer monoclonal antibodies (McAb) 2E3 and 6D1 were produced in the laboratory. Immunohistochemical studies and radiobinding assay showed these antibodies possessed high specificity against lung cancer cells. 28 patients with lung masses were investigated with 131 I-labeled McAb 6D1 and/or 2E3 scintigraphy. 19 of them were histologically proven and 13 were diagnosed primary lung carcinoma. Radioimmunoimaging visualized 10/13 of the primary lung cancers with a detection rate of 77%. Only 1 case of the non-cancer patients and a false localization, giving a true negative rate of 83%. Pathologically the squamous cell lung carcinoma had the highest localization and the small cell lung carcinoma next, but the detection rate was 100% for both. The adenocarcinoma of lung was less sensitive to these McAbs, with a detection rate of only 33% (1 of 3 cases). We conclude that radioimmunoimaging with anti-human large cell lung cancer McAbs is more specific and effective in detecting primary lung cancers and differentiating lung masses than with antibodies against other tumor associated antigens

  3. Diffusion on Networks and Diffusion Weighted NMR of the Human Lung

    DEFF Research Database (Denmark)

    Buhl, Niels

    2011-01-01

    of the diffusion propagator to general properties of the underlying graph. Diffusion weighted NMR of the human lung with hyperpolarized noble gases, which over the last decade has been demonstrated to be a very promising way of detecting and quantifying lung diseases like emphysema, represent an obvious...... application of the above mentioned theory, given that the human lung consists of a large network of bifurcating tube like airways. 90-95% of the gas in a human lung resides in the ~30000 pulmonary acini, each of these consists of ~500 airways, which are connected as the edges in a binary tree. We model...... diffusion in the pulmonary acini as diffusion on metric graphs with this structure. The metric graph for each individual pulmonary acinus is embedded in three dimensional space via line segments. By considering an isotropic distribution of acini and a symmetric branching geometry for the line segments...

  4. Sulfite-induced protein radical formation in LPS aerosol-challenged mice: Implications for sulfite sensitivity in human lung disease

    Directory of Open Access Journals (Sweden)

    Ashutosh Kumar

    2018-05-01

    Full Text Available Exposure to (bisulfite (HSO3– and sulfite (SO32– has been shown to induce a wide range of adverse reactions in sensitive individuals. Studies have shown that peroxidase-catalyzed oxidation of (bisulfite leads to formation of several reactive free radicals, such as sulfur trioxide anion (.SO3–, peroxymonosulfate (–O3SOO., and especially the sulfate (SO4. – anion radicals. One such peroxidase in neutrophils is myeloperoxidase (MPO, which has been shown to form protein radicals. Although formation of (bisulfite-derived protein radicals is documented in isolated neutrophils, its involvement and role in in vivo inflammatory processes, has not been demonstrated. Therefore, we aimed to investigate (bisulfite-derived protein radical formation and its mechanism in LPS aerosol-challenged mice, a model of non-atopic asthma. Using immuno-spin trapping to detect protein radical formation, we show that, in the presence of (bisulfite, neutrophils present in bronchoalveolar lavage and in the lung parenchyma exhibit, MPO-catalyzed oxidation of MPO to a protein radical. The absence of radical formation in LPS-challenged MPO- or NADPH oxidase-knockout mice indicates that sulfite-derived radical formation is dependent on both MPO and NADPH oxidase activity. In addition to its oxidation by the MPO-catalyzed pathway, (bisulfite is efficiently detoxified to sulfate by the sulfite oxidase (SOX pathway, which forms sulfate in a two-electron oxidation reaction. Since SOX activity in rodents is much higher than in humans, to better model sulfite toxicity in humans, we induced SOX deficiency in mice by feeding them a low molybdenum diet with tungstate. We found that mice treated with the SOX deficiency diet prior to exposure to (bisulfite had much higher protein radical formation than mice with normal SOX activity. Altogether, these results demonstrate the role of MPO and NADPH oxidase in (bisulfite-derived protein radical formation and show the involvement of

  5. Interstitial lung disease associated with connective tissue diseases

    International Nuclear Information System (INIS)

    Medina, Yimy F; Restrepo, Jose Felix; Iglesias, Antonio; Ojeda, Paulina; Matiz, Carlos

    2007-01-01

    An interstitial lung disease (ILD) belongs to a group of diffuse parenchyma lung diseases it should be differentiated from other pathologies among those are idiopathic and ILD associated to connective tissue diseases (CTD) New concepts have been developed in the last years and they have been classified in seven defined subgroups. It has been described the association of each one of these subgroups with CTD. Natural history and other aspects of its treatment is not known completely .For complete diagnose it is required clinical, image and histopathologic approaches. The biopsy lung plays an essential role. It is important to promote and to stimulate the subclasification of each subgroup with the purpose of knowing their natural history directing the treatment and to improve their outcome

  6. MRI and CT lung biomarkers: Towards an in vivo understanding of lung biomechanics.

    Science.gov (United States)

    Young, Heather M; Eddy, Rachel L; Parraga, Grace

    2017-09-29

    The biomechanical properties of the lung are necessarily dependent on its structure and function, both of which are complex and change over time and space. This makes in vivo evaluation of lung biomechanics and a deep understanding of lung biomarkers, very challenging. In patients and animal models of lung disease, in vivo evaluations of lung structure and function are typically made at the mouth and include spirometry, multiple-breath gas washout tests and the forced oscillation technique. These techniques, and the biomarkers they provide, incorporate the properties of the whole organ system including the parenchyma, large and small airways, mouth, diaphragm and intercostal muscles. Unfortunately, these well-established measurements mask regional differences, limiting their ability to probe the lung's gross and micro-biomechanical properties which vary widely throughout the organ and its subcompartments. Pulmonary imaging has the advantage in providing regional, non-invasive measurements of healthy and diseased lung, in vivo. Here we summarize well-established and emerging lung imaging tools and biomarkers and how they may be used to generate lung biomechanical measurements. We review well-established and emerging lung anatomical, microstructural and functional imaging biomarkers generated using synchrotron x-ray tomographic-microscopy (SRXTM), micro-x-ray computed-tomography (micro-CT), clinical CT as well as magnetic resonance imaging (MRI). Pulmonary imaging provides measurements of lung structure, function and biomechanics with high spatial and temporal resolution. Imaging biomarkers that reflect the biomechanical properties of the lung are now being validated to provide a deeper understanding of the lung that cannot be achieved using measurements made at the mouth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Relationship between renal cortex and parenchyma thickness and renal function: study with CT measurement

    International Nuclear Information System (INIS)

    Xu Yufeng; Tang Guangjian; Jiang Xuexiang

    2006-01-01

    Objective: To study the relationship between renal morphology and renal function, and to assess the value of CT as a criterion to grade renal function. Methods: Enhancement CT were performed in 89 patients with no local renal disease whose split renal glomerular filtration rates (GFR) were measured by renal dynamic imaging with 99 Tc m -DTPA. The 178 kidneys were divided into normal renal function, mild and severe renal impairment groups according to renal function. Differences between three groups respect to the mean thickness of renal cortex and parenchyma were assessed by ANOVA. Using Pearson's correlation test, the correlation between the renal cortex, parenchyma thicknesses and renal GFR were examined. The value of CT in predicting renal function was assessed by using ROC analysis. Results: The renal cortex thicknesses of normal renal function, mild and severe renal impairment groups were (5.9±1.1), (4.6± 1.1), and (3.3±1.0) mm respectively, and the renal parenchyma thicknesses were (26.3±4.2), (21.3±4.6), (16.2±4.6) mm. There were significant differences of renal cortex, parenchyma thicknesses between 3 groups (cortex F=54.78, P<0.01; parenehyma F=43.90, P<0.01). The thicknesses of renal cortex (r=0.752, P<0.01), parenchyma (r=0.738, P<0.01) had positive linear correlation with renal function. ROC analysis of the renal cortex thicknesses measured by CT in predicting mild and severe renal impairment showed that the Az was 0.860 and 0.905 respectively, whereas that of parenchyma was 0.868 and 0.884. Conclusion: The thicknesses of renal cortex, parenchyma measured by CT can reflect renal function. CT was a supplementary method to assess renal function. (authors)

  8. Transbronchial lung biopsy with a flexible cryoprobe: First case report from India

    Directory of Open Access Journals (Sweden)

    Sahajal Dhooria

    2016-01-01

    Full Text Available Sarcoidosis and tuberculosis are granulomatous disorders that mimic each other both clinically and radiologically. Both can present with fever and pulmonary nodules and often require the performance of transbronchial lung biopsy (TBLB for diagnosis. In recent studies, the flexible cryoprobe for carrying out TBLB has been found to be useful in the diagnosis of disorders diffusely involving the lung parenchyma. Here, we present the case of a 29-year-old man who presented with fever and cough and was found to have multiple small nodules in both lungs. TBLB with a flexible cryoprobe helped in differentiating between sarcoidosis and tuberculosis.

  9. Automated diagnosis of interstitial lung diseases and emphysema in MDCT imaging

    Science.gov (United States)

    Fetita, Catalin; Chang Chien, Kuang-Che; Brillet, Pierre-Yves; Prêteux, Françoise

    2007-09-01

    Diffuse lung diseases (DLD) include a heterogeneous group of non-neoplasic disease resulting from damage to the lung parenchyma by varying patterns of inflammation. Characterization and quantification of DLD severity using MDCT, mainly in interstitial lung diseases and emphysema, is an important issue in clinical research for the evaluation of new therapies. This paper develops a 3D automated approach for detection and diagnosis of diffuse lung diseases such as fibrosis/honeycombing, ground glass and emphysema. The proposed methodology combines multi-resolution 3D morphological filtering (exploiting the sup-constrained connection cost operator) and graph-based classification for a full characterization of the parenchymal tissue. The morphological filtering performs a multi-level segmentation of the low- and medium-attenuated lung regions as well as their classification with respect to a granularity criterion (multi-resolution analysis). The original intensity range of the CT data volume is thus reduced in the segmented data to a number of levels equal to the resolution depth used (generally ten levels). The specificity of such morphological filtering is to extract tissue patterns locally contrasting with their neighborhood and of size inferior to the resolution depth, while preserving their original shape. A multi-valued hierarchical graph describing the segmentation result is built-up according to the resolution level and the adjacency of the different segmented components. The graph nodes are then enriched with the textural information carried out by their associated components. A graph analysis-reorganization based on the nodes attributes delivers the final classification of the lung parenchyma in normal and ILD/emphysematous regions. It also makes possible to discriminate between different types, or development stages, among the same class of diseases.

  10. Immune and Inflammatory Cell Composition of Human Lung Cancer Stroma.

    Directory of Open Access Journals (Sweden)

    G-Andre Banat

    Full Text Available Recent studies indicate that the abnormal microenvironment of tumors may play a critical role in carcinogenesis, including lung cancer. We comprehensively assessed the number of stromal cells, especially immune/inflammatory cells, in lung cancer and evaluated their infiltration in cancers of different stages, types and metastatic characteristics potential. Immunohistochemical analysis of lung cancer tissue arrays containing normal and lung cancer sections was performed. This analysis was combined with cyto-/histomorphological assessment and quantification of cells to classify/subclassify tumors accurately and to perform a high throughput analysis of stromal cell composition in different types of lung cancer. In human lung cancer sections we observed a significant elevation/infiltration of total-T lymphocytes (CD3+, cytotoxic-T cells (CD8+, T-helper cells (CD4+, B cells (CD20+, macrophages (CD68+, mast cells (CD117+, mononuclear cells (CD11c+, plasma cells, activated-T cells (MUM1+, B cells, myeloid cells (PD1+ and neutrophilic granulocytes (myeloperoxidase+ compared with healthy donor specimens. We observed all of these immune cell markers in different types of lung cancers including squamous cell carcinoma, adenocarcinoma, adenosquamous cell carcinoma, small cell carcinoma, papillary adenocarcinoma, metastatic adenocarcinoma, and bronchioloalveolar carcinoma. The numbers of all tumor-associated immune cells (except MUM1+ cells in stage III cancer specimens was significantly greater than those in stage I samples. We observed substantial stage-dependent immune cell infiltration in human lung tumors suggesting that the tumor microenvironment plays a critical role during lung carcinogenesis. Strategies for therapeutic interference with lung cancer microenvironment should consider the complexity of its immune cell composition.

  11. MRI contrast enhancement of the lung using a Gd-DTPA aerosol

    International Nuclear Information System (INIS)

    Bockisch, A.; Harvey, R.C.; Davis, M.A.; Kabalka, G.W.

    1993-01-01

    A MR imaging study was performed in anesthetized female beagle dogs to investigate the effectiveness of Gd-DTPA aerosol for contrast enhancement in ventilated lungs. Ventilation was performed using a commercially available atomizer to administer Gd-DTPA solution. MR imaging was performed with a 1.9 T whole body imager using respiratory gated acquisition. To define the amount of Gd-DTPA being trapped in the lungs identical experiments were performed with 99m Tc-DTPA. MR imaging confirmed at 70% contrast enhancement following inhalation of Gd-DTPA. Because of the inherently low signal intensity of lung parenchyma the degree of contrast enhancement is not sufficient for clinical application. (orig.) [de

  12. Lung Cancer and Human Papilloma Viruses (HPVs: Examining the Molecular Evidence

    Directory of Open Access Journals (Sweden)

    Priya R. Prabhu

    2012-01-01

    Full Text Available Human papilloma virus (HPV, known to be an etiological agent for genital cancers, has been suggested also to be a possible contributory agent for lung cancer. Alternatively, lung cancer, formerly considered to be solely a smoker's disease, may now be more appropriately categorised into never smoker's and smoker's lung cancer. Through this paper we attempt to bring forth the current knowledge regarding mechanisms of HPV gaining access into the lung tissue, various strategies involved in HPV-associated tumorigenesis in lung tissue.

  13. Human pericytes adopt myofibroblast properties in the microenvironment of the IPF lung.

    Science.gov (United States)

    Sava, Parid; Ramanathan, Anand; Dobronyi, Amelia; Peng, Xueyan; Sun, Huanxing; Ledesma-Mendoza, Adrian; Herzog, Erica L; Gonzalez, Anjelica L

    2017-12-21

    Idiopathic pulmonary fibrosis (IPF) is a fatal disease of unknown etiology characterized by a compositionally and mechanically altered extracellular matrix. Poor understanding of the origin of α-smooth muscle actin (α-SMA) expressing myofibroblasts has hindered curative therapies. Though proposed as a source of myofibroblasts in mammalian tissues, identification of microvascular pericytes (PC) as contributors to α-SMA-expressing populations in human IPF and the mechanisms driving this accumulation remain unexplored. Here, we demonstrate enhanced detection of α-SMA+ cells coexpressing the PC marker neural/glial antigen 2 in the human IPF lung. Isolated human PC cultured on decellularized IPF lung matrices adopt expression of α-SMA, demonstrating that these cells undergo phenotypic transition in response to direct contact with the extracellular matrix (ECM) of the fibrotic human lung. Using potentially novel human lung-conjugated hydrogels with tunable mechanical properties, we decoupled PC responses to matrix composition and stiffness to show that α-SMA+ PC accumulate in a mechanosensitive manner independent of matrix composition. PC activated with TGF-β1 remodel the normal lung matrix, increasing tissue stiffness to facilitate the emergence of α-SMA+ PC via MKL-1/MTRFA mechanotranduction. Nintedanib, a tyrosine-kinase inhibitor approved for IPF treatment, restores the elastic modulus of fibrotic lung matrices to reverse the α-SMA+ phenotype. This work furthers our understanding of the role that microvascular PC play in the evolution of IPF, describes the creation of an ex vivo platform that advances the study of fibrosis, and presents a potentially novel mode of action for a commonly used antifibrotic therapy that has great relevance for human disease.

  14. Explant culture of human peripheral lung. I. Metabolism of benzo[alpha]pyrene

    DEFF Research Database (Denmark)

    Stoner, G.D.; Harris, C.C.; Autrup, Herman

    1978-01-01

    the predominant alveolar epithelial cell type. Lamellar inclusion bodies were released from the type 2 cells and accumulated in the alveolar spaces. The metabolism of benzo[alpha]pyrene (BP) in human lung explants cultured for up to 7 days was investigated. Human lung explants had measurable aryl hydrocarbon......Human lung explants have been maintained in vitro for a period of 25 days. Autoradiographic studies indicated that the broncholar epithelial cells, type 2 alveolar epithelial cells, and stromal fibroblasts incorporated 3H-thymidine during the culture. After 7 to 10 days, type 2 cells were...... hydroxylase activity and could metabolize BP into forms that were bound to cellular DNA and protein. Peripheral lung had significantly lower aryl hydrocarbon hydroxylase activity than cultured bronchus but both tissues had similar binding levels of BP to DNA. Radioautographic studies indicated that all cell...

  15. Tumorous interstitial lung disease

    International Nuclear Information System (INIS)

    Dinkel, E.; Meyer, E.; Mundinger, A.; Helwig, A.; Blum, U.; Wuertemberger, G.

    1990-01-01

    The radiological findings in pulmonary lymphangitic carcinomatosis and in leukemic pulmonary infiltrates mirror the tumor-dependent monomorphic interstitial pathology of lung parenchyma. It is a proven fact that pulmonary lymphangitic carcinomatosis is caused by hematogenous tumor embolization to the lungs; pathogenesis by contiguous lymphangitic spread is the exception. High-resolution CT performed as a supplement to the radiological work-up improves the sensitivity for pulmonary infiltrates in general and thus makes the differential diagnosis decided easier. Radiological criteria cannot discriminate the different forms of leukemia. Plain chest X-ray allows the diagnosis of pulmonary involvement in leukemia due to tumorous infiltrates and of tumor- or therapy-induced complications. It is essential that the radiological findings be interpreted with reference to the stage of tumor disease and the clinical parameters to make the radiological differential diagnosis of opportunistic infections more reliable. (orig.) [de

  16. Mycobacterium tuberculosis Invasion of the Human Lung: First Contact

    Directory of Open Access Journals (Sweden)

    Jeroen Maertzdorf

    2018-06-01

    Full Text Available Early immune responses to Mycobacterium tuberculosis (Mtb invasion of the human lung play a decisive role in the outcome of infection, leading to either rapid clearance of the pathogen or stable infection. Despite their critical impact on health and disease, these early host–pathogen interactions at the primary site of infection are still poorly understood. In vitro studies cannot fully reflect the complexity of the lung architecture and its impact on host–pathogen interactions, while animal models have their own limitations. In this study, we have investigated the initial responses in human lung tissue explants to Mtb infection, focusing primarily on gene expression patterns in different tissue-resident cell types. As first cell types confronted with pathogens invading the lung, alveolar macrophages, and epithelial cells displayed rapid proinflammatory chemokine and cytokine responses to Mtb infection. Other tissue-resident innate cells like gamma/delta T cells, mucosal associated invariant T cells, and natural killer cells showed partially similar but weaker responses, with a high degree of variability across different donors. Finally, we investigated the responses of tissue-resident innate lymphoid cells to the inflammatory milieu induced by Mtb infection. Our infection model provides a unique approach toward host–pathogen interactions at the natural port of Mtb entry and site of its implantation, i.e., the human lung. Our data provide a first detailed insight into the early responses of different relevant pulmonary cells in the alveolar microenvironment to contact with Mtb. These results can form the basis for the identification of host markers that orchestrate early host defense and provide resistance or susceptibility to stable Mtb infection.

  17. Garenoxacin in difficult to treat lung abscess – A case study report

    Directory of Open Access Journals (Sweden)

    Ghosh CK, Hajare A, Krishnaprasad K, Bhargava A

    2014-07-01

    Full Text Available Lung abscess results from microbial infection causing necrosis of the lung parenchyma leading to one or more cavities. Lung abscesses usually occur in individuals who have a predisposition to aspiration, immunocompromised individuals, patients with long standing illnesses like malignancies, diabetes, chronic lung diseases. Both gram positive and gram negative pathogens are involved in the pathogenesis. Rising incidence of resistant pathogens has added to the burden of treating physicians. Garenoxacin a newer desfluoroquinolone with its broad spectrum of coverage appears to be a suitable fluoroquinolone for the treatment of respiratory tract infections. The case study mentioned below is of pulmonary emphysema with the existing lung cyst going in for secondary infection. The study looks to explain the utility of fluoroquinolones in the treatment of such infections.

  18. Carbonyl Reduction of NNK by Recombinant Human Lung Enzymes. Identification of HSD17β12 as the Reductase important in (R)-NNAL formation in Human Lung.

    Science.gov (United States)

    Ashmore, Joseph H; Luo, Shaman; Watson, Christy J W; Lazarus, Philip

    2018-05-17

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is the most abundant and carcinogenic tobacco-specific nitrosamine in tobacco and tobacco smoke. The major metabolic pathway for NNK is carbonyl reduction to form the (R) and (S) enantiomers of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) which, like NNK, is a potent lung carcinogen. The goal of the present study was to characterize NNAL enantiomer formation in human lung and identify the enzymes responsible for this activity. While (S)-NNAL was the major enantiomer of NNAL formed in incubations with NNK in lung cytosolic fractions, (R)-NNAL comprised ~60 and ~95% of the total NNAL formed in lung whole cell lysates and microsomes, respectively. In studies examining the role of individual recombinant reductase enzymes in lung NNAL enantiomer formation, AKR1C1, AKR1C2, AKR1C3, AKR1C4 and CBR1 all exhibited (S)-NNAL formation activity. To identify the microsomal enzymes responsible for (R)-NNAL formation, 28 microsomal reductase enzymes were screened for expression by real-time PCR in normal human lung. HSD17β6, HSD17β12, KDSR, NSDHL, RDH10, RDH11 and SDR16C5 were all expressed at levels >HSD11β1, the only previously reported microsomal reductase enzyme with NNK-reducing activity, with HSD17β12 the most highly expressed. Of these lung-expressing enzymes, only HSD17β12 exhibited activity against NNK, forming primarily (>95%) (R)-NNAL, a pattern consistent with that observed in lung microsomes. siRNA knockdown of HSD17β12 resulted in significant decreases in (R)-NNAL formation activity in HEK293 cells. These data suggest that both cytosolic and microsomal enzymes are active against NNK and that HSD17β12 is the major active microsomal reductase that contributes to (R)-NNAL formation in human lung.

  19. Epidermal growth factor receptor in primary human lung cancer

    International Nuclear Information System (INIS)

    Yu Xueyan; Hu Guoqiang; Tian Keli; Wang Mingyun

    1996-01-01

    Cell membranes were prepared from 12 human lung cancers for the study of the expression of epidermal growth factor receptors (EGFR). EGFR concentration was estimated by ligand binding studies using 125 I-radiolabeled EGF. The dissociation constants of the high affinity sites were identical, 1.48 nmol and 1.1 nmol in cancer and normal lung tissues, the EGFR contents were higher in lung cancer tissues (range: 2.25 to 19.39 pmol·g -1 membrane protein) than that in normal tissues from the same patients (range: 0.72 to 7.43 pmol·g -1 membrane protein). These results suggest that EGF and its receptor may play a role in the regulatory mechanisms in the control of lung cellular growth and tumor promotion

  20. Overexpression of transforming growth factor-β1 in fetal monkey lung results in prenatal pulmonary fibrosis

    Science.gov (United States)

    Tarantal, A.F.; Chen, H.; Shi, T.T.; Lu, C-H.; Fang, A.B.; Buckley, S.; Kolb, M.; Gauldie, J.; Warburton, D.; Shi, W.

    2011-01-01

    Altered transforming growth factor (TGF)-β expression levels have been linked to a variety of human respiratory diseases, including bronchopulmonary dysplasia and pulmonary fibrosis. However, a causative role for aberrant TGF-β in neonatal lung diseases has not been defined in primates. Exogenous and transient TGF-β1 overexpression in fetal monkey lung was achieved by transabdominal ultrasound-guided fetal intrapulmonary injection of adenoviral vector expressing TGF-β1 at the second or third trimester of pregnancy. The lungs were then harvested near term, and fixed for histology and immunohistochemistry. Lung hypoplasia was observed where TGF-β1 was overexpressed during the second trimester. The most clearly marked phenotype consisted of severe pulmonary and pleural fibrosis, which was independent of the gestational time point when TGF-β1 was overexpressed. Increased cell proliferation, particularly in α-smooth muscle actin-positive myofibroblasts, was detected within the fibrotic foci. But epithelium to mesenchyme transdifferentiation was not detected. Massive collagen fibres were deposited on the inner and outer sides of the pleural membrane, with an intact elastin layer in the middle. This induced fibrotic pathology persisted even after adenoviral-mediated TGF-β1 overexpression was no longer evident. Therefore, overexpression of TGF-β1 within developing fetal monkey lung results in severe and progressive fibrosis in lung parenchyma and pleural membrane, in addition to pulmonary hypoplasia. PMID:20351039

  1. Percutaneous transhepatic drainage of lung abscess through a diaphragmatic fistula caused by a penetrating liver abscess.

    Science.gov (United States)

    Taniguchi, Masako; Morita, Satoru; Ueno, Eiko; Hayashi, Mitsutoshi; Ishikawa, Motonao; Mae, Masahiro

    2011-11-01

    Liver abscesses occurring just below the diaphragm can penetrate or perforate the thoracic cavity, resulting in lung abscess or pyothorax. Although surgical or percutaneous transpleural drainage is often required in such cases, the latter approach has some risks, including hemothorax and bronchopleural fistula formation when the cavity is surrounded by normal lung parenchyma. The present report describes a treatment technique of percutaneous transhepatic drainage through the diaphragmatic fistula to avoid the risks of a transpulmonary approach in a case of lung abscess caused by a penetrating liver abscess.

  2. Developmental characteristics of parenchyma and fiber cells and their secondary wall deposition in fargesia yunnanensis

    International Nuclear Information System (INIS)

    Wang, S.G.; Zhan, H.; Wan, C.B.; Lin, S.Y.

    2017-01-01

    The aim of this study is to describe and analyse the morphological characteristics of nuclei and the secondary wall deposition in parenchyma and fiber cells during the whole bamboo growth cycle from shoots to old culms, with a further purpose to assess the developmental differences between fibers and parenchyma cells and analyze the secondary wall deposition mechanism. Initially the fiber wall thickness was less than the parenchyma cell thickness in young shoots, but increased significantly after 1 year. Fibers elongated earlier than both their nuclei and parenchyma cells. Fiber nuclei also elongated and presented the spindle shape in longitudinal section. The formation and elongation of long cells were involved in the fast elongation of internodes. In mature culms, the ways of secondary wall deposition for fibers depended on their diameter and positions. Large diameter fibers usually had more cell wall layers than narrow fibers. (author)

  3. KL-6, a human MUC1 mucin, promotes proliferation and survival of lung fibroblasts

    International Nuclear Information System (INIS)

    Ohshimo, Shinichiro; Yokoyama, Akihito; Hattori, Noboru; Ishikawa, Nobuhisa; Hirasawa, Yutaka; Kohno, Nobuoki

    2005-01-01

    The serum level of KL-6, a MUC1 mucin, is a clinically useful marker for various interstitial lung diseases. Previous studies demonstrated that KL-6 promotes chemotaxis of human fibroblasts. However, the pathophysiological role of KL-6 remains poorly understood. Here, we further investigate the functional aspects of KL-6 in proliferation and apoptosis of lung fibroblasts. KL-6 accelerated the proliferation and inhibited the apoptosis of all human lung fibroblasts examined. An anti-KL-6 monoclonal antibody counteracted both of these effects induced by KL-6 on human lung fibroblasts. The pro-fibroproliferative and anti-apoptotic effects of KL-6 are greater than and additive to those of the maximum effective concentrations of platelet-derived growth factor, basic fibroblast growth factor, and transforming growth factor-β. These findings indicate that increased levels of KL-6 in the epithelial lining fluid may stimulate fibrotic processes in interstitial lung diseases and raise the possibility of applying an anti-KL-6 antibody to treat interstitial lung diseases

  4. Measurement of histamine release from human lung tissue ex vivo by microdialysis technique

    DEFF Research Database (Denmark)

    Nissen, Dan; Petersen, Lars Jelstrup; Nolte, H

    1998-01-01

    OBJECTIVE AND DESIGN: Currently no method is available for measurement of mediator release from intact human lung. In this study, a microdialysis technique was used to measure histamine release from mast cells in human lung tissue ex vivo. MATERIAL: Microdialysis fibers of 216 microm were inserted...... responses were observed but data could be reproduced within individual donors. Monocyte chemoattractant protein-1, a potent basophil secretagogue, did not induce histamine release in lung tissue which indicated mast cells to be the histamine source. Substance P did not release histamine in the lung tissue....... CONCLUSIONS: The microdialysis technique allowed measurements of histamine release from mast cells in intact lung ex vivo. The method may prove useful since a number of experiments can be performed in a few hours in intact lung tissue without any dispersion or enzymatic treatment....

  5. Chronic Exposure to Particulate Nickel Induces Neoplastic Transformation in Human Lung Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Amie L. Holmes

    2013-11-01

    Full Text Available Nickel is a well-known human lung carcinogen with the particulate form being the most potent; however, the carcinogenic mechanism remains largely unknown. Few studies have investigated the genotoxicity and carcinogenicity of nickel in its target cell, human bronchial epithelial cells. Thus, the goal of this study was to investigate the effects of particulate nickel in human lung epithelial cells. We found that nickel subsulfide induced concentration- and time-dependent increases in both cytotoxicity and genotoxicity in human lung epithelial cells (BEP2D. Chronic exposure to nickel subsulfide readily induced cellular transformation, inducing 2.55, 2.9 and 2.35 foci per dish after exposure to 1, 2.5 and 5 μg/cm2 nickel subsulfide, respectively. Sixty-one, 100 and 70 percent of the foci isolated from 1, 2.5, and 5 μg/cm2 nickel subsulfide treatments formed colonies in soft agar and the degree of soft agar colony growth increased in a concentration-dependent manner. Thus, chronic exposure to particulate nickel induces genotoxicity and cellular transformation in human lung epithelial cells.

  6. CT differentiation of renal tumor invading parenchyma and pelvis: renal cell carcinoma vs transitional cell carcinoma

    International Nuclear Information System (INIS)

    Lee, Chang Hee; Cho, Seong Beum; Park, Cheol Min; Cha, In Ho; Chung, Kyoo Byung

    1994-01-01

    The differentiation between renal cell carcinoma(RCC) and transitional cell carcinoma(TCC) is important due to the different methods of treatment and prognosis. But occasionally it is difficult to draw a distinction between the two diseases when renal parenchyma and renal collecting systems are invaded simultaneously. We reviewed CT scans of 37 cases of renal cell carcinoma and 12 cases of transitional cell carcinoma which showed involvement of renal parenchyma and renal sinus fat on CT. Retrospective analysis was performed by 3 abdominal radiologists. Check points were renal contour bulging or reinform shape, location of mass center, intact parenchyma overlying the tumor, cystic change, calcification, LN metastasis, vessel invasion, and perirenal extention. There were renal contour bulging due to the tumor mass in 33 out of 37 cases of renal cell carcinoma, where a and nine of 12 cases of transitional cell carcinoma maintained the reinform appearance. This is significant statiscal difference between the two(P<0.005). Center of all TCCs were located in the renal sinus, and 24 out of 35 cases of RCC were located in the cortex(P<0.005). Thirty-six out of 37 cases of RCC lost the overlying parenchyma, where as 4 out of 9 cases of well enhanced TCC had intact overlying parenchyma(P<0.005) RCC showed uptic change within the tumor mags in 31 cases which was significanity higher than the 4 cases in TCC(P<0.05). CT findings of renal cell carcinoma are contour bulging, peripheral location, obliteration of parenchyma, and cystic change. Findings of transitional cell carcinoma are reinform appearance, central location within the kidney, intact overlying parenchyma, and rare cystic change

  7. Recent advances in surgical management of early lung cancer

    Directory of Open Access Journals (Sweden)

    Shun-Mao Yang

    2017-12-01

    Full Text Available The broad application of low-dose computed tomography screening has resulted in the detection of many more cases of early lung cancer than ever before in modern history. Recent advances in the management of early-stage non-small cell lung cancer have focused on making therapy less traumatic, enhancing recovery, and preserving lung function. In this review, we discuss several new modalities associated with minimally invasive surgery for lung cancer. Firstly, less lung parenchyma resection via sublobar resection has become an acceptable alternative to lobectomy in patients with tumors less than 2 cm in size or with poor cardiopulmonary reserve. Secondly, thoracoscopic surgery using a single-portal or needlescopic approach to decrease chest wall trauma is becoming common practice. Thirdly, less invasive anesthesia, using nonintubated techniques, is feasible and safe and is associated with fewer intubation- and ventilator-associated complications. Fourthly, preoperative or intraoperative image-guided localization is an effective modality for identifying small and deep nodules during thoracoscopic surgery. Keywords: Anesthesia, Lung cancer, Nonintubated, Surgery, Thoracoscopy, Video-assisted thoracoscopic surgery (VATS

  8. Complications from Stereotactic Body Radiotherapy for Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kylie H. [School of Medicine, Case Western Reserve University, Cleveland, OH 44106 (United States); Okoye, Christian C.; Patel, Ravi B. [Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106 (United States); Siva, Shankar [Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002 (Australia); Biswas, Tithi; Ellis, Rodney J.; Yao, Min; Machtay, Mitchell; Lo, Simon S., E-mail: Simon.Lo@uhhospitals.org [Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2015-06-15

    Stereotactic body radiotherapy (SBRT) has become a standard treatment option for early stage, node negative non-small cell lung cancer (NSCLC) in patients who are either medically inoperable or refuse surgical resection. SBRT has high local control rates and a favorable toxicity profile relative to other surgical and non-surgical approaches. Given the excellent tumor control rates and increasing utilization of SBRT, recent efforts have focused on limiting toxicity while expanding treatment to increasingly complex patients. We review toxicities from SBRT for lung cancer, including central airway, esophageal, vascular (e.g., aorta), lung parenchyma (e.g., radiation pneumonitis), and chest wall toxicities, as well as radiation-induced neuropathies (e.g., brachial plexus, vagus nerve and recurrent laryngeal nerve). We summarize patient-related, tumor-related, dosimetric characteristics of these toxicities, review published dose constraints, and propose strategies to reduce such complications.

  9. Complications from Stereotactic Body Radiotherapy for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Kylie H. Kang

    2015-06-01

    Full Text Available Stereotactic body radiotherapy (SBRT has become a standard treatment option for early stage, node negative non-small cell lung cancer (NSCLC in patients who are either medically inoperable or refuse surgical resection. SBRT has high local control rates and a favorable toxicity profile relative to other surgical and non-surgical approaches. Given the excellent tumor control rates and increasing utilization of SBRT, recent efforts have focused on limiting toxicity while expanding treatment to increasingly complex patients. We review toxicities from SBRT for lung cancer, including central airway, esophageal, vascular (e.g., aorta, lung parenchyma (e.g., radiation pneumonitis, and chest wall toxicities, as well as radiation-induced neuropathies (e.g., brachial plexus, vagus nerve and recurrent laryngeal nerve. We summarize patient-related, tumor-related, dosimetric characteristics of these toxicities, review published dose constraints, and propose strategies to reduce such complications.

  10. Renal parenchyma thickness: a rapid estimation of renal function on computed tomography

    International Nuclear Information System (INIS)

    Kaplon, Daniel M.; Lasser, Michael S.; Sigman, Mark; Haleblian, George E.; Pareek, Gyan

    2009-01-01

    Purpose: To define the relationship between renal parenchyma thickness (RPT) on computed tomography and renal function on nuclear renography in chronically obstructed renal units (ORUs) and to define a minimal thickness ratio associated with adequate function. Materials and Methods: Twenty-eight consecutive patients undergoing both nuclear renography and CT during a six-month period between 2004 and 2006 were included. All patients that had a diagnosis of unilateral obstruction were included for analysis. RPT was measured in the following manner: The parenchyma thickness at three discrete levels of each kidney was measured using calipers on a CT workstation. The mean of these three measurements was defined as RPT. The renal parenchyma thickness ratio of the ORUs and non-obstructed renal unit (NORUs) was calculated and this was compared to the observed function on Mag-3 lasix Renogram. Results: A total of 28 patients were evaluated. Mean parenchyma thickness was 1.82 cm and 2.25 cm in the ORUs and NORUs, respectively. The mean relative renal function of ORUs was 39%. Linear regression analysis comparing renogram function to RPT ratio revealed a correlation coefficient of 0.48 (p * RPT ratio. A thickness ratio of 0.68 correlated with 20% renal function. Conclusion: RPT on computed tomography appears to be a powerful predictor of relative renal function in ORUs. Assessment of RPT is a useful and readily available clinical tool for surgical decision making (renal salvage therapy versus nephrectomy) in patients with ORUs. (author)

  11. Experimental studies on lung carcinogenesis and their relationship to future research on radiation-induced lung cancer in humans

    International Nuclear Information System (INIS)

    Cross, F.T.

    1991-03-01

    The usefulness of experimental systems for studying human lung carcinogenesis lies in the ease of studying components of a total problem. As an example, the main thrust of attack on possible synergistic interactions between radiation, cigarette smoke, and other irritants must be by means of research on animals. Because animals can be serially sacrificed, a systematic search can be made for progressive lung changes, thereby improving our understanding of carcinogenesis. The mechanisms of radiation-induced carcinogenesis have not yet been delineated, but modern concepts of molecular and cellular biology and of radiation dosimetry are being increasingly applied to both in vivo and in vitro exposure to determine the mechanisms of radiation-induced carcinogenesis, to elucidate human data, and to aid in extrapolating experimental animal data to human exposures. In addition, biologically based mathematical models of carcinogenesis are being developed to describe the nature of the events leading to malignancy; they are also an essential part of a rational approach to quantitative cancer risk assessment. This paper summarizes recent experimental and modeling data on radon-induced lung cancer and includes the confounding effects of cigarette-smoke exposures. The applicability of these data to understanding human exposures is emphasized, and areas of future research on human radiation-induced carcinogenesis are discussed. 7 refs., 2 figs., 3 tabs

  12. Lung studies with spiral CT. pitch 1 versus pitch 2

    International Nuclear Information System (INIS)

    Sartoni Galloni, S.; Miceli, M.; Lipparino, M.; Burzi, M.; Gigli, F.; Rossi, M.S.; Santoli, G.; Guidarelli, G.

    1999-01-01

    In Spiral CT, the pitch is the ratio of the distance to tabletop travels per 360 degrees rotation to nominal slice width, expressed in mm. Performing Spiral CT examination with pitch 2 allows to reduce examination time, exposure and contrast dose, and X-ray tube overload. The authors investigated the yield of pitch 2 in lung parenchyma studies, particular relative to diagnostic image quality [it

  13. 4-Methoxyestradiol-induced oxidative injuries in human lung epithelial cells

    International Nuclear Information System (INIS)

    Cheng Yahsin; Chang, Louis W.; Cheng Lichuan; Tsai, M.-H.; Lin Pinpin

    2007-01-01

    Epidemiological studies indicated that people exposed to dioxins were prone to the development of lung diseases including lung cancer. Animal studies demonstrated that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased liver tumors and promoted lung metaplasia in females. Metabolic changes in 17β-estradiol (E 2 ) resulted from an interaction between TCDD and E 2 could be associated with gender difference. Previously, we reported that methoxylestradiols (MeOE 2 ), especially 4-MeOE 2 , accumulated in human lung cells (BEAS-2B) co-treated with TCDD and E 2 . In the present study, we demonstrate unique accumulation of 4-MeOE 2 , as a result of TCDD/E 2 interaction and revealed its bioactivity in human lung epithelial cell line (H1355). 4-Methoxyestradiol treatment significantly decreased cell growth and increased mitotic index. Elevation of ROS and SOD activity, with a concomitant decrease in the intracellular GSH/GSSG ratio, was also detected in 4-MeOE 2 -treated cells. Quantitative comet assay showed increased oxidative DNA damage in the 4-MeOE 2 -treated H1355 cells, which could be significantly reduced by the anti-oxidant N-acetylcysteine (NAC). However, inhibition of cell growth and increase in mitotic arrest induced by 4-MeOE 2 were unaffected by NAC. We concluded that 4-MeOE 2 accumulation resulting from TCDD and E 2 interaction would contribute to the higher vulnerability on lung pathogenesis in females when exposed to TCDD

  14. Comments on the rat lung as a human surrogate in inhalation studies

    International Nuclear Information System (INIS)

    Koblinger, L.

    1988-01-01

    The laboratory rat is often used as a surrogate to estimate the hazard to human health following inhalation exposure to ambient aerosols. Extrapolation of rat deposition data to humans depends, however, on the similarities and differences between the morphometric structures of the two airway systems. The main structural difference between the lungs of the two species, aside from dimensions per se, is their respective airway branching pattern : while the human lung is a rather symmetrically, dichotomously dividing system, the rat network is a more monopodial branching structure. In our stochastic modelling approach to defining suitable morphologies for human and rat lung, we utilise measured morphometric dimensions as the data base upon which a rigorous statistical analysis is performed, instead of forcing them into a formalised, average pathway scheme. This stochastic approach allows us, therefore, to account for structural irregularities, such as asymmetric branching, monopodial structure, and inter and intra-subject variability

  15. Deficient retinoid-driven angiogenesis may contribute to failure of adult human lung regeneration in emphysema.

    Science.gov (United States)

    Ng-Blichfeldt, John-Poul; Alçada, Joana; Montero, M Angeles; Dean, Charlotte H; Griesenbach, Uta; Griffiths, Mark J; Hind, Matthew

    2017-06-01

    Molecular pathways that regulate alveolar development and adult repair represent potential therapeutic targets for emphysema. Signalling via retinoic acid (RA), derived from vitamin A, is required for mammalian alveologenesis, and exogenous RA can induce alveolar regeneration in rodents. Little is known about RA signalling in the human lung and its potential role in lung disease. To examine regulation of human alveolar epithelial and endothelial repair by RA, and characterise RA signalling in human emphysema. The role of RA signalling in alveolar epithelial repair was investigated with a scratch assay using an alveolar cell line (A549) and primary human alveolar type 2 (AT2) cells from resected lung, and the role in angiogenesis using a tube formation assay with human lung microvascular endothelial cells (HLMVEC). Localisation of RA synthetic (RALDH-1) and degrading (cytochrome P450 subfamily 26 A1 (CYP26A1)) enzymes in human lung was determined by immunofluorescence. Regulation of RA pathway components was investigated in emphysematous and control human lung tissue by quantitative real-time PCR and Western analysis. RA stimulated HLMVEC angiogenesis in vitro; this was partially reproduced with a RAR-α agonist. RA induced mRNA expression of vascular endothelial growth factor A (VEGFA) and VEGFR2. RA did not modulate AT2 repair. CYP26A1 protein was identified in human lung microvasculature, whereas RALDH-1 partially co-localised with vimentin-positive fibroblasts. CYP26A1 mRNA and protein were increased in emphysema. RA regulates lung microvascular angiogenesis; the endothelium produces CYP26A1 which is increased in emphysema, possibly leading to reduced RA availability. These data highlight a role for RA in maintenance of the human pulmonary microvascular endothelium. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. Lung structure and function relation in systemic sclerosis: Application of lung densitometry

    Energy Technology Data Exchange (ETDEWEB)

    Ninaber, Maarten K., E-mail: m.k.ninaber@lumc.nl [Department of Pulmonology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden (Netherlands); Stolk, Jan; Smit, Jasper; Le Roy, Ernest J. [Department of Pulmonology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden (Netherlands); Kroft, Lucia J.M. [Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden (Netherlands); Els Bakker, M. [Division of Image Processing, Radiology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden (Netherlands); Vries Bouwstra, Jeska K. de; Schouffoer, Anne A. [Department of Rheumatology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden (Netherlands); Staring, Marius; Stoel, Berend C. [Division of Image Processing, Radiology, Leiden University Medical Center, Albinusdreef 2, 2333ZA Leiden (Netherlands)

    2015-05-15

    Highlights: • A quantitative CT parameter of lung parenchyma in systemic sclerosis is presented. • We examine the optimal percentage threshold for the percentile density. • The 85th percentile density threshold correlated significantly with lung function. • A lung structure–function relation is confirmed. • We report applicability of Perc85 in progression mapping of interstitial lung disease. - Abstract: Introduction: Interstitial lung disease occurs frequently in patients with systemic sclerosis (SSc). Quantitative computed tomography (CT) densitometry using the percentile density method may provide a sensitive assessment of lung structure for monitoring parenchymal damage. Therefore, we aimed to evaluate the optimal percentile density score in SSc by quantitative CT densitometry, against pulmonary function. Material and methods: We investigated 41 SSc patients by chest CT scan, spirometry and gas transfer tests. Lung volumes and the nth percentile density (between 1 and 99%) of the entire lungs were calculated from CT histograms. The nth percentile density is defined as the threshold value of densities expressed in Hounsfield units. A prerequisite for an optimal percentage was its correlation with baseline DLCO %predicted. Two patients showed distinct changes in lung function 2 years after baseline. We obtained CT scans from these patients and performed progression analysis. Results: Regression analysis for the relation between DLCO %predicted and the nth percentile density was optimal at 85% (Perc85). There was significant agreement between Perc85 and DLCO %predicted (R = −0.49, P = 0.001) and FVC %predicted (R = −0.64, P < 0.001). Two patients showed a marked change in Perc85 over a 2 year period, but the localization of change differed clearly. Conclusions: We identified Perc85 as optimal lung density parameter, which correlated significantly with DLCO and FVC, confirming a lung parenchymal structure–function relation in SSc. This provides

  17. Lung structure and function relation in systemic sclerosis: Application of lung densitometry

    International Nuclear Information System (INIS)

    Ninaber, Maarten K.; Stolk, Jan; Smit, Jasper; Le Roy, Ernest J.; Kroft, Lucia J.M.; Els Bakker, M.; Vries Bouwstra, Jeska K. de; Schouffoer, Anne A.; Staring, Marius; Stoel, Berend C.

    2015-01-01

    Highlights: • A quantitative CT parameter of lung parenchyma in systemic sclerosis is presented. • We examine the optimal percentage threshold for the percentile density. • The 85th percentile density threshold correlated significantly with lung function. • A lung structure–function relation is confirmed. • We report applicability of Perc85 in progression mapping of interstitial lung disease. - Abstract: Introduction: Interstitial lung disease occurs frequently in patients with systemic sclerosis (SSc). Quantitative computed tomography (CT) densitometry using the percentile density method may provide a sensitive assessment of lung structure for monitoring parenchymal damage. Therefore, we aimed to evaluate the optimal percentile density score in SSc by quantitative CT densitometry, against pulmonary function. Material and methods: We investigated 41 SSc patients by chest CT scan, spirometry and gas transfer tests. Lung volumes and the nth percentile density (between 1 and 99%) of the entire lungs were calculated from CT histograms. The nth percentile density is defined as the threshold value of densities expressed in Hounsfield units. A prerequisite for an optimal percentage was its correlation with baseline DLCO %predicted. Two patients showed distinct changes in lung function 2 years after baseline. We obtained CT scans from these patients and performed progression analysis. Results: Regression analysis for the relation between DLCO %predicted and the nth percentile density was optimal at 85% (Perc85). There was significant agreement between Perc85 and DLCO %predicted (R = −0.49, P = 0.001) and FVC %predicted (R = −0.64, P < 0.001). Two patients showed a marked change in Perc85 over a 2 year period, but the localization of change differed clearly. Conclusions: We identified Perc85 as optimal lung density parameter, which correlated significantly with DLCO and FVC, confirming a lung parenchymal structure–function relation in SSc. This provides

  18. Potent selective nonpeptidic inhibitors of human lung tryptase

    OpenAIRE

    Burgess, Laurence E.; Newhouse, Bradley J.; Ibrahim, Prabha; Rizzi, James; Kashem, Mohammed A.; Hartman, Ann; Brandhuber, Barbara J.; Wright, Clifford D.; Thomson, David S.; Vigers, Guy P. A.; Koch, Kevin

    1999-01-01

    Human lung tryptase, a homotetrameric serine protease unique to mast cell secretory granules, has been implicated in the pathogenesis of asthma. A hypothesis that tethered symmetrical inhibitors might bridge two adjacent active sites was explored via a rationally designed series of bisbenzamidines. These compounds demonstrated a remarkable distanced-defined structure–activity relationship against human tryptase with one series possessing subnanomolar potencies. Additional evidence supporting ...

  19. Ultrashort Echo Time Magnetic Resonance Imaging of the Lung Using a High-Relaxivity T1 Blood-Pool Contrast Agent

    Directory of Open Access Journals (Sweden)

    Joris Tchouala Nofiele

    2014-10-01

    Full Text Available The lung remains one of the most challenging organs to image using magnetic resonance imaging (MRI due to intrinsic rapid signal decay. However, unlike conventional modalities such as computed tomography, MRI does not involve radiation and can provide functional and morphologic information on a regional basis. Here we demonstrate proof of concept for a new MRI approach to achieve substantial gains in a signal to noise ratio (SNR in the lung parenchyma: contrast-enhanced ultrashort echo time (UTE imaging following intravenous injection of a high-relaxivity blood-pool manganese porphyrin T1 contrast agent. The new contrast agent increased relative enhancement of the lung parenchyma by over 10-fold compared to gadolinium diethylene triamine pentaacetic acid (Gd-DTPA, and the use of UTE boosted the SNR by a factor of 4 over conventional T1-weighted gradient echo acquisitions. The new agent also maintains steady enhancement over at least 60 minutes, thus providing a long time window for obtaining high-resolution, high-quality images and the ability to measure a number of physiologic parameters.

  20. Mutation and Expression of the DCC Gene in Human Lung Cancer

    Directory of Open Access Journals (Sweden)

    Takashi Kohno

    2000-07-01

    Full Text Available Chromosome 18q is frequently deleted in lung cancers, a common region of 18q deletions was mapped to chromosome 18g21. Since the DCC candidate tumor suppressor gene has been mapped in this region, mutation and expression of the DCC gene were examined in 46 lung cancer cell lines, consisting of 14 small cell lung carcinomas (SCLCs and 32 non-small cell lung carcinomas (NSCLCs, to elucidate the pathogenetic significance of DCC alterations in human lung carcinogenesis. A heterozygous missense mutation was detected in a NSCLC cell line, Ma26, while homozygous deletion was not detected in any of the cell lines. The DCC gene was expressed in 11 (24% of the 46 cell lines, the incidence of DCC expression was significantly higher in SCLCs (7/14, 50% than in NSCLCs (4/32, 13% (P = .01, Fisher's exact test. Therefore, genetic alterations of DCC are infrequent; however, the levels of DCC expression vary among lung cancer cells, in particular, between SCLCs and NSCLCs. The present result does not implicate DCC as a specific mutational target of 18q deletions in human lung cancer; however, it suggests that DCC is a potential target of inactivation by genetic defects including intron or promoter mutations and/or epigenetic alterations. The present result also suggests that DCC expression is associated with some properties of SCLCs, such as a neuroendocrine (NE feature.

  1. CT analysis of peripheral airway and lung lesions of patients with asthma and COPD

    International Nuclear Information System (INIS)

    Itoh, Takayuki; Tanaka, Hiroshi; Sahara, Shin; Ohnishi, Tetsuro; Abe, Shosaku; Ueno, Kan

    2002-01-01

    We compared peripheral airway and lung parenchyma images among patients with asthma, chronic obstructive pulmonary disease (COPD) and healthy controls using high-resolution CT images taken by a multidetector-row CT scanner (Aquillion, Toshiba, Japan). CT images were saved as digital image and communication (DICOM) files and %low attenuation area (LAA) (<-960 Hounsfield Unit) was calculated with the imaging software. %LAA was significantly increased in patients with COPD (p<0.0001) and smokers with stable asthma (p<0.01) as compared with healthy controls. In stable asthma, mucous plugging in the airway sometime appeared, while during asthma exacerbation small nodules and mosaic pattern of peripheral lung field appeared. Since smoker's patients with asthma have hyper-secretion of sputum due to smoking, mucous plugging and airway inflammation may easily occur and consequently air trapping may increase. In the future, image diagnosis of peripheral airway should develop for early detection of airway diseases as a non-invasive examination. On the other hand, micro focus X-ray computed tomography system (Hitachi Medico Technology Co., Japan) can display CT images closely similar to the pictures of microscopic findings and it will be a useful tool to analyze radiologic-pathologic correlations of peripheral airways and lung parenchyma. (author)

  2. Compositional analysis of Chinese water chestnut (Eleocharis dulcis) cell-wall material from parenchyma, epidermis, and subepidermal tissues.

    Science.gov (United States)

    Grassby, Terri; Jay, Andrew J; Merali, Zara; Parker, Mary L; Parr, Adrian J; Faulds, Craig B; Waldron, Keith W

    2013-10-09

    Chinese water chestnut (Eleocharis dulcis (Burman f.) Trin ex Henschel) is a corm consumed globally in Oriental-style cuisine. The corm consists of three main tissues, the epidermis, subepidermis, and parenchyma; the cell walls of which were analyzed for sugar, phenolic, and lignin content. Sugar content, measured by gas chromatography, was higher in the parenchyma cell walls (931 μg/mg) than in the subepidermis (775 μg/mg) or epidermis (685 μg/mg). The alkali-extractable phenolic content, measured by high-performance liquid chromatography, was greater in the epidermal (32.4 μg/mg) and subepidermal cell walls (21.7 μg/mg) than in the cell walls of the parenchyma (12.3 μg/mg). The proportion of diferulic acids was higher in the parenchyma. The Klason lignin content of epidermal and subepidermal cell walls was ~15%. Methylation analysis of Chinese water chestnut cell-wall polysaccharides identified xyloglucan as the predominant hemicellulose in the parenchyma for the first time, and also a significant pectin component, similar to other nongraminaceous monocots.

  3. Low Level Laser Therapy Reduces the Development of Lung Inflammation Induced by Formaldehyde Exposure.

    Directory of Open Access Journals (Sweden)

    Cristiane Miranda da Silva

    Full Text Available Lung diseases constitute an important public health problem and its growing level of concern has led to efforts for the development of new therapies, particularly for the control of lung inflammation. Low Level Laser Therapy (LLLT has been highlighted as a non-invasive therapy with few side effects, but its mechanisms need to be better understood and explored. Considering that pollution causes several harmful effects on human health, including lung inflammation, in this study, we have used formaldehyde (FA, an environmental and occupational pollutant, for the induction of neutrophilic lung inflammation. Our objective was to investigate the local and systemic effects of LLLT after FA exposure. Male Wistar rats were exposed to FA (1% or vehicle (distillated water during 3 consecutive days and treated or not with LLLT (1 and 5 hours after each FA exposure. Non-manipulated rats were used as control. 24 h after the last FA exposure, we analyzed the local and systemic effects of LLLT. The treatment with LLLT reduced the development of neutrophilic lung inflammation induced by FA, as observed by the reduced number of leukocytes, mast cells degranulated, and a decreased myeloperoxidase activity in the lung. Moreover, LLLT also reduced the microvascular lung permeability in the parenchyma and the intrapulmonary bronchi. Alterations on the profile of inflammatory cytokines were evidenced by the reduced levels of IL-6 and TNF-α and the elevated levels of IL-10 in the lung. Together, our results showed that LLLT abolishes FA-induced neutrophilic lung inflammation by a reduction of the inflammatory cytokines and mast cell degranulation. This study may provide important information about the mechanisms of LLLT in lung inflammation induced by a pollutant.

  4. Radiation sensitivity of human lung cancer cell lines

    International Nuclear Information System (INIS)

    Carmichael, J.; Degraff, W.G.; Gamson, J.; Russo, G.; Mitchell, J.B.; Gazdar, A.F.; Minna, J.D.; Levitt, M.L.

    1989-01-01

    X-Ray survival curves were determined using a panel of 17 human lung cancer cell lines, with emphasis on non-small cell lung cancer (NSCLC). In contrast to classic small cell lung cancer (SCLC) cell lines, NSCLC cell lines were generally less sensitive to radiation as evidenced by higher radiation survival curve extrapolation numbers, surviving fraction values following a 2Gy dose (SF2) and the mean inactivation dose values (D) values. The spectrum of in vitro radiation responses observed was similar to that expected in clinical practice, although mesothelioma was unexpectedly sensitive in vitro. Differences in radiosensitivity were best distinguished by comparison of SF2 values. Some NSCLC lines were relatively sensitive, and in view of this demonstrable variability in radiation sensitivity, the SF2 value may be useful for in vitro predictive assay testing of clinical specimens. (author)

  5. Viral infection of human lung macrophages increases PDL1 expression via IFNβ.

    Directory of Open Access Journals (Sweden)

    Karl J Staples

    Full Text Available Lung macrophages are an important defence against respiratory viral infection and recent work has demonstrated that influenza-induced macrophage PDL1 expression in the murine lung leads to rapid modulation of CD8+ T cell responses via the PD1 receptor. This PD1/PDL1 pathway may downregulate acute inflammatory responses to prevent tissue damage. The aim of this study was to investigate the mechanisms of PDL1 regulation by human macrophages in response to viral infection. Ex-vivo viral infection models using influenza and RSV were established in human lung explants, isolated lung macrophages and monocyte-derived macrophages (MDM and analysed by flow cytometry and RT-PCR. Incubation of lung explants, lung macrophages and MDM with X31 resulted in mean cellular infection rates of 18%, 18% and 29% respectively. Viral infection significantly increased cell surface expression of PDL1 on explant macrophages, lung macrophages and MDM but not explant epithelial cells. Infected MDM induced IFNγ release from autologous CD8+ T cells, an effect enhanced by PDL1 blockade. We observed increases in PDL1 mRNA and IFNβ mRNA and protein release by MDM in response to influenza infection. Knockdown of IFNβ by siRNA, resulted in a 37.5% reduction in IFNβ gene expression in response to infection, and a significant decrease in PDL1 mRNA. Furthermore, when MDM were incubated with IFNβ, this cytokine caused increased expression of PDL1 mRNA. These data indicate that human macrophage PDL1 expression modulates CD8+ cell IFNγ release in response to virus and that this expression is regulated by autologous IFNβ production.

  6. A texton-based approach for the classification of lung parenchyma in CT images

    DEFF Research Database (Denmark)

    Gangeh, Mehrdad J.; Sørensen, Lauge; Shaker, Saher B.

    2010-01-01

    In this paper, a texton-based classification system based on raw pixel representation along with a support vector machine with radial basis function kernel is proposed for the classification of emphysema in computed tomography images of the lung. The proposed approach is tested on 168 annotated...... regions of interest consisting of normal tissue, centrilobular emphysema, and paraseptal emphysema. The results show the superiority of the proposed approach to common techniques in the literature including moments of the histogram of filter responses based on Gaussian derivatives. The performance...

  7. A comprehensive computational model of sound transmission through the porcine lung.

    Science.gov (United States)

    Dai, Zoujun; Peng, Ying; Henry, Brian M; Mansy, Hansen A; Sandler, Richard H; Royston, Thomas J

    2014-09-01

    A comprehensive computational simulation model of sound transmission through the porcine lung is introduced and experimentally evaluated. This "subject-specific" model utilizes parenchymal and major airway geometry derived from x-ray CT images. The lung parenchyma is modeled as a poroviscoelastic material using Biot theory. A finite element (FE) mesh of the lung that includes airway detail is created and used in comsol FE software to simulate the vibroacoustic response of the lung to sound input at the trachea. The FE simulation model is validated by comparing simulation results to experimental measurements using scanning laser Doppler vibrometry on the surface of an excised, preserved lung. The FE model can also be used to calculate and visualize vibroacoustic pressure and motion inside the lung and its airways caused by the acoustic input. The effect of diffuse lung fibrosis and of a local tumor on the lung acoustic response is simulated and visualized using the FE model. In the future, this type of visualization can be compared and matched with experimentally obtained elastographic images to better quantify regional lung material properties to noninvasively diagnose and stage disease and response to treatment.

  8. Magnetic resonance imaging of respiratory movement and lung function; Magnetresonanztomographie der Atembewegung und Lungenfunktion

    Energy Technology Data Exchange (ETDEWEB)

    Tetzlaff, R. [Deutsches Krebsforschungszentrum (DKFZ), Abteilung Radiologie (E010), Heidelberg (Germany); Deutsches Krebsforschungszentrum (DKFZ), Abteilung Medizinische und Biologische Informatik, Heidelberg (Germany); Eichinger, M. [Deutsches Krebsforschungszentrum (DKFZ), Abteilung Radiologie (E010), Heidelberg (Germany)

    2009-08-15

    Lung function measurements are the domain of spirometry or plethysmography. These methods have proven their value in clinical practice, nevertheless, being global measurements the functional indices only describe the sum of all functional units of the lung. Impairment of only a single component of the respiratory pump or of a small part of lung parenchyma can be compensated by unaffected lung tissue. Dynamic imaging can help to detect such local changes and lead to earlier adapted therapy. Magnetic resonance imaging (MRI) seems to be perfect for this application as it is not hampered by image distortion as is projection radiography and it does not expose the patient to potentially harmful radiation like computed tomography. Unfortunately, lung parenchyma is not easy to image using MRI due to its low signal intensity. For this reason first applications of MRI in lung function measurements concentrated on the movement of the thoracic wall and the diaphragm. Recent technical advances in MRI however might allow measurements of regional dynamics of the lungs. (orig.) [German] Die Lungenfunktion wird bislang hauptsaechlich durch die Spirometrie oder Plethysmographie untersucht. Diese Methoden sind zwar sehr leistungsfaehig zur Diagnostik von Lungenerkrankungen, sind jedoch globale Messmethoden, deren Messparameter immer die Summe aller funktionellen Einheiten der Lunge beschreiben. Veraenderungen, die auf eine Teilkomponente der Atempumpe beschraenkt sind oder kleine Teile des Lungengewebes betreffen, koennen durch gesunde Lungenanteile kompensiert werden. Mit dynamischen bildgebenden Verfahren koennten solche regionalen Veraenderungen erfasst und so eine fruehere Therapie ermoeglicht werden. Die Magnetresonanztomographie (MRT) bietet sich hier ideal an, da sie als Schnittbildverfahren weder die Probleme der Bildverzerrung, der Projektionsverfahren noch die Strahlenbelastung der Computertomographie hat. Allerdings wird die MRT der Lunge durch das geringe Signal des

  9. Bronchoplastic and lung preservation surgery

    International Nuclear Information System (INIS)

    Moore, E.H.; Templeton, P.A.; Grillo, H.C.; Shepard, J.A.O.; McLoud, T.C.

    1988-01-01

    Candidates for bronchoplastic surgery include patients previously considered inoperable because of central endobronchial tumors or inability to tolerate pneumonectomy, patients at risk for a second primary neoplasm, and young active patients. The authors reviewed over 50 bronchoplastic procedures, including carinal resections with bronchial reimplantations, carinal pneumonectomies, sleeve resections, and resections of the left interlobar carina. Conventional tomography provided the most accurate assessment of endobronchial anatomy. Computed tomography, unsuitable for intraluminal disease due to volume averaging of obliquely oriented bronchi, provided information about the extraluminal extent of disease, nodes, and the lung parenchyma. Complications including stricture, air leak, atelectasis, pneumonia, and residual tumor

  10. Normal spectrum of pulmonary parametric response map to differentiate lung collapsibility: distribution of densitometric classifications in healthy adult volunteers

    International Nuclear Information System (INIS)

    Silva, Mario; Nemec, Stefan F.; Dufresne, Valerie; Occhipinti, Mariaelena; Heidinger, Benedikt H.; Bankier, Alexander A.; Chamberlain, Ryan

    2016-01-01

    Pulmonary parametric response map (PRM) was proposed for quantitative densitometric phenotypization of chronic obstructive pulmonary disease. However, little is known about this technique in healthy subjects. The purpose of this study was to describe the normal spectrum of densitometric classification of pulmonary PRM in a group of healthy adults. 15 healthy volunteers underwent spirometrically monitored chest CT at total lung capacity (TLC) and functional residual capacity (FRC). The paired CT scans were analyzed by PRM for voxel-by-voxel characterization of lung parenchyma according to 4 densitometric classifications: normal lung (TLC ≥ -950 HU, FRC ≥ -856 HU); expiratory low attenuation area (LAA) (TLC ≥ -950 HU, FRC < -856 HU); dual LAA (TLC<-950 HU, FRC < -856 HU); uncharacterized (TLC < -950 HU, FRC ≥ -856 HU). PRM spectrum was 78 % ± 10 % normal lung, 20 % ± 8 % expiratory LAA, and 1 % ± 1 % dual LAA. PRM was similar between genders, there was moderate correlation between dual LAA and spirometrically assessed TLC (R = 0.531; p = 0.042), and between expiratory LAA and Vol Exp/Insp ratio (R = -0.572; p = 0.026). PRM reflects the predominance of normal lung parenchyma in a group of healthy volunteers. However, PRM also confirms the presence of physiological expiratory LAA seemingly related to air trapping and a minimal amount of dual LAA likely reflecting emphysema. (orig.)

  11. Sporadic insulinomas on volume perfusion CT: dynamic enhancement patterns and timing of optimal tumour-parenchyma contrast

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang; Xue, Hua-dan; Liu, Wei; Wang, Xuan; Sun, Hao; Li, Ping; Jin, Zheng-yu [Peking Union Medical College Hospital, Department of Radiology, Beijing (China); Wu, Wen-ming; Zhao, Yu-pei [Peking Union Medical College Hospital, Department of General Surgery, Beijing (China)

    2017-08-15

    To assess enhancement patterns of sporadic insulinomas on volume perfusion CT (VPCT), and to identify timing of optimal tumour-parenchyma contrast. Consecutive patients who underwent VPCT for clinically suspected insulinomas were retrospectively identified. Patients with insulinomas confirmed by surgery were included, and patients with familial syndromes were excluded. Two radiologists evaluated VPCT images in consensus. Tumour-parenchyma contrast at each time point was measured, and timing of optimal contrast was determined. Time duration of hyperenhancement (tumour-parenchyma contrast >20 Hounsfield units, HU) was recorded. Perfusion parameters were evaluated. Three dynamic enhancement patterns were observed in 63 tumours: persistent hyperenhancement (hyperenhancement time window ≥10 s) in 39 (61.9%), transient hyperenhancement (hyperenhancement <10 s) in 19 (30.2%) and non-hyperenhancement in 5 (7.9%). Timing of optimal contrast was 9 s after abdominal aorta threshold (AAT) of 200 HU, with tumour-parenchyma contrast of 77.6 ± 57.2 HU. At 9 s after AAT, 14 (22.2%) tumours were non-hyperenhancing, nine of which had missed transient hyperenhancement. Insulinomas with transient and persistent hyperenhancement patterns had significantly increased perfusion. Insulinomas have variable enhancement patterns. Tumour-parenchyma contrast is time-dependent. Optimal timing of enhancement is 9 s after AAT. VPCT enables tumour detection even if the hyperenhancement is transient. (orig.)

  12. Endostar, a recombined humanized endostatin, enhances the radioresponse for human nasopharyngeal carcinoma and human lung adenocarcinoma xenografts in mice

    International Nuclear Information System (INIS)

    Wen Qinglian; Meng Maobin; Tu Lingli; Jia Li; Zhou Lin; Xu Yong; Lu You; Yang Bo

    2009-01-01

    The purpose of this paper is to determine the efficacy of combining radiation therapy with endostar, a recombined humanized endostatin, in human nasopharyngeal carcinoma and human lung adenocarcinoma xenografts. Tumor xenografts were established in the hind limb of male athymic nude mice (BALB/c-nu) by subcutaneous transplantation. The tumor-bearing mice were assigned into four treatment groups: sham therapy (control), endostar (20 mg/kg, once daily for 10 days), radiation therapy (6 Gray per day to 30 Gray, once a day for 1 week), and endostar plus radiation therapy (combination). The experiment was repeated and mice were killed at days 3, 6, and 10 after initiation therapy, and the tumor tissues and blood samples were collected to analyze the kinetics of antitumor, antiangiogenesis, and antivascularization responses of different therapies. In human nasopharyngeal carcinoma and human lung adenocarcinoma xenografts, endostar significantly enhanced the effects of tumor growth inhibition, endothelial cell and tumor cell apoptosis induction, and improved tumor cell hypoxia of radiation therapy. Histological analyses demonstrated that endostar plus radiation also induced a significant reduction in microvascular density, microvascular area, and vascular endothelial growth factor and matrix metalloproteinase-2 expression compared with radiation and endostar alone respectively. We concluded that endostar significantly sensitized the function of radiation in antitumor and antiangiogenesis in human nasopharyngeal carcinoma and human lung adenocarcinoma xenografts by increasing the apoptosis of the endothelial cell and tumor cell, improving the hypoxia of the tumor cell, and changing the proangiogenic factors. These data provided a rational basis for clinical practice of this multimodality therapy. (author)

  13. In-vivo counting of 241Am in human lungs and tracheobronchial lymph nodes

    International Nuclear Information System (INIS)

    Northcutt, A.R.; Binney, S.E.; Palmer, H.E.

    1988-01-01

    A study was conducted of a human male who had inhaled a mixture of 241 Am and Pu. To distinguish 241 Am deposited in the subject's lungs from translocated activity deposited in the tracheobronchial lymph nodes (TBLN), two intrinsic Ge detectors were collimated with 0.3-cm Pb sheeting. A tissue-equivalent phantom containing either 22.9 kBq (620 nCi) of 241 Am in the lungs or a 81.4 kBq (2200 nCi) 241 Am point source in the TBLN was measured. Calibration curves observed from lateral differential scans on the phantom were compared to data obtained by the same detection system for a human male with a measured lung deposition of 89 Bq (2.4 nCi) of 241 Am. Comparison of the human data to the calibration curves indicated the activity was restricted primarily to the lungs. The calibration curves demonstrate that this method is useful in determining the distribution of inhaled radioactivity between the lungs and TBLN. The measured activity from the male subject generally supported the ICRP Publication 30 model translocation prediction for class Y compounds

  14. Teaching basic lung isolation skills on human anatomy simulator: attainment and retention of lung isolation skills.

    Science.gov (United States)

    Latif, Rana K; VanHorne, Edgar M; Kandadai, Sunitha Kanchi; Bautista, Alexander F; Neamtu, Aurel; Wadhwa, Anupama; Carter, Mary B; Ziegler, Craig H; Memon, Mohammed Faisal; Akça, Ozan

    2016-01-20

    Lung isolation skills, such as correct insertion of double lumen endobronchial tube and bronchial blocker, are essential in anesthesia training; however, how to teach novices these skills is underexplored. Our aims were to determine (1) if novices can be trained to a basic proficiency level of lung isolation skills, (2) whether video-didactic and simulation-based trainings are comparable in teaching lung isolation basic skills, and (3) whether novice learners' lung isolation skills decay over time without practice. First, five board certified anesthesiologist with experience of more than 100 successful lung isolations were tested on Human Airway Anatomy Simulator (HAAS) to establish Expert proficiency skill level. Thirty senior medical students, who were naive to bronchoscopy and lung isolation techniques (Novice) were randomized to video-didactic and simulation-based trainings to learn lung isolation skills. Before and after training, Novices' performances were scored for correct placement using pass/fail scoring and a 5-point Global Rating Scale (GRS); and time of insertion was recorded. Fourteen novices were retested 2 months later to assess skill decay. Experts' and novices' double lumen endobronchial tube and bronchial blocker passing rates showed similar success rates after training (P >0.99). There were no differences between the video-didactic and simulation-based methods. Novices' time of insertion decayed within 2 months without practice. Novices could be trained to basic skill proficiency level of lung isolation. Video-didactic and simulation-based methods we utilized were found equally successful in training novices for lung isolation skills. Acquired skills partially decayed without practice.

  15. Serological assessment of neutrophil elastase activity on elastin during lung ECM remodeling.

    Science.gov (United States)

    Kristensen, Jacob H; Karsdal, Morten A; Sand, Jannie Mb; Willumsen, Nicholas; Diefenbach, Claudia; Svensson, Birte; Hägglund, Per; Oersnes-Leeming, Diana J

    2015-05-03

    During the pathological destruction of lung tissue, neutrophil elastase (NE) degrades elastin, one of the major constituents of lung parenchyma. However there are no non-invasive methods to quantify NE degradation of elastin. We selected specific elastin fragments generated by NE for antibody generation and developed an ELISA assay (EL-NE) for the quantification of NE-degraded elastin. Monoclonal antibodies were developed against 10 NE-specific cleavage sites on elastin. One EL-NE assay was tested for analyte stability, linearity and intra- and inter-assay variation. The NE specificity was demonstrated using elastin cleaved in vitro with matrix metalloproteinases (MMPs), cathepsin G (CatG), NE and intact elastin. Clinical relevance was assessed by measuring levels of NE-generated elastin fragments in serum of patients diagnosed with idiopathic pulmonary fibrosis (IPF, n = 10) or lung cancer (n = 40). Analyte recovery of EL-NE for human serum was between 85% and 104%, the analyte was stable for four freeze/thaw cycles and after 24 h storage at 4°C. EL-NE was specific for NE-degraded elastin. Levels of NE-generated elastin fragments for elastin incubated in the presence of NE were 900% to 4700% higher than those seen with CatG or MMP incubation or in intact elastin. Serum levels of NE-generated elastin fragments were significantly increased in patients with IPF (137%, p = 0.002) and in patients with lung cancer (510%, p elastin. The EL-NE assay was able to specifically quantify NE-degraded elastin in serum. Serum levels of NE-degraded elastin might be used to detect excessive lung tissue degradation in lung cancer and IPF.

  16. Losartan Attenuates Degradation of Aorta and Lung Tissue Micromechanics in a Mouse Model of Severe Marfan Syndrome.

    Science.gov (United States)

    Lee, Jia-Jye; Galatioto, Josephine; Rao, Satish; Ramirez, Francesco; Costa, Kevin D

    2016-10-01

    Marfan syndrome (MFS) is an autosomal dominant disease of the connective tissue due to mutations in the fibrillin-1 gene (FBN1). This study aimed at characterizing microelastic properties of the ascending aortic wall and lung parenchyma tissues from wild type (WT) and age-matched Fbn1 hypomorphic mice (Fbn1(mgR/mgR) mice) to identify tissue-specific biomechanical effects of aging and disease in MFS. Atomic force microscopy was used to indent lung parenchyma and aortic wall tissues, using Hybrid Eshelby Decomposition analysis to extract layer-specific properties of the intima and media. The intima stiffened with age and was not different between WT and Fbn1(mgR/mgR) tissues, whereas the media layer of MFS aortas showed progressive structural and mechanical degradation with a modulus that was 50% softer than WT by 3.5 months of age. Similarly, MFS mice displayed progressive structural and mechanical deterioration of lung tissue, which was over 85% softer than WT by 3.5 months of age. Chronic treatment with the angiotensin type I receptor antagonist, losartan, attenuated the aorta and lung tissue degradation, resulting in structural and mechanical properties not significantly different from age-matched WT controls. By revealing micromechanical softening of elastin-rich aorta and lung tissues with disease progression in fibrillin-1 deficient mice, our findings support the use of losartan as a prophylactic treatment that may abrogate the life-threatening symptoms of MFS.

  17. Genetic Modification of the Lung Directed Toward Treatment of Human Disease.

    Science.gov (United States)

    Sondhi, Dolan; Stiles, Katie M; De, Bishnu P; Crystal, Ronald G

    2017-01-01

    Genetic modification therapy is a promising therapeutic strategy for many diseases of the lung intractable to other treatments. Lung gene therapy has been the subject of numerous preclinical animal experiments and human clinical trials, for targets including genetic diseases such as cystic fibrosis and α1-antitrypsin deficiency, complex disorders such as asthma, allergy, and lung cancer, infections such as respiratory syncytial virus (RSV) and Pseudomonas, as well as pulmonary arterial hypertension, transplant rejection, and lung injury. A variety of viral and non-viral vectors have been employed to overcome the many physical barriers to gene transfer imposed by lung anatomy and natural defenses. Beyond the treatment of lung diseases, the lung has the potential to be used as a metabolic factory for generating proteins for delivery to the circulation for treatment of systemic diseases. Although much has been learned through a myriad of experiments about the development of genetic modification of the lung, more work is still needed to improve the delivery vehicles and to overcome challenges such as entry barriers, persistent expression, specific cell targeting, and circumventing host anti-vector responses.

  18. Contrast-enhanced 3D MRI of lung perfusion in children with cystic fibrosis - initial results

    International Nuclear Information System (INIS)

    Eichinger, Monika; Puderbach, Michael; Zuna, Ivan; Kauczor, Hans-Ulrich; Fink, Christian; Gahr, Julie; Mueller, Frank-Michael; Ley, Sebastian; Plathow, Christian; Tuengerthal, Siegfried

    2006-01-01

    This paper is a feasibility study of magnetic resonance imaging (MRI) of lung perfusion in children with cystic fibrosis (CF) using contrast-enhanced 3D MRI. Correlation assessment of perfusion changes with structural abnormalities. Eleven CF patients (9 f, 2 m; median age 16 years) were examined at 1.5 T. Morphology: HASTE coronal, transversal (TR/TE/α/ST: 600 ms/28 ms/180 /6 mm), breath-hold 18 s. Perfusion: Time-resolved 3D GRE pulse sequence (FLASH, TE/TR/α: 0.8/1.9 ms/40 ), parallel imaging (GRAPPA, PAT 2). Twenty-five data sets were acquired after intravenous injection of 0.1 mmol/kg body weight of gadodiamide, 3-5 ml/s. A total of 198 lung segments were analyzed by two radiologists in consensus and scored for morphological and perfusion changes. Statistical analysis was performed by Mantel-Haenszel chi-square test. Results showed that perfusion defects were observed in all patients and present in 80% of upper, and 39% of lower lobes. Normal lung parenchyma showed homogeneous perfusion (86%, P<0.0001). Severe morphological changes led to perfusion defects (97%, P<0.0001). Segments with moderate morphological changes showed normal (53%) or impaired perfusion (47%). In conclusion, pulmonary perfusion is easy to judge in segments with normal parenchyma or severe changes. In moderately damaged segments, MRI of lung perfusion may help to better assess actual functional impairment. Contrast-enhanced 3D MRI of lung perfusion has the potential for early vascular functional assessment and therapy control in CF patients. (orig.)

  19. Potent selective nonpeptidic inhibitors of human lung tryptase

    Science.gov (United States)

    Burgess, Laurence E.; Newhouse, Bradley J.; Ibrahim, Prabha; Rizzi, James; Kashem, Mohammed A.; Hartman, Ann; Brandhuber, Barbara J.; Wright, Clifford D.; Thomson, David S.; Vigers, Guy P. A.; Koch, Kevin

    1999-01-01

    Human lung tryptase, a homotetrameric serine protease unique to mast cell secretory granules, has been implicated in the pathogenesis of asthma. A hypothesis that tethered symmetrical inhibitors might bridge two adjacent active sites was explored via a rationally designed series of bisbenzamidines. These compounds demonstrated a remarkable distanced-defined structure–activity relationship against human tryptase with one series possessing subnanomolar potencies. Additional evidence supporting the concept of active-site bridging is also presented. PMID:10411878

  20. The cytotoxicity and genotoxicity of soluble and particulate cobalt in human lung fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Leah J.; Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Kandpal, Sanjeev Kumar; Mason, Michael D. [Department of Chemical and Biological Engineering, University of Maine, Orono, ME (United States); Zheng, Tongzhang [Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT (United States); Wise, John Pierce, E-mail: John.Wise@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Maine Center for Environmental Toxicology and Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04101-9300 (United States)

    2014-08-01

    Cobalt exposure is increasing as cobalt demand rises worldwide due to its use in enhancing rechargeable battery efficiency, super-alloys, and magnetic products. Cobalt is considered a possible human carcinogen with the lung being a primary target. However, few studies have considered cobalt-induced toxicity in human lung cells. Therefore, in this study, we sought to determine the cytotoxicity and genotoxicity of particulate and soluble cobalt in human lung cells. Cobalt oxide and cobalt chloride were used as representative particulate and soluble cobalt compounds, respectively. Exposure to both particulate and soluble cobalt induced a concentration-dependent increase in cytotoxicity, genotoxicity, and intracellular cobalt ion levels. Based on intracellular cobalt ion levels, we found that soluble cobalt was more cytotoxic than particulate cobalt while particulate and soluble cobalt induced similar levels of genotoxicity. However, soluble cobalt induced cell cycle arrest indicated by the lack of metaphases at much lower intracellular cobalt concentrations compared to cobalt oxide. Accordingly, we investigated the role of particle internalization in cobalt oxide-induced toxicity and found that particle-cell contact was necessary to induce cytotoxicity and genotoxicity after cobalt exposure. These data indicate that cobalt compounds are cytotoxic and genotoxic to human lung fibroblasts, and solubility plays a key role in cobalt-induced lung toxicity. - Highlights: • Particulate and soluble cobalt are cytotoxic and genotoxic to human lung cells. • Soluble cobalt induces more cytotoxicity compared to particulate cobalt. • Soluble and particulate cobalt induce similar levels of genotoxicity. • Particle-cell contact is required for particulate cobalt-induced toxicity.

  1. LungMAP: The Molecular Atlas of Lung Development Program.

    Science.gov (United States)

    Ardini-Poleske, Maryanne E; Clark, Robert F; Ansong, Charles; Carson, James P; Corley, Richard A; Deutsch, Gail H; Hagood, James S; Kaminski, Naftali; Mariani, Thomas J; Potter, Steven S; Pryhuber, Gloria S; Warburton, David; Whitsett, Jeffrey A; Palmer, Scott M; Ambalavanan, Namasivayam

    2017-11-01

    The National Heart, Lung, and Blood Institute is funding an effort to create a molecular atlas of the developing lung (LungMAP) to serve as a research resource and public education tool. The lung is a complex organ with lengthy development time driven by interactive gene networks and dynamic cross talk among multiple cell types to control and coordinate lineage specification, cell proliferation, differentiation, migration, morphogenesis, and injury repair. A better understanding of the processes that regulate lung development, particularly alveologenesis, will have a significant impact on survival rates for premature infants born with incomplete lung development and will facilitate lung injury repair and regeneration in adults. A consortium of four research centers, a data coordinating center, and a human tissue repository provides high-quality molecular data of developing human and mouse lungs. LungMAP includes mouse and human data for cross correlation of developmental processes across species. LungMAP is generating foundational data and analysis, creating a web portal for presentation of results and public sharing of data sets, establishing a repository of young human lung tissues obtained through organ donor organizations, and developing a comprehensive lung ontology that incorporates the latest findings of the consortium. The LungMAP website (www.lungmap.net) currently contains more than 6,000 high-resolution lung images and transcriptomic, proteomic, and lipidomic human and mouse data and provides scientific information to stimulate interest in research careers for young audiences. This paper presents a brief description of research conducted by the consortium, database, and portal development and upcoming features that will enhance the LungMAP experience for a community of users. Copyright © 2017 the American Physiological Society.

  2. Clinical evaluation of lung rest/stress perfusion scintigraphy in patients with severe emphysema

    International Nuclear Information System (INIS)

    Hadjikostova, Hr.

    1998-01-01

    Volume lung reduction surgery (LVRS) improves lung function and physical tolerance for selected patients with severe pulmonary emphysema by making conditions for developing of the vital parenchyma so far compressed by the emphysema blisters. The aim of this study was to establish the comparative functional information obtained from REST/STRESS lung perfusion tomoscintigraphies for identification of non functional lung tissue. Eleven patients (8 males and 3 females at age 41-60) were examined by two lung perfusions SPECT scintigraphies after intravenous application of 222 MBq 99m Tc-MAA: 1. after 30 min. lying rest and 2. 48 hours later after 6 min. walk test. Comparing the two scintigraphies the following changes in perfusion performance have been established at STRESS examination: increased at six patients (significant at three and slight also at three) and decreased at two. There was no difference between REST and STRESS examinations at 3 patients. Comparative REST/STRESS lung perfusion scintigraphy is important method for screening severe pulmonary patients for LVRS. (author)

  3. Histogram analysis for age change of human lung with computed tomography

    International Nuclear Information System (INIS)

    Shirabe, Ichiju

    1990-01-01

    In order to evaluate physiological changes of normal lung with aging by computed tomography (CT), the peak position (PP) and full width half maximum (FWHM) of CT-histogram were studied in 77 normal human lung. Above 30 years old, PP tended to be seen in the lower attenuation value with advancing ages, with the result that the follow equation was obtained. CT attenuation value of PP=-0.87 x age -815. The peak position shifted to the range of higher CT attenuation in 30's. FWHM did not change with advancing ages. There were no differences of peak value and FWHM among the upper, middle and lower lung field. In this study, physiological changes of lung were evaluated quantitatively. Furthermore, this study was considered to be useful for diagnosis and treatment in lung diseases. (author)

  4. Incomplete Memories: The Natural Suppression of Tissue-Resident Memory CD8 T Cells in the Lung

    Directory of Open Access Journals (Sweden)

    Katie L. Reagin

    2018-01-01

    Full Text Available The yearly, cyclic impact of viruses like influenza on human health and the economy is due to the high rates of mutation of traditional antibody targets, which negate any preexisting humoral immunity. However, the seasonality of influenza infections can equally be attributed to an absent or defective memory CD8 T cell response since the epitopes recognized by these cells are derived from essential virus proteins that mutate infrequently. Experiments in mouse models show that protection from heterologous influenza infection is temporally limited and conferred by a population of tissue-resident memory (TRM cells residing in the lung and lung airways. TRM are elicited by a diverse set of pathogens penetrating mucosal barriers and broadly identified by extravascular staining and expression of the activation and adhesion molecules CD69 and CD103. Interestingly, lung TRM fail to express these molecules, which could limit tissue retention, resulting in airway expulsion or death with concomitant loss of heterologous protection. Here, we make the case that respiratory infections uniquely evoke a form of natural immunosuppression whereby specific cytokines and cell–cell interactions negatively impact memory cell programming and differentiation. Respiratory memory is not only short-lived but most of the memory cells in the lung parenchyma may not be bona fide TRM. Given the quantity of microbes humans inhale over a lifetime, limiting cellular residence could be a mechanism employed by the respiratory tract to preserve organismal vitality. Therefore, successful efforts to improve respiratory immunity must carefully and selectively breach these inherent tissue barriers.

  5. Modeling of the Nitric Oxide Transport in the Human Lungs.

    Science.gov (United States)

    Karamaoun, Cyril; Van Muylem, Alain; Haut, Benoît

    2016-01-01

    In the human lungs, nitric oxide (NO) acts as a bronchodilatator, by relaxing the bronchial smooth muscles and is closely linked to the inflammatory status of the lungs, owing to its antimicrobial activity. Furthermore, the molar fraction of NO in the exhaled air has been shown to be higher for asthmatic patients than for healthy patients. Multiple models have been developed in order to characterize the NO dynamics in the lungs, owing to their complex structure. Indeed, direct measurements in the lungs are difficult and, therefore, these models are valuable tools to interpret experimental data. In this work, a new model of the NO transport in the human lungs is proposed. It belongs to the family of the morphological models and is based on the morphometric model of Weibel (1963). When compared to models published previously, its main new features are the layered representation of the wall of the airways and the possibility to simulate the influence of bronchoconstriction (BC) and of the presence of mucus on the NO transport in lungs. The model is based on a geometrical description of the lungs, at rest and during a respiratory cycle, coupled with transport equations, written in the layers composing an airway wall and in the lumen of the airways. First, it is checked that the model is able to reproduce experimental information available in the literature. Second, the model is used to discuss some features of the NO transport in healthy and unhealthy lungs. The simulation results are analyzed, especially when BC has occurred in the lungs. For instance, it is shown that BC can have a significant influence on the NO transport in the tissues composing an airway wall. It is also shown that the relation between BC and the molar fraction of NO in the exhaled air is complex. Indeed, BC might lead to an increase or to a decrease of this molar fraction, depending on the extent of the BC and on the possible presence of mucus. This should be confirmed experimentally and might

  6. [Effect of cisplatin on the expression of Pokemon gene: experiment with different human lung cancer cells].

    Science.gov (United States)

    Zhao, Zhi-Hong; Wang, Sheng-Fa; Yu, Liang; Wang, Ju; Cong, De-Gang; Chang, Hao; Wang, Xue-Feng; Zhang, Tie-Wa; Zhang, Jian; Fu, Kai; Jiang, Jiu-Yang

    2008-04-29

    To investigate the correlation between Pokemon gene and cisplatin mechanism. Human lung adenocarcinoma cells of the lines A549 and AGZY83-a, human lung squamous carcinoma cells of the line HE-99, and human giant cell lung cancer cells of the line 95D were cultured and cisplatin was added into the medium. Other lung cancer cells of the above mentioned lines were cultured in the medium without cisplatin and were used as control groups. RT-PCR and Western blotting were used to detect the mRNA and protein expression of Pokemon. Pokemon mRNA and protein were expressed highly in all the 4 cell lines. The Pokemon gene expression did not changed significantly after cisplatin treatment groups. There were not significant differences in the mRNA and protein expression of Pokemon among the 4 experiment groups and the control groups (all P > 0.05). Cisplatin has no effect on the Pokemon gene expression of the human lung cancer cells.

  7. [Comparative studies on toxicity of various dielectrics, petroleum derivatives, used in electroerosion technology. IV. Morphological and cytoenzymatic changes in the lungs and acid-base imbalance in rats chronically exposed to petroleum hydrocarbons].

    Science.gov (United States)

    Starek, A; Kamiński, M

    1981-01-01

    In rats exposed to odourless kerosene of 75 and 300 mg/m3 concentration, for 14 weeks, morphologic and cytoenzymatic examinations of lungs have been carried out and acid-base equilibrium indices in blood have been determined. Passive congestion of lung parenchyma, subpleural blood extravasation, atelectasis foci, thickened interalveolar septa with infiltrates from neutrophils, lymphocytes, eosinophils and macrophages have been found. In addition a decrease in succinic dehydrogenase activity, NADPH -- tetrazolium reductase, and Mg++-ATP-ase and increase in acid phosphatase activity have been revealed. Those have been focal changes, involving, apart from bronchial tree (low exposure -- 75 mg/m3), the remaining lung parenchyma segments (high exposure -- 300 mg/m3). In addition, disturbances in acid-base equilibrium in form of compensated metabolic alkalosis (75 mg/m3) and compensated metabolic acidosis (300 mg/m3) have occurred. The obtained results demonstrate toxic effects of kerosene hydrocarbons on the function and structure of lungs.

  8. Regulated gene expression in cultured type II cells of adult human lung

    OpenAIRE

    Ballard, Philip L.; Lee, Jae W.; Fang, Xiaohui; Chapin, Cheryl; Allen, Lennell; Segal, Mark R.; Fischer, Horst; Illek, Beate; Gonzales, Linda W.; Kolla, Venkatadri; Matthay, Michael A.

    2010-01-01

    Alveolar type II cells have multiple functions, including surfactant production and fluid clearance, which are critical for lung function. Differentiation of type II cells occurs in cultured fetal lung epithelial cells treated with dexamethasone plus cAMP and isobutylmethylxanthine (DCI) and involves increased expression of 388 genes. In this study, type II cells of human adult lung were isolated at ∼95% purity, and gene expression was determined (Affymetrix) before and after culturing 5 days...

  9. Radiofrequency Ablation of Lung Malignancies: Where Do We Stand?

    International Nuclear Information System (INIS)

    Lencioni, Riccardo; Crocetti, Laura; Cioni, Roberto; Mussi, Alfredo; Fontanini, Gabriella; Ambrogi, Marcello; Franchini, Chiara; Cioni, Dania; Fanucchi, Olivia; Gemignani, Raffaello; Baldassarri, Rubia; Angeletti, Carlo Alberto; Bartolozzi, Carlo

    2004-01-01

    Percutaneous radiofrequency (RF) ablation is a minimally invasive technique used to treat solid tumors. Because of its ability to produce large volumes of coagulation necrosis in a controlled fashion, this technique has gained acceptance as a viable therapeutic option for unresectable liver malignancies. Recently, investigation has been focused on the clinical application of RF ablation in the treatment of lung malignancies. In theory, lung tumors are well suited to RF ablation because the surrounding air in adjacent normal parenchyma provides an insulating effect, thus facilitating energy concentration within the tumor tissue. Experimental studies in rabbits have confirmed that lung RF ablation can be safely and effectively performed via a percutaneous, transthoracic approach, and have prompted the start of clinical investigation. Pilot clinical studies have shown that RF ablation enables successful treatment of relatively small lung malignancies with a high rate of complete response and acceptable morbidity, and have suggested that the technique could represent a viable alternate or complementary treatment method for patients with non-small cell lung cancer or lung metastases of favorable histotypes who are not candidates for surgical resection. This article gives an overview of lung RF ablation, discussing experimental animal findings, rationale for clinical application, technique and methodology, clinical results, and complications

  10. Follistatin is a novel biomarker for lung adenocarcinoma in humans.

    Directory of Open Access Journals (Sweden)

    Fangfang Chen

    Full Text Available Follistatin (FST, a single chain glycoprotein, is originally isolated from follicular fluid of ovary. Previous studies have revealed that serum FST served as a biomarker for pregnancy and ovarian mucinous tumor. However, whether FST can serve as a biomarker for diagnosis in lung adenocarcinoma of humans remains unclear.The study population consisted of 80 patients with lung adenocarcinoma, 40 patients with ovarian adenocarcinoma and 80 healthy subjects. Serum FST levels in patients and healthy subjects were measured using ELISA. The results showed that the positive ratio of serum FST levels was 51.3% (41/80, which was comparable to the sensitivity of FST in 40 patients with ovarian adenocarcinoma (60%, 24/40 using the 95th confidence interval for the healthy subject group as the cut-off value. FST expressions in lung adenocarcinoma were examined by immunohistochemical staining, we found that lung adenocarcinoma could produce FST and there was positive correlation between the level of FST expression and the differential degree of lung adenocarcinoma. Furthermore, the results showed that primary cultured lung adenocarcinoma cells could secrete FST, while cells derived from non-tumor lung tissues almost did not produce FST. In addition, the results of CCK8 assay and flow cytometry showed that using anti-FST monoclonal antibody to neutralize endogenous FST significantly augmented activin A-induced lung adenocarcinoma cells apoptosis.These data indicate that lung adenocarcinoma cells can secret FST into serum, which may be beneficial to the survival of adenocarcinoma cells by neutralizing activin A action. Thus, FST can serve as a promising biomarker for diagnosis of lung adenocarcinoma and a useful biotherapy target for lung adenocarcinoma.

  11. Disruption of the Hepcidin/Ferroportin Regulatory System Causes Pulmonary Iron Overload and Restrictive Lung Disease

    Directory of Open Access Journals (Sweden)

    Joana Neves

    2017-06-01

    Full Text Available Emerging evidence suggests that pulmonary iron accumulation is implicated in a spectrum of chronic lung diseases. However, the mechanism(s involved in pulmonary iron deposition and its role in the in vivo pathogenesis of lung diseases remains unknown. Here we show that a point mutation in the murine ferroportin gene, which causes hereditary hemochromatosis type 4 (Slc40a1C326S, increases iron levels in alveolar macrophages, epithelial cells lining the conducting airways and lung parenchyma, and in vascular smooth muscle cells. Pulmonary iron overload is associated with oxidative stress, restrictive lung disease with decreased total lung capacity and reduced blood oxygen saturation in homozygous Slc40a1C326S/C326S mice compared to wild-type controls. These findings implicate iron in lung pathology, which is so far not considered a classical iron-related disorder.

  12. Evaluation of changes in central airway dimensions, lung area and mean lung density at paired inspiratory/expiratory high-resolution computed tomography

    International Nuclear Information System (INIS)

    Ederle, J.R.; Heussel, C.P.; Hast, J.; Ley, S.; Thelen, M.; Kauczor, H.U.; Fischer, B.; Beek, E.J.R. van

    2003-01-01

    The aim of this study was to improve the understanding of interdependencies of dynamic changes in central airway dimensions, lung area and lung density on HRCT. The HRCT scans of 156 patients obtained at full inspiratory and expiratory position were evaluated retrospectively. Patients were divided into four groups according to lung function tests: normal subjects (n=47); obstructive (n=74); restrictive (n=19); or mixed ventilatory impairment (n=16). Mean lung density (MLD) was correlated with cross-sectional area of the lung (CSA L ), cross-sectional area of the trachea (CSA T ) and diameter of main-stem bronchi (D B ). The CSA L was correlated with CSA T and D B . MLD correlated with CSA L in normal subjects (r=-0.66, p T in the control group (r=-0.50, p B was found (r=-0.52, p L and CSA T correlated in the control group (r=0.67, p L and D B correlated in the control group (r=0.42, p<0.0001) and in patients with obstructive lung disease (r=0.24, p<0.05). Correlations for patients with restrictive and mixed lung disease were constantly lower. Dependencies between central and peripheral airway dimensions and lung parenchyma are demonstrated by HRCT. Best correlations are observed in normal subjects and patients with obstructive lung disease. Based on these findings we postulate that the dependencies are the result of air-flow and pressure patterns. (orig.)

  13. Cryoablation of lung malignancies recurring close to surgical clips following surgery: Report of three cases

    International Nuclear Information System (INIS)

    Grasso, Rosario F; Luppi, Giacomo; Cazzato, Roberto L; Vescovo, Riccardo Del; Giurazza, Francesco; Mercurio, Simona; Faiella, Eliodoro; Zobel, Bruno Beomonte

    2015-01-01

    Minimally ablative therapies are now available for the treatment of lung malignancies. However, selection of the appropriate technique is not always easy and requires accurate preoperative planning. To describe the treatment of lung tumors with cryoablation. We report three cases of lung malignancies that recurred close to surgical clips after surgical treatment, successfully treated by cryoablation. An initial freezing cycle was performed for 10 min, followed by a 5-min thawing cycle, and an additional 10-min freezing cycle. A final 5-min thaw was necessary to remove the needle from the iceball formed during the freezing cycle. The procedures were completed successfully with no signs of surgical-clip misplacement, and excellent ablation of the lesions. Cryoablation is a relatively new procedure that potentially permits the local treatment of lung tumors with minimal loss of lung parenchyma

  14. Tissue distribution and deposition pattern of a cellulosic parenchyma-specific protein from cassava roots

    Directory of Open Access Journals (Sweden)

    Petrônio A.S. Souza

    1998-06-01

    Full Text Available A protein with a molecular mass of 22kDa was purified from the cellulosic parenchyma of cassava roots. The amino acid composition of the protein was determined and antibodies generated against the purified protein were used to show that the concentration of the protein remains unchanged during root "tuber" formation. By using a tissue printing technique, as well as western blot, it was shown that the cellulosic parenchyma was the only root tissue in which the protein was deposited.

  15. Anti-human tissue factor antibody ameliorated intestinal ischemia reperfusion-induced acute lung injury in human tissue factor knock-in mice.

    Directory of Open Access Journals (Sweden)

    Xiaolin He

    Full Text Available BACKGROUND: Interaction between the coagulation and inflammation systems plays an important role in the development of acute respiratory distress syndrome (ARDS. Anti-coagulation is an attractive option for ARDS treatment, and this has promoted development of new antibodies. However, preclinical trials for these antibodies are often limited by the high cost and availability of non-human primates. In the present study, we developed a novel alternative method to test the role of a humanized anti-tissue factor mAb in acute lung injury with transgenic mice. METHODOLOGY/PRINCIPAL FINDINGS: Human tissue factor knock-in (hTF-KI transgenic mice and a novel humanized anti-human tissue factor mAb (anti-hTF mAb, CNTO859 were developed. The hTF-KI mice showed a normal and functional expression of hTF. The anti-hTF mAb specifically blocked the pro-coagulation activity of brain extracts from the hTF-KI mice and human, but not from wild type mice. An extrapulmonary ARDS model was used by intestinal ischemia-reperfusion. Significant lung tissue damage in hTF-KI mice was observed after 2 h reperfusion. Administration of CNTO859 (5 mg/kg, i.v. attenuated the severity of lung tissue injury, decreased the total cell counts and protein concentration in bronchoalveolar lavage fluid, and reduced Evans blue leakage. In addition, the treatment significantly reduced alveolar fibrin deposition, and decreased tissue factor and plasminogen activator inhibitor-1 activity in the serum. This treatment also down-regulated cytokine expression and reduced cell death in the lung. CONCLUSIONS: This novel anti-hTF antibody showed beneficial effects on intestinal ischemia-reperfusion induced acute lung injury, which merits further investigation for clinical usage. In addition, the use of knock-in transgenic mice to test the efficacy of antibodies against human-specific proteins is a novel strategy for preclinical studies.

  16. Interplay between the lung microbiome and lung cancer.

    Science.gov (United States)

    Mao, Qixing; Jiang, Feng; Yin, Rong; Wang, Jie; Xia, Wenjie; Dong, Gaochao; Ma, Weidong; Yang, Yao; Xu, Lin; Hu, Jianzhong

    2018-02-28

    The human microbiome confers benefits or disease susceptibility to the human body through multiple pathways. Disruption of the symbiotic balance of the human microbiome is commonly found in systematic diseases such as diabetes, obesity, and chronic gastric diseases. Emerging evidence has suggested that dysbiosis of the microbiota may also play vital roles in carcinogenesis at multiple levels, e.g., by affecting metabolic, inflammatory, or immune pathways. Although the impact of the gut microbiome on the digestive cancer has been widely explored, few studies have investigated the interplay between the microbiome and lung cancer. Some recent studies have shown that certain microbes and microbiota dysbiosis are correlated with development of lung cancer. In this mini-review, we briefly summarize current research findings describing the relationship between the lung microbiome and lung cancer. We further discuss the potential mechanisms through which the lung microbiome may play a role in lung carcinogenesis and impact lung cancer treatment. A better knowledge of the interplay between the lung microbiome and lung cancer may promote the development of innovative strategies for early prevention and personalized treatment in lung cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Morphological analysis of mouse lungs after treatment with magnetite-based magnetic fluid stabilized with DMSA

    International Nuclear Information System (INIS)

    Pereira Garcia, Monica; Miranda Parca, Renata; Braun Chaves, Sacha; Paulino Silva, Luciano; Djalma Santos, Antonio; Guerrero Marques Lacava, Zulmira; Cesar Morais, Paulo; Azevedo, Ricardo Bentes

    2005-01-01

    Mouse lungs injected with magnetic fluids based on magnetite nanoparticles stabilized by 2,3-dimercaptosuccinic acid were studied. We observed clusters of magnetic nanoparticles inside blood vessels, within the organ parenchyma and cells, as well as increased numbers of leukocytes in the organ. Both the particle concentration and organ inflammation diminished in a time-dependent manner

  18. Lung Abscess Remains a Life-Threatening Condition in Pediatrics – A Case Report

    Directory of Open Access Journals (Sweden)

    Chirteș Ioana Raluca

    2017-07-01

    Full Text Available Pulmonary abscess or lung abscess is a lung infection which destroys the lung parenchyma leading to cavitations and central necrosis in localised areas formed by thick-walled purulent material. It can be primary or secondary. Lung abscesses can occur at any age, but it seems that paediatric pulmonary abscess morbidity is lower than in adults. We present the case of a one year and 5-month-old male child admitted to our clinic for fever, loss of appetite and an overall altered general status. Laboratory tests revealed elevated inflammatory biomarkers, leukocytosis with neutrophilia, anaemia, thrombocytosis, low serum iron concentration and increased lactate dehydrogenase level. Despite wide-spectrum antibiotic therapy, the patient’s progress remained poor after seven days of treatment and a CT scan established the diagnosis of a large lung abscess. Despite changing the antibiotic therapy, surgical intervention was eventually needed. There was a slow but steady improvment and eventually, the patient was discharged after approximately five weeks.

  19. Scintiangiographic demonstration of parasitization of systemic blood supply by inflammatory lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, A.E.; Lee, V.W.; Shapiro, J.H.

    1985-03-01

    An unusual case in which a computed tomogram demonstrated abnormal, enlarged vessels in the right lower lobe of the lung and suggested an arteriovenous malformation is presented. A scintiangiogram showed abnormal systemic supply to this area in the aortic phase. Contrast angiography demonstrated hypertrophy of the right inferior phrenic artery with abnormal systemic supply to the pleura and parenchyma of the right lower lobe, presumably on the basis of old infection.

  20. Gastrointestinal stromal tumor masquerading as a lung neoplasm. A case presentation and literature review

    Directory of Open Access Journals (Sweden)

    Papagiannopoulos K

    2008-05-01

    Full Text Available Abstract Gastrointestinal stromal tumors (GISTs are rare neoplasms of the gastrointestinal tract. Their incidence in the esophagus is 1%–3%. Never has a GIST been documented to directly invade the lung. We report a primary esophageal GIST with direct invasion into the lung parenchyma, presenting predominantly with respiratory symptoms. We include a retrospective literature review. Although the principle 'common things are common' usually guides our everyday clinical practice, this case emphasizes that rare entities can mimic common pathologies and underlines the importance of having a clearly defined differential diagnostic list which should be meticulously scrutinized.

  1. T1 relaxation time constants, influence of oxygen, and the oxygen transfer function of the human lung at 1.5 T—A meta-analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Olaf, E-mail: od@dtrx.net [Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich (Germany); Gaass, Thomas [Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich (Germany); Comprehensive Pneumology Center, German Center for Lung Research, Munich (Germany); Reiser, Maximilian F. [Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich (Germany)

    2017-01-15

    Purpose: To pool and summarize published data from magnetic resonance longitudinal relaxation measurements of the human lung at 1.5 T to provide a reliable basis of T{sub 1} relaxation time constants of healthy lung tissue both under respiration of room air and of pure oxygen. In particular, the oxygen-induced shortening of T{sub 1} was evaluated. Materials and methods: The PubMed database was comprehensively searched up to June 2016 for original publications in English containing quantitative T{sub 1} data (at least mean values and standard deviations) of the lung parenchyma of healthy subjects (minimum subject number: 3) at 1.5 T. From all included publications, T{sub 1} values of the lung of healthy subjects were extracted (inhaling room air and, if available, inhaling pure oxygen). Weighted mean values and standard deviations of all extracted data and the oxygen transfer function (OTF) were calculated. Results: 22 publications were included with a total number of 188 examined healthy subjects. 103 of these subjects (from 13 studies) were examined while breathing pure oxygen and room air; 85 subjects were examined only under room-air conditions. The weighted mean value (weighted sample standard deviation) of the room-air T{sub 1} values over all 22 studies was 1196 ms (152 ms). Based on studies with room-air and oxygen results, the mean T{sub 1} value at room-air conditions was 1172 ms (161 ms); breathing pure oxygen, the mean T{sub 1} value was reduced to 1054 ms (138 ms). This corresponds to a mean T{sub 1} reduction by 118 ms (35 ms) or 10.0 % (2.3 %) and to a mean OTF value of 1.22 (0.32) × 10{sup −3} s{sup −1}/(%O{sub 2}). Conclusion: This meta-analysis with data from 188 subjects indicates that the average T{sub 1} relaxation time constant of healthy lung tissue at 1.5 T is distributed around 1200 ms with a standard deviation of about 150 ms; breathing pure oxygen reduces this value significantly by 10 % to about 1050 ms.

  2. Brain parenchyma PO2, PCO2, and pH during and after hypoxic, ischemic brain insult in dogs.

    Science.gov (United States)

    McKinley, B A; Morris, W P; Parmley, C L; Butler, B D

    1996-11-01

    1) The investigation of fiberoptic PO2, PCO2, and pH sensor technology as a monitor of brain parenchyma during and after brain injury, and 2) the comparison of brain parenchyma PO2, PCO2, and pH with intracranial pressure during and after hypoxic, ischemic brain insult. Prospective, controlled, animal study in an acute experimental preparation. Physiology laboratory in a university medical school. Fourteen mongrel dogs (20 to 35 kg), anesthetized, room-air ventilated. Anesthesia was induced with thiopental and maintained after intubation using 1% to 1.5% halothane in room air (FiO2 0.21). Mechanical ventilation was established to maintain end-tidal PCO2 approximately 35 torr (-4.7 kPa). Intravenous, femoral artery, and pulmonary artery catheters were placed. The common carotid arteries were surgically exposed, and ultrasonic blood flow probes were applied. A calibrated intracranial pressure probe was placed through a right-side transcranial bolt, and a calibrated intracranial chemistry probe with optical sensors for PO2, PCO2, and pH was placed through a left-side bolt into brain parenchyma. Brain insult was induced in the experimental group (n = 6) by hypoxia (FiO2 0.1), ischemia (bilateral carotid artery occlusion), and hypotension (mean arterial pressure [MAP] approximately 40 mm Hg produced with isoflurane approximately 4%). After 45 mins, carotid artery occlusion was released, FiO2 was reset to 0.21, and anesthetic was returned to halothane (approximately 1.25%). The control group (n = 5) had the same surgical preparation and sequence of anesthetic agent exposure but no brain insult. Monitored variables included brain parenchyma PO2, PCO2, and pH, which were monitored at 1-min intervals, and intracranial pressure, MAP, arterial hemoglobin oxygen saturation (by pulse oximetry), end-tidal PCO2, and carotid artery blood flow rate, for which data were collected at 15-min intervals for 7 hrs. Arterial and mixed venous blood gas analyses were done at approximately 1

  3. Neurotrophins expression is decreased in lungs of human infants with congenital diaphragmatic hernia

    Directory of Open Access Journals (Sweden)

    O'Hanlon LD

    2014-02-01

    Full Text Available Lynn D O'Hanlon, Sherry M Mabry, Ikechukwu I EkekezieChildren's Mercy Hospitals/University of Missouri-Kansas City School of Medicine, Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Kansas City, MO, USAObjectives: To evaluate neurotrophin (NT (nerve growth factor [NGF], NT-3, and brain-derived neurotrophic factor [BDNF] expression in autopsy lung tissues of human congenital diaphragmatic hernia (CDH infants versus that of infants that expired with: 1 "normal" lungs (controls; 2 chronic lung disease (CLD; and 3 pulmonary hypertension (PPHN.Hypothesis: NT expression will be significantly altered in CDH lung tissue compared with normal lung tissue and other neonatal lung diseases.Study design: Immunohistochemical studies for NT proteins NGF, BDNF, and NT-3 were applied to human autopsy neonatal lung tissue samples.Subject selection: The samples included a control group of 18 samples ranging from 23-week gestational age to term, a CDH group of 15 samples, a PPHN group of six samples, and a CLD group of 12 samples.Methodology: The tissue samples were studied, and four representative slide fields of alveoli/saccules and four of bronchioles were recorded from each sample. These slide fields were then graded (from 0 to 3 by three blinded observers for intensity of staining.Results: BDNF, NGF, and NT-3 immunostaining intensity scores were significantly decreased in the CDH lung tissue (n=15 compared with normal neonatal lung tissue (n=18 (P<0.001. The other neonatal pulmonary diseases that were studied, CLD and PPHN, were much less likely to be affected and were much more variable in their neurotrophin expression.Conclusion: NT expression is decreased in CDH lungs. The decreased expression of NT in CDH lung tissue may suggest they contribute to the abnormality in this condition.Keywords: nerve growth factor, NGF, brain-derived neurotrophic factor, BDNF, neurotrophin-3, NT-3, chronic lung disease, persistent pulmonary hypertension, lung

  4. In vitro studies of human lung carcinogenesis.

    Science.gov (United States)

    Harris, C C; Lechner, J F; Yoakum, G H; Amstad, P; Korba, B E; Gabrielson, E; Grafstrom, R; Shamsuddin, A; Trump, B F

    1985-01-01

    Advances in the methodology to culture normal human lung cells have provided opportunities to investigate fundamental problems in biomedical research, including the mechanism(s) of carcinogenesis. Using the strategy schematically shown in Figure 1, we have initiated studies of the effects of carcinogens on the normal progenitor cells of the human cancers caused by these carcinogens. Extended lifespans and aneuploidy were found after exposure of mesothelial cells to asbestos and bronchial epithelial cells to nickel sulfate. These abnormal cells may be considered to be preneoplastic and at an intermediate position in the multistage process of carcinogenesis. Human bronchial epithelial cells can also be employed to investigate the role of specific oncogenes in carcinogenesis and tumor progression. Using the protoplast fusion method for high frequency gene transfection, vHa-ras oncogene initiates a cascade of events in the normal human bronchial cells leading to their apparent immortality, aneuploidy, and tumorigenicity in athymic nude mice. These results suggest that oncogenes may play an important role in human carcinogenesis.

  5. Effective segmentation of fresh post-mortem murine lung parenchyma in phase contrast X-ray tomographic microscopy images

    International Nuclear Information System (INIS)

    Oikonomidis, Ioannis Vogiatzis; Cremona, Tiziana P; Schittny, Johannes C; Lovric, Goran; Arcadu, Filippo; Stampanoni, Marco

    2017-01-01

    The acinus represents the functional unit of the mammalian lung. It is defined as the small tree of gas-exchanging airways, which is fed by the most distal purely conducting airway. Different hypotheses exist on how the fine structure of the acinus changes during ventilation and development. Since in classical 2-dimensional (2D) sections of the lung the borders of the acini are not detectable, every study of acini requires 3-dimensional (3D) datasets. As a basis for further studies of pulmonary acini we imaged rodent lungs as close to life as possible using phase contrast synchrotron radiation-based X-ray tomographic microscopy (SRXTM), and developed a protocol for the segmentation of the alveolar septa. The method is based on a combined multilevel filtering approach. Seeds are automatically defined for separate regions of tissue and airspace during each 2D filtering level and then given as input to a 3D random walk segmentation. Thus, the different types of artifacts present in the images are treated separately, taking into account the sample’s structural complexity. The proposed procedure yields high-quality 3D segmentations of acinar microstructure that can be used for a reliable morphological analysis. (paper)

  6. Primary mesenchymal stem cells in human transplanted lungs are CD90/CD105 perivascularly located tissue-resident cells

    DEFF Research Database (Denmark)

    Rolandsson, Sara; Andersson Sjöland, Annika; Brune, Jan C

    2014-01-01

    BACKGROUND: Mesenchymal stem cells (MSC) have not only been implicated in the development of lung diseases, but they have also been proposed as a future cell-based therapy for lung diseases. However, the cellular identity of the primary MSC in human lung tissues has not yet been reported. This st......BACKGROUND: Mesenchymal stem cells (MSC) have not only been implicated in the development of lung diseases, but they have also been proposed as a future cell-based therapy for lung diseases. However, the cellular identity of the primary MSC in human lung tissues has not yet been reported...

  7. Construction of a T7 Human Lung Cancer cDNA Library

    Directory of Open Access Journals (Sweden)

    Wentao YUE

    2008-10-01

    Full Text Available Background and objective Currently, only a limited numbers of tumor markers for non small lung cancer (NSCLC diagnosis, new biomarker, such as serum autoantibody may improve the early detection of lung cancer. Our objective is construction human lung squamous carcinoma and adenocarcinoma T7 phage display cDNA library from the tissues of NSCLC patients. Methods mRNA was isolated from a pool of total RNA extract from NSCLC tissues obtained from 5 adenocarcinomas and 5 squamous carcinomas, and then mRNA was reverse transcribed into double stranded cDNA. After digestion, the cDNA was inserted into T7Select 10-3 vector. The phage display cDNA library was constructed by package reaction in vitro and plate proliferation. Plaque assay and PCR were used to evaluate the library.Results Two T7 phage display cDNA library were established. Plaque assay show the titer of lung squamas carcinoma library was 1.8×106 pfu, and the adenocarcinoma library was 5×106 pfu. The phage titer of the amplified library were 3.2×1010 pfu/mL and 2.5×1010 pfu/mL. PCR amplification of random plaque show insert ratio were 100% (24/24 in adenocarcinoma library and 95.8% in human lung squamas carcinoma library (23/24. Insert range from 300 bp to 1 500 bp. Conclusion Two phage display cDNA library from NSCLC were constructed.

  8. MRI findings of cerebral parenchyma along a ventricular catheter under various intracranial conditions

    International Nuclear Information System (INIS)

    Yamamoto, Yoshisuke; Hoshino, Tamotsu; Suzuki, Hidenori

    1993-01-01

    We have experienced 4 cases of cerebral parenchymas in which high intensity was sustained by MRI T 2 WI, though a low density disappeared in CT, among the cases in which an expansion of the low density was observed in the cerebral parenchyma along a ventricular catheter by a CT scan after ventricular drainage and a shunt operation designed to combat increased intracranial pressure due to meningitis and a brain tumor. The cases were classified on the basis of morbidity into 1 case of cryptococcus meningitis, 1 case complicated by cerebellar hemorrhage and meningitis, and two cases of acute increased intracranial pressue due to a thalamic tumor and cerebellar astrocytoma. If a ventricular catheter or drainage tube is inserted, cerebral fluid penetrates into the cerebral parenchyma to cause a change in the tissue which can be explained, on the basis of CT findings, as a reversible change. However, this histological change is not always reversible according to our present MRI finding; rather, it becomes strong if the results of an inflammation such as meningitis are added to the cerebral fluid; in such a case, the reversibility is considered to disappear completely. (author)

  9. Receptor tyrosine kinase EphA5 is a functional molecular target in human lung cancer.

    Science.gov (United States)

    Staquicini, Fernanda I; Qian, Ming D; Salameh, Ahmad; Dobroff, Andrey S; Edwards, Julianna K; Cimino, Daniel F; Moeller, Benjamin J; Kelly, Patrick; Nunez, Maria I; Tang, Ximing; Liu, Diane D; Lee, J Jack; Hong, Waun Ki; Ferrara, Fortunato; Bradbury, Andrew R M; Lobb, Roy R; Edelman, Martin J; Sidman, Richard L; Wistuba, Ignacio I; Arap, Wadih; Pasqualini, Renata

    2015-03-20

    Lung cancer is often refractory to radiotherapy, but molecular mechanisms of tumor resistance remain poorly defined. Here we show that the receptor tyrosine kinase EphA5 is specifically overexpressed in lung cancer and is involved in regulating cellular responses to genotoxic insult. In the absence of EphA5, lung cancer cells displayed a defective G1/S cell cycle checkpoint, were unable to resolve DNA damage, and became radiosensitive. Upon irradiation, EphA5 was transported into the nucleus where it interacted with activated ATM (ataxia-telangiectasia mutated) at sites of DNA repair. Finally, we demonstrate that a new monoclonal antibody against human EphA5 sensitized lung cancer cells and human lung cancer xenografts to radiotherapy and significantly prolonged survival, thus suggesting the likelihood of translational applications. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Isolation and Characterization of Human Lung Lymphatic Endothelial Cells

    Science.gov (United States)

    Lorusso, Bruno; Falco, Angela; Madeddu, Denise; Frati, Caterina; Cavalli, Stefano; Graiani, Gallia; Gervasi, Andrea; Rinaldi, Laura; Lagrasta, Costanza; Maselli, Davide; Gnetti, Letizia; Silini, Enrico M.; Quaini, Eugenio; Ampollini, Luca; Carbognani, Paolo; Quaini, Federico

    2015-01-01

    Characterization of lymphatic endothelial cells from the respiratory system may be crucial to investigate the role of the lymphatic system in the normal and diseased lung. We describe a simple and inexpensive method to harvest, isolate, and expand lymphatic endothelial cells from the human lung (HL-LECs). Fifty-five samples of healthy lung selected from patients undergoing lobectomy were studied. A two-step purification tool, based on paramagnetic sorting with monoclonal antibodies to CD31 and Podoplanin, was employed to select a pure population of HL-LECs. The purity of HL-LECs was assessed by morphologic criteria, immunocytochemistry, flow cytometry, and functional assays. Interestingly, these cells retain in vitro several receptor tyrosine kinases (RTKs) implicated in cell survival and proliferation. HL-LECs represent a clinically relevant cellular substrate to study lymphatic biology, lymphoangiogenesis, interaction with microbial agents, wound healing, and anticancer therapy. PMID:26137493

  11. [Primitive lung abscess: an unusual situation in children].

    Science.gov (United States)

    Bouyahia, O; Jlidi, S; Sammoud, A

    2014-12-01

    Lung abscess is a localized area of non tuberculosis suppurative necrosis of the parenchyma lung, resulting in formation of a cavity containing purulent material. This pathology is uncommon in childhood. A 3-year-6 month-old boy was admitted with prolonged fever and dyspnea. Chest X-ray showed a non systemized, well limited, thick walled, hydric, and excavated opacity containing an air-fluid level. Chest ultrasound examination showed a collection of 6. 8 cm of diameter in the right pulmonary field with an air-fluid level. Hemoculture showed Staphylococcus aureus. The patient received large spectrum antibiotherapy. Three days after, he presented a septic shock and surgical drainage was indicated. Histological examination confirmed the diagnosis of lung abscess. Any underlying condition such as inoculation site, local cause or immune deficiency, was noted and diagnosis of primary abscess was made. The patient demonstrated complete recovery. He is asymptomatic with normal chest X-ray and pulmonary function after 3 years of evolution. Lung abscess represent a rare cause of prolonged fever in childhood. An underlying condition must be excluded to eliminate secondary abscess. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Intelligent Recognition of Lung Nodule Combining Rule-based and C-SVM Classifiers

    Directory of Open Access Journals (Sweden)

    Bin Li

    2012-02-01

    Full Text Available Computer-aided detection(CAD system for lung nodules plays the important role in the diagnosis of lung cancer. In this paper, an improved intelligent recognition method of lung nodule in HRCT combing rule-based and cost-sensitive support vector machine(C-SVM classifiers is proposed for detecting both solid nodules and ground-glass opacity(GGO nodules(part solid and nonsolid. This method consists of several steps. Firstly, segmentation of regions of interest(ROIs, including pulmonary parenchyma and lung nodule candidates, is a difficult task. On one side, the presence of noise lowers the visibility of low-contrast objects. On the other side, different types of nodules, including small nodules, nodules connecting to vasculature or other structures, part-solid or nonsolid nodules, are complex, noisy, weak edge or difficult to define the boundary. In order to overcome the difficulties of obvious boundary-leak and slow evolvement speed problem in segmentatioin of weak edge, an overall segmentation method is proposed, they are: the lung parenchyma is extracted based on threshold and morphologic segmentation method; the image denoising and enhancing is realized by nonlinear anisotropic diffusion filtering(NADF method; candidate pulmonary nodules are segmented by the improved C-V level set method, in which the segmentation result of EM-based fuzzy threshold method is used as the initial contour of active contour model and a constrained energy term is added into the PDE of level set function. Then, lung nodules are classified by using the intelligent classifiers combining rules and C-SVM. Rule-based classification is first used to remove easily dismissible nonnodule objects, then C-SVM classification are used to further classify nodule candidates and reduce the number of false positive(FP objects. In order to increase the efficiency of SVM, an improved training method is used to train SVM, which uses the grid search method to search the optimal

  13. Intelligent Recognition of Lung Nodule Combining Rule-based and C-SVM Classifiers

    Directory of Open Access Journals (Sweden)

    Bin Li

    2011-10-01

    Full Text Available Computer-aided detection(CAD system for lung nodules plays the important role in the diagnosis of lung cancer. In this paper, an improved intelligent recognition method of lung nodule in HRCT combing rule-based and costsensitive support vector machine(C-SVM classifiers is proposed for detecting both solid nodules and ground-glass opacity(GGO nodules(part solid and nonsolid. This method consists of several steps. Firstly, segmentation of regions of interest(ROIs, including pulmonary parenchyma and lung nodule candidates, is a difficult task. On one side, the presence of noise lowers the visibility of low-contrast objects. On the other side, different types of nodules, including small nodules, nodules connecting to vasculature or other structures, part-solid or nonsolid nodules, are complex, noisy, weak edge or difficult to define the boundary. In order to overcome the difficulties of obvious boundary-leak and slow evolvement speed problem in segmentatioin of weak edge, an overall segmentation method is proposed, they are: the lung parenchyma is extracted based on threshold and morphologic segmentation method; the image denoising and enhancing is realized by nonlinear anisotropic diffusion filtering(NADF method;candidate pulmonary nodules are segmented by the improved C-V level set method, in which the segmentation result of EM-based fuzzy threshold method is used as the initial contour of active contour model and a constrained energy term is added into the PDE of level set function. Then, lung nodules are classified by using the intelligent classifiers combining rules and C-SVM. Rule-based classification is first used to remove easily dismissible nonnodule objects, then C-SVM classification are used to further classify nodule candidates and reduce the number of false positive(FP objects. In order to increase the efficiency of SVM, an improved training method is used to train SVM, which uses the grid search method to search the optimal parameters

  14. [Management of Lung Abscess].

    Science.gov (United States)

    Marra, A; Hillejan, L; Ukena, D

    2015-10-01

    A lung abscess is an infectious pulmonary disease characterised by the presence of a pus-filled cavity within the lung parenchyma. The content of an abscess often drains into the airways spontaneously, leading to an air-fluid level visible on chest X-rays and CT scans. Primary lung abscesses occur in patients who are prone to aspiration or in otherwise healthy individuals; secondary lung abscesses typically develop in association with a stenosing lung neoplasm or a systemic disease that compromises immune defences, such as AIDS, or after organ transplantation. The organisms found in abscesses caused by aspiration pneumonia reflect the resident flora of the oropharynx. The most commonly isolated organisms are anaerobic bacteria (Prevotella, Bacteroides, Fusobacterium, Peptostreptococcus) or streptococci; in alcoholics with poor oral hygiene, the spectrum of pathogens includes Staphylococcus aureus, Streptococcus pyogenes and Actinomyces. Chest radiography and computed tomography (CT) are mandatory procedures in the diagnostic algorithm. Standard treatment for a lung abscess consists of systemic antibiotic therapy, which is based on the anticipated or proven bacterial spectrum of the abscess. In most cases, primary abscesses are successfully treated by calculated empiric antibiotic therapy, with an estimated lethality rate of less than 10 %. Secondary abscesses, despite targeted antimicrobial therapy, are associated with a poor prognosis, which depends on the patient's general condition and underlying disease; lethality is as high as 75 %. Negative prognostic factors are old age, severe comorbidities, immunosuppression, bronchial obstruction, and neoplasms. Surgical intervention due to failure of conservative treatment is required in only 10 % of patients, with a success rate of up to 90 % and postoperative mortality rates ranging between 0 and 33 %. Treatment success after endoscopic or percutaneous drainage is achieved in 73 to 100 % of cases, with an

  15. Synthetic Secoisolariciresinol Diglucoside (LGM2605 Protects Human Lung in an Ex Vivo Model of Proton Radiation Damage

    Directory of Open Access Journals (Sweden)

    Anastasia Velalopoulou

    2017-11-01

    Full Text Available Radiation therapy for the treatment of thoracic malignancies has improved significantly by directing of the proton beam in higher doses on the targeted tumor while normal tissues around the tumor receive much lower doses. Nevertheless, exposure of normal tissues to protons is known to pose a substantial risk in long-term survivors, as confirmed by our work in space-relevant exposures of murine lungs to proton radiation. Thus, radioprotective strategies are being sought. We established that LGM2605 is a potent protector from radiation-induced lung toxicity and aimed in the current study to extend the initial findings of space-relevant, proton radiation-associated late lung damage in mice by looking at acute changes in human lung. We used an ex vivo model of organ culture where tissue slices of donor living human lung were kept in culture and exposed to proton radiation. We exposed donor human lung precision-cut lung sections (huPCLS, pretreated with LGM2605, to 4 Gy proton radiation and evaluated them 30 min and 24 h later for gene expression changes relevant to inflammation, oxidative stress, and cell cycle arrest, and determined radiation-induced senescence, inflammation, and oxidative tissue damage. We identified an LGM2605-mediated reduction of proton radiation-induced cellular senescence and associated cell cycle changes, an associated proinflammatory phenotype, and associated oxidative tissue damage. This is a first report on the effects of proton radiation and of the radioprotective properties of LGM2605 on human lung.

  16. Ground-glass opacity in lung metastasis from adenocarcinoma of the stomach: a case report

    International Nuclear Information System (INIS)

    Jung, Mi Ran; Kim, Jeong Kon; Lee, Jin Seong; Song, Koun Sik; Lim, Tae Hwan

    2000-01-01

    Ground-glass opacity is a frequent but nonspecific finding seen on high-resolution CT scans of lung parenchyma. Histologically, this appearance is observed when thickening of the alveolar wall and septal interstitium is minimal or the alveolar lumen is partially filled with fluid, macrophage, neutrophils, or amorphous material. It has been shown that ground-glass opacity may be caused not only by an active inflammatory process but also by fibrotic processes. When a focal area of ground-glass opacity persists or increases in size, the possibility of neoplasm-bronchioloalveolar carcinoma or adenoma, or lymphoma, for example, should be considered. Diffuse nonsegmental ground-glass opacity in both lung fields was incidentally found on follow up abdominal CT in a stomach cancer patient and signet-ring cell-type metastatic lung cancer was confirmed by transbronchial lung biopsy. We report a case of diffuse ground-glass opacity seen in metastatic lung cancer from adenocarcinoma of the stomach. (author)

  17. Human Organotypic Lung Tumor Models: Suitable For Preclinical 18F-FDG PET-Imaging.

    Directory of Open Access Journals (Sweden)

    David Fecher

    Full Text Available Development of predictable in vitro tumor models is a challenging task due to the enormous complexity of tumors in vivo. The closer the resemblance of these models to human tumor characteristics, the more suitable they are for drug-development and -testing. In the present study, we generated a complex 3D lung tumor test system based on acellular rat lungs. A decellularization protocol was established preserving the architecture, important ECM components and the basement membrane of the lung. Human lung tumor cells cultured on the scaffold formed cluster and exhibited an up-regulation of the carcinoma-associated marker mucin1 as well as a reduced proliferation rate compared to respective 2D culture. Additionally, employing functional imaging with 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (FDG-PET these tumor cell cluster could be detected and tracked over time. This approach allowed monitoring of a targeted tyrosine kinase inhibitor treatment in the in vitro lung tumor model non-destructively. Surprisingly, FDG-PET assessment of single tumor cell cluster on the same scaffold exhibited differences in their response to therapy, indicating heterogeneity in the lung tumor model. In conclusion, our complex lung tumor test system features important characteristics of tumors and its microenvironment and allows monitoring of tumor growth and -metabolism in combination with functional imaging. In longitudinal studies, new therapeutic approaches and their long-term effects can be evaluated to adapt treatment regimes in future.

  18. Percutaneous catheter drainage of lung abscess

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Shin; Chun, Kyung Ah; Choi, Hyo Sun; Ha, Hyun Kown; Shinn, Kyung Sub [Catholic University Medical college, Seoul (Korea, Republic of)

    1993-09-15

    From March 1987 to July 1989, six patients (five adults and one child) with lung abscess (size, 5-13 cm in diameter) were treated with percutaneous aspiration and drainage. In each case, the puncture was made where the wall of the abscess was in contact with the pleural surface. An 8 to 10 Fr cartheter was inserted for drainage. Five of 6 had a dynamatic clinical response within 24 hours of the drainage. Percutaneous drainage was successful with complete abscess resolution in four and partial resolution in one patient. No response was seen in the rest one. The duration of drainage ranged from 7 to 18 days(average, 15.5 days) in successful cases. One case of the failure in drainage was due tio persistent aspiration of the neurologically impaired patient. In one patient, the abscess resolved after drainage but recurred after inadvertent removal of the catheter 7 days after insertion. In two patients, concurrent pleural empyema was resolved completely by the drainage. Computed tomography provide anatomic details necessary for choosing the puncture site and avoiding a puncture of the lung parenchyma. Percutaneous catheter drainage is safe and effective method for treating patient with lung abscess.

  19. Percutaneous catheter drainage of lung abscess

    International Nuclear Information System (INIS)

    Kim, Young Shin; Chun, Kyung Ah; Choi, Hyo Sun; Ha, Hyun Kown; Shinn, Kyung Sub

    1993-01-01

    From March 1987 to July 1989, six patients (five adults and one child) with lung abscess (size, 5-13 cm in diameter) were treated with percutaneous aspiration and drainage. In each case, the puncture was made where the wall of the abscess was in contact with the pleural surface. An 8 to 10 Fr cartheter was inserted for drainage. Five of 6 had a dynamatic clinical response within 24 hours of the drainage. Percutaneous drainage was successful with complete abscess resolution in four and partial resolution in one patient. No response was seen in the rest one. The duration of drainage ranged from 7 to 18 days(average, 15.5 days) in successful cases. One case of the failure in drainage was due tio persistent aspiration of the neurologically impaired patient. In one patient, the abscess resolved after drainage but recurred after inadvertent removal of the catheter 7 days after insertion. In two patients, concurrent pleural empyema was resolved completely by the drainage. Computed tomography provide anatomic details necessary for choosing the puncture site and avoiding a puncture of the lung parenchyma. Percutaneous catheter drainage is safe and effective method for treating patient with lung abscess

  20. MMP-10 Is Overexpressed, Proteolytically Active, and a Potential Target for Therapeutic Intervention in Human Lung Carcinomas

    Directory of Open Access Journals (Sweden)

    Jason H. Gill

    2004-11-01

    Full Text Available Matrix metalloproteinase (MMP-mediated degradation of the extracellular matrix is a major factor for tumor development and expansion. This study analysed MMP-10 protein expression and activity in human lung tumors of various grade, stage, and type to address the relationship between MMP-10 and tumor characteristics and to evaluate MMP-10 as a therapeutic target in non small cell lung carcinoma (NSCLC. Unlike the majority of MMPs, MMP-10 was located in the tumor mass as opposed to tumor stroma. MMP-10 protein was observed at low levels in normal human lung tissues and at significantly higher levels in all types of NSCLC. No correlation was observed between MMP-10 protein expression and tumor type, stage, or lymph node invasion. To discriminate between active and inactive forms of MMP-10 in samples of human NSCLC, we have developed an ex vivo fluorescent assay. Measurable MMP-10 activity was detected in 42 of 50 specimens of lung cancer and only 2 of 10 specimens of histologically normal lung tissue. No relationship was observed between MMP-10 activity levels and clinicopathologic characteristics. Our results suggest that MMP-10 is expressed and active at high levels in human NSCLC compared to normal lung tissues, and, as such, is a potential target for the development of novel therapeutics for lung cancer treatment.

  1. 020. Coexistence of lung adenocarcinoma and usual interstitial pneumonia: a case report

    Science.gov (United States)

    Baliaka, Aggeliki; Papaemmanouil, Styliani; Spyratos, Dionysis; Zarogoulidis, Paul; Sakkas, Leonidas

    2015-01-01

    Background Usual interstitial pneumonia (UIP)/idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing interstitial pneumonia of unknown cause. The most common symptoms are progressively increased shortness of breath and dry cough. Some studies suggest an association between usual interstitial pneumonia and lung cancer through different pathogenetic mechanisms. Objective The case presentation of a patient with lung adenocarcinoma and UIP. Methods A 66-year-old male presented with persistent dry cough, hemoptysis and dyspnea. The chest radiographs revealed a mass in the lower lobe of the left lung, measuring 3 cm, as well as diffuse interstitial changes in the same lobe. Two partial lobectomies were performed. Results Histological examination of the mass showed moderately differentiated adenocarcinoma, focally with bronchoalveolar pattern (Immunohistochemical detection of EGFR: positive). The rest lung parenchyma presented histological appearance of UIP. Conclusions According to clinicopathological studies, the prevalence of lung cancer among patients with UIP/IPF varies between 4% and 9%. The overall median survival of IPF-Ca patients is seven months in comparison with IPF only patients (14 months).

  2. SEGEL: A Web Server for Visualization of Smoking Effects on Human Lung Gene Expression.

    Science.gov (United States)

    Xu, Yan; Hu, Brian; Alnajm, Sammy S; Lu, Yin; Huang, Yangxin; Allen-Gipson, Diane; Cheng, Feng

    2015-01-01

    Cigarette smoking is a major cause of death worldwide resulting in over six million deaths per year. Cigarette smoke contains complex mixtures of chemicals that are harmful to nearly all organs of the human body, especially the lungs. Cigarette smoking is considered the major risk factor for many lung diseases, particularly chronic obstructive pulmonary diseases (COPD) and lung cancer. However, the underlying molecular mechanisms of smoking-induced lung injury associated with these lung diseases still remain largely unknown. Expression microarray techniques have been widely applied to detect the effects of smoking on gene expression in different human cells in the lungs. These projects have provided a lot of useful information for researchers to understand the potential molecular mechanism(s) of smoke-induced pathogenesis. However, a user-friendly web server that would allow scientists to fast query these data sets and compare the smoking effects on gene expression across different cells had not yet been established. For that reason, we have integrated eight public expression microarray data sets from trachea epithelial cells, large airway epithelial cells, small airway epithelial cells, and alveolar macrophage into an online web server called SEGEL (Smoking Effects on Gene Expression of Lung). Users can query gene expression patterns across these cells from smokers and nonsmokers by gene symbols, and find the effects of smoking on the gene expression of lungs from this web server. Sex difference in response to smoking is also shown. The relationship between the gene expression and cigarette smoking consumption were calculated and are shown in the server. The current version of SEGEL web server contains 42,400 annotated gene probe sets represented on the Affymetrix Human Genome U133 Plus 2.0 platform. SEGEL will be an invaluable resource for researchers interested in the effects of smoking on gene expression in the lungs. The server also provides useful information

  3. Inhibition of fibroblast growth factor receptor 3-dependent lung adenocarcinoma with a human monoclonal antibody

    Directory of Open Access Journals (Sweden)

    Yongjun Yin

    2016-05-01

    Full Text Available Activating mutations in fibroblast growth factor receptor 3 (FGFR3 have been identified in multiple types of human cancer and in congenital birth defects. In human lung cancer, fibroblast growth factor 9 (FGF9, a high-affinity ligand for FGFR3, is overexpressed in 10% of primary resected non-small cell lung cancer (NSCLC specimens. Furthermore, in a mouse model where FGF9 can be induced in lung epithelial cells, epithelial proliferation and ensuing tumorigenesis is dependent on FGFR3. To develop new customized therapies for cancers that are dependent on FGFR3 activation, we have used this mouse model to evaluate a human monoclonal antibody (D11 with specificity for the extracellular ligand-binding domain of FGFR3, that recognizes both human and mouse forms of the receptor. Here, we show that D11 effectively inhibits signaling through FGFR3 in vitro, inhibits the growth of FGFR3-dependent FGF9-induced lung adenocarcinoma in mice, and reduces tumor-associated morbidity. Given the potency of FGF9 in this mouse model and the absolute requirement for signaling through FGFR3, this study validates the D11 antibody as a potentially useful and effective reagent for treating human cancers or other pathologies that are dependent on activation of FGFR3.

  4. Cigarette smoke induces an unfolded protein response in the human lung: a proteomic approach.

    Science.gov (United States)

    Kelsen, Steven G; Duan, Xunbao; Ji, Rong; Perez, Oscar; Liu, Chunli; Merali, Salim

    2008-05-01

    Cigarette smoking, which exposes the lung to high concentrations of reactive oxidant species (ROS) is the major risk factor for chronic obstructive pulmonary disease (COPD). Recent studies indicate that ROS interfere with protein folding in the endoplasmic reticulum and elicit a compensatory response termed the "unfolded protein response" (UPR). The importance of the UPR lies in its ability to alter expression of a variety of genes involved in antioxidant defense, inflammation, energy metabolism, protein synthesis, apoptosis, and cell cycle regulation. The present study used comparative proteomic technology to test the hypothesis that chronic cigarette smoking induces a UPR in the human lung. Studies were performed on lung tissue samples obtained from three groups of human subjects: nonsmokers, chronic cigarette smokers, and ex-smokers. Proteomes of lung samples from chronic cigarette smokers demonstrated 26 differentially expressed proteins (20 were up-regulated, 5 were down-regulated, and 1 was detected only in the smoking group) compared with nonsmokers. Several UPR proteins were up-regulated in smokers compared with nonsmokers and ex-smokers, including the chaperones, glucose-regulated protein 78 (GRP78) and calreticulin; a foldase, protein disulfide isomerase (PDI); and enzymes involved in antioxidant defense. In cultured human airway epithelial cells, GRP78 and the UPR-regulated basic leucine zipper, transcription factors, ATF4 and Nrf2, which enhance expression of important anti-oxidant genes, increased rapidly (< 24 h) with cigarette smoke extract. These data indicate that cigarette smoke induces a UPR response in the human lung that is rapid in onset, concentration dependent, and at least partially reversible with smoking cessation. We speculate that activation of a UPR by cigarette smoke may protect the lung from oxidant injury and the development of COPD.

  5. Computer analysis of the amount functioning renal parenchyma according scintigraphy with 99mTc - DMSA

    International Nuclear Information System (INIS)

    Nyikolov, M.O.; Suprunyuk, D.O.; Chizhevs'kij, V.B.; Kamyins'ka, A.L.; Makarenko, A.V.

    2014-01-01

    To assess the definition of information values of focal changes in the renal parenchyma as a fuzzy set according kidney scan with 99m Tc-DMSA. The results of kidney scan of 99m Tc-DMSA 15 patients. It is shown that it is advisable to determine the degree of damage to the renal parenchyma as a fuzzy set, it count lower, upper limits of defeat and 'average' rating. Segmentation algorithms developed scintigraphic imaging of the kidneys are informative, independent and requires their simultaneous use

  6. Morphological respiratory diffusion capacity of the lungs of ball pythons (Python regius).

    Science.gov (United States)

    Starck, J Matthias; Aupperle, Heike; Kiefer, Ingmar; Weimer, Isabel; Krautwald-Junghanns, Maria-Elisabeth; Pees, Michael

    2012-08-01

    This study aims at a functional and morphological characterization of the lung of a boid snake. In particular, we were interested to see if the python's lungs are designed with excess capacity as compared to resting and working oxygen demands. Therefore, the morphological respiratory diffusion capacity of ball pythons (Python regius) was examined following a stereological, hierarchically nested approach. The volume of the respiratory exchange tissue was determined using computed tomography. Tissue compartments were quantified using stereological methods on light microscopic images. The tissue diffusion barrier for oxygen transport was characterized and measured using transmission electron micrographs. We found a significant negative correlation between body mass and the volume of respiratory tissue; the lungs of larger snakes had relatively less respiratory tissue. Therefore, mass-specific respiratory tissue was calculated to exclude effects of body mass. The volume of the lung that contains parenchyma was 11.9±5.0mm(3)g(-1). The volume fraction, i.e., the actual pulmonary exchange tissue per lung parenchyma, was 63.22±7.3%; the total respiratory surface was, on average, 0.214±0.129m(2); it was significantly negatively correlated to body mass, with larger snakes having proportionally smaller respiratory surfaces. For the air-blood barrier, a harmonic mean of 0.78±0.05μm was found, with the epithelial layer representing the thickest part of the barrier. Based on these findings, a median diffusion capacity of the tissue barrier ( [Formula: see text] ) of 0.69±0.38ml O(2)min(-1)mmHg(-1) was calculated. Based on published values for blood oxygen concentration, a total oxygen uptake capacity of 61.16mlO(2)min(-1)kg(-1) can be assumed. This value exceeds the maximum demand for oxygen in ball pythons by a factor of 12. We conclude that healthy individuals of P. regius possess a considerable spare capacity for tissue oxygen exchange. Copyright © 2012 Elsevier Gmb

  7. RECONSTRUCTION OF HUMAN LUNG MORPHOLOGY MODELS FROM MAGNETIC RESONANCE IMAGES

    Science.gov (United States)

    Reconstruction of Human Lung Morphology Models from Magnetic Resonance ImagesT. B. Martonen (Experimental Toxicology Division, U.S. EPA, Research Triangle Park, NC 27709) and K. K. Isaacs (School of Public Health, University of North Carolina, Chapel Hill, NC 27514)

  8. Tomato Lycopene and Lung Cancer Prevention: From Experimental to Human Studies

    Energy Technology Data Exchange (ETDEWEB)

    Palozza, Paola, E-mail: p.palozza@rm.unicatt.it; Simone, Rossella E.; Catalano, Assunta [Institute of General Pathology, School of Medicine, Catholic University, L. Go F. Vito, Rome 1 00168 (Italy); Mele, Maria Cristina [Institute of Biochemistry and Clinical Biochemistry, School of Medicine, Catholic University, L. Go F. Vito, Rome 1 00168 (Italy)

    2011-05-11

    Increasing evidence suggests that tomato lycopene may be preventive against the formation and the development of lung cancer. Experimental studies demonstrated that lycopene may inhibit the growth of several cultured lung cancer cells and prevent lung tumorigenesis in animal models through various mechanisms, including a modulation of redox status, cell cycle arrest and/or apoptosis induction, a regulation of growth factor signaling, changes in cell growth-related enzymes, an enhancement of gap junction communication and a prevention of smoke-induced inflammation. In addition, lycopene also inhibited cell invasion, angiogenesis, and metastasis. Several lycopene metabolites have been identified, raising the question as to whether the preventive effects of lycopene on cancer risk is, at least in part, due to its metabolites. Despite these promising reports, it is difficult at the moment to directly relate available experimental data to human pathophysiology. More well controlled clinical intervention trials are needed to further clarify the exact role of lycopene in the prevention of lung cancer cell growth. Such studies should take into consideration subject selection, specific markers of analysis, the levels of carotenoids being tested, metabolism and isomerization of lycopene, interaction with other bioactive food components. This article reviews data on the cancer preventive activities of lycopene, possible mechanisms involved, and the relationship between lycopene consumption and human cancer risk.

  9. Tomato Lycopene and Lung Cancer Prevention: From Experimental to Human Studies

    International Nuclear Information System (INIS)

    Palozza, Paola; Simone, Rossella E.; Catalano, Assunta; Mele, Maria Cristina

    2011-01-01

    Increasing evidence suggests that tomato lycopene may be preventive against the formation and the development of lung cancer. Experimental studies demonstrated that lycopene may inhibit the growth of several cultured lung cancer cells and prevent lung tumorigenesis in animal models through various mechanisms, including a modulation of redox status, cell cycle arrest and/or apoptosis induction, a regulation of growth factor signaling, changes in cell growth-related enzymes, an enhancement of gap junction communication and a prevention of smoke-induced inflammation. In addition, lycopene also inhibited cell invasion, angiogenesis, and metastasis. Several lycopene metabolites have been identified, raising the question as to whether the preventive effects of lycopene on cancer risk is, at least in part, due to its metabolites. Despite these promising reports, it is difficult at the moment to directly relate available experimental data to human pathophysiology. More well controlled clinical intervention trials are needed to further clarify the exact role of lycopene in the prevention of lung cancer cell growth. Such studies should take into consideration subject selection, specific markers of analysis, the levels of carotenoids being tested, metabolism and isomerization of lycopene, interaction with other bioactive food components. This article reviews data on the cancer preventive activities of lycopene, possible mechanisms involved, and the relationship between lycopene consumption and human cancer risk

  10. Tomato Lycopene and Lung Cancer Prevention: From Experimental to Human Studies

    Directory of Open Access Journals (Sweden)

    Assunta Catalano

    2011-05-01

    Full Text Available Increasing evidence suggests that tomato lycopene may be preventive against the formation and the development of lung cancer. Experimental studies demonstrated that lycopene may inhibit the growth of several cultured lung cancer cells and prevent lung tumorigenesis in animal models through various mechanisms, including a modulation of redox status, cell cycle arrest and/or apoptosis induction, a regulation of growth factor signaling, changes in cell growth-related enzymes, an enhancement of gap junction communication and a prevention of smoke-induced inflammation. In addition, lycopene also inhibited cell invasion, angiogenesis, and metastasis. Several lycopene metabolites have been identified, raising the question as to whether the preventive effects of lycopene on cancer risk is, at least in part, due to its metabolites. Despite these promising reports, it is difficult at the moment to directly relate available experimental data to human pathophysiology. More well controlled clinical intervention trials are needed to further clarify the exact role of lycopene in the prevention of lung cancer cell growth. Such studies should take into consideration subject selection, specific markers of analysis, the levels of carotenoids being tested, metabolism and isomerization of lycopene, interaction with other bioactive food components. This article reviews data on the cancer preventive activities of lycopene, possible mechanisms involved, and the relationship between lycopene consumption and human cancer risk.

  11. Lung transfer factor and KCO at cardiac frequency 100 beats/min as a guide to impaired function of lung parenchyma.

    OpenAIRE

    Chu, S S; Cotes, J E

    1984-01-01

    Transfer factor (TL) and KCO have been measured by the single breath carbon monoxide method in 39 patients with confirmed or suspected lung disease, mostly of occupational origin, and 37 healthy subjects. TL and KCO at an exercise cardiac frequency of 100 beats/min (TL100 and KCO100) and the slopes of the regression of exercise transfer factor and KCO on exercise cardiac frequency (delta TL/delta fC and delta KCO/delta fC) were obtained. The discriminatory performance of these indices in dete...

  12. N-isopropyl-p-iodoamphetamine receptors in normal and cancerous tissue of the human lung

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Eiko; Mishima, Michiaki; Kawakami, Kenzo; Sakai, Naoki; Sugiura, Naoharu; Kuno, Kenshi [Kyoto Univ. (Japan). Dept. of Clinical Physiology; Taniguchi, Takashi [Kyoto Pharmaceutical Univ. (Japan). Dept. of Neurobiology

    1993-04-01

    N-Isopropyl-p-iodoamphetamine (IMP) receptors in normal human lung tissue were characterized using a radioligand binding assay with iodine-125 IMP as the ligand. Saturation binding studies revealed the presence of two binding sites with dissociation constant (K[sub d]) values of 53[+-]2 and 4687[+-]124 nM and maximum binding capacity (Bmax) values of 7[+-]1 and 133[+-]27 pmol/mg protein (n=5) respectively. The IC[sub 50] values of various amines were as follows: IMP, 9x10[sup -5] M; propranolol, 5x10[sup -4] M; haloperidol, 6x10[sup -4] M; ketamine, 9x10[sup -3] M; dopamine, 1x10[sup -2] M. The IMP receptors of cancerous tissue obtained from human lung also had two binding sites with K[sub d] values of 54[+-]2 and 5277[+-]652 nM and Bmax values of 7[+-]1 and 103[+-]21 pmol/mg protein (n=3) respectively. There was no significant difference in binding parameters between normal and cancerous lung tissue. These results demonstrate the existence of IMP receptors and suggest that cancer does not affect the nature of IMP receptors in human lung tissue. (orig.).

  13. Morphometrical analysis of pathomorphosis of squamous cell lung carcinoma after radiotherapy combined with hyperglycemia

    International Nuclear Information System (INIS)

    Furmanchuk, A.V.; Demidchik, Yu.E.; Khodina, T.V.

    1987-01-01

    Morphological changes are analysed and morphological assessment of the parenchyma, stroma, vessels and necrosis are provided in the squamous cell lung carcinoma tissue of 40 patients without preliminary irradiation, 40 patients after γ-beam therapy and 49 patients after radiotherapy combined with induced hyperglycemia (IH). The total focal dosage was 20 Gy (5 fractions during a week). In 25 patients IH was followed by irradiation and in 24 patients it followed irradiation. Operation was performed on the 7-8th day after therapy was initiated. It was concluded that preoperative γ-beam therapy followed by IH produced the most noticeable damaging effect on squamous cell lung carcinoma

  14. Pulmonary haptoglobin (pHp) is part of the surfactant system in the human lung.

    Science.gov (United States)

    Abdullah, Mahdi; Goldmann, Torsten

    2012-11-20

    Since the existence of pHp was demonstrated, it has been shown that this molecule and its receptor CD163 are regulated by different stimuli. Furthermore, a comparably fast secretion of pHp was described as well as the immuno-stimulatory effects. The intention of this study was to elucidate the role of pHp in the human lungs further. Here we show, by means of confocal microscopy and immune-electron-microscopy, a clear co-localization of pHp with surfactant protein-B in lamellar bodies of alveolar epithelial cells type II. These results are underlined by immunohistochemical stainings in differently fixed human lung tissues, which show pHp in vesicular and released form. The images of the released form resemble the intended position of surfactant in the human alveolus. pHp is secreted by Alveolar epithelial cells type II as previously shown. Moreover, pHp is co-localized with Surfactant protein-B. We conclude that the presented data shows that pHp is a native part of the surfactant system in the human lung. http://www.diagnosticpathology.diagnomx.eu/vs/2563584738239912.

  15. Anti-EGFR therapy radiosensitizes human lung adenocarcinoma xenograft in nude mouse

    International Nuclear Information System (INIS)

    Wang Hui; Li Tianran; Tian Jiahe; Qu Baolin; Zhu Hui

    2008-01-01

    Objective: To investigate the effect of Gefitinib on radiosensitivity of human lung adenocarcinoma xenograft in nude mouse. Methods: Human lung adenocarcinoma cell line A549 was used to establish nude mouse xenograft tumor model. The mice were derided into 4 groups: control, irradiation alone, Gefinitib alone and radiation combined with Genifitib. Radiation schedule was 3 fractions of 5 Gy, once daily. Gefitinib was daily administered by gavage at 100 mg/(kg·day -1 ) for 14 days. In the combination group, radiotherapy was performed 2 hours after Gefitinib administration. Tumor diameter was measured every other day. Percentage of tumor growth inhibition, growth delay time and regrowth delay time were evaluated. Results: For A549 xenografts in radiation alone, gefitinib alone and combination therapy groups, the percentage of tumor growth inhibition was 22.7%, 12.4% and 38.2%, respectively (F=25.75, P=0.000). Tumor growth delay time was 6.0, 7.8 and 21.6 days, respectively (F=70.49, P=0.000). Tumor regrowth delay time in combination therapy and irradiation alone groups was 23.4 and 10.2 days. (F=174.24, P= 0.000). Sensitizing enhancement ratio of combination group was 1.5 in growth and 1.7 in regrowth. Conclusions: Anti-EGFR therapy enhances the radiosensitivity of human lung adenocarcinoma xenograft in nude mouse. (authors)

  16. Methylation screening of the TGFBI promoter in human lung and prostate cancer by methylation-specific PCR

    International Nuclear Information System (INIS)

    Shah, Jinesh N; Shao, Genze; Hei, Tom K; Zhao, Yongliang

    2008-01-01

    Hypermethylation of the TGFBI promoter has been shown to correlate with decreased expression of this gene in human tumor cell lines. In this study, we optimized a methylation-specific polymerase chain reaction (MSP) method and investigated the methylation status of the TGFBI promoter in human lung and prostate cancer specimens. Methylation-specific primers were designed based on the methylation profiles of the TGFBI promoter in human tumor cell lines, and MSP conditions were optimized for accurate and efficient amplification. Genomic DNA was isolated from lung tumors and prostatectomy tissues of prostate cancer patients, bisulfite-converted, and analyzed by MSP. Among 50 lung cancer samples, 44.0% (22/50) harbored methylated CpG sites in the TGFBI promoter. An analysis correlating gene methylation status with clinicopathological cancer features revealed that dense methylation of the TGFBI promoter was associated with a metastatic phenotype, with 42.9% (6/14) of metastatic lung cancer samples demonstrating dense methylation vs. only 5.6% (2/36) of primary lung cancer samples (p < 0.05). Similar to these lung cancer results, 82.0% (41/50) of prostate cancer samples harbored methylated CpG sites in the TGFBI promoter, and dense methylation of the promoter was present in 38.9% (7/18) of prostate cancer samples with the feature of locoregional invasiveness vs. only 19.4% (6/31) of prostate cancer samples without locoregional invasiveness (p < 0.05). Furthermore, promoter hypermethylation correlated with highly reduced expression of the TGFBI gene in human lung and prostate tumor cell lines. We successfully optimized a MSP method for the precise and efficient screening of TGFBI promoter methylation status. Dense methylation of the TGFBI promoter correlated with the extent of TGFBI gene silencing in tumor cell lines and was related to invasiveness of prostate tumors and metastatic status of lung cancer tumors. Thus, TGFBI promoter methylation can be used as a potential

  17. Cellular morphometry of the bronchi of human and dog lungs

    International Nuclear Information System (INIS)

    Robbins, E.S.

    1991-09-01

    One hundred and forty-seven bronchial samples (generations 3--6) from 66 patients (62 usable; 36 female, 26 male; median age 61) have been dissected by generation from fixed surgical lung specimens obtained after the removal of pathological lesions. In addition, one hundred and fifty-six mongol dog bronchi (generations 2--6) dissected from different lobes of 26 dog lungs have also been similarly prepared. One hundred and twenty-seven human samples have been completely processed for electron microscopy and have yielded 994 electron micrographs of which 655 have been entered into the Computerized Stereological Analysis System (COSAS) and been used for the measurement of the distances of basal and mucous cell nuclei to the epithelial free surface. Similarly 328 micrographs of dog epithelium from 33 bronchial samples have been used to measure the distances of basal and mucous cell nuclei to the epithelial free surface and have been entered into COSAS. Using the COSAS planimetry program, we continue to expand our established data bases which describe the volume density and nuclear numbers per electron micrograph for 5 cell types of the human bronchial epithelial lining of men and women, as well as smokers, non-smokers and ex-smokers and similar parameters for the same 5 epithelial cell types of dog bronchi. Our micrographs of human bronchial epithelium have allowed us to analyze the recent suggestion that the DNA of lymphocytes may be subject to significant damage from Rn progeny while within the lung. Since the last progress report three papers have been submitted for publication. 17 refs., 4 tabs

  18. Comparative analysis of the mechanical signals in lung development and compensatory growth.

    Science.gov (United States)

    Hsia, Connie C W

    2017-03-01

    This review compares the manner in which physical stress imposed on the parenchyma, vasculature and thorax and the thoraco-pulmonary interactions, drive both developmental and compensatory lung growth. Re-initiation of anatomical lung growth in the mature lung is possible when the loss of functioning lung units renders the existing physiologic-structural reserves insufficient for maintaining adequate function and physical stress on the remaining units exceeds a critical threshold. The appropriate spatial and temporal mechanical interrelationships and the availability of intra-thoracic space, are crucial to growth initiation, follow-on remodeling and physiological outcome. While the endogenous potential for compensatory lung growth is retained and may be pharmacologically augmented, supra-optimal mechanical stimulation, unbalanced structural growth, or inadequate remodeling may limit functional gain. Finding ways to optimize the signal-response relationships and resolve structure-function discrepancies are major challenges that must be overcome before the innate compensatory ability could be fully realized. Partial pneumonectomy reproducibly removes a known fraction of functioning lung units and remains the most robust model for examining the adaptive mechanisms, structure-function consequences and plasticity of the remaining functioning lung units capable of regeneration. Fundamental mechanical stimulus-response relationships established in the pneumonectomy model directly inform the exploration of effective approaches to maximize compensatory growth and function in chronic destructive lung diseases, transplantation and bioengineered lungs.

  19. Smoking-related interstitial lung diseases: radiologic-pathologic correlation

    International Nuclear Information System (INIS)

    Hidalgo, Alberto; Franquet, Tomas; Gimenez, Ana; Pineda, Rosa; Madrid, Marta; Bordes, Ramon

    2006-01-01

    Smoking-related interstitial lung diseases (SRILD) are a heterogeneous group of entities of unknown cause. These diseases include desquamative interstitial pneumonia (DIP), respiratory-bronchiolitis-related interstitial lung disease (RB-ILD), pulmonary Langerhans' cell histiocytosis (LCH) and idiopathic pulmonary fibrosis (IPF). High-resolution CT is highly sensitive in the detection of abnormalities in the lung parenchyma and airways. Ground-glass attenuation can occur in DIP and RB-ILD. Whereas DIP is histologically characterized by intra-alveolar pigmented macrophages, RB-ILD shows alveolar macrophages in a patchy peribronchiolar distribution. LCH shows nodular infiltrates on histopathological examination containing varying amounts of characteristic Langerhans' histiocytes. The HRCT findings are characteristically bilateral, symmetrical and diffuse, involving the upper lobe zones with sparing of the costophrenic angles. The most prominent CT features are nodules (sometimes cavitary) measuring 1 to 10 mm in diameter, cysts and areas of ground-glass attenuation. Pathologically, IPF is characterized by its heterogeneity with areas of normal clung, alveolitis and end-stage fibrosis shown in the same biopsy specimen. High-resolution CT findings consist of honeycombing, traction bronchiectasis and intralobular interstitial thickening with subpleural and lower lung predominance. Since coexisting lesions in the same cases have been observed, a better understanding of the different smoking-related interstitial lung diseases (SRILD) allows a more confident and specific diagnosis. (orig.)

  20. Smoking-related interstitial lung diseases: radiologic-pathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo, Alberto [Universidad Autonoma de Barcelona, Department of Radiology, Hospital de Sant Pau, Barcelona (Spain); Hospital de la Santa Creu i Sant Pau, Thoracic Radiology, Department of Radiology, Barcelona (Spain); Franquet, Tomas; Gimenez, Ana; Pineda, Rosa; Madrid, Marta [Universidad Autonoma de Barcelona, Department of Radiology, Hospital de Sant Pau, Barcelona (Spain); Bordes, Ramon [Universidad Autonoma de Barcelona, Department of Pathology, Hospital de Sant Pau, Barcelona (Spain)

    2006-11-15

    Smoking-related interstitial lung diseases (SRILD) are a heterogeneous group of entities of unknown cause. These diseases include desquamative interstitial pneumonia (DIP), respiratory-bronchiolitis-related interstitial lung disease (RB-ILD), pulmonary Langerhans' cell histiocytosis (LCH) and idiopathic pulmonary fibrosis (IPF). High-resolution CT is highly sensitive in the detection of abnormalities in the lung parenchyma and airways. Ground-glass attenuation can occur in DIP and RB-ILD. Whereas DIP is histologically characterized by intra-alveolar pigmented macrophages, RB-ILD shows alveolar macrophages in a patchy peribronchiolar distribution. LCH shows nodular infiltrates on histopathological examination containing varying amounts of characteristic Langerhans' histiocytes. The HRCT findings are characteristically bilateral, symmetrical and diffuse, involving the upper lobe zones with sparing of the costophrenic angles. The most prominent CT features are nodules (sometimes cavitary) measuring 1 to 10 mm in diameter, cysts and areas of ground-glass attenuation. Pathologically, IPF is characterized by its heterogeneity with areas of normal clung, alveolitis and end-stage fibrosis shown in the same biopsy specimen. High-resolution CT findings consist of honeycombing, traction bronchiectasis and intralobular interstitial thickening with subpleural and lower lung predominance. Since coexisting lesions in the same cases have been observed, a better understanding of the different smoking-related interstitial lung diseases (SRILD) allows a more confident and specific diagnosis. (orig.)

  1. Modulation of bleomycin-induced lung fibrosis by pegylated hyaluronidase and dopamine receptor antagonist in mice.

    Directory of Open Access Journals (Sweden)

    Evgenii Germanovich Skurikhin

    Full Text Available Hyaluronidases are groups of enzymes that degrade hyaluronic acid (HA. To stop enzymatic hydrolysis we modified testicular hyaluronidase (HYAL by activated polyethylene oxide with the help of electron-beam synthesis. As a result we received pegylated hyaluronidase (pegHYAL. Spiperone is a selective D2 dopamine receptor antagonist. It was demonstrated on the model of a single bleomycin damage of alveolar epithelium that during the inflammatory phase monotherapy by pegHYAL or spiperone reduced the populations of hematopoietic stem /progenitor cells in the lung parenchyma. PegHYAL also reduced the levels of transforming growth factor (TGF-β, interleukin (IL-1β, tumor necrosis factor (TNF-α in the serum and lungs, while spiperone reduced the level of the serum IL-1β. Polytherapy by spiperone and pegHYAL caused the increase of the quantity of hematopoietic stem/ progenitor cells in the lungs. Such an influx of blood cell precursors was observed on the background of considerable fall level of TGF-β and the increase level of TNF-α in the serum and lungs. These results show pegHYAL reduced the bleomycin-induced fibrosis reaction (production and accumulation of collagen in the lung parenchyma. This effect was observed at a single and repetitive bleomycin damage of alveolar epithelium, the antifibrotic activity of pegHYAL surpassing the activity of testicular HYAL. The antifibrotic effect of pegHYAL is enhanced by an additional instillation of spiperone. Therapy by pegHYAL causes the flow of CD31‒ CD34‒ CD45‒ CD44+ CD73+ CD90+ CD106+-cells into the fibrous lungs. These cells are incapable of differentiating into fibroblast cells. Spiperone instillation separately or together with pegHYAL reduced the MSC-like cells considerably. These data enable us to assume, that pegHYAL is a new and promising instrument both for preventive and therapy of toxic pneumofibrosis. The blockage of D2 dopamine receptors with the following change of hyaluronan

  2. Sterols of Pneumocystis carinii hominis organisms isolated from human lungs

    DEFF Research Database (Denmark)

    Kaneshiro, E S; Amit, Z; Chandra, Jan Suresh

    1999-01-01

    in conjunction with analyses of chemically synthesized authentic standards. The sterol composition of isolated P. carinii hominis organisms has yet to be reported. If P. carinii from animal models is to be used for identifying potential drug targets and for developing chemotherapeutic approaches to clear human...... infections, it is important to determine whether the 24-alkylsterols of organisms found in rats are also present in organisms in humans. In the present study, sterol analyses of P. carinii hominis organisms isolated from cryopreserved human P. carinii-infected lungs and from bronchoalveolar lavage fluid were...

  3. Regulation of cytochrome P4501A1 expression by hyperoxia in human lung cell lines: Implications for hyperoxic lung injury

    International Nuclear Information System (INIS)

    Bhakta, Kushal Y.; Jiang, Weiwu; Couroucli, Xanthi I.; Fazili, Inayat S.; Muthiah, Kathirvel; Moorthy, Bhagavatula

    2008-01-01

    Supplemental oxygen, used to treat pulmonary insufficiency in newborns, contributes to the development of bronchopulmonary dysplasia (BPD). Cytochrome P4501A enzymes are induced by hyperoxia in animal models, but their role in human systems is unknown. Here we investigated the molecular mechanisms of induction of CYP1A1 by hyperoxia in human lung cell lines. Three human lung cell lines were exposed to hyperoxia (95% O2) for 0-72 h, and CYP1A1 activities, apoprotein contents, and mRNA levels were determined. Hyperoxia significantly induced CYP1A1 activity and protein contents (2-4 fold), and mRNA levels (30-40 fold) over control in each cell line. Transfection of a CYP1A1 promoter/luciferase reporter construct, followed by hyperoxia (4-72 h), showed marked (2-6 fold) induction of luciferase expression. EMSA and siRNA experiments strongly suggest that the Ah receptor (AHR) is involved in the hyperoxic induction of CYP1A1. MTT reduction assays showed attenuation of cell injury with the CYP1A1 inducer beta-naphthoflavone (BNF). Our results strongly suggest that hyperoxia transcriptionally activates CYP1A1 expression in human lung cell lines by AHR-dependent mechanisms, and that CYP1A1 induction is associated with decreased toxicity. This novel finding of induction of CYP1A1 in the absence of exogenous AHR ligands could lead to novel interventions in the treatment of BPD

  4. E-cigarette smoke damages DNA and reduces repair activity in mouse lung, heart, and bladder as well as in human lung and bladder cells

    OpenAIRE

    Lee, Hyun-Wook; Park, Sung-Hyun; Weng, Mao-wen; Wang, Hsiang-Tsui; Huang, William C.; Lepor, Herbert; Wu, Xue-Ru; Chen, Lung-Chi; Tang, Moon-shong

    2018-01-01

    Significance E-cigarette smoke (ECS) delivers nicotine through aerosols without burning tobacco. ECS is promoted as noncarcinogenic. We found that ECS induces DNA damage in mouse lung, bladder, and heart and reduces DNA-repair functions and proteins in lung. Nicotine and its nitrosation product 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanone can cause the same effects as ECS and enhance mutations and tumorigenic cell transformation in cultured human lung and bladder cells. These results indica...

  5. Toona Sinensis Extracts Induced Cell Cycle Arrest and Apoptosis in the Human Lung Large Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Cheng-Yuan Wang

    2010-02-01

    Full Text Available Toona sinensis extracts have been shown to exhibit anti-cancer effects in human ovarian cancer cell lines, human promyelocytic leukemia cells and human lung adenocarcinoma. Its safety has also been confirmed in animal studies. However, its anti-cancer properties in human lung large cell carcinoma have not been studied. Here, we used a powder obtained by freeze-drying the super-natant of centrifuged crude extract from Toona sinensis leaves (TSL-1 to treat the human lung carcinoma cell line H661. Cell viability was evaluated by the 3-(4-,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide assay. Flow cytometry analysis revealed that TSL-1 blocked H661 cell cycle progression. Western blot analysis showed decreased expression of cell cycle proteins that promote cell cycle progression, including cyclin-dependent kinase 4 and cyclin D1, and increased the expression of proteins that inhibit cell cycle progression, including p27. Furthermore, flow cytometry analysis showed that TSL-1 induced H661 cell apoptosis. Western blot analysis showed that TSL-1 reduced the expression of the anti-apoptotic protein B-cell lymphoma 2, and degraded the DNA repair protein, poly(ADP-ribose polymerase. TSL-1 shows potential as a novel therapeutic agent or for use as an adjuvant for treating human lung large cell carcinoma.

  6. In vivo measurement of actinides in the human lung

    International Nuclear Information System (INIS)

    Anderson, A.L.; Campbell, G.W.; Griffith, R.V.

    1979-01-01

    The problems associated with the in vivo detection and measurement of actinides in the human lung are discussed together with various measurement systems currently in use. In particular, the methods and calibration procedures employed at the Lawrence Livermore Laboratory, namely, the use of twin Phoswich detectors and a new, more realistic, tissue-equivalent phantom, are described. Methods for the measurement of chest-wall thickness, fat content, and normal human background counts are also discussed. Detection-efficiency values and minimum detectable activity estimates are given for three common actinides, 238 Pu, 239 Pu, and 241 Am

  7. Changes in the acinar distribution of some enzymes involved in carbohydrate metabolism in rat liver parenchyma after experimentally induced cholestasis

    NARCIS (Netherlands)

    van Noorden, C. J.; Frederiks, W. M.; Aronson, D. C.; Marx, F.; Bosch, K.; Jonges, G. N.; Vogels, I. M.; James, J.

    1987-01-01

    Extrahepatic cholestasis induced by ligation and transsection of the common bile duct caused a change in the parenchyma/stroma relationship in rat liver. Two weeks after ligation, the periportal zones of the parenchyma were progressively invaded by expanding bile ductules with surrounding connective

  8. Localization and stretch-dependence of lung elastase activity in development and compensatory growth.

    Science.gov (United States)

    Young, Sarah Marie; Liu, Sheng; Joshi, Rashika; Batie, Matthew R; Kofron, Matthew; Guo, Jinbang; Woods, Jason C; Varisco, Brian Michael

    2015-04-01

    Synthesis and remodeling of the lung matrix is necessary for primary and compensatory lung growth. Because cyclic negative force is applied to developing lung tissue during the respiratory cycle, we hypothesized that stretch is a critical regulator of lung matrix remodeling. By using quantitative image analysis of whole-lung and whole-lobe elastin in situ zymography images, we demonstrated that elastase activity increased twofold during the alveolar stage of postnatal lung morphogenesis in the mouse. Remodeling was restricted to alveolar walls and ducts and was nearly absent in dense elastin band structures. In the mouse pneumonectomy model of compensatory lung growth, elastase activity increased threefold, peaking at 14 days postpneumonectomy and was higher in the accessory lobe compared with other lobes. Remodeling during normal development and during compensatory lung growth was different with increased major airway and pulmonary arterial remodeling during development but not regeneration, and with homogenous remodeling throughout the parenchyma during development, but increased remodeling only in subpleural regions during compensatory lung growth. Left lung wax plombage prevented increased lung elastin during compensatory lung growth. To test whether the adult lung retains an innate capacity to remodel elastin, we developed a confocal microscope-compatible stretching device. In ex vivo adult mouse lung sections, lung elastase activity increased exponentially with strain and in peripheral regions of lung more than in central regions. Our study demonstrates that lung elastase activity is stretch-dependent and supports a model in which externally applied forces influence the composition, structure, and function of the matrix during periods of alveolar septation. Copyright © 2015 the American Physiological Society.

  9. Lung perfusion analysis with dual energy CT in patients with suspected pulmonary embolism—Influence of window settings on the diagnosis of underlying pathologies of perfusion defects

    International Nuclear Information System (INIS)

    Bauer, Ralf W.; Kerl, J. Matthias; Weber, Eva; Weisser, Philipp; Korkusuz, Huedayi; Lehnert, Thomas; Jacobi, Volkmar; Vogl, Thomas J.

    2011-01-01

    Purpose: On lung perfusion analysis with dual energy CT (DECT) in patients with suspected pulmonary embolism (PE) commonly three patterns of perfusion defects (PD) are observed: wedge-shaped, circumscribed but not wedge-shaped, and patchy. We investigated the influence of different window settings on the identification of the underlying pathologies for these types of PD. Materials and methods: 3724 segments in 196 consecutive patients who underwent pulmonary DECT angiography for clinically suspected acute PE were analyzed. Iodine distribution in the lung parenchyma was calculated from the dual energy data and displayed as color map in axial, sagittal and coronal view. Afterwards, lung and angiography window were applied separately and assessed for pulmonary embolism and pathologies of the lung parenchyma. Results: 1420 segments in 141 patients showed PD, of which 276 were wedge-shaped, 287 circumscribed and 857 patchy. Circumscribed PD were associated in 99% with interstitial or alveolar fluid collections and in 1% with located bullae. Patchy PD were associated in 65% with emphysematous or fibrotic changes, in 38% with diffuse infiltrations or interstitial fluid collections and in 0.2% with PE. The underlying pathologies for wedge-shaped PD were in 78% PE, in 3% tumors compressing pulmonary arteries, in another 3% located bullae and in further 3% infiltrations. 13% (n = 15) of the segments in this group did not show vascular or parenchymal pathologies, but in 80% (n = 10) of these cases patients had PE in another segment. Totally n = 6 of wedge-shaped PD in 5 patients remained with unclear direct cause. Conclusion: Whereas patchy and circumscribed PD are almost exclusively associated with pathologies of the lung parenchyma, wedge-shaped PD are mostly associated with PE. For a small number of wedge-shaped PD the underlying cause cannot be detected with DECT. Very small peripherally situated micro-emboli may be discussed as a reason. However, prospective trials are

  10. Chronic inorganic arsenic exposure in vitro induces a cancer cell phenotype in human peripheral lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Person, Rachel J.; Olive Ngalame, Ntube N.; Makia, Ngome L.; Bell, Matthew W.; Waalkes, Michael P.; Tokar, Erik J., E-mail: tokare@niehs.nih.gov

    2015-07-01

    Inorganic arsenic is a human lung carcinogen. We studied the ability of chronic inorganic arsenic (2 μM; as sodium arsenite) exposure to induce a cancer phenotype in the immortalized, non-tumorigenic human lung peripheral epithelial cell line, HPL-1D. After 38 weeks of continuous arsenic exposure, secreted matrix metalloproteinase-2 (MMP2) activity increased to over 200% of control, levels linked to arsenic-induced cancer phenotypes in other cell lines. The invasive capacity of these chronic arsenic-treated lung epithelial (CATLE) cells increased to 320% of control and colony formation increased to 280% of control. CATLE cells showed enhanced proliferation in serum-free media indicative of autonomous growth. Compared to control cells, CATLE cells showed reduced protein expression of the tumor suppressor gene PTEN (decreased to 26% of control) and the putative tumor suppressor gene SLC38A3 (14% of control). Morphological evidence of epithelial-to-mesenchymal transition (EMT) occurred in CATLE cells together with appropriate changes in expression of the EMT markers vimentin (VIM; increased to 300% of control) and e-cadherin (CDH1; decreased to 16% of control). EMT is common in carcinogenic transformation of epithelial cells. CATLE cells showed increased KRAS (291%), ERK1/2 (274%), phosphorylated ERK (p-ERK; 152%), and phosphorylated AKT1 (p-AKT1; 170%) protein expression. Increased transcript expression of metallothioneins, MT1A and MT2A and the stress response genes HMOX1 (690%) and HIF1A (247%) occurred in CATLE cells possibly in adaptation to chronic arsenic exposure. Thus, arsenic induced multiple cancer cell characteristics in human peripheral lung epithelial cells. This model may be useful to assess mechanisms of arsenic-induced lung cancer. - Highlights: • Chronic arsenic exposure transforms a human peripheral lung epithelia cell line. • Cells acquire characteristics in common with human lung adenocarcinoma cells. • These transformed cells provide a

  11. Automatic segmentation of tumor-laden lung volumes from the LIDC database

    Science.gov (United States)

    O'Dell, Walter G.

    2012-03-01

    The segmentation of the lung parenchyma is often a critical pre-processing step prior to application of computer-aided detection of lung nodules. Segmentation of the lung volume can dramatically decrease computation time and reduce the number of false positive detections by excluding from consideration extra-pulmonary tissue. However, while many algorithms are capable of adequately segmenting the healthy lung, none have been demonstrated to work reliably well on tumor-laden lungs. Of particular challenge is to preserve tumorous masses attached to the chest wall, mediastinum or major vessels. In this role, lung volume segmentation comprises an important computational step that can adversely affect the performance of the overall CAD algorithm. An automated lung volume segmentation algorithm has been developed with the goals to maximally exclude extra-pulmonary tissue while retaining all true nodules. The algorithm comprises a series of tasks including intensity thresholding, 2-D and 3-D morphological operations, 2-D and 3-D floodfilling, and snake-based clipping of nodules attached to the chest wall. It features the ability to (1) exclude trachea and bowels, (2) snip large attached nodules using snakes, (3) snip small attached nodules using dilation, (4) preserve large masses fully internal to lung volume, (5) account for basal aspects of the lung where in a 2-D slice the lower sections appear to be disconnected from main lung, and (6) achieve separation of the right and left hemi-lungs. The algorithm was developed and trained to on the first 100 datasets of the LIDC image database.

  12. Two methods for isolating the lung area of a CT scan for density information

    International Nuclear Information System (INIS)

    Hedlund, L.W.; Anderson, R.F.; Goulding, P.L.; Beck, J.W.; Effmann, E.L.; Putman, C.E.

    1982-01-01

    Extracting density information from irregularly shaped tissue areas of CT scans requires automated methods when many scans are involved. We describe two computer methods that automatically isolate the lung area of a CT scan. Each starts from a single, operator specified point in the lung. The first method follows the steep density gradient boundary between lung and adjacent tissues; this tracking method is useful for estimating the overall density and total area of lung in a scan because all pixels within the lung area are available for statistical sampling. The second method finds all contiguous pixels of lung that are within the CT number range of air to water and are not a part of strong density gradient edges; this method is useful for estimating density and area of the lung parenchyma. Structures within the lung area that are surrounded by strong density gradient edges, such as large blood vessels, airways and nodules, are excluded from the lung sample while lung areas with diffuse borders, such as an area of mild or moderate edema, are retained. Both methods were tested on scans from an animal model of pulmonary edema and were found to be effective in isolating normal and diseased lungs. These methods are also suitable for isolating other organ areas of CT scans that are bounded by density gradient edges

  13. Early life exposure to allergen and ozone results in altered development in adolescent rhesus macaque lungs

    International Nuclear Information System (INIS)

    Herring, M.J.; Putney, L.F.; St George, J.A.; Avdalovic, M.V.; Schelegle, E.S.; Miller, L.A.; Hyde, D.M.

    2015-01-01

    In rhesus macaques, previous studies have shown that episodic exposure to allergen alone or combined with ozone inhalation during the first 6 months of life results in a condition with many of the hallmarks of asthma. This exposure regimen results in altered development of the distal airways and parenchyma (Avdalovic et al., 2012). We hypothesized that the observed alterations in the lung parenchyma would be permanent following a long-term recovery in filtered air (FA) housing. Forty-eight infant rhesus macaques (30 days old) sensitized to house dust mite (HDM) were treated with two week cycles of FA, house dust mite allergen (HDMA), ozone (O 3 ) or HDMA/ozone (HDMA + O 3 ) for five months. At the end of the five months, six animals from each group were necropsied. The other six animals in each group were allowed to recover in FA for 30 more months at which time they were necropsied. Design-based stereology was used to estimate volumes of lung components, number of alveoli, size of alveoli, distribution of alveolar volumes, interalveolar capillary density. After 30 months of recovery, monkeys exposed to HDMA, in either group, had significantly more alveoli than filtered air. These alveoli also had higher capillary densities as compared with FA controls. These results indicate that early life exposure to HDMA alone or HDMA + O 3 alters the development process in the lung alveoli. - Highlights: • Abnormal lung development after postnatal exposure to ozone and allergen • This remodeling is shown as smaller, more numerous alveoli and narrower airways. • Allergen appears to have more of an effect than ozone during recovery. • These animals also have continued airway hyperresponsiveness (Moore et al. 2014)

  14. Study of regional lung ventilation and perfusion by xenon 133

    International Nuclear Information System (INIS)

    Lombard, Yves.

    1976-01-01

    The present work consists of a regional lung exploration after injection of xenon 133, dissolved in physiological serum, followed a few minutes later by that of 99m Tc-labelled serumalbumin microspheres. The aim is three fold: first of all to study perfusion and ventilation by xenon 133, next to compare the results obtained after xenon 133 and 99 m Tc-labelled microsphere injection, lastly to establish the value of the technique and its routine application. This examination has not solved all problems of lung exploration by xenon 133. For example we deliberately kept to intraveinous injection of the gas dissolved in physiological serum, leaving aside the breathing test. Xenon 133 scintigraphy in our opinion will not tend to replace 99m Tc-labelled microsphere scintigraphy, which has irreplaceable morphological qualities, but will serve as an excellent complement. The basic advantage of xenon 133 is the regional ventilation estimate it provides allowing any anomaly of the lung parenchyma to be located immediately or conversely the functional value of the healthy lung to be established with a view to a surgical removal of a diseased zone [fr

  15. Ultrastructural changes in lung tissue after acute lead intoxication in the rat.

    Science.gov (United States)

    Kaczynska, Katarzyna; Walski, Michał; Szereda-Przestaszewska, Małgorzata

    2011-01-01

    Pulmonary toxicity of lead was studied in rats after an intraperitoneal administration of lead acetate at a dose of 25 mg/kg. Three consecutive days of treatment increased lead content in the whole blood to 2.1 µg/dl and in lung homogenate it attained 9.62 µg/g w.w. versus control values of 0.17 µg/dl and 0.78 µg/g w.w., respectively. At the ultrastructural level, the effects of lead toxicity were observed in lung capillaries, interstitium, epithelial cells and alveolar lining layer. Accumulation of aggregated platelets, leucocytic elements and monocytes was found within capillaries. Interstitium comprised a substantial number of collagen, elastin filaments and lipofibroblasts. Lamellar bodies of type II pneumocytes contained phospolipid lamellae, which stratified into an irregular arrangement. Pulmonary alveoli were filled with macrophages. The extracellular lining layer of lung alveoli was partially destroyed. This study provided evidence that acute lead intoxication affects the whole lung parenchyma and by impairing production of the surfactant might disturb the regular respiratory function.

  16. Intersections of lung progenitor cells, lung disease and lung cancer.

    Science.gov (United States)

    Kim, Carla F

    2017-06-30

    The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials. Copyright ©ERS 2017.

  17. Intersections of lung progenitor cells, lung disease and lung cancer

    Directory of Open Access Journals (Sweden)

    Carla F. Kim

    2017-06-01

    Full Text Available The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials.

  18. Improved dosimetry and risk assessment for plutonium-induced lung disease using a microdosimetric approach

    Energy Technology Data Exchange (ETDEWEB)

    Nikula, K.J.; Hahn, F.F.; Guilmette, R.A. [Lovelace Respiratory Research Inst., Albuquerque, NM (United States); Romanov, S.A.; Muksinova, K.N.; Nifatov, A.P.; Revina, V.S.

    2000-05-01

    The risk of developing radiation-induced lung cancer is currently estimated using models based on epidemiological data from populations exposed either to relatively uniform, low-LET radiation, or from uranium miners exposed to radon and its progeny. Because inhaled alpha-emitting radionuclides (e.g., Pu, Am) produce nonuniform, chronic irradiation of the parenchymal region of the lung, a better scientific basis is needed for assessing the risk of developing radiation-induced disease from these radionuclides. Scientists at FIB-1 and LRRI are using a unique resource at the FIB-1, i.e., a set of about 600 lung specimens fixed in 10% formalin, and obtained from a population of workers at the Mayak Production Association, many of whom inhaled significant quantities of Pu and other alpha-emitting radionuclides during their careers. The objectives of this research are to measure the microscopic distribution of Pu by quantitative autoradiography, to determine the spatial distribution of Pu in human lung tissue with respect to specific lung structures and to determine the effect of chronic tobacco-smoke exposure on the distribution of local Pu radiation dose. The approach to analyzing these lung samples is to utilize contemporary stereological sampling and analysis techniques together with quantitative alpha-particle autoradiography. Our initial results have validated the usefulness of these lung specimens for determining Pu particle distribution with respect to anatomic location, as well as identifying normal and diseased compartments in the lung. In brief, particles were most often found associated with parenchymal and nonparenchymal scars, with other particles in organized lymphoid tissue or the interstitium of the pulmonary parenchyma (respiratory bronchioles and alveolar region). Based on comparison of one lung from a smoker and one from a nonsmoker, there was an increased fraction of Pu particles associated with tissue scars in the smoker vs the nonsmoker, and this

  19. Dissection of lung parenchyma using electrocautery is a safe and acceptable method for anatomical sublobar resection

    OpenAIRE

    Ohtsuka, Takashi; Goto, Taichiro; Anraku, Masaki; Kohno, Mitsutomo; Izumi, Yotaro; Horinouchi, Hirohisa; Nomori, Hiroaki

    2012-01-01

    Abstract Background Anatomic sublobar resection is being assessed as a substitute to lobectomy for primary lung cancers. However, persistent air leak after anatomic sublobar resection is prevalent and increasing surgical morbidity and costs. The use of electrocautery is being popularized recently in anatomic sublobar resection. We have retrospectively evaluated the safety and efficacy of intersegmental plane dissection using electrocautery. Methods Between April 2009 to September 2010, 47 pat...

  20. Evaluation of concentrations of major and trace elements in human lung using INAA and PIXE

    International Nuclear Information System (INIS)

    Altaf, W.J.; Spyrou, N.M.

    1997-01-01

    The elemental concentrations of Br, Ca, Ce, Cl, Co, Cr, Cs, F, Fe, Hf, K, Mg, Mn, Na, O, Rb, Sb, Sc, Se, V and Zn in 15 human lung autopsy samples, taken from subjects aged more than fifty years old, were determined by instrumental neutron activation analysis (INAA) using reactor neutrons in conjunction with a high resolution detection system. Two modes of irradiation and counting were applied; namely cyclic neutron activation analysis (CNAA) and conventional neutron activation analysis. Proton induced X-ray emission (PIXE) analysis, using a proton beam emerging from a 2 MV Van de Graaff accelerator, was additionally employed and Ge, Ni, P and Ti were also identified in the lung tissue. Detection of the X-ray spectra was performed using a high resolution Si(Li) semiconductor. The relevance of these results, including a comparison between the concentrations of elements measured in a pig's lung using CNAA and those found in the human lung is discussed. (author)

  1. Comparative microscopic study of human and rat lungs after overexposure to welding fume.

    Science.gov (United States)

    Antonini, James M; Roberts, Jenny R; Schwegler-Berry, Diane; Mercer, Robert R

    2013-11-01

    particles were metal complexes with iron, chromium, and nickel being the most common metals present. In conclusion, long-term exposure to specific welding fume can lead to serious chronic lung disease characterized by significant particle deposition and persistence as demonstrated in both a human case study and rat model. Not only were the lung responses similar in the human and rat lungs, as evidenced by inflammatory cell influx and pulmonary disease, but the composition of individual welding particles and agglomerations in situ was comparable.

  2. Deformation of a flexible disk bonded to an elastic half space-application to the lung.

    Science.gov (United States)

    Lai-Fook, S J; Hajji, M A; Wilson, T A

    1980-08-01

    An analysis is presented of the deformation of a homogeneous, isotropic, elastic half space subjected to a constant radial strain in a circular area on the boundary. Explicit analytic expressions for the normal and radial displacements and the shear stress on the boundary are used to interpret experiments performed on inflated pig lungs. The boundary strain was induced by inflating or deflating the lung after bonding a flexible disk to the lung surface. The prediction that the surface bulges outward for positive boundary strain and inward for negative strain was observed in the experiments. Poisson's ratio at two transpulmonary pressures was measured, by use of the normal displacement equation evaluated at the surface. A direct estimate of Poisson's ratio was possible because the normal displacement of the surface depended uniquely on the compressibility of the material. Qualitative comparisons between theory and experiment support the use of continuum analyses in evaluating the behavior of the lung parenchyma when subjected to small local distortions.

  3. Chemoprevention of Lung Cancer: Prospects and Disappointments in Human Clinical Trials

    Directory of Open Access Journals (Sweden)

    William N. Rom

    2013-01-01

    Full Text Available Decreasing the risk of lung cancer, or preventing its development in high-risk individuals, would have a huge impact on public health. The most effective means to decrease lung cancer incidence is to eliminate exposure to carcinogens. However, with recent advances in the understanding of pulmonary carcinogenesis and the identification of intermediate biomarkers, the prospects for the field of chemoprevention research have improved dramatically. Here we review the most recent research in lung cancer chemoprevention—focusing on those agents that have been investigated in human clinical trials. These agents fall into three major categories. First, oxidative stress plays an important role in pulmonary carcinogenesis; and therefore, antioxidants (including vitamins, selenium, green tea extracts, and isothiocyanates may be particularly effective in preventing the development of lung cancer. Second, inflammation is increasingly accepted as a crucial factor in carcinogenesis, and many investigators have focused on anti-inflammatory agents, such as glucocorticoids, NSAIDs, statins, and PPARγ agonists. Finally, the PI3K/AKT/mTOR pathway is recognized to play a central role in tobacco-induced carcinogenesis, and inhibitors of this pathway, including myoinositol and metformin, are promising agents for lung cancer prevention. Successful chemoprevention will likely require targeting of multiple pathways to carcinogenesis—both to minimize toxicity and maximize efficacy.

  4. Effects of therapeutic irradiation delivered in early childhood upon subsequent lung function

    International Nuclear Information System (INIS)

    Wohl, M.E.B.; Griscom, N.T.; Graggis, D.G.; Jaffe, N.

    1975-01-01

    To determine the long-term effects of therapeutic pulmonary irradiation and treatment with actinomycin D during a period of lung growth, 12 patients treated for Wilms' tumor metastatic to the lung and 8 patients treated for Wilms' tumor with no evidence of pulmonary metastases were studied 7 to 14 years after their initial tumor therapy. All patients had received irradiation to the tumor bed and treatment with actinomycin D. Group 1 had received a single course of bilateral pulmonary irradiation; group 2 had received additional pulmonary irradiation and/or thoracic surgery; group 3 had received no therapeutic irradiation directed primarily to the chest. Total lung capacity (TLC) averaged 71 percent of predicted value in group 1, 58 percent in group 2, and 94 percent in group 3. Diffusing capacity in groups 1 and 2 was reduced to the same extent as lung volume. Quasi-static pressure-volume relationships, studied in three of six patients in group 1, were within the normal range when lung volume was expressed as percentage of observed TLC. Airway resistance, evaluated by spirometry, maximum expiratory flow-volume curves, and resistance of the total respiratory system, was normal or reduced. The data support the hypothesis that therapeutic irradiation during a period of lung growth primarily affects the lung parenchyma and produces a decrease in subsequent size of both the lung and chest wall. No effect of actinomycin D alone upon the lung could be demonstrated

  5. Nicotine prevents the apoptosis induced by menadione in human lung cancer cells

    International Nuclear Information System (INIS)

    Zhang Tao; Lu Heng; Shang Xuan; Tian Yihao; Zheng Congyi; Wang Shiwen; Cheng Hanhua; Zhou Rongjia

    2006-01-01

    Approximately 50% of long-term cigarette smokers die prematurely from the adverse effects of smoking, including on lung cancer and other illnesses. Nicotine is a main component in tobacco and has been implicated as a potential factor in the pathogenesis of human lung cancer. However, the mechanism of nicotine action in the development of lung cancer remains largely unknown. In the present study, we designed a nicotine-apoptosis system, by pre-treatment of nicotine making lung cancer cell A549 to be in a physiological nicotine environment, and observed that nicotine promoted cell proliferation and prevented the menadione-induced apoptosis, and exerts its role of anti-apoptosis by shift of apoptotic stage induced by menadione from late apoptotic stage to early apoptotic stage, in which NF-κB was up-regulated. Interference analysis of NF-κB in A549 cells showed that knock down of NF-κB resulted in apoptosis promotion and counteracted the protective effect of nicotine. The findings suggest that nicotine has potential effect in lung cancer genesis, especially in patients with undetectable early tumor development and development of specific NF-κB inhibitors would represent a potentially exciting new pharmacotherapy for tobacco-related lung cancer

  6. Possibilities of 99mTc-MIBI for imaging of the thyroid parenchyma

    International Nuclear Information System (INIS)

    Mluchkov, N.; Mluchkov, Kh.

    1998-01-01

    Thyroid parenchyma imaging is very important as an evidence of residual part of the gland in case of thyroidectomy. The determination of the mass of this part and its function is crucial at the substituting hormonal therapy. Also at cases of thyroid carcinomas the differential diagnosis of recurrences of radiation and/or postoperative fibrosis is difficult. The thyroid imaging by 131 I and by 99m Tc-pertechnetates is not always possible because of gland blockage from medicines, thyroid hormones and foods with high iodine content. The aim of this study was to establish if 99m Tc-MIBI could depict the thyroid parenchyma without being influenced by gland blockage giving a real image of it. A comparative scintigraphic study has been carried out at 58 patients with different thyroid diseases using 99m Tc-pertechnetate, 131 I and 99m Tc-MIBI. There were 17 patients with diffuse goiter, 27 with nodules (23 of normal activity and 4 with cold nodules), 3 patients with retrosternal goiter and 11 with thyroid carcinoma after surgery intervention. The visualization of the thyroid parenchyma with 99m Tc-MIBI was better than that with 99 0 m Tc-pertechnetate and no dependent on suppression of the gland. All nodules showed 99m Tc-MIBI uptake with the same intensity as the surrounding normal gland tissue. The scintigraphy with 99m Tc-MIBI was of no value for differential diagnosis of nodules. 99m Tc-MIBI scintigraphy could be successfully applied at patients with retrosternal thyroid goiter and for detecting a thyroid rest at patients with thyroid cancer after surgery intervention. (author)

  7. Sulfation of chlorotyrosine and nitrotyrosine by human lung endothelial and epithelial cells: Role of the human SULT1A3

    International Nuclear Information System (INIS)

    Yasuda, Shin; Yasuda, Tomoko; Liu, Ming-Yih; Shetty, Sreerama; Idell, Steven; Boggaram, Vijayakumar; Suiko, Masahito; Sakakibara, Yoichi; Fu Jian; Liu, Ming-Cheh

    2011-01-01

    During inflammation, potent reactive oxidants formed may cause chlorination and nitration of both free and protein-bound tyrosine. In addition to serving as biomarkers of inflammation-mediated oxidative stress, elevated levels of chlorotyrosine and nitrotyrosine have been linked to the pathogenesis of lung and vascular disorders. The current study was designed to investigate whether the lung cells are equipped with mechanisms for counteracting these tyrosine derivatives. By metabolic labeling, chlorotyrosine O-[ 35 S]sulfate and nitrotyrosine O-[ 35 S]sulfate were found to be generated and released into the labeling media of human lung endothelial and epithelial cells labeled with [ 35 S]sulfate in the presence of added chlorotyrosine and nitrotyrosine. Enzymatic assays using the eleven known human cytosolic sulfotransferases (SULTs) revealed SULT1A3 as the enzyme responsible for catalyzing the sulfation of chlorotyrosine and nitrotyrosine. Reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated the expression of SULT1A3 in the lung endothelial and epithelial cells used in this study. Kinetic constants of the sulfation of chlorotyrosine and nitrotyrosine by SULT1A3 were determined. Collectively, these results suggest that sulfation by SULT1A3 in lung endothelial and epithelial cells may play a role in the inactivation and/or disposal of excess chlorotyrosine and nitrotyrosine generated during inflammation.

  8. Test of the 'glymphatic' hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma.

    Science.gov (United States)

    Smith, Alex J; Yao, Xiaoming; Dix, James A; Jin, Byung-Ju; Verkman, Alan S

    2017-08-21

    Transport of solutes through brain involves diffusion and convection. The importance of convective flow in the subarachnoid and paravascular spaces has long been recognized; a recently proposed 'glymphatic' clearance mechanism additionally suggests that aquaporin-4 (AQP4) water channels facilitate convective transport through brain parenchyma. Here, the major experimental underpinnings of the glymphatic mechanism were re-examined by measurements of solute movement in mouse brain following intracisternal or intraparenchymal solute injection. We found that: (i) transport of fluorescent dextrans in brain parenchyma depended on dextran size in a manner consistent with diffusive rather than convective transport; (ii) transport of dextrans in the parenchymal extracellular space, measured by 2-photon fluorescence recovery after photobleaching, was not affected just after cardiorespiratory arrest; and (iii) Aqp4 gene deletion did not impair transport of fluorescent solutes from sub-arachnoid space to brain in mice or rats. Our results do not support the proposed glymphatic mechanism of convective solute transport in brain parenchyma.

  9. Regulator of G-protein signaling 5 (RGS5) inhibits cell proliferation and enhances radiosensitivity of human lung cancer cells

    International Nuclear Information System (INIS)

    Xu Zumin; Wang Jin; Zuo Yufang; Yu Zhonghua; Peng Fang; Hu Xiao; Zhou Qichao; Ma Honglian; Bao Yong; Chen Ming

    2014-01-01

    Objective: To investigate the effects of regulator and the underlying molecular mechanisms of G-protein signaling 5 (RGS5) on radiation response in human lung cancer cells. Methods: The effects of RGS5 on viability were determined by MTT assay, and apoptosis rate was detected by flow cytometry, in human lung cancer cells. The combined effect of ionizing radiation and RGS5 on tumor cells was detected by colony formation assay. The protein expression was detected by Western blot. Results: RGS5 overexpression remarkably inhibited the survival of human lung cancer cells, and the growth inhibition rate of RGS5 overexpression on A549 and Calu-3 cells were 44.4% (F = 29.18, P < 0.05) and 39.27% (F = 23.04, P < 0.05) at 48 h, and 54.3%(F = 103.45, P < 0.05), 44.7%(F = 108.02, P < 0.05) at 72 h post-irradiation, respectively. RGS5 might exert its inhibitory effects on human lung cancer cells by inducing tumor cell apoptosis, while the apoptotic cells rate in A549 and Calu-3 cells in control group, pTRiEX group and pTRiEX-RGS5 group were (1.3±0.2)%, (3.4±0.6)%, (19.6±2.3)% (F = 86.62, P < 0.05), and (3.2±0.8)%, (3.0±0.9)%, (12.8±1.8)% (F = 28.80, P < 0.05) at 36 h post-irradiation, respectively. Furthermore, RGS5 could sensitize the lung cancer cells to radiation. Conclusions: RGS5 might play an inhibitory role in human lung cancer cell proliferation, which may explain the pathoclinical observation thet high expression of RGSS is a favorable prognostic factor in NSCLC patients. In addition, RGS5 also enhance the anti-tumor effects of radiation in human lung cancer cells. (authors)

  10. Apparent diffusion coefficient of renal parenchyma and color Doppler ultrasound of intrarenal arteries in patients with cirrhosis related renal dysfunction

    Directory of Open Access Journals (Sweden)

    Mohamed M Hefeda

    2014-12-01

    Conclusion: Liver cirrhosis, even in the presence of refractory ascites, did not affect the ADC value of renal parenchyma, however ADC value is affected in renal parenchyma of patients with hepato-renal syndrome. Duplex-Doppler ultrasound of intrarenal arteries enables the early detection of renal hemodynamic disturbances in patients with liver cirrhosis.

  11. Radon, smoking and human papilloma virus as risk factors for lung cancer in an environmental epidemiological study

    Directory of Open Access Journals (Sweden)

    G. P. Malinovsky

    2017-01-01

    Full Text Available The aim of the study: to analyze the risk of lung cancer caused by exposure to indoor radon using an environmental study, taking into account recent data on the possible effect of Human Papillomavirus, based on lung cancer mortality and radon exposure in the Russian regions.Materials and methods: in the analysis, linear dependencies of lung cancer against influencing factors were used. The average radon concentration for the regions of Russia was earlier reconstructed on the basis of the annual reports of the form 4-DOZ. Information on morbidity and mortality from malignant neoplasms in Russia was obtained from annual reports issued by the Р. Hertsen Moscow Oncology Research Institute. As a surrogate of the level of infection with Human Papillomavirus, the incidence of cervix cancer was used. The smoking prevalence was estimated applying data on the incidence of tongue cancer.Results: taking into account smoking and infection with Human Papillomavirus, it is possible to obtain estimates of lung cancer excess relative risk when induced by radon in dwellings consistent with the results of case-control studies.Conclusion: the analysis of regionally aggregated data on deaths from lung cancer in Russia, the average level of indoor radon concentrations and significant risk factors for lung cancer confirms the linear threshold-free concept of radiation-induced carcinogenesis.

  12. Human umbilical cord-derived mesenchymal stem cells protect from hyperoxic lung injury by ameliorating aberrant elastin remodeling in the lung of O2-exposed newborn rat.

    Science.gov (United States)

    Hou, Chen; Peng, Danyi; Gao, Li; Tian, Daiyin; Dai, Jihong; Luo, Zhengxiu; Liu, Enmei; Chen, Hong; Zou, Lin; Fu, Zhou

    2018-01-08

    The incidence and mortality rates of bronchopulmonary dysplasia (BPD) remain very high. Therefore, novel therapies are imminently needed to improve the outcome of this disease. Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) show promising therapeutic effects on oxygen-induced model of BPD. In our experiment, UC-MSCs were intratracheally delivered into the newborn rats exposed to hyperoxia, a well-established BPD model. This study demonstrated that UC-MSCs reduce elastin expression stimulated by 90% O 2 in human lung fibroblasts-a (HLF-a), and inhibit HLF-a transdifferentiation into myofibroblasts. In addition, the therapeutic effects of UC-MSCs in neonatal rats with BPD, UC-MSCs could inhibit lung elastase activity and reduce aberrant elastin expression and deposition in the lung of BPD rats. Overall, this study suggested that UC-MSCs could ameliorate aberrant elastin expression in the lung of hyperoxia-induced BPD model which may be associated with suppressing increased TGFβ1 activation. Copyright © 2017. Published by Elsevier Inc.

  13. Monoclonal Antibody L1Mab-13 Detected Human PD-L1 in Lung Cancers.

    Science.gov (United States)

    Yamada, Shinji; Itai, Shunsuke; Nakamura, Takuro; Yanaka, Miyuki; Chang, Yao-Wen; Suzuki, Hiroyoshi; Kaneko, Mika K; Kato, Yukinari

    2018-04-01

    Programmed cell death ligand-1 (PD-L1) is a type I transmembrane glycoprotein expressed on antigen-presenting cells. It is also expressed in several tumor cells such as melanoma and lung cancer cells. A strong correlation has been reported between human PD-L1 (hPD-L1) expression in tumor cells and negative prognosis in cancer patients. Here, a novel anti-hPD-L1 monoclonal antibody (mAb) L 1 Mab-13 (IgG 1 , kappa) was produced using a cell-based immunization and screening (CBIS) method. We investigated hPD-L1 expression in lung cancer using flow cytometry, Western blot, and immunohistochemical analyses. L 1 Mab-13 specifically reacted hPD-L1 of hPD-L1-overexpressed Chinese hamster ovary (CHO)-K1 cells and endogenous hPD-L1 of KMST-6 (human fibroblast) in flow cytometry and Western blot. Furthermore, L 1 Mab-13 reacted with lung cancer cell lines (EBC-1, Lu65, and Lu99) in flow cytometry and stained lung cancer tissues in a membrane-staining pattern in immunohistochemical analysis. These results indicate that a novel anti-hPD-L1 mAb, L 1 Mab-13, is very useful for detecting hPD-L1 of lung cancers in flow cytometry, Western blot, and immunohistochemical analyses.

  14. Preferential elevation of Prx I and Trx expression in lung cancer cells following hypoxia and in human lung cancer tissues.

    Science.gov (United States)

    Kim, H J; Chae, H Z; Kim, Y J; Kim, Y H; Hwangs, T S; Park, E M; Park, Y M

    2003-10-01

    Transient/chronic microenvironmental hypoxia that exists within a majority of solid tumors has been suggested to have a profound influence on tumor growth and therapeutic outcome. Since the functions of novel antioxidant proteins, peroxiredoxin I (Prx I) and II, have been implicated in regulating cell proliferation, differentiation, and apoptosis, it was of our special interest to probe a possible role of Prx I and II in the context of hypoxic tumor microenvironment. Since both Prx I and II use thioredoxin (Trx) as an electron donor and Trx is a substrate for thioredoxin reductase (TrxR), we investigated the regulation of Trx and TrxR as well as Prx expression following hypoxia. Here we show a dynamic change of glutathione homeostasis in lung cancer A549 cells and an up-regulation of Prx I and Trx following hypoxia. Western blot analysis of 10 human lung cancer and paired normal lung tissues also revealed an elevated expression of Prx I and Trx proteins in lung cancer tissues. Immunohistochemical analysis of the lung cancer tissues confirmed an augmented Prx I and Trx expression in cancer cells with respect to the parenchymal cells in adjacent normal lung tissue. Based on these results, we suggest that the redox changes in lung tumor microenvironment could have acted as a trigger for the up-regulation of Prx I and Trx in lung cancer cells. Although the clinical significance of our finding awaits more rigorous future study, preferential augmentation of the Prx I and Trx in lung cancer cells may well represent an attempt of cancer cells to manipulate a dynamic redox change in tumor microenvironment in a manner that is beneficial for their proliferation and malignant progression.

  15. The influence of gravity on regional lung blood flow in humans: SPECT in the upright and head-down posture.

    Science.gov (United States)

    Ax, M; Sanchez-Crespo, A; Lindahl, S G E; Mure, M; Petersson, J

    2017-06-01

    Previous studies in humans have shown that gravity has little influence on the distribution of lung blood flow while changing posture from supine to prone. This study aimed to evaluate the maximal influence of posture by comparison of regional lung blood flow in the upright and head-down posture in 8 healthy volunteers, using a tilt table. Regional lung blood flow was marked by intravenous injection of macroaggregates of human albumin labeled with 99m Tc or 113m In, in the upright and head-down posture, respectively, during tidal breathing. Both radiotracers remain fixed in the lung after administration. The distribution of radioactivity was mapped using quantitative single photon emission computed tomography (SPECT) corrected for attenuation and scatter. All images were obtained supine during tidal breathing. A shift from upright to the head-down posture caused a clear redistribution of blood flow from basal to apical regions. We conclude that posture plays a role for the distribution of lung blood flow in upright humans, and that the influence of posture, and thereby gravity, is much greater in the upright and head-down posture than in horizontal postures. However, the results of the study demonstrate that lung structure is the main determinant of regional blood flow and gravity is a secondary contributor to the distribution of lung blood flow in the upright and head-down positions. NEW & NOTEWORTHY Using a dual-isotope quantitative SPECT method, we demonstrated that although a shift in posture redistributes blood flow in the direction of gravity, the results are also consistent with lung structure being a greater determinant of regional blood flow than gravity. To our knowledge, this is the first study to use modern imaging methods to quantify the shift in regional lung blood flow in humans at a change between the upright and head-down postures. Copyright © 2017 the American Physiological Society.

  16. Structural and perfusion magnetic resonance imaging of the lung in cystic fibrosis

    International Nuclear Information System (INIS)

    Amaxopoulou, Christina; Gnannt, Ralph; Kellenberger, Christian J.; Higashigaito, Kai; Jung, Andreas

    2018-01-01

    Because of its absence of ionising radiation and possibility for obtaining functional information, MRI is promising for assessing lung disease in children who require repetitive imaging for long-term follow-up. To describe MRI findings in children with cystic fibrosis and evaluate semi-quantitative dynamic contrast-enhanced lung perfusion. We retrospectively compared lung MRI in 25 children and young adults with cystic fibrosis (median age 3.7 years) to 12 children (median age 2 years) imaged for other pathologies. MRI at 1.5 T included respiratory-gated sequences and contrast-enhanced lung perfusion imaging. We described and graded any morphologic change. Signal enhancement and time to peak values of perfusion abnormalities were compared to those of normally enhancing lung parenchyma. Frequent findings in patients with cystic fibrosis were bronchial wall thickening (24/25, 96%), areas of consolidation (22/25, 88%), enlarged lymph nodes (20/25, 80%), bronchiectasis (5/25, 20%) and mucus plugging (3/25, 12%). Compared to normally enhancing lung, perfusion defects (21/25, 84%), characterised by decreased enhancement, showed prolonged time to peak. Areas of consolidation showed increased enhancement. While time to peak of procedure-related atelectasis was not significantly different from that of normal lung, disease-related consolidation showed prolonged time to peak (P=0.01). Lung MRI demonstrates structural and perfusion abnormalities in children and young people with cystic fibrosis. Semi-quantitative assessment of dynamic contrast-enhanced perfusion imaging might allow differentiation between procedure-related atelectasis and disease-related consolidation. (orig.)

  17. Structural and perfusion magnetic resonance imaging of the lung in cystic fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Amaxopoulou, Christina; Gnannt, Ralph; Kellenberger, Christian J. [University Children' s Hospital Zuerich, Department of Diagnostic Imaging, Zuerich, CH (Switzerland); University Children' s Hospital Zuerich, Children' s Research Center, Zuerich (Switzerland); Higashigaito, Kai [University Hospital Zuerich, Institute of Diagnostic and Interventional Radiology, Zuerich (Switzerland); Jung, Andreas [University Children' s Hospital Zuerich, Children' s Research Center, Zuerich (Switzerland); University Children' s Hospital Zuerich, Division of Pneumology, Zuerich (Switzerland)

    2018-02-15

    Because of its absence of ionising radiation and possibility for obtaining functional information, MRI is promising for assessing lung disease in children who require repetitive imaging for long-term follow-up. To describe MRI findings in children with cystic fibrosis and evaluate semi-quantitative dynamic contrast-enhanced lung perfusion. We retrospectively compared lung MRI in 25 children and young adults with cystic fibrosis (median age 3.7 years) to 12 children (median age 2 years) imaged for other pathologies. MRI at 1.5 T included respiratory-gated sequences and contrast-enhanced lung perfusion imaging. We described and graded any morphologic change. Signal enhancement and time to peak values of perfusion abnormalities were compared to those of normally enhancing lung parenchyma. Frequent findings in patients with cystic fibrosis were bronchial wall thickening (24/25, 96%), areas of consolidation (22/25, 88%), enlarged lymph nodes (20/25, 80%), bronchiectasis (5/25, 20%) and mucus plugging (3/25, 12%). Compared to normally enhancing lung, perfusion defects (21/25, 84%), characterised by decreased enhancement, showed prolonged time to peak. Areas of consolidation showed increased enhancement. While time to peak of procedure-related atelectasis was not significantly different from that of normal lung, disease-related consolidation showed prolonged time to peak (P=0.01). Lung MRI demonstrates structural and perfusion abnormalities in children and young people with cystic fibrosis. Semi-quantitative assessment of dynamic contrast-enhanced perfusion imaging might allow differentiation between procedure-related atelectasis and disease-related consolidation. (orig.)

  18. Early life exposure to allergen and ozone results in altered development in adolescent rhesus macaque lungs

    Energy Technology Data Exchange (ETDEWEB)

    Herring, M.J.; Putney, L.F.; St George, J.A. [California National Primate Research Center, Davis, CA (United States); Avdalovic, M.V. [Department of Internal Medicine, Division of Pulmonary and Critical Care, University of California, Davis, CA (United States); Schelegle, E.S.; Miller, L.A. [California National Primate Research Center, Davis, CA (United States); Hyde, D.M., E-mail: dmhyde@ucdavis.edu [California National Primate Research Center, Davis, CA (United States)

    2015-02-15

    In rhesus macaques, previous studies have shown that episodic exposure to allergen alone or combined with ozone inhalation during the first 6 months of life results in a condition with many of the hallmarks of asthma. This exposure regimen results in altered development of the distal airways and parenchyma (Avdalovic et al., 2012). We hypothesized that the observed alterations in the lung parenchyma would be permanent following a long-term recovery in filtered air (FA) housing. Forty-eight infant rhesus macaques (30 days old) sensitized to house dust mite (HDM) were treated with two week cycles of FA, house dust mite allergen (HDMA), ozone (O{sub 3}) or HDMA/ozone (HDMA + O{sub 3}) for five months. At the end of the five months, six animals from each group were necropsied. The other six animals in each group were allowed to recover in FA for 30 more months at which time they were necropsied. Design-based stereology was used to estimate volumes of lung components, number of alveoli, size of alveoli, distribution of alveolar volumes, interalveolar capillary density. After 30 months of recovery, monkeys exposed to HDMA, in either group, had significantly more alveoli than filtered air. These alveoli also had higher capillary densities as compared with FA controls. These results indicate that early life exposure to HDMA alone or HDMA + O{sub 3} alters the development process in the lung alveoli. - Highlights: • Abnormal lung development after postnatal exposure to ozone and allergen • This remodeling is shown as smaller, more numerous alveoli and narrower airways. • Allergen appears to have more of an effect than ozone during recovery. • These animals also have continued airway hyperresponsiveness (Moore et al. 2014)

  19. Long-term persistence of human donor alveolar macrophages in lung transplant recipients

    DEFF Research Database (Denmark)

    Eguíluz-Gracia, Ibon; Schultz, Hans Henrik Lawaetz; Sikkeland, Liv I. B.

    2016-01-01

    and life span of human AMFs is scarce. METHODS: To follow the origin and longevity of AMFs in patients with lung transplantation for more than 100 weeks, we obtained transbronchial biopsies from 10 gender-mismatched patients with lung transplantation. These were subjected to combined in situ hybridisation...... transplantation we found that recipient monocytes seeded the alveoli early after transplantation, and showed subsequent phenotypical changes consistent with differentiation into proliferating mature AMFs. This resulted in a stable mixed chimerism between donor and recipient AMFs throughout the 2-year period...

  20. Influence of lung CT changes in chronic obstructive pulmonary disease (COPD on the human lung microbiome.

    Directory of Open Access Journals (Sweden)

    Marion Engel

    Full Text Available Changes in microbial community composition in the lung of patients suffering from moderate to severe COPD have been well documented. However, knowledge about specific microbiome structures in the human lung associated with CT defined abnormalities is limited.Bacterial community composition derived from brush samples from lungs of 16 patients suffering from different CT defined subtypes of COPD and 9 healthy subjects was analyzed using a cultivation independent barcoding approach applying 454-pyrosequencing of 16S rRNA gene fragment amplicons.We could show that bacterial community composition in patients with changes in CT (either airway or emphysema type changes, designated as severe subtypes was different from community composition in lungs of patients without visible changes in CT as well as from healthy subjects (designated as mild COPD subtype and control group (PC1, Padj = 0.002. Higher abundance of Prevotella in samples from patients with mild COPD subtype and from controls and of Streptococcus in the severe subtype cases mainly contributed to the separation of bacterial communities of subjects. No significant effects of treatment with inhaled glucocorticoids on bacterial community composition were detected within COPD cases with and without abnormalities in CT in PCoA. Co-occurrence analysis suggests the presence of networks of co-occurring bacteria. Four communities of positively correlated bacteria were revealed. The microbial communities can clearly be distinguished by their associations with the CT defined disease phenotype.Our findings indicate that CT detectable structural changes in the lung of COPD patients, which we termed severe subtypes, are associated with alterations in bacterial communities, which may induce further changes in the interaction between microbes and host cells. This might result in a changed interplay with the host immune system.

  1. Influence of lung CT changes in chronic obstructive pulmonary disease (COPD) on the human lung microbiome.

    Science.gov (United States)

    Engel, Marion; Endesfelder, David; Schloter-Hai, Brigitte; Kublik, Susanne; Granitsiotis, Michael S; Boschetto, Piera; Stendardo, Mariarita; Barta, Imre; Dome, Balazs; Deleuze, Jean-François; Boland, Anne; Müller-Quernheim, Joachim; Prasse, Antje; Welte, Tobias; Hohlfeld, Jens; Subramanian, Deepak; Parr, David; Gut, Ivo Glynne; Greulich, Timm; Koczulla, Andreas Rembert; Nowinski, Adam; Gorecka, Dorota; Singh, Dave; Gupta, Sumit; Brightling, Christopher E; Hoffmann, Harald; Frankenberger, Marion; Hofer, Thomas P; Burggraf, Dorothe; Heiss-Neumann, Marion; Ziegler-Heitbrock, Loems; Schloter, Michael; Zu Castell, Wolfgang

    2017-01-01

    Changes in microbial community composition in the lung of patients suffering from moderate to severe COPD have been well documented. However, knowledge about specific microbiome structures in the human lung associated with CT defined abnormalities is limited. Bacterial community composition derived from brush samples from lungs of 16 patients suffering from different CT defined subtypes of COPD and 9 healthy subjects was analyzed using a cultivation independent barcoding approach applying 454-pyrosequencing of 16S rRNA gene fragment amplicons. We could show that bacterial community composition in patients with changes in CT (either airway or emphysema type changes, designated as severe subtypes) was different from community composition in lungs of patients without visible changes in CT as well as from healthy subjects (designated as mild COPD subtype and control group) (PC1, Padj = 0.002). Higher abundance of Prevotella in samples from patients with mild COPD subtype and from controls and of Streptococcus in the severe subtype cases mainly contributed to the separation of bacterial communities of subjects. No significant effects of treatment with inhaled glucocorticoids on bacterial community composition were detected within COPD cases with and without abnormalities in CT in PCoA. Co-occurrence analysis suggests the presence of networks of co-occurring bacteria. Four communities of positively correlated bacteria were revealed. The microbial communities can clearly be distinguished by their associations with the CT defined disease phenotype. Our findings indicate that CT detectable structural changes in the lung of COPD patients, which we termed severe subtypes, are associated with alterations in bacterial communities, which may induce further changes in the interaction between microbes and host cells. This might result in a changed interplay with the host immune system.

  2. Comparative analysis of contrast between hepatic vein and hepatic parenchyma with controlled velocity of ultrasound in normal and fatty liver

    International Nuclear Information System (INIS)

    Yun, Eun Joo; Choi, Byung Jin; Han, Joon Koo; Cha, Joo Hee; Kim, Seung Hyup; Lee, Dong Hyuk

    2000-01-01

    To evaluate the contrast between hepatic vein and hepatic parenchyma with controlled velocities of ultrasound in normal and fatty liver. 31 patient with normal liver and 39 patients with moderate degree of fatty liver were studies with sonography with controlled velocities of ultrasound (1,580 m/sec, 1,540 m/sec, 1,500 m/sec, 1,460 m/sec). Sonographic images were captured with picture grabbing (Sono-PACS) and were recalled with visual C++(Microsoft Redmond. WA, USA). The contrast between hepatic vein and parenchyma was measured and analyzed on each sonographic image. The number of patients with the highest contrast between hepatic vein and hepatic parenchyma among the 31 patients with normal liver were 5 (16.1%) with 1,580 m/sec, 12 (38.8%) with 1,540 m/sec, 9 (29.0%) with 1,500 m/sec, and 5 (16.1%) with 1,460 m/sec. The number of patients with highest contrast between hepatic vein and hepatic parenchyma among the 39 patients with fatty liver were 3 (7.7%) with 1,580 m/sec, 7 (17.9%) with 1,540 m/sec, 12 (30.8%) with 1,500 m/sec and 17 (43.6%) with 1,460 m/sec. The velocity of ultrasound for the highest contrast between hepatic vein and hepatic parenchyma in normal liver was 1,540 m/sec, and 1,460 m/sec in fatty liver.

  3. The novel human influenza A(H7N9) virus is naturally adapted to efficient growth in human lung tissue.

    Science.gov (United States)

    Knepper, Jessica; Schierhorn, Kristina L; Becher, Anne; Budt, Matthias; Tönnies, Mario; Bauer, Torsten T; Schneider, Paul; Neudecker, Jens; Rückert, Jens C; Gruber, Achim D; Suttorp, Norbert; Schweiger, Brunhilde; Hippenstiel, Stefan; Hocke, Andreas C; Wolff, Thorsten

    2013-10-08

    A novel influenza A virus (IAV) of the H7N9 subtype has been isolated from severely diseased patients with pneumonia and acute respiratory distress syndrome and, apparently, from healthy poultry in March 2013 in Eastern China. We evaluated replication, tropism, and cytokine induction of the A/Anhui/1/2013 (H7N9) virus isolated from a fatal human infection and two low-pathogenic avian H7 subtype viruses in a human lung organ culture system mimicking infection of the lower respiratory tract. The A(H7N9) patient isolate replicated similarly well as a seasonal IAV in explanted human lung tissue, whereas avian H7 subtype viruses propagated poorly. Interestingly, the avian H7 strains provoked a strong antiviral type I interferon (IFN-I) response, whereas the A(H7N9) virus induced only low IFN levels. Nevertheless, all viruses analyzed were detected predominantly in type II pneumocytes, indicating that the A(H7N9) virus does not differ in its cellular tropism from other avian or human influenza viruses. Tissue culture-based studies suggested that the low induction of the IFN-β promoter correlated with an efficient suppression by the viral NS1 protein. These findings demonstrate that the zoonotic A(H7N9) virus is unusually well adapted to efficient propagation in human alveolar tissue, which most likely contributes to the severity of lower respiratory tract disease seen in many patients. Humans are usually not infected by avian influenza A viruses (IAV), but this large group of viruses contributes to the emergence of human pandemic strains. Transmission of virulent avian IAV to humans is therefore an alarming event that requires assessment of the biology as well as pathogenic and pandemic potentials of the viruses in clinically relevant models. Here, we demonstrate that an early virus isolate from the recent A(H7N9) outbreak in Eastern China replicated as efficiently as human-adapted IAV in explanted human lung tissue, whereas avian H7 subtype viruses were unable to

  4. Relative biological effectiveness if alpha radiation for human lung exposure

    International Nuclear Information System (INIS)

    Yarmoshenko, I.; Kirdin, I.; Zhukovsky, M.

    2006-01-01

    estimates for cases of indoor radon alpha exposure and exposure to implanted plutonium can be seen. Difference in biological effectiveness of inhaled radon and implanted plutonium may appear due to different distribution of short-lived radon progeny and long lived plutonium within lung tissues. Low RBE value for alpha particle exposures of human lung tissues may be a reason of known inconsistency of dose conversion factors for radon estimates based on dosimetric and epidemiologic approaches. (authors)

  5. Application of a neutral community model to assess structuring of the human lung microbiome.

    Science.gov (United States)

    Venkataraman, Arvind; Bassis, Christine M; Beck, James M; Young, Vincent B; Curtis, Jeffrey L; Huffnagle, Gary B; Schmidt, Thomas M

    2015-01-20

    DNA from phylogenetically diverse microbes is routinely recovered from healthy human lungs and used to define the lung microbiome. The proportion of this DNA originating from microbes adapted to the lungs, as opposed to microbes dispersing to the lungs from other body sites and the atmosphere, is not known. We use a neutral model of community ecology to distinguish members of the lung microbiome whose presence is consistent with dispersal from other body sites and those that deviate from the model, suggesting a competitive advantage to these microbes in the lungs. We find that the composition of the healthy lung microbiome is consistent with predictions of the neutral model, reflecting the overriding role of dispersal of microbes from the oral cavity in shaping the microbial community in healthy lungs. In contrast, the microbiome of diseased lungs was readily distinguished as being under active selection. We also assessed the viability of microbes from lung samples by cultivation with a variety of media and incubation conditions. Bacteria recovered by cultivation from healthy lungs represented species that comprised 61% of the 16S rRNA-encoding gene sequences derived from bronchoalveolar lavage samples. Neutral distribution of microbes is a distinguishing feature of the microbiome in healthy lungs, wherein constant dispersal of bacteria from the oral cavity overrides differential growth of bacteria. No bacterial species consistently deviated from the model predictions in healthy lungs, although representatives of many of the dispersed species were readily cultivated. In contrast, bacterial populations in diseased lungs were identified as being under active selection. Quantification of the relative importance of selection and neutral processes such as dispersal in shaping the healthy lung microbiome is a first step toward understanding its impacts on host health. Copyright © 2015 Venkataraman et al.

  6. Candida albicans pancreatitis in a child with cystic fibrosis post lung transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, Mark M.; Sheybani, Elizabeth F. [Washington University School of Medicine, Mallinckrodt Institute of Radiology, 510 S. Kingshighway Blvd., Campus Box 8131, St. Louis, MO (United States); Zhang, Lingxin [Washington University School of Medicine, Department of Pathology, St. Louis, MO (United States); Stoll, Janis M. [Washington University School of Medicine, Division of Gastroenterology, Hepatology and Nutrition, St. Louis, MO (United States)

    2016-04-15

    We present a case of Candida albicans infection of a previously intact pancreas in a child with cystic fibrosis status post lung transplantation. Although Candida superinfection in necrotizing pancreatitis is not uncommon, this is a unique case of Candida infection of non-necrotic pancreatic parenchyma. This case presented a diagnostic dilemma for radiologists because it appeared virtually identical to acute interstitial edematous pancreatitis on imaging. Ultimately, endoscopic US-based biopsy was pursued for diagnosis. Although difficult to treat and compounded by the immunocompromised status of the child, the pancreatic infection improved with antifungal therapy. (orig.)

  7. Candida albicans pancreatitis in a child with cystic fibrosis post lung transplantation

    International Nuclear Information System (INIS)

    Hammer, Mark M.; Sheybani, Elizabeth F.; Zhang, Lingxin; Stoll, Janis M.

    2016-01-01

    We present a case of Candida albicans infection of a previously intact pancreas in a child with cystic fibrosis status post lung transplantation. Although Candida superinfection in necrotizing pancreatitis is not uncommon, this is a unique case of Candida infection of non-necrotic pancreatic parenchyma. This case presented a diagnostic dilemma for radiologists because it appeared virtually identical to acute interstitial edematous pancreatitis on imaging. Ultimately, endoscopic US-based biopsy was pursued for diagnosis. Although difficult to treat and compounded by the immunocompromised status of the child, the pancreatic infection improved with antifungal therapy. (orig.)

  8. Identification of chondroitin sulfate E proteoglycans and heparin proteoglycans in the secretory granules of human lung mast cells

    International Nuclear Information System (INIS)

    Stevens, R.L.; Austen, K.F.; Fox, C.C.; Lichtenstein, L.M.

    1988-01-01

    The predominant subclasses of mast cells in both the rat and the mouse can be distinguished from one another by their preferential synthesis of 35 S-labeled proteoglycans that contain either heparin or oversulfated chondroitin sulfate glycosaminoglycans. Although [ 35 S]heparin proteoglycans have been isolated from human lung mast cells of 40-70% purity and from a skin biopsy specimen of a patient with urticaria pigmentosa, no highly sulfated chondroitin sulfate proteoglycan has been isolated from any enriched or highly purified population of human mast cells. The authors demonstrate that human lung mast cells of 96% purity incorporate [ 35 S]sulfate into separate heparin and chondroitin sulfate proteoglycans in an ∼2:1 ratio. As assessed by HPLC of the chondroitinase ABC digests, the chondroitin [ 35 S]sulfate proteoglycans isolated from these human lung mast cells contain the same unusual chondroitin sulfate E disaccharide that is present in proteoglycans produced by interleukin 3-dependent mucosal-like mouse mast cells. Both the chondroitin [ 35 S]sulfate E proteoglycans and the [ 35 S]heparin proteoglycans were exocytosed from the [ 35 S]sulfate-labeled cells via perturbation of the IgE receptor, indicating that both types of 35 S-labeled proteoglycans reside in the secretory granules of these human lung mast cells

  9. Lung MRI at 1.5 and 3 Tesla: observer preference study and lesion contrast using five different pulse sequences.

    Science.gov (United States)

    Fink, Christian; Puderbach, Michael; Biederer, Juergen; Fabel, Michael; Dietrich, Olaf; Kauczor, Hans-Ulrich; Reiser, Maximilian F; Schönberg, Stefan O

    2007-06-01

    To compare the image quality and lesion contrast of lung MRI using 5 different pulse sequences at 1.5 T and 3 T. Lung MRI was performed at 1.5 T and 3 T using 5 pulse sequences which have been previously proposed for lung MRI: 3D volumetric interpolated breath-hold examination (VIBE), true fast imaging with steady-state precession (TrueFISP), half-Fourier single-shot turbo spin-echo (HASTE), short tau inversion recovery (STIR), T2-weighted turbo spin-echo (TSE). In addition to 4 healthy volunteers, 5 porcine lungs were examined in a dedicated chest phantom. Lung pathology (nodules and infiltrates) was simulated in the phantom by intrapulmonary and intrabronchial injections of agarose. CT was performed in the phantom for correlation. Image quality of the sequences was ranked in a side-by-side comparison by 3 blinded radiologists regarding the delineation of pulmonary and mediastinal anatomy, conspicuity of pulmonary nodules and infiltrates, and presence of artifacts. The contrast of nodules and infiltrates (CNODULES and CINFILTRATES) defined by the ratio of the signal intensities of the lesion and adjacent normal lung parenchyma was determined. There were no relevant differences regarding the preference for the individual sequences between both field strengths. TSE was the preferred sequence for the visualization of the mediastinum at both field strengths. For the visualization of lung parenchyma the observers preferred TrueFISP in volunteers and TSE in the phantom studies. At both field strengths VIBE achieved the best rating for the depiction of nodules, whereas HASTE was rated best for the delineation of infiltrates. TrueFISP had the fewest artifacts in volunteers, whereas STIR showed the fewest artifacts in the phantom. For all but the TrueFISP sequence the lesion contrast increased from 1.5 T to 3 T. At both field strengths VIBE showed the highest CNODULES (6.6 and 7.1) and HASTE the highest CINFILTRATES (6.1 and 6.3). The imaging characteristics of different

  10. Lung growth and development.

    Science.gov (United States)

    Joshi, Suchita; Kotecha, Sailesh

    2007-12-01

    Human lung growth starts as a primitive lung bud in early embryonic life and undergoes several morphological stages which continue into postnatal life. Each stage of lung growth is a result of complex and tightly regulated events governed by physical, environmental, hormonal and genetic factors. Fetal lung liquid and fetal breathing movements are by far the most important determinants of lung growth. Although timing of the stages of lung growth in animals do not mimic that of human, numerous animal studies, mainly on sheep and rat, have given us a better understanding of the regulators of lung growth. Insight into the genetic basis of lung growth has helped us understand and improve management of complex life threatening congenital abnormalities such as congenital diaphragmatic hernia and pulmonary hypoplasia. Although advances in perinatal medicine have improved survival of preterm infants, premature birth is perhaps still the most important factor for adverse lung growth.

  11. Plant foods in the Upper Palaeolithic at Dolní Věstonice? Parenchyma redux

    Czech Academy of Sciences Publication Activity Database

    Pryor, A.; Steele, M.; Jones, M. K.; Svoboda, Jiří; Beresford-Jones, D. G.

    2013-01-01

    Roč. 87, č. 338 (2013), s. 971-984 ISSN 0003-598X Institutional support: RVO:68081758 Keywords : Czech Republic * Dolní Věstonice * upper palaeolithic * gravettian * archaeobotany * plant foods * parenchyma Subject RIV: AC - Archeology, Anthropology, Ethnology OBOR OECD: Archaeology Impact factor: 1.594, year: 2013

  12. Recombinant human endostatin improves tumor vasculature and alleviates hypoxia in Lewis lung carcinoma

    International Nuclear Information System (INIS)

    Peng Fang; Wang Jin; Zou Yi; Bao Yong; Huang Wenlin; Chen Guangming; Luo Xianrong; Chen Ming

    2011-01-01

    Objective: To investigate whether recombinant human endostatin can create a time window of vascular normalization prior to vascular pruning to alleviate hypoxia in Lewis lung carcinoma in mice. Methods: Kinetic changes in morphology of tumor vasculature in response to recombinant human endostatin were detected under a confocal microscope with immunofluorescent staining in Lewis lung carcinomas in mice. The hypoxic cell fraction of different time was assessed with immunohistochemical staining . Effects on tumor growth were monitored as indicated in the growth curve of tumors . Results: Compared with the control group vascularity of the tumors was reduced over time by recombinant human endostatin treatment and significantly regressed for 9 days. During the treatment, pericyte coverage increased at day 3, increased markedly at day 5, and fell again at day 7. The vascular basement membrane was thin and closely associated with endothelial cells after recombinant human endostatin treatment, but appeared thickened, loosely associated with endothelial cells in control tumors. The decrease in hypoxic cell fraction at day 5 after treatment was also found. Tumor growth was not accelerated 5 days after recombinant human endostatin treatment. Conclusions: Recombinant human endostatin can normalize tumor vasculature within day 3 to 7, leading to improved tumor oxygenation. The results provide important experimental basis for combining recombinant human endostatin with radiation therapy in human tumors. (authors)

  13. Pseudomonas aeruginosa vesicles associate with and are internalized by human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Kuehn Meta J

    2009-02-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is the major pathogen associated with chronic and ultimately fatal lung infections in patients with cystic fibrosis (CF. To investigate how P. aeruginosa-derived vesicles may contribute to lung disease, we explored their ability to associate with human lung cells. Results Purified vesicles associated with lung cells and were internalized in a time- and dose-dependent manner. Vesicles from a CF isolate exhibited a 3- to 4-fold greater association with lung cells than vesicles from the lab strain PAO1. Vesicle internalization was temperature-dependent and was inhibited by hypertonic sucrose and cyclodextrins. Surface-bound vesicles rarely colocalized with clathrin. Internalized vesicles colocalized with the endoplasmic reticulum (ER marker, TRAPα, as well as with ER-localized pools of cholera toxin and transferrin. CF isolates of P. aeruginosa abundantly secrete PaAP (PA2939, an aminopeptidase that associates with the surface of vesicles. Vesicles from a PaAP knockout strain exhibited a 40% decrease in cell association. Likewise, vesicles from PAO1 overexpressing PaAP displayed a significant increase in cell association. Conclusion These data reveal that PaAP promotes the association of vesicles with lung cells. Taken together, these results suggest that P. aeruginosa vesicles can interact with and be internalized by lung epithelial cells and contribute to the inflammatory response during infection.

  14. Multiscale image-based modeling and simulation of gas flow and particle transport in the human lungs

    Science.gov (United States)

    Tawhai, Merryn H; Hoffman, Eric A

    2013-01-01

    Improved understanding of structure and function relationships in the human lungs in individuals and sub-populations is fundamentally important to the future of pulmonary medicine. Image-based measures of the lungs can provide sensitive indicators of localized features, however to provide a better prediction of lung response to disease, treatment and environment, it is desirable to integrate quantifiable regional features from imaging with associated value-added high-level modeling. With this objective in mind, recent advances in computational fluid dynamics (CFD) of the bronchial airways - from a single bifurcation symmetric model to a multiscale image-based subject-specific lung model - will be reviewed. The interaction of CFD models with local parenchymal tissue expansion - assessed by image registration - allows new understanding of the interplay between environment, hot spots where inhaled aerosols could accumulate, and inflammation. To bridge ventilation function with image-derived central airway structure in CFD, an airway geometrical modeling method that spans from the model ‘entrance’ to the terminal bronchioles will be introduced. Finally, the effects of turbulent flows and CFD turbulence models on aerosol transport and deposition will be discussed. CFD simulation of airflow and particle transport in the human lung has been pursued by a number of research groups, whose interest has been in studying flow physics and airways resistance, improving drug delivery, or investigating which populations are most susceptible to inhaled pollutants. The three most important factors that need to be considered in airway CFD studies are lung structure, regional lung function, and flow characteristics. Their correct treatment is important because the transport of therapeutic or pollutant particles is dependent on the characteristics of the flow by which they are transported; and the airflow in the lungs is dependent on the geometry of the airways and how ventilation

  15. Hydroxyl Radical Formation from HULIS and Fe(II) Interactions: Fulvic Acid-Fe(II) Complexes in Simulated and Human Lung Fluids

    Science.gov (United States)

    Gonzalez, D.

    2017-12-01

    Inhalation of fine particulate matter (PM2.5) has long been associated with adverse health outcomes. However, the causative agents and underlying mechanisms for these health effects have yet to be identified. One hypothesis is that PM2.5 deposited in the alveoli produce an excess of highly reactive radicals, leading to oxidative stress. The OH radical may be the most physiologically damaging, capable of oxidizing of lipids, proteins and DNA. Due to the variability and uncertainty in PM2.5 composition, the components that contribute to OH formation are not well understood. Soluble Fe is a component of PM2.5that produces OH under physiological conditions. Humic-like substances are water soluble organics found in biomass burning and tobacco smoke. Humic-like substances are capable of binding to Fe and enhancing OH formation, but this chemistry is not well understood. In this work, we use soil derived fulvic acid as a surrogate for Humic-like substances and investigate its effect on OH formation from Fe(II) under conditions relevant to the lungs. We use a fluorescent OH trapping probe, chemical kinetics and thermodynamic modeling to investigate OH formation from fulvic acid and Fe(II) dissolved in simulated and human lung fluids. In simulated lung fluid, we find that fulvic acid binds to Fe(II) and enhances the rate of key reactions that form OH. When fulvic acid is added to human lung fluids containing Fe(II), an enhancement of OH formation is observed. In human lung fluid, fulvic acid and metal binding proteins compete for Fe binding. These metal binding proteins are typically not found in simulated lung fluids. Results show that fulvic acid strongly binds Fe(II) and catalyzes key reactions that form OH in both simulated and human lung fluids. These results may help explain the role of Humic-like substances and Fe in oxidative stress and adverse health outcomes. Furthermore, we suggest that future studies employ simulated lung fluids containing metal binding proteins

  16. A Human Antibody That Binds to the Sixth Ig-Like Domain of VCAM-1 Blocks Lung Cancer Cell Migration In Vitro

    Directory of Open Access Journals (Sweden)

    Mi Ra Kim

    2017-03-01

    Full Text Available Vascular cell adhesion molecule-1 (VCAM-1 is closely associated with tumor progression and metastasis. However, the relevance and role of VCAM-1 in lung cancer have not been clearly elucidated. In this study, we found that VCAM-1 was highly overexpressed in lung cancer tissue compared with that of normal lung tissue, and high VCAM-1 expression correlated with poor survival in lung cancer patients. VCAM-1 knockdown reduced migration of A549 human lung cancer cells into Matrigel, and competitive blocking experiments targeting the Ig-like domain 6 of VCAM-1 (VCAM-1-D6 demonstrated that the VCAM-1-D6 domain was critical for VCAM-1 mediated A549 cell migration into Matrigel. Next, we developed a human monoclonal antibody specific to human and mouse VCAM-1-D6 (VCAM-1-D6 huMab, which was isolated from a human synthetic antibody library using phage display technology. Finally, we showed that VCAM-1-D6 huMab had a nanomolar affinity for VCAM-1-D6 and that it potently suppressed the migration of A549 and NCI-H1299 lung cancer cell lines into Matrigel. Taken together, these results suggest that VCAM-1-D6 is a key domain for regulating VCAM-1-mediated lung cancer invasion and that our newly developed VCAM-1-D6 huMab will be a useful tool for inhibiting VCAM-1-expressing lung cancer cell invasion.

  17. Natural innate cytokine response to immunomodulators and adjuvants in human precision-cut lung slices.

    Science.gov (United States)

    Switalla, S; Lauenstein, L; Prenzler, F; Knothe, S; Förster, C; Fieguth, H-G; Pfennig, O; Schaumann, F; Martin, C; Guzman, C A; Ebensen, T; Müller, M; Hohlfeld, J M; Krug, N; Braun, A; Sewald, K

    2010-08-01

    Prediction of lung innate immune responses is critical for developing new drugs. Well-established immune modulators like lipopolysaccharides (LPS) can elicit a wide range of immunological effects. They are involved in acute lung diseases such as infections or chronic airway diseases such as COPD. LPS has a strong adjuvant activity, but its pyrogenicity has precluded therapeutic use. The bacterial lipopeptide MALP-2 and its synthetic derivative BPPcysMPEG are better tolerated. We have compared the effects of LPS and BPPcysMPEG on the innate immune response in human precision-cut lung slices. Cytokine responses were quantified by ELISA, Luminex, and Meso Scale Discovery technology. The initial response to LPS and BPPcysMPEG was marked by coordinated and significant release of the mediators IL-1β, MIP-1β, and IL-10 in viable PCLS. Stimulation of lung tissue with BPPcysMPEG, however, induced a differential response. While LPS upregulated IFN-γ, BPPcysMPEG did not. This traces back to their signaling pathways via TLR4 and TLR2/6. The calculated exposure doses selected for LPS covered ranges occurring in clinical studies with human beings. Correlation of obtained data with data from human BAL fluid after segmental provocation with endotoxin showed highly comparable effects, resulting in a coefficient of correlation >0.9. Furthermore, we were interested in modulating the response to LPS. Using dexamethasone as an immunosuppressive drug for anti-inflammatory therapy, we found a significant reduction of GM-CSF, IL-1β, and IFN-γ. The PCLS-model offers the unique opportunity to test the efficacy and toxicity of biological agents intended for use by inhalation in a complex setting in humans. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Nuclear magnetic resonance relaxation times for human lung cancer and lung tissues

    International Nuclear Information System (INIS)

    Matsuura, Yoshifumi; Shioya, Sumie; Kurita, Daisaku; Ohta, Takashi; Haida, Munetaka; Ohta, Yasuyo; Suda, Syuichi; Fukuzaki, Minoru.

    1994-01-01

    We investigated the nuclear magnetic resonance (NMR) relaxation times, T 1 and T 2 , for lung cancer tissue, and other samples of lung tissue obtained from surgical specimens. The samples were nine squamous cell carcinomas, five necrotic squamous cell carcinomas, 15 adenocarcinomas, two benign mesotheliomas, and 13 fibrotic lungs. The relaxation times were measured with a 90 MHz NMR spectrometer and the results were correlated with histological changes. The values of T 1 and T 2 for squamous cell carcinoma and mesothelioma were significantly longer than those of adenocarcinoma and fibrotic lung tissue. There were no significant differences in values of T 1 and T 2 between adenocarcinoma and lung tissue. The values of T 1 and T 2 for benign mesothelioma were similar to those of squamous cell carcinoma, which suggested that increases in T 1 and T 2 are not specific to malignant tissues. (author)

  19. Ectopic Intrathoracic Hepatic Tissue and Accessory Lung Lobe Aplasia in a Dog.

    Science.gov (United States)

    Lande, Rachel; Dvorak, Laura; Gardiner, David W; Bahr, Anne

    2015-01-01

    A 6 yr old male Yorkshire terrier was presented for an ~6 yr history of progressive cough and dyspnea. Thoracic radiographs revealed a 6 cm diameter mass within the right caudal thorax. Thoracic ultrasound identified an intrathoracic mass ultrasonographically consistent with liver tissue and a chronic diaphragmatic hernia was suspected. Exploratory laparotomy was performed, but no evidence of a diaphragmatic hernia was identified. Thoracic exploration identified abnormal lung parenchyma. The accessory lung lobe was removed using a stapling devise near its base. The consolidated mass had the gross appearance of liver and was histologically identified as ectopic hepatic tissue. Ectopic hepatic tissue, unlike ectopic splenic and pancreatic tissue, is rare and generally has a subdiaphragmatic distribution. This solitary case report demonstrates that ectopic intrathoracic hepatic tissue should be considered a differential diagnosis for a caudal mediastinal mass.

  20. Milano summer particulate matter (PM10 triggers lung inflammation and extra pulmonary adverse events in mice.

    Directory of Open Access Journals (Sweden)

    Francesca Farina

    Full Text Available Recent studies have suggested a link between particulate matter (PM exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases; accumulating evidences point to a new role for air pollution in CNS diseases. The purpose of our study is to investigate PM10sum effects on lungs and extra pulmonary tissues. Milano PM10sum has been intratracheally instilled into BALB/c mice. Broncho Alveolar Lavage fluid, lung parenchyma, heart and brain were screened for markers of inflammation (cell counts, cytokines, ET-1, HO-1, MPO, iNOS, cytotoxicity (LDH, ALP, Hsp70, Caspase8-p18, Caspase3-p17 for a putative pro-carcinogenic marker (Cyp1B1 and for TLR4 pathway activation. Brain was also investigated for CD68, TNF-α, GFAP. In blood, cell counts were performed while plasma was screened for endothelial activation (sP-selectin, ET-1 and for inflammation markers (TNF-α, MIP-2, IL-1β, MPO. Genes up-regulation (HMOX1, Cyp1B1, IL-1β, MIP-2, MPO and miR-21 have been investigated in lungs and blood. Inflammation in the respiratory tract of PM10sum-treated mice has been confirmed in BALf and lung parenchyma by increased PMNs percentage, increased ET-1, MPO and cytokines levels. A systemic spreading of lung inflammation in PM10sum-treated mice has been related to the increased blood total cell count and neutrophils percentage, as well as to increased blood MPO. The blood-endothelium interface activation has been confirmed by significant increases of plasma ET-1 and sP-selectin. Furthermore PM10sum induced heart endothelial activation and PAHs metabolism, proved by increased ET-1 and Cyp1B1 levels. Moreover, PM10sum causes an increase in brain HO-1 and ET-1. These results state the translocation of inflammation mediators, ultrafine particles, LPS, metals associated to PM10sum, from lungs to bloodstream, thus triggering a systemic reaction, mainly involving heart and brain. Our results provided additional insight into the toxicity

  1. Quantitative computed tomography applied to interstitial lung diseases.

    Science.gov (United States)

    Obert, Martin; Kampschulte, Marian; Limburg, Rebekka; Barańczuk, Stefan; Krombach, Gabriele A

    2018-03-01

    To evaluate a new image marker that retrieves information from computed tomography (CT) density histograms, with respect to classification properties between different lung parenchyma groups. Furthermore, to conduct a comparison of the new image marker with conventional markers. Density histograms from 220 different subjects (normal = 71; emphysema = 73; fibrotic = 76) were used to compare the conventionally applied emphysema index (EI), 15 th percentile value (PV), mean value (MV), variance (V), skewness (S), kurtosis (K), with a new histogram's functional shape (HFS) method. Multinomial logistic regression (MLR) analyses was performed to calculate predictions of different lung parenchyma group membership using the individual methods, as well as combinations thereof, as covariates. Overall correct assigned subjects (OCA), sensitivity (sens), specificity (spec), and Nagelkerke's pseudo R 2 (NR 2 ) effect size were estimated. NR 2 was used to set up a ranking list of the different methods. MLR indicates the highest classification power (OCA of 92%; sens 0.95; spec 0.89; NR 2 0.95) when all histogram analyses methods were applied together in the MLR. Highest classification power among individually applied methods was found using the HFS concept (OCA 86%; sens 0.93; spec 0.79; NR 2 0.80). Conventional methods achieved lower classification potential on their own: EI (OCA 69%; sens 0.95; spec 0.26; NR 2 0.52); PV (OCA 69%; sens 0.90; spec 0.37; NR 2 0.57); MV (OCA 65%; sens 0.71; spec 0.58; NR 2 0.61); V (OCA 66%; sens 0.72; spec 0.53; NR 2 0.66); S (OCA 65%; sens 0.88; spec 0.26; NR 2 0.55); and K (OCA 63%; sens 0.90; spec 0.16; NR 2 0.48). The HFS method, which was so far applied to a CT bone density curve analysis, is also a remarkable information extraction tool for lung density histograms. Presumably, being a principle mathematical approach, the HFS method can extract valuable health related information also from histograms from complete different areas

  2. Aluminum is More Cytotoxic than Lunar Dust in Human Skin and Lung Fibroblasts

    Science.gov (United States)

    Hammond, D.; Shehata, T.; Hammond, D.; Shehata, T.; Wise, J.P.; Martino, J; Wise, J.P.; Wise, J.P.

    2009-01-01

    NASA plans to build a permanent space station on the moon to explore its surface. The surface of the moon is covered in lunar dust, which consists of fine particles that contain silicon, aluminum and titanium, among others. Because this will be a manned base, the potential toxicity of this dust has to be studied. Also, toxicity standards for potential exposure have to be set. To properly address the potential toxicity of lunar dust we need to understand the toxicity of its individual components, as well as their combined effects. In order to study this we compared NASA simulant JSC-1AVF (volcanic ash particles), that simulates the dust found on the moon, to aluminum, the 3rd most abundant component in lunar dust. We tested the cytotoxicity of both compounds on human lung and skin fibroblasts (WTHBF-6 and BJhTERT cell lines, respectively). Aluminum oxide was more cytotoxic than lunar dust to both cell lines. In human lung fibroblasts 5, 10 and 50 g/sq cm of aluminum oxide induced 85%, 61% and 30% relative survival, respectively. For human skin fibroblasts the same concentrations induced 58%, 41% and 58% relative survival. Lunar dust was also cytotoxic to both cell lines, but its effects were seen at higher concentrations: 50, 100, 200 and 400 g/sq cm of lunar dust induced a 69%, 46%, 35% and 30% relative survival in the skin cells and 53%, 16%, 8% and 2% on the lung cells. Overall, for both compounds, lung cells were more sensitive than skin cells. This work was supported by a NASA EPSCoR grant through the Maine Space Grant Consortium (JPW), the Maine Center for Toxicology and Environmental Health., a Fulbright Grant (JM) and a Delta Kappa Gamma Society International World Fellowship (JM).

  3. Evidence for chronic inflammation as a component of the interstitial lung disease associated with progressive systemic sclerosis

    International Nuclear Information System (INIS)

    Rossi, G.A.; Bitterman, P.B.; Rennard, S.I.; Ferrans, V.J.; Crystal, R.G.

    1985-01-01

    Progressive systemic sclerosis (PSS) is a generalized disorder characterized by fibrosis of many organs including the lung parenchyma. Unlike most other interstitial disorders, traditional concepts of the interstitial lung disease associated with PSS have held it to be a ''pure'' fibrotic disorder without a significant inflammatory component. To directly evaluate whether an active alveolitis is associated with this disorder, patients with chronic interstitial lung disease and PSS were studied by open lung biopsy, gallium-67 scanning, and bronchoalveolar lavage. Histologic evaluation of the biopsies demonstrated that the interstitial fibrosis of PSS is clearly associated with the presence of macrophages, lymphocytes, and polymorphonuclear leukocytes, both in the interstitium and on the alveolar epithelial surface. Gallium-67 scans were positive in 77% of the patients, showing diffuse, primarily lower zone uptake, suggestive of active inflammation. Consistent with the histologic findings, bronchoalveolar lavage studies demonstrated a mild increase in the proportions of neutrophils and eosinophils with occasional increased numbers of lymphocytes. Importantly, alveolar macrophages from patients with PSS showed increased release of fibronectin and alveolar-macrophage-derived growth factor, mediators that together stimulate lung fibroblasts to proliferate, thus suggesting at least one mechanism modulating the lung fibrosis of these patients

  4. Screening and Establishment of Human Lung Cancer Cell Lines 
with Organ-specific Metastasis Potential

    Directory of Open Access Journals (Sweden)

    Qinghua ZHOU

    2014-03-01

    Full Text Available Background and objective Cancer metastasis is not only the malignant marker and characteristics, but also the main cause of failure to cure and lose their life in the patients with lung cancer. Lung cancer metastasis has organ-specific characteristics. The most common sites of lung cancer metastasis are mediastinal lymph node, brain, bone, liver and adrenal gland. The aim of this study is to screen and establish lung cancer cell model with organ-specific metastasis potential with human high-metastatic large cell lung cancer cell line L9981 established by our laboratory previously, and to provide cell models for studying the mechanisms and signal regulation of organ-specific metastasis of lung cancer. Materials and methods The parent lung cancer cell line, L9981-Luc, was inoculated in the armpit of nude mice. The live animal imaging system, IVIS-200, was used to detect the lung cancer organ-specific metastasis every week. When the organ-specific metastasis were established, the nude mices bearing the lung cancer were sacrificed when they became moribund. Under sterile conditions, the organs (mediastinal lymph nodes, lung, spinal column and brain with lung cancer organ-specific metastasis were removed and the metastasized nodules were dissected free of connective tissue and blood clots, and rinsed twice with medium. The metastasized nodules were finely minced using sterile scalpel blades in medium, and the cells were seeded in tissue culture dishes. Then, the cells with organ-specific metastasis potential were reinoculated into the armpit of nude mice, respectively. This processes were repeated to establish the organ-specific metastatic sublines of L9981-Luc cell line more than 10 times. Finally, the organ-specific metastasis sublines of L9981-Luc were screened and established, which the four cell lines have the characteristics only metastasized to brian, lung, bone and mediastinal lymph node. Results A group of organ-specific metastasis cell

  5. Multiphoton microscopy based cryo-imaging of inflated frozen human lung sections at -60°C in healthy and COPD lungs

    Science.gov (United States)

    Abraham, Thomas; Kayra, Damian; Zhang, Angela; Suzuki, Masaru; McDonough, John; Elliott, W. M.; Cooper, Joel D.; Hogg, James C.

    2013-02-01

    Lung is a complex gas exchanger with interfacial area (where the gas exchange takes place) is about the size of a tennis court. Respiratory function is linked to the biomechanical stability of the gas exchange or alveolar regions which directly depends on the spatial distributions of the extracellular matrix fibers such fibrillar collagens and elastin fibers. It is very important to visualize and quantify these fibers at their native and inflated conditions to have correct morphometric information on differences between control and diseased states. This can be only achieved in the ex vivo states by imaging directly frozen lung specimens inflated to total lung capacity. Multiphoton microscopy, which uses ultra-short infrared laser pulses as the excitation source, produces multiphoton excitation fluorescence (MPEF) signals from endogenously fluorescent proteins (e.g. elastin) and induces specific second harmonic generation (SHG) signals from non-centrosymmetric proteins such as fibrillar collagens in fresh human lung tissues [J. Struct. Biol. (2010)171,189-196]. Here we report for the first time 3D image data obtained directly from thick frozen inflated lung specimens (~0.7- 1.0 millimeter thick) visualized at -60°C without prior fixation or staining in healthy and diseased states. Lung specimens donated for transplantation and released for research when no appropriate recipient was identified served as controls, and diseased lung specimens donated for research by patients receiving lung transplantation for very severe COPD (n=4) were prepared as previously described [N. Engl. J. Med. (2011) 201, 1567]. Lung slices evenly spaced between apex and base were examined using multiphoton microscopy while maintained at -60°C using a temperature controlled cold stage with a temperature resolution of 0.1°C. Infrared femto-second laser pulses tuned to 880nm, dry microscopic objectives, and non-de-scanned detectors/spectrophotometer located in the reflection geometry were

  6. Radioindication of hemodynamics and functional state of parenchyma of the kidneys in stenosis of renal arteries

    International Nuclear Information System (INIS)

    Efimov, O.N.; Gabuniya, R.I.; Kamynin, Yu.F.; Matveenko, E.G.; Buyuklyan, A.N.; Skoropad, L.S.; Syzgantseva, L.M.

    1978-01-01

    Hemodynamics and functional state of parenchyma of the kidney were studied in 39 patients with stenosis of the renal arteries by means of pertechnetate 99 Tc, hippuran 131 I and chlormerodrine 197 Hg. In patients with vasorenal hypertension the following changes in the stenosed kidney were revealed: a significant decrease in the renal blood flow, renal fraction, volume of maximal saturation, specific blood flow, systolic renal index; elevation of the intrarenal vascular resistance; and impairment of the functional state of the renal parenchyma. It was established that there was a direct dependence between the renal blood flow and the volume of maximal saturation and a reverse dependence between the renal blood flow and intrarenal vascular resistance. Hemodynamic changes in the stenosed kidney played an important role and led at first to a bias in renographic indices and then - to a decrease in accumulation of chlormerodrine 197 Hg in the kidneys. It was noted that changes in the functional state of the renal parenchyma tended to be dependent upon the level of the renal blood flow, and indices of the renal blood flow - upon the values of arterial pressure. From diagnostic point of view, methods of radioiangiography, as compared with renography and scintigraphy, were found to be the most informative

  7. Imaging manifestations of the cavitation in pulmonary parenchyma of SARS

    International Nuclear Information System (INIS)

    Yuan Chunwang; Zhao Dawei; Wang Wei; Jia Cuiyu; Bai Chunsheng

    2004-01-01

    Objective: To investigate the imaging appearances of cavitation in pulmonary parenchyma and the clinical features of the cases of SARS. Methods: Chest imaging films and clinical data of 180 patients with clinically confirmed SARS were analyzed retrospectively. The imaging manifestations of cavitation and the clinical features of the patients were observed and evaluated. Results: Of 180 patients, cavitations were showed in 5 (2.8%), which were all found through X-ray or CT scanning. Most of them were round or irregular, and had thick wall. The 5 patients all had been in hospital and treated with more dosage antibiotics, antivirus medicines and glucocorticoid for long time, the glucocorticoid was used for 25-65 d, and in the first 10-15 days the dosage was 160-240 mg per day. In hospitalization, one of them had been diagnosed diabetes mellitus, four had increased fasting blood sugar, the counts of white blood cells [(14.1-20.4) x 10 9 /L] increased significantly, the percent of neutrophils might increased also. Meanwhile, there was a continue increase of lactate dehydrogenase (228.00-475.00 U/L), glutamic dehydrogenase (10.08-60.00 U/L) and hydroxybutyrate dehydrogenase (190.00-444.00 U/L) in lab examination. Conclusion: SARS can cause cavitation in pulmonary parenchyma in posterior process of the disease. CT scanning can find the cavitation earlier and accurately, catching the imaging features of them is helpful in differential diagnosis, guiding therapy and estimating prognosis

  8. Visual assessment of functional lungs parenchyma on HRCT and 3He-MRI in patients after single lung transplantation: comparison with quantitative volumetric results

    International Nuclear Information System (INIS)

    Zaporozhan, J.; Ley, S.; Gast, K.K.; Heussel, C.P.; Thelen, M.; Biedermann, A.; Eberle, B.; Mayer, E.; Kauczor, H.U.

    2005-01-01

    Purpose: Visual assessment of the ventilation using HRCT and 3 He-MRI in patients after single lung transplantation (SLTX). Analysis of specific ventilation defects found with 3 He-MRI and morphological changes found with HRCT. Materials and Methods: We evaluated 8 male patients (54±6 years) suffering from emphysema and six patients (3 males and 3 females, 58±9.5 years) suffering from idiopathic pulmonary fibrosis (IPF) after SLTX. The morphological changes at HRCT were classified and localized. In 3 He-MRI (2D FLASH), 10 to 14 slices (slice thickness 10 mm, gap 5 mm) were acquired in coronal orientation to cover the whole lung. Ventilation defects were localized and characterized. The visually estimated ventilation was recorded on a 5-point scoring system. A double threshold technique was applied to volumetric quantification in 3 He-MRI to serve as internal reference. Results: We found no correlation between morphological changes in HRCT and ventilation defects in 3 He-MRI. The visual assessment of ventilation in 3 He-MRI was sufficient in patients with emphysema, but this was not confirmed in patients with IPF. The visual assessment in HRCT did not correlate with the volumetric evaluation in both conditions. Conclusion: The various ventilation defects were not linked to specific morphological changes. For the visually assessed ventilation in patients with emphysema, 3 He-MRI is superior to HRCT. (orig.)

  9. Inhibition of Calcium-Activated Chloride Channel ANO1/TMEM16A Suppresses Tumor Growth and Invasion in Human Lung Cancer.

    Directory of Open Access Journals (Sweden)

    Linghan Jia

    Full Text Available Lung cancer or pulmonary carcinoma is primarily derived from epithelial cells that are thin and line on the alveolar surfaces of the lung for gas exchange. ANO1/TMEM16A, initially identified from airway epithelial cells, is a member of Ca2+-activated Cl- channels (CaCCs that function to regulate epithelial secretion and cell volume for maintenance of ion and tissue homeostasis. ANO1/TMEM16A has recently been shown to be highly expressed in several epithelium originated carcinomas. However, the role of ANO1 in lung cancer remains unknown. In this study, we show that inhibition of calcium-activated chloride channel ANO1/TMEM16A suppresses tumor growth and invasion in human lung cancer. ANO1 is upregulated in different human lung cancer cell lines. Knocking-down ANO1 by small hairpin RNAs inhibited proliferation, migration and invasion of GLC82 and NCI-H520 cancel cells evaluated by CCK-8, would-healing, transwell and 3D soft agar assays. ANO1 protein is overexpressed in 77.3% cases of human lung adenocarcinoma tissues detected by immunohistochemistry. Furthermore, the tumor growth in nude mice implanted with GLC82 cells was significantly suppressed by ANO1 silencing. Taken together, our findings provide evidence that ANO1 overexpression contributes to tumor growth and invasion of lung cancer; and suppressing ANO1 overexpression may have therapeutic potential in lung cancer therapy.

  10. Preliminary study of steep pulse irreversible electroporation technology in human large cell lung cancer cell lines L9981

    Directory of Open Access Journals (Sweden)

    Song Zuoqing

    2013-01-01

    Full Text Available Our aim was to validate the effectiveness of steep pulse irreversible electroporation technology in human large cell lung cancer cells and to screen the optimal treatment of parameters for human large cell lung cancer cells. Three different sets of steep pulse therapy parameters were applied on the lung cancer cell line L9981. The cell line L9981 inhibition rate and proliferation capacity were detected by Vi-Cell vitality analysis and MTT. Steep pulsed irreversible electroporation technology for large cell lung cancer L9981 presents killing effects with various therapy parameters. The optimal treatment parameters are at a voltage amplitude of 2000V/cm, pulse width of 100μs, pulse frequency of 1 Hz, pulse number 10. With this group of parameters, steep pulse could have the best tumor cell-killing effects.

  11. Autoradiographic localization of calcitonin gene-related peptide (CGRP) binding sites in human and guinea pig lung

    International Nuclear Information System (INIS)

    Mak, J.C.; Barnes, P.J.

    1988-01-01

    125 I-Human calcitonin gene-related peptide (hCGRP) binding sites were localized in human and guinea pig lungs by an autoradiographic method. Scatchard analysis of saturation experiments from slide-mounted sections of guinea pig lung displayed specific 125 I-hCGRP binding sites with a dissociation constant (Kd) of 0.72 +/- 0.05 nM (mean +/- S.E.M., n = 3) and a maximal number of binding sites (Bmax) of 133.4 +/- 5.6 fmol/mg protein. In both human and guinea pig lung, autoradiography revealed that CGRP binding sites were widely distributed, with particularly dense labeling over bronchial and pulmonary blood vessels of all sizes and alveolar walls. Airway smooth muscle and epithelium of large airways was sparsely labeled but no labeling was found over submucosal glands. This localization corresponds well to the reported pattern of CGRP-like immunoreactive innervation. The findings of localization of CGRP binding sites on bronchial and pulmonary blood vessels indicate that CGRP may be important in the regulation of airway and pulmonary blood flow

  12. Ultrastructural changes in aster yellows phytoplasma affected Limonium sinuatum Mill. plants II. Pathology of cortex parenchyma cells

    Directory of Open Access Journals (Sweden)

    Anna Rudzińska-Langwald

    2014-01-01

    Full Text Available In Limonium sinuatum Mill, plants with severe symptoms of aster yellows infection phytoplasmas were present not only in the phloem but also in some cortex parenchymas cells. These parenchyma cells were situated at some distance from the conducting bundles. The phytoplasmas were observed directly in parenchyma cells cytoplasm. The number of phytoplasmas present in each selected cell varies. The cells with a small number of phytoplasmas show little pathological changes compared with the unaffected cells of the same zone of the stem as well with the cells of healthy plants. The cells filled with a number of phytoplasmas had their protoplast very much changed. The vacuole was reduced and in the cytoplasm a reduction of the number of ribosomes was noted and regions of homogenous structure appeared. Mitochondria were moved in the direction of the tonoplast and plasma membrane. Compared to the cells unaffected by phytoplasma, the mitochondria were smaller and had an enlarged cristae internal space. The chloroplasts from affected cells had a very significant reduction in size and the tylacoids system had disappeared. The role of these changes for creating phytoplasma friendly enviroment is discused.

  13. Thioredoxin reductase 1 knockdown enhances selenazolidine cytotoxicity in human lung cancer cells via mitochondrial dysfunction

    Science.gov (United States)

    Poerschke, Robyn L.; Moos, Philip J.

    2010-01-01

    Thioredoxin reductase (TR1) is a selenoprotein that is involved in cellular redox status control and deoxyribonucleotide biosynthesis. Many cancers, including lung, overexpress TR1, making it a potential cancer therapy target. Previous work has shown that TR1 knockdown enhances the sensitivity of cancer cells to anticancer treatments, as well as certain selenocompounds. However, it is unknown if TR1 knockdown produces similar effect on the sensitivity of human lung cancer cells. To further elucidate the role of TR1 in the mechanism of selenocompounds in lung cancer, a lentiviral microRNA delivery system to knockdown TR1 expression in A549 human lung adenocarcinoma cells was utilized. Cell viability was assessed after 48 hr treatment with the selenocysteine prodrug selenazolidines 2-butylselenazolidine-4(R)-carboxylic acid (BSCA) and 2-cyclohexylselenazolidine-4-(R)-carboxylic acid (ChSCA), selenocystine (SECY), methylseleninic acid (MSA), 1,4-phenylenebis(methylene)selenocyanate (p-XSC), and selenomethionine (SEM). TR1 knockdown increased the cytotoxicity of BSCA, ChSCA, and SECY but did not sensitize cells to MSA, SEM, or p-XSC. GSH and TR1 depletion together decreased cell viability, while no change was observed with GSH depletion alone. Reactive oxygen species generation was induced only in TR1 knockdown cells treated with the selenazolidines or SECY. These three compounds also decreased total intracellular glutathione levels and oxidized thioredoxin, but in a TR1 independent manner. TR1 knockdown increased selenazolidine and SECY-induced mitochondrial membrane depolarization, as well as DNA strand breaks and AIF translocation from the mitochondria. These results indicate the ability of TR1 to modulate the cytotoxic effects of BSCA, ChSCA and SECY in human lung cancer cells through mitochondrial dysfunction. PMID:20920480

  14. Aging effects on airflow dynamics and lung function in human bronchioles.

    Science.gov (United States)

    Kim, JongWon; Heise, Rebecca L; Reynolds, Angela M; Pidaparti, Ramana M

    2017-01-01

    The mortality rate for patients requiring mechanical ventilation is about 35% and this rate increases to about 53% for the elderly. In general, with increasing age, the dynamic lung function and respiratory mechanics are compromised, and several experiments are being conducted to estimate these changes and understand the underlying mechanisms to better treat elderly patients. Human tracheobronchial (G1 ~ G9), bronchioles (G10 ~ G22) and alveolar sacs (G23) geometric models were developed based on reported anatomical dimensions for a 50 and an 80-year-old subject. The aged model was developed by altering the geometry and material properties of the model developed for the 50-year-old. Computational simulations using coupled fluid-solid analysis were performed for geometric models of bronchioles and alveolar sacs under mechanical ventilation to estimate the airflow and lung function characteristics. The airway mechanical characteristics decreased with aging, specifically a 38% pressure drop was observed for the 80-year-old as compared to the 50-year-old. The shear stress on airway walls increased with aging and the highest shear stress was observed in the 80-year-old during inhalation. A 50% increase in peak strain was observed for the 80-year-old as compared to the 50-year-old during exhalation. The simulation results indicate that there is a 41% increase in lung compliance and a 35%-50% change in airway mechanical characteristics for the 80-year-old in comparison to the 50-year-old. Overall, the airway mechanical characteristics as well as lung function are compromised due to aging. Our study demonstrates and quantifies the effects of aging on the airflow dynamics and lung capacity. These changes in the aging lung are important considerations for mechanical ventilation parameters in elderly patients. Realistic geometry and material properties need to be included in the computational models in future studies.

  15. Harmonic technology versus neodymium-doped yttrium aluminium garnet laser and electrocautery for lung metastasectomy: an experimental study.

    Science.gov (United States)

    Fiorelli, Alfonso; Accardo, Marina; Carelli, Emanuele; Del Prete, Assunta; Messina, Gaetana; Reginelli, Alfonso; Berritto, Daniela; Papale, Ferdinando; Armenia, Emilia; Chiodini, Paolo; Grassi, Roberto; Santini, Mario

    2016-07-01

    We compared the efficacy of non-anatomical lung resections with that of three other techniques: monopolar electrocautery; neodymium-doped yttrium aluminium garnet laser and harmonic technology. We hypothesized that the thermal damage with harmonic technology could be reduced because of the lower temperatures generated by harmonic technology compared with that of other devices. Initial studies were performed in 13 isolated pig lungs for each group. A 1.5-cm capsule was inserted within the lung to mimic a tumour and a total of 25 non-anatomical resections were performed with each device. The damage of the resected lung surface and of the tumour border were evaluated according to the colour (ranging from 0-pink colour to 4-black colour), histological (ranging from Score 0-no changes to Score 3-presence of necrotic tissue) and radiological (ranging from Score 0-isointense T2 signal at magnetic resonance imaging to Score 3-hyperintense T2 signal) criteria. A total of seven non-anatomical resections with harmonic technology were also performed in two live pigs to assess if ex vivo results could be reproducible in live pigs with particular attention to haemostatic and air-tightness properties. In the ex vivo lung, there was a statistical significant difference between depth of thermal damage (P laser (0.9 [0.6-0.9]) and harmonic (0.4 [0.3-0.5]) groups. Electrocautery had a higher depth of thermal damage compared with that of the laser (P = 0.01) and harmonic groups (P = 0.0005). The harmonic group had a less depth of thermal damage than that of the laser group (P = 0.01). Also, histological damages of tumour borders (P technology. Our experimental data support the resections performed with the use of harmonic technology. The lack of severe tissue alterations could favour healing of parenchyma, assure air tightness and preserve functional lung parenchyma. However, randomized controlled studies are needed in an in vivo model to corroborate our findings. © The Author 2016

  16. Modification by antioxidant supplementation of changes in human lung function associated with air pollutant exposure: A systematic review

    Directory of Open Access Journals (Sweden)

    Chow Katherine S

    2011-07-01

    Full Text Available Abstract Background Outdoor air pollution, given its demonstrated negative effects on the respiratory system, is a growing public health concern worldwide, particularly in urban cities. Human exposure to pollutants such as ozone, nitrogen oxides, combustion-related particulate matter and oxides of sulfur is responsible for significant cardiopulmonary morbidity and mortality in both adults and children. Several antioxidants have shown an ability to partially attenuate the negative physiological and functional impacts of air pollutants. This study systematically presents current data on the potential benefits of antioxidant supplementation on lung function outcomes associated with air pollutant exposures in intact humans. Methods Electronic databases (MEDLINE, EMBASE, BIOSIS Previews, Web of Sciences, Environmental Sciences & Pollution Management and TOXNET were systematically searched for all studies published up to April 2009. Search terms relating to the concepts of respiratory tract diseases, respiratory function tests, air pollution, and antioxidants were used. Data was systematically abstracted from original articles that satisfied selection criteria for inclusion. For inclusion, the studies needed to have evaluated human subjects, given supplemental antioxidants, under conditions of known levels of air pollutants with measured lung function before and after antioxidant administration and/or air pollution exposure. Selected studies were summarized and conclusions presented. Results Eight studies investigated the role of antioxidant supplementation on measured lung function outcomes after subject exposure to air pollutants under controlled conditions; 5 of these studies concluded that pollutant-induced airway hyper-responsiveness and diminution in lung function measurements were attenuated by antioxidant supplementation. The remaining five studies took place under ambient (uncontrolled exposures and unanimously concluded that antioxidant

  17. A 3D Human Lung Tissue Model for Functional Studies on Mycobacterium tuberculosis Infection.

    Science.gov (United States)

    Braian, Clara; Svensson, Mattias; Brighenti, Susanna; Lerm, Maria; Parasa, Venkata R

    2015-10-05

    Tuberculosis (TB) still holds a major threat to the health of people worldwide, and there is a need for cost-efficient but reliable models to help us understand the disease mechanisms and advance the discoveries of new treatment options. In vitro cell cultures of monolayers or co-cultures lack the three-dimensional (3D) environment and tissue responses. Herein, we describe an innovative in vitro model of a human lung tissue, which holds promise to be an effective tool for studying the complex events that occur during infection with Mycobacterium tuberculosis (M. tuberculosis). The 3D tissue model consists of tissue-specific epithelial cells and fibroblasts, which are cultured in a matrix of collagen on top of a porous membrane. Upon air exposure, the epithelial cells stratify and secrete mucus at the apical side. By introducing human primary macrophages infected with M. tuberculosis to the tissue model, we have shown that immune cells migrate into the infected-tissue and form early stages of TB granuloma. These structures recapitulate the distinct feature of human TB, the granuloma, which is fundamentally different or not commonly observed in widely used experimental animal models. This organotypic culture method enables the 3D visualization and robust quantitative analysis that provides pivotal information on spatial and temporal features of host cell-pathogen interactions. Taken together, the lung tissue model provides a physiologically relevant tissue micro-environment for studies on TB. Thus, the lung tissue model has potential implications for both basic mechanistic and applied studies. Importantly, the model allows addition or manipulation of individual cell types, which thereby widens its use for modelling a variety of infectious diseases that affect the lungs.

  18. Lung fibroblasts accelerate wound closure in human alveolar epithelial cells through hepatocyte growth factor/c-Met signaling.

    Science.gov (United States)

    Ito, Yoko; Correll, Kelly; Schiel, John A; Finigan, Jay H; Prekeris, Rytis; Mason, Robert J

    2014-07-01

    There are 190,600 cases of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) each year in the United States, and the incidence and mortality of ALI/ARDS increase dramatically with age. Patients with ALI/ARDS have alveolar epithelial injury, which may be worsened by high-pressure mechanical ventilation. Alveolar type II (ATII) cells are the progenitor cells for the alveolar epithelium and are required to reestablish the alveolar epithelium during the recovery process from ALI/ARDS. Lung fibroblasts (FBs) migrate and proliferate early after lung injury and likely are an important source of growth factors for epithelial repair. However, how lung FBs affect epithelial wound healing in the human adult lung has not been investigated in detail. Hepatocyte growth factor (HGF) is known to be released mainly from FBs and to stimulate both migration and proliferation of primary rat ATII cells. HGF is also increased in lung tissue, bronchoalveolar lavage fluid, and serum in patients with ALI/ARDS. Therefore, we hypothesized that HGF secreted by FBs would enhance wound closure in alveolar epithelial cells (AECs). Wound closure was measured using a scratch wound-healing assay in primary human AEC monolayers and in a coculture system with FBs. We found that wound closure was accelerated by FBs mainly through HGF/c-Met signaling. HGF also restored impaired wound healing in AECs from the elderly subjects and after exposure to cyclic stretch. We conclude that HGF is the critical factor released from FBs to close wounds in human AEC monolayers and suggest that HGF is a potential strategy for hastening alveolar repair in patients with ALI/ARDS. Copyright © 2014 the American Physiological Society.

  19. Post-transplant Lymphoproliferative Disorder Arising from Renal Allograft Parenchyma: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Kwan; Kim, Chan Kyo; Kwon, Ghee Young [Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul (Korea, Republic of)

    2010-06-15

    Post-transplant lymphoproliferative disorder (PTLD) is a rare but serious complication that occurs in patients undergoing kidney transplantation. PTLD usually manifests as a renal hilar mass comprised of histologically B-lymphocytes. We report our experience of managing a patient with PTLD arising from renal parenchyma. Ultrasonographic and MR imaging features of this unusual PTLD suggested differentiated renal cell carcinoma arising from the renal allograft

  20. Human Lung Cancer Risks from Radon – Part II – Influence from Combined Adaptive Response and Bystander Effects – A Microdose Analysis

    Science.gov (United States)

    Leonard, Bobby E.; Thompson, Richard E.; Beecher, Georgia C.

    2010-01-01

    In the prior Part I, the potential influence of the low level alpha radiation induced bystander effect (BE) on human lung cancer risks was examined. Recent analysis of adaptive response (AR) research results with a Microdose Model has shown that single low LET radiation induced charged particles traversals through the cell nucleus activates AR. We have here conducted an analysis based on what is presently known about adaptive response and the bystander effect (BE) and what new research is needed that can assist in the further evaluation human cancer risks from radon. We find that, at the UNSCEAR (2000) worldwide average human exposures from natural background and man-made radiations, the human lung receives about a 25% adaptive response protection against the radon alpha bystander damage. At the UNSCEAR (2000) minimum range of background exposure levels, the lung receives minimal AR protection but at higher background levels, in the high UNSCEAR (2000) range, the lung receives essentially 100% protection from both the radon alpha damage and also the endogenic, spontaneously occurring, potentially carcinogenic, lung cellular damage. PMID:22461760

  1. Two cases of pulmonary and pleural sparganosis confirmed by tissue biopsy and immunoserology

    Directory of Open Access Journals (Sweden)

    Sang Wan Chung

    Full Text Available Sparganosis in humans is an incidental infection and is known to be associated with eating insufficiently cooked meat of frogs and snakes or drinking unboiled stream water. Although it can involve various internal organs, pulmonary and pleural involvement due to sparganum is rare. Because we recently experienced two cases involving lung parenchyma and pleura that were misdiagnosed as bacterial pneumonia and lung cancer, we herein intend to present them in detail.

  2. Pediatric dosimetry for intrapleural lung injections of 32P chromic phosphate

    International Nuclear Information System (INIS)

    Konijnenberg, Mark W; Olch, Arthur

    2010-01-01

    Intracavitary injections of 32 P chromic phosphate are used in the therapy of pleuropulmonary blastoma and pulmonary sarcomas in children. The lung dose, however, has never been calculated despite the potential risk of lung toxicity from treatment. In this work the dosimetry has been calculated in target tissue and lung for pediatric phantoms. Pleural cavities were modeled in the Monte Carlo code MCNP within the pediatric MIRD phantoms. Both the depth-dose curves in the pleural lining and into the lung as well as 3D dose distributions were calculated for either homogeneous or inhomogeneous 32 P activity distributions. Dose-volume histograms for the lung tissue and isodose graphs were generated. The results for the 2D depth-dose curve to the pleural lining and tumor around the pleural cavity correspond well with the point kernel model-based recommendations. With a 2 mm thick pleural lining, one-third of the lung parenchyma volume gets a dose more than 30 Gy (V 30 ) for 340 MBq 32 P in a 10 year old. This is close to lung tolerance. Younger children will receive a larger dose to the lung when the lung density remains equal to the adult value; the V 30 relative lung volume for a 5 year old is 35% at an activity of 256 MBq and for a 1 year old 165 MBq yields a V 30 of 43%. At higher densities of the lung tissue V 30 stays below 32%. All activities yield a therapeutic dose of at least 225 Gy in the pleural lining. With a more normal pleural lining thickness (0.5 mm instead of 2 mm) the injected activities will have to be reduced by a factor 5 to obtain tolerable lung doses in pediatric patients. Previous dosimetry recommendations for the adult apply well down to lung surface areas of 400 cm 2 . Monte Carlo dosimetry quantitates the three-dimensional dose distribution, providing a better insight into the maximum tolerable activity for this therapy.

  3. Cellular morphometry of the bronchi of human and dog lungs

    International Nuclear Information System (INIS)

    Robbins, E.S.

    1991-03-01

    One hundred and thirty-one bronchial samples from 62 patients have been dissected by generation from fixed surgical lung specimens obtained after the removal of pathological lesions. Complete patient records including occupational and smoking histories, as well as possible exposure to radon, are obtained. In addition, one hundred and sixty-two mongol dog bronchi dissected from different lobes of 23 dog lungs have also been similarly prepared. Ninety-four human samples have been completely processed for electron microscopy and have yielded 994 electron micrographs of which 532 have been entered into the Computerized Stereological Analysis System (COSAS) and been used for the measurement of the distances of basal and mucous cell nuclei to the epithelial free surface. Similarly 240 micrographs of dog epithelium from 31 bronchial samples have been entered into COSAS. We have, using the COSAS planimetry program, established data bases which describe the volume density and nuclear numbers per electron micrograph for 5 cell types of the human bronchial epithelial lining of men and women, as well as smokers, non-smokers and ex-smokers and similar parameters for the epithelial cell types of dog bronchi. The data are being used to develop weighting factors for dosimetry and radon risk analysis. 26 refs., 7 figs., 4 tabs

  4. DEPOSITION DISTRICUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE.

    Science.gov (United States)

    DEPOSITION DISTRIBUTION AMONG THE PARALLEL PATHWAYS IN THE HUMAN LUNG CONDUCTING AIRWAY STRUCTURE. Chong S. Kim*, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711; Z. Zhang and C. Kleinstreuer, Department of Mechanical and Aerospace Engineering, North C...

  5. Lung density

    DEFF Research Database (Denmark)

    Garnett, E S; Webber, C E; Coates, G

    1977-01-01

    The density of a defined volume of the human lung can be measured in vivo by a new noninvasive technique. A beam of gamma-rays is directed at the lung and, by measuring the scattered gamma-rays, lung density is calculated. The density in the lower lobe of the right lung in normal man during quiet...... breathing in the sitting position ranged from 0.25 to 0.37 g.cm-3. Subnormal values were found in patients with emphsema. In patients with pulmonary congestion and edema, lung density values ranged from 0.33 to 0.93 g.cm-3. The lung density measurement correlated well with the findings in chest radiographs...... but the lung density values were more sensitive indices. This was particularly evident in serial observations of individual patients....

  6. Wood anatomical correlates with theoretical conductivity and wood density across China: evolutionary evidence of the functional differentiation of axial and radial parenchyma.

    Science.gov (United States)

    Zheng, Jingming; Martínez-Cabrera, Hugo I

    2013-09-01

    In recent years considerable effort has focused on linking wood anatomy and key ecological traits. Studies analysing large databases have described how these ecological traits vary as a function of wood anatomical traits related to conduction and support, but have not considered how these functions interact with cells involved in storage of water and carbohydrates (i.e. parenchyma cells). We analyzed, in a phylogenetic context, the functional relationship between cell types performing each of the three xylem functions (conduction, support and storage) and wood density and theoretical conductivity using a sample of approx. 800 tree species from China. Axial parenchyma and rays had distinct evolutionary correlation patterns. An evolutionary link was found between high conduction capacity and larger amounts of axial parenchyma that is probably related to water storage capacity and embolism repair, while larger amounts of ray tissue have evolved with increased mechanical support and reduced hydraulic capacity. In a phylogenetic principal component analysis this association of axial parenchyma with increased conduction capacity and rays with wood density represented orthogonal axes of variation. In multivariate space, however, the proportion of rays might be positively associated with conductance and negatively with wood density, indicating flexibility in these axes in species with wide rays. The findings suggest that parenchyma types may differ in function. The functional axes represented by different cell types were conserved across lineages, suggesting a significant role in the ecological strategies of the angiosperms.

  7. Human airway organoid engineering as a step toward lung regeneration and disease modeling.

    Science.gov (United States)

    Tan, Qi; Choi, Kyoung Moo; Sicard, Delphine; Tschumperlin, Daniel J

    2017-01-01

    Organoids represent both a potentially powerful tool for the study cell-cell interactions within tissue-like environments, and a platform for tissue regenerative approaches. The development of lung tissue-like organoids from human adult-derived cells has not previously been reported. Here we combined human adult primary bronchial epithelial cells, lung fibroblasts, and lung microvascular endothelial cells in supportive 3D culture conditions to generate airway organoids. We demonstrate that randomly-seeded mixed cell populations undergo rapid condensation and self-organization into discrete epithelial and endothelial structures that are mechanically robust and stable during long term culture. After condensation airway organoids generate invasive multicellular tubular structures that recapitulate limited aspects of branching morphogenesis, and require actomyosin-mediated force generation and YAP/TAZ activation. Despite the proximal source of primary epithelium used in the airway organoids, discrete areas of both proximal and distal epithelial markers were observed over time in culture, demonstrating remarkable epithelial plasticity within the context of organoid cultures. Airway organoids also exhibited complex multicellular responses to a prototypical fibrogenic stimulus (TGF-β1) in culture, and limited capacity to undergo continued maturation and engraftment after ectopic implantation under the murine kidney capsule. These results demonstrate that the airway organoid system developed here represents a novel tool for the study of disease-relevant cell-cell interactions, and establishes this platform as a first step toward cell-based therapy for chronic lung diseases based on de novo engineering of implantable airway tissues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Plasma Cell Type of Castleman's Disease Involving Renal Parenchyma and Sinus with Cardiac Tamponade: Case Report and Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Un; Kim, Suk; Lee, Jun Woo; Lee, Nam Kyung; Jeon, Ung Bae; Ha, Hong Gu; Shin, Dong Hoon [Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan (Korea, Republic of)

    2012-09-15

    Castleman's disease is an uncommon disorder characterized by benign proliferation of the lymphoid tissue that occurs most commonly in the mediastinum. Although unusual locations and manifestations have been reported, involvement of the renal parenchyma and sinus, and moreover, manifestations as cardiac tamponade are extremely rare. Here, we present a rare case of Castleman's disease in the renal parenchyma and sinus that also accompanied cardiac tamponade.

  9. Inhibition of human lung cancer cell proliferation and survival by wine

    Science.gov (United States)

    2014-01-01

    Background Compounds of plant origin and food components have attracted scientific attention for use as agents for cancer prevention and treatment. Wine contains polyphenols that were shown to have anti-cancer and other health benefits. The survival pathways of Akt and extracellular signal-regulated kinase (Erk), and the tumor suppressor p53 are key modulators of cancer cell growth and survival. In this study, we examined the effects of wine on proliferation and survival of human Non-small cell lung cancer (NSCLC) cells and its effects on signaling events. Methods Human NSCLC adenocarcinoma A549 and H1299 cells were used. Cell proliferation was assessed by thymidine incorporation. Clonogenic assays were used to assess cell survival. Immunoblotting was used to examine total and phosphorylated levels of Akt, Erk and p53. Results In A549 cells red wine inhibited cell proliferation and reduced clonogenic survival at doses as low as 0.02%. Red wine significantly reduced basal and EGF-stimulated Akt and Erk phosphorylation while it increased the levels of total and phosphorylated p53 (Ser15). Control experiments indicated that the anti-proliferative effects of wine were not mediated by the associated contents of ethanol or the polyphenol resveratrol and were independent of glucose transport into cancer cells. White wine also inhibited clonogenic survival, albeit at a higher doses (0.5-2%), and reduced Akt phosphorylation. The effects of both red and white wine on Akt phosphorylation were also verified in H1299 cells. Conclusions Red wine inhibits proliferation of lung cancer cells and blocks clonogenic survival at low concentrations. This is associated with inhibition of basal and EGF-stimulated Akt and Erk signals and enhancement of total and phosphorylated levels of p53. White wine mediates similar effects albeit at higher concentrations. Our data suggest that wine may have considerable anti-tumour and chemoprevention properties in lung cancer and deserves further

  10. Avian and human influenza A virus receptors in trachea and lung of animals.

    Science.gov (United States)

    Thongratsakul, Sukanya; Suzuki, Yasuo; Hiramatsu, Hiroaki; Sakpuaram, Thavajchai; Sirinarumitr, Theerapol; Poolkhet, Chaithep; Moonjit, Pattra; Yodsheewan, Rungrueang; Songserm, Thaweesak

    2010-12-01

    Influenza A viruses are capable of crossing the specific barrier between human beings and animals resulting in interspecies transmission. The important factor of potential infectivity of influenza A viruses is the suitability of the receptor binding site of the host and viruses. The affinities of avian and human influenza virus to bind with the receptors and the distributions of receptors in animals are different. This study aims to investigate the anatomical distribution of avian and human influenza virus receptors using the double staining lectin histochemistry method. Double staining of lectin histochemistry was performed to identify both SA alpha2,3 Gal and SA alpha2,6 Gal receptors in trachea and lung tissue of dogs, cats, tigers, ferret, pigs, ducks and chickens. We have demonstrated that avian and human influenza virus receptors were abundantly present in trachea, bronchus and bronchiole, but in alveoli of dogs, cats and tigers showed SA alpha2,6 Gal only. Furthermore, endothelial cells in lung tissues showed presence of SA alpha2,3 Gal. The positive sites of both receptors in respiratory tract, especially in the trachea, suggest that all mammalian species studied can be infected with avian influenza virus. These findings suggested that dogs and cats in close contact with humans should be of greater concern as an intermediate host for avian influenza A in which there is the potential for viral adaptation and reassortment.

  11. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    International Nuclear Information System (INIS)

    Li, Xiaoou; Liu, Lian; Shen, Yongchun; Wang, Tao; Chen, Lei; Xu, Dan; Wen, Fuqiang

    2014-01-01

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship between miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis

  12. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoou [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Liu, Lian [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Shen, Yongchun; Wang, Tao; Chen, Lei; Xu, Dan [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Wen, Fuqiang, E-mail: wenfuqiang.scu@gmail.com [Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China); Department of Respiratory Medicine, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, Sichuan (China)

    2014-11-28

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship between miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis.

  13. Quantitative lung perfusion evaluation using Fourier decomposition perfusion MRI.

    Science.gov (United States)

    Kjørstad, Åsmund; Corteville, Dominique M R; Fischer, Andre; Henzler, Thomas; Schmid-Bindert, Gerald; Zöllner, Frank G; Schad, Lothar R

    2014-08-01

    To quantitatively evaluate lung perfusion using Fourier decomposition perfusion MRI. The Fourier decomposition (FD) method is a noninvasive method for assessing ventilation- and perfusion-related information in the lungs, where the perfusion maps in particular have shown promise for clinical use. However, the perfusion maps are nonquantitative and dimensionless, making follow-ups and direct comparisons between patients difficult. We present an approach to obtain physically meaningful and quantifiable perfusion maps using the FD method. The standard FD perfusion images are quantified by comparing the partially blood-filled pixels in the lung parenchyma with the fully blood-filled pixels in the aorta. The percentage of blood in a pixel is then combined with the temporal information, yielding quantitative blood flow values. The values of 10 healthy volunteers are compared with SEEPAGE measurements which have shown high consistency with dynamic contrast enhanced-MRI. All pulmonary blood flow (PBF) values are within the expected range. The two methods are in good agreement (mean difference = 0.2 mL/min/100 mL, mean absolute difference = 11 mL/min/100 mL, mean PBF-FD = 150 mL/min/100 mL, mean PBF-SEEPAGE = 151 mL/min/100 mL). The Bland-Altman plot shows a good spread of values, indicating no systematic bias between the methods. Quantitative lung perfusion can be obtained using the Fourier Decomposition method combined with a small amount of postprocessing. Copyright © 2013 Wiley Periodicals, Inc.

  14. The accumulation of nickel in human lungs.

    OpenAIRE

    Edelman, D A; Roggli, V L

    1989-01-01

    Using data from published studies, lung concentrations of nickel were compare for persons with and without occupational exposure to nickel. As expected, the concentrations were much higher for persons with occupational exposure. To estimate the effects of nickel-containing tobacco smoke and nickel in the ambient air on the amount of nickel accumulated in lungs over time, a model was derived that took into account various variables related to the deposition of nickel in lungs. The model predic...

  15. The Role of Serotonin Transporter in Human Lung Development and in Neonatal Lung Disorders

    Directory of Open Access Journals (Sweden)

    E. C. C. Castro

    2017-01-01

    Full Text Available Introduction. Failure of the vascular pulmonary remodeling at birth often manifests as pulmonary hypertension (PHT and is associated with a variety of neonatal lung disorders including a uniformly fatal developmental disorder known as alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV. Serum serotonin regulation has been linked to pulmonary vascular function and disease, and serotonin transporter (SERT is thought to be one of the key regulators in these processes. We sought to find evidence of a role that SERT plays in the neonatal respiratory adaptation process and in the pathomechanism of ACD/MPV. Methods. We used histology and immunohistochemistry to determine the timetable of SERT protein expression in normal human fetal and postnatal lungs and in cases of newborn and childhood PHT of varied etiology. In addition, we tested for a SERT gene promoter defect in ACD/MPV patients. Results. We found that SERT protein expression begins at 30 weeks of gestation, increases to term, and stays high postnatally. ACD/MPV patients had diminished SERT expression without SERT promoter alteration. Conclusion. We concluded that SERT/serotonin pathway is crucial in the process of pulmonary vascular remodeling/adaptation at birth and plays a key role in the pathobiology of ACD/MPV.

  16. Gastrointestinal parasite control during prepuberty improves mammary parenchyma development in Holstein heifers.

    Science.gov (United States)

    Perri, Adrián F; Mejía, Miguel E; Licoff, Nicolás; Diab, Santiago S; Formía, Néstor; Ornstein, Ana; Becú-Villalobos, Damasia; Lacau-Mengido, Isabel M

    2013-12-06

    Parasitism during development impairs normal growth and delays the onset of puberty through altered hormone profiles, including insulin-like growth factor one (IGF-1). As mammary gland development during prepuberty is strongly dependent on IGF-1, we determined if antiparasitic treatment during this stage of growth improved mammary gland development. One group of Holstein heifers was treated monthly, rotationally with antiparasitic drugs from birth to 70 weeks of age, a second group was untreated. Treated heifer calves had between 56% and 65% less EPG counts than untreated ones. Presence of Ostertagia, Cooperia, Haemonchus and Trichostrongylus was demonstrated. Treatment effectively advanced the onset of puberty and increased IGF-1 levels. At 20, 30, 40 and 70 weeks of age biopsies from the mammary gland were taken and histological sections were prepared and stained with hematoxylin-eosin. Pictures were analyzed to compare parenchyma area in relation to total mammary tissue between groups. Mammary samples from treated heifers had higher ratios of parenchyma/total area than untreated ones. As mammary development during prepuberty is crucial for mammary performance during lactation, these results add new evidence to the importance of gastrointestinal parasite control in heifers. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Assessment of regional ventilation and deformation using 4D-CT imaging for healthy human lungs during tidal breathing.

    Science.gov (United States)

    Jahani, Nariman; Choi, Sanghun; Choi, Jiwoong; Iyer, Krishna; Hoffman, Eric A; Lin, Ching-Long

    2015-11-15

    This study aims to assess regional ventilation, nonlinearity, and hysteresis of human lungs during dynamic breathing via image registration of four-dimensional computed tomography (4D-CT) scans. Six healthy adult humans were studied by spiral multidetector-row CT during controlled tidal breathing as well as during total lung capacity and functional residual capacity breath holds. Static images were utilized to contrast static vs. dynamic (deep vs. tidal) breathing. A rolling-seal piston system was employed to maintain consistent tidal breathing during 4D-CT spiral image acquisition, providing required between-breath consistency for physiologically meaningful reconstructed respiratory motion. Registration-derived variables including local air volume and anisotropic deformation index (ADI, an indicator of preferential deformation in response to local force) were employed to assess regional ventilation and lung deformation. Lobar distributions of air volume change during tidal breathing were correlated with those of deep breathing (R(2) ≈ 0.84). Small discrepancies between tidal and deep breathing were shown to be likely due to different distributions of air volume change in the left and the right lungs. We also demonstrated an asymmetric characteristic of flow rate between inhalation and exhalation. With ADI, we were able to quantify nonlinearity and hysteresis of lung deformation that can only be captured in dynamic images. Nonlinearity quantified by ADI is greater during inhalation, and it is stronger in the lower lobes (P < 0.05). Lung hysteresis estimated by the difference of ADI between inhalation and exhalation is more significant in the right lungs than that in the left lungs. Copyright © 2015 the American Physiological Society.

  18. [ULTRASTRUCTURE OF PARENCHYMA IN THE SYNCYTIAL DIGESTIVE SYSTEM IN TURBELLARIA Convoluta convoluta (Acoela].

    Science.gov (United States)

    Gazizova, G R; Zabotin, Ya I; Golubev, A I

    2015-01-01

    The paper presents data on the ultrastructure of parenchyma that is involved in the digestion in turbellaria Convoluta convoluta (n = 15). Unusual connections between the nuclear envelope, endoplasmic reticulum and plasma membrane of parenchymal cells were found for the first time, which may indicate the origin of these cell structures. The double trophic role of zooxanthellae in the organism of Convoluta is described.

  19. Alteration of canonical and non-canonical WNT-signaling by crystalline silica in human lung epithelial cells

    International Nuclear Information System (INIS)

    Perkins, Timothy N.; Dentener, Mieke A.; Stassen, Frank R.; Rohde, Gernot G.; Mossman, Brooke T.; Wouters, Emiel F.M.; Reynaert, Niki L.

    2016-01-01

    Growth and development of the mature lung is a complex process orchestrated by a number of intricate developmental signaling pathways. Wingless-type MMTV-integration site (WNT) signaling plays critical roles in controlling branching morphogenesis cell differentiation, and formation of the conducting and respiratory airways. In addition, WNT pathways are often re-activated in mature lungs during repair and regeneration. WNT- signaling has been elucidated as a crucial contributor to the development of idiopathic pulmonary fibrosis as well as other hyper-proliferative lung diseases. Silicosis, a detrimental occupational lung disease caused by excessive inhalation of crystalline silica dust, is hallmarked by repeated cycles of damaging inflammation, epithelial hyperplasia, and formation of dense, hyalinized nodules of whorled collagen. However, mechanisms of epithelial cell hyperplasia and matrix deposition are not well understood, as most research efforts have focused on the pronounced inflammatory response. Microarray data from our previous studies has revealed a number of WNT-signaling and WNT-target genes altered by crystalline silica in human lung epithelial cells. In the present study, we utilize pathway analysis to designate connections between genes altered by silica in WNT-signaling networks. Furthermore, we confirm microarray findings by QRT-PCR and demonstrate both activation of canonical (β-catenin) and down-regulation of non-canonical (WNT5A) signaling in immortalized (BEAS-2B) and primary (PBEC) human bronchial epithelial cells. These findings suggest that WNT-signaling and cross-talk with other pathways (e.g. Notch), may contribute to proliferative, fibrogenic and inflammatory responses to silica in lung epithelial cells. - Highlights: • Pathway analysis reveals silica-induced WNT-signaling in lung epithelial cells. • Silica-induced canonical WNT-signaling is mediated by autocrine/paracrine signals. • Crystalline silica decreases non-canonical WNT

  20. Alteration of canonical and non-canonical WNT-signaling by crystalline silica in human lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Timothy N.; Dentener, Mieke A. [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Stassen, Frank R. [Department of Medical Microbiology, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Rohde, Gernot G. [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Mossman, Brooke T. [Department of Pathology, University of Vermont College of Medicine, Burlington, VT (United States); Wouters, Emiel F.M. [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands); Reynaert, Niki L., E-mail: n.reynaert@maastrichtuniversity.nl [Department of Respiratory Medicine, Maastricht University Medical Centre +, Maastricht University Maastricht (Netherlands)

    2016-06-15

    Growth and development of the mature lung is a complex process orchestrated by a number of intricate developmental signaling pathways. Wingless-type MMTV-integration site (WNT) signaling plays critical roles in controlling branching morphogenesis cell differentiation, and formation of the conducting and respiratory airways. In addition, WNT pathways are often re-activated in mature lungs during repair and regeneration. WNT- signaling has been elucidated as a crucial contributor to the development of idiopathic pulmonary fibrosis as well as other hyper-proliferative lung diseases. Silicosis, a detrimental occupational lung disease caused by excessive inhalation of crystalline silica dust, is hallmarked by repeated cycles of damaging inflammation, epithelial hyperplasia, and formation of dense, hyalinized nodules of whorled collagen. However, mechanisms of epithelial cell hyperplasia and matrix deposition are not well understood, as most research efforts have focused on the pronounced inflammatory response. Microarray data from our previous studies has revealed a number of WNT-signaling and WNT-target genes altered by crystalline silica in human lung epithelial cells. In the present study, we utilize pathway analysis to designate connections between genes altered by silica in WNT-signaling networks. Furthermore, we confirm microarray findings by QRT-PCR and demonstrate both activation of canonical (β-catenin) and down-regulation of non-canonical (WNT5A) signaling in immortalized (BEAS-2B) and primary (PBEC) human bronchial epithelial cells. These findings suggest that WNT-signaling and cross-talk with other pathways (e.g. Notch), may contribute to proliferative, fibrogenic and inflammatory responses to silica in lung epithelial cells. - Highlights: • Pathway analysis reveals silica-induced WNT-signaling in lung epithelial cells. • Silica-induced canonical WNT-signaling is mediated by autocrine/paracrine signals. • Crystalline silica decreases non-canonical WNT

  1. Global gene expression profiling in human lung cells exposed to cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Malard, V.; Berenguer, F.; Prat, O.; Ruat, S.; Steinmetz, G.; Quemeneur, E. [CEA VALRHO, Serv Biochim and Toxicol Nucl, DSV, iBEB, F-30207 Bagnols Sur Ceze (France)

    2007-06-06

    It has been estimated that more than 1 million workers in the United States are exposed to cobalt. Occupational exposure to {sup 59}Co occurs mainly via inhalation and leads to various lung diseases. Cobalt is classified by the IARC as a possible human carcinogen (group 2B). Although there is evidence for in vivo and in vitro toxicity, the mechanisms of cobalt-induced lung toxicity are not fully known. The purpose of this work was to identify potential signatures of acute cobalt exposure using a toxico-genomic approach. Data analysis focused on some cellular processes and protein targets that are thought to be relevant for carcinogenesis, transport and bio-marker research. Results: A time course transcriptome analysis was performed on A549 human pulmonary cells, leading to the identification of 85 genes which are repressed or induced in response to soluble 59 Co. A group of 29 of these genes, representing the main biological functions, was assessed by quantitative RT-PCR. The expression profiles of six of them were then tested by quantitative RT-PCR in a time-dependent manner and three modulations were confirmed by Western blotting. The 85 modulated genes include potential cobalt carriers (FBXL2, ZNT1, SLC12A5), tumor suppressors or transcription factors (MAZ, DLG1, MYC, AXL) and genes linked to the stress response (UBC, HSPCB, BN1P3L). We also identified nine genes coding for secreted proteins as candidates for bio-marker research. Of those, T1MP2 was found to be down-regulated and this modulation was confirmed, in a dose-dependent manner, at protein level in the supernatant of exposed cells. Conclusion: Most of these genes have never been described as related to cobalt stress and provide original hypotheses for further study of the effects of this metal ion on human lung epithelial cells. A putative bio-marker of cobalt toxicity was identified. (authors)

  2. Thoracoscopic surgery for pulmonary metastases after chemotherapy using a tailor-made virtual lung

    International Nuclear Information System (INIS)

    Akiba, Tadashi; Marushima, Hideki; Kinoshita, Satoki; Kamiya, Noriteru; Odaka, Makoto; Takeyama, Hiroshi; Morikawa, Toshiaki

    2011-01-01

    Details with regard to the standard criteria for a therapeutic metastasectomy and the use of video-assisted thoracic surgery (VATS) remain elusive. To evaluate the feasibility of VATS using a tailor-made virtual lung for patients with pulmonary metastases after chemotherapy, we reviewed the following cases. Clinical data from October 2006 to April 2010 were obtained from patients who received chemotherapy before a pulmonary metastasectomy (lobectomy or segmentectomy). VATS was the primarily selected surgical approach except for treating hilar lesions. A lobectomy was performed when the metastasis was greater than 3.0 cm in diameter or located deeply in the lobe. Tailor-made virtual lungs were created using three-dimensional multidetector computed tomography before lobectomy on a routine basis. The virtual lung consisted of three-dimensional pulmonary vessels, a tracheobronchial tree, pulmonary parenchyma, and tumors. Twelve operations, consisting of 1 segmentectomy, 10 lobectomies, and 1 wedge bronchoplasty upper lobectomy, were performed on 11 patients during the study period. VATS was completed in 10 of these 12 operations. The mean operative time for the lobectomies was 257 min, and the mean operative bleeding volume was 215 ml. Two cases experienced postoperative transient atrial fibrillation, and no mortalities associated with these operations were reported. VATS was performed safely in instances of metastasectomy after chemotherapy, and the tailor-made virtual lung assisted in lung orientation during the operation. (author)

  3. [Establishment of human multidrug-resistant lung carcinoma cell line (D6/MVP)].

    Science.gov (United States)

    Ma, Sheng-lin; Feng, Jian-guo; Gu, Lin-hui; Ling, Yu-tian

    2003-03-01

    To establish human multidrug-resistant lung carcinoma cell line (D6/MVP) with its characteristics studied. Intermittent administration of high-dose MMC, VDS and DDP (MVP) was used to induce human lung carcinoma cell line (D6) to a multidrug-resistant variety (D6/MVP). MTT assay was used to study the multidrug resistance of D6/MVP to multianticarcinogen. Flow cytometry was used to study the cell cycle distribution and the expression of P-gp, multidrug resistance-associated protein (MRP) and GSH/GST. 1. D6/MVP was resistant to many anti-tumor agents, with the IC(50) 13.3 times higher and the drug resistance 2 - 6 times higher than D6, 2. The multiplication time of D6/MVP was prolonged and the cell number of S-phase decreased while that of G1- and G(2)-phase increased and 3. The expression of P-gp and MRP was enhanced significantly (96.2% vs 51.7%), but the expression of GSH/GST kept stable. D6/MVP is a multidrug-resistant cell line possessing the basic characteristics of drug-resistance.

  4. Demonstration of pulmonary perfusion heterogeneity induced by gravity and lung inflation using arterial spin labeling

    Energy Technology Data Exchange (ETDEWEB)

    Fan Li [Department of Radiology, ChangZheng Hospital, Second Military Medical University, Shanghai 200003 (China)], E-mail: fanli0930@163.com; Liu Shiyuan [Department of Radiology, ChangZheng Hospital, Second Military Medical University, Shanghai 200003 (China)], E-mail: fanli7938@chinaren.com; Xiao Xiangsheng [Department of Radiology, ChangZheng Hospital, Second Military Medical University, Shanghai 200003 (China)], E-mail: lizhaobin79@163.com; Sun Fei [GE Healthcare (China)], E-mail: Fei.sun@med.ge.com

    2010-02-15

    Objective: To evaluate the effect of gravity and lung inflation on pulmonary perfusion heterogeneity in human lung using an arterial spin labeling (ASL) sequence called flow sensitive alternating inversion recovery (FAIR). Materials and methods: Magnetic resonance imaging of lung perfusion using arterial spin labeling sequence was performed in supine position in ten healthy volunteers on a 1.5 T whole body scanner (GE Healthcare). Five coronal slices at an interval of 3 cm from dorsal to ventral (labeled as P3, P6, P9, P12, P15, sequently) were obtained when the volunteers performed breath holding on end expiration and the relative pulmonary blood flow (rPBF) was measured. Then, another coronal perfusion-weighted image of P3 slice was obtained on end inspiration. Tagging efficiency of pulmonary parenchyma with IR ({delta}SI), rPBF and area of the P3 slice were analyzed. Results: (1) Along the direction of gravity, a gradient was visually perceived as a vertical increase in rPBF. There were significant statistic differences in rPBF between any two coronal planes except that between P12 and P15. In supine position, regression coefficients of right and left lung were -4.98 and -5.16, respectively. This means that rPBF decreased 4.98 (right) and 5.16 (left) for each centimeter above the dorsal. No statistical difference was seen between ROIs placed along iso-gravitational plane. (2) For a same slice, there were significant statistic differences in {delta}SI, rPBF and area at different respiratory phases (P < 0.05). Greater {delta}SI and more perfusion were observed on end expiration than on end inspiration. The area was larger on end inspiration than on end expiration. Conclusion: Both gravity and respiratory phase are important determinants of pulmonary perfusion heterogeneity. FAIR is sensitive to demonstrate gravity- and respiratory phase-dependent differences in lung perfusion. Positioning the patient so that the area of interest is down-gravity and asking patient

  5. Trypanosoma brucei Invasion and T-Cell Infiltration of the Brain Parenchyma in Experimental Sleeping Sickness: Timing and Correlation with Functional Changes.

    Directory of Open Access Journals (Sweden)

    Claudia Laperchia

    2016-12-01

    Full Text Available The timing of Trypanosoma brucei entry into the brain parenchyma to initiate the second, meningoencephalitic stage of human African trypanosomiasis or sleeping sickness is currently debated and even parasite invasion of the neuropil has been recently questioned. Furthermore, the relationship between neurological features and disease stage are unclear, despite the important diagnostic and therapeutic implications.Using a rat model of chronic Trypanosoma brucei brucei infection we determined the timing of parasite and T-cell neuropil infiltration and its correlation with functional changes. Parasite DNA was detected using trypanosome-specific PCR. Body weight and sleep structure alterations represented by sleep-onset rapid eye movement (SOREM periods, reported in human and experimental African trypanosomiasis, were monitored. The presence of parasites, as well as CD4+ and CD8+ T-cells in the neuropil was assessed over time in the brain of the same animals by immunocytochemistry and quantitative analyses.Trypanosome DNA was present in the brain at day 6 post-infection and increased more than 15-fold by day 21. Parasites and T-cells were observed in the parenchyma from day 9 onwards. Parasites traversing blood vessel walls were observed in the hypothalamus and other brain regions. Body weight gain was reduced from day 7 onwards. SOREM episodes started in most cases early after infection, with an increase in number and duration after parasite neuroinvasion.These findings demonstrate invasion of the neuropil over time, after an initial interval, by parasites and lymphocytes crossing the blood-brain barrier, and show that neurological features can precede this event. The data thus challenge the current clinical and cerebrospinal fluid criteria of disease staging.

  6. Trypanosoma brucei Invasion and T-Cell Infiltration of the Brain Parenchyma in Experimental Sleeping Sickness: Timing and Correlation with Functional Changes.

    Science.gov (United States)

    Laperchia, Claudia; Palomba, Maria; Seke Etet, Paul F; Rodgers, Jean; Bradley, Barbara; Montague, Paul; Grassi-Zucconi, Gigliola; Kennedy, Peter G E; Bentivoglio, Marina

    2016-12-01

    The timing of Trypanosoma brucei entry into the brain parenchyma to initiate the second, meningoencephalitic stage of human African trypanosomiasis or sleeping sickness is currently debated and even parasite invasion of the neuropil has been recently questioned. Furthermore, the relationship between neurological features and disease stage are unclear, despite the important diagnostic and therapeutic implications. Using a rat model of chronic Trypanosoma brucei brucei infection we determined the timing of parasite and T-cell neuropil infiltration and its correlation with functional changes. Parasite DNA was detected using trypanosome-specific PCR. Body weight and sleep structure alterations represented by sleep-onset rapid eye movement (SOREM) periods, reported in human and experimental African trypanosomiasis, were monitored. The presence of parasites, as well as CD4+ and CD8+ T-cells in the neuropil was assessed over time in the brain of the same animals by immunocytochemistry and quantitative analyses. Trypanosome DNA was present in the brain at day 6 post-infection and increased more than 15-fold by day 21. Parasites and T-cells were observed in the parenchyma from day 9 onwards. Parasites traversing blood vessel walls were observed in the hypothalamus and other brain regions. Body weight gain was reduced from day 7 onwards. SOREM episodes started in most cases early after infection, with an increase in number and duration after parasite neuroinvasion. These findings demonstrate invasion of the neuropil over time, after an initial interval, by parasites and lymphocytes crossing the blood-brain barrier, and show that neurological features can precede this event. The data thus challenge the current clinical and cerebrospinal fluid criteria of disease staging.

  7. Evaluation of lung immunity in chimpanzees

    International Nuclear Information System (INIS)

    Bice, D.E.; Harris, D.L.; Muggenburg, B.A.; Bowen, J.A.

    1980-01-01

    The effects of inhaled pollutants on the immune defenses in the lung can be studied in several animal species. To assure that the data obtained can be extrapolated to man, it is essential that the development of lung immunity is similar in the experimental animal selected and in humans. Because of the similarity of immune responses in chimpanzees and in humans, the development of immunity in the chimpanzee after lung immunization was evaluated. The results from the chimpanzees were qualitatively the same as those from previous studies in which single lung lobes of dogs were immunized. It was concluded that immunotoxicology data obtained in dogs can be used to estimate the effects of inhaled pollutants on the immune defense mechanism in the human lung

  8. The relationship among human papilloma virus infection, survivin, and p53 gene in lung squamous carcinoma tissue

    International Nuclear Information System (INIS)

    Yue-Hua Wang; De-jie Chen; Tie-Nan Yi

    2010-01-01

    To study the relationship between the infection of human papillomavirus (HPV) type 16, type 18, the expression of survivin, and the mutation of p53 gene in lung squamous carcinoma tissue for the research of pathogenesis of lung carcinoma.This study was carried out at the Laboratory of Molecular Biology, Xiangfan Central Hospital of Hubei Province, China from September 2008 to May 2010. Forty-five specimens of lung squamous carcinoma tissue confirmed by histopathology were the excisional specimens taken by the Thoracic Surgery of Xiangfan Central Hospital. Normal tissue, closely adjacent to the fresh carcinoma specimens, was used as the control group for p53 gene mutation analysis. Sixteen surgical excisional specimens of benign lung disease were used as a control group of non-carcinomatous diseases. Human papillomavirus DNA were detected by polymerase chain reaction (PCR), and we used the PCR-single-strand conformation polymorphism-ethidium bromide (PCR-SSCP-EB) method to detect the mutations of the p53 gene. The expression of the survivin gene was detected by immunohistochemistry methods. Approximately 68.9% of 45 lung squamous carcinoma tissue had p53 gene mutations. The mutation rate of exon 5-8 p53 were 15.6%, 17.8%, 15.6% and 20%. Approximately 42.2% of lung squamous cell carcinoma samples were shown to be positive for HPV DNA expression and 62.2% were positive for survivin expression. There was an inverse correlation between the presence of HPV infections and mutations of p53 gene; and the mutations of p53 gene and expression of survivin had a positive relationship. Mutation of p53 gene and HPV infection may facilitate each other in the generation of lung squamous cell carcinoma. Abnormal expression of the survivin gene may take part in the onset and progression of lung squamous cell carcinoma (Author).

  9. The protective effect of Sambucus ebulus against lung toxicity induced by gamma irradiation in mice

    Directory of Open Access Journals (Sweden)

    Mohammad Karami

    2015-01-01

    Full Text Available The aim of present study was to investigate the potential antioxidant and lung protective activities of Sambucus ebulus (SE against toxicity induced by gamma irradiation. Hydroalcoholic extract of SE (20, 50 and 100 mg/kg was studied for its lung protective activity. Phenol and flavonoid contents of SE were determined. Male C57 mice were divided into ten groups with five mice per group. Only the first and second groups (as negative control received intraperitoneally normal saline fluid. Groups 3 to 5 received only SE extract at doses of 20 mg/kg, 50 mg/kg and 100 mg/kg intraperitoneally; three groups were repeatedly injected for 15 days as chronic group. Groups 6 to 8 received a single-dose of gamma irradiation just 2 hours before irradiation as acute group. The ninth and tenth groups (as positive control received only gamma rays. Animal was exposed whole-body to 6 Gy gamma radiation. After irradiation, tissue sections of lung parenchyma were examined by light microscope for any histopathologic changes. SE at doses 50 and 100 mg/kg improved markedly histopathological changes induced by gamma irradiation in lung. Lung protective effect of SE could be due to attention of lipid peroxidation. Our study demonstrated that SE as a natural product has a protective effect against lung toxicity induced by   gamma irradiation in animal.

  10. Interstitial lung disease associated with human papillomavirus vaccination

    Directory of Open Access Journals (Sweden)

    Yasushi Yamamoto

    2015-01-01

    Full Text Available Vaccinations against the human papillomavirus (HPV have been recommended for the prevention of cervical cancer. HPV-16/18 AS04-adjuvanted vaccines (Cervarix are said to have favourable safety profiles. Interstitial lung diseases (ILDs can occur following exposure to a drug or a biological agent. We report a case of ILD associated with a Cervarix vaccination. A woman in her 40's, with a history of conisation, received three inoculations of Cervarix. Three months later, she presented with a cough and shortness of breath. Findings from a computed tomography of the chest and a transbronchial lung biopsy were consistent with non-specific interstitial pneumonia. Workup eliminated all other causes of the ILD, except for the vaccination. Over the 11 months of the follow-up period, her symptoms resolved without steroid therapy. The onset and spontaneous resolution of the ILD showed a chronological association with the HPV vaccination. The semi-quantitative algorithm revealed that the likelihood of an adverse drug reaction to Cervarix was “Probable”. The outcome was relatively good, but more attention should be paid to a potential risk for HPV vaccinations to cause ILDs. Wherever possible, chest radiographic examinations should be performed in order not to overlook any ILDs.

  11. Correlation between computed tomographic and magnetic resonance imaging findings of parenchymal lung diseases

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Miriam Menna; Rafful, Patricia Piazza [Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Rodrigues, Rosana Souza [Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); D’Or Institute for Research and Education, Rio de Janeiro, RJ (Brazil); Zanetti, Gláucia [Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Hochhegger, Bruno [Complexo Hospitalar Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS (Brazil); Souza, Arthur Soares [Department of Radiology, Medical School of Rio Preto (FAMERP) and Ultra X, São José do Rio Preto, SP (Brazil); Guimarães, Marcos Duarte [Department of Imaging, Hospital AC Camargo, São Paulo, SP (Brazil); Marchiori, Edson, E-mail: edmarchiori@gmail.com [Department of Radiology, Federal University of Rio de Janeiro, Rio de Janeiro (Brazil)

    2013-09-15

    Computed tomography (CT) is considered to be the gold standard method for the assessment of morphological changes in the pulmonary parenchyma. Although its spatial resolution is lower than that of CT, MRI offers the advantage of characterizing different aspects of tissue based on the degree of contrast on T1-weighted image (WI) and T2-WI. In this article, we describe and correlate the MRI and CT features of several common patterns of parenchymal lung disease (air trapping, atelectasis, bronchiectasis, cavitation, consolidation, emphysema, ground-glass opacities, halo sign, interlobular septal thickening, masses, mycetoma, nodules, progressive massive fibrosis, reverse halo sign and tree-in-bud pattern). MRI may be an alternative modality for the collection of morphological and functional information useful for the management of parenchymal lung disease, which would help reduce the number of chest CT scans and radiation exposure required in patients with a variety of conditions.

  12. Interactive lung segmentation in abnormal human and animal chest CT scans

    International Nuclear Information System (INIS)

    Kockelkorn, Thessa T. J. P.; Viergever, Max A.; Schaefer-Prokop, Cornelia M.; Bozovic, Gracijela; Muñoz-Barrutia, Arrate; Rikxoort, Eva M. van; Brown, Matthew S.; Jong, Pim A. de; Ginneken, Bram van

    2014-01-01

    Purpose: Many medical image analysis systems require segmentation of the structures of interest as a first step. For scans with gross pathology, automatic segmentation methods may fail. The authors’ aim is to develop a versatile, fast, and reliable interactive system to segment anatomical structures. In this study, this system was used for segmenting lungs in challenging thoracic computed tomography (CT) scans. Methods: In volumetric thoracic CT scans, the chest is segmented and divided into 3D volumes of interest (VOIs), containing voxels with similar densities. These VOIs are automatically labeled as either lung tissue or nonlung tissue. The automatic labeling results can be corrected using an interactive or a supervised interactive approach. When using the supervised interactive system, the user is shown the classification results per slice, whereupon he/she can adjust incorrect labels. The system is retrained continuously, taking the corrections and approvals of the user into account. In this way, the system learns to make a better distinction between lung tissue and nonlung tissue. When using the interactive framework without supervised learning, the user corrects all incorrectly labeled VOIs manually. Both interactive segmentation tools were tested on 32 volumetric CT scans of pigs, mice and humans, containing pulmonary abnormalities. Results: On average, supervised interactive lung segmentation took under 9 min of user interaction. Algorithm computing time was 2 min on average, but can easily be reduced. On average, 2.0% of all VOIs in a scan had to be relabeled. Lung segmentation using the interactive segmentation method took on average 13 min and involved relabeling 3.0% of all VOIs on average. The resulting segmentations correspond well to manual delineations of eight axial slices per scan, with an average Dice similarity coefficient of 0.933. Conclusions: The authors have developed two fast and reliable methods for interactive lung segmentation in

  13. The HSP90 Inhibitor Ganetespib Radiosensitizes Human Lung Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Roberto Gomez-Casal

    2015-05-01

    Full Text Available The molecular chaperone HSP90 is involved in stabilization and function of multiple client proteins, many of which represent important oncogenic drivers in NSCLC. Utilization of HSP90 inhibitors as radiosensitizing agents is a promising approach. The antitumor activity of ganetespib, HSP90 inhibitor, was evaluated in human lung adenocarcinoma (AC cells for its ability to potentiate the effects of IR treatment in both in vitro and in vivo. The cytotoxic effects of ganetespib included; G2/M cell cycle arrest, inhibition of DNA repair, apoptosis induction, and promotion of senescence. All of these antitumor effects were both concentration- and time-dependent. Both pretreatment and post-radiation treatment with ganetespib at low nanomolar concentrations induced radiosensitization in lung AC cells in vitro. Ganetespib may impart radiosensitization through multiple mechanisms: such as down regulation of the PI3K/Akt pathway; diminished DNA repair capacity and promotion of cellular senescence. In vivo, ganetespib reduced growth of T2821 tumor xenografts in mice and sensitized tumors to IR. Tumor irradiation led to dramatic upregulation of β-catenin expression in tumor tissues, an effect that was mitigated in T2821 xenografts when ganetespib was combined with IR treatments. These data highlight the promise of combining ganetespib with IR therapies in the treatment of AC lung tumors.

  14. Leptospira Immunoglobulin-Like Protein B Interacts with the 20th Exon of Human Tropoelastin Contributing to Leptospiral Adhesion to Human Lung Cells.

    Science.gov (United States)

    Hsieh, Ching-Lin; Tseng, Andrew; He, Hongxuan; Kuo, Chih-Jung; Wang, Xuannian; Chang, Yung-Fu

    2017-01-01

    Leptospira immunoglobulin-like protein B (LigB), a surface adhesin, is capable of mediating the attachment of pathogenic leptospira to the host through interaction with various components of the extracellular matrix (ECM). Human tropoelastin (HTE), the building block of elastin, confers resilience and elasticity to lung, and other tissues. Previously identified Ig-like domains of LigB, including LigB4 and LigB12, bind to HTE, which is likely to promote Leptospira adhesion to lung tissue. However, the molecular mechanism that mediates the LigB-HTE interaction is unclear. In this study, the LigB-binding site on HTE was further pinpointed to a N-terminal region of the 20th exon of HTE (HTE20N). Alanine mutants of basic and aromatic residues on HTE20N significantly reduced binding to the LigB. Additionally, HTE-binding site was narrowed down to the first β-sheet of LigB12. On this binding surface, residues F1054, D1061, A1065, and D1066 were critical for the association with HTE. Most importantly, the recombinant HTE truncates could diminish the binding of LigB to human lung fibroblasts (WI-38) by 68%, and could block the association of LigA-expressing L. biflexa to lung cells by 61%. These findings should expand our understanding of leptospiral pathogenesis, particularly in pulmonary manifestations of leptospirosis.

  15. Leptospira Immunoglobulin-Like Protein B Interacts with the 20th Exon of Human Tropoelastin Contributing to Leptospiral Adhesion to Human Lung Cells

    Directory of Open Access Journals (Sweden)

    Ching-Lin Hsieh

    2017-05-01

    Full Text Available Leptospira immunoglobulin-like protein B (LigB, a surface adhesin, is capable of mediating the attachment of pathogenic leptospira to the host through interaction with various components of the extracellular matrix (ECM. Human tropoelastin (HTE, the building block of elastin, confers resilience and elasticity to lung, and other tissues. Previously identified Ig-like domains of LigB, including LigB4 and LigB12, bind to HTE, which is likely to promote Leptospira adhesion to lung tissue. However, the molecular mechanism that mediates the LigB-HTE interaction is unclear. In this study, the LigB-binding site on HTE was further pinpointed to a N-terminal region of the 20th exon of HTE (HTE20N. Alanine mutants of basic and aromatic residues on HTE20N significantly reduced binding to the LigB. Additionally, HTE-binding site was narrowed down to the first β-sheet of LigB12. On this binding surface, residues F1054, D1061, A1065, and D1066 were critical for the association with HTE. Most importantly, the recombinant HTE truncates could diminish the binding of LigB to human lung fibroblasts (WI-38 by 68%, and could block the association of LigA-expressing L. biflexa to lung cells by 61%. These findings should expand our understanding of leptospiral pathogenesis, particularly in pulmonary manifestations of leptospirosis.

  16. Relative preservation of peripheral lung function in smoking-related pulmonary emphysema: assessment with 99mTc-MAA perfusion and dynamic 133Xe SPET

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi; Kume, Norihiko; Matsunaga, Naofumi; Ogasawara, Nobuhiko; Motoyama, Kazumi; Hara, Akiko; Matsumoto, Tsuneo

    2000-01-01

    In this study the cross-sectional functional differences between the central and peripheral lung in smokers with pulmonary emphysema were evaluated by lung perfusion and dynamic xenon-133 single-photon emission tomography (SPET). The subjects were 81 patients with a long-term smoking history and relatively advanced emphysema, 17 non-smoker patients with non-obstructive lung diseases and six healthy non-smokers. Regional lung functional difference between the peripheral and central lung was assessed in the upper, middle and lower lung zones by technetium-99m macroaggregated albumin SPET and dynamic 133 Xe SPET. The distribution of emphysematous changes was assessed by density-mask computed tomography (CT) images which depicted abnormally low attenuation areas (LAAs) of less than -960 Hounsfield units. Two hundred and eighty-eight (59.2%) lung zones of 63 (77.7%) patients with pulmonary emphysema showed relative preservation of lung function in the peripheral lung, with a curvilinear band of normal perfusion (a stripe sign) and a significantly faster 133 Xe half-clearance time (T 1/2 ) than in central lung (P 1/2 in the peripheral lung area (P 1/2 values and LAA distributions between the central and peripheral lung. Relative preservation of peripheral lung function seems to be a characteristic feature in smoking-related pulmonary emphysema, and may indicate a lower susceptibility of peripheral parenchyma to the development of this disease. (orig.)

  17. Frequency and number of ultrasound lung rockets (B-lines) using a regionally based lung ultrasound examination named vet BLUE (veterinary bedside lung ultrasound exam) in dogs with radiographically normal lung findings.

    Science.gov (United States)

    Lisciandro, Gregory R; Fosgate, Geoffrey T; Fulton, Robert M

    2014-01-01

    Lung ultrasound is superior to lung auscultation and supine chest radiography for many respiratory conditions in human patients. Ultrasound diagnoses are based on easily learned patterns of sonographic findings and artifacts in standardized images. By applying the wet lung (ultrasound lung rockets or B-lines, representing interstitial edema) versus dry lung (A-lines with a glide sign) concept many respiratory conditions can be diagnosed or excluded. The ultrasound probe can be used as a visual stethoscope for the evaluation of human lungs because dry artifacts (A-lines with a glide sign) predominate over wet artifacts (ultrasound lung rockets or B-lines). However, the frequency and number of wet lung ultrasound artifacts in dogs with radiographically normal lungs is unknown. Thus, the primary objective was to determine the baseline frequency and number of ultrasound lung rockets in dogs without clinical signs of respiratory disease and with radiographically normal lung findings using an 8-view novel regionally based lung ultrasound examination called Vet BLUE. Frequency of ultrasound lung rockets were statistically compared based on signalment, body condition score, investigator, and reasons for radiography. Ten left-sided heart failure dogs were similarly enrolled. Overall frequency of ultrasound lung rockets was 11% (95% confidence interval, 6-19%) in dogs without respiratory disease versus 100% (95% confidence interval, 74-100%) in those with left-sided heart failure. The low frequency and number of ultrasound lung rockets observed in dogs without respiratory disease and with radiographically normal lungs suggests that Vet BLUE will be clinically useful for the identification of canine respiratory conditions. © 2014 American College of Veterinary Radiology.

  18. Differential cell reaction upon Toll-like receptor 4 and 9 activation in human alveolar and lung interstitial macrophages

    Directory of Open Access Journals (Sweden)

    Meyerhans Andreas

    2010-09-01

    Full Text Available Abstract Background Investigations on pulmonary macrophages (MΦ mostly focus on alveolar MΦ (AM as a well-defined cell population. Characteristics of MΦ in the interstitium, referred to as lung interstitial MΦ (IM, are rather ill-defined. In this study we therefore aimed to elucidate differences between AM and IM obtained from human lung tissue. Methods Human AM and IM were isolated from human non-tumor lung tissue from patients undergoing lung resection. Cell morphology was visualized using either light, electron or confocal microscopy. Phagocytic activity was analyzed by flow cytometry as well as confocal microscopy. Surface marker expression was measured by flow cytometry. Toll-like receptor (TLR expression patterns as well as cytokine expression upon TLR4 or TLR9 stimulation were assessed by real time RT-PCR and cytokine protein production was measured using a fluorescent bead-based immunoassay. Results IM were found to be smaller and morphologically more heterogeneous than AM, whereas phagocytic activity was similar in both cell types. HLA-DR expression was markedly higher in IM compared to AM. Although analysis of TLR expression profiles revealed no differences between the two cell populations, AM and IM clearly varied in cell reaction upon activation. Both MΦ populations were markedly activated by LPS as well as DNA isolated from attenuated mycobacterial strains (M. bovis H37Ra and BCG. Whereas AM expressed higher amounts of inflammatory cytokines upon activation, IM were more efficient in producing immunoregulatory cytokines, such as IL10, IL1ra, and IL6. Conclusion AM appear to be more effective as a non-specific first line of defence against inhaled pathogens, whereas IM show a more pronounced regulatory function. These dissimilarities should be taken into consideration in future studies on the role of human lung MΦ in the inflammatory response.

  19. The evaluation of clinical usefulness of transbrochoscopic lung biopsy in undefined interstitial lung diseases: a retrospective study.

    Science.gov (United States)

    Han, Qian; Luo, Qun; Chen, Xiaobo; Xie, Jiaxing; Wu, Lulu; Chen, Rongchang

    2017-03-01

    Previous studies mostly focused on the diagnostic accuracy of transbronchoscopic lung biopsy (TBLB) in the diagnosis of interstitial lung diseases (ILDs). We aimed to explore the clinical usefulness of TBLB results in the diagnostic procedure of undefined ILDs. The retrospective analysis included patients undergoing TBLB for the diagnosis of undefined ILDs from January 2007 to December 2010. The clinically useful TBLB was defined as that lead to a specific histopathological diagnosis or that was consistent with the working diagnosis based on existing clinical and radiological data. A total of 664 patients were included in the study. TBLB failed to obtain lung parenchyma in 155 cases (23.3%). TBLB was considered clinically helpful in 202 procedures (30.4%), including 114 cases that provided definitive histopathological diagnoses and 88 cases that were consistent with working diagnoses. Among 202 cases of clinically useful TBLBs, the majority were diagnosed as pulmonary alveolar proteinosis (PAP) (67 cases, 33.2%), connective tissue disease-related ILDs (CTD-ILDs) (65, 32.2%) and idiopathic pulmonary fibrosis (IPF) (33, 16.3%). Although TBLB could provide definitive histopathological diagnoses in all cases diagnosed as PAP, only few cases of IPF (7, 21.2% of IPF diagnoses) and CTD-ILDs (9, 13.8% of CTD-ILD diagnoses) could be identified by TBLBs. The clinical usefulness of TBLB, in conjunction with thorough clinical and radiological data, in the diagnosis of ILDs may be varied depending on different subtypes. The use of histopathological analysis and the type of biopsy employed should therefore be considered on a case-by-case basis. © 2015 John Wiley & Sons Ltd.

  20. Signalling with retinoids in the human lung: validation of new tools for the expression study of retinoid receptors

    International Nuclear Information System (INIS)

    Poulain, Stéphane; Lacomme, Stéphanie; Battaglia-Hsu, Shyue-Fang; Manoir, Stanislas du; Brochin, Lydia; Vignaud, Jean-Michel; Martinet, Nadine

    2009-01-01

    Retinoid Receptors are involved in development and cell homeostasis. Alterations of their expressions have been observed in lung cancer. However, retinoid chemoprevention trials in populations at risk to develop such tumors have failed. Therefore, the pertinence of new clinical trials using second generation retinoid requires prior better understanding of retinoid signalling. This is our aim when validating extensively research tools, focused on Retinoic Acid Receptor beta, whose major role in lung cancer is documented. Biocomputing was used to assess the genomic organization of RAR beta. Its putative RAR-beta1' promoter features were investigated experimentally. Specific measures realized, with qRT-PCR Syber Green assays and a triplex of Taqman probes, were extensively validated to establish Retinoid Receptors mRNAs reference values for in vivo normal human bronchial cells, lung tumors and cell lines. Finally, a pan-RAR-beta antibody was generated and extensively validated by western-blot and immunoprecipitation. No promoter-like activity was found for RAR-beta1'. RAR-beta2 mRNAs increase signs the normal differentiation of the human bronchial epithelium while a decrease is observed in most lung cancer cell lines. Accordingly, it is also, along with RXR beta, down-regulated in lung tumors. When using nuclear extracts of BEAS-2B and normal lung cells, only the RAR-beta2 long protein isoform was recognized by our antibody. Rigorous samples processing and extensive biocomputing, were the key factors for this study. mRNA reference values and validated tools can now be used to advance researches on retinoid signalling in the lung

  1. Transarterial Embolization of Anomalous Systemic Arterial Supply to Normal Basal Segments of the Lung

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Sen, E-mail: jasfly77@vip.163.com; Yu, Dong; Jie, Bing [Tongji University School of Medicine, Department of Radiology, Shanghai Pulmonary Hospital (China)

    2016-09-15

    PurposeTo evaluate transarterial embolization (TAE) for the management of anomalous systemic arterial (ASA) supply to normal basal segments of the lung.MethodsThirteen patients with ASA supply to normal basal segments of the lung underwent TAE. All patients presented with hemoptysis and had complete-type anomalies on pre-TAE or post-TAE computed tomography (CT). The anomaly was unilateral in all patients; 11 lesions were located in the left lung and 2 in the right. All patients underwent embolization with coils (n = 10) or a vascular plug (n = 3). Procedural success, clinical efficacy, and complications were assessed. Mean post-TAE CT and clinical follow-up was 25.4 and 42.1 months, respectively.ResultsTechnical success was achieved in 100 % of cases. Several changes were noted on follow-up CT: complete obstruction of the ASA in all cases, normal (n = 11) or decreased (n = 2) density of the affected lung parenchyma, reduction of the primary enlarged inferior pulmonary vein in all cases, and pulmonary infarction and thickening of the corresponding bronchial artery (n = 4). The main complication was pulmonary infarction in four cases.ConclusionTAE is a safe, effective, and minimally invasive therapeutic option for patients with ASA supply to normal basal segments of the lung.

  2. Influenza H5N1 virus infection of polarized human alveolar epithelial cells and lung microvascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Yuen Kit M

    2009-10-01

    Full Text Available Abstract Background Highly pathogenic avian influenza (HPAI H5N1 virus is entrenched in poultry in Asia and Africa and continues to infect humans zoonotically causing acute respiratory disease syndrome and death. There is evidence that the virus may sometimes spread beyond respiratory tract to cause disseminated infection. The primary target cell for HPAI H5N1 virus in human lung is the alveolar epithelial cell. Alveolar epithelium and its adjacent lung microvascular endothelium form host barriers to the initiation of infection and dissemination of influenza H5N1 infection in humans. These are polarized cells and the polarity of influenza virus entry and egress as well as the secretion of cytokines and chemokines from the virus infected cells are likely to be central to the pathogenesis of human H5N1 disease. Aim To study influenza A (H5N1 virus replication and host innate immune responses in polarized primary human alveolar epithelial cells and lung microvascular endothelial cells and its relevance to the pathogenesis of human H5N1 disease. Methods We use an in vitro model of polarized primary human alveolar epithelial cells and lung microvascular endothelial cells grown in transwell culture inserts to compare infection with influenza A subtype H1N1 and H5N1 viruses via the apical or basolateral surfaces. Results We demonstrate that both influenza H1N1 and H5N1 viruses efficiently infect alveolar epithelial cells from both apical and basolateral surface of the epithelium but release of newly formed virus is mainly from the apical side of the epithelium. In contrast, influenza H5N1 virus, but not H1N1 virus, efficiently infected polarized microvascular endothelial cells from both apical and basolateral aspects. This provides a mechanistic explanation for how H5N1 virus may infect the lung from systemic circulation. Epidemiological evidence has implicated ingestion of virus-contaminated foods as the source of infection in some instances and our

  3. A rare case of an intercostal lung herniation with fractures of the fifth and sixth ribs after thoracic surgery.

    Science.gov (United States)

    Haro, Akira; Komiya, Kazune; Taguchi, Yoshihiro; Nishikawa, Haruka; Kouda, Takuyuki; Fujishita, Takatoshi; Yokoyama, Hideki

    2017-01-01

    Lung herniation is a rare condition defined as a protrusion of the pleural-covered lung parenchyma through an abnormal defect or weakness in the thoracic wall. Postoperative lung herniation is reported to result from a preceding operation with inadequate closure of the chest wall. A 77-year-old woman was admitted to our hospital for treatment of hemoptysis and nausea. One year previously, she had undergone wedge resection of the right lower lobe (S6) for treatment of primary lung adenocarcinoma. Upon admission, chest radiograph and chest computed tomography showed a right lung herniation through the fifth enlarged intercostal space with right fifth and sixth rib fractures. She underwent surgical closure of the intercostal hernia using synthetic materials with fixation of the fifth and sixth ribs. The patient had developed no recurrence 9 months after surgical repair. In the present case, adequate closure of the right pleural cavity was ensured by fixation of both fifth and sixth ribs during the preceding video-assisted thoracic surgery for the primary lung carcinoma. Our patient may have had some exacerbation factors for lung herniation, increased intrathoracic pressure, attenuation of chest wall by prolonged coughing and rib fracture, and high abdominal pressure due to her hunched-over posture. It is important to know some exacerbation factors for postoperative intercostal lung herniation. Addition of monofirament-suture fixation of the ribs to patch repair is very effective for lung herniation repair in patients with concurrent lung herniation and rib fractures.

  4. CT perfusion of the liver during selective hepatic arteriography. Pure arterial blood perfusion of liver tumor and parenchyma

    International Nuclear Information System (INIS)

    Komemushi, Atsushi; Tanigawa, Noboru; Kojima, Hiroyuki; Kariya, Shuji; Sawada, Satoshi

    2003-01-01

    The purpose of this study was to quantify pure arterial blood perfusion of liver tumor and parenchyma by using CT perfusion during selective hepatic arteriography. A total of 44 patients underwent liver CT perfusion study by injection of contrast medium via the hepatic artery. CT-perfusion parameters including arterial blood flow, arterial blood volume, and arterial mean transit time in the liver parenchyma and liver tumor were calculated using the deconvolution method. The CT-perfusion parameters and vascularity of the tumor were compared. A complete analysis could be performed in 36 of the 44 patients. For liver tumor and liver parenchyma, respectively, arterial blood flow was 184.6±132.7 and 41.0±27.0 ml/min/100 g, arterial blood volume was 19.4±14.6 and 4.8±4.2 ml/100 g, and arterial mean transit time was 8.9±4.2 and 10.2±5.3 sec. Arterial blood flow and arterial blood volume correlated significantly with the vascularity of the tumor; however no correlation was detected between arterial mean transit time and the vascularity of the tumor. This technique could be used to quantify pure hepatic arterial blood perfusion. (author)

  5. Transtemporal Investigation of Brain Parenchyma Elasticity Using 2-D Shear Wave Elastography: Definition of Age-Matched Normal Values.

    Science.gov (United States)

    Ertl, Michael; Raasch, Nele; Hammel, Gertrud; Harter, Katharina; Lang, Christopher

    2018-01-01

    The goal of our research was to assess the possibility of reliable investigation of brain tissue stiffness using ultrasonographic brain parenchyma elastography with an intact temporal bone. We enrolled 108 patients after exclusion of intracranial pathology or healthy volunteers. All patients were subdivided by age into groups: 20-40, 40-60 and >60 y. For statistical analysis, the χ 2 test and t-test were used. The mean values, regardless of age and other parameters, were 3.34 kPa (SD = 0.59) on the left side and 3.33 kPa (SD = 0.58) on the right side. We found no correlation between the values, body mass index (r = 0.07, p = 0.48) and sex (t = -0.11, p = 0.91), but we observed a highly significant correlation between the values and age (r = 0.43, p <0.0001). We found ultrasonographic brain parenchyma elastography to be a valid, reproducible and investigator-independent method that reliably determines brain parenchyma stiffness. Normal values should serve as a reference for studies on various intracranial lesions. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  6. A comparisonof lymphocytic thyroiditis with papillary thyroid carcinoma showing suspicious ultrasonographic findings in a background of heterogeneous parenchyma

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Sang Yu; Shin, Jung Hee; Ko, Eun Young; Hahn, Soo Yeon [Dept. of Radiology, Samsung Medicine Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2015-01-15

    The aim of this study was to compare ultrasonographic features in patients with lymphocytic thyroiditis (LT) and papillary thyroid carcinoma (PTC) having suspicious thyroid nodule(s) in a background of heterogeneous parenchyma and to determine the clinical and radiological predictors of malignancy. We reviewed the cases of 100 patients who underwent ultrasonography between April 2011 and October 2012, and showed suspicious thyroid nodule(s) in a background of heterogeneous parenchyma. Eight patients who did not undergo ultrasonography-guided fineneedle aspiration cytology (FNAC) and 34 cases of follow-up ultrasonography after initial FNAC were excluded. We compared the benign and malignant nodules in terms of their clinical and radiological factors. For the 58 nodules including 31 LTs (53.4%) and 27 PTCs (46.6%), the mean tumor sizes of the two groups were 0.96 cm for LT and 0.97 cm for PTC. A univariate analysis revealed that PTCs were more frequent in patients younger than 45 years and having microcalcifications than was LT. An independent predictor of PTC after adjustment was an age of <45 years. LT mimics malignancy in a background of heterogeneous parenchyma on ultrasonography. A young age of <45 years is the most important predictor of malignancy in this condition.

  7. Effect of ligand activation of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) in human lung cancer cell lines

    International Nuclear Information System (INIS)

    He Pengfei; Borland, Michael G.; Zhu Bokai; Sharma, Arun K.; Amin, Shantu; El-Bayoumy, Karam; Gonzalez, Frank J.; Peters, Jeffrey M.

    2008-01-01

    There is compelling evidence that peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) mediates terminal differentiation and is associated with inhibition of cell growth. However, it was recently suggested that growth of two human lung cancer cell lines is enhanced by PPARβ/δ. The goal of the present study was to provide insight in resolving this controversy. Therefore, the effect of ligand activation of PPARβ/δ in A549 and H1838 human lung cancer cell lines was examined using two high affinity PPARβ/δ ligands. Ligand activation of PPARβ/δ caused up-regulation of a known PPARβ/δ target gene, angiopoietin-like 4 (Angptl4) but did not influence expression of phosphatase and tensin homolog (PTEN) or phosphorylation of protein kinase B (Akt), and did not affect cell growth. Results from this study demonstrate that two human lung cancer cell lines respond to ligand activation of PPARβ/δ by modulation of target gene expression (Angptl4), but fail to exhibit significant modulation of cell proliferation

  8. Multi-frequency time-difference complex conductivity imaging of canine and human lungs using the KHU Mark1 EIT system

    International Nuclear Information System (INIS)

    Kuen, Jihyeon; Woo, Eung Je; Seo, Jin Keun

    2009-01-01

    We evaluated the performance of the lately developed electrical impedance tomography (EIT) system KHU Mark1 through time-difference imaging experiments of canine and human lungs. We derived a multi-frequency time-difference EIT (mftdEIT) image reconstruction algorithm based on the concept of the equivalent homogeneous complex conductivity. Imaging experiments were carried out at three different frequencies of 10, 50 and 100 kHz with three different postures of right lateral, sitting (or prone) and left lateral positions. For three normal canine subjects, we controlled the ventilation using a ventilator at three tidal volumes of 100, 150 and 200 ml. Three human subjects were asked to breath spontaneously at a normal tidal volume. Real- and imaginary-part images of the canine and human lungs were reconstructed at three frequencies and three postures. Images showed different stages of breathing cycles and we could interpret them based on the understanding of the proposed mftdEIT image reconstruction algorithm. Time series of images were further analyzed by using the functional EIT (fEIT) method. Images of human subjects showed the gravity effect on air distribution in two lungs. In the canine subjects, the morphological change seems to dominate the gravity effect. We could also observe that two different types of ventilation should have affected the results. The KHU Mark1 EIT system is expected to provide reliable mftdEIT images of the human lungs. In terms of the image reconstruction algorithm, it would be worthwhile including the effects of three-dimensional current flows inside the human thorax. We suggest clinical trials of the KHU Mark1 for pulmonary applications

  9. Multi-frequency time-difference complex conductivity imaging of canine and human lungs using the KHU Mark1 EIT system.

    Science.gov (United States)

    Kuen, Jihyeon; Woo, Eung Je; Seo, Jin Keun

    2009-06-01

    We evaluated the performance of the lately developed electrical impedance tomography (EIT) system KHU Mark1 through time-difference imaging experiments of canine and human lungs. We derived a multi-frequency time-difference EIT (mftdEIT) image reconstruction algorithm based on the concept of the equivalent homogeneous complex conductivity. Imaging experiments were carried out at three different frequencies of 10, 50 and 100 kHz with three different postures of right lateral, sitting (or prone) and left lateral positions. For three normal canine subjects, we controlled the ventilation using a ventilator at three tidal volumes of 100, 150 and 200 ml. Three human subjects were asked to breath spontaneously at a normal tidal volume. Real- and imaginary-part images of the canine and human lungs were reconstructed at three frequencies and three postures. Images showed different stages of breathing cycles and we could interpret them based on the understanding of the proposed mftdEIT image reconstruction algorithm. Time series of images were further analyzed by using the functional EIT (fEIT) method. Images of human subjects showed the gravity effect on air distribution in two lungs. In the canine subjects, the morphological change seems to dominate the gravity effect. We could also observe that two different types of ventilation should have affected the results. The KHU Mark1 EIT system is expected to provide reliable mftdEIT images of the human lungs. In terms of the image reconstruction algorithm, it would be worthwhile including the effects of three-dimensional current flows inside the human thorax. We suggest clinical trials of the KHU Mark1 for pulmonary applications.

  10. Computed tomography of ball pythons (Python regius) in curled recumbency.

    Science.gov (United States)

    Hedley, Joanna; Eatwell, Kevin; Schwarz, Tobias

    2014-01-01

    Anesthesia and tube restraint methods are often required for computed tomography (CT) of snakes due to their natural tendency to curl up. However, these restraint methods may cause animal stress. The aim of this study was to determine whether the CT appearance of the lungs differs for ball pythons in a curled position vs. tube restraint. Whole body CT was performed on ten clinically healthy ball pythons, first in curled and then in straight positions restrained in a tube. Curved multiplanar reformatted (MPR) lung images from curled position scans were compared with standard MPR lung images from straight position scans. Lung attenuation and thickness were measured at three locations for each scan. Time for positioning and scanning was 12 ± 5 min shorter for curled snakes compared to tube restraint. Lung parenchyma thickness and attenuation declined from cranial to caudal on both straight and curled position images. Mean lung parenchyma thickness was greater in curled images at locations 1 (P = 0.048) and 3 (P = 0.044). Mean lung parenchyma thickness decreased between location 1 and 2 by 86-87% (straight: curled) and between location 1 and 3 by 51-50% (straight: curled). Mean lung attenuation at location 1 was significantly greater on curled position images than tube restraint images (P = 0.043). Findings indicated that CT evaluation of the lungs is feasible for ball pythons positioned in curled recumbency if curved MPR is available. However, lung parenchyma thickness and attenuation in some locations may vary from those acquired using tube restraint. © 2014 American College of Veterinary Radiology.

  11. The bystander effect in experimental systems and compatibility with radon-induced lung cancer in humans

    International Nuclear Information System (INIS)

    Little, M.P.; Wakeford, R.

    2002-01-01

    Bystander effects following exposure to α-particles have been observed in C3H 10T 1/2 cells and in other experimental systems, and imply that linearly extrapolating low-dose risks from high-dose data might materially underestimate risk. The ratio of lung cancer risk among persons exposed to low and high doses of radon daughters is 2.4-4.0, with an upper 95% confidence limit (CL) of about 14. Assuming that the bystander effect observed in the C3H 10T 1/2 data applies to human lung cells in vivo, the epidemiological data imply that the number of neighbouring cells that can contribute to the bystander effect is between 0 and 1, with an upper 95% CL of about 7. As a consequence, the bystander effect observed in the C3H 10T 1/2 system probably does not play a large part in the process of radon-induced lung carcinogenesis in humans. Other experimental data relating to the bystander effect after α-particle exposure are surveyed; some of these data are more compatible with the epidemiological data. (author)

  12. Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject-specific probability map generation in native MR volume data

    Science.gov (United States)

    Gloger, Oliver; Tönnies, Klaus; Mensel, Birger; Völzke, Henry

    2015-11-01

    In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches.

  13. Fully automatized renal parenchyma volumetry using a support vector machine based recognition system for subject-specific probability map generation in native MR volume data

    International Nuclear Information System (INIS)

    Gloger, Oliver; Völzke, Henry; Tönnies, Klaus; Mensel, Birger

    2015-01-01

    In epidemiological studies as well as in clinical practice the amount of produced medical image data strongly increased in the last decade. In this context organ segmentation in MR volume data gained increasing attention for medical applications. Especially in large-scale population-based studies organ volumetry is highly relevant requiring exact organ segmentation. Since manual segmentation is time-consuming and prone to reader variability, large-scale studies need automatized methods to perform organ segmentation. Fully automatic organ segmentation in native MR image data has proven to be a very challenging task. Imaging artifacts as well as inter- and intrasubject MR-intensity differences complicate the application of supervised learning strategies. Thus, we propose a modularized framework of a two-stepped probabilistic approach that generates subject-specific probability maps for renal parenchyma tissue, which are refined subsequently by using several, extended segmentation strategies. We present a three class-based support vector machine recognition system that incorporates Fourier descriptors as shape features to recognize and segment characteristic parenchyma parts. Probabilistic methods use the segmented characteristic parenchyma parts to generate high quality subject-specific parenchyma probability maps. Several refinement strategies including a final shape-based 3D level set segmentation technique are used in subsequent processing modules to segment renal parenchyma. Furthermore, our framework recognizes and excludes renal cysts from parenchymal volume, which is important to analyze renal functions. Volume errors and Dice coefficients show that our presented framework outperforms existing approaches. (paper)

  14. The pathogenesis of bleomycin-induced lung injury in animals and its applicability to human idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Williamson, James D; Sadofsky, Laura R; Hart, Simon P

    2015-03-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease of unknown etiology, for which there is no curative pharmacological therapy. Bleomycin, an anti-neoplastic agent that causes lung fibrosis in human patients has been used extensively in rodent models to mimic IPF. In this review, we compare the pathogenesis and histological features of human IPF and bleomycin-induced pulmonary fibrosis (BPF) induced in rodents by intratracheal delivery. We discuss the current understanding of IPF and BPF disease development, from the contribution of alveolar epithelial cells and inflammation to the role of fibroblasts and cytokines, and draw conclusions about what we have learned from the intratracheal bleomycin model of lung fibrosis.

  15. [Clinical and radiological features of pulmonary tuberculosis manifested as interstitial lung diseases.].

    Science.gov (United States)

    Shi, Ju-Hong; Feng, Rui-E; Tian, Xin-Lun; Xu, Wen-Bing; Xu, Zuo-Jun; Liu, Hong-Rui; Zhu, Yuan-Jue

    2009-12-01

    The purpose of this paper was to investigate the clinical and radiological features of pulmonary tuberculosis presenting as interstitial lung diseases (ILD). We analyzed the data of cases suspected of diffuse parenchyma lung diseases at this hospital between October 2003 and October 2007. The diagnosis of active pulmonary tuberculosis was based on epithelioid granuloma or positive acid-fast bacilli in lung biopsy and changes on serial radiographs obtained during treatment. The data of a series of 230 consecutive patients with suspected ILD were retrospectively analyzed. The diagnosis was confirmed by lung biopsy. Twelve patients were confirmed to have pulmonary tuberculosis. There were 5 males and 7 females with a mean age of 38 +/- 11 years (range, 17 - 68). The median course of disease in these patients was 3 months (range, 0.5 - 18 months). Patients with pulmonary tuberculosis presented with fever (11/12), cough (9/12), weight loss (7/12), dyspnea (7/12), lymphadenopathy (4/12), and splenohepatomegaly (2/12). On chest CT scan, ground-glass attenuation was identified in 4, bilateral patchy infiltration in 5, tree-in-bud appearance 1, and centrilobular lesions in 2 of the 12 patients. During the follow-up period (median, 9 month, range from 3 to 12 month), 11 patients improved, but 1 died of diabetic ketoacidosis. The diagnosis of pulmonary tuberculosis should be considered in suspected ILD patients presenting with fever, splenohepatomegaly and lymphadenopathy.

  16. Exploring the context of the lung proteome within the airway mucosa following allergen challenge.

    Science.gov (United States)

    Fehniger, Thomas E; Sato-Folatre, José-Gabriel; Malmström, Johan; Berglund, Magnus; Lindberg, Claes; Brange, Charlotte; Lindberg, Henrik; Marko-Varga, György

    2004-01-01

    The lung proteome is a dynamic collection of specialized proteins related to pulmonary function. Many cells of different derivations, activation states, and levels of maturity contribute to the changing environment, which produces the lung proteome. Inflammatory cells reacting to environmental challenge, for example from allergens, produce and secrete proteins which have profound effects on both resident and nonresident cells located in airways, alveoli, and the vascular tree which provides blood cells to the parenchyma alveolar bed for gas exchange. In an experimental model of allergic airway inflammation, we have compared control and allergen challenged lung compartments to determine global protein expression patterns using 2D-gel electrophoresis and subsequent spot identification by MS/MS mass spectrometry. We have then specifically isolated the epithelial mucosal layer, which lines conducting airways, from control and allergen challenged lungs, using laser capture technology and performed proteome identification on these selected cell samples. A central component of our investigations has been to contextually relate the histological features of the dynamic pulmonary environment to the changes in protein expression observed following challenge. Our results provide new information of the complexity of the submucosa/epithelium interface and the mechanisms behind the transformation of airway epithelium from normal steady states to functionally activated states.

  17. Lung sound intensity in patients with emphysema and in normal subjects at standardised airflows.

    Science.gov (United States)

    Schreur, H J; Sterk, P J; Vanderschoot, J; van Klink, H C; van Vollenhoven, E; Dijkman, J H

    1992-01-01

    BACKGROUND: A common auscultatory finding in pulmonary emphysema is a reduction of lung sounds. This might be due to a reduction in the generation of sounds due to the accompanying airflow limitation or to poor transmission of sounds due to destruction of parenchyma. Lung sound intensity was investigated in normal and emphysematous subjects in relation to airflow. METHODS: Eight normal men (45-63 years, FEV1 79-126% predicted) and nine men with severe emphysema (50-70 years, FEV1 14-63% predicted) participated in the study. Emphysema was diagnosed according to pulmonary history, results of lung function tests, and radiographic criteria. All subjects underwent phonopneumography during standardised breathing manoeuvres between 0.5 and 2 1 below total lung capacity with inspiratory and expiratory target airflows of 2 and 1 l/s respectively during 50 seconds. The synchronous measurements included airflow at the mouth and lung volume changes, and lung sounds at four locations on the right chest wall. For each microphone airflow dependent power spectra were computed by using fast Fourier transformation. Lung sound intensity was expressed as log power (in dB) at 200 Hz at inspiratory flow rates of 1 and 2 l/s and at an expiratory flow rate of 1 l/s. RESULTS: Lung sound intensity was well repeatable on two separate days, the intraclass correlation coefficient ranging from 0.77 to 0.94 between the four microphones. The intensity was strongly influenced by microphone location and airflow. There was, however, no significant difference in lung sound intensity at any flow rate between the normal and the emphysema group. CONCLUSION: Airflow standardised lung sound intensity does not differ between normal and emphysematous subjects. This suggests that the auscultatory finding of diminished breath sounds during the regular physical examination in patients with emphysema is due predominantly to airflow limitation. Images PMID:1440459

  18. Combining antiangiogenic therapy with adoptive cell immunotherapy exerts better antitumor effects in non-small cell lung cancer models.

    Directory of Open Access Journals (Sweden)

    Shujing Shi

    Full Text Available INTRODUCTION: Cytokine-induced killer cells (CIK cells are a heterogeneous subset of ex-vivo expanded T lymphocytes which are characterized with a MHC-unrestricted tumor-killing activity and a mixed T-NK phenotype. Adoptive CIK cells transfer, one of the adoptive immunotherapy represents a promising nontoxic anticancer therapy. However, in clinical studies, the therapeutic activity of adoptive CIK cells transfer is not as efficient as anticipated. Possible explanations are that abnormal tumor vasculature and hypoxic tumor microenvironment could impede the infiltration and efficacy of lymphocytes. We hypothesized that antiangiogenesis therapy could improve the antitumor activity of CIK cells by normalizing tumor vasculature and modulating hypoxic tumor microenvironment. METHODS: We combined recombinant human endostatin (rh-endostatin and CIK cells in the treatment of lung carcinoma murine models. Intravital microscopy, dynamic contrast enhanced magnetic resonance imaging, immunohistochemistry, and flow cytometry were used to investigate the tumor vasculature and hypoxic microenvironment as well as the infiltration of immune cells. RESULTS: Our results indicated that rh-endostatin synergized with adoptive CIK cells transfer to inhibit the growth of lung carcinoma. We found that rh-endostatin normalized tumor vasculature and reduced hypoxic area in the tumor microenvironment. Hypoxia significantly inhibited the proliferation, cytotoxicity and migration of CIK cells in vitro and impeded the homing of CIK cells into tumor parenchyma ex vivo. Furthermore, we found that treatment with rh-endostatin significantly increased the homing of CIK cells and decreased the accumulation of suppressive immune cells in the tumor tissue. In addition, combination therapy produced higher level of tumor-infiltration lymphocytes compared with other treatments. CONCLUSIONS: Our results demonstrate that rh-endostatin improves the therapeutic effect of adoptive CIK cells

  19. Accelerated cellular senescence phenotype of GAPDH-depleted human lung carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Phadke, Manali; Krynetskaia, Natalia [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Mishra, Anurag [Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Krynetskiy, Evgeny, E-mail: ekrynets@temple.edu [Temple University School of Pharmacy, Philadelphia, PA 19140 (United States); Jayne Haines Center for Pharmacogenomics, Temple University School of Pharmacy, Philadelphia, PA 19140 (United States)

    2011-07-29

    Highlights: {yields} We examined the effect of glyceraldehyde 3-phosphate (GAPDH) depletion on proliferation of human carcinoma A549 cells. {yields} GAPDH depletion induces accelerated senescence in tumor cells via AMPK network, in the absence of DNA damage. {yields} Metabolic and genetic rescue experiments indicate that GAPDH has regulatory functions linking energy metabolism and cell cycle. {yields} Induction of senescence in LKB1-deficient lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation. -- Abstract: Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-{beta}-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of {alpha} subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.

  20. Anacardic Acids from Cashew Nuts Ameliorate Lung Damage Induced by Exposure to Diesel Exhaust Particles in Mice

    Directory of Open Access Journals (Sweden)

    Ana Laura Nicoletti Carvalho

    2013-01-01

    Full Text Available Anacardic acids from cashew nut shell liquid, a Brazilian natural substance, have antimicrobial and antioxidant activities and modulate immune responses and angiogenesis. As inflammatory lung diseases have been correlated to environmental pollutants exposure and no reports addressing the effects of dietary supplementation with anacardic acids on lung inflammation in vivo have been evidenced, we investigated the effects of supplementation with anacardic acids in a model of diesel exhaust particle- (DEP- induced lung inflammation. BALB/c mice received an intranasal instillation of 50 μg of DEP for 20 days. Ten days prior to DEP instillation, animals were pretreated orally with 50, 150, or 250 mg/kg of anacardic acids or vehicle (100 μL of cashew nut oil for 30 days. The biomarkers of inflammatory and antioxidant responses in the alveolar parenchyma, bronchoalveolar lavage fluid (BALF, and pulmonary vessels were investigated. All doses of anacardic acids ameliorated antioxidant enzyme activities and decreased vascular adhesion molecule in vessels. Animals that received 50 mg/kg of anacardic acids showed decreased levels of neutrophils and tumor necrosis factor in the lungs and BALF, respectively. In summary, we demonstrated that AAs supplementation has a potential protective role on oxidative and inflammatory mechanisms in the lungs.

  1. Genetic association between human chitinases and lung function in COPD.

    Science.gov (United States)

    Aminuddin, F; Akhabir, L; Stefanowicz, D; Paré, P D; Connett, J E; Anthonisen, N R; Fahy, J V; Seibold, M A; Burchard, E G; Eng, C; Gulsvik, A; Bakke, P; Cho, M H; Litonjua, A; Lomas, D A; Anderson, W H; Beaty, T H; Crapo, J D; Silverman, E K; Sandford, A J

    2012-07-01

    Two primary chitinases have been identified in humans--acid mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Mammalian chitinases have been observed to affect the host's immune response. The aim of this study was to test for association between genetic variation in the chitinases and phenotypes related to chronic obstructive pulmonary disease (COPD). Polymorphisms in the chitinase genes were selected based on previous associations with respiratory diseases. Polymorphisms that were associated with lung function level or rate of decline in the Lung Health Study (LHS) cohort were analyzed for association with COPD affection status in four other COPD case-control populations. Chitinase activity and protein levels were also related to genotypes. In the caucasian LHS population, the baseline forced expiratory volume in one second (FEV(1)) was significantly different between the AA and GG genotypic groups of the AMCase rs3818822 polymorphism. Subjects with the GG genotype had higher AMCase protein and chitinase activity compared with AA homozygotes. For CHIT1 rs2494303, a significant association was observed between rate of decline in FEV(1) and the different genotypes. In the African American LHS population, CHIT1 rs2494303 and AMCase G339T genotypes were associated with rate of decline in FEV(1). Although a significant effect of chitinase gene alleles was found on lung function level and decline in the LHS, we were unable to replicate the associations with COPD affection status in the other COPD study groups.

  2. Fluoxetine protects against methamphetamine‑induced lung inflammation by suppressing oxidative stress through the SERT/p38 MAPK/Nrf2 pathway in rats.

    Science.gov (United States)

    Wang, Yun; Gu, Yu-Han; Liu, Ming; Bai, Yang; Wang, Huai-Liang

    2017-02-01

    Methamphetamine (MA) abuse is a major public health and safety concern throughout the world and a growing burden on healthcare costs. The purpose of the present study was to investigate the protective effect of fluoxetine against MA‑induced chronic pulmonary inflammation and to evaluate the potential role of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidative stress. Wistar rats were divided into control, MA and two fluoxetine‑treated groups. Rats in the MA and the two fluoxetine‑treated groups were treated daily with intraperitoneal injection of 10 mg/kg MA twice daily. Rats in the two fluoxetine‑treated groups were injected intragastrically with fluoxetine (2 and 10 mg/kg) once daily, respectively. After 5 weeks, the rats were euthanized and hematoxylin and eosin staining, immunohistochemistry, western blot analysis and redox assay were performed. It was demonstrated that chronic exposure to MA can induce pulmonary inflammation in rats, with the symptoms of inflammatory cell infiltration, crowded lung parenchyma, thickened septum and a reduced number of alveolar sacs. Fluoxetine attenuated pulmonary inflammation and the expression of interleukin‑6 and tumor necrosis factor‑α in rat lungs. Fluoxetine inhibited MA‑induced increases in the expression levels of serotonin transporter (SERT) and p‑p38 mitogen‑activated protein kinase (MAPK), and reversed the MA‑induced decrease in nuclear Nrf2 and human heme oxygenase‑1 in lungs. Fluoxetine at 10 mg/kg significantly reversed the reduced glutathione (GSH) level, the ratio of GSH/oxidized glutathione, and the reactive oxygen species level in rat lungs from the MA group. These findings suggested that fluoxetine, a SERT inhibitor, has a protective effect against MA‑induced lung inflammation by suppressing oxidative stress through the SERT/p38 MAPK/Nrf2 pathway in rats.

  3. AhR-dependent secretion of PDGF-BB by human classically activated macrophages exposed to DEP extracts stimulates lung fibroblast proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Jaguin, Marie [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex (France); Fardel, Olivier [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex (France); Pôle Biologie, Centre Hospitalier Universitaire (CHU) Rennes, 2 rue Henri Le Guilloux, 35033 Rennes Cedex (France); Lecureur, Valérie, E-mail: valerie.lecureur@univ-rennes1.fr [UMR INSERM U1085, Institut de Recherche sur la Santé, l' Environnement et le Travail (IRSET), Université de Rennes 1, 2 Avenue du Pr Léon Bernard, 35043 Rennes Cedex (France)

    2015-06-15

    Lung diseases are aggravated by exposure to diesel exhaust particles (DEPs) found in air pollution. Macrophages are thought to play a crucial role in lung immune response to these pollutants, even if the mechanisms involved remain incompletely characterized. In the present study, we demonstrated that classically and alternative human macrophages (MΦ) exhibited increased secretion of PDGF-B in response to DEP extract (DEPe). This occurred via aryl hydrocarbon receptor (AhR)-activation because DEPe-induced PDGF-B overexpression was abrogated after AhR expression knock-down by RNA interference, in both M1 and M2 polarizing MΦ. In addition, TCDD and benzo(a)pyrene, two potent AhR ligands, also significantly increased mRNA expression of PDGF-B in M1 MΦ, whereas some weak ligands of AhR did not. We next evaluated the impact of conditioned media (CM) from MΦ culture exposed to DEPe or of recombinant PDGF-B onto lung fibroblast proliferation. The tyrosine kinase inhibitor, AG-1295, prevents phosphorylations of PDGF-Rβ, AKT and ERK1/2 and the proliferation of MRC-5 fibroblasts induced by recombinant PDGF-B and by CM from M1 polarizing MΦ, strongly suggesting that the PDGF-BB secreted by DEPe-exposed MΦ is sufficient to activate the PDGF-Rβ pathway of human lung fibroblasts. In conclusion, we demonstrated that human MΦ, whatever their polarization status, secrete PDGF-B in response to DEPe and that PDGF-B is a target gene of AhR. Therefore, induction of PDGF-B by DEP may participate in the deleterious effects towards human health triggered by such environmental urban contaminants. - Highlights: • PDGF-B expression and secretion are increased by DEPe exposure in human M1 and M2 MΦ. • DEPe-induced PDGF-B expression is aryl-hydrocarbon-dependent. • DEPe-exposed M1 MΦ secrete sufficient PDGF-B to increase lung fibroblast proliferation.

  4. Interstitial lung disease caused by TS-1: a case of long-term drug retention as a fatal adverse reaction.

    Science.gov (United States)

    Park, Joong-Min; Hwang, In Gyu; Suh, Suk-Won; Chi, Kyong-Choun

    2011-12-01

    TS-1 is an oral anti-cancer agent for gastric cancer with a high response rate and low toxicity. We report a case of long-term drug retention of TS-1 causing interstitial lung disease (ILD) as a fatal adverse reaction. A 65-year-old woman underwent a total gastrectomy with pathologic confirmation of gastric adenocarcinoma. She received 6 cycles of TS-1 and low-dose cisplatin for post-operative adjuvant chemotherapy followed by single-agent maintenance therapy with TS-1. After 8 months, the patient complained of a productive cough with sputum and mild dyspnea. A pulmonary evaluation revealed diffuse ILD in the lung fields, bilaterally. In spite of discontinuing chemotherapy and the administration of corticosteroids, the pulmonary symptoms did not improve, and the patient died of pulmonary failure. TS-1-induced ILD can be caused by long-term drug retention that alters the lung parenchyma irreversibly, the outcome of which can be life-threatening. Pulmonary evaluation for early detection of disease is recommended.

  5. A study of the behaviour of 0.5 μm aerosol particles in the human lung

    International Nuclear Information System (INIS)

    Subba Ramu, M.C.

    1974-01-01

    The evaluation of the tissue dose of inhaled aerosol particles (including radioactive particles) requires a study of the behaviour of particles in the human lung. Half-micron particles (unit density spheres) of di-2-ethyl hexyl subacate have been used for carrying out the study since their deposition is mostly in the pulmonary region and they are good tracers of air flow in the lung. The deposition measured is the lowest reported so far and is affected by physiological parameters like the tidal volume, the breathing frequency and the resting expiratory level. Steady-state and single-breath aerosol experiments show that the particles inhaled remain airborne in the lung during several breaths and support the view that mechanical mixing is completely absent in the alveolated airways of the lung. Studies of the effect of breath-holding on the deposition of 0.5 μm particles in the lung show that these particles may be used for the calculation of the diameter of the alveolar space in life. (author)

  6. Equation Discovery for Model Identification in Respiratory Mechanics of the Mechanically Ventilated Human Lung

    Science.gov (United States)

    Ganzert, Steven; Guttmann, Josef; Steinmann, Daniel; Kramer, Stefan

    Lung protective ventilation strategies reduce the risk of ventilator associated lung injury. To develop such strategies, knowledge about mechanical properties of the mechanically ventilated human lung is essential. This study was designed to develop an equation discovery system to identify mathematical models of the respiratory system in time-series data obtained from mechanically ventilated patients. Two techniques were combined: (i) the usage of declarative bias to reduce search space complexity and inherently providing the processing of background knowledge. (ii) A newly developed heuristic for traversing the hypothesis space with a greedy, randomized strategy analogical to the GSAT algorithm. In 96.8% of all runs the applied equation discovery system was capable to detect the well-established equation of motion model of the respiratory system in the provided data. We see the potential of this semi-automatic approach to detect more complex mathematical descriptions of the respiratory system from respiratory data.

  7. Chlorella vulgaris Induces Apoptosis of Human Non-Small Cell Lung Carcinoma (NSCLC) Cells.

    Science.gov (United States)

    Zhang, Zhi-Dong; Liang, Kai; Li, Kun; Wang, Guo-Quan; Zhang, Ke-Wei; Cai, Lei; Zhai, Shui-Ting; Chou, Kuo-Chen

    2017-01-01

    Chlorella vulgaris (C. vulgaris), a unicellular green microalga, has been widely used as a food supplement and reported to have antioxidant and anticancer properties. The current study was designed to assess the cytotoxic, apoptotic, and DNA-damaging effects of C. vulgaris growth factor (CGF), hot water C. vulgaris extracts, inlung tumor A549 and NCI-H460 cell lines. A549 cells, NCI-H460 cells, and normal human fibroblasts were treated with CGF at various concentrations (0-300 μg/ml) for 24 hr. The comet assay and γH2AX assay showed DNA damage in A549 and NCI-H460 cells upon CGF exposure. Evaluation of apoptosis by the TUNEL assay and DNA fragmentation analysis by agarose gel electrophoresis showed that CGF induced apoptosis in A549 and NCI-H460 cells. Chlorella vulgaris hot water extract induced apoptosis and DNA damage in human lung carcinoma cells. CGF can thus be considered a potential cytotoxic or genotoxic drug for treatment of lung carcinoma. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Changes in energy metabolism of the juvenile Fasciola hepatica during its development in the liver parenchyma

    NARCIS (Netherlands)

    Tielens, A.G.M.; Heuvel, J.M. van den; Bergh, S.G. van den

    1982-01-01

    Juvenile Fasciola hepatica at different stages of development were isolated from the liver parenchyma of experimentally infected rats. Their energy metabolism was studied by incubation with D-[16-14C]glucose and compared with that of juveniles isolated immediately after in vitro emergence from the

  9. Experimental radioimmunoimaging of human lung small cell carcinoma xenograft H-69 by NCC-ST-433 monoclonal antibody

    International Nuclear Information System (INIS)

    Kubota, Tetsuro; Nakamura, Kayoko; Kubo, Atsushi; Hashimoto, Shozo; Watanabe, Masahiko; Ishibiki, Kyuya; Abe, Osahiko

    1989-01-01

    NCC-ST-433 monoclonal antibody raised against human gastric carcinoma xenograft (St-4) was labeled with l25 I using enzymatic and Iodogen methods. While labeling efficiency of the antibody was more excellent by enzymatic method, specific radioactivity of the antibody labeled by Iodogen method was higher than that by enzymatic method. The labeled antibody was stable in vitro and in vivo, and the labeled NCC-ST-433 was specifically accumulated in NCC-ST-433 antigen positive human tumor cell lines in vitro. The specificity of 125 I-NCC-ST-433 in vivo was found to be more excellent when this antibody was labeled by Iodogen method and acutually excellent images of H-69, a human small cell lung carcioma, were obtained 5 days after injection of 7 μg of 125 I-NCC-ST-433 per mouse. This method seemed to be promising for imaging human lung small cell carcinoma. (author)

  10. Next Generation Respiratory Viral Vaccine System: Advanced and Emerging Bioengineered Human Lung Epithelia Model (HLEM) Organoid Technology

    Science.gov (United States)

    Goodwin, Thomas J.; Schneider, Sandra L.; MacIntosh, Victor; Gibbons, Thomas F.

    2010-01-01

    Acute respiratory infections, including pneumonia and influenza, are the S t" leading cause of United States and worldwide deaths. Newly emerging pathogens signaled the need for an advanced generation of vaccine technology.. Human bronchial-tracheal epithelial tissue was bioengineered to detect, identify, host and study the pathogenesis of acute respiratory viral disease. The 3-dimensional (3D) human lung epithelio-mesechymal tissue-like assemblies (HLEM TLAs) share characteristics with human respiratory epithelium: tight junctions, desmosomes, microvilli, functional markers villin, keratins and production of tissue mucin. Respiratory Syntial Virus (RSV) studies demonstrate viral growth kinetics and membrane bound glycoproteins up to day 20 post infection in the human lung-orgainoid infected cell system. Peak replication of RSV occurred on day 10 at 7 log10 particles forming units per ml/day. HLEM is an advanced virus vaccine model and biosentinel system for emergent viral infectious diseases to support DoD global surveillance and military readiness.

  11. Human papillomavirus-16 presence and physical status in lung carcinomas from Asia

    Directory of Open Access Journals (Sweden)

    Morewaya Jacob

    2010-11-01

    Full Text Available Abstract Background Although human papillomavirus (HPV genome has been detected in lung cancer, its prevalence is highly variable around the world. Higher frequencies have been reported in far-east Asian countries, when compared with European countries. The present study analysed the HPV-16 presence in 60 lung carcinomas from the Asian countries China, Pakistan and Papua New Guinea. Results HPV-16 was present in 8/59 (13% samples. According to histological type, HPV-16 was detected in 8/18 (44% squamous cell carcinomas (SQCs, which were mainly from Pakistan; 0/38 (0% adenocarcinomas (ACs, which were mainly from China; and in 0/4 (0% small cell carcinomas (SCLCs. The observed histological difference was statistically significant (p Conclusion These results support the notion that HPV-16 infection is highly associated with SQCs in Pakistan. Our results show a frequent HPV-16 integration in SQCs, although the low viral load casts doubt respect a direct etiological role of HPV in lung carcinomas from Asia. Additional HPV-16 characterization is necessary to establish a direct or indirect etiological role of HPV in this malignancy.

  12. Ca2+ influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    International Nuclear Information System (INIS)

    Murata, Naohiko; Ito, Satoru; Furuya, Kishio; Takahara, Norihiro; Naruse, Keiji; Aso, Hiromichi; Kondo, Masashi; Sokabe, Masahiro; Hasegawa, Yoshinori

    2014-01-01

    Highlights: • Uniaxial stretching activates Ca 2+ signaling in human lung fibroblasts. • Stretch-induced intracellular Ca 2+ elevation is mainly via Ca 2+ influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca 2+ influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca 2+ concentration ([Ca 2+ ] i ) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca 2+ ] i transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca 2+ ] i . The stretch-induced [Ca 2+ ] i elevation was attenuated in Ca 2+ -free solution. In contrast, the increase of [Ca 2+ ] i by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd 3+ , ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca 2+ ] i elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca 2+ influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP

  13. Cisplatin induces expression of drug resistance-related genes through c-jun N-terminal kinase pathway in human lung cancer cells.

    Science.gov (United States)

    Xu, Li; Fu, Yingya; Li, Youlun; Han, Xiaoli

    2017-08-01

    Change of multidrug resistance-related genes (e.g., lung resistance protein, LRP) and overexpression of anti-apoptotic genes (Bcl-2, Bcl-Xl, XIAP, Survivin) are responsible for cisplatin resistance. In our study, we investigated the mechanism by which cisplatin induces LRP, Bcl-2, Bcl-xL, XIAP, and Survivin expression in human lung adenocarcinoma A549 cells and human H446 small cell lung cancer cells at mRNA and protein levels. In our study, cell proliferation was assessed with CCK-8 assays, and cell apoptosis was assessed with flow cytometric analysis and Annexin-V/PI staining. qPCR was used to complete RNA experiments. Protein expression was assessed with Western blotting. Cisplatin increased Bcl-2, LRP, and Survivin expression, but decreased Bcl-xL and XIAP expression in a dose-dependent manner. Preincubation with JNK-specific inhibitor, SP600125, significantly inhibited these genes' expression at mRNA and protein levels, enhanced chemosensitivity of lung cancer cells to cisplatin, and promoted cisplatin-induced apoptosis. Our data suggest that the JNK signaling pathway plays an important role in cisplatin resistance. Lung resistance protein (LRP) and anti-apoptotic genes (Bcl-2, Bcl-Xl, XIAP, Survivin) are involved in the process. The results reminded us of a novel therapy target for lung cancer treatment.

  14. Regulated gene expression in cultured type II cells of adult human lung.

    Science.gov (United States)

    Ballard, Philip L; Lee, Jae W; Fang, Xiaohui; Chapin, Cheryl; Allen, Lennell; Segal, Mark R; Fischer, Horst; Illek, Beate; Gonzales, Linda W; Kolla, Venkatadri; Matthay, Michael A

    2010-07-01

    Alveolar type II cells have multiple functions, including surfactant production and fluid clearance, which are critical for lung function. Differentiation of type II cells occurs in cultured fetal lung epithelial cells treated with dexamethasone plus cAMP and isobutylmethylxanthine (DCI) and involves increased expression of 388 genes. In this study, type II cells of human adult lung were isolated at approximately 95% purity, and gene expression was determined (Affymetrix) before and after culturing 5 days on collagen-coated dishes with or without DCI for the final 3 days. In freshly isolated cells, highly expressed genes included SFTPA/B/C, SCGB1A, IL8, CXCL2, and SFN in addition to ubiquitously expressed genes. Transcript abundance was correlated between fetal and adult cells (r = 0.88), with a subset of 187 genes primarily related to inflammation and immunity that were expressed >10-fold higher in adult cells. During control culture, expression increased for 8.1% of expressed genes and decreased for approximately 4% including 118 immune response and 10 surfactant-related genes. DCI treatment promoted lamellar body production and increased expression of approximately 3% of probed genes by > or =1.5-fold; 40% of these were also induced in fetal cells. Highly induced genes (> or =10-fold) included PGC, ZBTB16, DUOX1, PLUNC, CIT, and CRTAC1. Twenty-five induced genes, including six genes related to surfactant (SFTPA/B/C, PGC, CEBPD, and ADFP), also had decreased expression during control culture and thus are candidates for hormonal regulation in vivo. Our results further define the adult human type II cell molecular phenotype and demonstrate that a subset of genes remains hormone responsive in cultured adult cells.

  15. Synchrotron soft X-ray imaging and fluorescence microscopy reveal novel features of asbestos body morphology and composition in human lung tissues

    Directory of Open Access Journals (Sweden)

    Polentarutti Maurizio

    2011-02-01

    Full Text Available Abstract Background Occupational or environmental exposure to asbestos fibres is associated with pleural and parenchymal lung diseases. A histopathologic hallmark of exposure to asbestos is the presence in lung parenchyma of the so-called asbestos bodies. They are the final product of biomineralization processes resulting in deposition of endogenous iron and organic matter (mainly proteins around the inhaled asbestos fibres. For shedding light on the formation mechanisms of asbestos bodies it is of fundamental importance to characterize at the same length scales not only their structural morphology and chemical composition but also to correlate them to the possible alterations in the local composition of the surrounding tissues. Here we report the first correlative morphological and chemical characterization of untreated paraffinated histological lung tissue samples with asbestos bodies by means of soft X-ray imaging and X-Ray Fluorescence (XRF microscopy, which reveals new features in the elemental lateral distribution. Results The X-ray absorption and phase contrast images and the simultaneously monitored XRF maps of tissue samples have revealed the location, distribution and elemental composition of asbestos bodies and associated nanometric structures. The observed specific morphology and differences in the local Si, Fe, O and Mg content provide distinct fingerprints characteristic for the core asbestos fibre and the ferruginous body. The highest Si content is found in the asbestos fibre, while the shell and ferruginous bodies are characterized by strongly increased content of Mg, Fe and O compared to the adjacent tissue. The XRF and SEM-EDX analyses of the extracted asbestos bodies confirmed an enhanced Mg deposition in the organic asbestos coating. Conclusions The present report demonstrates the potential of the advanced synchrotron-based X-ray imaging and microspectroscopy techniques for studying the response of the lung tissue to the

  16. Impact of air quality in Kuala Lumpur on human lung function

    International Nuclear Information System (INIS)

    Noor, H.; Mohammad, F.; Othman, Z.; Rashid, N.; Johan, R.; Awang, M.; Jaafar, Abu-Bakar

    1998-01-01

    In Malaysia, the 1997 haze was the worst air pollution episode ever experienced by the country. The polluted air consists of various of various gases and aerosols including nitrogen dioxide and particulate matter (PM/sub 10/). A spirometry study on lung function of traffic policemen (n=45) in KL showed a correlation between lung volumes and the concentration of NO/sub 2/ they were directly exposed to (0.014 ppm) The controls were UPM students and staff (n=23, non-smokers) of the same age group exposed to 0.005 ppm. There were significant reductions (unpaired t-test, p<0.05) in FVC compared to control (2.84++0.12 vs. e. 21+-0.16), FEV (2.54+-0.12 vs 3.04+-0.13), FEV/sub 1/ % (84.14+-2.09 vs 92.02+-1.36) and FEF/sub 25-75 %/ (3.23+-0.26 vs 4.50 +0.35), indicative of obstructions that may occur in both the large and smaller airways. In addition, higher percentage of respiratory symptoms were reported in the study subjects, the highest was continuous coughs (32% vs. 9%). Another study was done on school children in KL and Negri Sembilan, who were exposed to PM/sub 10/ of 103.27 mu g/m/sup 3/ and 47.35 mu g /m/sup 3/ respectively. Spirometric measurements show significant reductions in VC and FVC for boys compared to control (32% vs 3.25+-0.43 and 2.64+-0.48 v 2.94+-0.52, respectively) indicating signs of airways obstruction and lung restriction. Respiratory symptoms were also higher in the study subjects. The highest is chest tightness (63.18% in female, 35.19% in male) and breathing difficulties (53.05%) and 22.08% respectively) compared to controls. Conclusion made from the two studies was; exposure to 0.014 ppm of NO/sub 2/ and 103.27 mu g/m-3 of PM/sub 10/ correlates with reduced human lung function and increased respiratory symptoms due to obstruction of airways and restriction of the lung. (author)

  17. Intensive-care unit lung infections: The role of imaging with special emphasis on multi-detector row computed tomography

    International Nuclear Information System (INIS)

    Romano, Luigia; Pinto, Antonio; Merola, Stefanella; Gagliardi, Nicola; Tortora, Giovanni; Scaglione, Mariano

    2008-01-01

    Nosocomial pneumonia is the most frequent hospital-acquired infection. In mechanically ventilated patients admitted to an intensive-care unit as many as 7-41% may develop pneumonia. The role of imaging is to identify the presence, location and extent of pulmonary infection and the presence of complications. However, the poor resolution of bedside plain film frequently limits the value of radiography as an accurate diagnostic tool. To date, multi-detector row computed tomography with its excellent contrast resolution is the most sensitive modality for evaluating lung parenchyma infections

  18. N-acetylcysteine-pretreated human embryonic mesenchymal stem cell administration protects against bleomycin-induced lung injury.

    Science.gov (United States)

    Wang, Qiao; Zhu, Hong; Zhou, Wu-Gang; Guo, Xiao-Can; Wu, Min-Juan; Xu, Zhen-Yu; Jiang, Jun-feng; Shen, Ce; Liu, Hou-Qi

    2013-08-01

    The transplantation of mesenchymal stem cells (MSCs) has been reported to be a promising approach in the treatment of acute lung injury. However, the poor efficacy of transplanted MSCs is one of the serious handicaps in the progress of MSC-based therapy. Therefore, the purpose of this study was to investigate whether the pretreatment of human embryonic MSCs (hMSCs) with an antioxidant, namely N-acetylcysteine (NAC), can improve the efficacy of hMSC transplantation in lung injury. In vitro, the antioxidant capacity of NAC-pretreated hMSCs was assessed using intracellular reactive oxygen species (ROS) and glutathione assays and cell adhesion and spreading assays. In vivo, the therapeutic potential of NAC-pretreated hMSCs was assessed in a bleomycin-induced model of lung injury in nude mice. The pretreatment of hMSCs with NAC improved antioxidant capacity to defend against redox imbalances through the elimination of cellular ROS, increasing cellular glutathione levels, and the enhancement of cell adhesion and spreading when exposed to oxidative stresses in vitro. In addition, the administration of NAC-pretreated hMSCs to nude mice with bleomycin-induced lung injury decreased the pathological grade of lung inflammation and fibrosis, hydroxyproline content and numbers of neutrophils and inflammatory cytokines in bronchoalveolar lavage fluid and apoptotic cells, while enhancing the retention and proliferation of hMSCs in injured lung tissue and improving the survival rate of mice compared with results from untreated hMSCs. The pretreatment of hMSCs with NAC could be a promising therapeutic approach to improving cell transplantation and, therefore, the treatment of lung injury.

  19. Effects of selective bile duct ligation on liver parenchyma in young animals: histologic and molecular evaluations.

    Science.gov (United States)

    Tannuri, Ana Cristina A; Coelho, Maria Cecília M; de Oliveira Gonçalves, Josiane; Santos, Maria Mercês; Ferraz da Silva, Luiz Fernando; Bendit, Israel; Tannuri, Uenis

    2012-03-01

    The mechanisms of increased collagen production and liver parenchyma fibrosis are poorly understood. These phenomena are observed mainly in children with biliary obstruction (BO), and in a great number of patients, the evolution to biliary cirrhosis and hepatic failure leads to the need for liver transplantation before adolescence. However, pediatric liver transplantation presents with biliary complications in 20% to 30% of cases in the postoperative period. Intra- or extrahepatic stenosis of bile ducts is frequent and may lead to secondary biliary cirrhosis and the need for retransplantation. It is unknown whether biliary stenosis involving isolated segments or lobes may affect the adjacent nonobstructed lobes by paracrine or endocrine means, leading to fibrosis in this parenchyma. Therefore, the present study aimed to create an experimental model of selective biliary duct ligation in young animals with a subsequent evaluation of the histologic and molecular alterations in liver parenchyma of the obstructed and nonobstructed lobes. After a pilot study to standardize the surgical procedures, weaning rats underwent ligation of the bile ducts of the median, left lateral, and caudate liver lobes. The bile duct of the right lateral lobe was kept intact. To avoid intrahepatic biliary duct collaterals neoformation, the parenchymal connection between the right lateral and median lobes was clamped. The animals were divided into groups according to the time of death: 1, 2, 3, 4, and 8 weeks after surgical procedure. After death, the median and left lateral lobes (with BO) and the right lateral lobe (without BO [NBO]) were harvested separately. A group of 8 healthy nonoperated on animals served as controls. Liver tissues were subjected to histologic evaluation and quantification of the ductular proliferation and of the portal fibrosis. The expressions of smooth muscle α-actin (α-SMA), desmin, and transforming growth factor β1 genes were studied by molecular analyses

  20. Modeling Approach for Oxygen Exchange in the Human Lung under Hypobaric Conditions

    Science.gov (United States)

    2001-06-01

    Operational Medical Issues in Hypo-and Hyperbaric Conditions [les Questions medicales a caractere oprationel liees aux conditions hypobares ou hyperbares ] To...under Hypobaric Conditions DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report: TITLE...Approach for Oxygen Exchange in the Human Lung under Hypobaric Conditions Ing J.P.F. Lindhout*, Drs M. van de Graaff*, Ir Drs R.C. van de Graaff*, Dr

  1. Reproducibility of Lobar Perfusion and Ventilation Quantification Using SPECT/CT Segmentation Software in Lung Cancer Patients.

    Science.gov (United States)

    Provost, Karine; Leblond, Antoine; Gauthier-Lemire, Annie; Filion, Édith; Bahig, Houda; Lord, Martin

    2017-09-01

    Planar perfusion scintigraphy with 99m Tc-labeled macroaggregated albumin is often used for pretherapy quantification of regional lung perfusion in lung cancer patients, particularly those with poor respiratory function. However, subdividing lung parenchyma into rectangular regions of interest, as done on planar images, is a poor reflection of true lobar anatomy. New tridimensional methods using SPECT and SPECT/CT have been introduced, including semiautomatic lung segmentation software. The present study evaluated inter- and intraobserver agreement on quantification using SPECT/CT software and compared the results for regional lung contribution obtained with SPECT/CT and planar scintigraphy. Methods: Thirty lung cancer patients underwent ventilation-perfusion scintigraphy with 99m Tc-macroaggregated albumin and 99m Tc-Technegas. The regional lung contribution to perfusion and ventilation was measured on both planar scintigraphy and SPECT/CT using semiautomatic lung segmentation software by 2 observers. Interobserver and intraobserver agreement for the SPECT/CT software was assessed using the intraclass correlation coefficient, Bland-Altman plots, and absolute differences in measurements. Measurements from planar and tridimensional methods were compared using the paired-sample t test and mean absolute differences. Results: Intraclass correlation coefficients were in the excellent range (above 0.9) for both interobserver and intraobserver agreement using the SPECT/CT software. Bland-Altman analyses showed very narrow limits of agreement. Absolute differences were below 2.0% in 96% of both interobserver and intraobserver measurements. There was a statistically significant difference between planar and SPECT/CT methods ( P software is highly reproducible. This tridimensional method yields statistically significant differences in measurements for right lung lobes when compared with planar scintigraphy. We recommend that SPECT/CT-based quantification be used for all lung

  2. Transforming growth factor-β1 induces expression of human coagulation factor XII via Smad3 and JNK signaling pathways in human lung fibroblasts.

    Science.gov (United States)

    Jablonska, Ewa; Markart, Philipp; Zakrzewicz, Dariusz; Preissner, Klaus T; Wygrecka, Malgorzata

    2010-04-09

    Coagulation factor XII (FXII) is a liver-derived serine protease involved in fibrinolysis, coagulation, and inflammation. The regulation of FXII expression is largely unknown. Transforming growth factor-beta1 (TGF-beta1) is a multifunctional cytokine that has been linked to several pathological processes, including tissue fibrosis by modulating procoagulant and fibrinolytic activities. This study investigated whether TGF-beta1 may regulate FXII expression in human lung fibroblasts. Treatment of human lung fibroblasts with TGF-beta1 resulted in a time-dependent increase in FXII production, activation of p44/42, p38, JNK, and Akt, and phosphorylation and translocation into the nucleus of Smad3. However, TGF-beta1-induced FXII expression was repressed only by the JNK inhibitor and JNK and Smad3 antisense oligonucleotides but not by MEK, p38, or phosphoinositide 3-kinase blockers. JNK inhibition had no effect on TGF-beta1-induced Smad3 phosphorylation, association with Smad4, and its translocation into the nucleus but strongly suppressed Smad3-DNA complex formation. FXII promoter analysis revealed that the -299/+1 region was sufficient for TGF-beta1 to induce FXII expression. Sequence analysis of this region detected a potential Smad-binding element at position -272/-269 (SBE-(-272/-269)). Chromatin immunoprecipitation and streptavidin pulldown assays demonstrated TGF-beta1-dependent Smad3 binding to SBE-(-272/-269). Mutation or deletion of SBE-(-272/-269) substantially reduced TGF-beta1-mediated activation of the FXII promoter. Clinical relevance was demonstrated by elevated FXII levels and its co-localization with fibroblasts in the lungs of patients with acute respiratory distress syndrome. Our results show that JNK/Smad3 pathway plays a critical role in TGF-beta1-induced FXII expression in human lung fibroblasts and implicate its possible involvement in pathological conditions characterized by elevated TGF-beta1 levels.

  3. Expression of WNT5A in Idiopathic Pulmonary Fibrosis and Its Control by TGF-β and WNT7B in Human Lung Fibroblasts.

    Science.gov (United States)

    Newman, Donna R; Sills, W Shane; Hanrahan, Katherine; Ziegler, Amanda; Tidd, Kathleen McGinnis; Cook, Elizabeth; Sannes, Philip L

    2016-02-01

    The wingless (Wnt) family of signaling ligands contributes significantly to lung development and is highly expressed in patients with usual interstitial pneumonia (UIP). We sought to define the cellular distribution of Wnt5A in the lung tissue of patients with idiopathic pulmonary fibrosis (IPF) and the signaling ligands that control its expression in human lung fibroblasts and IPF myofibroblasts. Tissue sections from 40 patients diagnosed with IPF or UIP were probed for the immunolocalization of Wnt5A. Further, isolated lung fibroblasts from normal or IPF human lungs, adenovirally transduced for the overexpression or silencing of Wnt7B or treated with TGF-β1 or its inhibitor, were analyzed for Wnt5A protein expression. Wnt5A was expressed in IPF lungs by airway and alveolar epithelium, smooth muscle cells, endothelium, and myofibroblasts of fibroblastic foci and throughout the interstitium. Forced overexpression of Wnt7B with or without TGF-β1 treatment significantly increased Wnt5A protein expression in normal human smooth muscle cells and fibroblasts but not in IPF myofibroblasts where Wnt5A was already highly expressed. The results demonstrate a wide distribution of Wnt5A expression in cells of the IPF lung and reveal that it is significantly increased by Wnt7B and TGF-β1, which, in combination, could represent key signaling pathways that modulate the pathogenesis of IPF. © 2016 The Histochemical Society.

  4. Dynamic-contrast-enhanced magnetic resonance imaging of cirrhotic liver parenchyma: A comparison between gadolinium–diethylenetriamine pentaacetic acid and gadolinium–ethoxybenzyl–diethylenetriamine pentaacetic acid

    Directory of Open Access Journals (Sweden)

    Chun-Yi Lin

    2015-11-01

    Conclusion: The enhancement effect of the liver parenchyma using both MRI contrast agents was not affected by the degree of liver cirrhosis or abnormal liver function. However, it was affected by the serum-bilirubin levels in the Gd–EOB–DTPA-enhanced MRIs. Furthermore, enhancement of the liver was higher when using Gd–EOB–DTPA in the VP, DP, and HP. This knowledge is helpful when performing dynamic MRIs to diagnose focal hepatic lesions in the heterogeneous liver parenchyma.

  5. The effects of collagen-rich extracellular matrix on the intracellular delivery of glycol chitosan nanoparticles in human lung fibroblasts.

    Science.gov (United States)

    Yhee, Ji Young; Yoon, Hong Yeol; Kim, Hyunjoon; Jeon, Sangmin; Hergert, Polla; Im, Jintaek; Panyam, Jayanth; Kim, Kwangmeyung; Nho, Richard Seonghun

    2017-01-01

    Recent progress in nanomedicine has shown a strong possibility of targeted therapy for obstinate chronic lung diseases including idiopathic pulmonary fibrosis (IPF). IPF is a fatal lung disease characterized by persistent fibrotic fibroblasts in response to type I collagen-rich extracellular matrix. As a pathological microenvironment is important in understanding the biological behavior of nanoparticles, in vitro cellular uptake of glycol chitosan nanoparticles (CNPs) in human lung fibroblasts was comparatively studied in the presence or absence of type I collagen matrix. Primary human lung fibroblasts from non-IPF and IPF patients (n=6/group) showed significantly increased cellular uptake of CNPs (>33.6-78.1 times) when they were cultured on collagen matrix. To elucidate the underlying mechanism of enhanced cellular delivery of CNPs in lung fibroblasts on collagen, cells were pretreated with chlorpromazine, genistein, and amiloride to inhibit clathrin-mediated endocytosis, caveolae-mediated endocytosis, and macropinocytosis, respectively. Amiloride pretreatment remarkably reduced the cellular uptake of CNPs, suggesting that lung fibroblasts mainly utilize the macropinocytosis-dependent mechanism when interacted with collagen. In addition, the internalization of CNPs was predominantly suppressed by a phosphoinositide 3-kinase (PI3K) inhibitor in IPF fibroblasts, indicating that enhanced PI3K activity associated with late-stage macropinocytosis can be particularly important for the enhanced cellular delivery of CNPs in IPF fibroblasts. Our study strongly supports the concept that a pathological microenvironment which surrounds lung fibroblasts has a significant impact on the intracellular delivery of nanoparticles. Based on the property of enhanced intracellular delivery of CNPs when fibroblasts are made to interact with a collagen-rich matrix, we suggest that CNPs may have great potential as a drug-carrier system for targeting fibrotic lung fibroblasts.

  6. Recovery from desensitization of IgE-dependent responses in human lung mast cells.

    Science.gov (United States)

    Lewis, A; MacGlashan, D W; Suvarna, S K; Peachell, P T

    2017-08-01

    Clinical desensitization and oral food immunotherapy are therapeutic interventions that allow individuals who react adversely to an allergen (drug or food) to be made tolerant to the allergen. However, tolerance is brief, and allergen hypersensitivity can recur within days following allergen withdrawal. We hypothesize that the reason these treatments are temporary reflects rapid recovery of mast cells from a desensitized state. We sought to test this. Desensitization of IgE-mediated histamine release from human lung mast cells was explored by methods that partially replicate the pattern of treatment during clinical desensitization. Specific and non-specific desensitization and changes in surface IgE were examined following desensitization. Recovery from desensitization was also studied. Desensitization of mast cell responses was readily induced with concentrations of antigen or anti-IgE that were suboptimal for secretion. There was little or no non-specific desensitization when lung mast cells were exposed to antigens. There was no loss of cell surface IgE following desensitization. Removing the desensitizing stimulus from the media following desensitization allowed the cells to recover with half-point of recovery of ~1.5 days and complete recovery after 5 days. Both the functional response and histamine content recovered within this time frame. The recovery appeared possible because both antigens and anti-IgE dissociated rapidly from cells after washing to remove excess stimulus. Human lung mast cells readily recover from a desensitized state following removal of desensitizing antigen. This finding provides a potential explanation for the ephemeral nature of clinical desensitization. © 2017 John Wiley & Sons Ltd.

  7. Lung tissue remodeling in the acute respiratory distress syndrome

    Directory of Open Access Journals (Sweden)

    Souza Alba Barros de

    2003-01-01

    Full Text Available Acute respiratory distress syndrome (ARDS is characterized by diffuse alveolar damage, and evolves progressively with three phases: exsudative, fibroproliferative, and fibrotic. In the exudative phase, there are interstitial and alveolar edemas with hyaline membrane. The fibropro­liferative phase is characterized by exudate organization and fibroelastogenesis. There is proliferation of type II pneumocytes to cover the damaged epithelial surface, followed by differentiation into type I pneumocytes. The fibroproliferative phase starts early, and its severity is related to the patient?s prognosis. The alterations observed in the phenotype of the pulmonary parenchyma cells steer the tissue remodeling towards either progressive fibrosis or the restoration of normal alveolar architecture. The fibrotic phase is characterized by abnormal and excessive deposition of extracellular matrix proteins, mainly collagen. The dynamic control of collagen deposition and degradation is regulated by metalloproteinases and their tissular regulators. The deposition of proteoglycans in the extracellular matrix of ARDS patients needs better study. The regulation of extracellular matrix remodeling, in normal conditions or in several pulmonary diseases, such as ARDS, results from a complex mechanism that integrate the transcription of elements that destroy the matrix protein and produce activation/inhibition of several cellular types of lung tissue. This review article will analyze the ECM organization in ARDS, the different pulmonary parenchyma remodeling mechanisms, and the role of cytokines in the regulation of the different matrix components during the remodeling process.

  8. Low power infrared laser modifies the morphology of lung affected with acute injury induced by sepsis

    Science.gov (United States)

    Sergio, L. P. S.; Trajano, L. A. S. N.; Thomé, A. M. C.; Mencalha, A. L.; Paoli, F.; Fonseca, A. S.

    2018-06-01

    Acute lung injury (ALI) is a potentially fatal disease characterized by uncontrolled hyperinflammatory responses in the lungs as a consequence of sepsis. ALI is divided into two sequential and time-dependent phases, exudative and fibroproliferative phases, with increased permeability of the alveolar barrier, causing edema and inflammation. However, there are no specific treatments for ALI. Low-power lasers have been successfully used in the resolution of acute inflammatory processes. The aim of this study was to evaluate the effects of low-power infrared laser exposure on alveolus and interalveolar septa of Wistar rats affected by ALI-induced by sepsis. Laser fluences, power, and the emission mode were those used in clinical protocols for the treatment of acute inflammation. Adult male Wistar rats were randomized into six groups: control, 10 J cm‑2, 20 J cm‑2, ALI, ALI  +  10 J cm‑2, and ALI  +  20 J cm‑2. ALI was induced by intraperitoneal Escherichia coli lipopolysaccharide (LPS). Lungs were removed and processed for hematoxylin–eosin staining. Morphological alterations induced by LPS in lung tissue were quantified by morphometry with a 32-point cyclic arcs test system in Stepanizer. Data showed that exposure to low-power infrared laser in both fluences reduced the thickening of interalveolar septa in lungs affected by ALI, increasing the alveolar space; however, inflammatory infiltrate was still observed. Our research showed that exposure to low-power infrared laser improves the lung parenchyma in Wistar rats affected by ALI, which could be an alternative approach for treatment of inflammatory lung injuries.

  9. A 3D human tissue-engineered lung model to study influenza A infection.

    Science.gov (United States)

    Bhowmick, Rudra; Derakhshan, Mina; Liang, Yurong; Ritchey, Jerry; Liu, Lin; Gappa-Fahlenkamp, Heather

    2018-05-05

    Influenza A virus (IAV) claims approximately 250,000-500,000 lives annually worldwide. Currently, there are a few in vitro models available to study IAV immunopathology. Monolayer cultures of cell lines and primary lung cells (2D cell culture) is the most commonly used tool, however, this system does not have the in vivo-like structure of the lung and immune responses to IAV as it lacks the three-dimensional (3D) tissue structure. To recapitulate the lung physiology in vitro, a system that contains multiple cell types within a 3D environment that allows cell movement and interaction, would provide a critical tool. In this study, as a first step in designing a 3D-Human Tissue-Engineering Lung Model (3D-HTLM), we described the 3D culture of primary human small airway epithelial cells (HSAEpCs), and determined the immunophenotype of this system in response to IAV infections. We constructed a 3D chitosan-collagen scaffold and cultured HSAEpCs on these scaffolds at air-liquid interface (ALI). These 3D cultures were compared with 2D-cultured HSAEpCs for viability, morphology, marker protein expression, and cell differentiation. Results showed that the 3D-cultured HSAEpCs at ALI yielded maximum viable cells and morphologically resembled the in vivo lower airway epithelium. There were also significant increases in aquaporin-5 and cytokeratin-14 expression for HSAEpCs cultured in 3D compared to 2D. The 3D culture system was used to study the infection of HSAEpCs with two major IAV strains, H1N1 and H3N2.The HSAEpCs showed distinct changes in marker protein expression, both at mRNA and protein levels, and the release of proinflammatory cytokines. This study is the first step in the development of the 3D-HTLM, which will have wide applicability in studying pulmonary pathophysiology and therapeutics development.

  10. Cigarette smoke exposure inhibits extracellular MMP-2 (gelatinase A activity in human lung fibroblasts

    Directory of Open Access Journals (Sweden)

    Cappello Francesco

    2007-03-01

    Full Text Available Abstract Background Exposure to cigarette smoke is considered a major risk factor for the development of lung diseases, since its causative role has been assessed in the induction and maintenance of an inflamed state in the airways. Lung fibroblasts can contribute to these processes, due to their ability to produce proinflammatory chemotactic molecules and extracellular matrix remodelling proteinases. Among proteolytic enzymes, gelatinases A and B have been studied for their role in tissue breakdown and mobilisation of matrix-derived signalling molecules. Multiple reports linked gelatinase deregulation and overexpression to the development of inflammatory chronic lung diseases such as COPD. Methods In this study we aimed to determine variations in the gelatinolytic pattern of human lung fibroblasts (HFL-1 cell line exposed to cigarette smoke extract (CSE. Gelatinolytic activity levels were determined by using gelatin zymography for the in-gel detection of the enzymes (proenzyme and activated forms, and the subsequent semi-quantitative densitometric evaluation of lytic bands. Expression of gelatinases was evaluated also by RT-PCR, zymography of the cell lysates and by western blotting. Results CSE exposure at the doses used (1–10% did not exert any significant cytotoxic effects on fibroblasts. Zymographic analysis showed that CSE exposure resulted in a linear decrease of the activity of gelatinase A. Control experiments allowed excluding a direct inhibitory effect of CSE on gelatinases. Zymography of cell lysates confirmed the expression of MMP-2 in all conditions. Semi-quantitative evaluation of mRNA expression allowed assessing a reduced transcription of the enzyme, as well as an increase in the expression of TIMP-2. Statistical analyses showed that the decrease of MMP-2 activity in conditioned media reached the statistical significance (p = 0.0031 for 24 h and p = 0.0012 for 48 h, while correlation analysis showed that this result was

  11. Effect of Flavopiridol on Radiation-induced Apoptosis of Human Laryngeal and Lung Cancer Cells

    International Nuclear Information System (INIS)

    Kim, Suzy; Kwon, Eun Kyung; Lee, B. S.; Lee, Seung Hee; Park, B. S.; Wu, Hong Gyun

    2007-01-01

    Purpose: To investigate the flavopiridol effect on radiation-induced apoptosis and expression of apoptosisrelated genes of human laryngeal and lung cancer cells. Materials and Methods: A human laryngeal cancer cell line, AMC-HN3 and a human lung cancer cell line, NCI-H460, were used in the study. The cells were divided into four groups according to the type of treatment: 1) control groups; 2) cells that were only irradiated; 3) cells treated only with flavopiridol; 4) cells treated with flavopiridol and radiation simultaneously. The cells were irradiated with 10 Gy of X-rays using a 4 MV linear accelerator. Flavopiridol was administered to the media at a concentration of 100 nM for 24 hours. We compared the fraction of apoptotic cells of each group 24 hours after the initiation of treatment. The fraction of apoptotic cells was detected by measurement of the sub-G1 fractions from a flow cytometric analysis. The expression of apoptosis-regulating genes, including cleaved caspase-3, cleaved PARP (poly (ADP-ribose) polymerase), p53, p21, cyclin D1, and phosphorylated Akt (protein kinase B) were analyzed by Western blotting. Results: The sub-G1 fraction of cells was significantly increased in the combination treatment group, as compared to cells exposed to radiation alone or flavopiridol alone. Western blotting also showed an increased expression of cleaved caspase-3 and cleaved PARP expression in cells of the combination treatment group, as compared with cells exposed to radiation alone or flavopiridol alone. Treatment with flavopiridol down regulated cyclin D1 expression of both cell lines but its effect on p53 and p21 expression was different according to each individual cell line. Flavopiridol did not affect the expression of phophorylated Akt in both cell lines. Conclusion: Treatment with flavopiridol increased radiation-induced apoptosis of both the human laryngeal and lung cancer cell lines. Flavopiridol effects on p53 and p21 expression were different according

  12. Pharmacological studies of the lung with PET

    International Nuclear Information System (INIS)

    Syrota, A.

    1986-10-01

    Positron emission tomography (PET), known to be used for lung ventilation and perfusion studies, can also be used in pharmacology to obtain information that is otherwise not available. The lung takes up biologically active substances which can be inactivated or activated, and synthesises and releases others. Such information in man has been obtained from samples of human lungs, or from in vivo first-pass studies, invasive or not, as well as from in vivo kinetic studies using external detection methods with scintillation cameras. PET provides now quantitative regional data in the human lung

  13. Dissection of lung parenchyma using electrocautery is a safe and acceptable method for anatomical sublobar resection.

    Science.gov (United States)

    Ohtsuka, Takashi; Goto, Taichiro; Anraku, Masaki; Kohno, Mitsutomo; Izumi, Yotaro; Horinouchi, Hirohisa; Nomori, Hiroaki

    2012-05-03

    Anatomic sublobar resection is being assessed as a substitute to lobectomy for primary lung cancers. However, persistent air leak after anatomic sublobar resection is prevalent and increasing surgical morbidity and costs. The use of electrocautery is being popularized recently in anatomic sublobar resection. We have retrospectively evaluated the safety and efficacy of intersegmental plane dissection using electrocautery. Between April 2009 to September 2010, 47 patients were treated with segmentectomy for clinical T1N0M0 non-small cell lung cancers. The intersegmental plane was dissected using electrocautery alone or in combination with staplers. We evaluated the methods of dividing intersegmental plane (electrocautery alone or combination with electrocautery and staplers), intraoperative blood loss, duration of chest tube placement, duration of surgery, preoperative FEV1.0%, incidence of prolonged air leak, length of postoperative hospital stay, postoperative pulmonary function at 6 months after surgery and the cost for sealing intersegmental plane. Among the 47 patients, 22 patients underwent intersegmental plane dissection with electrocautery alone and 25 patients did in combination with electrocautery and staplers. The mean number of stapler cartridges used was only 1.3 in electrocautery and staplers group. Mean age, gender, number of patients whose FEV1% electrocautery alone and combination with electrocautery and staplers group in duration of surgery (282 vs. 290 minutes), intraoperative blood loss (203 vs.151 ml), duration of chest tube placement (3.2 vs. 3.1 days), postoperative hospital stay (11.0 vs.10.0 days), postoperative loss of FEV1.0 (13 vs.8 %), loss of FVC (11 vs. 6 %) or incidence of minor postoperative complications [9 % (2/22) vs. 16 % (4/25), p = 0.30)]. However, incidence of prolonged air leak was higher in electrocautery alone group than in combination with electrocautery and staplers group [14 % (3/22) vs. 4 % (1/25), p = 0.025)]. The

  14. Interstitial lung disease associated with Equine Infectious Anemia Virus infection in horses.

    Science.gov (United States)

    Bolfa, Pompei; Nolf, Marie; Cadoré, Jean-Luc; Catoi, Cornel; Archer, Fabienne; Dolmazon, Christine; Mornex, Jean-François; Leroux, Caroline

    2013-12-01

    EIA (Equine Infectious Anemia) is a blood-borne disease primarily transmitted by haematophagous insects or needle punctures. Other routes of transmission have been poorly explored. We evaluated the potential of EIAV (Equine Infectious Anemia Virus) to induce pulmonary lesions in naturally infected equids. Lungs from 77 EIAV seropositive horses have been collected in Romania and France. Three types of lesions have been scored on paraffin-embedded lungs: lymphocyte infiltration, bronchiolar inflammation, and thickness of the alveolar septa. Expression of the p26 EIAV capsid (CA) protein has been evaluated by immunostaining. Compared to EIAV-negative horses, 52% of the EIAV-positive horses displayed a mild inflammation around the bronchioles, 22% had a moderate inflammation with inflammatory cells inside the wall and epithelial bronchiolar hyperplasia and 6.5% had a moderate to severe inflammation, with destruction of the bronchiolar epithelium and accumulation of smooth muscle cells within the pulmonary parenchyma. Changes in the thickness of the alveolar septa were also present. Expression of EIAV capsid has been evidenced in macrophages, endothelial as well as in alveolar and bronchiolar epithelial cells, as determined by their morphology and localization. To summarize, we found lesions of interstitial lung disease similar to that observed during other lentiviral infections such as FIV in cats, SRLV in sheep and goats or HIV in children. The presence of EIAV capsid in lung epithelial cells suggests that EIAV might be responsible for the broncho-interstitial damages observed.

  15. MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment.

    Science.gov (United States)

    Dorhoi, Anca; Iannaccone, Marco; Farinacci, Maura; Faé, Kellen C; Schreiber, Jörg; Moura-Alves, Pedro; Nouailles, Geraldine; Mollenkopf, Hans-Joachim; Oberbeck-Müller, Dagmar; Jörg, Sabine; Heinemann, Ellen; Hahnke, Karin; Löwe, Delia; Del Nonno, Franca; Goletti, Delia; Capparelli, Rosanna; Kaufmann, Stefan H E

    2013-11-01

    The molecular mechanisms that control innate immune cell trafficking during chronic infection and inflammation, such as in tuberculosis (TB), are incompletely understood. During active TB, myeloid cells infiltrate the lung and sustain local inflammation. While the chemoattractants that orchestrate these processes are increasingly recognized, the posttranscriptional events that dictate their availability are unclear. We identified microRNA-223 (miR-223) as an upregulated small noncoding RNA in blood and lung parenchyma of TB patients and during murine TB. Deletion of miR-223 rendered TB-resistant mice highly susceptible to acute lung infection. The lethality of miR-223(–/–) mice was apparently not due to defects in antimycobacterial T cell responses. Exacerbated TB in miR-223(–/–) animals could be partially reversed by neutralization of CXCL2, CCL3, and IL-6, by mAb depletion of neutrophils, and by genetic deletion of Cxcr2. We found that miR-223 controlled lung recruitment of myeloid cells, and consequently, neutrophil-driven lethal inflammation. We conclude that miR-223 directly targets the chemoattractants CXCL2, CCL3, and IL-6 in myeloid cells. Our study not only reveals an essential role for a single miRNA in TB, it also identifies new targets for, and assigns biological functions to, miR-223. By regulating leukocyte chemotaxis via chemoattractants, miR-223 is critical for the control of TB and potentially other chronic inflammatory diseases.

  16. Aptamer based electrochemical sensor for detection of human lung adenocarcinoma A549 cells

    Science.gov (United States)

    Sharma, Rachna; Varun Agrawal, Ved; Sharma, Pradeep; Varshney, R.; Sinha, R. K.; Malhotra, B. D.

    2012-04-01

    We report results of the studies relating to development of an aptamer-based electrochemical biosensor for detection of human lung adenocarcinoma A549 cells. The aminated 85-mer DNA aptamer probe specific for the A549 cells has been covalently immobilized onto silane self assembled monolayer (SAM) onto ITO surface using glutaraldehyde as the crosslinker. The results of cyclic voltammetry and differential pulse voltammetry studies reveal that the aptamer functionalized bioelectrode can specifically detect lung cancer cells in the concentration range of 103 to 107 cells/ml with detection limit of 103 cells/ml within 60 s. The specificity studies of the bioelectrode have been carried out with control KB cells. No significant change in response is observed for control KB cells as compared to that of the A549 target cells.

  17. Comparative Proteomic Analysis of Human Lung Adenocarcinoma Cisplatin-resistant Cell Strain A549/CDDP

    Directory of Open Access Journals (Sweden)

    Sien SHI

    2009-11-01

    Full Text Available Background and objective Chemotherapy plays an important role in the comprehensive therapy of lung cancer. However, the drug-resistance often causes the failure of the chemotherapy. The aim of this study is to identify differently expressed protein before and after cisplatin resistance of human lung adenocarcinoma cell A549 by proteomic analysis. Methods Cisplatin-resistant cell strain A549/CDDP was established by combining gradually increasing concentration of cisplatin with large dosage impact. Comparative proteomic analysis of A549 and A549/CDDP were carried out by means of two-dimensional gel electrophoresis. The differentially expressed proteins were detected and identified by MALDI-TOF mass spectrometry. Results Eighty-two differentially expressed proteins were screened by analysis the electrophoretic maps of A549 and A549/CDDP. Six differential proteins were analyzed by peptide mass fingerprinting. Glucose regulating protein 75, ribosomal protein S4, mitochondrial ATP synthase F1 complex beta subunit and immunoglobulin heavy chain variable region were identified. All four differentially expressed proteins were over-expressed in A549/CDDP, whereas low-expressed or no-expressed in A549. Conclusion These differentially expressed proteins give some clues to elucidate the mechanism of lung cancer cell resistant of cisplatin, providing the basis of searching for potential target of chemotherapy of lung cancer.

  18. Influence of gamma radiation on the growth and metabolism ''in vitro'' culture of potato parenchyma

    International Nuclear Information System (INIS)

    Fernandez Gonzalez, J.; Mazon Matanzo, M.P.

    1977-01-01

    The growth ''in vitro'' of the parenchyma tissues coming from control and irradiated potato tubers with doses of 3, 6, 9 and 12 Krad. is studied. At the end of a four months' cultivation period the cellular proliferation, respiratory activity, content in ascorbic acid, conductivity, and pH was studied. Some differences between control and irradiated tissues were observed. (author) [es

  19. Influence of gamma radiation on the growth and metabolism in vitro culture of potato parenchyma

    International Nuclear Information System (INIS)

    Fernandez Gonzalez, J.; Mazon Matanzo, M. P.

    1977-01-01

    The present work studies the growth in vitro of the parenchyma tissues coming from control and irradiated potato tubers with doses of 3, 6, 9 and 12 Krad. At the end of a four months cultivation period the cellular proliferation, respiratory activity, content in ascorbic acid, conductivity and ph was studied. Some differences between control and irradiated tissues were observed. (Author) 22 refs

  20. Compound K induced apoptosis via endoplasmic reticulum Ca2+ release through ryanodine receptor in human lung cancer cells

    Directory of Open Access Journals (Sweden)

    Dong-Hyun Shin

    2018-04-01

    Full Text Available Background: Extended endoplasmic reticulum (ER stress may initiate apoptotic pathways in cancer cells, and ER stress has been reported to possibly increase tumor death in cancer therapy. We previously reported that caspase-8 played an important role in compound K-induced apoptosis via activation of caspase-3 directly or indirectly through Bid cleavage, cytochrome c release, and caspase-9 activation in HL-60 human leukemia cells. The mechanisms leading to apoptosis in A549 and SK-MES-1 human lung cancer cells and the role of ER stress have not yet been understood. Methods: The apoptotic effects of compound K were analyzed using flow cytometry, and the changes in protein levels were determined using Western blot analysis. The intracellular calcium levels were monitored by staining with Fura-2/AM and Fluo-3/AM. Results: Compound K-induced ER stress was confirmed through increased phosphorylation of eIF2α and protein levels of GRP78/BiP, XBP-1S, and IRE1α in human lung cancer cells. Moreover, compound-K led to the accumulation of intracellular calcium and an increase in m-calpain activities that were both significantly inhibited by pretreatment either with BAPTA-AM (an intracellular Ca2+ chelator or dantrolene (an RyR channel antagonist. These results were correlated with the outcome that compound K induced ER stress-related apoptosis through caspase-12, as z-ATAD-fmk (a specific inhibitor of caspase-12 partially ameliorated this effect. Interestingly, 4-PBA (ER stress inhibitor dramatically improved the compound K-induced apoptosis. Conclusion: Cell survival and intracellular Ca2+ homeostasis during ER stress in human lung cancer cells are important factors in the induction of the compound K-induced apoptotic pathway. Keywords: apoptosis, calcium, compound K, ER stress, lung cancer cells

  1. Mast cells in the human lung at high altitude

    Science.gov (United States)

    Heath, Donald

    1992-12-01

    Mast cell densities in the lung were measured in five native highlanders of La Paz (3600 m) and in one lowlander dying from high-altitude pulmonary oedema (HAPO) at 3440 m. Two of the highlanders were mestizos with normal pulmonary arteries and the others were Aymara Indians with muscular remodelling of their pulmonary vasculature. The aim of the investigation was to determine if accumulation of mast cells in the lung at high altitude (HA) is related to alveolar hypoxia alone, to a combination of hypoxia and muscularization of the pulmonary arterial tree, or to oedema of the lung. The lungs of four lowlanders were used as normoxic controls. The results showed that the mast cell density of the two Mestizos was in the normal range of lowlanders (0.6-8.8 cells/mm2). In the Aymara Indians the mast cell counts were raised (25.6-26.0 cells/mm2). In the lowlander dying from HAPO the mast cell count was greatly raised to 70.1 cells/mm2 lung tissue. The results show that in native highlanders an accumulation of mast cells in the lung is not related to hypoxia alone but to a combination of hypoxia and muscular remodelling of the pulmonary arteries. However, the most potent cause of increased mast cell density in the lung at high altitude appears to be high-altitude pulmonary oedema.

  2. Impact of Cigarette Smoke on the Human and Mouse Lungs : A Gene-Expression Comparison Study

    NARCIS (Netherlands)

    Morissette, Mathieu C.; Lamontagne, Maxime; Berube, Jean-Christophe; Gaschler, Gordon; Williams, Andrew; Yauk, Carole; Couture, Christian; Laviolette, Michel; Hogg, James C.; Timens, Wim; Halappanavar, Sabina; Stampfli, Martin R.; Bosse, Yohan

    2014-01-01

    Cigarette smoke is well known for its adverse effects on human health, especially on the lungs. Basic research is essential to identify the mechanisms involved in the development of cigarette smoke-related diseases, but translation of new findings from pre-clinical models to the clinic remains

  3. A Catalog of Genes Homozygously Deleted in Human Lung Cancer and the Candidacy of PTPRD as a Tumor Suppressor Gene

    Science.gov (United States)

    Kohno, Takashi; Otsuka, Ayaka; Girard, Luc; Sato, Masanori; Iwakawa, Reika; Ogiwara, Hideaki; Sanchez-Cespedes, Montse; Minna, John D.; Yokota, Jun

    2010-01-01

    A total of 176 genes homozygously deleted in human lung cancer were identified by DNA array-based whole genome scanning of 52 lung cancer cell lines and subsequent genomic PCR in 74 cell lines, including the 52 cell lines scanned. One or more exons of these genes were homozygously deleted in one (1%) to 20 (27%) cell lines. These genes included known tumor suppressor genes, e.g., CDKN2A/p16, RB1, and SMAD4, and candidate tumor suppressor genes whose hemizygous or homozygous deletions were reported in several types of human cancers, such as FHIT, KEAP1, and LRP1B/LRP-DIP. CDKN2A/p16 and p14ARF located in 9p21 were most frequently deleted (20/74, 27%). The PTPRD gene was most frequently deleted (8/74, 11%) among genes mapping to regions other than 9p21. Somatic mutations, including a nonsense mutation, of the PTPRD gene were detected in 8/74 (11%) of cell lines and 4/95 (4%) of surgical specimens of lung cancer. Reduced PTPRD expression was observed in the majority (>80%) of cell lines and surgical specimens of lung cancer. Therefore, PTPRD is a candidate tumor suppressor gene in lung cancer. Microarray-based expression profiling of 19 lung cancer cell lines also indicated that some of the 176 genes, such as KANK and ADAMTS1, are preferentially inactivated by epigenetic alterations. Genetic/epigenetic as well as functional studies of these 176 genes will increase our understanding of molecular mechanisms behind lung carcinogenesis. PMID:20073072

  4. An automatic extraction algorithm of three dimensional shape of brain parenchyma from MR images

    International Nuclear Information System (INIS)

    Matozaki, Takeshi

    2000-01-01

    For the simulation of surgical operations, the extraction of the selected region using MR images is useful. However, this segmentation requires a high level of skill and experience from the technicians. We have developed an unique automatic extraction algorithm for extracting three dimensional brain parenchyma using MR head images. It is named the ''three dimensional gray scale clumsy painter method''. In this method, a template having the shape of a pseudo-circle, a so called clumsy painter (CP), moves along the contour of the selected region and extracts the region surrounded by the contour. This method has advantages compared with the morphological filtering and the region growing method. Previously, this method was applied to binary images, but there were some problems in that the results of the extractions were varied by the value of the threshold level. We introduced gray level information of images to decide the threshold, and depend upon the change of image density between the brain parenchyma and CSF. We decided the threshold level by the vector of a map of templates, and changed the map according to the change of image density. As a result, the over extracted ratio was improved by 36%, and the under extracted ratio was improved by 20%. (author)

  5. First Insights into the Diverse Human Archaeome: Specific Detection of Archaea in the Gastrointestinal Tract, Lung, and Nose and on Skin

    Directory of Open Access Journals (Sweden)

    Kaisa Koskinen

    2017-11-01

    Full Text Available Human-associated archaea remain understudied in the field of microbiome research, although in particular methanogenic archaea were found to be regular commensals of the human gut, where they represent keystone species in metabolic processes. Knowledge on the abundance and diversity of human-associated archaea is extremely limited, and little is known about their function(s, their overall role in human health, or their association with parts of the human body other than the gastrointestinal tract and oral cavity. Currently, methodological issues impede the full assessment of the human archaeome, as bacteria-targeting protocols are unsuitable for characterization of the full spectrum of Archaea. The goal of this study was to establish conservative protocols based on specifically archaea-targeting, PCR-based methods to retrieve first insights into the archaeomes of the human gastrointestinal tract, lung, nose, and skin. Detection of Archaea was highly dependent on primer selection and the sequence processing pipeline used. Our results enabled us to retrieve a novel picture of the human archaeome, as we found for the first time Methanobacterium and Woesearchaeota (DPANN superphylum to be associated with the human gastrointestinal tract and the human lung, respectively. Similar to bacteria, human-associated archaeal communities were found to group biogeographically, forming (i the thaumarchaeal skin landscape, (ii the (methanoeuryarchaeal gastrointestinal tract, (iii a mixed skin-gastrointestinal tract landscape for the nose, and (iv a woesearchaeal lung landscape. On the basis of the protocols we used, we were able to detect unexpectedly high diversity of archaea associated with different body parts.

  6. Chlorobenzene induces oxidative stress in human lung epithelial cells in vitro

    International Nuclear Information System (INIS)

    Feltens, Ralph; Moegel, Iljana; Roeder-Stolinski, Carmen; Simon, Jan-Christoph; Herberth, Gunda; Lehmann, Irina

    2010-01-01

    Chlorobenzene is a volatile organic compound (VOC) that is widely used as a solvent, degreasing agent and chemical intermediate in many industrial settings. Occupational studies have shown that acute and chronic exposure to chlorobenzene can cause irritation of the mucosa of the upper respiratory tract and eyes. Using in vitro assays, we have shown in a previous study that human bronchial epithelial cells release inflammatory mediators such as the cytokine monocyte chemoattractant protein-1 (MCP-1) in response to chlorobenzene. This response is mediated through the NF-κB signaling pathway. Here, we investigated the effects of monochlorobenzene on human lung cells, with emphasis on potential alterations of the redox equilibrium to clarify whether the chlorobenzene-induced inflammatory response in lung epithelial cells is caused via an oxidative stress-dependent mechanism. We found that expression of cellular markers for oxidative stress, such as heme oxygenase 1 (HO-1), glutathione S-transferase π1 (GSTP1), superoxide dismutase 1 (SOD1), prostaglandin-endoperoxide synthase 2 (PTGS2) and dual specificity phosphatase 1 (DUSP1), were elevated in the presence of monochlorobenzene. Likewise, intracellular reactive oxygen species (ROS) were increased in response to exposure. However, in the presence of the antioxidants N-(2-mercaptopropionyl)-glycine (MPG) or bucillamine, chlorobenzene-induced upregulation of marker proteins and release of the inflammatory mediator MCP-1 are suppressed. These results complement our previous findings and point to an oxidative stress-mediated inflammatory response following chlorobenzene exposure.

  7. Radioaerosol Inhalation Lung Scan in Pulmonary Emphysema

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jeong Soo; Park, Yong Ha; Kyo, Chung Soo; Bahk, Yong Whee [Catholic University College of Medicine, Seoul (Korea, Republic of)

    1990-07-15

    Perfusion and ventilation imagings of the lung are well established procedure for diagnosing pulmonary embolism, differentiation it from chronic obstructive lung disease, and making an early detection of chronic obstructive lung disease. To evaluate the usefulness of radioaerosol inhalation imaging (RII) in chronic obstructive lung disease, especially pulmonary emphysema, we analyzed RIIs of five normal adult non-smokers, five asymptomatic smokers (age 25-42 years with the mean 36), and 21 patients with pulmonary emphysema (age 59-78 years with the mean 67). Scintigrams were obtained with radioaerosol produced by a BARC nebuliser with 15 mCi of {sup 99m}Tc-phytate. Scanning was performed in the anterior, posterior, and lateral projections after five to 10-minute inhalation of the radioaerosol on sitting position. The scans were analyzed and correlated with the results of pulmonary function studies and chest radiographs. Also lung perfusion scan with {sup 99m}Tc-MAA was performed in 12 patients. In five patients, we performed follow-up scans for the evaluation of the effects of a bronchodilator. Based on the X-ray findings and clinical symptoms, pulmonary emphysema was classified into four types: centrilobular (3 patients), panlobular (4 patients), intermediate (10 patients), and combined (4 patients). RII findings were patternized according to the type, extent, and intensity of the aerosol deposition in the central bronchial and bronchopulmonary system and lung parenchyma. 10 controls, normal five non-smokers and three asymptomatic smokers revealed homogeneous parenchymal deposition in the entire lung fields without central bronchial deposition. The remaining two of asymptomatic smokers revealed mild central airway deposition. The great majority of the patients showed either central (9/21) or combined type (10/21) of bronchopulmonary deposition and the remaining two patients peripheral bronchopulmonary deposition. Parenchymal aerosol deposition in pulmonary

  8. Radioaerosol Inhalation Lung Scan in Pulmonary Emphysema

    International Nuclear Information System (INIS)

    Jeon, Jeong Soo; Park, Yong Ha; Chung Soo Kyo; Bahk, Yong Whee

    1990-01-01

    Perfusion and ventilation imagings of the lung are well established procedure for diagnosing pulmonary embolism, differentiation it from chronic obstructive lung disease, and making an early detection of chronic obstructive lung disease. To evaluate the usefulness of radioaerosol inhalation imaging (RII) in chronic obstructive lung disease, especially pulmonary emphysema, we analyzed RIIs of five normal adult non-smokers, five asymptomatic smokers (age 25-42 years with the mean 36), and 21 patients with pulmonary emphysema (age 59-78 years with the mean 67). Scintigrams were obtained with radioaerosol produced by a BARC nebuliser with 15 mCi of 99m Tc-phytate. Scanning was performed in the anterior, posterior, and lateral projections after five to 10-minute inhalation of the radioaerosol on sitting position. The scans were analyzed and correlated with the results of pulmonary function studies and chest radiographs. Also lung perfusion scan with 99m Tc-MAA was performed in 12 patients. In five patients, we performed follow-up scans for the evaluation of the effects of a bronchodilator. Based on the X-ray findings and clinical symptoms, pulmonary emphysema was classified into four types: centrilobular (3 patients), panlobular (4 patients), intermediate (10 patients), and combined (4 patients). RII findings were patternized according to the type, extent, and intensity of the aerosol deposition in the central bronchial and bronchopulmonary system and lung parenchyma. 10 controls, normal five non-smokers and three asymptomatic smokers revealed homogeneous parenchymal deposition in the entire lung fields without central bronchial deposition. The remaining two of asymptomatic smokers revealed mild central airway deposition. The great majority of the patients showed either central (9/21) or combined type (10/21) of bronchopulmonary deposition and the remaining two patients peripheral bronchopulmonary deposition. Parenchymal aerosol deposition in pulmonary emphysema was

  9. Hypoxia-Induced Collagen Synthesis of Human Lung Fibroblasts by Activating the Angiotensin System

    Directory of Open Access Journals (Sweden)

    Shan-Shan Liu

    2013-12-01

    Full Text Available The exact molecular mechanism that mediates hypoxia-induced pulmonary fibrosis needs to be further clarified. The aim of this study was to explore the effect and underlying mechanism of angiotensin II (Ang II on collagen synthesis in hypoxic human lung fibroblast (HLF cells. The HLF-1 cell line was used for in vitro studies. Angiotensinogen (AGT, angiotensin converting enzyme (ACE, angiotensin II type 1 receptor (AT1R and angiotensin II type 2 receptor (AT2R expression levels in human lung fibroblasts were analysed using real-time polymerase chain reaction (RT-PCR after hypoxic treatment. Additionally, the collagen type I (Col-I, AT1R and nuclear factor κappaB (NF-κB protein expression levels were detected using Western blot analysis, and NF-κB nuclear translocation was measured using immunofluorescence localization analysis. Ang II levels in HLF-1 cells were measured with an enzyme-linked immunosorbent assay (ELISA. We found that hypoxia increased Col-I mRNA and protein expression in HLF-1 cells, and this effect could be inhibited by an AT1R or AT2R inhibitor. The levels of NF-κB, RAS components and Ang II production in HLF-1 cells were significantly increased after the hypoxia exposure. Hypoxia or Ang II increased NF-κB-p50 protein expression in HLF-1 cells, and the special effect could be inhibited by telmisartan (TST, an AT1R inhibitor, and partially inhibited by PD123319, an AT2R inhibitor. Importantly, hypoxia-induced NF-κB nuclear translocation could be nearly completely inhibited by an AT1R or AT2R inhibitor. Furthermore pyrrolidine dithiocarbamate (PDTC, a NF-κB blocker, abolished the expression of hypoxia-induced AT1R and Col-I in HLF-1 cells. Our results indicate that Ang II-mediated NF-κB signalling via ATR is involved in hypoxia-induced collagen synthesis in human lung fibroblasts.

  10. Ultrasound-mediated delivery and distribution of polymeric nanoparticles in the normal brain parenchyma of a metastatic brain tumour model.

    Directory of Open Access Journals (Sweden)

    Habib Baghirov

    Full Text Available The treatment of brain diseases is hindered by the blood-brain barrier (BBB preventing most drugs from entering the brain. Focused ultrasound (FUS with microbubbles can open the BBB safely and reversibly. Systemic drug injection might induce toxicity, but encapsulation into nanoparticles reduces accumulation in normal tissue. Here we used a novel platform based on poly(2-ethyl-butyl cyanoacrylate nanoparticle-stabilized microbubbles to permeabilize the BBB in a melanoma brain metastasis model. With a dual-frequency ultrasound transducer generating FUS at 1.1 MHz and 7.8 MHz, we opened the BBB using nanoparticle-microbubbles and low-frequency FUS, and applied high-frequency FUS to generate acoustic radiation force and push nanoparticles through the extracellular matrix. Using confocal microscopy and image analysis, we quantified nanoparticle extravasation and distribution in the brain parenchyma. We also evaluated haemorrhage, as well as the expression of P-glycoprotein, a key BBB component. FUS and microbubbles distributed nanoparticles in the brain parenchyma, and the distribution depended on the extent of BBB opening. The results from acoustic radiation force were not conclusive, but in a few animals some effect could be detected. P-glycoprotein was not significantly altered immediately after sonication. In summary, FUS with our nanoparticle-stabilized microbubbles can achieve accumulation and displacement of nanoparticles in the brain parenchyma.

  11. Ultrasound-mediated delivery and distribution of polymeric nanoparticles in the normal brain parenchyma of a metastatic brain tumour model

    Science.gov (United States)

    Baghirov, Habib; Snipstad, Sofie; Sulheim, Einar; Berg, Sigrid; Hansen, Rune; Thorsen, Frits; Mørch, Yrr; Åslund, Andreas K. O.

    2018-01-01

    The treatment of brain diseases is hindered by the blood-brain barrier (BBB) preventing most drugs from entering the brain. Focused ultrasound (FUS) with microbubbles can open the BBB safely and reversibly. Systemic drug injection might induce toxicity, but encapsulation into nanoparticles reduces accumulation in normal tissue. Here we used a novel platform based on poly(2-ethyl-butyl cyanoacrylate) nanoparticle-stabilized microbubbles to permeabilize the BBB in a melanoma brain metastasis model. With a dual-frequency ultrasound transducer generating FUS at 1.1 MHz and 7.8 MHz, we opened the BBB using nanoparticle-microbubbles and low-frequency FUS, and applied high-frequency FUS to generate acoustic radiation force and push nanoparticles through the extracellular matrix. Using confocal microscopy and image analysis, we quantified nanoparticle extravasation and distribution in the brain parenchyma. We also evaluated haemorrhage, as well as the expression of P-glycoprotein, a key BBB component. FUS and microbubbles distributed nanoparticles in the brain parenchyma, and the distribution depended on the extent of BBB opening. The results from acoustic radiation force were not conclusive, but in a few animals some effect could be detected. P-glycoprotein was not significantly altered immediately after sonication. In summary, FUS with our nanoparticle-stabilized microbubbles can achieve accumulation and displacement of nanoparticles in the brain parenchyma. PMID:29338016

  12. Lectin enhancement of the lipofection efficiency in human lung carcinoma cells.

    Science.gov (United States)

    Yanagihara, K; Cheng, P W

    1999-10-18

    Poor transfection efficiency of human lung carcinoma cells by lipofection begs further development of more efficient gene delivery strategies. The purpose of this study was to determine whether lectins can improve the lipofection efficiency in lung carcinoma cells. A549, Calu3, and H292 cells grown to 90% confluence were transfected for 18 h with a plasmid DNA containing a beta-galactosidase reporter gene (pCMVlacZ) using lipofectin plus a lectin as the vector. Ten different lectins, which exhibit a wide range of carbohydrate-binding specificities, were examined for their abilities to enhance the efficiency of lipofection. The transfected cells were assessed for transfection efficiency by beta-galactosidase activity (units/microg protein) and % blue cells following X-Gal stain. Lipofectin supplemented with Griffonia simplicifolia-I (GS-I) yields largest enhancement of the lipofection efficiency in A549 and Calu3 cells (5.3- and 28-fold, respectively). Maackia amurensis gives the largest enhancement (6.5-fold) of lipofection efficiency in H292 cells. The transfection efficiency correlates with the amounts of DNA delivered to the nucleus. Binding of FITC-labeled GS-I and the enhancement of the lipofection efficiency by GS-I were inhibited by alpha-methyl-D-galactopyranoside, indicating an alpha-galactoside-mediated gene transfer to lung carcinoma cells. We conclude that lectin-facilitated lipofection is an efficient gene delivery strategy. Employment of cell type-specific lectins may allow for efficient cell type-specific gene targeting.

  13. Evaluation of Lung Function in Liver Transplant Candidates.

    Science.gov (United States)

    Roque, L; Sankarankutty, A K; Silva, O C; Mente, E D

    2018-04-01

    A wide variety of pulmonary conditions are found in cirrhotic patients and may compromise the pleura, diaphragm, parenchyma, and pulmonary vasculature, influencing the results of liver transplantation. To evaluate the pulmonary function (lung capacities, volumes, and gasometric study) of patients with liver cirrhosis awaiting liver transplantation. Cirrhotic patients, subdivided into 3 groups stratified by liver disease severity using the Child-Pugh-Turcotte score, were compared with a control group of healthy volunteers. In spirometry, the parameters evaluated were total lung capacity, forced volume in the first second, and the relationship between forced volume in the first minute and forced vital capacity. Blood gas analysis was performed. In the control group, arterial oxygenation was evaluated by peripheral oxygen saturation by pulse oximetry. Of the 55 patients (75% men, 51 ± 12.77 years), 11 were Child A (73% men, 52 ± 14.01 years), 23 were Child B (75% men, 51 ± 12.77 years), and 21 were Child C (95% men, 50 ± 12.09 years). The control group had 20 individuals (50% men, 47 ± 8.15 years). Pulmonary capacities and volumes by the parameters evaluated were within the normal range. Arterial blood gas analysis detected no hypoxemia, but a tendency to low partial gas pressure was noted. In this population of cirrhotic patients the parameters of spirometry were normal in relation to the lung capacities and volumes in the different groups. No hypoxemia was detected, but a tendency to hypocapnia in the blood gas was noted. Copyright © 2018. Published by Elsevier Inc.

  14. [Effects of icotinib hydrochloride on the proliferation and apoptosis of human lung cancer cell lines].

    Science.gov (United States)

    Ma, Li; Han, Xiao-hong; Wang, Shuai; Wang, Jian-fei; Shi, Yuan-kai

    2012-09-25

    To explore the effects of icotinib on the proliferation and apoptosis of various lung cancer cell lines. Human lung cancer cell lines HCC827, H1650, H1975, A549 and human epidermal cancer cell line A431 were treated in vitro with icotinib or gefitinib at a concentration gradient of 0 - 40 µmol/L. Their proliferation effects were analyzed by the thiazolyl blue (MTT) assay and the apoptotic effects detected by flow cytometer. The downstream signaling proteins were detected by Western blot. The median inhibitory concentrations (IC(50)) of icotinib for A431 and HCC827 cell lines were (0.04 ± 0.02) and (0.15 ± 0.06) µmol/L respectively. No significant differences existed between the inhibitions of gefitinib and icotinib on A431, HCC827, H1650, H1975 and A549 cell lines (all P > 0.05). Compared with H1650, H1975 and A549 cell lines, icotinib significantly inhibited A431 (P = 0.009, 0.005 and 0.000) and HCC827 (P = 0.001, 0.001 and 0.000) cell lines. And it lowered the expressions of p-AKT, p-ERK and survivin protein expression through the inhibited activity of p-EGFR protein. Icotinib can arrest the proliferation of lung adenocarcinoma cells with EGFR mutation or over-expression by inhibiting the signal pathways of AKT-ERK and survivin.

  15. Inhibition of histamine and eicosanoid release from dispersed human lung cells in vitro by quinotolast.

    Science.gov (United States)

    Okayama, Y; Hiroi, J; Lau, L C; Church, M K

    1995-12-01

    We have examined the effects of a new anti-allergic drug, quinotolast [sodium 5-(4-oxo-1-phenoxy-4H-quinolizine-3-carboxamido) yetrazolate monohydrate], in inhibiting the release of histamine and the generation of leukotriene (LT) C4 and prostaglandin (PG) D2 from dispersed human lung cells and compared this with those of its active metabolite in the rat, hydroxy quinotolast, and reference drugs, tranilast and sodium cromoglycate (SCG). Quinotolast in the concentration range of 1-100 micrograms/ml inhibited histamine and LTC4 release in a concentration-dependent manner. The inhibitory effect of quinotolast on histamine release from dispersed lung cells was largely independent of the preincubation period, no tachyphylaxis being observed. Hydroxy quinotolast and tranilast showed a weak inhibition of histamine release only when the drugs were added to the cells simultaneously with anti-IgE challenge. Quinotolast, 100 micrograms/ml, and SCG, 1 mM, significantly inhibited PGD2 and LTC4 release. Quinotolast inhibited PGD2 release by 100% and LTC4 release by 54%, whereas SCG inhibited PDG2 release by 33% and LTC4 release by 100%. No cross-tachyphylaxis between quinotolast and SCG was observed. The results demonstrated that quinotolast showed a significant inhibition of inflammatory mediators from human dispersed lung cells, suggesting that quinotolast is a good candidate for a clinical anti-allergic drug.

  16. Effect of gamma irradiated parenchyma on the growth of irradiated potato tuber buds; Efecto del parenquina irradiado sobre el desarrollo de las yemas de tuberculos de patata tratados por radiacion GAMMA

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Gonzalez, J; Garcia Collantes, M A

    1976-07-01

    The development of buds greffed on irradiated potato parenchyma was studied. The irradiated parenchyma does not influence the sprouting capacity of buds, but it affects the way they develop. (Author) 9 refs.

  17. Solubility of indium-tin oxide in simulated lung and gastric fluids: Pathways for human intake.

    Science.gov (United States)

    Andersen, Jens Christian Østergård; Cropp, Alastair; Paradise, Diane Caroline

    2017-02-01

    From being a metal with very limited natural distribution, indium (In) has recently become disseminated throughout the human society. Little is known of how In compounds behave in the natural environment, but recent medical studies link exposure to In compounds to elevated risk of respiratory disorders. Animal tests suggest that exposure may lead to more widespread damage in the body, notably the liver, kidneys and spleen. In this paper, we investigate the solubility of the most widely used In compound, indium-tin oxide (ITO) in simulated lung and gastric fluids in order to better understand the potential pathways for metals to be introduced into the bloodstream. Our results show significant potential for release of In and tin (Sn) in the deep parts of the lungs (artificial lysosomal fluid) and digestive tract, while the solubility in the upper parts of the lungs (the respiratory tract or tracheobronchial tree) is very low. Our study confirms that ITO is likely to remain as solid particles in the upper parts of the lungs, but that particles are likely to slowly dissolve in the deep lungs. Considering the prolonged residence time of inhaled particles in the deep lung, this environment is likely to provide the major route for uptake of In and Sn from inhaled ITO nano- and microparticles. Although dissolution through digestion may also lead to some uptake, the much shorter residence time is likely to lead to much lower risk of uptake. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Uncovering growth-suppressive MicroRNAs in lung cancer

    DEFF Research Database (Denmark)

    Liu, Xi; Sempere, Lorenzo F; Galimberti, Fabrizio

    2009-01-01

    PURPOSE: MicroRNA (miRNA) expression profiles improve classification, diagnosis, and prognostic information of malignancies, including lung cancer. This study uncovered unique growth-suppressive miRNAs in lung cancer. EXPERIMENTAL DESIGN: miRNA arrays were done on normal lung tissues...... and adenocarcinomas from wild-type and proteasome degradation-resistant cyclin E transgenic mice to reveal repressed miRNAs in lung cancer. Real-time and semiquantitative reverse transcription-PCR as well as in situ hybridization assays validated these findings. Lung cancer cell lines were derived from each......-malignant human lung tissue bank. RESULTS: miR-34c, miR-145, and miR-142-5p were repressed in transgenic lung cancers. Findings were confirmed by real-time and semiquantitative reverse transcription-PCR as well as in situ hybridization assays. Similar miRNA profiles occurred in human normal versus malignant lung...

  19. Endogenous lung regeneration: potential and limitations.

    Science.gov (United States)

    Rock, Jason; Königshoff, Melanie

    2012-12-15

    The exploration of the endogenous regenerative potential of the diseased adult human lung represents an innovative and exciting task. In this pulmonary perspective, we discuss three major components essential for endogenous lung repair and regeneration: epithelial progenitor populations, developmental signaling pathways that regulate their reparative and regenerative potential, and the surrounding extracellular matrix in the human diseased lung. Over the past years, several distinct epithelial progenitor populations have been discovered within the lung, all of which most likely respond to different injuries by varying degrees. It has become evident that several progenitor populations are mutually involved in maintenance and repair, which is highly regulated by developmental pathways, such as Wnt or Notch signaling. Third, endogenous progenitor cells and developmental signaling pathways act in close spatiotemporal synergy with the extracellular matrix. These three components define and refine the highly dynamic microenvironment of the lung, which is altered in a disease-specific fashion in several chronic lung diseases. The search for the right mixture to induce efficient and controlled repair and regeneration of the diseased lung is ongoing and will open completely novel avenues for the treatment of patients with chronic lung disease.

  20. Targeting Interleukin-13 with Tralokinumab Attenuates Lung Fibrosis and Epithelial Damage in a Humanized SCID Idiopathic Pulmonary Fibrosis Model

    Science.gov (United States)

    Zhang, Huilan; Oak, Sameer R.; Coelho, Ana Lucia; Herath, Athula; Flaherty, Kevin R.; Lee, Joyce; Bell, Matt; Knight, Darryl A.; Martinez, Fernando J.; Sleeman, Matthew A.; Herzog, Erica L.; Hogaboam, Cory M.

    2014-01-01

    The aberrant fibrotic and repair responses in the lung are major hallmarks of idiopathic pulmonary fibrosis (IPF). Numerous antifibrotic strategies have been used in the clinic with limited success, raising the possibility that an effective therapeutic strategy in this disease must inhibit fibrosis and promote appropriate lung repair mechanisms. IL-13 represents an attractive target in IPF, but its disease association and mechanism of action remains unknown. In the present study, an overexpression of IL-13 and IL-13 pathway markers was associated with IPF, particularly a rapidly progressive form of this disease. Targeting IL-13 in a humanized experimental model of pulmonary fibrosis using tralokinumab (CAT354) was found to therapeutically block aberrant lung remodeling in this model. However, targeting IL-13 was also found to promote lung repair and to restore epithelial integrity. Thus, targeting IL-13 inhibits fibrotic processes and enhances repair processes in the lung. PMID:24325475

  1. The Objective Identification and Quantification of Interstitial Lung Abnormalities in Smokers.

    Science.gov (United States)

    Ash, Samuel Y; Harmouche, Rola; Ross, James C; Diaz, Alejandro A; Hunninghake, Gary M; Putman, Rachel K; Onieva, Jorge; Martinez, Fernando J; Choi, Augustine M; Lynch, David A; Hatabu, Hiroto; Rosas, Ivan O; Estepar, Raul San Jose; Washko, George R

    2017-08-01

    Previous investigation suggests that visually detected interstitial changes in the lung parenchyma of smokers are highly clinically relevant and predict outcomes, including death. Visual subjective analysis to detect these changes is time-consuming, insensitive to subtle changes, and requires training to enhance reproducibility. Objective detection of such changes could provide a method of disease identification without these limitations. The goal of this study was to develop and test a fully automated image processing tool to objectively identify radiographic features associated with interstitial abnormalities in the computed tomography scans of a large cohort of smokers. An automated tool that uses local histogram analysis combined with distance from the pleural surface was used to detect radiographic features consistent with interstitial lung abnormalities in computed tomography scans from 2257 individuals from the Genetic Epidemiology of COPD study, a longitudinal observational study of smokers. The sensitivity and specificity of this tool was determined based on its ability to detect the visually identified presence of these abnormalities. The tool had a sensitivity of 87.8% and a specificity of 57.5% for the detection of interstitial lung abnormalities, with a c-statistic of 0.82, and was 100% sensitive and 56.7% specific for the detection of the visual subtype of interstitial abnormalities called fibrotic parenchymal abnormalities, with a c-statistic of 0.89. In smokers, a fully automated image processing tool is able to identify those individuals who have interstitial lung abnormalities with moderate sensitivity and specificity. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  2. Autofluorescence Imaging and Spectroscopy of Human Lung Cancer

    Directory of Open Access Journals (Sweden)

    Mengyan Wang

    2016-12-01

    Full Text Available Lung cancer is one of the most common cancers, with high mortality rate worldwide. Autofluorescence imaging and spectroscopy is a non-invasive, label-free, real-time technique for cancer detection. In this study, lung tissue sections excised from patients were detected by laser scan confocal microscopy and spectroscopy. The autofluorescence images demonstrated the cellular morphology and tissue structure, as well as the pathology of stained images. Based on the spectra study, it was found that the majority of the patients showed discriminating fluorescence in tumor tissues from normal tissues. Therefore, autofluorescence imaging and spectroscopy may be a potential method for aiding the diagnosis of lung cancer.

  3. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part I: Theory and model validation.

    Science.gov (United States)

    Kolanjiyil, Arun V; Kleinstreuer, Clement

    2016-12-01

    Computational predictions of aerosol transport and deposition in the human respiratory tract can assist in evaluating detrimental or therapeutic health effects when inhaling toxic particles or administering drugs. However, the sheer complexity of the human lung, featuring a total of 16 million tubular airways, prohibits detailed computer simulations of the fluid-particle dynamics for the entire respiratory system. Thus, in order to obtain useful and efficient particle deposition results, an alternative modeling approach is necessary where the whole-lung geometry is approximated and physiological boundary conditions are implemented to simulate breathing. In Part I, the present new whole-lung-airway model (WLAM) represents the actual lung geometry via a basic 3-D mouth-to-trachea configuration while all subsequent airways are lumped together, i.e., reduced to an exponentially expanding 1-D conduit. The diameter for each generation of the 1-D extension can be obtained on a subject-specific basis from the calculated total volume which represents each generation of the individual. The alveolar volume was added based on the approximate number of alveoli per generation. A wall-displacement boundary condition was applied at the bottom surface of the first-generation WLAM, so that any breathing pattern due to the negative alveolar pressure can be reproduced. Specifically, different inhalation/exhalation scenarios (rest, exercise, etc.) were implemented by controlling the wall/mesh displacements to simulate realistic breathing cycles in the WLAM. Total and regional particle deposition results agree with experimental lung deposition results. The outcomes provide critical insight to and quantitative results of aerosol deposition in human whole-lung airways with modest computational resources. Hence, the WLAM can be used in analyzing human exposure to toxic particulate matter or it can assist in estimating pharmacological effects of administered drug-aerosols. As a practical

  4. Infarction and Laceration of Liver Parenchyma Caused by Wedged CO2 Venography Before TIPS Insertion

    International Nuclear Information System (INIS)

    Theuerkauf, Ingo; Strunk, Holger; Brensing, Karl August; Schild, Hans Heinz; Pfeifer, Ulrich

    2001-01-01

    We describe the fatal outcome of an elective TIPS procedure performed in a 43-year-old man with alcoholic cirrhosis. Wedged hepatic venography with CO 2 was the reason for infarction and laceration of liver parenchyma resulting in a subcapsular hematoma and subsequent intra-abdominal bleeding. This is the first report of this complication after the use of CO 2 in a cirrhotic patient

  5. The significance of PIWI family expression in human lung embryogenesis and non-small cell lung cancer.

    Science.gov (United States)

    Navarro, Alfons; Tejero, Rut; Viñolas, Nuria; Cordeiro, Anna; Marrades, Ramon M; Fuster, Dolors; Caritg, Oriol; Moises, Jorge; Muñoz, Carmen; Molins, Laureano; Ramirez, Josep; Monzo, Mariano

    2015-10-13

    The expression of Piwi-interacting RNAs, small RNAs that bind to PIWI proteins, was until recently believed to be limited to germinal stem cells. We have studied the expression of PIWI genes during human lung embryogenesis and in paired tumor and normal tissue prospectively collected from 71 resected non-small-cell lung cancer patients. The mRNA expression analysis showed that PIWIL1 was highly expressed in 7-week embryos and downregulated during the subsequent weeks of development. PIWIL1 was expressed in 11 of the tumor samples but in none of the normal tissue samples. These results were validated by immunohistochemistry, showing faint cytoplasmic reactivity in the PIWIL1-positive samples. Interestingly, the patients expressing PIWIL1 had a shorter time to relapse (TTR) (p = 0.006) and overall survival (OS) (p = 0.0076) than those without PIWIL1 expression. PIWIL2 and 4 were downregulated in tumor tissue in comparison to the normal tissue (p < 0.001) and the patients with lower levels of PIWIL4 had shorter TTR (p = 0.048) and OS (p = 0.033). In the multivariate analysis, PIWIL1 expression emerged as an independent prognostic marker. Using 5-Aza-dC treatment and bisulfite sequencing, we observed that PIWIL1 expression could be regulated in part by methylation. Finally, an in silico study identified a stem-cell expression signature associated with PIWIL1 expression.

  6. Evidence for tankyrases as antineoplastic targets in lung cancer

    International Nuclear Information System (INIS)

    Busch, Alexander M; Johnson, Kevin C; Stan, Radu V; Sanglikar, Aarti; Ahmed, Yashi; Dmitrovsky, Ethan; Freemantle, Sarah J

    2013-01-01

    New pharmacologic targets are urgently needed to treat or prevent lung cancer, the most common cause of cancer death for men and women. This study identified one such target. This is the canonical Wnt signaling pathway, which is deregulated in cancers, including those lacking adenomatous polyposis coli or β-catenin mutations. Two poly-ADP-ribose polymerase (PARP) enzymes regulate canonical Wnt activity: tankyrase (TNKS) 1 and TNKS2. These enzymes poly-ADP-ribosylate (PARsylate) and destabilize axin, a key component of the β-catenin phosphorylation complex. This study used comprehensive gene profiles to uncover deregulation of the Wnt pathway in murine transgenic and human lung cancers, relative to normal lung. Antineoplastic consequences of genetic and pharmacologic targeting of TNKS in murine and human lung cancer cell lines were explored, and validated in vivo in mice by implantation of murine transgenic lung cancer cells engineered with reduced TNKS expression relative to controls. Microarray analyses comparing Wnt pathway members in malignant versus normal tissues of a murine transgenic cyclin E lung cancer model revealed deregulation of Wnt pathway components, including TNKS1 and TNKS2. Real-time PCR assays independently confirmed these results in paired normal-malignant murine and human lung tissues. Individual treatments of a panel of human and murine lung cancer cell lines with the TNKS inhibitors XAV939 and IWR-1 dose-dependently repressed cell growth and increased cellular axin 1 and tankyrase levels. These inhibitors also repressed expression of a Wnt-responsive luciferase construct, implicating the Wnt pathway in conferring these antineoplastic effects. Individual or combined knockdown of TNKS1 and TNKS2 with siRNAs or shRNAs reduced lung cancer cell growth, stabilized axin, and repressed tumor formation in murine xenograft and syngeneic lung cancer models. Findings reported here uncovered deregulation of specific components of the Wnt pathway in both

  7. Aeroparticles, composition and lung diseases

    Directory of Open Access Journals (Sweden)

    Carlos Ivan Falcon-Rodriguez

    2016-01-01

    Full Text Available Urban air pollution is a serious worldwide problem due to its impact on human health. In the past sixty years, growing evidence established a correlation between exposure to air pollutants and the developing of severe respiratory diseases. Recently Particulate matter (PM is drawing more public attention to various aspects including historical backgrounds, physicochemical characteristics and its pathological role. Therefore, this review is focused on these aspects. The most famous air pollution disaster happened in London on December 1952; it has been calculated that more than 4000 deaths occurred during this event. Air pollution is a complex mix of gases and particles. Gaseous pollutants disseminate deeply into the alveoli, allowing its diffusion through the blood-air barrier to several organs. Meanwhile, PM is a mix of solid or liquid particles suspended in the air. PM is deposited at different levels of the respiratory tract, depending on its size: Coarse particles (PM10 in upper airways and fine particles (PM2.5 can be accumulated in the lung parenchyma, inducing several respiratory diseases. Additionally to size, the composition of particulate matter has been associated with different toxicological outcomes on clinical, epidemiological, as well as in vivo and in vitro animal and human studies. PM can be constituted by organic, inorganic and biological compounds. All these compounds are capable of modifying several biological activities including alterations in cytokine production, coagulation factors balance, pulmonary function, respiratory symptoms, and cardiac function. It can also generate different modifications during its passage through the airways, like inflammatory cells recruitment, with the release of cytokines and reactive oxygen species (ROS. These inflammatory mediators can activate different pathways such as MAP-kinases, NF-B, and stat-1, or induce DNA adducts. All these alterations can mediate obstructive or restrictive

  8. BJ-TSA-9, a novel human tumor-specific gene, has potential as a biomarker of lung cancer.

    Science.gov (United States)

    Li, Yunyan; Dong, Xueyuan; Yin, Yanhui; Su, Yanrong; Xu, Qingwen; Zhang, Yuxia; Pang, Xuewen; Zhang, Yu; Chen, Weifeng

    2005-12-01

    Using bioinformatics, we have identified a novel tumor-specific gene BJ-TSA-9, which has been validated by Northern blot analysis and reverse transcription-polymerase chain reaction (RT-PCR). BJ-TSA-9 mRNA was expressed in 52.5% (21 of 40) of human lung cancer tissues and was especially higher in lung adenocarcinoma (68.8%). To explore the potential application of BJ-TSA-9 for the detection of circulating cancer cells in lung cancer patients, nested RT-PCR was performed. The overall positive detection rate was 34.3% (24 of 70) in peripheral blood mononuclear cells (PBMCs) of patients with various types of lung cancers and was 53.6% (15 of 28) in PBMCs of lung adenocarcinoma patients. In combination with the detection of two known marker genes SCC and LUNX, the detection rate was increased to 81.4%. A follow-up study was performed in 37 patients after surgical removal of tumor mass. Among nine patients with persistent detection of two to three tumor marker transcripts in PBMCs, six patients had recurrence/metastasis. In contrast, 28 patients with transient detection of one tumor marker or without detection of any tumor marker were all in remission. Thus, BJ-TSA-9 may serve as a marker for lung cancer diagnosis and as a marker, in combination with two other tumor markers, for the prediction of the recurrence and prognosis of lung cancer patients.

  9. Cigarette Smoke Decreases the Maturation of Lung Myeloid Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Elena Arellano-Orden

    Full Text Available Conflicting data exist on the role of pulmonary dendritic cells (DCs and their maturation in patients with chronic obstructive pulmonary disease (COPD. Herein, we investigated whether disease severity and smoking status could affect the distribution and maturation of DCs in lung tissues of patients undergoing elective pneumectomy or lobectomy for suspected primary lung cancer.A total of 75 consecutive patients were included. Spirometry testing was used to identify COPD. Lung parenchyma sections anatomically distant from the primary lesion were examined. We used flow cytometry to identify different DCs subtypes-including BDCA1-positive myeloid DCs (mDCs, BDCA3-positive mDCs, and plasmacytoid DCs (pDCs-and determine their maturation markers (CD40, CD80, CD83, and CD86 in all participants. We also identified follicular DCs (fDCs, Langerhans DCs (LDCs, and pDCs in 42 patients by immunohistochemistry.COPD was diagnosed in 43 patients (16 current smokers and 27 former smokers, whereas the remaining 32 subjects were classified as non-COPD (11 current smokers, 13 former smokers, and 8 never smokers. The number and maturation of DCs did not differ significantly between COPD and non-COPD patients. However, the results of flow cytometry indicated that maturation markers CD40 and CD83 of BDCA1-positive mDCs were significantly decreased in smokers than in non-smokers (P = 0.023 and 0.013, respectively. Immunohistochemistry also revealed a lower number of LDCs in COPD patients than in non-COPD subjects.Cigarette smoke, rather than airflow limitation, is the main determinant of impaired DCs maturation in the lung.

  10. Exposure of Human Lung Cells to Tobacco Smoke Condensate Inhibits the Nucleotide Excision Repair Pathway.

    Directory of Open Access Journals (Sweden)

    Nathaniel Holcomb

    Full Text Available Exposure to tobacco smoke is the number one risk factor for lung cancer. Although the DNA damaging properties of tobacco smoke have been well documented, relatively few studies have examined its effect on DNA repair pathways. This is especially true for the nucleotide excision repair (NER pathway which recognizes and removes many structurally diverse DNA lesions, including those introduced by chemical carcinogens present in tobacco smoke. The aim of the present study was to investigate the effect of tobacco smoke on NER in human lung cells. We studied the effect of cigarette smoke condensate (CSC, a surrogate for tobacco smoke, on the NER pathway in two different human lung cell lines; IMR-90 lung fibroblasts and BEAS-2B bronchial epithelial cells. To measure NER, we employed a slot-blot assay to quantify the introduction and removal of UV light-induced 6-4 photoproducts and cyclobutane pyrimidine dimers. We find a dose-dependent inhibition of 6-4 photoproduct repair in both cell lines treated with CSC. Additionally, the impact of CSC on the abundance of various NER proteins and their respective RNAs was investigated. The abundance of XPC protein, which is required for functional NER, is significantly reduced by treatment with CSC while the abundance of XPA protein, also required for NER, is unaffected. Both XPC and XPA RNA levels are modestly reduced by CSC treatment. Finally, treatment of cells with MG-132 abrogates the reduction in the abundance of XPC protein produced by treatment with CSC, suggesting that CSC enhances proteasome-dependent turnover of the protein that is mediated by ubiquitination. Together, these findings indicate that tobacco smoke can inhibit the same DNA repair pathway that is also essential for the removal of some of the carcinogenic DNA damage introduced by smoke itself, increasing the DNA damage burden of cells exposed to tobacco smoke.

  11. Ca{sup 2+} influx and ATP release mediated by mechanical stretch in human lung fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Naohiko [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Ito, Satoru, E-mail: itori@med.nagoya-u.ac.jp [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Furuya, Kishio [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Takahara, Norihiro [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Naruse, Keiji [Department of Cardiovascular Physiology, Okayama University Graduate School of Medicine, Okayama 700-8558 (Japan); Aso, Hiromichi; Kondo, Masashi [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Sokabe, Masahiro [Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan); Hasegawa, Yoshinori [Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550 (Japan)

    2014-10-10

    Highlights: • Uniaxial stretching activates Ca{sup 2+} signaling in human lung fibroblasts. • Stretch-induced intracellular Ca{sup 2+} elevation is mainly via Ca{sup 2+} influx. • Mechanical strain enhances ATP release from fibroblasts. • Stretch-induced Ca{sup 2+} influx is not mediated by released ATP or actin cytoskeleton. - Abstract: One cause of progressive pulmonary fibrosis is dysregulated wound healing after lung inflammation or damage in patients with idiopathic pulmonary fibrosis and severe acute respiratory distress syndrome. The mechanical forces are considered to regulate pulmonary fibrosis via activation of lung fibroblasts. In this study, the effects of mechanical stretch on the intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) and ATP release were investigated in primary human lung fibroblasts. Uniaxial stretch (10–30% in strain) was applied to fibroblasts cultured in a silicone chamber coated with type I collagen using a stretching apparatus. Following stretching and subsequent unloading, [Ca{sup 2+}]{sub i} transiently increased in a strain-dependent manner. Hypotonic stress, which causes plasma membrane stretching, also transiently increased the [Ca{sup 2+}]{sub i}. The stretch-induced [Ca{sup 2+}]{sub i} elevation was attenuated in Ca{sup 2+}-free solution. In contrast, the increase of [Ca{sup 2+}]{sub i} by a 20% stretch was not inhibited by the inhibitor of stretch-activated channels GsMTx-4, Gd{sup 3+}, ruthenium red, or cytochalasin D. Cyclic stretching induced significant ATP releases from fibroblasts. However, the stretch-induced [Ca{sup 2+}]{sub i} elevation was not inhibited by ATP diphosphohydrolase apyrase or a purinergic receptor antagonist suramin. Taken together, mechanical stretch induces Ca{sup 2+} influx independently of conventional stretch-sensitive ion channels, the actin cytoskeleton, and released ATP.

  12. Expression of YKL-40 by peritumoral macrophages in human small cell lung cancer

    DEFF Research Database (Denmark)

    Junker, Nanna; Johansen, Julia S; Andersen, Claus B

    2005-01-01

    YKL-40 is a 40 kDa protein with possible involvement in tissue remodeling, cell proliferation and angiogenesis. Elevated serum YKL-40 levels in patients with metastatic cancers (including small cell lung cancer (SCLC)) are associated with poor prognosis. The aim of this study was to identify...... the cellular source of YKL-40 in SCLC patient biopsies and in a panel of 20 human SCLC lines cultured in vitro and in vivo in nude mice. In general, the SCLC cell lines had no or very limited (human) YKL-40 expression, whereas, by RT-PCR a pronounced murine (i.e., stromal) YKL-40 expression was present in all...

  13. Carboplatin- and cisplatin-induced potentiation of moderate-dose radiation cytotoxicity in human lung cancer cell lines

    NARCIS (Netherlands)

    Groen, H. J.; Sleijfer, S.; Meijer, C.; Kampinga, H. H.; Konings, A. W. T.; de Vries, E. G. E.; Mulder, N. H.

    1995-01-01

    The interaction between moderate-dose radiation and cisplatin or carboplatin was studied in a cisplatin-sensitive (GLC(4)) and -resistant (GLC(4)-CDDP) human small-cell lung cancer cell line. Cellular toxicity was analysed under oxic conditions with the microculture tetrazolium assay. For the

  14. Impact of endobronchial coiling on segmental bronchial lumen in treated and untreated lung lobes: Correlation with changes in lung volume, clinical and pulmonary function tests.

    Science.gov (United States)

    Kloth, C; Thaiss, W M; Hetzel, J; Ditt, H; Grosse, U; Nikolaou, K; Horger, M

    2016-07-01

    To assess the impact of endobronchial coiling on the segment bronchus cross-sectional area and volumes in patients with lung emphysema using quantitative chest-CT measurements. Thirty patients (female = 15; median age = 65.36 years) received chest-CT before and after endobronchial coiling for lung volume reduction (LVR) between January 2010 and December 2014. Thin-slice (0.6 mm) non-enhanced image data sets were acquired both at end-inspiration and end-expiration using helical technique and 120 kV/100-150 mAs. Clinical response was defined as an increase in the walking distance (Six-minute walk test; 6MWT) after LVR-therapy. Additionally, pulmonary function test (PFT) measurements were used for clinical correlation. In the treated segmental bronchia, the cross-sectional lumen area showed significant reduction (p  0.05). In the ipsilateral lobes, the lumina showed no significant changes. In the contralateral lung, we found tendency towards increased cross-sectional area in inspiration (p = 0.06). Volumes of the treated segments correlated with the treated segmental bronchial lumina in expiration (r = 0.80, p volume of the treated lobe in responders only. Endobronchial coiling causes significant decrease in the cross-sectional area of treated segment bronchi in inspiration and a slight increase in expiration accompanied by a volume reduction. • Endobronchial coiling has indirect impact on cross-sectional area of treated segment bronchi • Volume changes of treated lobes correlate with changes in bronchial cross-sectional area • Coil-induced effects reflect their stabilizing and stiffening impact on lung parenchyma • Endobronchial coiling reduces bronchial collapsing compensating the loss of elasticity.

  15. Multisystem Langerhans cell histiocytosis coexisting with metastasizing adenocarcinoma of the lung: A case report

    Directory of Open Access Journals (Sweden)

    Lovrenski Aleksandra

    2013-01-01

    Full Text Available Introduction. Langerhans cell histiocytosis (LCH is an uncommon disease of unknown etiology characterized by uncontrolled proliferation and infiltration of various organs by Langerhans cells. Case report. We presented a 54-year-old man, heavy smoker, with dyspnea, cough, hemoptysis, headache and ataxia, who died shortly after admission to our hospital. On the autopsy, tumor was found in the posterior segment of the right upper pulmonary lobe as well as a right-sided occipitoparietal lesion which penetrated into the right ventricle resulting in internal and external hematocephalus. Histologically and immunohistohemically, the diagnosis of primary lung adenocarcinoma with brain metastasis was made (tumor cells showed positivity for CK7 and TTF-1 which confirmed the diagnosis. In the lung parenchyma around the tumor, as well as in brain tissue around the metastatic adenocarcinoma histiocytic lesions were found. Light microscopic examination of the other organs also showed histiocytic lesions involving the pituitary gland, hypothalamus, spleen and mediastinal lymph nodes. Immunohistochemical studies revealed CD68, S-100 and CD1a immunoreactivity within the histiocytes upon which the diagnosis of Langerhans' cells histiocytosis was made. Conclusion. The multisystem form of LCH with extensive organ involvement was an incidental finding, while metastatic lung adenocarcinoma to the brain that led to hematocephalus was the cause of death.

  16. Apoptotic action of peroxisome proliferator-activated receptor-gamma activation in human non small-cell lung cancer is mediated via proline oxidase-induced reactive oxygen species formation.

    Science.gov (United States)

    Kim, Ki Young; Ahn, Jin Hee; Cheon, Hyae Gyeong

    2007-09-01

    Peroxisome proliferator-activated receptor (PPAR)-gamma ligands have been shown to inhibit human lung cancers by inducing apoptosis and differentiation. In the present study, we elucidated the apoptotic mechanism of PPARgamma activation in human lung cancers by using a novel PPARgamma agonist, 1-(trans-methylimino-N-oxy)-6-(2-morpholinoethoxy)-3-phenyl-(1H-indene-2-carboxylic acid ethyl ester (KR-62980), and rosiglitazone. PPARgamma activation selectively inhibited cell viability of non-small-cell lung cancer with little effect on small-cell lung cancer and normal lung cells. The cell death induced by PPARgamma activation presented apoptotic features of oligonucleosomal DNA fragmentation in A549 human non-small-cell lung cancer cell line. Reactive oxygen species (ROS) production was accompanied by increased expression of proline oxidase (POX), a redox enzyme expressed in mitochondria, upon incubation with the agonists. POX RNA interference treatment blocked PPARgamma-induced ROS formation and cytotoxicity, suggesting that POX plays a functional role in apoptosis through ROS formation. The apoptotic effects by the agonists were antagonized by bisphenol A diglycidyl ether, a PPARgamma antagonist, and by knockdown of PPARgamma expression, indicating the involvement of PPARgamma in these actions. The results of the present study suggest that PPARgamma activation induces apoptotic cell death in non-small-cell lung carcinoma mainly through ROS formation via POX induction.

  17. Frequent mutations in EGFR, KRAS and TP53 genes in human lung cancer tumors detected by ion torrent DNA sequencing.

    Directory of Open Access Journals (Sweden)

    Xin Cai

    Full Text Available Lung cancer is the most common malignancy and the leading cause of cancer deaths worldwide. While smoking is by far the leading cause of lung cancer, other environmental and genetic factors influence the development and progression of the cancer. Since unique mutations patterns have been observed in individual cancer samples, identification and characterization of the distinctive lung cancer molecular profile is essential for developing more effective, tailored therapies. Until recently, personalized DNA sequencing to identify genetic mutations in cancer was impractical and expensive. The recent technological advancements in next-generation DNA sequencing, such as the semiconductor-based Ion Torrent sequencing platform, has made DNA sequencing cost and time effective with more reliable results. Using the Ion Torrent Ampliseq Cancer Panel, we sequenced 737 loci from 45 cancer-related genes to identify genetic mutations in 76 human lung cancer samples. The sequencing analysis revealed missense mutations in KRAS, EGFR, and TP53 genes in the breast cancer samples of various histologic types. Thus, this study demonstrates the necessity of sequencing individual human cancers in order to develop personalized drugs or combination therapies to effectively target individual, breast cancer-specific mutations.

  18. Comparative synchronous fluorescence spectrophotometry and 32P-postlabeling analysis of PAH-DNA adducts in human lung and the relationship to TP53 mutations

    DEFF Research Database (Denmark)

    Andreassen, Åshild; Kure, Elin H.; Nielsen, Per Sabro

    1996-01-01

    Polycyclic aromatic hydrocarbon (PAH)-DNA adducts were studied in human lung from 39 lung cancer patients by synchronous fluorescence spectrophotometric (SFS) and 32P-postlabeling assays. Regression analysis of the samples failed to detect any correlation between benzo[a]pyrene-diolepoxide (BPDE)...

  19. TP53 Mutations in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Akira Mogi

    2011-01-01

    Full Text Available The tumor suppressor gene TP53 is frequently mutated in human cancers. Abnormality of the TP53 gene is one of the most significant events in lung cancers and plays an important role in the tumorigenesis of lung epithelial cells. Human lung cancers are classified into two major types, small cell lung cancer (SCLC and nonsmall cell lung cancer (NSCLC. The latter accounts for approximately 80% of all primary lung cancers, and the incidence of NSCLC is increasing yearly. Most clinical studies suggest that NSCLC with TP53 alterations carries a worse prognosis and may be relatively more resistant to chemotherapy and radiation. A deep understanding of the role of TP53 in lung carcinogenesis may lead to a more reasonably targeted clinical approach, which should be exploited to enhance the survival rates of patients with lung cancer. This paper will focus on the role of TP53 in the molecular pathogenesis, epidemiology, and therapeutic strategies of TP53 mutation in NSCLC.

  20. Biomechanical response of human spleen in tensile loading.

    Science.gov (United States)

    Kemper, Andrew R; Santago, Anthony C; Stitzel, Joel D; Sparks, Jessica L; Duma, Stefan M

    2012-01-10

    Blunt splenic injuries are most frequently caused as a result of motor vehicle collisions and are associated with high mortality rates. In order to accurately assess the risk of automotive related spleen injuries using tools such as finite element models, tissue level tolerance values and suitable material models must be developed and validated based on appropriate biomechanical data. This study presents a total of 41 tension tests performed on spleen parenchyma coupons and 29 tension tests performed on spleen capsule/parenchyma coupons. Standard dog-bone coupons were obtained from fresh human spleen and tested within 48 h of death. Each coupon was tested once to failure at one of the four loading rates to investigate the effects of rate dependence. Load and acceleration data were obtained at each of the specimen grips. High-speed video and optical markers placed on the specimens were used to measure local displacement. Failure stress and strain were calculated at the location of failure in the gage length of the coupon. The results of the study showed that both the spleen parenchyma and the capsule are rate dependent, with higher loading rates yielding higher failure stresses and lower failure strains. The results also show that the failure stress of the splenic capsule is significantly greater than that of the underlying parenchyma. Overall, this study provides novel biomechanical data that demonstrate the rate dependent tissue level tolerance values of human spleen tissue in tensile loading, which can aid in the improvement of finite element models used to assess injury risk in blunt trauma. Published by Elsevier Ltd.

  1. Preoperative (3-dimensional) computed tomography lung reconstruction before anatomic segmentectomy or lobectomy for stage I non-small cell lung cancer.

    Science.gov (United States)

    Chan, Ernest G; Landreneau, James R; Schuchert, Matthew J; Odell, David D; Gu, Suicheng; Pu, Jiantao; Luketich, James D; Landreneau, Rodney J

    2015-09-01

    Accurate cancer localization and negative resection margins are necessary for successful segmentectomy. In this study, we evaluate a newly developed software package that permits automated segmentation of the pulmonary parenchyma, allowing 3-dimensional assessment of tumor size, location, and estimates of surgical margins. A pilot study using a newly developed 3-dimensional computed tomography analytic software package was performed to retrospectively evaluate preoperative computed tomography images of patients who underwent segmentectomy (n = 36) or lobectomy (n = 15) for stage 1 non-small cell lung cancer. The software accomplishes an automated reconstruction of anatomic pulmonary segments of the lung based on bronchial arborization. Estimates of anticipated surgical margins and pulmonary segmental volume were made on the basis of 3-dimensional reconstruction. Autosegmentation was achieved in 72.7% (32/44) of preoperative computed tomography images with slice thicknesses of 3 mm or less. Reasons for segmentation failure included local severe emphysema or pneumonitis, and lower computed tomography resolution. Tumor segmental localization was achieved in all autosegmented studies. The 3-dimensional computed tomography analysis provided a positive predictive value of 87% in predicting a marginal clearance greater than 1 cm and a 75% positive predictive value in predicting a margin to tumor diameter ratio greater than 1 in relation to the surgical pathology assessment. This preoperative 3-dimensional computed tomography analysis of segmental anatomy can confirm the tumor location within an anatomic segment and aid in predicting surgical margins. This 3-dimensional computed tomography information may assist in the preoperative assessment regarding the suitability of segmentectomy for peripheral lung cancers. Published by Elsevier Inc.

  2. Multiplex zymography captures stage-specific activity profiles of cathepsins K, L, and S in human breast, lung, and cervical cancer.

    Science.gov (United States)

    Chen, Binbin; Platt, Manu O

    2011-07-14

    Cathepsins K, L, and S are cysteine proteases upregulated in cancer and proteolyze extracellular matrix to facilitate metastasis, but difficulty distinguishing specific cathepsin activity in complex tissue extracts confounds scientific studies and employing them for use in clinical diagnoses. Here, we have developed multiplex cathepsin zymography to profile cathepsins K, L, and S activity in 10 μg human breast, lung, and cervical tumors by exploiting unique electrophoretic mobility and renaturation properties. Frozen breast, lung, and cervix cancer tissue lysates and normal organ tissue lysates from the same human patients were obtained (28 breast tissues, 23 lung tissues, and 23 cervix tissues), minced and homogenized prior to loading for cathepsin gelatin zymography to determine enzymatic activity. Cleared bands of cathepsin activity were identified and validated in tumor extracts and detected organ- and stage-specific differences in activity. Cathepsin K was unique compared to cathepsins L and S. It was significantly higher for all cancers even at the earliest stage tested (stage I for lung and cervix (n = 6, p zymography, yielded 100% sensitivity and specificity for 20 breast tissue samples tested (10 normal; 10 tumor) in part due to the consistent absence of cathepsin K in normal breast tissue across all patients. To summarize, this sensitive assay provides quantitative outputs of cathepsins K, L, and S activities from mere micrograms of tissue and has potential use as a supplement to histological methods of clinical diagnoses of biopsied human tissue.

  3. Milan PM1 induces adverse effects on mice lungs and cardiovascular system.

    Science.gov (United States)

    Farina, Francesca; Sancini, Giulio; Longhin, Eleonora; Mantecca, Paride; Camatini, Marina; Palestini, Paola

    2013-01-01

    Recent studies have suggested a link between inhaled particulate matter (PM) exposure and increased mortality and morbidity associated with cardiorespiratory diseases. Since the response to PM1 has not yet been deeply investigated, its impact on mice lungs and cardiovascular system is here examined. A repeated exposure to Milan PM1 was performed on BALB/c mice. The bronchoalveolar lavage fluid (BALf) and the lung parenchyma were screened for markers of inflammation (cell counts, tumor necrosis factor-α (TNF-α); macrophage inflammatory protein-2 (MIP-2); heme oxygenase-1 (HO-1); nuclear factor kappa-light-chain-enhancer of activated B cells p50 subunit (NFκB-p50); inducible nitric oxide synthetase (iNOS); endothelial-selectin (E-selectin)), cytotoxicity (lactate dehydrogenase (LDH); alkaline phosphatase (ALP); heat shock protein 70 (Hsp70); caspase-8-p18), and a putative pro-carcinogenic marker (cytochrome 1B1 (Cyp1B1)). Heart tissue was tested for HO-1, caspase-8-p18, NFκB-p50, iNOS, E-selectin, and myeloperoxidase (MPO); plasma was screened for markers of platelet activation and clot formation (soluble platelet-selectin (sP-selectin); fibrinogen; plasminogen activator inhibitor 1 (PAI-1)). PM1 triggers inflammation and cytotoxicity in lungs. A similar cytotoxic effect was observed on heart tissues, while plasma analyses suggest blood-endothelium interface activation. These data highlight the importance of lung inflammation in mediating adverse cardiovascular events following increase in ambient PM1 levels, providing evidences of a positive correlation between PM1 exposure and cardiovascular morbidity.

  4. Milan PM1 Induces Adverse Effects on Mice Lungs and Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Francesca Farina

    2013-01-01

    Full Text Available Recent studies have suggested a link between inhaled particulate matter (PM exposure and increased mortality and morbidity associated with cardiorespiratory diseases. Since the response to PM1 has not yet been deeply investigated, its impact on mice lungs and cardiovascular system is here examined. A repeated exposure to Milan PM1 was performed on BALB/c mice. The bronchoalveolar lavage fluid (BALf and the lung parenchyma were screened for markers of inflammation (cell counts, tumor necrosis factor-α (TNF-α; macrophage inflammatory protein-2 (MIP-2; heme oxygenase-1 (HO-1; nuclear factor kappa-light-chain-enhancer of activated B cells p50 subunit (NFκB-p50; inducible nitric oxide synthetase (iNOS; endothelial-selectin (E-selectin, cytotoxicity (lactate dehydrogenase (LDH; alkaline phosphatase (ALP; heat shock protein 70 (Hsp70; caspase-8-p18, and a putative pro-carcinogenic marker (cytochrome 1B1 (Cyp1B1. Heart tissue was tested for HO-1, caspase-8-p18, NFκB-p50, iNOS, E-selectin, and myeloperoxidase (MPO; plasma was screened for markers of platelet activation and clot formation (soluble platelet-selectin (sP-selectin; fibrinogen; plasminogen activator inhibitor 1 (PAI-1. PM1 triggers inflammation and cytotoxicity in lungs. A similar cytotoxic effect was observed on heart tissues, while plasma analyses suggest blood-endothelium interface activation. These data highlight the importance of lung inflammation in mediating adverse cardiovascular events following increase in ambient PM1 levels, providing evidences of a positive correlation between PM1 exposure and cardiovascular morbidity.

  5. History of Lung Transplantation.

    Science.gov (United States)

    Dabak, Gül; Şenbaklavacı, Ömer

    2016-04-01

    History of lung transplantation in the world can be traced back to the early years of the 20 th century when experimental vascular anastomotic techniques were developed by Carrel and Guthrie, followed by transplantation of thoracic organs on animal models by Demikhov and finally it was James Hardy who did the first lung transplantation attempt on human. But it was not until the discovery of cyclosporine and development of better surgical techniques that success could be achieved in that field by the Toronto Lung Transplant Group led by Joel Cooper. Up to the present day, over 51.000 lung transplants were performed in the world at different centers. The start of lung transplantation in Turkey has been delayed for various reasons. From 1998 on, there were several attempts but the first successful lung transplant was performed at Sureyyapasa Hospital in 2009. Today there are four lung transplant centers in Turkey; two in Istanbul, one in Ankara and another one in Izmir. Three lung transplant centers from Istanbul which belong to private sector have newly applied for licence from the Ministry of Health.

  6. RANK rewires energy homeostasis in lung cancer cells and drives primary lung cancer.

    Science.gov (United States)

    Rao, Shuan; Sigl, Verena; Wimmer, Reiner Alois; Novatchkova, Maria; Jais, Alexander; Wagner, Gabriel; Handschuh, Stephan; Uribesalgo, Iris; Hagelkruys, Astrid; Kozieradzki, Ivona; Tortola, Luigi; Nitsch, Roberto; Cronin, Shane J; Orthofer, Michael; Branstetter, Daniel; Canon, Jude; Rossi, John; D'Arcangelo, Manolo; Botling, Johan; Micke, Patrick; Fleur, Linnea La; Edlund, Karolina; Bergqvist, Michael; Ekman, Simon; Lendl, Thomas; Popper, Helmut; Takayanagi, Hiroshi; Kenner, Lukas; Hirsch, Fred R; Dougall, William; Penninger, Josef M

    2017-10-15

    Lung cancer is the leading cause of cancer deaths. Besides smoking, epidemiological studies have linked female sex hormones to lung cancer in women; however, the underlying mechanisms remain unclear. Here we report that the receptor activator of nuclear factor-kB (RANK), the key regulator of osteoclastogenesis, is frequently expressed in primary lung tumors, an active RANK pathway correlates with decreased survival, and pharmacologic RANK inhibition reduces tumor growth in patient-derived lung cancer xenografts. Clonal genetic inactivation of KRas G12D in mouse lung epithelial cells markedly impairs the progression of KRas G12D -driven lung cancer, resulting in a significant survival advantage. Mechanistically, RANK rewires energy homeostasis in human and murine lung cancer cells and promotes expansion of lung cancer stem-like cells, which is blocked by inhibiting mitochondrial respiration. Our data also indicate survival differences in KRas G12D -driven lung cancer between male and female mice, and we show that female sex hormones can promote lung cancer progression via the RANK pathway. These data uncover a direct role for RANK in lung cancer and may explain why female sex hormones accelerate lung cancer development. Inhibition of RANK using the approved drug denosumab may be a therapeutic drug candidate for primary lung cancer. © 2017 Rao et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Measurement of ventilation- and perfusion-mediated cooling during laser ablation in ex vivo human lung tumors

    Energy Technology Data Exchange (ETDEWEB)

    Vietze, Andrea, E-mail: anvie@gmx.de [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany); Koch, Franziska, E-mail: franzi_koch@hotmail.com [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany); Laskowski, Ulrich, E-mail: ulrich.laskowski@klinikum-luedenscheid.de [Department of Vascular and Thoracic Surgery, Klinikum Luedenscheid, Paulmannshoeher Strasse 14, 58515 Luedenscheid (Germany); Linder, Albert, E-mail: albert.linder@klinikum-bremen-ost.de [Department of Thoracic Surgery, Klinikum Bremen-Ost, Zuericher Strasse 40, 28325 Bremen (Germany); Hosten, Norbert, E-mail: hosten@uni-greifswald.de [Department of Diagnostic Radiology and Neuroradiology, Ernst-Moritz-Arndt-Universitaet Greifswald, Sauerbruchstrasse, 17487 Greifswald (Germany)

    2011-11-15

    Purpose: Perfusion-mediated tissue cooling has often been described in the literature for thermal ablation therapies of liver tumors. The objective of this study was to investigate the cooling effects of both perfusion and ventilation during laser ablation of lung malignancies. Materials and methods: An ex vivo lung model was used to maintain near physiological conditions for the specimens. Fourteen human lung lobes containing only primary lung tumors (non-small cell lung cancer) were used. Laser ablation was carried out using a Nd:YAG laser with a wavelength of 1064 nm and laser fibers with 30 mm diffusing tips. Continuous invasive temperature measurement in 10 mm distance from the laser fiber was performed. Laser power was increased at 2 W increments starting at 10 W up to a maximum power of 12-20 W until a temperature plateau around 60 deg. C was reached at one sensor. Ventilation and perfusion were discontinued for 6 min each to assess their effects on temperature development. Results: The experiments lead to 25 usable temperature profiles. A significant temperature increase was observed for both discontinued ventilation and perfusion. In 6 min without perfusion, the temperature rose about 5.5 deg. C (mean value, P < 0.05); without ventilation it increased about 7.0 deg. C (mean value, P < 0.05). Conclusion: Ventilation- and perfusion-mediated tissue cooling are significant influencing factors on temperature development during thermal ablation. They should be taken into account during the planning and preparation of minimally invasive lung tumor treatment in order to achieve complete ablation.

  8. SPECT/CT of lung nodules using 111In-DOTA-c(RGDfK) in a mouse lung carcinogenesis model.

    Science.gov (United States)

    Hayakawa, Takuya; Mutoh, Michihiro; Imai, Toshio; Tsuta, Koji; Yanaka, Akinori; Fujii, Hirofumi; Yoshimoto, Mitsuyoshi

    2013-08-01

    Lung cancer is one of the leading causes of cancer-related deaths worldwide, including Japan. Although computed tomography (CT) can detect small lung lesions such as those appearing as ground glass opacity, it cannot differentiate between malignant and non-malignant lesions. Previously, we have shown that single photon emission computed tomography (SPECT) imaging using (111)In-1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid-cyclo-(Arg-Gly-Asp-D-Phe-Lys) (DOTA-c(RGDfK)), an imaging probe of αvβ3 integrin, is useful for the early detection of pancreatic cancer in a hamster pancreatic carcinogenesis model. In this study, we aimed to assess the usefulness of SPECT/CT with (111)In-DOTA-c(RGDfK) for the evaluation of the malignancy of lung cancer. Lung tumors were induced by a single intraperitoneal injection (250 mg/kg) of urethane in male A/J mice. Twenty-six weeks after the urethane treatment, SPECT was performed an hour after injection of (111)In-DOTA-c(RGDfK). Following this, the radioactivity ratios of tumor to normal lung tissue were measured by autoradiography (ARG) in the excised lung samples. We also examined the expression of αvβ3 integrin in mouse and human lung samples. Urethane treatment induced 5 hyperplasias, 41 adenomas and 12 adenocarcinomas in the lungs of 8 A/J mice. SPECT with (111)In-DOTA-c(RGDfK) could clearly visualize lung nodules, though we failed to detect small lung nodules like adenoma and hyperplasias (adenocarcinoma: 66.7%, adenoma: 33.6%, hyperplasia: 0.0%). ARG analysis revealed significant uptake of (111)In-DOTA-c(RGDfK) in all the lesions. Moreover, tumor to normal lung tissue ratios increased along with the progression of carcinogenesis. Histopathological examination using human lung tissue samples revealed clear up-regulation of αvβ3 integrin in well-differentiated adenocarcinoma (Noguchi type B and C) rather than atypical adenomatous hyperplasia. Although there are some limitations in evaluating the malignancy of

  9. HURTLE CELLS IMMUNOHISTOCHEMICAL ACTIVITIES IN HASHIMOTO THYROIDITIS PARENCHYMA.

    Science.gov (United States)

    Tsagareli, Z; Kvachadze, T; Melikadze, E; Metreveli, L; Nikobadze, E; Gogiashvili, L

    2016-11-01

    The present study was designed to evaluate the participation and utility of Hǘrtle cells morphological requirment and transformation under Hashimoto autoimmune thyroiditis versus Riedel´s struma. Several markers have been evaluated to detect induced activities of Hǘrtle cells. Study subject - specimens (tissue fragments) collected from TG surgery (thyroidectomy) for mollecular (receptor) diagnosis of Hǘrtle cells activities using routine histological and immunohistochemical samples. 89 cases were selected in Hashimoto thyroiditis diagnosis with Hǘrtle cells history (adenoma and adenomatous grouth of oncocytes). Markers as: TSH receptors, TTF-1, S-100 protein, also anti-TPO and anti-TG levels in blood plasm were detected. It was shown that solid cell claster-nests like agregation of oncocytes and adenomatous growth foci in parafollicular areas with anti-TPO and anti-TG antibodies levels arising while Riedel´s struma shown only large intra- and extra glandular inflammatory proliferative fibrosing process. Large positive expression of TTF-1 and S-100 protein and the negative reaction of TSH receptor factor suggest that Thyroid parenchyma disorganization and mollecular biological atypia with Hǘrtle cells are proceses due to hypothyreoidismus, as well as neuroectodermal cells prominent activities in 70% of Hashimoto cases.

  10. Synergistic role of HSP90α and HSP90β to promote myofibroblast persistence in lung fibrosis.

    Science.gov (United States)

    Bellaye, Pierre-Simon; Shimbori, Chiko; Yanagihara, Toyoshi; Carlson, David A; Hughes, Philip; Upagupta, Chandak; Sato, Seidai; Wheildon, Nolan; Haystead, Timothy; Ask, Kjetil; Kolb, Martin

    2018-02-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease of the lung parenchyma, causing significant morbidity through worsening dyspnoea and overall functional decline. IPF is characterised by apoptosis-resistant myofibroblasts, which are a major source for the excessive production of extracellular matrix (ECM) overtaking normal lung tissue. We sought to study the role of heat shock protein (HSP) isoforms HSP90α and HSP90β, whose distinct roles in lung fibrogenesis remain elusive.We determined the level of circulating HSP90α in IPF patients (n=31) and age-matched healthy controls (n=9) by ELISA. The release of HSP90α and HSP90β was evaluated in vitro in primary IPF and control lung fibroblasts and ex vivo after mechanical stretch on fibrotic lung slices from rats receiving adenovector-mediated transforming growth factor-β1.We demonstrate that circulating HSP90α is upregulated in IPF patients in correlation with disease severity. The release of HSP90α is enhanced by the increase in mechanical stress of the fibrotic ECM. This increase in extracellular HSP90α signals through low-density lipoprotein receptor-related protein 1 (LRP1) to promote myofibroblast differentiation and persistence. In parallel, we demonstrate that the intracellular form of HSP90β stabilises LRP1, thus amplifying HSP90α extracellular action.We believe that the specific inhibition of extracellular HSP90α is a promising therapeutic strategy to reduce pro-fibrotic signalling in IPF. Copyright ©ERS 2018.

  11. Toxic response of nickel nanoparticles in human lung epithelial A549 cells.

    Science.gov (United States)

    Ahamed, Maqusood

    2011-06-01

    Nickel nanoparticle (Ni NP) is increasingly used in modern industries such as catalysts, sensors and electronic applications. Due to wide-spread industrial applications the inhalation is the primary source of exposure to Ni NPs. However, data demonstrating the effect of Ni NPs on the pulmonary system remain scarce. The present study was designed to examine the toxic effect of human lung epithelial A549 cells treated with well characterized Ni NPs at the concentrations of 0, 1, 2, 5, 10 and 25 μg/ml for 24 and 48 h. Mitochondrial function (MTT assay), membrane leakage of lactate dehydrogenase (LDH assay), reduced glutathione (GSH), reactive oxygen species (ROS), membrane lipid peroxidation (LPO) and caspase-3 activity were assessed as toxicity end points. Results showed that Ni NPs reduced mitochondrial function and induced the leakage of LDH in dose and time-dependent manner. Ni NPs were also found to induce oxidative stress in dose and time-dependent manner indicated by depletion of GSH and induction of ROS and LPO. Further, activity of caspase-3 enzyme, marker of apoptosis was significantly higher in treated cells with time and Ni NPs dosage. The results exhibited significant toxicity of Ni NPs in human lung epithelial A549 cells which is likely to be mediated through oxidative stress. This study warrants more careful assessment of Ni NPs before their industrial applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Inhibitory effects of silibinin on proliferation and lung metastasis of human high metastasis cell line of salivary gland adenoid cystic carcinoma via autophagy induction

    Directory of Open Access Journals (Sweden)

    Jiang C

    2016-10-01

    Full Text Available Canhua Jiang,1 Shufang Jin,1 Zhisheng Jiang,1 Jie Wang2 1Department of Oral and Maxillofacial Surgery, Xiangya Hospital, 2Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China Objective: To investigate the possible mechanisms and effects of silibinin (SIL on the proliferation and lung metastasis of human lung high metastasis cell line of salivary gland adenoid cystic carcinoma (ACC-M.Methods: A methyl thiazolyl tetrazolium assay was performed to detect the inhibitory effects of SIL on the proliferation of ACC-M cells in vitro. Fluorescence microscopy and transmission electron microscopy were used to observe the autophagic process. Western blot was performed to detect the expression of microtube-related protein 1 light-chain 3 (LC3. An experimental adenoid cystic carcinoma (ACC lung metastasis model was established in nude mice to detect the impacts of SIL on lung weight and lung cancer nodules. Immunohistochemistry was used to detect the expressions of LC3 in human ACC samples and normal salivary gland tissue samples.Results: SIL inhibited the proliferation of ACC-M cells in a dose- and time-dependent manner, and inductively increased the autophagic bodies in ACC-M cells. Furthermore, SIL could increase the expression of LC3 in ACC-M cells and promote the conversion of LC3-I into LC3-II in a dose- and time-dependent manner. In the ACC lung metastasis model, the lung weight and left and right lung nodules in the SIL-treated group were significantly less than those in the control group (P<0.05. The expressions of LC3-I and LC3-II as well as the positive expression rate of LC3 (80% significantly increased, but the positive expression of LC3 in human ACC (42.22% reduced significantly.Conclusion: SIL could inhibit the proliferation and lung metastasis of ACC-M cells by possibly inducing tumor cells autophagy. Keywords: silibinin, adenoid cystic carcinoma, ACC-M cells, autophagy

  13. 4D-CT Lung registration using anatomy-based multi-level multi-resolution optical flow analysis and thin-plate splines.

    Science.gov (United States)

    Min, Yugang; Neylon, John; Shah, Amish; Meeks, Sanford; Lee, Percy; Kupelian, Patrick; Santhanam, Anand P

    2014-09-01

    The accuracy of 4D-CT registration is limited by inconsistent Hounsfield unit (HU) values in the 4D-CT data from one respiratory phase to another and lower image contrast for lung substructures. This paper presents an optical flow and thin-plate spline (TPS)-based 4D-CT registration method to account for these limitations. The use of unified HU values on multiple anatomy levels (e.g., the lung contour, blood vessels, and parenchyma) accounts for registration errors by inconsistent landmark HU value. While 3D multi-resolution optical flow analysis registers each anatomical level, TPS is employed for propagating the results from one anatomical level to another ultimately leading to the 4D-CT registration. 4D-CT registration was validated using target registration error (TRE), inverse consistency error (ICE) metrics, and a statistical image comparison using Gamma criteria of 1 % intensity difference in 2 mm(3) window range. Validation results showed that the proposed method was able to register CT lung datasets with TRE and ICE values <3 mm. In addition, the average number of voxel that failed the Gamma criteria was <3 %, which supports the clinical applicability of the propose registration mechanism. The proposed 4D-CT registration computes the volumetric lung deformations within clinically viable accuracy.

  14. Curcumin Inhibits Growth of Human NCI-H292 Lung Squamous Cell Carcinoma Cells by Increasing FOXA2 Expression

    Directory of Open Access Journals (Sweden)

    Lingling Tang

    2018-02-01

    Full Text Available Lung squamous cell carcinoma (LSCC is a common histological lung cancer subtype, but unlike lung adenocarcinoma, limited therapeutic options are available for treatment. Curcumin, a natural compound, may have anticancer effects in various cancer cells, but how it may be used to treat LSCC has not been well studied. Here, we applied curcumin to a human NCI-H292 LSCC cell line to test anticancer effects and explored underlying potential mechanisms of action. Curcumin treatment inhibited NCI-H292 cell growth and increased FOXA2 expression in a time-dependent manner. FOXA2 expression was decreased in LSCC tissues compared with adjacent normal tissues and knockdown of FOXA2 increased NCI-H292 cells proliferation. Inhibition of cell proliferation by curcumin was attenuated by FOXA2 knockdown. Moreover inhibition of STAT3 pathways by curcumin increased FOXA2 expression in NCI-H292 cells whereas a STAT3 activator (IL-6 significantly inhibited curcumin-induced FOXA2 expression. Also, SOCS1 and SOCS3, negative regulators of STAT3 activity, were upregulated by curcumin treatment. Thus, curcumin inhibited human NCI-H292 cells growth by increasing FOXA2 expression via regulation of STAT3 signaling pathways.

  15. Human umbilical cord mesenchymal stem cells reduce systemic inflammation and attenuate LPS-induced acute lung injury in rats

    Directory of Open Access Journals (Sweden)

    Li Jianjun

    2012-09-01

    Full Text Available Abstract Background Mesenchymal stem cells (MSCs possess potent immunomodulatory properties and simultaneously lack the ability to illicit immune responses. Hence, MSCs have emerged as a promising candidate for cellular therapeutics for inflammatory diseases. Within the context of this study, we investigated whether human umbilical cord-derived mesenchymal stem cells (UC-MSCs could ameliorate lipopolysaccharide- (LPS- induced acute lung injury (ALI in a rat model. Methods ALI was induced via injection of LPS. Rats were divided into three groups: (1 saline group(control, (2 LPS group, and (3 MSC + LPS group. The rats were sacrificed at 6, 24, and 48 hours after injection. Serum, bronchoalveolar lavage fluid (BALF, and lungs were collected for cytokine concentration measurements, assessment of lung injury, and histology. Results UC-MSCs increased survival rate and suppressed LPS-induced increase of serum concentrations of pro-inflammatory mediators TNF-α, IL-1β, and IL-6 without decreasing the level of anti-inflammatory cytokine IL-10. The MSC + LPS group exhibited significant improvements in lung inflammation, injury, edema, lung wet/dry ratio, protein concentration, and neutrophil counts in the BALF, as well as improved myeloperoxidase (MPO activity in the lung tissue. Furthermore, UC-MSCs decreased malondialdehyde (MDA production and increased Heme Oxygenase-1 (HO-1 protein production and activity in the lung tissue. Conclusion UC-MSCs noticeably increased the survival rate of rats suffering from LPS-induced lung injury and significantly reduced systemic and pulmonary inflammation. Promoting anti-inflammatory homeostasis and reducing oxidative stress might be the therapeutic basis of UC-MSCs.

  16. Infarction and Laceration of Liver Parenchyma Caused by Wedged CO{sub 2} Venography Before TIPS Insertion

    Energy Technology Data Exchange (ETDEWEB)

    Theuerkauf, Ingo [Department of Pathology, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn (Germany); Strunk, Holger [Department of Radiology, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn (Germany); Brensing, Karl August [Department of Internal Medicine, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn (Germany); Schild, Hans Heinz [Department of Radiology, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn (Germany); Pfeifer, Ulrich [Department of Pathology, University of Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn (Germany)

    2001-01-15

    We describe the fatal outcome of an elective TIPS procedure performed in a 43-year-old man with alcoholic cirrhosis. Wedged hepatic venography with CO{sub 2} was the reason for infarction and laceration of liver parenchyma resulting in a subcapsular hematoma and subsequent intra-abdominal bleeding. This is the first report of this complication after the use of CO{sub 2} in a cirrhotic patient.

  17. Absence of an association of human polyomavirus and papillomavirus infection with lung cancer in China: a nested case–control study

    International Nuclear Information System (INIS)

    Colombara, Danny V.; Manhart, Lisa E.; Carter, Joseph J.; Hawes, Stephen E.; Weiss, Noel S.; Hughes, James P.; Qiao, You-Lin; Taylor, Philip R.; Smith, Jennifer S.; Galloway, Denise A.

    2016-01-01

    Studies of human polyomavirus (HPyV) infection and lung cancer are limited and those regarding the association of human papillomavirus (HPV) infection and lung cancer have produced inconsistent results. We conducted a nested case–control study to assess the association between incident lung cancer of various histologies and evidence of prior infection with HPyVs and HPVs. We selected serum from 183 cases and 217 frequency matched controls from the Yunnan Tin Miner’s Cohort study, which was designed to identify biomarkers for early detection of lung cancer. Using multiplex liquid bead microarray (LBMA) antibody assays, we tested for antibodies to the VP1 structural protein and small T antigen (ST-Ag) of Merkel cell, KI, and WU HPyVs. We also tested for antibodies against HPV L1 structural proteins (high-risk types 16, 18, 31, 33, 52, and 58 and low-risk types 6 and 11) and E6 and E7 oncoproteins (high risk types 16 and 18). Measures of antibody reactivity were log transformed and analyzed using logistic regression. We found no association between KIV, WUV, and MCV antibody levels and incident lung cancer (P-corrected for multiple comparisons >0.10 for all trend tests). We also found no association with HPV-16, 18, 31, 33, 52, and 58 seropositivity (P-corrected for multiple comparisons >0.05 for all). Future studies of infectious etiologies of lung cancer should look beyond HPyVs and HPVs as candidate infectious agents. The online version of this article (doi:10.1186/s12885-016-2381-3) contains supplementary material, which is available to authorized users

  18. Molecular characterization of radon-induced rat lung tumors

    International Nuclear Information System (INIS)

    Guillet Bastide, K.

    2008-11-01

    The radon gas is a well known lung carcinogenic factor in human at high doses but the cancer risk at low doses is not established. Indeed, epidemiological studies at low doses are difficult to conduct because of the human exposure to other lung carcinogenic factors. These data underlined the necessity to conduct experiments on lung tumors developed on animal model. The aim of this work was to characterize rat lung tumors by working on a series of radon-induced tumors that included adenocarcinomas (A.C.), squamous cell carcinomas (S.C.C.) and adeno-squamous carcinomas (A.S.C.), that are mixed tumors with both A.C. and S.C.C. cellular components. A C.G.H. analysis of the three types of tumors allowed us to define chromosomal recurrent unbalances and to target candidate genes potentially implicated in lung carcinogenesis, as p16Ink4a, p19Arf, Rb1, K-Ras or c-Myc. A more precise analysis of the p16Ink4a/Cdk4/Rb1 and p19Arf/Mdm2/Tp53 pathways was performed and indicated that the Rb1 pathway was frequently inactivated through an absence of p16 Ink4a protein expression, indicating that it has a major role in rat lung carcinogenesis. Finally, a comparative transcriptomic analysis of the three types of tumors allowed us to show for the first time that the complex tumors A.S.C. have a transcriptomic profile in accordance with their mixed nature but that they also display their own expression profiles specificities. This work allowed us to find molecular characteristics common to murine and human lung tumors, indicating that the model of lung tumors in rat is pertinent to search for radiation-induced lung tumors specificities and to help for a better molecular identification of this type of tumors in human. (author)

  19. A rare tumoral combination, synchronous lung adenocarcinoma and mantle cell lymphoma of the pleura

    Directory of Open Access Journals (Sweden)

    Foroulis Christophoros N

    2008-12-01

    Full Text Available Abstract Background Coexistence of adenocarcinoma and mantle cell lymphoma in the same or different anatomical sites is extremely rare. We present a case of incidental discovery of primary lung adenocarcinoma and mantle cell lymphoma involving the pleura, during an axillary thoracotomy performed for a benign condition. Case presentation A 73-year old male underwent bullectomy and apical pleurectomy for persistent pneumothorax. A bulla of the lung apex was resected en bloc with a scar-like lesion of the lung, which was located in proximity with the bulla origin, by a wide wedge resection. Histologic examination of the stripped-off parietal pleura and of the bullectomy specimen revealed the synchronous occurrence of two distinct neoplasms, a lymphoma infiltrating the pleura and a primary, early lung adenocarcinoma. Immunohistochemical and fluorescence in situ hybridization assays were performed. The morphologic, immunophenotypic and genetic findings supported the diagnosis of primary lung adenocarcinoma (papillary subtype coexisting with a non-Hodgkin, B-cell lineage, mantle cell lymphoma involving both, visceral and parietal pleura and without mediastinal lymph node involvement. The neoplastic lymphoid cells showed the characteristic immunophenotype of mantle cell lymphoma and the translocation t(11;14. The patient received 6 cycles of chemotherapy, while pulmonary function tests precluded further pulmonary parenchyma resection (lobectomy for his adenocarcinoma. The patient is alive and without clinical and radiological findings of local recurrence or distant relapse from both tumors 14 months later. Conclusion This is the first reported case of a rare tumoral combination involving simultaneously lung and pleura, emphasizing at the incidental discovery of the two coexisting neoplasms during a procedure performed for a benign condition. Any tissue specimen resected during operations performed for non-tumoral conditions should be routinely sent for

  20. Effects of retinoic acid-inducible gene-I-like receptors activations and ionizing radiation cotreatment on cytotoxicity against human non-small cell lung cancer in vitro.

    Science.gov (United States)

    Yoshino, Hironori; Iwabuchi, Miyu; Kazama, Yuka; Furukawa, Maho; Kashiwakura, Ikuo

    2018-04-01

    Retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) are pattern-recognition receptors that recognize pathogen-associated molecular patterns and induce antiviral immune responses. Recent studies have demonstrated that RLR activation induces antitumor immunity and cytotoxicity against different types of cancer, including lung cancer. However a previous report has demonstrated that ionizing radiation exerts a limited effect on RLR in human monocytic cell-derived macrophages, suggesting that RLR agonists may be used as effective immunostimulants during radiation therapy. However, it is unclear whether ionizing radiation affects the cytotoxicity of RLR agonists against cancer cells. Therefore, in the present study the effects of cotreatment with ionizing radiation and RLR agonists on cytotoxicity against human non-small cell lung cancer cells A549 and H1299 was investigated. Treatment with RLR agonist poly(I:C)/LyoVec™ [poly(I:C)] exerted cytotoxic effects against human non-small cell lung cancer. The cytotoxic effects of poly(I:C) were enhanced by cotreatment with ionizing radiation, and poly(I:C) pretreatment resulted in the radiosensitization of non-small cell lung cancer. Furthermore, cotreatment of A549 and H1299 cells with poly(I:C) and ionizing radiation effectively induced apoptosis in a caspase-dependent manner compared with treatment with poly(I:C) or ionizing radiation alone. These results indicate that RLR agonists and ionizing radiation cotreatment effectively exert cytotoxic effects against human non-small cell lung cancer through caspase-mediated apoptosis.

  1. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian, E-mail: zhangjian197011@yahoo.com [Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Zhang, Tao [Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi' an 710038 (China); Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling [Department of Respiratory Medicine, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China); Yin, Hong, E-mail: yinnhong@yahoo.com [The Medical Image Center, Xijing Hospital, The Fourth Military Medical University, Xi' an 710032 (China)

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  2. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    International Nuclear Information System (INIS)

    Zhang, Jian; Zhang, Tao; Ti, Xinyu; Shi, Jieran; Wu, Changgui; Ren, Xinling; Yin, Hong

    2010-01-01

    Research highlights: → Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells → Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway → Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* → miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities of curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.

  3. Comparative biology of decellularized lung matrix: Implications of species mismatch in regenerative medicine.

    Science.gov (United States)

    Balestrini, Jenna L; Gard, Ashley L; Gerhold, Kristin A; Wilcox, Elise C; Liu, Angela; Schwan, Jonas; Le, Andrew V; Baevova, Pavlina; Dimitrievska, Sashka; Zhao, Liping; Sundaram, Sumati; Sun, Huanxing; Rittié, Laure; Dyal, Rachel; Broekelmann, Tom J; Mecham, Robert P; Schwartz, Martin A; Niklason, Laura E; White, Eric S

    2016-09-01

    Lung engineering is a promising technology, relying on re-seeding of either human or xenographic decellularized matrices with patient-derived pulmonary cells. Little is known about the species-specificity of decellularization in various models of lung regeneration, or if species dependent cell-matrix interactions exist within these systems. Therefore decellularized scaffolds were produced from rat, pig, primate and human lungs, and assessed by measuring residual DNA, mechanical properties, and key matrix proteins (collagen, elastin, glycosaminoglycans). To study intrinsic matrix biologic cues, human endothelial cells were seeded onto acellular slices and analyzed for markers of cell health and inflammation. Despite similar levels of collagen after decellularization, human and primate lungs were stiffer, contained more elastin, and retained fewer glycosaminoglycans than pig or rat lung scaffolds. Human endothelial cells seeded onto human and primate lung tissue demonstrated less expression of vascular cell adhesion molecule and activation of nuclear factor-κB compared to those seeded onto rodent or porcine tissue. Adhesion of endothelial cells was markedly enhanced on human and primate tissues. Our work suggests that species-dependent biologic cues intrinsic to lung extracellular matrix could have profound effects on attempts at lung regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Pleuropulmonary Blastoma (PPB in an infant: Is the timing of an elective resection of neonatal lung lesions challenged?

    Directory of Open Access Journals (Sweden)

    Robert Simon

    2014-10-01

    Full Text Available Congenital Pulmonary Airway Malformations (CPAMs are abnormalities of lung parenchyma that are often diagnosed upon prenatal imaging as opposed to postnatal symptoms. With a clinical presentation identical to CPAMs, Pleuropulmonary Blastoma (PPB is a rare pulmonary neoplasm of highly malignant potential. We present a rare case of a female infant with a vague medical history of respiratory distress syndrome (RDS at birth, presenting with a tension pneumothorax at three months of age, thought initially to be secondary to CPAM, but found to be PPB upon surgical resection and histological analysis. PPB is a rare pulmonary neoplasm of childhood that originates from the primitive interstitium of the lung, resulting in lesions that can be highly malignant. It is classified as type I (cystic, type II (cystic/solid or type III (solid, with a progression of disease and worsening prognosis from type I to type III. Due to the cystic nature of CPAM and PPB it is difficult to differentiate on imaging alone; diagnosis must be made based on histological analysis. The highly malignant nature and potential for morbidity and mortality of PPB should make clinicians consider early resection of cystic lung lesions preferentially on an elective basis.

  5. Temporary Arterial Embolization of Liver Parenchyma with Degradable Starch Microspheres (EmboCept{sup ®}S) in a Swine Model

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, Claus C., E-mail: claus.christian.pieper@ukb.uni-bonn.de; Meyer, Carsten, E-mail: Carsten.Meyer@ukb.uni-bonn.de [University of Bonn, Department of Radiology (Germany); Vollmar, Brigitte, E-mail: brigitte.vollmar@med.uni-rostock.de [University of Rostock, Institute for Experimental Surgery (Germany); Hauenstein, Karlheinz, E-mail: karlheinz.hauenstein@med.uni-rostock.de [University of Rostock, Department of Diagnostic and Interventional Radiology (Germany); Schild, Hans H., E-mail: Hans.Schild@ukb.uni-bonn.de [University of Bonn, Department of Radiology (Germany); Wilhelm, Kai E., E-mail: Kai.Wilhelm@ek-bonn.de [Johanniter Hospital, Evangelische Kliniken Bonn (Germany)

    2015-04-15

    BackgroundThis study aimed to evaluate the embolic properties, time to reperfusion, and histologic changes in temporary embolization of liver tissue with degradable starch microspheres (DSM) in a swine model.MethodsIn four adult minipigs, DSMs were injected into the right or left hepatic artery on the lobar level until complete stasis of the blood flow was detectable angiographically. The time required to complete angiographically determined reperfusion was noted. The animals were killed 3 h after complete reperfusion, and samples were taken from the liver. Histologic examinations of the embolized liver parenchyma and untreated tissue were performed.ResultsHepatic arterial embolization using DSMs was technically successful in all cases, with complete blood flow stasis shown by control angiography. A single vial of DSMs (450 mg/7.5 ml) was sufficient to embolize a whole liver lobe in all cases. Angiography showed complete reconstitution of hepatic arterial perfusion after a mean time to reperfusion of 32 ± 6.1 min (range, 26–39 min). Hematoxylin and eosin staining showed no histologically detectable differences between untreated tissue and parenchyma embolized with DSMs except for mild sinusoidal congestion in one case. Indirect in situ DNA nick end labeling staining (TUNEL) showed only single positive hepatocytes, indicating apoptosis.ConclusionTemporary embolization of the hepatic artery using DSMs is feasible with complete reperfusion after 30 min in pigs. Even after complete arterial blood flow stasis, no extensive tissue damage to the embolized liver parenchyma was observed at histologic examinations in this short-term study.

  6. Trehalose Liposomes Suppress the Growth of Tumors on Human Lung Carcinoma-bearing Mice by Induction of Apoptosis In Vivo.

    Science.gov (United States)

    Ichihara, Hideaki; Kuwabara, Keiji; Matsumoto, Yoko

    2017-11-01

    Previous evidence demonstrates that trehalose liposomes (DMTreC14) composed of L-α-dimyristoylphosphatidylcholine (DMPC) and α-D-glycopyranosyl-α-D-glucopyranoside monomyristate (TreC14) inhibit proliferation and invasion on lung carcinoma (A549 cells) in vitro. Here, we aimed to investigate suppressive effects of DMTreC14 on the growth of tumor on human lung carcinoma bearing mice. DMTreC14 composed of 30 mol% DMPC and 70 mol% TreC14 were prepared by the sonication method. Anti-tumor activities of DMTreC14 using the subcutaneous and orthotopic graft-bearing mice of A549 cells were investigated in vivo. The remarkable reduction of volume and weight in subcutaneous tumors on subcutaneous lung carcinoma-bearing mice topically administrated with DMTreC14 were obtained. Apoptotic-positive cells in the subcutaneous tumor slice of subcutaneous lung carcinoma-bearing mice topically administrated with DMTreC14 were observed using TUNEL staining. Lung weights on the orthotopic graft-bearing mice of lung carcinoma intravenously administrated with DMTreC14 were markedly decreased compared to those of the control group. Remarkable decrease in dimensions of tumor area of lung on the orthotopic graft-bearing mice of lung carcinoma intravenously administrated with DMTreC14 was obtained in histological analysis using the hematoxylin and eosin staining. Remarkably high anti-tumor activities of DMTreC14 for the subcutaneous and orthotopic graft-bearing mice of lung carcinoma accompanied with apoptosis were revealed for the first time in vivo. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  7. Organ slices as an in vitro test system for drug metabolism in human liver, lung and kidney

    NARCIS (Netherlands)

    Olinga, Peter; de Jager, M.H; Meijer, D.K F; Groothuis, Geny; Merema, M.T.

    1999-01-01

    Metabolism of xenobiotics occurs mainly in the liver, but in addition, the lungs and kidneys may contribute considerably. The choice of the animal species during drug development as a predictive model for the human condition is often inadequate due to large interspecies differences. Therefore, a

  8. Decreased helenalin-induced cytotoxicity by flavonoids from Arnica as studied in a human lung carcinoma cell line

    NARCIS (Netherlands)

    Woerdenbag, HJ; Merfort, [No Value; Schmidt, TJ; Passreiter, CM; Willuhn, G; vanUden, W; Pras, N; Konings, AWT

    1995-01-01

    The effect of the flavones apigenin, luteolin, hispidulin and eupafolin, and of the flavonols kaempferol, quercetin, 6-methoxykaempferol and patuletin from Amica spp, on the cytotoxicity of the sesquiterpene lactone helenalin was studied in the human lung carcinoma cell line GLC(4) using the

  9. Role of free radicals in an adriamycin-resistant human small cell lung cancer cell line

    NARCIS (Netherlands)

    Meijer, C.; Mulder, N H; Timmer-Bosscha, H; Zijlstra, J G; de Vries, E G

    1987-01-01

    In two Adriamycin (Adr) resistant sublines (GLC4-Adr1 and GLC4-Adr2) of a human small cell lung carcinoma cell line, GLC4, cross-resistance for radiation was found. GLC4-Adr1 has an acquired Adr resistance factor of 44 after culturing without Adr for 20 days and GLC4-Adr2, the same subline cultured

  10. Immunohistochemical analysis of Clara cell secretory protein expression in a transgenic model of mouse lung carcinogenesis

    International Nuclear Information System (INIS)

    Hicks, Sarah M.; Vassallo, Jeffrey D.; Dieter, Matthew Z.; Lewis, Cindy L.; Whiteley, Laurence O.; Fix, Andrew S.; Lehman-McKeeman, Lois D.

    2003-01-01

    Immunohistochemical methods have been widely used to determine the histogenesis of spontaneous and chemically-induced mouse lung tumors. Typically, antigens for either alveolar Type II cells or bronchiolar epithelial Clara cells are studied. In the present work, the morphological and immunohistochemical phenotype of a transgenic mouse designed to develop lung tumors arising from Clara cells was evaluated. In this model, Clara cell-specific transformation is accomplished by directed expression of the SV40 large T antigen (TAg) under the mouse Clara cell secretory protein (CC10) promoter. In heterozygous mice, early lesions at 1 month of age consisted of hyperplastic bronchiolar epithelial cells. These progressed to adenoma by 2 months as proliferating epithelium extended into adjacent alveolar spaces. By 4 months, a large portion of the lung parenchyma was composed of tumor masses. Expression of constitutive CC10 was diminished in transgenic animals at all time points. Only the occasional cell or segment of the bronchiolar epithelium stained positively for CC10 by immunohistochemistry, and all tumors were found to be uniformly negative for staining. These results were corroborated by Western blotting, where CC10 was readily detectable in whole lung homogenate from nontransgenic animals, but not detected in lung from transgenic animals at any time point. Tumors were also examined for expression of surfactant apoprotein C (SPC), an alveolar Type II cell-specific marker, and found to be uniformly negative for staining. These results indicate that, in this transgenic model, expression of CC10, which is widely used to determine whether lung tumors arise from Clara cells, was reduced and subsequently lost during Clara cell tumor progression

  11. Assessment of CCL2 and CXCL8 chemokines in serum, bronchoalveolar lavage fluid and lung tissue samples from dogs affected with canine idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Roels, Elodie; Krafft, Emilie; Farnir, Frederic; Holopainen, Saila; Laurila, Henna P; Rajamäki, Minna M; Day, Michael J; Antoine, Nadine; Pirottin, Dimitri; Clercx, Cecile

    2015-10-01

    Canine idiopathic pulmonary fibrosis (CIPF) is a progressive disease of the lung parenchyma that is more prevalent in dogs of the West Highland white terrier (WHWT) breed. Since the chemokines (C-C motif) ligand 2 (CCL2) and (C-X-C motif) ligand 8 (CXCL8) have been implicated in pulmonary fibrosis in humans, the aim of the present study was to investigate whether these same chemokines are involved in the pathogenesis of CIPF. CCL2 and CXCL8 concentrations were measured by ELISA in serum and bronchoalveolar lavage fluid (BALF) from healthy dogs and WHWTs affected with CIPF. Expression of the genes encoding CCL2 and CXCL8 and their respective receptors, namely (C-C motif) receptor 2 (CCR2) and (C-X-C motif) receptor 2 (CXCR2), was compared in unaffected lung tissue and biopsies from dogs affected with CIPF by quantitative PCR and localisation of CCL2 and CXCL8 proteins were determined by immunohistochemistry. Significantly greater CCL2 and CXCL8 concentrations were found in the BALF from WHWTs affected with CIPF, compared with healthy dogs. Significantly greater serum concentrations of CCL2, but not CXCL8, were found in CIPF-affected dogs compared with healthy WHWTs. No differences in relative gene expression for CCL2, CXCL8, CCR2 or CXCR2 were observed when comparing lung biopsies from control dogs and those affected with CIPF. In affected lung tissues, immunolabelling for CCL2 and CXCL8 was observed in bronchial airway epithelial cells in dogs affected with CIPF. The study findings suggest that both CCL2 and CXCL8 are involved in the pathogenesis of CIPF. Further studies are required to determine whether these chemokines might have a clinical use as biomarkers of fibrosis or as targets for therapeutic intervention. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Bystander effects of exposure to low-dose-rate 125I seeds on human lung cancers cells in vitro

    International Nuclear Information System (INIS)

    Jia Rongfei; Chen Honghong; Yu Lei; Zhao Meijia; Shao Chunlin; Cheng Wenying

    2007-01-01

    The bystander effects induced by continuous low-dose-rate (LDR) 125 I seeds radiation on damage of human lung cancer cells were investigated. Human adenocarcinoma cell line A549 and human small cell lung cancer cell line NCI-H446, which have different sensitivities to high-dose rate (HDR) external irradiation, were exposed directly to 125 I seeds in vitro and co-cultured with unirradiated cells for 24 h. Using cytokinesis-blocking micronucleus method and γ H2AX fluorescence immunoassay, bystander effects induced by 2Gy and 4Gy 125 I seed irradiation on micronucleus formation and DNA double-strand breaks (DSBs) of human lung cancer cells were detected and evaluated. The results showed that irradiation with 125 I seeds can induce medium-mediated bystander effects in A549 cells and NCI-H446 cells, exhibiting that both micronuclei formation and γ H2AX focus formation in bystander cells were increased significantly compared with non-irradiated cells. The extent of DNA damage induced by bystander effects was correlated with accumulated radiation dose and radiosensitive of tumor cells. NCI-H446 cells that were sensitive to HDR γ irradiation were more sensitive to continuous LDR irradiation and bystander effects than A549. However, a comparison between the bystander effects and direct effects elicits the intensity of bystander responses of A549 cells was higher than that of NCI-H446 cells. A dose-related reduction in bystander responses was observed both in A549 cells and NCI-H446 cells, suggesting that the signaling factors involved in the bystander signaling pathways may decrease with the increase of cell damages. (authors)

  13. MiR-564 functions as a tumor suppressor in human lung cancer by targeting ZIC3

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin [Department of Oncology, Hubei Cancer Hospital, Wuhan, Hubei 430079 (China); Jia, Lin [Department of Nephrology, The Central Hospital of Wuhan, Wuhan, Hubei 430079 (China); Guo, Qiaojuan [Department of Radiation Oncology, Fujian Provincial Cancer Hospital, Provincial Clinical College of Fujian Medical University, Fuzhou, Fujian 350000 (China); Ren, Hui; Hu, Desheng; Zhou, Xiaoyi; Ren, Qingrong [Department of Oncology, Hubei Cancer Hospital, Wuhan, Hubei 430079 (China); Hu, Yanping, E-mail: huyp1989@163.com [Department of Oncology, Hubei Cancer Hospital, Wuhan, Hubei 430079 (China); Xie, Tao, E-mail: xietao930@hotmail.com [Department of Radiation Oncology, Hubei Cancer Hospital, Wuhan, Hubei 430079 (China)

    2015-11-27

    Although miR-564 was reported to be dysregulated in human malignancy, the function and mechanism of miR-564 in tumorigenesis remains unknown. In the present study, we found that miR-564 frequently downregulated in lung cancer cells and significantly inhibited cell proliferation, cell cycle progression, motility, and the tumorigenicity of lung cancer cells. Moreover, we identified zic family member 3 (ZIC3) as a direct target of miR-564. ZIC3 overexpression impaired the suppressive effects of miR-564 on the capacity of lung cancer cells for proliferation and motility. Finally, we detected the expression level of miR-564 and ZIC3 protein in tissue specimens, and found a significant negative correlation between them. Patients with low levels of miR-564 showed a poorer overall survival. Taken together, our present study revealed the tumor suppressor role of miR-564, indicating restoration of miR-564 as a potential therapeutic strategy for the treatment of lung cancer. - Highlights: • MiR-564 inhibits cancer cell proliferation, cell cycle progression, migration, and invasion. • miR-564 suppresses the tumorigenicity of lung cancer cell in vivo. • ZIC3 is a direct and functional target of miR-564. • The expression of miR-564 was negatively correlated with ZIC3 protein in tumors. • Both low miR-564 and high ZIC3 was associated with tumor stage and prognosis.

  14. MiR-564 functions as a tumor suppressor in human lung cancer by targeting ZIC3

    International Nuclear Information System (INIS)

    Yang, Bin; Jia, Lin; Guo, Qiaojuan; Ren, Hui; Hu, Desheng; Zhou, Xiaoyi; Ren, Qingrong; Hu, Yanping; Xie, Tao

    2015-01-01

    Although miR-564 was reported to be dysregulated in human malignancy, the function and mechanism of miR-564 in tumorigenesis remains unknown. In the present study, we found that miR-564 frequently downregulated in lung cancer cells and significantly inhibited cell proliferation, cell cycle progression, motility, and the tumorigenicity of lung cancer cells. Moreover, we identified zic family member 3 (ZIC3) as a direct target of miR-564. ZIC3 overexpression impaired the suppressive effects of miR-564 on the capacity of lung cancer cells for proliferation and motility. Finally, we detected the expression level of miR-564 and ZIC3 protein in tissue specimens, and found a significant negative correlation between them. Patients with low levels of miR-564 showed a poorer overall survival. Taken together, our present study revealed the tumor suppressor role of miR-564, indicating restoration of miR-564 as a potential therapeutic strategy for the treatment of lung cancer. - Highlights: • MiR-564 inhibits cancer cell proliferation, cell cycle progression, migration, and invasion. • miR-564 suppresses the tumorigenicity of lung cancer cell in vivo. • ZIC3 is a direct and functional target of miR-564. • The expression of miR-564 was negatively correlated with ZIC3 protein in tumors. • Both low miR-564 and high ZIC3 was associated with tumor stage and prognosis.

  15. Peroxisome proliferator-activated receptor-γ agonists inhibit the replication of respiratory syncytial virus (RSV) in human lung epithelial cells

    International Nuclear Information System (INIS)

    Arnold, Ralf; Koenig, Wolfgang

    2006-01-01

    We have previously shown that peroxisome proliferator-activated receptor-γ (PPARγ) agonists inhibited the inflammatory response of RSV-infected human lung epithelial cells. In this study, we supply evidence that specific PPARγ agonists (15d-PGJ 2 , ciglitazone, troglitazone, Fmoc-Leu) efficiently blocked the RSV-induced cytotoxicity and development of syncytia in tissue culture (A549, HEp-2). All PPARγ agonists under study markedly inhibited the cell surface expression of the viral G and F protein on RSV-infected A549 cells. This was paralleled by a reduced cellular amount of N protein-encoding mRNA determined by real-time RT-PCR. Concomitantly, a reduced release of infectious progeny virus into the cell supernatants of human lung epithelial cells (A549, normal human bronchial epithelial cells (NHBE)) was observed. Similar results were obtained regardless whether PPARγ agonists were added prior to RSV infection or thereafter, suggesting that the agonists inhibited viral gene expression and not the primary adhesion or fusion process

  16. Radiologic imaging of the renal parenchyma structure and function.

    Science.gov (United States)

    Grenier, Nicolas; Merville, Pierre; Combe, Christian

    2016-06-01

    Radiologic imaging has the potential to identify several functional and/or structural biomarkers of acute and chronic kidney diseases that are useful diagnostics to guide patient management. A renal ultrasound examination can provide information regarding the gross anatomy and macrostructure of the renal parenchyma, and ultrasound imaging modalities based on Doppler or elastography techniques can provide haemodynamic and structural information, respectively. CT is also able to combine morphological and functional information, but the use of CT is limited due to the required exposure to X-ray irradiation and a risk of contrast-induced nephropathy following intravenous injection of a radio-contrast agent. MRI can be used to identify a wide range of anatomical and physiological parameters at the tissue and even cellular level, such as tissue perfusion, oxygenation, water diffusion, cellular phagocytic activity, tissue stiffness, and level of renal filtration. The ability of MRI to provide valuable information for most of these parameters within a renal context is still in development and requires more clinical experience, harmonization of technical procedures, and an evaluation of reliability and validity on a large scale.

  17. Testing lung cancer drugs and therapies in mice

    Science.gov (United States)

    National Cancer Institute (NCI) investigators have designed a genetically engineered mouse for use in the study of human lung squamous cell carcinoma (SCC). SCC is a type of non-small cell lung carcinoma, one of the most common types of lung cancer, with

  18. Interim report on intrathoracic radiotherapy of human small-cell lung carcinoma in nude mice with Re-188-RC-160, a radiolabeled somatostatin analogue

    International Nuclear Information System (INIS)

    Zamora, P.O.; Bender, H.; Biersack, H.J.; Knapp, F.F. Jr.

    1995-01-01

    The purpose of this study was to evaluate the therapeutic efficacy of Re-188-RC-160 in experimental models of human small cell lung carcinomas which mimic the clinical presentation. In the experimental model, cells from the human small cell lung carcinoma cell line NCI-H69 cells were inoculated into the thoracic cavity of athymic mice and rats. Subsequently, the biodistribution of Re-188-RC-160 after injection into the pleural cavity, a radiolabeled somatostatin analogue, was monitored as was the effect on the subsequent growth of tumors. The results presented here, and which are a part of a larger series of studies, suggest that Re-188-RC-160 can be effectively used in this animal model to restrict the growth of small cell lung carcinoma in the thoracic cavity

  19. Oxidative damage induced by cigarette smoke exposure in mice: impact on lung tissue and diaphragm muscle,

    Directory of Open Access Journals (Sweden)

    Samanta Portão de Carlos

    2014-08-01

    Full Text Available OBJECTIVE: To evaluate oxidative damage (lipid oxidation, protein oxidation, thiobarbituric acid-reactive substances [TBARS], and carbonylation and inflammation (expression of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin [p-AMPK and p-mTOR, respectively] in the lung parenchyma and diaphragm muscles of male C57BL-6 mice exposed to cigarette smoke (CS for 7, 15, 30, 45, or 60 days. METHODS: Thirty-six male C57BL-6 mice were divided into six groups (n = 6/group: a control group; and five groups exposed to CS for 7, 15, 30, 45, and 60 days, respectively. RESULTS: Compared with control mice, CS-exposed mice presented lower body weights at 30 days. In CS-exposed mice (compared with control mice, the greatest differences (increases in TBARS levels were observed on day 7 in diaphragm-muscle, compared with day 45 in lung tissue; the greatest differences (increases in carbonyl levels were observed on day 7 in both tissue types; and sulfhydryl levels were lower, in both tissue types, at all time points. In lung tissue and diaphragm muscle, p-AMPK expression exhibited behavior similar to that of TBARS. Expression of p-mTOR was higher than the control value on days 7 and 15 in lung tissue, as it was on day 45 in diaphragm muscle. CONCLUSION: Our data demonstrate that CS exposure produces oxidative damage, not only in lung tissue but also (primarily in muscle tissue, having an additional effect on respiratory muscle, as is frequently observed in smokers with COPD.

  20. Benign metastasizing leiomyoma in triple location: lungs, parametria and appendix

    Directory of Open Access Journals (Sweden)

    Renata Raś

    2016-07-01

    Full Text Available Benign metastasizing leiomyoma (BML usually are situated in one organ, most often in lungs. BML patients typically have a history of uterine leiomyoma treated with hysterectomy, myomectomy or subtotal hysterectomy. The aim of the study was to present the case of a 53-year-old woman with triple location in the lungs, parametria and appendix. She had undergone a myomectomy 26 years earlier. In 2015, she was admitted to the surgical department because of abdominal pain, whereupon a cholecystectomy was performed. CT scans showed pelvic mass with pulmonary metastasis. Upon discharge the patient was referred to the Gynecology Clinic, where a laparotomy was performed. The intraoperative findings were: 1 uterus with multiple leiomyomas, 2 four tumors in the parametria, 3 tumor connected to the appendix. A subtotal hysterectomy, with a bilateral salpingo-oophorectomy, removal of the tumors from the parametria and appendectomy was performed. Pathology confirmed the diagnosis based on morphology and immunohistochemical staining (strongly positive for estrogen receptors and SMA, while Ki67 was very low, below 1%. Upon postoperative recovery, the patient was referred to the Thoracic Surgery Department. During the thoracotomy, multiple nodes, surrounded by lung parenchyma, were revealed. Wedge resection was performed, for localized pulmonary lesions, and sent for pathological examination. The final pathological diagnosis was benign metastasizing leiomyomatosis. In conclusion, the triple location of BML could possibly be a result of a parallel different metastasizing mechanism, although it is impossible to exclude one mechanism, which may be the cause of the metastases in three locations.