WorldWideScience

Sample records for human liver slices

  1. Liver Effects of Clinical Drugs Differentiated in Human Liver Slices

    Directory of Open Access Journals (Sweden)

    Alison E. M. Vickers

    2017-03-01

    Full Text Available Drugs with clinical adverse effects are compared in an ex vivo 3-dimensional multi-cellular human liver slice model. Functional markers of oxidative stress and mitochondrial function, glutathione GSH and ATP levels, were affected by acetaminophen (APAP, 1 mM, diclofenac (DCF, 1 mM and etomoxir (ETM, 100 μM. Drugs targeting mitochondria more than GSH were dantrolene (DTL, 10 μM and cyclosporin A (CSA, 10 μM, while GSH was affected more than ATP by methimazole (MMI, 500 μM, terbinafine (TBF, 100 μM, and carbamazepine (CBZ 100 μM. Oxidative stress genes were affected by TBF (18%, CBZ, APAP, and ETM (12%–11%, and mitochondrial genes were altered by CBZ, APAP, MMI, and ETM (8%–6%. Apoptosis genes were affected by DCF (14%, while apoptosis plus necrosis were altered by APAP and ETM (15%. Activation of oxidative stress, mitochondrial energy, heat shock, ER stress, apoptosis, necrosis, DNA damage, immune and inflammation genes ranked CSA (75%, ETM (66%, DCF, TBF, MMI (61%–60%, APAP, CBZ (57%–56%, and DTL (48%. Gene changes in fatty acid metabolism, cholestasis, immune and inflammation were affected by DTL (51%, CBZ and ETM (44%–43%, APAP and DCF (40%–38%, MMI, TBF and CSA (37%–35%. This model advances multiple dosing in a human ex vivo model, plus functional markers and gene profile markers of drug induced human liver side-effects.

  2. Liver Effects of Clinical Drugs Differentiated in Human Liver Slices.

    Science.gov (United States)

    Vickers, Alison E M; Ulyanov, Anatoly V; Fisher, Robyn L

    2017-03-07

    Drugs with clinical adverse effects are compared in an ex vivo 3-dimensional multi-cellular human liver slice model. Functional markers of oxidative stress and mitochondrial function, glutathione GSH and ATP levels, were affected by acetaminophen (APAP, 1 mM), diclofenac (DCF, 1 mM) and etomoxir (ETM, 100 μM). Drugs targeting mitochondria more than GSH were dantrolene (DTL, 10 μM) and cyclosporin A (CSA, 10 μM), while GSH was affected more than ATP by methimazole (MMI, 500 μM), terbinafine (TBF, 100 μM), and carbamazepine (CBZ 100 μM). Oxidative stress genes were affected by TBF (18%), CBZ, APAP, and ETM (12%-11%), and mitochondrial genes were altered by CBZ, APAP, MMI, and ETM (8%-6%). Apoptosis genes were affected by DCF (14%), while apoptosis plus necrosis were altered by APAP and ETM (15%). Activation of oxidative stress, mitochondrial energy, heat shock, ER stress, apoptosis, necrosis, DNA damage, immune and inflammation genes ranked CSA (75%), ETM (66%), DCF, TBF, MMI (61%-60%), APAP, CBZ (57%-56%), and DTL (48%). Gene changes in fatty acid metabolism, cholestasis, immune and inflammation were affected by DTL (51%), CBZ and ETM (44%-43%), APAP and DCF (40%-38%), MMI, TBF and CSA (37%-35%). This model advances multiple dosing in a human ex vivo model, plus functional markers and gene profile markers of drug induced human liver side-effects.

  3. Repair pathways evident in human liver organ slices

    NARCIS (Netherlands)

    Vickers, Alison E. M.; Fisher, Robyn; Olinga, Peter; Dial, Sharon

    2011-01-01

    The extension of human liver slice culture viability for several days broadens the potential of this ex vivo model for characterizing pathways of organ injury and repair, and allows for the multiple dosing of compounds. Extended viability is demonstrated by continued synthesis of GSH and ATP, and ma

  4. Human precision-cut liver slices as a model to test antifibrotic drugs in the early onset of liver fibrosis

    NARCIS (Netherlands)

    Westra, Inge M.; Mutsaers, Henricus A. M.; Luangmonkong, Theerut; Hadi, Mackenzie; Oosterhuis, Dorenda; de Jong, Koert P.; Groothuis, Geny M. M.; Olinga, Peter

    2016-01-01

    Liver fibrosis is the progressive accumulation of connective tissue ultimately resulting in loss of organ function. Currently, no effective antifibrotics are available due to a lack of reliable human models. Here we investigated the fibrotic process in human precision-cut liver slices (PCLS) and stu

  5. Anti-hepatitis C virus potency of a new autophagy inhibitor using human liver slices model

    Institute of Scientific and Technical Information of China (English)

    Sylvie; Lagaye; Sonia; Brun; Jesintha; Gaston; Hong; Shen; Ruzena; Stranska; Claire; Camus; Clarisse; Dubray; Géraldine; Rousseau; Pierre-Philippe; Massault; Jer?me; Courcambeck; Firas; Bassisi; Philippe; Halfon; Stanislas; Pol

    2016-01-01

    AIM: To evaluate the antiviral potency of a new antihepatitis C virus(HCV) antiviral agent targeting the cellular autophagy machinery. METHODS: Non-infected liver slices, obtained from human liver resection and cut in 350 μm-thick slices(2.7 × 106 cells per slice) were infected with cell culture-grown HCV Con1b/C3 supernatant(multiplicity of infection = 0.1) cultivated for up to ten days. HCV infected slices were treated at day 4 post-infection with GNS-396 for 6 d at different concentrations. HCV replication was evaluated by strand-specific real-time quantitative reverse transcription- polymerase chain reaction. The infectivity titers of supernatants were evaluated by foci formation upon inoculation into naive Huh-7.5.1 cells. The cytotoxic effect of the drugs was evaluated by lactate dehydrogenase leakage assays. RESULTS: The antiviral efficacy of a new antiviral drug, GNS-396, an autophagy inhibitor, on HCV infection of adult human liver slices was evidenced in a dosedependent manner. At day 6 post-treatment, GNS-396 EC50 was 158 nmol/L without cytotoxic effect(compared to hydroxychloroquine EC50 = 1.17 μmol/L).CONCLUSION: Our results demonstrated that our ex vivo model is efficient for evaluation the potency of autophagy inhibitors, in particular a new quinoline derivative GNS-396 as antiviral could inhibit HCV infection in a dosedependent manner without cytotoxic effect.

  6. Proteomic profiling in incubation medium of mouse, rat and human precision-cut liver slices for biomarker detection regarding acute drug-induced liver injury

    NARCIS (Netherlands)

    van Swelm, Rachel P. L.; Hadi, Mackenzie; Laarakkers, Coby M. M.; Masereeuw, Rosalinde; Groothuis, Geny M. M.; Russel, Frans G. M.

    2014-01-01

    Drug-induced liver injury is one of the leading causes of drug withdrawal from the market. In this study, we investigated the applicability of protein profiling of the incubation medium of human, mouse and rat precision-cut liver slices (PCLS) exposed to liver injury-inducing drugs for biomarker ide

  7. Effect of human liver source on the functionality of isolated hepatocytes and liver slices

    NARCIS (Netherlands)

    Olinga, Peter; Hof, I.H; de Jong, Kurt; Slooff, M.JH; Meijer, D.K F; Groothuis, Geny; Merema, M.T.

    1998-01-01

    In vitro experiments using human liver tissue to study drug metabolism and transport are usually performed and interpreted without real consideration of the differences in procurement of the tissue, if it is obtained from different sources. Therefore, in this study the functionality of isolated hepa

  8. Effect of cold and warm ischaemia on drug metabolism in isolated hepatocytes and slices from human and monkey liver

    NARCIS (Netherlands)

    Olinga, Peter; Hof, I.H; de Jager, M.H; de Jong, Kurt; Slooff, M.JH; Meijer, D.K F; Groothuis, Geny; Merema, M.T.

    1998-01-01

    1. The influence of short-term cold storage in University of Wisconsin organ preservation solution (UW) on the ability to metabolize lidocaine, testosterone and 7-ethoxycoumarin in isolated human and cynomolgus monkey (Macaca fascicularis) hepatocytes and liver slices has been investigated. 2. The h

  9. The impact of PPARalpha activation on whole genome gene expression in human precision cut liver slices

    NARCIS (Netherlands)

    Janssen, A.W.H.; Betzel, B; Stoopen, G.; Berends, F.J.; Janssen, I.M.C.; Peijnenburg, A.A.; Kersten, S.

    2015-01-01

    BACKGROUND: Studies in mice have shown that PPARalpha is an important regulator of lipid metabolism in liver and key transcription factor involved in the adaptive response to fasting. However, much less is known about the role of PPARalpha in human liver. METHODS: Here we set out to study the functi

  10. Gene expression analysis of precision-cut human liver slices indicate stable expression of hepatotoxicity related genes

    NARCIS (Netherlands)

    Elferink, Maria; Olinga, Peter; van Leeuwen, E. M.; Bauerschmidt, S.; Polman, J.; Schoonen, W. G.; Heisterkamp, S. H.; Groothuis, Genoveva

    2011-01-01

    In the process of drug development it is of high importance to test the safety of new drugs with predictive value for human toxicity. A promising approach of toxicity testing is based on changes in the gene expression profile of the liver. Toxicity screening based on animal liver cells cannot be dir

  11. Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes

    NARCIS (Netherlands)

    Elferink, M. G. L.; Olinga, P.; van Leeuwen, E. M.; Bauerschmidt, S.; Polman, J.; Schoonen, W. G.; Heisterkamp, S. H.; Groothuis, G. M. M.

    2011-01-01

    In the process of drug development it is of high importance to test the safety of new drugs with predictive value for human toxicity. A promising approach of toxicity testing is based on shifts in gene expression profiling of the liver. Toxicity screening based on animal liver cells cannot be direct

  12. Gene expression analysis of precision cut human liver slices indicate stable expression of ADME-Tox related genes

    NARCIS (Netherlands)

    Elferink, M.; Olinga, P.; Van Leeuwen, E.; Bauerschmidt, S.; Polman, J.; Schoonen, W.; Heisterkamp, S.; Groothuis, G.

    2010-01-01

    In the process of drug development it is of high importance to test the safety of new drugs with predictive value for human toxicity. Currently, for toxicity studies toxicogenomic analysis of changes in gene expression profile of the liver is increasingly applied. Toxicity screening based on animal

  13. Organ slices as an in vitro test system for drug metabolism in human liver, lung and kidney

    NARCIS (Netherlands)

    Olinga, Peter; de Jager, M.H; Meijer, D.K F; Groothuis, Geny; Merema, M.T.

    1999-01-01

    Metabolism of xenobiotics occurs mainly in the liver, but in addition, the lungs and kidneys may contribute considerably. The choice of the animal species during drug development as a predictive model for the human condition is often inadequate due to large interspecies differences. Therefore, a

  14. Human precision-cut liver tumor slices as a tumor patient-individual predictive test system for oncolytic measles vaccine viruses

    NARCIS (Netherlands)

    Zimmermann, Martina; Armeanu, Sorin; Smirnow, Irina; Kupka, Susan; Wagner, Silvia; Wehrmann, Manfred; Rots, Marianne G.; Groothuis, Geny M. M.; Weiss, Thomas S.; Koenigsrainer, Alfred; Gregor, Michael; Bitzer, Michael; Lauer, Ulrich M.

    2009-01-01

    Availability of an individualized preselection of oncolytic viruses to be used for virotherapy of tumor patients would be of great help. Using primary liver tumor resection specimens we evaluated the precision-cut liver slice (PCLS) technology as a novel in vitro test system for characterization of

  15. Cryopreservation of precision-cut rat liver slices using a computer-controlled freezer

    NARCIS (Netherlands)

    Maas, W.J.M.; Leeman, W.R.; Groten, J.P.; Sandt, J.J.M. van de

    2000-01-01

    Precision-cut liver slices are frequently used to study hepatic toxicity and metabolism of xenobiotics in vitro. Successful cryopreservation techniques will enhance an efficient and economic use of scarcely available (human) liver tissue. For primary hepatocytes, slow freezing has been accepted as

  16. Cryopreservation of precision-cut rat liver slices using a computer-controlled freezer

    NARCIS (Netherlands)

    Maas, W.J.M.; Leeman, W.R.; Groten, J.P.; Sandt, J.J.M. van de

    2000-01-01

    Precision-cut liver slices are frequently used to study hepatic toxicity and metabolism of xenobiotics in vitro. Successful cryopreservation techniques will enhance an efficient and economic use of scarcely available (human) liver tissue. For primary hepatocytes, slow freezing has been accepted as t

  17. Precision-cut hamster liver slices as an ex vivo model to study amoebic liver abscess.

    Science.gov (United States)

    Carranza-Rosales, Pilar; Santiago-Mauricio, María Guadalupe; Guzmán-Delgado, Nancy Elena; Vargas-Villarreal, Javier; Lozano-Garza, Gerardo; Ventura-Juárez, Javier; Balderas-Rentería, Isaías; Morán-Martínez, Javier; Gandolfi, A Jay

    2010-10-01

    Entamoeba histolytica is the etiological agent of amoebiasis, the second cause of global morbidity and mortality due to parasitic diseases in humans. In approximately 1% of the cases, amoebas penetrate the intestinal mucosa and spread to other organs, producing extra-intestinal lesions, among which amoebic liver abscess (ALA) is the most common. To study ALA, in vivo and in vitro models are used. However, animal models may pose ethical issues, and are time-consuming and costly; and cell cultures represent isolated cellular lineages. The present study reports the infection of precision-cut hamster liver slices with Entamoeba histolytica trophozoites. The infection time-course, including tissue damage, parallels findings previously reported in the animal model. At the same time amoebic virulence factors were detected in the infected slices. This new model to study ALA is simple and reproducible, and employs less than 1/3 of the hamsters required for in vivo analyses.

  18. Evaluation of methylmercury biotransformation using rat liver slices

    Energy Technology Data Exchange (ETDEWEB)

    Yasutake, A. [Biochemistry Section, National Inst. for Minamata Disease, Minamata, Kumamoto (Japan); Hirayama, K. [Kumamoto University College of Medical Science, Kuhonji (Japan)

    2001-09-01

    To examine the demethylation reaction of methylmercury (MeHg) in rat liver, slices prepared from MeHg-treated rats were incubated in L-15 medium under 95% O{sub 2}/5% CO{sub 2} atmosphere. During the incubation, the amount of inorganic Hg in the slices markedly increased in a time-dependent manner, although the concentration of total Hg remained unchanged. Since the C-Hg bond in MeHg was demonstrated to be cleaved by the action of some reactive oxygen species, the effects on MeHg demethylation of several reagents that could modify reactive oxygen production were examined in the present system. Methylviologen was found to be an effective enhancer of the demethylation reaction with only a minor effect on lipid peroxidation. On the other hand, ferrous ion added to the medium showed no effect on demethylation in the presence or absence of methylviologen, although lipid peroxide levels were increased significantly by ferrous ion. Similarly, deferoxamine mesylate, which effectively suppressed the increase in lipid peroxide levels, also had no effect on demethylation. Furthermore, hydroxy radical scavengers, such as mannitol and dimethylsulfoxide, had no effect on inorganic Hg production. Rotenone, an inhibitor of complex I in the mitochondrial electron transport system, increased levels of both inorganic Hg and lipid peroxide. However, other inhibitors, such as antimycin A, myxothiazole and NaCN, significantly suppressed the demethylation reaction. Cell fractionation of the MeHg-treated rat liver revealed that the ratio of inorganic Hg to total Hg was highest in the mitochondrial fraction. Furthermore, superoxide anion could degrade MeHg in an organic solvent but not in water. These results suggested that the demethylation of MeHg by the liver slice would proceed with the aid of superoxide anion produced in the electron transfer system at the hydrophobic mitochondrial inner membrane. Furthermore, the involvement of hydroxy radicals, which have been demonstrated to be

  19. Slices

    KAUST Repository

    McCrae, James

    2011-01-01

    Minimalist object representations or shape-proxies that spark and inspire human perception of shape remain an incompletely understood, yet powerful aspect of visual communication. We explore the use of planar sections, i.e., the contours of intersection of planes with a 3D object, for creating shape abstractions, motivated by their popularity in art and engineering. We first perform a user study to show that humans do define consistent and similar planar section proxies for common objects. Interestingly, we observe a strong correlation between user-defined planes and geometric features of objects. Further we show that the problem of finding the minimum set of planes that capture a set of 3D geometric shape features is both NP-hard and not always the proxy a user would pick. Guided by the principles inferred from our user study, we present an algorithm that progressively selects planes to maximize feature coverage, which in turn influence the selection of subsequent planes. The algorithmic framework easily incorporates various shape features, while their relative importance values are computed and validated from the user study data. We use our algorithm to compute planar slices for various objects, validate their utility towards object abstraction using a second user study, and conclude showing the potential applications of the extracted planar slice shape proxies. © 2011 ACM.

  20. Prevalidation of liver slices as a model for the early onset of liver fibrosis to test anti-fibrotic drugs

    NARCIS (Netherlands)

    Westra, Inge; Groothuis, Genoveva; Olinga, Peter

    2011-01-01

    Liver fibrosis is the progressive accumulation of connective tissue that affects the normal function of the liver and will eventually lead to liver cirrhosis. The aim of this study is to prevalidate precision-cut liver slices (PCLS) as an in vitro model to investigate the early onset of liver fibros

  1. SYNCHROTRON RADIATION XRF MICROPROBE STUDY OF HUMAN BONE TUMOR SLICE

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The experimental apparatus of X-ray fluorescence (XRF) microprobe analysis at Beijing Synchrotron Radiation Facility (BSRF) is described Using the bovine liver as the standard reference.the minimum detection limit(MDL) of trace element was measured to determine the capability of biological sample analysis by synchrotron radiation XRF microprobe.The relative change of the content of the major or trace element in the normal and tumor part of human bone tissue slice was investigated The experimental result relation to the clinical medicine was also discussed.

  2. Visible Human Slice Web Server: a first assessment

    Science.gov (United States)

    Hersch, Roger D.; Gennart, Benoit A.; Figueiredo, Oscar; Mazzariol, Marc; Tarraga, Joaquin; Vetsch, S.; Messerli, Vincent; Welz, R.; Bidaut, Luc M.

    1999-12-01

    The Visible Human Slice Server started offering its slicing services at the end of June 1998. From that date until the end of May, more than 280,000 slices were extracted from the Visible Man, by layman interested in anatomy, by students and by specialists. The Slice Server is based one Bi-Pentium PC and 16 disks. It is a scaled down version of a powerful parallel server comprising 5 Bi-Pentium Pro PCs and 60 disks. The parallel server program was created thanks to a computer-aided parallelization framework, which takes over the task of creating a multi-threaded pipelined parallel program from a high-level parallel program description. On the full blown architecture, the parallel program enables the extraction and resampling of up to 5 color slices per second. Extracting 5 slice/s requires to access the disks and extract subvolumes of the Visible Human at an aggregate throughput of 105 MB/s. The publicly accessible server enables to extract slices having any orientation. The slice position and orientation can either be specified for each slice separately or as a position and orientation offered by a Java applet and possible future improvements. In the very near future, the Web Slice Server will offer additional services, such as the possibility to extract ruled surfaces and to extract animations incorporating slices perpendicular to a user defined trajectory.

  3. Detection of xenobiotic-induced DNA damage by the comet assay applied to human and rat precision-cut liver slices

    NARCIS (Netherlands)

    Plazar, Janja; Hrejac, Irena; Pirih, Primoz; Filipic, Metka; Groothuis, Geny M. M.

    2007-01-01

    The comet assay is a simple and sensitive method for measuring DNA damage at the level of individual cells and is extensively used in genotoxicity studies. It is commonly applied to cultured cells. The aim of this study was to apply the comet assay for use in fresh liver tissue, where metabolic acti

  4. Comparison of five incubation systems for rat liver slices using functional and viability parameters

    NARCIS (Netherlands)

    Olinga, P; Groen, K; Hof, IH; DeKanter, R; Leeman, WR; Rutten, AAJJL; VanTwillert, K; Groothuis, GMM; Koster, H

    1997-01-01

    Precision-cut liver slices are presently used for various research objects, e.g. to study metabolism, transport, and toxicity of xenobiotics. Various incubation systems are presently employed, but a systematic comparison between these incubation systems with respect to preservation of slice function

  5. Comparison of five incubation systems for rat liver slices using functional and viability parameters

    NARCIS (Netherlands)

    Olinga, P; Groen, K; Hof, IH; DeKanter, R; Leeman, WR; Rutten, AAJJL; VanTwillert, K; Groothuis, GMM; Koster, H

    1997-01-01

    Precision-cut liver slices are presently used for various research objects, e.g. to study metabolism, transport, and toxicity of xenobiotics. Various incubation systems are presently employed, but a systematic comparison between these incubation systems with respect to preservation of slice function

  6. Bovine liver slices: A multifunctional in vitro model to study the prohormone dehydroepiandrosterone (DHEA).

    Science.gov (United States)

    Rijk, Jeroen C W; Bovee, Toine F H; Peijnenburg, Ad A C M; Groot, Maria J; Rietjens, Ivonne M C M; Nielen, Michel W F

    2012-09-01

    Biotransformation of inactive prohormones like dehydroepiandrosterone (DHEA) can lead to the formation of potent androgens and subsequent androgenic responses in target tissues. In the present study, precision-cut bovine liver slices were used to study the effects of DHEA on the metabolite, transcript and androgenic activity level. Bovine liver slices were exposed for 6h to various concentrations of DHEA. Changes in androgenic activity of the DHEA containing cell culture media were measured using a yeast androgen bioassay and metabolites were identified using ultra performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOFMS), while gene expression in the DHEA-treated liver slices was examined using bovine microarrays and compared with the profile as obtained with 17ß-testosterone (17ß-T). An increase in androgenic activity was observed in the bioassay upon testing of samples from incubations of DHEA with liver slices and the formation of 4-androstenedione (4-AD), 5-androstene-3ß,17ß-diol, 17ß-T, 7α-hydroxy-DHEA, 7-keto-DHEA and 17α-T could be confirmed by UPLC-TOFMS analysis. Exposure of liver slices to DHEA and the strong androgen 17ß-T resulted in the identification of significantly up- and down-regulated genes and revealed similar gene expression profiles for both compounds. The results indicate that DHEA itself is biologically not very active, but is rapidly converted by the liver slices into the more androgen active compounds 4-AD and 17ß-T. Moreover, the present data highlight the multi-functionality of bovine liver slices as an in vitro bioactivation model, allowing the assessment of androgen activity or gene expression as effect-based endpoints for prohormone exposure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Exposure of precision-cut rat liver slices to ethanol accelerates fibrogenesis

    NARCIS (Netherlands)

    Schaffert, Courtney S.; Duryee, Michael J.; Bennett, Robert G.; DeVeney, Amy L.; Tuma, Dean J.; Olinga, Peter; Easterling, Karen C.; Thiele, Geoffrey M.; Klassen, Lynell W.

    Schaffert CS, Duryee MJ, Bennett RG, DeVeney AL, Tuma DJ, Olinga P, Easterling KC, Thiele GM, Klassen LW. Exposure of precision-cut rat liver slices to ethanol accelerates fibrogenesis. Am J Physiol Gastrointest Liver Physiol 299: G661-G668, 2010. First published July 1, 2010; doi:

  8. Plasminogen binding to rat hepatocytes in primary culture and to thin slices of rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Gonias, S.L.; Braud, L.L.; Geary, W.A.; VandenBerg, S.R. (Univ. of Virginia Health Sciences Center, Charlottesville (USA))

    1989-08-01

    Human {sup 125}I-plasminogen bound readily to rat hepatocytes in primary culture at 4 {degree}C and at 37{degree}C. Binding was inhibited by lysine and reversed by lysine, epsilon-aminocaproic acid, or nonradiolabeled plasminogen. The Kd for binding of {sup 125}I-plasminogen to hepatocytes was 0.59 +/- 0.16 mumol/L, as determined from the saturation isotherm by nonlinear regression (r2 = 0.99) and the Scatchard transformation by linear regression (r2 = 0.93). The number of sites per cell was 14.1 +/- 1.1 x 10(6). Fibrinogen synthesis and secretion by hepatocytes was insufficient to account for the major fraction of plasminogen binding, as determined by enzyme-linked immunosorbent assay (ELISA). Polyacrylamide gel electrophoresis and trichloroacetic acid precipitation studies demonstrated that plasminogen is neither activated nor degraded when bound to hepatocytes at 37{degree}C. Thin slices of whole rat liver (500 microns), isolated and prepared totally at 4{degree}C, bound {sup 125}I-plasminogen. Binding was inhibited by lysine. {sup 125}I-albumin binding to liver slices was minimal and not inhibited by lysine. Activation of plasminogen by tissue plasminogen activator (t-PA) was enhanced by hepatocytes in primary culture. When lysine was included in the media, the enhanced rate of activation was no longer observed. After activation with t-PA, much of the plasmin remained associated with hepatocyte surfaces and was partially protected from inhibition by alpha 2-antiplasmin. These studies suggest that hepatocyte plasminogen binding sites may provide important surface anticoagulant activity.

  9. Precision-cut liver slices as a model for the early onset of liver fibrosis to test antifibrotic drugs

    NARCIS (Netherlands)

    Westra, Inge M.; Oosterhuis, Dorenda; Groothuis, Geny M. M.; Olinga, Peter

    2014-01-01

    Induction of fibrosis during prolonged culture of precision-cut liver slices (PCLS) was reported. In this study, the use of rat PCLS was investigated to further characterize the mechanism of early onset of fibrosis in this model and the effects of antifibrotic compounds. Rat PCLS were incubated for

  10. A comparative study of precision cut liver slices, hepatocytes, and liver microsomes from the Wistar rat using metronidazole as a model substance

    DEFF Research Database (Denmark)

    Sidelmann, U. G.; Cornett, Claus; Tjornelund, J.

    1996-01-01

    , whereas the intrinsic clearance with respect to formation of the glucuronic acid conjugate was lower in slices compared with hepatocytes. 4. The metabolism of metronidazole in liver slices, in hepatocytes in primary monolayer culture, in hepatocytes incubated in suspension, and in liver microsomes...... higher in microsomes than in the other liver preparations. The metabolic rates in hepatocytes in primary culture and in suspension with respect to the oxidative metabolites were higher than in liver slices. The metabolic turnover observed in liver slices was predicted to correlate with in vivo data...... have been investigated. 3. An incubation system where liver slices are incubated in 12-well culture plates was evaluated with respect to metabolism of metronidazole. Optimal viability was observed for a time period of up to 24 h. The Michaelis-Menten parameters for the metabolism of metronidazole...

  11. In vivo simulated in vitro model of Jasminum sambac (Linn.) using mammalian liver slice technique

    Institute of Scientific and Technical Information of China (English)

    Kalaiselvi M; Narmadha R; Ragavendran P; Arul Raj; Sophia D; Ravi Kumar G; Gomathi D; Uma C; Kalaivani K

    2011-01-01

    Objective:To evaluate the antioxidant status of Jasminum sambac (J. sambac) using mammalian liver slice technique in in vivo simulated in vitro model. Methods: Antioxidant activity of J. sambac was studied against H2O2 induced free radicals in goat liver. Results: Administration of H2O2 showed significant decline in the levels of antioxidant enzymes in liver homogenate. Pretreatment with J. sambac had significant protection in those levels within normal range. Also the plant normalized the lipid peroxidation which evidently showed that the methanolic extract of J. sambac had a potent antilipid peroxidative effect. Conclusions:The present study suggests that J. sambac has a potent antioxidant effect and it can be used to treat various diseases caused by free radicals.

  12. Internalization of 125I-human choriogonadotropin in bovine luteal slices. A biochemical study.

    Science.gov (United States)

    Chegini, N; Rao, C V; Carman, F R

    1984-04-01

    Various intracellular organelles as well as outer cell membranes of bovine corpora lutea intrinsically contain gonadotropin receptors (Rao et al., J biol chem 256 (1981) 2628 [5]). In order to investigate whether exogenously added human choriogonadotropin (hCG) can internalize and bind to the intracellular sites, bovine luteal slices that had been carefully checked with respect to structural and functional integrity were incubated with 0.1 nM 125I-hCG. Following incubation, specific radioactivity was found to be associated with various intracellular organelles, but not with cytosol. The order of radioactivity uptake by subcellular organelles following a 2-h incubation was: Golgi medium greater than Golgi heavy greater than Golgi light greater than plasma membranes = rough endoplasmic reticulum greater than mitochondria-lysosomes- greater than nuclei. The 5'-nucleotidase activity and electron microscopic examination of the fractions revealed that the presence of radioactivity in the intracellular organelles cannot be attributed solely to plasma membrane contamination. The internalization and intracellular binding of 125I-hCG was time and temperature-dependent. Only excess unlabeled hCG and hLH (but not hCG subunits, FSH and PRL) competed with 125I-hCG for internalization in luteal slices. Very little or no 125I-hCG added was internalized in liver or kidney slices; luteal, liver and kidney slices accumulated neither 125I-BSA nor 125I. The radioactivity eluted from various luteal subcellular organelles was able to rebind to fresh corresponding organelles and came off Sepharose 6B columns in a position corresponding to native 125I-hCG. The gel filtration profile of detergent-solubilized radioactivity revealed that 125I-hCG was macromolecular bound. The degraded and altered 125I-hCG was found in the incubation media.

  13. A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices

    NARCIS (Netherlands)

    van Midwoud, Paul M.; Merema, M.T.; Verpoorte, Elisabeth; Groothuis, Geny M. M.

    2010-01-01

    Over the past two decades, it has become increasingly clear that the intestine, in addition to the liver, plays an important role in the metabolism of xenobiotics. Previously, we developed a microfluidic-based in vitro system for the perifusion of precision-cut liver slices for metabolism studies.

  14. Maintenance of high quality rat precision cut liver slices during culture to study hepatotoxic responses: Acetaminophen as a model compound.

    Science.gov (United States)

    Granitzny, Anne; Knebel, Jan; Schaudien, Dirk; Braun, Armin; Steinberg, Pablo; Dasenbrock, Clemens; Hansen, Tanja

    2017-08-01

    Precision cut liver slices (PCLiS) represent a promising tool in reflecting hepatotoxic responses. However, the culture of PCLiS varies considerably between laboratories, which can affect the performance of the liver slices and thus the experimental outcome. In this study, we describe an easily accessible culture method, which ensures optimal slice viability and functionality, in order to set the basis for reproducible and comparable PCLiS studies. The quality of the incubated rat PCLiS was assessed during a 24h culture period using ten readouts, which covered viability (lactate dehydrogenase-, aspartate transaminase- and glutamate dehydrogenase-leakage, ATP content) and functionality parameters (urea, albumin production) as well as histomorphology and other descriptive characteristics (protein content, wet weight, slice thickness). The present culture method resulted in high quality liver slices for 24h. Finally, PCLiS were exposed to increasing concentrations of acetaminophen to assess the suitability of the model for the detection of hepatotoxic responses. Six out of ten readouts revealed a toxic effect and showed an excellent mutual correlation. ATP, albumin and histomorphology measurements were identified as the most sensitive readouts. In conclusion, our results indicate that rat PCLiS are a valuable liver model for hepatotoxicity studies, particularly if they are cultured under optimal standardized conditions. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Investigation on the optical scan condition for imaging of multi-slice spiral CT liver perfusion in rats

    Institute of Scientific and Technical Information of China (English)

    BAI Rong-jie; WANG Jin-e; JIANG Hui-jie; HAO Xue-jia; DONG Xu-peng; HUANG Ya-hua; WEI Lai

    2013-01-01

    Background Multi-slice CT liver perfusion has been widely used in experimental studies of hemodynamic changes in liver lesions,and is usually performed as an adjunct to a conventional CT examination because of its high temporal and spatial resolution,simple protocol,good reproducibility,and ability to measure hemodynamic changes of liver tissues at the capillary level.Experimental rat models,especially those of induced liver cancer,are often used in studies of hemodynamic changes in liver cancer.Carcinogenesis in rats has a similar pathological progression and characteristics resembling those in human liver cancer; as a result,rat models are often used as ideal animal models in the study of human liver cancer.However,liver perfusion imaging in rats is difficult to perform,because rats' livers are so small that different concentrations,flow rates,and dose of contrast agents during the CT perfusion scanning can influence the quality of liver perfusion images in rats.The purpose of this study,therefore,was to investigate the optimal scan protocol for the imaging of hepatic perfusion using a deconvolution mathematical method in rats by comparing the results of rats in different injection conditions of the contrast agent,including concentration,rate and time.Methods Plain CT scan conditions in eighty 2-month-old male Wistar rats were 5.0 mm slice thickness,5.0 mm interval,1.0 pitch,120 kV tube voltage,60 mA tube current,512×512 matrix,and FOV 9.6 cm.Perfusion scanning was carried out with different concentrations of diatrizoate (19%,38%,57%,and 76%),different injection rates (0.3 and 0.5 mi/s),and different injection times (1,2-3,4-5,and 6 seconds).The above conditions were randomly matched and adjusted to determine the best perfusion scan protocol.Thrae-phase contrast-enhanced scanning was performed after CT perfusion.Histological examination of the liver tissues with hematoxylin and eosin stains was done after CT scanning.Results When the concentration of the

  16. Comparative metabolism, covalent binding and toxicity of BHT congeners in rat liver slices.

    Science.gov (United States)

    Reed, M; Fujiwara, H; Thompson, D C

    2001-11-28

    The metabolism, covalent binding and hepatotoxicity of butylated hydroxytoluene (BHT, 4-methyl-2,6-di-t-butylphenol) and two congeners (E-BHT, 4-ethyl-2,6-di-t-butylphenol; I-BHT, 4-isopropyl-2,6-di-t-butylphenol) were compared using precision-cut liver slices prepared from phenobarbital (PB)-treated male Sprague-Dawley rats. At equimolar concentrations (1 mM) BHT was the most toxic of the three compounds, causing an 80% decrease in cell viability over a 6 h incubation period. E-BHT was intermediate in toxicity while the isopropyl derivative was relatively nontoxic. Intracellular glutathione levels decreased prior to the onset of cytotoxicity. The cytochrome P450 inhibitor metyrapone completely inhibited the toxicity of all three compounds. The rates of metabolism of the three compounds to glutathione conjugates were compared in both PB-treated microsomes and PB-induced liver slices. In both models, the rate of formation was greatest for BHT, followed by E-BHT and I-BHT. Synthetic quinone methides (QMs) were prepared from each parent phenol and the rates of reactivity with three nucleophiles (water, methanol and glutathione) were compared. With each nucleophile, BHTQM was the most reactive, while I-BHTQM was the least reactive. Finally, covalent binding to protein was assessed in two ways. First, alkylation of an isolated model protein (bovine insulin) was measured in a microsomal enzyme activation system by mass spectrometry. Incubations with BHT produced the greatest extent of protein alkylation, followed by E-BHT, while no alkylation was observed with I-BHT. In the second system, covalent binding to cellular protein was assessed in rat liver PB microsomes and tissue slices by Western blotting using an antibody specific for the tert-butylphenol portion of the compounds. Binding was greatest for BHT, intermediate for E-BHT and could not be detected for I-BHT. The alkylation pattern for E-BHT was strikingly similar to that of BHT, suggesting that both compounds

  17. The effect of antifibrotic drugs in rat precision-cut fibrotic liver slices.

    Directory of Open Access Journals (Sweden)

    Inge M Westra

    Full Text Available Two important signaling pathways in liver fibrosis are the PDGF- and TGFβ pathway and compounds inhibiting these pathways are currently developed as antifibrotic drugs. Testing antifibrotic drugs requires large numbers of animal experiments with high discomfort. Therefore, a method to study these drugs ex vivo was developed using precision-cut liver slices from fibrotic rat livers (fPCLS, representing an ex vivo model with a multicellular fibrotic environment. We characterized the fibrotic process in fPCLS from rat livers after 3 weeks of bile duct ligation (BDL during incubation and tested compounds predominantly inhibiting the TGFβ pathway (perindopril, valproic acid, rosmarinic acid, tetrandrine and pirfenidone and PDGF pathway (imatinib, sorafenib and sunitinib. Gene expression of heat shock protein 47 (Hsp47, α smooth muscle actin (αSma and pro-collagen 1A1 (Pcol1A1 and protein expression of collagens were determined. During 48 hours of incubation, the fibrosis process continued in control fPCLS as judged by the increased gene expression of the three fibrosis markers, and the protein expression of collagen 1, mature fibrillar collagen and total collagen. Most PDGF-inhibitors and TGFβ-inhibitors significantly inhibited the increase in gene expression of Hsp47, αSma and Pcol1A1. Protein expression of collagen 1 was significantly reduced by all PDGF-inhibitors and TGFβ-inhibitors, while total collagen was decreased by rosmarinic acid and tetrandrine only. However, fibrillar collagen expression was not changed by any of the drugs. In conclusion, rat fPCLS can be used as a functional ex vivo model of established liver fibrosis to test antifibrotic compounds inhibiting the PDGF- and TGFβ signalling pathway.

  18. Intercellular communication and cell proliferation in precision-cut rat liver slices : effect of medium composition and DDT

    NARCIS (Netherlands)

    Graaf, I.A.M.; Tajima, O.; Groten, J.P.; Wolterbeek, A.P.M.

    2000-01-01

    Gap junctional intercellular communication (GJIC) and cell proliferation were studied in control and 1,1'-bis(p-chlorophenyl)-2,2,2,-trichloroethane (DDT) treated precision-cut liver slices of rat by evaluating connexin 32 (Cx32) expression and 5-bromo-2'-deoxyuridine (BrdU) incorporation. In

  19. Intercellular communication and cell proliferation in precision-cut rat liver slices : effect of medium composition and DDT

    NARCIS (Netherlands)

    de Graaf, I A; Tajima, O; Groten, J P; Wolterbeek, A P

    2000-01-01

    Gap junctional intercellular communication (GJIC) and cell proliferation were studied in control and 1,1'-bis(p-chlorophenyl)-2, 2,2,-trichloroethane (DDT) treated precision-cut liver slices of rat by evaluating connexin 32 (Cx32) expression and 5-bromo-2'-deoxyuridine (BrdU) incorporation. In

  20. Intercellular communication and cell proliferation in precision-cut rat liver slices : effect of medium composition and DDT

    NARCIS (Netherlands)

    Graaf, I.A.M.; Tajima, O.; Groten, J.P.; Wolterbeek, A.P.M.

    2000-01-01

    Gap junctional intercellular communication (GJIC) and cell proliferation were studied in control and 1,1'-bis(p-chlorophenyl)-2,2,2,-trichloroethane (DDT) treated precision-cut liver slices of rat by evaluating connexin 32 (Cx32) expression and 5-bromo-2'-deoxyuridine (BrdU) incorporation. In additi

  1. On-line HPLC Analysis System for Metabolism and Inhibition Studies in Precision-Cut Liver Slices

    NARCIS (Netherlands)

    van Midwoud, Paul M.; Janssen, Joost; Merema, M.T.; de Graaf, Inge A. M.; Groothuis, Geny M. M.; Verpoorte, Elisabeth

    2011-01-01

    A novel approach for on-line monitoring of drug metabolism in continuously perifused, precision-cut liver slices (PCLS) in a microfluidic system has been developed using high-performance liquid chromatography with UV detection (HPLC-UV). In this approach, PCLS are incubated in a microfluidic device

  2. Intercellular communication and cell proliferation in precision-cut rat liver slices : effect of medium composition and DDT

    NARCIS (Netherlands)

    de Graaf, I A; Tajima, O; Groten, J P; Wolterbeek, A P

    2000-01-01

    Gap junctional intercellular communication (GJIC) and cell proliferation were studied in control and 1,1'-bis(p-chlorophenyl)-2, 2,2,-trichloroethane (DDT) treated precision-cut liver slices of rat by evaluating connexin 32 (Cx32) expression and 5-bromo-2'-deoxyuridine (BrdU) incorporation. In addit

  3. Precision-cut liver slices as a model for the early onset of liver fibrosis to test antifibrotic drugs

    Energy Technology Data Exchange (ETDEWEB)

    Westra, Inge M. [Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, University of Groningen (Netherlands); Oosterhuis, Dorenda [Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen (Netherlands); Groothuis, Geny M.M. [Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, University of Groningen (Netherlands); Olinga, Peter, E-mail: p.olinga@rug.nl [Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen (Netherlands)

    2014-01-15

    Induction of fibrosis during prolonged culture of precision-cut liver slices (PCLS) was reported. In this study, the use of rat PCLS was investigated to further characterize the mechanism of early onset of fibrosis in this model and the effects of antifibrotic compounds. Rat PCLS were incubated for 48 h, viability was assessed by ATP and gene expression of PDGF-B and TGF-β1 and the fibrosis markers Hsp47, αSma and Pcol1A1 and collagen1 protein expressions were determined. The effects of the antifibrotic drugs imatinib, sorafenib and sunitinib, PDGF-pathway inhibitors, and perindopril, valproic acid, rosmarinic acid, tetrandrine and pirfenidone, TGFβ-pathway inhibitors, were determined. After 48 h of incubation, viability of the PCLS was maintained and gene expression of PDGF-B was increased while TGF-β1 was not changed. Hsp47, αSma and Pcol1A1 gene expressions were significantly elevated in PCLS after 48 h, which was further increased by PDGF-BB and TGF-β1. The increased gene expression of fibrosis markers was inhibited by all three PDGF-inhibitors, while TGFβ-inhibitors showed marginal effects. The protein expression of collagen 1 was inhibited by imatinib, perindopril, tetrandrine and pirfenidone. In conclusion, the increased gene expression of PDGF-B and the down-regulation of fibrosis markers by PDGF-pathway inhibitors, together with the absence of elevated TGF-β1 gene expression and the limited effect of the TGFβ-pathway inhibitors, indicated the predominance of the PDGF pathway in the early onset of fibrosis in PCLS. PCLS appear a useful model for research of the early onset of fibrosis and for testing of antifibrotic drugs acting on the PDGF pathway. - Highlights: • During culture, fibrosis markers increased in precision-cut liver slices (PCLS). • Gene expression of PDGF-β was increased, while TGFβ was not changed in rat PCLS. • PDGF-pathway inhibitors down-regulated this increase of fibrosis markers. • TGFβ-pathway inhibitors had only

  4. Preparation and culture of precision-cut organ slices from human and animal.

    Science.gov (United States)

    Fisher, Robyn L; Vickers, Alison E M

    2013-01-01

    1.Human and animal precision-cut organ slices are being widely used to obtain drug metabolism and toxicity profiles in vitro. These data are then used to predict what might be seen in human patients. The accuracy of this prediction and extrapolation of the findings based on human or animal in vitro systems to the findings that occur in vivo is dependent on both the quality of the tissue itself and the quality of the in vitro system. 2.The quality of human organs used in research is dependent on procurement methods, warm ischaemia time, preservation solutions, cold ischaemia time, and donor-specific factors. It is important to confirm that the organs being used are highly viable and fully functional before using them in scientific studies. 3.The optimal preparation and incubation of organ slices is also essential in maintaining slice viability and function. It is important to prepare the slices in a cold preservation solution, to prepare the slices at a correct thickness, and to incubate the slices in a system where the slice rotates in out of the oxygen atmosphere and medium. 4.Meeting the criteria outlined here will lead to successful organ slice cultures for investigating drug-induced mechanisms and organ-specific toxicity.

  5. Unstable periodic orbits in human epileptic hippocampal slices.

    Science.gov (United States)

    Pen-Ning Yu; Min-Chi Hsiao; Dong Song; Liu, Charles Y; Heck, Christi N; Millett, David; Berger, Theodore W

    2014-01-01

    Inter-ictal activity is studied in hippocampal slices resected from patients with epilepsy using local field potential recording. Inter-ictal activity in the dentate gyrus (DG) is induced by high-potassium (8 mM), low-magnesium (0.25 mM) aCSF with additional 100 μM 4-aminopyridine(4-AP). The dynamics of the inter-ictal activity is investigated by developing the first return map with inter-pulse intervals. Unstable periodic orbits (UPOs) are detected in the hippocampal slice at the DG area according to both the topological recurrence method and the periodic orbit transform method. Surrogate analysis suggests the presence of UPOs in hippocampal slices from patients with epilepsy. This finding also suggests that inter-ictal activity is a chaotic system and will allow us to apply chaos control techniques to manipulate inter-ictal activity.

  6. Ex-vivo evaluation of gene therapy vectors in human pancreatic (cancer) tissue slices

    Institute of Scientific and Technical Information of China (English)

    Michael A van Geer; Koert FD Kuhlmann; Conny T Bakker; Fibo JW ten Kate; Ronald PJ Oude Elferink; Piter J Bosma

    2009-01-01

    AIM: To culture human pancreatic tissue obtained from small resection specimens as a pre-clinical model for examining virus-host interactions.METHODS: Human pancreatic tissue samples (malignant and normal) were obtained from surgical specimens and processed immediately to tissue slices.Tissue slices were cultured ex vivo for 1-6 d in an incubator using 95% O2. Slices were subsequently analyzed for viability and morphology. In addition the slices were incubated with different viral vectors expressing the repor ter genes GFP or DsRed.Expression of these reporter genes was measured at 72 h after infection.RESULTS: With the Krumdieck tissue slicer, uniform slices could be generated from pancreatic tissue but only upon embedding the tissue in 3% low melting agarose. Immunohistological examination showed the presence of all pancreatic cell types. Pancreatic normal and cancer tissue slices could be cultured for up to 6 d, while retaining viability and a moderate to good morphology. Reporter gene expression indicated that the slices could be infected and transduced efficiently by adenoviral vectors and by adeno associated viral vectors, whereas transduction with lentiviral vectors was limited. For the adenoviral vector, the transduction seemed limited to the peripheral layers of the explants.CONCLUSION: The presented sys tem al lows reproducible processing of minimal amounts of pancreatic tissue into slices uniform in size, suitable for pre-clinical evaluation of gene therapy vectors.

  7. Induction of virulence factors, apoptosis, and cytokines in precision-cut hamster liver slices infected with Entamoeba histolytica.

    Science.gov (United States)

    Carranza-Rosales, Pilar; Santiago-Mauricio, María Guadalupe; Guzmán-Delgado, Nancy Elena; Vargas-Villarreal, Javier; Lozano-Garza, Gerardo; Viveros-Valdez, Ezequiel; Ortiz-López, Rocío; Morán-Martínez, Javier; Gandolfi, A Jay

    2012-12-01

    Precision-cut liver slices (PCLS) are mainly used to evaluate hepatotoxicity and metabolism of chemicals, as well as to study mechanisms of liver damage and repair. However, recently they have been used as a system to study amoebic infections. The aim of this study was to validate this model as an alternative for experimental amoebic liver absess (ALA) in animals. To do this, the PCLS was analyzed for the expression of amoebapore and cysteine proteinases 1 and 5, three of the most studied virulence factors of Entamoeba histolytica, as well as the induction of apoptosis and cytokines production in response to the ex vivo infection. PCHLS were prepared with the Brendel-Vitron tissue slicer and then, infected with 200,000 trophozoites of E. histolytica. Samples were taken at 0, 6, 12, 18, and 24 h and compared to control non-infected slices. Morphological studies were performed in order to verify the infection; while apoptosis was studied by TUNEL and PAS techniques. The expression of cysteine proteinases (1 and 5), and amoebapore, was analyzed by real-time PCR. By using ELISA assays, the production of cytokines was also studied. PCHLS were found to be a reproducible infection system, and E. histolytica caused the expression of cysteine proteinases and amoebapore in infected slices. At the same time, trophozoites induce release of cytokines and apoptotic death of the hepatocytes close to them. PCHLS represent a new and suitable alternative model to study the pathogenesis of hepatic amoebiasis.

  8. Experimental study of bioartificial liver with cultured human liver cells

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    AIM To establish an extracorporeal bioartificial liver support system (EBLSS) using cultured human liver cells and to study its support effect for fulminant hepatic failure (FHF).METHODS The liver support experiment of EBLSS consisting of aggregates cultured human liver cells, hollow fiber bioreactor, and circulation unit was carried out in dizhepatic dogs.RESULTS The viability of isolated hepatocytes and nonparenchymal liver cells reached 96%. These cells were successfully cultured as multicellular spheroids with synthetic technique. The typical morphological appearance was retained up to the end of the artificial liver experiment. Compared with the control dogs treated with EBLSS without liver cells, the survival time of artificial liver support dogs was significantly prolonged. The changes of blood pressure, heart rate and ECG were slow. Both serum ammonia and lactate levels were significantly lowered at the 3rd h and 5th h. In addition, a good viability of human liver cells was noted after 5 h experiment.CONCLUSION EBLSS playing a metabolic role of cultured human hepatocytes, is capable of compensating the function of the liver, and could provide effective artificial liver support and therapy for patients with FHF.

  9. Ex-vivo evaluation of gene therapy vectors in human pancreatic (cancer) tissue slices

    NARCIS (Netherlands)

    van Geer, M.A.; Kuhlmann, K.F.D.; Bakker, C.T.; ten Kate, F.J.W.; Oude Elferink, R.P.J.; Bosma, P.J.

    2009-01-01

    AIM: To culture human pancreatic tissue obtained from small resection specimens as a pre-clinical model for examining virus-host interactions. METHODS: Human pancreatic tissue samples (malignant and normal) were obtained from surgical specimens and processed immediately to tissue slices. Tissue slic

  10. Ex-vivo evaluation of gene therapy vectors in human pancreatic (cancer) tissue slices

    NARCIS (Netherlands)

    van Geer, M.A.; Kuhlmann, K.F.D.; Bakker, C.T.; ten Kate, F.J.W.; Oude Elferink, R.P.J.; Bosma, P.J.

    2009-01-01

    AIM: To culture human pancreatic tissue obtained from small resection specimens as a pre-clinical model for examining virus-host interactions. METHODS: Human pancreatic tissue samples (malignant and normal) were obtained from surgical specimens and processed immediately to tissue slices. Tissue slic

  11. An in vivo and in vitro comparison of CYP induction in rat liver and intestine using slices and quantitative RT-PCR.

    Science.gov (United States)

    Martignoni, Marcella; de Kanter, Ruben; Grossi, Pietro; Mahnke, Axel; Saturno, Grazia; Monshouwer, Mario

    2004-12-30

    Xenobiotics, including drugs, can influence cytochrome P450 (CYP) activity by upregulating the transcription of CYP genes. To minimize potential drug interactions, it is important to ascertain whether a compound will be an inducer of CYP enzymes early in the development of new therapeutic agents. In vivo and in vitro studies are reported that demonstrate the use of liver and intestinal slices as an in vitro model to predict potential CYP induction in vivo. Rat liver slices and intestinal slices were incubated, for 24 h and 6 h, respectively, with beta-naphthoflavone (betaNF), phenobarbital (PB) or dexamethasone (DEX). In an in vivo study, rats were treated with the same compounds for 3 days. In vivo and in vitro CYP mRNA levels were measured by using real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). In addition, CYP enzyme activities were determined in rat liver slices after 48 h incubation. In both rat liver and intestinal slices, betaNF significantly induced CYP1A1, CYP1A2 and CYP2B1 mRNA levels. PB significantly induced CYP2B1. In liver slices a minor induction of CYP1A1 and CYP3A1 by PB was observed, whereas DEX significantly induced CYP3A1, CYP2B1 and CYP1A2 mRNA levels. The induction profiles (qualitative and quantitative) observed in vivo and in vitro are quite similar. All together, these data demonstrate that liver and intestinal slices are a useful and predictive tool to study CYP induction.

  12. Cryopreservation of rat precision-cut liver and kidney slices by rapid freezing and vitrification

    NARCIS (Netherlands)

    de Graaf, Inge A. M.; Draaisma, Annelies L.; Schoeman, Olaf; Fahy, Gregory M.; Groothuis, Geny M. M.; Koster, Henk J.

    Precision-cut tissue slices of both hepatic and extra-hepatic origin are extensively used as an in vitro model to predict in vivo drug metabolism and toxicity. Cryopreservation would greatly facilitate their use. In the present study, we aimed to improve (1) rapid freezing and warming (200 degrees

  13. Precision-cut human kidney slices as a model to elucidate the process of renal fibrosis

    NARCIS (Netherlands)

    Stribos, Elisabeth G D; Luangmonkong, Theerut; Leliveld, Anna M.; de Jong, Igle J; van Son, Willem J; Hillebrands, Jan-Luuk; Seelen, Marc A.; van Goor, Harry; Olinga, Peter; Mutsaers, Henricus A M

    Chronic kidney disease is a major health concern, and experimental models bridging the gap between animal studies and clinical research are currently lacking. Here, we evaluated precision-cut kidney slices (PCKSs) as a potential model for renal disease. PCKSs were prepared from human cortical tissue

  14. Ultra-fast MRI of the human brain with simultaneous multi-slice imaging

    Science.gov (United States)

    Feinberg, David A.; Setsompop, Kawin

    2013-04-01

    The recent advancement of simultaneous multi-slice imaging using multiband excitation has dramatically reduced the scan time of the brain. The evolution of this parallel imaging technique began over a decade ago and through recent sequence improvements has reduced the acquisition time of multi-slice EPI by over ten fold. This technique has recently become extremely useful for (i) functional MRI studies improving the statistical definition of neuronal networks, and (ii) diffusion based fiber tractography to visualize structural connections in the human brain. Several applications and evaluations are underway which show promise for this family of fast imaging sequences.

  15. Dopaminergic differentiation of human neural stem cells mediated by co-cultured rat striatal brain slices

    DEFF Research Database (Denmark)

    Anwar, Mohammad Raffaqat; Andreasen, Christian Maaløv; Lippert, Solvej Kølvraa

    2008-01-01

    Properly committed neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. To establish a setting for identification of secreted neural compounds promoting dopaminergic...... differentiation, we co-cultured cells from a human neural forebrain-derived stem cell line (hNS1) with rat striatal brain slices. In brief, coronal slices of neonatal rat striatum were cultured on semiporous membrane inserts placed in six-well trays overlying monolayers of hNS1 cells. After 12 days of co......-culture, large numbers of tyrosine hydroxylase (TH)-immunoreactive, catecholaminergic cells could be found underneath individual striatal slices. Cell counting revealed that up to 25.3% (average 16.1%) of the total number of cells in these areas were TH-positive, contrasting a few TH-positive cells (

  16. Mice with humanized liver endothelium

    NARCIS (Netherlands)

    el Filali, E.

    2014-01-01

    The only curative treatment option for a large proportion of patients suffering from a liver disorder is liver transplantation. The use of ex vivo genetically modified autologous liver cells instead of whole liver transplantation could overcome the problem of donor scarcity. Even though clinical

  17. Mice with humanized liver endothelium

    NARCIS (Netherlands)

    el Filali, E.

    2014-01-01

    The only curative treatment option for a large proportion of patients suffering from a liver disorder is liver transplantation. The use of ex vivo genetically modified autologous liver cells instead of whole liver transplantation could overcome the problem of donor scarcity. Even though clinical tri

  18. Human brain slices for epilepsy research: Pitfalls, solutions and future challenges.

    Science.gov (United States)

    Jones, Roland S G; da Silva, Anderson Brito; Whittaker, Roger G; Woodhall, Gavin L; Cunningham, Mark O

    2016-02-15

    Increasingly, neuroscientists are taking the opportunity to use live human tissue obtained from elective neurosurgical procedures for electrophysiological studies in vitro. Access to this valuable resource permits unique studies into the network dynamics that contribute to the generation of pathological electrical activity in the human epileptic brain. Whilst this approach has provided insights into the mechanistic features of electrophysiological patterns associated with human epilepsy, it is not without technical and methodological challenges. This review outlines the main difficulties associated with working with epileptic human brain slices from the point of collection, through the stages of preparation, storage and recording. Moreover, it outlines the limitations, in terms of the nature of epileptic activity that can be observed in such tissue, in particular, the rarity of spontaneous ictal discharges, we discuss manipulations that can be utilised to induce such activity. In addition to discussing conventional electrophysiological techniques that are routinely employed in epileptic human brain slices, we review how imaging and multielectrode array recordings could provide novel insights into the network dynamics of human epileptogenesis. Acute studies in human brain slices are ultimately limited by the lifetime of the tissue so overcoming this issue provides increased opportunity for information gain. We review the literature with respect to organotypic culture techniques that may hold the key to prolonging the viability of this material. A combination of long-term culture techniques, viral transduction approaches and electrophysiology in human brain slices promotes the possibility of large scale monitoring and manipulation of neuronal activity in epileptic microcircuits. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Fast Evaluation of Oxidative DNA Damage by Liquid Chromatography-Electropray Tandem Mass Spectrometry Coupled With Precision-Cut Rat Liver Slices

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To establish a fast and sensitive method for the detection of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in precision-cut rat liver slices by HPLC-MS/MS and to investigate isoniazid (INH) -induced oxidative DNA damage. Methods Precision-cut liver slices (300 μm) were prepared from male rats, and incubated with INH (0.018 mol/L) for 2 h after 1 h preincubation. DNA in the slices was extracted and digested into free nucleosides at 37℃. The samples were injected into HPLC-MS/MS after the proteins were removed. The level of oxidative DNA damage was estimated using the ratio of 8-OHdG to deoxyguanosine (dG). Results The limit of detection of 8-OHdG was 1 ng/mL (S/N=3) and the intra-assay relative standard variation was 3.38% when one transition 284.3/168.4 was used as a quantifier and another two transitions 284.3/140.2,306.1/190.2 as qualifiers. 8-OHdG and dG were well separated, as indicated by elution at 10.02 and 7.37 min, respectively. INH significantly increased the ratio of 8-OHdG to dG in rat liver slices (P<0.05). Conclusion 8-OHdG in precision-cut liver slices could be sensitively determined by HPLC-MS/MS. HPLC-MS/MS coupled with precision-cut tissue slices is a fast and reliable analytical technique to evaluate oxidative DNA damage of target tissues caused by procarcinogens and cytotoxins.

  20. Isoproterenol effects evaluated in heart slices of human and rat in comparison to rat heart in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Julia E.; Heale, Jason; Bieraugel, Mike; Ramos, Meg [Drug Safety Evaluation, Allergan Inc., 2525 Dupont Dr, Irvine, CA 92612 (United States); Fisher, Robyn L. [Vitron Inc., Tucson, AZ (United States); Vickers, Alison E.M., E-mail: vickers_alison@allergan.com [Drug Safety Evaluation, Allergan Inc., 2525 Dupont Dr, Irvine, CA 92612 (United States)

    2014-01-15

    Human response to isoproterenol induced cardiac injury was evaluated by gene and protein pathway changes in human heart slices, and compared to rat heart slices and rat heart in vivo. Isoproterenol (10 and 100 μM) altered human and rat heart slice markers of oxidative stress (ATP and GSH) at 24 h. In this in vivo rat study (0.5 mg/kg), serum troponin concentrations increased with lesion severity, minimal to mild necrosis at 24 and 48 h. In the rat and the human heart, isoproterenol altered pathways for apoptosis/necrosis, stress/energy, inflammation, and remodeling/fibrosis. The rat and human heart slices were in an apoptotic phase, while the in vivo rat heart exhibited necrosis histologically and further progression of tissue remodeling. In human heart slices genes for several heat shock 70 kD members were altered, indicative of stress to mitigate apoptosis. The stress response included alterations in energy utilization, fatty acid processing, and the up-regulation of inducible nitric oxide synthase, a marker of increased oxidative stress in both species. Inflammation markers linked with remodeling included IL-1α, Il-1β, IL-6 and TNFα in both species. Tissue remodeling changes in both species included increases in the TIMP proteins, inhibitors of matrix degradation, the gene/protein of IL-4 linked with cardiac fibrosis, and the gene Ccl7 a chemokine that induces collagen synthesis, and Reg3b a growth factor for cardiac repair. This study demonstrates that the initial human heart slice response to isoproterenol cardiac injury results in apoptosis, stress/energy status, inflammation and tissue remodeling at concentrations similar to that in rat heart slices. - Highlights: • Human response to isoproterenol induced cardiac injury evaluated in heart slices. • Isoproterenol altered apoptosis, energy, inflammation and remodeling pathways. • Human model verified by comparison to rat heart slices and rat heart in vivo. • Human and rat respond to isoproterenol

  1. The effect of antifibrotic drugs in rat precision-cut fibrotic liver slices

    NARCIS (Netherlands)

    Westra, Inge M; Oosterhuis, Dorenda; Groothuis, Geny M M; Olinga, Peter

    2014-01-01

    Two important signaling pathways in liver fibrosis are the PDGF-and TGF beta pathway and compounds inhibiting these pathways are currently developed as antifibrotic drugs. Testing antifibrotic drugs requires large numbers of animal experiments with high discomfort. Therefore, a method to study these

  2. Effects of milk diets containing beef tallow or coconut oil on the fatty acid metabolism of liver slices from preruminant calves.

    Science.gov (United States)

    Graulet, B; Gruffat-Mouty, D; Durand, D; Bauchart, D

    2000-09-01

    Coconut oil (CO) induces a triacylglycerol infiltration in the hepatocytes of preruminant calves when given as the sole source of fat in the milk diet over a long-term period. Metabolic pathways potentially involved in this hepatic triacylglycerol accumulation were studied by in vitro methods on liver slices from preruminant Holstein x Friesian male calves fed a conventional milk diet containing CO (n 5) or beef tallow (BT, n 5) for 19 d. Liver slices were incubated for 12 h in the presence of 0.8 mm-[14C]oleate or -[14C]laurate added to the medium. Fatty acid oxidation was determined by measuring the production of CO2 (total oxidation) and acid-soluble products (partial oxidation). Production of CO2 was 1. 7-3.6-fold lower (P 0.0490) and production of acid-soluble products tended to be lower (P = 0.0625) in liver slices of CO- than BT-fed calves. Fatty acid esterification as neutral lipids was 2.6- to 3. 1-fold higher (P = 0.0088) in liver slices prepared from calves fed the CO diet compared with calves fed the BT diet. By contrast with what occurs in the liver of rats fed CO, the increase in neutral lipid production did not stimulate VLDL secretion by the hepatocytes of calves fed with CO, leading to a triacylglycerol accumulation in the cytosol. It could be explained by the reduction of fatty acid oxidation favouring esterification in the form of triacylglycerols, in association with a limited availability of triacylglycerols and/or apolipoprotein B for VLDL packaging and subsequent secretion.

  3. Comparative Study of Human Liver Ferritin and Chicken Liver by Moessbauer Spectroscopy. Preliminary Results

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakh, M. I. [Ural State Technical University - UPI, Division of Applied Biophysics, Faculty of Physical Techniques and Devices for Quality Control (Russian Federation); Milder, O. B.; Semionkin, V. A. [Ural State Technical University - UPI, Faculty of Experimental Physics (Russian Federation); Prokopenko, P. G. [Russian State Medical University, Faculty of Biochemistry (Russian Federation); Malakheeva, L. I. [Simbio Holding, Science Consultation Department (Russian Federation)

    2004-12-15

    A comparative study of normal human liver ferritin and livers from normal chicken and chicken with Marek disease was made by Moessbauer spectroscopy. Small differences of quadrupole splitting and isomer shift were found for human liver ferritin and chicken liver. Moessbauer parameters for liver from normal chicken and chicken with Marek disease were the same.

  4. Comparative Study of Human Liver Ferritin and Chicken Liver by Mössbauer Spectroscopy. Preliminary Results

    Science.gov (United States)

    Oshtrakh, M. I.; Milder, O. B.; Semionkin, V. A.; Prokopenko, P. G.; Malakheeva, L. I.

    2004-12-01

    A comparative study of normal human liver ferritin and livers from normal chicken and chicken with Marek disease was made by Mössbauer spectroscopy. Small differences of quadrupole splitting and isomer shift were found for human liver ferritin and chicken liver. Mössbauer parameters for liver from normal chicken and chicken with Marek disease were the same.

  5. An in vivo and in vitro comparison of CYP gene induction in mice using liver slices and quantitative RT-PCR.

    Science.gov (United States)

    Martignoni, Marcella; de Kanter, Ruben; Grossi, Pietro; Saturno, Grazia; Barbaria, Elena; Monshouwer, Mario

    2006-02-01

    The scope of this study was to compare in vitro and in vivo cytochrome P450 (CYP) gene induction in mice, using liver slices as an in vitro model. We have chosen to study mice to be able to better interpret CYP induction during long-term safety studies in this species. Mouse liver slices were incubated with beta-naphthoflavone (betaNF), phenobarbital (PB) or dexamethasone (DEX) for 24 h. In addition, in an in vivo study, mice were treated with the same compounds for three days. The mRNA expression of cyp1a1, cyp1a2, cyp2b10 and cyp3a11, which are important for drug metabolism and inducible by xenobiotics, were investigated in vivo and in vitro by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). Both in mouse liver slices and in vivo, betaNF was found to be a potent inducer of cyp1a1 and to a lesser extent of cyp1a2. All three compounds induced cyp2b10 mRNA levels, while the cyp3a11 mRNA level was induced only by DEX. Overall, these data demonstrated a good predictive in vitro-in vivo correlation of CYP induction.

  6. AGE WISE HISTOMORPHOLOGICAL CHANGES IN HUMAN LIVER

    Directory of Open Access Journals (Sweden)

    Tribeni

    2015-11-01

    Full Text Available CONTEXT: Hepato cellular carcinoma (HCC results in between 2.5 lakhs to 1million deaths globally per annum. Liver transplantation nowadays is a well accepted treatment option for end-stage liver disease and acute liver failure. AIMS: Keeping this concept in view, a study was conducted in the Guwahati Zone of Northeast India, to compare the histomorphological features of the human liver in different age groups. SETTING AND DESIGN: Apparently healthy livers were obtained from 21 subjects on whom medicolegal post-mortems had been performed. Their ages varied from newborn to 90 years. Subjects were divided into 3 groups. 7 specimens were taken from each group. (1 Pediatric (2 Adult (3 Old age. METHODS AND MATERIALS: In all the above age groups, immediately after removal of the livers, they were washed in normal saline, dried with blotting paper and weighed in an electronic weighing machine. Sections of liver were fixed, processed, cut and stained with Harris Haematoxylin and Eosin stain. RESULTS: The liver loses weight from 50 years onwards. There appears to be racial and environmental differences in the change in liver weight in old age. Autopsy studies show a diminution of nearly 46% in liver weight between the 3rd and 10th decades of life. The liver decreases in size with age. The hepatocytes are radially disposed in the liver lobule. They are piled up, forming a layer one cell thick (except in young children in a fashion similar to the bricks of a wall. These plates are directed from the periphery of the lobule to its centre and anastomose freely forming a complex labyrinthine and sponge-like structure. CONCLUSIONS: From the findings in the present study it can be concluded that: 1. Nowadays, the measurement of liver volume has gained practical use in relation to liver transplantation. 2. We have compared the histomorphology of adult liver with a child. The findings in both the groups are very similar. This feature is important, since in

  7. Liver immune-pathogenesis and therapy of human liver tropic virus infection in humanized mouse models.

    Science.gov (United States)

    Bility, Moses T; Li, Feng; Cheng, Liang; Su, Lishan

    2013-08-01

    Hepatitis B virus (HBV) and hepatitis C virus (HCV) infect and replicate primarily in human hepatocytes. Few reliable and easy accessible animal models are available for studying the immune system's contribution to the liver disease progression during hepatitis virus infection. Humanized mouse models reconstituted with human hematopoietic stem cells (HSCs) have been developed to study human immunology, human immunodeficiency virus 1 infection, and immunopathogenesis. However, a humanized mouse model engrafted with both human immune and human liver cells is needed to study infection and immunopathogenesis of HBV/HCV infection in vivo. We have recently developed the humanized mouse model with both human immune and human liver cells (AFC8-hu HSC/Hep) to study immunopathogenesis and therapy of HCV infection in vivo. In this review, we summarize the current models of HBV/HCV infection and their limitations in immunopathogenesis. We will then present our recent findings of HCV infection and immunopathogenesis in the AFC8-hu HSC/Hep mouse, which supports HCV infection, human T-cell response and associated liver pathogenesis. Inoculation of humanized mice with primary HCV isolates resulted in long-term HCV infection. HCV infection induced elevated infiltration of human immune cells in the livers of HCV-infected humanized mice. HCV infection also induced HCV-specific T-cell immune response in lymphoid tissues of humanized mice. Additionally, HCV infection induced liver fibrosis in humanized mice. Anti-human alpha smooth muscle actin (αSMA) staining showed elevated human hepatic stellate cell activation in HCV-infected humanized mice. We discuss the limitation and future improvements of the AFC8-hu HSC/Hep mouse model and its application in evaluating novel therapeutics, as well as studying both HCV and HBV infection, human immune responses, and associated human liver fibrosis and cancer.

  8. Human Ex-Vivo Liver Model for Acetaminophen-induced Liver Damage

    Science.gov (United States)

    Schreiter, Thomas; Sowa, Jan-Peter; Schlattjan, Martin; Treckmann, Jürgen; Paul, Andreas; Strucksberg, Karl-Heinz; Baba, Hideo A.; Odenthal, Margarete; Gieseler, Robert K.; Gerken, Guido; Arteel, Gavin E.; Canbay, Ali

    2016-01-01

    Reliable test systems to identify hepatotoxicity are essential to predict unexpected drug-related liver injury. Here we present a human ex-vivo liver model to investigate acetaminophen-induced liver injury. Human liver tissue was perfused over a 30 hour period with hourly sampling from the perfusate for measurement of general metabolism and clinical parameters. Liver function was assessed by clearance of indocyanine green (ICG) at 4, 20 and 28 hours. Six pieces of untreated human liver specimen maintained stable liver function over the entire perfusion period. Three liver sections incubated with low-dose acetaminophen revealed strong damage, with ICG half-lives significantly higher than in non-treated livers. In addition, the release of microRNA-122 was significantly higher in acetaminophen-treated than in non-treated livers. Thus, this model allows for investigation of hepatotoxicity in human liver tissue upon applying drug concentrations relevant in patients. PMID:27550092

  9. Obesity accelerates epigenetic aging of human liver.

    Science.gov (United States)

    Horvath, Steve; Erhart, Wiebke; Brosch, Mario; Ammerpohl, Ole; von Schönfels, Witigo; Ahrens, Markus; Heits, Nils; Bell, Jordana T; Tsai, Pei-Chien; Spector, Tim D; Deloukas, Panos; Siebert, Reiner; Sipos, Bence; Becker, Thomas; Röcken, Christoph; Schafmayer, Clemens; Hampe, Jochen

    2014-10-28

    Because of the dearth of biomarkers of aging, it has been difficult to test the hypothesis that obesity increases tissue age. Here we use a novel epigenetic biomarker of aging (referred to as an "epigenetic clock") to study the relationship between high body mass index (BMI) and the DNA methylation ages of human blood, liver, muscle, and adipose tissue. A significant correlation between BMI and epigenetic age acceleration could only be observed for liver (r = 0.42, P = 6.8 × 10(-4) in dataset 1 and r = 0.42, P = 1.2 × 10(-4) in dataset 2). On average, epigenetic age increased by 3.3 y for each 10 BMI units. The detected age acceleration in liver is not associated with the Nonalcoholic Fatty Liver Disease Activity Score or any of its component traits after adjustment for BMI. The 279 genes that are underexpressed in older liver samples are highly enriched (1.2 × 10(-9)) with nuclear mitochondrial genes that play a role in oxidative phosphorylation and electron transport. The epigenetic age acceleration, which is not reversible in the short term after rapid weight loss induced by bariatric surgery, may play a role in liver-related comorbidities of obesity, such as insulin resistance and liver cancer.

  10. Liver immune-pathogenesis and therapy of human liver tropic virus infection in humanized mouse models

    OpenAIRE

    Bility, Moses T.; Li, Feng; Cheng, Liang; Su, Lishan

    2013-01-01

    Hepatitis B virus (HBV) and hepatitis C virus (HCV) infect and replicate primarily in human hepatocytes. Few reliable and easy accessible animal models are available for studying the immune system’s contribution to the liver disease progression during hepatitis virus infection. Humanized mouse models reconstituted with human hematopoietic stem cells (HSCs) have been developed to study human immunology, human immunodeficiency virus 1 infection, and immunopathogenesis. However, a humanized mous...

  11. Stem cell differentiation and human liver disease

    Institute of Scientific and Technical Information of China (English)

    Wen-Li Zhou; Claire N Medine; Liang Zhu; David C Hay

    2012-01-01

    Human stem cells are scalable cell populations capable of cellular differentiation.This makes them a very attractive in vitro cellular resource and in theory provides unlimited amounts of primary cells.Such an approach has the potential to improve our understanding of human biology and treating disease.In the future it may be possible to deploy novel stem cell-based approaches to treat human liver diseases.In recent years,efficient hepatic differentiation from human stem cells has been achieved by several research groups including our own.In this review we provide an overview of the field and discuss the future potential and limitations of stem cell technology.

  12. Human herpesvirus 6 infections after liver transplantation

    Institute of Scientific and Technical Information of China (English)

    Rima Camille Abdel Massih; Raymund R Razonable

    2009-01-01

    Human herpesvirus 6 (HHV-6) infections occur in > 95% of humans. Primary infection, which occurs in early childhood as an asymptomatic illness or manifested clinically as roseola infantum, leads to a state of subclinical viral persistence and latency. Reactivation of latent HHV-6 is common after liver transplantation, possibly induced and facilitated by allograft rejection and immunosuppressive therapy. Since the vast majority of humans harbor the virus in a latent state, HHV-6 infections after liver transplantation are believed to be mostly due to endogenous reactivation or superinfection (reactivation in the transplanted organ). In a minority of cases, however,primary HHV-6 infection may occur when an HHV-6 negative individual receives a liver allograft from an HHV-6 positive donor. The vast majority of documented HHV-6 infections after liver transplantation are asymptomatic. In a minority of cases, HHV-6 has been implicated as a cause of febrile illness with rash and myelosuppression, hepatitis, pneumonitis, and encephalitis after liver transplantation. In addition,HHV-6 has been associated with a variety of indirect effects such as allograft rejection, and increased predisposition and severity of other infections including cytomegalovirus (CMV), hepatitis C virus, and opportunistic fungi. Because of the uncommon nature of the clinical illnesses directly attributed to HHV-6, there is currently no recommended HHV-6- specific approach to prevention. However, ganciclovir and valganciclovir, which are primarily intended for the prevention of CMV disease, are also active against HHV-6 and may prevent its reactivation after transplantation. The treatment of established HHV-6 disease is usually with intravenous ganciclovir, cidofovir,or foscarnet, complemented by reduction in the degree of immunosuppression. This article reviews the current advances in the pathogenesis, clinical diagnosis, and therapeutic modalities against HHV6 in the setting of liver transplantation.

  13. In vitro metabolism of [14C]methoxychlor in rat, mouse, Japanese quail and rainbow trout in precision-cut liver slices.

    Science.gov (United States)

    Ohyama, K; Maki, S; Sato, K; Kato, Y

    2004-08-01

    1. The in vitro metabolism of [14C]methoxychlor (MXC) has been studied using precision-cut liver slices from the Sprague-Dawley male rat, CD-1 male mouse, WE strain male Japanese quail and juvenile rainbow trout (Oncorhynchus mykiss). The results demonstrated integrated phase I and II metabolism of MXC and species differences in the metabolic profiles were observed. 2. In rat liver slice preparations, MXC was rapidly metabolized to bis-OH-MXC by sequential O-demethylation followed by subsequent O-glucuronidation forming bis-OH-MXC glucuronide. No mono-OH-MXC glucuronide was detected. The doubly conjugated metabolite, bis-OH-MXC 4-O-sulphate 4'-O-glucuronide, was also detected as a rat-specific metabolite. 3. Formation of mono-OH-MXC and its glucuronide was the main metabolic pathway in the mouse and Japanese quail. In contrast to the rat, only minor amounts of bis-OH-MXC glucuronide were detected. A reductively dehalogenated metabolite, dechlorinated mono-OH-MXC glucuronide, was observed only in mouse preparations. 4. In rainbow trout, comparative amounts of both mono- and bis-OH-MXC glucuronide were formed as the major metabolites. Unconjugated forms of these metabolites were detected only as minor products. 5. The different metabolic profiles of MXC observed in the four animal species are possibly due to substrate specificity of contributing CYP450 monooxgenase enzyme(s) in different animal species.

  14. Iron, copper, zinc and bromine mapping in cirrhotic liver slices from patients with hemochromatosis studied by microscopic synchrotron radiation X-ray fluorescence analysis in continuous scanning mode

    Energy Technology Data Exchange (ETDEWEB)

    Osterode, W. [Medizinische Universitaet Wien, Univ. Klinik fuer Innere Medizin IV, Klinische Abteilung fuer Arbeitsmedizin, Waehringer Guertel 18-20, A-1090 Wien (Austria)], E-mail: wolf.osterode@meduniwien.ac.at; Falkenberg, G. [Hamburger Synchrotronstrahlungslabor HASYLAB, Deutsches Elektronen-Synchrotron DESY (Germany); Hoeftberger, R. [Medizinische Universitaet Wien, Klinisches Institut fuer Neurologie (Austria); Wrba, F. [Medizinische Universitaet Wien, Klinisches Institut fuer Klinische Pathologie (Austria)

    2007-07-15

    Iron (Fe) and copper (Cu) are essential metals in physiological cell metabolism. While Fe is easy to determine biochemically in histological slices, Cu and zinc (Zn) distribution is frequently critical in confirming the presence of an overload in disturbed Fe/Cu metabolism. To analyze Fe, Cu and Zn in a near histological resolution, energy dispersive microscopic synchrotron radiation X-ray fluorescence was applied. In normal liver tissue, after fixation and imbedding in paraffin, mean Fe, Cu and Zn concentrations were 152 {+-} 54, 20.1 {+-} 4.3 and 88.919.5 {mu}g/g sample weight, respectively. No substantial, characteristic differences in their distribution were found in the two-dimensional scans. In slices from patients with hemochromatosis mean Fe, Cu and Zn concentrations were 1102 {+-} 539, 35.9 {+-} 14.6 and 27.2 {+-} 6.7 {mu}g/g sample weight, respectively. Additionally, a significant decrease in phosphorus and sulphur concentrations existed. An increased Cu around cirrhotic regenerations nodules is mostly associated with a lymphocytic infiltration in this region. Analyzing concentrations of Fe in different regions of the samples show a clear negative dependency between Fe and Cu, Cu and Zn, but a positive one between Fe and Zn. Conclusion: With a focal beam size of 15 {mu}m in diameter a resolution of the elemental distribution was achieved which is widely comparable with stained histological slices (20x light microscope). The analysis of simultaneous determined elements reveals metabolic differences between Fe, Cu and Zn in liver tissue from patients with hemochromatosis.

  15. Iron, copper, zinc and bromine mapping in cirrhotic liver slices from patients with hemochromatosis studied by microscopic synchrotron radiation X-ray fluorescence analysis in continuous scanning mode

    Science.gov (United States)

    Osterode, W.; Falkenberg, G.; Höftberger, R.; Wrba, F.

    2007-07-01

    Iron (Fe) and copper (Cu) are essential metals in physiological cell metabolism. While Fe is easy to determine biochemically in histological slices, Cu and zinc (Zn) distribution is frequently critical in confirming the presence of an overload in disturbed Fe/Cu metabolism. To analyze Fe, Cu and Zn in a near histological resolution, energy dispersive microscopic synchrotron radiation X-ray fluorescence was applied. In normal liver tissue, after fixation and imbedding in paraffin, mean Fe, Cu and Zn concentrations were 152 ± 54, 20.1 ± 4.3 and 88.919.5 μg/g sample weight, respectively. No substantial, characteristic differences in their distribution were found in the two-dimensional scans. In slices from patients with hemochromatosis mean Fe, Cu and Zn concentrations were 1102 ± 539, 35.9 ± 14.6 and 27.2 ± 6.7 μg/g sample weight, respectively. Additionally, a significant decrease in phosphorus and sulphur concentrations existed. An increased Cu around cirrhotic regenerations nodules is mostly associated with a lymphocytic infiltration in this region. Analyzing concentrations of Fe in different regions of the samples show a clear negative dependency between Fe and Cu, Cu and Zn, but a positive one between Fe and Zn. Conclusion: With a focal beam size of 15 μm in diameter a resolution of the elemental distribution was achieved which is widely comparable with stained histological slices (20× light microscope). The analysis of simultaneous determined elements reveals metabolic differences between Fe, Cu and Zn in liver tissue from patients with hemochromatosis.

  16. Towards a Humanized Mouse Model of Liver Stage Malaria Using Ectopic Artificial Livers

    Science.gov (United States)

    Ng, Shengyong; March, Sandra; Galstian, Ani; Gural, Nil; Stevens, Kelly R.; Mota, Maria M.; Bhatia, Sangeeta N.

    2017-01-01

    The malaria liver stage is an attractive target for antimalarial development, and preclinical malaria models are essential for testing such candidates. Given ethical concerns and costs associated with non‐human primate models, humanized mouse models containing chimeric human livers offer a valuable alternative as small animal models of liver stage human malaria. The best available human liver chimeric mice rely on cellular transplantation into mice with genetically engineered liver injury, but these systems involve a long and variable humanization process, are expensive, and require the use of breeding-challenged mouse strains which are not widely accessible. We previously incorporated primary human hepatocytes into engineered polyethylene glycol (PEG)-based nanoporous human ectopic artificial livers (HEALs), implanted them in mice without liver injury, and rapidly generated human liver chimeric mice in a reproducible and scalable fashion. By re-designing the PEG scaffold to be macroporous, we demonstrate the facile fabrication of implantable porous HEALs that support liver stage human malaria (P. falciparum) infection in vitro, and also after implantation in mice with normal liver function, 60% of the time. This proof-of-concept study demonstrates the feasibility of applying a tissue engineering strategy towards the development of scalable preclinical models of liver stage malaria infection for future applications. PMID:28361899

  17. Muscarinic acetylcholine receptor-mediated effects in slices from human epileptogenic cortex.

    Science.gov (United States)

    Gigout, S; Wierschke, S; Lehmann, T-N; Horn, P; Dehnicke, C; Deisz, R A

    2012-10-25

    Acetylcholine has been implicated in higher cortical functions such as learning, memory and cognition, yet the cellular effects of muscarinic acetylcholine receptor (mAChR) activation are poorly understood in the human cortex. Here we investigated the effect of the mAChR agonist carbachol (CCh) and various mAChR antagonists in human cortical slices (from tissue removed during neurosurgical treatment of epilepsy) by intracellular and extracellular recordings. CCh increased neuronal firing, which was antagonised by atropine (non-selective mAChR antagonist) and pirenzepine (M(1)/M(4) mAChRs antagonist) when applied before or after CCh application. AF-DX 116 (M(2)/M(4) mAChRs antagonist) had no effect on CCh-induced increase of firing. CCh also reduced evoked excitatory postsynaptic potentials (EPSP), and the CCh-induced depression of EPSP was fully reversed by atropine. Pirenzepine reversed the depression of CCh on EPSP, but failed to prevent the depression when applied before CCh. AF-DX 116 prevented the CCh-induced depression of evoked EPSP when applied before CCh. CCh also depressed GABAergic transmission and this effect was antagonised by AF-DX 116. Xanomeline (M(1)/M(4) mAChR agonist) increased neuronal firing and decreased EPSP, but had no effect on GABAergic transmission. Reduction (with linopirdine) and enhancement (with retigabine) of the M-current (mediated by K(V)7 channels), increased and decreased neuronal firing, respectively, but had marginal effects on the evoked EPSP. Our results indicate that three pharmacologically distinct mAChRs modulate neuronal firing, glutamatergic and GABAergic transmissions in the human epileptogenic neocortex. The data are discussed towards possible implications of altered mAChR signalling in hyperexcitability and cognitive functions in the human neocortex. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Thin slice three dimentional (3D reconstruction versus CT 3D reconstruction of human breast cancer

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2013-01-01

    Full Text Available Background & objectives: With improvement in the early diagnosis of breast cancer, breast conserving therapy (BCT is being increasingly used. Precise preoperative evaluation of the incision margin is, therefore, very important. Utilizing three dimentional (3D images in a preoperative evaluation for breast conserving surgery has considerable significance, but the currently 3D CT scan reconstruction commonly used has problems in accurately displaying breast cancer. Thin slice 3D reconstruction is also widely used now to delineate organs and tissues of breast cancers. This study was aimed to compare 3D CT with thin slice 3D reconstruction in breast cancer patients to find a better technique for accurate evaluation of breast cancer. Methods: A total of 16-slice spiral CT scans and 3D reconstructions were performed on 15 breast cancer patients. All patients had been treated with modified radical mastectomy; 2D and 3D images of breast and tumours were obtained. The specimens were fixed and sliced at 2 mm thickness to obtain serial thin slice images, and reconstructed using 3D DOCTOR software to gain 3D images. Results: Compared with 2D CT images, thin slice images showed more clearly the morphological characteristics of tumour, breast tissues and the margins of different tissues in each slice. After 3D reconstruction, the tumour shapes obtained by the two reconstruction methods were basically the same, but the thin slice 3D reconstruction showed the tumour margins more clearly. Interpretation & conclusions: Compared with 3D CT reconstruction, thin slice 3D reconstruction of breast tumour gave clearer images, which could provide guidance for the observation and application of CT 3D reconstructed images and contribute to the accurate evaluation of tumours using CT imaging technology.

  19. Selective protection of human liver tissue in TNF-targeting of cancers of the liver by transient depletion of adenosine triphosphate.

    Directory of Open Access Journals (Sweden)

    Timo Weiland

    Full Text Available BACKGROUND: Tumor necrosis factor alpha (TNF is able to kill cancer cells via receptor-mediated cell death requiring adenosine triphosphate (ATP. Clinical usage of TNF so far is largely limited by its profound hepatotoxicity. Recently, it was found in the murine system that specific protection of hepatocytes against TNF's detrimental effects can be achieved by fructose-mediated ATP depletion therein. Before employing this quite attractive selection principle in a first clinical trial, we here comprehensively investigated the interdependence between ATP depletion and TNF hepatotoxicity in both in vitro and ex vivo experiments based on usage of primary patient tissue materials. METHODS: Primary human hepatocytes, and both non-tumorous and tumorous patient-derived primary liver tissue slices were used to elucidate fructose-induced ATP depletion and TNF-induced cytotoxicity. RESULTS: PHH as well as tissue slices prepared from non-malignant human liver specimen undergoing a fructose-mediated ATP depletion were both demonstrated to be protected against TNF-induced cell death. In contrast, due to tumor-specific overexpression of hexokinase II, which imposes a profound bypass on hepatocytic-specific fructose catabolism, this was not the case for human tumorous liver tissues. CONCLUSION: Normal human liver tissues can be protected transiently against TNF-induced cell death by systemic pretreatment with fructose used in non-toxic/physiologic concentrations. Selective TNF-targeting of primary and secondary tumors of the liver by transient and specific depletion of hepatocytic ATP opens up a new clinical avenue for the TNF-based treatment of liver cancers.

  20. Molecular Structure of Human-Liver Glycogen.

    Directory of Open Access Journals (Sweden)

    Bin Deng

    Full Text Available Glycogen is a highly branched glucose polymer which is involved in maintaining blood-sugar homeostasis. Liver glycogen contains large composite α particles made up of linked β particles. Previous studies have shown that the binding which links β particles into α particles is impaired in diabetic mice. The present study reports the first molecular structural characterization of human-liver glycogen from non-diabetic patients, using transmission electron microscopy for morphology and size-exclusion chromatography for the molecular size distribution; the latter is also studied as a function of time during acid hydrolysis in vitro, which is sensitive to certain structural features, particularly glycosidic vs. proteinaceous linkages. The results are compared with those seen in mice and pigs. The molecular structural change during acid hydrolysis is similar in each case, and indicates that the linkage of β into α particles is not glycosidic. This result, and the similar morphology in each case, together imply that human liver glycogen has similar molecular structure to those of mice and pigs. This knowledge will be useful for future diabetes drug targets.

  1. Molecular Structure of Human-Liver Glycogen

    Science.gov (United States)

    Deng, Bin; Sullivan, Mitchell A.; Chen, Cheng; Li, Jialun; Powell, Prudence O.; Hu, Zhenxia; Gilbert, Robert G.

    2016-01-01

    Glycogen is a highly branched glucose polymer which is involved in maintaining blood-sugar homeostasis. Liver glycogen contains large composite α particles made up of linked β particles. Previous studies have shown that the binding which links β particles into α particles is impaired in diabetic mice. The present study reports the first molecular structural characterization of human-liver glycogen from non-diabetic patients, using transmission electron microscopy for morphology and size-exclusion chromatography for the molecular size distribution; the latter is also studied as a function of time during acid hydrolysis in vitro, which is sensitive to certain structural features, particularly glycosidic vs. proteinaceous linkages. The results are compared with those seen in mice and pigs. The molecular structural change during acid hydrolysis is similar in each case, and indicates that the linkage of β into α particles is not glycosidic. This result, and the similar morphology in each case, together imply that human liver glycogen has similar molecular structure to those of mice and pigs. This knowledge will be useful for future diabetes drug targets. PMID:26934359

  2. Precision-cut human kidney slices as a model to elucidate the process of renal fibrosis.

    Science.gov (United States)

    Stribos, Elisabeth G D; Luangmonkong, Theerut; Leliveld, Anna M; de Jong, Igle J; van Son, Willem J; Hillebrands, Jan-Luuk; Seelen, Marc A; van Goor, Harry; Olinga, Peter; Mutsaers, Henricus A M

    2016-04-01

    Chronic kidney disease is a major health concern, and experimental models bridging the gap between animal studies and clinical research are currently lacking. Here, we evaluated precision-cut kidney slices (PCKSs) as a potential model for renal disease. PCKSs were prepared from human cortical tissue obtained from tumor nephrectomies and cultured up to 96 hours. Morphology, cell viability, and metabolic functionality (ie, uridine 5'-diphospho-glucuronosyltransferase and transporter activity) were determined to assess the integrity of PCKSs. Furthermore, inflammatory and fibrosis-related gene expressions were characterized. Finally, to validate the model, renal fibrogenesis was induced using transforming growth factor β1 (TGF-β1). Preparation of PCKSs induced an inflammatory tissue response, whereas long-term incubation (96 hours) induced fibrogenesis as shown by an increased expression of collagen type 1A1 (COL1A1) and fibronectin 1 (FN1). Importantly, PCKSs remained functional for more than 48 hours as evidenced by active glucuronidation and phenolsulfonphthalein uptake. In addition, cellular diversity appeared to be maintained, yet we observed a clear loss of nephrin messenger RNA levels suggesting that our model might not be suitable to study the role of podocytes in renal pathology. Moreover, TGF-β1 exposure augmented fibrosis, as illustrated by an increased expression of multiple fibrosis markers including COL1A1, FN1, and α-smooth muscle actin. In conclusion, PCKSs maintain their renal phenotype during culture and appear to be a promising model to investigate renal diseases, for example, renal fibrosis. Moreover, the human origin of PCKSs makes this model very suitable for translational research.

  3. Safety of frozen liver for human consumption

    Directory of Open Access Journals (Sweden)

    Ghada A.K. Kirrella

    2017-07-01

    Full Text Available The objective of this study was to ensure and evaluate the safety of imported frozen beef liver traded in supermarkets of Kafr El-Sheikh Governorate, Egypt, through detection of Salmonella typhimurium, Salmonella enteritidies, Escherichia coli O157:H7, antibiotic residues, and aflatoxin B1 residue. Fifty samples of imported frozen liver were randomly collected from different shops at Kafr El-Sheikh Governorate for isolation of S. typhimurium, S. enteritidies, and E. coli O157:H7. The results revealed that for both microorganisms 4% of the examined samples presumed to contain Salmonella and E. coli O157:H7 organisms, according to the colonial character on Harlequin Salmonella ABC agar media and Harlequin SMAC-BCIG agar media. According to biochemical and serological identifications, both organisms could not be detected in the examined samples. A total of 29 (58% samples were positive for antibiotic residues, using the Premi test (a broad-spectrum screening test for the detection of antibiotic residues in meat at or below the maximum residue limits. In addition, aflatoxin B1 was detected in one (2% samples with a concentration of 1.1 μg/kg. The results reflect that there was good hygiene practice for handling and preparation of frozen liver while selling to consumers. However, a high percentage of antibiotic residues reflect ignorance of withdrawal time before slaughtering of animals as well as misuse of antibiotics in veterinary fields. Furthermore, aflatoxin B1 residue was detected in examined frozen liver samples at a concentration below the maximum residual level, which is not enough to cause threat to humans, but it is enough to cause problem if it is eaten regularly reflect contamination of animal feed with aflatoxins.

  4. Liver displacement during ventilation in Thiel embalmed human cadavers - a possible model for research and training in minimally invasive therapies.

    Science.gov (United States)

    Eisma, Roos; Gueorguieva, Mariana; Immel, Erwin; Toomey, Rachel; McLeod, Graeme; Soames, Roger; Melzer, Andreas

    2013-09-01

    Respiration-related movement of organs is a complication in a range of diagnostic and interventional procedures. The development and validation of techniques to compensate for such movement requires appropriate models. Human cadavers embalmed with the Thiel method remain flexible and could provide a suitable model. In this study liver displacement during ventilation was assessed in eight Thiel embalmed cadavers, all of which showed thoracic and abdominal motion. Four cadavers displayed realistic lung behaviour, one showed some signs of pneumothorax after prolonged ventilation, one had limited filling of the lungs, and two displayed significant leakage of air into the thorax. A coronal slice containing the largest section through the liver was imaged with a real-time Fast Gradient Echo (FGR) MRI sequence: Craniocaudal displacement of the liver was then determined from a time-series of slices. The maximum liver displacement observed in the cadavers ranged from 7 to 35 mm. The ventilation applied was comparable to tidal breathing at rest and the results found for liver displacement are similar to values in the literature for respiratory motion of the liver under similar conditions. This indicates that Thiel embalmed cadavers have potential as a model for research and training in minimally invasive procedures.

  5. Establishment of an in vitro model of the human placental barrier by placenta slice culture and ussing chamber.

    Science.gov (United States)

    Song, Dianrong; Guo, Jie; Han, Fang; Zhang, Wei; Wang, Yanan; Wang, Yuhua

    2013-01-01

    Our purpose was to establish an in vitro model of the human placental barrier based on placenta slice culture and Ussing chamber. The villous morphology, beta-human chorionic gonadotropin (β-hCG), mRNA and efflux function of P-glycoprotein (P-gp), and the permeability of the fluorescent marker were confirmed. The results showed that syncytiotrophoblast cells with abundant endoplasmic reticulum and mitochondria were covered with a dense microvillus in the placenta slice. The β-hCG secretion levels in the Ussing chamber were 274.13 ± 13.52 mIU/mL at 5 h, significantly higher than that in the incubator 95.2 ± 13.14 mIU/mL, and β-hCG continued to secrete for 48 h. P-gp mRNA was expressed in the placenta slice. The Rho123 apparent permeability coefficient (Papp) value from maternal side to the fetal side was 26.34 ± 1.87 nm/s, but it was significantly increased, to 289.55 ± 6.02 nm/s after adding verapamil. The Rho123 efflux value was >2. The fluorescein Papp value was (3.42 ± 0.24) × 10(-3) nm/s. In contrast, the fluorescein isothiocyanate-dextran (FD70) Papp value was (3.93 ± 0.08) × 10(-5) nm/s. This indicates that the placenta slice in the Ussing chamber had the activity of a placenta, and can act as a valuable in vitro model of placental barrier.

  6. Raman microspectroscopy of fixed rabbit and human lenses and lens slices: New potentialities

    NARCIS (Netherlands)

    Bot, Annet C.C.; Huizinga, Alex; Mul, de Frits F.M.; Vrensen, Gijs F.J.M.; Greve, Jan

    1989-01-01

    Raman spectroscopy is a non-invasive, non-destructive technique for the study of the macromolecular composition of tissues. Raman spectra were obtained from intact fresh and paraformaldehyde fixed rabbit lenses and from thin slices prepared from these lenses. In addition the Raman spectrum of an int

  7. Architectural slicing

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2013-01-01

    a system and a slicing criterion, architectural slicing produces an architectural prototype that contain the elements in the architecture that are dependent on the ele- ments in the slicing criterion. Furthermore, we present an initial design and implementation of an architectural slicer for Java.......Architectural prototyping is a widely used practice, con- cerned with taking architectural decisions through experiments with light- weight implementations. However, many architectural decisions are only taken when systems are already (partially) implemented. This is prob- lematic in the context...... of architectural prototyping since experiments with full systems are complex and expensive and thus architectural learn- ing is hindered. In this paper, we propose a novel technique for harvest- ing architectural prototypes from existing systems, \\architectural slic- ing", based on dynamic program slicing. Given...

  8. Slice Sampling

    CERN Document Server

    Neal, R M

    2000-01-01

    Markov chain sampling methods that automatically adapt to characteristics of the distribution being sampled can be constructed by exploiting the principle that one can sample from a distribution by sampling uniformly from the region under the plot of its density function. A Markov chain that converges to this uniform distribution can be constructed by alternating uniform sampling in the vertical direction with uniform sampling from the horizontal `slice' defined by the current vertical position, or more generally, with some update that leaves the uniform distribution over this slice invariant. Variations on such `slice sampling' methods are easily implemented for univariate distributions, and can be used to sample from a multivariate distribution by updating each variable in turn. This approach is often easier to implement than Gibbs sampling, and more efficient than simple Metropolis updates, due to the ability of slice sampling to adaptively choose the magnitude of changes made. It is therefore attractive f...

  9. Architectural Slicing

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Hansen, Klaus Marius

    2013-01-01

    a system and a slicing criterion, architectural slicing produces an architectural prototype that contain the elements in the architecture that are dependent on the ele- ments in the slicing criterion. Furthermore, we present an initial design and implementation of an architectural slicer for Java.......Architectural prototyping is a widely used practice, con- cerned with taking architectural decisions through experiments with light- weight implementations. However, many architectural decisions are only taken when systems are already (partially) implemented. This is prob- lematic in the context...... of architectural prototyping since experiments with full systems are complex and expensive and thus architectural learn- ing is hindered. In this paper, we propose a novel technique for harvest- ing architectural prototypes from existing systems, \\architectural slic- ing", based on dynamic program slicing. Given...

  10. A testbed to explore the optimal electrical stimulation parameters for suppressing inter-ictal spikes in human hippocampal slices.

    Science.gov (United States)

    Min-Chi Hsiao; Pen-Ning Yu; Dong Song; Liu, Charles Y; Heck, Christi N; Millett, David; Berger, Theodore W

    2014-01-01

    New interventions using neuromodulatory devices such as vagus nerve stimulation, deep brain stimulation and responsive neurostimulation are available or under study for the treatment of refractory epilepsy. Since the actual mechanisms of the onset and termination of the seizure are still unclear, most researchers or clinicians determine the optimal stimulation parameters through trial-and-error procedures. It is necessary to further explore what types of electrical stimulation parameters (these may include stimulation frequency, amplitude, duration, interval pattern, and location) constitute a set of optimal stimulation paradigms to suppress seizures. In a previous study, we developed an in vitro epilepsy model using hippocampal slices from patients suffering from mesial temporal lobe epilepsy. Using a planar multi-electrode array system, inter-ictal activity from human hippocampal slices was consistently recorded. In this study, we have further transferred this in vitro seizure model to a testbed for exploring the possible neurostimulation paradigms to inhibit inter-ictal spikes. The methodology used to collect the electrophysiological data, the approach to apply different electrical stimulation parameters to the slices are provided in this paper. The results show that this experimental testbed will provide a platform for testing the optimal stimulation parameters of seizure cessation. We expect this testbed will expedite the process for identifying the most effective parameters, and may ultimately be used to guide programming of new stimulating paradigms for neuromodulatory devices.

  11. L-mimosine increases the production of vascular endothelial growth factor in human tooth slice organ culture model.

    Science.gov (United States)

    Trimmel, K; Cvikl, B; Müller, H-D; Nürnberger, S; Gruber, R; Moritz, A; Agis, H

    2015-03-01

    To assess the pro-angiogenic and pro-inflammatory capacity of the dentine-pulp complex in response to the prolyl hydroxylase inhibitor L-mimosine in a tooth slice organ culture model. Human teeth were sectioned transversely into 600-μm-thick slices and cultured in medium supplemented with serum and antibiotics. Then, pulps were stimulated for 48 h with L-mimosine. Pulps were subjected to viability measurements based on formazan formation in MTT assays. In addition, histological evaluation of pulps was performed based on haematoxylin and eosin staining. Culture supernatants were subjected to immunoassays for vascular endothelial growth factor (VEGF) to determine the pro-angiogenic capacity and to immunoassays for interleukin (IL)-6 and IL-8 to assess the pro-inflammatory response. Interleukin-1 served as pro-inflammatory control. Echinomycin was used to inhibit hypoxia-inducible factor-1 (HIF-1) alpha activity. Data were analysed using Student's t-test and Mann-Whitney U test. Pulps within tooth slices remained vital upon L-mimosine stimulation as indicated by formazan formation and histological evaluation. L-mimosine increased VEGF production when normalized to formazan formation in the pulp tissue of the tooth slices (P  0.05), whilst treatment with IL-1, which served as positive control, increased IL-6 (P model whilst inducing no prominent increase in IL-6 and IL-8. Pre-clinical studies will reveal if these in vitro effects translate into dental pulp regeneration. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution.

    Directory of Open Access Journals (Sweden)

    Andrea Baiocchini

    Full Text Available Chronic liver damage leads to pathological accumulation of ECM proteins (liver fibrosis. Comprehensive characterization of the human ECM molecular composition is essential for gaining insights into the mechanisms of liver disease. To date, studies of ECM remodeling in human liver diseases have been hampered by the unavailability of purified ECM. Here, we developed a decellularization method to purify ECM scaffolds from human liver tissues. Histological and electron microscopy analyses demonstrated that the ECM scaffolds, devoid of plasma and cellular components, preserved the three-dimensional ECM structure and zonal distribution of ECM components. This method has been then applied on 57 liver biopsies of HCV-infected patients at different stages of liver fibrosis according to METAVIR classification. Label-free nLC-MS/MS proteomics and computation biology were performed to analyze the ECM molecular composition in liver fibrosis progression, thus unveiling protein expression signatures specific for the HCV-related liver fibrotic stages. In particular, the ECM molecular composition of liver fibrosis was found to involve dynamic changes in matrix stiffness, flexibility and density related to the dysregulation of predominant collagen, elastic fibers and minor components with both structural and signaling properties. This study contributes to the understanding of the molecular bases underlying ECM remodeling in liver fibrosis and suggests new molecular targets for fibrolytic strategies.

  13. In vitro metabolism of beclomethasone dipropionate, budesonide, ciclesonide, and fluticasone propionate in human lung precision-cut tissue slices

    Directory of Open Access Journals (Sweden)

    Fisher Robyn

    2007-09-01

    Full Text Available Abstract Background The therapeutic effect of inhaled corticosteroids (ICS may be affected by the metabolism of the drug in the target organ. We investigated the in vitro metabolism of beclomethasone dipropionate (BDP, budesonide (BUD, ciclesonide (CIC, and fluticasone propionate (FP in human lung precision-cut tissue slices. CIC, a new generation ICS, is hydrolyzed by esterases in the upper and lower airways to its pharmacologically active metabolite desisobutyryl-ciclesonide (des-CIC. Methods Lung tissue slices were incubated with BDP, BUD, CIC, and FP (initial target concentration of 25 μM for 2, 6, and 24 h. Cellular viability was assessed using adenosine 5'-triphosphate content and protein synthesis in lung slices. Metabolites and remaining parent compounds in the tissue samples were analyzed by HPLC with UV detection. Results BDP was hydrolyzed to the pharmacologically active metabolite beclomethasone-17-monopropionate (BMP and, predominantly, to inactive beclomethasone (BOH. CIC was hydrolyzed initially to des-CIC with a slower rate compared to BDP. A distinctly smaller amount (approximately 10-fold less of fatty acid esters were formed by BMP (and/or BOH than by BUD or des-CIC. The highest relative amounts of fatty acid esters were detected for BUD. For FP, no metabolites were detected at any time point. The amount of drug-related material in lung tissue (based on initial concentrations at 24 h was highest for CIC, followed by BUD and FP; the smallest amount was detected for BDP. Conclusion The in vitro metabolic pathways of the tested ICS in human lung tissue were differing. While FP was metabolically stable, the majority of BDP was converted to inactive polar metabolites. The formation of fatty acid conjugates was confirmed for BMP (and/or BOH, BUD, and des-CIC.

  14. Phenotypic changes of human cells in human-rat liver during partial hepatectomy-induced regeneration

    Institute of Scientific and Technical Information of China (English)

    Yan Sun; Dong Xiao; Hong-An Li; Jin-Fang Jiang; Qing Li; Ruo-Shuang Zhang; Xi-Gu Chen

    2009-01-01

    AIM: To examine the human hepatic parenchymal and stromal components in rat liver and the phenotypic changes of human cells in liver of human-rat chimera (HRC) generated by in utero transplantation of human cells during partial hepatectomy (PHx)-induced liver regeneration. METHODS: Human hepatic parenchymal and stromal components and phenotypic changes of human cells during liver regeneration were examined by flow cytometry, in situ hybridization and immunohistochemistry. RESULTS: ISH analysis demonstrated human Alupositive cells in hepatic parenchyma and stroma of recipient liver. Functional human hepatocytes generated in this model potentially constituted human hepatic functional units with the presence of donor-derived human endothelial and biliary duct cells in host liver. Alpha fetoprotein (AFP)+, CD34+ and CD45+ cells were observed in the chimeric liver on day 10 after PHxinduced liver regeneration and then disappeared in PHx group, but not in non-PHx group, suggesting that dynamic phenotypic changes of human cells expressing AFP, CD34 and CD45 cells may occur during the chimeric liver regeneration. Additionally, immunostaining for human proliferating cell nuclear antigen (PCNA) showed that the number of PCNA-positive cells in the chimeric liver of PHx group was markedly increased, as compared to that of control group, indicating that donor-derived human cells are actively proliferated during PHx-induced regeneration of HRC liver.

  15. Chimeric mice with a humanized liver as an animal model of troglitazone-induced liver injury.

    Science.gov (United States)

    Kakuni, Masakazu; Morita, Mayu; Matsuo, Kentaro; Katoh, Yumiko; Nakajima, Miki; Tateno, Chise; Yokoi, Tsuyoshi

    2012-10-02

    Troglitazone (Tro) is a thiazolidinedione antidiabetic drug that was withdrawn from the market due to its association with idiosyncratic severe liver injury. Tro has never induced liver injury in experimental animals in vivo. It was assumed that the species differences between human and experimental animals in the pharmaco- or toxicokinetics of Tro might be associated with these observations. In this study, we investigated whether a chimeric mouse with a humanized liver that we previously established, whose replacement index with human hepatocytes is up to 92% can reproduce Tro-induced liver injury. When the chimeric mice were orally administered Tro for 14 or 23 days (1000mg/kg/day), serum alanine aminotransferase (ALT) was significantly increased by 2.1- and 3.6-fold, respectively. Co-administration of l-buthionine sulfoximine (10mM in drinking water), an inhibitor of glutathione (GSH) synthesis, unexpectedly prevented the Tro-dependent increase of ALT, which suggests that the GSH scavenging pathway will not be involved in Tro-induced liver injury. To elucidate the mechanism of the onset of liver injury, hepatic GSH content, the level of oxidative stress markers and phase I and phase II drug metabolizing enzymes were determined. However, these factors were not associated with Tro-induced liver injury. An immune-mediated reaction may be associated with Tro-induced liver toxicity in vivo, because the chimeric mouse is derived from an immunodeficient SCID mouse. In conclusion, we successfully reproduced Tro-induced liver injury using chimeric mice with a humanized liver, which provides a new animal model for studying idiosyncratic drug-induced liver injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Comparative in vitro metabolism of methoxychlor in male and female rats: metabolism of demethylated methoxychlor metabolites by precision-cut rat liver slices.

    Science.gov (United States)

    Ohyama, K; Maki, S; Sato, K; Kato, Y

    2005-07-01

    The in vitro metabolism of demethylated methoxychlor (MXC) metabolites, mono-OH-MXC (including (R)- and (S)-isomers) and bis-OH-MXC (mono- and bis-demethylated MXC, respectively), was conducted using precision-cut liver slices to understand the sex-dependent metabolism of MXC in rats. In the study with bis-OH-MXC, the substrate underwent extensive conjugation producing its glucuronide and glucuronide/sulphate diconjugate, and no significant sex differences were found. On the contrary, the metabolism of mono-OH-MXC appeared to exhibit the sex differences in the metabolic profiles. The bis-OH-MXC glucuronide and glucuronide/sulphate diconjugate were major metabolites in male rat, whereas the mono- and bis-OH-MXC glucuronides predominated in the female. The per cent distribution of the demethylated products (sum of bis-OH-MXC derivatives) was approximately 90% for the male (for both isomers) and 81 (R-) to 56% (S-) for the female. The metabolic profiles in (S)-mono-OH-MXC, which is the predominant enantiomer preferentially produced in MXC metabolism in rats, showed a similar pattern to that of MXC compared with the (R)-isomer. The results indicate that the sex differences in oxidative demethylation of the intermediate, (S)-mono-OH-MXC, could be one of the probable reasons for the sex-dependent metabolism of MXC in rats, and the stereo-structural preference of the contributing demethylase enzymes appear to be involved.

  17. Human liver microsomal metabolism of (+)-discodermolide.

    Science.gov (United States)

    Fan, Yun; Schreiber, Emanuel M; Day, Billy W

    2009-10-01

    The polyketide natural product (+)-discodermolide is a potent microtubule stabilizer that has generated considerable interest in its synthetic, medicinal, and biological chemistry. It progressed to early clinical oncology trials, where it showed some efficacy in terms of disease stabilization but also some indications of causing pneumotoxicity. Remarkably, there are no reports of its metabolism. Here, we examined its fate in mixed human liver microsomes. Due to limited availability of the agent, we chose a nanoflow liquid chromatography-electrospray ionization-mass spectrometry analytical approach employing quadrupolar ion trap and quadrupole-quadrupole-time-of-flight instruments for these studies. (+)-Discodermolide was rapidly converted to eight metabolites, with the left-side lactone (net oxidation) and the right-side diene (epoxidation followed by hydrolysis, along with an oxygen insertion product) being the most metabolically labile sites. Other sites of metabolism were the allylic and pendant methyl moieties in the C12-C14 region of the molecule. The results provide information on the metabolic soft spots of the molecule and can be used in further medicinal chemistry efforts to optimize discodermolide analogues.

  18. Enantioselective Metabolism of Flufiprole in Rat and Human Liver Microsomes.

    Science.gov (United States)

    Lin, Chunmian; Miao, Yelong; Qian, Mingrong; Wang, Qiang; Zhang, Hu

    2016-03-23

    The enantioselective metabolism of flufiprole in rat and human liver microsomes in vitro was investigated in this study. The separation and determination were performed using a liquid chromatography system equipped with a triple-quadrupole mass spectrometer and a Lux Cellulose-2 chiral column. The enantioselective metabolism of rac-flufiprole was dramatically different in rat and human liver microsomes in the presence of the β-nicotinamide adenine dinucleotide phosphate regenerating system. The half-lives (t1/2) of flufiprole in rat and human liver microsomes were 7.22 and 21.00 min, respectively, for R-(+)-flufiprole, whereas the values were 11.75 and 17.75 min, respectively, for S-(-)-flufiprole. In addition, the Vmax of R-(+)-flufiprole was about 3-fold that of S-(-)-flufiprole in rat liver microsomes, whereas its value in the case of S-(-)-flufiprole was about 2-fold that of R-(+)-flufiprole in human liver microsomes. The CLint of rac-flufiprole also showed opposite enantioselectivy in rat and human liver microsomes. The different compositions and contents of metabolizing enzyme in the two liver microsomes might be the reasons for the difference in the metabolic behavior of the two enantiomers.

  19. Dibucaine mitigates spreading depolarization in human neocortical slices and prevents acute dendritic injury in the ischemic rodent neocortex.

    Directory of Open Access Journals (Sweden)

    W Christopher Risher

    Full Text Available Spreading depolarizations that occur in patients with malignant stroke, subarachnoid/intracranial hemorrhage, and traumatic brain injury are known to facilitate neuronal damage in metabolically compromised brain tissue. The dramatic failure of brain ion homeostasis caused by propagating spreading depolarizations results in neuronal and astroglial swelling. In essence, swelling is the initial response and a sign of the acute neuronal injury that follows if energy deprivation is maintained. Choosing spreading depolarizations as a target for therapeutic intervention, we have used human brain slices and in vivo real-time two-photon laser scanning microscopy in the mouse neocortex to study potentially useful therapeutics against spreading depolarization-induced injury.We have shown that anoxic or terminal depolarization, a spreading depolarization wave ignited in the ischemic core where neurons cannot repolarize, can be evoked in human slices from pediatric brains during simulated ischemia induced by oxygen/glucose deprivation or by exposure to ouabain. Changes in light transmittance (LT tracked terminal depolarization in time and space. Though spreading depolarizations are notoriously difficult to block, terminal depolarization onset was delayed by dibucaine, a local amide anesthetic and sodium channel blocker. Remarkably, the occurrence of ouabain-induced terminal depolarization was delayed at a concentration of 1 µM that preserves synaptic function. Moreover, in vivo two-photon imaging in the penumbra revealed that, though spreading depolarizations did still occur, spreading depolarization-induced dendritic injury was inhibited by dibucaine administered intravenously at 2.5 mg/kg in a mouse stroke model.Dibucaine mitigated the effects of spreading depolarization at a concentration that could be well-tolerated therapeutically. Hence, dibucaine is a promising candidate to protect the brain from ischemic injury with an approach that does not rely on

  20. A microfluidically perfused three dimensional human liver model.

    Science.gov (United States)

    Rennert, Knut; Steinborn, Sandra; Gröger, Marko; Ungerböck, Birgit; Jank, Anne-Marie; Ehgartner, Josef; Nietzsche, Sandor; Dinger, Julia; Kiehntopf, Michael; Funke, Harald; Peters, Frank T; Lupp, Amelie; Gärtner, Claudia; Mayr, Torsten; Bauer, Michael; Huber, Otmar; Mosig, Alexander S

    2015-12-01

    Within the liver, non-parenchymal cells (NPCs) are critically involved in the regulation of hepatocyte polarization and maintenance of metabolic function. We here report the establishment of a liver organoid that integrates NPCs in a vascular layer composed of endothelial cells and tissue macrophages and a hepatic layer comprising stellate cells co-cultured with hepatocytes. The three-dimensional liver organoid is embedded in a microfluidically perfused biochip that enables sufficient nutrition supply and resembles morphological aspects of the human liver sinusoid. It utilizes a suspended membrane as a cell substrate mimicking the space of Disse. Luminescence-based sensor spots were integrated into the chip to allow online measurement of cellular oxygen consumption. Application of microfluidic flow induces defined expression of ZO-1, transferrin, ASGPR-1 along with an increased expression of MRP-2 transporter protein within the liver organoids. Moreover, perfusion was accompanied by an increased hepatobiliary secretion of 5(6)-carboxy-2',7'-dichlorofluorescein and an enhanced formation of hepatocyte microvilli. From this we conclude that the perfused liver organoid shares relevant morphological and functional characteristics with the human liver and represents a new in vitro research tool to study human hepatocellular physiology at the cellular level under conditions close to the physiological situation.

  1. Human augmenter of liver regeneration: molecular cloning, biological activity and roles in liver regeneration

    Institute of Scientific and Technical Information of China (English)

    杨晓明; 谢玲; 邱兆华; 吴祖泽; 贺福初

    1997-01-01

    The complete amino acid sequence of human augmenter of liver regeneration (hALR) was reported by deduction from nucleotide sequence of its complementary DNA . The cDNA for hALR was isolated by screening a human fetal liver cDNA library and the sequencing of this insert revealed an open reading frame encoding a protein with 125aa and highly homologous (87% ) with rat ALR encoding sequence. The recombinant hALR expressed from its cDNA in transient expression experiments in cos-7 cells could stimulate DNA synthesis of HTC hepatoma cell in the dose-dependent and heat-resistant way. Northern blot analysis with rat ALR cDNA as probe confirmed that ALR mRNA was expressed in the normal rat liver at low level and that dramatically increased in the regenerating liver after partial hepatectomied rat. This size of hALR mRNA is 1.4 kb long and expressed in human fetal liver, kidney and testis. These findings indicated that liver itself may be the resource of ALR and suggested that ALR seems to be an im-portant parac

  2. Human platelets inhibit liver fibrosis in severe combined immunodeficiency mice

    Science.gov (United States)

    Takahashi, Kazuhiro; Murata, Soichiro; Fukunaga, Kiyoshi; Ohkohchi, Nobuhiro

    2013-01-01

    AIM: To investigate the role of human platelets in liver fibrosis. METHODS: Severe combined immunodeficiency (SCID) mice were administered CCl4 and either phosphate-buffered saline (PBS group) or human platelet transfusions (hPLT group). Concentrations of hepatocyte growth factor (HGF), matrix metallopeptidases (MMP)-9, and transforming growth factor-β (TGF-β) in the liver tissue were compared between the PBS and the hPLT groups by enzyme-linked immunosorbent assay (ELISA) and Western blotting. The effects of a human platelet transfusion on liver fibrosis included the fibrotic area, hydroxyproline content, and α-smooth muscle actin (α-SMA) expression, which were evaluated by picrosirius red staining, ELISA, and immunohistochemical staining using an anti-mouse α-SMA antibody, respectively. Phosphorylations of mesenchymal-epithelial transition factor (Met) and SMAD3, downstream signals of HGF and TGF-β, were compared between the two groups by Western blotting and were quantified using densitometry. Hepatocyte apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling. Furthermore, the accumulation of human platelets in the liver 2 h after platelet transfusion was compared between normal and fibrotic livers by immunohistochemical staining using an anti-human CD41 antibody. RESULTS: The fibrotic area and hydroxyproline content in the liver were both significantly lower in the hPLT group when compared to the PBS group (fibrotic area, 1.7% ± 0.6% vs 2.5% ± 0.6%, P = 0.03; hydroxyproline content, 121 ± 26 ng/g liver vs 156 ± 47 ng/g liver, P = 0.04). There was less α-smooth muscle actin staining in the hPLT group than in the PBS group (0.5% ± 0.1% vs 0.8% ± 0.3%, P = 0.02). Hepatic expression levels of mouse HGF and MMP-9 were significantly higher in the hPLT group than in the PBS group (HGF, 109 ± 13 ng/g liver vs 88 ± 22 ng/g liver, P = 0.03; MMP-9, 113% ± 7%/GAPDH vs 92% ± 11%/GAPDH, P = 0.04). In contrast, the

  3. A study of human liver ferritin and chicken liver and spleen using Moessbauer spectroscopy with high velocity resolution

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakh, M. I., E-mail: oshtrakh@mail.utnet.ru [Ural State Technical University-UPI, Faculty of Physical Techniques and Devices for Quality Control (Russian Federation); Milder, O. B.; Semionkin, V. A. [Ural State Technical University-UPI, Faculty of Experimental Physics (Russian Federation)

    2008-01-15

    Lyophilized samples of human liver ferritin and chicken liver and spleen were measured at room temperature using Moessbauer spectroscopy with high velocity resolution. An increase in the velocity resolution of Moessbauer spectroscopy permitted us to increase accuracy and decrease experimental error in determining the hyperfine parameters of human liver ferritin and chicken liver and spleen. Moessbauer spectroscopy with high velocity resolution may be very useful for revealing small differences in hyperfine parameters during biomedical research.

  4. Neurally mediated airway constriction in human and other species: a comparative study using precision-cut lung slices (PCLS.

    Directory of Open Access Journals (Sweden)

    Marco Schlepütz

    Full Text Available The peripheral airway innervation of the lower respiratory tract of mammals is not completely functionally characterized. Recently, we have shown in rats that precision-cut lung slices (PCLS respond to electric field stimulation (EFS and provide a useful model to study neural airway responses in distal airways. Since airway responses are known to exhibit considerable species differences, here we examined the neural responses of PCLS prepared from mice, rats, guinea pigs, sheep, marmosets and humans. Peripheral neurons were activated either by EFS or by capsaicin. Bronchoconstriction in response to identical EFS conditions varied between species in magnitude. Frequency response curves did reveal further species-dependent differences of nerve activation in PCLS. Atropine antagonized the EFS-induced bronchoconstriction in human, guinea pig, sheep, rat and marmoset PCLS, showing cholinergic responses. Capsaicin (10 µM caused bronchoconstriction in human (4 from 7 and guinea pig lungs only, indicating excitatory non-adrenergic non-cholinergic responses (eNANC. However, this effect was notably smaller in human responder (30 ± 7.1% than in guinea pig (79 ± 5.1% PCLS. The transient receptor potential (TRP channel blockers SKF96365 and ruthenium red antagonized airway contractions after exposure to EFS or capsaicin in guinea pigs. In conclusion, the different species show distinct patterns of nerve-mediated bronchoconstriction. In the most common experimental animals, i.e. in mice and rats, these responses differ considerably from those in humans. On the other hand, guinea pig and marmoset monkey mimic human responses well and may thus serve as clinically relevant models to study neural airway responses.

  5. Intersection-based registration of slice stacks to form 3D images of the human fetal brain

    DEFF Research Database (Denmark)

    Kim, Kio; Hansen, Mads Fogtmann; Habas, Piotr;

    2008-01-01

    Clinical fetal MR imaging of the brain commonly makes use of fast 2D acquisitions of multiple sets of approximately orthogonal 2D slices. We and others have previously proposed an iterative slice-to-volume registration process to recover a geometrically consistent 3D image. However, these approac...

  6. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients.

    Science.gov (United States)

    Zhang, Zheng; Lin, Hu; Shi, Ming; Xu, Ruonan; Fu, Junliang; Lv, Jiyun; Chen, Liming; Lv, Sa; Li, Yuanyuan; Yu, Shuangjie; Geng, Hua; Jin, Lei; Lau, George K K; Wang, Fu-Sheng

    2012-03-01

    Decompensated liver cirrhosis (LC), a life-threatening complication of chronic liver disease, is one of the major indications for liver transplantation. Recently, mesenchymal stem cell (MSC) transfusion has been shown to lead to the regression of liver fibrosis in mice and humans. This study examined the safety and efficacy of umbilical cord-derived MSC (UC-MSC) in patients with decompensated LC. A total of 45 chronic hepatitis B patients with decompensated LC, including 30 patients receiving UC-MSC transfusion, and 15 patients receiving saline as the control, were recruited; clinical parameters were detected during a 1-year follow-up period. No significant side-effects and complications were observed in either group. There was a significant reduction in the volume of ascites in patients treated with UC-MSC transfusion compared with controls (P decompensated LC. UC-MSC transfusion, therefore, might present a novel therapeutic approach for patients with decompensated LC.

  7. Study of apoptosis in human liver cancers

    Institute of Scientific and Technical Information of China (English)

    Chang-Min Shan; Juan Li

    2002-01-01

    AIM: To investigate the action of apoptosis in occurrence ofliver cacinornas in vivo and the biological effect of Solanumlyratum Thumb on BEL-7404 cell line inducing apoptosis invitro.METHODS: The apoptosis in the liver carcinoma wasdetected with terminal deoxynucl neotidyl transferasemediated dUTP nick end labelling (TUNEL); the cancer cellscultured in DMED medium were treated with extract ofSolanum lyratum Thumb and observed under microscope,and their DNA was assayed by gel electrophoresis.RESULTS: In vivo apoptotic cells in the cancer adjacenttissues inceased; in vitro treatment of liver cancers withextract of Solanum lyratum Thumb could induce the cells tomanifest a typical apoptotic morphology. Their DNA wasfractured and a characteristic ladder pattem could be foundusing electrophoresis.CONCLUSION: In vivo the apoptosis of carcinomas waslower; maybe the cells divided quickly and then the cancersoccurred. In the cancer adjacent tissues, the apoptosispricked up, and in vitro Solarium lyratum Thumb couldinduce the apoptosis of BEL-7404 cells.

  8. Glucuronidation of thyroxine in human liver, jejunum, and kidney microsomes.

    Science.gov (United States)

    Yamanaka, Hiroyuki; Nakajima, Miki; Katoh, Miki; Yokoi, Tsuyoshi

    2007-09-01

    Glucuronidation of thyroxine is a major metabolic pathway facilitating its excretion. In this study, we characterized the glucuronidation of thyroxine in human liver, jejunum, and kidney microsomes, and identified human UDP-glucuronosyltransferase (UGT) isoforms involved in the activity. Human jejunum microsomes showed a lower K(m) value (24.2 microM) than human liver (85.9 microM) and kidney (53.3 microM) microsomes did. Human kidney microsomes showed a lower V(max) value (22.6 pmol/min/mg) than human liver (133.4 pmol/min/mg) and jejunum (184.6 pmol/min/mg) microsomes did. By scaling-up, the in vivo clearances in liver, intestine, and kidney were estimated to be 1440, 702, and 79 microl/min/kg body weight, respectively. Recombinant human UGT1A8 (108.7 pmol/min/unit), UGT1A3 (91.6 pmol/min/unit), and UGT1A10 (47.3 pmol/min/unit) showed high, and UGT1A1 (26.0 pmol/min/unit) showed moderate thyroxine glucuronosyltransferase activity. The thyroxine glucuronosyltransferase activity in microsomes from 12 human livers was significantly correlated with bilirubin O-glucuronosyltransferase (r = 0.855, p microsomes was mainly catalyzed by UGT1A8 and UGT1A10 and to a lesser extent by UGT1A1, and the activity in human kidney microsomes was mainly catalyzed by UGT1A7, UGT1A9, and UGT1A10. The changes of activities of these UGT1A isoforms via inhibition and induction by administered drugs as well as genetic polymorphisms may be a causal factor of interindividual differences in the plasma thyroxine concentration.

  9. Downregulation of sulfotransferase expression and activity in diseased human livers.

    Science.gov (United States)

    Yalcin, Emine B; More, Vijay; Neira, Karissa L; Lu, Zhenqiang James; Cherrington, Nathan J; Slitt, Angela L; King, Roberta S

    2013-09-01

    Sulfotransferase (SULT) function has been well studied in healthy human subjects by quantifying mRNA and protein expression and determining enzyme activity with probe substrates. However, it is not well known if sulfotransferase activity changes in metabolic and liver disease, such as diabetes, steatosis, or cirrhosis. Sulfotransferases have significant roles in the regulation of hormones and excretion of xenobiotics. In the present study of normal subjects with nonfatty livers and patients with steatosis, diabetic cirrhosis, and alcoholic cirrhosis, we sought to determine SULT1A1, SULT2A1, SULT1E1, and SULT1A3 activity and mRNA and protein expression in human liver tissue. In general, sulfotransferase activity decreased significantly with severity of liver disease from steatosis to cirrhosis. Specifically, SULT1A1 and SULT1A3 activities were lower in disease states relative to nonfatty tissues. Alcoholic cirrhotic tissues further contained lower SULT1A1 and 1A3 activities than those affected by either of the two other disease states. SULT2A1, on the other hand, was only reduced in alcoholic cirrhotic tissues. SULT1E1 was reduced both in diabetic cirrhosis and in alcoholic cirrhosis tissues, relative to nonfatty liver tissues. In conclusion, the reduced levels of sulfotransferase expression and activity in diseased versus nondiseased liver tissue may alter the metabolism and disposition of xenobiotics and affect homeostasis of endobiotic sulfotransferase substrates.

  10. Synchrotron refractive-index microradiography of human liver cancer tissue

    Institute of Scientific and Technical Information of China (English)

    TONG Yongpeng; ZHANG Guilin; LI Yan; HWU Yeukuang; TSAI Wenli; JE Jung Ho; Margaritondo G.; YUAN Dong

    2005-01-01

    Three human liver tissue samples (~5 mm × 40 mm × 20 mm) were excised from a cancer patient's liver during surgery. The microradiology analysis was performed with a non-standard approach on a synchrotron. High-resolution refractive-index edge-enhanced microradiographs that cover a larger volume of the liver tissue sample were obtained. The cancer tissue and normal tissue could be clearly identified and distinguished based on their different textures. Furthermore, new blood vessel hyperplasia was found near the cancer area. Blood vessels with a diameter smaller than 20 μm could be identified. These findings were fully consistent with the histopathological examination of the same area. Microradiographs of the newly formed blood vessels at different angles were also obtained. This result shows that it is possible to further develop this approach into a technique of microradiographic imaging for clinic diagnosis of liver cancer at the early stage.

  11. Adeno-Associated Viral Vectors Transduce Mature Human Adipocytes in Three-Dimensional Slice Cultures.

    Science.gov (United States)

    Kallendrusch, Sonja; Schopow, Nikolas; Stadler, Sonja C; Büning, Hildegard; Hacker, Ulrich T

    2016-10-01

    Adipose tissue plays a pivotal role, both in the regulation of energy homeostasis and as an endocrine organ. Consequently, adipose tissue dysfunction is closely related to insulin resistance, morbid obesity, and metabolic syndrome. To study molecular mechanisms and to develop novel therapeutic strategies, techniques are required to genetically modify mature adipocytes. Here, we report on adeno-associated viral (AAV) vectors as a versatile tool to transduce human mature adipocytes in organotypic three-dimensional tissue cultures.

  12. The pedunculopontine tegmental nucleus: from basic neuroscience to neurosurgical applications: arousal from slices to humans: implications for DBS.

    Science.gov (United States)

    Garcia-Rill, Edgar; Simon, Christen; Smith, Kristen; Kezunovic, Nebosja; Hyde, James

    2011-10-01

    One element of the reticular activating system (RAS) is the pedunculopontine nucleus (PPN), which projects to the thalamus to trigger thalamocortical rhythms and the brainstem to modulate muscle tone and locomotion. The PPN is a posterior midbrain site known to induce locomotion in decerebrate animals when activated at 40-60 Hz, and has become a target for DBS in disorders involving gait deficits. We developed a research program using brainstem slices containing the PPN to study the cellular and molecular organization of this region. We showed that PPN neurons preferentially fire at gamma band frequency (30-60 Hz) when maximally activated, accounting for the effects of electrical stimulation. In addition, we developed the P13 midlatency auditory evoked potential, which is generated by PPN outputs, in freely moving rats. This allows the study of PPN cellular and molecular mechanisms in the whole animal. We also study the P50 midlatency auditory evoked potential, which is the human equivalent of the rodent P13 potential, allowing us to study PPN-related processes detected in vitro, confirmed in the whole animal, and tested in humans. Previous findings on the P50 potential in PD suggest that PPN output in this disorder is overactive. This translational research program led to the discovery of a novel mechanism of sleep-wake control based on electrical coupling, pointing the way to a number of new clinical applications in the development of novel stimulants (e.g., modafinil) and anesthetics. In addition, it provides methods for monitoring therapeutic efficacy of DBS in humans and animal models.

  13. An ex vivo model to induce early fibrosis-like changes in human precision-cut lung slices.

    Science.gov (United States)

    Alsafadi, Hani N; Staab-Weijnitz, Claudia A; Lehmann, Mareike; Lindner, Michael; Peschel, Britta; Königshoff, Melanie; Wagner, Darcy E

    2017-06-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating chronic interstitial lung disease (ILD) characterized by lung tissue scarring and high morbidity. Lung epithelial injury, myofibroblast activation, and deranged repair are believed to be key processes involved in disease onset and progression, but the exact molecular mechanisms behind IPF remain unclear. Several drugs have been shown to slow disease progression, but treatments that halt or reverse IPF progression have not been identified. Ex vivo models of human lung have been proposed for drug discovery, one of which is precision-cut lung slices (PCLS). Although PCLS production from IPF explants is possible, IPF explants are rare and typically represent end-stage disease. Here we present a novel model of early fibrosis-like changes in human PCLS derived from patients without ILD/IPF using a combination of profibrotic growth factors and signaling molecules (transforming growth factor-β, tumor necrosis factor-α, platelet-derived growth factor-AB, and lysophosphatidic acid). Fibrotic-like changes of PCLS were qualitatively analyzed by histology and immunofluorescence and quantitatively by water-soluble tetrazolium-1, RT-qPCR, Western blot analysis, and ELISA. PCLS remained viable after 5 days of treatment, and fibrotic gene expression (FN1, SERPINE1, COL1A1, CTGF, MMP7, and ACTA2) increased as early as 24 h of treatment, with increases in protein levels at 48 h and increased deposition of extracellular matrix. Alveolar epithelium reprogramming was evident by decreases in surfactant protein C and loss of HOPX In summary, using human-derived PCLS, we established a novel ex vivo model that displays characteristics of early fibrosis and could be used to evaluate novel therapies and study early-stage IPF pathomechanisms. Copyright © 2017 the American Physiological Society.

  14. Differentiation of human bone marrow precursor cells into neuronal-like cells after transplantation into canine spinal cord organotypic slice cultures

    Institute of Scientific and Technical Information of China (English)

    FEI Zhi-qiang; XIONG Jian-yi; CHEN Lei; SHEN Hui-yong; Ngo Stephanie; Wang Jeffrey; WANG Da-ping

    2012-01-01

    Background Treatments to regenerate different tissue involving the transplantation of bone marrow derived mesenchymal precursor cells are anticipated.Using an alternative methods,in vitro organotypic slice culture method,would be useful to transplant cells and assessing the effects.This study was to determine the possibility of differentiating human bone marrow precursor cells into cells of the neuronal lineage by transplanting into canine spinal cord organotypic slice cultures.Methods Bone marrow aspirates were obtained from posterior superior iliac spine(PSIS)of patients that had undergone spinal fusion due to a degenerative spinal disorder.For cell imaging,mesenchymal precursor cells(MPCs)were pre-stained with PKH-26 just before transplantation to canine spinal cord slices.Canine spinal cord tissues were obtained from three adult beagle dogs.Spinal cords were cut into transverse slices of 1 mm using tissue chopper.Two slices were transferred into 6-well plate containing 3 ml DMEM with antibiotics.Prepared MPCs(1×104)were transplanted into spinal cord slices.On days 0,3,7,14,MPCs were observed for morphological changes and expression of neuronal markers through immunofluorescence and reverse transcription-polymerase chain reaction(RT-PCR).Results The morphological study showed:spherical cells in the control and experiment groups on day 0;and on day 3,cells in the control group had one or two thick,short processes and ones in the experiment group had three or four thin,long processes.On day 7,these variously-sized processes contacted each other in the experiment group,but showed typical spindle-shaped cells in the control group.Immunofluorescence showed that PKH-26(+)MPCs stained positive for NeuN(+)and GFAP(+)in experimental group only.Also RT-PCR showed weak expression of β-tubulinⅢ?and GFAP.Conclusions Human bone marrow mesenchymal precursor cells(hMPCs)have the potential to differentiate into the neuronal like cells in this canine spinal cord organotypic

  15. Perivascular mesenchymal progenitors in human fetal and adult liver.

    Science.gov (United States)

    Gerlach, Jörg C; Over, Patrick; Turner, Morris E; Thompson, Robert L; Foka, Hubert G; Chen, William C W; Péault, Bruno; Gridelli, Bruno; Schmelzer, Eva

    2012-12-10

    The presence of mesenchymal stem cells (MSCs) has been described in various organs. Pericytes possess a multilineage differentiation potential and have been suggested to be one of the developmental sources for MSCs. In human liver, pericytes have not been defined. Here, we describe the identification, purification, and characterization of pericytes in human adult and fetal liver. Flow cytometry sorting revealed that human adult and fetal liver contains 0.56%±0.81% and 0.45%±0.39% of CD146(+)CD45(-)CD56(-)CD34(-) pericytes, respectively. Of these, 41% (adult) and 30% (fetal) were alkaline phosphatase-positive (ALP(+)). In situ, pericytes were localized around periportal blood vessels and were positive for NG2 and vimentin. Purified pericytes could be cultured extensively and had low population doubling times. Immunofluorescence of cultures demonstrated that cells were positive for pericyte and mesenchymal cell markers CD146, NG2, CD90, CD140b, and vimentin, and negative for endothelial, hematopoietic, stellate, muscle, or liver epithelial cell markers von Willebrand factor, CD31, CD34, CD45, CD144, CD326, CK19, albumin, α-fetoprotein, CYP3A7, glial fibrillary acid protein, MYF5, and Pax7 by gene expression; myogenin and alpha-smooth muscle actin expression were variable. Fluorescence-activated cell sorting analysis of cultures confirmed surface expression of CD146, CD73, CD90, CD10, CD13, CD44, CD105, and ALP and absence of human leukocyte antigen-DR. In vitro differentiation assays demonstrated that cells possessed robust osteogenic and myogenic, but low adipogenic and low chondrogenic differentiation potentials. In functional in vitro assays, cells had typical mesenchymal strong migratory and invasive activity. In conclusion, human adult and fetal livers harbor pericytes that are similar to those found in other organs and are distinct from hepatic stellate cells.

  16. A novel form of the human manganese superoxide dismutase protects rat and human livers undergoing ischaemia and reperfusion injury

    National Research Council Canada - National Science Library

    Hide, Diana; Ortega-Ribera, Martí; Fernández-Iglesias, Anabel; Fondevila, Constantino; Salvadó, M Josepa; Arola, Lluís; García-Pagán, Juan Carlos; Mancini, Aldo; Bosch, Jaime; Gracia-Sancho, Jordi

    2014-01-01

    ...), liver grafts from healthy and steatotic rats, and human liver samples, we aimed to characterize the effects of a new recombinant form of human manganese superoxide dismutase (rMnSOD) on hepatic CS+WR injury. After CS...

  17. Methods of Liver Stem Cell Therapy in Rodents as Models of Human Liver Regeneration in Hepatic Failure.

    Science.gov (United States)

    Hashemi Goradel, Nasser; Darabi, Masoud; Shamsasenjan, Karim; Ejtehadifar, Mostafa; Zahedi, Sarah

    2015-09-01

    Cell therapy is a promising intervention for treating liver diseases and liver failure. Different animal models of human liver cell therapy have been developed in recent years. Rats and mice are the most commonly used liver failure models. In fact, rodent models of hepatic failure have shown significant improvement in liver function after cell infusion. With the advent of stem-cell technologies, it is now possible to re-programme adult somatic cells such as skin or hair-follicle cells from individual patients to stem-like cells and differentiate them into liver cells. Such regenerative stem cells are highly promising in the personalization of cell therapy. The present review article will summarize current approaches to liver stem cell therapy with rodent models. In addition, we discuss common cell tracking techniques and how tracking data help to direct liver cell therapy research in animal models of hepatic failure.

  18. Synergistic and antagonistic interactions of binary mixtures of polycyclic aromatic hydrocarbons in the upregulation of CYP1 activity and mRNA levels in precision-cut rat liver slices.

    Science.gov (United States)

    Pushparajah, Daphnee S; Plant, Kathryn E; Plant, Nick J; Ioannides, Costas

    2017-03-01

    The current studies investigate whether synergistic or antagonistic interactions in the upregulation of CYP1 activity occur in binary mixtures of polycyclic aromatic hydrocarbons (PAHs) involving benzo[a]pyrene and five other structurally diverse PAHs of varying carcinogenic activity. Precision-cut rat liver slices were incubated with benzo[a]pyrene alone or in combination with a range of concentrations of a second PAH, and ethoxyresorufin O-deethylase, CYP1A1 and CYP1B1 mRNA levels determined. Concurrent incubation of benzo[a]pyrene with either dibenzo[a,h]anthracene or fluoranthene in liver slices led to a synergistic interaction, at least at low concentrations, in that ethoxyresorufin O-deethylase activity was statistically higher than the added effects when the slices were incubated with the individual compounds. In contrast, benzo[b]fluoranthene and, at high doses only, dibenzo[a,l]pyrene gave rise to antagonism, whereas 1-methylphenanthrene had no effect at all concentrations studied. When CYP1A1 mRNA levels were monitored, benzo[b]fluoranthene gave rise to an antagonistic response when incubated with benzo[a]pyrene, whereas all other compounds displayed synergism, with 1-methylphenathrene being the least effective. A similar picture emerged when CYP1B1 mRNA levels were determined, though the effects were less pronounced. In conclusion, it has been demonstrated that the benzo[a]pyrene-mediated upregulation of CYP1, at the mRNA and activity levels, is synergistically and antagonistically modulated by other PAHs. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 764-775, 2017. © 2016 Wiley Periodicals, Inc.

  19. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    Science.gov (United States)

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITINABSTRACT Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  20. Functional testing of an inhalable nanoparticle based influenza vaccine using a human precision cut lung slice technique.

    Directory of Open Access Journals (Sweden)

    Vanessa Neuhaus

    Full Text Available Annual outbreaks of influenza infections, caused by new influenza virus subtypes and high incidences of zoonosis, make seasonal influenza one of the most unpredictable and serious health threats worldwide. Currently available vaccines, though the main prevention strategy, can neither efficiently be adapted to new circulating virus subtypes nor provide high amounts to meet the global demand fast enough. New influenza vaccines quickly adapted to current virus strains are needed. In the present study we investigated the local toxicity and capacity of a new inhalable influenza vaccine to induce an antigen-specific recall response at the site of virus entry in human precision-cut lung slices (PCLS. This new vaccine combines recombinant H1N1 influenza hemagglutinin (HAC1, produced in tobacco plants, and a silica nanoparticle (NP-based drug delivery system. We found no local cellular toxicity of the vaccine within applicable concentrations. However higher concentrations of NP (≥10(3 µg/ml dose-dependently decreased viability of human PCLS. Furthermore NP, not the protein, provoked a dose-dependent induction of TNF-α and IL-1β, indicating adjuvant properties of silica. In contrast, we found an antigen-specific induction of the T cell proliferation and differentiation cytokine, IL-2, compared to baseline level (152±49 pg/mg vs. 22±5 pg/mg, which could not be seen for the NP alone. Additionally, treatment with 10 µg/ml HAC1 caused a 6-times higher secretion of IFN-γ compared to baseline (602±307 pg/mg vs. 97±51 pg/mg. This antigen-induced IFN-γ secretion was further boosted by the adjuvant effect of silica NP for the formulated vaccine to a 12-fold increase (97±51 pg/mg vs. 1226±535 pg/mg. Thus we were able to show that the plant-produced vaccine induced an adequate innate immune response and re-activated an established antigen-specific T cell response within a non-toxic range in human PCLS at the site of virus entry.

  1. Obesity accelerates epigenetic aging of human liver

    OpenAIRE

    Horvath, S; Erhart, W.; Brosch, M; Ammerpohl, O.; von Schonfels, W.; Ahrens, M.; Heits, N.; Bell, J.T.; Tsai, P.-C.; Spector, T D; Deloukas, P.; Siebert, R.; Sipos, B.; Becker, T.; Rocken, C.

    2014-01-01

    Because obese people are at an increased risk of many age-related diseases, it is a plausible hypothesis that obesity increases the biological age of some tissues and cell types. However, it has been difficult to detect such an accelerated aging effect because it is unclear how to measure tissue age. Here we use a recently developed biomarker of aging (known as “epigenetic clock”) to study the relationship between epigenetic age and obesity in several human tissues. We report an unexpectedly ...

  2. Acute toxicity of CCl4 but not of paracetamol induces a transcriptomic signature of fibrosis in precision-cut liver slices

    NARCIS (Netherlands)

    Vatakuti, Suresh; Schoonen, Willem G E J; Elferink, Maria; Groothuis, Geny M M; Olinga, Peter

    2015-01-01

    In rat in vivo, both paracetamol (APAP) and carbon tetrachloride (CCl4) induce liver necrosis, but long-term treatment with CCl4, in contrast to paracetamol, causes liver fibrosis. The aim of this study was to perform transcriptomic analysis to compare the early changes in mRNA expression profiles i

  3. Isolation of human liver angiotensin-converting enzyme by chromatofocusing.

    Science.gov (United States)

    Sakharov IYu; Danilov, S M; Sukhova, N V

    1987-10-01

    Angiotensin-converting enzyme (EC 3.4.15.1) has been isolated from human liver by chromatofocusing. The isolation procedure permitted us to obtain a 9000-fold purified enzyme with a 22% yield. Specific activity of the angiotensin-converting enzyme was 10 units/mg of protein. The molecular mass of enzyme determined by polyacrylamide gel electrophoresis under denaturing conditions was 150,000. The isoelectric point (4.2-4.3) was also determined by chromatofocusing. The Km values of the enzyme for hippuryl-L-histidyl-L-leucine and N-benzyloxycarbonyl-L-phenylalanyl-L-histidyl-L-leucine are 5000 and 125 microM, respectively. The human liver angiotensin-converting enzyme is inhibited by bradykinin-potentiating factor SQ 20881 (IC50 = 18 nM).

  4. 人脑胶质瘤256层CT灌注成像%Perfusion 256-Slice CT Imaging of Human Gliomas

    Institute of Scientific and Technical Information of China (English)

    陆娜; Haleena Ramsahye; 冯晓源; 强金伟; 廖治河; 蒋玲

    2013-01-01

    Objective:To evaluate the feasibility of using perfusion 256-slice CT imaging in the examination of human gliomas and to investigate the perfusion characteristics of gliomas.Methods:From Jan 2010 to Feb 2012,among 55 subjects who underwent perfusion 256-slice CT imaging,there were 40 patients with gliomas(25 patients with high grade gliomas,15 patients with low grade gliomas) and 15 healthy volunteers served as controls.The raw data including cerebral blood flow(CBF),cerebral blood volume(CBV),mean transit time(MTT) and permeability surface-area product of region of interest(ROD were processed using CT perfusion software.The statistical analysis was performed to compare the difference among controls,low grade gliomas and high grade gliomas using ANOVA test.Results:A total of 40 patients with gliomas have been proved by the histopathological results.CBF,CBV and permeability surface-area product in high grade gliomas were (51.41 ± 11.60)mL/(100 g · min),(6.26 ± 1.67)mL/100 g and (5.71 ± 2.22)mL/(min · 100 g),respectively; in low grade gliomas they were (32.73 ± 7.06)mL/(100 g · min),(2.98 ± 0.73) mL/100 g and (2.33 ± 0.47) mL/(min · 100 g),respectively; and in controls they were (21.06 ± 2.06)mL/(100 g · min),(1.76 ± 0.17)mL/100 g and (0.90 ± 0.07)mL/(min · 100 g) respectively.Significant differences of CBF,CBV and permeability surface-area product were observed among high grade gliomas,low grade gliomas and controls(P all<0.01).There were no difference in MTT among 3 groups.When cutoff value of permeability surface-area product was 2.88 mL/(min · 100 g),the sensitivity and specificity were 96 % and 93 %.When cutoff value of CBV was 3.91 mL/100 g,the sensitivity and specificity were 92 % and 93 %.When cutoff value of CBF was 38.90 mL/(100g· min),the sensitivity and specificity were 92 % and 86 %.Conclusions:Perfusion 256-slice CT imaging can provide useful parameters for glioma hemodynamics.%目的:探讨人脑胶质瘤256层CT灌注

  5. [Metabolism of mitomycin C by human liver microsomes in vitro].

    Science.gov (United States)

    Hao, Fu-rong; Yan, Min-fen; Hu, Zhuo-han; Jin, Yi-zun

    2007-02-01

    To provide the profiles of metabolism of mitomycin C (MMC) by human liver microsomes in vitro, MMC was incubated with human liver microsomes, then the supernatant component was isolated and detected by HPLC. Types of metabolic enzymes were estimated by the effect of NADPH or dicumarol (DIC) on metabolism of MMC. Standard, reaction, background control (microsomes was inactivated), negative control (no NADPH), and inhibitor group (adding DIC) were assigned, the results were analyzed by Graphpad Prism 4. 0 software. Reaction group compared with background control and negative control groups, 3 NADPH-dependent absorption peaks were additionally isolated by HPLC after MMC were incubated with human liver microsomes. Their retention times were 10. 0, 14. 0, 14. 8 min ( named as Ml, M2, M3) , respectively. Their formation was kept as Sigmoidal dose-response and their Km were 0. 52 (95% CI, 0. 40 - 0.67) mmol x L(-1), 0. 81 (95% CI, 0. 59 - 1. 10) mmol x L(-1), 0. 54 (95% CI, 0. 41 -0. 71) mmol x L(-1) , respectively. The data indicated that the three absorption peaks isolated by HPLC were metabolites of MMC. DIC can inhibit formation of M2, it' s dose-effect fitted to Sigmoidal curve and it' s IC50 was 59. 68 (95% CI, 40. 66 - 87. 61) micromol x L(-1) , which indicated DT-diaphorase could take part in the formation of M2. MMC can be metabolized by human liver microsomes in vitro, and at least three metabolites of MMC could be isolated by HPLC in the experiment, further study showed DT-diaphorase participated in the formation of M2.

  6. Cloning and expression of special F protein from human liver

    Institute of Scientific and Technical Information of China (English)

    Shu-Ye Liu; Xin-Da Yu; Chun-Juan Song; Wei Lu; Jian-Dong Zhang; Xin-Rong Shi; Ying Duan; Ju Zhang

    2007-01-01

    AIM:To clone human liver special F protein and to express it in a prokaryotic system.METHODS:Total RNA was isolated from human liver tissue and first-strand cDNA was reverse transcribed using the PCR reverse primer. Following this,cDNA of the F protein was ligated into the clone vector pUCm-T. The segment of F protein's cDNA was subcloned into the expression vector pET-15b and transformed into E coli BL21 (DEB) pLyss. Isopropy-β-D-thiogalactoside (IPTG) was then used to induce expression of the target protein.RESULTS:The cDNA clone of human liver special F protein (1134bp) was successfully produced,with the cDNA sequence being published in Gene-bank:DQ188836. We confirmed the expression of F protein by Western blot with a molecular weight of 43 kDa. The expressed protein accounted for 40% of the total protein extracted.CONCLUSION:F protein expresses cDNA clone in a proKaryotic system,which offers a relatively simple way of producing sufficient quantities of F protein and contributes to understanding the principal biological functions of this protein.

  7. Expression of ATP7B in normal human liver

    Directory of Open Access Journals (Sweden)

    D Fanni

    2009-06-01

    Full Text Available ATP7B is a copper transporting P-type ATPase, also known as Wilson disease protein, which plays a key role in copper distribution inside cells. Recent experimental data in cell culture have shown that ATP7B putatively serves a dual function in hepatocytes: when localized to the Golgi apparatus, it has a biosynthetic role, delivering copper atoms to apoceruloplasmin; when the hepatocytes are under copper stress, ATP7B translocates to the biliary pole to transport excess copper out of the cell and into the bile canaliculus for subsequent excretion from the body via the bile. The above data on ATP7B localization have been mainly obtained in tumor cell systems in vitro. The aim of the present work was to assess the presence and localization of the Wilson disease protein in the human liver. We tested immunoreactivity for ATP7B in 10 human liver biopsies, in which no significant pathological lesion was found using a polyclonal antiserum specific for ATP7B. In the normal liver, immunoreactivity for ATP7B was observed in hepatocytes and in biliary cells. In the hepatocytes, immunoreactivity for ATP7B was observed close to the plasma membrane, both at the sinusoidal and at the biliary pole. In the biliary cells, ATP7B was localized close to the cell membrane, mainly concentrated at the basal pole of the cells. The data suggest that, in human liver, ATP7B is localized to the plasma membrane of both hepatocytes and biliary epithelial cells.

  8. Thick Slice and Thin Slice Teaching Evaluations

    Science.gov (United States)

    Tom, Gail; Tong, Stephanie Tom; Hesse, Charles

    2010-01-01

    Student-based teaching evaluations are an integral component to institutions of higher education. Previous work on student-based teaching evaluations suggest that evaluations of instructors based upon "thin slice" 30-s video clips of them in the classroom correlate strongly with their end of the term "thick slice" student evaluations. This study's…

  9. Interaction of rocuronium with human liver cytochromes P450.

    Science.gov (United States)

    Anzenbacherova, Eva; Spicakova, Alena; Jourova, Lenka; Ulrichova, Jitka; Adamus, Milan; Bachleda, Petr; Anzenbacher, Pavel

    2015-02-01

    Rocuronium is a neuromuscular blocking agent acting as a competitive antagonist of acetylcholine. Results of an inhibition of eight individual liver microsomal cytochromes P450 (CYP) are presented. As the patients are routinely premedicated with diazepam, possible interaction of diazepam with rocuronium has been also studied. Results indicated that rocuronium interacts with human liver microsomal CYPs by binding to the substrate site. Next, concentration dependent inhibition of liver microsomal CYP3A4 down to 42% (at rocuronium concentration 189 μM) was found. This effect has been confirmed with two CYP3A4 substrates, testosterone (formation of 6β-hydroxytestosterone) and diazepam (temazepam formation). CYP2C9 and CYP2C19 activities were inhibited down to 75-80% (at the same rocuronium concentration). Activities of other microsomal CYPs have not been inhibited by rocuronium. To prove the possibility of rocuronium interaction with other drugs (diazepam), the effect of rocuronium on formation of main diazepam metabolites, temazepam (by CYP3A4) and desmethyldiazepam, (also known as nordiazepam; formed by CYP2C19) in primary culture of human hepatocytes has been examined. Rocuronium has caused inhibition of both reactions by 20 and 15%, respectively. The results open a possibility that interactions of rocuronium with drugs metabolized by CYP3A4 (and possibly also CYP2C19) may be observed. Copyright © 2014 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  10. The pedunculopontine tegmental nucleus: from basic neuroscience to neurosurgical applications: Arousal from slices to humans: implications for DBS

    OpenAIRE

    Garcia-Rill, Edgar; Simon, Christen; Smith, Kristen; Kezunovic, Nebosja; Hyde, James

    2010-01-01

    One element of the reticular activating system (RAS) is the pedunculopontine nucleus (PPN), which projects to the thalamus to trigger thalamocortical rhythms and the brainstem to modulate muscle tone and locomotion. The PPN is a posterior midbrain site known to induce locomotion in decerebrate animals when activated at 40–60 Hz, and has become a target for DBS in disorders involving gait deficits. We developed a research program using brainstem slices containing the PPN to study the cellular ...

  11. Radionuclide imaging of the liver in human fascioliasis

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, J.V.; Bermudez, R.H.

    1984-08-01

    The clinical, laboratory, and scintigraphic findings in four cases of human fascioliasis are described. Acute onset of fever, abdominal pain, and weight loss in a person who has ingested watercress constitutes the clinical syndrome often seen. Eosinophilia and alteration in liver function tests, particularly alkaline phosphatase are frequent. Tc-99m sulfur colloid images showed hepatomegaly in four patients, focal defects in two, splenomegaly in three, and increased splenic uptake in two. Gallium citrate (Ga 67) images show increased uptake in the focal lesions in two of two. Sonographic imaging showed focal lucent abnormality in one of three. Liver biopsy findings were nonspecific. The differential diagnosis from other invasive parasitic diseases is discussed. A possible role of hepatic imaging in the evaluation of fascioliasis is suggested.

  12. Three-dimensional reconstruction of digitized human liver: based on Chinese Visible Human

    Institute of Scientific and Technical Information of China (English)

    CHEN Gang; DONG Jia-hong; LI Xue-cheng; WU Guo-qing; ZHANG Shao-xiang; XIONG Xiao-feng; TAN Li-wen; YANG Ri-gao; LI Kai; YANG Shi-zhong

    2010-01-01

    Background Comparing with two dimensional (2D) imaging, both in diagnosis and treatment, three dimensional (3D) imaging has many advantages in clinical medicine. 3D reconstruction makes the target easier to identify and reveals the volume and shape of the organ much better than 2D imaging. A 3D digitized visible model of the liver was built to provide anatomical structure for planing of hepatic operation and for realizing accurate simulation of the liver on the computer.Methods Transverse sections of abdomen were chosen from the Chinese Visible Human dataset. And Amira software was selected to segment and reconstruct the structures of the liver. The liver was reconstructed in three-dimensions with both surface and volume rendering reconstruction.Results Accurately segmented images of the main structures of the liver were completed. The reconstructed structures can be displayed singly, in small groups or as a whole and can be continuously rotated in 3D space at different velocities. Conclusions The reconstructed liver is realistic, which demonstrates the natural shape and exact position of liver structures. It provides an accurate model for the automated segmentation algorithmic study and a digitized anatomical mode of viewing the liver.

  13. Tumorigenicity, Motility and Liver Metastasis of Human Gastric Carcinoma Lines with High Metastatic Potential in the Liver of Nude Mice

    OpenAIRE

    1995-01-01

    To analyze the human gastric carcinoma metastasis to the liver, a human gastric carcinoma line, AZ521 was injected into the spleens of nude mice. Cells from the few liver metastatic foci of injected AZ521 were expanded in vitro and subsequently injected into the spleens of nude mice. By repeating these proce-dures five times, we were able to obtain a cell line, designated AZ-H5c, with high metastatic potential in nude mice. It was observed that animals had liver metastasis in 10 of 12 (83%) c...

  14. Human Liver Infection in a Dish: Easy-To-Build 3D Liver Models for Studying Microbial Infection.

    Directory of Open Access Journals (Sweden)

    Debora B Petropolis

    Full Text Available Human liver infection is a major cause of death worldwide, but fundamental studies on infectious diseases affecting humans have been hampered by the lack of robust experimental models that accurately reproduce pathogen-host interactions in an environment relevant for the human disease. In the case of liver infection, one consequence of this absence of relevant models is a lack of understanding of how pathogens cross the sinusoidal endothelial barrier and parenchyma. To fill that gap we elaborated human 3D liver in vitro models, composed of human liver sinusoidal endothelial cells (LSEC and Huh-7 hepatoma cells as hepatocyte model, layered in a structure mimicking the hepatic sinusoid, which enable studies of key features of early steps of hepatic infection. Built with established cell lines and scaffold, these models provide a reproducible and easy-to-build cell culture approach of reduced complexity compared to animal models, while preserving higher physiological relevance compared to standard 2D systems. For proof-of-principle we challenged the models with two hepatotropic pathogens: the parasitic amoeba Entamoeba histolytica and hepatitis B virus (HBV. We constructed four distinct setups dedicated to investigating specific aspects of hepatic invasion: 1 pathogen 3D migration towards hepatocytes, 2 hepatocyte barrier crossing, 3 LSEC and subsequent hepatocyte crossing, and 4 quantification of human hepatic virus replication (HBV. Our methods comprise automated quantification of E. histolytica migration and hepatic cells layer crossing in the 3D liver models. Moreover, replication of HBV virus occurs in our virus infection 3D liver model, indicating that routine in vitro assays using HBV or others viruses can be performed in this easy-to-build but more physiological hepatic environment. These results illustrate that our new 3D liver infection models are simple but effective, enabling new investigations on infectious disease mechanisms. The

  15. Mapping the genetic architecture of gene expression in human liver.

    Directory of Open Access Journals (Sweden)

    Eric E Schadt

    2008-05-01

    Full Text Available Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has the potential to provide the functional information required to not only identify and validate the susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs in more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and atherosclerosis. This genome-wide association study of gene expression resulted in the detection of more than 6,000 associations between SNP genotypes and liver gene expression traits, where many of the corresponding genes identified have already been implicated in a number of human diseases. The utility of these data for elucidating the causes of common human diseases is demonstrated by integrating them with genotypic and expression data from other human and mouse populations. This provides much-needed functional support for the candidate susceptibility genes being identified at a growing number of genetic loci that have been identified as key drivers of disease from genome-wide association studies of disease. By using an integrative genomics approach, we highlight how the gene RPS26 and not ERBB3 is supported by our data as the most likely susceptibility gene for a novel type 1 diabetes locus recently identified in a large

  16. Effect of Whole-Body X-Irradiation of the Synthesis of Individual Fatty Acids in Liver Slices from Normal and Fasted Rats

    DEFF Research Database (Denmark)

    Hansen, Heinz Johs. Max; Hansen, Lisbeth Grænge; Faber, M.

    1965-01-01

    (1) Using (2-14C) acetate and (1-14C) butyrate as precursors, rat-liver fatty acids were synthesized in vitro and assayed by paper chromatography. (2) Whole-body x-irradiation induced a change in the synthetic pattern of hepatic fatty acids towards a relatively enhanced synthesis of palmitic acid...

  17. Preliminary Study of Whole Liver Perfusion Imaging with 320 Slice Volume CT%320排容积CT全肝灌注成像模式的初步应用

    Institute of Scientific and Technical Information of China (English)

    李芃; 赵建农; 钟维佳

    2013-01-01

    目的 应用320排容积CT全肝灌注模式,探讨正常肝脏的CT灌注血流特征,为肝脏疾病的灌注成像提供理论依据.方法 75名经临床证实的健康自愿者,采用320排CT动态容积扫描模式行CT全肝灌注检查,将数据导入Abdomen perfusion软件对全肝进行灌注分析,分别测量肝脏各段的肝动脉灌注量(HAP)、门静脉灌注量(HPP)、动脉灌注分数(APF),分析肝脏各段间及左、右半肝血流灌注的差异.结果 肝脏Ⅰ~Ⅷ段HAP、HPP、APF差异均有统计学意义(HAP:F=2.773,P=0.008;HPP:F=4.659,P=0.000;APF:F =4.681,P=0.000).肝脏Ⅰ段HAP与除Ⅲ段之外的肝段差异具有统计学意义(P<0.05),肝脏Ⅲ段HPP与肝脏其他各段差异具有统计学意义(P<0.05),肝脏Ⅰ、Ⅲ段APF与V、Ⅵ、Ⅷ段差异具有统计学意义(P<0.05).左半肝与右半肝HPP、APF差异有统计学意义(P =0.042,P=0.008).结论 应用320排CT全肝灌注模式可直观反映及准确地评价肝脏整体各段及左、右半肝血流灌注特征.全肝各段及左、右半肝的血流灌注情况不尽相同,可能与肝血管解剖特点有关,可以为肝脏疾病的灌注研究提供正常基准.%Objective To study the blood flow perfusion charateristics of normal liver using the pattern of whole liver perfusion with 320 Slice Volume CT. Methods 75 cases of clinically proven healthy volunteers received dynamic enhanced 320 slice Volume CT, and the data were transferred into abdomen perfusion software, and the hepatic arterial perfusion (HAP) , hepatic portal perfusion ( HPP) , arterial perfusion fraction ( APF) of the whole hepatic segments were calculated, and then perfusion parameters were analyzed. Results There were significantly different on HAP、HPP、APF among hepatic segments Ⅰ- Ⅷ (HAP:F = 2. 773,P =0. 008;HPP:F =4. 659,P = 0. 000;APF:F =4. 681 ,P =0. 000). HAP was significantly different between segment I and the other hepatic segments except segment HI (P < 0.05). HPP

  18. In vivo liver regeneration potential of human induced pluripotent stem cells from diverse origins.

    Science.gov (United States)

    Liu, Hua; Kim, Yonghak; Sharkis, Saul; Marchionni, Luigi; Jang, Yoon-Young

    2011-05-11

    Human induced pluripotent stem cells (iPSCs) are a potential source of hepatocytes for liver transplantation to treat end-stage liver disease. In vitro differentiation of human iPSCs into hepatic cells has been achieved using a multistage differentiation protocol, but whether these cells are functional and capable of engrafting and regenerating diseased liver tissue is not clear. We show that human iPSC-derived hepatic cells at various differentiation stages can engraft the liver in a mouse transplantation model. Using the same differentiation and transplantation protocols, we also assessed the ability of human iPSCs derived from each of the three developmental germ layer tissues (that is, ectoderm, mesoderm, and endoderm) to regenerate mouse liver. These iPSC lines, with similar but distinct global DNA methylation patterns, differentiated into multistage hepatic cells with an efficiency similar to that of human embryonic stem cells. Human hepatic cells at various differentiation stages derived from iPSC lines of different origins successfully repopulated the liver tissue of mice with liver cirrhosis. They also secreted human-specific liver proteins into mouse blood at concentrations comparable to that of proteins secreted by human primary hepatocytes. Our results demonstrate the engraftment and liver regenerative capabilities of human iPSC-derived multistage hepatic cells in vivo and suggest that human iPSCs of distinct origins and regardless of their parental epigenetic memory can efficiently differentiate along the hepatic lineage.

  19. Trefoil factor-3 expression in human colon cancer liver metastasis.

    Science.gov (United States)

    Babyatsky, Mark; Lin, Jing; Yio, Xianyang; Chen, Anli; Zhang, Jie-yu; Zheng, Yan; Twyman, Christina; Bao, Xiuliang; Schwartz, Myron; Thung, Swan; Lawrence Werther, J; Itzkowitz, Steven

    2009-01-01

    Deaths from colorectal cancer are often due to liver metastasis. Trefoil factor-3 (TFF3) is expressed by normal intestinal epithelial cells and its expression is maintained throughout the colon adenoma-carcinoma sequence. Our previous work demonstrated a correlation between TFF3 expression and metastatic potential in an animal model of colon cancer. The aim of this study was to determine whether TFF3 is expressed in human colon cancer liver metastasis (CCLM) and whether inhibiting TFF3 expression in colon cancer cells would alter their invasive potential in vitro. Human CCLMs were analyzed at the mRNA and protein level for TFF3 expression. Two highly metastatic rat colon cancer cell lines that either natively express TFF3 (LN cells) or were transfected with TFF3 (LPCRI-2 cells), were treated with two rat TFF3 siRNA constructs (si78 and si365), and analyzed in an in vitro invasion assay. At the mRNA and protein level, TFF3 was expressed in 17/17 (100%) CCLMs and 10/11 (91%) primary colon cancers, but not in normal liver tissue. By real time PCR, TFF3 expression was markedly inhibited by both siRNA constructs in LN and LPCRI-2 cells. The si365 and si78 constructs inhibited invasion by 44% and 53%, respectively, in LN cells, and by 74% and 50%, respectively, in LPCRI-2 cells. These results provide further evidence that TFF3 contributes to the malignant behavior of colon cancer cells. These observations may have relevance for designing new diagnostic and treatment approaches to colorectal cancer.

  20. Analysis of Value of Dual-sliceSpiralCT in Diagnosis of Liver Abscess%分析双排螺旋CT对肝脓肿的诊断价值

    Institute of Scientific and Technical Information of China (English)

    王海军

    2016-01-01

    目的:分析在肝脓肿的诊断中双排螺旋CT的应用价值,为提高肝脓肿的诊断正确率提供借鉴依据。方法择取32例肝脓肿患者的临床资料实施回顾性分析,对其CT平扫、增强扫描表现进行分析和总结,并对比CT检查结果和病理检查结果。结果32例肝脓肿患者的CT检查结果和病理检查结果不存在明显的统计学差异(P>0.05)。肝脓肿患者中单发者、肝右叶者居多,脓肿直径为1.42~15.6cm。32例肝脓肿患者均存在低密度区,且均比周围正常肝实质组织密度要低得多。CT值达到8~28Hu。29例边缘模糊,其余边缘清晰明了。3例能够观察到程度不同的气液平面。20例患者中央有坏死液化区存在,病灶呈“环靶征”,其中4例单环征,11例双环征,5例三环征。此外,9例患者的病灶呈花瓣征,3例患者腔内无强化。不同类型肝脓肿的征象有所不同。结论在肝脓肿的诊断中应用双排螺旋CT,可以获得比较高的诊断正确率,为临床诊治肝脓肿提供一定的借鉴依据,临床应用价值值得认可。%Objective To analyze the application value of dual-slice spiral CT in the diagnosis of liver abscess ,in order to provide a refer-ence for improving the correct accuracy the of dual-slice spiral CT in diagnosis of Liver abscess.MethodThe clinical data of 32 cases of liver abscess were retrospectively analyzed.TheirCT plain scan and enhanced scan findings were analyzed and summarized.The results of CT ex-amination and pathological examination were compared.Result There were no significant statistical differences in the results of CT examina-tion and pathological examination in 32 cases of liver abscess (P>0.05).In patients with liver abscess,single onset andlobi hepatis dexter were the most, and the diameter of the abscess is 1.42~ 15.6cm. 32 cases of liver abscess patients had low density areas, and were much lower than the normal liver parenchyma. CT

  1. Con A affinity glycoproteomics of normal human liver tissue

    Institute of Scientific and Technical Information of China (English)

    SUN QiangLing; LU HaoJie; LIU YinKun; LU WenJing; CHENG Gang; ZHOU HaiJun; ZHOU XinWen; WEI LiMing; DAI Zhi; GUO Kun

    2007-01-01

    In order to establish the novel high throughput, high efficiency and Iow cost technological platform for the research of N-glycoproteomics, to resolve the significance of characteristic expression profile of glycoprotein and to find the proteins with biological functional importance, the glycoproteins with high-mannose core and the two antennary types were purified and enriched by the Con A affinity chromatography. Con A affinity protein expression profiles of normal human liver tissue were generated by using SDS-PAGE, two-dimensional electrophoresis (2-DE) followed by fast fluorescence staining based on multiplexed proteomics (MP) technology. 301 visible protein spots on the gel were detected and 85 of glycoproteins were further successfully identified via peptide mass fingerprinting (PMF) by a matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS/MS) and annotated to IPI databases. Identified glycoproteins definitely take part in the regulation of cell cycle and metabolic processes. The glycosylation sites were predicted with NetNGlyc 1.0 and NetOGlyc 3.1 software, meanwhile they were classified according to the geneontology methods. The construction of Con A affinity glycoprotein database of normal human liver tissue would contribute to the subsequent research.

  2. Con A affinity glycoproteomics of normal human liver tissue

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to establish the novel high throughput, high efficiency and low cost technological platform for the research of N-glycoproteomics, to resolve the significance of characteristic expression profile of glycoprotein and to find the proteins with biological functional importance, the glycoproteins with high-mannose core and the two antennary types were purified and enriched by the Con A affinity chromatography. Con A affinity protein expression profiles of normal human liver tissue were gener- ated by using SDS-PAGE, two-dimensional electrophoresis (2-DE) followed by fast fluorescence stain- ing based on multiplexed proteomics (MP) technology. 301 visible protein spots on the gel were de- tected and 85 of glycoproteins were further successfully identified via peptide mass fingerprinting (PMF) by a matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF- MS/MS) and annotated to IPI databases. Identified glycoproteins definitely take part in the regulation of cell cycle and metabolic processes. The glycosylation sites were predicted with NetNGlyc 1.0 and NetOGlyc 3.1 software, meanwhile they were classified according to the geneontology methods. The construction of Con A affinity glycoprotein database of normal human liver tissue would contribute to the subsequent research.

  3. Adult human liver mesenchymal progenitor cells express phenylalanine hydroxylase.

    Science.gov (United States)

    Baruteau, Julien; Nyabi, Omar; Najimi, Mustapha; Fauvart, Maarten; Sokal, Etienne

    2014-09-01

    Phenylketonuria (PKU) is one of the most prevalent inherited metabolic diseases and is accountable for a severe encephalopathy by progressive intoxication of the brain by phenylalanine. This results from an ineffective L-phenylalanine hydroxylase enzyme (PAH) due to a mutated phenylalanine hydroxylase (PAH) gene. Neonatal screening programs allow an early dietetic treatment with restrictive phenylalanine intake. This diet prevents most of the neuropsychological disabilities but remains challenging for lifelong compliance. Adult-derived human liver progenitor cells (ADHLPC) are a pool of precursors that can differentiate into hepatocytes. We aim to study PAH expression and PAH activity in a differenciated ADHLPC. ADHLPC were isolated from human hepatocyte primary culture of two different donors and differenciated under specific culture conditions. We demonstrated the high expression of PAH and a large increase of PAH activity in differenciated LPC. The age of the donor, the cellular viability after liver digestion and cryopreservation affects PAH activity. ADHLPC might therefore be considered as a suitable source for cell therapy in PKU.

  4. Application of chimeric mice with humanized liver for study of human-specific drug metabolism.

    Science.gov (United States)

    Bateman, Thomas J; Reddy, Vijay G B; Kakuni, Masakazu; Morikawa, Yoshio; Kumar, Sanjeev

    2014-06-01

    Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.

  5. Comparison of findings of spontaneous splenorenal shunt in color Doppler sonography with multislice CT scan (64 slices) in liver transplant candidates

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Mohammadhadi, E-mail: Bagherimh@gmail.com [Department of Radiology, Shiraz University of Medical Sciences, Namazi Hospital, Shiraz (Iran, Islamic Republic of); Hajati, Azadeh, E-mail: azadeh.hajati@gmail.com [Department of Radiology, Shiraz University of Medical Sciences, Namazi Hospital, Shiraz (Iran, Islamic Republic of); Hosseini, Mohammadkazem, E-mail: hosseiniaslm@sums.ac.ir [Department of Radiology, Shiraz University of Medical Sciences, Namazi Hospital, Shiraz (Iran, Islamic Republic of); Ostad, Seyed Pouria, E-mail: Pouria.Ostad@gmail.com [Department of Radiology, Shiraz University of Medical Sciences, Namazi Hospital, Shiraz (Iran, Islamic Republic of)

    2012-09-15

    Background: Liver transplantation is the only definite treatment for end stage liver disease and it has high costs for the medical system so decreasing its complication and increasing its effectiveness is crucial. One of the factors that affect liver transplantation is the presence of spontaneous splenorenal shunt. Its diagnosis is mainly overlooked in pre-liver transplant patients. Main modality for its diagnosis is multislice CT scan however this is more expensive than sonography. Also, it exposes the patients to ionizing radiation. Considering the advantages of color Doppler ultrasound, studies to determine the sensitivity and specificity for detection of spontaneous splenorenal shunt is essential. Materials and methods: In our study 70 cirrhotic patients who were referred by liver transplant surgeons for evaluation of abdomen by CT and sonograhy were assessed for presence of spontaneous splenorenal shunt, left adrenal varix and left renal vein diameter and velocity and sensitivity and specificity of both modalities were checked. Patients in whom left renal vein could not evaluated by sonography and patients with splenectomy and nutcracker syndrome were excluded. Results: In the point of 10 mm diameter of left renal vein in CT scan there was 78.6% sensitivity and 67.9% specificity for the presence of spontaneous splenorenal shunt. Left adrenal varix in CT had sensitivity of 71.4%, specificity of 100%, and positive predictive value of 100% and negative predictive value of 70% and varix below spleen in CT had sensitivity of 54.8%, specificity of 96.4%, and positive predictive value of 95.8% and negative predictive value of 58.7% for the presence of spontaneous splenorenal shunt. In the point of 8 mm diameter of left renal vein in sonography there was 66.7% sensitivity and 85.7% specificity for the presence of spontaneous splenorenal shunt. For the velocity of more than 35 cm/s of left renal vein in sonography there was 61.9% sensitivity and 82.1% specificity for

  6. Hepatic progenitor cells in human liver tumor development

    Institute of Scientific and Technical Information of China (English)

    Louis Libbrecht

    2006-01-01

    In recent years, the results of several studies suggest that human liver tumors can be derived from hepatic progenitor cells rather than from mature cell types.The available data indeed strongly suggest that most combined hepatocellular-cholangiocarcinomas arise from hepatic progenitor cells that retained their potential to differentiate into the hepatocytic and biliary lineages.Hepatic progenitor cells could also be the basis for some hepatocellular carcinomas and hepatocellular adenomas, although it is very difficult to determine the origin of an individual hepatocellular carcinoma. There is currently not enough data to make statements regarding a hepatic progenitor cell origin of cholangiocarcinoma.The presence of hepatic progenitor cell markers and the presence and extent of the cholangiocellular component are factors that are related to the prognosis of hepatocellular carcinomas and combined hepatocellularcholangiocarcinomas, respectively.

  7. Effect of the Human Amniotic Membrane on Liver Regeneration in Rats

    Science.gov (United States)

    Sipahi, Mesut; Şahin, Sevinç; Arslan, Ergin; Börekci, Hasan; Metin, Bayram; Cantürk, Nuh Zafer

    2015-01-01

    Introduction. Operations are performed for broader liver surgery indications for a better understanding of hepatic anatomy/physiology and developments in operation technology. Surgery can cure some patients with liver metastasis of some tumors. Nevertheless, postoperative liver failure is the most feared complication causing mortality in patients who have undergone excision of a large liver mass. The human amniotic membrane has regenerative effects. Thus, we investigated the effects of the human amniotic membrane on regeneration of the resected liver. Methods. Twenty female Wistar albino rats were divided into control and experimental groups and underwent a 70% hepatectomy. The human amniotic membrane was placed over the residual liver in the experimental group. Relative liver weight, histopathological features, and biochemical parameters were assessed on postoperative day 3. Results. Total protein and albumin levels were significantly lower in the experimental group than in the control group. No difference in relative liver weight was observed between the groups. Hepatocyte mitotic count was significantly higher in the experimental group than in the control group. Hepatic steatosis was detected in the experimental group. Conclusion. Applying the amniotic membrane to residual liver adversely affected liver regeneration. However, mesenchymal stem cell research has the potential to accelerate liver regeneration investigations. PMID:26457000

  8. Effect of the Human Amniotic Membrane on Liver Regeneration in Rats

    Directory of Open Access Journals (Sweden)

    Mesut Sipahi

    2015-01-01

    Full Text Available Introduction. Operations are performed for broader liver surgery indications for a better understanding of hepatic anatomy/physiology and developments in operation technology. Surgery can cure some patients with liver metastasis of some tumors. Nevertheless, postoperative liver failure is the most feared complication causing mortality in patients who have undergone excision of a large liver mass. The human amniotic membrane has regenerative effects. Thus, we investigated the effects of the human amniotic membrane on regeneration of the resected liver. Methods. Twenty female Wistar albino rats were divided into control and experimental groups and underwent a 70% hepatectomy. The human amniotic membrane was placed over the residual liver in the experimental group. Relative liver weight, histopathological features, and biochemical parameters were assessed on postoperative day 3. Results. Total protein and albumin levels were significantly lower in the experimental group than in the control group. No difference in relative liver weight was observed between the groups. Hepatocyte mitotic count was significantly higher in the experimental group than in the control group. Hepatic steatosis was detected in the experimental group. Conclusion. Applying the amniotic membrane to residual liver adversely affected liver regeneration. However, mesenchymal stem cell research has the potential to accelerate liver regeneration investigations.

  9. Investigation of inter-slice magnetization transfer effects as a new method for MTR imaging of the human brain.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Barker

    Full Text Available We present a new method for magnetization transfer (MT ratio imaging in the brain that requires no separate saturation pulse. Interslice MT effects that are inherent to multi-slice balanced steady-state free precession (bSSFP imaging were controlled via an interslice delay time to generate MT-weighted (0 s delay and reference images (5-8 s delay for MT ratio (MTR imaging of the brain. The effects of varying flip angle and phase encoding (PE order were investigated experimentally in normal, healthy subjects. Values of up to ∼50% and ∼40% were observed for white and gray matter MTR. Centric PE showed larger MTR, higher SNR, and better contrast between white and gray matter than linear PE. Simulations of a two-pool model of MT agreed well with in vivo MTR values. Simulations were also used to investigate the effects of varying acquisition parameters, and the effects of varying flip angle, PE steps, and interslice delay are discussed. Lastly, we demonstrated reduced banding with a non-balanced SSFP-FID sequence and showed preliminary results of interslice MTR imaging of meningioma.

  10. Diagnostic value of 64-slice spiral CT on fatty liver combining with nodular diseases of the liver%64排螺旋CT在脂肪肝合并肝脏结节性疾病中的诊断价值

    Institute of Scientific and Technical Information of China (English)

    张志强; 李孟云

    2015-01-01

    Objective To evaluate the diagnostic value of 64-slice spiral computed tomography (CT) on fatty liver combining with nodular diseases of the liver. Methods From January 2013 to August 2014,78 patients suffered from fatty liver with nodular diseases of the liver who were visited our hospital for treatment were selected as research ob-jects.All patients were performed with conventional ultrasound and 64-slice spiral CT examination.The images were read by two senior radiological doctors,which were compared and analyzed by pathological outcomes by percutaneous liver puncture biopsy guided by surgery or ultrasound.The sensitivity,specificity,positive predictive value,negative pre-dictive value and accuracy of conventional ultrasound and 64-slice spiral CT were compared. Results Among 78 pa-tients,there were 86 foci,of which 27 cases were in benign accounting for 34.62% (32 foci for 37.21%) and the rest 51 cases belonged to malignant lesions accounting for 65.38% (54 foci for 62.79%).The sensitivity,specificity,positive pre-dictive value,negative predictive value and accuracy of conventional ultrasound on fatty liver combining with nodular diseases of the liver was 76.5%,59.3%,78.0%,57.1%,70.5%,respectively,and the rates by 64-slice spiral CT was 92.2%, 92.6%,95.9%,86.2%,and 92.3% accordingly.The indexes examined by 64-slice spiral CT were much higher than those by conventional ultrasound (P<0.05 or P<0.01). Conclusion Application of 64-slice spiral CT obtains a higher sensitiv-ity,specificity,and accuracy on treating fatty liver combining with nodular diseases of the liver,which is worthy of expan-sion in clinic.%目的:探讨64排螺旋CT在脂肪肝合并肝脏结节性疾病诊断中的价值。方法选取2013年1月~2014年8月因脂肪肝合并肝脏结节性疾病在本院就诊的78例患者为研究对象。所有病例均行常规超声和64排螺旋CT检查,由2名高年资影像科医生阅片,与外科手术或者超声引导下的经皮肝脏穿刺

  11. The role and regulation of the peroxisome proliferator activated receptor alpha in human liver.

    Science.gov (United States)

    Kersten, Sander; Stienstra, Rinke

    2017-05-01

    The peroxisome proliferator-activated receptor α (PPARα) is a ligand-activated transcription factor that is abundantly expressed in liver. PPARα is activated by fatty acids and various other lipid species, as well as by a class of chemicals referred to as peroxisome proliferators. Studies in mice have shown that PPARα serves as the master regulator of hepatic lipid metabolism during fasting. In addition, PPARα suppresses inflammation and the acute phase response. Comparatively little is known about PPARα in human liver. Here, an overview is provided of the role and regulation of PPARα in human liver. The main outcomes are: 1) the level of PPARA mRNA expression in human and mouse liver is similar. 2) Expression of PPARA in human liver is reduced in patients with non-alcoholic steatohepatitis or infected with the hepatitis C virus. 3) PPARα in human liver is able to effectively induce the expression of numerous genes involved in numerous lipid metabolic pathways, including microsomal, peroxisomal and mitochondrial fatty acid oxidation, fatty acid binding and activation, fatty acid elongation and desaturation, synthesis and breakdown of triglycerides and lipid droplets, lipoprotein metabolism, gluconeogenesis, bile acid metabolism, and various other metabolic pathways and genes. 4) PPARα activation in human liver causes the down-regulation of a large number of genes involved in various immunity-related pathways. 5) Peroxisome proliferators do not promote tumour formation in human liver as opposed to mouse liver because of structural and functional differences between human and mouse PPARα. 6) In addition to helping to correct dyslipidemia, PPARα agonists may hold promise as a therapy for patients with cholestatic liver diseases, non-alcoholic fatty liver disease, and/or type 2 diabetes. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  12. Photoacoustic physio-chemical analysis of liver conditions in animal and human subjects

    Science.gov (United States)

    Wang, Xueding; Xu, Guan; Tian, Chao; Wan, Shanshan; Welling, Theodore H.; Lok, Anna S. F.; Rubin, Jonathan M.

    2016-03-01

    Non-alcoholic fatty liver disease (NAFLD) is a common liver disease affecting 30% of the population in the United States. Biopsy is the gold standard for diagnosing NAFLD. Liver histology assesses the amount of fat, and determines type and extent of cell injury, inflammation and fibrosis. However, liver biopsy is invasive and is limited by sampling error. Current radiological diagnostic modalities can evaluate the 'physical' morphology in liver by quantifying the backscattered US signals, but cannot interrogate the 'histochemical' components forming these backscatterers. For example, ultrasound (US) imaging can detect the presence of fat but cannot differentiate steatosis alone from steatohepatitis. Our previous study of photoacoustic physiochemical analysis (PAPCA) has demonstrated that this method can characterize the histological changes in livers during the progression of NAFLD in animal models. In this study, we will further validate PAPCA with human livers. Ex vivo human liver samples with steatosis, fibrosis and cirrhosis will be scanned using optical illumination at wavelengths of 680-1700 nm and compared to histology results. In vivo study on human subjects with confirmed steatosis is planned using our PA-ultrasound (US) parallel imaging system based on Verasonic US imaging flatform with an L7-4 probe. 10 mJ/cm2 per pulse optical energy at 755 nm will be delivered to the skin surface, which is under the safety limit of American National Standard Institute. Preliminary study with ex vivo human tissue has demonstrated the potential of the proposed approach in differentiating human liver conditions.

  13. Discoidin domain receptor 1: isoform expression and potential functions in cirrhotic human liver.

    Science.gov (United States)

    Song, Sunmi; Shackel, Nicholas A; Wang, Xin M; Ajami, Katerina; McCaughan, Geoffrey W; Gorrell, Mark D

    2011-03-01

    Discoidin domain receptor 1 (DDR1) is a receptor tyrosine kinase that binds and is activated by collagens. Transcriptional profiling of cirrhosis in human liver using a DNA array and quantitative PCR detected elevated mRNA expression of DDR1 compared with that in nondiseased liver. The present study characterized DDR1 expression in cirrhotic and nondiseased human liver and examined the cellular effects of DDR1 expression. mRNA expression of all five isoforms of DDR1 was detected in human liver, whereas DDR1a demonstrated differential expression in liver with hepatitis C virus and primary biliary cirrhosis compared with nondiseased liver. In addition, immunoblot analysis detected shed fragments of DDR1 more readily in cirrhotic liver than in nondiseased liver. Inasmuch as DDR1 is subject to protease-mediated cleavage after prolonged interaction with collagen, this differential expression may indicate more intense activation of DDR1 protein in cirrhotic compared with nondiseased liver. In situ hybridization and immunofluorescence localized intense DDR1 mRNA and protein expression to epithelial cells including hepatocytes at the portal-parenchymal interface and the luminal aspect of the biliary epithelium. Overexpression of DDR1a altered hepatocyte behavior including increased adhesion and less migration on extracelular matrix substrates. DDR1a regulated extracellular expression of matrix metalloproteinases 1 and 2. These data elucidate DDR1 function pertinent to cirrhosis and indicate the importance of epithelial cell-collagen interactions in chronic liver injury.

  14. Image reconstruction for brain CT slices

    Institute of Scientific and Technical Information of China (English)

    吴建明; 施鹏飞

    2004-01-01

    Different modalities in biomedical images, like CT, MRI and PET scanners, provide detailed cross-sectional views of human anatomy. This paper introduces three-dimensional brain reconstruction based on CT slices. It contains filtering, fuzzy segmentation, matching method of contours, cell array structure and image animation. Experimental results have shown its validity. The innovation is matching method of contours and fuzzy segmentation algorithm of CT slices.

  15. Cryopreserved Human Precision-Cut Lung Slices as a Bioassay for Live Tissue Banking. A Viability Study of Bronchodilation with Bitter-Taste Receptor Agonists.

    Science.gov (United States)

    Bai, Yan; Krishnamoorthy, Nandini; Patel, Kruti R; Rosas, Ivan; Sanderson, Michael J; Ai, Xingbin

    2016-05-01

    Human precision-cut lung slices (hPCLSs) provide a unique ex vivo model for translational research. However, the limited and unpredictable availability of human lung tissue greatly impedes their use. Here, we demonstrate that cryopreservation of hPCLSs facilitates banking of live human lung tissue for routine use. Our results show that cryopreservation had little effect on overall cell viability and vital functions of immune cells, including phagocytes and T lymphocytes. In addition, airway contraction and relaxation in response to specific agonists and antagonists, respectively, were unchanged after cryopreservation. At the subcellular level, cryopreserved hPCLSs maintained Ca(2+)-dependent regulatory mechanisms for the control of airway smooth muscle cell contractility. To exemplify the use of cryopreserved hPCLSs in smooth muscle research, we provide evidence that bitter-taste receptor (TAS2R) agonists relax airways by blocking Ca(2+) oscillations in airway smooth muscle cells. In conclusion, the banking of cryopreserved hPCLSs provides a robust bioassay for translational research of lung physiology and disease.

  16. Phaco slice and separate.

    Science.gov (United States)

    Arshinoff, S A

    1999-04-01

    Phaco slice and separate retains the advantages of the chopping techniques of Nagahara, Koch, and Fukasaku but replaces chopping or snapping with slicing across the center of the phaco-tip-stabilized nucleus using a Nagahara chopper and then repositioning the chopper to optimally separate the divided lens halves. As the lens is rotated in the capsular bag, small pieces of the nuclear pie are sliced off, separated, emulsified, and aspirated. Emulsification and aspiration can alternatively be left until most or all the slices have been made. This technique works with a broader range of lens densities than other chopping techniques and uses no sculpting and very little phaco time. The phaco time required for this technique is relatively independent of nuclear density compared with a sculpting technique.

  17. A visual thalamocortical slice.

    Science.gov (United States)

    MacLean, Jason N; Fenstermaker, Vivian; Watson, Brendon O; Yuste, Rafael

    2006-02-01

    We describe a thalamocortical slice preparation in which connectivity between the mouse lateral geniculate nucleus (LGN) and primary visual cortex (V1) is preserved. Through DiI injections in fixed brains we traced and created a three-dimensional model of the mouse visual pathways. From this computer model we designed a slice preparation that contains a projection from LGN to V1. We prepared brain slices with these predicted coordinates and demonstrated anatomical LGN-V1 connectivity in these slices after LGN tracer injections. We also revealed functional LGN-V1 connectivity by stimulating LGN electrically and detecting responses in layer 4 of V1 using calcium imaging, field potential recordings and whole-cell recordings. We also identified layer-4 neurons that receive direct thalamocortical input. Finally, we compared cortical activity after LGN stimulation with spontaneous cortical activity and found significant overlap of the spatiotemporal dynamics generated by both types of events.

  18. Human Fetal Liver: An In Vitro Model of Erythropoiesis

    Directory of Open Access Journals (Sweden)

    Guillaume Pourcher

    2011-01-01

    Full Text Available We previously described the large-scale production of RBCs from hematopoietic stem cells (HSCs of diverse sources. Our present efforts are focused to produce RBCs thanks to an unlimited source of stem cells. Human embryonic stem (ES cells or induced pluripotent stem cell (iPS are the natural candidates. Even if the proof of RBCs production from these sources has been done, their amplification ability is to date not sufficient for a transfusion application. In this work, our protocol of RBC production was applied to HSC isolated from fetal liver (FL as an intermediate source between embryonic and adult stem cells. We studied the erythroid potential of FL-derived CD34+ cells. In this in vitro model, maturation that is enucleation reaches a lower level compared to adult sources as observed for embryonic or iP, but, interestingly, they (i displayed a dramatic in vitro expansion (100-fold more when compared to CB CD34+ and (ii 100% cloning efficiency in hematopoietic progenitor assays after 3 days of erythroid induction, as compared to 10–15% cloning efficiency for adult CD34+ cells. This work supports the idea that FL remains a model of study and is not a candidate for ex vivo RBCS production for blood transfusion as a direct source of stem cells but could be helpful to understand and enhance proliferation abilities for primitive cells such as ES cells or iPS.

  19. Role of Chymase in the Development of Liver Cirrhosis and Its Complications: Experimental and Human Data

    Science.gov (United States)

    Sansoè, Giovanni; Aragno, Manuela; Mastrocola, Raffaella; Mengozzi, Giulio; Novo, Erica; Parola, Maurizio

    2016-01-01

    Background Tissue Angiotensin II (Ang-II), produced through local non ACE-dependent pathways, stimulates liver fibrogenesis, renal vasoconstriction and sodium retention. Aim To highlight chymase-dependent pathway of Ang-II production in liver and kidney during cirrhosis development. Methods Liver histology, portal pressure, liver and kidney function, and hormonal status were investigated in rat liver cirrhosis induced through 13 weeks of CCl4, with or without chymase inhibitor SF2809E, administered between 4th and 13th CCl4 weeks; liver and kidney chymase immunolocation and Ang-II content were assessed. Chymase immunohistochemistry was also assessed in normal and cirrhotic human liver, and chymase mRNA transcripts were measured in human HepG2 cells and activated hepatic stellate cells (HSC/MFs) in vitro. Results Rats receiving both CCl4 and SF2809E showed liver fibrotic septa focally linking portal tracts but no cirrhosis, as compared to ascitic cirrhotic rats receiving CCl4. SF2809E reduced portal pressure, plasma bilirubin, tissue content of Ang-II, plasma renin activity, norepinephrine and vasopressin, and increased glomerular filtration rate, water clearance, urinary sodium excretion. Chymase tissue content was increased and detected in α-SMA-positive liver myofibroblasts and in kidney tubular cells of cirrhotic rats. In human cirrhosis, chymase was located in hepatocytes of regenerative nodules. Human HepG2 cells and HSC/MFs responded to TGF-β1 by up-regulating chymase mRNA transcription. Conclusions Chymase, through synthesis of Ang-II and other mediators, plays a role in the derangement of liver and kidney function in chronic liver diseases. In human cirrhosis, chymase is well-represented and apt to become a future target of pharmacological treatment. PMID:27637026

  20. Slice hyperholomorphic Schur analysis

    CERN Document Server

    Alpay, Daniel; Sabadini, Irene

    2016-01-01

    This book defines and examines the counterpart of Schur functions and Schur analysis in the slice hyperholomorphic setting. It is organized into three parts: the first introduces readers to classical Schur analysis, while the second offers background material on quaternions, slice hyperholomorphic functions, and quaternionic functional analysis. The third part represents the core of the book and explores quaternionic Schur analysis and its various applications. The book includes previously unpublished results and provides the basis for new directions of research.

  1. Bile salt recognition by human liver fatty acid binding protein.

    Science.gov (United States)

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder.

  2. Identification of CYP isozymes involved in benzbromarone metabolism in human liver microsomes.

    Science.gov (United States)

    Kobayashi, Kaoru; Kajiwara, Eri; Ishikawa, Masayuki; Oka, Hidenobu; Chiba, Kan

    2012-11-01

    Benzbromarone (BBR) is metabolized to 1'-hydroxy BBR and 6-hydroxy BBR in the liver. 6-Hydroxy BBR is further metabolized to 5,6-dihydroxy BBR. The aim of this study was to identify the CYP isozymes involved in the metabolism of BBR to 1'-hydroxy BBR and 6-hydroxy BBR and in the metabolism of 6-hydroxy BBR to 5,6-dihydroxy BBR in human liver microsomes. Among 11 recombinant P450 isozymes examined, CYP3A4 showed the highest formation rate of 1'-hydroxy BBR. The formation rate of 1'-hydroxy BBR significantly correlated with testosterone 6β-hydroxylation activity in a panel of 12 human liver microsomes. The formation of 1'-hydroxy BBR was completely inhibited by ketoconazole in pooled human liver microsomes. On the other hand, the highest formation rate of 6-hydroxy BBR was found in recombinant CYP2C9. The highest correlation was observed between the formation rate of 6-hydroxy BBR and diclofenac 4'-hydroxylation activity in 12 human liver microsomes. The formation of 6-hydroxy BBR was inhibited by tienilic acid in pooled human liver microsomes. The formation of 5,6-dihydroxy BBR from 6-hydroxy BBR was catalysed by recombinant CYP2C9 and CYP1A2. The formation rate of 5,6-dihydroxy BBR was significantly correlated with diclofenac 4'-hydroxylation activity and phenacetin O-deethylation activity in 12 human liver microsomes. The formation of 5,6-dihydroxy BBR was inhibited with either tienilic acid or α-naphthoflavone in human liver microsomes. These results suggest that (i) the formation of 1'-hydroxy BBR and 6-hydroxy BBR is mainly catalysed by CYP3A4 and CYP2C9, respectively, and (ii) the formation of 5,6-dihydroxy BBR is catalysed by CYP2C9 and CYP1A2 in human liver microsomes.

  3. Long-term culture of genome-stable bipotent stem cells from adult human liver

    NARCIS (Netherlands)

    Huch, Meritxell; Gehart, Helmuth; van Boxtel, Ruben; Hamer, Karien; Blokzijl, Francis; Verstegen, Monique M A; Ellis, Ewa; van Wenum, Martien; Fuchs, Sabine A; de Ligt, Joep; van de Wetering, Marc; Sasaki, Nobuo; Boers, Susanne J; Kemperman, Hans; de Jonge, Jeroen; Ijzermans, Jan N M; Nieuwenhuis, Edward E S; Hoekstra, Ruurdtje; Strom, Stephen; Vries, Robert R G; van der Laan, Luc J W; Cuppen, Edwin; Clevers, Hans

    2015-01-01

    Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be

  4. Long-term culture of genome-stable bipotent stem cells from adult human liver

    NARCIS (Netherlands)

    M. Huch (Meritxell); H. Gehart (Helmuth); R. Van Boxtel (Ruben); K. Hamer (Karien); F. Blokzijl (Francis); M.M.A. Verstegen (Monique); E. Ellis (Ewa); M. Van Wenum (Martien); S.A. Fuchs (Sabine A.); J. de Ligt (Joep); M. van de Wetering (M.); N. Sasaki (Nobuo); S.J. Boers (Susanne J.); H. Kemperman (Hans); J. de Jonge (Jeroen); J.N.M. IJzermans (Jan); E.E.S. Nieuwenhuis (Edward); R. Hoekstra (Ruurdtje); S. Strom (Stephen); R.R.G. Vries (Robert R.G.); L.J.W. van der Laan (Luc); E. Cuppen (Edwin); H.C. Clevers (Hans)

    2015-01-01

    textabstractDespite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro

  5. Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver

    NARCIS (Netherlands)

    Huch, Meritxell; Gehart, Helmuth; van Boxtel, Ruben; Hamer, Karien; Blokzijl, Francis; Verstegen, Monique M. A.; Ellis, Ewa; van Wenum, Martien; Fuchs, Sabine A.; de Ligt, Joep; van de Wetering, Marc; Sasaki, Nobuo; Boers, Susanne J.; Kemperman, Hans; de Jonge, Jeroen; Ijzermans, Jan N. M.; Nieuwenhuis, Edward E. S.; Hoekstra, Ruurdtje; Strom, Stephen; Vries, Robert R. G.; van der Laan, Luc J. W.; Cuppen, Edwin; Clevers, Hans

    2015-01-01

    Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be

  6. Cell sources for in vitro human liver cell culture models.

    Science.gov (United States)

    Zeilinger, Katrin; Freyer, Nora; Damm, Georg; Seehofer, Daniel; Knöspel, Fanny

    2016-09-01

    In vitro liver cell culture models are gaining increasing importance in pharmacological and toxicological research. The source of cells used is critical for the relevance and the predictive value of such models. Primary human hepatocytes (PHH) are currently considered to be the gold standard for hepatic in vitro culture models, since they directly reflect the specific metabolism and functionality of the human liver; however, the scarcity and difficult logistics of PHH have driven researchers to explore alternative cell sources, including liver cell lines and pluripotent stem cells. Liver cell lines generated from hepatomas or by genetic manipulation are widely used due to their good availability, but they are generally altered in certain metabolic functions. For the past few years, adult and pluripotent stem cells have been attracting increasing attention, due their ability to proliferate and to differentiate into hepatocyte-like cells in vitro However, controlling the differentiation of these cells is still a challenge. This review gives an overview of the major human cell sources under investigation for in vitro liver cell culture models, including primary human liver cells, liver cell lines, and stem cells. The promises and challenges of different cell types are discussed with a focus on the complex 2D and 3D culture approaches under investigation for improving liver cell functionality in vitro Finally, the specific application options of individual cell sources in pharmacological research or disease modeling are described.

  7. ADENOSINE-TRIPHOSPHATE DEPENDENT TAUROCHOLATE TRANSPORT IN HUMAN LIVER PLASMA-MEMBRANES

    NARCIS (Netherlands)

    WOLTERS, H; KUIPERS, F; SLOOFF, MJH; VONK, RJ

    1992-01-01

    Transport systems involved in uptake and biliary secretion of bile salts have been extensively studied in rat liver; however, little is known about these systems in the human liver. In this study, we investigated taurocholate (TC) transport in canalicular and basolateral plasma membrane vesicles iso

  8. Expression kinetics of hepatic progenitor markers in cellular models of human liver development recapitulating hepatocyte and biliary cell fate commitment.

    Science.gov (United States)

    Chaudhari, Pooja; Tian, Lipeng; Deshmukh, Abhijeet; Jang, Yoon-Young

    2016-09-01

    Due to the limitations of research using human embryos and the lack of a biological model of human liver development, the roles of the various markers associated with liver stem or progenitor cell potential in humans are largely speculative, and based on studies utilizing animal models and certain patient tissues. Human pluripotent stem cell-based in vitro multistage hepatic differentiation systems may serve as good surrogate models for mimicking normal human liver development, pathogenesis and injury/regeneration studies. Here, we describe the implications of various liver stem or progenitor cell markers and their bipotency (i.e. hepatocytic- and biliary-epithelial cell differentiation), based on the pluripotent stem cell-derived model of human liver development. Future studies using the human cellular model(s) of liver and biliary development will provide more human relevant biological and/or pathological roles of distinct markers expressed in heterogeneous liver stem/progenitor cell populations.

  9. A HYBRID DYNAMIC PROGRAM SLICING

    Institute of Scientific and Technical Information of China (English)

    Yi Tong; Wu Fangjun

    2005-01-01

    This letter proposes a hybrid method for computing dynamic program slicing. The key element is to construct a Coverage-Testing-based Dynamic Dependence Graph (CTDDG),which makes use of both dynamic and static information to get execution status. The approach overcomes the limitations of previous dynamic slicing methods, which have to redo slicing if slice criterion changes.

  10. The human liver-specific proteome defined by transcriptomics and antibody-based profiling.

    Science.gov (United States)

    Kampf, Caroline; Mardinoglu, Adil; Fagerberg, Linn; Hallström, Björn M; Edlund, Karolina; Lundberg, Emma; Pontén, Fredrik; Nielsen, Jens; Uhlen, Mathias

    2014-07-01

    Human liver physiology and the genetic etiology of the liver diseases can potentially be elucidated through the identification of proteins with enriched expression in the liver. Here, we combined data from RNA sequencing (RNA-Seq) and antibody-based immunohistochemistry across all major human tissues to explore the human liver proteome with enriched expression, as well as the cell type-enriched expression in hepatocyte and bile duct cells. We identified in total 477 protein-coding genes with elevated expression in the liver: 179 genes have higher expression as compared to all the other analyzed tissues; 164 genes have elevated transcript levels in the liver shared with at least one other tissue type; and an additional 134 genes have a mild level of increased expression in the liver. We identified the precise localization of these proteins through antibody-based protein profiling and the subcellular localization of these proteins through immunofluorescent-based profiling. We also identified the biological processes and metabolic functions associated with these proteins, investigated their contribution in the occurrence of liver diseases, and identified potential targets for their treatment. Our study demonstrates the use of RNA-Seq and antibody-based immunohistochemistry for characterizing the human liver proteome, as well as the use of tissue-specific proteins in identification of novel drug targets and discovery of biomarkers.-Kampf, C., Mardinoglu, A., Fagerberg, L., Hallström, B. M., Edlund, K., Lundberg, E., Pontén, F., Nielsen, J., Uhlen, M. The human liver-specific proteome defined by transcriptomics and antibody-based profiling. © FASEB.

  11. Sequential metabolism of sesamin by cytochrome P450 and UDP-glucuronosyltransferase in human liver.

    Science.gov (United States)

    Yasuda, Kaori; Ikushiro, Shinichi; Kamakura, Masaki; Munetsuna, Eiji; Ohta, Miho; Sakaki, Toshiyuki

    2011-09-01

    Our previous study revealed that CYP2C9 played a central role in sesamin monocatecholization. In this study, we focused on the metabolism of sesamin monocatechol that was further converted into the dicatechol form by cytochrome P450 (P450) or the glucuronide by UDP-glucuronosyltransferase (UGT). Catecholization of sesamin monocatechol enhances its antioxidant activity, whereas glucuronidation strongly reduces its antioxidant activity. In human liver microsomes, the glucuronidation activity was much higher than the catecholization activity toward sesamin monocatechol. In contrast, in rat liver microsomes, catecholization is predominant over glucuronidation. In addition, rat liver produced two isomers of the glucuronide, whereas human liver produced only one glucuronide. These results suggest a significant species-based difference in the metabolism of sesamin between humans and rats. Kinetic studies using recombinant human UGT isoforms identified UGT2B7 as the most important UGT isoform for glucuronidation of sesamin monocatechol. In addition, a good correlation was observed between the glucuronidation activity and UGT2B7-specific activity in in vitro studies using 10 individual human liver microsomes. These results strongly suggest that UGT2B7 plays an important role in glucuronidation of sesamin monocatechol. Interindividual difference among the 10 human liver microsomes is approximately 2-fold. These results, together with our previous results on the metabolism of sesamin by human P450, suggest a small interindividual difference in sesamin metabolism. We observed the methylation activity toward sesamin monocatechol by catechol O-methyl transferase (COMT) in human liver cytosol. On the basis of these results, we concluded that CYP2C9, UGT2B7, and COMT played essential roles in the metabolism of sesamin in the human liver.

  12. Fractionation of human liver mitochondria: enzymic and morphological characterization of the inner and outer membranes as compared to rat liver mitochondria.

    Science.gov (United States)

    Benga, G; Hodarnau, A; Tilinca, R; Porutiu, D; Dancea, S; Pop, V; Wrigglesworth, J

    1979-02-01

    The fractionation of human liver mitochondria into inner membrane, outer membrane and matrix material is reported. Compared with rat, human liver mitochondria are more fragile. Fractionation can be achieved in only 2 steps, a digitonin treatment for removal of the outer membrane and centrifugation of the inner membrane plus matrix particles through a linear sucrose gradient resulting in purified inner membranes and matrix.

  13. Normothermic ex vivo liver perfusion using steen solution as perfusate for human liver transplantation: First North American results.

    Science.gov (United States)

    Selzner, Markus; Goldaracena, Nicolas; Echeverri, Juan; Kaths, Johan M; Linares, Ivan; Selzner, Nazia; Serrick, Cyril; Marquez, Max; Sapisochin, Gonzalo; Renner, Eberhard L; Bhat, Mamatha; McGilvray, Ian D; Lilly, Leslie; Greig, Paul D; Tsien, Cynthia; Cattral, Mark S; Ghanekar, Anand; Grant, David R

    2016-11-01

    The European trial investigating normothermic ex vivo liver perfusion (NEVLP) as a preservation technique for liver transplantation (LT) uses gelofusine, a non-US Food and Drug Administration-approved, bovine-derived, gelatin-based perfusion solution. We report a safety and feasibility clinical NEVLP trial with human albumin-based Steen solution. Transplant outcomes of 10 human liver grafts that were perfused on the Metra device at 37 °C with Steen solution, plus 3 units of erythrocytes were compared with a matched historical control group of 30 grafts using cold storage (CS) as the preservation technique. Ten liver grafts were perfused for 480 minutes (340-580 minutes). All livers cleared lactate (final lactate 1.46 mmol/L; 0.56-1.74 mmol/L) and produced bile (61 mL; 14-146 mL) during perfusion. No technical problems occurred during perfusion, and all NEVLP-preserved grafts functioned well after LT. NEVLP versus CS had lower aspartate aminotransferase and alanine aminotransferase values on postoperative days 1-3 without reaching significance. No difference in postoperative graft function between NEVLP and CS grafts was detected as measured by day 7 international normalized ratio (1.1 [1-1.56] versus 1.1 [1-1.3]; P = 0.5) and bilirubin (1.5; 1-7.7 mg/dL versus 2.78; 0.4-15 mg/dL; P = 0.5). No difference was found in the duration of intensive care unit stay (median, 1 versus 2 days; range, 0-8 versus 0-23 days; P = 0.5) and posttransplant hospital stay (median, 11 versus 13 days; range, 8-17 versus 7-89 days; P = 0.23). Major complications (Dindo-Clavien ≥ 3b) occurred in 1 patient in the NEVLP group (10%) compared with 7 (23%) patients in the CS group (P = 0.5). No graft loss or patient death was observed in either group. Liver preservation with normothermic ex vivo perfusion with the Metra device using Steen solution is safe and results in comparable outcomes to CS after LT. Using US Food and Drug Administration-approved Steen

  14. Comparative metabolism of mycophenolic acid by glucuronic acid and glucose conjugation in human, dog, and cat liver microsomes.

    Science.gov (United States)

    Slovak, J E; Mealey, K; Court, M H

    2017-04-01

    Use of the immunosuppressant mycophenolic acid (MPA) in cats is limited because MPA elimination depends on glucuronidation, which is deficient in cats. We evaluated formation of major (phenol glucuronide) and minor (acyl glucuronide, phenol glucoside, and acyl glucoside) MPA metabolites using liver microsomes from 16 cats, 26 dogs, and 48 humans. All MPA metabolites were formed by human liver microsomes, while dog and cat liver microsomes formed both MPA glucuronides, but only one MPA glucoside (phenol glucoside). Intrinsic clearance (CLint) of MPA for phenol glucuronidation by cat liver microsomes was only 15-17% that of dog and human liver microsomes. However, CLint for acyl glucuronide and phenol glucoside formation in cat liver microsomes was similar to or greater than that for dog and human liver microsomes. While total MPA conjugation CLint was generally similar for cat liver microsomes compared with dog and human liver microsomes, relative contributions of each pathway varied between species with phenol glucuronidation predominating in dog and human liver microsomes and phenol glucosidation predominating in cat liver microsomes. MPA conjugation variation between cat liver microsomes was threefold for total conjugation and for phenol glucosidation, sixfold for phenol glucuronidation, and 11-fold for acyl glucuronidation. Our results indicate that total MPA conjugation is quantitatively similar between liver microsomes from cats, dogs, and humans despite large differences in the conjugation pathways that are utilized by these species.

  15. Characterization of triptolide hydroxylation by cytochrome P450 in human and rat liver microsomes.

    Science.gov (United States)

    Li, W; Liu, Y; He, Y-Q; Zhang, J-W; Gao, Y; Ge, G-B; Liu, H-X; Huo, H; Liu, H-T; Wang, L-M; Sun, J; Wang, Q; Yang, L

    2008-12-01

    Triptolide, the primary active component of a traditional Chinese medicine Tripterygium wilfordii Hook F, has a wide range of pharmacological activities. In the present study, the metabolism of triptolide by cytochrome P450s was investigated in human and rat liver microsomes. Triptolide was converted to four metabolites (M-1, M-2, M-3, and M-4) in rat liver microsomes and three (M-2, M-3, and M-4) in human liver microsomes. All the products were identified as mono-hydroxylated triptolides by liquid chromatography-mass spectrometry (LC-MS). The studies with chemical selective inhibitors, complementary DNA-expressed human cytochrome P450s, correlation analysis, and enzyme kinetics were also conducted. The results demonstrate that CYP3A4 and CYP2C19 could be involved in the metabolism of triptolide in human liver, and that CYP3A4 was the primary isoform responsible for its hydroxylation.

  16. The sinusoidal lining cells in "normal" human liver. A scanning electron microscopic investigation

    DEFF Research Database (Denmark)

    Horn, T; Henriksen, Jens Henrik Sahl; Christoffersen, P

    1986-01-01

    The scanning electron microscopic was used to study the fenestrations of human liver sinusoids. Thirteen biopsies, where light microscopy and transmission electron microscopy revealed normal sinusoidal architecture, were investigated. The number of fenestrae was calculated in acinar zone 3...

  17. Up-regulation of NAD(P)H quinone oxidoreductase 1 during human liver injury

    Institute of Scientific and Technical Information of China (English)

    Lauren M Aleksunes; Michael Goedken; José E Manautou

    2006-01-01

    AIM: To investigate the expression and activity of NAD(P)H quinone oxidoreductase 1 (NQO1) in human liver specimens obtained from patients with liver damage due to acetaminophen (APAP) overdose or primary biliary cirrhosis (PBC).METHODS: NQO1 activity was determined in cytosol from normal, APAP and PBC liver specimens. Western blot and immunohistochemical staining were used to determine patterns of NQO1 expression using a specific antibody against NQO1.RESULTS: NQO1 protein was very low in normal human livers. In both APAP and PBC livers, there was strong induction of NQO1 protein levels on Western blot.Correspondingly, significant up-regulation of enzyme activity (16- and 22-fold, P< 0.05) was also observed in APAP and PBC livers, respectively. Immunohistochemical analysis highlighted injury-specific patterns of NQO1 staining in both APAP and PBC livers.CONCLUSION: These data demonstrate that NQO1 protein and activity are markedly induced in human livers during both APAP overdose and PBC. Up-regulation of this cytoprotective enzyme may represent an adaptive stress response to limit further disease progression by detoxifying reactive species.

  18. HEMOGLOBIN PRODUCTION FACTORS IN THE HUMAN LIVER : ANEMIAS, HYPOPROTEINEMIA, CIRRHOSIS, PIGMENT ABNORMALITIES, AND PREGANCY.

    Science.gov (United States)

    Whipple, G H; Robscheit-Robbins, F S

    1942-09-01

    Human liver tissue has been assayed to determine the amount of hemoglobin production factors in normal and abnormal states. Standardized dogs made anemic by blood removal have been used in this biological assay. Normal animal liver as control is rated as 100 per cent. Normal human liver tissue as compared with the normal animal control contains more of these hemoglobin production factors-a biological assay ratio of 120 to 160 per cent. Infections, acute and chronic, do not appear to modify these values, the concentration of hemoglobin-producing factors falling within the normal range. Pernicious anemia and aplastic anemia both show large liver stores of hemoglobin-producing factors-a biological assay ratio of 200 to 240 per cent. Therapy in pernicious anemia reduces these liver stores as new red cells are formed. Secondary anemia presents a low normal or subnormal liver store of hemoglobin-producing factors-an assay of 60 to 130 per cent. Hemochromatosis, erythroblastic anemia, and hemolytic icterus in spite of large iron deposits in the liver usually show a biological assay which is normal or close to normal. Polycythemia shows low reserve stores of hemoglobin-producing factors. Leukemias present a wide range of values discussed above. Hypoproteinemia almost always is associated with low reserve stores of hemoglobin-producing factors in the liver-biological assays of 60 to 80 per cent. Hypoproteinemia means a depletion of body protein reserve stores including the labile protein liver reserves-a strong indication that the prehemoglobin material (or globin) is related to these liver stores. Pregnancy, eclampsia, and lactation all may present subnormal liver stores of hemoglobin-producing factors. Exhaustion of protein stores lowers the barrier to infection and renders the liver very susceptible to many toxic substances. It should not be difficult to correct hypoproteinemia under these conditions and thus relieve the patient of a real hazard.

  19. Three dimensional reconstruction of the liver and the abdominal blood vessels based on the 64-slice spiral CT data%64排螺旋CT扫描数据的肝脏及腹腔血管三维重建的研究

    Institute of Scientific and Technical Information of China (English)

    朱新勇; 方驰华; 焦培峰; 全显跃; 唐海亮; 鲍苏苏; 钟世镇

    2008-01-01

    目的 探讨利用64排螺旋CT扫描数据进行肝脏及其内部管道和腹腔血管的计算机辅助三维重建的准确性及临床意义.方法 利用64排螺旋CT薄层扫描正常人肝脏二维图像数据集,采用自主研发的医学图像处理系统对二维图像数据进行肝脏及其肝内管道、腹腔血管系统三维可视化重建,并对重建肝脏模型的体积与肝脏实际体积以及重建门静脉与64排螺旋CT后处理工作站采用容积再现法重建的门静脉进行对比研究.结果 肝动脉、门静脉和肝静脉系统三维效果逼真,立体感强,可任意角度旋转、观察;能够显示肝内各主要管道系统的空间位置关系,并准确地反映肝脏实际体积及肝内管道系统的真实情况.通过调节肝脏的透明度可同时显示肝脏和肝内动静脉、门静脉分支和腹腔动脉系统.计算机重建后的门静脉与螺旋CT后处理工作站容积再现法重建的门静脉完全一致.结论 计算机辅助的三维肝脏及其管道和腹腔血管系统能准确反映人体的真实结构,为肝脏的虚拟手术设计提供了可靠和真实的虚拟器官和血管系统.%Objective To explore the accuracy and practical significance of the 3-dimensional (3D) reconstruction of the liver and the abdominal blood vessels based on the data of 64-slice spiral computerized tomography (64S-SCT). Methods The 2D images of the liver and the abdominal blood vessels were collected after TLC-scanning with 64S-SCT. The 3D images of the liver, hepatic internal duct system and the abdominal blood vessels were reconstructed by the medical image processing system. The volume of the 3D reconstructed liver was compared with that of the actual liver measured by the 64S-SCT, and the portal vein of the reconstructed liver model was compared with that reconstructed by the Mxview workstation based on the 64S-SCT data. Results The 3D models of the liver, hepatic internal duct system and abdominal blood

  20. Profile analysis of hepatic porcine and murine brain tissue slices obtained with a vibratome.

    Science.gov (United States)

    Mattei, G; Cristiani, I; Magliaro, C; Ahluwalia, A

    2015-01-01

    This study is aimed at characterizing soft tissue slices using a vibratome. In particular, the effect of two sectioning parameters (i.e., step size and sectioning speed) on resultant slice thickness was investigated for fresh porcine liver as well as for paraformaldehyde-fixed (PFA-fixed) and fresh murine brain. A simple framework for embedding, sectioning and imaging the slices was established to derive their thickness, which was evaluated through a purposely developed graphical user interface. Sectioning speed and step size had little effect on the thickness of fresh liver slices. Conversely, the thickness of PFA-fixed murine brain slices was found to be dependent on the step size, but not on the sectioning speed. In view of these results, fresh brain tissue was sliced varying the step size only, which was found to have a significant effect on resultant slice thickness. Although precision-cut slices (i.e., with regular thickness) were obtained for all the tissues, slice accuracy (defined as the match between the nominal step size chosen and the actual slice thickness obtained) was found to increase with tissue stiffness from fresh liver to PFA-fixed brain. This quantitative investigation can be very helpful for establishing the most suitable slicing setup for a given tissue.

  1. Glucuronidation of drugs in humanized UDP-glucuronosyltransferase 1 mice: Similarity with glucuronidation in human liver microsomes.

    Science.gov (United States)

    Kutsuno, Yuki; Sumida, Kyohei; Itoh, Tomoo; Tukey, Robert H; Fujiwara, Ryoichi

    2013-10-01

    Uridine 5'-diphosphate-glucuronosyltransferases (UGTs) are phase II drug-metabolizing enzymes that catalyze glucuronidation of various endogenous and exogenous substrates. Among 19 functional human UGTs, UGT1A family enzymes largely contribute to the metabolism of clinically used drugs. While the UGT1A locus is conserved in mammals such as humans, mice, and rats, species differences in drug glucuronidation have been reported. Recently, humanized UGT1 mice in which the original Ugt1 locus was disrupted and replaced with the human UGT1 locus (hUGT1 mice) have been developed. To evaluate the usefulness of hUGT1 mice to predict human glucuronidation of drugs, UGT activities, and inhibitory effects on UGTs were examined in liver microsomes of hUGT1 mice as well as in those of wild-type mice and humans. Furosemide acyl-glucuronidation was sigmoidal and best fitted to the Hill equation in hUGT1 mice and human liver microsomes, while it was fitted to the substrate inhibition equation in mouse liver microsomes. Kinetic parameters of furosemide glucuronidation were very similar between hUGT1 mice and human liver microsomes. The kinetics of S-naproxen acyl-glucuronidation and inhibitory effects of compounds on furosemide glucuronidation in hUGT1 liver microsomes were also slightly, but similar to those in human liver microsomes, rather than in wild-type mice. While wild-type mice lack imipramine and trifluoperazine N-glucuronidation potential, hUGT1 mice showed comparable N-glucuronidation activity to that of humans. Our data indicate that hUGT1 mice are promising tools to predict not only in vivo human drug glucuronidation but also potential drug-drug interactions.

  2. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    Energy Technology Data Exchange (ETDEWEB)

    Lake, April D. [University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ 85721 (United States); Novak, Petr [Biology Centre ASCR, Institute of Plant Molecular Biology, Ceske Budejovice 37001 (Czech Republic); Shipkova, Petia; Aranibar, Nelly; Robertson, Donald; Reily, Michael D. [Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543 (United States); Lu, Zhenqiang [The Arizona Statistical Consulting Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Lehman-McKeeman, Lois D. [Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Co., Princeton, NJ 08543 (United States); Cherrington, Nathan J., E-mail: cherrington@pharmacy.arizona.edu [University of Arizona, Department of Pharmacology and Toxicology, Tucson, AZ 85721 (United States)

    2013-04-15

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids

  3. Expression pattern of thymosin beta 4 in the adult human liver

    Science.gov (United States)

    Nemolato, S.; Van Eyken, P.; Cabras, T.; Cau, F.; Fanari, M.U.; Locci, A.; Fanni, D.; Gerosa, C.; Messana, I.; Castagnola, M.; Faa, G.

    2011-01-01

    Thymosin beta-4 (Tβ4) is a member of beta-thymosins, a family of small peptides involved in polymerization of G-actin, and in many critical biological processes including apoptosis, cell migration, angiogenesis, and fibrosis. Previous studies in the newborn liver did not reveal any significant reactivity for Tβ4 during the intrauterine life. The aim of the present study was to investigate by immunohistochemistry Tβ4 expression in the adult normal liver. Thirty-five human liver samples, including 11 needle liver biopsies and 24 liver specimens obtained at autopsy, in which no pathological change was detected at the histological examination, were immunostained utilizing an anti-Tβ4 commercial antibody. Tβ4 was detected in the hepatocytes of all adult normal livers examined. A zonation of Tβ4 expression was evident in the vast majority of cases. Immunostaining was preferentially detected in zone 3, while a minor degree of reactivity was detected in periportal hepatocytes (zone 1). At higher power, Tβ4-reactive granules appeared mainly localized at the biliary pole of hepatocytes. In cases with a strong immunostaining, even perinuclear areas and the sinusoidal pole of hepatocytes appeared interested by immunoreactivity for Tβ4. The current work first evidences a strong diffuse expression of Tβ4 in the adult human liver, and adds hepatocytes to the list of human cells able to synthesize large amounts of Tβ4 in adulthood. Moreover, Tβ4 should be added to the liver proteins characterized by a zonate expression pattern, in a descending gradient from the terminal vein to the periportal areas of the liver acinus. Identifying the intimate role played by this peptide intracellularly and extracellularly, in physiology and in different liver diseases, is a major challenge for future research focusing on Tβ4. PMID:22073372

  4. Expression pattern of thymosin beta 4 in the adult human liver

    Directory of Open Access Journals (Sweden)

    S. Nemolato

    2011-09-01

    Full Text Available Thymosin beta-4 (Tβ4 is a member of beta-thymosins, a family of small peptides involved in polymerization of G-actin, and in many critical biological processes including apoptosis, cell migration, angiogenesis, and fibrosis. Previous studies in the newborn liver did not reveal any significant reactivity for Tβ4 during the intrauterine life. The aim of the present study was to investigate by immunohistochemistry Tβ4 expression in the adult normal liver. Thirty-five human liver samples, including 11 needle liver biopsies and 24 liver specimens obtained at autopsy, in which no pathological change was detected at the histological examination, were immunostained utilizing an anti-Tβ4 commercial antibody. Tβ4 was detected in the hepatocytes of all adult normal livers examined. A zonation of Tβ4 expression was evident in the vast majority of cases. Immunostaining was preferentially detected in zone 3, while a minor degree of reactivity was detected in periportal hepatocytes (zone 1. At higher power, Tβ4-reactive granules appeared mainly localized at the biliary pole of hepatocytes. In cases with a strong immunostaining, even perinuclear areas and the sinusoidal pole of hepatocytes appeared interested by immunoreactivity for Tβ4. The current work first evidences a strong diffuse expression of Tβ4 in the adult human liver, and adds hepatocytes to the list of human cells able to synthesize large amounts of Tβ4 in adulthood. Moreover, Tβ4 should be added to the liver proteins characterized by a zonate expression pattern, in a descending gradient from the terminal vein to the periportal areas of the liver acinus. Identifying the intimate role played by this peptide intracellularly and extracellularly, in physiology and in different liver diseases, is a major challenge for future research focusing on Tβ4.

  5. Molecular cloning and nucleotide sequence of cDNA for human liver arginase

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, Y.; Takiguchi, M.; Amaya, Y.; Kawamoto, S.; Matsuda, I.; Mori, M.

    1987-01-01

    Arginase (EC3.5.3.1) catalyzes the last step of the urea cycle in the liver of ureotelic animals. Inherited deficiency of the enzyme results in argininemia, an autosomal recessive disorder characterized by hyperammonemia. To facilitate investigation of the enzyme and gene structures and to elucidate the nature of the mutation in argininemia, the authors isolated cDNA clones for human liver arginase. Oligo(dT)-primed and random primer human liver cDNA libraries in lambda gt11 were screened using isolated rat arginase cDNA as a probe. Two of the positive clones, designated lambda hARG6 and lambda hARG109, contained an overlapping cDNA sequence with an open reading frame encoding a polypeptide of 322 amino acid residues (predicted M/sub r/, 34,732), a 5'-untranslated sequence of 56 base pairs, a 3'-untranslated sequence of 423 base pairs, and a poly(A) segment. Arginase activity was detected in Escherichia coli cells transformed with the plasmid carrying lambda hARG6 cDNA insert. RNA gel blot analysis of human liver RNA showed a single mRNA of 1.6 kilobases. The predicted amino acid sequence of human liver arginase is 87% and 41% identical with those of the rat liver and yeast enzymes, respectively. There are several highly conserved segments among the human, rat, and yeast enzymes.

  6. Targeted induction of interferon-λ in humanized chimeric mouse liver abrogates hepatotropic virus infection.

    Directory of Open Access Journals (Sweden)

    Shin-ichiro Nakagawa

    Full Text Available BACKGROUND & AIMS: The interferon (IFN system plays a critical role in innate antiviral response. We presume that targeted induction of IFN in human liver shows robust antiviral effects on hepatitis C virus (HCV and hepatitis B virus (HBV. METHODS: This study used chimeric mice harboring humanized livers and infected with HCV or HBV. This mouse model permitted simultaneous analysis of immune responses by human and mouse hepatocytes in the same liver and exploration of the mechanism of antiviral effect against these viruses. Targeted expression of IFN was induced by treating the animals with a complex comprising a hepatotropic cationic liposome and a synthetic double-stranded RNA analog, pIC (LIC-pIC. Viral replication, IFN gene expression, IFN protein production, and IFN antiviral activity were analyzed (for type I, II and III IFNs in the livers and sera of these humanized chimeric mice. RESULTS: Following treatment with LIC-pIC, the humanized livers of chimeric mice exhibited increased expression (at the mRNA and protein level of human IFN-λs, resulting in strong antiviral effect on HBV and HCV. Similar increases were not seen for human IFN-α or IFN-β in these animals. Strong induction of IFN-λs by LIC-pIC occurred only in human hepatocytes, and not in mouse hepatocytes nor in human cell lines derived from other (non-hepatic tissues. LIC-pIC-induced IFN-λ production was mediated by the immune sensor adaptor molecules mitochondrial antiviral signaling protein (MAVS and Toll/IL-1R domain-containing adaptor molecule-1 (TICAM-1, suggesting dual recognition of LIC-pIC by both sensor adaptor pathways. CONCLUSIONS: These findings demonstrate that the expression and function of various IFNs differ depending on the animal species and tissues under investigation. Chimeric mice harboring humanized livers demonstrate that IFN-λs play an important role in the defense against human hepatic virus infection.

  7. Butylbenzyl phthalate hydrolysis in liver microsomes of humans, monkeys, dogs, rats and mice.

    Science.gov (United States)

    Takahara, Yuka; Kinashi, Yu; Takahara, Yuusuke; Hichiya, Hiroyuki; Okada, Kenji; Murata, Mikio; Shigeyama, Masato; Hanioka, Nobumitsu

    2014-01-01

    Butylbenzyl phthalate (BBzP) is used as a plasticizer to import flexibility to polyvinylchloride plastics. In this study, hydrolysis of BBzP to monobutyl phthalate (MBP) and monobenzyl phthalate (MBzP) in liver microsomes of humans, monkeys, dogs, rats and mice was examined. The kinetics for MBP formation by human, dog and mouse liver microsomes followed the Michaelis-Menten model, whereas the kinetics by monkey and rat liver microsomes fitted the Hill model. The kinetics for MBzP formation fitted the Hill model for all liver microsomes. The Vmax and in vitro clearance (CLint or CLmax) ratios of MBP/MBzP formation varied among animal species, although the Km for MBP and MBzP formation in each liver microsomes were generally comparable. The hydrolysis of BBzP to monoester phthalates in mammalian liver microsomes could be classified into two types: MBzP>MBP type for humans and dogs, and MBP>MBzP type for monkeys, rats and mice. These findings suggest that the formation profile of MBzP and MBP from BBzP by liver microsomes differs extensively among animal species.

  8. Expression, purification and bioactivity of human augmenter of liver regeneration

    Institute of Scientific and Technical Information of China (English)

    Yang-De Zhang; Jian Zhou; Jin-Feng Zhao; Jian Peng; Xiao-Dong Liu; Xin-Sheng Liu; Ze-Ming Jia

    2006-01-01

    AIM: To construct the expression vectors for prokaryotic and eukaryotic human augmenter of liver regeneration (hALR) and to study their biological activity.METHODS: hALRcDNA clone was obtained from plasmid pGEM-T-hALR, and cDNA was subcloned into the prokatyotic expression vector pGEX-4T-2.The recombinant vector and pGEX-4T-2hALR were identified by enzyme digestion and DNA sequencing and transformed into E coli JM109. The positively selected clone was induced by the expression of GST-hALR fusion protein with IPTG, then the fusion protein was purified by glutathine s-transferase (GST) sepharose 4B affinity chromatography, cleaved by thrombin and the hALR monomer was obtained and detected by measuring H thymidine incorporation.RESULTS: The product of PCR from plasmid pGEM-ThALR was examined by 1.5% sepharose electrophoresis.The specific strap was coincident with the theoretical one. The sequence was accurate and pGEX-4T-hALP digested by enzymes was coincident with the theoretical one. The sequence was accurate and the fragment was inserted in the positive direction. The recombinant vector was transformed into E coli JM109. SDS-PAGE proved that the induced expressive fusion protein showed a single band with a molecular weight of 41 kDa. The product was purified and cleaved. The molecular weights of GST and hALR were 26 kDa, 15 kDa respectively. The recombinant fusion protein accounted for 31% of the total soluble protein of bacterial lysate. HALR added to the culture medium of adult rat hepatocytes in primary culture and HepG2 cell line could significantly enhance the rate of DNA synthesis compared to the relevant control groups (P < 0.01).CONCLUSION: Purified hALR has the ability to stimulate DNA synthesis of adult rat hepatocytes in primary culture and HepG2 cells in vitro, and can provide evidence for its clinical application.

  9. Reconstruction and analysis of human liver-specific metabolic network based on CNHLPP data.

    Science.gov (United States)

    Zhao, Jing; Geng, Chao; Tao, Lin; Zhang, Duanfeng; Jiang, Ying; Tang, Kailin; Zhu, Ruixin; Yu, Hong; Zhang, Weidong; He, Fuchu; Li, Yixue; Cao, Zhiwei

    2010-04-05

    Liver is the largest internal organ in the body that takes central roles in metabolic homeostasis, detoxification of various substances, as well as in the synthesis and storage of nutrients. To fulfill these complex tasks, thousands of biochemical reactions are going on in liver to cope with a wide range of foods and environmental variations, which are densely interconnected into an intricate metabolic network. Here, the first human liver-specific metabolic network was reconstructed according to proteomics data from Chinese Human Liver Proteome Project (CNHLPP), and then investigated in the context of the genome-scale metabolic network of Homo sapiens. Topological analysis shows that this organ-specific metabolic network exhibits similar features as organism-specific networks, such as power-law degree distribution, small-world property, and bow-tie structure. Furthermore, the structure of liver network exhibits a modular organization where the modules are formed around precursors from primary metabolism or hub metabolites from derivative metabolism, respectively. Most of the modules are dominated by one major category of metabolisms, while enzymes within same modules have a tendency of being expressed concertedly at protein level. Network decomposition and comparison suggest that the liver network overlays a predominant area in the global metabolic network of H. sapiens genome; meanwhile the human network may develop extra modules to gain more specialized functionality out of liver. The results of this study would permit a high-level interpretation of the metabolite information flow in human liver and provide a basis for modeling the physiological and pathological metabolic states of liver.

  10. Fixation methods for electron microscopy of human and other liver

    Institute of Scientific and Technical Information of China (English)

    Eddie; Wisse; Filip; Braet; Hans; Duimel; Celien; Vreuls; Ger; Koek; Steven; WM; Olde; Damink; Maartje; AJ; van; den; Broek; Bart; De; Geest; Cees; HC; Dejong; Chise; Tateno; Peter; Frederik

    2010-01-01

    For an electron microscopic study of the liver,expertise and complicated,time-consuming processing of hepatic tissues and cells is needed.The interpretation of electron microscopy(EM) images requires knowledge of the liver fine structure and experience with the numerous artifacts in fixation,embedding,sectioning,contrast staining and microscopic imaging.Hence,the aim of this paper is to present a detailed summary of different methods for the preparation of hepatic cells and tissue,for the purpose of preserv...

  11. MSCT血管成像对肝移植受体术前血管结构的评价%The evalution of the vascular structure of preoperative liver transplantation recipients using 64-slice spiral CT angiography

    Institute of Scientific and Technical Information of China (English)

    李妙玲; 刘雯雁; 袁会军; 强永乾; 孙兴旺; 赵婷婷

    2011-01-01

    Objective To evaluate the clinical significance of 64-slice spiral CT angiography for vascular structures of preoperative liver transplantation recipients. Methods Tri-phase enhanced CT scan were performed in 32 cases, All cases were post-processing with maximum intensity projection(MIP) , volume rendering(VR) ,and all reformation images with axial images were analyzed. Results In all 32 cases, 1 case with absence of celiac artery, 3 cases with stenosis of celiac artery caused by plaque, 12 cases with dilated splenic artery, 2 cases with splenic artery aneurysm, 7 cases with variation of hepatic artery. 3 cases with extrahepatic portal vein thrombosis, 2 cases with intrahepatic portal vein thrombosis, 1 case with thrombosis in superior mesenteric vein, 1 case with muti-ple thrombosis in portal vein and superior mesenteric vein. In all 32 cases, 25 cases with good images of hepatic vein, 14 cases with standard hepatic vein, 11 cases with common drainage of the middle and the left hepatic vein into the inferior vena cava, and 1 case with inferior hepatic vein respectively,? Cases with poor images. In all 32 cases,30 cases with normal inferior vena cava, 1 case with embolism in inferior vena cava and 1 case with embolism near the right atrium. In all 32 cases, 24 cases received liver transplantation successfully, the other 8 cases had the contraindications of liver transplantation and gave up operation,of 8 cases, 3 cases with total diameter of cancer nodules were more than 8 cm,l case with mutiple thrombosis, 4 cases with extrohepatic metastasis(including 1 case with total diameter of cancer nodules were more than 8 cm) , 1 case with Michels MD had narrowing hepatic artery and the diameter was less than 3 mm separately. Conclusion 64-slice spiral CT tri-phase angiography could overall evaluate structural changes of the hepatic vessels and choose the cases suitable for surgery,it has an important value for surgery program.%目的 探讨64排螺旋CT血管成像对肝

  12. In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells.

    Directory of Open Access Journals (Sweden)

    Sarada Devi Ramachandran

    Full Text Available In this study we used differentiated adult human upcyte® cells for the in vitro generation of liver organoids. Upcyte® cells are genetically engineered cell strains derived from primary human cells by lenti-viral transduction of genes or gene combinations inducing transient proliferation capacity (upcyte® process. Proliferating upcyte® cells undergo a finite number of cell divisions, i.e., 20 to 40 population doublings, but upon withdrawal of proliferation stimulating factors, they regain most of the cell specific characteristics of primary cells. When a defined mixture of differentiated human upcyte® cells (hepatocytes, liver sinusoidal endothelial cells (LSECs and mesenchymal stem cells (MSCs was cultured in vitro on a thick layer of Matrigel™, they self-organized to form liver organoid-like structures within 24 hours. When further cultured for 10 days in a bioreactor, these liver organoids show typical functional characteristics of liver parenchyma including activity of cytochromes P450, CYP3A4, CYP2B6 and CYP2C9 as well as mRNA expression of several marker genes and other enzymes. In summary, we hereby describe that 3D functional hepatic structures composed of primary human cell strains can be generated in vitro. They can be cultured for a prolonged period of time and are potentially useful ex vivo models to study liver functions.

  13. Cloning and characterization of human liver cytosolic beta-glycosidase

    NARCIS (Netherlands)

    De Graaf, M; Van Veen, IC; Van Der Meulen-Muileman, IH; Gerritsen, WR; Pinedo, HM; Haisma, HJ

    2001-01-01

    Cytosolic beta -glucosidase (EC 3.2.1.21) from mammalian liver is a member of the family 1 glycoside hydrolases and is known for its ability to hydrolyse a range of beta -D-glycosides. including beta -D-glucoside acid beta -D-galactoside. We therefore refer to this enzyme as cytosolic beta

  14. Studies on adenosine triphosphate transphosphorylases. Human isoenzymes of adenylate kinase: isolation and physicochemical comparison of the crystalline human ATP-AMP transphosphorylases from muscle and liver.

    Science.gov (United States)

    Kuby, S A; Fleming, G; Frischat, A; Cress, M C; Hamada, M

    1983-02-10

    Procedures are described for the isolation, in crystalline form, of the adenylate kinases from autopsy samples of human muscle and from human liver. Weight average molecular weights were determined by sedimentation equilibrium to be 22,000 (+/- 700) and 25,450 (+/- 160) for the human muscle and liver isoenzymes, respectively. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, their molecular weights were estimated to be 21,700 and 26,500 for the muscle and liver enzymes, respectively. Both isoenzymes are accordingly monomeric proteins in their native state. Amino acid analyses are reported here for the normal human liver, calf liver, and rabbit liver adenylate kinases and compared with the normal human muscle, calf muscle, and rabbit muscle myokinases. The liver types as a group and the muscle types as a group show a great deal of homology, but some distinct differences are evident between the liver and muscle enzyme groups, especially in the number of residues of His, Pro, half-cystine, and the presence of tryptophan in the liver enzymes. The normal human liver adenylate kinase, as isolated in this report, has proved to be similar in its properties, if not identical, to the adenylate kinase isolated directly from human liver mitochondria (Hamada, M., Sumida, M., Okuda, H., Watanabe, T., Nojima, M., and Kuby, S. A. (1982) J. Biol. Chem. 257, 13120-13128). Therefore, the liver-type adenylate kinase may be considered a mitochondrial type.

  15. Proteomic analysis of tyrosine phosphorylation during human liver transplantation

    Directory of Open Access Journals (Sweden)

    Boutros Tarek

    2007-01-01

    Full Text Available Abstract Background Ischemia-reperfusion (I/R causes a dramatic reprogramming of cell metabolism during liver transplantation and can be linked to an alteration of the phosphorylation level of several cellular proteins. Over the past two decades, it became clear that tyrosine phosphorylation plays a pivotal role in a variety of important signalling pathways and was linked to a wide spectrum of diseases. Functional profiling of the tyrosine phosphoproteome during liver transplantation is therefore of great biological significance and is likely to lead to the identification of novel targets for drug discovery and provide a basis for novel therapeutic strategies. Results Using liver biopsies collected during the early phases of organ procurement and transplantation, we aimed at characterizing the global patterns of tyrosine phosphorylation during hepatic I/R. A proteomic approach, based on the purification of tyrosine phosphorylated proteins followed by their identification using mass spectrometry, allowed us to identify Nck-1, a SH2/SH3 adaptor, as a potential regulator of I/R injury. Using immunoblot, cell fractionation and immunohistochemistry, we demonstrate that Nck-1 phosphorylation, expression and localization were affected in liver tissue upon I/R. In addition, mass spectrometry identification of Nck-1 binding partners during the course of the transplantation also suggested a dynamic interaction between Nck-1 and actin during I/R. Conclusion Taken together, our data suggest that Nck-1 may play a role in I/R-induced actin reorganization, which was previously reported to be detrimental for the hepatocytes of the transplanted graft. Nck-1 could therefore represent a target of choice for the design of new organ preservation strategies, which could consequently help to reduce post-reperfusion liver damages and improve transplantation outcomes.

  16. Effects of recombinant human growth hormone on remnant liver after hepatectomy in hepatocellular carcinoma with cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Shi-Min Luo; Li-Jian Liang; Jia-Ming Lai

    2004-01-01

    AIM: To explore the effects of recombinant human growth hormone (rhGH) on the remnant liver after hepatectomy in hepatocellular carcinoma with liver cirrhosis.METHODS: Twenty-four patients with hepatocellular carcinoma who underwent hepatectomy were randomly divided into 2groups: parenteral nutrition (PN) group (n=12) and rhGH+PN group (n=12). Liver function, blood glucose, AFP, serum prealbumin and transferrin were detected before operation,at post-operative d 1 and d 6. Albumin (ALB) mRNA in liver biopsy specimens was detected by RT-PCR at post-operative d 6. Liver Ki67 immunohistochemical staining was studied.RESULTS: On post-operative d 6, compared with PN group,the levels of blood glucose, serum prealbumin, transferrin,the expression of hepatic ALB mRNA and liver Ki67 labeling index were higher in rhGH+PN group.CONCLUSION: rhGH can improve protein synthesis and liver regeneration after hepatectomy in hepatocellular carcinoma with liver cirrhosis.

  17. Human Adipose Tissue Derived Stem Cells Promote Liver Regeneration in a Rat Model of Toxic Injury

    Directory of Open Access Journals (Sweden)

    Eva Koellensperger

    2013-01-01

    Full Text Available In the light of the persisting lack of donor organs and the risks of allotransplantations, the possibility of liver regeneration with autologous stem cells from adipose tissue (ADSC is an intriguing alternative. Using a model of a toxic liver damage in Sprague Dawley rats, generated by repetitive intraperitoneal application of retrorsine and allyl alcohol, the ability of human ADSC to support the restoration of liver function was investigated. A two-thirds hepatectomy was performed, and human ADSC were injected into one remaining liver lobe in group 1 (n = 20. Injection of cell culture medium performed in group 2 (n = 20 served as control. Cyclosporine was applied to achieve immunotolerance. Blood samples were drawn weekly after surgery to determine liver-correlated blood values. Six and twelve weeks after surgery, animals were sacrificed and histological sections were analyzed. ADSC significantly raised postoperative albumin (P < 0.017, total protein (P < 0.031, glutamic oxaloacetic transaminase (P < 0.001, and lactate dehydrogenase (P < 0.04 levels compared to injection of cell culture medium alone. Transplanted cells could be found up to twelve weeks after surgery in histological sections. This study points towards ADSC being a promising alternative to hepatocyte or liver organ transplantation in patients with severe liver failure.

  18. Comparison of Cone Beam Computed Tomography and Multi Slice Computed Tomography Image Quality of Human Dried Mandible using 10 Anatomical Landmarks

    Science.gov (United States)

    Saati, Samira; Kaveh, Fatemeh

    2017-01-01

    Introduction Cone Beam Computed Tomography (CBCT) has gained a broad acceptance in dentomaxillofacial imaging. Computed Tomography (CT) is another imaging modality for diagnosis and preoperative assessments of the head and neck region. Aim Considering the increased radiation exposure and high cost of CT, this study sought to subjectively assess the image quality of CBCT and Multi Slice CT (MSCT). Materials and Methods A dry human mandible was scanned by five CBCT systems (New Tom 3G, Scanora, CRANEX 3D, Promax and Galileos) and one MSCT system. Three independent oral and maxillofacial radiologists reviewed the CBCT and MSCT scans for the quality of 10 landmarks namely mental foramen, trabecular bone, Periodontal Ligament (PDL), dentin, incisive canal, mandibular canal, dental pulp, enamel, lamina dura and cortical bone using a five-point scale. Results Significant differences were found between MSCT and CBCT and among the five CBCT systems (p<0.05) in visualization of different anatomical structures. A fine structure such as the incisive canal was significantly less visible and more variable among the systems in comparison with other anatomical landmarks such as the mental foramen, mandibular canal, cortical bone, dental pulp, enamel and dentin (p<0.05). The Cranex 3D and Promax systems were superior to MSCT and all other CBCT systems in visualizing anatomical structures. Conclusion The CBCT image quality was superior to that of MSCT even though some variability existed among different CBCT systems in visualizing fine structures. Considering the low radiation dose and high resolution, CBCT may be beneficial for dentomaxillofacial imaging. PMID:28384972

  19. Human liver morphine UDP-glucuronyl transferase enantioselectivity and inhibition by opioid congeners and oxazepam.

    OpenAIRE

    Wahlström, A; Pacifici, G. M.; Lindström, B; Hammar, L.; Rane, A.

    1988-01-01

    1. Morphine uridine diphosphate glucuronyl transferase (UDP-GT) was studied in human liver microsomes. The (-)- and (+)-morphine enantiomers were used as substrates and inhibitors, such as oxazepam and various opioid congeners were employed to characterize the different glucuronidation pathways. The kinetics of the oxazepam inhibition were studied in the rat liver. 2. The overall glucuronidation of (+)-morphine was higher than that of (-)-morphine. The morphine congeners tested, potently inhi...

  20. In Vitro Generation of Functional Liver Organoid-Like Structures Using Adult Human Cells

    NARCIS (Netherlands)

    Ramachandran, S.D.; Schirmer, K.; Munst, B.; Heinz, S.; Ghafoory, S.; Wolfl, S.; Simon-Keller, K.; Marx, A.; Oie, C.I.; Ebert, M.P.; Walles, H.; Braspenning, J.C.; Breitkopf-Heinlein, K.

    2015-01-01

    In this study we used differentiated adult human upcyte(R) cells for the in vitro generation of liver organoids. Upcyte(R) cells are genetically engineered cell strains derived from primary human cells by lenti-viral transduction of genes or gene combinations inducing transient proliferation capacit

  1. A new human 3D-liver model unravels the role of galectins in liver infection by the parasite Entamoeba histolytica.

    Directory of Open Access Journals (Sweden)

    Debora B Petropolis

    2014-09-01

    Full Text Available Investigations of human parasitic diseases depend on the availability of appropriate in vivo animal models and ex vivo experimental systems, and are particularly difficult for pathogens whose exclusive natural hosts are humans, such as Entamoeba histolytica, the protozoan parasite responsible for amoebiasis. This common infectious human disease affects the intestine and liver. In the liver sinusoids E. histolytica crosses the endothelium and penetrates into the parenchyma, with the concomitant initiation of inflammatory foci and subsequent abscess formation. Studying factors responsible for human liver infection is hampered by the complexity of the hepatic environment and by the restrictions inherent to the use of human samples. Therefore, we built a human 3D-liver in vitro model composed of cultured liver sinusoidal endothelial cells and hepatocytes in a 3D collagen-I matrix sandwich. We determined the presence of important hepatic markers and demonstrated that the cell layers function as a biological barrier. E. histolytica invasion was assessed using wild-type strains and amoebae with altered virulence or different adhesive properties. We showed for the first time the dependence of endothelium crossing upon amoebic Gal/GalNAc lectin. The 3D-liver model enabled the molecular analysis of human cell responses, suggesting for the first time a crucial role of human galectins in parasite adhesion to the endothelial cells, which was confirmed by siRNA knockdown of galectin-1. Levels of several pro-inflammatory cytokines, including galectin-1 and -3, were highly increased upon contact of E. histolytica with the 3D-liver model. The presence of galectin-1 and -3 in the extracellular medium stimulated pro-inflammatory cytokine release, suggesting a further role for human galectins in the onset of the hepatic inflammatory response. These new findings are relevant for a better understanding of human liver infection by E. histolytica.

  2. A new human 3D-liver model unravels the role of galectins in liver infection by the parasite Entamoeba histolytica.

    Science.gov (United States)

    Petropolis, Debora B; Faust, Daniela M; Deep Jhingan, Gagan; Guillen, Nancy

    2014-09-01

    Investigations of human parasitic diseases depend on the availability of appropriate in vivo animal models and ex vivo experimental systems, and are particularly difficult for pathogens whose exclusive natural hosts are humans, such as Entamoeba histolytica, the protozoan parasite responsible for amoebiasis. This common infectious human disease affects the intestine and liver. In the liver sinusoids E. histolytica crosses the endothelium and penetrates into the parenchyma, with the concomitant initiation of inflammatory foci and subsequent abscess formation. Studying factors responsible for human liver infection is hampered by the complexity of the hepatic environment and by the restrictions inherent to the use of human samples. Therefore, we built a human 3D-liver in vitro model composed of cultured liver sinusoidal endothelial cells and hepatocytes in a 3D collagen-I matrix sandwich. We determined the presence of important hepatic markers and demonstrated that the cell layers function as a biological barrier. E. histolytica invasion was assessed using wild-type strains and amoebae with altered virulence or different adhesive properties. We showed for the first time the dependence of endothelium crossing upon amoebic Gal/GalNAc lectin. The 3D-liver model enabled the molecular analysis of human cell responses, suggesting for the first time a crucial role of human galectins in parasite adhesion to the endothelial cells, which was confirmed by siRNA knockdown of galectin-1. Levels of several pro-inflammatory cytokines, including galectin-1 and -3, were highly increased upon contact of E. histolytica with the 3D-liver model. The presence of galectin-1 and -3 in the extracellular medium stimulated pro-inflammatory cytokine release, suggesting a further role for human galectins in the onset of the hepatic inflammatory response. These new findings are relevant for a better understanding of human liver infection by E. histolytica.

  3. Opisthorchis viverrini:The carcinogenic human liver fluke

    Institute of Scientific and Technical Information of China (English)

    Natthawut Kaewpitoon; Soraya J Kaewpitoon; Prasit Pengsaa; Banchob Sripa

    2008-01-01

    Opisthorchiasis caused by Opisthorchis viverrini remains a major public health problem in many parts of Southeast Asia,including Thailand,Lao PDR,Vietnam and Cambodia.The infection is associated with a number of hepatobiliary diseases,including cholangitis,obstructive jaundice,hepatomegaly,cholecystitis and cholelithiasis.Multi-factorial etiology of cholangiocarcinoma,mechanical damage,parasite secretions,and immunopathology may enhance cholangiocarcinogenesis.Moreover,both experimental and epidemiological evidences strongly implicate liver fluke infection as the major risk factor in cholangiocarcinoma,cancer of the bile ducts.The liver fluke infection is induced by eating raw or uncooked fish products that is the tradition and popular in the northeastern and northern region,particularly in rural areas,of Thailand.The health education programs to prevent and control opisthorchiasis are still required in the high-risk areas.

  4. Involvement of CYP2B6 in the biotransformation of propofol by human liver microsomes

    Institute of Scientific and Technical Information of China (English)

    TANG Bing; WANG Jun-ke; FENG Wan-yu

    2008-01-01

    Objective To determine whether the cytochrome P4502B6 (CYP2B6) is involved in the oxidation of propofol by human liver microsomes. Methods The change of propofol concentration in an incubation mixture with human liver microsomes was monitored by the high performance liquid chromatography (HPLC), in order to calculate the rate constants of metabolism of propofol. The correlation between the rate constants and the rate of metabolism of CYP2B6 selective substrate bupropion, and the effect of two different CYP2B6 specific inhibitors on the propofol metabolism were examined. Results The mean rate constant of propofol metabolism by liver microsomes obtained from twelve individuals was 3.9 (95 % confidence intervals 3.3, 4.5) nmol·min-1·mg-1 protein. The rate constants of propofol metabolism by liver microsomes were significantly correlated with bupropion hydroxylation (r=0.888, P<0.001). Both selective chemical inhibitors of CYP2B6, orphenadrine and N, N′, N″-triethylenethiophosphoramide (thioTEPA), reduced the rate constants of propofol metabolism by 37.596 (P<0.001) and 42.796 (P<0.001)in liver microsomes, respectively. Conclusions CYP2B6 is predominantly involved in the oxidation of propofol by human liver microsomes.

  5. A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury

    Energy Technology Data Exchange (ETDEWEB)

    Yannam, Govardhana Rao [Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska (United States); Han, Bing [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi' an Jiaotong University, Xi' an, Shaanxi (China); Setoyama, Kentaro [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Yamamoto, Toshiyuki [Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska (United States); Ito, Ryotaro; Brooks, Jenna M. [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Guzman-Lepe, Jorge [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Department of Pathology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Galambos, Csaba [Department of Pathology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Fong, Jason V. [Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); Deutsch, Melvin; Quader, Mubina A. [Department of Radiation Oncology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); Yamanouchi, Kosho [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York (United States); Kabarriti, Rafi; Mehta, Keyur [Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York (United States); Soto-Gutierrez, Alejandro [Department of Pathology, Children' s Hospital of Pittsburgh, Pittsburgh, Pennsylvania (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (United States); and others

    2014-02-01

    Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.

  6. Functional Integrity of the Chimeric (Humanized) Mouse Liver: Enzyme Zonation, Physiologic Spaces, and Hepatic Enzymes and Transporters.

    Science.gov (United States)

    Chow, Edwin C Y; Wang, Jason Z Ya; Quach, Holly P; Tang, Hui; Evans, David C; Li, Albert P; Silva, Jose; Pang, K Sandy

    2016-09-01

    Chimeric mouse liver models are useful in vivo tools for human drug metabolism studies; however, liver integrity and the microcirculation remain largely uninvestigated. Hence, we conducted liver perfusion studies to examine these attributes in FRGN [Fah(-/-), Rag2(-/-), and Il2rg(-/-), NOD strain] livers (control) and chimeric livers repopulated with mouse (mFRGN) or human (hFRGN) hepatocytes. In single-pass perfusion studies (2.5 ml/min), outflow dilution profiles of noneliminated reference indicators ((51)Cr-RBC, (125)I-albumin, (14)C-sucrose, and (3)H-water) revealed preservation of flow-limited distribution and reduced water and albumin spaces in hFRGN livers compared with FRGN livers, a view supported microscopically by tightly packed sinusoids. With prograde and retrograde perfusion of harmol (50 µM) in FRGN livers, an anterior sulfation (Sult1a1) over the posterior distribution of glucuronidation (Ugt1a1) activity was preserved, evidenced by the 42% lower sulfation-to-glucuronidation ratio (HS/HG) and 14% higher harmol extraction ratio (E) upon switching from prograde to retrograde flow. By contrast, zonation was lost in mFRGN and hFRGN livers, with HS/HG and E for both flows remaining unchanged. Remnant mouse genes persisted in hFRGN livers (10%-300% those of FRGN). When hFRGN livers were compared with human liver tissue, higher UGT1A1 and MRP2, lower MRP3, and unchanged SULT1A1 and MRP4 mRNA expression were observed. Total Sult1a1/SULT1A1 protein expression in hFRGN livers was higher than that of FRGN livers, consistent with higher harmol sulfate formation. The composite data on humanized livers suggest a loss of zonation, lack of complete liver humanization, and persistence of murine hepatocyte activities leading to higher sulfation.

  7. Estimation of the Functional Reserve of Human Liver

    Science.gov (United States)

    Moody, Frank G.; Rikkers, Layton F.; Aldrete, Joaquin S.

    1974-01-01

    Functional hepatic reserve was determined in 32 patients with known liver or biliary tract disease employing kinetic analysis of hepatic removal of indocyanine green (ICG). The initial removal rates of incremental doses of ICG (0.5, 1.0 and 5.0 mg/kg body weight) were plotted as a reciprocal against the inverse of dose (Lineweaver-Burk plot) to provide a means of determining maximal removal rate from submaximal doses (Rmax). This function equalled 3.40 mg/kg/min in ten patients with normal livers, but was only .24 mg/kg/min in eight patients with alcoholic cirrhosis. Portasystemic shunting did not further influence Rmax. Infiltrative liver disease had only a mild depressive effect on this function. The results show that hepatic function can be precisely quantitated by classical enzyme kinetics (Michaelis-Menten). If Rmax is an estimate of protein receptor mass for organic anions, then the technique may allow an indirect means for quantitating hepatocytes even in the presence of changes in blood flow or hepatic function. The profound depression in Rmax observed in patients with alcoholic cirrhosis is consistent with the progressive loss in hepatic mass associated with this disease. PMID:4413286

  8. Reelin expression in human liver of patients with chronic hepatitis C infection

    Directory of Open Access Journals (Sweden)

    Simone Carotti

    2017-03-01

    Full Text Available Reelin is a secreted extracellular glycoprotein that plays a critical role during brain development. Several studies have described Reelin expression in hepatic stellate cells of the human liver. In order to investigate the possible role of Reelin in the process of hepatic fibrogenesis, in this study we investigated Reelin expression in the liver tissue of patients infected with the Hepatitis C Virus (HCV. On this basis, Reelin expression was analysed by immunohistochemistry during liver biopsies of 81 patients with HCV-related chronic hepatitis. A Knodell score was used to stage liver fibrosis. Hepatic stellate cells/myofibroblast immunohistochemical markers (CRBP-1, alpha-SMA were also evaluated. As further confirmed by co-localization experiments (Reelin +CRBP-1, Reelin protein was expressed by hepatic stellate cells/myofibroblasts, and a significant positive correlation was found between Reelin expression and the stage of liver fibrosis (P=0.002. Moreover, Reelin correlated with CRBP-1 positive cells (P=0.002, but not with alpha-SMA, suggesting that Reelin should not be regarded as a marker of hepatic stellate cells/myofibroblasts differentiation but rather as a functional protein expressed during some phases of liver fibrosis. Furthermore, Disabled-1 (Dab1, a Reelin adaptor protein, was expressed in cells of ductular reaction suggesting a paracrine role for Reelin with regards these elements. In conclusion, Reelin was expressed by human hepatic stellate cells/myofibroblasts and the number of these cells increased significantly in the lobule as the liver fibrosis progressed, suggesting a role for Reelin in the activation of hepatic stellate cells/myofibroblasts during liver injury. Reelin may potentially be incorporated into liver injury evaluations in combination with other histological data.

  9. Reelin Expression in Human Liver of Patients with Chronic Hepatitis C Infection

    Science.gov (United States)

    Carotti, Simone; Perrone, Giuseppe; Amato, Michelina; Gentilucci, Umberto Vespasiani; Righi, Daniela; Francesconi, Maria; Pellegrini, Claudio; Zalfa, Francesca; Zingariello, Maria; Picardi, Antonio; Muda, Andrea Onetti; Morini, Sergio

    2017-01-01

    Reelin is a secreted extracellular glyco-protein that plays a critical role during brain development. Several studies have described Reelin expression in hepatic stellate cells of the human liver. In order to investigate the possible role of Reelin in the process of hepatic fibrogenesis, in this study we investigated Reelin expression in the liver tissue of patients infected with the Hepatitis C Virus (HCV). On this basis, Reelin expression was analysed by immunohistochemistry during liver biopsies of 81 patients with HCV-related chronic hepatitis. A Knodell score was used to stage liver fibrosis. Hepatic stellate cells/myofibroblast immunohistochemical markers (CRBP-1, alpha-SMA) were also evaluated. As further confirmed by colocalization experiments (Reelin +CRBP-1), Reelin protein was expressed by hepatic stellate cells/myofibroblasts, and a significant positive correlation was found between Reelin expression and the stage of liver fibrosis (P=0.002). Moreover, Reelin correlated with CRBP-1 positive cells (P=0.002), but not with alpha-SMA, suggesting that Reelin should not be regarded as a marker of hepatic stellate cells/myofibroblasts differentiation but rather as a functional protein expressed during some phases of liver fibrosis. Furthermore, Disabled-1 (Dab1), a Reelin adaptor protein, was expressed in cells of ductular reaction suggesting a paracrine role for Reelin with regards these elements. In conclusion, Reelin was expressed by human hepatic stellate cells/myofibroblasts and the number of these cells increased significantly in the lobule as the liver fibrosis progressed, suggesting a role for Reelin in the activation of hepatic stellate cells/myofibroblasts during liver injury. Reelin may potentially be incorporated into liver injury evaluations in combination with other histological data. PMID:28348420

  10. Silhouette-Slice Theorems

    Science.gov (United States)

    1987-03-20

    with standard expressions of spherical trigonometry is sinr)0 = cos0 sini//0 (4.37) which is consistent with the results obtained previously with...theorems for discrete transforms. However, sampling questions inlroduce difficult obstacles in the develop- ment of a discrete theory. First, sampling...additional obstacle to discrete represen- tations of the CT. An example of qualitative predication of the shape of silhouettes with the Silhouette-Slice

  11. Human fetal liver stromal cells expressing erythropoietin promote hematopoietic development from human embryonic stem cells.

    Science.gov (United States)

    Yang, Chao; Ji, Lei; Yue, Wen; Shi, Shuang-Shuang; Wang, Ruo-Yong; Li, Yan-Hua; Xie, Xiao-Yan; Xi, Jia-Fei; He, Li-Juan; Nan, Xue; Pei, Xue-Tao

    2012-02-01

    Blood cells transfusion and hematopoietic stem cells (HSCs) transplantation are important methods for cell therapy. They are widely used in the treatment of incurable hematological disorder, infectious diseases, genetic diseases, and immunologic deficiency. However, their availability is limited by quantity, capacity of proliferation and the risk of blood transfusion complications. Recently, human embryonic stem cells (hESCs) have been shown to be an alternative resource for the generation of hematopoietic cells. In the current study, we describe a novel method for the efficient production of hematopoietic cells from hESCs. The stable human fetal liver stromal cell lines (hFLSCs) expressing erythropoietin (EPO) were established using the lentiviral system. We observed that the supernatant from the EPO transfected hFLSCs could induce the hESCs differentiation into hematopoietic cells, especially erythroid cells. They not only expressed fetal and embryonic globins but also expressed the adult-globin chain on further maturation. In addition, these hESCs-derived erythroid cells possess oxygen-transporting capacity, which indicated hESCs could generate terminally mature progenies. This should be useful for ultimately developing an animal-free culture system to generate large numbers of erythroid cells from hESCs and provide an experimental model to study early human erythropoiesis.

  12. Non-invasive measurement of hepatic oxygenation by an oxygen electrode in human orthotopic liver transplantation.

    Science.gov (United States)

    Seifalian, A M; Mallett, S; Piasecki, C; Rolles, K; Davidson, B R

    2000-06-01

    Precise evaluation of graft reperfusion is difficult in clinical liver transplantation. The oxygen electrode (OE) is a novel technique to detect blood flow indirectly by measuring the quantity of oxygen which can diffuse from the hepatic tissue to the surface electrode. Application of the surface OE does not influence the liver blood flow or parenchymal perfusion. Adequate graft oxygenation is essential to the outcome of organ transplantation and has not previously been analysed intra-operatively in liver transplant recipients. The OE was applied to the surface of the graft intra-operatively in 22 human liver grafts after restoring portal vein and hepatic artery inflow. OE readings were compared with liver blood flow using an electromagnetic flowmeter (EMF). Intra-operative haemodynamics and donor organ parameters known to influence graft function were correlated with the OE readings. There was a significant correlation (r=0.89; poxygenation using the OE and total liver blood flow measured by EMF. The tissue oxygenation measurements were reproducible with a coefficient of variation of 5%. The hepatic tissue oxygenation increased significantly from baseline following venous reperfusion of the graft (282+/-23 vs 3107+/-288 (+/-SE) nA, poxygen perfusion. There was significant negative correlation (r=0.80, poxygenation. The OE provides a reliable, cheap and non-invasive method of monitoring liver graft oxygenation and perfusion during transplantation.

  13. Liver fibrosis in human immunodeficiency virus/hepatitis C virus coinfection: Diagnostic methods and clinical impact

    Institute of Scientific and Technical Information of China (English)

    Caterina; Sagnelli; Salvatore; Martini; Mariantonietta; Pisaturo; Giuseppe; Pasquale; Margherita; Macera; Rosa; Zampino; Nicola; Coppola; Evangelista; Sagnelli

    2015-01-01

    Several non-invasive surrogate methods have recently challenged the main role of liver biopsy in assessing liver fibrosis in hepatitis C virus(HCV)-monoinfected and human immunodeficiency virus(HIV)/HCV-coinfected patients, applied to avoid the well-known side effects of liver puncture. Serological tests involve the determination of biochemical markers of synthesis or degradation of fibrosis, tests not readily available in clinical practice, or combinations of routine tests used in chronic hepatitis and HIV/HCV coinfection. Several radiologic techniques have also been proposed, some of which commonly used in clinical practice. The studies performed to compare the prognostic value of noninvasive surrogate methods with that of the degree of liver fibrosis assessed on liver tissue have not as yet provided conclusive results. Each surrogate technique has shown some limitations, including the risk of over- or under-estimating the extent of liver fibrosis. The current knowledge on liver fibrosis in HIV/HCVcoinfected patients will be summarized in this review article, which is addressed in particular to physicians involved in this setting in their clinical practice.

  14. Successful transplantation of human hepatic stem cells with restricted localization to liver using hyaluronan grafts.

    Science.gov (United States)

    Turner, Rachael A; Wauthier, Eliane; Lozoya, Oswaldo; McClelland, Randall; Bowsher, James E; Barbier, Claire; Prestwich, Glenn; Hsu, Edward; Gerber, David A; Reid, Lola M

    2013-02-01

    Cell therapies are potential alternatives to organ transplantation for liver failure or dysfunction but are compromised by inefficient engraftment, cell dispersal to ectopic sites, and emboli formation. Grafting strategies have been devised for transplantation of human hepatic stem cells (hHpSCs) embedded into a mix of soluble signals and extracellular matrix biomaterials (hyaluronans, type III collagen, laminin) found in stem cell niches. The hHpSCs maintain a stable stem cell phenotype under the graft conditions. The grafts were transplanted into the livers of immunocompromised murine hosts with and without carbon tetrachloride treatment to assess the effects of quiescent versus injured liver conditions. Grafted cells remained localized to the livers, resulting in a larger bolus of engrafted cells in the host livers under quiescent conditions and with potential for more rapid expansion under injured liver conditions. By contrast, transplantation by direct injection or via a vascular route resulted in inefficient engraftment and cell dispersal to ectopic sites. Transplantation by grafting is proposed as a preferred strategy for cell therapies for solid organs such as the liver.

  15. Human liver tumors in relation to steroidal usage.

    Science.gov (United States)

    Barrows, G H; Christopherson, W M

    1983-01-01

    Since 1973 a number of investigators have reported an association between liver neoplasia and steroid usage. Through referral material we have examined the histology of over 250 cases of hepatic neoplasia, most in patients receiving steroid medications. The majority have been benign, predominantly focal nodular hyperplasia (55%) and hepatocellular adenoma (39%). The average age was 31.4 years; 83% had significant steroid exposure with an average duration of 71 months for focal nodular hyperplasia and 79.6 months for hepatocellular adenoma. The type of estrogenic agent was predominantly mestranol; however, during the period mestranol was the most frequently used synthetic steroid. A distinct clinical entity of life threatening hemorrhage from the lesion occurred in 31% of patients with hepatocellular adenoma and 9% of patients with focal nodular hyperplasia. Recurrence of benign tumors has occurred in some patients who continued using steroids and regression has been observed in patients who had incomplete tumor removal but discontinued steroid medication. Medial and intimal vascular changes have been present in a large number of the benign tumors. The relationship of these vascular changes to oncogenesis is unclear, but similar lesions have been described in the peripheral vasculature associated with steroid administration. A number of hepatocellular carcinomas have also been seen. Of significance is the young age of these patients and lack of abnormal histology in adjacent nonneoplastic liver. A striking number of the malignant hepatocellular tumors have been of the uncommon type described as "eosinophilic hepatocellular carcinoma with lamellar fibrosis." The epidemiology of liver lesions within this series is difficult to assess, since the material has been referred from very diverse locations. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. FIGURE 5. FIGURE 6. FIGURE 7. PMID:6307679

  16. Hydration of arene and alkene oxides by epoxide hydrase in human liver microsomes.

    Science.gov (United States)

    Kapitulnik, J; Levin, W; Morecki, R; Dansette, P M; Jerina, D M; Conney, A H

    1977-02-01

    The comparative hydration of styrene 7,8-oxide, octene 1,2-oxide, naphthalene 1,2-oxide, phenanthrene 9,10-oxide, benzo[a]anthracene 5,6-oxide, 3-methylcholanthrene 11,12-oxide, dibenzo[a,h]anthracene 5,6-oxide, and benzo[a, 7,8-, 9,10-, and 11,12-oxides to their respective dihydrodiols was investigated in microsomes from nine human autopsy livers. The substrate specificity of the epoxide hydrase in human liver microsomes was very similar to that of the epoxide hydrase in rat liver microsomes. Phenanthrene 9,10-oxide was the best substrate for the human and rat epoxide hydrases and dibenzo[a,h]anthracene 5,6-oxide and benzo[a-a)pyrene 11, 12-oxide were the poorest substrates. Plotting epoxide hydrase activity obtained with one substrate against epoxide hydrase activity for another substrate for each of the nine human livers revealed excellent correlations for all combinations of the 11 substrates studied (r = 0.87 to 0.99). The data suggest the presence in human liver of a single epoxide hydrase with broad substrate specificity. However, the results do not exclude the possible presence in human liver of several epoxide hydrases that are under similar regulatory control. These results suggest the need for further investigation to determine whether there is a safe epoxide of a drug whose in vivo metabolism is predictive of the capacity of different individuals to metabolize a wide variety of epoxides of drugs and environmental chemicals.

  17. Prediction of Drug-Induced Liver Injury in HepG2 Cells Cultured with Human Liver Microsomes.

    Science.gov (United States)

    Choi, Jong Min; Oh, Soo Jin; Lee, Ji-Yoon; Jeon, Jang Su; Ryu, Chang Seon; Kim, Young-Mi; Lee, Kiho; Kim, Sang Kyum

    2015-05-18

    Drug-induced liver injury (DILI) via metabolic activation by drug-metabolizing enzymes, especially cytochrome P450 (CYP), is a major cause of drug failure and drug withdrawal. In this study, an in vitro model using HepG2 cells in combination with human liver microsomes was developed for the prediction of DILI. The cytotoxicity of cyclophosphamide, a model drug for bioactivation, was augmented in HepG2 cells cultured with microsomes in a manner dependent on exposure time, microsomal protein concentration, and NADPH. Experiments using pan- or isoform-selective CYP inhibitors showed that CYP2B6 and CYP3A4 are responsible for the bioactivation of cyclophosphamide. In a metabolite identification study employing LC-ESI-QTrap and LC-ESI-QTOF, cyclophosphamide metabolites including phosphoramide mustard, a toxic metabolite, were detected in HepG2 cells cultured with microsomes, but not without microsomes. The cytotoxic effects of acetaminophen and diclofenac were also potentiated by microsomes. The potentiation of acetaminophen cytotoxicity was dependent on CYP-dependent metabolism, and the augmentation of diclofenac cytotoxicity was not mediated by either CYP- or UDP-glucuronosyltransferase-dependent metabolism. The cytotoxic effects of leflunomide, nefazodone, and bakuchiol were attenuated by microsomes. The detoxication of leflunomide by microsomes was attributed to mainly CYP3A4-dependent metabolism. The protective effect of microsomes against nefazodone cytotoxicity was dependent on both CYP-mediated metabolism and nonspecific protein binding. Nonspecific protein binding but not CYP-dependent metabolism played a critical role in the attenuation of bakuchiol cytotoxicity. The present study suggests that HepG2 cells cultured with human liver microsomes can be a reliable model in which to predict DILI via bioactivation by drug metabolizing enzymes.

  18. Three-dimensional perfusion bioreactor culture supports differentiation of human fetal liver cells.

    Science.gov (United States)

    Schmelzer, Eva; Triolo, Fabio; Turner, Morris E; Thompson, Robert L; Zeilinger, Katrin; Reid, Lola M; Gridelli, Bruno; Gerlach, Jörg C

    2010-06-01

    The ability of human fetal liver cells to survive, expand, and form functional tissue in vitro is of high interest for the development of bioartificial extracorporeal liver support systems, liver cell transplantation therapies, and pharmacologic models. Conventional static two-dimensional culture models seem to be inadequate tools. We focus on dynamic three-dimensional perfusion technologies and developed a scaled-down bioreactor, providing decentralized mass exchange with integral oxygenation. Human fetal liver cells were embedded in a hyaluronan hydrogel within the capillary system to mimic an in vivo matrix and perfusion environment. Metabolic performance was monitored daily, including glucose consumption, lactate dehydrogenase activity, and secretion of alpha-fetoprotein and albumin. At culture termination cells were analyzed for proliferation and liver-specific lineage-dependent cytochrome P450 (CYP3A4/3A7) gene expression. Occurrence of hepatic differentiation in bioreactor cultures was demonstrated by a strong increase in CYP3A4/3A7 gene expression ratio, lower alpha-fetoprotein, and higher albumin secretion than in conventional Petri dish controls. Cells in bioreactors formed three-dimensional structures. Viability of cells was higher in bioreactors than in control cultures. In conclusion, the culture model implementing three-dimensionality, constant perfusion, and integral oxygenation in combination with a hyaluronan hydrogel provides superior conditions for liver cell survival and differentiation compared to conventional culture.

  19. Long Term Maintenance of a Microfluidic 3-D Human Liver Sinusoid

    OpenAIRE

    Prodanov, Ljupcho; Jindal, Rohit; Bale, Shyam Sundhar; Hegde, Manjunath; McCarty, William J.; Golberg, Inna; Bhushan, Abhinav; Yarmush, Martin L.; Usta, O. Berk

    2015-01-01

    The development of long-term human organotypic liver-on-a-chip models for successful prediction of toxic response is one of the most important and urgent goals of the NIH/DARPA’s initiative to replicate and replace chronic and acute drug testing in animals. For this purpose we developed a microfluidic chip that consists of two microfluidic chambers separated by a porous membrane. The aim of this communication is to demonstrate the recapitulation of a liver sinusoid-on-a-chip using human cells...

  20. Differentiation of human embryonic stem cells along a hepatocyte lineage and its application in liver regeneration

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Hepatocyte transplantation and bioartificial liver(BAL)as alternatives to liver transplantation offer the possibility of effective treatment for many inherited and acquired hepatic disorders.Unfortunately,the limited availability of donated livers and the variability of their derived hepatocytes make it difficult to obtain enough viable human hepatocytes for the hepatocyte-based therapies.Embryonic stem cells (ESCs),which could be isolated directly from the blastocyst inner cell mass,have permanent self-renewal capability and developmental pluripotency and therefore might be an ideal cell source in the treatment of hepatic discords.However,differentiation of hESCS into hepatocytes with significant numbers remains a challenge.This review updates our current understanding of differentiation of ESCs into hepatic lineage cells,their future therapeutic uses and problems in liver regeneration.

  1. Transcriptional networks implicated in human nonalcoholic fatty liver disease.

    Science.gov (United States)

    Ye, Hua; Liu, Wei

    2015-10-01

    The transcriptome of nonalcoholic fatty liver disease (NAFLD) was investigated in several studies. However, the implications of transcriptional networks in progressive NAFLD are not clear and mechanisms inducing transition from nonalcoholic simple fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH) are still elusive. The aims of this study were to (1) construct networks for progressive NAFLD, (2) identify hub genes and functional modules in these networks and (3) infer potential linkages among hub genes, transcription factors and microRNAs (miRNA) for NAFLD progression. A systems biology approach by combining differential expression analysis and weighted gene co-expression network analysis (WGCNA) was utilized to dissect transcriptional profiles in 19 normal, 10 NAFL and 16 NASH patients. Based on this framework, 3 modules related to chromosome organization, proteasomal ubiquitin-dependent protein degradation and immune response were identified in NASH network. Furthermore, 9 modules of co-expressed genes associated with NAFL/NASH transition were found. Further characterization of these modules defined 13 highly connected hub genes in NAFLD progression network. Interestingly, 11 significantly changed miRNAs were predicted to target 10 of the 13 hub genes. Characterization of modules and hub genes that may be regulated by miRNAs could facilitate the identification of candidate genes and pathways responsible for NAFL/NASH transition and lead to a better understanding of NAFLD pathogenesis. The identified modules and hub genes may point to potential targets for therapeutic interventions.

  2. Effect of ultrasound frequency on the Nakagami statistics of human liver tissues.

    Science.gov (United States)

    Tsui, Po-Hsiang; Zhou, Zhuhuang; Lin, Ying-Hsiu; Hung, Chieh-Ming; Chung, Shih-Jou; Wan, Yung-Liang

    2017-01-01

    The analysis of the backscattered statistics using the Nakagami parameter is an emerging ultrasound technique for assessing hepatic steatosis and fibrosis. Previous studies indicated that the echo amplitude distribution of a normal liver follows the Rayleigh distribution (the Nakagami parameter m is close to 1). However, using different frequencies may change the backscattered statistics of normal livers. This study explored the frequency dependence of the backscattered statistics in human livers and then discussed the sources of ultrasound scattering in the liver. A total of 30 healthy participants were enrolled to undergo a standard care ultrasound examination on the liver, which is a natural model containing diffuse and coherent scatterers. The liver of each volunteer was scanned from the right intercostal view to obtain image raw data at different central frequencies ranging from 2 to 3.5 MHz. Phantoms with diffuse scatterers only were also made to perform ultrasound scanning using the same protocol for comparisons with clinical data. The Nakagami parameter-frequency correlation was evaluated using Pearson correlation analysis. The median and interquartile range of the Nakagami parameter obtained from livers was 1.00 (0.98-1.05) for 2 MHz, 0.93 (0.89-0.98) for 2.3 MHz, 0.87 (0.84-0.92) for 2.5 MHz, 0.82 (0.77-0.88) for 3.3 MHz, and 0.81 (0.76-0.88) for 3.5 MHz. The Nakagami parameter decreased with the increasing central frequency (r = -0.67, p statistical distribution of the backscattered envelopes was not found in the phantom results (r = -0.147, p = 0.0727). The current results demonstrated that the backscattered statistics of normal livers is frequency-dependent. Moreover, the coherent scatterers may be the primary factor to dominate the frequency dependence of the backscattered statistics in a liver.

  3. Human hepatocyte growth factor (hHGF-modified hepatic oval cells improve liver transplant survival.

    Directory of Open Access Journals (Sweden)

    Zhu Li

    Full Text Available Despite progress in the field of immunosuppression, acute rejection is still a common postoperative complication following liver transplantation. This study aims to investigate the capacity of the human hepatocyte growth factor (hHGF in modifying hepatic oval cells (HOCs administered simultaneously with orthotopic liver transplantation as a means of improving graft survival. HOCs were activated and isolated using a modified 2-acetylaminofluorene/partial hepatectomy (2-AAF/PH model in male Lewis rats. A HOC line stably expressing the HGF gene was established following stable transfection of the pBLAST2-hHGF plasmid. Our results demonstrated that hHGF-modified HOCs could efficiently differentiate into hepatocytes and bile duct epithelial cells in vitro. Administration of HOCs at the time of liver transplantation induced a wider distribution of SRY-positive donor cells in liver tissues. Administration of hHGF-HOC at the time of transplantation remarkably prolonged the median survival time and improved liver function for recipients compared to these parameters in the other treatment groups (P<0.05. Moreover, hHGF-HOC administration at the time of liver transplantation significantly suppressed elevation of interleukin-2 (IL-2, tumor necrosis factor-α (TNF-α and interferon-γ (IFN-γ levels while increasing the production of IL-10 and TGF-β1 (P<0.05. HOC or hHGF-HOC administration promoted cell proliferation, reduced cell apoptosis, and decreased liver allograft rejection rates. Furthermore, hHGF-modified HOCs more efficiently reduced acute allograft rejection (P<0.05 versus HOC transplantation only. Our results indicate that the combination of hHGF-modified HOCs with liver transplantation decreased host anti-graft immune responses resulting in a reduction of allograft rejection rates and prolonging graft survival in recipient rats. This suggests that HOC-based cell transplantation therapies can be developed as a means of treating severe liver

  4. Species and sex differences in propofol glucuronidation in liver microsomes of humans, monkeys, rats and mice.

    Science.gov (United States)

    Mukai, M; Isobe, T; Okada, K; Murata, M; Shigeyama, M; Hanioka, N

    2015-07-01

    Propofol (2,6-diisopropylphenol) is a short-acting anesthetic commonly used in clinical practice, and is rapidly metabolized into glucuronide by UDP-glucuronosyltransferase (UGT). In the present study, propofol glucuronidation was examined in the liver microsomes of male and female humans, monkeys, rats, and mice. The kinetics of propofol glucuronidation by liver microsomes fit the substrate inhibition model for humans and mice, the Hill model for monkeys, and the isoenzyme (biphasic) model for rats. The K(m), V(max), and CL(int) values of human liver microsomes were 50 μM, 5.6 nmol/min/mg protein, and 110 μL/min/mg protein, respectively, for males, and 46 μM, 6.0 nmol/min/mg protein, and 130 μL/min/mg protein, respectively, for females. The rank order of the CL(int) or CL(max) (in vitro clearance) values of liver microsomes was mice humans > monkeys > rats (high-affinity phase) rats (low-affinity phase) in both males and females. Although no significant sex differences were observed in the values of kinetic parameters in any animal species, the in vitro clearance values of liver microsomes were males females in monkeys, rats (high-affinity phase), and mice. These results demonstrated that the kinetic profile of propofol glucuronidation by liver microsomes markedly differed among humans, monkeys, rats, and mice, and suggest that species and sex differences exist in the roles of UGT isoform(s), including UGT1A9, involved in its metabolism.

  5. Identification of CYP3A7 for Glyburide Metabolism in Human Fetal Livers

    Science.gov (United States)

    Shuster, Diana L.; Risler, Linda J.; Prasad, Bhagwat; Calamia, Justina C.; Voellinger, Jenna L.; Kelly, Edward J.; Unadkat, Jashvant D.; Hebert, Mary F.; Shen, Danny D.; Thummel, Kenneth E.; Mao, Qingcheng

    2014-01-01

    Glyburide is commonly prescribed for the treatment of gestational diabetes mellitus; however, fetal exposure to glyburide is not well understood and may have short- and long-term consequences for the health of the child. Glyburide can cross the placenta; fetal concentrations at term are nearly comparable to maternal levels. Whether or not glyburide is metabolized in the fetus and by what mechanisms has yet to be determined. In this study, we determined the kinetic parameters for glyburide depletion by CYP3A isoenzymes; characterized glyburide metabolism by human fetal liver tissues collected during the first or early second trimester of pregnancy; and identified the major enzyme responsible for glyburide metabolism in human fetal livers. CYP3A4 had the highest metabolic capacity towards glyburide, followed by CYP3A7 and CYP3A5 (Clint,u = 37.1, 13.0, and 8.7 ml/min/nmol P450, respectively). M5 was the predominant metabolite generated by CYP3A7 and human fetal liver microsomes (HFLMs) with approximately 96% relative abundance. M5 was also the dominant metabolite generated by CYP3A4, CYP3A5, and adult liver microsomes; however, M1-M4 were also present, with up to 15% relative abundance. CYP3A7 protein levels in HFLMs were highly correlated with glyburide Clint, 16α-OH DHEA formation, and 4′-OH midazolam formation. Likewise, glyburide Clint was highly correlated with 16α-OH DHEA formation. Fetal demographics as well as CYP3A5 and CYP3A7 genotype did not alter CYP3A7 protein levels or glyburide Clint. These results indicate that human fetal livers metabolize glyburide predominantly to M5 and that CYP3A7 is the major enzyme responsible for glyburide metabolism in human fetal livers. PMID:25450675

  6. Human Liver Cells Expressing Albumin and Mesenchymal Characteristics Give Rise to Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Irit Meivar-Levy

    2011-01-01

    Full Text Available Activation of the pancreatic lineage in the liver has been suggested as a potential autologous cell replacement therapy for diabetic patients. Transcription factors-induced liver-to-pancreas reprogramming has been demonstrated in numerous species both in vivo and in vitro. However, human-derived liver cells capable of acquiring the alternate pancreatic repertoire have never been characterized. It is yet unknown whether hepatic-like stem cells or rather adult liver cells give rise to insulin-producing cells. Using an in vitro experimental system, we demonstrate that proliferating adherent human liver cells acquire mesenchymal-like characteristics and a considerable level of cellular plasticity. However, using a lineage-tracing approach, we demonstrate that insulin-producing cells are primarily generated in cells enriched for adult hepatic markers that coexpress both albumin and mesenchymal markers. Taken together, our data suggest that adult human hepatic tissue retains a substantial level of developmental plasticity, which could be exploited in regenerative medicine approaches.

  7. Differential selectivity of cytochrome P450 inhibitors against probe substrates in human and rat liver microsomes

    Science.gov (United States)

    Eagling, Victoria A; Tjia, John F; Back, David J

    1998-01-01

    Aims Chemical inhibitors of cytochrome P450 (CYP) are a useful tool in defining the role of individual CYPs involved in drug metabolism. The aim of the present study was to evaluate the selectivity and rank the order of potency of a range of isoform-selective CYP inhibitors and to compare directly the effects of these inhibitors in human and rat hepatic microsomes. Methods Four chemical inhibitors of human cytochrome P450 isoforms, furafylline (CYP1A2), sulphaphenazole (CYP2C9), diethyldithiocarbamate (CYP2E1), and ketoconazole (CYP3A4) were screened for their inhibitory specificity towards CYP-mediated reactions in both human and rat liver microsomal preparations. Phenacetin O-deethylation, tolbutamide 4-hydroxylation, chlorzoxazone 6-hydroxylation and testosterone 6β-hydroxylation were monitored for enzyme activity. Results Furafylline was a potent, selective inhibitor of phenacetin O-deethylation (CYP1A2-mediated) in human liver microsomes (IC50 = 0.48 μm), but inhibited both phenacetin O-deethylation and tolbutamide 4-hydroxylation (CYP2C9-mediated) at equimolar concentrations in rat liver microsomes (IC50 = 20.8 and 24.0 μm respectively). Sulphaphenazole demonstrated selective inhibition of tolbutamide hydroxylation in human liver microsomes but failed to inhibit this reaction in rat liver microsomes. DDC demonstrated a low level of selectivity as an inhibitory probe for chlorzoxazone 6-hydroxylation (CYP2E1-mediated). DDC also inhibited testosterone 6β-hydroxylation (CYP3A-mediated) in man and rat, and tolbutamide 4-hydroxylase activity in rat. Ketoconazole was a very potent, selective inhibitor of CYP3A4 activity in human liver (IC50 = 0.04 μm). Although inhibiting CYP3A in rat liver it also inhibited all other reactions at concentrations ≤5 μm. Conclusions It is evident that CYP inhibitors do not exhibit the same selectivity in human and rat liver microsomes. This is due to differential selectivity of the inhibitors and/or differences in the CYP

  8. Alloxan-Induced Diabetes Causes Morphological and Ultrastructural Changes in Rat Liver that Resemble the Natural History of Chronic Fatty Liver Disease in Humans

    Directory of Open Access Journals (Sweden)

    Amanda Natália Lucchesi

    2015-01-01

    Full Text Available Purpose. This study evaluated the long-term effects of alloxan-induced diabetes in rat liver. Methods. Thirty nondiabetic control rats (NC and 30 untreated diabetic (UD rats were divided into three subgroups sacrificed after 6, 14, or 26 weeks. Clinical and laboratory parameters were assessed. Fresh liver weight and its relationship with body weight were obtained, and liver tissue was analyzed. Results. UD rats showed sustained hyperglycemia, high glycosylated hemoglobin, and low plasma insulin. High serum levels of AST and ALT were observed in UD rats after 2 weeks, but only ALT remained elevated throughout the experiment. Fresh liver weight was equal between NC and UD rats, but the fresh liver weight/body weight ratio was significantly higher in UD rats after 14 and 26 weeks. UD rats showed liver morphological changes characterized by hepatic sinusoidal enlargement and micro- and macrovesicular hepatocyte fatty degeneration with progressive liver structure loss, steatohepatitis, and periportal fibrosis. Ultrastructural changes of hepatocytes, such as a decrease in the number of intracytoplasmic organelles and degeneration of mitochondria, rough endoplasmic reticulum, and nuclei, were also observed. Conclusion. Alloxan-induced diabetes triggered liver morphological and ultrastructural changes that closely resembled human disease, ranging from steatosis to steatohepatitis and liver fibrosis.

  9. Criteria for viability assessment of discarded human donor livers during ex vivo normothermic machine perfusion.

    Directory of Open Access Journals (Sweden)

    Michael E Sutton

    Full Text Available Although normothermic machine perfusion of donor livers may allow assessment of graft viability prior to transplantation, there are currently no data on what would be a good parameter of graft viability. To determine whether bile production is a suitable biomarker that can be used to discriminate viable from non-viable livers we have studied functional performance as well as biochemical and histological evidence of hepatobiliary injury during ex vivo normothermic machine perfusion of human donor livers. After a median duration of cold storage of 6.5 h, twelve extended criteria human donor livers that were declined for transplantation were ex vivo perfused for 6 h at 37 °C with an oxygenated solution based on red blood cells and plasma, using pressure controlled pulsatile perfusion of the hepatic artery and continuous portal perfusion. During perfusion, two patterns of bile flow were identified: (1 steadily increasing bile production, resulting in a cumulative output of ≥ 30 g after 6 h (high bile output group, and (2 a cumulative bile production <20 g in 6 h (low bile output group. Concentrations of transaminases and potassium in the perfusion fluid were significantly higher in the low bile output group, compared to the high bile output group. Biliary concentrations of bilirubin and bicarbonate were respectively 4 times and 2 times higher in the high bile output group. Livers in the low bile output group displayed more signs of hepatic necrosis and venous congestion, compared to the high bile output group. In conclusion, bile production could be an easily assessable biomarker of hepatic viability during ex vivo machine perfusion of human donor livers. It could potentially be used to identify extended criteria livers that are suitable for transplantation. These ex vivo findings need to be confirmed in a transplant experiment or a clinical trial.

  10. A shift in paradigm towards human biology-based systems for cholestatic-liver diseases.

    Science.gov (United States)

    Noor, Fozia

    2015-12-01

    Cholestatic-liver diseases (CLDs) arise from diverse causes ranging from genetic factors to drug-induced cholestasis. The so-called diseases of civilization (obesity, diabetes, metabolic disorders, non-alcoholic liver disease, cardiovascular diseases, etc.) are intricately implicated in liver and gall bladder diseases. Although CLDs have been extensively studied, there seem to be important gaps in the understanding of human disease. Despite the fact that many animal models exist and substantial clinical data are available, translation of this knowledge towards therapy has been disappointingly limited. Recent advances in liver cell culture such as in vivo-like 3D cultivation of human primary hepatic cells, human induced pluripotent stem cell-derived hepatocytes; and cutting-edge analytical techniques such as 'omics' technologies and high-content screenings could play a decisive role in deeper mechanistic understanding of CLDs. This Topical Review proposes a roadmap to human biology-based research using omics technologies providing quantitative information on mechanisms in an adverse outcome/disease pathway framework. With modern sensitive tools, a shift in paradigm in human disease research seems timely and even inevitable to overcome species barriers in translation.

  11. CYP3A4 mediated in vitro metabolism of vinflunine in human liver microsomes

    Institute of Scientific and Technical Information of China (English)

    Xiao-ping ZHAO; Jiao ZHONG; Xiao-quan LIU; Guang-ji WANG

    2007-01-01

    Aim: To study the metabolism of vinflunine and the effects of selective cyto-chrome P-450 (CYP450) inhibitors on the metabolism of vinflunine in human liver microsomes. Methods: Individual selective CYP450 inhibitors were used to inves-tigate their effects on the metabolism of vinflunine and the principal CYP450 isoform involved in the formation of metabolites M1 and M2 in human liver microsomes.Results: Vinflunine was rapidly metabolized to 2 metabolites: M1 and M2 in human liver microsomes. M1 and M2 were tentatively presumed to be the N-oxide metabo-lite or hydroxylated metabolite and epoxide metabolite of vinflunine, respectively. Ketoconazole uncompetitively inhibited the formation of M1, and competitively inhibited the formation of M2, while α-naphthoflavone, sulfaphenazole, diethyl dithiocarbamate, tranylcypromine and quinidine had little or no inhibitory effect on the formation of M1 and M2. Conclusion: Vinflunine is rapidly metabolized in human liver microsomes, and CYP3A4 is the major human CYP450 involved in the metabolism of vinflunine.

  12. Isolation and characterization of cloned cDNAs as encoding human liver chlordecone reductase

    Energy Technology Data Exchange (ETDEWEB)

    Winters, C.J.; Molowa, D.T.; Guzelian, P.S. (Medical College of Virginia, Richmond (USA))

    1990-01-30

    Chlordecone (Kepone), a toxic organochlorine pesticide, undergoes bioreduction to chlorodecone alcohol in human liver. This reaction is controlled by a cytosolic enzyme, chlordecone reductase (CDR), which may be of the aldo-keto reductase family of xenobiotic metabolizing enzymes. To further investigate the primary structure and expression of CDR, the authors screened a library of human liver cDNAs cloned in the expression vector {lambda}gt11 and isolated an 800 bp cDNA that directed synthesis of a fusion protein recognized by polyclonal anti-CDR antibodies. Using this cDNA as a probe, they screened two human liver cDNA libraries and found several 1.2-kb cDNAs which would code for polypeptide with 308 residues (35.8 kDa). However, a similar full-length cDNA, possibly the transcript of a pseudogene, contained an in-frame nonsense codon. The deduced protein sequence of CDR showed 65% similarity to the primary structure of human liver aldehyde reductase and 66% similarity to the inferred protein sequence of rat lens aldose reductase. A search of GenBank revealed significant nucleotide similarity to a cDNA coding for bovine lung prostaglandin f synthase and to a partial cDNA coding for frog lens {rho}-crystallin. RNA from adult but not fetal human liver, and from the human hepatoma cell-line Hep G2, contained major (1.6 kb) and minor (2.8 kb) species hybridizable to a CDR cDNA. The relative amounts of these RNAs varied markedly among nine subjects. From this initial description of the nucleotide sequence for a human carbonyl reductase, they conclude that CDR and several related enzymes are part of a novel multigene family involved in the metabolism of such xenobiotics as chlordecone and possibly endogenous substrates.

  13. Ultrastructural characteristics of novel epithelial cell types identified in human pathologic liver specimens with chronic ductular reaction.

    OpenAIRE

    De Vos, R; Desmet, V

    1992-01-01

    Previous immunohistochemical studies on human liver biopsies with chronic ductular reaction revealed the presence of "small cells" with bile-duct type cytokeratin profile in the periportal area. This study identified similar cells by electron microscopy. The authors studied 13 human liver specimens with various liver diseases, but all characterized by chronic ductular reaction. In all specimens, variable numbers of "small cells" with common epithelial characteristics were identified in the pe...

  14. Gene discovery for the carcinogenic human liver fluke, Opisthorchis viverrini

    Directory of Open Access Journals (Sweden)

    Gasser Robin B

    2007-06-01

    Full Text Available Abstract Background Cholangiocarcinoma (CCA – cancer of the bile ducts – is associated with chronic infection with the liver fluke, Opisthorchis viverrini. Despite being the only eukaryote that is designated as a 'class I carcinogen' by the International Agency for Research on Cancer, little is known about its genome. Results Approximately 5,000 randomly selected cDNAs from the adult stage of O. viverrini were characterized and accounted for 1,932 contigs, representing ~14% of the entire transcriptome, and, presently, the largest sequence dataset for any species of liver fluke. Twenty percent of contigs were assigned GO classifications. Abundantly represented protein families included those involved in physiological functions that are essential to parasitism, such as anaerobic respiration, reproduction, detoxification, surface maintenance and feeding. GO assignments were well conserved in relation to other parasitic flukes, however, some categories were over-represented in O. viverrini, such as structural and motor proteins. An assessment of evolutionary relationships showed that O. viverrini was more similar to other parasitic (Clonorchis sinensis and Schistosoma japonicum than to free-living (Schmidtea mediterranea flatworms, and 105 sequences had close homologues in both parasitic species but not in S. mediterranea. A total of 164 O. viverrini contigs contained ORFs with signal sequences, many of which were platyhelminth-specific. Examples of convergent evolution between host and parasite secreted/membrane proteins were identified as were homologues of vaccine antigens from other helminths. Finally, ORFs representing secreted proteins with known roles in tumorigenesis were identified, and these might play roles in the pathogenesis of O. viverrini-induced CCA. Conclusion This gene discovery effort for O. viverrini should expedite molecular studies of cholangiocarcinogenesis and accelerate research focused on developing new interventions

  15. Characterization of hepatic progenitors from human fetal liver using CD34 as a hepatic progenitor marker

    Institute of Scientific and Technical Information of China (English)

    Parveen Nyamath; Ayesha AM; Aejaz Habeeb; Sanjeev Khosla; Aleem A Khan; CM Habibullah

    2007-01-01

    AIM: To enrich putative hepatic progenitors from the developing human fetal liver using CD34 as a marker.METHODS: Aborted fetuses of 13-20 wk were used for the isolation of liver cells. The cells were labeled with anti CD34; a marker used for isolating progenitor population and the cells were sorted using magnetic cell sorting. The positive fractions of cells were assessed for specific hepatic markers. Further, these cells were cultured in vitro for long term investigation.RESULTS: Flow cytometric and immunocytochemical analysis for alphafetoprotein (AFP) showed that the majority of the enriched CD34 positive cells were positive for AFP. Furthermore, these enriched cells proliferated in the long term and maintained hepatic characteristics in in vitro culture.CONCLUSION: The study shows that aborted human fetal liver is a potential source for isolation of hepatic progenitors for clinical applications. The study also demonstrates that CD34 can be a good marker for the enrichment of progenitor populations.

  16. Dataset on force measurements of needle insertions into two ex-vivo human livers.

    Science.gov (United States)

    de Jong, Tonke L; Dankelman, Jenny; van den Dobbelsteen, John J

    2017-04-01

    A needle-tissue interaction experiment has been carried out, by inserting the inner needle of a trocar needle into two ex-vivo human livers. The dataset contains the forces that act on the needle during insertion and retraction into the livers. In addition, a MATLAB code file is included that provides base-level analysis of the data and generates force-position diagrams of the needle insertions. The dataset is available on Mendeley Data (do1i:10.17632/94s7xd9mzt.2), and is made publicly available to enable other researchers to use it for their own research purposes. For further interpretation and discussion of the data, one is referred to the associated research article entitled "PVA matches human liver in needle-tissue interaction" de Jong et al., 2017.

  17. Evaluation of fibrosis in precision-cut tissue slices

    NARCIS (Netherlands)

    Westra, I. M.; Pham, B. T.; Groothuis, G. M. M.; Olinga, P.

    2013-01-01

    1. In this review, the use of precision-cut tissue slices (PCTS) of the liver, kidney, lung and intestine in fibrosis research are evaluated and future possibilities are discussed. 2. In vivo models or techniques that are applicabless to be investigated in PCTS are discussed. 3. It is concluded that

  18. Differential genomic effects of six different TiO2 nanomaterials on human liver HepG2 cells

    Science.gov (United States)

    Engineered nanoparticles are reported to cause liver toxicity in vivo. To better assess the mechanism of the in vivo liver toxicity, we used the human hepatocarcinoma cells (HepG2) as a model system. Human HepG2 cells were exposed to 6 TiO2 nanomaterials (with dry primary partic...

  19. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells

    Directory of Open Access Journals (Sweden)

    Anthony Finoli

    2016-01-01

    Full Text Available Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications.

  20. Open-Porous Hydroxyapatite Scaffolds for Three-Dimensional Culture of Human Adult Liver Cells.

    Science.gov (United States)

    Finoli, Anthony; Schmelzer, Eva; Over, Patrick; Nettleship, Ian; Gerlach, Joerg C

    2016-01-01

    Liver cell culture within three-dimensional structures provides an improved culture system for various applications in basic research, pharmacological screening, and implantable or extracorporeal liver support. Biodegradable calcium-based scaffolds in such systems could enhance liver cell functionality by providing endothelial and hepatic cell support through locally elevated calcium levels, increased surface area for cell attachment, and allowing three-dimensional tissue restructuring. Open-porous hydroxyapatite scaffolds were fabricated and seeded with primary adult human liver cells, which were embedded within or without gels of extracellular matrix protein collagen-1 or hyaluronan. Metabolic functions were assessed after 5, 15, and 28 days. Longer-term cultures exhibited highest cell numbers and liver specific gene expression when cultured on hydroxyapatite scaffolds in collagen-1. Endothelial gene expression was induced in cells cultured on scaffolds without extracellular matrix proteins. Hydroxyapatite induced gene expression for cytokeratin-19 when cells were cultured in collagen-1 gel while culture in hyaluronan increased cytokeratin-19 gene expression independent of the use of scaffold in long-term culture. The implementation of hydroxyapatite composites with extracellular matrices affected liver cell cultures and cell differentiation depending on the type of matrix protein and the presence of a scaffold. The hydroxyapatite scaffolds enable scale-up of hepatic three-dimensional culture models for regenerative medicine applications.

  1. Hepatocyte differentiation of human fibroblasts from cirrhotic liver in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Yu-Ling Sun; Sheng-Yong Yin; Lin Zhou; Hai-Yang Xie; Feng Zhang; Li-Ming Wu; Shu-Sen Zheng

    2011-01-01

    BACKGROUND: Mesenchymal stem cells (MSCs) and fibro-blasts have intimate relationships, and the phenotypic homology between fibroblasts and MSCs has been recently described. The aim of this study was to investigate the hepatic differentiating potentialofhumanfibroblastsincirrhoticliver. METHODS: The phenotypes of fibroblasts in cirrhotic liver were labeled by biological methods. After that, the differentiation potential of these fibroblasts in vitro was characterized in terms of liver-specific gene and protein expression. Finally, an animal model of hepatocyte regeneration in severe combined immunodeficient (SCID) mice was created by retrorsine injection and partial hepatectomy, and the expression of human hepatocyte proteins in SCID mouse livers was checked by immunohistochemicalanalysisafterfibroblastadministration. RESULTS: Surface immunophenotyping revealed that a minority of fibroblasts expressed markers of MSCs and hepatic epithelial cytokeratins as well as alpha-smooth muscle actin, but homogeneously expressed vimentin, desmin, prolyl 4-hydroxylase and fibronectin. These fibroblasts presented the characteristics of hepatocytes in vitro and differentiated directly into functional hepatocytes in the liver of hepatecto-mized SCID mice. CONCLUSIONS: This study demonstrated that fibroblasts in cirrhotic liver have the potential to differentiate into hepatocyte-like cells in vitro and in vivo. Our findings infer that hepatic differentiation of fibroblasts may serve as a new target for reversion of liver fibrosis and a cell source for tissue engineering.

  2. Hepatitis B and C infection and liver disease trends among human immunodeficiency virus-infected individuals

    Institute of Scientific and Technical Information of China (English)

    Susan E Buskin; Elizabeth A Barash; John D Scott; David M Aboulafia; Robert W Wood

    2011-01-01

    AIM: To examine trends in and correlates of liver disease and viral hepatitis in an human immunodeficiency virus (HIV)-infected cohort.METHODS: The multi-site adult/adolescent spectrum of HIV-related diseases (ASD) followed 29 490 HIVinfected individuals receiving medical care in 11 U.S.metropolitan areas for an average of 2.4 years, and a total of 69 487 person-years, between 1998 and 2004.ASD collected data on the presentation, treatment, and outcomes of HIV, including liver disease, hepatitis screening, and hepatitis diagnoses.RESULTS: Incident liver disease, chronic hepatitis B virus (HBV), and hepatitis C virus (HCV) were diagnosed in 0.9, 1.8, and 4.7 per 100 person-years.HBV and HCV screening increased from fewer than 20% to over 60% during this period of observation (P < 0.001).Deaths occurred in 57% of those diagnosed with liver disease relative to 15% overall (P < 0.001).Overall 10% of deaths occurred among individuals with a diagnosis of liver disease.Despite care guidelines promoting screening and vaccination for HBV and screening for HCV, screening and vaccination were not universally conducted or, if conducted, not documented.CONCLUSION: Due to high rates of incident liver disease, viral hepatitis screening, vaccination, and treatment among HIV-infected individuals should be a priority.

  3. The secretion of high molecular weight cathepsin B from cultured human liver cancers.

    Directory of Open Access Journals (Sweden)

    Ohsawa,Toshiya

    1989-02-01

    Full Text Available The biochemical characteristics of cathepsin B secreted from cultured human liver cancer cells were examined. The enzyme activity of culture medium against a synthetic substrate, N-carbobenzoxy-L-arginyl-L-arginine-4-methyl-coumaryl-7-amide, was dependent on the addition of cysteine, and the optimal pH was found to be 6.0. No activity was observed when the enzyme source was fresh medium not used for culture. These results suggest that the enzyme released from liver cancer cells is the thiol-protease cathepsin B. The molecular weight of the enzyme with 90% of the total activity was 40,000. Two cathepsin B molecules were found in liver tissue from patients with hepatocellular carcinoma (HCC; one was equivalent in size to the secreted enzyme, and a smaller one was the same as normal liver cathepsin B (27,000, which was also obtained from HCC-bearing cirrhotic liver. These results demonstrate that two molecules of cathepsin B are synthesized in liver cancer, and that the larger one is released into the surrounding tissue.

  4. The Analysis of Blood Flow Dynamics About 64-slice Spiral CT Perfusion Imaging for Primary Liver Cancer%原发性肝癌患者64层螺旋CT灌注成像血流动力学分析

    Institute of Scientific and Technical Information of China (English)

    孙建华

    2015-01-01

    目的:探讨原发性肝癌患者64层螺旋CT灌注成像血流动力学的表现。方法收集2012年8月~2013年7月来我院就诊的确诊为原发性肝癌的患者46例并将其作为观察组,选取2012年8月~2013年7月来我院进行健康体检的健康对象46例并将其作为对照组,血液流动力学表现采用64层螺旋CT灌注成像观察,检测并比较两组患者肝动脉灌注量、肝门静脉灌注量、总肝灌注量、肝动脉灌注指数。结果观察组肝动脉灌注量、肝动脉灌注指数高于对照组,肝门静脉灌注量、总肝灌注量低于对照组,两组差异有统计学意义(P<0.05)。结论原发性肝癌患者采用64层螺旋CT灌注成像诊断血液流动力学表现较为显著,具有较高的诊断价值。%Objective To Einvestigate the blood flow dynamics about 64-slice spiral CT perfusion imaging for primary liver cancer. Methods 46 patients with primary liver cancer diagnosed in our hospital were collected from August 2012 to July 2013 and taken as the observation group, 46 cases of health object for physical examination in our hospital were selected at the same time as the control group, observed the blood lfow dynamics performance used by 64-slice spiral CT perfusion imaging, the two groups were measured and compared about hepatic arterial perfusion, hepatic portal vein perfusion, total liver perfusion, hepatic perfusion index. Results Hepatic arterial perfusion, hepatic perfusion index of observation group were higher, the hepatic portal vein perfusion, total hepatic perfusion were lower than the control group, the difference was statistically significant (P<0.05). Conclusions Primary liver cancer patients use 64-slice spiral CT perfusion imaging in the diagnosis of blood lfow dynamics performance is more signiifcant, with high diagnostic value.

  5. METABOLISM OF MYCLOBUTANIL AND TRIADIMEFON BY HUMAN AND RAT CYTOCHROME P450 ENZYMES AND LIVER MICROSOMES.

    Science.gov (United States)

    Metabolism of two triazole-containing antifungal azoles was studied using expressed human and rat cytochrome P450s (CYP) and liver microsomes. Substrate depletion methods were used due to the complex array of metabolites produced from myclobutanil and triadimefon. Myclobutanil wa...

  6. An attempt to eliminate fibroblast-like cells from primary cultures of fetal human livers.

    Directory of Open Access Journals (Sweden)

    Tokiwa,Takayoshi

    1986-04-01

    Full Text Available The elimination of fibroblast-like cells from primary cultures of fetal human livers was studied. A fibroblast-like cell line (HuF, which was obtained by subculturing fetal human liver cells 4 or more times, was briefly treated with hydrocortisone (HC or putrescine (PUT. The growth of HuF cells was inhibited by HC at a concentration of 10(-2 M and by PUT at a concentration higher than 10(-3 M. Long-term treatment of HuF cells with 10(-3 M HC inhibited the growth of the cells. Primary cultures of fetal human livers were made in medium containing HC or PUT, and morphological and functional examinations were made. The cultures were predominantly composed of epithelial-like cells, with few fibroblast-like cells, when the HC concentration was 10(-5M to 10(-3 M. A high amount of albumin was secreted at these concentrations of HC. On the other hand, at 10(-3 M PUT, many epithelial-like cells were seen, but albumin was undetectable. The present results indicate that albumin-producing epithelial-like cells can be selectively maintained in medium containing HC, in primary cultures of fetal human livers.

  7. Apolipoprotein B synthesis in humans: liver synthesizes only apolipoprotein B-100

    Energy Technology Data Exchange (ETDEWEB)

    Edge, S.B.; Hoeg, J.M.; Schneider, P.D.; Brewer, H.B. Jr.

    1985-08-01

    Apolipoprotein (apo) B-100 and B-48 are prominent apolipoproteins in VLDL, IDL, and chylomicrons. Organ cultures of normal adult human liver were established to ascertain the form of apo B synthesized by hepatocytes in humans. Human liver was minced and incubated in 15 mL methionine-free RPMI-1640 medium with 10% dialyzed fetal calf serum plus 250 microCi /sup 35/S-methionine for eight hours at 37 degrees C. Lipoproteins secreted by the liver were isolated by ultracentrifugation and the content of newly synthesized apo B determined by quantitation of radioactivity in the apoB-100 and apoB-48 bands after separation by 3% NaDodSO/sub 4/ gel electrophoresis. In the eight-hour period, 2.5% to 3.2% of added /sup 35/S-methionine was secreted in TCA-precipitable protein of which 0.34% was apo B. Ninety-nine percent of the apo B in VLDL, IDL, and LDL was in the apo B-100 electrophoretic band. No significant radioactivity was detected in the apo B-48 electrophoretic band. Eighty-nine percent of the total radioactivity of apo B-100 was in VLDL with 3% and 8% in IDL and LDL, respectively. These results establish that adult human liver in organ culture synthesizes apo B-100 but not apo B-48.

  8. Risk assessment of paracetamol-induced liver toxicity based on human in vitro data.

    NARCIS (Netherlands)

    Groothuis, Geny; Mafirakureva, Nyashadzaishe; Proost, Johannes; Jetten, M; Kleinjans, Jos; Lommen, A; Peijnenburg, A; Vredenburg, G; Vermeulen, N; Russel, Frans G. M.

    2014-01-01

    Currently risk assessment is based on animal experiments with limited success. The aim of this study was to explore the feasibility to replace the use of animals in risk assessment for drug-induced liver injury, by hazard identification and kinetic modeling based on human in vitro data for metabolis

  9. MicroRNA-mediated suppression of oncolytic adenovirus replication in human liver.

    Science.gov (United States)

    Ylösmäki, Erkko; Lavilla-Alonso, Sergio; Jäämaa, Sari; Vähä-Koskela, Markus; af Hällström, Taija; Hemminki, Akseli; Arola, Johanna; Mäkisalo, Heikki; Saksela, Kalle

    2013-01-01

    MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression that can suppress their target genes by translational inhibition as well as mRNA destruction. Cell type-specific miRNA expression patterns have been successfully exploited for targeting the expression of experimental and therapeutic gene constructs, for example to reduce pathogenic effects of cancer virotherapy in normal tissues. In order to avoid liver damage associated with systemic or intrahepatic delivery of oncolytic adenoviruses we have introduced the concept of suppressing adenovirus replication in hepatic cells by inserting target elements for the liver-specific miR122 into the viral genome. Here we show using ex vivo cultured tissue specimens that six perfectly complementary miR122 target sites in the 3' untranslated region of the viral E1A gene are sufficient in the absence of any other genetic modifications to prevent productive replication of serotype 5 adenovirus (Ad5) in normal human liver. This modification did not compromise the replicative capacity of the modified virus in cancer tissue derived from a colon carcinoma liver metastasis or its oncolytic potency in a human lung cancer xenograft mouse model. Unlike wild-type Ad5, the modified virus did not result in increased serum levels of liver enzymes in infected mice. These results provide a strong preclinical proof of concept for the use of miR122 target sites for reducing the risk of liver damage caused by oncolytic adenoviruses, and suggest that ectopic miR122 target elements should be considered as an additional safety measure included in any therapeutic virus or viral vector posing potential hazard to the liver.

  10. MicroRNA-mediated suppression of oncolytic adenovirus replication in human liver.

    Directory of Open Access Journals (Sweden)

    Erkko Ylösmäki

    Full Text Available MicroRNAs (miRNAs are important and ubiquitous regulators of gene expression that can suppress their target genes by translational inhibition as well as mRNA destruction. Cell type-specific miRNA expression patterns have been successfully exploited for targeting the expression of experimental and therapeutic gene constructs, for example to reduce pathogenic effects of cancer virotherapy in normal tissues. In order to avoid liver damage associated with systemic or intrahepatic delivery of oncolytic adenoviruses we have introduced the concept of suppressing adenovirus replication in hepatic cells by inserting target elements for the liver-specific miR122 into the viral genome. Here we show using ex vivo cultured tissue specimens that six perfectly complementary miR122 target sites in the 3' untranslated region of the viral E1A gene are sufficient in the absence of any other genetic modifications to prevent productive replication of serotype 5 adenovirus (Ad5 in normal human liver. This modification did not compromise the replicative capacity of the modified virus in cancer tissue derived from a colon carcinoma liver metastasis or its oncolytic potency in a human lung cancer xenograft mouse model. Unlike wild-type Ad5, the modified virus did not result in increased serum levels of liver enzymes in infected mice. These results provide a strong preclinical proof of concept for the use of miR122 target sites for reducing the risk of liver damage caused by oncolytic adenoviruses, and suggest that ectopic miR122 target elements should be considered as an additional safety measure included in any therapeutic virus or viral vector posing potential hazard to the liver.

  11. Human liver epigenetic alterations in non-alcoholic steatohepatitis are related to insulin action.

    Science.gov (United States)

    de Mello, Vanessa D; Matte, Ashok; Perfilyev, Alexander; Männistö, Ville; Rönn, Tina; Nilsson, Emma; Käkelä, Pirjo; Ling, Charlotte; Pihlajamäki, Jussi

    2017-04-03

    Both genetic and lifestyle factors contribute to the risk of non-alcoholic steatohepatitis (NASH). Additionally, epigenetic modifications may also play a key role in the pathogenesis of NASH. We therefore investigated liver DNA methylation, as a marker for epigenetic alterations, in individuals with simple steatosis and NASH, and further tested if these alterations were associated with clinical phenotypes. Liver biopsies obtained from 95 obese individuals (age: 49.5 ± 7.7 years, BMI: 43 ± 5.7 kg/m(2), type 2 diabetes [T2D]: 35) as a wedge biopsy during a Roux-en-Y gastric bypass operation were investigated. Thirty-four individuals had a normal liver phenotype, 35 had simple steatosis, and 26 had NASH. Genome-wide DNA methylation pattern was analyzed using the Infinium HumanMethylation450 BeadChip. mRNA expression was analyzed from 42 individuals using the HumanHT-12 Expression BeadChip. We identified 1,292 CpG sites representing 677 unique genes differentially methylated in liver of individuals with NASH (q liver. These epigenetic alterations in NASH are linked with insulin metabolism.

  12. New evidence for the therapeutic potential of curcumin to treat nonalcoholic fatty liver disease in humans

    Science.gov (United States)

    Inzaugarat, María Eugenia; De Matteo, Elena; Baz, Placida; Lucero, Diego; García, Cecilia Claudia; Gonzalez Ballerga, Esteban; Daruich, Jorge; Sorda, Juan Antonio; Wald, Miriam Ruth

    2017-01-01

    Introduction The immune system acts on different metabolic tissues that are implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Leptin and linoleic acid have the ability to potentially affect immune cells, whereas curcumin is a known natural polyphenol with antioxidant and anti-inflammatory properties. Aims This study was designed to evaluate the pro-inflammatory and pro-oxidant effects of leptin and linoleic acid on immune cells from patients with NAFLD and to corroborate the modulatory effects of curcumin and its preventive properties against the progression of NAFLD using a high-fat diet (HFD)-induced NAFLD/nonalcoholic steatohepatitis mouse model. Results The ex vivo experiments showed that linoleic acid increased the production of reactive oxygen species in monocytes and liver macrophages, whereas leptin enhanced tumor necrosis factor-α (TNF-α) production in monocytes and interferon-γ production in circulating CD4+ cells. Conversely, oral administration of curcumin prevented HFD-induced liver injury, metabolic alterations, intrahepatic CD4+ cell accumulation and the linoleic acid- and leptin- induced pro-inflammatory and pro-oxidant effects on mouse liver macrophages. Conclusion Our findings provide new evidence for the therapeutic potential of curcumin to treat human NAFLD. However, the development of a preventive treatment targeting human circulating monocytes and liver macrophages as well as peripheral and hepatic CD4+ cells requires additional research. PMID:28257515

  13. Association between polycyclic aromatic hydrocarbons and human rectal tumor or liver cancer

    Institute of Scientific and Technical Information of China (English)

    Guohong Jiang; Limin Lun; Liyuan Cong

    2012-01-01

    Objective: The aim of this study was to investigate the effect of polycyclic aromatic hydrocarbons (PAHs) in rectal carcinoma and hepatocarcinoma genesis. Methods: The PAHs in the human rectal cancer and liver cancer tissues, the adjacent tissues and homologous tissues without rectal cancer or liver cancer were extracted by ultrasonic wave. The extracts were then cleaned up and enriched by solid phase extraction, analyzed by high performance liquid chromatography (HPLC) with fluorescence spectroscopy. Results: Four kinds of PAHs were detected in human rectal and hepatic tissues. The contents of pyrene, 2-methylanthracene and benzo (a) pyrene in both rectal cancer tissues and adjacent homologous tissues were higher than rectal tissues without rectal cancer, the differences were statistically significant (P 0.05). The differences of the content of each PAHs between rectal cancer and adjacent tissue were not significant (P > 0.05). The contents of the four PAHs in the three kinds of liver tis-sues were not statistically significant (P > 0.05). Conclusion: PAHs are found in human rectal tissues or hepatic tissues. The contents of PAHs in human rectal tissue may have an effect on the occurrence of human rectal cancer while the contents of PAHs in human hepatic tissues may have not ones.

  14. Obstructive jaundice leads to accumulation of oxidized low density lipoprotein in human liver tissue

    Institute of Scientific and Technical Information of China (English)

    Mustafa Comert; Yucel Ustundag; Ishak Ozel Tekin; Banu Dogan Gun; Figen Barut

    2006-01-01

    Oxidized low density lipoprotein (ox-LDL) molecule is one of the most important modified lipoproteins produced during the oxidative stress. Modified lipoproteins have been defined as being part of the immune inflammatory mechanisms in association with oxidant stress. We have reported the accumulation of ox-LDL in Balb/c mice liver after bile duct ligation previously. Here, we investigated this finding in human beings with obstructive jaundice.Our study demonstrates that obstructive jaundice results in tremendous accumulation of ox-LDL in the liver tissue of patients.

  15. Association of human cytomegalovirus viremia with human leukocyte antigens in liver transplantation recipients

    Institute of Scientific and Technical Information of China (English)

    Jianhua Hu; Jun Fan; Xueqin Meng; Hong Zhao; Xuan Zhang; Hainv Gao; Meifang Yang; Yadan Ma; Minhuan Li; Weihang Ma

    2011-01-01

    Human cytomegalovirus (HCMV) reactivation is a common complication after liver transplantation (LT).Here, we investigated whether human leukocyte antigen (HLA)-matching was related to HCMV infection and subsequent graft failure after LT for hepatitis B virus cirrhosis. This retrospective study reviewed 91 LT recipients.All the patients were grouped according to HLA-A, HLA-B, and HLA-DR locus matching. Clinical data were collected, including complete HLA-typing, HCMV viremia, graft failure, and the time of HCMV viremia.HLA typing was performed using a sequence-specific primer-polymerase chain reaction kit. HCMV was detected by pp65 antigenemia using a commercial kit.The incidence of HCMV infection post-LT was 81.32%.Graft failure was observed in 16 of 91 (17.6%) patients during the 4-year study. The incidence of HCMV viremia was 100% (5/5), 91.4% (32/35), and 72.5% (37/51) in HLA-A two locus, one locus, and zero locus compatibility,respectively. Nevertheless, the degree of the HLA-A,HLA-B, or HLA-DR match did not influence the time of HCMV viremia, graft failure, or the time of graft failure after a diagnosis of HCMV viremia (all P> 0.05). An interesting discovery was that the risk of HCMV viremia tended to be higher in patients with better HLA-A compatibility. Graft failure, time of HCMV viremia, and graft failure after a diagnosis of HCMV viremia appear to be independent of HLA allele compatibility.

  16. Production of human liver prolidase by Saccharomyces cerevisiae as host cells

    Institute of Scientific and Technical Information of China (English)

    Shu-hao WANG; Min LIU; Mu-gen CHI; Qing-ding WANG; Man-ji SUN

    2004-01-01

    AIM: To clone and express the recombinant human liver prolidase in yeast and explore the activities of both dipeptidase and organophosphoric acid anhydrolase (OPAA). METHODS: The cDNA encoding human liver prolidase derived from healthy adult liver was cloned into the pYES2, an expression vector of S cerevisiae, and then transformed into S cerevisiae INVScl by electroporation. The transformant with the highest enzymatic activity was induced by galactose for expression. The optimal induction conditions (temperature, induction time, and the initial amount of inoculation cells) were estimated by orthogonal experimental design. The recombinant prolidase and OPAA activities were assayed by spectrocolorimetric methods. RESULTS: The recombinant enzyme catalyzed the hydrolysis of organophosphorous compound soman as well as the hydrolysis of dipeptide Gly-Pro. Under the optimal induction conditions (20 h, 25 ℃, initial OD600=0.4), the maximum activities of prolidase and OPAA came to enzyme in disrupted cell supernatants showed a molecular weight of 56 kDa. Intensity scanning of the SDS-PAGE gel revealed that the enzyme accounted for 3.16 % of the total protein in the supernatant. One liter incubation medium produced 7 g of wet yeast cell containing 4.56 mg of the recombination protein. CONCLUSION: The recombinant human liver prolidase produced by yeast cell (S cerevisiae) exhibited both dipeptidase and OPAA activities.

  17. In vitro Phase I and Phase II metabolism of α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV) and methedrone by human liver microsomes and human liver cytosol.

    Science.gov (United States)

    Negreira, Noelia; Erratico, Claudio; Kosjek, Tina; van Nuijs, Alexander L N; Heath, Ester; Neels, Hugo; Covaci, Adrian

    2015-07-01

    The aim of the present study was to identify the in vitro Phase I and Phase II metabolites of three new psychoactive substances: α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV), and methedrone, using human liver microsomes and human liver cytosol. Accurate-mass spectra of metabolites were obtained using liquid chromatography-quadrupole time-of-flight mass spectrometry. Six Phase I metabolites of α-PVP were identified, which were formed involving reduction, hydroxylation, and pyrrolidine ring opening reactions. The lactam compound was the major metabolite observed for α-PVP. Two glucuronidated metabolites of α-PVP, not reported in previous in vitro studies, were further identified. MDPV was transformed into 10 Phase I metabolites involving reduction, hydroxylation, and loss of the pyrrolidine ring. Also, six glucuronidated and two sulphated metabolites were detected. The major metabolite of MDPV was the catechol metabolite. Methedrone was transformed into five Phase I metabolites, involving N- and O-demethylation, hydroxylation, and reduction of the ketone group. Three metabolites of methedrone are reported for the first time. In addition, the contribution of individual human CYP enzymes in the formation of the detected metabolites was investigated.

  18. RESULTS OF SLICE MEASUREMENTS

    CERN Document Server

    Rudolph, J

    2011-01-01

    The linear accelerator ELBE delivers high-brightness electron bunches to multiple user stations, including two IR-FEL oscillators [1], [2]. In the framework of an upgrade program the current thermionic injector is being replaced by a SRF-photoinjector [3], [4]. The SRF injector promises higher beam quality, especially required for future experiments with high power laser radiation. During the commissioning phase, the SRF-injector was running in parallel to the thermionic gun. After installation of a injection beamline (dogleg), beam from the SRF-injector can now be injected into the ELBE linac. Detailed characterization of the electron beam quality delivered by the new electron injector includes vertical slice emittance measurements in addition to measurements of projected emittance values. This report gives an overview of the status of the project and summarizes first measurement results as well as results of simulations performed with measurement settings.

  19. The adaptive endoplasmic reticulum stress response to lipotoxicity in progressive human nonalcoholic fatty liver disease.

    Science.gov (United States)

    Lake, April D; Novak, Petr; Hardwick, Rhiannon N; Flores-Keown, Brieanna; Zhao, Fei; Klimecki, Walter T; Cherrington, Nathan J

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) may progress from simple steatosis to severe, nonalcoholic steatohepatitis (NASH) in 7%-14% of the U.S. population through a second "hit" in the form of increased oxidative stress and inflammation. Endoplasmic reticulum (ER) stress signaling and the unfolded protein response (UPR) are triggered when high levels of lipids and misfolded proteins alter ER homeostasis creating a lipotoxic environment within NAFLD livers. The objective of this study was to determine the coordinate regulation of ER stress-associated genes in the progressive stages of human NAFLD. Human liver samples categorized as normal, steatosis, NASH (Fatty), and NASH (Not Fatty) were analyzed by individual Affymetrix GeneChip Human 1.0 ST microarrays, immunoblots, and immunohistochemistry. A gene set enrichment analysis was performed on autophagy, apoptosis, lipogenesis, and ER stress/UPR gene categories. An enrichment of downregulated genes in the ER stress-associated lipogenesis and ER stress/UPR gene categories was observed in NASH. Conversely, an enrichment of upregulated ER stress-associated genes for autophagy and apoptosis gene categories was observed in NASH. Protein expression of the adaptive liver response protein STC2 and the transcription factor X-box binding protein 1 spliced (XBP-1s) were significantly elevated among NASH samples, whereas other downstream ER stress proteins including CHOP, ATF4, and phosphorylated JNK and eIF2α were not significantly changed in disease progression. Increased nuclear accumulation of total XBP-1 protein was observed in steatosis and NASH livers. The findings reveal the presence of a coordinated, adaptive transcriptional response to hepatic ER stress in human NAFLD.

  20. The microcell mediated transfer of human chromosome 8 into highly metastatic rat liver cancer cell line C5F

    Institute of Scientific and Technical Information of China (English)

    Hu Liu; Sheng-Long Ye; Jiong Yang; Zhao-You Tang; Yin-Kun Liu; Lun-Xiu Qin; Shuang-Jian Qiu; Rui-Xia Sun

    2003-01-01

    AIM: Our previous research on the surgical samples of primary liver cancer with CGH showed that the loss of human chromosome 8p had correlation with the metastatic phenotype of liver cancer. In order to seek the functional evidence that there could be a metastatsis suppressor gene (s) for liver cancer on human chromosome 8, we tried to transfer normal human chromosome 8 into rat liver cancer cell line C5F, which had high metastatic potential to lung.METHODS: Human chromosome 8 randomly marked with neo gene was introduced into C5F cell line by MMCT and positive microcell hybrids were screened by double selections of G418 and HAT. Single cell isolation cloning was applied to clone microcell hybrids. Finally, STS-PCR and WCP-FISH were used to confirm the introduction.RESULTS: Microcell hybrids resistant to HAT and G418 were obtained and 15 clones were obtained by single-cell isolation cloning. STS-PCR and WCP-FISH proved that human chromosome 8 had been successfully introduced into rat liver cancer cell line C5F. STS-PCR detected a random loss in the chromosome introduced and WCP-FISH found a consistent recombination of the introduced human chromosome with the rat chromosome.CONCLUSION: The successful introduction of human chromosome 8 into highly metastatic rat liver cancer cell line builds the basis for seeking functional evidence of a metastasis suppressor gene for liver cancer harboring on human chromosome 8 and its subsequent cloning.

  1. Comparative metabolism of chloroacetamide herbicides and selected metabolites in human and rat liver microsomes.

    Science.gov (United States)

    Coleman, S; Linderman, R; Hodgson, E; Rose, R L

    2000-01-01

    Acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methyl-phenyl)-acetamide], alachlor [N-(methoxymethyl)-2-chloro-N-(2, 6-diethyl-phenyl)acetamide], butachlor [N-(butoxymethyl)-2-chloro-N-(2,6-diethyl-phenyl)acetamide], and metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl) acetamide] are pre-emergent herbicides used in the production of agricultural crops. These herbicides are carcinogenic in rats: acetochlor and alachlor cause tumors in the nasal turbinates, butachlor causes stomach tumors, and metolachlor causes liver tumors. It has been suggested that the carcinogenicity of these compounds involves a complex metabolic activation pathway leading to a DNA-reactive dialkylbenzoquinone imine. Important intermediates in this pathway are 2-chloro-N-(2,6-diethylphenyl)acetamide (CDEPA) produced from alachlor and butachlor and 2-chloro-N-(2-methyl-6-ethylphenyl)acetamide (CMEPA) produced from acetochlor and metolachlor. Subsequent metabolism of CDEPA and CMEPA produces 2,6-diethylaniline (DEA) and 2-methyl-6-ethylaniline (MEA), which are bioactivated through para-hydroxylation and subsequent oxidation to the proposed carcinogenic product dialkylbenzoquinone imine. The current study extends our earlier studies with alachlor and demonstrates that rat liver microsomes metabolize acetochlor and metolachlor to CMEPA (0.065 nmol/min/mg and 0.0133 nmol/min/mg, respectively), whereas human liver microsomes can metabolize only acetochlor to CMEPA (0.023 nmol/min/mg). Butachlor is metabolized to CDEPA to a much greater extent by rat liver microsomes (0.045 nmol/min/mg) than by human liver microsomes (< 0.001 nmol/min/mg). We have determined that both rat and human livers metabolize both CMEPA to MEA (0.308 nmol/min/mg and 0.541 nmol/min/mg, respectively) and CDEPA to DEA (0.350 nmol/min/mg and 0.841 nmol/min/mg, respectively). We have shown that both rat and human liver microsomes metabolize MEA (0.035 nmol/min/mg and 0.069 nmol/min/mg, respectively

  2. Alpha-1-antitrypsin deficiency: from genoma to liver disease. PiZ mouse as model for the development of liver pathology in human.

    Science.gov (United States)

    Giovannoni, Isabella; Callea, Francesco; Stefanelli, Marta; Mariani, Riccardo; Santorelli, Filippo M; Francalanci, Paola

    2015-01-01

    Homozygous individuals with alpha-1-antitrypsin deficiency (AATD) type PiZ have an increased risk of chronic liver disease and hepatocellular carcinoma (HCC). It is noteworthy that HCCs are composed by hepatocytes without accumulation of AAT, but the reason for this remains unclear. The aim of this study was to determine liver pathology in PiZ mice, focusing the attention on the distribution of AAT globules in normal liver, regenerative foci and neoplastic nodules. Liver of 79 PiZ mice and 18 wild type (Wt) was histologically analysed for steatosis, clear cell foci, hyperplasia and neoplasia. The expression of human-AAT transgene and murine AAT, in non-neoplastic liver and in hyperplastic/neoplastic nodules was tested by qPCR and qRT-PCR. RT-PCR was used to study expression of hepatic markers: albumin, α-foetoprotein, transthyretin, AAT, glucose-6-phospate, tyrosine aminotransferase. Liver pathology was seen more frequently in PiZ (47/79) than in Wt (5/18) and its development was age related. In older PiZ mice (18-24 m), livers showed malignant tumours (HCC and angiosarcoma) (17/50), hyperplastic nodules (28/50), non-specific changes (33/50), whereas only 9/50 were normal. Both human-AATZ DNA and mRNA showed no differences between tumours/nodules and normal liver, while murine-AAT mRNA was reduced in tumours/nodules. Accumulation of AAT is associated with an increased risk of liver nodules. The presence of globule-devoid hepatocytes and the reduced expression of murine-AAT mRNA in hyperplastic and neoplastic nodules suggest that these hepatic lesions in AATD could originate from proliferating dedifferentiated cells, lacking AAT storage and becoming capable of AFP re-expression. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Identification of UDP-glucuronosyltransferase isoforms responsible for leonurine glucuronidation in human liver and intestinal microsomes.

    Science.gov (United States)

    Tan, Bo; Cai, Weimin; Zhang, Jinlian; Zhou, Ning; Ma, Guo; Yang, Ping; Zhu, Qing; Zhu, Yizhun

    2014-09-01

    Leonurine is a potent component of herbal medicine Herba leonuri. The detail information on leonurine metabolism in human has not been revealed so far. Two primary metabolites, leonurine O-glucuronide and demethylated leonurine, were observed and identified in pooled human liver microsomes (HLMs) and O-glucuronide is the predominant one. Among 12 recombinant human UDP-glucuronosyltransferases (UGTs), UGT1A1, UGT1A8, UGT1A9, and UGT1A10 showed catalyzing activity toward leonurine glucuronidation. The intrinsic clearance (CLint) of UGT1A1 was approximately 15-to 20-fold higher than that of UGT1A8, UGT1A9, and UGT1A10, respectively. Both chemical inhibition study and correlation study demonstrated that leonurine glucuronidation activities in HLMs had significant relationship with UGT1A1 activities. Leonurine glucuronide was the major metabolite in human liver microsomes. UGT1A1 was principal enzyme that responsible for leonurine glucuronidation in human liver and intestine microsomes.

  4. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Roskams, Tania [Department of Morphology and Molecular Pathology, University of Leuven (Belgium); Oben, Jude A., E-mail: j.oben@ucl.ac.uk [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Department of Gastroenterology and Hepatology, Guy' s and St Thomas' Hospital, London SE1 7EH (United Kingdom)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  5. Proteomic Profiling of Human Liver Biopsies: Hepatitis C Virus-Induced Fibrosis and Mitochondrial Dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, Deborah L.; Jacobs, Jon M.; Paeper, Bryan; Proll, Sean; Gritsenko, Marina A.; Carithers, Jr., Robert L.; Larson , Anne M.; Yeh, Matthew M.; Camp, David G.; Smith, Richard D.; Katze, Michael G.

    2007-09-01

    Liver biopsies from HCV-infected patients offer the unique opportunity to study human liver biology and disease in vivo. However, the low protein yields associated with these small samples present a significant challenge for proteomic analysis. In this study we describe the application of an ultra-sensitive proteomics platform for performing robust quantitative proteomic studies on microgram amounts of HCV-infected human liver tissue from 15 patients at different stages of fibrosis. A high quality liver protein data base containing 5,920 unique protein identifications supported high throughput quantitative studies using 16O:18O stable isotope labeling in combination with the accurate mass and time (AMT) tag approach. A total of 1,641 liver biopsy proteins were quantified and ANOVA identified 210 proteins exhibiting statistically significant differences associated with fibrosis stage. Hierarchical clustering revealed that biopsies representative of later fibrosis stages (e.g. Batts-Ludwig stages 3-4) exhibited a distinct protein expression profile indicating an apparent down-regulation of many proteins when compared to samples from earlier fibrosis stages (e.g. Batts-Ludwig stages 0-2). Functional analysis of these signature proteins suggests that impairment of key mitochondrial processes including fatty acid oxidation and oxidative phosphorylation, and response to oxidative stress and reactive oxygen species occurs during advanced stage 3-4 fibrosis. In conclusion, the results reported here represent a significant advancement in clinical proteomics providing to our knowledge, the first demonstration of global proteomic alterations accompanying liver disease progression in patients chronically infected with HCV. Our findings contribute to a generally emerging theme associating oxidative stress and hepatic mitochondrial dysfunction with HCV pathogenesis.

  6. Dose requirements of continuous infusion of rocuronium and atracurium throughout orthotopic liver transplantation in humans

    Institute of Scientific and Technical Information of China (English)

    WENG Xiao-chuan; ZHOU Liang; FU Yin-yan; ZHU Sheng-mei; HE Hui-liang; WU Jian

    2005-01-01

    Objective: To compare the dose requirements of continuous infusion of rocuronium and atracurium throughout orthotopic liver transplantation (OLT) in humans. Methods: Twenty male patients undergoing liver transplantation were randomly assigned to two comparable groups of 10 patients each to receive a continuous infusion of rocuronium or atracurium under itravenous balanced anesthesia. The response of adductor pollicis to train-of-four (TOF) stimulation of unlar nerve was monitored.The infusion rates of rocuronium and atracurium were adjusted to maintain T1/Tc ratio of 2%~10%. The total dose of each drug given during each of the three phases of OLT was recorded. Results: Rocuronium requirement, which were (0.468±0.167)unchanged during orthotopic liver transplantation. Conclusions: This study showed that the exclusion of the liver from the circulation results in the significantly reduced requirement of rocuronium while the requirement of atracurium was not changed,which suggests that the liver is of major importance in the clearance of rocuronium. A continuous infusion of atracurium with constant rate can provide stable neuromuscular blockade during the three stages of OLT.

  7. Thermal neutron irradiation field design for boron neutron capture therapy of human explanted liver.

    Science.gov (United States)

    Bortolussi, S; Altieri, S

    2007-12-01

    The selective uptake of boron by tumors compared to that by healthy tissue makes boron neutron capture therapy (BNCT) an extremely advantageous technique for the treatment of tumors that affect a whole vital organ. An example is represented by colon adenocarcinoma metastases invading the liver, often resulting in a fatal outcome, even if surgical resection of the primary tumor is successful. BNCT can be performed by irradiating the explanted organ in a suitable neutron field. In the thermal column of the Triga Mark II reactor at Pavia University, a facility was created for this purpose and used for the irradiation of explanted human livers. The neutron field distribution inside the organ was studied both experimentally and by means of the Monte Carlo N-particle transport code (MCNP). The liver was modeled as a spherical segment in MCNP and a hepatic-equivalent solution was used as an experimental phantom. In the as-built facility, the ratio between maximum and minimum flux values inside the phantom ((phi(max)/phi(min)) was 3.8; this value can be lowered to 2.3 by rotating the liver during the irradiation. In this study, the authors proposed a new facility configuration to achieve a uniform thermal neutron flux distribution in the liver. They showed that a phi(max)/phi(min) ratio of 1.4 could be obtained without the need for organ rotation. Flux distributions and dose volume histograms were reported for different graphite configurations.

  8. Transplantation of human stem cell-derived hepatocytes in an animal model of acute liver failure.

    Science.gov (United States)

    Ramanathan, Rajesh; Pettinato, Giuseppe; Beeston, John T; Lee, David D; Wen, Xuejun; Mangino, Martin J; Fisher, Robert A

    2015-08-01

    Hepatocyte cell transplantation can be life-saving in patients with acute liver failure (ALF); however, primary human hepatocyte transplantation is limited by the scarcity of donor hepatocytes. We investigated the effect of stem cell-derived, hepatocyte-like cells in an animal xenotransplant model of ALF. Intraperitoneal d-galactosamine was used to develop a lethal model of ALF in the rat. Human induced pluripotent stem cells (iPSC), human mesenchymal stem cells, and human iPSC combined with human endothelial cells (iPSC + EC) were differentiated into hepatocyte-like cells and transplanted into the spleens of athymic nude rats with ALF. A reproducible lethal model of ALF was achieved with nearly 90% death within 3 days. Compared with negative controls, rats transplanted with stem cell-derived, hepatocyte-like cells were associated with increased survival. Human albumin was detected in the rat serum 3 days after transplantation in more than one-half the animals transplanted with hepatocyte-like cells. Only animals transplanted with iPSC + EC-derived hepatocytes had serum human albumin at 14 days posttransplant. Transplanted hepatocyte-like cells homed to the injured rat liver, whereas the ECs were only detected in the spleen. Transplantation of stem cell-derived, hepatocyte-like cells improved survival with evidence of in vivo human albumin production. Combining ECs may prolong cell function after transplantation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Biotransformation of chlorpyrifos and diazinon by human liver microsomes and recombinant human cytochrome P450s (CYP).

    Science.gov (United States)

    Sams, C; Cocker, J; Lennard, M S

    2004-10-01

    The cytochrome P450 (CYP)-mediated biotransformation of the organophosphorothioate insecticides chlorpyrifos and diazinon was investigated. Rates of desulphuration to the active oxon metabolite (chlorpyrifos-oxon and diazinon-oxon) and dearylation to non-toxic hydrolysis products were determined in human liver microsome preparations from five individual donors and in recombinant CYP enzymes. Chlorpyrifos and diazinon underwent desulphuration in human liver microsome with mean Km = 30 and 45 microM and V(max) = 353 and 766 pmol min(-1) mg(-1), respectively. Dearylation of these compounds by human liver microsome proceeded with Km = 12 and 28 microM and V(max) = 653 and 1186 pmol min(-1) mg(-1), respectively. The apparent intrinsic clearance (V(max)/Km) of dearylation was 4.5- and 2.5-fold greater than desulphuration for chlorpyrifos and diazinon, respectively. Recombinant human CYP2B6 possessed the highest desulphuration activity for chlorpyrifos, whereas CYP2C19 had the highest dearylation activity. In contrast, both desulphuration and dearylation of diazinon were catalysed at similar rates, in the rank order CYP2C19 > CYP1A2 > CYP2B6 > CYP3A4. Both organophosphorothioates were more readily detoxified (dearylation) than bioactivated (desulphuration) in all human liver microsome preparations. However, the role of individual CYP enzymes in these two biotransformation pathways varied according to the structure of the organophosphorothioate, which was reflected in different activation/detoxification ratios for chlorpyrifos and diazinon. Variability in activity of individual CYP enzymes may influence interindividual sensitivity to the toxic effects of chlorpyrifos and diazinon.

  10. Chip-based human liver-intestine and liver-skin co-cultures--A first step toward systemic repeated dose substance testing in vitro.

    Science.gov (United States)

    Maschmeyer, Ilka; Hasenberg, Tobias; Jaenicke, Annika; Lindner, Marcus; Lorenz, Alexandra Katharina; Zech, Julie; Garbe, Leif-Alexander; Sonntag, Frank; Hayden, Patrick; Ayehunie, Seyoum; Lauster, Roland; Marx, Uwe; Materne, Eva-Maria

    2015-09-01

    Systemic repeated dose safety assessment and systemic efficacy evaluation of substances are currently carried out on laboratory animals and in humans due to the lack of predictive alternatives. Relevant international regulations, such as OECD and ICH guidelines, demand long-term testing and oral, dermal, inhalation, and systemic exposure routes for such evaluations. So-called "human-on-a-chip" concepts are aiming to replace respective animals and humans in substance evaluation with miniaturized functional human organisms. The major technical hurdle toward success in this field is the life-like combination of human barrier organ models, such as intestine, lung or skin, with parenchymal organ equivalents, such as liver, at the smallest biologically acceptable scale. Here, we report on a reproducible homeostatic long-term co-culture of human liver equivalents with either a reconstructed human intestinal barrier model or a human skin biopsy applying a microphysiological system. We used a multi-organ chip (MOC) platform, which provides pulsatile fluid flow within physiological ranges at low media-to-tissue ratios. The MOC supports submerse cultivation of an intact intestinal barrier model and an air-liquid interface for the skin model during their co-culture with the liver equivalents respectively at (1)/100.000 the scale of their human counterparts in vivo. To increase the degree of organismal emulation, microfluidic channels of the liver-skin co-culture could be successfully covered with human endothelial cells, thus mimicking human vasculature, for the first time. Finally, exposure routes emulating oral and systemic administration in humans have been qualified by applying a repeated dose administration of a model substance - troglitazone - to the chip-based co-cultures.

  11. Hepatic progenitor cells in human liver cirrhosis:Immunohistochemical,electron microscopic and immunofluorencence confocal microscopic findings

    Institute of Scientific and Technical Information of China (English)

    Jia-Cheng Xiao; Xiao-Long Jin; Peter Ruck; Anne Adam; Edwin Kaiserling

    2004-01-01

    AIM: To investigate whether hepatic progenitor cells (HPC),that reveal the features of oval cells in rodents and small epithelial cells (SEC) in certain human liver disease, were also found in human liver cirrhosis (HLC).METHODS: Surgical liver specimens from 20 cases of hepatitis B virus-positive HLC (15 cases containing hepatocellular carcinoma) were investigated by light microscopic immunohistochemistry (LM-IHC). Among them specimens from 15 cases were investigated by electron microscopy (EM)and those from 5 cases by immunofluorencence confocal laser scanning microscopy (ICLSM). Antibodies against cytokeratin 7 and albumin were used and single and/or double labelling were performed respectively.RESULTS: LM-IHC showed that at the margins of regenerating nodules and in the fibrous septae, a small number of cells in the proliferating bile ductules were positive for CK7 and albumin. At the EM level these HPC were morphologically similar to the SEC described previously, and also similar to the oval cells seen in experimental hepatocarcinogenesis.They were characterized by their small size, oval shape, a high nucleus/cytoplasm ratio, a low organelle content in cytoplasm, and existence of tonofilaments and intercellular junctions. ICLSM revealed that HPC expressed both cytokeratin 7 and albumin.CONCLUSION: HPC with ultrastructural and immunophenotypical features of oval cells, i.e., hepatic stem cell-like cells as noted in other liver diseases, were found in HLC. These findings further support the hypothesis that bipotent hepatic stem cells, that may give rise to biliary epithelial cells and hepatocytes, exist in human livers.

  12. Mechanism of action of novel piperazine containing a toxicant against human liver cancer cells

    Science.gov (United States)

    Kanthimathi, MS; Haerian, Batoul Sadat

    2016-01-01

    The purpose of this study was to assess the cytotoxic potential of a novel piperazine derivative (PCC) against human liver cancer cells. SNU-475 and 423 human liver cancer cell lines were used to determine the IC50 of PCC using the standard MTT assay. PCC displayed a strong suppressive effect on liver cancer cells with an IC50 value of 6.98 ± 0.11 µM and 7.76 ± 0.45 µM against SNU-475 and SNU-423 respectively after 24 h of treatment. Significant dipping in the mitochondrial membrane potential and elevation in the released of cytochrome c from the mitochondria indicated the induction of the intrinsic apoptosis pathway by PCC. Activation of this pathway was further evidenced by significant activation of caspase 3/7 and 9. PCC was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-κB translocation to the nucleus. Cell cycle arrest in the G1 phase was confirmed by flow cytometry and up-regulation of glutathione reductase expression was quantified by qPCR. Results of this study suggest that PCC is a potent anti-cancer agent inducing both intrinsic and extrinsic pathways of apoptosis in liver cancer cell lines. PMID:27019772

  13. A red wine polyphenolic extract reduces the activation phenotype of cultured human liver myofibroblasts

    Institute of Scientific and Technical Information of China (English)

    Véronique Neaud; Jean Rosenbaum

    2008-01-01

    AIM: To test the effect of a standardized red wine polyphenolic extract (RWPE) on the phenotype of human liver myofibroblasts in culture.METHODS: Human myofibroblasts grown from liver explants were used in this study. Cell proliferation was measured with the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. Signaling events were analyzed by western blot with phosphospecific antibodies. Matrix-metalloproteinase activity was measured with gel zymography.RESULTS: We found that cell proliferation was dosedependently decreased by up to 90% by RWPE while cell viability was not affected. Exposure to RWPE also greatly decreased the phosphorylation of ERK1/ERK2 and Akt in response to stimulation by the mitogenic factor platelet-derived growth factor BB (PDGF-BB).Finally, RWPE affected extracellular matrix remodeling by decreasing the secretion by myofibroblasts of matrixmetalloproteinase-2 and of tissue inhibitor of matrixmetalloproteinases-1.CONCLUSION: Altogether, RWPE decreases the activation state of liver myofibroblasts. The identification of the active compounds in RWPE could offer new therapeutic strategies against liver fibrosis.

  14. Mice with chimeric livers are an improved model for human lipoprotein metabolism.

    Directory of Open Access Journals (Sweden)

    Ewa C S Ellis

    Full Text Available OBJECTIVE: Rodents are poor model for human hyperlipidemias because total cholesterol and low density lipoprotein levels are very low on a normal diet. Lipoprotein metabolism is primarily regulated by hepatocytes and we therefore assessed whether chimeric mice extensively repopulated with human cells can model human lipid and bile acid metabolism. DESIGN: FRG [ F ah(-/- R ag2(-/-Il2r g (-/-] mice were repopulated with primary human hepatocytes. Serum lipoprotein lipid composition and distribution (VLDL, LDL, and HDL was analyzed by size exclusion chromatography. Bile was analyzed by LC-MS or by GC-MS. RNA expression levels were measured by quantitative RT-PCR. RESULTS: Chimeric mice displayed increased LDL and VLDL fractions and a lower HDL fraction compared to wild type, thus significantly shifting the ratio of LDL/HDL towards a human profile. Bile acid analysis revealed a human-like pattern with high amounts of cholic acid and deoxycholic acid (DCA. Control mice had only taurine-conjugated bile acids as expcted, but highly repopulated mice had glycine-conjugated cholic acid as found in human bile. RNA levels of human genes involved in bile acid synthesis including CYP7A1, and CYP27A1 were significantly upregulated as compared to human control liver. However, administration of recombinant hFGF19 restored human CYP7A1 levels to normal. CONCLUSION: Humanized-liver mice showed a typical human lipoprotein profile with LDL as the predominant lipoprotein fraction even on a normal diet. The bile acid profile confirmed presence of an intact enterohepatic circulation. Although bile acid synthesis was deregulated in this model, this could be fully normalized by FGF19 administration. Taken together these data indicate that chimeric FRG-mice are a useful new model for human lipoprotein and bile-acid metabolism.

  15. Human placenta metabolizes fatty acids: implications for fetal fatty acid oxidation disorders and maternal liver diseases.

    Science.gov (United States)

    Shekhawat, Prem; Bennett, Michael J; Sadovsky, Yoel; Nelson, D Michael; Rakheja, Dinesh; Strauss, Arnold W

    2003-06-01

    The role of fat metabolism during human pregnancy and in placental growth and function is poorly understood. Mitochondrial fatty acid oxidation disorders in an affected fetus are associated with maternal diseases of pregnancy, including preeclampsia, acute fatty liver of pregnancy, and the hemolysis, elevated liver enzymes, and low platelets syndrome called HELLP. We have investigated the developmental expression and activity of six fatty acid beta-oxidation enzymes at various gestational-age human placentas. Placental specimens exhibited abundant expression of all six enzymes, as assessed by immunohistochemical and immunoblot analyses, with greater staining in syncytiotrophoblasts compared with other placental cell types. beta-Oxidation enzyme activities in placental tissues were higher early in gestation and lower near term. Trophoblast cells in culture oxidized tritium-labeled palmitate and myristate in substantial amounts, indicating that the human placenta utilizes fatty acids as a significant metabolic fuel. Thus human placenta derives energy from fatty acid oxidation, providing a potential explanation for the association of fetal fatty acid oxidation disorders with maternal liver diseases in pregnancy.

  16. Metabolism of sesamin by cytochrome P450 in human liver microsomes.

    Science.gov (United States)

    Yasuda, Kaori; Ikushiro, Shinichi; Kamakura, Masaki; Ohta, Miho; Sakaki, Toshiyuki

    2010-12-01

    Metabolism of sesamin by cytochrome P450 (P450) was examined using yeast expression system and human liver microsomes. Saccharomyces cerevisiae cells expressing each of human P450 isoforms (CYP1A1, 1A2, 2A6, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, and 3A4) were cultivated with sesamin, and monocatechol metabolite was observed in most of P450s. Kinetic analysis using the microsomal fractions of the recombinant S. cerevisiae cells revealed that CYP2C19 had the largest k(cat)/K(m) value. Based on the kinetic data and average contents of the P450 isoforms in the human liver, the putative contribution of P450s for sesamin metabolism was large in the order of CYP2C9, 1A2, 2C19, and 2D6. A good correlation was observed between sesamin catecholization activity and CYP2C9-specific activity in in vitro studies using 10 individual human liver microsomes, strongly suggesting that CYP2C9 is the most important P450 isoform for sesamin catecholization in human liver. Inhibition studies using each anti-P450 isoform-specific antibody confirmed that CYP2C9 was the most important, and the secondary most important P450 was CYP1A2. We also examined the inhibitory effect of sesamin for P450 isoform-specific activities and found a mechanism-based inhibition of CYP2C9 by sesamin. In contrast, no mechanism-based inhibition by sesamin was observed in CYP1A2-specific activity. Our findings strongly suggest that further studies are needed to reveal the interaction between sesamin and therapeutic drugs mainly metabolized by CYP2C9.

  17. [Detection of human parvovirus B19, human bocavirus and human parvovirus 4 infections in blood samples among 95 patients with liver disease in Nanjing by nested PCR].

    Science.gov (United States)

    Tong, Rui; Zhou, Wei-Min; Liu, Xi-Jun; Wang, Yue; Lou, Yong-Liang; Tan, Wen-Jie

    2013-04-01

    To analyze the infection of human parvovirus B19, human bocavirus (HBoV) and human parvovirus 4 (PARV4) in blood samples among patients with liver disease in Nanjing by molecular detection. Nested PCR assays were designed and validated to detect B19, HBoV and PARV4, respectively. The assays were used to screen three parvoviruses in blood samples from 95 patients with different liver disease in Nanjing. The parvovirus infection was analyzed statistically. The detection limits were 10 copies of genomic DNA equivalents per reaction for each assays and the good specificity were observed. The frequency of B19 and HBoV were 2/95 (2.1%) and 9/95 (9.5%) in blood samples respectively. No PARV4 was detected. HBoV was detected in 3/5 patients with drug-induced hepatitis. Both B19 and HBoV infection were detected in blood from patients with liver disease.

  18. Definition of the transcription initiation site of human plasminogen gene in liver and non hepatic cell lines.

    Science.gov (United States)

    Malgaretti, N; Bruno, L; Pontoglio, M; Candiani, G; Meroni, G; Ottolenghi, S; Taramelli, R

    1990-12-31

    We have mapped the cap site of the human plasminogen mRNA by primer extension and PCR techniques and found that it is located at position -161 relative to the first ATG, 97 bases upstream to the 5' end of the previously isolated cDNA clone. Seven human hepatic and non hepatic cell lines and fresh liver cells were tested for human plasminogen mRNA expression: the liver and the liver derived HepG2 cell line represent the major site of plasminogen RNA synthesis while the other cell lines (Hep3B, HeLa, IMR, 293 CaCo and SW626) show much lower levels.

  19. In vitro biotransformation of tris(2-butoxyethyl) phosphate (TBOEP) in human liver and serum

    Energy Technology Data Exchange (ETDEWEB)

    Van den Eede, Nele, E-mail: nele.vandeneede@uantwerpen.be [Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp (Belgium); Erratico, Claudio [Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp (Belgium); Exarchou, Vassiliki [Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp (Belgium); Maho, Walid; Neels, Hugo [Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp (Belgium); Covaci, Adrian, E-mail: adrian.covaci@uantwerpen.be [Toxicological Center, Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp (Belgium)

    2015-04-15

    Tris(2-butoxyethyl) phosphate (TBOEP) is a plasticizer present in indoor dust, reaching levels of several micrograms per gram. Such levels could lead to significant daily exposure of adults and children. Currently, no toxicokinetic data are available to estimate TBOEP clearance in humans after uptake and therefore, one objective of this study was to investigate intrinsic clearance of TBOEP by human liver microsome (HLM) and serum enzymes. Another objective was to generate information to identify and prioritize several metabolites of TBOEP for investigation of human exposure by biomonitoring. 1D and 2D-NMR methodologies were successfully applied on a mixture of the metabolites to confirm the structure of 3-HO-TBOEP (bis(2-butoxyethyl) 3-hydroxyl-2-butoxyethyl phosphate) and to tentatively assign structures to 1-HO-TBOEP and 2-HO-TBOEP. HO-TBOEP isomers and bis(2-butoxyethyl) phosphate (BBOEP), bis(2-butoxyethyl) hydroxyethyl phosphate (BBOEHEP) were further monitored by liquid chromatography–tandem mass spectrometry. Rates of formation of BBOEHEP and HO-TBOEP metabolites by liver enzymes were best described by the Michaelis–Menten model. Apparent K{sub m} values for BBOEHEP, 3-HO-TBOEP, and sum of 1- and 2-HO-TBOEP isomer formation were 152, 197 and 148 μM, respectively. Apparent V{sub max} values for the formation of BBOEHEP, 3-HO-TBOEP, and the sum of 1- and 2-HO-TBOEP isomers were 2560, 643, and 254 pmol/min/mg protein, respectively. No detectable formation of BBOEP occurred with liver or serum enzymes. Our findings indicate that intrinsic clearance of TBOEP is mainly catalyzed by oxidative enzymes in the liver and that its major in vitro metabolite is BBOEHEP. These findings can be applied in human biomonitoring studies and risk assessment. - Highlights: • First steps in the elucidation of TBOEP toxicokinetics • Quantification of TBOEP metabolites in human serum and liver microsomes • No detectable formation of BBOEP occurred with liver or serum

  20. Thiamethoxam induced mouse liver tumors and their relevance to humans. Part 2: species differences in response.

    Science.gov (United States)

    Green, Trevor; Toghill, Alison; Lee, Robert; Waechter, Felix; Weber, Edgar; Peffer, Richard; Noakes, James; Robinson, Mervyn

    2005-07-01

    Thiamethoxam is a neonicotinoid insecticide that is not a mutagen, but it did cause a significant increase in liver cancer in mice, but not rats, in chronic dietary feeding studies. Previous studies in mice have characterized a carcinogenicity mode of action that involved depletion of plasma cholesterol, cell death, both as single cell necrosis and as apoptosis, and sustained increases in cell replication rates. In a study reported in this article, female rats have been exposed to thiamethoxam in their diet at concentrations of 0, 1000, and 3000 ppm for 50 weeks, a study design directly comparable to the mouse study in which the mode of action changes were characterized. In rats, thiamethoxam had no adverse effects on either the biochemistry or histopathology of the liver at any time point during the study. Cell replication rates were not increased, in fact they were significantly decreased at several time points. The lack of effect on the rat liver is entirely consistent with the lack of liver tumor formation in the two-year cancer bioassay. Comparisons of the metabolism of thiamethoxam in rats and mice have shown that concentrations of the parent chemical were either similar or higher in rat blood than in mouse blood in both single dose and the dietary studies strongly indicating that thiamethoxam itself is unlikely to play a role in the development of liver tumors. In contrast, the concentrations of the two metabolites, CGA265307 and CGA330050, shown to play a role in the development of liver damage in the mouse, were 140- (CGA265307) and 15- (CGA330050) fold lower in rats than in mice following either a single oral dose, or dietary administration of thiamethoxam for up to 50 weeks. Comparisons of the major metabolic pathways of thiamethoxam in vitro using mouse, rat, and human liver fractions have shown that metabolic rates in humans are lower than those in the rat suggesting that thiamethoxam is unlikely to pose a hazard to humans exposed to this chemical at

  1. Liver regeneration.

    Science.gov (United States)

    Mao, Shennen A; Glorioso, Jaime M; Nyberg, Scott L

    2014-04-01

    The liver is unique in its ability to regenerate in response to injury. A number of evolutionary safeguards have allowed the liver to continue to perform its complex functions despite significant injury. Increased understanding of the regenerative process has significant benefit in the treatment of liver failure. Furthermore, understanding of liver regeneration may shed light on the development of cancer within the cirrhotic liver. This review provides an overview of the models of study currently used in liver regeneration, the molecular basis of liver regeneration, and the role of liver progenitor cells in regeneration of the liver. Specific focus is placed on clinical applications of current knowledge in liver regeneration, including small-for-size liver transplant. Furthermore, cutting-edge topics in liver regeneration, including in vivo animal models for xenogeneic human hepatocyte expansion and the use of decellularized liver matrices as a 3-dimensional scaffold for liver repopulation, are proposed. Unfortunately, despite 50 years of intense study, many gaps remain in the scientific understanding of liver regeneration.

  2. ADAM12 in human liver cancers: TGF-beta-regulated expression in stellate cells is associated with matrix remodeling

    DEFF Research Database (Denmark)

    Le Pabic, Hélène; Bonnier, Dominique; Wewer, Ulla M

    2003-01-01

    "A disintegrin and metalloproteinases" (ADAMs) form a family of cell-surface glycoproteins with potential protease and cell-adhesion activities. We have investigated ADAM expression in human liver cancers and their regulation by several cytokines involved in liver injury. Using degenerative RT-PC...

  3. Liver-related deaths among persons infected with the human immunodeficiency virus: The D:A:D Study

    DEFF Research Database (Denmark)

    Weber, R; Sabin, CA; Friis-Møller, Nina;

    2006-01-01

    BACKGROUND: An increasing proportion of deaths among human immunodeficiency virus (HIV)-infected persons with access to combination antiretroviral therapy (cART) are due to complications of liver diseases. METHODS: We investigated the frequency of and risk factors associated with liver-related de...

  4. Completion of hepatitis C virus replication cycle in heterokaryons excludes dominant restrictions in human non-liver and mouse liver cell lines.

    Directory of Open Access Journals (Sweden)

    Anne Frentzen

    2011-04-01

    Full Text Available Hepatitis C virus (HCV is hepatotropic and only infects humans and chimpanzees. Consequently, an immunocompetent small animal model is lacking. The restricted tropism of HCV likely reflects specific host factor requirements. We investigated if dominant restriction factors expressed in non-liver or non-human cell lines inhibit HCV propagation thus rendering these cells non-permissive. To this end we explored if HCV completes its replication cycle in heterokaryons between human liver cell lines and non-permissive cell lines from human non-liver or mouse liver origin. Despite functional viral pattern recognition pathways and responsiveness to interferon, virus production was observed in all fused cells and was only ablated when cells were treated with exogenous interferon. These results exclude that constitutive or virus-induced expression of dominant restriction factors prevents propagation of HCV in these cell types, which has important implications for HCV tissue and species tropism. In turn, these data strongly advocate transgenic approaches of crucial human HCV cofactors to establish an immunocompetent small animal model.

  5. Effect of New Water-Soluble Dendritic Phthalocyanines on Human Colorectal and Liver Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Ebru YABAŞ

    2017-08-01

    Full Text Available Human hepatocellular carcinoma (HepG2 cells and colorectal adenocarcinoma (DLD-1 cells were treated with the synthesized water soluble phthalocyanine derivatives to understand the effect of the compounds both on colorectal and liver cancer cells. The compounds inhibited cell proliferation and displayed cytotoxic effect on these cancer cell lines however; the effect of the compounds on healthy control fibroblast cell line was comparatively lower. The compounds can be employed for cancer treatment as anticancer agents.

  6. In vitro biotransformation of tris(2-butoxyethyl) phosphate (TBOEP) in human liver and serum.

    Science.gov (United States)

    Van den Eede, Nele; Erratico, Claudio; Exarchou, Vassiliki; Maho, Walid; Neels, Hugo; Covaci, Adrian

    2015-04-15

    Tris(2-butoxyethyl) phosphate (TBOEP) is a plasticizer present in indoor dust, reaching levels of several micrograms per gram. Such levels could lead to significant daily exposure of adults and children. Currently, no toxicokinetic data are available to estimate TBOEP clearance in humans after uptake and therefore, one objective of this study was to investigate intrinsic clearance of TBOEP by human liver microsome (HLM) and serum enzymes. Another objective was to generate information to identify and prioritize several metabolites of TBOEP for investigation of human exposure by biomonitoring. 1D and 2D-NMR methodologies were successfully applied on a mixture of the metabolites to confirm the structure of 3-HO-TBOEP (bis(2-butoxyethyl) 3-hydroxyl-2-butoxyethyl phosphate) and to tentatively assign structures to 1-HO-TBOEP and 2-HO-TBOEP. HO-TBOEP isomers and bis(2-butoxyethyl) phosphate (BBOEP), bis(2-butoxyethyl) hydroxyethyl phosphate (BBOEHEP) were further monitored by liquid chromatography-tandem mass spectrometry. Rates of formation of BBOEHEP and HO-TBOEP metabolites by liver enzymes were best described by the Michaelis-Menten model. Apparent Km values for BBOEHEP, 3-HO-TBOEP, and sum of 1- and 2-HO-TBOEP isomer formation were 152, 197 and 148μM, respectively. Apparent Vmax values for the formation of BBOEHEP, 3-HO-TBOEP, and the sum of 1- and 2-HO-TBOEP isomers were 2560, 643, and 254pmol/min/mg protein, respectively. No detectable formation of BBOEP occurred with liver or serum enzymes. Our findings indicate that intrinsic clearance of TBOEP is mainly catalyzed by oxidative enzymes in the liver and that its major in vitro metabolite is BBOEHEP. These findings can be applied in human biomonitoring studies and risk assessment.

  7. Transient Expression of Transgenic IL-12 in Mouse Liver Triggers Unremitting Inflammation Mimicking Human Autoimmune Hepatitis.

    Science.gov (United States)

    Gil-Farina, Irene; Di Scala, Marianna; Salido, Eduardo; López-Franco, Esperanza; Rodríguez-García, Estefania; Blasi, Mercedes; Merino, Juana; Aldabe, Rafael; Prieto, Jesús; Gonzalez-Aseguinolaza, Gloria

    2016-09-15

    The etiopathogenesis of autoimmune hepatitis (AIH) remains poorly understood. In this study, we sought to develop an animal model of human AIH to gain insight into the immunological mechanisms driving this condition. C57BL/6 mice were i.v. injected with adeno-associated viral vectors encoding murine IL-12 or luciferase under the control of a liver-specific promoter. Organ histology, response to immunosuppressive therapy, and biochemical and immunological parameters, including Ag-specific humoral and cellular response, were analyzed. Mechanistic studies were carried out using genetically modified mice and depletion of lymphocyte subpopulations. Adeno-associated virus IL-12-treated mice developed histological, biochemical, and immunological changes resembling type 1 AIH, including marked and persistent liver mononuclear cell infiltration, hepatic fibrosis, hypergammaglobulinemia, anti-nuclear and anti-smooth muscle actin Abs, and disease remission with immunosuppressive drugs. Interestingly, transgenic IL-12 was short-lived, but endogenous IL-12 expression was induced, and both IL-12 and IFN-γ remained elevated during the entire study period. IFN-γ was identified as an essential mediator of liver damage, and CD4 and CD8 T cells but not NK, NKT, or B cells were essential executors of hepatic injury. Furthermore, both MHC class I and MHC class II expression was upregulated at the hepatocellular membrane, and induction of autoreactive liver-specific T cells was detected. Remarkably, although immunoregulatory mechanisms were activated, they only partially mitigated liver damage. Thus, low and transient expression of transgenic IL-12 in hepatocytes causes loss of tolerance to hepatocellular Ags, leading to chronic hepatitis resembling human AIH type 1. This model provides a practical tool to explore AIH pathogenesis and novel therapies.

  8. In Vitro Metabolism Studies of Polybrominated Diphenyl Ethers Using Rat and Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Shun W. Cheng

    2008-01-01

    Full Text Available A number of studies have recently reported the bioaccumulation of the commonly used fire retardants, Polybrominated Diphenyl Ethers (PBDEs, in humans and wildlife. Exposure of animals to PBDEs has been shown to result in developmental neurological, reproductive abnormalities and the disruption of endocrine function. Thyroid hormone equilibria was also shown to be altered by PBDE exposure. There is evidence that hydroxylated metabolites of PBDEs are directly involved in some of these adverse effects. Although metabolites of PBDEs have been isolated and characterized during in vivo studies, the identification of metabolites from an in vitro system has been problematic. We investigated the in vitro metabolism of four PBDEs, with varying numbers of bromine atoms, in rat and human liver microsomes. The addition of small amounts of a nonionic surfactant to the reaction mixture was necessary to obtain measurable amounts of metabolites due to the low aqueous solubility of the PBDEs. Using gas chromatography/mass spectroscopy, mono and/or dihydroxylated metabolites were identified from three of the four PBDEs with phenobarbitol- and β-naphthoflavone-induced rat liver microsomes. When using uninduced rat or human liver microsomes, metabolites were found with only one of the PBDEs. The ease of PBDE metabolism appears to be inversely related to the number of bromine atoms on the parent compound.

  9. Diazinon is activated by CYP2C19 in human liver.

    Science.gov (United States)

    Kappers, W A; Edwards, R J; Murray, S; Boobis, A R

    2001-11-15

    Phosphorothioate compounds are used throughout the world as agricultural and domestic pesticides. Here, the activation of the phosphorothioate diazinon to diazoxon in human liver is described. In an initial study using three human liver microsomal samples, K(m) for diazoxon formation varied markedly (31, 208, and 660 microM; V(max) 1125, 685, and 1028 pmol/min/mg protein, respectively), suggesting the involvement of more than one P450 enzyme. A wide variation in activity was found using 50 microM diazinon as substrate, (11-648 pmol/min/mg protein, n = 15), whereas, with 500 microM, variation was less (164-978 pmol/min/mg protein). Among eight P450-catalyzed reactions, the putative high-affinity component (50 microM diazinon) correlated with S-mephenytoin 4'-hydroxylase activity (r = 0.686, p diazinon) correlated with both S-mephenytoin 4'-hydroxylase (r = 0.714; p diazinon (500 microM) at the fastest rate, followed by CYP3A4, CYP1A2, and CYP2C9. Both hepatic microsomal S-mephenytoin 4'-hydroxylase and high-affinity phenacetin O-deethylase activities were strongly inhibited by diazinon (IC50 diazinon activation in human liver, while other enzymes including CYP1A2 may play a more minor role.

  10. Investigation on Hepatopoietin and Other Novel Genes from Human Fetal Liver

    Institute of Scientific and Technical Information of China (English)

    He Fuchu; Zhang Chenggang; Li Yong; Lu Chengrong; Zhang Lingqiang

    2007-01-01

    The aim of this study is to discover the molecular mechanism of the 22-week gestated human fetal liver( HFL ) which rarely displays both hematopoietic and hepatic functions. Based on large-scale cDNA library sequencing and bioinformatic analysis, the largest gene expression profile of human fetal liver in the world was successfully established. A set of gene clusters functionally related to the liver development, hepatocarcinogenesis and hematopoiesis have been identified. This is for the first time that we could panoramically understand the molecular mechanism of the dual functions of human fetal liver. Moreover, 201 unrecorded human homologous genes and 609 novel genes have been identified and annotated, which accounting for more than 7% of the known human genes in 2001. In the recent human genome annotation map (human genome build 35.1 ), 45 genes were nominated based on this study.In addition, we have characterized a set of gene families represented by hepatopoietin (HPO), Semaphorin,LSECtin and ARFGAP. Two distinctive novel pathways,"extracellular HPO→ HPO receptor→ EGF receptor→Raf→ MEK→ MAPK" for autocrine and "intracellular HPO→ JAB1→c-JUN (AP-1 )" for intracrine of HPO, an unusual cytokine functioned in the regeneration of liver,has been reported for the first time, which have shed new lights on the study of the signal transduction of the entire HPO family. We have also demonstrated that HPO could act as a FAD thioloxidase and that only its intracrine pathway is dependent on the enzymatic activity. It is also known for the first time that the enzyme activity is critically important for the cytokine HPO. Regarding the regulation of the gene expression of HPO, it was demonstrated that HPO promoter includes a negative regulatory element and a core promoter (comprises an initiator and its flanking three tandem IFE elements).Furthermore, two novel members of Semaphorin family,SEMA6C and SEMA6D, were cloned and shown to be able to determine the

  11. Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice

    Science.gov (United States)

    Soulard, Valérie; Bosson-Vanga, Henriette; Lorthiois, Audrey; Roucher, Clémentine; Franetich, Jean- François; Zanghi, Gigliola; Bordessoulles, Mallaury; Tefit, Maurel; Thellier, Marc; Morosan, Serban; Le Naour, Gilles; Capron, Frédérique; Suemizu, Hiroshi; Snounou, Georges; Moreno-Sabater, Alicia; Mazier, Dominique

    2015-01-01

    Experimental studies of Plasmodium parasites that infect humans are restricted by their host specificity. Humanized mice offer a means to overcome this and further provide the opportunity to observe the parasites in vivo. Here we improve on previous protocols to achieve efficient double engraftment of TK-NOG mice by human primary hepatocytes and red blood cells. Thus, we obtain the complete hepatic development of P. falciparum, the transition to the erythrocytic stages, their subsequent multiplication, and the appearance of mature gametocytes over an extended period of observation. Furthermore, using sporozoites derived from two P. ovale-infected patients, we show that human hepatocytes engrafted in TK-NOG mice sustain maturation of the liver stages, and the presence of late-developing schizonts indicate the eventual activation of quiescent parasites. Thus, TK-NOG mice are highly suited for in vivo observations on the Plasmodium species of humans. PMID:26205537

  12. Protocol for Isolation of Primary Human Hepatocytes and Corresponding Major Populations of Non-parenchymal Liver Cells.

    Science.gov (United States)

    Kegel, Victoria; Deharde, Daniela; Pfeiffer, Elisa; Zeilinger, Katrin; Seehofer, Daniel; Damm, Georg

    2016-03-30

    Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine(1). Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models.

  13. Reduction of ischemia reperfusion injury after liver resection and hepatic inflow occlusion by α-lipoic acid in humans

    Institute of Scientific and Technical Information of China (English)

    Fritz Dünschede; Kirsten Erbes; Achim Kircher; Stefanie Westermann; Joachim Seifert; Arno Schad; Kempski Oliver; Alexandra K Kiemer; Junginger Theodor

    2006-01-01

    AIM:To evaluate the protective effects of preconditioning by α-lipoic acid (LA) in patients undergoing hepatic resection under inflow occlusion of the liver.METHODS:Twenty-four patients undergoing liver resection for various reasons either received 600 mg LA or NaCl 15 min before transection performed under inflow occlusion of the liver. Blood samples and liver wedge biopsy samples were obtained after opening of the abdomen immediately after inflow occlusion of the liver, and 30 min after the end of inflow occlusion of the liver.RESULTS:Serum levels of aspartate transferase and alanine transferase were reduced at all time points in patients who received LA in comparison to those who received NaCL. This was accompanied by reduced histomorphological features of oncosis. We observed TUNELpositive hepatocytes in the livers of the untreated patients, especially after 30 min of ischemia. LA attenuated this increase of TUNEL-positive hepatocytes. Under preconditioning with LA, ATP content was significantly enhanced after 30 min of ischemia and after 30 min of reperfusion.CONCLUSION:This is the first report on the potential for LA reducing ischemia/reperfusion injury (IRI) of the liver in humans who were undergoing liver surgery.Beside its simple and rapid application, side effects did not occur. LA might therefore represent a new strategy against hepatic IRI in humans.

  14. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused 3D Porous Polymer Scaffold for Liver Tissue Engineering

    DEFF Research Database (Denmark)

    Hemmingsen, Mette; Muhammad, Haseena Bashir; Mohanty, Soumyaranjan

    A huge shortage of liver organs for transplantation has motivated the research field of tissue engineering to develop bioartificial liver tissue and even a whole liver. The goal of NanoBio4Trans is to create a vascularized bioartificial liver tissue, initially as a liver-support system. Due...... to limitations of primary hepatocytes regarding availability and maintenance of functionality, stem cells and especially human induced pluripotent stem cells (hIPS cells) are an attractive cell source for liver tissue engineering. The aim of this part of NanoBio4Trans is to optimize culture and hepatic...... differentiation of hIPS-derived definitive endoderm (DE) cells in a 3D porous polymer scaffold built-in a perfusable bioreactor. The use of a microfluidic bioreactor array enables the culture of 16 independent tissues in one experimental run and thereby an optimization study to be performed....

  15. Isolation of Human Fetal Liver Progenitors and Their Enhanced Proliferation by Three-Dimensional Coculture with Endothelial Cells

    Science.gov (United States)

    Xiong, Anming; Austin, Timothy W.; Lagasse, Eric; Uchida, Nobuko; Tamaki, Stanley; Bordier, Bruno B.; Weissman, Irving L.; Glenn, Jeffrey S.; Millan, Maria T.

    2008-01-01

    Liver progenitor cells, characterized by the coexpression of biliary and hepatocyte lineage markers and the ability to form colonies in culture, were isolated by flow cytometry from primary human fetal livers. These prospectively isolated liver progenitor cells supported hepatitis D virus infection, expressed, and produced albumin and α-fetoprotein, as tracked by albumin-and α-fetoprotein–driven lentiviral promoter reporter constructs and measured by ELISA, respectively. Coculture in three-dimensional (3D) fibrin gel with endothelial cells resulted in the formation of vascular structures by the endothelial cells and increased proliferation of liver progenitors. The enhanced proliferation of liver progenitors that was observed when liver progenitors and endothelial cells were cultured in direct contact was not achieved when liver progenitors and endothelial cells were cultured on adjacent but separate matrices and when they were cultured across transwell membranes. In conclusion, coculture of liver progenitors and endothelial cells in three-dimensional matrix resulted in enhanced liver progenitor proliferation and function. This coculture methodology offers a novel coculture system that could be applied for the development of engineered liver tissues. PMID:19230124

  16. Acute liver failure due to Human Herpesvirus 6 in an infant

    Directory of Open Access Journals (Sweden)

    G.M. Tronconi

    2012-10-01

    Full Text Available We report a case of a 4-months infant with fever in the absence of other specific symptoms that has rapidly and unexpectedly developed acute liver failure (ALF with coagulopathy and complicated with bone marrow failure without encephalopathy. The main viral infection agents (hepatitis virus A, B, C, Citomegalovirus, Ebstain Barr virus, Parvovirus B19, Adenovirus, drug-induced hepatotoxicity and metabolic disorders associated to ALF were excluded. Quantitative determination of Human Herpesvirus 6 (HHV6 genome was positive with a significant number of copies for mL. A favorable evolution of the clinical symptoms and a progressive hematochemical resolution were obtained. Plasma and Vitamin K were administrated as a support therapy for treating coagulopathy. The present case report and the cases’ review from the literature, evidence the importance of always including screening for HHV6 infection in the diagnostic approach to acute onset of liver failure. HHV6 is a common virus in the pediatric population with a greater number of cases of fulminant viral non-A, non-B, non-C hepatitis in immunocompetent patients due to this virus: these forms have often a high mortality rate and maybe necessitate liver transplantation; for this reason correct etiological agent identification is mandatory for the prognosis and it has to be based on the quantitative search of the virus’s genome. Pathogenesis of liver-induced damage associated to HHV6 remains unclear; however in vitro studies demonstrate the potential hepatotoxicity effects of this virus.

  17. [Acute liver failure due to human herpesvirus 6 in an infant].

    Science.gov (United States)

    Tronconi, G M; Mariani, B; Pajno, R; Fomasi, M; Cococcioni, L; Biffi, V; Bove, M; Corsin, P; Garbetta, G; Barera, G

    2012-01-01

    We report a case of a 4-months infant with fever in the absence of other specific symptoms that has rapidly and unexpectedly developed acute liver failure (ALF) with coagulopathy and complicated with bone marrow failure without encephalopathy. The main viral infection agents (hepatitis virus A, B, C, Citomegalovirus, Ebstain Barr virus, Parvovirus B19, Adenovirus), drug-induced hepatotoxicity and metabolic disorders associated to ALF were excluded. Quantitative determination of Human Herpesvirus 6 (HHV6) genome was positive with a significant number of copies for mL. A favorable evolution of the clinical symptoms and a progressive hematochemical resolution were obtained. Plasma and Vitamin K were administrated as a support therapy for treating coagulopathy. The present case report and the cases' review from the literature, evidence the importance of always including screening for HHV6 infection in the diagnostic approach to acute onset of liver failure. HHV6 is a common virus in the pediatric population with a greater number of cases of fulminant viral non-A, non-B, non-C hepatitis in immunocompetent patients due to this virus: these forms have often a high mortality rate and maybe necessitate liver transplantation; for this reason correct etiological agent identification is mandatory for the prognosis and it has to be based on the quantitative search of the virus's genome. Pathogenesis of liver-induced damage associated to HHV6 remains unclear; however in vitro studies demonstrate the potential hepatotoxicity effects of this virus.

  18. Molecular Recognition of Human Liver Cancer Cells Using DNA Aptamers Generated via Cell-SELEX.

    Directory of Open Access Journals (Sweden)

    Jiehua Xu

    Full Text Available Most clinical cases of liver cancer cannot be diagnosed until they have evolved to an advanced stage, thus resulting in high mortality. It is well recognized that the implementation of early detection methods and the development of targeted therapies for liver cancer are essential to reducing the high mortality rates associated with this disease. To achieve these goals, molecular probes capable of recognizing liver cancer cell-specific targets are needed. Here we describe a panel of aptamers able to distinguish hepatocarcinoma from normal liver cells. The aptamers, which were selected by cell-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment, have Kd values in the range of 64-349 nM toward the target human hepatoma cell HepG2, and also recognize ovarian cancer cells and lung adenocarcinoma. The proteinase treatment experiment indicated that all aptamers could recognize target HepG2 cells through surface proteins. This outcome suggested that these aptamers could be used as potential probes for further research in cancer studies, such as developing early detection assays, targeted therapies, and imaging agents, as well as for the investigation of common membrane proteins in these distinguishable cancers.

  19. Genetically engineered mannosylated-human serum albumin as a versatile carrier for liver-selective therapeutics.

    Science.gov (United States)

    Hirata, Kenshiro; Maruyama, Toru; Watanabe, Hiroshi; Maeda, Hitoshi; Nakajou, Keisuke; Iwao, Yasunori; Ishima, Yu; Katsumi, Hidemasa; Hashida, Mitsuru; Otagiri, Masaki

    2010-07-01

    Human serum albumin (HSA), a non-glycosylated protein, is widely employed as carrier for drug delivery systems. A series of recombinant, mannosylated-HSA mutants (Man-rHSAs: D63N, A320T and D494N) and their triple mutant (TM-rHSA: D63N/A320T/D494N) were prepared, that can be selectively delivered to the liver via mannose receptor (MR) on the liver non-parenchymal cells. A pharmacokinetic analysis of (111)In-Man-rHSAs in mice showed that they were rapidly cleared from the blood circulation, and were largely taken up by the liver rapidly in the order: TM-rHSA>D494N>A320T=D63N, consistent with their degree of mannosylation. In vivo competition experiments with an excess amount of chemically modified Man-BSA or mannan suggested that the hepatic uptake of TM-rHSA was selectively mediated by MR on Kupffer cells. Lastly, a TM-rHSA-NO conjugate, S-nitrosylated TM-rHSA, effectively delivered NO to the liver and then exhibited a significant inhibitory effect against hepatic ischemia/reperfusion injury model rats, accompanied by the induction of heme oxygenase-1.

  20. Anticarcinogenic effects of glycoalkaloids from potatoes against human cervical, liver, lymphoma, and stomach cancer cells.

    Science.gov (United States)

    Friedman, Mendel; Lee, Kap-Rang; Kim, Hyun-Jeong; Lee, In-Seon; Kozukue, Nobuyuke

    2005-07-27

    Methods were devised for the isolation of large amounts of pure alpha-chaconine and alpha-solanine from Dejima potatoes and for the extraction and analysis of total glycoalkaloids from five fresh potato varieties (Dejima, Jowon, Sumi, Toya, and Vora Valley). These compounds were then evaluated in experiments using a tetrazolium microculture (MTT) assay to assess the anticarcinogenic effects of (a) the isolated pure glycoalkaloids separately, (b) artificial mixtures of the two glycoalkaloids, and (c) the total glycoalkaloids isolated from each of the five potato varieties. All samples tested reduced the numbers of the following human cell lines: cervical (HeLa), liver (HepG2), lymphoma (U937), stomach (AGS and KATO III) cancer cells and normal liver (Chang) cells. The results show that (a) the effects of the glycoalkaloids were concentration dependent in the range of 0.1-10 mug/mL (0.117-11.7 nmol/mL); (b) alpha-chaconine was more active than was alpha-solanine; (c) some mixtures exhibited synergistic effects, whereas other produced additive ones; (d) the different cancer cells varied in their susceptibilities to destruction; and (e) the destruction of normal liver cells was generally lower than that of cancer liver cells. The decreases in cell populations were also observed visually by reversed-phase microscopy. The results complement related observations on the anticarcinogenic potential of food ingredients.

  1. Molecular Recognition of Human Liver Cancer Cells Using DNA Aptamers Generated via Cell-SELEX.

    Science.gov (United States)

    Xu, Jiehua; Teng, I-Ting; Zhang, Liqin; Delgado, Stefanie; Champanhac, Carole; Cansiz, Sena; Wu, Cuichen; Shan, Hong; Tan, Weihong

    2015-01-01

    Most clinical cases of liver cancer cannot be diagnosed until they have evolved to an advanced stage, thus resulting in high mortality. It is well recognized that the implementation of early detection methods and the development of targeted therapies for liver cancer are essential to reducing the high mortality rates associated with this disease. To achieve these goals, molecular probes capable of recognizing liver cancer cell-specific targets are needed. Here we describe a panel of aptamers able to distinguish hepatocarcinoma from normal liver cells. The aptamers, which were selected by cell-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment), have Kd values in the range of 64-349 nM toward the target human hepatoma cell HepG2, and also recognize ovarian cancer cells and lung adenocarcinoma. The proteinase treatment experiment indicated that all aptamers could recognize target HepG2 cells through surface proteins. This outcome suggested that these aptamers could be used as potential probes for further research in cancer studies, such as developing early detection assays, targeted therapies, and imaging agents, as well as for the investigation of common membrane proteins in these distinguishable cancers.

  2. Elevated levels of G-quadruplex formation in human stomach and liver cancer tissues.

    Science.gov (United States)

    Biffi, Giulia; Tannahill, David; Miller, Jodi; Howat, William J; Balasubramanian, Shankar

    2014-01-01

    Four-stranded G-quadruplex DNA secondary structures have recently been visualized in the nuclei of human cultured cells. Here, we show that BG4, a G-quadruplex-specific antibody, can be used to stain DNA G-quadruplex structures in patient-derived tissues using immunohistochemistry. We observe a significantly elevated number of G-quadruplex-positive nuclei in human cancers of the liver and stomach as compared to background non-neoplastic tissue. Our results suggest that G-quadruplex formation can be detected and measured in patient-derived material and that elevated G-quadruplex formation may be a characteristic of some cancers.

  3. Purification of nonspecific lipid transfer protein (sterol carrier protein 2) from human liver and its deficiency in livers from patients with cerebro-hepato-renal (Zellweger) syndrome

    NARCIS (Netherlands)

    Amerongen, A. van; Helms, J.B.; Krift, T.P. van der; Schutgens, R.B.H.; Wirtz, K.W.A.

    1987-01-01

    The nonspecific lipid transfer protein (i.e., sterol carrier protein 2) from human liver was purified to homogeneity using ammonium sulfate precipitation, CM-cellulose chromatography, molecular sieve chromatography and fast protein liquid chromatography. Its amino acid composition was determined and

  4. Purification of nonspecific lipid transfer protein (sterol carrier protein 2) from human liver and its deficiency in livers from patients with cerebro-hepato-renal (Zellweger) syndrome

    NARCIS (Netherlands)

    Amerongen, A. van; Helms, J.B.; Krift, T.P. van der; Schutgens, R.B.H.; Wirtz, K.W.A.

    1987-01-01

    The nonspecific lipid transfer protein (i.e., sterol carrier protein 2) from human liver was purified to homogeneity using ammonium sulfate precipitation, CM-cellulose chromatography, molecular sieve chromatography and fast protein liquid chromatography. Its amino acid composition was determined and

  5. Comparison of metabolism of sesamin and episesamin by drug-metabolizing enzymes in human liver.

    Science.gov (United States)

    Yasuda, Kaori; Ikushiro, Shinichi; Wakayama, Shuto; Itoh, Toshimasa; Yamamoto, Keiko; Kamakura, Masaki; Munetsuna, Eiji; Ohta, Miho; Sakaki, Toshiyuki

    2012-10-01

    Sesamin and episesamin are two epimeric lignans that are found in refined sesame oil. Commercially available sesamin supplements contain both sesamin and episesamin at an approximate 1:1 ratio. Our previous study clarified the sequential metabolism of sesamin by cytochrome P450 (P450) and UDP-glucuronosyltransferase in human liver. In addition, we revealed that sesamin caused a mechanism-based inhibition (MBI) of CYP2C9, the P450 enzyme responsible for sesamin monocatecholization. In the present study, we compared the metabolism and the MBI of episesamin with those of sesamin. Episesamin was first metabolized to the two epimers of monocatechol, S- and R-monocatechols in human liver microsomes. The P450 enzymes responsible for S- and R-monocatechol formation were CYP2C9 and CYP1A2, respectively. The contribution of CYP2C9 was much larger than that of CYP1A2 in sesamin metabolism, whereas the contribution of CYP2C9 was almost equal to that of CYP1A2 in episesamin metabolism. Docking of episesamin to the active site of CYP1A2 explained the stereoselectivity in CYP1A2-dependent episesamin monocatecholization. Similar to sesamin, the episesamin S- and R-monocatechols were further metabolized to dicatechol, glucuronide, and methylate metabolites in human liver; however, the contribution of each reaction was significantly different between sesamin and episesamin. The liver microsomes from CYP2C19 ultra-rapid metabolizers showed a significant amount of episesamin dicatechol. In this study, we have revealed significantly different metabolism by P450, UDP-glucuronosyltransferase, and catechol-O-methyltransferase for sesamin and episesamin, resulting in different biological effects.

  6. CXCR6 marks a novel subset of T-bet(lo)Eomes(hi) natural killer cells residing in human liver.

    Science.gov (United States)

    Stegmann, Kerstin A; Robertson, Francis; Hansi, Navjyot; Gill, Upkar; Pallant, Celeste; Christophides, Theodoros; Pallett, Laura J; Peppa, Dimitra; Dunn, Claire; Fusai, Giuseppe; Male, Victoria; Davidson, Brian R; Kennedy, Patrick; Maini, Mala K

    2016-05-23

    Natural killer cells (NK) are highly enriched in the human liver, where they can regulate immunity and immunopathology. We probed them for a liver-resident subset, distinct from conventional bone-marrow-derived NK. CXCR6+ NK were strikingly enriched in healthy and diseased liver compared to blood (p hi)Eomes(lo)(CXCR6-) and T-bet(lo)Eomes(hi)(CXCR6+); the latter was virtually absent in the periphery. The small circulating CXCR6+ subset was predominantly T-bet(hi)Eomes(lo), suggesting its lineage was closer to CXCR6- peripheral than CXCR6+ liver NK. These data reveal a large subset of human liver-resident T-bet(lo)Eomes(hi) NK, distinguished by their surface expression of CXCR6, adapted for hepatic tolerance and inducible anti-viral immunity.

  7. A novel formal approach to program slicing

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Program slicing is a well-known program analysis technique that extracts the elements of a program related to a particular computation. The current slicing methods, however, are singular (mainly based on a program or system dependence graph), and lack good reusability and flexibility. In this paper, we present a novel formal method for program slicing, modular monadic program slicing, which abstracts the computation of program slicing as a slice monad transformer, and applies it to semantic descriptions of the program analyzed in a modular way, forming the corresponding monadic slicing algorithms. The modular abstraction mechanism allows our slicing method to possess excellent modularity and language-flexibility properties. We also give the related axioms of our slice monad transformer, the proof of the correctness and the implementation of monadic slicing algorithms. We reveal the relations of our algorithms and graph-reachable slicing algorithms.

  8. Assessment of individual organ doses in a realistic human phantom from neutron and gamma stimulated spectroscopy of the breast and liver

    Energy Technology Data Exchange (ETDEWEB)

    Belley, Matthew D. [Medical Physics Graduate Program, Duke University, Durham 27705, North Carolina (United States); Segars, William Paul; Kapadia, Anuj J., E-mail: anuj.kapadia@duke.edu [Medical Physics Graduate Program, Duke University, Durham, North Carolina and Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham 27710, North Carolina (United States)

    2014-06-15

    Purpose: Understanding the radiation dose to a patient is essential when considering the use of an ionizing diagnostic imaging test for clinical diagnosis and screening. Using Monte Carlo simulations, the authors estimated the three-dimensional organ-dose distribution from neutron and gamma irradiation of the male liver, female liver, and female breasts for neutron- and gamma-stimulated spectroscopic imaging. Methods: Monte Carlo simulations were developed using the Geant4 GATE application and a voxelized XCAT human phantom. A male and a female whole body XCAT phantom was voxelized into 256 × 256 × 600 voxels (3.125 × 3.125 × 3.125 mm{sup 3}). A monoenergetic rectangular beam of 5.0 MeV neutrons or 7.0 MeV photons was made incident on a 2 cm thick slice of the phantom. The beam was rotated at eight different angles around the phantom ranging from 0° to 180°. Absorbed dose was calculated for each individual organ in the body and dose volume histograms were computed to analyze the absolute and relative doses in each organ. Results: The neutron irradiations of the liver showed the highest organ dose absorption in the liver, with appreciably lower doses in other proximal organs. The dose distribution within the irradiated slice exhibited substantial attenuation with increasing depth along the beam path, attenuating to ∼15% of the maximum value at the beam exit side. The gamma irradiation of the liver imparted the highest organ dose to the stomach wall. The dose distribution from the gammas showed a region of dose buildup at the beam entrance, followed by a relatively uniform dose distribution to all of the deep tissue structures, attenuating to ∼75% of the maximum value at the beam exit side. For the breast scans, both the neutron and gamma irradiation registered maximum organ doses in the breasts, with all other organs receiving less than 1% of the breast dose. Effective doses ranged from 0.22 to 0.37 mSv for the neutron scans and 41 to 66 mSv for the gamma

  9. Low dose perfluorooctanoate exposure promotes cell proliferation in a human non-tumor liver cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongxia; Cui, Ruina [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Guo, Xuejiang [State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029 (China); Hu, Jiayue [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China); Dai, Jiayin, E-mail: daijy@ioz.ac.cn [Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101 (China)

    2016-08-05

    Highlights: • Differential expression of proteins induced by PFOA in HL-7702 was identified. • Most of the differentially expressed proteins are related to cell proliferation. • A low dose of PFOA stimulates HL-7702 cell proliferation. • A high dose of PFOA inhibits HL-7702 cell proliferation. - Abstract: Perfluorooctanoate (PFOA) is a well-known persistent organic pollutant widely found in the environment, wildlife and humans. Medical surveillance and experimental studies have investigated the potential effects of PFOA on human livers, but the hepatotoxicity of PFOA on humans and its underlying mechanism remain to be clarified. We exposed a human liver cell line (HL-7702) to 50 μM PFOA for 48 h and 96 h, and identified 111 significantly differentially expressed proteins by iTRAQ analysis. A total of 46 proteins were related to cell proliferation and apoptosis. Through further analysis of the cell cycle, apoptosis and their related proteins, we found that low doses of PFOA (50–100 μM) promoted cell proliferation and numbers by promoting cells from the G1 to S phases, whereas high doses of PFOA (200–400 μM) led to reduced HL-7702 cell numbers compared with that of the control mainly due to cell cycle arrest in the G0/G1 phase. To our knowledge, this is the first report on the promotion of cell cycle progression in human cells following PFOA exposure.

  10. Covariance-Adaptive Slice Sampling

    OpenAIRE

    Thompson, Madeleine; Neal, Radford M.

    2010-01-01

    We describe two slice sampling methods for taking multivariate steps using the crumb framework. These methods use the gradients at rejected proposals to adapt to the local curvature of the log-density surface, a technique that can produce much better proposals when parameters are highly correlated. We evaluate our methods on four distributions and compare their performance to that of a non-adaptive slice sampling method and a Metropolis method. The adaptive methods perform favorably on low-di...

  11. Stage scoring of liver fibrosis using Mueller matrix microscope

    Science.gov (United States)

    Zhou, Jialing; He, Honghui; Wang, Ye; Ma, Hui

    2016-10-01

    Liver fibrosis is a common pathological process of varied chronic liver diseases including alcoholic hepatitis, virus hepatitis, and so on. Accurate evaluation of liver fibrosis is necessary for effective therapy and a five-stage grading system was developed. Currently, experienced pathologists use stained liver biopsies to assess the degree of liver fibrosis. But it is difficult to obtain highly reproducible results because of huge discrepancy among different observers. Polarization imaging technique has the potential of scoring liver fibrosis since it is capable of probing the structural and optical properties of samples. Considering that the Mueller matrix measurement can provide comprehensive microstructural information of the tissues, in this paper, we apply the Mueller matrix microscope to human liver fibrosis slices in different fibrosis stages. We extract the valid regions and adopt the Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation (MMT) parameters for quantitative analysis. We also use the Monte Carlo simulation to analyze the relationship between the microscopic Mueller matrix parameters and the characteristic structural changes during the fibrosis process. The experimental and Monte Carlo simulated results show good consistency. We get a positive correlation between the parameters and the stage of liver fibrosis. The results presented in this paper indicate that the Mueller matrix microscope can provide additional information for the detections and fibrosis scorings of liver tissues and has great potential in liver fibrosis diagnosis.

  12. Three-Dimensional Culture of Human Embryonic Stem Cell Derived Hepatic Endoderm and Its Role in Bioartificial Liver Construction

    Directory of Open Access Journals (Sweden)

    Ruchi Sharma

    2010-01-01

    Full Text Available The liver carries out a range of functions essential for bodily homeostasis. The impairment of liver functions has serious implications and is responsible for high rates of patient morbidity and mortality. Presently, liver transplantation remains the only effective treatment, but donor availability is a major limitation. Therefore, artificial and bioartificial liver devices have been developed to bridge patients to liver transplantation. Existing support devices improve hepatic encephalopathy to a certain extent; however their usage is associated with side effects. The major hindrance in the development of bioartificial liver devices and cellular therapies is the limited availability of human hepatocytes. Moreover, primary hepatocytes are difficult to maintain and lose hepatic identity and function over time even with sophisticated tissue culture media. To overcome this limitation, renewable cell sources are being explored. Human embryonic stem cells are one such cellular resource and have been shown to generate a reliable and reproducible supply of human hepatic endoderm. Therefore, the use of human embryonic stem cell-derived hepatic endoderm in combination with tissue engineering has the potential to pave the way for the development of novel bioartificial liver devices and predictive drug toxicity assays.

  13. Can multi-slice or navigator-gated R2* MRI replace single-slice breath-hold acquisition for hepatic iron quantification?

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, Ralf B.; McCarville, M.B.; Song, Ruitian; Hillenbrand, Claudia M. [St. Jude Children' s Research Hospital, Diagnostic Imaging, Memphis, TN (United States); Wagstaff, Anne W. [St. Jude Children' s Research Hospital, Diagnostic Imaging, Memphis, TN (United States); Rhodes College, Memphis, TN (United States); University of Alabama at Birmingham School of Medicine, Birmingham, AL (United States); Smeltzer, Matthew P. [St. Jude Children' s Research Hospital, Department of Biostatistics, Memphis, TN (United States); University of Memphis, Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, Memphis, TN (United States); Krafft, Axel J. [St. Jude Children' s Research Hospital, Diagnostic Imaging, Memphis, TN (United States); University Hospital Center Freiburg, Department of Radiology, Freiburg (Germany); Hankins, Jane S. [St. Jude Children' s Research Hospital, Department of Hematology, Memphis, TN (United States)

    2017-01-15

    Liver R2* values calculated from multi-gradient echo (mGRE) magnetic resonance images (MRI) are strongly correlated with hepatic iron concentration (HIC) as shown in several independently derived biopsy calibration studies. These calibrations were established for axial single-slice breath-hold imaging at the location of the portal vein. Scanning in multi-slice mode makes the exam more efficient, since whole-liver coverage can be achieved with two breath-holds and the optimal slice can be selected afterward. Navigator echoes remove the need for breath-holds and allow use in sedated patients. To evaluate if the existing biopsy calibrations can be applied to multi-slice and navigator-controlled mGRE imaging in children with hepatic iron overload, by testing if there is a bias-free correlation between single-slice R2* and multi-slice or multi-slice navigator controlled R2*. This study included MRI data from 71 patients with transfusional iron overload, who received an MRI exam to estimate HIC using gradient echo sequences. Patient scans contained 2 or 3 of the following imaging methods used for analysis: single-slice images (n = 71), multi-slice images (n = 69) and navigator-controlled images (n = 17). Small and large blood corrected region of interests were selected on axial images of the liver to obtain R2* values for all data sets. Bland-Altman and linear regression analysis were used to compare R2* values from single-slice images to those of multi-slice images and navigator-controlled images. Bland-Altman analysis showed that all imaging method comparisons were strongly associated with each other and had high correlation coefficients (0.98 ≤ r ≤ 1.00) with P-values ≤0.0001. Linear regression yielded slopes that were close to 1. We found that navigator-gated or breath-held multi-slice R2* MRI for HIC determination measures R2* values comparable to the biopsy-validated single-slice, single breath-hold scan. We conclude that these three R2* methods can be

  14. Laser induced breakdown spectroscopy of human liver samples with Wilson's disease

    Science.gov (United States)

    Grolmusová, Zuzana; Horňáčková, Michaela; Plavčan, Jozef; Kopáni, Martin; Babál, Pavel; Veis, Pavel

    2013-08-01

    Laser induced breakdown spectroscopy (LIBS) is an elemental analytical technique with various applications. The paper demonstrates the first LIBS measurements of human liver samples for the purpose of detecting the higher copper content related with the advanced stage of Wilson's disease. These measurements were implemented using a Nd:YAG laser working at the wavelength of 532 nm and an echelle type spectrometer equipped with an intensified CCD camera allowing for a wide spectral range coverage (200-950 nm) and rapid camera gating (minimum gating time of 5 ns). Seven liver samples with suspected Wilson's disease and five reference samples were investigated. The main parameter of interest was the Cu/C ratio obtained at first from spectra and secondly directly from an iCCD image. Our experiment is a pilot study, which shows LIBS analysis of human liver samples for the purpose of detecting the normal and higher copper content for the first time. The method proved to be a quick and a low-cost approach for the detection of pathological accumulation of copper in the affected tissue.

  15. Subcellular localization of several heavy metals of Hg,Cd and Pb in human liver

    Institute of Scientific and Technical Information of China (English)

    CHEN Chunying; ZHANG Peiqun; CHAI Zhifang

    2005-01-01

    Liver, as an important metabolic and detoxicological organ of human body, can be used as a good bioindicator for evaluating body burden of environmental pollutants. Its elemental contents and their chemical forms are closely related to the status of human health and disease. In this paper, the liver samples collected from normal subjects were separated to different subcellular fractions of nuclei, mitochondria, lysosome, microsome and cytosol by differential centrifugation. Then their concentrations of heavy metals of As, Pb, Cd, and Hg were determined by atomic absorption and atomic fluorescent spectroscopy. Our results show no significant difference with literature ones when comparing their gross concentrations. In the case of their subcellular distribution, the Hg concentrations are higher in mitochondrial, microsomal and cytosolic fractions; the Cd concentrations are higher in cytosolic and mitochondrial fractions, while As highest in nuclear fraction. The highest concentration of Pb is found in microsomal fraction with similarity to Fe. Mercury in liver is mainly in the form of inorganic, and methylmercury ranged from 9% to 50% with the average value of 20.9%(13.3%. These results indicate that the cellular distribution and the accumulated target organelles are quite different among these heavy metals, which suggest their various pathways and toxic mechanism in vivo.

  16. Dengue Virus Capsid Protein Binds Core Histones and Inhibits Nucleosome Formation in Human Liver Cells

    Science.gov (United States)

    Colpitts, Tonya M.; Barthel, Sebastian; Wang, Penghua; Fikrig, Erol

    2011-01-01

    Dengue virus (DENV) is a member of the Flaviviridae and a globally (re)emerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C) is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection. PMID:21909430

  17. CYP3A catalyses schizandrin biotransformation in human, minipig and rat liver microsomes.

    Science.gov (United States)

    Cao, Y-F; Zhang, Y-Y; Li, J; Ge, G-B; Hu, D; Liu, H-X; Huang, T; Wang, Y-C; Fang, Z-Z; Sun, D-X; Huo, H; Yin, J; Yang, L

    2010-01-01

    Schizandrin is recognized as the major absorbed effective constituent of Fructus schisandrae, which is extensively applied in Chinese medicinal formula. The present study aimed to profile the phase I metabolites of schizandrin and identify the cytochrome P450 (CYP) isoforms involved. After schizandrin was incubated with human liver microsomes, three metabolites were isolated by high-performance liquid chromatography (HPLC) and their structures were identified to be 8(R)-hydroxyl-schizandrin, 2-demethyl-8(R)-hydroxyl-schizandrin, 3-demethyl-8(R)-hydroxyl-schizandrin, by liquid chromatography-mass spectrometry (LC-MS), (1)H-nuclear magnetic resonance (NMR), and (13)C-NMR, respectively. A combination of correlation analysis, chemical inhibition studies, assays with recombinant CYPs, and enzyme kinetics indicated that CYP3A4 was the main hepatic isoform that cleared schizandrin. Rat and minipig liver microsomes were included when evaluating species differences, and the results showed little difference among the species. In conclusion, CYP3A4 plays a major role in the biotransformation of schizandrin in human liver microsomes. Minipig and rat could be surrogate models for man in schizandrin pharmacokinetic studies. Better knowledge of schizandrin's metabolic pathway could provide the vital information for understanding the pharmacokinetic behaviours of schizandrin contained in Chinese medicinal formula.

  18. [Vitamin D metabolism and signaling in human hepatocellular carcinoma and surrounding non-tumorous liver].

    Science.gov (United States)

    Horváth, Evelin; Balla, Bernadett; Kósa, János; Lakatos, Péter András; Lazáry, Áron; Németh, Dániel; Jozilan, Hasan; Somorácz, Áron; Korompay, Anna; Gyöngyösi, Benedek; Borka, Katalin; Kiss, András; Kupcsulik, Péter; Schaff, Zsuzsa; Szalay, Ferenc

    2016-11-01

    1,25-Dihydroxy vitamin D3 mediates antitumor effects in hepatocellular carcinoma. We examined mRNA and protein expression differences in 1,25-Dihydroxy vitamin D3-inactivating CYP24A1, mRNA of activating CYP27B1 enzymes, and that of VDR between human hepatocellular carcinoma and surrounding non-tumorous liver. Snap-frozen tissues from 13 patients were studied for mRNA and protein expression of CYP24A1. Paraffin-embedded tissues from 36 patients were used to study mRNA of VDR and CYP27B1. mRNA expression was measured by RT-PCR, CYP24A1 protein was detected by immunohistochemistry. Expression of VDR and CYP27B1 was significantly lower in hepatocellular carcinoma compared with non-tumorous liver (p<0.05). The majority of the HCC samples expressed CYP24A1 mRNA, but neither of the non-tumorous liver. The gene activation was followed by CYP24A1 protein synthesis. The presence of CYP24A1 mRNA and the reduced expression of VDR and CYP27B1 mRNA in human hepatocellular carcinoma samples indicate decreased bioavailability of 1,25-Dihydroxy vitamin D3, providing an escape mechanism from the anti-tumor effect. Orv. Hetil., 2016, 157(48), 1910-1918.

  19. Human immunodeficiency virus and nodular regenerative hyperplasia of liver: A systematic review

    Institute of Scientific and Technical Information of China (English)

    Archita; Sood; Mariana; Castrejón; Sammy; Saab

    2014-01-01

    AIM: To investigate the diagnosis, pathogenesis, natural history, and management of nodular regenerative hyperplasia(NRH) in patients with human immunodeficiency virus(HIV). METHODS: We performed a systematic review of the medical literature regarding NRH in patients with HIV. Inclusion criteria include reports with biopsy proven NRH. We studied the clinical features of NRH, in particular, related to its presenting manifestation and laboratory values. Combinations of the following keywords were implemented: "nodular regenerative hyperplasia", "human immunodeficiency virus", "noncirrhotic portal hypertension", "idiopathic portal hypertension", "cryptogenic liver disease", "highly active antiretroviral therapy" and "didanosine". The bibliographies of these studies were subsequently searched for any additional relevant publications.RESULTS: The clinical presentation of patients with NRH varies from patients being completely asymptomatic to the development of portal hypertension – namely esophageal variceal bleeding and ascites. Liver associated enzymes are generally normal and synthetic function well preserved. There is a strong association between the occurrence of NRH and the use of antiviral therapies such as didanosine. The management of NRH revolves around treating the manifestations of portal hypertension. The prognosis of NRH is generally good since liver function is preserved. A high index of suspicion is required to make a identify NRH. CONCLUSION: The appropriate management of HIVinfected persons with suspected NRH is yet to be outlined. However, NRH is a clinically subtle condition that is difficult to diagnose, and it is important to be able to manage it according to the best available evidence.

  20. Liver Afferents Contribute to Water Drinking-Induced Sympathetic Activation in Human Subjects: A Clinical Trial

    Science.gov (United States)

    May, Marcus; Gueler, Faikah; Barg-Hock, Hannelore; Heiringhoff, Karl-Heinz; Engeli, Stefan; Heusser, Karsten; Diedrich, André; Brandt, André; Strassburg, Christian P.; Tank, Jens; Sweep, Fred C. G. J.; Jordan, Jens

    2011-01-01

    Water drinking acutely increases sympathetic activity in human subjects. In animals, the response appears to be mediated through transient receptor potential channel TRPV4 activation on osmosensitive hepatic spinal afferents, described as osmopressor response. We hypothesized that hepatic denervation attenuates water drinking-induced sympathetic activation. We studied 20 liver transplant recipients (44±2.6 years, 1.2±0.1 years post transplant) as model of hepatic denervation and 20 kidney transplant recipients (43±2.6 years, 0.8±0.1 years post transplant) as immunosuppressive drug matched control group. Before and after 500 ml water ingestion, we obtained venous blood samples for catecholamine analysis. We also monitored brachial and finger blood pressure, ECG, and thoracic bioimpedance. Plasma norepinephrine concentration had changed by 0.01±0.07 nmol/l in liver and by 0.21±0.07 nmol/l in kidney transplant recipients (pwater drinking. While blood pressure and systemic vascular resistance increased in both groups, the responses tended to be attenuated in liver transplant recipients. Our findings support the idea that osmosensitive hepatic afferents are involved in water drinking-induced sympathetic activation in human subjects. Trial Registration ClinicalTrials.gov NCT01237431 PMID:22016786

  1. Dengue virus capsid protein binds core histones and inhibits nucleosome formation in human liver cells.

    Directory of Open Access Journals (Sweden)

    Tonya M Colpitts

    Full Text Available Dengue virus (DENV is a member of the Flaviviridae and a globally (reemerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection.

  2. Liver afferents contribute to water drinking-induced sympathetic activation in human subjects: a clinical trial.

    Directory of Open Access Journals (Sweden)

    Marcus May

    Full Text Available UNLABELLED: Water drinking acutely increases sympathetic activity in human subjects. In animals, the response appears to be mediated through transient receptor potential channel TRPV4 activation on osmosensitive hepatic spinal afferents, described as osmopressor response. We hypothesized that hepatic denervation attenuates water drinking-induced sympathetic activation. We studied 20 liver transplant recipients (44±2.6 years, 1.2±0.1 years post transplant as model of hepatic denervation and 20 kidney transplant recipients (43±2.6 years, 0.8±0.1 years post transplant as immunosuppressive drug matched control group. Before and after 500 ml water ingestion, we obtained venous blood samples for catecholamine analysis. We also monitored brachial and finger blood pressure, ECG, and thoracic bioimpedance. Plasma norepinephrine concentration had changed by 0.01±0.07 nmol/l in liver and by 0.21±0.07 nmol/l in kidney transplant recipients (p<0.05 between groups after 30-40 minutes of water drinking. While blood pressure and systemic vascular resistance increased in both groups, the responses tended to be attenuated in liver transplant recipients. Our findings support the idea that osmosensitive hepatic afferents are involved in water drinking-induced sympathetic activation in human subjects. TRIAL REGISTRATION: ClinicalTrials.gov NCT01237431.

  3. Subcellular fractionation of human liver reveals limits in global proteomic quantification from isolated fractions.

    Science.gov (United States)

    Wiśniewski, Jacek R; Wegler, Christine; Artursson, Per

    2016-09-15

    The liver plays an important role in metabolism and elimination of xenobiotics, including drugs. Determination of concentrations of proteins involved in uptake, distribution, metabolism, and excretion of xenobiotics is required to understand and predict elimination mechanisms in this tissue. In this work, we have fractionated homogenates of snap-frozen human liver by differential centrifugation and performed quantitative mass spectrometry-based proteomic analysis of each fraction. Concentrations of proteins were calculated by the "total protein approach". A total of 4586 proteins were identified by at least five peptides and were quantified in all fractions. We found that the xenobiotics transporters of the canalicular and basolateral membranes were differentially enriched in the subcellular fractions and that phase I and II metabolizing enzymes, the cytochrome P450s and the UDP-glucuronyl transferases, have complex subcellular distributions. These findings show that there is no simple way to scale the data from measurements in arbitrarily selected membrane fractions using a single scaling factor for all the proteins of interest. This study also provides the first absolute quantitative subcellular catalog of human liver proteins obtained from frozen tissue specimens. Our data provide quantitative insights into the subcellular distribution of proteins and can be used as a guide for development of fractionation procedures. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. Unique cell type-specific junctional complexes in vascular endothelium of human and rat liver sinusoids.

    Directory of Open Access Journals (Sweden)

    Cyrill Géraud

    Full Text Available Liver sinusoidal endothelium is strategically positioned to control access of fluids, macromolecules and cells to the liver parenchyma and to serve clearance functions upstream of the hepatocytes. While clearance of macromolecular debris from the peripheral blood is performed by liver sinusoidal endothelial cells (LSECs using a delicate endocytic receptor system featuring stabilin-1 and -2, the mannose receptor and CD32b, vascular permeability and cell trafficking are controlled by transcellular pores, i.e. the fenestrae, and by intercellular junctional complexes. In contrast to blood vascular and lymphatic endothelial cells in other organs, the junctional complexes of LSECs have not yet been consistently characterized in molecular terms. In a comprehensive analysis, we here show that LSECs express the typical proteins found in endothelial adherens junctions (AJ, i.e. VE-cadherin as well as α-, β-, p120-catenin and plakoglobin. Tight junction (TJ transmembrane proteins typical of endothelial cells, i.e. claudin-5 and occludin, were not expressed by rat LSECs while heterogenous immunreactivity for claudin-5 was detected in human LSECs. In contrast, junctional molecules preferentially associating with TJ such as JAM-A, B and C and zonula occludens proteins ZO-1 and ZO-2 were readily detected in LSECs. Remarkably, among the JAMs JAM-C was considerably over-expressed in LSECs as compared to lung microvascular endothelial cells. In conclusion, we show here that LSECs form a special kind of mixed-type intercellular junctions characterized by co-occurrence of endothelial AJ proteins, and of ZO-1 and -2, and JAMs. The distinct molecular architecture of the intercellular junctional complexes of LSECs corroborates previous ultrastructural findings and provides the molecular basis for further analyses of the endothelial barrier function of liver sinusoids under pathologic conditions ranging from hepatic inflammation to formation of liver metastasis.

  5. Ovarian senescence increases liver fibrosis in humans and zebrafish with steatosis

    Directory of Open Access Journals (Sweden)

    Elena Turola

    2015-09-01

    Full Text Available Contrasting data exist on the effect of gender and menopause on the susceptibility, development and liver damage progression in non-alcoholic fatty liver disease (NAFLD. Our aim was to assess whether menopause is associated with the severity of liver fibrosis in individuals with NAFLD and to explore the issue of ovarian senescence in experimental liver steatosis in zebrafish. In 244 females and age-matched males with biopsy-proven NAFLD, we assessed anthropometric, biochemical and metabolic features, including menopausal status (self-reported; liver biopsy was scored according to ‘The Pathology Committee of the NASH Clinical Research Network’. Young and old male and female zebrafish were fed for 24 weeks with a high-calorie diet. Weekly body mass index (BMI, histopathological examination and quantitative real-time PCR analysis on genes involved in lipid metabolism, inflammation and fibrosis were performed. In the entire cohort, at multivariate logistic regression, male gender [odds ratio (OR: 1.408, 95% confidence interval (95% CI: 0.779-2.542, P=0.25] vs women at reproductive age was not associated with F2-F4 fibrosis, whereas a trend was observed for menopause (OR: 1.752, 95% CI: 0.956-3.208, P=0.06. In women, menopause (OR: 2.717, 95% CI: 1.020-7.237, P=0.04 was independently associated with F2-F4 fibrosis. Similarly, in overfed zebrafish, old female fish with failing ovarian function [as demonstrated by extremely low circulating estradiol levels (1.4±0.1 pg/µl and prevailing presence of atretic follicles in the ovaries] developed massive steatosis and substantial fibrosis (comparable with that occurring in males, whereas young female fish developed less steatosis and were totally protected from the development of fibrosis. Ovarian senescence significantly increases the risk of fibrosis severity both in humans with NAFLD and in zebrafish with experimental steatosis.

  6. Cytoglobin is expressed in hepatic stellate cells, but not in myofibroblasts, in normal and fibrotic human liver.

    Science.gov (United States)

    Motoyama, Hiroyuki; Komiya, Tohru; Thuy, Le Thi Thanh; Tamori, Akihiro; Enomoto, Masaru; Morikawa, Hiroyasu; Iwai, Shuji; Uchida-Kobayashi, Sawako; Fujii, Hideki; Hagihara, Atsushi; Kawamura, Etsushi; Murakami, Yoshiki; Yoshizato, Katsutoshi; Kawada, Norifumi

    2014-02-01

    Cytoglobin (CYGB) is ubiquitously expressed in the cytoplasm of fibroblastic cells in many organs, including hepatic stellate cells. As yet, there is no specific marker with which to distinguish stellate cells from myofibroblasts in the human liver. To investigate whether CYGB can be utilized to distinguish hepatic stellate cells from myofibroblasts in normal and fibrotic human liver, human liver tissues damaged by infection with hepatitis C virus (HCV) and at different stages of fibrosis were obtained by liver biopsy. Immunohistochemistry was performed on histological sections of liver tissues using antibodies against CYGB, cellular retinol-binding protein-1 (CRBP-1), α-smooth muscle actin (α-SMA), thymocyte differentiation antigen 1 (Thy-1), and fibulin-2 (FBLN2). CYGB- and CRBP-1-positive cells were counted around fibrotic portal tracts in histological sections of the samples. The expression of several of the proteins listed above was examined in cultured mouse stellate cells. Quiescent stellate cells, but not portal myofibroblasts, expressed both CYGB and CRBP-1 in normal livers. In fibrotic and cirrhotic livers, stellate cells expressed both CYGB and α-SMA, whereas myofibroblasts around the portal vein expressed α-SMA, Thy-1, and FBLN2, but not CYGB. Development of the fibrotic stage was positively correlated with increases in Sirius red-stained, α-SMA-positive, and Thy-1-positive areas, whereas the number of CYGB- and CRBP-1-positive cells decreased with fibrosis development. Primary cultured mouse stellate cells expressed cytoplasmic CYGB at day 1, whereas they began to express α-SMA at the cellular margins at day 4. Thy-1 was undetectable throughout the culture period. In human liver tissues, quiescent stellate cells are CYGB positive. When activated, they also become α-SMA positive; however, they are negative for Thy-1 and FBLN2. Thus, CYGB is a useful marker with which to distinguish stellate cells from portal myofibroblasts in the damaged human

  7. GMP-grade human fetal liver-derived mesenchymal stem cells for clinical transplantation.

    Science.gov (United States)

    Larijani, Bagher; Aghayan, Hamid-Reza; Goodarzi, Parisa; Arjmand, Babak

    2015-01-01

    Stem cell therapy seems a promising avenue in regenerative medicine. Within various stem cells, mesenchymal stem cells have progressively used for cellular therapy. Because of the age-related decreasing in the frequency and differentiating capacity of adult MSCs, fetal tissues such as fetal liver, lung, pancreas, spleen, etc. have been introduced as an alternative source of MSCs for cellular therapy. On the other hand, using stem cells as advanced therapy medicinal products, must be performed in compliance with cGMP as a quality assurance system to ensure the safety, quality, and identity of cell products during translation from the basic stem cell sciences into clinical cell transplantation. In this chapter the authors have demonstrated the manufacturing of GMP-grade human fetal liver-derived mesenchymal stem cells.

  8. The insecticide DDT decreases membrane potential and cell input resistance of cultured human liver cells.

    Science.gov (United States)

    Schefczik, K; Buff, K

    1984-10-03

    The resting membrane potential, Em, and the cell input resistance, Rinp, of cultured human Chang liver cells were measured using the single electrode 'double-pulse' current clamp technique, following exposure of the cells to the insecticide DDT (20 microM). In control (unexposed) cells, the mean Em was -24 mV, and the mean Rinp was 30 M omega. Neither parameter was significantly impaired after 1 h of cell exposure to DDT. But after 7 and 48 h, the Em was depolarized by 15 and 25 mV, respectively, in parallel with a decrease of the cell input resistance. The strongly time-delayed effect of DDT on Chang liver cell membranes may indicate a mode of interaction different from excitable membranes.

  9. Trans—acting factors from the human fetal liver binding to the human ε—globin gene silencer

    Institute of Scientific and Technical Information of China (English)

    YANZHIJIANG; CHUJIANG; 等

    1997-01-01

    The developmental stage-specific silencing of the human ε-globin gene during embryonic life is controlled,in part,by the silencer (-392bp- -177bp) upstream of this gene.In order to elucidate its role,the nuclear extract from the human fetal liver has been prepared and the interactions between trans-acting factors and this silencer element have been examined.By using DNaseI footprinting assay,a major protected region from -278bp to -235bp within this silencer element was identified.Furthermore,we found in gel mobility shift assay and Southwestern blotting assay that there were at least four trans-acting factors (MV≈32,28,26 and 22kD) in the nuclear extract isolated from the human fetal liver,which could specifically bind to this region.Our results suggested that these trans-acting factors might play an important role in silencing the human embryonic ε-globin gene expression at the fetal stage through the interactions with this silencer.

  10. Interferon-λ4 (IFNL4 transcript expression in human liver tissue samples.

    Directory of Open Access Journals (Sweden)

    Ahmad Amanzada

    Full Text Available Eradication of hepatitis C virus (HCV infection, both spontaneous and treatment-induced, is marked by the wildtype allele C of a single nucleotide polymorphism upstream of the IL28B gene, rs12979860. This favorable allele was recently described to be in linkage disequilibrium with the wildtype allele TT of a dinucleotide polymorphism, ss469415590, located within a new protein-coding gene. While the TT allele introduces a frame-shift and disrupts the open reading frame, only the variant allele, ΔG, creates a novel type III interferon (IFN protein, IFN-λ4/IFNL4. Absence of IFNL4 is thus supposed to favor resolution of HCV infection. As to date IFNL4 mRNA transcription has only been investigated in polyI:C-stimulated primary human hepatocytes and not yet in HCV infection in vivo, this study analyzed IFNL4 mRNA expression in human liver biopsy specimens. Samples were obtained from patients with a broad panel of disorders including no liver disease, liver diseases of non-viral etiology, chronic hepatitis B and chronic hepatitis C. Hepatic IFNL4 transcripts were detectable exclusively in a subgroup of chronic hepatitis C patients (24/45. Their amounts were positively related to liver HCV RNA copy numbers (p = 0.0023, r = 0.56 suggesting that the hepatic viral load influences IFNL4 transcription irrespective of IFNL4 governing genotype. Both, the IFNL4 creating allele ΔG (p<0.0001 and actual IFNL4 transcription (p = 0.0015 were found to be correlated to the activation of IFN stimulatory genes (ISGs. By contrast, IFNL4 ss469415590 genotypes were not found to be related to IFN-λ2/3/IL28 or IFN-λ1/IL29 gene expression. In conclusion, this study is the first report on intrahepatic transcript levels of the recently discovered IFNL4 gene. Data indicate that HCV infection in particular might activate IFNL4 transcription in the liver. It provides a possible explanation as to why hepatitis C patients show ISG stimulation in their livers in the

  11. Mechanisms of tumor necrosis factor-α and interleukin-6 induction during human liver transplantation

    Directory of Open Access Journals (Sweden)

    Gerhard Hamilton

    1993-01-01

    Full Text Available In human orthotopic liver transplantation (LTX intraoperative elevations of TNF-α (> 100 pg/ml and IL-6 (>800 pg/ml have been found to correlate with early post-operative rejections and infections respectively. In this study the possible mechanism responsible for the induction of these cytokines has been investigated during liver allografting in 38 recipients. Intraoperative elevations of TNF-α (> 100 pg/ml were detected in the majority of pre-transplant endotoxin positive recipients (8/12, > 10 endotoxin units/ml, the patients turning endotoxin positive until the end of grafting (3/5, and in a subgroup (6/21 patients, apparently endotoxin negative for the whole operation. Therefore endotoxin (ET seems to stimulate release of TNF-α in approximately 50% of the patients, whereas sensitized Kupffer graft cells or immediate allograft reactivity of the host are likely to account for the remaining TNF-α positive cases. Elevations of IL-6 > 800 pg/ml were found in approximately 50% of the TNF-α positive cases, indicating partially independent regulatory pathways for IL-6 induction in the TNF-α negative patients. In agreement with a previous study, 11/13 (85% of the intraoperative TNF-α positive recipients rejected their grafts within the first 10 days post-operatively. These data demonstrate that ET/infection associated as well as ET independent/reperfusion associated intraoperative TNF-α elevations, promote the initiation of allograft rejection in human liver transplantation. The transient and low endotoxaemia caused by the liver grafting procedure performed without veno-venous bypass seems to be of minor importance in the intraoperative induction of TNF-α.

  12. In vitro metabolism and interactions of the fungicide metalaxyl in human liver preparations.

    Science.gov (United States)

    Abass, Khaled; Reponen, Petri; Jalonen, Jorma; Pelkonen, Olavi

    2007-01-01

    In order to provide additional information for risk assessment of the fungicide metalaxyl, the main objectives were (1) to elucidate the interactions of metalaxyl with different human liver cytochrome P450 enzymes, (2) to tentitatively identify and (semi)quantify metabolites in vitro and (3) to identify human CYP enzymes responsible for metabolism. The mean inhibitory concentrations (IC(50)) for 7-pentoxyresorufin-O-dealkylation (CYP2B) and bupropion hydroxylation (2B6) were 48.9 and 41.7μM, respectively. The biotransformation reactions were hydroxylation, (di)demethylation and lactone formation. In human liver microsomes predominant metabolites were two hydroxymetalaxyl derivatives or atropisomers of one of the derivatives. On the basis of previous rat studies these could be N-(2-hydroxymethyl-6-methylphenyl)-N-(methoxyacetyl)alanine methyl ester and/or N-(2,6-dimethyl-5-hydroxyphenyl)-N-(methoxyacetyl)alanine methyl ester. The amounts of didemethylmetalaxyl N-(2,6-dimethylphenyl)-N-(hydroxyacetyl)alanine and lactone 4-(2,6-dimethylphenyl)-3-methylmorpholine-2,5-dione were higher in homogenates than microsomes. The carcinogenic 2,6-dimethylaniline was not detected. Among the nine major human CYPs, CYP3A4 was the only one responsible for metalaxyl hydroxylation, while CYP2B6 was the major isoform responsible for (di)demethylation and lactone formation. Copyright © 2006 Elsevier B.V. All rights reserved.

  13. Basic investigation on acoustic velocity change imaging method for quantitative assessment of fat content in human liver

    Science.gov (United States)

    Mano, Kazune; Tanigawa, Shohei; Hori, Makoto; Yokota, Daiki; Wada, Kenji; Matsunaka, Toshiyuki; Morikawa, Hiroyasu; Horinaka, Hiromichi

    2016-07-01

    Fatty liver is a disease caused by the excess accumulation of fat in the human liver. The early diagnosis of fatty liver is very important, because fatty liver is the major marker linked to metabolic syndrome. We already proposed the ultrasonic velocity change imaging method to diagnose fatty liver by using the fact that the temperature dependence of ultrasonic velocity is different in water and in fat. For the diagonosis of a fatty liver stage, we attempted a feasibility study of the quantitative assessment of the fat content in the human liver using our ultrasonic velocity change imaging method. Experimental results showed that the fat content in the tissue mimic phantom containing lard was determined by its ultrasonic velocity change in the flat temperature region formed by a circular warming ultrasonic transducer with an acoustic lens having an appropriate focal length. By considering the results of our simulation using a thermal diffusion equation, we determined whether this method could be applied to fatty liver assessment under the condition that the tissue had the thermal relaxation effect caused by blood flow.

  14. Warm ischemic injury is reflected in the release of injury markers during cold preservation of the human liver.

    Directory of Open Access Journals (Sweden)

    Bote G Bruinsma

    Full Text Available Liver transplantation plays a pivotal role in the treatment of patients with end-stage liver disease. Despite excellent outcomes, the field is strained by a severe shortage of viable liver grafts. To meet high demands, attempts are made to increase the use of suboptimal livers by both pretransplant recovery and assessment of donor livers. Here we aim to assess hepatic injury in the measurement of routine markers in the post-ischemic flush effluent of discarded human liver with a wide warm ischemic range.Six human livers discarded for transplantation with variable warm and cold ischemia times were flushed at the end of preservation. The liver grafts were flushed with NaCl or Lactated Ringer's, 2 L through the portal vein and 1 L through the hepatic artery. The vena caval effluent was sampled and analyzed for biochemical markers of injury; lactate dehydrogenase (LDH, alanine transaminase (ALT, and alkaline phosphatase (ALP. Liver tissue biopsies were analyzed for ATP content and histologically (H&E examined.The duration of warm ischemia in the six livers correlated significantly to the concentration of LDH, ALT, and ALP in the effluent from the portal vein flush. No correlation was found with cold ischemia time. Tissue ATP content at the end of preservation correlated very strongly with the concentration of ALP in the arterial effluent (P<0.0007, R2 = 0.96.Biochemical injury markers released during the cold preservation period were reflective of the duration of warm ischemic injury sustained prior to release of the markers, as well as the hepatic energy status. As such, assessment of the flush effluent at the end of cold preservation may be a useful tool in evaluating suboptimal livers prior to transplantation, particularly in situations with undeterminable ischemic durations.

  15. Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells.

    Science.gov (United States)

    Kranendonk, Mariëtte E G; Visseren, Frank L J; van Herwaarden, Joost A; Nolte-'t Hoen, Esther N M; de Jager, Wilco; Wauben, Marca H M; Kalkhoven, Eric

    2014-10-01

    Insulin resistance (IR) is a key mechanism in obesity-induced cardiovascular disease. To unravel mechanisms whereby human adipose tissue (AT) contributes to systemic IR, the effect of human AT-extracellular vesicles (EVs) on insulin signaling in liver and muscle cells was determined. EVs released from human subcutaneous (SAT) and omental AT (OAT)-explants ex vivo were used for stimulation of hepatocytes and myotubes in vitro. Subsequently, insulin-induced Akt phosphorylation and expression of gluconeogenic genes (G6P, PEPCK) was determined. AT-EV adipokine levels were measured by multiplex immunoassay, and AT-EVs were quantified by high-resolution flow cytometry. In hepatocytes, AT-EVs from the majority of patients inhibited insulin-induced Akt phosphorylation, while EVs from some patients stimulated insulin-induced Akt phosphorylation. In myotubes AT-EVs exerted an ambiguous effect on insulin signaling. Hepatic Akt phosphorylation related negatively to G6P-expression by both SAT-EVs (r = -0.60, P = 0.01) and OAT-EVs (r = -0.74, P = 0.001). MCP-1, IL-6, and MIF concentrations were higher in OAT-EVs compared to SAT-EVs and differently related to lower Akt phosphorylation in hepatocytes. Finally, the number of OAT-EVs correlated positively with liver enzymes indicative for liver dysfunction. Human AT-EVs can stimulate or inhibit insulin signaling in hepatocytes- possibly depending on their adipokine content- and may thereby contribute to systemic IR. Copyright © 2014 The Obesity Society.

  16. Effects of Eupatilin and Jaceosidin on Cytochrome P450 Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Ji Hyun Jeong

    2010-09-01

    Full Text Available Eupatilin and jaceosidin are bioactive flavones found in the medicinal herbs of the genus Artemisia. These bioactive flavones exhibit various antioxidant, antiinflammatory, antiallergic, and antitumor activities. The inhibitory potentials of eupatilin and jaceosidin on the activities of seven major human cytochrome P450 enzymes in human liver microsomes were investigated using a cocktail probe assay. Eupatilin and jaceosidin potently inhibited CYP1A2-catalyzed phenacetin O-deethylation with 50% inhibitory concentration (IC50 values of 9.4 mM and 5.3 mM, respectively, and CYP2C9-catalyzed diclofenac 4-hydroxylation with IC50 values of 4.1 mM and 10.2 mM, respectively. Eupatilin and jaceosidin were also found to moderately inhibit CYP2C19-catalyzed [S]-mephenytoin 4¢-hydroxylation, CYP2D6-catalyzed bufuralol 1¢-hydroxylation, and CYP2C8-catalyzed amodiaquine N-deethylation. Kinetic analysis of human liver microsomes showed that eupatilin is a competitive inhibitor of CYP1A2 with a Ki value of 2.3 mM and a mixed-type inhibitor of CYP2C9 with a Ki value of 1.6 mM. Jaceosidin was shown to be a competitive inhibitor of CYP1A2 with a Ki value of 3.8 mM and a mixed-type inhibitor of CYP2C9 with Ki value of 6.4 mM in human liver microsomes. These in vitro results suggest that eupatilin and jaceosidin should be further examined for potential pharmacokinetic drug interactions in vivo due to inhibition of CYP1A2 and CYP2C9.

  17. Liver Immunology

    Science.gov (United States)

    Bogdanos, Dimitrios P.; Gao, Bin; Gershwin, M. Eric

    2014-01-01

    The liver is the largest organ in the body and is generally regarded by non-immunologists as not having lymphoid function. However, such is far from accurate. This review highlights the importance of the liver as a lymphoid organ. Firstly, we discuss experimental data surrounding the role of liver as a lymphoid organ. The liver facilitates a tolerance rather than immunoreactivity, which protects the host from antigenic overload of dietary components and drugs derived from the gut and is also instrumental to fetal immune tolerance. Loss of liver tolerance leads to autoaggressive phenomena which if are not controlled by regulatory lymphoid populations may lead to the induction of autoimmune liver diseases. Liver-related lymphoid subpopulations also act as critical antigen-presenting cells. The study of the immunological properties of liver and delineation of the microenvironment of the intrahepatic milieu in normal and diseased livers provides a platform to understand the hierarchy of a series of detrimental events which lead to immune-mediated destruction of the liver and the rejection of liver allografts. The majority of emphasis within this review will be on the normal mononuclear cell composition of the liver. However, within this context, we will discus select, but not all, immune mediated liver disease and attempt to place these data in the context of human autoimmunity. PMID:23720323

  18. Spatial Distribution of Iron Within the Normal Human Liver Using Dual-Source Dual-Energy CT Imaging.

    Science.gov (United States)

    Abadia, Andres F; Grant, Katharine L; Carey, Kathleen E; Bolch, Wesley E; Morin, Richard L

    2017-05-29

    Explore the potential of dual-source dual-energy (DSDE) computed tomography (CT) to retrospectively analyze the uniformity of iron distribution and establish iron concentration ranges and distribution patterns found in healthy livers. Ten mixtures consisting of an iron nitrate solution and deionized water were prepared in test tubes and scanned using a DSDE 128-slice CT system. Iron images were derived from a 3-material decomposition algorithm (optimized for the quantification of iron). A conversion factor (mg Fe/mL per Hounsfield unit) was calculated from this phantom study as the quotient of known tube concentrations and their corresponding CT values. Retrospective analysis was performed of patients who had undergone DSDE imaging for renal stones. Thirty-seven patients with normal liver function were randomly selected (mean age, 52.5 years). The examinations were processed for iron concentration. Multiple regions of interest were analyzed, and iron concentration (mg Fe/mL) and distribution was reported. The mean conversion factor obtained from the phantom study was 0.15 mg Fe/mL per Hounsfield unit. Whole-liver mean iron concentrations yielded a range of 0.0 to 2.91 mg Fe/mL, with 94.6% (35/37) of the patients exhibiting mean concentrations below 1.0 mg Fe/mL. The most important finding was that iron concentration was not uniform and patients exhibited regionally high concentrations (36/37). These regions of higher concentration were observed to be dominant in the middle-to-upper part of the liver (75%), medially (72.2%), and anteriorly (83.3%). Dual-source dual-energy CT can be used to assess the uniformity of iron distribution in healthy subjects. Applying similar techniques to unhealthy livers, future research may focus on the impact of hepatic iron content and distribution for noninvasive assessment in diseased subjects.

  19. A Model for Slicing JAVA Programs Hierarchically

    Institute of Scientific and Technical Information of China (English)

    Bi-Xin Li; Xiao-Cong Fan; Jun Pang; Jian-Jun Zhao

    2004-01-01

    Program slicing can be effectively used to debug, test, analyze, understand and maintain objectoriented software. In this paper, a new slicing model is proposed to slice Java programs based on their inherent hierarchical feature. The main idea of hierarchical slicing is to slice programs in a stepwise way, from package level, to class level, method level, and finally up to statement level. The stepwise slicing algorithm and the related graph reachability algorithms are presented, the architecture of the Java program Analyzing Tool (JATO) based on hierarchical slicing model is provided, the applications and a small case study are also discussed.

  20. Xmrk, kras and myc transgenic zebrafish liver cancer models share molecular signatures with subsets of human hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Weiling Zheng

    Full Text Available Previously three oncogene transgenic zebrafish lines with inducible expression of xmrk, kras or Myc in the liver have been generated and these transgenic lines develop oncogene-addicted liver tumors upon chemical induction. In the current study, comparative transcriptomic approaches were used to examine the correlation of the three induced transgenic liver cancers with human liver cancers. RNA profiles from the three zebrafish tumors indicated relatively small overlaps of significantly deregulated genes and biological pathways. Nevertheless, the three transgenic tumor signatures all showed significant correlation with advanced or very advanced human hepatocellular carcinoma (HCC. Interestingly, molecular signature from each oncogene-induced zebrafish liver tumor correlated with only a small subset of human HCC samples (24-29% and there were conserved up-regulated pathways between the zebrafish and correlated human HCC subgroup. The three zebrafish liver cancer models together represented nearly half (47.2% of human HCCs while some human HCCs showed significant correlation with more than one signature defined from the three oncogene-addicted zebrafish tumors. In contrast, commonly deregulated genes (21 up and 16 down in the three zebrafish tumor models generally showed accordant deregulation in the majority of human HCCs, suggesting that these genes might be more consistently deregulated in a broad range of human HCCs with different molecular mechanisms and thus serve as common diagnosis markers and therapeutic targets. Thus, these transgenic zebrafish models with well-defined oncogene-induced tumors are valuable tools for molecular classification of human HCCs and for understanding of molecular drivers in hepatocarcinogenesis in each human HCC subgroup.

  1. Applying of hierarchical clustering to analysis of protein patterns in the human cancer-associated liver.

    Directory of Open Access Journals (Sweden)

    Natalia A Petushkova

    Full Text Available There are two ways that statistical methods can learn from biomedical data. One way is to learn classifiers to identify diseases and to predict outcomes using the training dataset with established diagnosis for each sample. When the training dataset is not available the task can be to mine for presence of meaningful groups (clusters of samples and to explore underlying data structure (unsupervised learning.We investigated the proteomic profiles of the cytosolic fraction of human liver samples using two-dimensional electrophoresis (2DE. Samples were resected upon surgical treatment of hepatic metastases in colorectal cancer. Unsupervised hierarchical clustering of 2DE gel images (n = 18 revealed a pair of clusters, containing 11 and 7 samples. Previously we used the same specimens to measure biochemical profiles based on cytochrome P450-dependent enzymatic activities and also found that samples were clearly divided into two well-separated groups by cluster analysis. It turned out that groups by enzyme activity almost perfectly match to the groups identified from proteomic data. Of the 271 reproducible spots on our 2DE gels, we selected 15 to distinguish the human liver cytosolic clusters. Using MALDI-TOF peptide mass fingerprinting, we identified 12 proteins for the selected spots, including known cancer-associated species.Our results highlight the importance of hierarchical cluster analysis of proteomic data, and showed concordance between results of biochemical and proteomic approaches. Grouping of the human liver samples and/or patients into differing clusters may provide insights into possible molecular mechanism of drug metabolism and creates a rationale for personalized treatment.

  2. Impacts of Unregulated Novel Brominated Flame Retardants on Human Liver Thyroid Deiodination and Sulfotransferation.

    Science.gov (United States)

    Smythe, Tristan A; Butt, Craig M; Stapleton, Heather M; Pleskach, Kerri; Ratnayake, Geemitha; Song, Chae Yoon; Riddell, Nicole; Konstantinov, Alex; Tomy, Gregg T

    2017-06-20

    The inhibitory effects of five novel brominated flame retardants, 1,2-bis(2,4,5-tribromophenoxy)ethane (BTBPE), decabromodiphenylethane (DBDPE), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB), bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP), and β-tetrabromoethylcyclohexane (β-TBECH), on thyroid hormone deiodinase (DIO) and sulfotransferase (SULT) activity were investigated using human in vitro liver microsomal and cytosolic bioassays. Enzymatic activity was measured by incubating active human liver subcellular fractions with thyroid hormones (T4 and rT3 separately) and measuring changes in thyroid hormone (T4, T3, rT3, and 3,3'-T2) concentrations. Only DBDPE showed inhibition of both outer and inner ring deiodination (O and IRD) of T3 and 3,3'-T2 formation from T4, respectively, with an estimated IC50 of 160 nM; no statistically significant inhibition of SULT activity was observed. ORD inhibition of 3,3'-T2 formation from rT3 was also observed (IC50 ∼ 100 nM). The kinetics of T4 O and IRD were also investigated, although a definitive mechanism could not be identified as the Michaelis-Menten parameters and maximal rate constants were not significantly different. Concentrations tested were intentionally above expected environmental levels, and this study suggests that these NBFRs are not potent human liver DIO and SULT inhibitors. To our knowledge, DBDPE is the first example of a nonhydroxylated contaminant inhibiting DIO activity, and further study of the mechanism of action is warranted.

  3. Featured Article: Isolation, characterization, and cultivation of human hepatocytes and non-parenchymal liver cells

    Science.gov (United States)

    Pfeiffer, Elisa; Kegel, Victoria; Zeilinger, Katrin; Hengstler, Jan G; Nüssler, Andreas K; Seehofer, Daniel

    2015-01-01

    Primary human hepatocytes (PHH) are considered to be the gold standard for in vitro testing of xenobiotic metabolism and hepatotoxicity. However, PHH cultivation in 2D mono-cultures leads to dedifferentiation and a loss of function. It is well known that hepatic non-parenchymal cells (NPC), such as Kupffer cells (KC), liver endothelial cells (LEC), and hepatic stellate cells (HSC), play a central role in the maintenance of PHH functions. The aims of the present study were to establish a protocol for the simultaneous isolation of human PHH and NPC from the same tissue specimen and to test their suitability for in vitro co-culture. Human PHH and NPC were isolated from tissue obtained by partial liver resection by a two-step EDTA/collagenase perfusion technique. The obtained cell fractions were purified by Percoll density gradient centrifugation. KC, LEC, and HSC contained in the NPC fraction were separated using specific adherence properties and magnetic activated cell sorting (MACS®). Identified NPC revealed a yield of 1.9 × 106 KC, 2.7 × 105 LEC and 4.7 × 105 HSC per gram liver tissue, showing viabilities >90%. Characterization of these NPC showed that all populations went through an activation process, which influenced the cell fate. The activation of KC strongly depended on the tissue quality and donor anamnesis. KC became activated in culture in association with a loss of viability within 4–5 days. LEC lost specific features during culture, while HSC went through a transformation process into myofibroblasts. The testing of different culture conditions for HSC demonstrated that they can attenuate, but not prevent dedifferentiation in vitro. In conclusion, the method described allows the isolation and separation of PHH and NPC in high quality and quantity from the same donor. PMID:25394621

  4. Regulation of coagulation factor XI expression by microRNAs in the human liver.

    Directory of Open Access Journals (Sweden)

    Salam Salloum-Asfar

    Full Text Available High levels of factor XI (FXI increase the risk of thromboembolic disease. However, the genetic and environmental factors regulating FXI expression are still largely unknown. The aim of our study was to evaluate the regulation of FXI by microRNAs (miRNAs in the human liver. In silico prediction yielded four miRNA candidates that might regulate FXI expression. HepG2 cells were transfected with miR-181a-5p, miR-23a-3p, miR-16-5p and miR-195-5p. We used mir-494, which was not predicted to bind to F11, as a negative control. Only miR-181a-5p caused a significant decrease both in FXI protein and F11 mRNA levels. In addition, transfection with a miR-181a-5p inhibitor in PLC/PRF/5 hepatic cells increased both the levels of F11 mRNA and extracellular FXI. Luciferase assays in human colon cancer cells deficient for Dicer (HCT-DK demonstrated a direct interaction between miR-181a-5p and 3'untranslated region of F11. Additionally, F11 mRNA levels were inversely and significantly correlated with miR-181a-5p levels in 114 healthy livers, but not with miR-494. This study demonstrates that FXI expression is directly regulated by a specific miRNA, miR-181a-5p, in the human liver. Future studies are necessary to further investigate the potential consequences of miRNA dysregulation in pathologies involving FXI.

  5. Characterization of hepatic progenitors from human fetal liver during second trimester

    Institute of Scientific and Technical Information of China (English)

    Mekala Subba Rao; Aleem Ahmed Khan; Nyamath Parveen; Mohammed Aejaz Habeeb; Chittor Mohammed Habibullah; Gopal Pande

    2008-01-01

    AIM: To enrich hepatic progenitors using epithelial cell adhesion molecule (EpCAH) as a marker from human fetal liver and investigate the expression of human leukocyte antigen (HLA) and their markers associated with hepatic progenitor cells.METHODS: EpCAM +ve cells were isolated usingmagnetic cell sorting (MACS) from human fetuses (n =10) at 15-25 wk gestation.Expression of markers for hepatic progenitors such as albumin,alpha-fetoprotein (AFP),CD29 (integrin β1),CD49f (integrin α6) and CD90 (Thy 1) was studied by using flow cytometry,immunocytochemistry and RT-PCR; HLA class Ⅰ (A,B,C) and class Ⅱ (DR) expression was studied by flow cytometry only.RESULTS: FACS analysis indicated that EpCAM +ve cells were positive for CD29,CD49f,CD90,CD34,HLA class Ⅰ,albumin and AFP but negative for HLA class Ⅱ (DR) and CD45.RT PCR showed that EpCAM +ve cells expressed liver epithelial markers (CK18),biliary specific marker (CK19) and hepatic markers (albumin,AFP).On immunocytochemical staining,EpCAH +ve cells were shown positive signals for CK18 and albumin.CONCLUSION: Our study suggests that these EpCAM +ve cells can be used as hepatic progenitors for cell transplantation with a minimum risk of alloreactivity and these cells may serve as a potential source for enrichment of hepatic progenitor.

  6. Detection of anti-liver cell membrane antibody using a human hepatocellular carcinoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Lobo-Yeo, A.; McSorley, C.; McFarlane, B.M.; Mieli-Vergani, G.; Mowat, A.P.; Vergani, D.

    1989-02-01

    A radioimmunometric technique for the detection of autoantibodies to liver membrane antigens has been developed using Alexander cells, a human hepatocellular carcinoma cell line. After incubation of Alexander cells with serum, antimembrane antibodies were detected by addition of /sup 125/I-labeled Protein A. Binding ratios in 15 children with uncontrolled autoimmune chronic active hepatitis and in seven children with primary sclerosing cholangitis were significantly higher than in 18 age-matched normal controls. Nine patients with inactive autoimmune chronic active hepatitis, 13 with alpha 1-antitrypsin deficiency and five with fulminant hepatic failure had ratios similar to controls. In nine patients with Wilson's disease, there was a modest but significant increase in binding ratio. In four children with autoimmune chronic active hepatitis, binding ratios fell during effective immunosuppressive therapy. Sera from patients with systemic lupus erythematosus or rheumatoid arthritis gave normal results, excluding that binding derives from Fc-mediated immune complex capture. A positive correlation was found between Alexander cell binding values and anti-liver-specific protein antibody titers, suggesting that the two assays detect antibodies against shared antigenic determinants. The Alexander cell assay is a simple, rapid and sensitive technique to detect antibody to liver cell membrane antigens.

  7. Mutation analysis of novel human liver-related putative tumor suppressor gene in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Cheng Liao; Tsai-Ping Li; Mu-Jun Zhao; Jing Zhao; Hai Song; Pascal Pineau; Agnès Marchio; Anne Dejean; Pierre Tiollais; Hong-Yang Wang

    2003-01-01

    AIM: To find the point mutations meaningful for inactivationof liver-related putative tumor suppressor gene (LPTS) gene,a human novel liver-related putative tumor suppressor geneand telomerase inhibitor in hepatocellular carcinoma.METHODS: The entire coding sequence of LPTS genewas examined for mutations by single strand conformationpolymorphism (SSCP) assay and PCR products directsequencing in 56 liver cancer cell lines, 7 ovarian cancerand 7 head & neck tumor cell lines and 70 pairs of HCCtissues samples. The cDNA fragment coding for the mostfrequent mutant protein was subcloned into GST fusionexpression vector. The product was expressed in E. coliand purified by glutathione-agarose column. Telomericrepeat amplification protocol (TRAP) assays wereperformed to study the effect of point mutation totelomerase inhibitory activity.RESULTS: SSCP gels showed the abnormal shifting bandsand DNA sequencing found that there were 5 differentmutations and/or polymorphisms in 12 tumor cell lineslocated at exon2, exon5 and exon7. The main alterationswere A(778)A/G and A(880)T in exon7. The change in siteof 778 could not be found in HCC tissue samples, while themutation in position 880 was seen in 7 (10 %) cases. Themutation in the site of 880 had no effect on telomeraseinhibitory activity.CONCLUSION: Alterations identified in this study arepolymorphisms of LPTS gene. LPTS mutations occur in HCCbut are infrequent and of little effect on the telomeraseinhibitory function of the protein. Epigenetics, such asmethylation, acetylation, may play the key role in inactivationof LPTS.

  8. Metabolism of dictamnine in liver microsomes from mouse, rat, dog, monkey, and human.

    Science.gov (United States)

    Wang, Pei; Zhao, Yunli; Zhu, Yingdong; Sun, Jianbo; Yerke, Aaron; Sang, Shengmin; Yu, Zhiguo

    2016-02-05

    Dictamnine, a furoquinoline alkaloid isolated from the root bark of Dictamnus dasycarpus Turcz. (Rutaceae), is reported to have a wide range of pharmacological activities. In this study, the in vitro metabolic profiles of dictamnine in mouse, rat, dog, monkey, and human liver microsomes were investigated and compared. Dictamnine was incubated with liver microsomes in the presence of an NADPH-regenerating system, resulting in the formation of eight metabolites (M1-M8). M1 is an O-desmethyl metabolite. M5 and M6 are formed by a mono-hydroxylation of the benzene ring of dictamnine. M8 was tentatively identified as an N-oxide metabolite. The predominant metabolic pathway of dictamnine occurs through the epoxidation of the 2,3-olefinic to yield a 2,3-epoxide metabolite (M7), followed by the ring of the epoxide opening to give M4. Likewise, cleavage of the furan ring forms M2 and M3. Slight differences were observed in the in vitro metabolic profiles of dictamnine among the five species tested. A chemical inhibition study with a broad and five specific CYP450 inhibitors revealed that most of the dictamnine metabolites in liver microsomes are mediated by CYP450, with CYP3A4 as the predominant enzyme involved in the formation of M7, the major metabolite. These findings provide vital information to better understand the metabolic processes of dictamnine among various species.

  9. Detection of human leukocyte antigen compatibility and antibodies in liver transplantation in China

    Institute of Scientific and Technical Information of China (English)

    Xue-Qin Meng; Xuan Zhang; Jun Fan; Lin Zhou; Bing Hao; Xiao-Ming Chen; Wei-Hang Ma; Shu-Sen Zheng

    2009-01-01

    BACKGROUND: The exact roles of human leukocyte antigen (HLA) compatibility, HLA antibodies and underlying diseases in acute rejection of liver transplants are not clear. Moreover, cytomegalovirus (CMV) infection, one of the most common infections after transplantation, is related to HLA genotype and the incidence of acute rejection. METHODS: Since there are controversial reports, we analyzed the impact of HLA matching, HLA antibodies and underlying diseases in 38 liver transplant recipients in China, and assessed the association of CMV infection and HLA compatibility. RESULTS: The frequency of no HLA compatibility was high in patients without antigenemia (P=0.019). All 17 patients with HLA-A matching developed antigenemia (P0.05). In patients with acute rejection, no differences were found in the incidence of acute rejection in transplants for hepatitis B, tumors, or combined hepatitis B and tumors (P>0.05).CONCLUSIONS: There are fewer acute rejections in transplants with more HLA compatibilities. Speciifc investigations of underlying diseases and HLA typing may be necessary in liver transplantation. The mechanisms of CMV infection and HLA matching should be further studied. HLA before transplantation should be examined for the prevention of acute rejection and CMV infection.

  10. Hepatitis C virus proteins do not directly trigger fibrogenic events in cultured human liver myofibroblasts.

    Science.gov (United States)

    Tan, K; Guibert, C; Neaud, V; Rosenbaum, J

    2003-11-01

    Although liver fibrosis is the major complication of hepatitis C virus (HCV) infection, the mechanisms of fibrogenesis in this setting are not completely understood. The aim of this study was to test the direct effect of HCV proteins on signalling- and fibrosis-related events in cultured human liver myofibroblasts, the effector cells of liver fibrogenesis. Cultured myofibroblasts were exposed to recombinant HCV core, a structural protein, and nonstructural proteins (NS) 3, NS 4 and NS 5. HCV proteins did not significantly increase DNA synthesis in myofibroblasts. We then examined if these proteins affected early signalling events. None of the HCV proteins affected the phosphorylation of the mitogen activated protein kinases/extracellular regulated kinases 1 and 2, or of the phosphatidylinositol 3-kinase target, Akt. HCV proteins had also no effect on intracellular calcium concentration. In other experiments, fibrogenesis-related parameters were measured. None of the HCV proteins had any effect on the secretion of type I collagen, tissue inhibitor of matrix metalloproteinases type 1, gelatinase or urokinase. Alpha-smooth muscle actin expression was also not modified. In summary, our experiments do not support a direct effect of these HCV proteins on fibrogenic cells.

  11. Production of factor VIII by human liver sinusoidal endothelial cells transplanted in immunodeficient uPA mice.

    Directory of Open Access Journals (Sweden)

    Marina E Fomin

    Full Text Available Liver sinusoidal endothelial cells (LSECs form a semi-permeable barrier between parenchymal hepatocytes and the blood. LSECs participate in liver metabolism, clearance of pathological agents, immunological responses, architectural maintenance of the liver and synthesis of growth factors and cytokines. LSECs also play an important role in coagulation through the synthesis of Factor VIII (FVIII. Herein, we phenotypically define human LSECs isolated from fetal liver using flow cytometry and immunofluorescence microscopy. Isolated LSECs were cultured and shown to express endothelial markers and markers specific for the LSEC lineage. LSECs were also shown to engraft the liver when human fetal liver cells were transplanted into immunodeficient mice with liver specific expression of the urokinase-type plasminogen activator (uPA transgene (uPA-NOG mice. Engrafted cells expressed human Factor VIII at levels approaching those found in human plasma. We also demonstrate engraftment of adult LSECs, as well as hepatocytes, transplanted into uPA-NOG mice. We propose that overexpression of uPA provides beneficial conditions for LSEC engraftment due to elevated expression of the angiogenic cytokine, vascular endothelial growth factor. This work provides a detailed characterization of human midgestation LSECs, thereby providing the means for their purification and culture based on their expression of CD14 and CD32 as well as a lack of CD45 expression. The uPA-NOG mouse is shown to be a permissive host for human LSECs and adult hepatocytes, but not fetal hepatoblasts. Thus, these mice provide a useful model system to study these cell types in vivo. Demonstration of human FVIII production by transplanted LSECs encourages further pursuit of LSEC transplantation as a cellular therapy for the treatment of hemophilia A.

  12. Identification of metabolites of fosinopril produced by human and rat liver microsomes with liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Uutela, Päivi; Monto, Matti; Iso-Mustajärvi, Ilona; Madetoja, Mari; Yliperttula, Marjo; Ketola, Raimo A

    2014-03-12

    Metabolic profiles of prodrug fosinopril and pharmacologically active metabolite fosinoprilat were studied using human or rat liver microsomes and S9 fractions. Metabolites were identified by ultra high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) using electrospray ionization in the positive and negative ion mode. They were characterized by accurate MS and MS/MS spectra and based on their different fragmentation pathways. With human liver microsomes fosinopril was metabolized via hydroxylation, glucuronidation, and hydrolysis to fosinoprilat. As expected the main metabolite was fosinoprilat and it was further hydroxylated and glucuronidated. However, these metabolites were not detected after incubation of fosinoprilat with human liver microsomes, indicating that metabolic reactions occur in sequence and fosinopril is hydrolyzed after glucuronidation or hydroxylation. With the developed UHPLC/Q-TOF-MS method once or twice hydroxylated fosinopril metabolites were detected for the first time and different regioisomers were separated. It was observed that the hydrolysis of fosinopril to fosinoprilat was more efficient with rat than with human liver microsomes, and therefore more hydroxylated fosinoprilat metabolites were detected when rat liver microsomes were used. Glucuronidation of fosinopril was not observed with rat liver microsomes.

  13. Potent inhibition of cytochrome P450 2B6 by sibutramine in human liver microsomes.

    Science.gov (United States)

    Bae, Soo Hyeon; Kwon, Min Jo; Choi, Eu Jin; Zheng, Yu Fen; Yoon, Kee Dong; Liu, Kwang-Hyeon; Bae, Soo Kyung

    2013-09-05

    The present study was performed to evaluate the potency and specificity of sibutramine as an inhibitor of the activities of nine human CYP isoforms in liver microsomes. Using a cocktail assay, the effects of sibutramine on specific marker reactions of the nine CYP isoforms were measured in human liver microsomes. Sibutramine showed potent inhibition of CYP2B6-mediated bupropion 6-hydroxylation with an IC50 value of 1.61μM and Ki value of 0.466μM in a competitive manner at microsomal protein concentrations of 0.25mg/ml; this was 3.49-fold more potent than the typical CYP2B6 inhibitor thio-TEPA (Ki=1.59μM). In addition, sibutramine slightly inhibited CYP2C19 activity (Ki=16.6μM, noncompetitive inhibition) and CYP2D6 activity (Ki=15.7μM, noncompetitive inhibition). These observations indicated 35.6- and 33.7-fold decreases in inhibition potency, respectively, compared with that of CYP2B6 by sibutramine. However, no inhibition of CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP2D6, or CYP2E1 activities was observed. In addition, the CYP2B6 inhibitory potential of sibutramine was enhanced at a lower microsomal protein concentration of 0.05mg/ml. After 30min preincubation of human liver microsomes with sibutramine in the presence of NADPH, no shift in IC50 was observed in terms of inhibition of the activities of the nine CYPs, suggesting that sibutramine is not a time-dependent inactivator. These observations suggest that sibutramine is a selective and potent inhibitor of CYP2B6 in vitro, whereas inhibition of other CYPs is substantially lower. These in vitro data support the use of sibutramine as a well-known inhibitor of CYP2B6 for routine screening of P450 reversible inhibition when human liver microsomes are used as the enzyme source.

  14. Two insulin-like growth factor I messenger RNAs are expressed in human liver.

    OpenAIRE

    Rotwein, P

    1986-01-01

    Through use of a synthetic oligonucleotide probe, human insulin-like growth factor I (IGF-I) cDNA clones were isolated from a liver library. Two types of cDNAs were defined by restriction enzyme analysis and DNA sequencing. Both encode IGF-I precursors of either 195 or 153 amino acids. The two predicted protein precursors are identical from their amino terminus to a lysine residue 16 codons beyond the IGF-I sequence, and then they diverge. Both cDNAs predict additional unique carboxyl-termina...

  15. Impact of human leukocyte antigen mismatching on outcomes of liver transplantation:A meta-analysis

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To assess the effect of human leukocyte antigen(HLA) mismatching on liver graft outcome and acute rejection from a meta-analysis of available cohort studies.METHODS:Articles in PubMed/MEDLINE,EMBASE and the Cochrane database from January 1970 to June 2009,including non-English literature identified in these databases,were searched.Only studies comparing HLA or sub-phenotype matching with mismatching were extracted.The percentage of graft survival was extracted by "Engauge Digitizer" from survival curves...

  16. An algorithm that predicts the viability and the yield of human hepatocytes isolated from remnant liver pieces obtained from liver resections.

    Science.gov (United States)

    Lee, Serene M L; Schelcher, Celine; Laubender, Rüdiger P; Fröse, Natalja; Thasler, Reinhard M K; Schiergens, Tobias S; Mansmann, Ulrich; Thasler, Wolfgang E

    2014-01-01

    Isolated human primary hepatocytes are an essential in vitro model for basic and clinical research. For successful application as a model, isolated hepatocytes need to have a good viability and be available in sufficient yield. Therefore, this study aims to identify donor characteristics, intra-operative factors, tissue processing and cell isolation parameters that affect the viability and yield of human hepatocytes. Remnant liver pieces from tissue designated as surgical waste were collected from 1034 donors with informed consent. Human hepatocytes were isolated by a two-step collagenase perfusion technique with modifications and hepatocyte yield and viability were subsequently determined. The accompanying patient data was collected and entered into a database. Univariate analyses found that the viability and the yield of hepatocytes were affected by many of the variables examined. Multivariate analyses were then carried out to confirm the factors that have a significant relationship with the viability and the yield. It was found that the viability of hepatocytes was significantly decreased by the presence of fibrosis, liver fat and with increasing gamma-glutamyltranspeptidase activity and bilirubin content. Yield was significantly decreased by the presence of liver fat, septal fibrosis, with increasing aspartate aminotransferase activity, cold ischemia times and weight of perfused liver. However, yield was significantly increased by chemotherapy treatment. In conclusion, this study determined the variables that have a significant effect on the viability and the yield of isolated human hepatocytes. These variables have been used to generate an algorithm that can calculate projected viability and yield of isolated human hepatocytes. In this way, projected viability can be determined even before isolation of hepatocytes, so that donors that result in high viability and yield can be identified. Further, if the viability and yield of the isolated hepatocytes is lower

  17. Differential TGFβ pathway targeting by miR-122 in humans and mice affects liver cancer metastasis

    Science.gov (United States)

    Yin, Shenyi; Fan, Yu; Zhang, Hanshuo; Zhao, Zhihua; Hao, Yang; Li, Juan; Sun, Changhong; Yang, Junyu; Yang, Zhenjun; Yang, Xiao; Lu, Jian; Xi, Jianzhong Jeff

    2016-01-01

    Downregulation of a predominantly hepatocyte-specific miR-122 is associated with human liver cancer metastasis, whereas miR-122-deficient mice display normal liver function. Here we show a functional conservation of miR-122 in the TGFβ pathway: miR-122 target site is present in the mouse but not human TGFβR1, whereas a noncanonical target site is present in the TGFβ1 5′UTR in humans and other primates. Experimental switch of the miR-122 target between the receptor TGFβR1 and the ligand TGFβ1 changes the metastatic properties of mouse and human liver cancer cells. High expression of TGFβ1 in human primary liver tumours is associated with poor survival. We identify over 50 other miRNAs orthogonally targeting ligand/receptor pairs in humans and mice, suggesting that these are evolutionarily common events. These results reveal an evolutionary mechanism for miRNA-mediated gene regulation underlying species-specific physiological or pathological phenotype and provide a potentially valuable strategy for treating liver-associated diseases. PMID:26987776

  18. Fibrogenic potential of human multipotent mesenchymal stromal cells in injured liver.

    Directory of Open Access Journals (Sweden)

    Reto M Baertschiger

    Full Text Available Multipotent mesenchymal stromal cells (MSC are currently investigated clinically as cellular therapy for a variety of diseases. Differentiation of MSC toward endodermal lineages, including hepatocytes and their therapeutic effect on fibrosis has been described but remains controversial. Recent evidence attributed a fibrotic potential to MSC. As differentiation potential might be dependent of donor age, we studied MSC derived from adult and pediatric human bone marrow and their potential to differentiate into hepatocytes or myofibroblasts in vitro and in vivo. Following characterization, expanded adult and pediatric MSC were co-cultured with a human hepatoma cell line, Huh-7, in a hepatogenic differentiation medium containing Hepatocyte growth factor, Fibroblast growth factor 4 and oncostatin M. In vivo, MSC were transplanted into spleen or liver of NOD/SCID mice undergoing partial hepatectomy and retrorsine treatment. Expression of mesenchymal and hepatic markers was analyzed by RT-PCR, Western blot and immunohistochemistry. In vitro, adult and pediatric MSC expressed characteristic surface antigens of MSC. Expansion capacity of pediatric MSC was significantly higher when compared to adult MSC. In co-culture with Huh-7 cells in hepatogenic differentiation medium, albumin expression was more frequently detected in pediatric MSC (5/8 experiments when compared to adult MSC (2/10 experiments. However, in such condition pediatric MSC expressed alpha smooth muscle more strongly than adult MSC. Stable engraftment in the liver was not achieved after intrasplenic injection of pediatric or adult MSC. After intrahepatic injection, MSC permanently remained in liver tissue, kept a mesenchymal morphology and expressed vimentin and alpha smooth muscle actin, but no hepatic markers. Further, MSC localization merges with collagen deposition in transplanted liver and no difference was observed using adult or pediatric MSC. In conclusion, when transplanted into an

  19. Immunohistochemical characterization of hepatic stem cell-related cells in developing human liver

    Institute of Scientific and Technical Information of China (English)

    XU Jun; HU Yong; WANG Jian; ZHOU Ji; ZHANG Taiping; YU Hongyu

    2007-01-01

    Little is known about the expression characteristics of the various kinds of possible markers in hepatic stem cells(HSCs)and other HSC-related cells in human fetal liver in various developmental stages.It is significant to investigate the immunohistochemical expression for better understanding of the origin,difierentiation and migration of HSCs in the developing human liver.H-E staining and immunohistochemical methods were used to observe the expression of hepatic/cholangiocellular differentiation markers(AFF,GST-π,CK7,CK19)and hematopoietic stem cell markers(CD34 and c-kit)in several kinds of HSC-related cells in thirty cases of fetal liver samples (4-35 weeks after pregnancy).AFP expression appears in fetal hepatocytes at four weeks'gestation.It Deaks at 16-24 weeks'gestation and decreases gradually afterwards.Finally,weak signals were only found in some ductal plate cells and a few limiting plate cells.GST-π was detected in hepatic cord cells from the sixth week and in the ductal plate cells from the eighth week.Twenty-six weeks later,only some ductal plate cells and a few limiting plate cells show positive signals.CK19 expression peaks during the 6th-11th weeks in hepatic cord cells and decreases gradually afterwards,except for the ductal plates.CK7 expression was limited in the ductal plate cells and bile ducts cells from the 14th week.CD34 and c-kit were detected at the eighth week in some ductal plate cells and a few mononuclear cells in the hepatic cords/mesenchymal tissue of portal areas.After 21 weeks.CD34 and c-kit were found only in ductal plate cells and a few mononuclear cells in the hepatic mesenchymal tissue of portal areas.Fetal hepatocytes at 4-16 weeks'gestation are mainly constituted by HSCs characterized with bi-potential differentiation capacity.At 16 weeks'gestation,most hepatic cord cells begin to differentiate into hepatocytes and abundant HSCs remain in ductal plate(the origin site of Hering canals).It is also indicated mat the

  20. Lipid-lowering agents in nonalcoholic fatty liver disease and steatohepatitis: human studies.

    Science.gov (United States)

    Nseir, William; Mograbi, Julnar; Ghali, Murad

    2012-07-01

    Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease which refers to the presence of hepatic steatosis without significant intake of alcohol. NAFLD is an asymptomatic disease that can progress to nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD is currently the most common cause of incidental abnormal liver tests and elevated serum liver enzyme activities in the developed world. Obesity, diabetes, and other components of the metabolic syndrome are frequently associated with the NAFLD. The treatment of NAFLD focuses on life-style modifications. Statins, fibrates, and other lipid-lowering agents have been proposed as effective lipid-lowering treatments in patients with NAFLD/NASH. However, clinicians are concerned that hyperlipidemic patients with NAFLD/NASH who are treated with statins could develop transaminitis. We assessed the efficacy and safety of lipid-lowering agents for NAFLD/NASH by reviewing reports of human studies including pilot, prospective, preliminary, and post hoc analysis studies on online databases during the period of 1980 to December 2012. The results of studies provide compelling evidence that lipid-lowering agents are safe and efficacious in patients with NAFLD/NASH and that some of these agents can induce a reduction in the extent of the hepatic steatosis. Well-designed randomized controlled studies of adequate size and duration with histological endpoints are needed in order to establish a suitable lipid-lowering treatment for hyperlipidemic patients with NAFLD/NASH, and for nonhyperlipidemic patients with NAFLD/NASH with a high risk for cardiovascular disease.

  1. Recombinant human acid sphingomyelinase as an adjuvant to sorafenib treatment of experimental liver cancer.

    Directory of Open Access Journals (Sweden)

    Radoslav Savić

    Full Text Available BACKGROUND: Hepatocellular carcinoma (HCC is the most common form of liver cancer and the third leading cause of cancer death worldwide. The only approved systemic treatment for unresectable HCC is the oral kinase inhibitor, sorafenib. Recombinant human acid sphingomyelinase (rhASM, which hydrolyzes sphingomyelin to ceramide, is an orphan drug under development for the treatment of Type B Niemann-Pick disease (NPD. Due to the hepatotropic nature of rhASM and its ability to generate pro-apoptotic ceramide, this study evaluated the use of rhASM as an adjuvant treatment with sorafenib in experimental models of HCC. METHODOLOGY/PRINCIPAL FINDINGS: In vitro, rhASM/sorafenib treatment reduced the viability of Huh7 liver cancer cells more than sorafenib. In vivo, using a subcutaneous Huh7 tumor model, mouse survival was increased and proliferation in the tumors decreased to a similar extent in both sorafenib and rhASM/sorafenib treatment groups. However, combined rhASM/sorafenib treatment significantly lowered tumor volume, increased tumor necrosis, and decreased tumor blood vessel density compared to sorafenib. These results were obtained despite poor delivery of rhASM to the tumors. A second (orthotopic model of Huh7 tumors also was established, but modest ASM activity was similarly detected in these tumors compared to healthy mouse livers. Importantly, no chronic liver toxicity or weight loss was observed from rhASM therapy in either model. CONCLUSIONS/SIGNIFICANCE: The rhASM/sorafenib combination exhibited a synergistic effect on reducing the tumor volume and blood vessel density in Huh7 xenografts, despite modest activity of rhASM in these tumors. No significant increases in survival were observed from the rhASM/sorafenib treatment. The poor delivery of rhASM to Huh7 tumors may be due, at least in part, to low expression of mannose receptors. The safety and efficacy of this approach, together with the novel findings regarding enzyme targeting

  2. Development of modern human subadult age and sex estimation standards using multi-slice computed tomography images from medical examiner's offices

    Science.gov (United States)

    Stock, Michala K.; Stull, Kyra E.; Garvin, Heather M.; Klales, Alexandra R.

    2016-10-01

    Forensic anthropologists are routinely asked to estimate a biological profile (i.e., age, sex, ancestry and stature) from a set of unidentified remains. In contrast to the abundance of collections and techniques associated with adult skeletons, there is a paucity of modern, documented subadult skeletal material, which limits the creation and validation of appropriate forensic standards. Many are forced to use antiquated methods derived from small sample sizes, which given documented secular changes in the growth and development of children, are not appropriate for application in the medico-legal setting. Therefore, the aim of this project is to use multi-slice computed tomography (MSCT) data from a large, diverse sample of modern subadults to develop new methods to estimate subadult age and sex for practical forensic applications. The research sample will consist of over 1,500 full-body MSCT scans of modern subadult individuals (aged birth to 20 years) obtained from two U.S. medical examiner's offices. Statistical analysis of epiphyseal union scores, long bone osteometrics, and os coxae landmark data will be used to develop modern subadult age and sex estimation standards. This project will result in a database of information gathered from the MSCT scans, as well as the creation of modern, statistically rigorous standards for skeletal age and sex estimation in subadults. Furthermore, the research and methods developed in this project will be applicable to dry bone specimens, MSCT scans, and radiographic images, thus providing both tools and continued access to data for forensic practitioners in a variety of settings.

  3. Distributed Slicing in Dynamic Systems

    CERN Document Server

    Fernandez, Antonio; Jimenez, Ernesto; Kermarrec, Anne-Marie; Raynal, Michel

    2007-01-01

    Peer to peer (P2P) systems are moving from application specific architectures to a generic service oriented design philosophy. This raises interesting problems in connection with providing useful P2P middleware services capable of dealing with resource assignment and management in a large-scale, heterogeneous and unreliable environment. The slicing service, has been proposed to allow for an automatic partitioning of P2P networks into groups (slices) that represent a controllable amount of some resource and that are also relatively homogeneous with respect to that resource. In this paper we propose two gossip-based algorithms to solve the distributed slicing problem. The first algorithm speeds up an existing algorithm sorting a set of uniform random numbers. The second algorithm statistically approximates the rank of nodes in the ordering. The scalability, efficiency and resilience to dynamics of both algorithms rely on their gossip-based models. These algorithms are proved viable theoretically and experimenta...

  4. Human fetal liver stromal cells that overexpress bFGF support growth and maintenance of human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    Full Text Available In guiding hES cell technology toward the clinic, one key issue to be addressed is to culture and maintain hES cells much more safely and economically in large scale. In order to avoid using mouse embryonic fibroblasts (MEFs we isolated human fetal liver stromal cells (hFLSCs from 14 weeks human fetal liver as new human feeder cells. hFLSCs feeders could maintain hES cells for 15 passages (about 100 days. Basic fibroblast growth factor (bFGF is known to play an important role in promoting self-renewal of human embryonic stem (hES cells. So, we established transgenic hFLSCs that stably express bFGF by lentiviral vectors. These transgenic human feeder cells--bFGF-hFLSCs maintained the properties of H9 hES cells without supplementing with any exogenous growth factors. H9 hES cells culturing under these conditions maintained all hES cell features after prolonged culture, including the developmental potential to differentiate into representative tissues of all three embryonic germ layers, unlimited and undifferentiated proliferative ability, and maintenance of normal karyotype. Our results demonstrated that bFGF-hFLSCs feeder cells were central to establishing the signaling network among bFGF, insulin-like growth factor 2 (IGF-2, and transforming growth factor β (TGF-β, thereby providing the framework in which hES cells were instructed to self-renew or to differentiate. We also found that the conditioned medium of bFGF-hFLSCs could maintain the H9 hES cells under feeder-free conditions without supplementing with bFGF. Taken together, bFGF-hFLSCs had great potential as feeders for maintaining pluripotent hES cell lines more safely and economically.

  5. 基于时间片段的多IT项目人力资源调度问题求解%Time slice based solution for human resource scheduling problem of multiple IT projects

    Institute of Scientific and Technical Information of China (English)

    芦鹏宇; 孙文俊; 井瑞

    2012-01-01

    针对多个IT项目的人力资源调度问题,根据其在时间和人员方面的特殊要求,可以将项目的演进时间划分为相等的时间片段,然后根据特定时间片段内的活动与可选人员之间的关系,建立相应的人员调度方案搜索树.将所有时间片段内的搜索树按顺序连接后,可以得到总的方案树,并列出所有的方案,然后根据不同方案下得到的平均提前完工率和提前完工率方差,找到最优解.又为该搜索算法添加了启发规则,使搜索空间急剧收缩,极大提高了搜索效率.基于该算法的特殊性,可以将其用于求解许多具有与上述问题类似条件的资源调度问题.本研究通过实例发现,根据运算中的特殊规律,该算法还具有进一步提取启发规则的潜力.%This paper deals with the human resource scheduling problem of multiple IT projects. According to its specific requirements on time and personnel, the duration of the whole development process can be divided into equal-length time slices. Based on the relations among activities and personnel in a certain time slice, the search tree of personnel scheduling solutions can be constructed. By connecting all the search trees sequentially from all the time slices, the solution tree for the whole problem can be generated and all the solutions can be listed. Then, based on the average of advanced completion rate and the variance of advanced completion rate, the optimal solution can be found. By adding heuristic rules to this algorithm, the searching space can contract rapidly, and the searching efficiency can be enhanced greatly. In view of the particularities of this algorithm, it can be applied to many generalized resource scheduling problems that possess similar conditions with the problem described above. After applying this algorithm to a mock example, some regular patterns emerged, showing the potential that further heuristic rules can be extracted.

  6. N-acetyl-meta-aminophenol, the alleged nontoxic isomer of acetaminophen, is toxic in both rat and human precision-cut liver slices

    NARCIS (Netherlands)

    Hadi, Mackenzie; Herpers, Bram; Dragovic, Sanja; van Swelm, Rachel P. L.; Russel, Frans G. M.; Commandeur, Jan N. M.; van de Water, Bob; Groothuis, Genoveva

    2012-01-01

    N-acetyl-meta-aminophenol (AMAP) is generally considered as a non-toxic regioisomer of the well-known hepatotoxicant acetaminophen (APAP). However, so far AMAP has only been shown to be non-toxic in mice and hamsters. To investigate whether AMAP could also be used as non-toxic analog of APAP in stud

  7. Human telomerase activity, telomerase and telomeric template expression in hepatic stem cells and in livers from fetal and postnatal donors.

    Science.gov (United States)

    Schmelzer, Eva; Reid, Lola M

    2009-10-01

    Although telomerase activity has been analyzed in various normal and malignant tissues, including liver, it is still unknown to what extent telomerase can be associated with specific maturational lineage stages. We assessed human telomerase activity, protein and gene expression for the telomerase reverse transcriptase, as well as expression of the telomeric template RNA hTER in hepatic stem cells and in various developmental stages of the liver from fetal to adult. In addition, the effect of growth factors on telomerase activity was analyzed in hepatic stem cells in vitro. Telomerase was found to be highly active in fetal liver cells and was significantly higher than in hepatic stem cells, correlating with gene and protein expression levels. Activity in postnatal livers from all donor ages varied considerably and did not correlate with age or gene expression levels. The hter expression could be detected throughout the development. A short stimulation by growth factors of cultured hepatic stem cells did not increase telomerase activity. Telomerase is considerably active in fetal liver and variably in postnatal livers. Although telomerase protein is present at varying levels in liver cells of all donor ages, gene expression is solely associated with fetal liver cells.

  8. Mass spectrometry-based proteomic analysis of human liver cytochrome(s) P450

    Energy Technology Data Exchange (ETDEWEB)

    Shrivas, Kamlesh; Mindaye, Samuel T.; Getie-Kebtie, Melkamu; Alterman, Michail A., E-mail: Michail.Alterman@fda.hhs.gov

    2013-02-15

    The major objective of personalized medicine is to select optimized drug therapies and to a large degree such mission is determined by the expression profiles of cytochrome(s) P450 (CYP). Accordingly, a proteomic case study in personalized medicine is provided by the superfamily of cytochromes P450. Our knowledge about CYP isozyme expression on a protein level is very limited and based exclusively on DNA/mRNA derived data. Such information is not sufficient because transcription and translation events do not lead to correlated levels of expressed proteins. Here we report expression profiles of CYPs in human liver obtained by mass spectrometry (MS)-based proteomic approach. We analyzed 32 samples of human liver microsomes (HLM) of different sexes, ages and ethnicity along with samples of recombinant human CYPs. We have experimentally confirmed that each CYP isozyme can be effectively differentiated by their unique isozyme-specific tryptic peptide(s). Trypsin digestion patterns for almost 30 human CYP isozymes were established. Those findings should assist in selecting tryptic peptides suitable for MS-based quantitation. The data obtained demonstrate remarkable differences in CYP expression profiles. CYP2E1, CYP2C8 and CYP4A11 were the only isozymes found in all HLM samples. Female and pediatric HLM samples revealed much more diverse spectrum of expressed CYPs isozymes compared to male HLM. We have confirmed expression of a number of “rare” CYP (CYP2J2, CYP4B1, CYP4V2, CYP4F3, CYP4F11, CYP8B1, CYP19A1, CYP24A1 and CYP27A1) and obtained first direct experimental data showing expression of such CYPs as CYP2F1, CYP2S1, CYP2W1, CYP4A22, CYP4X1, and CYP26A1 on a protein level. - Highlights: ► First detailed proteomic analysis of CYP isozymes expression in human liver ► Trypsin digestion patterns for almost 30 human CYP isozymes established ► The data obtained demonstrate remarkable differences in CYP expression profiles. ► Female HLM samples revealed more

  9. Human liver phosphatase 2A: cDNA and amino acid sequence of two catalytic subunit isotypes

    Energy Technology Data Exchange (ETDEWEB)

    Arino, J.; Woon, Chee Wai; Brautigan, D.L.; Miller, T.B. Jr.; Johnson, G.L. (Univ. of Massachusetts Medical School, Worcester (USA))

    1988-06-01

    Two cDNA clones were isolated from a human liver library that encode two phosphatase 2A catalytic subunits. The two cDNAs differed in eight amino acids (97% identity) with three nonconservative substitutions. All of the amino acid substitutions were clustered in the amino-terminal domain of the protein. Amino acid sequence of one human liver clone (HL-14) was identical to the rabbit skeletal muscle phosphatase 2A cDNA (with 97% nucleotide identity). The second human liver clone (HL-1) is encoded by a separate gene, and RNA gel blot analysis indicates that both mRNAs are expressed similarly in several human clonal cell lines. Sequence comparison with phosphatase 1 and 2A indicates highly divergent amino acid sequences at the amino and carboxyl termini of the proteins and identifies six highly conserved regions between the two proteins that are predicted to be important for phosphatase enzymatic activity.

  10. Kinetics of tris (1-chloro-2-propyl) phosphate (TCIPP) metabolism in human liver microsomes and serum.

    Science.gov (United States)

    Van den Eede, Nele; Tomy, Gregg; Tao, Fang; Halldorson, Thor; Harrad, Stuart; Neels, Hugo; Covaci, Adrian

    2016-02-01

    Tris(1-chloro-2-propyl) phosphate (TCIPP) is an emerging contaminant which is ubiquitous in the indoor and outdoor environment. Moreover, its presence in human body fluids and biota has been evidenced. Since no quantitative data exist on the biotransformation or stability of TCIPP in the human body, we performed an in vitro incubation of TCIPP with human liver microsomes (HLM) and human serum (HS). Two metabolites, namely bis(2-chloro-isopropyl) phosphate (BCIPP) and bis(1-chloro-2-propyl) 1-hydroxy-2-propyl phosphate (BCIPHIPP), were quantified in a kinetic study using HLM or HS (only BCIPP, the hydrolysis product) and LC-MS. The Michaelis-Menten model fitted best the NADPH-dependent formation of BCIPHIPP and BCIPP in HLM, with respective V(MAX) of 154 ± 4 and 1470 ± 110 pmol/min/mg protein and respective apparent K(m) of 80.2 ± 4.4 and 96.1 ± 14.5 μM. Hydrolases, which are naturally present in HLM, were also involved in the production of BCIPP. A HS paraoxonase assay could not detect any BCIPP formation above 38.6 ± 10.8 pmol/min/μL serum. Our data indicate that BCIPP is the major metabolite of TCIPP formed in the liver. To our knowledge, this is the first quantitative assessment of the stability of TCIPP in tissues of humans or any other species. Further research is needed to confirm whether these biotransformation reactions are associated with a decrease or increase in toxicity.

  11. Role of transcription factor CCAAT/enhancer-binding protein alpha in human fetal liver cell types in vitro.

    Science.gov (United States)

    Gerlach, Jörg C; Over, Patrick; Foka, Hubert G; Turner, Morris E; Thompson, Robert L; Gridelli, Bruno; Schmelzer, Eva

    2015-08-01

    The transcription factor CCAAT/enhancer-binding protein alpha (C/EBPα) has been shown to play an important role in liver development, cell proliferation and differentiation. It is, however, largely unknown if C/EBPα regulates cell differentiation and proliferation differently in the diverse cell types of the human liver. We investigated the role of C/EBPα in primary human fetal liver cells and liver cell subpopulations in vitro using a 3-D perfusion bioreactor as an advanced in vivo-like human organ culture model. Human fetal liver cells were investigated in vitro. C/EBPα gene expression was knocked down using siRNA or overexpressed by plasmid transfection. Cell type-specific gene expression was studied, cell populations and their proliferation were investigated, and metabolic parameters were analyzed. When C/EBPα gene expression was knocked down, we observed a significantly reduced expression of typical endothelial, hematopoietic and mesenchymal genes such as CD31, vWF, CD90, CD45 and α-smooth muscle actin in fetal cells. The intracellular expression of hepatic proteins and genes for liver-specific serum proteins α-fetoprotein and albumin were reduced, their protein secretion was increased. Fetal endothelial cell numbers were reduced and hepatoblast numbers were increased. C/EBPα overexpression in fetal cells resulted in increased endothelial numbers, but did not affect mesenchymal cell types or hepatoblasts. We demonstrated that the effects of C/EBPα are specific for the different human fetal liver cell types, using an advanced 3-D perfusion bioreactor as a human in vivo-like model. © 2014 The Japan Society of Hepatology.

  12. Human plasma concentrations of herbicidal carbamate molinate extrapolated from the pharmacokinetics established in in vivo experiments with chimeric mice with humanized liver and physiologically based pharmacokinetic modeling.

    Science.gov (United States)

    Yamashita, Masanao; Suemizu, Hiroshi; Murayama, Norie; Nishiyama, Sayako; Shimizu, Makiko; Yamazaki, Hiroshi

    2014-10-01

    To predict concentrations in humans of the herbicidal carbamate molinate, used exclusively in rice cultivation, a forward dosimetry approach was carried out using data from lowest-observed-adverse-effect-level doses orally administered to rats, wild type mice, and chimeric mice with humanized liver and from in vitro human and rodent experiments. Human liver microsomes preferentially mediated hydroxylation of molinate, but rat livers additionally produced molinate sulfoxide and an unidentified metabolite. Adjusted animal biomonitoring equivalents for molinate and its primary sulfoxide from animal studies were scaled to human biomonitoring equivalents using known species allometric scaling factors and human metabolic data with a simple physiologically based pharmacokinetic (PBPK) model. The slower disposition of molinate and accumulation of molinate sulfoxide in humans were estimated by modeling after single and multiple doses compared with elimination in rodents. The results from simplified PBPK modeling in combination with chimeric mice with humanized liver suggest that ratios of estimated parameters of molinate sulfoxide exposure in humans to those in rats were three times as many as general safety factor of 10 for species difference in toxicokinetics. Thus, careful regulatory decision is needed when evaluating the human risk resulting from exposure to low doses of molinate and related carbamates based on data obtained from rats.

  13. Graft versus host disease in the bone marrow, liver and thymus humanized mouse model.

    Directory of Open Access Journals (Sweden)

    Matthew B Greenblatt

    Full Text Available Mice bearing a "humanized" immune system are valuable tools to experimentally manipulate human cells in vivo and facilitate disease models not normally possible in laboratory animals. Here we describe a form of GVHD that develops in NOD/SCID mice reconstituted with human fetal bone marrow, liver and thymus (NS BLT mice. The skin, lungs, gastrointestinal tract and parotid glands are affected with progressive inflammation and sclerosis. Although all mice showed involvement of at least one organ site, the incidence of overt clinical disease was approximately 35% by 22 weeks after reconstitution. The use of hosts lacking the IL2 common gamma chain (NOD/SCID/γc(-/- delayed the onset of disease, but ultimately did not affect incidence. Genetic analysis revealed that particular donor HLA class I alleles influenced the risk for the development of GVHD. At a cellular level, GVHD is associated with the infiltration of human CD4+ T cells into the skin and a shift towards Th1 cytokine production. GVHD also induced a mixed M1/M2 polarization phenotype in a dermal murine CD11b+, MHC class II+ macrophage population. The presence of xenogenic GVHD in BLT mice both presents a major obstacle in the use of humanized mice and an opportunity to conduct preclinical studies on GVHD in a humanized model.

  14. Genetic factors affecting gene transcription and catalytic activity of UDP-glucuronosyltransferases in human liver.

    Science.gov (United States)

    Liu, Wanqing; Ramírez, Jacqueline; Gamazon, Eric R; Mirkov, Snezana; Chen, Peixian; Wu, Kehua; Sun, Chang; Cox, Nancy J; Cook, Edwin; Das, Soma; Ratain, Mark J

    2014-10-15

    The aim of this study was to discover cis- and trans-acting factors significantly affecting mRNA expression and catalytic activity of human hepatic UDP-glucuronosyltransferases (UGTs). Transcription levels of five major hepatic UGT1A (UGT1A1, UGT1A3, UGT1A4, UGT1A6 and UGT1A9) and five UGT2B (UGT2B4, UGT2B7, UGT2B10, UGT2B15 and UGT2B17) genes were quantified in human liver tissue samples (n = 125) using real-time PCR. Glucuronidation activities of 14 substrates were measured in 47 livers. We genotyped 167 tagSNPs (single-nucleotide polymorphisms) in UGT1A (n = 43) and UGT2B (n = 124), as well as the known functional UGT1A1*28 and UGT2B17 CNV (copy number variation) polymorphisms. Transcription levels of 15 transcription factors (TFs) known to regulate these UGTs were quantified. We found that UGT expression and activity were highly variable among the livers (median and range of coefficient of variations: 135%, 74-217% and 52%, 39-105%, respectively). CAR, PXR and ESR1 were found to be the most important trans-regulators of UGT transcription (median and range of correlation coefficients: 46%, 6-58%; 47%, 9-58%; and 52%, 24-75%, respectively). Hepatic UGT activities were mainly determined by UGT gene transcription levels. Twenty-one polymorphisms were significantly (FDR-adjusted P transcription and testosterone glucuronidation rate, in addition to that attributable to the UGT2B17 CNV. Our study discovered novel pharmacogenetic markers and provided detailed insight into the genetic network regulating hepatic UGTs.

  15. A Convenient and Efficient Method to Enrich and Maintain Highly Proliferative Human Fetal Liver Stem Cells.

    Science.gov (United States)

    Guo, Xuan; Wang, Shu; Dou, Ya-ling; Guo, Xiang-fei; Chen, Zhao-li; Wang, Xin-wei; Shen, Zhi-qiang; Qiu, Zhi-gang; Jin, Min; Li, Jun-wen

    2015-06-01

    Pluripotent human hepatic stem cells have broad research and clinical applications, which are, however, restricted by both limited resources and technical difficulties with respect to isolation of stem cells from the adult or fetal liver. In this study, we developed a convenient and efficient method involving a two-step in situ collagenase perfusion, gravity sedimentation, and Percoll density gradient centrifugation to enrich and maintain highly proliferative human fetal liver stem cells (hFLSCs). Using this method, the isolated hFLSCs entered into the exponential growth phase within 10 days and maintained sufficient proliferative activity to permit subculture for at least 20 passages without differentiation. Immunocytochemistry, immunofluorescence, and flow cytometry results showed that these cells expressed stem cell markers, such as c-kit, CD44, epithelial cell adhesion molecule (EpCAM), oval cell marker-6 (OV-6), epithelial marker cytokeratin 18 (CK18), biliary ductal marker CK19, and alpha-fetoprotein (AFP). Gene expression analysis showed that these cells had stable mRNA expression of c-Kit, EpCAM, neural cell adhesion molecule (NCAM), CK19, CK18, AFP, and claudin 3 (CLDN-3) throughout each passage while maintaining low levels of ALB, but with complete absence of cytochrome P450 3A4 (C3A4), phosphoenolpyruvate carboxykinase (PEPCK), telomeric repeat binding factor (TRF), and connexin 26 (CX26) expression. When grown in appropriate medium, these isolated liver stem cells could differentiate into hepatocytes, cholangiocytes, osteoblasts, adipocytes, or endothelial cells. Thus, we have demonstrated a more economical and efficient method to isolate hFLSCs than magnetic-activated cell sorting (MACS). This novel approach may provide an excellent tool to isolate highly proliferative hFLSCs for tissue engineering and regenerative therapies.

  16. Comprehensive mapping of protein N-glycosylation in human liver by combining hydrophilic interaction chromatography and hydrazide chemistry.

    Science.gov (United States)

    Zhu, Jun; Sun, Zhen; Cheng, Kai; Chen, Rui; Ye, Mingliang; Xu, Bo; Sun, Deguang; Wang, Liming; Liu, Jing; Wang, Fangjun; Zou, Hanfa

    2014-03-07

    Although glycoproteomics is greatly developed in recent years, our knowledge about N-glycoproteome of human tissues is still very limited. In this study, we comprehensively mapped the N-glycosylation sites of human liver by combining click maltose-hydrophilic interaction chromatography (HILIC) and the improved hydrazide chemistry. The specificity could be as high as 90% for hydrazide chemistry and 80% for HILIC. Altogether, we identified 14,480 N-glycopeptides matched with N-!P-[S|T|C] sequence motif from human liver, corresponding to 2210 N-glycoproteins and 4783 N-glycosylation sites. These N-glycoproteins are widely involved into different types of biological processes, such as hepatic stellate cell activation and acute phase response of human liver, which all highly associate with the progression of liver diseases. Moreover, the exact N-glycosylation sites of some key-regulating proteins within different human liver physiological processes were also obtained, such as E-cadherin, transforming growth factor beta receptor and 29 members of G protein coupled receptors family.

  17. Transesterification of a series of 12 parabens by liver and small-intestinal microsomes of rats and humans.

    Science.gov (United States)

    Fujino, Chieri; Watanabe, Yoko; Uramaru, Naoto; Kitamura, Shigeyuki

    2014-02-01

    Hydrolytic transformation of parabens (4-hydroxybenzoic acid esters; used as antibacterial agents) to 4-hydroxybenzoic acid and alcohols by tissue microsomes is well-known both in vitro and in vivo. Here, we investigated transesterification reactions of parabens catalyzed by rat and human microsomes, using a series of 12 parabens with C1-C12 alcohol side chains. Transesterification of parabens by rat liver and small-intestinal microsomes occurred in the presence of alcohols in the microsomal incubation mixture. Among the 12 parabens, propylparaben was most effectively transesterified by rat liver microsomes with methanol or ethanol, followed by butylparaben. Relatively low activity was observed with longer-side-chain parabens. In contrast, small-intestinal microsomes exhibited higher activity towards moderately long side-chain parabens, and showed the highest activity toward octylparaben. When parabens were incubated with liver or small-intestinal microsomes in the presence of C1-C12 alcohols, ethanol and decanol were most effectively transferred to parabens by rat liver microsomes and small-intestinal microsomes, respectively. Human liver and small-intestinal microsomes also exhibited significant transesterification activities with different substrate specificities, like rat microsomes. Carboxylesterase isoforms, CES1b and CES1c, and CES2, exhibited significant transesterification activity toward parabens, and showed similar substrate specificity to human liver and small-intestinal microsomes, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Evaluating the risk of liver cancer in humans exposed in trichloroethylene using physiological models

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, J.W. (Armstrong Lab., Wright-Patterson AFB, OH (United States)); Allen, B.C. (Clement Assoc., Ruston, LA (United States))

    1993-02-01

    Trichloroethylene (TCE) is a widespread environmental pollutant. TCE is classified as a rodent carcinogen by the U.S. Environmental Protection Agency (EPA). Using the rodent cancer bioassay findings and estimates of metabolized dose, the SPA has estimated lifetime exposure cancer risks for humans that ingest TCE in drinking water or inhale TCE. In this study, a physiologically based pharmacokinetic (PB-PK) model for mice was used to simulate selected gavage and inhalation bioassays with TCE. Plausible dose-metrics thought to be linked with the mechanism of action for TCE carcinogenesis were selected. These dose-metrics, adjusted to reflect an average amount per day for a lifetime, were metabolism of TCE (AMET, mg/kg/day) and systemic concentration of TCA (AUCTCA, mg/L/day). These dose-metrics were then used in a linearized multistage model to estimate AMET and AUCTCA values that correspond to liver cancer risks of 1 in 1 million in mice. A human PB-PK model for TCE was then used to predict TCE concentrations in drinking water and air that would provide AMET and AUCTCA values equal to the predicted mice AMET and AUCTCA values that correspond to liver cancer risks of 1 in 1 million. For the dose-metrics, AMET and AUCTCA, the TCE concentrations in air wave 10.0 and 0.1 ppb TCE (continuous exposure), respectively, and in water, 7 and 4 [mu] TCE/L, respectively.

  19. Comparative studies of different cryopreservation methods for mesenchymal stem cells derived from human fetal liver.

    Science.gov (United States)

    Todorov, Plamen; Hristova, Elena; Konakchieva, Rossitza; Michova, Antoaneta; Dimitrov, Josif

    2010-03-29

    Fetal stem cells possess some intriguing characteristics, which delineate them as promising cellular therapeutics. They are less immunogenic, at lower stage of differentiation and have higher potential for repopulation and migration. Furthermore, the fetal stem cells secrete a set of cytokines and growth factors, which stimulate the regeneration of the recipient tissue. The present study indicated that the adhesive fraction of human fetal liver cells possessed the morphological characteristics of mesenchymal stem cells, as well as potential to differentiate into adipocyte and osteoblast lineages. The immunophenotypic analysis showed that the cells expressed CD13, CD73, CD90 and CD105 (typical for mesenchymal stem cells) and lacked the haematopoietic lineage markers CD34 and CD45. Addressing the issue of the low-temperature storage of the human fetal liver cells, four different methods for cryopreservation were assessed: conventional slow freezing, program freezing and two vitrification protocols. The obtained results demonstrated that the cells were cryotolerant and maintained their properties and differentiation potential after thawing. Program freezing showed to be the most efficient method for cryopreservation of the investigated cells.

  20. Protective effects of Spirulina on the liver function and hyperlipidemia of rats and human

    Directory of Open Access Journals (Sweden)

    Mostafa Mohamed El-Sheekh

    2014-02-01

    Full Text Available In the present study, the effects of Spirulina on subchronic treatments (two weeks of hyperlipidemia and liver function of the rats and humans were investigated. The hyperlipidemia was induced in the rats using 25% of soya bean oil and 25% butter. The butter induced more hyperlipidemia than soya bean oil. Spirulina was used at the concentrations of 0, 2.5, 5.0 and 10 % of diet weight of the rats. The decrease in hyperlipidemia by Spirulina was dependent on its concentration in the diet. In case of human studies, about four g/day of Spirulina was taken via oral administration by Egyptian volunteers patients with hyperlipidemia. Spirulina decreased the levels of hyperlipidemia in these patients. The effects were dependent on the amount and number of administered dose of Sprirulina. The results suggested that the Spirulina treatment could induce marked reduction of aminotransferase through correcting lipid profile and increasing high density lipoprotein.

  1. Differential inhibition of aflatoxin B1 oxidation by gestodene action on human liver microsomes.

    Science.gov (United States)

    Kim, B R; Oh, H S; Kim, D H

    1997-11-01

    Human cytochrome P450 (P450) 3A is known to be involved in the formation of both aflatoxin B1-exo-8,9-epoxide (exo-epoxidation) and aflatoxin Q1 (3 alpha-hydroxylation). Gestodene, a known inactivator of P450 3A4, inhibited the formation of AFB1 metabolites in a variety of ways depending on the incubation condition. Preincubation of gestodene with human liver microsomes prior to the addition of AFB1 inhibited both exo-epoxidation and 3 alpha-hydroxylation whereas simultaneous incubation of gestodene with AFB1 only inhibited 3 alpha-hydroxylation. These results suggest that two independent substrate binding sites exist in P450 3A4, and AFB1 binds to both of the binding sites. Gestodene selectively binds to one of the binding sites leading to the formation of AFQ1, whereas it does not affect the formation of exo-epoxide via the other binding site.

  2. High expression of MDR1, MRP1, and MRP3 in the hepatic progenitor cell compartment and hepatocytes in severe human liver disease

    NARCIS (Netherlands)

    Ros, J.E.; Libbrecht, L; Geuken, M; Jansen, PLM; Roskams, TAD

    An increase in bile ductular structures is observed in diverse human liver diseases. These structures harbour the progenitor cell compartment of the liver. Since ATP-binding cassette (ABC) transporters may have a cytoprotective role in liver disease, an immunohistochemical study was performed on

  3. Explanted diseased livers - a possible source of metabolic competent primary human hepatocytes.

    Science.gov (United States)

    Kleine, Moritz; Riemer, Marc; Krech, Till; DeTemple, Daphne; Jäger, Mark D; Lehner, Frank; Manns, Michael P; Klempnauer, Jürgen; Borlak, Jürgen; Bektas, Hueseyin; Vondran, Florian W R

    2014-01-01

    Being an integral part of basic, translational and clinical research, the demand for primary human hepatocytes (PHH) is continuously growing while the availability of tissue resection material for the isolation of metabolically competent PHH remains limited. To overcome current shortcomings, this study evaluated the use of explanted diseased organs from liver transplantation patients as a potential source of PHH. Therefore, PHH were isolated from resected surgical specimens (Rx-group; n = 60) and explanted diseased livers obtained from graft recipients with low labMELD-score (Ex-group; n = 5). Using established protocols PHH were subsequently cultured for a period of 7 days. The viability and metabolic competence of cultured PHH was assessed by the following parameters: morphology and cell count (CyQuant assay), albumin synthesis, urea production, AST-leakage, and phase I and II metabolism. Both groups were compared in terms of cell yield and metabolic function, and results were correlated with clinical parameters of tissue donors. Notably, cellular yields and viabilities were comparable between the Rx- and Ex-group and were 5.3±0.5 and 2.9±0.7×106 cells/g liver tissue with 84.3±1.3 and 76.0±8.6% viability, respectively. Moreover, PHH isolated from the Rx- or Ex-group did not differ in regards to loss of cell number in culture, albumin synthesis, urea production, AST-leakage, and phase I and II metabolism (measured by the 7-ethoxycoumarin-O-deethylase and uracil-5'-diphosphate-glucuronyltransferase activity). Likewise, basal transcript expressions of the CYP monooxygenases 1A1, 2C8 and 3A4 were comparable as was their induction when treated with a cocktail that consisted of 3-methylcholantren, rifampicin and phenobarbital, with increased expression of CYP 1A1 and 3A4 mRNA while transcript expression of CYP 2C8 was only marginally changed. In conclusion, the use of explanted diseased livers obtained from recipients with low labMELD-score might represent

  4. Human liver finite element model validation using compressive and tensile experimental data - biomed 2013.

    Science.gov (United States)

    Davis, Matthew L; Moreno, Daniel P; Vavalle, Nicholas A; Gayzik, F Scott

    2013-01-01

    Motor vehicle crashes commonly result in blunt abdominal trauma. Approximately 19,000 such injuries occur each year in the United States. While finite element models of the human body are becoming an important tool for injury assessment, their reliability depends on the accuracy of the material models used. Recently, Samur et al. proposed a hyperelastic and viscoelastic material model of the liver. The aim of this study was to compare the results of a computational model using this material law to uniaxial tension and compression data from biomechanical tests on liver samples by Kemper et al. In this study, the liver samples were modeled using the finite element method. Both the tension and compression test specimen geometries were created from descriptions in the literature. Each sample was meshed using four approaches: fine hexahedral, coarse hexahedral, fine tetrahedral, and coarse tetrahedral. The average element edge lengths of the coarse and fine meshes were 5 mm and 2.5 mm respectively. The samples were loaded in both tension and compression at four rates: 0.01 strain/sec, 0.1 strain/sec, 1 strain/sec, and 10 strain/sec. For each mesh type (n=4), strain rate (n=4), and loading condition (n=2), 32 simulations in total, the results were plotted against the published experimental data. The results were quantitatively evaluated for magnitude and phase agreement with the experimental data using an objective comparison software package, CORA. The model predicted the tensile response of the liver sample more accurately than the compressive response with an average CORA size error factor of 0.66 versus 0.19 for the compressive model (1 is a perfect match). The fine tetrahedral, fine hexahedral, and coarse hexahedral meshes predicted a similar response. The worst performing mesh was the coarse tetrahedral mesh, which had an average size error factor of 8.6% higher than the fine tetrahedral simulations. The peak stress in both tension and compression varied as a

  5. Functional Human Liver Preservation and Recovery by Means of Subnormothermic Machine Perfusion

    NARCIS (Netherlands)

    Bruinsma, Bote G.; Avruch, James H.; Weeder, Pepijn D.; Sridharan, Gautham V.; Uygun, Basak E.; Karimian, Negin G.; Porte, Robert J.; Markmann, James F.; Yeh, Heidi; Uygun, Korkut

    2015-01-01

    There is currently a severe shortage of liver grafts available for transplantation. Novel organ preservation techniques are needed to expand the pool of donor livers. Machine perfusion of donor liver grafts is an alternative to traditional cold storage of livers and holds much promise as a modality

  6. Comparative metabolism of cinobufagin in liver microsomes from mouse, rat, dog, minipig, monkey, and human.

    Science.gov (United States)

    Ma, Xiao-Chi; Ning, Jing; Ge, Guang-Bo; Liang, Si-Cheng; Wang, Xiu-Li; Zhang, Bao-Jing; Huang, Shan-Shan; Li, Jing-Kui; Yang, Ling

    2011-04-01

    Cinobufagin (CB), a major bioactive component of the traditional Chinese medicine Chansu, has been reported to have potent antitumor activity. In this study, in vitro metabolism of CB among species was compared with respect to metabolic profiles, enzymes involved, and catalytic efficiency by using liver microsomes from human (HLM), mouse (MLM), rat (RLM), dog (DLM), minipig (PLM), and monkey (CyLM). Significant species differences in CB metabolism were revealed. In particular, species-specific deacetylation and epimerization combined with hydroxylation existed in RLM, whereas hydroxylation was a major pathway in HLM, MLM, DLM, PLM, and CyLM. Two monohydroxylated metabolites of CB in human and animal species were identified as 1α-hydroxylcinobufagin and 5β-hydroxylcinobufagin by using liquid chromatography-mass spectrometry and two-dimensional NMR techniques. CYP3A4 was identified as the main isoform involved in CB hydroxylation in HLM on the basis of the chemical inhibition studies and screen assays with recombinant human cytochrome P450s. Furthermore, ketoconazole, a specific inhibitor of CYP3A, strongly inhibited CB hydroxylation in MLM, DLM, PLM, and CyLM, indicating that CYP3A was responsible for CB hydroxylation in these animal species. The apparent substrate affinity and catalytic efficiency for 1α- and 5β-hydroxylation of CB in liver microsomes from various species were also determined. PLM appears to have K(m) and total intrinsic clearance value (V(max)/K(m)) similar to those for HLM, and the total microsomal intrinsic clearance values for CB obeyed the following order: mouse > dog > monkey > human > minipig. These findings provide vital information to better understand the metabolic behaviors of CB among various species.

  7. Expression and localization of augmenter of liver regeneration in human muscle tissue.

    Science.gov (United States)

    Polimeno, Lorenzo; Pesetti, Barbara; Giorgio, Floriana; Moretti, Biagio; Resta, Leonardo; Rossi, Roberta; Annoscia, Emanuele; Patella, Vittorio; Notarnicola, Angela; Mallamaci, Rosanna; Francavilla, Antonio

    2009-08-01

    Mitochondrial DNA (mt-DNA) disorders and abnormal regulation of nuclear-derived proteins devoted to the cross-talk between the two cellular genomes have recently interested researchers in the field of neuromuscular diseases. We have identified, isolated and sequenced a new gene, augmenter of liver regeneration (ALR) that stimulates in vivo hepatocyte proliferation and up-regulates mt-DNA expression and ATP production. ALR protein (Alrp) is mainly located, in rat, in the mitochondrial inter-membrane space and its mRNA is particularly abundant in brain, muscle, testis and liver, tissues whose activity is mostly dependent on mitochondrial metabolism. Studies on rat Alrp sequence revealed the presence of homologous amino-acid sections into proteins derived from mouse, human, Drosophyla, plants and even DNA viruses. In this article, we evaluated ALR expression in normal human muscular tissues, both as protein and as mRNA. The data, obtained by molecular biology, immunohistochemistry and electron microscopy, demonstrated that: (i) Alrp and ALR mRNA are present in human muscular tissue; (ii) Alrp is particularly expressed in muscular fibres rich in mitochondria; (iii) Alrp is localized in the mitochondrial inter-membrane space or associated to mitochondrial cristae; and (iv) in subjects younger then 35 years of age, ALR mRNA expression is different between male and female subjects. In conclusion, the present data set Alrp, as a factor associated with mitochondria also in human tissue, call for future studies aimed at establishing Alrp as an important factor involved in the molecular events that trigger neuromuscular diseases.

  8. Metabolism of (-)-cis- and (-)-trans-rose oxide by cytochrome P450 enzymes in human liver microsomes.

    Science.gov (United States)

    Nakahashi, Hiroshi; Yamamura, Yuuki; Usami, Atsushi; Rangsunvigit, Pramoch; Malakul, Pomthong; Miyazawa, Mitsuo

    2015-12-01

    The in vitro metabolism of (-)-cis- and (-)-trans-rose oxide was investigated using human liver microsomes and recombinant cytochrome P450 (P450 or CYP) enzymes for the first time. Both isomers of rose oxide were incubated with human liver microsomes, and the formation of the respective 9-oxidized metabolite were determined using gas chromatography-mass spectrometry (GC-MS). Of 11 different recombinant human P450 enzymes used, CYP2B6 and CYP2C19 were the primary enzymes catalysing the metabolism of (-)-cis- and (-)-trans-rose oxide. CYP1A2 also efficiently oxidized (-)-cis-rose oxide at the 9-position but not (-)-trans-rose oxide. α-Naphthoflavone (a selective CYP1A2 inhibitor), thioTEPA (a CYP2B6 inhibitor) and anti-CYP2B6 antibody inhibited (-)-cis-rose oxide 9-hydroxylation catalysed by human liver microsomes. On the other hand, the metabolism of (-)-trans-rose oxide was suppressed by thioTEPA and anti-CYP2B6 at a significant level in human liver microsomes. However, omeprazole (a CYP2C19 inhibitor) had no significant effects on the metabolism of both isomers of rose oxide. Using microsomal preparations from nine different human liver samples, (-)-9-hydroxy-cis- and (-)-9-hydroxy-trans-rose oxide formations correlated with (S)-mephenytoin N-demethylase activity (CYP2B6 marker activity). These results suggest that CYP2B6 plays important roles in the metabolism of (-)-cis- and (-)-trans-rose oxide in human liver microsomes.

  9. Effect of human patient plasma ex vivo treatment on gene expression and progenitor cell activation of primary human liver cells in multi-compartment 3D perfusion bioreactors for extra-corporeal liver support.

    Science.gov (United States)

    Schmelzer, Eva; Mutig, Kerim; Schrade, Petra; Bachmann, Sebastian; Gerlach, Jörg C; Zeilinger, Katrin

    2009-07-01

    Cultivation of primary human liver cells in innovative 3D perfusion multi-compartment capillary membrane bioreactors using decentralized mass exchange and integral oxygenation provides in vitro conditions close to the physiologic environment in vivo. While a few scale-up bioreactors were used clinically, inoculated liver progenitors in these bioreactors were not investigated. Therefore, we characterized regenerative processes and expression patterns of auto- and paracrine mediators involved in liver regeneration in bioreactors after patient treatment. Primary human liver cells containing parenchymal and non-parenchymal cells co-cultivated in bioreactors were used for clinical extra-corporeal liver support to bridge to liver transplantation. 3D tissue re-structuring in bioreactors was studied; expression of proteins and genes related to regenerative processes and hepatic progenitors was analyzed. Formation of multiple bile ductular networks and colonies of putative progenitors were observed within parenchymal cell aggregates. HGF was detected in scattered cells located close to vascular-like structures, expression of HGFA and c-Met was assigned to biliary cells and hepatocytes. Increased expression of genes associated to hepatic progenitors was detected following clinical application. The results confirm auto- and paracrine interactions between co-cultured cells in the bioreactor. The 3D bioreactor provides a valuable tool to study mechanisms of progenitor activation and hepatic regeneration ex vivo under patient plasma treatment. (c) 2009 Wiley Periodicals, Inc.

  10. Long-term outcomes of liver transplant patients with human immunodeficiency virus infection and end-stage-liver-disease: single center experience

    Directory of Open Access Journals (Sweden)

    Vernadakis S

    2011-08-01

    Full Text Available Abstract Objective Orthotopic-liver-transplantation (OLT in patients with Human-Immunodeficiency-Virus infection (HIV and end-stage-liver-disease (ESDL is rarely reported. The purpose of this study is to describe our institutional experience on OLT for HIV positive patients. Material and methods This is a retrospective study of all HIV-infected patients who underwent OLT at the University Hospital of Essen, from January 1996 to December 2009. Age, sex, HIV transmission-way, CDC-stage, etiology of ESDL, concomitant liver disease, last CD4cell count and HIV-viral load prior to OLT were collected and analysed. Standard calcineurin-inhibitors-based immunosuppression was applied. All patients received anti-fungal and anti-pneumocystis carinii pneumonia prophylaxis post-OLT. Results Eight transplanted HIV-infected patients with a median age of 46 years (range 35-61 years were included. OLT indications were HCV (n = 5, HBV (n = 2, HCV/HBV/HDV-related cirrhosis (n = 1 and acute liver-failure (n = 1. At OLT, CD4 cell-counts ranged from 113-621 cells/μl, and HIV viral-loads from Conclusions OLT in HIV-infected patients and ESLD is an acceptable therapeutic option in selected patients. Long-term survival can be achieved without HIV disease-progression under antiretroviral therapy and management of the viral hepatitis co-infection.

  11. Studying Closed Hydrodynamic Models of “In Vivo” DNA Perfusion in Pig Liver for Gene Therapy Translation to Humans

    Science.gov (United States)

    Sendra, Luis; Miguel, Antonio; Pérez-Enguix, Daniel; Montalvá, Eva; García-Gimeno, María Adelaida; Noguera, Inmaculada; Díaz, Ana; Pérez, Judith; Sanz, Pascual; López-Andújar, Rafael; Martí-Bonmatí, Luis; Aliño, Salvador F.

    2016-01-01

    Introduction Expressing exogenous genes after naked DNA delivery into hepatocytes might achieve sustained and high expression of human proteins. Tail vein DNA injection is an efficient procedure for gene transfer in murine liver. Hydrodynamic procedures in large animals require organ targeting, and improve with liver vascular exclusion. In the present study, two closed liver hydrofection models employing the human alpha-1-antitrypsin (hAAT) gene are compared to reference standards in order to evaluate their potential clinical interest. Material and Methods A solution of naked DNA bearing the hAAT gene was retrogradely injected in 7 pig livers using two different closed perfusion procedures: an endovascular catheterization-mediated procedure (n = 3) with infrahepatic inferior vena cava and portal vein blockage; and a surgery-mediated procedure (n = 4) with completely sealed liver. Gene transfer was performed through the suprahepatic inferior cava vein in the endovascular procedure and through the infrahepatic inferior vena cava in the surgical procedure. The efficiency of the procedures was evaluated 14 days after hydrofection by quantifying the hAAT protein copies per cell in tissue and in plasma. For comparison, samples from mice (n = 7) successfully hydrofected with hAAT and healthy human liver segments (n = 4) were evaluated. Results Gene decoding occurs efficiently using both procedures, with liver vascular arrest improving its efficiency. The surgically closed procedure (sealed organ) reached higher tissue protein levels (4x10^5- copies/cell) than the endovascular procedure, though the levels were lower than in human liver (5x10^6- copies/cell) and hydrofected mouse liver (10^6- copies/cell). However, protein levels in plasma were lower (p<0.001) than the reference standards in all cases. Conclusion Hydrofection of hAAT DNA to “in vivo” isolated pig liver mediates highly efficient gene delivery and protein expression in tissue. Both endovascular and

  12. Chemoprevention and cytotoxic effect of Bauhinia variegata against N-nitrosodiethylamine induced liver tumors and human cancer cell lines.

    Science.gov (United States)

    Rajkapoor, B; Jayakar, B; Murugesh, N; Sakthisekaran, D

    2006-04-06

    The chemopreventive and cytotoxic effect of ethanol extract of Bauhinia variegata (EBV) was evaluated in N-nitrosodiethylamine (DEN, 200 mg/kg) induced experimental liver tumor in rats and human cancer cell lines. Oral administration of ethanol extract of Bauhinia variegata (250 mg/kg) effectively suppressed liver tumor induced by DEN as revealed by decrease in DEN induced elevated levels of serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT), alkaline phosphatase (ALP), total bilirubin, gamma glutamate transpeptidase (GGTP), lipid peroxidase (LPO), glutathione peroxidase (GPx) and glutathione S-transferase (GST). The extract produced an increase in enzymatic antioxidant (superoxide dismutase and catalase) levels and total proteins when compared to those in liver tumor bearing rats. The histopathological changes of liver samples were compared with respective controls. EBV was found to be cytotoxic against human epithelial larynx cancer (HEp2) and human breast cancer (HBL-100) cells. These results show a significant chemopreventive and cytotoxic effect of ethanol extract of Bauhinia variegata against DEN induced liver tumor and human cancer cell lines.

  13. Localization of ABCG5 and ABCG8 proteins in human liver, gall bladder and intestine

    Directory of Open Access Journals (Sweden)

    Chavin Kenneth D

    2004-09-01

    Full Text Available Abstract Background The molecular mechanisms that regulate the entry of dietary sterols into the body and their removal via hepatobiliary secretion are now beginning to be defined. These processes are specifically disrupted in the rare autosomal recessive disease, Sitosterolemia (MIM 210250. Mutations in either, but not both, of two genes ABCG5 or ABCG8, comprising the STSL locus, are now known to cause this disease and their protein products are proposed to function as heterodimers. Under normal circumstances cholesterol, but not non-cholesterol sterols, is preferentially absorbed from the diet. Additionally, any small amounts of non-cholesterol sterols that are absorbed are rapidly taken up by the liver and preferentially excreted into bile. Based upon the defects in sitosterolemia, ABCG5 and ABCG8 serve specifically to exclude non-cholesterol sterol entry at the intestinal level and are involved in sterol excretion at the hepatobiliary level. Methods Here we report the biochemical and immuno-localization of ABCG5 and ABCG8 in human liver, gallbladder and intestine using cell fractionation and immunohistochemical analyses. Results We raised peptide antibodies against ABCG5 and ABCG8 proteins. Using human liver samples, cell fractionation studies showed both proteins are found in membrane fractions, but they did not co-localize with caveolin-rafts, ER, Golgi or mitochondrial markers. Although their distribution in the sub-fractions was similar, they were not completely contiguous. Immunohistochemical analyses showed that while both proteins were readily detectable in the liver, ABCG5 was found predominately lining canalicular membranes, whereas ABCG8 was found in association with bile duct epithelia. At the cellular level, ABCG5 appeared to be apically expressed, whereas ABCG8 had a more diffuse expression pattern. Both ABCG5 and ABCG8 appeared to localize apically as shown by co-localization with MRP2. The distribution patterns of ABCG5 and

  14. Exacerbating effects of human parvovirus B19 NS1 on liver fibrosis in NZB/W F1 mice.

    Directory of Open Access Journals (Sweden)

    Tsai-Ching Hsu

    Full Text Available Systemic lupus erythematosus (SLE is an autoimmune disorder with unknown etiology that impacts various organs including liver. Recently, human parvovirus B19 (B19 is recognized to exacerbate SLE. However, the effects of B19 on liver in SLE are still unclear. Herein we aimed to investigate the effects of B19 on liver in NZB/W F1 mice by injecting subcutaneously with PBS, recombinant B19 NS1, VP1u or VP2, respectively. Our experimental results revealed that B19 NS1 protein significantly enhanced the TGF-β/Smad fibrotic signaling by increasing the expressions of TGF-β, Smad2/3, phosphorylated Smad2/3, Smad4 and Sp1. The consequent fibrosis-related proteins, PAI-1 and α-SMA, were also significantly induced in livers of NZB/W F1 mice receiving B19 NS1 protein. Accordingly, markedly increased collagen deposition was also observed in livers of NZB/W F1 mice receiving B19 NS1 protein. However, no significant difference was observed in livers of NZB/W F1 mice receiving B19 VP1u or VP2 as compared to the controls. These findings indicate that B19 NS1 plays a crucial role in exacerbating liver fibrosis in NZB/W F1 mice through enhancing the TGF-â/Smad fibrotic signaling.

  15. Foxa1 reduces lipid accumulation in human hepatocytes and is down-regulated in nonalcoholic fatty liver.

    Directory of Open Access Journals (Sweden)

    Marta Moya

    Full Text Available Triglyceride accumulation in nonalcoholic fatty liver (NAFL results from unbalanced lipid metabolism which, in the liver, is controlled by several transcription factors. The Foxa subfamily of winged helix/forkhead box (Fox transcription factors comprises three members which play important roles in controlling both metabolism and homeostasis through the regulation of multiple target genes in the liver, pancreas and adipose tissue. In the mouse liver, Foxa2 is repressed by insulin and mediates fasting responses. Unlike Foxa2 however, the role of Foxa1 in the liver has not yet been investigated in detail. In this study, we evaluate the role of Foxa1 in two human liver cell models, primary cultured hepatocytes and HepG2 cells, by adenoviral infection. Moreover, human and rat livers were analyzed to determine Foxa1 regulation in NAFL. Results demonstrate that Foxa1 is a potent inhibitor of hepatic triglyceride synthesis, accumulation and secretion by repressing the expression of multiple target genes of these pathways (e.g., GPAM, DGAT2, MTP, APOB. Moreover, Foxa1 represses the fatty acid transporter protein FATP2 and lowers fatty acid uptake. Foxa1 also increases the breakdown of fatty acids by inducing peroxisomal fatty acid β-oxidation and ketone body synthesis. Finally, Foxa1 is able to largely up-regulate UCP1, thereby dissipating energy and consistently decreasing the mitochondria membrane potential. We also report that human and rat NAFL have a reduced Foxa1 expression, possibly through a protein kinase C-dependent pathway. We conclude that Foxa1 is an antisteatotic factor that coordinately tunes several lipid metabolic pathways to block triglyceride accumulation in hepatocytes. However, Foxa1 is down-regulated in human and rat NAFL and, therefore, increasing Foxa1 levels could protect from steatosis. Altogether, we suggest that Foxa1 could be a novel therapeutic target for NAFL disease and insulin resistance.

  16. Foxa1 Reduces Lipid Accumulation in Human Hepatocytes and Is Down-Regulated in Nonalcoholic Fatty Liver

    Science.gov (United States)

    Moya, Marta; Benet, Marta; Guzmán, Carla; Tolosa, Laia; García-Monzón, Carmelo; Pareja, Eugenia; Castell, José Vicente; Jover, Ramiro

    2012-01-01

    Triglyceride accumulation in nonalcoholic fatty liver (NAFL) results from unbalanced lipid metabolism which, in the liver, is controlled by several transcription factors. The Foxa subfamily of winged helix/forkhead box (Fox) transcription factors comprises three members which play important roles in controlling both metabolism and homeostasis through the regulation of multiple target genes in the liver, pancreas and adipose tissue. In the mouse liver, Foxa2 is repressed by insulin and mediates fasting responses. Unlike Foxa2 however, the role of Foxa1 in the liver has not yet been investigated in detail. In this study, we evaluate the role of Foxa1 in two human liver cell models, primary cultured hepatocytes and HepG2 cells, by adenoviral infection. Moreover, human and rat livers were analyzed to determine Foxa1 regulation in NAFL. Results demonstrate that Foxa1 is a potent inhibitor of hepatic triglyceride synthesis, accumulation and secretion by repressing the expression of multiple target genes of these pathways (e.g., GPAM, DGAT2, MTP, APOB). Moreover, Foxa1 represses the fatty acid transporter protein FATP2 and lowers fatty acid uptake. Foxa1 also increases the breakdown of fatty acids by inducing peroxisomal fatty acid β-oxidation and ketone body synthesis. Finally, Foxa1 is able to largely up-regulate UCP1, thereby dissipating energy and consistently decreasing the mitochondria membrane potential. We also report that human and rat NAFL have a reduced Foxa1 expression, possibly through a protein kinase C-dependent pathway. We conclude that Foxa1 is an antisteatotic factor that coordinately tunes several lipid metabolic pathways to block triglyceride accumulation in hepatocytes. However, Foxa1 is down-regulated in human and rat NAFL and, therefore, increasing Foxa1 levels could protect from steatosis. Altogether, we suggest that Foxa1 could be a novel therapeutic target for NAFL disease and insulin resistance. PMID:22238690

  17. Stiffness of hyaluronic acid gels containing liver extracellular matrix supports human hepatocyte function and alters cell morphology.

    Science.gov (United States)

    Deegan, Daniel B; Zimmerman, Cynthia; Skardal, Aleksander; Atala, Anthony; Shupe, Thomas D

    2015-03-01

    Tissue engineering and cell based liver therapies have utilized primary hepatocytes with limited success due to the failure of hepatocytes to maintain their phenotype in vitro. In order to overcome this challenge, hyaluronic acid (HA) cell culture substrates were formulated to closely mimic the composition and stiffness of the normal liver cellular microenvironment. The stiffness of the substrate was modulated by adjusting HA hydrogel crosslinking. Additionally, the repertoire of bioactive molecules within the HA substrate was bolstered by supplementation with normal liver extracellular matrix (ECM). Primary human hepatocyte viability and phenotype were determined over a narrow physiologically relevant range of substrate stiffnesses from 600 to 4600Pa in both the presence and absence of liver ECM. Cell attachment, viability, and organization of the actin cytoskeleton improved with increased stiffness up to 4600Pa. These differences were not evident in earlier time points or substrates containing only HA. However, gene expression for the hepatocyte markers hepatocyte nuclear factor 4 alpha (HNF4α) and albumin significantly decreased on the 4600Pa stiffness at day 7 indicating that cells may not have maintained their phenotype long-term at this stiffness. Function, as measured by albumin secretion, varied with both stiffness and time in culture and peaked at day 7 at the 1200Pa stiffness, slightly below the stiffness of normal liver ECM at 3000Pa. Overall, gel stiffness affected primary human hepatocyte cell adhesion, functional marker expression, and morphological characteristics dependent on both the presence of liver ECM in gel substrates and time in culture.

  18. Triple Staining Including FOXA2 Identifies Stem Cell Lineages Undergoing Hepatic and Biliary Differentiation in Cirrhotic Human Liver.

    Science.gov (United States)

    Rogler, Charles E; Bebawee, Remon; Matarlo, Joe; Locker, Joseph; Pattamanuch, Nicole; Gupta, Sanjeev; Rogler, Leslie E

    2017-01-01

    Recent investigations have reported many markers associated with human liver stem/progenitor cells, "oval cells," and identified "niches" in diseased livers where stem cells occur. However, there has remained a need to identify entire lineages of stem cells as they differentiate into bile ducts or hepatocytes. We have used combined immunohistochemical staining for a marker of hepatic commitment and specification (FOXA2 [Forkhead box A2]), hepatocyte maturation (Albumin and HepPar1), and features of bile ducts (CK19 [cytokeratin 19]) to identify lineages of stem cells differentiating toward the hepatocytic or bile ductular compartments of end-stage cirrhotic human liver. We identified large clusters of disorganized, FOXA2 expressing, oval cells in localized liver regions surrounded by fibrotic matrix, designated as "micro-niches." Specific FOXA2-positive cells within the micro-niches organize into primitive duct structures that support both hepatocytic and bile ductular differentiation enabling identification of entire lineages of cells forming the two types of structures. We also detected expression of hsa-miR-122 in primitive ductular reactions expected for hepatocytic differentiation and hsa-miR-23b cluster expression that drives liver cell fate decisions in cells undergoing lineage commitment. Our data establish the foundation for a mechanistic hypothesis on how stem cell lineages progress in specialized micro-niches in cirrhotic end-stage liver disease.

  19. Turnover rates of hepatic collagen and circulating collagen-associated proteins in humans with chronic liver disease.

    Directory of Open Access Journals (Sweden)

    Martin L Decaris

    Full Text Available Accumulation and degradation of scar tissue in fibrotic liver disease occur slowly, typically over many years. Direct measurement of fibrogenesis, the rate of scar tissue deposition, may provide valuable therapeutic and prognostic information. We describe here results from a pilot study utilizing in vivo metabolic labeling to measure the turnover rate of hepatic collagen and collagen-associated proteins in plasma for the first time in human subjects. Eight subjects with chronic liver disease were labeled with daily oral doses of 2H2O for up to 8 weeks prior to diagnostic liver biopsy and plasma collection. Tandem mass spectrometry was used to measure the abundance and fractional synthesis rate (FSR of proteins in liver and blood. Relative protein abundance and FSR data in liver revealed marked differences among subjects. FSRs of hepatic type I and III collagen ranged from 0.2-0.6% per day (half-lives of 4 months to a year and correlated significantly with worsening histologic fibrosis. Analysis of plasma protein turnover revealed two collagen-associated proteins, lumican and transforming growth factor beta-induced-protein (TGFBI, exhibiting FSRs that correlated significantly with FSRs of hepatic collagen. In summary, this is the first direct measurement of liver collagen turnover in vivo in humans and suggests a high rate of collagen remodeling in advanced fibrosis. In addition, the FSRs of collagen-associated proteins in plasma are measurable and may provide a novel strategy for monitoring hepatic fibrogenesis rates.

  20. Correlation study of multi-slice spiral CT perfusion imaging in liver cirrhosis and portal morphology%肝硬化多层螺旋CT灌注成像及与门静脉形态学的相关研究

    Institute of Scientific and Technical Information of China (English)

    肖平; 娄明武; 谭理连; 李扬彬; 李泳; 高立; 林焕兴

    2009-01-01

    Objective To discuss correlation of hemodynamic changes and portal vein diameter with multi-slice spiral CT peffusion imaging in liver cirrhosis. Method 31 cases liver cirrhosis were enrolled in this study. The first porta hepatis were selected for target lay of CT perfusion scan. Liver perfusion parameters were obtained by color perfusion map method. Right to left diameter and occipitofrontal diame-ter of portal vein were measured. 30 cases of normal persons were used as control group. Result Hepatic arterial perfusion (HAP) in liver 0.05). Hepatic perfusion index (HPI) were (19.13±3.33)% and (20.61±8.56)%, which had no statistically significant difference with the other two groups (P>0.05). Conclusion Multi-spiral CT perfnsion imaging is an effectively noninvasive method to evaluate the hemodynamic changes of liver cirrhosis. Occipitofrontal diameter of portal vein with liver cirrhosis can reflect the state of liver hemodynamics.%目的 利用多层CT灌注成像探讨肝硬化血流灌注变化及与门静脉径线的相关性.方法 肝硬化31例,选取第一肝门层面作为CT灌注扫描靶层面,采用彩色灌注图法获得各肝脏灌注参数并对门静脉径线进行均值测量;30例正常人作对照组.结果 正常组与肝硬化组肝脏灌注参数分别为:肝动脉灌注量(HAP)(24.80±5.84)、(19.49±7.30)ml/(min·100ml),门静脉灌注量(PVP)(104.91±21.70)、(79.17±23.05)ml/(min·100ml),总肝灌注量(TLP)(129.90±25.19)、(98.67±22.74)ml/(min·100ml),2组比较,差异均有统计学意义(P0.05).肝硬化患者的TLP与门静脉前后径呈负相关(r=-0.46,P<0.05).结论 多层螺旋CT灌注成像是评价肝硬化血流灌注变化的一种有效的非创伤性的检查方法.肝硬化时门静脉前后径的变化反映其肝脏血流灌注状况.

  1. Immunofluorescent Staining for the Detection of the Hepatitis B Core Antigen in Frozen Liver Sections of Human Liver Chimeric Mice.

    Science.gov (United States)

    Allweiss, Lena; Lütgehetmann, Marc; Dandri, Maura

    2017-01-01

    The hepatitis B virus (HBV) is the causative agent for chronic hepatitis B infection, which affects an estimate of 240 million people worldwide and puts them at risk of developing terminal liver disease. The life cycle of the virus and its interactions with the host immune system are still incompletely understood, and currently available treatment options rarely achieve a cure. Therefore, basic research and new drug development are needed. One parameter for measuring the intrahepatic activity of the virus is monitoring the production of the HBV core antigen (HBcAg), which not only serves as the main structural protein of its nucleocapsid but is also recruited to the covalently closed circular DNA (cccDNA), the nuclear HBV genome responsible for infection persistence. Here, we report a sensitive immunofluorescence staining method to detect HBcAg in cryopreserved liver sections. The method combines conventional immunofluorescence staining procedures with the Tyramide Signal Amplification (TSA) system.

  2. Cadmium Chloride Induces DNA Damage and Apoptosis of Human Liver Carcinoma Cells via Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Anthony Skipper

    2016-01-01

    Full Text Available Cadmium is a heavy metal that has been shown to cause its toxicity in humans and animals. Many documented studies have shown that cadmium produces various genotoxic effects such as DNA damage and chromosomal aberrations. Ailments such as bone disease, renal damage, and several forms of cancer are attributed to overexposure to cadmium.  Although there have been numerous studies examining the effects of cadmium in animal models and a few case studies involving communities where cadmium contamination has occurred, its molecular mechanisms of action are not fully elucidated. In this research, we hypothesized that oxidative stress plays a key role in cadmium chloride-induced toxicity, DNA damage, and apoptosis of human liver carcinoma (HepG2 cells. To test our hypothesis, cell viability was determined by MTT assay. Lipid hydroperoxide content stress was estimated by lipid peroxidation assay. Genotoxic damage was tested by the means of alkaline single cell gel electrophoresis (Comet assay. Cell apoptosis was measured by flow cytometry assessment (Annexin-V/PI assay. The result of MTT assay indicated that cadmium chloride induces toxicity to HepG2 cells in a concentration-dependent manner, showing a 48 hr-LD50 of 3.6 µg/mL. Data generated from lipid peroxidation assay resulted in a significant (p < 0.05 increase of hydroperoxide production, specifically at the highest concentration tested. Data obtained from the Comet assay indicated that cadmium chloride causes DNA damage in HepG2 cells in a concentration-dependent manner. A strong concentration-response relationship (p < 0.05 was recorded between annexin V positive cells and cadmium chloride exposure. In summary, these in vitro studies provide clear evidence that cadmium chloride induces oxidative stress, DNA damage, and programmed cell death in human liver carcinoma (HepG2 cells.

  3. Transformation of human liver L-02 cells mediated by stable HBx transfection

    Institute of Scientific and Technical Information of China (English)

    Wei-ying ZHANG; Na CAI; Li-hong YE; Xiao-dong ZHANG

    2009-01-01

    Aim: To explore the mechanism of hepatocarcinogenesis associated with the hepatitis B virus X protein (HBx), we investigated the role of HBx in transformation using human liver L-02 cells stably transfected with HBx as a model.Methods: Plasmids encoding HBx were stably transfected into immortalized human liver L-02 cells and rodent fibroblast NIH/3T3 cells. The expression of alfa-fetoprotein (AFP), c-Myc, HBx, and survivin in the engineered cells was examined by Western blotting. The malignant phenotype of the cells was demonstrated by anchorage-independent colony formation and tumor formation in nude mice. RNA interference assays, Western blotting, luciferase reporter gene assays and flow cytometry analysis were performed. The number of centrosomes in the L-O2-X cells was determined by Y-tubulin immunostaining. The effect of HBx on the transcriptional activity of human telomerase reverse transcriptase (hTERT) and hTERT activity in L-02-X cells and/or 3T3-X cells was detected by the luciferase reporter gene assay and telomerase repeat amplification protocol (TRAP).Results: Stable HBx transfection resulted in a malignant phenotype in the engineered cells in vivo and in vitro. Meanwhile, HBx was able to increase the transcription of the NF-κB, AP-1, and survivin genes and to upregulate the expression levels of c-Myc and survivin.Abnormal centrosome duplication and activated hTERT were responsible for the transformation.Conclusion: Stable HBx transfection leads to genomic instability of host cells, which is responsible for hepatocarcinogenesis; mean-while, transactivation by the HBx protein contributes to the development of hepatocellular carcinoma (HCC). The L-02-X cell line is an ideal model for investigating the mechanism of HBx-mediated transformation.

  4. Cytotoxicity of Marchantia convoluta leaf extracts to human liver and lung cancer cells

    Directory of Open Access Journals (Sweden)

    Xiao J.B.

    2006-01-01

    Full Text Available The cytotoxicity of three extracts (petroleum ether, ethyl acetate and n-butanol from a plant used in folk medicine, Marchantia convoluta, to human non-small cell lung carcinoma (H1299 and liver carcinoma (HepG2 cell lines was tested. After 72-h incubation of lung and liver cancer cell cultures with varying concentrations of extracts (15 to 200 µg/mL, cytotoxicity was determined by the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay and reported in terms of cell viability. The extracts that showed a significant cytotoxicity were subjected to gas chromatography-mass spectrometry analysis to identify the components. The ethyl acetate, but not the petroleum ether or n-butanol extract, had a significant cytotoxicity against lung and liver carcinoma cells with IC50 values of 100 and 30 µg/mL, respectively. A high concentration of ethyl acetate extract (100 µg/mL rapidly reduced the number of H1299 cells. At lower concentrations of ethyl acetate extract (15, 30, and 40 µg/mL, the numbers of HepG2 cells started to decrease markedly. Gas chromatography-mass spectrometry analysis of the ethyl acetate extract revealed the presence of several compounds such as phytol (23.42%, 1,2,4-tripropylbenzene (13.09%, 9-cedranone (12.75%, ledene oxide (7.22%, caryophyllene (1.82%, and caryophyllene oxide (1.15%. HPLC analysis result showed that there were no flavonoids in ethyl acetate extract, but flavonoids are abundant in n-butanol extract. Further studies are needed regarding the identification, toxicity, and mechanism of action of active compounds.

  5. Effects of iron and copper overload on the human liver: an ultrastructural study.

    Science.gov (United States)

    Fanni, D; Fanos, V; Gerosa, C; Piras, M; Dessi, A; Atzei, A; Van, Eyken P; Gibo, Y; Faa, G

    2014-01-01

    Iron and copper ions play important roles in many physiological functions of our body, even though the exact mechanisms regulating their absorption, distribution and excretion are not fully understood. Metal-related human pathology may be observed in two different clinical settings: deficiency or overload. The overload in liver cells of both trace elements leads to multiple cellular lesions. Here we report the main pathological changes observed at transmission electron microscopy in the liver of subjects affected by Beta-thalassemia and by Wilson's disease. The hepatic iron overload in beta-thalassemia patients is associated with haemosiderin storage both in Kupffer cells and in the cytoplasm of hepatocytes. Haemosiderin granules are grouped inside voluminous lysosomes, also called siderosomes. Other ultrastructural changes are fat droplets, proliferation of the smooth endoplasmic reticulum and fibrosis. Apoptosis of hepatocytes and infiltration of sinusoids by polymorphonucleates is also detected in beta-thalassemia. Ultrastructural changes in liver biopsies from Wilson's disease patients are characterized by severe mitochondrial changes, associated with an increased number of perossisomes, cytoplasmic lipid droplets and the presence of lipolysosomes, characteristic cytoplasmic bodies formed by lipid vacuoles surrounded by electron-dense lysosomes. In patients affected by Wilson's disease, nuclei are frequently involved, with disorganization of the nucleoplasm and with glycogen inclusions. On the contrary, no significant changes are detected in Kupffer cells. Our data show that iron and copper, even though are both transition metals, are responsible of different pathological changes at ultrastructural level. In particular, copper overload is associated with mitochondrial damage, whereas iron overload only rarely may cause severe mitochondrial changes. These differences underlay the need for further studies in which biochemical analyses should be associated with

  6. [Progress in quantitative methods based on liquid chromatography-mass spectrometry for drug metabolizing enzymes in human liver microsomes].

    Science.gov (United States)

    Wang, Huanhuan; Lu, Yayao; Peng, Bo; Qian, Xiaohong; Zhang, Yangjun

    2015-06-01

    Cytochrome P450 (CYP) enzymes and uridine 5-diphospho-glucuronosyltransferase (UGT) enzymes are critical enzymes for drug metabolism. Both chemical drugs and traditional Chinese medicines are converted to more readily excreted compounds by drug metabolizing enzymes in human livers. Because of the disparate expression of CYP and UGT enzymes among different individuals, accurate quantification of these enzymes is essential for drug pharmacology, drug-drug interactions and drug clinical applications. The research progress in quantitative methods based on liquid chromatography-mass spectrometry for drug metabolizing enzymes in human liver microsomes in the recent decade is reviewed.

  7. Neoplastic lesions of the human liver in relation to the activity of the cytochrome P-450 dependent monooxygenase system.

    Science.gov (United States)

    Plewka, D; Plewka, A; Nowaczyk, G; Kamiński, M; Rutkowski, T; Ludyga, T; Ziaja, K

    2000-01-01

    We studied the activity of Mixed function oxidase (MFO) in human livers affected by cancer. We determined the content of cytochrome P-450 and b5, as well as the activity of their corresponding reductases, according to generally accepted methods. Liver fragments corresponding with a) healthy tissue, b) tissue at the cancer border and, c) cancerous tissue were collected during surgery from patients with liver cancer. We noted that the developing liver cancer decreased the level of cytochrome P-450, even by a magnitude order. The activity of its corresponding reductase was higher in cancerous than in healthy tissues. Cytochrome b5 behaved in an analogous manner, although the decrease in its content was less significant. NADH-cytochrome b5 reductase activity changes were insignificant.

  8. Predicting drug-induced liver injury in human with Naïve Bayes classifier approach

    Science.gov (United States)

    Zhang, Hui; Ding, Lan; Zou, Yi; Hu, Shui-Qing; Huang, Hai-Guo; Kong, Wei-Bao; Zhang, Ji

    2016-10-01

    Drug-induced liver injury (DILI) is one of the major safety concerns in drug development. Although various toxicological studies assessing DILI risk have been developed, these methods were not sufficient in predicting DILI in humans. Thus, developing new tools and approaches to better predict DILI risk in humans has become an important and urgent task. In this study, we aimed to develop a computational model for assessment of the DILI risk with using a larger scale human dataset and Naïve Bayes classifier. The established Naïve Bayes prediction model was evaluated by 5-fold cross validation and an external test set. For the training set, the overall prediction accuracy of the 5-fold cross validation was 94.0 %. The sensitivity, specificity, positive predictive value and negative predictive value were 97.1, 89.2, 93.5 and 95.1 %, respectively. The test set with the concordance of 72.6 %, sensitivity of 72.5 %, specificity of 72.7 %, positive predictive value of 80.4 %, negative predictive value of 63.2 %. Furthermore, some important molecular descriptors related to DILI risk and some toxic/non-toxic fragments were identified. Thus, we hope the prediction model established here would be employed for the assessment of human DILI risk, and the obtained molecular descriptors and substructures should be taken into consideration in the design of new candidate compounds to help medicinal chemists rationally select the chemicals with the best prospects to be effective and safe.

  9. Fialuridine induces acute liver failure in chimeric TK-NOG mice: a model for detecting hepatic drug toxicity prior to human testing.

    Directory of Open Access Journals (Sweden)

    Dan Xu

    2014-04-01

    Full Text Available BACKGROUND: Seven of 15 clinical trial participants treated with a nucleoside analogue (fialuridine [FIAU] developed acute liver failure. Five treated participants died, and two required a liver transplant. Preclinical toxicology studies in mice, rats, dogs, and primates did not provide any indication that FIAU would be hepatotoxic in humans. Therefore, we investigated whether FIAU-induced liver toxicity could be detected in chimeric TK-NOG mice with humanized livers. METHODS AND FINDINGS: Control and chimeric TK-NOG mice with humanized livers were treated orally with FIAU 400, 100, 25, or 2.5 mg/kg/d. The response to drug treatment was evaluated by measuring plasma lactate and liver enzymes, by assessing liver histology, and by electron microscopy. After treatment with FIAU 400 mg/kg/d for 4 d, chimeric mice developed clinical and serologic evidence of liver failure and lactic acidosis. Analysis of liver tissue revealed steatosis in regions with human, but not mouse, hepatocytes. Electron micrographs revealed lipid and mitochondrial abnormalities in the human hepatocytes in FIAU-treated chimeric mice. Dose-dependent liver toxicity was detected in chimeric mice treated with FIAU 100, 25, or 2.5 mg/kg/d for 14 d. Liver toxicity did not develop in control mice that were treated with the same FIAU doses for 14 d. In contrast, treatment with another nucleotide analogue (sofosbuvir 440 or 44 mg/kg/d po for 14 d, which did not cause liver toxicity in human trial participants, did not cause liver toxicity in mice with humanized livers. CONCLUSIONS: FIAU-induced liver toxicity could be readily detected using chimeric TK-NOG mice with humanized livers, even when the mice were treated with a FIAU dose that was only 10-fold above the dose used in human participants. The clinical features, laboratory abnormalities, liver histology, and ultra-structural changes observed in FIAU-treated chimeric mice mirrored those of FIAU-treated human participants. The use

  10. Toll-like receptor 8 agonist and bacteria trigger potent activation of innate immune cells in human liver.

    Directory of Open Access Journals (Sweden)

    Juandy Jo

    2014-06-01

    Full Text Available The ability of innate immune cells to sense and respond to impending danger varies by anatomical location. The liver is considered tolerogenic but is still capable of mounting a successful immune response to clear various infections. To understand whether hepatic immune cells tune their response to different infectious challenges, we probed mononuclear cells purified from human healthy and diseased livers with distinct pathogen-associated molecules. We discovered that only the TLR8 agonist ssRNA40 selectively activated liver-resident innate immune cells to produce substantial quantities of IFN-γ. We identified CD161(Bright mucosal-associated invariant T (MAIT and CD56(Bright NK cells as the responding liver-resident innate immune cells. Their activation was not directly induced by the TLR8 agonist but was dependent on IL-12 and IL-18 production by ssRNA40-activated intrahepatic monocytes. Importantly, the ssRNA40-induced cytokine-dependent activation of MAIT cells mirrored responses induced by bacteria, i.e., generating a selective production of high levels of IFN-γ, without the concomitant production of TNF-α or IL-17A. The intrahepatic IFN-γ production could be detected not only in healthy livers, but also in HBV- or HCV-infected livers. In conclusion, the human liver harbors a network of immune cells able to modulate their immunological responses to different pathogen-associated molecules. Their ability to generate a strong production of IFN-γ upon stimulation with TLR8 agonist opens new therapeutic opportunities for the treatment of diverse liver pathologies.

  11. Mode of action and human relevance of THF-induced mouse liver tumors.

    Science.gov (United States)

    Choi, Christopher J; Rushton, Erik K; Vardy, Audrey; Higgins, Larry; Augello, Andrea; Parod, Ralph J

    2017-07-05

    In a National Toxicology Program (NTP) bioassay, inhalation of tetrahydrofuran (THF) induced liver tumors in female B6C3F1 mice but not in male mice or rats of either sex. Since THF is not genotoxic, the NTP concluded this carcinogenic activity was likely mediated via non-genotoxic modes of action (MOA). Based on evidence that THF and phenobarbital share a similar MOA, female Car/Pxr knock-out mice were orally exposed to THF to evaluate the potential role of CAR activation in the MOA for THF-induced liver tumors. Because data from this oral study with Car/Pxr knock-out mice (C57Bl/6) and the inhalation studies with wild type mice (B6C3F1) reported by NTP and others were derived from different strains, oral studies with wild type B6C3F1 and C57Bl/6 mice were conducted to ensure THF responses in both strains were comparable. As seen in inhalation studies with THF, oral exposure of wild type female mice to a maximum tolerated dose of THF increased total P450 content, CAR-related P450 activities, and hepatocyte proliferation; these effects were not observed in Car/Pxr knock-out female mice. This finding supports the hypothesis THF-induced carcinogenicity is likely mediated via CAR activation that has limited, if any, relevance to humans. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. The interaction of bacterial magnetosomes and human liver cancer cells in vitro

    Science.gov (United States)

    Wang, Pingping; Chen, Chuanfang; Chen, Changyou; Li, Yue; Pan, Weidong; Song, Tao

    2017-04-01

    As the biogenic magnetic nanomaterial, bacterial magnetic nanoparticles, namely magnetosomes, provide many advantages for potential biomedical applications. As such, interactions among magnetosomes and target cells should be elucidated to develop their bioapplications and evaluate their biocompatibilities. In this study, the interaction of magnetosomes and human liver cancer HepG2 cells was examined. Prussian blue staining revealed numerous stained particles in or on the cells. Intracellular iron concentrations, measured through inductively coupled plasma optical emission spectroscopy, increased with the increasing concentration of the magnetosomes. Transmission electron microscopy images showed that magnetosomes could be internalized in cells, mainly encapsulated in membrane vesicles, such as endosomes and lysosomes, and partly found as free particles in the cytosol. Some of the magnetosomes on cellular surfaces were encapsulated through cell membrane ruffling, which is the initiating process of endocytosis. Applying low temperature treatment and using specific endocytic inhibitors, we validated that macropinocytosis and clathrin-mediated endocytosis were involved in magnetosome uptake by HepG2 cells. Consequently, we revealed the interaction and intrinsic endocytic mechanisms of magnetosomes and HepG2 cells. This study provides a basis for the further research on bacterial magnetosome applications in liver diseases.

  13. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Stefania Bruno

    2016-01-01

    Full Text Available Human liver stem cells (HLSCs are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs, and dendritic cells (DCs in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2 and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs, HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  14. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation.

    Science.gov (United States)

    Bruno, Stefania; Grange, Cristina; Tapparo, Marta; Pasquino, Chiara; Romagnoli, Renato; Dametto, Ennia; Amoroso, Antonio; Tetta, Ciro; Camussi, Giovanni

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  15. Human liver enzymes responsible for metabolic elimination of tyramine; a vasopressor agent from daily food.

    Science.gov (United States)

    Niwa, Toshiro; Murayama, Norie; Umeyama, Hiromi; Shimizu, Makiko; Yamazaki, Hiroshi

    2011-08-01

    Dietary tyramine is associated with hypertensive crises because of its ability to induce the release of catecholamines. The roles of monoamine oxidase (MAO); flavin-containing monooxygenase (FMO); and cytochrome P450 2D6 (CYP2D6) were studied in terms of the enzymatic elimination of tyramine in vitro at a substrate concentration of 1.0 µM; which is relevant to in vivo serum concentrations. Tyramine elimination by human liver supernatant fractions was decreased by ˜70% in the absence of NADPH. Pargyline; an MAO inhibitor; decreased tyramine elimination rates by ˜30%. Among recombinant P450 and FMO enzymes; CYP2D6 had a high activity in terms of tyramine elimination. Tyramine elimination rates were inhibited by quinidine and significantly correlated with bufuralol 1'-hydroxylation activities (a CYP2D6 marker). Liver microsomes genotyped for CYP2D6*10/*10 and CYP2D6*4/*4 showed low and undetectable activities; respectively; compared with the wild-type CYP2D6*1/*1. The present results suggest that tyramine is eliminated mainly by polymorphic CYP2D6. Tyramine toxicity resulting from differences in individual metabolic elimination is thus genetically determined.

  16. Molecular expression and enzymatic characterization of thioredoxin from the carcinogenic human liver fluke Opisthorchis viverrini.

    Science.gov (United States)

    Suttiprapa, Sutas; Matchimakul, Pitchaya; Loukas, Alex; Laha, Thewarach; Wongkham, Sopit; Kaewkes, Sasithorn; Brindley, Paul J; Sripa, Banchob

    2012-03-01

    The human liver fluke, Opisthorchis viverrini, induces inflammation of the hepatobiliary system. Despite being constantly exposed to inimical oxygen radicals released from inflammatory cells, the parasite survives for years. Defense against oxidative damage can be mediated through glutathione and/or thioredoxin utilizing systems. Here, we report the molecular expression and biochemical characterization of a thioredoxin (Trx) from O. viverrini. O. viverrini Trx cDNA encoded a polypeptide of 105 amino acid residues, of molecular mass 11.63 kDa. The predicted protein has similarity to previously characterized thioredoxins with 26-51% identity. Recombinant O. viverrini Trx (Ov-Trx-1) was expressed as soluble protein in E. coli. The recombinant protein showed insulin reduction activity and supported the enzymatic function of O. viverrini thioredoxin peroxidase. Expression of Ov-Trx-1 at mRNA and protein levels was observed in all obtainable developmental stages of the liver fluke. Ov-Trx-1 was also detected in excretory-secretory products released by adult O. viverrini. Immunohistochemistry, Ov-Trx-1 was expressed in nearly all parasite tissue excepted ovary and mature sperms. Interestingly, Ov-Trx-1 was observed in the infected biliary epithelium but not in normal bile ducts. These results suggest that Ov-Trx-1 is essential for the parasite throughout the life cycle. In the host-parasite interaction aspect, Ov-Trx-1 may support thioredoxin peroxidase in protecting the parasite against damage induced by reactive oxygen species from inflammation.

  17. Monitoring of human liver and kidney allograft tolerance: a tissue/histopathology perspective.

    Science.gov (United States)

    Demetris, Anthony J; Lunz, John G; Randhawa, Parmjeet; Wu, Tong; Nalesnik, Michael; Thomson, Angus W

    2009-01-01

    Several factors acting together have recently enabled clinicians to seriously consider whether chronic immunosuppression is needed in all solid organ allograft recipients. This has prompted a dozen or so centers throughout the world to prospectively wean immunosuppression from conventionally treated liver allograft recipients. The goal is to lessen the impact of chronic immunosuppression and empirically identify occasional recipients who show operational tolerance, defined as gross phenotype of tolerance in the presence of an immune response and/or immune deficit that has little or no significant clinical impact. Rare operationally tolerant kidney allograft recipients have also been identified, usually by single case reports, but only a couple of prospective weaning trials in conventionally treated kidney allograft recipients have been attempted and reported. Pre- and postweaning allograft biopsy monitoring of recipients adds a critical dimension to these trials, not only for patient safety but also for determining whether events in the allografts can contribute to a mechanistic understanding of allograft acceptance. The following is based on a literature review and personal experience regarding the practical and scientific aspects of biopsy monitoring of potential or actual operationally tolerant human liver and kidney allograft recipients where the goal, intended or attained, was complete withdrawal of immunosuppression.

  18. Metabolism of lysergic acid diethylamide (LSD) to 2-oxo-3-hydroxy LSD (O-H-LSD) in human liver microsomes and cryopreserved human hepatocytes.

    Science.gov (United States)

    Klette, K L; Anderson, C J; Poch, G K; Nimrod, A C; ElSohly, M A

    2000-10-01

    The metabolism of lysergic acid diethylamide (LSD) to 2-oxo-3-hydroxy lysergic acid diethylamide (O-H-LSD) was investigated in liver microsomes and cyropreserved hepatocytes from humans. Previous studies have demonstrated that O-H-LSD is present in human urine at concentrations 16-43 times greater than LSD, the parent compound. Additionally, these studies have determined that O-H-LSD is not generated during the specimen extraction and analytical processes or due to parent compound degradation in aqueous urine samples. However, these studies have not been conclusive in demonstrating that O-H-LSD is uniquely produced during in vivo metabolism. Phase I drug metabolism was investigated by incubating human liver microsomes and cryopreserved human hepatocytes with LSD. The reaction was quenched at various time points, and the aliquots were extracted using liquid partitioning and analyzed by liquid chromatography-mass spectrometry. O-H-LSD was positively identified in all human liver microsomal and human hepatocyte fractions incubated with LSD. In addition, O-H-LSD was not detected in any microsomal or hepatocyte fraction not treated with LSD nor in LSD specimens devoid of microsomes or hepatocytes. This study provides definitive evidence that O-H-LSD is produced as a metabolic product following incubation of human liver microsomes and hepatocytes with LSD.

  19. A comparative autoradiography study in post mortem whole hemisphere human brain slices taken from Alzheimer patients and age-matched controls using two radiolabelled DAA1106 analogues with high affinity to the peripheral benzodiazepine receptor (PBR) system.

    Science.gov (United States)

    Gulyás, Balázs; Makkai, Boglárka; Kása, Péter; Gulya, Károly; Bakota, Lidia; Várszegi, Szilvia; Beliczai, Zsuzsa; Andersson, Jan; Csiba, László; Thiele, Andrea; Dyrks, Thomas; Suhara, Tetsua; Suzuki, Kazutoshi; Higuchi, Makato; Halldin, Christer

    2009-01-01

    The binding of two radiolabelled analogues (N-(5-[125I]Iodo-2-phenoxyphenyl)-N-(2,5-dimethoxybenzyl)acetamide ([125I]desfluoro-DAA1106) and N-(5-[125I]Fluoro-2-phenoxyphenyl)-N-(2-[125I]Iodo-5-methoxybenzyl)acetamide ([125I]desmethoxy-DAA1106) of the peripheral benzodiazepine receptor (PBR) (or TSPO, 18kDa translocator protein) ligand DAA1106 was examined by in vitro autoradiography on human post mortem whole hemisphere brain slices obtained from Alzheimer's disease (AD) patients and age-matched controls. Both [(125)I]desfluoro-IDAA1106 and [(125)I]desmethoxy-IDAA1106 were effectively binding to various brain structures. The binding could be blocked by the unlabelled ligand as well as by other PBR specific ligands. With both radiolabelled compounds, the binding showed regional inhomogeneity and the specific binding values proved to be the highest in the hippocampus, temporal and parietal cortex, the basal ganglia and thalamus in the AD brains. Compared with age-matched control brains, specific binding in several brain structures (temporal and parietal lobes, thalamus and white matter) in Alzheimer brains was significantly higher, indicating that the radioligands can effectively label-activated microglia and the up-regulated PBR/TSPO system in AD. Complementary immunohistochemical studies demonstrated reactive microglia activation in the AD brain tissue and indicated that increased ligand binding coincides with increased regional microglia activation due to neuroinflammation. These investigations yield further support to the PBR/TSPO binding capacity of DAA1106 in human brain tissue, demonstrate the effective usefulness of its radio-iodinated analogues as imaging biomarkers in post mortem human studies, and indicate that its radiolabelled analogues, labelled with short half-time bioisotopes, can serve as prospective in vivo imaging biomarkers of activated microglia and the up-regulated PBR/TSPO system in the human brain.

  20. Comparative Proteomic Analysis of Human Liver Tissue and Isolated Hepatocytes with a Focus on Proteins Determining Drug Exposure.

    Science.gov (United States)

    Vildhede, Anna; Wiśniewski, Jacek R; Norén, Agneta; Karlgren, Maria; Artursson, Per

    2015-08-07

    Freshly isolated human hepatocytes are considered the gold standard for in vitro studies of liver functions, including drug transport, metabolism, and toxicity. For accurate predictions of the in vivo outcome, the isolated hepatocytes should reflect the phenotype of their in vivo counterpart, i.e., hepatocytes in human liver tissue. Here, we quantified and compared the membrane proteomes of freshly isolated hepatocytes and human liver tissue using a label-free shotgun proteomics approach. A total of 5144 unique proteins were identified, spanning over 6 orders of magnitude in abundance. There was a good global correlation in protein abundance. However, the expression of many plasma membrane proteins was lower in the isolated hepatocytes than in the liver tissue. This included transport proteins that determine hepatocyte exposure to many drugs and endogenous compounds. Pathway analysis of the differentially expressed proteins confirmed that hepatocytes are exposed to oxidative stress during isolation and suggested that plasma membrane proteins were degraded via the protein ubiquitination pathway. Finally, using pitavastatin as an example, we show how protein quantifications can improve in vitro predictions of in vivo liver clearance. We tentatively conclude that our data set will be a useful resource for improved hepatocyte predictions of the in vivo outcome.

  1. Identification of potential biomarkers of hepatitis B-induced acute liver failure using hepatic cells derived from human skin precursors.

    Science.gov (United States)

    Rodrigues, Robim M; Sachinidis, Agapios; De Boe, Veerle; Rogiers, Vera; Vanhaecke, Tamara; De Kock, Joery

    2015-09-01

    Besides their role in the elucidation of pathogenic processes of medical and pharmacological nature, biomarkers can also be used to document specific toxicological events. Hepatic cells generated from human skin-derived precursors (hSKP-HPC) were previously shown to be a promising in vitro tool for the evaluation of drug-induced hepatotoxicity. In this study, their capacity to identify potential liver-specific biomarkers at the gene expression level was investigated with particular emphasis on acute liver failure (ALF). To this end, a set of potential ALF-specific biomarkers was established using clinically relevant liver samples obtained from patients suffering from hepatitis B-associated ALF. Subsequently, this data was compared to data obtained from primary human hepatocyte cultures and hSKP-HPC, both exposed to the ALF-inducing reference compound acetaminophen. It was found that both in vitro systems revealed a set of molecules that was previously identified in the ALF liver samples. Yet, only a limited number of molecules was common between both in vitro systems and the ALF liver samples. Each of the in vitro systems could be used independently to identify potential toxicity biomarkers related to ALF. It seems therefore more appropriate to combine primary human hepatocyte cultures with complementary in vitro models to efficiently screen out potential hepatotoxic compounds.

  2. Fluoranthene metabolism: Human and rat liver microsomes display different stereoselective formation of the trans-2,3-dihydrodiol

    Energy Technology Data Exchange (ETDEWEB)

    Day, B.W.; Sahali, Y.; Hutchins, D.A.; Wildschuette, M.P.; Pastorelli, R.; Nguyen, T.T.; Naylor, S.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. (Univ. of Pittsburgh, PA (United States))

    1992-11-01

    The metabolism of the environmental carcinogen fluoroanthene by human liver microsomes was compared to that by liver microsomes from rats treated with Aroclor 1254. Although the human-derived system gave primarily one product, similar metabolites were noted from each system. Enantiomers of the major metabolic product, in both cases the trans-2,3-dihydrodiol, were separated by chiral stationary-phase chromatography. Absolute configurations were assigned by application of the benzoate exciton chirality rules to the CD spectra of the 4-(dimethylamino)benzoyl esters. Liver microsomes from Aroclor 1254-treated rats produced the R,R enantiomer of the diol in 75-78% enantiomeric excess, while human liver microsomes produced this enantiomer in only 6-12% excess. The activities of these enantiomers were compared in Salmonella typhimurium strain TM677 mutagenicity assays employing the 9000g supernatant of Aroclor 1254-induced rat liver homogenates. Both the syn- and anti-2,3-dihydrodiol 1,10b-epoxides, which had only been inferred to be metabolites in previous studies, were isolated from the microsomal incubations by preparative reverse-phase HPLC. The evident exceptional aqueous stabilities of these diol epoxides were further examined by half-life determination experiments. Their tetrahydrotetrol hydrolysis products were also noted in the metabolite HPLC profiles. The structures of the tetrahydrotetrols were confirmed by total synthesis.

  3. Ultrastructural characteristics of novel epithelial cell types identified in human pathologic liver specimens with chronic ductular reaction.

    Science.gov (United States)

    De Vos, R; Desmet, V

    1992-06-01

    Previous immunohistochemical studies on human liver biopsies with chronic ductular reaction revealed the presence of "small cells" with bile-duct type cytokeratin profile in the periportal area. This study identified similar cells by electron microscopy. The authors studied 13 human liver specimens with various liver diseases, but all characterized by chronic ductular reaction. In all specimens, variable numbers of "small cells" with common epithelial characteristics were identified in the periportal area. They could be classified into three types. Type I cells showed an oval cell shape and oval nucleus, early or established formation of junctional complexes with adjacent cells, a full assortment of cytoplasmic organelles, and bundles of tonofilaments. Type II cells showed features of bile-duct cell differentiation, including lateral interdigitations, apical microvilli, basal pinocytotic vacuoles, and basement membrane formation. In contrast, type III cells displayed additional features indicating hepatocellular differentiation, such as a more prominent nucleus, formation of a hemicanaliculus, and glycogen rosettes. It is concluded that these small cells of epithelial nature display variable differentiation characteristics of either bile-duct type cells or hepatocytes. These findings support the existence of bipotential progenitor epithelial cells in human liver. They may have implications for liver regeneration and carcinogenesis.

  4. Characterization of in vitro metabolites of deoxypodophyllotoxin in human and rat liver microsomes using liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Lee, Sang Kyu; Jun, In Hye; Yoo, Hye Hyun; Kim, Ju Hyun; Seo, Young Min; Kang, Mi Jeong; Lee, Seung Ho; Jeong, Tae Cheon; Kim, Dong Hyun

    2008-01-01

    The in vitro metabolism of deoxypodophyllotoxin (DPT), a medicinal herbal product isolated from Anthriscus sylvestris (Apiaceae), was investigated in rats and human microsomes and human recombinant cDNA-expressed CYPs. The incubation of DPT with pooled human microsomes in the presence of NADPH generated five metabolites while its incubation with dexamethasone (Dex)-induced rat liver resulted in seven metabolites (M1-M7) with major metabolic reactions including mono-hydroxylation, O-demethylation and demethylenation. Reasonable structures of the seven metabolites of DPT could be proposed, based on the electrospray tandem mass spectra. Chemical inhibition by ketoconazole and metabolism studies with human recombinant cDNA-expressed CYPs indicated that CYP 3A4 and 2C19 are the major CYP isozymes in the metabolism of DPT in human liver microsomes.

  5. Inhibition of fipronil and nonane metabolism in human liver microsomes and human cytochrome P450 isoforms by chlorpyrifos.

    Science.gov (United States)

    Joo, Hyun; Choi, Kyoungju; Rose, Randy L; Hodgson, Ernest

    2007-01-01

    Previous studies have established that chlorpyrifos (CPS), fipronil, and nonane can all be metabolized by human liver microsomes (HLM) and a number of cytochrome P450 (CYP) isoforms. However, metabolic interactions between these three substrates have not been described. In this study the effect of either coincubation or preincubation of CPS with HLM or CYP isoforms with either fipronil or nonane as substrate was investigated. In both co- and preincubation experiments, CPS significantly inhibited the metabolism of fipronil or nonane by HLM although CPS inhibited the metabolism of fipronil more effectively than that of nonane. CPS significantly inhibited the metabolism of fipronil by CYP3A4 as well as the metabolism of nonane by CYP2B6. In both cases, preincubation with CPS caused greater inhibition than coincubation, suggesting that the inhibition is mechanism based.

  6. Stem cell-derived models to improve mechanistic understanding and prediction of human drug-induced liver injury.

    Science.gov (United States)

    Goldring, Christopher; Antoine, Daniel J; Bonner, Frank; Crozier, Jonathan; Denning, Chris; Fontana, Robert J; Hanley, Neil A; Hay, David C; Ingelman-Sundberg, Magnus; Juhila, Satu; Kitteringham, Neil; Silva-Lima, Beatriz; Norris, Alan; Pridgeon, Chris; Ross, James A; Young, Rowena Sison; Tagle, Danilo; Tornesi, Belen; van de Water, Bob; Weaver, Richard J; Zhang, Fang; Park, B Kevin

    2017-02-01

    Current preclinical drug testing does not predict some forms of adverse drug reactions in humans. Efforts at improving predictability of drug-induced tissue injury in humans include using stem cell technology to generate human cells for screening for adverse effects of drugs in humans. The advent of induced pluripotent stem cells means that it may ultimately be possible to develop personalized toxicology to determine interindividual susceptibility to adverse drug reactions. However, the complexity of idiosyncratic drug-induced liver injury means that no current single-cell model, whether of primary liver tissue origin, from liver cell lines, or derived from stem cells, adequately emulates what is believed to occur during human drug-induced liver injury. Nevertheless, a single-cell model of a human hepatocyte which emulates key features of a hepatocyte is likely to be valuable in assessing potential chemical risk; furthermore, understanding how to generate a relevant hepatocyte will also be critical to efforts to build complex multicellular models of the liver. Currently, hepatocyte-like cells differentiated from stem cells still fall short of recapitulating the full mature hepatocellular phenotype. Therefore, we convened a number of experts from the areas of preclinical and clinical hepatotoxicity and safety assessment, from industry, academia, and regulatory bodies, to specifically explore the application of stem cells in hepatotoxicity safety assessment and to make recommendations for the way forward. In this short review, we particularly discuss the importance of benchmarking stem cell-derived hepatocyte-like cells to their terminally differentiated human counterparts using defined phenotyping, to make sure the cells are relevant and comparable between labs, and outline why this process is essential before the cells are introduced into chemical safety assessment. (Hepatology 2017;65:710-721).

  7. The proteome of human liver peroxisomes: identification of five new peroxisomal constituents by a label-free quantitative proteomics survey.

    Directory of Open Access Journals (Sweden)

    Thomas Gronemeyer

    Full Text Available The peroxisome is a key organelle of low abundance that fulfils various functions essential for human cell metabolism. Severe genetic diseases in humans are caused by defects in peroxisome biogenesis or deficiencies in the function of single peroxisomal proteins. To improve our knowledge of this important cellular structure, we studied for the first time human liver peroxisomes by quantitative proteomics. Peroxisomes were isolated by differential and Nycodenz density gradient centrifugation. A label-free quantitative study of 314 proteins across the density gradient was accomplished using high resolution mass spectrometry. By pairing statistical data evaluation, cDNA cloning and in vivo colocalization studies, we report the association of five new proteins with human liver peroxisomes. Among these, isochorismatase domain containing 1 protein points to the existence of a new metabolic pathway and hydroxysteroid dehydrogenase like 2 protein is likely involved in the transport or β-oxidation of fatty acids in human peroxisomes. The detection of alcohol dehydrogenase 1A suggests the presence of an alternative alcohol-oxidizing system in hepatic peroxisomes. In addition, lactate dehydrogenase A and malate dehydrogenase 1 partially associate with human liver peroxisomes and enzyme activity profiles support the idea that NAD(+ becomes regenerated during fatty acid β-oxidation by alternative shuttling processes in human peroxisomes involving lactate dehydrogenase and/or malate dehydrogenase. Taken together, our data represent a valuable resource for future studies of peroxisome biochemistry that will advance research of human peroxisomes in health and disease.

  8. Formation of GSH-trapped reactive metabolites in human liver microsomes, S9 fraction, HepaRG-cells, and human hepatocytes.

    Science.gov (United States)

    Lassila, Toni; Rousu, Timo; Mattila, Sampo; Chesné, Christophe; Pelkonen, Olavi; Turpeinen, Miia; Tolonen, Ari

    2015-11-10

    The objective was to compare several in vitro human liver-derived subcellular and cellular incubation systems for the formation of GSH-trapped reactive metabolites. Incubations of pooled human liver microsomes, human liver S9 fractions, HepaRG-cells, and human hepatocytes were performed with glutathione as a trapping agent. Experiments with liver S9 were performed under two conditions, using only NADPH and using a full set of cofactors enabling also conjugative metabolism. Ten structurally different compounds were used as a test set, chosen as either "positive" (ciprofloxacin, clozapine, diclofenac, ethinyl estradiol, pulegone, and ticlopidine) or "negative" (caffeine, citalopram, losartan, montelukast) compounds, based on their known adverse reactions on liver or bone marrow. GSH conjugates were observed for seven of the ten compounds; while no conjugates were observed for caffeine, citalopram, or ciprofloxacin. Hepatocyte and HepaRG assays produced a clearly lower number and lower relative abundance of GSH conjugates compared to assays with microsomes and S9 fractions. The major GSH conjugates were different for many compounds in cellular subfractions and cell-based systems. Hepatocytes generally produced a higher number of GSH conjugates than HepaRG cells, although the differences were minor. The results show that the hepatic enzyme system used for screening of GSH-trapped reactive metabolites do have a high impact on the results, and results between different systems are comparable only qualitatively. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Liver and Muscle Contribute Differently to the Plasma Acylcarnitine Pool During Fasting and Exercise in Humans

    DEFF Research Database (Denmark)

    Xu, G; Hansen, Jakob; Zhao, X J

    2016-01-01

    BACKGROUND: Plasma acylcarnitine levels are elevated by physiological conditions such as fasting and exercise but also in states of insulin resistance and obesity. AIM: To elucidate the contribution of liver and skeletal muscle to plasma acylcarnitines in the fasting state and during exercise...... in humans. METHODS: In 2 independent studies, young healthy males were fasted overnight and performed an acute bout of exercise to investigate either acylcarnitines in skeletal muscle biopsies and arterial-to-venous plasma differences over the exercising and resting leg (n = 9) or the flux over the hepato...... in the exercising leg. In plasma and in the exercising muscle, exercise induced an increase of most acylcarnitines followed by a rapid decline to preexercise values during recovery. In contrast, free carnitine was decreased in the exercising muscle and quickly restored thereafter. C8-, C10-, C10:1-, C12-, and C12...

  10. Dataset from proteomic analysis of rat, mouse, and human liver microsomes and S9 fractions

    Directory of Open Access Journals (Sweden)

    Makan Golizeh

    2015-06-01

    Full Text Available Rat, mouse and human liver microsomes and S9 fractions were analyzed using an optimized method combining ion exchange fractionation of digested peptides, and ultra-high performance liquid chromatography (UHPLC coupled to high resolution tandem mass spectrometry (HR-MS/MS. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org via the PRIDE partner repository (Vizcaíno et al., 2013 [1] with the dataset identifiers PXD000717, PXD000720, PXD000721, PXD000731, PXD000733 and PXD000734. Data related to the peptides (trypsin digests only were also uploaded to Peptide Atlas (Farrah et al., 2013 [2] and are available with the dataset identifiers PASS00407, PASS00409, PASS00411, PASS00412, PASS00413 and PASS00414. The present dataset is associated with a research article published in EuPA Open Proteomics [3].

  11. Feasibility analysis of a Plasma Focus neutron source for BNCT treatment of transplanted human liver

    Science.gov (United States)

    Benzi, V.; Mezzetti, F.; Rocchi, F.; Sumini, M.

    2004-01-01

    Boron Neutron Capture Therapy preliminary treatments on transplanted human liver have been recently conducted at Pavia University. The need of high fluences of thermal neutrons imposed the use of the available thermal channel of a TRIGA reactor properly modified for this application. We analyse the possibility of using the Plasma Focus (PF) machine as a pulsed neutron source for this medical application instead of a nuclear reactor. Thermalization of the fast (2.45 MeV for D-D reactions) neutrons produced by the PF is gained with a paraffin or polyethylene moderator which contains both the neutron source and the irradiation chamber. The design parameters of a PF optimized for such an application are discussed, as well as other considerations on the advantages that this machine can bring to this kind of cancer therapy.

  12. Estabishment of A Human Liver Cancer Cell Line Transfected with IL-2 cDNA and Its Biologic Activity

    Institute of Scientific and Technical Information of China (English)

    孙跃明; 王学浩; 杜竞辉

    2001-01-01

    Objective To obtain IL-2 gene transfected human liver cancer cells and study IL-2 expression and its biologic activity in vivo. Methods Human liver cancer cells SMMC-7721 were cocultured with recombinant retroviral vector LNC-IL-2,and screening was performed in G418 medium.The exogenous IL-2 cDNA at the DNA,RNA,and protein levels were determined by using dot hybridization,PR-PCR and MTT methods respectively.The tumorigenesis and antitumorigenesis of the screened liver cancer cell with subcutaneous injection in nude mice were observed. Results and Conclusion The IL-2 cDNA was successfully integrated into SMMC-7721 cell genomic DNA and continuously expressed for more than 88 days.Subcutaneous vaccination of the nude mice with transfected cells revealed an obvious suppression of its tumorigenicity,and could induce antitumor activity in vivo.

  13. Human liver sinusoidal endothelial cells promote intracellular crawling of lymphocytes during recruitment: A new step in migration.

    Science.gov (United States)

    Patten, Daniel A; Wilson, Garrick K; Bailey, Dalan; Shaw, Robert K; Jalkanen, Sirpa; Salmi, Marko; Rot, Antal; Weston, Chris J; Adams, David H; Shetty, Shishir

    2017-01-01

    The recruitment of lymphocytes via the hepatic sinusoidal channels and positioning within liver tissue is a critical event in the development and persistence of chronic inflammatory liver diseases. The hepatic sinusoid is a unique vascular bed lined by hepatic sinusoidal endothelial cells (HSECs), a functionally and phenotypically distinct subpopulation of endothelial cells. Using flow-based adhesion assays to study the migration of lymphocytes across primary human HSECs, we found that lymphocytes enter into HSECs, confirmed by electron microscopy demonstrating clear intracellular localization of lymphocytes in vitro and by studies in human liver tissues. Stimulation by interferon-γ increased intracellular localization of lymphocytes within HSECs. Furthermore, using confocal imaging and time-lapse recordings, we demonstrated "intracellular crawling" of lymphocytes entering into one endothelial cell from another. This required the expression of intracellular adhesion molecule-1 and stabilin-1 and was facilitated by the junctional complexes between HSECs.

  14. Visible to near-infrared refractive properties of freshly-excised human-liver tissues: marking hepatic malignancies

    Science.gov (United States)

    Giannios, Panagiotis; Toutouzas, Konstantinos G.; Matiatou, Maria; Stasinos, Konstantinos; Konstadoulakis, Manousos M.; Zografos, George C.; Moutzouris, Konstantinos

    2016-01-01

    The refractive index is an optical constant that plays a significant role in the description of light-matter interactions. When it comes to biological media, refraction is understudied despite recent advances in the field of bio-optics. In the present article, we report on the measurement of the refractive properties of freshly excised healthy and cancerous human liver samples, by use of a prism-coupling technique covering the visible and near-infrared spectral range. Novel data on the wavelength-dependent complex refractive index of human liver tissues are presented. The magnitude of the real and imaginary part of the refractive index is correlated with hepatic pathology. Notably, the real index contrast is pointed out as a marker of discrimination between normal liver tissue and hepatic metastases. In view of the current progress in optical biosensor technologies, our findings may be exploited for the development of novel surgical and endoscopic tools. PMID:27297034

  15. Viscous fingering of miscible slices

    CERN Document Server

    De Wit, A; Martin, M; Wit, Anne De; Bertho, Yann; Martin, Michel

    2005-01-01

    Viscous fingering of a miscible high viscosity slice of fluid displaced by a lower viscosity fluid is studied in porous media by direct numerical simulations of Darcy's law coupled to the evolution equation for the concentration of a solute controlling the viscosity of miscible solutions. In contrast with fingering between two semi-infinite regions, fingering of finite slices is a transient phenomenon due to the decrease in time of the viscosity ratio across the interface induced by fingering and dispersion processes. We show that fingering contributes transiently to the broadening of the peak in time by increasing its variance. A quantitative analysis of the asymptotic contribution of fingering to this variance is conducted as a function of the four relevant parameters of the problem i.e. the log-mobility ratio R, the length of the slice l, the Peclet number Pe and the ratio between transverse and axial dispersion coefficients $\\epsilon$. Relevance of the results is discussed in relation with transport of vi...

  16. Carboxylated nanodiamonds are neither cytotoxic nor genotoxic on liver, kidney, intestine and lung human cell lines.

    Science.gov (United States)

    Paget, V; Sergent, J A; Grall, R; Altmeyer-Morel, S; Girard, H A; Petit, T; Gesset, C; Mermoux, M; Bergonzo, P; Arnault, J C; Chevillard, S

    2014-08-01

    Although nanodiamonds (NDs) appear as one of the most promising nanocarbon materials available so far for biomedical applications, their risk for human health remains unknown. Our work was aimed at defining the cytotoxicity and genotoxicity of two sets of commercial carboxylated NDs with diameters below 20 and 100 nm, on six human cell lines chosen as representative of potential target organs: HepG2 and Hep3B (liver), Caki-1 and Hek-293 (kidney), HT29 (intestine) and A549 (lung). Cytotoxicity of NDs was assessed by measuring cell impedance (xCELLigence® system) and cell survival/death by flow cytometry while genotoxicity was assessed by γ-H2Ax foci detection, which is considered the most sensitive technique for studying DNA double-strand breaks. To validate and check the sensitivity of the techniques, aminated polystyrene nanobeads were used as positive control in all assays. Cell incorporation of NDs was also studied by flow cytometry and luminescent N-V center photoluminescence (confirmed by Raman microscopy), to ensure that nanoparticles entered the cells. Overall, we show that NDs effectively entered the cells but NDs do not induce any significant cytotoxic or genotoxic effects on the six cell lines up to an exposure dose of 250 µg/mL. Taken together these results strongly support the huge potential of NDs for human nanomedicine but also their potential as negative control in nanotoxicology studies.

  17. Selective Inhibition of Bakuchicin Isolated from Psoralea corylifolia on CYP1A in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Sun Joo Kim

    2016-01-01

    Full Text Available Bakuchicin is a furanocoumarin isolated from Psoralea corylifolia and shows several biological activities. Although there have been studies on the biological effects of bakuchicin, its modulation potency of CYP activities has not been previously investigated. Here, we investigated the inhibitory effects of bakuchicin on the activities of CYP isoforms by using a cocktail of probe substrates in pooled human liver microsomes (HLMs and human recombinant cDNA-expressed CYP. Bakuchicin strongly inhibited CYP1A-mediated phenacetin O-deethylation with an IC50 value of 0.43 μM in HLMs. It was confirmed by human recombinant cDNA-expressed CYP1A1 and CYP1A2 with a Ki value of 0.11 μM and 0.32 μM, respectively. A Lineweaver-Burk plot indicated that the inhibition mechanism of bakuchicin was competitive inhibition. Overall, this is the first study to investigate the potential CYP1A1 and CYP1A2 inhibition associated with bakuchicin and to report its competitive inhibitory effects on HLMs.

  18. PEDIATRIC LIVER TRANSPLANTATION WITH EX-SITU LIVER TRANSECTION AND THE APPLICATION OF THE HUMAN FIBRINOGEN AND THROMBIN SPONGE IN THE WOUND AREA.

    Science.gov (United States)

    Vicentine, Fernando Pompeu Piza; Gonzalez, Adriano Miziara; Azevedo, Ramiro Anthero de; Benini, Barbara Burza; Linhares, Marcelo Moura; Lopes-Filho, Gaspar de Jesus; Martins, Jose Luiz; Salzedas-Netto, Alcides Augusto

    2016-01-01

    Surgical strategy to increase the number of liver transplants in the pediatric population is the ex-situ liver transection (reduction or split). However, it is associated with complications such as hemorrhage and leaks. The human fibrinogen and thrombin sponge is useful for improving hemostasis in liver surgery. Compare pediatric liver transplants with ex-situ liver transection (reduction or split) with or without the human fibrinogen and thrombin sponge. Was performed a prospective analysis of 21 patients submitted to liver transplantation with ex-situ liver transection with the application of the human fibrinogen and thrombin sponge in the wound area (group A) and retrospective analysis of 59 patients without the sponge (group B). The characteristics of recipients and donors were similar. There were fewer reoperations due to bleeding in the wound area in group A (14.2%) compared to group B (41.7%, p=0.029). There was no difference in relation to the biliary leak (group A: 17.6%, group B: 5.1%, p=0.14). There was a lower number of reoperations due to bleeding of the wound area of ​​the hepatic graft when the human fibrinogen and thrombin sponge were used. Estratégia cirúrgica para aumentar o número de transplantes hepáticos na população pediátrica é a transecção hepática ex-situ (redução ou split). No entanto, ela está associada com complicações, tais como hemorragia e fístulas. A esponja de fibrinogênio e trombina humana é útil para melhorar a hemostasia nas operações hepáticas. Comparar transplantes hepáticos pediátricos com transecção hepática ex-situ (redução ou split) com ou sem a esponja de fibrinogênio e trombina humana. Foi realizada análise prospectiva de 21 pacientes submetidos ao transplante de fígado com transecção hepática ex-situ com a aplicação da esponja de fibrinogênio e trombina humana na área cruenta (grupo A) e análise retrospectiva de 59 pacientes sem a esponja (grupo B). As características dos

  19. Slice stretching effects for maximal slicing of a Schwarzschild black hole

    OpenAIRE

    Reimann, B.

    2005-01-01

    Slice stretching effects such as slice sucking and slice wrapping arise when foliating the extended Schwarzschild spacetime with maximal slices. For arbitrary spatial coordinates these effects are quantified here in the context of boundary conditions where the lapse arises as a linear combination of odd and even lapse. Favourable boundary conditions are then derived which make the overall slice stretching occur late in numerical simulations. Allowing the lapse to become negative, this require...

  20. Alcohol and aldehyde dehydrogenases: structures of the human liver enzymes, functional properties and evolutionary aspects.

    Science.gov (United States)

    Jörnvall, H; Hempel, J; von Bahr-Lindström, H; Höög, J O; Vallee, B L

    1987-01-01

    polyol dehydrogenases are encountered. The two isozymes of human aldehyde dehydrogenase also exhibit considerable differences, with only 68% structural identity. The results show an early divergence into isozymes before the man/horse species radiation. Cys-302 is a functionally important residue and is located in one of the regions with conserved hydrophobic properties. Other regions with large differences in hydropathic properties may explain the absence of cross-hybridizing isozyme forms of human liver aldehyde dehydrogenase.

  1. CYP-specific bioactivation of four organophosphorothioate pesticides by human liver microsomes.

    Science.gov (United States)

    Buratti, Franca M; Volpe, Maria Teresa; Meneguz, Annarita; Vittozzi, Luciano; Testai, Emanuela

    2003-02-01

    The bioactivation of azinphos-methyl (AZIN), chlorpyrifos (CPF), diazinon (DIA), and parathion (PAR), four widely used organophosphorothioate (OPT) pesticides has been investigated in human liver microsomes (HLM). In addition, the role of human cytochrome P450 (CYPs) in OPT desulfuration at pesticide levels representative of human exposure have been defined by means of correlation and immunoinhibition studies. CYP-mediated oxon formation from the four OPTs is efficiently catalyzed by HLM, although showing a high variability (>40-fold) among samples. Two distinct phases were involved in the desulfuration of AZIN, DIA, and PAR, characterized by different affinity constants (K(mapp1) = 0.13-9 microM and K(mapp2) = 5- 269 microM). Within the range of CPF concentrations tested, only the high-affinity component was evidenced (K(mapp1) = 0.27-0.94 microM). Oxon formation in phenotyped individual HLM showed a significant correlation with CYP1A2-, 3A4-, and 2B6-related activities, at different levels depending on the OPT concentration. Anti-human CYP1A2, 2B6, and 3A4 antibodies significantly inhibited oxon formation, showing the same OPT concentration dependence. Our data indicated that CYP1A2 is mainly involved in OPT desulfuration at low pesticide concentrations, while the role of CYP3A4 is more significant to the low-affinity component of OPT bioactivation. The contribution of CYP2B6 to total hepatic oxon formation was relevant in a wide range of pesticide concentrations, being a very efficient catalyst of both the high- and low-affinity phase. These results suggest CYP1A2 and 2B6 as possible metabolic biomarkers of susceptibility to OPT toxic effect at the actual human exposure levels.

  2. Polyamine and methionine adenosyltransferase 2A crosstalk in human colon and liver cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tomasi, Maria Lauda [Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); The Southern California Research Center for Alcoholic and Pancreatic Diseases and Cirrhosis, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); Ryoo, Minjung; Skay, Anna [Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); Tomasi, Ivan; Giordano, Pasquale [Department of Colorectal Surgery, Whipps Cross University Hospital, London E11 1NR (United Kingdom); Mato, José M. [CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia (Spain); Lu, Shelly C., E-mail: shellylu@usc.edu [Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States); The Southern California Research Center for Alcoholic and Pancreatic Diseases and Cirrhosis, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033 (United States)

    2013-07-15

    Methionine adenosyltransferase (MAT) is an essential enzyme that is responsible for the biosynthesis of S-adenosylmethionine (SAMe), the principal methyl donor and precursor of polyamines. MAT1A is expressed in normal liver and MAT2A is expressed in all extrahepatic tissues. MAT2A expression is increased in human colon cancer and in colon cancer cells treated with mitogens, whereas silencing MAT2A resulted in apoptosis. The aim of the current work was to examine the mechanism responsible for MAT2A-dependent growth and apoptosis. We found that in RKO (human adenocarcinoma cell line) cells, MAT2A siRNA treatment lowered cellular SAMe and putrescine levels by 70–75%, increased apoptosis and inhibited growth. Putrescine supplementation blunted significantly MAT2A siRNA-induced apoptosis and growth suppression. Putrescine treatment (100 pmol/L) raised MAT2A mRNA level to 4.3-fold of control, increased the expression of c-Jun and c-Fos and binding to an AP-1 site in the human MAT2A promoter and the promoter activity. In human colon cancer specimens, the expression levels of MAT2A, ornithine decarboxylase (ODC), c-Jun and c-Fos are all elevated as compared to adjacent non-tumorous tissues. Overexpression of ODC in RKO cells also raised MAT2A mRNA level and MAT2A promoter activity. ODC and MAT2A are also overexpressed in liver cancer and consistently, similar MAT2A-ODC-putrescine interactions and effects on growth and apoptosis were observed in HepG2 cells. In conclusion, there is a crosstalk between polyamines and MAT2A. Increased MAT2A expression provides more SAMe for polyamines biosynthesis; increased polyamine (putrescine in this case) can activate MAT2A at the transcriptional level. This along with increased ODC expression in cancer all feed forward to further enhance the proliferative capacity of the cancer cell. -- Highlights: • MAT2A knockdown depletes putrescine and leads to apoptosis. • Putrescine attenuates MAT2A knockdown-induced apoptosis and growth

  3. 64-slice spiral CTA in evaluation on the changes of hepatic vessels and the portosystemic collateral circulation in liver cirrhosis%64排螺旋CT血管造影评价肝硬化血管改变及侧支循环

    Institute of Scientific and Technical Information of China (English)

    李妙玲; 赵婷婷; 袁会军; 孙兴旺; 强永乾

    2011-01-01

    Objective To investigate the changes of hepatic vessels and the portosystemic collateral circulation in patients with liver cirrhosis with 64-slices spiral CTA. Methods Tri-phase enhanced CT scan of whole hepatic region were performed in 168 patients with liver cirrhosis (liver cirrhosis group) and 120 patients without liver cirrhosis (control group). All images were post processed with MIP and VR, and were compared between the two groups. Results The difference between the two groups were statistically significant (P<0. 01) in showing hepatic artery, portal vein and hepatic vein of different grades, except in showing 1 st grade of portal vein and hepatic vein (P=0. 51, 0. 08). In liver cirrhosis group, dilated trunk of hepatic artery and portal vein were observed in 85 patients, narrowing and tortuosity of vessels were observed in 98 patients, carcinoma thrombus formation and spongy degeneration in portal vein were detected in 9 and 8 patients, respectively, while continuous enhancement of hepatic artery and portal vein were noticed in 55 and 57 patients, respectively. In the control group, dilated trunk of hepatic artery and portal vein were observed in 3 patients, narrowing and tortuosity of vessels were observed in 2 patients, continuous enhancement of hepatic artery and portal vein were noticed in 4 and 3 patients, respectively. Totally 258 portosystemic collateral circulations were found in liver cirrhosis group, including 196 esophagogastric varices (196/258, 75. 97%), whereas only 2 retroperitoneal shunts were found in control group. Conclusion 64- slices spiral CT tri-phase angiography is a safe, convenient and reliable method to display the changes of hepatic vessels and the form of portosystemic collateral circulation, especially esophagogastric varices in patients with liver cirrhosis.%目的 探讨MSCTA评价肝硬化肝脏血管的异常改变及侧支循环形成的价值.方法 对168例肝硬化患者(肝硬化组)及120例无肝硬化的患者(

  4. Metabolism of aildenafil in vivo in rats and in vitro in mouse, rat, dog, and human liver microsomes.

    Science.gov (United States)

    Li, Yan; Wu, Linan; Gu, Yuan; Si, Duanyun; Liu, Changxiao

    2014-06-01

    Aildenafil, 1-{[3-(6, 7-dihydro-1-methyl-7-oxo-3-propyl-1H-pyrazolo [4, 3-d] primidin-5-yl)-4-ethoxyphenyl] sulfonyl}-cis-3, 5-dimethylpiperazine, a phosphodiesterase type V enzyme inhibitor (PDE5I), is under development for treatment of erectile dysfunction (ED). The purpose of this study was to elucidate metabolism of aildenafil in vivo in rats and in vitro in mouse, rat, dog, and human liver microsomes. Thirty-one phase I metabolites have been found by LTQ/Orbitrap hybrid mass spectrometry in rat urine, faeces, and bile after oral administration. Major biotransformation pathways of aildenafil included N-dealkylation of the piperazine ring, hydroxylation and dehydrogenation, aliphatic hydroxylation and loss of alkyl group of piperazine ring. Minor pathways involved hydroxylation on the phenyl ring, pyrazole N-demethylation, O-deethylation, loss of piperazine ring (cleavage of N-S bond) and dehydrogenation on the piperazine ring. Similar metabolic pathways of aildenafil were observed in the incubations of liver microsomes from mouse, rat, and dog as well as from human. The depletion rate of parent drug in mouse and rat liver microsomes was significantly different from that in human liver microsomes. The cytochrome P450 reaction phenotyping analysis was conducted using isozyme-specific inhibitors. The results indicated that CYP3A was the main isoenzyme involved in oxidative metabolism of aildenafil. Overall, these in vitro and in vivo findings should provide valuable information on possible metabolic behaviours of aildenafil in humans.

  5. EX-VIVO MAGNETIC-RESONANCE-IMAGING OF PRETRANSPLANT HUMAN DONOR LIVER - CLINICAL-EXPERIENCE IN 66 CASES

    NARCIS (Netherlands)

    WOLF, RFE; MOOYAART, EL; KAMMAN, RL; DEKETH, HP; THIJN, CJP; SLOOFF, MJH

    1994-01-01

    Magnetic resonance imaging (MRI) was performed on 66 cold-stored human donor livers. Spin echo images were obtained with a clinical whole body MRI system. Various parenchymal and vascular abnormalities were found. An unexpected finding was the abundant presence of intrahepatic air. Although the majo

  6. Nomenclature of the finer branches of the biliary tree : Canals, ductules, and ductular reactions in human livers

    NARCIS (Netherlands)

    Roskams, TA; Theise, ND; Balabaud, C; Bhagat, G; Bhathal, PS; Bioulac-Sage, P; Brunt, EM; Crawford, JM; Crosby, HA; Desmet, [No Value; Finegold, MJ; Geller, SA; Gouw, ASH; Hytiroglou, P; Knisely, AS; Kojiro, M; Letkowitch, JH; Nakanuma, Y; Olynyk, JK; Park, YN; Portmann, B; Saxena, R; Scheuer, PJ; Strain, AJ; Thung, SN; Wanless, IR; West, AB

    The work of liver stem cell biologists, largely carried out in rodent models, has now started to manifest in human investigations and applications. We can now recognize complex regenerative processes in tissue specimens that had only been suspected for decades, but we also struggle to describe what

  7. Regulation of deleted in liver cancer-1 gene domains on the proliferation of human colon cancer HT29 cell