WorldWideScience

Sample records for human leukemia inhibitory

  1. Triterpenoids from Calophyllum inophyllum and their growth inhibitory effects on human leukemia HL-60 cells.

    Science.gov (United States)

    Li, Yan-Zhi; Li, Zhan-Lin; Yin, Shi-Liang; Shi, Guang; Liu, Ming-Sheng; Jing, Yong-Kui; Hua, Hui-Ming

    2010-09-01

    A new friedelane-type triterpene (1), along with seven known triterpenoids, was isolated from the stems and leaves of Calophyllum inophyllum Linn. Their structures were established as 3beta, 23-epoxy-friedelan-28-oic acid (1), friedelin (2), epifriedelanol (3), canophyllal (4), canophyllol (5), canophyllic acid (6), 3-oxo-friedelan-28-oic acid (7), and oleanolic acid (8) by spectroscopic methods (NMR, EI-MS). The growth inhibitory effects of these triterpenoids on human leukemia HL-60 cells were determined. Crown Copyright (c) 2010. Published by Elsevier B.V. All rights reserved.

  2. Leukemia inhibitory factor favours neurogenic differentiation of long-term propagated human midbrain precursor cells

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Widmer, Hans R; Zimmer, Jens

    2009-01-01

    There is a lot of excitement about the potential use of multipotent neural stem cells for the treatment of neurodegenerative diseases. However, the strategy is compromised by the general loss of multipotency and ability to generate neurons after long-term in vitro propagation. In the present study...... EGF+FGF2, EGF+FGF2+heparin or leukemia inhibitory factor (LIF; 10 ng/ml)+FGF2+heparin. Cultures were subsequently propagated for more than 180 days with NTS analyzed at various time-points. Our data show for the first time that human VM neural precursor cells can be long-term propagated as NTS......, human embryonic (5 weeks post-conception) ventral mesencephalic (VM) precursor cells were propagated as neural tissue-spheres (NTS) in epidermal growth factor (EGF; 20 ng/ml) and fibroblast growth factor 2 (FGF2; 20 ng/ml). After more than 325 days, the NTS were transferred to media containing either...

  3. Simplified Method to Produce Human Bioactive Leukemia Inhibitory Factor in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Houman Kahroba

    2016-07-01

    Full Text Available Background Human leukemia inhibitory factor (hLIF is a poly functional cytokine with numerous regulatory effects on different cells. Main application of hLIF is maintaining pluripotency of embryonic stem cells. hLIF indicated effective work in implantation rate of fertilized eggs and multiple sclerosis (MS treatment. Low production of hLIF in eukaryotic cells and prokaryotic host’s problems for human protein production convinced us to develop a simple way to reach high amount of this widely used clinical and research factor. Objectives In this study we want to purify recombinant human leukemia inhibitory factor in single simple method. Materials and Methods This is an experimental study, gene expression: human LIF gene was codon optimized for expression in Escherichia coli and attached his-tag tail to make it extractable. After construction and transformation of vector to E. coli, isopropyl β-D-1-thiogalactopyranoside (IPTG used for induction. Single step immobilized metal affinity chromatography (IMAC used for purification confirmed by Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE and western blotting. Bioactivity of the hLIF were tested by MTT assay with TF-1 cells and CISH gene stimulation in monocyte and TF-1 by real-time PCR. Induction by 0.4 mM of IPTG in 25°C for 3 hours indicated best result for soluble expression. SPSS indicated P ˂ 0.05 that is significant for our work. Results Cloning, expression, and extraction of bio active rhLIF was successfully achieved according MTT assay and real time PCR after treatment of TF-1 and monocyte cell lines. Conclusions We developed an effective single step purification method to produce bioactive recombinant hLIF in E. coli. For the first time we used CISH gene stimulating for bioactivity test for qualifying of recombinant hLIF for application.

  4. Leukemia inhibitory factor enhances endometrial stromal cell decidualization in humans and mice.

    Directory of Open Access Journals (Sweden)

    Lorraine Lin Shuya

    Full Text Available Adequate differentiation or decidualization of endometrial stromal cells (ESC is critical for successful pregnancy in humans and rodents. Here, we investigated the role of leukemia inhibitory factor (LIF in human and murine decidualization. Ex vivo human (H ESC decidualization was induced by estrogen (E, 10(-8 M plus medroxyprogesterone acetate (MPA, 10(-7 M. Exogenous LIF (≥50 ng/ml induced STAT3 phosphorylation in non-decidualized and decidualized HESC and enhanced E+MPA-induced decidualization (measured by PRL secretion, P100 pg/mg G-CSF, IL6, IL8, and MCP1. Decidualized HESC secreted IL6, IL8, IL15 and MCP1. LIF (50 ng/ml up-regulated IL6 and IL15 (P<0.05 secretion in decidualized HESC compared to 0.5 ng/ml LIF. In murine endometrium, LIF and LIFR immunolocalized to decidualized stromal cells on day 5 of gestation (day 0 = day of plug detection. Western blotting confirmed that LIF and the LIFR were up-regulated in intra-implantation sites compared to inter-implantation sites on Day 5 of gestation. To determine the role of LIF during in vivo murine decidualization, intra-peritoneal injections of a long-acting LIF antagonist (PEGLA; 900 or 1200 µg were given just post-attachment, during the initiation of decidualization on day 4. PEGLA treatment reduced implantation site decidual area (P<0.05 and desmin staining immuno-intensity (P<0.05 compared to control on day 6 of gestation. This study demonstrated that LIF was an important regulator of decidualization in humans and mice and data provides insight into the processes underlying decidualization, which are important for understanding implantation and placentation.

  5. Leukemia Inhibitory Factor Enhances Endometrial Stromal Cell Decidualization in Humans and Mice

    Science.gov (United States)

    Yap, Joanne; Li, Priscilla; Lane, Natalie; Dimitriadis, Evdokia

    2011-01-01

    Adequate differentiation or decidualization of endometrial stromal cells (ESC) is critical for successful pregnancy in humans and rodents. Here, we investigated the role of leukemia inhibitory factor (LIF) in human and murine decidualization. Ex vivo human (H) ESC decidualization was induced by estrogen (E, 10−8 M) plus medroxyprogesterone acetate (MPA, 10−7 M). Exogenous LIF (≥50 ng/ml) induced STAT3 phosphorylation in non-decidualized and decidualized HESC and enhanced E+MPA-induced decidualization (measured by PRL secretion, P100 pg/mg G-CSF, IL6, IL8, and MCP1. Decidualized HESC secreted IL6, IL8, IL15 and MCP1. LIF (50 ng/ml) up-regulated IL6 and IL15 (P<0.05) secretion in decidualized HESC compared to 0.5 ng/ml LIF. In murine endometrium, LIF and LIFR immunolocalized to decidualized stromal cells on day 5 of gestation (day 0 = day of plug detection). Western blotting confirmed that LIF and the LIFR were up-regulated in intra-implantation sites compared to inter-implantation sites on Day 5 of gestation. To determine the role of LIF during in vivo murine decidualization, intra-peritoneal injections of a long-acting LIF antagonist (PEGLA; 900 or 1200 µg) were given just post-attachment, during the initiation of decidualization on day 4. PEGLA treatment reduced implantation site decidual area (P<0.05) and desmin staining immuno-intensity (P<0.05) compared to control on day 6 of gestation. This study demonstrated that LIF was an important regulator of decidualization in humans and mice and data provides insight into the processes underlying decidualization, which are important for understanding implantation and placentation. PMID:21966484

  6. Expression Optimizing and Purification of Recombinant Human Leukemia Inhibitory Factor Produced in E. coli Strain BL21

    Directory of Open Access Journals (Sweden)

    Houman Kahroba

    2015-02-01

    Full Text Available Background: Leukemia inhibitory factor (LIF is a glycoprotein, categorized as a subfamily of interleukin 6 cytokines which is known in many mammolals. A pluripotent cytokine with a wide biological function range has numerous effects on target cells. The LIF regulates neuron survival, hematopoiesis and seen in LIF-/- knockout mice affects blastocyst implantation, also acts as pre-inflammolatory cytokine, and regulates immolune response. Further, it is able to maintain stem cells poly potency. The main object of present work was expression, optimizing, and purification of recombinant human leukemia inhibitory factor (rhLIF. Materials and Methods: In this experimental study, Pet28 (+ carrying the LIF gene and kanamycin resistance marker was cloned in E. coli strain BL21. The induction was optimized by altering 3 factors including the temperature, the induction time, and the concentration of the Isopropyl β-D-1-thiogalactopyranoside (IPTG as inducer. The purification of the recombinant human LIF (rhLIF was done by single step affinity chromatography. After the purification, method accuracy was proved by Sodium dodecyl sulfate (SDS -PAGE electrophoresis and Western blotting. Results: Optimizing of the expression was reached by changing various parameters, and purification has been done successful. Conclusion: rhLIF undergoes modification by glycosylation to get its full functionality. The produced rhLIF in prokaryotic host in this work is lacking of glycosylation. However, its proper function should be evaluated in further studies.

  7. Leukemia inhibitory factor (LIF) enhances MAP2 + and HUC/D + neurons and influences neurite extension during differentiation of neural progenitors derived from human embryonic stem cells.

    Science.gov (United States)

    Leukemia Inhibitory Factor (L1F), a member of the Interleukin 6 cytokine family, has a role in differentiation of Human Neural Progenitor (hNP) cells in vitro. hNP cells, derived from Human Embryonic Stem (hES) cells, have an unlimited capacity for self-renewal in monolayer cultu...

  8. Leukemia Inhibitory Factor Downregulates Human Papillomavirus-16 Oncogene Expression and Inhibits the Proliferation of Cervical Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Joseph M. Bay

    2011-01-01

    Full Text Available The constitutive proliferation and resistance to differentiation and apoptosis of neoplastic cervical cells depend on sustained expression of human papillomavirus oncogenes. Inhibition of these oncogenes is a goal for the prevention of progression of HPV-induced neoplasias to cervical cancer. SiHa cervical cancer cells were transfected with an HPV-16 promoter reporter construct and treated with leukemia inhibitory factor (LIF, a human cytokine of the interleukin 6 superfamily. SiHa and CaSki cervical cancer cells were also assessed for proliferation by MTT precipitation, programmed cell death by flow cytometry, and HPV E6 and E7 expression by real-time PCR. LIF-treated cervical cancer cells showed significantly reduced HPV LCR activation, reduced levels of E6 and E7 mRNA, and reduced proliferation. We report the novel use of LIF to inhibit viral oncogene expression in cervical cancer cells, with concomitant reduction in proliferation suggesting re-engagement of cell-cycle regulation.

  9. Leukemia inhibitory factor increases the proliferation of human endometrial stromal cells and expression of genes related to pluripotency

    Directory of Open Access Journals (Sweden)

    Mojdeh Salehnia

    2017-08-01

    Full Text Available Background: Concerning the low population of human endometrial mesenchymal cells within the tissue and their potential application in the clinic and tissue engineering, some researches have been focused on their in vitro expansion. Objective: The aim of this study was to evaluate the effect of leukemia inhibitory factor (LIF as a proliferative factor on the expansion and proliferation of human endometrial stromal cells. Materials and Methods: In this experimental study, the isolated and cultured human endometrial stromal cells from women at ovulatory phase aged 20-35 years, after fourth passage were divided into control and LIF-treated groups. In the experimental group, the endometrial cells were treated by 10 ng/ml LIF in culture media and the cultured cells without adding LIF considered as control group. Both groups were evaluated and compared for proliferation rate using MTT assay, for CD90 marker by flow cytometric analysis and for the expression of Oct4, Nanog, PCNA and LIFr genes using real-time RT-PCR. Results: The proliferation rate of control and LIF-treated groups were 1.17±0.17 and 1.61±0.06 respectively and there was a significant increase in endometrial stromal cell proliferation following in vitro treatment by LIF compared to control group (p=0.049. The rate of CD90 positive cells was significantly increased in LIFtreated group (98.96±0.37% compared to control group (94.26±0.08% (p=0.0498. Also, the expression ratio of all studied genes was significantly increased in the LIFtreated group compared to control group (p=0.0479. Conclusion: The present study showed that LIF has a great impact on proliferation, survival, and maintenance of pluripotency of human endometrial stromal cells and it could be applicable in cell therapies.

  10. Leukemia inhibitory factor increases the proliferation of human endometrial stromal cells and expression of genes related to pluripotency.

    Science.gov (United States)

    Salehnia, Mojdeh; Fayazi, Mehri; Ehsani, Shokreya

    2017-04-01

    Concerning the low population of human endometrial mesenchymal cells within the tissue and their potential application in the clinic and tissue engineering, some researches have been focused on their in vitro expansion. The aim of this study was to evaluate the effect of leukemia inhibitory factor (LIF) as a proliferative factor on the expansion and proliferation of human endometrial stromal cells. In this experimental study, the isolated and cultured human endometrial stromal cells from women at ovulatory phase aged 20-35 years, after fourth passage were divided into control and LIF-treated groups. In the experimental group, the endometrial cells were treated by 10 ng/ml LIF in culture media and the cultured cells without adding LIF considered as control group. Both groups were evaluated and compared for proliferation rate using MTT assay, for CD90 marker by flow cytometric analysis and for the expression of Oct4, Nanog, PCNA and LIFr genes using real-time RT-PCR. The proliferation rate of control and LIF-treated groups were 1.17±0.17 and 1.61±0.06 respectively and there was a significant increase in endometrial stromal cell proliferation following in vitro treatment by LIF compared to control group (p=0.049). The rate of CD90 positive cells was significantly increased in LIF-treated group (98.96±0.37%) compared to control group (94.26±0.08%) (p=0.0498). Also, the expression ratio of all studied genes was significantly increased in the LIF-treated group compared to control group (p=0.0479). The present study showed that LIF has a great impact on proliferation, survival, and maintenance of pluripotency of human endometrial stromal cells and it could be applicable in cell therapies.

  11. Germline-competent mouse-induced pluripotent stem cell lines generated on human fibroblasts without exogenous leukemia inhibitory factor.

    Directory of Open Access Journals (Sweden)

    Chunliang Li

    Full Text Available Induced pluripotent stem (iPS cells have attracted enormous attention due to their vast potential in regenerative medicine, pharmaceutical screening and basic research. Most prior established iPS cell lines were derived and maintained on mouse embryonic fibroblast (MEF cells supplemented with exogenous leukemia inhibitory factor (LIF. Drawbacks of MEF cells impede optimization as well as dissection of reprogramming events and limit the usage of iPS cell derivatives in therapeutic applications. In this study, we develop a reproducible protocol for efficient reprogramming mouse neural progenitor cells (NPCs on human foreskin fibroblast (HFF cells via retroviral transfer of human transcriptional factors OCT4/SOX2/KLF4/C-MYC. Two independent iPS cell lines are derived without exogenous LIF. They display typical undifferentiated morphology and express pluripotency markers Oct4 and Sox2. Transgenes are inactivated and the endogenous Oct4 promoter is completely demethylated in the established iPS cell lines, indicating a fully reprogrammed state. Moreover, the iPS cells can spontaneously differentiate or be induced into various cell types of three embryonic germ layers in vitro and in vivo when they are injected into immunodeficient mice for teratoma formation. Importantly, iPS cells extensively integrate with various host tissues and contribute to the germline when injected into the blastocysts. Interestingly, these two iPS cell lines, while both pluripotent, exhibit distinctive differentiation tendencies towards different lineages. Taken together, the data describe the first genuine mouse iPS cell lines generated on human feeder cells without exogenous LIF, providing a reliable tool for understanding the molecular mechanisms of nuclear reprogramming.

  12. Inhibitory and Cytotoxic Activities of Salvia Officinalis L. Extract on Human Lymphoma and Leukemia Cells by Induction of Apoptosis

    Directory of Open Access Journals (Sweden)

    Abbas Azadmehr

    2013-02-01

    Full Text Available Purpose: Salvia officinalis L., also known as Maryam Goli, is one of the native plants used to Persian medicinal herbs. Hence, the objective of this study was to examine the in vitro cytotoxic activities of a standardized crude methanol extracts prepared from Salvia officinalis L., on a non-Hodgkin’s B-cell lymphoma (Raji and human leukemic monocyte lymphoma (U937, Human acute myelocytic leukemia (KG-1A and Human Umbilical Vein Endothelial (HUVEC cell lines. Methods: The effect of methanolic extract on the inhibition of cell proliferation and cytotoxic activity was evaluated by Dye exclusion and Micro culture tetrazolium test (MTT cytotoxicity assay. Cell death ELISA was employed to quantify the nucleosome production result from nuclear DNA fragmentation during apoptosis and determined whether the mechanism involves induction of apoptosis or necrosis. Results: The present results demonstrated that methanolic extract at 50 to 800 μg/ml dose and time-dependently suppressed the proliferation of KG-1A, U937 and Raji cells by more than 80% (p800 Ag/ml. Nucleosome productions in KG-1A, Raji and U937 cells were significantly increased respectively upon the treatment of Salvia officinalis L. extract. Conclusion: The Salvia officinalis L. extract was found dose and time-dependently inhibits the proliferation of lymphoma and leukemic cells possibly via an apoptosis-dependent pathway.

  13. Inhibitory and cytotoxic activities of salvia officinalis L. Extract on human lymphoma and leukemia cells by induction of apoptosis.

    Science.gov (United States)

    Zare Shahneh, Fatemeh; Valiyari, Samira; Baradaran, Behzad; Abdolalizadeh, Jalal; Bandehagh, Ali; Azadmehr, Abass; Hajiaghaee, Reza

    2013-01-01

    Salvia officinalis L., also known as Maryam Goli, is one of the native plants used to Persian medicinal herbs. Hence, the objective of this study was to examine the in vitro cytotoxic activities of a standardized crude methanol extracts prepared from Salvia officinalis L., on a non-Hodgkin's B-cell lymphoma (Raji) and human leukemic monocyte lymphoma (U937), Human acute myelocytic leukemia (KG-1A) and Human Umbilical Vein Endothelial (HUVEC) cell lines. The effect of methanolic extract on the inhibition of cell proliferation and cytotoxic activity was evaluated by Dye exclusion and Micro culture tetrazolium test (MTT) cytotoxicity assay. Cell death ELISA was employed to quantify the nucleosome production result from nuclear DNA fragmentation during apoptosis and determined whether the mechanism involves induction of apoptosis or necrosis. The present results demonstrated that methanolic extract at 50 to 800 μg/ml dose and time-dependently suppressed the proliferation of KG-1A, U937 and Raji cells by more than 80% (p800 Ag/ml). Nucleosome productions in KG-1A, Raji and U937 cells were significantly increased respectively upon the treatment of Salvia officinalis L. extract. The Salvia officinalis L. extract was found dose and time-dependently inhibits the proliferation of lymphoma and leukemic cells possibly via an apoptosis-dependent pathway.

  14. THE EFFECT OF RECOMBINANT HUMAN LEUKEMIA INHIBITORY FACTOR (rhLIF ON IN VITRO DEVELOPMENT OF MOUSE 2-CELL EMBRYOS AND THEIR ISOLATED BLASTOMERES

    Directory of Open Access Journals (Sweden)

    MOHAMMAD AKBARI

    2004-09-01

    Full Text Available In this study effect of recombinant human leukemia inhibitory factor on invitro development of 2 cells embryos and isolated blastomeres derived from mouse 2 cell embryos were investigated. Female ICR mice that were between 8 to 10 weeks old received intraperitoneal injection of 7.5 IU of PMSG for super ovulation followed by intraperitoneal administration of 7.5 IU of HCG 48 hours later. The mice were then mated to mature ICR male mice and were checked for vaginal plugs after 13-14 hours. Mice were killed 46-48 hours after HCG injection by cervical dislocation, their oviducts were removed and flushing 2 cell embryos were collected. The zona pellucida of 2 cell embryos were removed by Acid Tyrod solution and blastomeres separated with oocyte preparation pipette and then all embryos and blastomeres were cultured in Potassium Simplex Optimized Medium (KSOM +Aminoacid (AA different amounts of rhLIF (500IU/ml, 1000IU/ml and 1500IU/ml. Some embryos and individual blastomere also were cultured without rhLIF as control group. All samples were cultured in an incubator at 370C with 0.05 CO2 for 120 hours. The rate of embryo and individual blastomeres which reached to 2 cell, 4 cell, 8 cell and 9-16 cell were the same in all groups. However in further developmental stages, morula and blastocyst between experimental and control groups were significantly different. Therefore it may be concluded that: cultivation of isolated blastomers up to the blastocyst stage with rhLIF has stimulatory effect on the preimplantation stage (morula and blastocyst but it has no stimulatory and inhibitory effects when was added to culture media at the early cleavage stage.

  15. Lentin, a novel and potent antifungal protein from shitake mushroom with inhibitory effects on activity of human immunodeficiency virus-1 reverse transcriptase and proliferation of leukemia cells.

    Science.gov (United States)

    Ngai, Patrick H K; Ng, T B

    2003-11-14

    From the fruiting bodies of the edible mushroom Lentinus edodes, a novel protein designated lentin with potent antifungal activity was isolated. Lentin was unadsorbed on DEAE-cellulose, and adsorbed on Affi-gel blue gel and Mono S. The N-terminal sequence of lentin manifested similarity to endoglucanase. Lentin, which had a molecular mass of 27.5 kDa, inhibited mycelial growth in a variety of fungal species including Physalospora piricola, Botrytis cinerea and Mycosphaerella arachidicola. Lentin also exerted an inhibitory activity on HIV-1 reverse transcriptase and proliferation of leukemia cells.

  16. Generation of sensory neurons is stimulated by leukemia inhibitory factor.

    OpenAIRE

    Murphy, M; Reid, K; Hilton, D J; Bartlett, P F

    1991-01-01

    The processes that regulate the development of peripheral neurons from their precursors in the embryonic neural crest are essentially unknown. In this report, we show that leukemia inhibitory factor stimulates the generation of neurons in cultures of mouse neural crest. These neurons have the morphology of sensory neurons and contain neuropeptides found in mammalian sensory neurons. Consistent with these neurons being of the sensory lineage is the finding that they arise from nondividing prec...

  17. The role of leukemia inhibitory factor in tubal ectopic pregnancy.

    Science.gov (United States)

    Krishnan, T; Winship, A; Sonderegger, S; Menkhorst, E; Horne, A W; Brown, J; Zhang, J-G; Nicola, N A; Tong, S; Dimitriadis, E

    2013-11-01

    Ectopic pregnancy is unique to humans and a leading cause of maternal morbidity and mortality. The etiology remains unknown however factors regulating embryo implantation likely contribute. Leukemia inhibitory factor (LIF) has roles in extravillous trophoblast adhesion and invasion and is present in ectopic implantation sites. We hypothesised that LIF facilitates blastocyst adhesion/invasion in the Fallopian tube, contributing to ectopic pregnancy. We immunolocalised LIF receptor (R) in tubal ectopic pregnancy (N = 5). We used an oviduct cell line (OE-E6/E7) to model Fallopian tube epithelial cells and a trophoblast spheroid co-culture model (HTR-8/SVneo cell line formed spheroids) to model blastocyst attachment to the Fallopian tube. We examined LIF signaling pathways in OE-E6/E7 cells by Western blot. The effect of LIF and LIF inhibition (using a novel LIF inhibitor, PEGLA) on first-trimester placental outgrowth was determined. LIFR localised to villous and extravillous trophoblast and Fallopian tube epithelium in ectopic pregnancy. LIF activated STAT3 but not the ERK pathway in OE-E6/E7 cells. LIF stimulated HTR-8/SVneo spheroid adhesion to OE-E6/E7 cells which was significantly reduced after PEGLA treatment. LIF promoted placental explants outgrowth, while co-treatment with PEGLA blocked outgrowth. Our data suggests LIF facilitates the development of ectopic pregnancy by stimulating blastocyst adhesion and trophoblast outgrowth from placental explants. Ectopic pregnancy is usually diagnosed after 6 weeks of pregnancy, therefore PEGLA may be useful in targeting trophoblast growth/invasion. LIF may contribute to the development of ectopic pregnancies and that pharmacologically targeting LIF-mediated trophoblast outgrowth may be useful as a treatment for ectopic pregnancy. Copyright © 2013. Published by Elsevier Ltd.

  18. Leukemia inhibitory factor increases glucose uptake in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Brandt, Nina; O'Neill, Hayley M; Kleinert, Maximilian

    2015-01-01

    INTRODUCTION: Members of the interleukin-6 (IL-6) family, IL-6 and ciliary neurotrophic factor (CNTF) have been shown to increase glucose uptake and fatty acid oxidation in skeletal muscle. However, the metabolic effects of another family member, leukemia inhibitory factor (LIF), are not well...... indicated that Mammalian Target of Rapamycin complex (mTORC) 2, but not mTORC1, also is required for LIF-stimulated glucose uptake. In contrast to CNTF, LIF-stimulation did not alter palmitate oxidation. LIF-stimulated glucose uptake was maintained in EDL from obese insulin resistant mice, whereas soleus...

  19. Modeling Human Leukemia Immunotherapy in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Jinxing Xia

    2016-08-01

    Full Text Available The currently available human tumor xenograft models permit modeling of human cancers in vivo, but in immunocompromised hosts. Here we report a humanized mouse (hu-mouse model made by transplantation of human fetal thymic tissue plus hematopoietic stem cells transduced with a leukemia-associated fusion gene MLL-AF9. In addition to normal human lymphohematopoietic reconstitution as seen in non-leukemic hu-mice, these hu-mice showed spontaneous development of B-cell acute lymphoblastic leukemia (B-ALL, which was transplantable to secondary recipients with an autologous human immune system. Using this model, we show that lymphopenia markedly improves the antitumor efficacy of recipient leukocyte infusion (RLI, a GVHD-free immunotherapy that induces antitumor responses in association with rejection of donor chimerism in mixed allogeneic chimeras. Our data demonstrate the potential of this leukemic hu-mouse model in modeling leukemia immunotherapy, and suggest that RLI may offer a safe treatment option for leukemia patients with severe lymphopenia.

  20. Expression of leukemia inhibitory factor and leukemia inhibitory factor receptor in the canine pituitary gland and corticotrope adenomas.

    Science.gov (United States)

    Hanson, J M; Mol, J A; Meij, B P

    2010-05-01

    Leukemia inhibitory factor (LIF) is a pleiotropic cytokine of the IL-6 family that activates the hypothalamic-pituitary-adrenal axis and promotes corticotrope cell differentiation during development. The aim of this study was to investigate the expression of LIF and its receptor (LIFR) in the canine pituitary gland and in corticotrope adenomas, and to perform a mutation analysis of LIFR. Using immunohistochemistry, immunofluorescence, and quantitative expression analysis, LIF and LIFR expression were studied in pituitary glands of control dogs and in specimens of corticotrope adenoma tissue collected through hypophysectomy in dogs with pituitary-dependent hypercortisolism (PDH, Cushing's disease). Using sequence analysis, cDNA was screened for mutations in the LIFR. In the control pituitary tissues and corticotrope adenomas, there was a low magnitude of LIF expression. The LIFR, however, was highly expressed and co-localized with ACTH(1-24) expression. Cytoplasmatic immunoreactivity of LIFR was preserved in corticotrope adenomas and adjacent nontumorous cells of pars intermedia. No mutation was found on mutation analysis of the complete LIFR cDNA. Surprisingly, nuclear to perinuclear immunoreactivity for LIFR was present in nontumorous pituitary cells of the pars distalis in 10 of 12 tissue specimens from PDH dogs. These data show that LIFR is highly co-expressed with adrenocorticotropic hormone (ACTH) and alpha-melanocyte-stimulating hormone (alpha-MSH) in the canine pituitary gland and in corticotrope adenomas. Nuclear immunoreactivity for LIFR in nontumorous cells of the pars distalis may indicate the presence of a corticotrope adenoma. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  1. Growth hormone, interferon-gamma, and leukemia inhibitory factor utilize insulin receptor substrate-2 in intracellular signaling

    DEFF Research Database (Denmark)

    Argetsinger, L S; Norstedt, G; Billestrup, Nils

    1996-01-01

    In this report, we demonstrate that insulin receptor substrate-2 (IRS-2) is tyrosyl-phosphorylated following stimulation of 3T3-F442A fibroblasts with growth hormone (GH), leukemia inhibitory factor and interferon-gamma. In response to GH and leukemia inhibitory factor, IRS-2 is immediately phosp...

  2. Investigation of the Bovine Leukemia Virus Proviral DNA in Human Leukemias and Lung cancers in Korea

    OpenAIRE

    Lee, JeHoon; Kim, Yonggoo; Kang, Chang Suk; Cho, Dae Hyun; Shin, Dong Hwan; Yum, Young Na; Oh, Jae Ho; Kim, Sheen Hee; Hwang, Myung Sil; Lim, Chul Joo; Yang, Ki Hwa; Han, Kyungja

    2005-01-01

    The bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis. This study investigated the presence of the BLV in leukemia (179 acute lymphoblastic leukemia, 292 acute myeloid leukemia and 46 chronic myelogenous leukemia cases) and 162 lung cancer patients (139 adenocarcinoma, 23 squamous cell carcinoma) to determine if the BLV is a causative organism of leukemia and lung cancer in Koreans. A BLV infection was confirmed in human cells by PCR using a BLV-8 primer combinati...

  3. Investigation of the bovine leukemia virus proviral DNA in human leukemias and lung cancers in Korea.

    Science.gov (United States)

    Lee, Jehoon; Kim, Yonggoo; Kang, Chang Suk; Cho, Dae Hyun; Shin, Dong Hwan; Yum, Young Na; Oh, Jae Ho; Kim, Sheen Hee; Hwang, Myung Sil; Lim, Chul Joo; Yang, Ki Hwa; Han, Kyungja

    2005-08-01

    The bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis. This study investigated the presence of the BLV in leukemia (179 acute lymphoblastic leukemia, 292 acute myeloid leukemia and 46 chronic myelogenous leukemia cases) and 162 lung cancer patients (139 adenocarcinoma, 23 squamous cell carcinoma) to determine if the BLV is a causative organism of leukemia and lung cancer in Koreans. A BLV infection was confirmed in human cells by PCR using a BLV-8 primer combination. All 517 cases of human leukemia and 162 lung cancer were negative for a PCR of the BLV proviral DNA. In conclusion, although meat has been imported from BLV endemic areas, the BLV infection does not appear to be the cause of human leukemia or lung cancer in Koreans. These results can be used as a control for further studies on the BLV in Koreans.

  4. In vitro radiosensitivity of human leukemia cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Weichselbaum, R.R.; Greenberger, J.S.; Schmidt, A.; Karpas, A.; Moloney, W.C.; Little, J.B.

    1981-05-01

    The in vitro radiobiologic survival values (anti n, D/sub 0/) of four tumor lines derived from human hematopoietic tumors were studied. These cell lines were HL60 promyelocytic leukemia; K562 erythroleukemia; 45 acute lymphocytic leukemia; and 176 acute monomyelogenous leukemia. More cell lines must be examined before the exact relationship between in vitro radiosensitivity and clinical radiocurability is firmly established.

  5. Leukemia inhibitory factor and ciliary neurotropic factor promote the survival of Sertoli cells and gonocytes in coculture system

    NARCIS (Netherlands)

    de Miguel, M. P.; de Boer-Brouwer, M.; Paniagua, R.; van den Hurk, R.; de rooij, D. G.; van Dissel-Emiliani, F. M.

    1996-01-01

    Leukemia inhibitory factor (LIF) and ciliary neurotropic factor (CNTF) were found to be pleiotropic modulators of Sertoli cell and gonocyte development (both isolated from the neonatal rat testis) in a coculture system, whereas IL-6, another member of this cytokine family, had no effect on these

  6. Optimization of experimental human leukemia models (review

    Directory of Open Access Journals (Sweden)

    D. D. Pankov

    2012-01-01

    Full Text Available Actual problem of assessing immunotherapy prospects including antigenpecific cell therapy using animal models was covered in this review.Describe the various groups of currently existing animal models and methods of their creating – from different immunodeficient mice to severalvariants of tumor cells engraftment in them. The review addresses the possibility of tumor stem cells studying using mouse models for the leukemia treatment with adoptive cell therapy including WT1. Also issues of human leukemia cells migration and proliferation in a mice withdifferent immunodeficiency degree are discussed. To assess the potential immunotherapy efficacy comparison of immunodeficient mouse model with clinical situation in oncology patients after chemotherapy is proposed.

  7. Study of leukemia inhibitory factor polymorphism within an Australian multiple sclerosis population.

    Science.gov (United States)

    Mackenzie, Jason; Tajouri, Lotti; Szvetko, Attila; Weth, Verena; Moreau, Julie; Greer, Judith M; Csurhes, Peter A; Pender, Michael P; Griffiths, Lyn R

    2009-05-15

    To examine a polymorphism within the 3' untranslated region of the leukemia inhibitory factor gene for an association with multiple sclerosis within an Australian case-control population. A test group of 121 unrelated multiple sclerosis patients, of Caucasian origin, and 121 controls, matched for ethnicity, sex and age (+/-5 years) were included in the study. The LIF 3' UTR StuI polymorphism was genotyped by restriction fragment length polymorphism analysis. Statistical analysis of genotype and allele frequencies included Hardy-Weinberg law and conventional contingency table analysis incorporating the standard chi-squared test for independence. Allelic and genotype frequencies did not demonstrate a significant association between the case and control groups for the tested LIF 3' UTR StuI polymorphism. The results indicate that the LIF 3' UTR StuI polymorphism is not associated with multiple sclerosis, however we cannot exclude the hypothesis that other polymorphic alleles of LIF could be implicated in MS susceptibility.

  8. Deficient leukemia inhibitory factor signaling in muscle precursor cells from patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Broholm, Christa; Brandt, Claus; Schultz, Ninna S

    2012-01-01

    to LIF. The mRNA and protein expressions of LIF and its receptor (LIFR) were measured in skeletal muscle biopsies from healthy individuals and patients with type 2 diabetes by use of qPCR and Western blot. LIF signaling and response were studied following administration of recombinant LIF and si......The cytokine leukemia-inhibitory factor (LIF) is expressed by skeletal muscle and induces proliferation of muscle precursor cells, an important feature of skeletal muscle maintenance and repair. We hypothesized that muscle precursor cells from patients with type 2 diabetes had a deficient response......RNA knockdown of suppressor of cytokine signaling (SOCS)3 in myoblast cultures established from healthy individuals and patients with type 2 diabetes. Myoblast proliferation rate was assessed by bromodeoxyuridine incorporation. LIF and LIFR proteins were increased in both muscle tissue and cultured myoblasts...

  9. Autonomous growth potential of leukemia blast cells is associated with poor prognosis in human acute leukemias

    Directory of Open Access Journals (Sweden)

    Jakubowski Ann A

    2009-12-01

    Full Text Available Abstract We have described a severe combined immunodeficiency (SCID mouse model that permits the subcutaneous growth of primary human acute leukemia blast cells into a measurable subcutaneous nodule which may be followed by the development of disseminated disease. Utilizing the SCID mouse model, we examined the growth potential of leukemic blasts from 133 patients with acute leukemia, (67 acute lymphoblastic leukemia (ALL and 66 acute myeloid leukemia (AML in the animals after subcutaneous inoculation without conditioning treatment. The blasts displayed three distinct growth patterns: "aggressive", "indolent", or "no tumor growth". Out of 133 leukemias, 45 (33.8% displayed an aggressive growth pattern, 14 (10.5% displayed an indolent growth pattern and 74 (55.6% did not grow in SCID mice. The growth probability of leukemias from relapsed and/or refractory disease was nearly 3 fold higher than that from patients with newly diagnosed disease. Serial observations found that leukemic blasts from the same individual, which did not initiate tumor growth at initial presentation and/or at early relapse, may engraft and grow in the later stages of disease, suggesting that the ability of leukemia cells for engraftment and proliferation was gradually acquired following the process of leukemia progression. Nine autonomous growing leukemia cell lines were established in vitro. These displayed an aggressive proliferation pattern, suggesting a possible correlation between the capacity of human leukemia cells for autonomous proliferation in vitro and an aggressive growth potential in SCID mice. In addition, we demonstrated that patients whose leukemic blasts displayed an aggressive growth and dissemination pattern in SClD mice had a poor clinical outcome in patients with ALL as well as AML. Patients whose leukemic blasts grew indolently or whose leukemia cells failed to induce growth had a significantly longer DFS and more favorable clinical course.

  10. Leukemia inhibitory factor tips the immune balance towards regulatory T cells in multiple sclerosis.

    Science.gov (United States)

    Janssens, Kris; Van den Haute, Chris; Baekelandt, Veerle; Lucas, Sophie; van Horssen, Jack; Somers, Veerle; Van Wijmeersch, Bart; Stinissen, Piet; Hendriks, Jerome J A; Slaets, Helena; Hellings, Niels

    2015-03-01

    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS), for which current treatments are unable to prevent disease progression. Based on its neuroprotective and neuroregenerating properties, leukemia inhibitory factor (LIF), a member of the interleukin-6 (IL-6) cytokine family, is proposed as a novel candidate for MS therapy. However, its effect on the autoimmune response remains unclear. In this study, we determined how LIF modulates T cell responses that play a crucial role in the pathogenesis of MS. We demonstrate that expression of the LIF receptor was strongly increased on immune cells of MS patients. LIF treatment potently boosted the number of regulatory T cells (Tregs) in CD4(+) T cells isolated from healthy controls and MS patients with low serum levels of IL-6. Moreover, IL-6 signaling was reduced in the donors that responded to LIF treatment in vitro. Our data together with previous findings revealing that IL-6 inhibits Treg development, suggest an opposing function of LIF and IL-6. In a preclinical animal model of MS we shifted the LIF/IL-6 balance in favor of LIF by CNS-targeted overexpression. This increased the number of Tregs in the CNS during active autoimmune responses and reduced disease symptoms. In conclusion, our data show that LIF downregulates the autoimmune response by enhancing Treg numbers, providing further impetus for the use of LIF as a novel treatment for MS and other autoimmune diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Water-extracted Perilla frutescens increases endometrial receptivity though leukemia inhibitory factor-dependent expression of integrins

    Directory of Open Access Journals (Sweden)

    Eun-Yeong Kim

    2016-08-01

    Full Text Available The leaves and stems of Perilla frutescens var. acuta Kudo (PF have been used to prevent threatened abortion in traditional medicine in the East Asian countries. Because reduced receptivity of endometrium is a cause of abortion, we analyzed the action of PF on the endometrial receptivity. PF increased the level of leukemia inhibitory factor (LIF, a major cytokine regulating endometrial receptivity, and LIF receptor in human endometrial Ishikawa cells. The PF-induced LIF expression was mediated by c-jun N-terminal kinase (JNK and p38 pathways. Adhesion between Ishikawa cells and trophoblastic JAr cells stimulated by PF treatment was abolished by knock down of LIF expression or antagonism of LIFR. In addition, the expressions of integrin β3 and β5 were increased by PF treatment in Ishikawa cells. The PF-induced expression of integrin β3 and β5 was reduced with an LIFR antagonist. Neutralization of both integrins successfully blocked PF-stimulated adhesion of JAr cells and Ishikawa cells. These results suggest that PF enhanced the adhesion between Ishikawa cells and JAr cells by increasing the expression of integrin β3 and β5 via an LIF-dependent pathway. Given the importance of endometrial receptivity in successful pregnancy, PF can be a novel and effective candidate for improving pregnancy rate.

  12. The Roles of Anandamide, Fatty Acid Amide Hydrolase, and Leukemia Inhibitory Factor on the Endometrium during the Implantation Window

    Directory of Open Access Journals (Sweden)

    Na Cui

    2017-10-01

    Full Text Available Background/aimsWe investigated the role of the endocannabinoid system (ECS in the endometrium of unexplained infertility (UI patients, and effect of anandamide (AEA on leukemia inhibitory factor (LIF.MethodsPatients were divided into UI and control groups. Endometrium samples were collected at the midluteal phase. Levels of cannabinoid type 1 (CB1, fatty acid amide hydrolase (FAAH, and LIF were examined. LIF productions were measured after AEA, CB1 antagonist AM251, and CB2 antagonist AM630 stimulation.ResultsRates of available embryo, successful implantation and pregnancy, and the endometrial thickness of UI group were significantly lower than control, suggesting uterine receptivity was decreased in UI group. FAAH and LIF levels were significantly decreased, whereas endometrial CB1 was slightly increased in UI group. LIF production was promoted by low amount of AEA administration (1–10 μM, while the promotion was reduced by higher concentration of AEA (50 μM. LIF levels were decreased by AM251 or AM630, compared with AEA alone. Expressions of FAAH and LIF were closely associated with uterus receptivity and implantation rate of UI patients. Different concentrations of AEA could stimulate dynamic changes in LIF production.ConclusionOur data indicated the important role of the ECS in human fertility, which may promote new strategies for successful implantation and treatments for reproductive diseases.

  13. OCT4 pseudogenes present in human leukemia cells.

    Science.gov (United States)

    Guo, Xiaoping; Tang, Yongmin

    2012-12-01

    The transcription factor OCT4 is expressed in embryonic stem cells (ESCs) and has been considered as a main regulator in maintaining pluripotency of ESCs. Several studies have showed OCT4 expression in human solid tumor and adult stem or progenitor cells. However, whether OCT4 is expressed in normal hematopoietic system including the peripheral blood and bone marrow remains controversial. Furthermore, the functional expression of OCT4 in leukemia cells and its potential significance in leukemia studies have been poorly defined. The aim of this study was to examine and analyze the genuine expression of OCT4 in human leukemia cells by means of RT-PCR, flow cytometry, PCR product sequencing and alignment with NCBI BLAST and DNAMAN software. The full lengths of the putative OCT4 genes were amplified in 2/9 leukemia cell lines and 7/49 leukemia patients' samples. However, many base mutations in putative OCT4 positive samples were found. Sequence alignment analysis showed a higher similarity between the putative OCT4 PCR products and the pseudogenes in chromosomes 1 and 8. The positive rates of OCT4 protein detected with flow cytometry were low, and almost all of them were less than 10% of positivity. A very small fraction of leukemia stem cells with OCT4 protein expression was found. We conclude that OCT4 pseudogenes in chromosomes 1 and 8 present in the panel of leukemia cells tested and the OCT4 protein is rarely detected with flow cytometry in leukemia cells.

  14. Leukemia inhibitory factor protects axons in experimental autoimmune encephalomyelitis via an oligodendrocyte-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Melissa M Gresle

    Full Text Available Leukemia inhibitory factor (LIF and Ciliary Neurotrophic factor (CNTF are members of the interleukin-6 family of cytokines, defined by use of the gp130 molecule as an obligate receptor. In the murine experimental autoimmune encephalomyelitis (EAE model, antagonism of LIF and genetic deletion of CNTF worsen disease. The potential mechanism of action of these cytokines in EAE is complex, as gp130 is expressed by all neural cells, and could involve immuno-modulation, reduction of oligodendrocyte injury, neuronal protection, or a combination of these actions. In this study we aim to investigate whether the beneficial effects of CNTF/LIF signalling in EAE are associated with axonal protection; and whether this requires signalling through oligodendrocytes. We induced MOG₃₅₋₅₅ EAE in CNTF, LIF and double knockout mice. On a CNTF null background, LIF knockout was associated with increased EAE severity (EAE grade 2.1±0.14 vs 2.6±0.19; P<0.05. These mice also showed increased axonal damage relative to LIF heterozygous mice, as indicated by decreased optic nerve parallel diffusivity on MRI (1540±207 µm²-/s vs 1310±175 µm²-/s; P<0.05, and optic nerve (-12.5% and spinal cord (-16% axon densities; and increased serum neurofilament-H levels (2.5 fold increase. No differences in inflammatory cell numbers or peripheral auto-immune T-cell priming were evident. Oligodendrocyte-targeted gp130 knockout mice showed that disruption of CNTF/LIF signalling in these cells has no effect on acute EAE severity. These studies demonstrate that endogenous CNTF and LIF act centrally to protect axons from acute inflammatory destruction via an oligodendrocyte-independent mechanism.

  15. A Key Role for Leukemia Inhibitory Factor in C26 Cancer Cachexia.

    Science.gov (United States)

    Seto, Danielle N; Kandarian, Susan C; Jackman, Robert W

    2015-08-07

    Cachexia is an exacerbating event in many types of cancer that is strongly associated with a poor prognosis. We have identified cytokine, signaling, and transcription factors that are required for cachexia in the mouse C26 colon carcinoma model of cancer. C2C12 myotubes treated with conditioned medium from C26 cancer cells induced atrophy and activated a STAT-dependent reporter gene but not reporter genes dependent on SMAD, FOXO, C/EBP, NF-κB, or AP-1. Of the gp130 family members IL-11, IL-6, oncostatin M (OSM), and leukemia inhibitory factor (LIF), only OSM and LIF were sufficient to activate the STAT reporter in myotubes. LIF was elevated in C26 conditioned medium (CM), but IL-6, OSM, TNFα, and myostatin were not. A LIF-blocking antibody abolished C26 CM-induced STAT reporter activation, STAT3 phosphorylation, and myotube atrophy but blocking antibodies to IL-6 or OSM did not. JAK2 inhibitors also blocked C26 CM-induced STAT reporter activation, STAT3 phosphorylation, and atrophy in myotubes. LIF at levels found in the C26 CM was sufficient for STAT reporter activation and atrophy in myotubes. In vivo, an increase in serum LIF preceded the increase in IL-6 in mice with C26 tumors. Overexpression of a dominant negative Stat3Cβ-EGFP gene in myotubes and in mouse muscle blocked the atrophy caused by C26 CM or C26 tumors, respectively. Taken together, these data support an important role of LIF-JAK2-STAT3 in C26 cachexia and point to a therapeutic approach for at least some types of cancer cachexia. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. In vitro radiosensitivity of human leukemia cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Weichselbaum, R.R.; Greenberger, J.S.; Schmidt, A.; Karpas, A.; Moloney, W.C.; Little, J.B.

    1981-05-01

    The in vitro radiobiologic survival values (n, D0) of four tumor lines derived from human hematopoietic tumors were studied. These cell lines were HL50 (n . 1.3, D0 . 117 rad(1.17 Gy)), promyelocytic leukemia; K562 (n . 1.4, D0 . 165 rad(1.65 Gy)), erythroleukemia; 45 (n . 1.1, D0 . 147 rad(1.47 Gy)), acute lymphocyte leukemia; and 176 (n . 4.0, D0 . 76 rad(0.76 Gy)), acute monomyelogenous leukemia. More cell lines must be examined before the exact relationship between in vitro radiosensitivity and clinical radiocurability is firmly established.

  17. Leukemia

    Science.gov (United States)

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  18. Leukemia

    Science.gov (United States)

    ... ALL). This is the most common type of leukemia in young children. ALL can also occur in adults. Acute myelogenous leukemia (AML). AML is a common type of leukemia. It occurs in children and adults. AML is the most common type ...

  19. Development of a multi-step leukemogenesis model of MLL-rearranged leukemia using humanized mice.

    Directory of Open Access Journals (Sweden)

    Kunihiko Moriya

    Full Text Available Mixed-lineage-leukemia (MLL fusion oncogenes are intimately involved in acute leukemia and secondary therapy-related acute leukemia. To understand MLL-rearranged leukemia, several murine models for this disease have been established. However, the mouse leukemia derived from mouse hematopoietic stem cells (HSCs may not be fully comparable with human leukemia. Here we developed a humanized mouse model for human leukemia by transplanting human cord blood-derived HSCs transduced with an MLL-AF10 oncogene into a supra-immunodeficient mouse strain, NOD/Shi-scid, IL-2Rγ(-/- (NOG mice. Injection of the MLL-AF10-transduced HSCs into the liver of NOG mice enhanced multilineage hematopoiesis, but did not induce leukemia. Because active mutations in ras genes are often found in MLL-related leukemia, we next transduced the gene for a constitutively active form of K-ras along with the MLL-AF10 oncogene. Eight weeks after transplantation, all the recipient mice had developed acute monoblastic leukemia (the M5 phenotype in French-American-British classification. We thus successfully established a human MLL-rearranged leukemia that was derived in vivo from human HSCs. In addition, since the enforced expression of the mutant K-ras alone was insufficient to induce leukemia, the present model may also be a useful experimental platform for the multi-step leukemogenesis model of human leukemia.

  20. Inhibitory effect of chitosan oligosaccharide on human hepatoma ...

    African Journals Online (AJOL)

    Background: Chitosan oligosaccharide, the degradation products of chitin, was reported to have a wide range of physiological functions and biological activities. In this study, we explored the inhibitory effect of Chitosan oligosaccharide on human hepatoma cells. Materials and Methods: MTT assay was applied to detect cell ...

  1. [Inhibitory effect of RNA interference targeting GFI-1 on the proliferation of atypical chronic myelogenous leukemia NT1 cells].

    Science.gov (United States)

    Yang, X; Liu, H; Lin, Z H; Qian, J; Xu, X R

    2016-08-01

    To investigate the inhibitory effects of RNA interference targeting GFI-1 on growth and proliferation of atypical chronic myelogenous leukemia (aCML) NT1 cells. NT1 cells were transfected with PBS and liposome complex (vehicle group), scrambled siRNA and liposome complex (negative control, NC group), and GFI-1 siRNA and liposome complex (GFI-1 siRNA group), respectively. Real-time quantitative RT-PCR (qRT-PCR) and Western blot were performed to examine the expression levels of GFI-1 mRNA and protein, respectively. The proliferation abilities of NT1 cells of the three groups were evaluated by MTT assay. The cell cycle in cells of the three groups was analyzed by flow cytometry. Moreover, nude mouse xenograft model was used to detect the tumor formation ability in the three group cells. Quantitative real-time PCR data showed that the expression level of GFI-1 mRNA in GFI-1 siRNA group was significantly lower than those of NC group and vehicle group [(0.367±0.017) vs. (0.918±0.006) and (1.010±0.005), respectively, (PRNA interference targeting GFI-1 inhibits the growth and proliferation of NT1 cells, which may provide a new therapeutic target for atypical chronic myelogenous leukemia.

  2. Eliminating acute lymphoblastic leukemia cells from human testicular cell cultures: a pilot study

    NARCIS (Netherlands)

    Sadri-Ardekani, Hooman; Homburg, Christa H.; van Capel, Toni M. M.; van den Berg, Henk; van der Veen, Fulco; van der Schoot, C. Ellen; van Pelt, Ans M. M.; Repping, Sjoerd

    2014-01-01

    To study whether acute lymphoblastic leukemia (ALL) cells survive in a human testicular cell culture system. Experimental laboratory study. Reproductive biology laboratory, academic medical center. Acute lymphoblastic leukemia cells from three patients and testicular cells from three other patients.

  3. Human T-Cell Leukemia Virus Type 1 Infection and Adult T-Cell Leukemia.

    Science.gov (United States)

    Chan, Chi-Ping; Kok, Kin-Hang; Jin, Dong-Yan

    2017-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the first retrovirus discovered to cause adult T-cell leukemia (ATL), a highly aggressive blood cancer. HTLV-1 research in the past 35 years has been most revealing in the mechanisms of viral oncogenesis. HTLV-1 establishes a lifelong persistent infection in CD4(+) T lymphocytes. The infection outcome is governed by host immunity. ATL develops in 2-5% of infected individuals 30-50 years after initial exposure. HTLV-1 encodes two oncoproteins Tax and HBZ, which are required for initiation of cellular transformation and maintenance of cell proliferation, respectively. HTLV-1 oncogenesis is driven by a clonal selection and expansion process during which both host and viral factors cooperate to impair genome stability, immune surveillance, and other mechanisms of tumor suppression. A better understanding of HTLV-1 biology and leukemogenesis will reveal new strategies and modalities for ATL prevention and treatment.

  4. Changes in spinal inhibitory networks induced by furosemide in humans

    Science.gov (United States)

    Klomjai, Wanalee; Lackmy-Vallée, Alexandra; Katz, Rose; Bussel, Bernard; Bensmail, Djamel; Lamy, Jean-Charles; Roche, Nicolas

    2014-01-01

    During neural development in animals, GABAergic and glycinergic neurons are first excitatory, and then become inhibitory in the mature state. This developmental shift is due mainly to strong expression of the cation-chloride K–Cl cotransporter 2 (KCC2) and down-regulation of Na–K–Cl cotransporter 1 (NKCC1) during maturation. The down-regulation of co-transporter KCC2 after spinal cord transection in animals leads to the depolarising (excitatory) action of GABA and glycine and thus results in a reduction of inhibitory synaptic efficiency. Furosemide, a loop diuretic, has been shown to selectively and reversibly block inhibitory postsynaptic potentials without affecting excitatory postsynaptic potentials in animal spinal neurons. Moreover, this diuretic has been also demonstrated to block the cation-chloride co-transporters. Here, we used furosemide to demonstrate changes in spinal inhibitory networks in healthy human subjects. Non-invasive electrophysiological techniques were used to assess presynaptic inhibition, postsynaptic inhibition and the efficacy of synaptic transmission between muscle afferent terminals and soleus motoneurons in the spinal cord. Orally administered furosemide, at doses commonly used in the clinic (40 mg), significantly reduced spinal inhibitory interneuronal activity for at least 70 min from intake compared to control experiments in the same subjects while no changes were observed in the efficacy of synaptic transmission between muscle afferent terminals and soleus motoneurons. The reduction of inhibition was dose-dependent. Our results provide indirect evidence that reversible changes in the cation-chloride transport system induce modulations of inhibitory neuronal activity at spinal cord level in humans. PMID:24835171

  5. The Ras/Raf/MEK/extracellular signal-regulated kinase pathway induces autocrine-paracrine growth inhibition via the leukemia inhibitory factor/JAK/STAT pathway.

    Science.gov (United States)

    Park, Jong-In; Strock, Christopher J; Ball, Douglas W; Nelkin, Barry D

    2003-01-01

    Sustained activation of the Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway can lead to cell cycle arrest in many cell types. We have found, with human medullary thyroid cancer (MTC) cells, that activated Ras or c-Raf-1 can induce growth arrest by producing and secreting an autocrine-paracrine factor. This protein was purified from cell culture medium conditioned by Raf-activated MTC cells and was identified by mass spectrometry as leukemia inhibitory factor (LIF). LIF expression upon Raf activation and subsequent activation of JAK-STAT3 was also observed in small cell lung carcinoma cells, suggesting that this autocrine-paracrine signaling may be a common response to Ras/Raf activation. LIF was sufficient to induce growth arrest and differentiation of MTC cells. This effect was mediated through the gp130/JAK/STAT3 pathway, since anti-gp130 blocking antibody or dominant-negative STAT3 blocked the effects of LIF. Thus, LIF expression provides a novel mechanism allowing Ras/Raf signaling to activate the JAK-STAT3 pathway. In addition to this cell-extrinsic growth inhibitory pathway, we find that the Ras/Raf/MEK/ERK pathway induces an intracellular growth inhibitory signal, independent of the LIF/JAK/STAT3 pathway. Therefore, activation of the Ras/Raf/MEK/ERK pathway can lead to growth arrest and differentiation via at least two different signaling pathways. This use of multiple pathways may be important for "fail-safe" induction and maintenance of cell cycle arrest.

  6. Human ACAT inhibitory effects of shikonin derivatives from Lithospermum erythrorhizon.

    Science.gov (United States)

    An, Sojin; Park, Yong-Dae; Paik, Young-Ki; Jeong, Tae-Sook; Lee, Woo Song

    2007-02-15

    Three naphthoquinones were isolated by bioassay-guided fractionation from the CHCl(3) extracts of roots of Lithospermum erythrorhizon. They were identified as acetylshikonin (1), isobutyrylshikonin (2), and beta-hydroxyisovalerylshikonin (3) on the basis of their spectroscopic analyses. The compounds 1-3 were tested for their inhibitory activities against human ACAT-1 (hACAT-1) or human ACAT-2 (hACAT-2). Compound 2 preferentially inhibited hACAT-2 (IC(50)=57.5microM) than hACAT-1 (32% at 120microM), whereas compounds 1 and 3 showed weak inhibitory activities in both hACAT-1 and -2. To develop more potent hACAT inhibitor, shikonin derivatives (5-11) were synthesized by semi-synthesis of shikonin (4), which was prepared by hydrolysis of 1-3. Among them, compounds 5 and 7 exhibited the strong inhibitory activities against hACAT-1 and -2. Furthermore, we demonstrated that compound 7 behaved as a potent ACAT inhibitor in not only in vitro assay system but also cell-based assay system.

  7. Leukemia Inhibitory Factor (LIF) Inhibition during Mid-Gestation Impairs Trophoblast Invasion and Spiral Artery Remodelling during Pregnancy in Mice.

    Science.gov (United States)

    Winship, Amy; Correia, Jeanne; Zhang, Jian-Guo; Nicola, Nicos A; Dimitriadis, Evdokia

    2015-01-01

    The placenta forms the interface between the maternal and fetal circulation and is critical for the establishment of a healthy pregnancy. Trophoblast cell proliferation, migration and invasion into the endometrium are fundamental events in the initiation of placentation. Leukemia inhibitory factor (LIF) has been shown to promote trophoblast invasion in vitro, however its precise role in trophoblast invasion in vivo is unknown. We hypothesized that LIF would be required for normal trophoblast invasion and spiral artery remodeling in mice. Both LIF and its receptor (LIFRα) co-localized with cytokeratin-positive invasive endovascular extravillous trophoblasts (EVT) in mouse implantation sites during mid-gestation. Temporally blocking LIF action during specific periods of placental development via administration of our unique LIFRα antagonist, PEGLA, resulted in abnormal trophoblast invasion and impaired spiral artery remodeling compared to PEG control. PEGLA-treated mouse decidual vessels were characterized by retention of α-smooth muscle actin (αSMA)-positive vascular smooth muscle cells (VSMCs), while PEG control decidual vessels were remodelled by cytokeratin-positive trophoblasts. LIF blockade did not alter F4/80-positive decidual macrophage numbers between treatment groups, but resulted in down-regulation of decidual transcript levels of monocyte chemoattractant protein-1 (MCP-1) and interleukin-10 (IL-10), which are important immune cell activation factors that promote spiral artery remodeling during pregnancy. Our data suggest that LIF plays an important role in trophoblast invasion in vivo and may facilitate trophoblast-decidual-immune cell cross talk to enable adequate spiral artery remodeling.

  8. Blocking Endogenous Leukemia Inhibitory Factor During Placental Development in Mice Leads to Abnormal Placentation and Pregnancy Loss.

    Science.gov (United States)

    Winship, Amy; Correia, Jeanne; Krishnan, Tara; Menkhorst, Ellen; Cuman, Carly; Zhang, Jian-Guo; Nicola, Nicos A; Dimitriadis, Evdokia

    2015-08-14

    The placenta forms the interface between the maternal and fetal circulation and is critical for the establishment of a healthy pregnancy. Specialized trophoblast cells derived from the embryonic trophectoderm play a pivotal role in the establishment of the placenta. Leukemia inhibitory factor (LIF) is one of the predominant cytokines present in the placenta during early pregnancy. LIF has been shown to regulate trophoblast adhesion and invasion in vitro, however its precise role in vivo is unknown. We hypothesized that LIF would be required for normal placental development in mice. LIF and LIFRα were immunolocalized to placental trophoblasts and fetal vessels in mouse implantation sites during mid-gestation. Temporally blocking LIF action during specific periods of placental development via intraperitoneal administration of our specific LIFRα antagonist, PEGLA, resulted in abnormal placental trophoblast and vascular morphology and reduced activated STAT3 but not ERK. Numerous genes regulating angiogenesis and oxidative stress were altered in the placenta in response to LIF inhibition. Pregnancy viability was also significantly compromised in PEGLA treated mice. Our data suggest that LIF plays an important role in placentation in vivo and the maintenance of healthy pregnancy.

  9. Upregulation of Pluripotency Markers in Adipose Tissue-Derived Stem Cells by miR-302 and Leukemia Inhibitory Factor

    Directory of Open Access Journals (Sweden)

    Masoumeh Fakhr Taha

    2014-01-01

    Full Text Available The expression pattern of pluripotency markers in adipose tissue-derived stem cells (ADSCs is a subject of controversy. Moreover, there is no data about the signaling molecules that regulate these markers in ADSCs. In the present study, we studied the roles of leukemia inhibitory factor (LIF and miR-302 in this regard. Freshly isolated mouse ADSCs expressed hematopoietic, mesenchymal, and pluripotency markers. One day after plating, ADSCs expressed OCT4 and Sox2 proteins. After three passages, the expression of hematopoietic and pluripotency markers decreased, while the expression of mesenchymal stem cell markers exhibited a striking rise. Both supplementation of culture media with LIF and transfection of the ADSCs with miR-302 family upregulated the expression levels of OCT4, Nanog, and Sox2 mRNAs. These findings showed that mouse adipose tissue contains a population of cells with molecular resemblance to embryonic stem cells, and LIF and miR-302 family positively affect the expression of pluripotency markers.

  10. Survivin Selectively Modulates Genes Deregulated in Human Leukemia Stem Cells

    Directory of Open Access Journals (Sweden)

    Seiji Fukuda

    2011-01-01

    Full Text Available ITD-Flt3 mutations are detected in leukemia stem cells (LSCs in acute myeloid leukemia (AML patients. While antagonizing Survivin normalizes ITD-Flt3-induced acute leukemia, it also impairs hematopoietic stem cell (HSC function, indicating that identification of differences in signaling pathways downstream of Survivin between LSC and HSC are crucial to develop selective Survivin-based therapeutic strategies for AML. Using a Survivin-deletion model, we identified 1,096 genes regulated by Survivin in ITD-Flt3-transformed c-kit+, Sca-1+, and lineageneg (KSL cells, of which 137 are deregulated in human LSC. Of the 137, 124 genes were regulated by Survivin exclusively in ITD-Flt3+ KSL cells but not in normal CD34neg KSL cells. Survivin-regulated genes in LSC connect through a network associated with the epidermal growth factor receptor signaling pathway and falls into various functional categories independent of effects on apoptosis. Pathways downstream of Survivin in LSC that are distinct from HSC can be potentially targeted for selective anti-LSC therapy.

  11. Zebrafish Models of Human Leukemia: Technological Advances and Mechanistic Insights.

    Science.gov (United States)

    Harrison, Nicholas R; Laroche, Fabrice J F; Gutierrez, Alejandro; Feng, Hui

    2016-01-01

    Insights concerning leukemic pathophysiology have been acquired in various animal models and further efforts to understand the mechanisms underlying leukemic treatment resistance and disease relapse promise to improve therapeutic strategies. The zebrafish (Danio rerio) is a vertebrate organism with a conserved hematopoietic program and unique experimental strengths suiting it for the investigation of human leukemia. Recent technological advances in zebrafish research including efficient transgenesis, precise genome editing, and straightforward transplantation techniques have led to the generation of a number of leukemia models. The transparency of the zebrafish when coupled with improved lineage-tracing and imaging techniques has revealed exquisite details of leukemic initiation, progression, and regression. With these advantages, the zebrafish represents a unique experimental system for leukemic research and additionally, advances in zebrafish-based high-throughput drug screening promise to hasten the discovery of novel leukemia therapeutics. To date, investigators have accumulated knowledge of the genetic underpinnings critical to leukemic transformation and treatment resistance and without doubt, zebrafish are rapidly expanding our understanding of disease mechanisms and helping to shape therapeutic strategies for improved outcomes in leukemic patients.

  12. Inhibitory action of relaxin on human cervical smooth muscle.

    Science.gov (United States)

    Norström, A; Bryman, I; Wiqvist, N; Sahni, S; Lindblom, B

    1984-09-01

    The influence of purified porcine relaxin on contractility of human cervical smooth muscle was investigated in vitro. Strips of cervical tissue were obtained by needle biopsy from pregnant and nonpregnant women and were mounted in a superfused organ chamber for isometric measurement of contractile activity. Relaxin (0.005-25 micrograms/ml) inhibited the spontaneous contractions in cervical strips from 18% of nonpregnant, 68% of early pregnant, and in 100% of term pregnant women. These results indicate that relaxin has an inhibitory action on cervical smooth muscle and that this effect is more constantly detected as pregnancy proceeds.

  13. A novel self-lipid antigen targets human T cells against CD1c(+) leukemias.

    Science.gov (United States)

    Lepore, Marco; de Lalla, Claudia; Gundimeda, S Ramanjaneyulu; Gsellinger, Heiko; Consonni, Michela; Garavaglia, Claudio; Sansano, Sebastiano; Piccolo, Francesco; Scelfo, Andrea; Häussinger, Daniel; Montagna, Daniela; Locatelli, Franco; Bonini, Chiara; Bondanza, Attilio; Forcina, Alessandra; Li, Zhiyuan; Ni, Guanghui; Ciceri, Fabio; Jenö, Paul; Xia, Chengfeng; Mori, Lucia; Dellabona, Paolo; Casorati, Giulia; De Libero, Gennaro

    2014-06-30

    T cells that recognize self-lipids presented by CD1c are frequent in the peripheral blood of healthy individuals and kill transformed hematopoietic cells, but little is known about their antigen specificity and potential antileukemia effects. We report that CD1c self-reactive T cells recognize a novel class of self-lipids, identified as methyl-lysophosphatidic acids (mLPAs), which are accumulated in leukemia cells. Primary acute myeloid and B cell acute leukemia blasts express CD1 molecules. mLPA-specific T cells efficiently kill CD1c(+) acute leukemia cells, poorly recognize nontransformed CD1c-expressing cells, and protect immunodeficient mice against CD1c(+) human leukemia cells. The identification of immunogenic self-lipid antigens accumulated in leukemia cells and the observed leukemia control by lipid-specific T cells in vivo provide a new conceptual framework for leukemia immune surveillance and possible immunotherapy. © 2014 Lepore et al.

  14. Leukemia Inhibitory Factor (LIF Inhibition during Mid-Gestation Impairs Trophoblast Invasion and Spiral Artery Remodelling during Pregnancy in Mice.

    Directory of Open Access Journals (Sweden)

    Amy Winship

    Full Text Available The placenta forms the interface between the maternal and fetal circulation and is critical for the establishment of a healthy pregnancy. Trophoblast cell proliferation, migration and invasion into the endometrium are fundamental events in the initiation of placentation. Leukemia inhibitory factor (LIF has been shown to promote trophoblast invasion in vitro, however its precise role in trophoblast invasion in vivo is unknown. We hypothesized that LIF would be required for normal trophoblast invasion and spiral artery remodeling in mice. Both LIF and its receptor (LIFRα co-localized with cytokeratin-positive invasive endovascular extravillous trophoblasts (EVT in mouse implantation sites during mid-gestation. Temporally blocking LIF action during specific periods of placental development via administration of our unique LIFRα antagonist, PEGLA, resulted in abnormal trophoblast invasion and impaired spiral artery remodeling compared to PEG control. PEGLA-treated mouse decidual vessels were characterized by retention of α-smooth muscle actin (αSMA-positive vascular smooth muscle cells (VSMCs, while PEG control decidual vessels were remodelled by cytokeratin-positive trophoblasts. LIF blockade did not alter F4/80-positive decidual macrophage numbers between treatment groups, but resulted in down-regulation of decidual transcript levels of monocyte chemoattractant protein-1 (MCP-1 and interleukin-10 (IL-10, which are important immune cell activation factors that promote spiral artery remodeling during pregnancy. Our data suggest that LIF plays an important role in trophoblast invasion in vivo and may facilitate trophoblast-decidual-immune cell cross talk to enable adequate spiral artery remodeling.

  15. Cannabinoids induce incomplete maturation of cultured human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Murison, G.; Chubb, C.B.H.; Maeda, S.; Gemmell, M.A.; Huberman, E.

    1987-08-01

    Monocyte maturation markers were induced in cultured human myeloblastic ML-2 leukemia cells after treatment for 1-6 days with 0.03-30 ..mu..M ..delta../sup 9/-tetrahydrocannabinol (THC), the major psychoactive component of marijuana. After a 2-day or longer treatment, 2- to 5-fold increases were found in the percentages of cells exhibiting reactivity with either the murine OKM1 monoclonal antibody of the Leu-M5 monoclonal antibody, staining positively for nonspecific esterase activity, and displaying a promonocyte morphology. The increases in these differentiation markers after treatment with 0.03-1 ..mu..M THC were dose dependent. At this dose range, THC did not cause an inhibition of cell growth. The THC-induced cell maturation was also characterized by specific changes in the patterns of newly synthesized proteins. The THC-induced differentiation did not, however, result in cells with a highly developed mature monocyte phenotype. However, treatment of these incompletely matured cells with either phorbol 12-myristate 13-acetate of 1..cap alpha..,25-dihydroxycholecalciferol, which are inducers of differentiation in myeloid leukemia cells (including ML-2 cells), produced cells with a mature monocyte morphology. The ML-2 cell system described here may be a useful tool for deciphering critical biochemical events that lead to the cannabinoid-induced incomplete cell differentiation of ML-2 cells and other related cell types. Findings obtained from this system may have important implications for studies of cannabinoid effects on normal human bone-marrow progenitor cells.

  16. Biology and relevance of human acute myeloid leukemia stem cells.

    Science.gov (United States)

    Thomas, Daniel; Majeti, Ravindra

    2017-03-23

    Evidence of human acute myeloid leukemia stem cells (AML LSCs) was first reported nearly 2 decades ago through the identification of rare subpopulations of engrafting cells in xenotransplantation assays. These AML LSCs were shown to reside at the apex of a cellular hierarchy that initiates and maintains the disease, exhibiting properties of self-renewal, cell cycle quiescence, and chemoresistance. This cancer stem cell model offers an explanation for chemotherapy resistance and disease relapse and implies that approaches to treatment must eradicate LSCs for cure. More recently, a number of studies have both refined and expanded our understanding of LSCs and intrapatient heterogeneity in AML using improved xenotransplant models, genome-scale analyses, and experimental manipulation of primary patient cells. Here, we review these studies with a focus on the immunophenotype, biological properties, epigenetics, genetics, and clinical associations of human AML LSCs and discuss critical questions that need to be addressed in future research. © 2017 by The American Society of Hematology.

  17. Leukemia inhibitory factor regulates differentiation of trophoblastlike BeWo cells through the activation of JAK/STAT and MAPK3/1 MAP kinase-signaling pathways.

    Science.gov (United States)

    Leduc, Katy; Bourassa, Vincent; Asselin, Eric; Leclerc, Pierre; Lafond, Julie; Reyes-Moreno, Carlos

    2012-02-01

    It is well established that syncytium formation involves the fusion of mononucleated trophoblasts into a multinucleated structure and the secretion of hormonal factors, such as human chorionic gonadotropin (hCG). These morphological and biochemical changes are regulated by a plethora of ligands, which upon binding to specific receptors trigger the activation of many signaling pathways, such as janus kinase/signal transducer and activator of transcription (JAK/STAT) and the mitogen-activated protein (MAP) kinase extracellular signal-regulated kinases 1 and 2 (MAPK3/1). We used the forskolin-induced syncytialization of trophoblastlike BeWo cells to characterize at the cellular level the effect mediated by leukemia inhibitory factor (LIF) on trophoblast differentiation and to describe its action at the molecular level. Forskolin induces both hCG secretion and BeWo cell syncytial fusion. Although LIF had no effect on the undifferentiated state of the cells, the cytokine generated a strong reduction in forskolin-induced hCG release. In contrast to its effect on hCG secretion, LIF exerts a synergistic effect toward forskolin-induced fusion. LIF reduced hormonal production through a STAT1- and STAT3-dependent mechanism, whereas MAPK3/1 was not involved in this process. However, both types of signaling molecules were required to mediate the action of LIF in forskolin-induced cell fusion. These data provide novel insights into the regulation of trophoblast cell differentiation by LIF and describe for the first time the molecular mechanism underlying the effect of the cytokine.

  18. Adenosine A2B receptor-mediated leukemia inhibitory factor release from astrocytes protects cortical neurons against excitotoxicity

    Directory of Open Access Journals (Sweden)

    Moidunny Shamsudheen

    2012-08-01

    Full Text Available Abstract Background Neuroprotective and neurotrophic properties of leukemia inhibitory factor (LIF have been widely reported. In the central nervous system (CNS, astrocytes are the major source for LIF, expression of which is enhanced following disturbances leading to neuronal damage. How astrocytic LIF expression is regulated, however, has remained an unanswered question. Since neuronal stress is associated with production of extracellular adenosine, we investigated whether LIF expression in astrocytes was mediated through adenosine receptor signaling. Methods Mouse cortical neuronal and astrocyte cultures from wild-type and adenosine A2B receptor knock-out animals, as well as adenosine receptor agonists/antagonists and various enzymatic inhibitors, were used to study LIF expression and release in astrocytes. When needed, a one-way analysis of variance (ANOVA followed by Bonferroni post-hoc test was used for statistical analysis. Results We show here that glutamate-stressed cortical neurons induce LIF expression through activation of adenosine A2B receptor subtype in cultured astrocytes and require signaling of protein kinase C (PKC, mitogen-activated protein kinases (MAPKs: p38 and ERK1/2, and the nuclear transcription factor (NF-κB. Moreover, LIF concentration in the supernatant in response to 5′-N-ethylcarboxamide (NECA stimulation was directly correlated to de novo protein synthesis, suggesting that LIF release did not occur through a regulated release pathway. Immunocytochemistry experiments show that LIF-containing vesicles co-localize with clathrin and Rab11, but not with pHogrin, Chromogranin (CgA and CgB, suggesting that LIF might be secreted through recycling endosomes. We further show that pre-treatment with supernatants from NECA-treated astrocytes increased survival of cultured cortical neurons against glutamate, which was absent when the supernatants were pre-treated with an anti-LIF neutralizing antibody. Conclusions

  19. The Role of Inhibitory Control in the Development of Human Figure Drawing in Young Children

    Science.gov (United States)

    Riggs, Kevin J.; Jolley, Richard P.; Simpson, Andrew

    2013-01-01

    We investigated the role of inhibitory control in young children's human figure drawing. We used the Bear-Dragon task as a measure of inhibitory control and used the classification system devised by Cox and Parkin to measure the development of human figure drawing. We tested 50 children aged between 40 and 64 months. Regression analysis showed…

  20. Polyamine analog TBP inhibits proliferation of human K562 chronic myelogenous leukemia cells by induced apoptosis.

    Science.gov (United States)

    Wang, Qing; Wang, Yan-Lin; Wang, Kai; Yang, Jian-Lin; Cao, Chun-Yu

    2015-01-01

    The aim of the present study was to investigate the effects of the novel polyamine analog tetrabutyl propanediamine (TBP) on the growth of K562 chronic myelogenous leukemia (CML) cells and the underlying mechanism of these effects. MTT was used for the analysis of cell proliferation and flow cytometry was performed to analyze cell cycle distribution. DNA fragmentation analysis and Annexin V/propidium iodide double staining were used to identify apoptotic cells. The activity of the key enzymes in polyamine catabolism was detected using chemiluminescence. TBP can induce apoptosis and significantly inhibit K562 cell proliferation in a time- and dose-dependent manner. TBP treatment significantly induced the enzyme activity of spermine oxidase and acetylpolyamine oxidase in K562 cells, and also enhanced the inhibitory effect of the antitumor drug doxorubicin on K562 cell proliferation. As a novel polyamine analog, TBP significantly inhibited proliferation and induced apoptosis in K562 cells by upregulating the activity of the key enzymes in the polyamine catabolic pathways. TBP also increased the sensitivity of the K562 cells to the antitumor drug doxorubicin. These data indicate an important potential value of TBP for clinical therapy of human CML.

  1. Gastric inhibitory polypeptide does not inhibit gastric emptying in humans

    DEFF Research Database (Denmark)

    Meier, Juris J; Goetze, Oliver; Anstipp, Jens

    2004-01-01

    The insulinotropic gut hormone gastric inhibitory polypeptide (GIP) has been demonstrated to inhibit gastric acid secretion and was proposed to possess "enterogastrone" activity. GIP effects on gastric emptying have not yet been studied. Fifteen healthy male volunteers (23.9 +/- 3.3 yr, body mass...

  2. Growth inhibition of Tax-activated human Jurkat leukemia T cells by all-trans retinoic acid requires JNK-1 inhibition.

    Science.gov (United States)

    Parra, Eduardo; Gutiérrez, Luis

    2013-01-01

    Retinoids, including vitamin A (retinol) and its analogues, are critical for a variety of biological functions. In this study, we report that all-trans retinoic acid (ATRA) decreases Jun N-terminal kinase 1 (JNK-1) activity, antagonizing the effect of the Tax protein in Jurkat leukemia T cells transiently transfected for expressing the Tax protein. The Tax protein is one of the products of the human T-cell leukemia virus type 1 (HTLV-1) which is the etiologic agent of adult T-cell leukemia (ATL), an aggressive neoplasia of CD4+ T cells. The decrease in JNK-1 activity was followed by a marked decrease in the expression of interleukin (IL)-2 and a weak increase in interferon (IFN)-γ in Jurkat cells treated with ATRA in a dose-dependent manner, suggesting a correlation between the expression of JNK-1 and the activity of the Tax protein. However, the expression levels of IL-4 and IL-10 were enhanced in cells transfected with Tax, compared with the levels in untransfected cells, but the expression levels were not affected following ATRA treatment. In transfection studies using a luciferase reporter construct expressing the IL-2 promoter or a tandem repeat of AP-1 or NF-κB, the inhibitory effect of ATRA on the IL-2 promoter and AP-1 construct was confirmed at the transcriptional level. However, the inhibitory effect in the NF-κB reporter construct was only marginal. In addition, our data demonstrated that JNK-1 is constitutively activated in Jurkat leukemia T cells expressing the Tax protein, suggesting that JNK-1 is required for Tax-induced proliferation of Jurkat leukemia cells.

  3. Antiproliferative and Pro-Apoptotic Activity of Diarylheptanoids Isolated from the Bark of Alnus japonica in Human Leukemia Cell Lines.

    Science.gov (United States)

    Uto, Takuhiro; Tung, Nguyen Huu; Appiah-Opong, Regina; Aning, Abigail; Morinaga, Osamu; Edoh, Dominic; Nyarko, Alexander K; Shoyama, Yukihiro

    2015-01-01

    Alnus japonica Steud is a tree that grows in damp areas of mountain valleys and has been used as a traditional medicine in Asia. We investigated the antiproliferative activity of hirsutanone (Hir) and oregonin (Ore) in human cancer cell lines and elucidated their mechanisms of action. A cytotoxicity study using a panel of 12 human cancer and 4 normal cell lines indicated that Hir exhibited potent antiproliferative activity against 4 leukemia (Jurkat, U937, THP-1, and HL-60) and 2 colon cancer cell lines (HCT-15 and Colo205). Although Ore suppressed the cell growth of Jurkat and THP-1, its inhibitory potency was weaker than that of Hir. The IC50 values of Hir and Ore in Jurkat were 11.37 μM and 22.16 μM, respectively. Further analysis on Jurkat cells demonstrated that Hir caused a sequence of events involved in apoptosis, including nuclear morphological changes and accumulation of cells with sub-G1 DNA content. Hir led to the cleavage of poly(ADP-ribose) polymerase (PARP) and activation of caspase-3, -8, and -9. In addition, Hir-induced PARP cleavage was completely abolished by specific inhibitors to these caspases. Our data suggested that Hir is a potent antiproliferative compound against the 4 leukemia cell lines and the 2 colon cancer cell lines tested. Furthermore, Hir exerts antiproliferative actions via caspase-dependent apoptotic cell death.

  4. Inhibitory effect of furosemide on histamine release from human basophils

    OpenAIRE

    貴谷, 光; 草浦, 康浩; 本家, 尚子; 谷水, 将邦; 光延, 文裕; 御舩, 尚志; 岡崎, 守宏; 谷崎, 勝朗

    1992-01-01

    Inhibitory effect of furosemide on histamine release from basophils induced by anti-IgE was examined in 4 healthy subjects and 8 patients with atopic asthma. The experiments of basophil histamine release were carried out by using whole blood method. The mean values of histamine release after 15 min preincubation with furosemide atvarious concentrations were not significantly decreased, in both healthy and asthmatic subjects compared to those of histamine release without furosemide. The result...

  5. Therapeutic Effects of Myeloid Cell Leukemia-1 siRNA on Human Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Hadi Karami

    2014-05-01

    Full Text Available Purpose: Up-regulation of Mcl-1, a known anti-apoptotic protein, is associated with the survival and progression of various malignancies including leukemia. The aim of this study was to explore the effect of Mcl-1 small interference RNA (siRNA on the proliferation and apoptosis of HL-60 acute myeloid leukemia (AML cells. Methods: siRNA transfection was performed using Lipofectamine™2000 reagent. Relative mRNA and protein expressions were quantified by quantitative real-time PCR and Western blotting, respectively. Trypan blue assay was performed to assess tumor cell proliferation after siRNA transfection. The cytotoxic effect of Mcl-1 siRNA on leukemic cells was measured using MTT assay. Apoptosis was detected using ELISA cell death assay. Results: Mcl-1 siRNA clearly lowered both Mcl-1 mRNA and protein levels in a time-dependent manner, leading to marked inhibition of cell survival and proliferation. Furthermore, Mcl-1 down-regulation significantly enhanced the extent of HL-60 apoptotic cells. Conclusion: Our results suggest that the down-regulation of Mcl-1 by siRNA can effectively trigger apoptosis and inhibit the proliferation of leukemic cells. Therefore, Mcl-1 siRNA may be a potent adjuvant in AML therapy.

  6. Effect of phenylhexyl isothiocyanate on aberrant histone H3 methylation in primary human acute leukemia

    Directory of Open Access Journals (Sweden)

    Zou Yong

    2012-07-01

    Full Text Available Abstract Background We have previously studied the histone acetylation in primary human leukemia cells. However, histone H3 methylation in these cells has not been characterized. Methods This study examined the methylation status at histone H3 lysine 4 (H3K4 and histone H3 lysine 9 (H3K9 in primary acute leukemia cells obtained from patients and compared with those in the non-leukemia and healthy cells. We further characterized the effect of phenylhexyl isothiocyanate (PHI, Trichostatin A (TSA, and 5-aza-2’-deoxycytidine (5-Aza on the cells. Results We found that methylation of histone H3K4 was virtually undetectable, while methylation at H3K9 was significantly higher in primary human leukemia cells. The histone H3K9 hypermethylation and histone H3K4 hypomethylation were observed in both myeloid and lymphoid leukemia cells. PHI was found to be able to normalize the methylation level in the primary leukemia cells. We further showed that PHI was able to enhance the methyltransferase activity of H3K4 and decrease the activity of H3K9 methyltransferase. 5-Aza had similar effect on H3K4, but minimal effect on H3K9, whereas TSA had no effect on H3K4 and H3K9 methyltransferases. Conclusions This study revealed opposite methylation level of H3K4 and H3K9 in primary human leukemia cells and demonstrated for the first time that PHI has different effects on the methyltransferases for H3K4 and H3K9.

  7. Synergistic interactions between HDAC and sirtuin inhibitors in human leukemia cells.

    Directory of Open Access Journals (Sweden)

    Michele Cea

    Full Text Available Aberrant histone deacetylase (HDAC activity is frequent in human leukemias. However, while classical, NAD(+-independent HDACs are an established therapeutic target, the relevance of NAD(+-dependent HDACs (sirtuins in leukemia treatment remains unclear. Here, we assessed the antileukemic activity of sirtuin inhibitors and of the NAD(+-lowering drug FK866, alone and in combination with traditional HDAC inhibitors. Primary leukemia cells, leukemia cell lines, healthy leukocytes and hematopoietic progenitors were treated with sirtuin inhibitors (sirtinol, cambinol, EX527 and with FK866, with or without addition of the HDAC inhibitors valproic acid, sodium butyrate, and vorinostat. Cell death was quantified by propidium iodide cell staining and subsequent flow-cytometry. Apoptosis induction was monitored by cell staining with FITC-Annexin-V/propidium iodide or with TMRE followed by flow-cytometric analysis, and by measuring caspase3/7 activity. Intracellular Bax was detected by flow-cytometry and western blotting. Cellular NAD(+ levels were measured by enzymatic cycling assays. Bax was overexpressed by retroviral transduction. Bax and SIRT1 were silenced by RNA-interference. Sirtuin inhibitors and FK866 synergistically enhanced HDAC inhibitor activity in leukemia cells, but not in healthy leukocytes and hematopoietic progenitors. In leukemia cells, HDAC inhibitors were found to induce upregulation of Bax, a pro-apoptotic Bcl2 family-member whose translocation to mitochondria is normally prevented by SIRT1. As a result, leukemia cells become sensitized to sirtuin inhibitor-induced apoptosis. In conclusion, NAD(+-independent HDACs and sirtuins cooperate in leukemia cells to avoid apoptosis. Combining sirtuin with HDAC inhibitors results in synergistic antileukemic activity that could be therapeutically exploited.

  8. Anti-leukemia activity of in vitro-expanded human gamma delta T cells in a xenogeneic Ph+ leukemia model.

    Directory of Open Access Journals (Sweden)

    Gabrielle M Siegers

    Full Text Available Gamma delta T cells (GDTc lyse a variety of hematological and solid tumour cells in vitro and in vivo, and are thus promising candidates for cellular immunotherapy. We have developed a protocol to expand human GDTc in vitro, yielding highly cytotoxic Vgamma9/Vdelta2 CD27/CD45RA double negative effector memory cells. These cells express CD16, CD45RO, CD56, CD95 and NKG2D. Flow cytometric, clonogenic, and chromium release assays confirmed their specific cytotoxicity against Ph(+ cell lines in vitro. We have generated a fluorescent and bioluminescent Ph(+ cell line, EM-2eGFPluc, and established a novel xenogeneic leukemia model. Intravenous injection of EM-2eGFPluc into NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG mice resulted in significant dose-dependent bone marrow engraftment; lower levels engrafted in blood, lung, liver and spleen. In vitro-expanded human GDTc injected intraperitoneally were found at higher levels in blood and organs compared to those injected intravenously; GDTc survived at least 33 days post-injection. In therapy experiments, we documented decreased bone marrow leukemia burden in mice treated with GDTc. Live GDTc were found in spleen and bone marrow at endpoint, suggesting the potential usefulness of this therapy.

  9. Targeting Aberrant Glutathione Metabolism to Eradicate Human Acute Myelogenous Leukemia Cells*

    Science.gov (United States)

    Pei, Shanshan; Minhajuddin, Mohammad; Callahan, Kevin P.; Balys, Marlene; Ashton, John M.; Neering, Sarah J.; Lagadinou, Eleni D.; Corbett, Cheryl; Ye, Haobin; Liesveld, Jane L.; O'Dwyer, Kristen M.; Li, Zheng; Shi, Lei; Greninger, Patricia; Settleman, Jeffrey; Benes, Cyril; Hagen, Fred K.; Munger, Joshua; Crooks, Peter A.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular, primitive leukemia cells, often termed leukemia stem cells, are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34+) leukemic versus normal specimens. Our data indicate that CD34+ AML cells have elevated expression of multiple glutathione pathway regulatory proteins, presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation, CD34+ AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34+ cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise, we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34+ AML cells. Importantly, these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34+ cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism, which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1), as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism, an intrinsic property of primary human AML cells. PMID:24089526

  10. Human Lyb-2 homolog CD72 is a marker for progenitor B-cell leukemias.

    Science.gov (United States)

    Schwarting, R; Castello, R; Moldenhauer, G; Pezzutto, A; von Hoegen, I; Ludwig, W D; Parnes, J R; Dörken, B

    1992-11-01

    S-HCL 2 is the prototype antibody of the recently defined CD72 cluster (human Lyb-2). Under nonreducing conditions, S-HCL 2 monoclonal antibody (mAb) precipitates a glycoprotein of 80-86 kDa. Under reducing conditions, a dimer of 43 and 39 kDa, with core proteins of 40 and 36 kDa, is precipitated. CD72 expression in normal and malignant tissues is different from expression of all other previously described human B-cell antigens. In peripheral blood and bone marrow, the antigen appears to be present on all B lymphocytes, with the exception of plasma cells. In tissue, immunohistochemical staining revealed positivity for all known B-cell compartments; however, pulpa macrophages of the spleen and von Kupffer cells exhibited distinct positivity for CD72 also. Among 83 malignant non-Hodgkin's lymphomas examined by immunohistochemistry (alkaline phosphatase anti-alkaline phosphatase technique), all 54 B-cell lymphomas, including precursor B-cell lymphomas, Burkitt's lymphomas, germinal center lymphomas, chronic lymphocytic leukemias, and hairy cell leukemias, were CD72 positive, but no T-cell lymphomas were. Flow cytometry study of more than 80 mainly acute leukemias (52 B-cell leukemias) showed reactivity with S-HCL 2 mAb over the full range of B-cell differentiation. In particular, very early B cells in cytoplasmic Ig (cIg)-negative, CD19-positive pre-pre-B-cell leukemias and hybrid leukemias (mixed myeloid and B-cell type) were consistently positive for CD72 on the cell surface. Therefore, CD72 may become an important marker for progenitor B-cell leukemias.

  11. Comparative Antileukemic Activity of a Tetranorditerpene Isolated from Polyalthia longifolia Leaves and the Derivative against Human Leukemia HL-60 Cells.

    Science.gov (United States)

    Afolabi, Saheed; Olorundare, Olufunke; Ninomiya, Masayuki; Babatunde, Abiola; Mukhtar, Hasan; Koketsu, Mamoru

    2017-10-01

    The discovery of potent cytotoxic isolates from botanicals provides an opportunity to explore this viable tool for cancer chemoprevention. The antileukemic potential of clerodane diterpene from Polyalthia longifolia leaves has already been established. However, in this present study, utilizing chromatographic techniques we report for the first time, the isolation of a rare tetranorditerpene (compound 1) from P. longifolia. The structure of compound 1 was elucidated and confirmed by spectrophotometric data. UPLC-MS analysis was conducted on the methanolic extract, ethyl acetate fraction, and isolated tetranorditerpene showed that the tetranorditerpene is one of the major constituents of the plant with a retention time of 30.78 min. In addition, a methyl ester derivative (compound 2) of the isolated tetranorditerpene was synthesized. Using the CCK-8 assay, we compared the cytotoxic potential of isolated tetranorditerpene (1) and methyl ester derivative (2) with the previously isolated clerodane diterpenes. Our results showed that the methyl ester derivative (2) displayed the highest inhibitory activity against human leukemia HL-60 cells. The isolated tetranorditerpene (1) did not exhibit significant inhibitory effect against HL-60 cells. Morphological examination indicated chromatin condensation and nuclear fragmentation suggesting induction of apoptosis in compound 2 treated HL-60 cells. The methyl esterification of the isolated tetranorditerpene (1) conferred on it a significant level of antileukemic activity suggesting the possibility of a synergistic relationship between pure compound isolation and synthetic reaction in the discovery of new chemopreventive agents.

  12. Dose- and Time-Dependent Response of Human Leukemia (HL-60 Cells to Arsenic Trioxide Treatment

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2006-06-01

    Full Text Available The treatment of acute promyelocytic leukemia (APL has been based on the administration of all-trans retinoic acid plus anthracycline chemotherapy, which is very effective as first line therapy; however 25 to 30% of patients will relapse with their disease becoming refractory to conventional therapy. Recently, studies have shown arsenic trioxide to be effective in the treatment of acute promyelocytic leukemia. In this study, we used the human leukemia (HL-60 cell line as a model to evaluate the cytoxicity of arsenic trioxide based on the MTT assay. Data obtained from this assay indicated that arsenic trioxide significantly reduced the viability of HL-60 cells, showing LD50 values of 14.26 + 0.5μg/mL, 12.54 + 0.3μg/mL, and 6.4 + 0.6μg/mL upon 6, 12, and 24 hours of exposure, respectively; indicating a dose- and time-dependent response relationship. Findings from the present study indicate that arsenic trioxide is highly cytotoxic to human leukemia (HL-60 cells, supporting its use as an effective therapeutic agent in the management of acute promyelocytic leukemia.

  13. Inhibitory effects of pomegranate extracts on recombinant human maltase-glucoamylase.

    Science.gov (United States)

    Kawakami, Kayoko; Li, Peng; Uraji, Misugi; Hatanaka, Tadashi; Ito, Hideyuki

    2014-09-01

    α-Glucosidase inhibitors are currently used in the treatment of type 2 diabetes. In this study, we investigated the inhibitory activities of aril and pericarp extracts from pomegranates obtained various regions against recombinant human maltase-glucoamylase (MGAM). The inhibitory activities of the aril extracts tended to be stronger than those of the pericarp extracts. The Iranian aril extract was the most effective inhibitor. We investigated the polyphenol content of the pomegranate extracts using the Folin-Ciocalteu method. Among the aril extracts, the Iranian aril extract showed the highest polyphenol content. We further evaluated inhibitory activity against α-glucosidase from the rat small intestine. Pomegranate extract used in this study showed slightly different inhibitory activities according to α-glucosidase origin. Iranian aril extract was the most effective inhibitor of α-glucosidases, especially recombinant human MGAM. Bioassay-guided fractionation of the pomegranate arils led to identification of punicalagin and oenothein B as potent inhibitors of α-glucosidase. Oenothein B showed inhibitory activity with a half-maximal inhibitory concentration (IC(50)) value of 174 μM. Its potency was comparable to that of the α-glucosidase inhibitor acarbose with an IC(50) value of 170 μM. Dixon plot kinetic analysis of oenothein B showed a noncompetitive inhibition with a K(i) value of 102 μM. These results suggest that pomegranate arils would be useful for suppressing postprandial hyperglycemia. © 2014 Institute of Food Technologists®

  14. Identification of a putative invertebrate helical cytokine similar to the ciliary neurotrophic factor/leukemia inhibitory factor family by PSI-BLAST-based approach.

    Science.gov (United States)

    Cheng, Gong; Zhao, Xin; Li, Zuofeng; Liu, Xinyi; Yan, Weiyao; Zhang, Xiaoyan; Zhong, Yang; Zheng, Zhaoxin

    2009-08-01

    Most of our knowledge of helical cytokine-like molecules in invertebrates relies on functional assays and similarities at the physicochemical level. It is hard to predict helical cytokines in invertebrates based on sequences from mammals and vertebrates, because of their long evolutionary divergence. In this article, we collected 12 kinds of fish cytokines and constructed their respective consensus sequences using hidden Markov models; then, the conserved domains region of each consensus sequence were further extracted by the SMART tool, and used as the query sequence for PSI-BLAST analysis in Drosophila melanogaster. After two filtering processes based on the properties of helical cytokines, we obtained one protein named CG14629, which shares 25% identities/46% positives to fish M17 cytokine in the half length of the N-terminus. Considering the homology between M17 and LIF/CNTF (leukemia inhibitory factor/ciliary neurotrophic factor), and the close relationship between Dome, the putative cytokine receptor in Drosophila cells, and LIFR/CNTFR (LIF receptor/CNTF receptor), the results suggest that CG14629 is a good candidate for the helical cytokine ortholog in D. melanogaster.

  15. The suppression of maternal-fetal leukemia inhibitory factor signal relay pathway by maternal immune activation impairs brain development in mice.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Tsukada

    Full Text Available Recent studies in rodents suggest that maternal immune activation (MIA by viral infection is associated with schizophrenia and autism in offspring. Although maternal IL-6 is though t to be a possible mediator relating MIA induced these neuropsychiatric disorders, the mechanism remains to be elucidated. Previously, we reported that the maternal leukemia inhibitory factor (LIF-placental ACTH-fetal LIF signaling relay pathway (maternal-fetal LIF signal relay promotes neurogenesis of fetal cerebrum in rats. Here we report that the maternal-fetal LIF signal relay in mice is suppressed by injection of polyriboinosinic-polyribocytidylic acid into dams, which induces MIA at 12.5 days post-coitum. Maternal IL-6 levels and gene expression of placental suppressor of cytokine signaling 3 (Socs3 increased according to the severity of MIA and gene expression of placental Socs3 correlated with maternal IL-6 levels. Furthermore, we show that MIA causes reduction of LIF level in the fetal cerebrospinal fluid, resulting in the decreased neurogenesis in the cerebrum. These findings suggest that maternal IL-6 interferes the maternal-fetal LIF signal relay by inducing SOCS3 in the placenta and leads to decreased neurogenesis.

  16. Effect of leukemia inhibitory factor on long-term propagation of precursor cells derived from rat forebrain subventricular zone and ventral mesencephalon

    DEFF Research Database (Denmark)

    Andersen, Rikke K; Zimmer, Jens; Wahlberg, Lars U

    2008-01-01

    propagated and maintained for more than 6 months with a cell population doubling time of 21.5 days. The replacement of EGF by leukemia inhibitory factor (LIF) resulted in a cell population doubling time of 19.8 days, corresponding to a 10-fold increase in estimated cell numbers over a period of 70 days......Tissue blocks containing neural precursor cells were isolated from the rat forebrain subventricular zone (SVZ) and ventral mesencephalon (VM) and propagated as neural tissue-spheres (NTS). In the presence of fibroblast growth factor-2 (FGF2) and epidermal growth factor (EGF), SVZ-derived NTS were......, at which point these NTS ceased to grow. In the presence of FGF2 and LIF, VM-derived NTS displayed a cell population doubling time of 24.6 days, which was maintained over a period of more than 200 days. However, when LIF was replaced by EGF, the cell numbers only increased 1.2 fold over 50 days. Using...

  17. Therapeutic activity of two xanthones in a xenograft murine model of human chronic lymphocytic leukemia

    Directory of Open Access Journals (Sweden)

    Berthou Christian

    2010-12-01

    Full Text Available Abstract Background We previously reported that allanxanthone C and macluraxanthone, two xanthones purified from Guttiferae trees, display in vitro antiproliferative and proapoptotic activities in leukemic cells from chronic lymphocytic leukemia (CLL and leukemia B cell lines. Results Here, we investigated the in vivo therapeutic effects of the two xanthones in a xenograft murine model of human CLL, developed by engrafting CD5-transfected chronic leukemia B cells into SCID mice. Treatment of the animals with five daily injections of either allanxanthone C or macluraxanthone resulted in a significant prolongation of their survival as compared to control animals injected with the solvent alone (p = 0.0006 and p = 0.0141, respectively. The same treatment of mice which were not xenografted induced no mortality. Conclusion These data show for the first time the in vivo antileukemic activities of two plant-derived xanthones, and confirm their potential interest for CLL therapy.

  18. CD47 Is an Adverse Prognostic Factor and Therapeutic Antibody Target on Human Acute Myeloid Leukemia Stem Cells

    NARCIS (Netherlands)

    Majeti, R.; Chao, M.P.; Alizadeh, AA; Pang, W.W.; Jaiswal, S.; Gibbs, K.D.; Rooijen, van N.; Weissman, I.L.

    2009-01-01

    Acute myeloid leukemia (AML) is organized as a cellular hierarchy initiated and maintained by a subset of self-renewing leukemia stem cells (LSC). We hypothesized that increased CD47 expression on human AML LSC contributes to pathogenesis by inhibiting their phagocytosis through the interaction of

  19. MAGI-1 expression is decreased in several types of human T-cell leukemia cell lines, including adult T-cell leukemia.

    Science.gov (United States)

    Kozakai, Takashi; Takahashi, Masahiko; Higuchi, Masaya; Hara, Toshifumi; Saito, Kousuke; Tanaka, Yuetsu; Masuko, Masayoshi; Takizawa, Jun; Sone, Hirohito; Fujii, Masahiro

    2018-03-01

    Membrane-associated guanylate kinase with inverted orientation protein 1 (MAGI-1) is a cytoplasmic scaffold protein that interacts with various signaling molecules; it negatively controls the cell growth of various types of cells and positively controls cell-cell interaction. In T cells, MAGI-1 has been shown to inhibit Akt activity through its interaction with PTEN and MEK1. In this study we found that MAGI-1 expression is decreased in multiple (9 out of 15) human T-cell leukemia cell lines, including adult T-cell leukemia (ATL), T-cell acute lymphoblastic leukemia and chronic T-cell lymphocytic leukemia. The overexpression of MAGI-1 protein in a MAGI-1-low ATL cell line reduced cellular growth. While the overexpression of MAGI-1 protein in a MAGI-1-low ATL cell line reduced the Akt and MEK activities, the knockdown of MAGI-1 in a MAGI-1-high ATL cell line augmented the Akt and MEK activities. Collectively, the findings of the present study suggest that the decreased expression of MAGI-1 in human T cells contributes to the development of several types of T-cell leukemia, partly through the stimulation of the Akt and MEK pathways.

  20. Angiotensin I-Converting Enzyme (ACE Inhibitory Activity and ACE Inhibitory Peptides of Salmon (Salmo salar Protein Hydrolysates Obtained by Human and Porcine Gastrointestinal Enzymes

    Directory of Open Access Journals (Sweden)

    Małgorzata Darewicz

    2014-08-01

    Full Text Available The objectives of the present study were two-fold: first, to detect whether salmon protein fractions possess angiotensin I-converting enzyme (ACE inhibitory properties and whether salmon proteins can release ACE inhibitory peptides during a sequential in vitro hydrolysis (with commercial porcine enzymes and ex vivo digestion (with human gastrointestinal enzymes. Secondly, to evaluate the ACE inhibitory activity of generated hydrolysates. A two-step ex vivo and in vitro model digestion was performed to simulate the human digestion process. Salmon proteins were degraded more efficiently by porcine enzymes than by human gastrointestinal juices and sarcoplasmic proteins were digested/hydrolyzed more easily than myofibrillar proteins. The ex vivo digested myofibrillar and sarcoplasmic duodenal samples showed IC50 values (concentration required to decrease the ACE activity by 50% of 1.06 and 2.16 mg/mL, respectively. The in vitro hydrolyzed myofibrillar and sarcoplasmic samples showed IC50 values of 0.91 and 1.04 mg/mL, respectively. Based on the results of in silico studies, it was possible to identify 9 peptides of the ex vivo hydrolysates and 7 peptides of the in vitro hydrolysates of salmon proteins of 11 selected peptides. In both types of salmon hydrolysates, ACE-inhibitory peptides IW, IY, TVY and VW were identified. In the in vitro salmon protein hydrolysates an ACE-inhibitory peptides VPW and VY were also detected, while ACE-inhibitory peptides ALPHA, IVY and IWHHT were identified in the hydrolysates generated with ex vivo digestion. In our studies, we documented ACE inhibitory in vitro effects of salmon protein hydrolysates obtained by human and as well as porcine gastrointestinal enzymes.

  1. Apoptosis- and differentiation-inducing activities of jacaric acid, a conjugated linolenic acid isomer, on human eosinophilic leukemia EoL-1 cells.

    Science.gov (United States)

    Liu, Wai-Nam; Leung, Kwok-Nam

    2014-11-01

    Conjugated linolenic acids (CLNAs) are a group of naturally occurring positional and geometrical isomers of the C18 polyunsaturated essential fatty acid, linolenic acid (LNA), with three conjugated double bonds (C18:3). Although previous research has demonstrated the growth-inhibitory effects of CLNA on a wide variety of cancer cell lines in vitro, their action mechanisms and therapeutic potential on human myeloid leukemia cells remain poorly understood. In the present study, we found that jacaric acid (8Z,10E,12Z-octadecatrienoic acid), a CLNA isomer which is present in jacaranda seed oil, inhibited the in vitro growth of human eosinophilic leukemia EoL-1 cells in a time- and concentration-dependent manner. Mechanistic studies showed that jacaric acid triggered cell cycle arrest of EoL-1 cells at the G0/G1 phase and induced apoptosis of the EoL-1 cells, as measured by the Cell Death Detection ELISAPLUS kit, Annexin V assay and JC-1 dye staining. Notably, the jacaric acid-treated EoL-1 cells also underwent differentiation as revealed by morphological and phenotypic analysis. Collectively, our results demonstrated the capability of jacaric acid to inhibit the growth of EoL-1 cells in vitro through triggering cell cycle arrest and by inducing apoptosis and differentiation of the leukemia cells. Therefore, jacaric acid might be developed as a potential candidate for the treatment of certain forms of myeloid leukemia with minimal toxicity and few side effects.

  2. Frequency of chromosomally-integrated human herpesvirus 6 in children with acute lymphoblastic leukemia.

    Directory of Open Access Journals (Sweden)

    Annie Gravel

    Full Text Available Human herpesvirus 6 (HHV-6 is a ubiquitous pathogen infecting nearly 100% of the human population. Of these individuals, between 0.2% and 1% of them carry chromosomally-integrated HHV-6 (ciHHV-6. The biological consequences of chromosomal integration by HHV-6 remain unknown.To determine and compare the frequency of ciHHV-6 in children with acute lymphoblastic leukemia to healthy blood donors.A total of 293 DNA samples from children with pre-B (n=255, pre-pre-B (n=4, pre-T (n=26 and undetermined (n=8 leukemia were analyzed for ciHHV-6 by quantitative TaqMan PCR (QPCR using HHV-6 specific primers and probe. As control, DNA samples from 288 healthy individuals were used. Primers and probe specific to the cellular GAPDH gene were used to estimate integrity and DNA content.Out of 293 DNA samples from the leukemic cohort, 287 contained amplifiable DNA. Of these, only 1 (0.35% contained ciHHV-6. Variant typing indicates that the ci-HHV-6 corresponds to variant A. None of the 288 DNA samples from healthy individuals contained ciHHV-6.The frequency of ciHHV-6 in children with acute lymphoblastic leukemia is similar (p=0.5 to that of healthy individuals. These results suggest that acute lymphoblastic leukemia does not originate as a consequence to integration of HHV-6 within the chromosomes.

  3. Leptin, ciliary neurotrophic factor, leukemia inhibitory factor and interleukin-6: class-I cytokines involved in the neuroendocrine regulation of the reproductive function.

    Science.gov (United States)

    Dozio, E; Ruscica, M; Galliera, E; Corsi, M M; Magni, P

    2009-12-01

    Class-I cytokines represent a large group of molecules involved in different physiological processes including host defence, immune regulation, food intake, energy metabolism and, relevant for this review, reproduction. In this latter respect, here, we focus the attention on four of these molecules, specifically leptin, ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). These cytokines present similar three-dimensional fold structure, interact with related class-I receptors, which are expressed in the same regions (i.e., hypothalamus), and activate similar intracellular pathways. Leptin and CNTF share functional similarities, by acting at hypothalamic and pituitary levels, and their receptors are colocalized in the arcuate and paraventricular nuclei of the hypothalamus. For both these molecules, no effect on GnRH migration has been described. LIF has also been shown to affect gonadotropin secretion and here we present the novel observation that it is also able to stimulate GnRH secretion in vitro. Moreover, in the mouse, LIF is prenatally expressed in nasal regions where GnRH neurons originate and start their migration, and in vitro it stimulates intrinsic cell motility and directional migration. The role of the prototypical cytokine, IL-6, on the GnRH-LH axis is not fully clear and additional information seem necessary to better clarify this aspect. In conclusion, the data here discussed suggest that this family of cytokines appears to participate to the complex control of the reproductive function by affecting the development and function of the hypothalamus-pituitary system at different ontogenic times and anatomical sites.

  4. Inhibitory effects of adlay bran (Coix lachryma-jobi L. var. ma-yuen Stapf) on chemical mediator release and cytokine production in rat basophilic leukemia cells.

    Science.gov (United States)

    Chen, Hong-Jhang; Lo, Yi-Chen; Chiang, Wenchang

    2012-05-07

    Adlay (Job's tears, Coix lachryma-jobi L. var. ma-yuen Stapf) has long been used in China to treat rheumatism. We investigated the anti-allergic effects of adlay bran on rat basophilic leukemia (RBL)-2H3 cells. To evaluate the anti-allergic effects of adlay bran, the release of histamines and cytokines were measured using ELISA. To explore the mechanism of these effects, the protein expression levels were determined using western blotting. A 40.8μg/mL concentration of the ethyl acetate fraction of the ethanolic extracts of adlay bran (ABE-EtOAc) effectively inhibited mast cell degranulation. The 40-100% EtOAc/Hex subfractions of ABE-EtOAc inhibited histamine release with an IC(50) of 71-87μg/mL. Moreover, the ABE-EtOAc subfractions suppressed the secretion of interleukin (IL)-4, IL-6 and tumor necrosis factor-α in the RBL-2H3 cells, indicating that adlay bran can inhibit cytokine secretion in the late phase of the allergic reaction. In addition, adlay bran reduced the intracellular production of reactive oxygen species, inhibited the phosphorylation of Akt and decreased the expression of protein kinase C. Furthermore, six phenolic acids and one flavone were isolated. Of these compounds, luteolin showed the most potent inhibitory activity (IC(50)=1.5μg/mL). Adlay bran extract reduced the release of histamines and cytokines and suppressed the production of Akt. These combined effects influenced the signal transduction in RBL-2H3 cells, thereby revealing the mechanisms of the anti-allergic effects of adlay. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Studying the Inhibitory Effect of Quercetin and Thymoquinone on Human Cytochrome P450 Enzyme Activities.

    Science.gov (United States)

    Elbarbry, Fawzy; Ung, Aimy; Abdelkawy, Khaled

    2018-01-01

    Quercetin (QR) and thymoquinone (TQ) are herbal remedies that are currently extensively used by the general population to prevent and treat various chronic conditions. Therefore, investigating the potential of pharmacokinetic interactions caused by the concomitant use of these herbal remedies and conventional medicine is warranted to ensure patient safety. This study was conducted to determine the inhibitory effect of QR and TQ, two commonly used remedies, on the activities of selected cytochrome P450 (CYP) enzymes that play an important role in drug metabolism and/or toxicology. The in vitro studies were conducted using fluorescence-based high throughput assays using human c-DNA baculovirus expressed CYP enzymes. For measuring CYP2E1 activity, a validated High-performance liquid chromatography (HPLC) assay was utilized to measure the formation of 6-hydroxychlorzoxazone. The obtained half-maximum inhibitory concentration values with known positive control inhibitors of this study were comparable to the published values indicating accurate experimental techniques. Although QR did not show any significant effect on CYP1A2 and CYP2E1, it exhibited a strong inhibitory effect against CYP2D6 and a moderate effect against CYP2C19 and CYP3A4. On the other hand, TQ demonstrated a strong and a moderate inhibitory effect against CYP3A4 and CYP2C19, respectively. The findings of this study may indicate that consumption of QR or TQ, in the form of food or dietary supplements, with drugs that are metabolized by CYP2C19, CYP2D6, or CYP3A4 may cause significant herb-drug interactions. Neither QR nor TQ has any significant inhibitory effect on the activity of CYP1A2 or CYP2E1 enzymesBoth QR and TQ have a moderate to strong inhibitory effect on CYP3A4 activityQR has a moderate inhibitory effect on CYP2C19 and a strong inhibitory effect on CYP2D6Both QR and TQ are moderate inhibitors of the CYP2C9 activity. Abbreviations used: ABT: Aminobenztriazole, BZF: 7,8 Benzoflavone, CYP

  6. Generation of Leukemia Inhibitory Factor-Dependent Induced Pluripotent Stem Cells from the Massachusetts General Hospital Miniature Pig

    Directory of Open Access Journals (Sweden)

    Dae-Jin Kwon

    2013-01-01

    Full Text Available The generation and application of porcine induced pluripotent stem cells (iPSCs may enable the testing for safety and efficacy of therapy in the field of human regenerative medicine. Here, the generation of iPSCs from the Massachusetts General Hospital miniature pig (MGH minipig established for organ transplantation studies is reported. Fibroblasts were isolated from the skin of the ear of a 10-day-old MGH minipig and transduced with a cocktail of six human factors: POU5F1, NANOG, SOX2, C-MYC, KLF4, and LIN28. Two distinct types of iPSCs were generated that were positive for alkaline phosphatase activity, as well as the classical pluripotency markers: Oct4, Nanog, Sox2, and the surface marker Ssea-1. Only one of two porcine iPSC lines differentiated into three germ layers both in vitro and in vivo. Western blot analysis showed that the porcine iPSCs were dependent on LIF or BMP-4 to sustain self-renewal and pluripotency. In conclusion, the results showed that human pluripotent factors could reprogram porcine ear fibroblasts into the pluripotent state. These cells may provide a useful source of cells that could be used for the treatment of degenerative and genetic diseases and agricultural research and application.

  7. Generation of leukemia inhibitory factor-dependent induced pluripotent stem cells from the Massachusetts General Hospital miniature pig.

    Science.gov (United States)

    Kwon, Dae-Jin; Jeon, Hyelena; Oh, Keon Bong; Ock, Sun-A; Im, Gi-Sun; Lee, Sung-Soo; Im, Seok Ki; Lee, Jeong-Woong; Oh, Sung-Jong; Park, Jin-Ki; Hwang, Seongsoo

    2013-01-01

    The generation and application of porcine induced pluripotent stem cells (iPSCs) may enable the testing for safety and efficacy of therapy in the field of human regenerative medicine. Here, the generation of iPSCs from the Massachusetts General Hospital miniature pig (MGH minipig) established for organ transplantation studies is reported. Fibroblasts were isolated from the skin of the ear of a 10-day-old MGH minipig and transduced with a cocktail of six human factors: POU5F1, NANOG, SOX2, C-MYC, KLF4, and LIN28. Two distinct types of iPSCs were generated that were positive for alkaline phosphatase activity, as well as the classical pluripotency markers: Oct4, Nanog, Sox2, and the surface marker Ssea-1. Only one of two porcine iPSC lines differentiated into three germ layers both in vitro and in vivo. Western blot analysis showed that the porcine iPSCs were dependent on LIF or BMP-4 to sustain self-renewal and pluripotency. In conclusion, the results showed that human pluripotent factors could reprogram porcine ear fibroblasts into the pluripotent state. These cells may provide a useful source of cells that could be used for the treatment of degenerative and genetic diseases and agricultural research and application.

  8. Identification of a novel human tRNA(Ser(CGA)) functional in murine leukemia virus replication

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Schmitz, A; Pedersen, F S

    2000-01-01

    We have identified a human tRNA(Ser) isoacceptor matching the UCG codon. The tRNA was discovered via its ability to act in reverse transcription of a murine leukemia virus vector containing a complementary tRNA primer binding site (Lund et al., Nucleic Acids Res., 28 (2000) 791-799). The t....... The integrity and functionality of the cloned tRNA(Ser(CGA)) gene was verified by in vitro transcription analysis in HeLa nuclear extracts....

  9. Novel Inhibitory Effect of N-(2-Hydroxycyclohexylvaliolamine on Melanin Production in a Human Skin Model

    Directory of Open Access Journals (Sweden)

    Bum-Ho Bin

    2014-07-01

    Full Text Available Hyper-pigmentation causes skin darkness and medical disorders, such as post-inflammatory melanoderma and melasma. Therefore, the development of anti-melanogenic agents is important for treating these conditions and for cosmetic production. In our previous paper, we demonstrated that the anti-diabetic drug voglibose, a valiolamine derivative, is a potent anti-melanogenic agent. In addition, we proposed an alternative screening strategy to identify valiolamine derivatives with high skin permeability that act as anti-melanogenic agents when applied topically. In this study, we synthesized several valiolamine derivatives with enhanced lipophilicity and examined their inhibitory effects in a human skin model. N-(2-hydroxycyclohexylvaliolamine (HV possesses a stronger inhibitory effect on melanin production than voglibose in a human skin model, suggesting that HV is a more potent anti-melanogenic agent for the skin.

  10. [Study of inhibitory effect of extracts from Actinidia arguta on human carcinoma of esophagus cells].

    Science.gov (United States)

    Zhang, Li; Guo, Hong-Li; Tian, Lin; Cao, Shu-Fen; Du, Chang-Hai

    2007-05-01

    To study the inhibitory effect of extracts from Actinidia arguta by n-butyl alcohol on human carcinoma of esophagus cells (Eca-109) and Its mechanism. MTT colonmetric assay was used to examine the growth inhibitory of concentration-effect (1 microg/ml, 10 microg/ml,100 microg/ml) and time-effect (24 h, 48 h, 72 h) of extracts from Actinidia arguta by n-butyl alcohol on Eca-109 cells. TUNEL test were performed to observe the apoptosis induced by the extracts (1 microg/ml, 10 microg/ml, 100 microg/ml) on Eca-109 cells. The inhibitory effect of the extracts on Eca-109 cells increased in a dose-time Manner and the highest rate of inhibition was 87.2%. The extracts could significantly induce apoptosis of Eca-109 cells, but in control group, apoptosis wasn't observed. The extracts from Actinidia arguta by n-butyl alcohol have good inhibitory effect on Eca-109 cells.

  11. The Human CD38 Monoclonal Antibody Daratumumab Shows Antitumor Activity and Hampers Leukemia-Microenvironment Interactions in Chronic Lymphocytic Leukemia.

    Science.gov (United States)

    Matas-Céspedes, Alba; Vidal-Crespo, Anna; Rodriguez, Vanina; Villamor, Neus; Delgado, Julio; Giné, Eva; Roca-Ho, Heleia; Menéndez, Pablo; Campo, Elías; López-Guillermo, Armando; Colomer, Dolors; Roué, Gaël; Wiestner, Adrian; Parren, Paul W H I; Doshi, Parul; van Bueren, Jeroen Lammerts; Pérez-Galán, Patricia

    2017-03-15

    Purpose: To establish a proof-of-concept for the efficacy of the anti-CD38 antibody daratumumab in the poor prognosis CD38 + chronic lymphocytic leukemia (CLL) subtype. Experimental Design: The mechanism of action of daratumumab was assessed in CLL primary cells and cell lines using peripheral blood mononuclear cells to analyze antibody-dependent cell cytotoxicity (ADCC), murine and human macrophages to study antibody-dependent cell phagocytosis (ADCP), or human serum to analyze complement-dependent cytotoxicity (CDC). The effect of daratumumab on CLL cell migration and adhesion to extracellular matrix was characterized. Daratumumab activity was validated in two in vivo models. Results: Daratumumab demonstrated efficient lysis of patient-derived CLL cells and cell lines by ADCC in vitro and ADCP both in vitro and in vivo whereas exhibited negligible CDC in these cells. To demonstrate the therapeutic effect of daratumumab in CLL, we generated a disseminated CLL mouse model with the CD38 + MEC2 cell line and CLL patient-derived xenografts (CLL-PDX). Daratumumab significantly prolonged overall survival of MEC2 mice, completely eliminated cells from the infiltrated organs, and significantly reduced disease burden in the spleen of CLL-PDX. The effect of daratumumab on patient-derived CLL cell dissemination was demonstrated in vitro by its effect on CXCL12-induced migration and in vivo by interfering with CLL cell homing to spleen in NSG mice. Daratumumab also reduced adhesion of CLL cells to VCAM-1, accompanied by downregulation of the matrix metalloproteinase MMP9. Conclusions: These unique and substantial effects of daratumumab on CLL viability and dissemination support the investigation of its use in a clinical setting of CLL. Clin Cancer Res; 23(6); 1493-505. ©2016 AACR . ©2016 American Association for Cancer Research.

  12. Cytotoxic Indole Alkaloids against Human Leukemia Cell Lines from the Toxic Plant Peganum harmala

    Directory of Open Access Journals (Sweden)

    Chunhua Wang

    2015-11-01

    Full Text Available Bioactivity-guided fractionation was used to determine the cytotoxic alkaloids from the toxic plant Peganum harmala. Two novel indole alkaloids, together with ten known ones, were isolated and identified. The novel alkaloids were elucidated to be 2-(indol-3-ylethyl-α-L-rhamnopyranosyl-(1 → 6-β-D-glucopyranoside (2 and 3-hydroxy-3-(N-acetyl-2-aminoethyl-6-methoxyindol-2-one (3. The cytotoxicity against human leukemia cells was assayed for the alkaloids and some of them showed potent activity. Harmalacidine (compound 8, HMC exhibited the highest cytotoxicity against U-937 cells with IC50 value of 3.1 ± 0.2 μmol/L. The cytotoxic mechanism of HMC was targeting the mitochondrial and protein tyrosine kinase signaling pathways (PTKs-Ras/Raf/ERK. The results strongly demonstrated that the alkaloids from Peganum harmala could be a promising candidate for the therapy of leukemia.

  13. Crystal Structures of Inhibitir Complexes of Human T-Cell Leukemia Virus (HTLV-1) Protease

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Tadashi; Li, Mi; Nguyen, Jeffrey-Tri; Kiso, Yoshiaki; Gustchina, Alla; Wlodawer, Alexander (NCI); (Kyoto)

    2010-09-17

    Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with several serious diseases, such as adult T-cell leukemia and tropical spastic paraparesis/myelopathy. For a number of years, the protease (PR) encoded by HTLV-1 has been a target for designing antiviral drugs, but that effort was hampered by limited available structural information. We report a high-resolution crystal structure of HTLV-1 PR complexed with a statine-containing inhibitor, a significant improvement over the previously available moderate-resolution structure. We also report crystal structures of the complexes of HTLV-1 PR with five different inhibitors that are more compact and more potent. A detailed study of structure-activity relationships was performed to interpret in detail the influence of the polar and hydrophobic interactions between the inhibitors and the protease.

  14. Crystal structures of inhibitor complexes of human T-cell leukemia virus (HTLV-1) protease

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Tadashi; Li, Mi; Nguyen, Jeffrey-Tri; Kiso, Yoshiaki; Gustchina, Alla; Wlodawer, Alexander (NCI); (Kyoto)

    2010-09-28

    Human T-cell leukemia virus type 1 (HTLV-1) is a retrovirus associated with several serious diseases, such as adult T-cell leukemia and tropical spastic paraparesis/myelopathy. For a number of years, the protease (PR) encoded by HTLV-1 has been a target for designing antiviral drugs, but that effort was hampered by limited available structural information. We report a high-resolution crystal structure of HTLV-1 PR complexed with a statine-containing inhibitor, a significant improvement over the previously available moderate-resolution structure. We also report crystal structures of the complexes of HTLV-1 PR with five different inhibitors that are more compact and more potent. A detailed study of structure-activity relationships was performed to interpret in detail the influence of the polar and hydrophobic interactions between the inhibitors and the protease.

  15. Differential expression of the ufo/axl oncogene in human leukemia-lymphoma cell lines.

    Science.gov (United States)

    Challier, C; Uphoff, C C; Janssen, J W; Drexler, H G

    1996-05-01

    The ufo protein (also termed axl) is a member of a new family of receptor tyrosine kinases and is encoded by a transforming gene that was initially isolated from primary human myeloid leukemia cells by DNA-mediated transformation of NIH/3T3 cells. The ligand, Gas6, a protein S-related molecule lacking any known function yet, has recently been identified. We report the expression pattern of ufo mRNA in a panel of 76 human continuous leukemia-lymphoma cell lines. The gene was not expressed in cell lines derived from lymphoid malignancies (n=28), but transcription was seen in 3/11 myeloid, 0/6 monocytic, 9/13 erythroid and 11/18 megakaryocytic cell lines. Several cell lines were treated with phorbol ester leading to significant upregulation of the ufo message in constitutively positive cells. An apparent ufo mRNA overexpression was not found in any of the positive leukemia cell lines, but was identified in the drug-resistant subclones of the cervix carcinoma cell line HeLa. Southern blot analysis of restriction enzyme-digested genomic DNA did not provide evidence for gene amplification, but the HeLa subclones showed banding patterns suggestive of gene rearrangement. Two main ufo mRNA bands of 3.2 and 5.0 kb were identified; no differences in the half-lives (t1/2 = 2.5 h) of these two mRNA species could be identified. In summary, ufo, representing a novel type of receptor tyrosine kinase, is expressed solely in myeloid and erythro-megakaryocytic leukemias but not in lymphoid malignancies. These and previous data suggest an involvement of the ufo receptor tyrosine kinase in normal and malignant myelopoiesis; however, its exact role, if any, and mode of operation in leukemogenesis remains to be determined.

  16. Telomerase from human leukemia cells: properties and its interaction with deoxynucleoside analogues.

    Science.gov (United States)

    Pai, R B; Pai, S B; Kukhanova, M; Dutschman, G E; Guo, X; Cheng, Y C

    1998-05-01

    Telomerase is a unique reverse transcriptase involved in the maintenance of genomic integrity. In an attempt to understand the properties of this enzyme and to study the effect of deoxynucleoside analogues, we have isolated and partially purified telomerase from the blast cells of a patient with acute myelogenous leukemia. During the course of purification of telomerase, three characteristic forms of this enzyme activity were separated. Two processive forms and one less processive form were noted. All forms of the enzyme activities could be abolished by RNase A and proteinase K treatments, implying that they are ribonucleoproteins. The major form of telomerase was characterized with respect to divalent ion requirements, effect of salt and nonionic detergents. The Km of deoxynucleoside triphosphates was determined with a modified telomerase repeat array protocol assay. Studies with deoxynucleoside analogues indicated that 3'-azido-3'deoxythymidine triphosphate is much more inhibitory than 2',3'-dideoxy 2',3'didehydrothymidine triphosphate, and the cytidine analogue ddCTP was not inhibitory. ddGTP was the most potent inhibitor among all dideoxynucleosides studied.

  17. Dichloromethane fraction of Melissa officinalis induces apoptosis by activation of intrinsic and extrinsic pathways in human leukemia cell lines.

    Science.gov (United States)

    Ebrahimnezhad Darzi, Salimeh; Amirghofran, Zahra

    2013-06-01

    Various components from medicinal plants are currently used in cancer therapy because of their apoptosis-inducing effects. The present study has aimed to investigate the growth inhibitory and apoptotic effects of Melissa officinalis on tumor cells. We prepared different fractions of this plant to investigate their inhibitory effects on two leukemia cell lines, Jurkat and K562. Fractions with the highest inhibitory effects were examined for induction of apoptosis by the annexin V/propidium iodide assay and cell cycle changes by flow cytometry. Real-time polymerase chain reaction evaluated the changes in expression of apoptosis-related genes. Among different fractions, dichloromethane and n-hexane dose-dependent showed the strongest inhibitory effects on both K562 and Jurkat cells. The dichloromethane fraction significantly induced apoptosis at concentration of 50 µg/ml on Jurkat (85.66 ± 4.9%) and K562 cells (65.04 ± 0.93%) at 24 h after treatment (p dichloromethane fraction. This fraction up-regulated Fas and Bax mRNA expression as well as the Bax/Bcl-2 ratio according to cell type, showing its effect on the activation of both extrinsic and intrinsic pathways of apoptosis. The expression of apoptosis-related genes did not significantly change following treatment with the n-hexane fraction. These data indicated that the dichloromethane fraction of M. officinalis had the ability to induce apoptosis and change apoptosis-related gene expression in leukemia cells.

  18. Local field potentials primarily reflect inhibitory neuron activity in human and monkey cortex.

    Science.gov (United States)

    Teleńczuk, Bartosz; Dehghani, Nima; Le Van Quyen, Michel; Cash, Sydney S; Halgren, Eric; Hatsopoulos, Nicholas G; Destexhe, Alain

    2017-01-11

    The local field potential (LFP) is generated by large populations of neurons, but unitary contribution of spiking neurons to LFP is not well characterised. We investigated this contribution in multi-electrode array recordings from human and monkey neocortex by examining the spike-triggered LFP average (st-LFP). The resulting st-LFPs were dominated by broad spatio-temporal components due to ongoing activity, synaptic inputs and recurrent connectivity. To reduce the spatial reach of the st-LFP and observe the local field related to a single spike we applied a spatial filter, whose weights were adapted to the covariance of ongoing LFP. The filtered st-LFPs were limited to the perimeter of 800 μm around the neuron, and propagated at axonal speed, which is consistent with their unitary nature. In addition, we discriminated between putative inhibitory and excitatory neurons and found that the inhibitory st-LFP peaked at shorter latencies, consistently with previous findings in hippocampal slices. Thus, in human and monkey neocortex, the LFP reflects primarily inhibitory neuron activity.

  19. Inhibitory effects of cinnamon-water extract on human tumor cell lines

    Directory of Open Access Journals (Sweden)

    Nazila Ariaee-Nasab

    2014-09-01

    Full Text Available Objective: To question the inhibitory effect of cinnamon-water extract (CWE on four human tumor cell lines (AGs, HeLa, MCF-7 and MDA-MB234. Naturally, compounds are an important source for clinical proposes. Cinnamon, a plant-derived spice, is widely used as a food additive and has been attracted many researches in recent years to find its pharmaceutical benefits. Methods: In order to find the answer to this subject, the water extract of cinnamon was prepared and cell proliferation was evaluated using MTT assay. The effect of apoptosis was investigated by DNA fragmentation analysis. Results: The inhibitory effect of CWE on the growth of the cells was significant. DNA fragmentation was found in cultured AGs and MCF-7 cell lines treated by CWE. Conclusions: This study showed the anti-neoplastic activity of CWE on tumor cell lines.

  20. Phaeophytins from Thyrsacanthus ramosissimus Moric. with inhibitory activity on human DNA topoisomerase II-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Cabral, Analucia Guedes Silveira; Tenorio-Souza, Fabio Henrique; Moura, Marcelo Dantas; Mota, Sabrina Gondim Ribeiro; Silva Lins, Antonio Claudio da; Dias, Celidarque da Silva; Barbosa-Filho, Jose Maria [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Ciencias Frmaceuticas; Giulietti, Ana Maria [Universidade Estadual de Feira de Santana, Feira de Santana, BA (Brazil). Dept. de Ciencias Biologicas; Silva, Tania Maria Sarmento da [Universidade Federal Rural de Pernambuco, Recife, PE (Brazil). Dept. de Ciencias Moleculares; Santos, Creusioni Figueredo dos, E-mail: jbarbosa@ltf.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Biologia Molecular

    2012-07-01

    Our study reports the extraction and isolation of a new phaeophytin derivative 15{sup 1}-hydroxy-(15{sup 1}-S)-porphyrinolactone, designated anamariaine (1) herein, isolated from the chloroform fraction of aerial parts of Thyrsacanthus ramosissimus Moric. along with the known 15{sup 1}-ethoxy-(15{sup 1}-S)-porphyrinolactone (2). These compounds were identified by usual spectroscopic methods. Both compounds were subjected to in vitro (inhibitory activity) tests by means of supercoiled DNA relaxation techniques and were shown to display inhibitory activity against human DNA topoisomerase II-{alpha} at 50 {mu}M. Interconversion of these two pigments under the mild conditions of the isolation techniques should be highly unlikely but cannot be entirely ruled out. (author)

  1. Ayanin diacetate-induced cell death is amplified by TRAIL in human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Maria Teresa; Estevez, Sara; Negrin, Gledy; Quintana, Jose [Departamento de Bioquimica, Unidad Asociada al Consejo Superior de Investigaciones Cientificas, Universidad de Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria (Spain); Lopez, Mariana; Perez, Francisco J.; Triana, Jorge [Departamento de Quimica, Universidad de Las Palmas de Gran Canaria, Instituto Canario de Investigacion del Cancer, 35017 Las Palmas de Gran Canaria (Spain); Leon, Francisco [Instituto de Productos Naturales y Agrobiologia, Consejo Superior de Investigaciones Cientificas, Avda. Astrofisico F. Sanchez 3, 38206 La Laguna, Tenerife (Spain); Estevez, Francisco, E-mail: festevez@dbbf.ulpgc.es [Departamento de Bioquimica, Unidad Asociada al Consejo Superior de Investigaciones Cientificas, Universidad de Las Palmas de Gran Canaria, Plaza Dr. Pasteur s/n, 35016 Las Palmas de Gran Canaria (Spain)

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Ayanin diacetate as apoptotic inducer in leukemia cells. Black-Right-Pointing-Pointer Cell death was prevented by caspase inhibitors and by the overexpression of Bcl-x{sub L}. Black-Right-Pointing-Pointer The intrinsic and the extrinsic pathways are involved in the mechanism of action. Black-Right-Pointing-Pointer Death receptors are up-regulated and TRAIL enhances apoptotic cell death. -- Abstract: Here we demonstrate that the semi-synthetic flavonoid ayanin diacetate induces cell death selectively in leukemia cells without affecting the proliferation of normal lymphocytes. Incubation of human leukemia cells with ayanin diacetate induced G{sub 2}-M phase cell cycle arrest and apoptosis which was prevented by the non-specific caspase inhibitor z-VAD-fmk and reduced by the overexpression of Bcl-x{sub L}. Ayanin diacetate-induced cell death was found to be associated with: (i) loss of inner mitochondrial membrane potential, (ii) the release of cytochrome c, (iii) the activation of multiple caspases, (iv) cleavage of poly(ADP-ribose) polymerase and (v) the up-regulation of death receptors for TRAIL, DR4 and DR5. Moreover, the combined treatment with ayanin diacetate and TRAIL amplified cell death, compared to single treatments. These results provide a basis for further exploring the potential applications of this combination for the treatment of cancer.

  2. Induction of differentiation and apoptosis by dithizone in human myeloid leukemia cell lines.

    Science.gov (United States)

    Kohroki, J; Muto, N; Tanaka, T; Itoh, N; Inada, A; Tanaka, K

    1998-05-01

    We investigated the effect of diphenylthiocarbazone (dithizone) and its structurally related compounds on the differentiation and apoptosis of two human myeloid leukemia cell lines. Dithizone caused a time- and concentration-dependent induction of differentiation in both the promyelocytic leukemia cell line HL-60 cells and the myeloblastic leukemia cell line ML-1 cells, as measured by nitroblue tetrazolium (NBT) reducing activity. Morphological changes and esterase activities confirmed that this differentiation took place. The induction of differentiation required the addition of dithizone to the culture medium for at least 12 h. The differentiation inducing activity was inhibited by the preincubation of dithizone with various metal ions such as Pb2+, Zn2+, Cu2+ and Mn2+ ions, but not with Fe3+ and Mg2+ ions. In addition, the DNA extracted from dithizone-treated HL-60 cells showed a typical ladder pattern characteristic of apoptosis in agarose gel electrophoresis. A quantitative analysis of DNA fragmentation revealed that this apoptosis was concentration- and time-dependent in both the HL-60 and ML-1 cells. Dithizone-induced apoptosis was also inhibited by preincubation with Mn2+ ions, but not with Mg2+ ions. These results indicate that dithizone induces both differentiation and apoptosis in HL-60 and ML-1 cells through a unique mechanism including metal chelation.

  3. Two-dimensional electrophoresis protein profiling as an analytical tool for human acute leukemia classification.

    Science.gov (United States)

    Cui, Jiu-Wei; Wang, Jie; He, Kun; Jin, Bao-Feng; Wang, Hong-Xia; Li, Wei; Kang, Li-Hua; Hu, Mei-Ru; Li, Hui-Yan; Yu, Ming; Shen, Bei-Fen; Wang, Guan-Jun; Zhang, Xue-Min

    2005-01-01

    Two-dimensional electrophoresis (2-DE) was used to profile the proteins of leukemic cells from 61 cases of akute leukemia (AL) characterized by the French-American-British (FAB) classification. The differentially expressed protein spots were identified by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) and electrospray ionization-tandem MS (ESI-MS/MS). The distinct protein profiles (DPPs) of AL FAB subtypes were explored successfully, including acute myeloid leukemia (AML), its subtypes (M2, M3, and M5), and acute lymphoid leukemia (ALL), which were homogeneous within different samples of the same subgroup but clearly differed from all other subgroups. We also found a group of proteins differentially expressed between AL cells and normal white blood cells. Among the DPPs of AL subtypes, some proteins have been reported, but most of them were first reported here to mark AML differentiation and to discriminate AML from ALL. These data show that 2-DE protein profiling could be used as an analytical tool for facilitating molecular definition of human AL classification and understanding the mechanism of leukemogensis, and the extension of the present analysis to the currently less well-defined AL will identify additional subgroups and may promote the identification of new targets for specific treatment approaches.

  4. Anti-mutagenic and Pro-apoptotic Effects of Apigenin on Human Chronic Lymphocytic Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Mehrdad Hashemi

    2010-09-01

    Full Text Available "nDiet can play a vital role in cancer prevention. Nowadays the scientists are looking for food materials which can potentially prevent the cancer occurrence. The purpose of this research is to examine anti-mutagenic and apoptotic effects of apigenin in human lymphoma cells. In present study human chronic lymphocytic leukemia (Eheb cell line were cultured in RPMI 1640 (Sigma, supplemented with 10% fetal calf serum, penicillin-streptomycin, L-glutamine and incubated at 37 ºC for 2 days. In addition cancer cell line was treated by and apigenin and cellular vital capacity was determined by MTT assay. Then effect of apigenin in human lymphoma B cells was examined by flow cytometry techniques. The apigenin was subsequently evaluated in terms of anti-mutagenic properties by a standard reverse mutation assay (Ames test. This was performed with histidine auxotroph strain of Salmonella typhimurium (TA100. Thus, it requires histidine from a foreign supply to ensure its growth. The aforementioned strain gives rise to reverted colonies when expose to sodium azide as a carcinogen substance. During MTT assay, human chronic lymphocytic leukemia revealed to have a meaningful cell death when compared with controls (P<0.01 Apoptosis was induced suitably after 48 hours by flow cytometry assay. In Ames test apigenin prevented the reverted mutations and the hindrance percent of apigenin was 98.17%.These results have revealed apigenin induced apoptosis in human lymphoma B cells in vitro.

  5. [The dog as a model for comparative studies of lymphoma and leukemia in humans].

    Science.gov (United States)

    Pawlak, Aleksandra; Obmińska-Mrukowicz, Bożena; Rapak, Andrzej

    2013-05-22

    Dogs have accompanied humankind for thousands of years. They share the same environment, and thus are exposed to the same environmental factors such as air pollution, tobacco smoke, and various chemicals. Recent development of veterinary care has led to a significant extension of dogs' lifespan and allowed the diagnosis and treatment of a growing number of different diseases in this species. Among all diseases in dogs, cancer is considered the main cause of mortality, with lymphoproliferative disorders accounting for up to 30% of all canine cancers. Some of them, such as non-Hodgkin lymphoma (NHL) and lymphocytic leukemia, are very similar in the etiology, pathogenesis and response to treatment to the diseases occurring in humans. Due to anatomical and physiological similarities to humans, the dog is a useful model for the study of new therapeutic strategies for humans. Studies on the canine neoplasia are currently limited by the lack of well-characterized and widely available cell lines; thus, recently obtained canine NHL cell lines may become a valuable model for such studies. Investigation of their sensitivity to the antiproliferative effects of different factors should allow the creation of a database similar to the existing classification of human leukemias and lymphomas. This should enable quick and accurate diagnosis and selection of appropriate treatment based on phenotypic analysis and histopathological examination of clinical samples. The cooperation between human and veterinary oncologists gives the opportunity to use the dog as a model for the study of certain types of cancers presenting a challenge for modern medicine.

  6. Evaluation of Traditional Indian Antidiabetic Medicinal Plants for Human Pancreatic Amylase Inhibitory Effect In Vitro

    Directory of Open Access Journals (Sweden)

    Sudha Ponnusamy

    2011-01-01

    Full Text Available Pancreatic α-amylase inhibitors offer an effective strategy to lower the levels of post prandial hyperglycemia via control of starch breakdown. Eleven Ayurvedic Indian medicinal plants with known hypoglycemic properties were subjected to sequential solvent extraction and tested for α-amylase inhibition, in order to assess and evaluate their inhibitory potential on pancreatic α-amylase. Analysis of 91 extracts, showed that 10 exhibited strong Human Pancreatic Amylase (HPA inhibitory potential. Of these, 6 extracts showed concentration dependent inhibition with IC50 values, namely, cold and hot water extracts from Ficus bengalensis bark (4.4 and 125 μgmL-1, Syzygium cumini seeds (42.1 and 4.1 μgmL-1, isopropanol extracts of Cinnamomum verum leaves (1.0 μgmL-1 and Curcuma longa rhizome (0.16 μgmL-1. The other 4 extracts exhibited concentration independent inhibition, namely, methanol extract of Bixa orellana leaves (49 μgmL-1, isopropanol extract from Murraya koenigii leaves (127 μgmL-1, acetone extracts from C. longa rhizome (7.4 μgmL-1 and Tribulus terrestris seeds (511 μgmL-1. Thus, the probable mechanism of action of the above fractions is due to their inhibitory action on HPA, thereby reducing the rate of starch hydrolysis leading to lowered glucose levels. Phytochemical analysis revealed the presence of alkaloids, proteins, tannins, cardiac glycosides, flavonoids, saponins and steroids as probable inhibitory compounds.

  7. Evaluation of Traditional Indian Antidiabetic Medicinal Plants for Human Pancreatic Amylase Inhibitory Effect In Vitro

    Science.gov (United States)

    Ponnusamy, Sudha; Ravindran, Remya; Zinjarde, Smita; Bhargava, Shobha; Ravi Kumar, Ameeta

    2011-01-01

    Pancreatic α-amylase inhibitors offer an effective strategy to lower the levels of post prandial hyperglycemia via control of starch breakdown. Eleven Ayurvedic Indian medicinal plants with known hypoglycemic properties were subjected to sequential solvent extraction and tested for α-amylase inhibition, in order to assess and evaluate their inhibitory potential on pancreatic α-amylase. Analysis of 91 extracts, showed that 10 exhibited strong Human Pancreatic Amylase (HPA) inhibitory potential. Of these, 6 extracts showed concentration dependent inhibition with IC50 values, namely, cold and hot water extracts from Ficus bengalensis bark (4.4 and 125 μgmL−1), Syzygium cumini seeds (42.1 and 4.1 μgmL−1), isopropanol extracts of Cinnamomum verum leaves (1.0 μgmL−1) and Curcuma longa rhizome (0.16 μgmL−1). The other 4 extracts exhibited concentration independent inhibition, namely, methanol extract of Bixa orellana leaves (49 μgmL−1), isopropanol extract from Murraya koenigii leaves (127 μgmL−1), acetone extracts from C. longa rhizome (7.4 μgmL−1) and Tribulus terrestris seeds (511 μgmL−1). Thus, the probable mechanism of action of the above fractions is due to their inhibitory action on HPA, thereby reducing the rate of starch hydrolysis leading to lowered glucose levels. Phytochemical analysis revealed the presence of alkaloids, proteins, tannins, cardiac glycosides, flavonoids, saponins and steroids as probable inhibitory compounds. PMID:20953430

  8. The human CD38 monoclonal antibody daratumumab shows antitumor activity and hampers leukemia-microenvironment interactions in chronic lymphocytic leukemia

    DEFF Research Database (Denmark)

    Matas-Céspedes, Alba; Vidal-Crespo, Anna; Rodriguez, Vanina

    2017-01-01

    Purpose: To establish a proof-of-concept for the efficacy of the anti-CD38 antibody daratumumab in the poor prognosis CD38+ chronic lymphocytic leukemia (CLL) subtype. Experimental Design: The mechanism of action of daratumumab was assessed in CLL primary cells and cell lines using peripheral blo...

  9. Sesaminol from sesame seed induces apoptosis in human lymphoid leukemia Molt 4B cells.

    Science.gov (United States)

    Miyahara, Y; Hibasami, H; Katsuzaki, H; Imai, K; Osawa, T; Ina, K; Komiya, T

    2001-05-01

    The exposure of human lymphoid leukemia Molt 4B cells to sesaminol, a component of sesame oil led to both growth inhibition and the induction of apoptosis. Morphological change showing apoptotic bodies was observed in the cells treated with sesaminol. The fragmentation of DNA by sesaminol to oligonucleosomal-sized fragments that are characteristics of apoptosis was observed to be concentration- and time-dependent. These findings suggest that growth inhibition of Molt 4B cells by sesaminol results from the induction of apoptosis in the cells.

  10. A Subtype of Inhibitory Interneuron with Intrinsic Persistent Activity in Human and Monkey Neocortex

    Directory of Open Access Journals (Sweden)

    Bo Wang

    2015-03-01

    Full Text Available A critical step in understanding the neural basis of human cognitive functions is to identify neuronal types in the neocortex. In this study, we performed whole-cell recording from human cortical slices and found a distinct subpopulation of neurons with intrinsic persistent activity that could be triggered by single action potentials (APs but terminated by bursts of APs. This persistent activity was associated with a depolarizing plateau potential induced by the activation of a persistent Na+ current. Single-cell RT-PCR revealed that these neurons were inhibitory interneurons. This type of neuron was found in different cortical regions, including temporal, frontal, occipital, and parietal cortices in human and also in frontal and temporal lobes of nonhuman primate but not in rat cortical tissues, suggesting that it could be unique to primates. The characteristic persistent activity in these inhibitory interneurons may contribute to the regulation of pyramidal cell activity and participate in cortical processing.

  11. Ligand bound beta1 integrins inhibit procaspase-8 for mediating cell adhesion-mediated drug and radiation resistance in human leukemia cells.

    Directory of Open Access Journals (Sweden)

    Doris Estrugo

    Full Text Available BACKGROUND: Chemo- and radiotherapeutic responses of leukemia cells are modified by integrin-mediated adhesion to extracellular matrix. To further characterize the molecular mechanisms by which beta1 integrins confer radiation and chemoresistance, HL60 human acute promyelocytic leukemia cells stably transfected with beta1 integrin and A3 Jurkat T-lymphoma cells deficient for Fas-associated death domain protein or procaspase-8 were examined. METHODOLOGY/PRINCIPAL FINDINGS: Upon exposure to X-rays, Ara-C or FasL, suspension and adhesion (fibronectin (FN, laminin, collagen-1; 5-100 microg/cm(2 coating concentration cultures were processed for measurement of apoptosis, mitochondrial transmembrane potential (MTP, caspase activation, and protein analysis. Overexpression of beta1 integrins enhanced the cellular sensitivity to X-rays and Ara-C, which was counteracted by increasing concentrations of matrix proteins in association with reduced caspase-3 and -8 activation and MTP breakdown. Usage of stimulatory or inhibitory anti beta1 integrin antibodies, pharmacological caspase or phosphatidylinositol-3 kinase (PI3K inhibitors, coprecipitation experiments and siRNA-mediated beta1 integrin silencing provided further data showing an interaction between FN-ligated beta1 integrin and PI3K/Akt for inhibiting procaspase-8 cleavage. CONCLUSIONS/SIGNIFICANCE: The presented data suggest that the ligand status of beta1 integrins is critical for their antiapoptotic effect in leukemia cells treated with Ara-C, FasL or ionizing radiation. The antiapoptotic actions involve formation of a beta1 integrin/Akt complex, which signals to prevent procaspase-8-mediated induction of apoptosis in a PI3K-dependent manner. Antagonizing agents targeting beta1 integrin and PI3K/Akt signaling in conjunction with conventional therapies might effectively reduce radiation- and drug-resistant tumor populations and treatment failure in hematological malignancies.

  12. Ligand Bound β1 Integrins Inhibit Procaspase-8 for Mediating Cell Adhesion-Mediated Drug and Radiation Resistance in Human Leukemia Cells

    Science.gov (United States)

    Hess, Franziska; Scherthan, Harry; Belka, Claus; Cordes, Nils

    2007-01-01

    Background Chemo- and radiotherapeutic responses of leukemia cells are modified by integrin-mediated adhesion to extracellular matrix. To further characterize the molecular mechanisms by which β1 integrins confer radiation and chemoresistance, HL60 human acute promyelocytic leukemia cells stably transfected with β1 integrin and A3 Jurkat T-lymphoma cells deficient for Fas-associated death domain protein or procaspase-8 were examined. Methodology/Principal Findings Upon exposure to X-rays, Ara-C or FasL, suspension and adhesion (fibronectin (FN), laminin, collagen-1; 5–100 µg/cm2 coating concentration) cultures were processed for measurement of apoptosis, mitochondrial transmembrane potential (MTP), caspase activation, and protein analysis. Overexpression of β1 integrins enhanced the cellular sensitivity to X-rays and Ara-C, which was counteracted by increasing concentrations of matrix proteins in association with reduced caspase-3 and -8 activation and MTP breakdown. Usage of stimulatory or inhibitory anti β1 integrin antibodies, pharmacological caspase or phosphatidylinositol-3 kinase (PI3K) inhibitors, coprecipitation experiments and siRNA-mediated β1 integrin silencing provided further data showing an interaction between FN-ligated β1 integrin and PI3K/Akt for inhibiting procaspase-8 cleavage. Conclusions/Significance The presented data suggest that the ligand status of β1 integrins is critical for their antiapoptotic effect in leukemia cells treated with Ara-C, FasL or ionizing radiation. The antiapoptotic actions involve formation of a β1 integrin/Akt complex, which signals to prevent procaspase-8-mediated induction of apoptosis in a PI3K-dependent manner. Antagonizing agents targeting β1 integrin and PI3K/Akt signaling in conjunction with conventional therapies might effectively reduce radiation- and drug-resistant tumor populations and treatment failure in hematological malignancies. PMID:17342203

  13. INHIBITORY EFFECT OF CHITOSAN OLIGOSACCHARIDE ON HUMAN HEPATOMA CELLS IN VITRO.

    Science.gov (United States)

    Liu, Likun; Xin, Yi; Liu, Jia; Zhang, Ershao; Li, Weiling

    2017-01-01

    Chitosan oligosaccharide, the degradation products of chitin, was reported to have a wide range of physiological functions and biological activities. In this study, we explored the inhibitory effect of Chitosan oligosaccharide on human hepatoma cells. MTT assay was applied to detect cell viability of the human hepatoma cells treated with Chitosan oligosaccharide. Flow cytometric analysis was used to investigate the apoptosis of the human hepatoma cells treated with Chitosan oligosaccharide. We employed western blot to investigate the underlying mechanisms involved in the apoptosis. Our data indicated that chitosan oligosaccharide dose-dependently inhibited the growth of hepatoma cells and induced apoptosis. On the molecular level, chitosan oligosaccharide decreased Bcl-2 and increased Caspase-3 expression which may be related to the apoptosis of hepatoma cells. Our results provide an experimental basis for the clinical development of Chitosan oligosaccharide as a novel anti-hepatoma drug.

  14. Canthin-6-one induces cell death, cell cycle arrest and differentiation in human myeloid leukemia cells.

    Science.gov (United States)

    Vieira Torquato, Heron F; Ribeiro-Filho, Antonio C; Buri, Marcus V; Araújo Júnior, Roberto T; Pimenta, Renata; de Oliveira, José Salvador R; Filho, Valdir C; Macho, Antonio; Paredes-Gamero, Edgar J; de Oliveira Martins, Domingos T

    2017-04-01

    Canthin-6-one is a natural product isolated from various plant genera and from fungi with potential antitumor activity. In the present study, we evaluate the antitumor effects of canthin-6-one in human myeloid leukemia lineages. Kasumi-1 lineage was used as a model for acute myeloid leukemia. Cells were treated with canthin-6-one and cell death, cell cycle and differentiation were evaluated in both total cells (Lin+) and leukemia stem cell population (CD34+CD38-Lin-/low). Among the human lineages tested, Kasumi-1 was the most sensitive to canthin-6-one. Canthin-6-one induced cell death with apoptotic (caspase activation, decrease of mitochondrial potential) and necrotic (lysosomal permeabilization, double labeling of annexin V/propidium iodide) characteristics. Moreover, canthin-6-one induced cell cycle arrest at G0/G1 (7μM) and G2 (45μM) evidenced by DNA content, BrdU incorporation and cyclin B1/histone 3 quantification. Canthin-6-one also promoted differentiation of Kasumi-1, evidenced by an increase in the expression of myeloid markers (CD11b and CD15) and the transcription factor PU.1. Furthermore, a reduction of the leukemic stem cell population and clonogenic capability of stem cells were observed. These results show that canthin-6-one can affect Kasumi-1 cells by promoting cell death, cell cycle arrest and cell differentiation depending on concentration used. Canthin-6-one presents an interesting cytotoxic activity against leukemic cells and represents a promising scaffold for the development of molecules for anti-leukemic applications, especially by its anti-leukemic stem cell activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Inhibitory effects of Korean medicinal plants and camelliatannin H from Camellia japonica on human immunodeficiency virus type 1 protease.

    Science.gov (United States)

    Park, Jong Cheol; Hur, Jong Moon; Park, Ju Gwon; Hatano, Tsutomu; Yoshida, Takashi; Miyashiro, Hirotsugu; Min, Byung Sun; Hattori, Masao

    2002-08-01

    To identify substances with anti-human immunodeficiency virus (HIV) activity in traditional medicines, 101 extracts of Korean medicinal plants were screened for their inhibitory effects on HIV type 1 protease (PR). The enzyme activity was determined by HPLC. Of the extracts tested, strong inhibitory effects were observed in the acetone extracts of the pericarp and leaves of Camellia japonica, the water extract of the leaves of Sageretia theezans and the methanol extract of the aerial part of Sophora flavescens. Camelliatannin H from the pericarp of C. japonica, showed a potent inhibitory activity on HIV-1 PR with IC(50) of 0.9 microM. Copyright 2002 John Wiley & Sons, Ltd.

  16. Induction of apoptosis in human leukemia cells by naturally fermented sugar cane vinegar (kibizu) of Amami Ohshima Island.

    Science.gov (United States)

    Mimura, Akio; Suzuki, Yoshihiro; Toshima, Youhei; Yazaki, Shin-ichi; Ohtsuki, Takashi; Ui, Sadaharu; Hyodoh, Fuminori

    2004-01-01

    Naturally fermented vinegar such as Kibizu (sugar cane vinegar in Amami Ohshima, Japan), Kurozu (black rice vinegar in Kagoshima, Japan), Kouzu (black rice vinegar in China) and red wine vinegar in Italy had potent radical-scavenging activity analyzed by DPPH method. For the elucidation of food factor for cancer prevention contained in naturally fermented vinegar, the induction of apoptosis in human leukemia cell HL-60 was investigated with sugar cane vinegar Kibizu. Fraction eluted by 40% methanol from Amberlite XAD 2 chromatography of sugar cane vinegar showed potent radical scavenging activity. The fraction also showed the activity repressing growth of typical human leukemia cells such as HL-60, THP-1, Molt-4, U-937, Jurkat, Raji and K-562. On the other hand, the fraction did not have any growth inhibition activity against human fetal lung cell TIG-1. The most potent radical-scavenging activity and the growth repression activity of the leukemia cell were observed in the same chromatographic fraction of methanol 40%. From cell sorting FACS analyses, electron microscopic observations and cytochemical staining of chromatin and nuclear segments in human leukemia cell HL-60 treated with the active fraction, it was concluded that apoptosis was induced in the leukemia cell by the fraction of sugar cane vinegar and resulted in the repression of growth of the human leukemia cells. Chromatographic fraction of sugar cane juice eluted by 20% methanol showed potent activities of radical-scavenging and growth repression of HL-60. These results led us the consideration that active components in sugar cane juice could be converted to more lipophilic compounds with activity to induce apoptosis in HL-60 by microbial fermentation with yeast and acetic acid bacteria.

  17. Mechanism of Hericium erinaceus (Yamabushitake) mushroom-induced apoptosis of U937 human monocytic leukemia cells.

    Science.gov (United States)

    Kim, Sung Phil; Kang, Mi Young; Choi, Yong Hee; Kim, Jae Ho; Nam, Seok Hyun; Friedman, Mendel

    2011-06-01

    Phytochemicals in some foods are a potential source of bioactive safe compounds for cancer chemoprevention and suppression of tumor initiation, promotion, and metastasis. In the present study, we evaluated hot water (HWE), microwaved 50% ethanol (MWE), acidic (ACE), and alkaline (AKE) extracts of the fruitbody (sporocarp) of Hericium erinaceus (Yamabushitake, Lion's Mane) mushrooms for their ability to induce apoptosis (programmed cell death) in U937 human monocytic leukemia cells. Cell culture, cell viability, cytotoxicity, flow cytometry, chromosomal DNA integrity, mitochondrial membrane potential, expression of pro- and anti-apoptotic proteins, and activation and inhibition of caspase assays were carried out to help define the mechanism of observed apoptosis. The aqueous and aqueous/ethanolic extracts were active in all assays, whereas the acidic and alkaline extracts with the similar proximate compositions were both inactive. The results of the bioassays with the active extracts are consistent with an apoptosis mechanism governing suppression of the cell proliferation pathway that involves activation of mitochondria-mediated caspase-3 and caspase-9 but not caspase-8. Proximate analysis of the freeze-dried mushroom powder showed that it contains high amounts of proteins, carbohydrates, and minerals. The results indicate that H. erinaceus mushrooms may have therapeutic potential against human leukemia.

  18. C. zeylanicum aqueous extract induced apoptosis in the human myelocytic leukemia cell line (THP-1).

    Science.gov (United States)

    Assadollahi, V; Gholami, M; Zendedel, A

    2015-01-01

    The aim of this study was to evaluate the effect of C. zeylanicum aqueous extract on cell growth in the human myelocytic leukemia cell line (THP-1). Today, application of Cinnamon for treatment of cancer investigates extensively. Cinnamon has antioxidant, anti-apoptotic and anti-inflammatory properties. In this experimental study, THP-1 was incubated in 2, 1, 0.1 and 0.01 mg/ml C. zeylanicum solutions for 24, 48 and 72 hours. Cell cycle was assessed with flow cytometry. Apoptotic cells were identified by Hoechst 33342 staining. Cell proliferation was assessed by the MTT assay. The data were analyzed using descriptive statistics and analytical tests. Samples that supplemented with 0.1 mg/ml C. zeylanicum aqueous extract enhanced induction of apoptosis in THP-1 cell line compared to samples that supplemented with 2, 1 and 0.01 mg/ml. According to flow cytometry analysis, after 24 and 72 hours of incubation in 0.1 and 2 mg/ml C. zeylanicum aqueous extract, respectively, the amount of cells in apoptosis phase was higher than that in the control sample. Supplemented C. zeylanicum aqueous extract induced apoptosis in the human myelocytic leukemia cell line (Fig. 4, Ref. 20).

  19. Efficient fixation procedure of human leukemia cells in sulforhodamine B cytotoxicity assay.

    Science.gov (United States)

    Kim, H M; Han, S B; Kim, M S; Kang, J S; Oh, G T; Hong, D H

    1996-11-01

    The fixation procedures in sulforhodamine B (SRB) assay for human leukemia cells were modified to produce more reliable results. It was found that the concentration of the fixative agent, trichloroacetic acid (TCA), was critical in the selective fixation of cellular protein. While a TCA solution of 80% fixed both cells and serum proteins, a 50% solution fixed only cells with a very low interference of the serum proteins. Accordingly, we selected 50% TCA as a fixative agent which made the final absorbance of the SRB assay to be exactly matched to the cell density with a small deviation and a low background. Besides the change of TCA concentration, a precentifugation of microplate just before fixation also improved the previous assay procedures in the two points of view. The 2-h standing step was simply substituted for only 1 min of centrifugation. Both the rapid and slow application of TCA solution in fixation produced the same extents of fixation. In an actual application, these two kinds of modifications in the previous SRB assay procedure were also proved to be effective in the determination of cytotoxicities of doxorubicin by using human leukemias.

  20. Taurin-conjugated ursodeoxycholic acid has a reversible inhibitory effect on human keratinocyte growth.

    Science.gov (United States)

    Yamaguchi, Y; Itami, S; Nishida, K; Ando, Y; Okamoto, S; Hosokawa, K; Yoshikawa, K

    1998-09-01

    Tauroursodeoxycholic acid (TUDC) is one of the most hydrophilic taurin conjugated bile acids. TUDC has a suppressive effect on DNA synthesis in primary cultured rat hepatocytes. In this study, we investigated the growth inhibitory effect of TUDC on cultured human keratinocytes. TUDC suppressed the proliferation of keratinocytes in a dose dependent fashion, as measured by both cell counts and 5-bromo-2'-deoxyuridine (BrdU) uptake. Keratinocytes reproliferated and reached almost the same cell number as control after removal of TUDC from the medium. TUDC (1 mM) had no effect on the cell viability, as measured by the dye exclusion test. Epidermal sheets stratified in the presence of TUDC appeared thinner than those stratified without TUDC. These results suggest that TUDC has a reversible growth suppressive effect on human keratinocytes through the mechanism other than cytotoxicity and would be applicable for the treatment of hyperproliferative skin disorders such as psoriasis.

  1. Cytotoxic action of bisabololoxide A of German chamomile on human leukemia K562 cells in combination with 5-fluorouracil.

    Science.gov (United States)

    Ogata-Ikeda, Ikuko; Seo, Hakaru; Kawanai, Takuya; Hashimoto, Erika; Oyama, Yasuo

    2011-03-15

    German chamomile (Matricaria recutita L.) is a popular ingredient in herbal teas. In previous study, micromolar bisabololoxide A, one of main constituents in German chamomile, exerted cytotoxic action on rat thymocyte, a normal non-proliferative cell. This result prompted us to study the effect of bisabololoxide A on proliferative cancer cells and to seek the possibility of its use with 5-fluorouracil, an anticancer agent. In this study, the effect of micromolar bisabololoxide A on human leukemia K562 cells was cytometrically examined. Although the incubation of K562 cells with 10 μM bisabololoxide A for 72h did not significantly increase the percentage populations of dead cells and shrunken cells, the inhibitory action on the growth was obviously observed. It was not the case for the concentrations of less than 5 μM. The threshold concentration of bisabololoxide A to exert the cytotoxic action on K562 cells was ascertained to be 5-10 μM. Bisabololoxide A at 5-10 μM did not exert cytotoxic action on normal non-proliferative cells (rat thymocytes) in our previous study. Since the antiproliferative action of micromolar bisabololoxide A on cancerous cells was expected to be beneficial to cancer treatment, the modification of antiproliferative action of 5-fluorouracil (3-30 μM) by bisabololoxide A was studied. The combination of 5-fluorouracil and bisabololoxide further inhibited the growth of K562 cells although the additive inhibition of growth by bisabololoxide A became smaller as the concentration of 5-fluorouracil increased. Therefore, it is suggested that the simultaneous application of German chamomile containing bisabololoxide A may reduce the dose of 5-fluorouracil. Copyright © 2010. Published by Elsevier GmbH.

  2. The structure of the leukemia drug imatinib bound to human quinone reductase 2 (NQO2

    Directory of Open Access Journals (Sweden)

    Winger Jonathan A

    2009-02-01

    Full Text Available Abstract Background Imatinib represents the first in a class of drugs targeted against chronic myelogenous leukemia to enter the clinic, showing excellent efficacy and specificity for Abl, Kit, and PDGFR kinases. Recent screens carried out to find off-target proteins that bind to imatinib identified the oxidoreductase NQO2, a flavoprotein that is phosphorylated in a chronic myelogenous leukemia cell line. Results We examined the inhibition of NQO2 activity by the Abl kinase inhibitors imatinib, nilotinib, and dasatinib, and obtained IC50 values of 80 nM, 380 nM, and >100 μM, respectively. Using electronic absorption spectroscopy, we show that imatinib binding results in a perturbation of the protein environment around the flavin prosthetic group in NQO2. We have determined the crystal structure of the complex of imatinib with human NQO2 at 1.75 Å resolution, which reveals that imatinib binds in the enzyme active site, adjacent to the flavin isoalloxazine ring. We find that phosphorylation of NQO2 has little effect on enzyme activity and is therefore likely to regulate other aspects of NQO2 function. Conclusion The structure of the imatinib-NQO2 complex demonstrates that imatinib inhibits NQO2 activity by competing with substrate for the active site. The overall conformation of imatinib when bound to NQO2 resembles the folded conformation observed in some kinase complexes. Interactions made by imatinib with residues at the rim of the active site provide an explanation for the binding selectivity of NQO2 for imatinib, nilotinib, and dasatinib. These interactions also provide a rationale for the lack of inhibition of the related oxidoreductase NQO1 by these compounds. Taken together, these studies provide insight into the mechanism of NQO2 inhibition by imatinib, with potential implications for drug design and treatment of chronic myelogenous leukemia in patients.

  3. The dog as a model for comparative studies of lymphoma and leukemia in humans 

    Directory of Open Access Journals (Sweden)

    Aleksandra Pawlak

    2013-05-01

    Full Text Available Dogs have accompanied humankind for thousands of years. They share the same environment, and thus are exposed to the same environmental factors such as air pollution, tobacco smoke, and various chemicals. Recent development of veterinary care has led to a significant extension of dogs’ lifespan and allowed the diagnosis and treatment of a growing number of different diseases in this species. Among all diseases in dogs, cancer is considered the main cause of mortality, with lymphoproliferative disorders accounting for up to 30�0of all canine cancers. Some of them, such as non-Hodgkin lymphoma (NHL and lymphocytic leukemia, are very similar in the etiology, pathogenesis and response to treatment to the diseases occurring in humans. Due to anatomical and physiological similarities to humans, the dog is a useful model for the study of new therapeutic strategies for humans. Studies on the canine neoplasia are currently limited by the lack of well-characterized and widely available cell lines; thus, recently obtained canine NHL cell lines may become a valuable model for such studies. Investigation of their sensitivity to the antiproliferative effects of different factors should allow the creation of a database similar to the existing classification of human leukemias and lymphomas. This should enable quick and accurate diagnosis and selection of appropriate treatment based on phenotypic analysis and histopathological examination of clinical samples. The cooperation between human and veterinary oncologists gives the opportunity to use the dog as a model for the study of certain types of cancers presenting a challenge for modern medicine.

  4. Extracellular-like matrices and leukaemia inhibitory factor for in vitro culture of human primordial follicles.

    Science.gov (United States)

    Younis, Assiel J; Lerer-Serfaty, Galit; Stav, Dana; Sabbah, Bethsabee; Shochat, Tzippy; Kessler-Icekson, Gania; Zahalka, Muayad A; Shachar-Goldenberg, Michal; Ben-Haroush, Avi; Fisch, Benjamin; Abir, Ronit

    2017-02-01

    The possibility of maturing human primordial follicles in vitro would assist fertility restoration without the danger of reseeding malignancies. Leukaemia inhibitory factor (LIF) and certain culture matrices may promote human follicular growth. The present study compared human primordial follicular growth on novel culture matrices, namely human recombinant vitronectin (hrVit), small intestine submucosa (SIS), alginate scaffolds and human recombinant virgin collagen bioengineered in tobacco plant lines (CollPlant). The frozen-thawed ovarian samples that were used had been obtained from girls or young women undergoing fertility preservation. In the first part of the study, 20 samples were cultured for 6 days on hrVit or SIS with basic culture medium alone or supplemented with one of two concentrations of LIF (10ngmL-1 and 100ngmL-1), with and without LIF-neutralising antibody. In the second part of the study, 15 samples were cultured for 6 days on alginate scaffolds or CollPlant matrices with basic culture medium. Follicular development was assessed by follicular counts and classification, Ki67 immunohistochemistry and 17β-oestradiol and anti-Müllerian hormone measurements in spent media samples. Primordial follicular growth was not enhanced by LIF. Despite some significant differences among the four matrices, none appeared to have a clear advantage, apart from significantly more Ki67-stained follicles on alginate and CollPlant matrices. Further studies of other culture matrices and medium supplements are needed to obtain an optimal system.

  5. Inhibitory effect and mechanism of metformin on human ovarian cancer cells SKOV-3 and A2780.

    Science.gov (United States)

    Huo, J; Bian, X-H; Huang, Y; Miao, Z-C; Song, L-H

    2017-02-01

    Ovarian cancer is the most common malignant tumor in female reproductive system. Metformin is an orally taken hypoglycemic agent, which is extensively applied in the clinic. Clinical trials find that there may be a certain degree of action of the metformin in inhibiting malignant tumors. This paper aims to investigate the inhibitory effect and mechanism of metformin on human ovarian cancer cells. Through in vitro cell experiment, the influences of metformin on the proliferation, colony formation and apoptosis of ovarian carcinoma cells were studied. Ovarian cancer cells SKOV-3 and A2780 in logarithmic growth phase were selected and cell proliferation was measured by MTT method. The metformin was processed for 48 h to calculate the survival rate of cells. Also, metformin was processed for 24 h and two weeks or stained with crystal violet, after which Quantity One (Bio-Rad, Hercules, CA, USA) method was used to quantitatively analyze the cell clone formation, meanwhile, the FCM (flow cytometry) was used for the detection and analysis. Intervened by metformin with different concentrations for 48 h, the cell viabilities of SKOV-3 and A2780 cells were respectively reduced by 19.49 ± 2.92%, 45.41 ± 7.95%, 53.84 ± 5.53%, 64.04 ± 4.36% and 11.45 ± 3.12%, 35.42 ± 7.55%, 43.77 ± 5.77%, 53.05 ± 5.55% as compared with that in the control group with statistical significances. After processed by metformin with different concentrations for two weeks, the cells clone numbers of SKOV-3 and A2780 were significantly reduced. Treatment of metformin on SKOV-3 and A2780 cells of human ovarian cancer showed significant apoptosis. The metformin has the inhibitory effect on the cells of human ovarian cancer, which may be through inducing ovarian cancer cell apoptosis.

  6. A peptide derived from the CD loop-D helix region of ciliary neurotrophic factor (CNTF) induces neuronal differentiation and survival by binding to the leukemia inhibitory factor (LIF) receptor and common cytokine receptor chain gp130

    DEFF Research Database (Denmark)

    Rathje, Mette; Pankratova, Stanislava; Nielsen, Janne

    2011-01-01

    Ciliary neurotrophic factor (CNTF) induces neuronal differentiation and promotes the survival of various neuronal cell types by binding to a receptor complex formed by CNTF receptor a (CNTFRa), gp130, and the leukemia inhibitory factor (LIF) receptor (LIFR). The CD loop-D helix region of CNTF has...... that these receptors are involved in the effects of cintrofin. The C-terminal part of the peptide, corresponding to the D helix region of CNTF, was shown to be essential for the neuritogenic action of the peptide. CNTF and LIF induced neurite outgrowth in CGNs plated on laminin-coated slides. On uncoated slides, CNTF...... similar to those induced by CNTF and may be a valuable survival agent with possible therapeutic potential....

  7. Mouse xenograft modeling of human adult acute lymphoblastic leukemia provides mechanistic insights into adult LIC biology

    Science.gov (United States)

    Dey, Aditi; Castleton, Anna Z.; Schwab, Claire; Samuel, Edward; Sivakumaran, Janani; Beaton, Brendan; Zareian, Nahid; Zhang, Christie Yu; Rai, Lena; Enver, Tariq; Moorman, Anthony V.; Fielding, Adele K.

    2014-01-01

    The distinct nature of acute lymphoblastic leukemia (ALL) in adults, evidenced by inferior treatment outcome and different genetic landscape, mandates specific studies of disease-initiating mechanisms. In this study, we used NOD/LtSz-scid IL2Rγ nullc (NSG) mouse xenotransplantation approaches to elucidate leukemia-initiating cell (LIC) biology in primary adult precursor B (pre-B) ALL to optimize disease modeling. In contrast with xenografting studies of pediatric ALL, we found that modification of the NSG host environment using preconditioning total body irradiation (TBI) was indispensable for efficient engraftment of adult non-t(4;11) pre-B ALL, whereas t(4;11) pre-B ALL was successfully reconstituted without this adaptation. Furthermore, TBI-based xenotransplantation of non-t(4;11) pre-B ALL enabled detection of a high frequency of LICs (<1:6900) and permitted frank leukemic engraftment from a remission sample containing drug-resistant minimal residual disease. Investigation of TBI-sensitive stromal-derived factor-1/chemokine receptor type 4 signaling revealed greater functional dependence of non-t(4;11) pre-B ALL on this niche-based interaction, providing a possible basis for the differential engraftment behavior. Thus, our studies establish the optimal conditions for experimental modeling of human adult pre-B ALL and demonstrate the critical protumorogenic role of microenvironment-derived SDF-1 in regulating adult pre-B LIC activity that may present a therapeutic opportunity. PMID:24825861

  8. Association of oxidative stress with realgar-induced differentiation in human leukemia HL-60 cells.

    Science.gov (United States)

    Wang, Li-Wen; Shi, Yan-Ling; Wang, Nan; Gou, Bao-Di; Zhang, Tian-Lan; Wang, Kui

    2009-01-01

    Realgar (arsenic sulfide, As(4)S(4)) has been shown to have clinical efficacy in patients with newly diagnosed and relapsed acute promyelocytic leukemia. Mechanistic studies have demonstrated that realgar is able to induce cell differentiation. The oxidative stress in the realgar-induced differentiation was examined with human leukemia HL-60 cells. Cell differentiation was evaluated by the expression of cell surface antigen CD11b and nitroblue tetrazolium assay. The activities of catalase and superoxide dismutase were measured spectrophotometrically. Flow cytometry was used to assess cell cycle distribution and apoptosis, the cellular level of reactive oxygen species (ROS) and glutathione, as well as mitochondrial transmembrane potential (MTP). The realgar-induced differentiation was enhanced by hydrogen peroxide, and preceded with drastic changes in ROS and catalase, as well as small changes in superoxide dismutase and the reduced form of glutathione. MTP values at 24 h were in linear proportion to the CD11b expression at 48 h when no apoptosis was observed. Oxidative stress and stress-related MTP decrease are associated with realgar-induced differentiation in HL-60 cells. Copyright 2009 S. Karger AG, Basel.

  9. MicroRNA-223 dose levels fine tune proliferation and differentiation in human cord blood progenitors and acute myeloid leukemia

    NARCIS (Netherlands)

    B. Gentner (Bernhard); N. Pochert (Nicole); A. Rouhi (Arefeh); F. Boccalatte (Francesco); T. Plati (Tiziana); T. Berg (Tobias); S.M. Sun; S.M. Mah (Sarah M.); M. Mirkovic-Hösle (Milijana); J. Ruschmann (Jens); A. Muranyi (Andrew); S. Leierseder (Simon); B. Argiropoulos (Bob); D.T. Starczynowski (Daniel T.); A. Karsan (Aly); M. Heuser (Michael); D. Hogge (Donna); F.D. Camargo (Fernando D.); S. Engelhardt (Stefan); H. Döhner (Hartmut); C. Buske (Christian); M. Jongen-Lavrencic (Mojca); L. Naldini (Luigi); R.K. Humphries (R. Keith); F. Kuchenbauer (Florian)

    2015-01-01

    textabstractA precise understanding of the role of miR-223 in human hematopoiesis and in the pathogenesis of acute myeloid leukemia (AML) is still lacking. By measuring miR-223 expression in blasts from 115 AML patients, we found significantly higher miR-223 levels in patients with favorable

  10. Inhibitory effect of calcium channel blockers on proliferation of human glioma cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Kunert-Radek, J.; Stepien, H.; Lyson, K.; Pawlikowski, M.; Radek, A.

    1989-01-01

    The effects of 2 specific calcium channel blockers, verapamil and nimodipine, on the proliferation of human glioma tumour cells were investigated in vitro. Tumour tissues for primary cell cultures were obtained bioptically from 3 patients with the histopathological diagnosis of glioblastoma. The (/sup 3/H)-thymidine incorporation into glioma tumour cells DNA was used as a sensitive index of the cell proliferation. It was found that varapamil (10/sup 4/-10/sup 5/M) and nimodipine (10/sup 4/-10/sup 6/M) significantly inhibited the (/sup 3/H)-thymidine uptake in a dose-related manner. The inhibitory effect of both calcium channel antagonists was reversed by stimultancous addition of calcium chloride (5x10/sup 3/M). These results indicate that verapamil and nimodipine may exert an antiproliferative effect on glioma cells growth acting through a blokade of specific voltage-dependent calcium channels.

  11. [Study on proteomics of inhibitory effects of elemene on proliferation of human lens epithelial cell].

    Science.gov (United States)

    Hu, Yan-hong; Huang, Xiu-rong; Qi, Ming-xin; Hou, Bu-yuan

    2010-05-01

    To investigate the inhibitory effects of natural medicinal monomer elemene (Ele) on proliferation of human lens epithelial cells B3 (HLE-B3) inducing by recombinant human basic fibroblast growth factor(rhbFGF) and to pursue the proteomics regularity of the inhibitory effects of Ele on proliferation of HLE-B3. Experimental study. This study is divided into three group: control group, rhbFGF group and Ele group. Using 10 microg/L rhbFGF to induce proliferation of HLE-B3. Proliferative HLE-B3 were incubated with 80 mg/L Ele in CO2 incubator for 24 hours. Then the inhibitory effects of Ele on proliferation of HLE-B3 was detected by methyl thiazolyl tetrazolium (MTT). The change of expressions of all protein in HLE-B3 was assayed and analyzed by protein array and surface-enhanced laser desorption ionization time of flight mass spectrometry (SELDI-TOF-MS) proteomics technology. MTT test showed that the A values of rhbFGF (0.599+/-0.053) group were higher than that of control group (0.409+/-0.042) remarkably. The A values of Ele group (0.450+/-0.061) decreased obviously compared to rhbFGF group, the inhibition rates were 24.90% (F=28.886, P=0.000). Five different protein spots were obtained in proliferative HLE-B3 induced by rhbFGF. The expressions were up-regulated in two of the five protein spots at the ratios of mass/charge (m/z) of 8093 and 9516, while the expressions were down-regulated in three of the five protein spots at m/z of 5361, 9666 and 13 767. Ten different protein spots were obtained in HLE-B3 incubated with Ele. The expressions were up-regulated in four of the ten protein spots at m/z of 2487, 4392, 8566 and 11 600, while the expressions were down-regulated in six of the ten protein spots at m/z of 3679, 4826, 6861, 9516, 9557 and 9672. Ele could effectively inhibit HLE-B3 proliferation induced by rhbFGF. The protein spot at m/z of 9516 might be the target of proliferative inhibition in HLE-B3 by Ele.

  12. KRAS (G12D Cooperates with AML1/ETO to Initiate a Mouse Model Mimicking Human Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Shanmin Zhao

    2014-01-01

    Full Text Available Background/Aims: It has been demonstrated that KRAS mutations represent about 90% of cancer-associated mutations, and that KRAS mutations play an essential role in neoplastic transformation. Cancer-associated RAS mutations occur frequently in acute myeloid leukemia (AML, suggesting a functional role for Ras in leukemogenesis. Methods: We successfully established a mouse model of human leukemia by transplanting bone marrow cells co-transfected with the K-ras (G12D mutation and AML1/ETO fusion protein. Results: Mice transplanted with AML/ETO+KRAS co-transduced cells had the highest mortality rate than mice transplanted with AML/ETO- or KRAS-transduced cells (115d vs. 150d. Upon reaching a terminal disease stage, EGFP-positive cells dominated their spleen, lymph nodes, peripheral blood and central nervous system tissue. Immunophenotyping, cytologic analyses revealed that AML/ETO+KRAS leukemias predominantly contained immature myeloid precursors (EGFP+/c-Kit+/Mac-1-/Gr-1-. Histologic analyses revealed that massive leukemic infiltrations were closely packed in dense sheets that effaced the normal architecture of spleen and thymus in mice transplanted with AML1/ETO + KRAS co-transduced cells. K-ras mRNA and protein expression were upregulated in bone marrow cells of the K-ras group and AML1/ETO + Kras group. The phosphorylation of MEK/ERK was significantly enhanced in the AML1/ETO + Kras group. The similar results of the AML1/ETO + Nras group were consistent with those reported previously. Conclusion: Co-transduction of KrasG12D and AML1/ETO induces acute monoblastic leukemia. Since expression of mutant K-ras alone was insufficient to induce leukemia, this model may be useful for investigating the multi-step leukemogenesis model of human leukemia.

  13. Exogenous and Endogenous Cannabinoids Suppress Inhibitory Neurotransmission in the Human Neocortex

    Science.gov (United States)

    Kovacs, Flora E; Knop, Tim; Urbanski, Michal J; Freiman, Ilka; Freiman, Thomas M; Feuerstein, Thomas J; Zentner, Josef; Szabo, Bela

    2012-01-01

    Activation of CB1 receptors on axon terminals by exogenous cannabinoids (eg, Δ9-tetrahydrocannabinol) and by endogenous cannabinoids (endocannabinoids) released by postsynaptic neurons leads to presynaptic inhibition of neurotransmission. The aim of this study was to characterize the effect of cannabinoids on GABAergic synaptic transmission in the human neocortex. Brain slices were prepared from neocortical tissues surgically removed to eliminate epileptogenic foci. Spontaneous GABAergic inhibitory postsynaptic currents (sIPSCs) were recorded in putative pyramidal neurons using patch-clamp techniques. To enhance the activity of cannabinoid-sensitive presynaptic axons, muscarinic receptors were continuously stimulated by carbachol. The synthetic cannabinoid receptor agonist WIN55212-2 decreased the cumulative amplitude of sIPSCs. The CB1 antagonist rimonabant prevented this effect, verifying the involvement of CB1 receptors. WIN55212-2 decreased the frequency of miniature IPSCs (mIPSCs) recorded in the presence of tetrodotoxin, but did not change their amplitude, indicating that the neurotransmission was inhibited presynaptically. Depolarization of postsynaptic pyramidal neurons induced a suppression of sIPSCs. As rimonabant prevented this suppression, it is very likely that it was due to endocannabinods acting on CB1 receptors. This is the first demonstration that an exogenous cannabinoid inhibits synaptic transmission in the human neocortex and that endocannabinoids released by postsynaptic neurons suppress synaptic transmission in the human brain. Interferences of cannabinoid agonists and antagonists with synaptic transmission in the cortex may explain the cognitive and memory deficits elicited by these drugs. PMID:22048459

  14. The small molecule calactin induces DNA damage and apoptosis in human leukemia cells.

    Science.gov (United States)

    Lee, Chien-Chih; Lin, Yi-Hsiung; Chang, Wen-Hsin; Wu, Yang-Chang; Chang, Jan-Gowth

    2012-09-01

    We purified calactin from the roots of the Chinese herb Asclepias curassavica L. and analyzed its biologic effects in human leukemia cells. Our results showed that calactin treatment caused DNA damage and resulted in apoptosis. Increased phosphorylation levels of Chk2 and H2AX were observed and were reversed by the DNA damage inhibitor caffeine in calactin-treated cells. In addition, calactin treatment showed that a decrease in the expression of cell cycle regulatory proteins Cyclin B1, Cdk1, and Cdc25C was consistent with a G2/M phase arrest. Furthermore, calactin induced extracellular signal-regulated kinase (ERK) phosphorylation, activation of caspase-3, caspase-8, and caspase-9, and PARP cleavage. Pretreatment with the ERK inhibitor PD98059 significantly blocked the loss of viability in calactin-treated cells. It is indicated that calactin-induced apoptosis may occur through an ERK signaling pathway. Our data suggest that calactin is a potential anticancer compound.

  15. Inhibitory effects of neurotransmitters and steroids on human CYP2A6.

    Science.gov (United States)

    Higashi, Eriko; Nakajima, Miki; Katoh, Miki; Tokudome, Shogo; Yokoi, Tsuyoshi

    2007-04-01

    Human CYP2A6 catalyzes the metabolism of nicotine, cotinine, and coumarin as well as some pharmaceutical drugs. CYP2A6 is highly expressed in liver and, also, in brain and steroid-related tissues. In this study, we investigated the inhibitory effects of neurotransmitters and steroid hormones on CYP2A6 activity. We found that coumarin 7-hydroxylation and cotinine 3'-hydroxylation by recombinant CYP2A6 expressed in baculovirus-infected insect cells were competitively inhibited by tryptamine (both K(i) = 0.2 microM), serotonin (K(i) = 252 microM and 167 microM), dopamine (K(i) = 49 microM and 22 microM), and histamine (K(i) = 428 microM and 359 microM). Cotinine formation from nicotine was inhibited by tryptamine (K(i) = 0.7 microM, competitive), serotonin (K(i) = 272 microM, noncompetitive), dopamine, noradrenaline, and adrenaline (K(i) = 11 microM, 54 microM, and 81 microM, uncompetitive). Estrogens (K(i) = 0.6-3.8 microM), androgens (K(i) = 60-149 microM), and corticosterone (K(i) = 36 microM) also inhibited cotinine formation, but coumarin 7-hydroxylation and cotinine 3'-hydroxylation did not. Nicotine-Delta(5'(1'))-iminium ion formation from nicotine was not affected by these steroid hormones, indicating that the inhibition of cotinine formation was due to the inhibitory effects on aldehyde oxidase. The nicotine-Delta(5'(1'))-iminium ion formation was competitively inhibited by tryptamine (K(i) = 0.3 microM), serotonin (K(i) = 316 microM), dopamine (K(i) = 66 microM), and histamine (K(i) = 209 microM). Thus, we found that some neurotransmitters inhibit CYP2A6 activity, being related with inter- and intraindividual differences in CYP2A6-dependent metabolism. The inhibitory effects of steroid hormones on aldehyde oxidase may also contribute to interindividual differences in nicotine metabolism.

  16. Excitatory and inhibitory actions of isoprostanes in human and canine airway smooth muscle.

    Science.gov (United States)

    Janssen, L J; Premji, M; Netherton, S; Catalli, A; Cox, G; Keshavjee, S; Crankshaw, D J

    2000-11-01

    Isoprostanes are generated nonenzymatically during free radical-mediated lipid peroxidation, and are used clinically and experimentally as markers of oxidative stress. However, their biological effects are poorly understood. We examined the effects of seven different 8-isoprostanes in human and canine airway smooth muscles. In large order airways (carina) of the human, several isoprostanes evoked powerful contractions, with 8-iso-prostaglandin (PG) E(2), 8-iso-PGF(1 alpha), and 8-iso-PGF(2 alpha) being the most efficacious (and with logEC(50) values of 7.0, 5.9, and 6.2 microM, respectively). These contractions were sensitive to the prostanoid TP receptor antagonist ICI 192,605 (0.1-1 microM), but not the EP prostanoid receptor antagonist AH-6809 (50 microM), or the leukotriene receptor antagonists monteleukast or ICI 198,615 (both 1 microM). Qualitatively similar results were obtained in small order human airways (<2 mm o.d.), except that the isoprostanes were generally slightly less potent. None of the isoprostanes had any marked excitatory effect in canine airways. In carbachol-preconstricted tissues (pretreated with ICI 192,605 to block any potential contraction), several isoprostanes completely relaxed canine airways: 8-iso-PGE(1), 8-iso-PGE(2), and 8-iso-PGF(3 alpha) were the most potent, with logIC(50) values of 6.9, 6.9, and 5.7, respectively. Only 8-iso-PGF(3 alpha) relaxed human airways (logIC(50) = 4.9). Our results show that several 8-isoprostanes are highly biologically active in human and canine airways, evoking both excitatory and/or inhibitory effects, and that these effects are compound, species, and tissue dependent.

  17. Inhibitory effect of corcin on aggregation of 1N/4R human tau protein in vitro

    Directory of Open Access Journals (Sweden)

    Ali Mohammadi Karakani

    2015-05-01

    Full Text Available Objective(s:Alzheimer's disease (AD is the most common age-related neurodegenerative disorder. One of the hallmarks of AD is an abnormal accumulation of fibril forms of tau protein which is known as a microtubule associated protein. In this regard, inhibition of tau aggregation has been documented to be a potent therapeutic approach in AD and tauopathies. Unfortunately, the available synthetic drugs have modest beneficial efficacy with several side effects. Therefore, pipeline drugs from natural sources with anti-aggregation properties can be useful in the prevention and treatment of AD. Among medicinal plants, saffron (Crocus sativus, L., as a traditional herbal medicine has different pharmacological properties and can be used as treatment for several nervous system impairment including depression and dementia. Crocin as a major constituent of saffron is the glycosylated form of crocetin. Materials and Methods:  In this study, we investigated the inhibitory effect of crocin on aggregation of recombinant human tau protein 1N/4R isoform using biochemical methods and cell culture. Results:  Results revealed that tau protein under the fibrillation condition and in the presence of crocin had enough stability with low tendency for aggregation. Crocin inhibited tau aggregation with IC50 of 100 µg/ml.  Furthermore, transmission electron microscopy images confirmed that crocin could suppress the formation of tau protein filaments. Conclusion: Inhibitory effect of crocin could be related to its interference with nucleation phase that led to increases in monomer species of tau protein. Based on our results, crocin is recommended as a proper candidate to be used in AD treatment.

  18. Pro-apoptotic activity of α-bisabolol in preclinical models of primary human acute leukemia cells

    Directory of Open Access Journals (Sweden)

    Fato Romana

    2011-04-01

    Full Text Available Abstract Background We previously demonstrated that the plant-derived agent α-bisabolol enters cells via lipid rafts, binds to the pro-apoptotic Bcl-2 family protein BID, and may induce apoptosis. Here we studied the activity of α-bisabolol in acute leukemia cells. Methods We tested ex vivo blasts from 42 acute leukemias (14 Philadelphia-negative and 14 Philadelphia-positive B acute lymphoid leukemias, Ph-/Ph+B-ALL; 14 acute myeloid leukemias, AML for their sensitivity to α-bisabolol in 24-hour dose-response assays. Concentrations and time were chosen based on CD34+, CD33+my and normal peripheral blood cell sensitivity to increasing α-bisabolol concentrations for up to 120 hours. Results A clustering analysis of the sensitivity over 24 hours identified three clusters. Cluster 1 (14 ± 5 μM α-bisabolol IC50 included mainly Ph-B-ALL cells. AML cells were split into cluster 2 and 3 (45 ± 7 and 65 ± 5 μM IC50. Ph+B-ALL cells were scattered, but mainly grouped into cluster 2. All leukemias, including 3 imatinib-resistant cases, were eventually responsive, but a subset of B-ALL cells was fairly sensitive to low α-bisabolol concentrations. α-bisabolol acted as a pro-apoptotic agent via a direct damage to mitochondrial integrity, which was responsible for the decrease in NADH-supported state 3 respiration and the disruption of the mitochondrial membrane potential. Conclusion Our study provides the first evidence that α-bisabolol is a pro-apoptotic agent for primary human acute leukemia cells.

  19. Partial identification by site-directed mutagenesis of a cell growth inhibitory site on the human galectin-1 molecule

    Directory of Open Access Journals (Sweden)

    Zhang Jialiang

    2002-01-01

    Full Text Available Abstract Background Previous work, by us and others, has shown that mammalian galectins-1 have a growth-inhibitory activity for mammalian cells which is apparently independent of their β-galactoside binding site. Results We have made recombinant human galectin-1 as a bacterial fusion protein with an N-terminal hexahistidine tag. This protein displays both haemagglutination and growth-inhibitory activities, even in the presence of the hexahistidine tag. Site-directed mutagenesis of this protein has confirmed the independent nature of the protein sites responsible for the two biological activities. Mutant proteins were created, which displayed each activity in the absence of the other. Conclusions Human galectin-1 possesses a growth-inhibitory site, which is not part of the β-galactoside binding site. A surface loop, comprising amino acid residues 25–30, and joining two internal β-strands, forms part of the growth-inhibitory site. This region is relatively close to the N-terminus of the protein, and N-terminal substitutions or extensions also affect growth-inhibitory activity. Further experiments will be necessary to fully define this site.

  20. The Inhibitory Activity of Luzonicosides from the Starfish Echinaster luzonicus against Human Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Olesya S. Malyarenko

    2017-07-01

    Full Text Available Malignant melanoma is the most dangerous form of skin cancer, with a rapidly increasing incidence rate. Despite recent advances in melanoma research following the approval of several novel targeted and immuno-therapies, the majority of oncological patients will ultimately perish from the disease. Thus, new effective drugs are still required. Starfish steroid glycosides possess different biological activities, including antitumor activity. The current study focused on the determination of the in vitro inhibitory activity and the mechanism of action of cyclic steroid glycosides isolated from the starfish Echinaster luzonicus—luzonicoside A (LuzA and luzonicoside D (LuzD—in human melanoma RPMI-7951 and SK-Mel-28 cell lines. LuzA inhibited proliferation, the formation of colonies, and the migration of SK-Mel-28 cells significantly more than LuzD. Anti-cancer activity has been ascribed to cell cycle regulation and apoptosis induction. The molecular mechanism of action appears to be related to the regulation of the activity of cleaved caspase-3 and poly(ADP-ribose polymerase (PARP, along with Survivin, Bcl-2, p21 and cyclin D1 level. Overall, our findings support a potential anti-cancer efficacy of luzonicosides A and D on human melanoma cells.

  1. 5-Lipoxygenase and cyclooxygenase inhibitory dammarane triterpenoid 1 from Borassus flabellifer seed coat inhibits tumor necrosis factor-α secretion in LPSInduced THP-1 human monocytes and induces apoptosis in MIA PaCa-2 pancreatic cancer cells.

    Science.gov (United States)

    Yarla, Nagendra Sastry; Azad, Rajaram; Basha, Mahaboob; Rajack, Abdul; Kaladhar, D S V G K; Allam, Bharat Kumar; Pragada, Rajeswara Rao; Singh, Krishna Nand; K, Sunanda Kumari; Pallu, Reddanna; Parimi, Umadevi; Bishayee, Anupam; Duddukuri, Govinda Rao

    2015-01-01

    Phospholipase A2 (PLA2), Cyclooxygenase (COX) and 5-Lipoxygenase (5-LOX) are arachidonic acid metabolizing enzymes and their inhibitors have been developed as therapeutic molecules for cancer and inflammation related disorders. In the present study, PLA2, COX 1&2 and 5-LOX inhibitory studies of Borassus flabellifer seed coat extract were carried out and substantial 5-LOX inhibitory activity was found. Dammarane triterpenoid 1 (Dammara-20,23-diene-3,25-diol) was isolated according to 5-LOX activity guided isolation, and screened for COX (1 & 2) inhibitory activities. Dammarane triterpenoid 1 inhibited carrageenan-induced rat paw edema and TNF-α secretion levels in lipopolysaccharide (LPS)-induced THP-1 human monocytes. Anticancer activity studies demonstrated the antiproliferative effect of dammarane triterpenoid 1 on various cancer cell lines including MIA PaCa-2 pancreatic, DU145 prostate, HL-60 leukemia and Caco-2 colon cancers. Dammarane triterpenoid 1 showed good antiproliferative activity on MIA PaCa-2 pancreatic cancer cell line with IC50 of 12.36±0.33 µM, among other tested cell lines. Apoptosis inducing activity of dammarane triterpenoid 1 was confirmed based on increased sub-G0 phase cell population in cell cycle analysis, loss of mitochondrian membrane potential, elevated levels of cytochrome c, nuclear morphological changes and DNA fragmentation in MIA PaCa-2 pancreatic cancer cells. Therefore, dammarane triterpenoid skeleton may raise the hope of developing novel anti-inflammatory and anticancer drugs in the future.

  2. Silencing of human T-cell leukemia virus type I gene transcription by epigenetic mechanisms

    Directory of Open Access Journals (Sweden)

    Mueller Nancy

    2005-10-01

    Full Text Available Abstract Background Human T-cell leukemia virus type I (HTLV-I causes adult T-cell leukemia (ATL after a long latent period. Among accessory genes encoded by HTLV-I, the tax gene is thought to play a central role in oncogenesis. However, Tax expression is disrupted by several mechanims including genetic changes of the tax gene, deletion/hypermethylation of 5'-LTR. To clarify the role of epigenetic changes, we analyzed DNA methylation and histone modification in the whole HTLV-I provirus genome. Results The gag, pol and env genes of HTLV-I provirus were more methylated than pX region, whereas methylation of 5'-LTR was variable and 3'-LTR was not methylated at all. In ATL cell lines, complete DNA methylation of 5'-LTR was associated with transcriptional silencing of viral genes. HTLV-I provirus was more methylated in primary ATL cells than in carrier state, indicating the association with disease progression. In seroconvertors, DNA methylation was already observed in internal sequences of provirus just after seroconversion. Taken together, it is speculated that DNA methylation first occurs in the gag, pol and env regions and then extends in the 5' and 3' directions in vivo, and when 5'-LTR becomes methylated, viral transcription is silenced. Analysis of histone modification in the HTLV-I provirus showed that the methylated provirus was associated with hypoacetylation. However, the tax gene transcript could not be detected in fresh ATL cells regardless of hyperacetylated histone H3 in 5'-LTR. The transcription rapidly recovered after in vitro culture in such ATL cells. Conclusion These results showed that epigenetic changes of provirus facilitated ATL cells to evade host immune system by suppressing viral gene transcription. In addition, this study shows the presence of another reversible mechanism that suppresses the tax gene transcription without DNA methylation and hypoacetylated histone.

  3. Inhibitory and stimulatory effects of Pseudomonas aeruginosa pyocyanine on human T and B lymphocytes and human monocytes.

    Science.gov (United States)

    Ulmer, A J; Pryjma, J; Tarnok, Z; Ernst, M; Flad, H D

    1990-01-01

    Pyocyanine, a pigment produced by Pseudomonas aeruginosa, has dual dose-dependent stimulatory as well as inhibitory effects on immune responses in vitro as measured by DNA synthesis of human T and B lymphocytes, interleukin-2 (IL-2) production by human T lymphocytes, immunoglobulin production by human B lymphocytes, and monokine production by human monocytes. In general, stimulatory activity was found at low concentrations of pyocyanine, whereas high concentrations of the pigment resulted in an inhibition of responses. At a pyocyanine concentration of 0.1 micrograms/ml or less the proliferation of T and B lymphocytes was enhanced, but at 0.5 micrograms/ml it was suppressed. IL-2 production by T lymphocytes was enhanced at concentrations up to 0.5 micrograms/ml but totally inhibited at 1.0 micrograms/ml. The differentiation of B lymphocytes to become immunoglobulin-producing cells was also enhanced in the presence of low doses of pyocyanine, whereas secretion of immunoglobulin by B lymphocytes was suppressed at all concentrations of pyocyanine. In contrast to the dual effects of pyocyanine on lymphocyte response, lipopolysaccharide-induced IL-1 and tumor necrosis factor release by monocytes was markedly enhanced by low as well as high concentrations of pyocyanine. From these results we conclude that this property of pyocyanine may lead to suppression of specific defense mechanisms and enhance harmful inflammatory reactions of the host during infection with Pseudomonas aeruginosa. PMID:2106495

  4. Probing the inhibitory potency of epigallocatechin gallate against human γB-crystallin aggregation: Spectroscopic, microscopic and simulation studies

    Science.gov (United States)

    Chaudhury, Susmitnarayan; Dutta, Anirudha; Bag, Sudipta; Biswas, Pranandita; Das, Amit Kumar; Dasgupta, Swagata

    2018-03-01

    Aggregation of human ocular lens proteins, the crystallins is believed to be one of the key reasons for age-onset cataract. Previous studies have shown that human γD-crystallin forms amyloid like fibres under conditions of low pH and elevated temperature. In this article, we have investigated the aggregation propensity of human γB-crystallin in absence and presence of epigallocatechin gallate (EGCG), in vitro, when exposed to stressful conditions. We have used different spectroscopic and microscopic techniques to elucidate the inhibitory effect of EGCG towards aggregation. The experimental results have been substantiated by molecular dynamics simulation studies. We have shown that EGCG possesses inhibitory potency against the aggregation of human γB-crystallin at low pH and elevated temperature.

  5. In vitro inhibitory effects of pristimerin on human liver cytochrome P450 enzymes.

    Science.gov (United States)

    Hao, Xiaoyi; Yuan, Jianlei; Xu, Yansen; Wang, Zhao; Hou, Jianzhang; Hu, Tao

    2017-04-07

    1. Pristimerin (PTM) is a biological component isolated from Chinese herbal plant Celastrus and Maytenus spp and it possesses numerous pharmacological activities. However, whether PTM affects the activity of human liver cytochrome P450 (CYP) enzymes remains unclear. 2. In this study, the inhibitory effects of PTM on the eight human liver CYP isoforms (i.e., 1A2, 3A4, 2A6, 2E1, 2D6, 2C9, 2C19, and 2C8) were investigated in vitro using human liver microsomes (HLMs). 3. The results showed that PTM inhibited the activity of CYP1A2, 3A4, and 2C9, with IC50 values of 21.74, 15.88, and 16.58 μM, respectively, but that other CYP isoforms were not affected. Enzyme kinetic studies showed that PTM was not only a non-competitive inhibitor of CYP3A4, but also a competitive inhibitor of CYP1A2 and 2C9, with Ki values of 7.33, 11.60, and 8.09 μM, respectively. In addition, PTM is a time-dependent inhibitor for CYP3A4 with Kinact/KI value of 0.049/11.62 μM-1min-1. 4. The in vitro studies of PTM with CYP isoforms indicate that PTM has the potential to cause pharmacokinetic drug interactions with other co-administered drugs metabolized by CYP1A2, 3A4, and 2C9. Further clinical studies are needed to evaluate the significance of this interaction.

  6. Melatonin exerts direct inhibitory actions on ACTH responses in the human adrenal gland.

    Science.gov (United States)

    Campino, C; Valenzuela, F J; Torres-Farfan, C; Reynolds, H E; Abarzua-Catalan, L; Arteaga, E; Trucco, C; Guzmán, S; Valenzuela, G J; Seron-Ferre, M

    2011-05-01

    In nonhuman primates and rodents, melatonin acting directly on the adrenal gland, inhibits glucocorticoid response to ACTH. In these species, an intrinsic adrenal circadian clock is involved in ACTH-stimulated glucocorticoid production. We investigated whether these findings apply to the human adrenal gland by determining i) expression of clock genes in vivo and ii) direct effects of melatonin in ACTH-stimulated adrenal explants over a) expression of the clock genes PER1 (Period 1) mRNA and BMAL1 [Brain-Muscle (ARNT)-like] protein, ACTH-induced steroidogenic acute regulatory protein (StAR), and 3β-hydroxysteroid dehydrogenase (3β-HSD) and b) over cortisol and progesterone production. Adrenal tissue was obtained from 6 renal cancer patients undergoing unilateral nephrectomy-adrenalectomy. Expression of the clock genes PER1, PER2, CRY2 (Cryptochrome 2), CLOCK (Circadian Locomotor Output Cycles Kaput) and BMAL1, was investigated by RT-PCR in a normal adrenal and in an adenoma. In independent experiments, explants from 4 normal adrenals were preincubated in culture medium (6 h) followed by 12 h in: medium alone; ACTH (100 nM); ACTH plus melatonin (100 nM); and melatonin alone. The explants' content of PER1 mRNA (real-time PCR) and StAR, 3β-HSD, BMAL1 (immuno slot-blot), and their cortisol and progesterone production (RIA) were measured. The human adrenal gland expresses the clock genes PER1, PER2, CRY2, CLOCK, and BMAL1. ACTH increased PER1 mRNA, BMAL1, StAR, and 3β-HSD protein levels, and cortisol and progesterone production. Melatonin inhibited these ACTH effects. Our study demonstrates, for the first time, direct inhibitory effects of melatonin upon several ACTH responses in the human adrenal gland. © Georg Thieme Verlag KG Stuttgart · New York.

  7. No evidence of murine leukemia virus-related viruses in live attenuated human vaccines.

    Directory of Open Access Journals (Sweden)

    William M Switzer

    Full Text Available The association of xenotropic murine leukemia virus (MLV-related virus (XMRV in prostate cancer and chronic fatigue syndrome reported in previous studies remains controversial as these results have been questioned by recent data. Nonetheless, concerns have been raised regarding contamination of human vaccines as a possible source of introduction of XMRV and MLV into human populations. To address this possibility, we tested eight live attenuated human vaccines using generic PCR for XMRV and MLV sequences. Viral metagenomics using deep sequencing was also done to identify the possibility of other adventitious agents.All eight live attenuated vaccines, including Japanese encephalitis virus (JEV (SA-14-14-2, varicella (Varivax, measles, mumps, and rubella (MMR-II, measles (Attenuvax, rubella (Meruvax-II, rotavirus (Rotateq and Rotarix, and yellow fever virus were negative for XMRV and highly related MLV sequences. However, residual hamster DNA, but not RNA, containing novel endogenous gammaretrovirus sequences was detected in the JEV vaccine using PCR. Metagenomics analysis did not detect any adventitious viral sequences of public health concern. Intracisternal A particle sequences closest to those present in Syrian hamsters and not mice were also detected in the JEV SA-14-14-2 vaccine. Combined, these results are consistent with the production of the JEV vaccine in Syrian hamster cells.We found no evidence of XMRV and MLV in eight live attenuated human vaccines further supporting the safety of these vaccines. Our findings suggest that vaccines are an unlikely source of XMRV and MLV exposure in humans and are consistent with the mounting evidence on the absence of these viruses in humans.

  8. Targeting of T/Tn antigens with a plant lectin to kill human leukemia cells by photochemotherapy.

    Directory of Open Access Journals (Sweden)

    Guillaume Poiroux

    Full Text Available Photochemotherapy is used both for solid tumors and in extracorporeal treatment of various hematologic disorders. Nevertheless, its development in oncology remains limited, because of the low selectivity of photosensitizers (PS towards human tumor cells. To enhance PS efficiency, we recently covalently linked a porphyrin (TrMPyP to a plant lectin (Morniga G, known to recognize with high affinity tumor-associated T and Tn antigens. The conjugation allowed a quick uptake of PS by Tn-positive Jurkat leukemia cells and efficient PS-induced phototoxicity. The present study was performed: (i to evaluate the targeting potential of the conjugate towards tumor and normal cells and its phototoxicity on various leukemia cells, (ii to investigate the mechanism of conjugate-mediated cell death. The conjugate: (i strongly increased (×1000 the PS phototoxicity towards leukemic Jurkat T cells through an O-glycan-dependent process; (ii specifically purged tumor cells from a 1∶1 mixture of Jurkat leukemia (Tn-positive and healthy (Tn-negative lymphocytes, preserving the activation potential of healthy lymphocytes; (iii was effective against various leukemic cell lines with distinct phenotypes, as well as fresh human primary acute and chronic lymphoid leukemia cells; (iv induced mostly a caspase-independent cell death, which might be an advantage as tumor cells often resist caspase-dependent cell death. Altogether, the present observations suggest that conjugation with plant lectins can allow targeting of photosensitizers towards aberrant glycosylation of tumor cells, e.g. to purge leukemia cells from blood and to preserve the normal leukocytes in extracorporeal photochemotherapy.

  9. Hepatic Lesions Caused by Large Granular Lymphocyte Leukemia in Fischer 344 Rats: Similar Morphologic Features and Morphogenesis to Those of Nodular Regenerative Hyperplasia (NRH) in the Human Liver.

    Science.gov (United States)

    Shiga, Atsushi; Narama, Isao

    2015-08-01

    To characterize the hepatic lesions in Fischer 344 (F344) rats afflicted with large granular lymphocyte (LGL) leukemia, the livers of rats with LGL leukemia at various stages were examined histopathologically and immunohistochemically. The morphologic features in the livers of rats afflicted with LGL leukemia were diffuse, uniform-sized, granular, or micronodular lesions consisting of hepatocytes showing centrilobular atrophy and perilobular hypertrophy (CAPH) without fibrosis. With progression in the stage of the LGL leukemia, the severity of the CAPH of hepatocytes increased resulting in fatty change and/or single-cell necrosis, along with compensatory hyperplasia of the hepatocytes, finally resulting in lesions similar to those seen in nodular regenerative hyperplasia (NRH) in the human liver. The CAPH of hepatocytes was a nonspecific tissue adaptation against ischemia or hypoxemia and/or imbalance in blood supply due to disturbance in the portal circulation and hemolytic anemia induced by the leukemia cells. In addition, direct and/or indirect hepatocellular injuries by leukemia cells were considered to be necessary for the formation of human NRH-like lesions. Morphogenetic investigation of the livers of rats afflicted with LGL leukemia may be helpful to clarify the pathogenesis of NRH in the human liver. © 2015 by The Author(s).

  10. A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells

    Science.gov (United States)

    Ly, Tony; Ahmad, Yasmeen; Shlien, Adam; Soroka, Dominique; Mills, Allie; Emanuele, Michael J; Stratton, Michael R; Lamond, Angus I

    2014-01-01

    Technological advances have enabled the analysis of cellular protein and RNA levels with unprecedented depth and sensitivity, allowing for an unbiased re-evaluation of gene regulation during fundamental biological processes. Here, we have chronicled the dynamics of protein and mRNA expression levels across a minimally perturbed cell cycle in human myeloid leukemia cells using centrifugal elutriation combined with mass spectrometry-based proteomics and RNA-Seq, avoiding artificial synchronization procedures. We identify myeloid-specific gene expression and variations in protein abundance, isoform expression and phosphorylation at different cell cycle stages. We dissect the relationship between protein and mRNA levels for both bulk gene expression and for over ∼6000 genes individually across the cell cycle, revealing complex, gene-specific patterns. This data set, one of the deepest surveys to date of gene expression in human cells, is presented in an online, searchable database, the Encyclopedia of Proteome Dynamics (http://www.peptracker.com/epd/). DOI: http://dx.doi.org/10.7554/eLife.01630.001 PMID:24596151

  11. Resveratrol Downregulates Interleukin-6-Stimulated Sonic Hedgehog Signaling in Human Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Yu-Chieh Su

    2013-01-01

    Full Text Available IL-6 and sonic hedgehog (Shh signaling molecules are considered to maintain the growth of cancer stem cells (CSCs. Resveratrol, an important integrant in traditional Chinese medicine, possesses certain antitumor effects. However, the mechanisms on regulating acute myeloid leukemia (AML are unclear. This study first used human subjects to demonstrate that the plasma levels of IL-6 and IL-1β in AML patients were higher and lower, respectively, than healthy donors. The expression of Shh preproproteins, and C- and N-terminal Shh peptides increased in bone marrow and peripheral blood mononuclear cells isolated from AML patients, and the plasma N-Shh secretion was greater. To further clarify the effect of IL-6 and resveratrol in Shh signaling, human AML HL-60 cells were tested. IL-6 upregulated Shh and Gli-1 expression and was accompanied by an increase of cell viability. Resveratrol significantly decreased CSC-related Shh expression, Gli-1 nuclear translocation, and cell viability in IL-6-treated HL-60 cells and had synergistic effect with Shh inhibitor cyclopamine on inhibiting cell growth. Conclusions. IL-6 stimulated the growth of AML cells through Shh signaling, and this effect might be blocked by resveratrol. Further investigations of Shh as a prognostic marker and resveratrol as a therapeutic drug target to CSCs in AML are surely warranted.

  12. Inhibitory Effect of Endostar on Specific Angiogenesis Induced by Human Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Qing Ye

    2015-01-01

    Full Text Available To investigate the effect of endostar on specific angiogenesis induced by human hepatocellular carcinoma, this research systematically elucidated the inhibitory effect on HepG2-induced angiogenesis by endostar from 50 ng/mL to 50000 ng/mL. We employed fluorescence quantitative Boyden chamber analysis, wound-healing assay, flow cytometry examination using a coculture system, quantitative analysis of tube formation, and in vivo Matrigel plug assay induced by HCC conditioned media (HCM and HepG2 compared with normal hepatocyte conditioned media (NCM and L02. Then, we found that endostar as a tumor angiogenesis inhibitor could potently inhibit human umbilical vein endothelial cell (HUVEC migration in response to HCM after four- to six-hour action, inhibit HCM-induced HUVEC migration to the lesion part in a dose-dependent manner between 50 ng/mL and 5000 ng/mL at 24 hours, and reduce HUVEC proliferation in a dose-dependent fashion. Endostar inhibited HepG2-induced tube formation of HUVECs which peaked at 50 ng/mL. In vivo Matrigel plug formation was also significantly reduced by endostar in HepG2 inducing system rather than in L02 inducing system. It could be concluded that, at cell level, endostar inhibited the angiogenesis-related biological behaviors of HUVEC in response to HCC, including migration, adhesion proliferation, and tube formation. At animal level, endostar inhibited the angiogenesis in response to HCC in Matrigel matrix.

  13. Myricetin is a novel inhibitor of human inosine 5′-monophosphate dehydrogenase with anti-leukemia activity

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Huiling; Hu, Qian; Wang, Jingyuan; Liu, Zehui; Wu, Dang [Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237 (China); Lu, Weiqiang, E-mail: wqlu@bio.ecnu.edu.cn [Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241 (China); Huang, Jin, E-mail: huangjin@ecust.edu.cn [Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237 (China)

    2016-09-02

    Human inosine 5′-monophosphate dehydrogenase (hIMPDH) is a rate-limiting enzyme in the de novo biosynthetic pathway of purine nucleotides, playing crucial roles in cellular proliferation, differentiation, and transformation. Dysregulation of hIMPDH expression and activity have been found in a variety of human cancers including leukemia. In this study, we found that myricetin, a naturally occurring phytochemical existed in berries, wine and tea, was a novel inhibitor of human type 1 and type 2 IMPDH (hIMPDH1/2) with IC{sub 50} values of 6.98 ± 0.22 μM and 4.10 ± 0.14 μM, respectively. Enzyme kinetic analysis using Lineweaver-Burk plot revealed that myricetin is a mix-type inhibitor for hIMPDH1/2. Differential scanning fluorimetry and molecular docking simulation data demonstrate that myricetin is capable of binding with hIMPDH1/2. Myricetin treatment exerts potent anti-proliferative and pro-apoptotic effects on K562 human leukemia cells in a dose-dependent manner. Importantly, cytotoxicity of myricetin on K562 cells were markedly attenuated by exogenous addition of guanosine, a salvage pathway of maintaining intracellular pool of guanine nucleotides. Taking together, these results indicate that natural product myricetin exhibits potent anti-leukemia activity by interfering with purine nucleotides biosynthetic pathway through the suppression of hIMPDH1/2 catalytic activity. - Highlights: • Myricetin, a common dietary flavonoid, is a novel inhibitor of hIMPDH1/2. • Myricetin directly binds with hIMPDH1/2 and induces cell cycle arrest and apoptosis of leukemia cells. • The cytotoxicity of myricetin on K562 cells is markedly attenuated by exogenous addition of guanosine.

  14. Proteomic analysis of human acute leukemia cells: insight into their classification.

    Science.gov (United States)

    Cui, Jiu-Wei; Wang, Jie; He, Kun; Jin, Bao-Feng; Wang, Hong-Xia; Li, Wei; Kang, Li-Hua; Hu, Mei-Ru; Li, Hui-Yan; Yu, Ming; Shen, Bei-Fen; Wang, Guan-Jun; Zhang, Xue-Min

    2004-10-15

    French-American-British (FAB) classification of acute leukemia with genetic heterogeneity is important for treatment and prognosis. However, the distinct protein profiles that contribute to the subtypes and facilitate molecular definition of acute leukemia classification are still unclear. The proteins of leukemic cells from 61 cases of acute leukemia characterized by FAB classification were separated by two-dimensional electrophoresis, and the differentially expressed protein spots were identified by both matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) and tandem electrospray ionization MS (ESI-MS/MS). The distinct protein profiles of acute leukemia FAB types or subtypes were successfully explored, including acute myeloid leukemia (AML), its subtypes (M2, M3, and M5) and acute lymphoid leukemia (ALL), which were homogeneous within substantial samples of the respective subgroups but clearly differed from all other subgroups. We found a group of proteins that were highly expressed in M2 and M3, rather than other subtypes. Among them, myeloid-related proteins 8 and 14 were first reported to mark AML differentiation and to differentiate AML from ALL. Heat shock 27 kDa protein 1 and other proteins that are highly expressed in ALL may play important roles in clinically distinguishing AML from ALL. Another set of proteins up-regulated was restricted to granulocytic lineage leukemia. High-level expression of NM23-H1 was found in all but the M3a subtype, with favorable prognosis. These data have implications in delineating the pathways of aberrant gene expression underlying the pathogenesis of acute leukemia and could facilitate molecular definition of FAB classification. The extension of the present analysis to currently less well-defined acute leukemias will identify additional subgroups.

  15. Enzymatic activity of endogenous telomerase associated with intact nuclei from human leukemia CEM cells.

    Science.gov (United States)

    Fletcher, T M; Trevino, A; Woynarowski, J M

    1999-11-01

    Telomerase, a telomere-specific DNA polymerase and novel target for chemotherapeutic intervention, is found in many types of cancers. Telomerase activity is typically assayed using an exogenous primer and cellular extracts as the source of enzyme. Since the nuclear organization might affect telomerase function, we developed a system in which telomerase in intact nuclei catalyzes primer extension. Telomerase activity in isotonically isolated nuclei from human CEM cells shows low processivity (addition of up to four TTAGGG repeats). In contrast, telomerase activity which leaks into a 500 g postnuclear supernatant and the activity in a CHAPS extract are highly processive. The nucleotide inhibitor, 7-deaza-dGTP, seems to be more inhibitory against the nuclei-associated enzyme compared to telomerase from cytoplasmic extracts. However, 7-deaza-dATP and ddGTP are less inhibitory against nuclei-associated telomerase. The results suggest that the association of telomerase with the nuclear chromatin affects telomerase activity. Examination of telomerase activity in a more natural nuclear environment may shed new light on the telomerase function and provide a useful system for the evaluation of new telomerase inhibitors. Copyright 1999 Academic Press.

  16. 3'-Geranyl-mono-substituted chalcone Xanthoangelovl induces apoptosis in human leukemia K562 cells via activation of mitochondrial pathway.

    Science.gov (United States)

    Teng, Yuou; Wang, Lixin; Liu, Huan; Yuan, Yuan; Zhang, Qian; Wu, Meng; Wang, Luyao; Wang, Haomeng; Liu, Zhen; Yu, Peng

    2017-01-05

    3'-Geranyl-mono-substituted chalcone Xanthoangelol (1b), a chalcone derivative, was previously reported to show selective cytotoxicity against human chronic myelogenous leukemia K562 cells with a half-maximal inhibitory concentration (IC50) of 3.98 μM. In the present study, we investigated the molecular mechanism underlying the cytotoxicity of 1b in K562 cells. Treatment with compound 1b caused K562 cells to adopt a typical apoptotic morphology. Flow cytometric analysis also confirmed the presence of an apoptotic cell population following treatment of Annexin-V-FITC and propidium iodide (PI) double-labeled K562 cells with 1b. Furthermore, we observed dissipation of the mitochondrial membrane potential, caspase-3 activation, and a reduction of the Bcl-2/Bax ratio in these cells, which suggest that the mitochondrial apoptotic pathway is induced by 1b in K562 cells. Collectively, our findings demonstrate that compound 1b notably induces mitochondrial-mediated apoptosis in K562 cells, which might have a potential anticancer activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Multiwalled carbon nanotube buckypaper induces cell cycle arrest and apoptosis in human leukemia cell lines through modulation of AKT and MAPK signaling pathways.

    Science.gov (United States)

    Dinicola, Simona; Masiello, Maria Grazia; Proietti, Sara; Coluccia, Pierpaolo; Fabrizi, Gianmarco; Palombo, Alessandro; Micciulla, Federico; Bistarelli, Silvia; Ricci, Giulia; Catizone, Angela; De Toma, Giorgio; Bizzarri, Mariano; Bellucci, Stefano; Cucina, Alessandra

    2015-10-01

    MWCNT buckypaper (BP) shows physico-chemical and mechanical properties that make it potentially useful as a substrate in nano-bio interface research including in tissue engineering. When used as a scaffold material, BP comes into contact with host cells and surrounding tissues; therefore it is critical to determine its biocompatibility and interaction with living systems. The aim of this study was to investigate BP effects on cell growth, apoptosis and reactive oxygen species (ROS) production in three human leukemia cell lines HL-60, U-937 and K-562. BP was able to induce both the reduction of cell proliferation, associated with an arrest in G0/G1 phase of cell cycle and the increase of apoptosis in leukemic cell lines, thus exerting both cytostatic and cytotoxic effects. The growth inhibitory effect was likely mediated by the decrease of cyclins D, E, A, B1 levels and CDK4 expression; meanwhile, the apoptotic effect, not mediated by ROS production, was presumably due to the combined action of the survival and pro-apoptotic AKT and MAPK signal transduction pathways. These results raised the issue of biocompatibility of MWCNT BP for the creation of carbon nanotubes based scaffolds to utilize as prostheses in tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Efficient induction of human T-cell leukemia virus-1-specific CTL by chimeric particle without adjuvant as a prophylactic for adult T-cell leukemia.

    Science.gov (United States)

    Kozako, Tomohiro; Fukada, Katsuhiko; Hirata, Shinya; White, Yohann; Harao, Michiko; Nishimura, Yasuharu; Kino, Youichiro; Soeda, Shinji; Shimeno, Hiroshi; Lemonnier, François; Sonoda, Shunro; Arima, Naomichi

    2009-12-01

    Adult T-cell leukemia-lymphoma (ATL) is an aggressive peripheral T-cell neoplasm that develops after long-term infection with the human T-cell leukemia virus-1 (HTLV-1). HTLV-1-specific cytotoxic T lymphocytes (CTLs) play an important role in suppressing proliferation of HTLV-1-infected or transformed T-cells in vitro. Efficient induction of antigen-specific CTLs is important for immunologic suppression of oncogenesis, but has evaded strategies utilizing poorly immunogenic free synthetic peptides. In the present study, we examined the efficient induction of HTLV-1-specific CD8+ T-cell response by an HTLV-1/hepatitis B virus core (HBc) chimeric particle incorporating the HLA-A*0201-restricted HTLV-1 Tax-epitope. The immunization of HLA-A*0201-transgenic mice with the chimeric particle induced antigen-specific gamma-interferon reaction, whereas immunization with epitope peptide only induced no reaction as assessed by enzyme-linked immunospot assay. Immunization with the chimeric particle also induced HTLV-1-specific CD8+ T-cells in spleen and inguinal lymph nodes. Furthermore, upon exposure of dendritic cells from HLA-A*0201-transgenic mice to the chimeric particle, the expression of CD86, HLA-A02, TLR4 and MHC class II was increased. Additionally, our results show that HTLV-1-specific CD8+ T-cells can be induced by peptide with HTLV-1/HBc particle from ATL patient, but not by peptide only and these HTLV-1-specific CD8+ T-cells were able to lyse cells presenting the peptide. These results suggest that HTLV-1/HBc chimeric particle is capable of inducing strong cellular immune responses without adjuvants via effective maturation of dendritic cells and is potentially useful as an effective carrier for therapeutic vaccines in tumors, or in infectious diseases by substituting the epitope peptide.

  19. Epitope location for two monoclonal antibodies against human cystatin C, representing opposite aggregation inhibitory properties.

    Science.gov (United States)

    Behrendt, Izabela; Prądzińska, Martyna; Spodzieja, Marta; Kołodziejczyk, Aleksandra S; Rodziewicz-Motowidło, Sylwia; Szymańska, Aneta; Czaplewska, Paulina

    2016-07-01

    Human cystatin C (hCC), like many other amyloidogenic proteins, dimerizes and possibly makes aggregates by subdomain swapping. Inhibition of the process should suppress the fibrillogenesis leading to a specific amyloidosis (hereditary cystatin C amyloid angiopathy, HCCAA). It has been reported that exogenous agents like monoclonal antibodies against cystatin C are able to suppress formation of cystatin C dimers and presumably control the neurodegenerative disease. We have studied in detail two monoclonal antibodies (mAbs) representing very different aggregation inhibitory potency, Cyst10 and Cyst28, to find binding sites in hCC sequence responsible for the immunocomplex formation and pave the way for possible immunotherapy of HCCAA. We used the epitope extraction/excision mass spectrometry approach with the use of different enzymes complemented by affinity studies with synthetic hCC fragments as a basic technique for epitope identification. The results were analyzed in the context of hCC structure allowing us to discuss the binding sites for both antibodies. Epitopic sequences for clone Cyst28 which is a highly potent dimerization inhibitor were found in N-terminus, loop 1 and 2 (L1, L2) and fragments of β2 and β3 strands. The crucial difference between conformational epitope sequences found for both mAbs seems to be the lack of interactions with hCC via N-terminus and the loop 1 in the case of mAb Cyst10. Presumably the interactions of mAbs with hCC via L1 and β sheet fragments make the hCC structure rigid and unable to undergo the swapping process.

  20. Inhibitory Effects of Probiotic Lactobacillus on the Growth of Human Colonic Carcinoma Cell Line HT-29

    Directory of Open Access Journals (Sweden)

    Zhung-Yuan Chen

    2017-01-01

    Full Text Available This study was conducted to investigate the inhibitory effect of Lactobacillus cells and supernatants on the growth of the human colon cancer cell line HT-29. Our study results indicated that the PM153 strain exhibits the best adhesion ability and the highest survival in the gastrointestinal tract simulation experiment. Furthermore, after an 8-h co-culture of PM153 and HT-29 cells, the PM153 strain can induce the secretion of nitric oxide from the HT-29 cells. In addition, after the co-culture of the BCRC17010 strain (109 cfu/mL and HT-29 cells, the Bax/Bcl-2 ratio in the HT-29 cells was 1.19, which showed a significant difference from the other control and LAB groups (p < 0.05, which therefore led to the inference that the BCRC17010 strain exerts a pro-apoptotic effect on the HT-29 cells. Upon co-culture with HT-29 cells for 4, 8 and 12 h, the BCRC14625 strain (109 cfu/mL demonstrated a significant increase in lactate dehydrogenase (LDH activity (p < 0.05, causing harm to the HT-29 cell membrane; further, after an 8-h co-culture with the HT-29 cells, it induced the secretion of nitric oxide (NO from the HT-29 cells. Some lactic acid bacteria (LAB strains have ability to inhibit the growth of the colorectal cancer cell line HT-29 Bax/Bcl-2 pathway or NO production. In summary, we demonstrated that the BCRC17010 strain, good abilities of adhesion and increased LDH release, was the best probiotic potential for inhibition of HT-29 growth amongst the seven LAB strains tested in vitro.

  1. Dehydroleucodine, a Sesquiterpene Lactone from Gynoxys verrucosa, Demonstrates Cytotoxic Activity against Human Leukemia Cells.

    Science.gov (United States)

    Ordóñez, Paola E; Sharma, Krishan K; Bystrom, Laura M; Alas, Maria A; Enriquez, Raul G; Malagón, Omar; Jones, Darin E; Guzman, Monica L; Compadre, Cesar M

    2016-04-22

    The sesquiterpene lactones dehydroleucodine (1) and leucodine (2) were isolated from Gynoxys verrucosa, a species used in traditional medicine in southern Ecuador. The activity of these compounds was determined against eight acute myeloid leukemia (AML) cell lines and compared with their activity against normal peripheral blood mononuclear cells. Compound 1 showed cytotoxic activity against the tested cell lines, with LD50 values between 5.0 and 18.9 μM. Compound 2 was inactive against all of the tested cell lines, demonstrating that the exocyclic methylene in the lactone ring is required for cytotoxic activity. Importantly, compound 1 induced less toxicity to normal blood cells than to AML cell lines and was active against human AML cell samples from five patients, with an average LD50 of 9.4 μM. Mechanistic assays suggest that compound 1 has a similar mechanism of action to parthenolide (3). Although these compounds have significant structural differences, their lipophilic surface signatures show striking similarities.

  2. Interferon induces up-regulation of Spi-1/PU.1 in human leukemia K562 cells.

    Science.gov (United States)

    Gutiérrez, P; Delgado, M D; Richard, C; Moreau-Gachelin, F; León, J

    1997-11-26

    The human K562 cell line is derived from a chronic myelogenous leukemia in blastic crisis. Treatment of K562 cells with interferons alpha, beta or gamma resulted in inhibition of cell proliferation. Spi-1/PU.1 is a transcription factor of the Ets family which is required for normal hematopoyesis. We have found that spi-1 mRNA and protein as well as Spi-1-DNA binding activity increase after exposure of K562 cells to interferons. The increase in spi-1 expression ranged from 4- to 8-fold with the different interferons. K562 cells can be differentiated in vitro towards erythroid cells or monocyte-macrophage cells. Interestingly, the regulation of spi-1 by interferon-alpha depended on the differentiated phenotype of K562 cells: interferon-alpha failed to induce spi-1 in erythroid differentiated cells, whereas it induced spi-1 in monocyte-macrophage differentiated cells. The results suggest a role for Spi-1 in the cytostatic response to interferons.

  3. Apoptosis Induction in Human Leukemia Cell Lines by Gold Nanoparticles Synthesized Using the Green Biosynthetic Approach

    Directory of Open Access Journals (Sweden)

    Farideh Namvar

    2015-01-01

    Full Text Available Gold nanoparticles were grown on Sargassum muticum water extract (S-GNPs using the green biosynthetic approach. The nanoparticles were characterized using UV-visible spectroscopy, zeta potential, and transmission electron microscopy (TEM. The resulting S-GNPs were spherical and crystalline with a size of <10 nm. The in vitro anticancer activity was demonstrated in human leukemia cell lines. The cancer cells were treated with different concentrations of S-GNPs, and calorimetric (MTT assay used for the cytotoxicity test, which resulted in an IC50 value of 4.22 ± 1.12, 5.71 ± 1.4, 6.55 ± 0.9, and 7.29 ± 1.7 μg/mL for each of the K562, HL-60, Jurkat, and CEM-ss cells, respectively. Thus, the K562 was selected for the next experiments. Furthermore, apoptosis induction was confirmed by Hoechst 33342, annexin V staining, and caspase-3/-9 activity tests. The cell cycle analysis exhibited a significant increase in the accumulation of S-GNPs treated cells at the sub-G1 phase, demonstrating the induction of apoptosis by S-GNPs. The nature of the inhibition of cancer cell growth by S-GNPs could open the way for further research in the design of green synthesis therapeutic agents, particularly in nanomedicine, for the treatment of cancer.

  4. Ganoderma lucidum polysaccharides in human monocytic leukemia cells: from gene expression to network construction

    Directory of Open Access Journals (Sweden)

    Ou Chern-Han

    2007-11-01

    Full Text Available Abstract Background Ganoderma lucidum has been widely used as a herbal medicine for promoting health and longevity in China and other Asian countries. Polysaccharide extracts from Ganoderma lucidum have been reported to exhibit immuno-modulating and anti-tumor activities. In previous studies, F3, the active component of the polysaccharide extract, was found to activate various cytokines such as IL-1, IL-6, IL-12, and TNF-α. This gave rise to our investigation on how F3 stimulates immuno-modulating or anti-tumor effects in human leukemia THP-1 cells. Results Here, we integrated time-course DNA microarray analysis, quantitative PCR assays, and bioinformatics methods to study the F3-induced effects in THP-1 cells. Significantly disturbed pathways induced by F3 were identified with statistical analysis on microarray data. The apoptosis induction through the DR3 and DR4/5 death receptors was found to be one of the most significant pathways and play a key role in THP-1 cells after F3 treatment. Based on time-course gene expression measurements of the identified pathway, we reconstructed a plausible regulatory network of the involved genes using reverse-engineering computational approach. Conclusion Our results showed that F3 may induce death receptor ligands to initiate signaling via receptor oligomerization, recruitment of specialized adaptor proteins and activation of caspase cascades.

  5. Promyelocytic leukemia protein function in normal, tumor and senescent human cells

    OpenAIRE

    Rossmeislová, Lenka

    2007-01-01

    Promyelocytic leukemia protein (PML) gene encodes a nuclear protein localizing into the nucleoplasm and distinct nuclear bodies, referred to as PML nuclear bodies (PML NBs). PML is now considered as a gene with tumor-suppressive properties since it is implicated in many nuclear functions affecting cellular proliferation, apoptosis and senescence. The presented work is a part of a larger project that aims to clarify the regulation of promyelocytic leukemia protein expression and investigates t...

  6. Ankaferd Blood Stopper induces apoptosis and regulates PAR1 and EPCR expression in human leukemia cells

    Directory of Open Access Journals (Sweden)

    Mine Mumcuoglu

    2015-01-01

    Conclusion: This study concludes that depending on the concentration and duration of the application, ABS causes apoptosis by regulating PAR1 and p53-independent p21 involvement in apoptosis stimulation in leukemia cells. The composition of ABS plant extracts might be responsible from the apoptotic effect that was observed. We think that our results could contribute to the development of new treatment for leukemia therapy.

  7. Inhibitory processes for critical situations – The role of n-2 task repetition costs in human multitasking situations

    Directory of Open Access Journals (Sweden)

    Miriam eGade

    2012-05-01

    Full Text Available The human cognitive system is equipped with various processes for dealing with everyday challenges. One of such processes is the inhibition of currently irrelevant goals or mental task sets, which can be seen as a response to the critical event of information overflow in the cognitive system and the cognitive system’s inability to keep track of ongoing demands. In two experiments, we investigate the flexibility of the inhibitory process by inserting rare non-critical events (25% of all trials, operationalized as univalent stimuli (i.e., unambiguous stimuli that call for only one specific task in a multitasking context, and by introducing the possibility to prepare for an upcoming task (Experiment 2. We found that the inhibitory process is not influenced by a cue informing subjects about the upcoming occurrence of a univalent stimulus. However, the introduction of univalent stimuli allowed preparatory processes to modify the impact of the inhibitory process. Therefore, our results suggest that inhibitory processes are engaged in a rather global manner, not taking into account variations in stimulus valence, which we took as operationalization of critical, conflict-inducing events in the ongoing stream of information processing. However, rare uncritical events, such as univalent stimuli that do not cause conflict and interference in the processing stream, appear to alter the way the cognitive system can take advantage of preparatory processes.

  8. Quantitative analysis of human herpesvirus-6 and human cytomegalovirus in blood and saliva from patients with acute leukemia.

    Science.gov (United States)

    Nefzi, Faten; Ben Salem, Nabil Abid; Khelif, Abderrahim; Feki, Salma; Aouni, Mahjoub; Gautheret-Dejean, Agnès

    2015-03-01

    Human herpesvirus-6 (HHV-6) and human cytomegalovirus (HCMV) DNAs were quantified by real-time PCR assays in blood and saliva obtained from 50 patients with acute leukemia at the time of diagnosis (50 of each matrix), aplasia (65 of each matrix), remission (55 of each matrix), and relapse (20 of each matrix) to evaluate which biological matrix was more suitable to identify a viral reactivation, search for a possible link between HHV-6 and HCMV reactivations, and evaluate the relations between viral loads and count of different leukocyte types in blood. The median HHV-6 loads were 136; 219; 226, and 75 copies/million cells in blood at diagnosis, aplasia, remission and relapse, respectively. The HCMV loads were 193 and 317 copies/million cells in blood at diagnosis and remission. In the saliva samples, the HHV-6 loads were 22,165; 15,238; 30,214, and 17,454 copies/million cells at diagnosis, aplasia, remission, and relapse, respectively. The HCMV loads were 8,991; 1,461; 2,980, and 4,283 copies/million cells at diagnosis, aplasia, remission, and relapse, respectively. The HHV-6 load in the blood was correlated to the counts of polymorphonuclear leukocytes (R(2)  = 0.5; P blood in the detection of HHV-6 or HCMV reactivations. The HHV-6 and HCMV reactivations were linked only in saliva. © 2014 Wiley Periodicals, Inc.

  9. Effects of leukemia inhibitory factor and insulin-like growth factor-I on the cell allocation and cryotolerance of bovine blastocysts.

    Science.gov (United States)

    Kocyigit, Alper; Cevik, Mesut

    2015-08-01

    The present study examined the developmental capacity and cryotolerance of cultured bovine embryos in defined media (synthetic oviduct fluid, SOF) supplemented with insulin-like growth factor I (IGF-I) and leukemia inhibitor factor (LIF). The objectives of the present study were: (1) to examine the effects IGF-I and LIF on bovine embryo development potential and (2) to investigate the cryotolerance and survivability of vitrified blastocysts obtained from embryos cultured in a defined media. We studied the development of bovine embryos produced in vitro and cultured (in four different treatments) until Day 7 after fertilization. In Experiment 1, zygotes were cultured to the blastocyst stage and differentially stained for determine the count of cells. In Experiment 2, zygotes were vitrified before staining. LIF alone or combined with IGF-I was significantly effective on in vitro bovine embryo development especially ratio to reach blastocyst. The cells for both ICM and TE decreased by the effect of freezing in all treatment groups in the Experiment 2 compared with Experiment 1. Interestingly, the LIF treatment showed fewest variations. In addition to this, for average number of ICM and TE cells, LIF treatment showed fewest variation compared with other treatments (ICM: 23.5 vs 19.5, TE: 53.6 vs 51). These results are the first to demonstrate that the addition of IGF-I along with LIF to the culture medium was found to be beneficial for bovine embryonic development based on cellular cryotolerance after vitrification. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The human CD38 monoclonal antibody daratumumab shows antitumor activity and hampers leukemia-microenvironment interactions in chronic lymphocytic leukemia

    DEFF Research Database (Denmark)

    Matas-Céspedes, Alba; Vidal-Crespo, Anna; Rodriguez, Vanina

    2017-01-01

    mononuclear cells to analyze antibodydependent cell cytotoxicity (ADCC), murine and human macrophages to study antibody-dependent cell phagocytosis (ADCP), or human serum to analyze complement-dependent cytotoxicity (CDC). The effect of daratumumab on CLL cell migration and adhesion to extracellular matrix...... was characterized. Daratumumab activity was validated in two in vivo models. Results: Daratumumab demonstrated efficient lysis of patientderived CLL cells and cell lines by ADCC in vitro and ADCP both in vitro and in vivo whereas exhibited negligible CDC in these cells. To demonstrate the therapeutic effect...

  11. Stress-related changes of benzodiazepine binding inhibitory activity (B.B.I.A.) in humans.

    Science.gov (United States)

    Marazziti, D; Michelini, S; Giannaccini, G; Martini, C; Castrogiovanni, P; Cassano, G B; Lucacchini, A

    1990-01-01

    The presence of benzodiazepine binding inhibitory activity (B.B.I.A.) in sera from 44 psychiatric patients and from 14 healthy volunteers, prompted us to investigate whether or not this activity underwent changes in stressful situations. We measured the inhibitory units (IU) of deproteinized sera of 12 subjects, immediately before and 2 weeks after sitting for a difficult university exam. Our results showed significantly higher IU values (i.e., higher B.B.I.A. concentrations) in the samples taken just before the exam. This preliminary finding clearly suggests the involvement of B.B.I.A. in anxiety mechanisms.

  12. Modeling BCR-ABL and MLL-AF9 leukemia in a human bone marrow-like scaffold-based xenograft model

    NARCIS (Netherlands)

    Sontakke, P.; Carretta, M.; Jaques, J.; Brouwers-Vos, A. Z.; Lubbers-Aalders, L.; Yuan, H.; de Bruijn, J. D.; Martens, A. C. M.; Vellenga, E.; Groen, R. W. J.; Schuringa, J. J.

    2016-01-01

    Although NOD-SCID IL2R gamma(-/-) (NSG) xenograft mice are currently the most frequently used model to study human leukemia in vivo, the absence of a human niche severely hampers faithful recapitulation of the disease. We used NSG mice in which ceramic scaffolds seeded with human mesenchymal stromal

  13. Modeling BCR-ABL and MLL-AF9 leukemia in a human bone marrow-like scaffold-based xenograft mode

    NARCIS (Netherlands)

    Sontakke, P.; Carretta, M.; Jaques, J.; Brouwers-Vos, A.Z.; Lubbers-Aalders, L.; Yuan, Huipin; de Bruijn, Joost Dick; Martens, ACM; Vellenga, E.; Groen, R.W.J.; Schuringa, J.J.

    2016-01-01

    Although NOD-SCID IL2Rγ−/− (NSG) xenograft mice are currently the most frequently used model to study human leukemia in vivo, the absence of a human niche severely hampers faithful recapitulation of the disease. We used NSG mice in which ceramic scaffolds seeded with human mesenchymal stromal cells

  14. Effects of excitatory and inhibitory neurotransmission on motor patterns of human sigmoid colon in vitro

    Science.gov (United States)

    Aulí, M; Martínez, E; Gallego, D; Opazo, A; Espín, F; Martí-Gallostra, M; Jiménez, M; Clavé, P

    2008-01-01

    Background and purpose: To characterize the in vitro motor patterns and the neurotransmitters released by enteric motor neurons (EMNs) in the human sigmoid colon. Experimental approach: Sigmoid circular strips were studied in organ baths. EMNs were stimulated by electrical field stimulation (EFS) and through nicotinic ACh receptors. Key results: Strips developed weak spontaneous rhythmic contractions (3.67±0.49 g, 2.54±0.15 min) unaffected by the neurotoxin tetrodotoxin (TTX; 1 μM). EFS induced strong contractions during (on, 56%) or after electrical stimulus (off, 44%), both abolished by TTX. Nicotine (1–100 μM) inhibited spontaneous contractions. Latency of off-contractions and nicotine responses were reduced by NG-nitro-L-arginine (1 mM) and blocked after further addition of apamin (1 μM) or the P2Y1 receptor antagonist MRS 2179 (10 μM) and were unaffected by the P2X antagonist NF279 (10 μM) or α-chymotrypsin (10 U mL−1). Amplitude of on- and off-contractions was reduced by atropine (1 μM) and the selective NK2 receptor antagonist Bz-Ala-Ala-D-Trp-Phe-D-Pro-Pro-Nle-NH2 (1 μM). MRS 2179 reduced the amplitude of EFS on- and off-contractions without altering direct muscular contractions induced by ACh (1 nM–1 mM) or substance P (1 nM–10 μM). Conclusions and implications: Latency of EFS-induced off-contractions and inhibition of spontaneous motility by nicotine are caused by stimulation of inhibitory EMNs coreleasing NO and a purine acting at muscular P2Y1 receptors through apamin-sensitive K+ channels. EFS-induced on- and off-contractions are caused by stimulation of excitatory EMNs coreleasing ACh and tachykinins acting on muscular muscarinic and NK2 receptors. Prejunctional P2Y1 receptors might modulate the activity of excitatory EMNs. P2Y1 and NK2 receptors might be therapeutic targets for colonic motor disorders. PMID:18846038

  15. Diffuse noxious inhibitory control evoked by tonic craniofacial pain in humans

    DEFF Research Database (Denmark)

    Sowman, Paul Fredrick; Wang, Kelun; Svensson, P

    2011-01-01

    Tonic pain in one body segment can inhibit the perception of pain in another body segment. This phenomenon is mediated by diffuse noxious inhibitory controls (DNIC), and its efficacy in craniofacial regions is investigated in this study. A compressive device that evoked a tonic, moderate...

  16. Study on the inhibitory effect of allicin on human gastric cancer cell line SGC-7901 and its mechanism.

    Science.gov (United States)

    Tao, Mei; Gao, Linghan; Pan, Jie; Wang, Xiaoye

    2014-01-01

    Allicin is the main active constituent of Allium sativum L., which is characterized by broad antibacterial spectrum (MarkosN et al., 2008; Chen et al., 2008); it also has apparent inhibitory effects on a variety of tumors. The Objective of the paper is to study the inhibitory effect of allicin on human gastric cancer cell line SGC-7901. MTT assay and flow cytometry technique were applied to determine the inhibition rate of allicin on human gastric cancer cell line SGC-7901. The results shows that different concentrations of allicin apparently inhibited the gastric cancer SGC7901 cells, cell growth inhibition rates in the experimental groups showed an upward trend with increased allicin concentration, which were concentration-dependent. Flow cytometry results found that the cell cycle was arrested in the G2/M phase. Allicin has an apparent inhibitory effect on proliferation of gastric cancer cells, and can induce their apoptosis. Compared with other chemotherapeutic drugs, allicin's anti-tumor effect is better; and toxic and side effects are relatively small.

  17. Mouse Lymphoblastic Leukemias Induced by Aberrant Prdm14 Expression Demonstrate Widespread Copy Number Alterations Also Found in Human ALL

    Energy Technology Data Exchange (ETDEWEB)

    Simko, Stephen J., E-mail: simko@bcm.edu [Baylor College of Medicine, Department of Pediatrics, Texas Children’s Cancer and Hematology Centers, One Baylor Plaza, Houston, TX 77030 (United States); Voicu, Horatiu [Baylor College of Medicine, Dan L. Duncan Cancer Center, One Baylor Plaza, Houston, TX 77030 (United States); Carofino, Brandi L. [Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030 (United States); Baylor College of Medicine, Interdepartmental Program in Translational Biology and Molecular Medicine, One Baylor Plaza, Houston, TX 77030 (United States); Justice, Monica J. [Baylor College of Medicine, Dan L. Duncan Cancer Center, One Baylor Plaza, Houston, TX 77030 (United States); Baylor College of Medicine, Department of Molecular and Human Genetics, One Baylor Plaza, Houston, TX 77030 (United States)

    2012-10-18

    Aberrant expression and activation of oncogenes in somatic cells has been associated with cancer initiation. Required for reacquisition of pluripotency in the developing germ cell, PRDM14 initiates lymphoblastic leukemia when misexpressed in murine bone marrow. Activation of pluripotency in somatic cells can lead to aneuploidy and copy number alterations during iPS cell generation, and we hypothesized that PRDM14-induced lymphoblastic leukemias would demonstrate significant chromosomal damage. High-resolution oligo array comparative genomic hybridization demonstrated infrequent aneuploidy but frequent amplification and deletion, with amplifications occurring in a 5:1 ratio with deletions. Many deletions (i.e., Cdkn2a, Ebf1, Pax5, Ikzf1) involved B-cell development genes and tumor suppressor genes, recapitulating deletions occurring in human leukemia. Pathways opposing senescence were frequently deactivated via Cdkn2a deletion or Tbx2 amplification, with corollary gene expression. Additionally, gene expression studies of abnormal pre-leukemic B-precursors showed downregulation of genes involved in chromosomal stability (i.e., Xrcc6) and failure to upregulate DNA repair pathways. We propose a model of leukemogenesis, triggered by pluripotency genes like Prdm14, which involves ongoing DNA damage and failure to activate non-homologous end-joining secondary to aberrant gene expression.

  18. Induction of retinoic acid receptor-alpha by granulocyte macrophage colony-stimulating factor in human myeloid leukemia cell lines.

    Science.gov (United States)

    Shimizu, T; Takeda, K

    2000-08-15

    We reported previously that treatment with all-trans retinoic acid (ATRA) and granulocyte macrophage colony-stimulating factor (GM-CSF) induces differentiation of human myeloblastic leukemia ML-1 cells to granulocytes, whereas treatment with ATRA alone induces practically no differentiation of these cells. To investigate the mechanism of the synergistic effect of these factors, we examined the effect of GM-CSF on retinoic acid receptors (RARs) and retinoid X receptors (RXRs) in ML-1 cells. We reveal that GM-CSF induces the expression of RAR alpha mRNA and protein and stimulates the binding of nuclear proteins to direct repeat 5, a consensus sequence with high affinity for RAR-RXR heterodimers. Furthermore, expression of CD38 mRNA mediated through RAR alpha is induced synergistically by treatment with ATRA + GM-CSF. These results suggest that GM-CSF stimulates transcriptional activity mediated via RAR alpha in ML-1 cells. The induction of RAR alpha by GM-CSF may therefore be a mechanism for stimulation by GM-CSF. The induction of RAR alpha by GM-CSF was also detected in other myeloid leukemia cell lines (THP-1 and KG-1) that showed a synergistic effect similar to that seen in ML-1 cells in response to ATRA + GM-CSF. We also found that GM-CSF induced the expression of RAR alpha in blood cells obtained from patients with acute myeloid leukemia. This activity of GM-CSF may serve as a useful adjunct to differentiation therapy for retinoic acid-nonresponsive leukemias.

  19. DNA Damage, Cell Cycle Arrest, and Apoptosis Induction Caused by Lead in Human Leukemia Cells.

    Science.gov (United States)

    Yedjou, Clement G; Tchounwou, Hervey M; Tchounwou, Paul B

    2015-12-22

    In recent years, the industrial use of lead has been significantly reduced from paints and ceramic products, caulking, and pipe solder. Despite this progress, lead exposure continues to be a significant public health concern. The main goal of this research was to determine the in vitro mechanisms of lead nitrate [Pb(NO₃)₂] to induce DNA damage, apoptosis, and cell cycle arrest in human leukemia (HL-60) cells. To reach our goal, HL-60 cells were treated with different concentrations of Pb(NO₃)₂ for 24 h. Live cells and necrotic death cells were measured by the propidium idiode (PI) assay using the cellometer vision. Cell apoptosis was measured by the flow cytometry and DNA laddering. Cell cycle analysis was evaluated by the flow cytometry. The result of the PI demonstrated a significant (p cell death in Pb(NO₃)₂-treated cells, indicative of membrane rupture by Pb(NO₃)₂ compared to the control. Data generated from the comet assay indicated a concentration-dependent increase in DNA damage, showing a significant increase (p cells (apoptotic cells) compared to the control. The flow cytometry assessment also indicated Pb(NO₃)₂ exposure caused cell cycle arrest at the G₀/G₁ checkpoint. The result of DNA laddering assay showed presence of DNA smear in the agarose gel with little presence of DNA fragments in the treated cells compared to the control. In summary, Pb(NO₃)₂ inhibits HL-60 cells proliferation by not only inducing DNA damage and cell cycle arrest at the G₀/G₁ checkpoint but also triggering the apoptosis through caspase-3 activation and nucleosomal DNA fragmentation accompanied by secondary necrosis. We believe that our study provides a new insight into the mechanisms of Pb(NO₃)₂ exposure and its associated adverse health effects.

  20. Chronic myelogenous leukemia (CML)

    Science.gov (United States)

    CML; Chronic myeloid leukemia; Chronic granulocytic leukemia; Leukemia - chronic granulocytic ... nuclear disaster. It takes many years to develop leukemia from radiation exposure. Most people treated for cancer ...

  1. Anti-proliferative lichen compounds with inhibitory activity on 12(S)-HETE production in human platelets.

    Science.gov (United States)

    Bucar, F; Schneider, I; Ogmundsdóttir, H; Ingólfsdóttir, K

    2004-11-01

    Several lichen compounds, i.e. lobaric acid (1), a beta-orcinol depsidone from Stereocaulon alpinum L., (+)-protolichesterinic acid (2), an aliphatic alpha-methylene-gamma-lactone from Cetraria islandica Laur. (Parmeliaceae), (+)-usnic acid (3), a dibenzofuran from Cladonia arbuscula (Wallr.) Rabenh. (Cladoniaceae), parietin (4), an anthraquinone from Xanthoria elegans (Link) Th. Fr. (Calaplacaceae) and baeomycesic acid (5), a beta-orcinol depside isolated from Thamnolia vermicularis (Sw.) Schaer. var. subuliformis (Ehrh.) Schaer. were tested for inhibitory activity on platelet-type 12(S)-lipoxygenase using a cell-based in vitro system in human platelets. Lobaric acid (1) and (+)-protolichesterinic acid (2) proved to be pronounced inhibitors of platelet-type 12(S)-lipoxygenase, whereas baeomycesic acid (5) showed only weak activity (inhibitory activity at a concentration of 100 microg/ml: (1) 93.4+/-6.62%, (2) 98,5+/-1.19%, 5 14.7+/-2.76%). Usnic acid (3) and parietin (4) were not active at this concentration. 1 and 2 showed a clear dose-response relationship in the range of 3.33-100 microg/ml. According to the calculated IC50 values the highest inhibitory activity was observed for the depsidone 1 (IC50 = 28.5 microM) followed by 2 (IC50 = 77.0 microM). The activity of 1 was comparable to that of the flavone baicalein, which is known as a selective 12(S)-lipoxygenase inhibitor (IC50 = 24.6 microM).

  2. A peptide derived from the CD loop-D helix region of ciliary neurotrophic factor (CNTF) induces neuronal differentiation and survival by binding to the leukemia inhibitory factor (LIF) receptor and common cytokine receptor chain gp130.

    Science.gov (United States)

    Rathje, Mette; Pankratova, Stanislava; Nielsen, Janne; Gotfryd, Kamil; Bock, Elisabeth; Berezin, Vladimir

    2011-12-01

    Ciliary neurotrophic factor (CNTF) induces neuronal differentiation and promotes the survival of various neuronal cell types by binding to a receptor complex formed by CNTF receptor α (CNTFRα), gp130, and the leukemia inhibitory factor (LIF) receptor (LIFR). The CD loop-D helix region of CNTF has been suggested to be important for the cytokine interaction with LIFR. We designed a peptide, termed cintrofin, that encompasses this region. Surface plasmon resonance analysis demonstrated that cintrofin bound to LIFR and gp130, but not to CNTFRα, with apparent KD values of 35 nM and 1.1 nM, respectively. Cintrofin promoted the survival of cerebellar granule neurons (CGNs), in which cell death was induced either by potassium withdrawal or H2O2 treatment. Cintrofin induced neurite outgrowth from CGNs, and this effect was inhibited by specific antibodies against both gp130 and LIFR, indicating that these receptors are involved in the effects of cintrofin. The C-terminal part of the peptide, corresponding to the D helix region of CNTF, was shown to be essential for the neuritogenic action of the peptide. CNTF and LIF induced neurite outgrowth in CGNs plated on laminin-coated slides. On uncoated slides, CNTF and LIF had no neuritogenic effect but were able to inhibit cintrofin-induced neuronal differentiation, indicating that cintrofin and cytokines compete for the same receptors. In addition, cintrofin induced the phosphorylation of STAT3, Akt, and ERK, indicating that it exerts cell signaling properties similar to those induced by CNTF and may be a valuable survival agent with possible therapeutic potential. Copyright © 2011 Elsevier GmbH. All rights reserved.

  3. The Phosphoinositide 3-Kinase p110α Isoform Regulates Leukemia Inhibitory Factor Receptor Expression via c-Myc and miR-125b to Promote Cell Proliferation in Medulloblastoma

    Science.gov (United States)

    von Bueren, André O.; Ćwiek, Paulina; Rehrauer, Hubert; Djonov, Valentin; Anderle, Pascale; Arcaro, Alexandre

    2015-01-01

    Medulloblastoma (MB) is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K) pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi)-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α) was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH) subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation. PMID:25915540

  4. The Phosphoinositide 3-Kinase p110α Isoform Regulates Leukemia Inhibitory Factor Receptor Expression via c-Myc and miR-125b to Promote Cell Proliferation in Medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Fabiana Salm

    Full Text Available Medulloblastoma (MB is the most common malignant brain tumor in childhood and represents the main cause of cancer-related death in this age group. The phosphoinositide 3-kinase (PI3K pathway has been shown to play an important role in the regulation of medulloblastoma cell survival and proliferation, but the molecular mechanisms and downstream effectors underlying PI3K signaling still remain elusive. The impact of RNA interference (RNAi-mediated silencing of PI3K isoforms p110α and p110δ on global gene expression was investigated by DNA microarray analysis in medulloblastoma cell lines. A subset of genes with selectively altered expression upon p110α silencing in comparison to silencing of the closely related p110δ isoform was revealed. Among these genes, the leukemia inhibitory factor receptor α (LIFR α was validated as a novel p110α target in medulloblastoma. A network involving c-Myc and miR-125b was shown to be involved in the control of LIFRα expression downstream of p110α. Targeting the LIFRα by RNAi, or by using neutralizing reagents impaired medulloblastoma cell proliferation in vitro and induced a tumor volume reduction in vivo. An analysis of primary tumors revealed that LIFRα and p110α expression were elevated in the sonic hedgehog (SHH subgroup of medulloblastoma, indicating its clinical relevance. Together, these data reveal a novel molecular signaling network, in which PI3K isoform p110α controls the expression of LIFRα via c-Myc and miR-125b to promote MB cell proliferation.

  5. Childhood Leukemia

    Science.gov (United States)

    Leukemia is cancer of the white blood cells. It is the most common type of childhood cancer. ... blood cells help your body fight infection. In leukemia, the bone marrow produces abnormal white blood cells. ...

  6. Co-operative leukemogenesis in acute myeloid leukemia and acute promyelocytic leukemia reveals C/EBPα as a common target of TRIB1 and PML/RARA.

    Science.gov (United States)

    Keeshan, Karen; Vieugué, Pauline; Chaudhury, Shahzya; Rishi, Loveena; Gaillard, Coline; Liang, Lu; Garcia, Elaine; Nakamura, Takuro; Omidvar, Nader; Kogan, Scott C

    2016-10-01

    The PML/RARA fusion protein occurs as a result of the t(15;17) translocation in the acute promyelocytic leukemia subtype of human acute myeloid leukemia. Gain of chromosome 8 is the most common chromosomal gain in human acute myeloid leukemia, including acute promyelocytic leukemia. We previously demonstrated that gain of chromosome 8-containing MYC is of central importance in trisomy 8, but the role of the nearby TRIB1 gene has not been experimentally addressed in this context. We have now tested the hypothesis that both MYC and TRIB1 have functional roles underlying leukemogenesis of trisomy 8 by using retroviral vectors to express MYC and TRIB1 in wild-type bone marrow and in marrow that expressed a PML/RARA transgene. Interestingly, although MYC and TRIB1 readily co-operated in leukemogenesis for wild-type bone marrow, TRIB1 provided no selective advantage to cells expressing PML/RARA. We hypothesized that this lack of co-operation between PML/RARA and TRIB1 reflected a common pathway for their effect: both proteins targeting the myeloid transcription factor C/EBPα. In support of this idea, TRIB1 expression abrogated the all-trans retinoic acid response of acute promyelocytic leukemia cells in vitro and in vivo Our data delineate the common and redundant inhibitory effects of TRIB1 and PML/RARA on C/EBPα providing a potential explanation for the lack of selection of TRIB1 in human acute promyelocytic leukemia, and highlighting the key role of C/EBPs in acute promyelocytic leukemia pathogenesis and therapeutic response. In addition, the co-operativity we observed between MYC and TRIB1 in the absence of PML/RARA show that, outside of acute promyelocytic leukemia, gain of both genes may drive selection for trisomy 8. Copyright© Ferrata Storti Foundation.

  7. Modeling of Chronic Myeloid Leukemia : An Overview of In Vivo Murine and Human Xenograft Models

    NARCIS (Netherlands)

    Sontakke, Pallavi; Jaques, Jenny; Vellenga, Edo; Schuringa, Jan Jacob

    2016-01-01

    Over the past years, a wide variety of in vivo mouse models have been generated in order to unravel the molecular pathology of Chronic Myeloid Leukemia (CML) and to develop and improve therapeutic approaches. These models range from (conditional) transgenic models, knock-in models, and murine bone

  8. Development Refractoriness of MLL-Rearranged Human B Cell Acute Leukemias to Reprogramming into Pluripotency

    NARCIS (Netherlands)

    Á. Muñoz-López (Álvaro); D. Romero-Moya (Damià); C. Prieto (Cristina); Ramos-Mejía, V. (Verónica); Agraz-Doblas, A. (Antonio); I. Varela (Ignacio); Buschbeck, M. (Marcus); Palau, A. (Anna); Carvajal-Vergara, X. (Xonia); Giorgetti, A. (Alessandra); Ford, A. (Anthony); M. Lako (Majlinda); Granada, I. (Isabel); Ruiz-Xivillé, N. (Neus); Rodríguez-Perales, S. (Sandra); Torres-Ruíz, R. (Raul); R.W. Stam (Ronald); Fuster, J.L. (Jose Luis); M.F. Fraga (Mario F.); Nakanishi, M. (Mahito); G. Cazzaniga (Gianni); Bardini, M. (Michela); Cobo, I. (Isabel); Bayon, G.F. (Gustavo F.); A.F. Fernández (Agustin F.); C. Bueno (Clara); P. Menéndez (Pablo)

    2016-01-01

    textabstractInduced pluripotent stem cells (iPSCs) are a powerful tool for disease modeling. They are routinely generated from healthy donors and patients from multiple cell types at different developmental stages. However, reprogramming leukemias is an extremely inefficient process. Few studies

  9. Epigenetic heterochromatin markers distinguish terminally differentiated leukocytes from incompletely differentiated leukemia cells in human blood

    Czech Academy of Sciences Publication Activity Database

    Popova, Evgenya Y.; Claxton, David F.; Lukášová, Emilie; Bird, Philip I.; Grigoryev, Sergei A.

    2006-01-01

    Roč. 34, č. 4 (2006), s. 453-462 ISSN 0301-472X R&D Projects: GA AV ČR(CZ) 1QS500040508 Institutional research plan: CEZ:AV0Z50040507 Keywords : terminal cell differentiation * chromatin structure * chronic myeloid leukemia Subject RIV: BO - Biophysics Impact factor: 3.408, year: 2006

  10. CITED2-mediated human hematopoietic stem cell maintenance is critical for acute myeloid leukemia

    NARCIS (Netherlands)

    Korthuis, P. M.; Berger, G.; Bakker, B.; Rozenyeld-Geugien, M.; Jaques, J.; de Haan, G.; Schuringa, J. J.; Vellenga, E.; Schepers, H.

    As the transcriptional coactivator CITED2 (CBP/p300-interacting-transactivator-with-an ED-rich-tail 2) can be overexpressed in acute myeloid leukemia (AML) cells, we analyzed the consequences of high CITED2 expression in normal and AML cells. CITED2 overexpression in normal CD34(+) cells resulted in

  11. Prevalence of human xenotropic murine leukemia virus-related gammaretrovirus (XMRV) in Dutch prostate cancer patients

    NARCIS (Netherlands)

    Verhaegh, G.W.C.T.; Jong, A.S. de; Smit, F.P.; Jannink, S.A.; Melchers, W.J.G.; Schalken, J.A.

    2011-01-01

    BACKGROUND: The occurrence of the retrovirus xenotropic murine leukemia virus (MLV)-related virus (XMRV) has been reported in prostate tissue of patients with prostate cancer (PrCa). Considering the potential great medical and social relevance of this discovery, we investigated whether this finding

  12. Optimal oligonucleotide sequences for TLR9 inhibitory activity in human cells: lack of correlation with TLR9 binding.

    Science.gov (United States)

    Ashman, Robert F; Goeken, J Adam; Latz, Eicke; Lenert, Petar

    2011-03-01

    Toll-like receptor (TLR)9 performs our innate response to bacterial DNA, warning us of the presence of infection. Inhibitory oligodeoxyribonucleotides (INH-ODN) have been developed that selectively block activation of mouse TLR9. Their inhibitory motif consisting of CCx(not-C)(not-C)xxGGG (x = any base) also reduces anti-DNA antibodies in lupus mice. The current study demonstrates that this motif also provides the sequences required to block TLR9 in human B cells and human embryonic kidney (HEK) cells transfected with human TLR9. However, extending the sequence by four to five bases at the 5' end enhanced activity and this enhancement was greater when a phosphorothioate (pS) backbone replaced the native phosphodiester (pO) backbone. A series of pO-backbone INH-ODN representing a 500-fold range of activity in biologic assays was shown to cover less than a 2.5-fold range of avidity for binding human TLR9-Ig fusion protein, eliminating TLR9 ectodomain binding as the explanation for sequence-specific differences in biologic activity. With few exceptions, the relative activity of INH-ODN in Namalwa cells and HEK/human TLR9 cells was similar to that seen in mouse B cells. INH-ODN activity in human peripheral blood B cells correlated significantly with the cell line data. These results favor the conclusion that although the backbone determines strength of TLR9 binding, critical recognition of the INH-ODN sequence necessary for biologic activity is performed by a molecule that is not TLR9. These studies also identify the strongest INH-ODN for human B cells, helping to guide the selection of INH-ODN sequences for therapeutics in any situation where inflammation is enhanced by TLR9.

  13. Environmental and chemotherapeutic agents induce breakage at genes involved in leukemia-causing gene rearrangements in human hematopoietic stem/progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Thys, Ryan G., E-mail: rthys@wakehealth.edu [Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016 (United States); Lehman, Christine E., E-mail: clehman@wakehealth.edu [Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1016 (United States); Pierce, Levi C.T., E-mail: Levipierce@gmail.com [Human Longevity, Inc., San Diego, California 92121 (United States); Wang, Yuh-Hwa, E-mail: yw4b@virginia.edu [Department of Biochemistry and Molecular Genetics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908-0733 (United States)

    2015-09-15

    Highlights: • Environmental/chemotherapeutic agents cause DNA breakage in MLL and CBFB in HSPCs. • Diethylnitrosamine-induced DNA breakage at MLL and CBFB shown for the first time. • Chemical-induced DNA breakage occurs at topoisomerase II cleavage sites. • Chemical-induced DNA breaks display a pattern similar to those in leukemia patients. • Long-term exposures suggested to generate DNA breakage at leukemia-related genes. - Abstract: Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the cells that make up the hematopoietic system in the human body, making their stability and resilience especially important. Damage to these cells can severely impact cell development and has the potential to cause diseases, such as leukemia. Leukemia-causing chromosomal rearrangements have largely been studied in the context of radiation exposure and are formed by a multi-step process, including an initial DNA breakage and fusion of the free DNA ends. However, the mechanism for DNA breakage in patients without previous radiation exposure is unclear. Here, we investigate the role of non-cytotoxic levels of environmental factors, benzene, and diethylnitrosamine (DEN), and chemotherapeutic agents, etoposide, and doxorubicin, in generating DNA breakage at the patient breakpoint hotspots of the MLL and CBFB genes in human HSPCs. These conditions represent exposure to chemicals encountered daily or residual doses from chemotherapeutic drugs. Exposure of HSPCs to non-cytotoxic levels of environmental chemicals or chemotherapeutic agents causes DNA breakage at preferential sites in the human genome, including the leukemia-related genes MLL and CBFB. Though benzene, etoposide, and doxorubicin have previously been linked to leukemia formation, this is the first study to demonstrate a role for DEN in the generation of DNA breakage at leukemia-specific sites. These chemical-induced DNA breakpoints coincide with sites of predicted topoisomerase II cleavage. The

  14. Human ACAT-1 and ACAT-2 inhibitory activities of pentacyclic triterpenes from the leaves of Lycopus lucidus TURCZ.

    Science.gov (United States)

    Lee, Woo Song; Im, Kyung-Ran; Park, Yong-Dae; Sung, Nack-Do; Jeong, Tae-Sook

    2006-02-01

    Acyl-CoA: cholesterol acyltransferase (ACAT) catalyzes the acylation of cholesterol to cholesteryl ester with long chain fatty acids and ACAT inhibition is a useful strategy for treating hypercholesterolemia or atherosclerosis. Pentacyclic triterpenes, ursolic acid (1), oleanolic acid (2), and betulinic acid (3) were isolated from the methanol extracts of the leaves of Lycopus lucidus TURCZ. by bioassay-guided fractionation. The structures of compounds 1-3 were elucidated by their spectroscopic data analysis. Among them, betulinic acid (3) exhibited more potent human ACAT-1 and ACAT-2 inhibitory activities with IC(50) values of 16.2+/-0.6 and 28.8+/-1.3 microM, respectively.

  15. Oligomannose-coated liposomes efficiently induce human T-cell leukemia virus-1-specific cytotoxic T lymphocytes without adjuvant.

    Science.gov (United States)

    Kozako, Tomohiro; Hirata, Shinya; Shimizu, Yoshitaka; Satoh, Yuichiro; Yoshimitsu, Makoto; White, Yohann; Lemonnier, François; Shimeno, Hiroshi; Soeda, Shinji; Arima, Naomichi

    2011-04-01

    Human T-cell leukemia virus-1 (HTLV-1) causes adult T-cell leukemia/lymphoma, which is an aggressive peripheral T-cell neoplasm. Insufficient T-cell response to HTLV-1 is a potential risk factor in adult T-cell leukemia/lymphoma. Efficient induction of antigen-specific cytotoxic T lymphocytes is important for immunological suppression of virus-infected cell proliferation and oncogenesis, but efficient induction of antigen-specific cytotoxic T lymphocytes has evaded strategies utilizing poorly immunogenic free synthetic peptides. Here, we examined the efficient induction of an HTLV-1-specific CD8+ T-cell response by oligomannose-coated liposomes (OMLs) encapsulating the human leukocyte antigen (HLA)-A*0201-restricted HTLV-1 Tax-epitope (OML/Tax). Immunization of HLA-A*0201 transgenic mice with OML/Tax induced an HTLV-1-specific gamma-interferon reaction, whereas immunization with epitope peptide alone induced no reaction. Upon exposure of dendritic cells to OML/Tax, the levels of CD86, major histocompatibility complex class I, HLA-A02 and major histocompatibility complex class II expression were increased. In addition, our results showed that HTLV-1-specific CD8+ T cells can be efficiently induced by OML/Tax from HTLV-1 carriers compared with epitope peptide alone, and these HTLV-1-specific CD8+ T cells were able to lyse cells presenting the peptide. These results suggest that OML/Tax is capable of inducing antigen-specific cellular immune responses without adjuvants and may be useful as an effective vaccine carrier for prophylaxis in tumors and infectious diseases by substituting the epitope peptide. © 2011 The Authors Journal compilation © 2011 FEBS.

  16. The influence of contralateral primary afferents on Ia inhibitory interneurones in humans.

    Science.gov (United States)

    Delwaide, P J; Pepin, J L

    1991-01-01

    1. Contralateral influences on short latency reciprocal inhibition between wrist extensor and flexor muscles were investigated in twenty-two healthy volunteers. Reciprocal inhibition, probably mediated through the Ia inhibitory interneurone, was measured by conditioning the flexor carpi radialis (FCR) H reflex by weak stimulation of the ipsilateral radial nerve. Maximum reciprocal inhibition occurring at a precise delay between conditioning and conditioned stimulations was taken as the test level of inhibition. 2. Contralateral median or radial nerves were stimulated at short intervals before the onset of reciprocal inhibition. The latter was increased by 8.6% after median nerve stimulation and decreased by 16.5% after radial nerve stimulation. 3. The contribution of sensory fibres in the two nerves to contralateral effects was investigated by stimulating purely sensory branches of the nerves. No clear modification of the contralateral reciprocal inhibition was observed. The effects produced by mixed nerve stimulation are thus likely to have been mediated by Ia fibres. 4. In three hemiplegic patients where reciprocal inhibition was reduced unilaterally, stimulation on the spastic side produced contralateral effects similar to those observed in normal subjects. This result indicates that contralateral effects are not mediated through the Ia inhibitory interneurone ipsilateral to the conditioning stimulus. 5. Since contralateral effects occur after short delays (2 ms, median nerve; 3 ms, radial nerve), we suggest a functional scheme in which the excitability of Ia inhibitory interneurones is modified by contralateral primary afferents via the interneurones activated by group I fibres, probably Ia fibres. The short delays indicate that the interneurone transmitting primary afferent influences to the contralateral side is probably excitatory. PMID:1895236

  17. Induction of apoptosis by sarijang, a bamboo salt sauce, in U937 human leukemia cells through the activation of caspases.

    Science.gov (United States)

    Choi, Eun-A; Park, Cheol; Han, Min-Ho; Lee, Jun Hyuk; Kim, Gi-Young; Choi, Byung Tae; Choi, Yung Hyun

    2013-08-01

    Sarijang is a bamboo salt soy sauce, containing extracts of Rhynchosia nulubilis, sulfur-fed duck, dried bark of Ulmus davidiana and Allium sativum, which has been demonstrated to exert anti-inflammatory and antitumor activity. However, the cellular and molecular mechanisms of action of sarijang have not yet been elucidated. In the present study, we investigated the pro-apoptotic effects of sarijang in an in vitro U937 human leukemia cell model. Treatment with sarijang resulted in a concentration-dependent growth inhibition of the cells, coupled with the characteristic morphological features of apoptosis. The induction of the apoptotic cell death of the U937 cells by sarijang exhibited a correlation with the upregulation of death receptor 4 (DR4), the downregulation of members of the inhibitor of apoptosis protein (IAP) family, including survivin and cellular IAP (cIAP)-1, and the cleavage of Bid. Apoptosis-inducing concentrations of sarijang also induced the activation of caspases (caspase-3, -8 and -9), accompanied by proteolytic degradation of poly(ADP-ribose)-polymerase, β-catenin and phospholipase C-γ1. However, the apoptosis induced by sarijang was significantly inhibited by z-VED-fmk, a pan-caspase inhibitor, which demonstrated the importance of caspases in the process. These results suggested that sarijang may be a potential chemotherapeutic agent for use in the control of U937 human leukemia cells. Further studies are required to identify the active compounds in sarijang.

  18. Immunopathogenesis of Human T-Cell Leukemia Virus Type-1-Associated Myelopathy/Tropical Spastic Paraparesis: Recent Perspectives

    Directory of Open Access Journals (Sweden)

    Mineki Saito

    2012-01-01

    Full Text Available Human T-cell leukemia virus type-1 (HTLV-1 is a replication-competent human retrovirus associated with two distinct types of disease only in a minority of infected individuals: the malignancy known as adult T-cell leukemia (ATL and a chronic inflammatory central nervous system disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. HAM/TSP is a chronic progressive myelopathy characterized by spastic paraparesis, sphincter dysfunction, and mild sensory disturbance in the lower extremities. Although the factors that cause these different manifestations of HTLV-1 infection are not fully understood, accumulating evidence from host population genetics, viral genetics, DNA expression microarrays, and assays of lymphocyte function suggests that complex virus-host interactions and the host immune response play an important role in the pathogenesis of HAM/TSP. Especially, the efficiency of an individual's cytotoxic T-cell (CTL response to HTLV-1 limits the HTLV-1 proviral load and the risk of HAM/TSP. This paper focuses on the recent advances in HAM/TSP research with the aim to identify the precise mechanisms of disease, in order to develop effective treatment and prevention.

  19. Investigation of the apoptotic effect of curcumin in human leukemia HL-60 cells by using flow cytometry.

    Science.gov (United States)

    Dikmen, Miriş; Canturk, Zerrin; Ozturk, Yusuf; Tunali, Yagmur

    2010-12-01

    Curcumin (diferuloylmethane), the major yellow pigment isolated from the turmeric (Curcuma longa), has received much attention due to several biological properties. Curcumin exhibits a variety of pharmacological effects including antitumor, anti-inflammatory, and anti-infectious activities. In the present study, the effects of curcumin on apoptosis in the acute promyelocytic human leukemia (HL-60) cells was evaluated. Cytotoxic effects of curcumin on HL-60 cells were determined by MTT. HL-60 cells underwent apoptosis on treatment with curcumin, as indicated by increased annexin V-binding capacity and caspase-3 activation with flow cytometric analysis. Concentrations of 15, 20, and 40 μM curcumin significantly reduced cell proliferations. When HL-60 cells were treated with 10, 15, 20, and 40 μM concentration of curcumin, apoptotic rates were determined as 1.2, 81.1, 84.5, and 88.6%, respectively. On the incubations with the concentrations of curcumin, caspase-3 expressions (+) were found to be elevated by 8.5, 18.6, 91.2, and 92.4%, respectively. It was shown that curcumin had significant cytotoxic and apoptotic effects on HL-60 cells. It was suggested that curcumin may have a potential therapeutic role for human leukemia.

  20. The effect of β-ionone on telomerase activity in the human leukemia cell line K562

    Directory of Open Access Journals (Sweden)

    Zohreh Faezizadeh

    2015-06-01

    Full Text Available Background: Telomerase is highly activated in most human cancer cells, therefore, its inhibition has been proposed as a novel and promising strategy for cancer therapy. Many plant-derived anticancer agents act through inhibition of telomerase activity and induction of apoptosis. β-ionone, a carotenoid compound isolated from Roseaceae, has been reported to possess anticancer properties. The present study was undertaken to examine the mechanism of β-ionone-induced apoptosis in human leukemia cell line K562 with special emphasis on its role in telomerase inhibition. Method: In this study the anti-proliferation effect of β-ionone on K562 cells was evaluated by MTT assay. Apoptosis rate was detected by Hoechst staining and flow cytometry analysis. Telomerase activity was measured by (TRAP ELISA assay. Results: Exposure of K562 cells to β-ionone caused a dose-dependent decrease in proliferation. Flow cytometry analysis and Hoechst staining showed that percentage of apoptotic cells markedly increased with an increase in β-ionone concentration. Compared to control cells, treatment of K562 cells with β-ionone resulted in a significant decrease of telomerase activity. Moreover, a positive correlation was detected between telomerase inhibition and apoptosis induction in the treated K562 cells. Conclusion: Based on these results, β-ionone is an appropriate candidate for inhibiting telomerase activity in K562 cells. Therefore, it may be utilized as a novel drug against some leukemia cell lines.

  1. The role of cyclin D2 and p21/waf1 in human T-cell leukemia virus type 1 infected cells

    Directory of Open Access Journals (Sweden)

    Pumfery Anne

    2004-04-01

    Full Text Available Abstract Background The human T-cell leukemia virus type 1 (HTLV-1 Tax protein indirectly influences transcriptional activation, signal transduction, cell cycle control, and apoptosis. The function of Tax primarily relies on protein-protein interactions. We have previously shown that Tax upregulates the cell cycle checkpoint proteins p21/waf1 and cyclin D2. Here we describe the consequences of upregulating these G1/S checkpoint regulators in HTLV-1 infected cells. Results To further decipher any physical and functional interactions between cyclin D2 and p21/waf1, we used a series of biochemical assays from HTLV-1 infected and uninfected cells. Immunoprecipitations from HTLV-1 infected cells showed p21/waf1 in a stable complex with cyclin D2/cdk4. This complex is active as it phosphorylates the Rb protein in kinase assays. Confocal fluorescent microscopy indicated that p21/waf1 and cyclin D2 colocalize in HTLV-1 infected, but not in uninfected cells. Furthermore, in vitro kinase assays using purified proteins demonstrated that the addition of p21/waf1 to cyclin D2/cdk4 increased the kinase activity of cdk4. Conclusion These data suggest that the p21/cyclin D2/cdk4 complex is not an inhibitory complex and that p21/waf1 could potentially function as an assembly factor for the cyclin D2/cdk4 complex in HTLV-1 infected cells. A by-product of this assembly with cyclin D2/cdk4 is the sequestration of p21/waf1 away from the cyclin E/cdk2 complex, allowing this active cyclin-cdk complex to phosphorylate Rb pocket proteins efficiently and push cells through the G1/S checkpoint. These two distinct functional and physical activities of p21/waf1 suggest that RNA tumor viruses manipulate the G1/S checkpoint by deregulating cyclin and cdk complexes.

  2. β-Elemene piperazine derivatives induce apoptosis in human leukemia cells through downregulation of c-FLIP and generation of ROS.

    Directory of Open Access Journals (Sweden)

    Zhiying Yu

    Full Text Available β-Elemene is an active component of the herb medicine Curcuma Wenyujin with reported antitumor activity. To improve its antitumor ability, five novel piperazine derivatives of β-elemene, 13-(3-methyl-1-piperazinyl-β-elemene (DX1, 13-(cis-3,5-dimethyl-1-piperazinyl-β-elemene (DX2, 13-(4-ethyl-1-piperazinyl-β-elemene (DX3, 13-(4-isopropyl-1-piperazinyl-β-elemene (DX4 and 13-piperazinyl-β-elemene (DX5, were synthesized. The antiproliferative and apoptotic effects of these derivatives were determined in human leukemia HL-60, NB4, K562 and HP100-1 cells. DX1, DX2 and DX5, which contain a secondary amino moiety, were more active in inhibiting cell growth and in inducing apoptosis than DX3 and DX4. The apoptosis induction ability of DX1 was associated with the generation of hydrogen peroxide (H(2O(2, a decrease of mitochondrial membrane potential (MMP, and the activation of caspase-8. Pretreatment with the antioxidants N-acetylcysteine and catalase completely blocked DX1-induced H(2O(2 production, but only partially its activation of caspase-8 and induction of apoptosis. HL-60 cells were more sensitive than its H(2O(2-resistant subclone HP100-1 cells to DX1-induced apoptosis. The activation of caspase-8 by these compounds was correlated with the decrease in the levels of cellular FLICE-inhibitory protein (c-FLIP. The proteasome inhibitor MG-132 augmented the decrease in c-FLIP levels and apoptosis induced by these derivatives. FADD- and caspase-8-deficient Jurkat subclones have a decreased response to DX1-induced apoptosis. Our data indicate that these novel β-elemene piperazine derivatives induce apoptosis through the decrease in c-FLIP levels and the production of H(2O(2 which leads to activation of both death receptor- and mitochondrial-mediated apoptotic pathways.

  3. 5-(2-Carboxyethenyl) isatin derivative induces G{sub 2}/M cell cycle arrest and apoptosis in human leukemia K562 cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yao; Zhao, Hong-Ye; Han, Kai-Lin; Yang, Yao; Song, Bin-Bin; Guo, Qian-Nan [Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Fan, Zhen-Chuan [Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457 (China); Obesita and Algaegen LLC, College Station, TX 77845 (United States); Zhang, Yong-Min [Université Pierre et Marie Curie-Paris 6, Institut Parisien de Chimie Moléculaire UMR CNRS 8232, 4 Place Jussieu, 75005 Paris (France); Teng, Yu-Ou, E-mail: tyo201485@tust.edu.cn [Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Yu, Peng, E-mail: yupeng@tust.edu.cn [Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China); Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457 (China)

    2014-08-08

    Highlights: • 5-(2-Carboxyethenyl) isatin derivative (HKL 2H) inhibited K562’s proliferation. • HKL 2H caused the morphology change of G{sub 2}/M phase arrest and typical apoptosis. • HKL 2H induced G2/M cell cycle phase arrest in K562 cells. • HKL 2H induced apoptosis in K562 cells through the mitochondrial pathway. - Abstract: Our previous study successfully identified that the novel isatin derivative (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl) acrylate (HKL 2H) acts as an anticancer agent at an inhibitory concentration (IC{sub 50}) level of 3 nM. In this study, the molecular mechanism how HKL 2H induces cytotoxic activity in the human chronic myelogenous leukemia K562 cells was investigated. Flow cytometric analysis showed that the cells were arrested in the G{sub 2}/M phase and accumulated subsequently in the sub-G{sub 1} phase in the presence of HKL 2H. HKL 2H treatment down-regulated the expressions of CDK1 and cyclin B but up-regulated the level of phosphorylated CDK1. Annexin-V staining and the classic DNA ladder studies showed that HKL 2H induced the apoptosis of K562 cells. Our study further showed that HKL 2H treatment caused the dissipation of mitochondrial membrane potential, activated caspase-3 and lowered the Bcl-2/Bax ratio in K562 cells, suggesting that the HKL 2H-causing programmed cell death of K562 cells was caused via the mitochondrial apoptotic pathway. Taken together, our data demonstrated that HKL 2H, a 5-(2-carboxyethenyl) isatin derivative, notably induces G{sub 2}/M cell cycle arrest and mitochondrial-mediated apoptosis in K562 cells, indicating that this compound could be a promising anticancer candidate for further investigation.

  4. Nerve growth factor receptor gene is at human chromosome region 17q12-17q22, distal to the chromosome 17 breakpoint in acute leukemias

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, K.; Isobe, M.; Chao, M.; Bothwell, M.; Ross, A.H.; Finan, J.; Hoxie, J.A.; Sehgal, A.; Buck, C.R.; Lanahan, A.

    1986-03-01

    Genomic and cDNA clones for the human nerve growth factor receptor have been used in conjunction with somatic cell hybrid analysis and in situ hybridization to localize the nerve growth factor receptor locus to human chromosome region 17q12-q22. Additionally, part, if not all, of the nerve growth factor receptor locus is present on the translocated portion of 17q (17q21-qter) from a poorly differential acute leukemia in which the chromosome 17 breakpoint was indistinguishable cytogenetically from the 17 breakpoint observed in the t(15;17)(q22;q21) translocation associated with acute promyelocytic leukemia. Thus the nerve growth factor receptor locus may be closely distal to the acute promyelocytic leukemia-associated chromosome 17 breakpoint at 17q21.

  5. Inducible nitric oxide synthase mediates DNA double strand breaks in Human T-Cell Leukemia Virus Type 1-induced leukemia/lymphoma.

    Science.gov (United States)

    Baydoun, Hicham H; Cherian, Mathew A; Green, Patrick; Ratner, Lee

    2015-08-12

    Adult T-cell leukemia/lymphoma (ATLL) is an aggressive and fatal malignancy of CD4(+) T-lymphocytes infected by the Human T-Cell Virus Type 1 (HTLV-1). The molecular mechanisms of transformation in ATLL have not been fully elucidated. However, genomic instability and cumulative DNA damage during the long period of latency is believed to be essential for HTLV-1 induced leukemogenesis. In addition, constitutive activation of the NF-κB pathway was found to be a critical determinant for transformation. Whether a connection exists between NF-κB activation and accumulation of DNA damage is not clear. We recently found that the HTLV-1 viral oncoprotein, Tax, the activator of the NF-κB pathway, induces DNA double strand breaks (DSBs). Here, we investigated whether any of the NF-κB target genes are critical in inducing DSBs. Of note, we found that inducible nitric oxide synthase (iNOS) that catalyzes the production of nitric oxide (NO) in macrophages, neutrophils and T-cells is over expressed in HTLV-1 infected and Tax-expressing cells. Interestingly, we show that in HTLV-1 infected cells, iNOS expression is Tax-dependent and specifically requires the activation of the classical NF-κB and JAK/STAT pathways. A dramatic reduction of DSBs was observed when NO production was inhibited, indicating that Tax induces DSBs through the activation of NO synthesis. Determination of the impact of NO on HTLV-1-induced leukemogenesis opens a new area for treatment or prevention of ATLL and perhaps other cancers in which NO is produced.

  6. Phyto-synthesis of silver nanoscale particles using Morinda citrifolia L. and its inhibitory activity against human pathogens.

    Science.gov (United States)

    Sathishkumar, Gnanasekar; Gobinath, Chandrakasan; Karpagam, Karuppiah; Hemamalini, Vedagiri; Premkumar, Kumpati; Sivaramakrishnan, Sivaperumal

    2012-06-15

    Leaf extract of Morinda citrifolia L. was assessed for the synthesis of silver nanoscale particles under different temperature and reaction time. Synthesized nanoscale (MCAgNPs) particles were confirmed by analysing the excitation of surface plasmon resonance (SPR) using UV-visible spectrophotometer at 420 nm. Further SEM, HRTEM analysis confirmed the range of particle size between 10 and 60 nm and SEAD pattern authorizes the face centered cubic (fcc) crystalline nature of the MCAgNPs. Fourier transform infrared spectrum (FTIR) of synthesized MCAgNPs confirms the presence of high amount of phenolic compounds in the plant extract which may possibly influence the reduction process and stabilization of nanoparticles. Further, inhibitory activity of MCAgNPs and plant extract were tested against human pathogens like Eschericia coli, Pseudomonas aeroginosa, Klebsiella pneumoniae, Enterobacter aerogenes, Bacillus cereus and Enterococci sp. The results indicated that the MCAgNPs showed moderate inhibitory actions against human pathogens than crude plant extract, demonstrating its antimicrobial value against pathogenic diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Transcriptional profiling of human monocytes identifies the inhibitory receptor CD300a as regulator of transendothelial migration.

    Directory of Open Access Journals (Sweden)

    Sharang Ghavampour

    Full Text Available Local inflammatory responses are characterized by the recruitment of circulating leukocytes from the blood to sites of inflammation, a process requiring the directed migration of leukocytes across the vessel wall and hence a penetration of the endothelial lining. To identify underlying signalling events and novel factors involved in these processes we screened for genes differentially expressed in human monocytes following their adhesion to and passage through an endothelial monolayer. Functional annotation clustering of the genes identified revealed an overrepresentation of those associated with inflammation/immune response, in particular early monocyte to macrophage differentiation. Among the gene products so far not implicated in monocyte transendothelial migration was the inhibitory immune receptor CD300a. CD300a mRNA and protein levels were upregulated following transmigration and engagement of the receptor by anti-CD300a antibodies markedly reduced monocyte transendothelial migration. In contrast, siRNA mediated downregulation of CD300a in human monocytes increased their rate of migration. CD300a colocalized and cosedimented with actin filaments and, when activated, caused F-actin cytoskeleton alterations. Thus, monocyte transendothelial migration is accompanied by an elevation of CD300a which serves an inhibitory function possibly required for termination of the actual transmigration.

  8. Integrin αVβ3 and αVβ5 are required for leukemia inhibitory factor-mediated the adhesion of trophoblast cells to the endometrial cells.

    Science.gov (United States)

    Chung, Tae-Wook; Park, Mi-Ju; Kim, Hyung Sik; Choi, Hee-Jung; Ha, Ki-Tae

    2016-01-22

    The embryo implantation including adhesion between trophoblast and endometrium is a crucial process for the successful pregnancy. LIF and adhesion molecules including integrins are known as significant factors for embryo implantation. However, the function of LIF on the regulation of adhesion molecule expression and promotion of trophoblast adhesion to endometrial cells has not been fully elucidated. Here we show that LIF significantly induced mRNA expression of ITGAV, ITGB3, and ITGB5 in endometrial cells, as evidenced by RT-PCR and qRT-PCR analysis. Based on the results from treatment of antagonist for LIF receptor (hLA), LIF positively regulates expression of integrin αV, β3, and β5, and adhesion of the human trophectoderm-derived JAr cells to endometrial Ishikawa cells. Furthermore, the adhesion between trophoblastic cells and LIF-stimulated endometrial cells was significantly reduced by neutralization of LIF-mediated integrin β3 and β5 expression on endometrial cell surface with integrin subunit β3 and β5 antibodies. Taken together, we firstly demonstrate that LIF enhances the adhesion of trophoblastic cells to endometrial cells by up-regulating expression of integrin heterodimer αVβ3 and αVβ5, indicating the promotion of endometrial receptivity for embryo implantation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. ChIP-seq Analysis of Human Chronic Myeloid Leukemia Cells.

    Science.gov (United States)

    Anders, Lars; Li, Zhaodong

    2016-01-01

    Many transcription factors, chromatin-associated proteins and regulatory DNA elements are genetically and/or epigenetically altered in cancer, including Chronic Myeloid Leukemia (CML). This leads to deregulation of transcription that is often causally linked to the tumorigenic state. Chromatin-immunoprecipitation coupled with massively parallel DNA sequencing (ChIP-seq) is the key technology to study transcription as it allows in vivo whole-genome mapping of epigenetic modifications and interactions of proteins with DNA or chromatin. However, numerous DNA/chromatin-binding proteins, including EZH2, remain difficult to "ChIP," thus yielding genome-wide binding maps of only suboptimal quality. Here, we describe a ChIP-seq protocol optimized for high-quality protein-genome binding maps that have proven especially useful for studying difficult to 'ChIP' transcription regulatory factors in Chronic Myeloid Leukemia (CML) and related malignancies.

  10. High throughput digital quantification of mRNA abundance in primary human acute myeloid leukemia samples

    Science.gov (United States)

    Payton, Jacqueline E.; Grieselhuber, Nicole R.; Chang, Li-Wei; Murakami, Mark; Geiss, Gary K.; Link, Daniel C.; Nagarajan, Rakesh; Watson, Mark A.; Ley, Timothy J.

    2009-01-01

    Acute promyelocytic leukemia (APL) is characterized by the t(15;17) chromosomal translocation, which results in fusion of the retinoic acid receptor α (RARA) gene to another gene, most commonly promyelocytic leukemia (PML). The resulting fusion protein, PML-RARA, initiates APL, which is a subtype (M3) of acute myeloid leukemia (AML). In this report, we identify a gene expression signature that is specific to M3 samples; it was not found in other AML subtypes and did not simply represent the normal gene expression pattern of primary promyelocytes. To validate this signature for a large number of genes, we tested a recently developed high throughput digital technology (NanoString nCounter). Nearly all of the genes tested demonstrated highly significant concordance with our microarray data (P < 0.05). The validated gene signature reliably identified M3 samples in 2 other AML datasets, and the validated genes were substantially enriched in our mouse model of APL, but not in a cell line that inducibly expressed PML-RARA. These results demonstrate that nCounter is a highly reproducible, customizable system for mRNA quantification using limited amounts of clinical material, which provides a valuable tool for biomarker measurement in low-abundance patient samples. PMID:19451695

  11. Development Refractoriness of MLL-Rearranged Human B Cell Acute Leukemias to Reprogramming into Pluripotency

    Directory of Open Access Journals (Sweden)

    Alvaro Muñoz-López

    2016-10-01

    Full Text Available Induced pluripotent stem cells (iPSCs are a powerful tool for disease modeling. They are routinely generated from healthy donors and patients from multiple cell types at different developmental stages. However, reprogramming leukemias is an extremely inefficient process. Few studies generated iPSCs from primary chronic myeloid leukemias, but iPSC generation from acute myeloid or lymphoid leukemias (ALL has not been achieved. We attempted to generate iPSCs from different subtypes of B-ALL to address the developmental impact of leukemic fusion genes. OKSM(L-expressing mono/polycistronic-, retroviral/lentiviral/episomal-, and Sendai virus vector-based reprogramming strategies failed to render iPSCs in vitro and in vivo. Addition of transcriptomic-epigenetic reprogramming “boosters” also failed to generate iPSCs from B cell blasts and B-ALL lines, and when iPSCs emerged they lacked leukemic fusion genes, demonstrating non-leukemic myeloid origin. Conversely, MLL-AF4-overexpressing hematopoietic stem cells/B progenitors were successfully reprogrammed, indicating that B cell origin and leukemic fusion gene were not reprogramming barriers. Global transcriptome/DNA methylome profiling suggested a developmental/differentiation refractoriness of MLL-rearranged B-ALL to reprogramming into pluripotency.

  12. Acute Modafinil Effects on Attention and Inhibitory Control in Methamphetamine-Dependent Humans*

    Science.gov (United States)

    Dean, Andy C.; Sevak, Rajkumar J.; Monterosso, John R.; Hellemann, Gerhard; Sugar, Catherine A.; London, Edythe D.

    2011-01-01

    Objective: Individuals who are methamphetamine dependent exhibit higher rates of cognitive dysfunction than healthy people who do not use methamphetamine, and this dysfunction may have a negative effect on the success of behavioral treatments for the disorder. Therefore, a medication that improves cognition, such as modafinil (Provigil), may serve as a useful adjunct to behavioral treatments for methamphetamine dependence. Although cognitive-enhancing effects of modafinil have been reported in several populations, little is known about the effects of modafinil in methamphetamine-dependent individuals. We thus sought to evaluate the effects of modafinil on the cognitive performance of methamphetamine-dependent and healthy individuals. Method: Seventeen healthy subjects and 24 methamphetamine-dependent subjects participated in this randomized, double-blind, placebo-controlled, crossover study. Effects of modafinil (200 mg, single oral dose) were assessed on participants’ performance on tests of inhibitory control, working memory, and processing speed/attention. Results: Across subjects, modafinil improved performance on a test of sustained attention, with no significant improvement on any other cognitive tests. However, within the methamphetamine-dependent group only, participants with a high baseline frequency of methamphetamine use demonstrated a greater effect of modafinil on tests of inhibitory control and processing speed than those participants with low baseline use of methamphetamine. Conclusions: Although modafinil produced limited effects across all participants, methamphetamine-dependent participants with a high baseline use of methamphetamine demonstrated significant cognitive improvement on modafinil relative to those with low baseline methamphetamine use. These results add to the findings from a clinical trial that suggested that modafinil may be particularly useful in methamphetamine-dependent subjects who use the drug frequently. PMID:22051208

  13. Induction of human leukemia cell differentiation via PKC/MAPK pathways by arsantin, a sesquiterpene lactone from Artemisia santolina.

    Science.gov (United States)

    Kweon, Sin Ho; Song, Ju Han; Kim, Hee Jin; Kim, Tae Sung; Choi, Bo Gil

    2015-11-01

    Sesquiterpene lactone compounds have received considerable attention in pharmacological research due to their therapeutic effects including anti-cancer and anti-inflammatory activities. In this report, we investigated the effect of arsantin, a sesquiterpene lactone compound present in Artemisia santolina, on cellular differentiation in the human promyelocytic leukemia HL-60 cell culture system. Arsantin significantly induced HL-60 cell differentiation in a concentration-dependent manner. Cytofluorometric analysis indicated that arsantin induced HL-60 cell differentiation predominantly into granulocytes. Both PKC and MAPK inhibitors suppressed the HL-60 cell differentiation induced by arsantin. Moreover, treatment with arsantin increased protein levels of PKCα and PKCβII isoforms, and also induced increased protein levels and phosphorylation form of MAPKs in HL-60 cells. Importantly, arsantin synergistically enhanced differentiation of HL-60 cells in a dose-dependent manner when combined with either low doses of 1,25-(OH)2D3 or ATRA. The ability to enhance the differentiation potential of 1,25-(OH)2D3 or ATRA by arsantin may improve outcomes in the therapy of acute promyelocytic leukemia.

  14. Human T-cell leukemia virus type 1 p8 protein increases cellular conduits and virus transmission.

    Science.gov (United States)

    Van Prooyen, Nancy; Gold, Heather; Andresen, Vibeke; Schwartz, Owen; Jones, Kathryn; Ruscetti, Frank; Lockett, Stephen; Gudla, Prabhakar; Venzon, David; Franchini, Genoveffa

    2010-11-30

    The human T-cell leukemia virus type 1 (HTLV-1) is the cause of adult T-cell leukemia/lymphoma as well as tropical spastic paraparesis/HTLV-1-associated myelopathy. HTLV-1 is transmitted to T cells through the virological synapse and by extracellular viral assemblies. Here, we uncovered an additional mechanism of virus transmission that is regulated by the HTLV-1-encoded p8 protein. We found that the p8 protein, known to anergize T cells, is also able to increase T-cell contact through lymphocyte function-associated antigen-1 clustering. In addition, p8 augments the number and length of cellular conduits among T cells and is transferred to neighboring T cells through these conduits. p8, by establishing a T-cell network, enhances the envelope-dependent transmission of HTLV-1. Thus, the ability of p8 to simultaneously anergize and cluster T cells, together with its induction of cellular conduits, secures virus propagation while avoiding the host's immune surveillance. This work identifies p8 as a viral target for the development of therapeutic strategies that may limit the expansion of infected cells in HTLV-1 carriers and decrease HTLV-1-associated morbidity.

  15. A Pan-BCL2 inhibitor renders bone-marrow-resident human leukemia stem cells sensitive to tyrosine kinase inhibition.

    Science.gov (United States)

    Goff, Daniel J; Court Recart, Angela; Sadarangani, Anil; Chun, Hye-Jung; Barrett, Christian L; Krajewska, Maryla; Leu, Heather; Low-Marchelli, Janine; Ma, Wenxue; Shih, Alice Y; Wei, Jun; Zhai, Dayong; Geron, Ifat; Pu, Minya; Bao, Lei; Chuang, Ryan; Balaian, Larisa; Gotlib, Jason; Minden, Mark; Martinelli, Giovanni; Rusert, Jessica; Dao, Kim-Hien; Shazand, Kamran; Wentworth, Peggy; Smith, Kristen M; Jamieson, Christina A M; Morris, Sheldon R; Messer, Karen; Goldstein, Lawrence S B; Hudson, Thomas J; Marra, Marco; Frazer, Kelly A; Pellecchia, Maurizio; Reed, John C; Jamieson, Catriona H M

    2013-03-07

    Leukemia stem cells (LSCs) play a pivotal role in the resistance of chronic myeloid leukemia (CML) to tyrosine kinase inhibitors (TKIs) and its progression to blast crisis (BC), in part, through the alternative splicing of self-renewal and survival genes. To elucidate splice-isoform regulators of human BC LSC maintenance, we performed whole-transcriptome RNA sequencing, splice-isoform-specific quantitative RT-PCR (qRT-PCR), nanoproteomics, stromal coculture, and BC LSC xenotransplantation analyses. Cumulatively, these studies show that the alternative splicing of multiple prosurvival BCL2 family genes promotes malignant transformation of myeloid progenitors into BC LSCS that are quiescent in the marrow niche and that contribute to therapeutic resistance. Notably, sabutoclax, a pan-BCL2 inhibitor, renders marrow-niche-resident BC LSCs sensitive to TKIs at doses that spare normal progenitors. These findings underscore the importance of alternative BCL2 family splice-isoform expression in BC LSC maintenance and suggest that the combinatorial inhibition of prosurvival BCL2 family proteins and BCR-ABL may eliminate dormant LSCs and obviate resistance. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Mastic oil from Pistacia lentiscus var. chia inhibits growth and survival of human K562 leukemia cells and attenuates angiogenesis.

    Science.gov (United States)

    Loutrari, Heleni; Magkouta, Sophia; Pyriochou, Anastasia; Koika, Vasiliki; Kolisis, Fragiskos N; Papapetropoulos, Andreas; Roussos, Charis

    2006-01-01

    Mastic oil from Pistacia lentiscus var. chia, a natural plant extract traditionally used as a food additive, has been extensively studied for its antimicrobial activity attributed to the combination of its bioactive components. One of them, perillyl alcohol (POH), displays tumor chemopreventive, chemotherapeutic, and antiangiogenic properties. We investigated whether mastic oil would also suppress tumor cell growth and angiogenesis. We observed that mastic oil concentration and time dependently exerted an antiproliferative and proapoptotic effect on K562 human leukemia cells and inhibited the release of vascular endothelial growth factor (VEGF) from K562 and B16 mouse melanoma cells. Moreover, mastic oil caused a concentration-dependent inhibition of endothelial cell (EC) proliferation without affecting cell survival and a significant decrease of microvessel formation both in vitro and in vivo. Investigation of underlying mechanism(s) demonstrated that mastic oil reduced 1) in K562 cells the activation of extracellular signal-regulated kinases 1/2 (Erk1/2) known to control leukemia cell proliferation, survival, and VEGF secretion and 2) in EC the activation of RhoA, an essential regulator of neovessel organization. Overall, our results underscore that mastic oil, through its multiple effects on malignant cells and ECs, may be a useful natural dietary supplement for cancer prevention.

  17. The process behind the expression of mdr-1/P-gp and mrp/MRP in human leukemia/lymphoma.

    Science.gov (United States)

    Hirose, Masao

    2009-04-01

    There is a controversy over the link between phenotypes of multidrug resistance (MDR) and clinical outcome in leukemia/lymphoma patients. This may be because the process behind the induction and loss of expression of genotypes and phenotypes by which MDR develops and the role of MDR in fresh cells of human leukemia/lymphoma are not clearly defined. P-glycoprotein (P-gp) increased and decreased along with mdr-1 expression in three cell lines out of five vincristine (VCR)-resistant cell lines. MRP appeared with increased mrp expression in the other two cell lines. After the drug was removed from the culture system, mdr-1/P-gp changed in parallel with the level of VCR resistance, although mrp and MRP did not. It was concluded that P-gp is directly derived from mdr-1 and that mdr-1/P-gp supports the VCR-resistance but mrp/MRP is not directly linked to the VCR-resistance. These results should contribute to a better understanding of MDR phenomenon in cancer.

  18. High prevalence of serum antibody against human T cell leukemia virus type I (HTLV-I) among the Bismam Asmat population (Indonesian New Guinea).

    Science.gov (United States)

    Re, M C; Tommaseo, M; Furlini, G; La Placa, M

    1989-10-01

    An unusually high prevalence (45%) of serum antibodies to human T cell leukemia virus type I (or to an antigenically related virus) in comparison with that observed against other viral pathogens (human immunodeficiency virus type 1, herpes simplex virus, human cytomegalovirus, varicella zoster virus, and respiratory syncytial virus) has been observed in a group of Bismam Asmat (Papua) subjects, living in a very limited and geographically isolated area of Indonesian New Guinea.

  19. Inhibitory effect of iron withdrawal by chelation on the growth of human and murine mammary carcinoma and fibrosarcoma cells.

    Science.gov (United States)

    Power Coombs, Melanie R; Grant, Taryn; Greenshields, Anna L; Arsenault, Daniel J; Holbein, Bruce E; Hoskin, David W

    2015-10-01

    Since iron uptake is essential for cell growth, rapidly dividing cancer cells are sensitive to iron depletion. To explore the effect of iron withdrawal on cancer cell growth, mouse and human mammary carcinoma cells (4T1 and MDA-MB-468, respectively) and mouse and human fibrosarcoma cells (L929 and HT1080, respectively) were cultured in the absence or presence of DIBI, a novel iron-chelating polymer containing hydroxypyridinone iron-ligand functionality. Cell growth was measured by a colorimetric assay for cell metabolic activity. DIBI-treated 4T1, MDA-MB-468, L929 and HT1080 cells, as well as their normal counterparts, showed a dose- and time-dependent reduction in growth that was selective for human cancer cells and mouse fibrosarcoma cells. The inhibitory effect of DIBI on fibrosarcoma and mammary carcinoma cell growth was reversed by addition of exogenous iron in the form of iron (III) citrate, confirming the iron selectivity of DIBI and that its inhibitory activity was iron-related. Fibrosarcoma and mammary carcinoma cell growth inhibition by DIBI was associated with S-phase cell cycle arrest and low to moderate levels of cell death by apoptosis. Consistent with apoptosis induction following DIBI-mediated iron withdrawal, fibrosarcoma and mammary carcinoma cells exhibited mitochondrial membrane permeabilization. A comparison of DIBI to other iron chelators showed that DIBI was superior to deferiprone and similar to or better than deferoxamine for inhibition of fibrosarcoma and mammary carcinoma cell growth. These findings suggest that iron withdrawal from the tumor microenvironment with a selective and potent iron chelator such as DIBI may prevent or inhibit tumor progression. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Inhibitory activity of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (higher Basidiomycetes) on transformed cells by human papillomavirus.

    Science.gov (United States)

    Hernández-Márquez, Eva; Lagunas-Martínez, Alfredo; Bermudez-Morales, Victor H; Burgete-García, Ana I; León-Rivera, Ismael; Montiel-Arcos, Elizur; García-Villa, Enrique; Gariglio, Patricio; Madrid-Marina V, Vicente; Ondarza-Vidaurreta, Raul N

    2014-01-01

    In this study, we investigated the effects of the aqueous extracts of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum, obtained from three localities (China; and Morelos and Michoacan, Mexico) on cervical cells transformed by human papillomavirus (HeLa and SiHa) and C-33A cancer cells. The cells were plated in DMEM medium supplemented, and were incubated in the presence of different concentrations of G. lucidum for 24 h. Cell proliferation was determined by MTT colorimetric assay and viability by trypan blue assay. Inhibitory dose was determined (IC50) of the three different extracts of G. lucidum in the culture cell lines mentioned above. The apoptosis process was confirmed by nuclear DNA fragmentation and the cell cycle was determined by flow cytometry. The results showed that aqueous extracts G. lucidum obtained from three localities produced inhibition in the proliferation of VPH transformed cells; they also induced apoptosis and cell cycle arrest in HeLa, SiHa, and C-33A cancer cells. Therefore, it was found that aqueous extracts G. lucidum obtained from three different locations produced inhibitory effect on cancer cells and may have a potential therapeutic use for the prevention and treatment of this disease.

  1. Inhibitory effect of three C-glycosylflavonoids from Cymbopogon citratus (Lemongrass) on human low density lipoprotein oxidation.

    Science.gov (United States)

    Orrego, Roxana; Leiva, Elba; Cheel, José

    2009-09-30

    This study assessed the inhibitory effect of three C-glycosylflavonoids from Cymbopogon citratus leaves--isoorientin (1), swertiajaponin (2) and isoorientin 2"-Orhamnoside (3)--on human LDL oxidation. Isolated LDL was incubated with compounds 1-3 and the kinetics of lipid peroxidation were assessed by conjugated diene and malondialdehyde-thiobarbituric acid reactive substances (MDA-TBARS) formation after addition of copper ions. Significant differences (p < 0.05) between the lag time phase of the control and the lag time phase in the presence of the compounds 1 (0.25 microM) and 2 (0.50 microM) were observed. After five hours of incubation all three compounds showed a significant inhibitory effect on MDA-TBARS formation with respect to the control. After six hours of incubation only compound 1 kept a remarkable antioxidant effect. This study demonstrates that isoorientin (1) is an effective inhibitor of in vitro LDL oxidation. As oxidative damage to LDL is a key event in the formation of atherosclerotic lesions, the use of this natural antioxidant may be beneficial to prevent or attenuate atherosclerosis.

  2. Inhibitory effect of mitragynine on human cytochrome P450 enzyme activities.

    Science.gov (United States)

    Hanapi, N A; Ismail, S; Mansor, S M

    2013-10-01

    To date, many findings reveal that most of the modern drugs have the ability to interact with herbal drugs. This study was conducted to determine the inhibitory effects of mitragynine on cytochrome P450 2C9, 2D6 and 3A4 activities. The in vitro study was conducted using a high-throughput luminescence assay. Statistical analysis was conducted using one-way ANOVA and Dunnett's test with P GraphPad Prism(®) 5 (Version 5.01, GraphPad Software, Inc., USA). Assessment using recombinant enzymes showed that mitragynine gave the strongest inhibitory effect on CYP2D6 with an IC50 value of 0.45±0.33 mM, followed by CYP2C9 and CYP3A4 with IC50 values of 9.70±4.80 and 41.32±6.74 μM respectively. Positive inhibitors appropriate for CYP2C9, CYP2D6, and CYP3A4 which are sulfaphenazole, quinidine and ketoconazole were used respectively. Vmax values of CYP2C9, CYP2D6 and CYP3A4 were 0.0005, 0.01155 and 0.0137 μM luciferin formed/pmol/min respectively. Km values of CYP2C9, CYP2D6, and CYP3A4 were 32.65, 56.01, and 103.30 μM respectively. Mitragynine noncompetitively inhibits CYP2C9 and CYP2D6 activities with the Ki values of 61.48 and 12.86 μM respectively. On the other hand, mitragynine inhibits CYP3A4 competitively with a Ki value of 379.18 μM. The findings of this study reveal that mitragynine might inhibit cytochrome P450 enzyme activities, specifically CYP2D6. Therefore, administration of mitragynine together with herbal or modern drugs which follow the same metabolic pathway may contribute to herb-drug interactions.

  3. Induction of apoptosis in human leukemia cells through an intrinsic pathway by cathachunine, a unique alkaloid isolated from Catharanthus roseus.

    Science.gov (United States)

    Wang, Xiao-Dong; Li, Chen-Yang; Jiang, Miao-Miao; Li, Dong; Wen, Ping; Song, Xun; Chen, Jun-Da; Guo, Li-Xuan; Hu, Xiao-Peng; Li, Guo-Qiang; Zhang, Jian; Wang, Chun-Hua; He, Zhen-Dan

    2016-06-01

    Catharanthus roseus (L.) G. Don consists of a range of dimeric indole alkaloids with significant antitumor activities. These alkaloids have been found to possess apoptosis-inducing activity against tumor cells in vitro and in vivo mediated by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and c-Jun N-terminal kinase (JNK) pathways, in which DNA damage and mitochondrial dysfunction play important roles. In this study, a unique bisindole alkaloid named cathachunine, along with five known dimeric indole alkaloids, was obtained from C. roseus and investigated in vitro. The aim of this study was to investigate the antitumor activity of isolated alkaloids and the mechanism through which cathachunine exerts its antitumor effect. Cell growth inhibition was assessed by WST-1 and lactate dehydrogenase (LDH) assays in HL60, K562 leukemia cells and EA.hy926 umbilical vein cells. Induction of apoptosis in HL60 cells was confirmed by observation of nuclear morphology, a caspase-3 activity assay and annexin V-fluorescein isothiocyanate/propidium iodide (FITC/PI) double staining. The intrinsic apoptotic pathway induced by cathachunine was evidenced by B-cell lymphoma 2/Bcl-2-associated X protein (Bcl-2/Bax) dysregulation, loss of mitochondrial membrane potential, translocation of cytochrome c, and cleavage of caspase-3 and poly-ADP ribose polymerase (PARP). Reactive oxygen species (ROS) production after cathachunine treatment was determined by 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) staining. Cell cycle arrest of the S phase was also observed in HL60 cells after cathachunine treatment. The WST-1 and LDH assays showed that Catharanthus alkaloids were cytotoxic toward human leukemia cells to a greater extent than toward normal human endothelial cells, and the anti-proliferation and pro-apoptosis abilities of cathachunine were much more potent than other previously reported alkaloids. The induction of apoptosis by cathachunine occurred through an

  4. Adult Leukemias

    OpenAIRE

    Moore, Lyall K.

    1984-01-01

    Over the past several years, advances have been made in the classification, diagnosis and therapy of the adult leukemias. The overall prognosis and quality of life have improved greatly, especially for patients with acute nonlymphoblastic leukemias. Some of the advances are described in this article. The importance of the clinical, laboratory and diagnostic tests for acute, chronic granulocytic and chronic lymphocytic leukemia are stressed. The therapy and prognosis for patients with the vari...

  5. Vitamin A induces inhibitory histone methylation modifications and down-regulates trained immunity in human monocytes.

    Science.gov (United States)

    Arts, Rob J W; Blok, Bastiaan A; van Crevel, Reinout; Joosten, Leo A B; Aaby, Peter; Benn, Christine Stabell; Netea, Mihai G

    2015-07-01

    Epidemiologic studies suggest that VAS has long-lasting immunomodulatory effects. We hypothesized that ATRA inhibits inflammatory cytokines in a model of trained immunity in monocytes by inducing epigenetic reprogramming through histone modifications. We used an previously described in vitro model of trained immunity, in which adherent monocytes of healthy volunteers were incubated for 24 h with BCG in the presence or absence of ATRA. After washing the cells, they were incubated for an additional 6 d in culture medium and restimulated with microbial ligands, and cytokine production was assessed. ATRA inhibited cytokine responses upon restimulation of monocytes, and this effect was exerted through increased expression of SUV39H2, a histone methyltransferase that induces the inhibitory mark H3K9me3. H3K9me3 at promoter sites of several cytokines was up-regulated by ATRA, and inhibition of SUV39H2 restored cytokine production. In addition to H3K9me3, the stimulatory histone mark H3K4me3 was down-regulated by ATRA at several promoter locations of cytokine genes. Therefore, we can conclude that ATRA inhibits cytokine production in models of direct stimulation or BCG-induced trained immunity and that these effects are mediated by histone modifications. © Society for Leukocyte Biology.

  6. In vitro activity of dimethylarsinic acid against human leukemia and multiple myeloma cell lines.

    Science.gov (United States)

    Duzkale, Hatice; Jilani, Iman; Orsolic, Nada; Zingaro, Ralph A; Golemovic, Mirna; Giles, Francis J; Kantarjian, Hagop; Albitar, Maher; Freireich, Emil J; Verstovsek, Srdan

    2003-05-01

    Arsenic trioxide (As(2)O(3)), an inorganic arsenic compound, has recently been approved for the treatment of relapsed or refractory acute promyelocytic leukemia. However, systemic toxicity associated with As(2)O(3) treatment remains a problem. Inorganic arsenic is detoxified in vivo by methylation reactions into organic arsenic compounds that are less toxic. We investigated the antiproliferative and cytotoxic activity of dimethylarsinic acid (DMAA), an organic arsenic derivative and major metabolic by-product of As(2)O(3), against a panel of eight leukemia and multiple myeloma cell lines. As(2)O(3) was tested in comparison. In clonogenic assay, the average concentration of DMAA that suppressed cell colony growth by 50% was 0.5-1 m M, while for As(2)O(3) it was on average 1-2 microM. At those concentrations DMAA and As(2)O(3) had significantly less effect on colony growth of normal progenitor cells. Cytotoxic doses of DMAA and As(2)O(3) in 3-day trypan blue dye exclusion assay experiments were similar to doses effective in clonogenic assay. Assessment of apoptosis by annexin V assay revealed a high rate of apoptosis in all cell lines treated with DMAA and As(2)O(3), but significantly less effect on normal progenitor cells. DMAA, unlike As(2)O(3), had no effect on the maturation of leukemic cells. DMAA exerts differential antiproliferative and cytotoxic activity against leukemia and multiple myeloma cells, with no significant effect on normal progenitor cells. However, concentrations of DMAA needed to achieve such efficacy are up to 1000 times those of As(2)O(3). Evaluation of novel organic arsenic that would combine the high efficacy of As(2)O(3) and the low toxicity of DMAA is warranted.

  7. Exercise induces expression of leukaemia inhibitory factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Broholm, Christa; Mortensen, Ole Hartvig; Nielsen, Søren

    2008-01-01

    human skeletal myocytes. Treatment of myocytes with the Ca(2+) ionophore, ionomycin, for 6 h resulted in an increase in both LIF mRNA and LIF protein levels. This finding suggests that Ca(2+) may be involved in the regulation of LIF in endurance-exercised skeletal muscle. In conclusion, primary human...

  8. Acute leukemia.

    Science.gov (United States)

    Rose-Inman, Hayley; Kuehl, Damon

    2014-08-01

    Although great progress has been made in the understanding and treatment of acute leukemia, this disease has not been conquered. For emergency providers (EPs), the presentation of these patients to an emergency department presents a host of challenges. A patient may present with a new diagnosis of leukemia or with complications of the disease process or associated chemotherapy. It is incumbent on EPs to be familiar with the manifestations of leukemia in its various stages and maintain some suspicion for this diagnosis, given the nebulous and insidious manner in which leukemia can present. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. The inhibitory effects of cephalosporin and dipeptide on ceftibuten uptake by human and rat intestinal brush-border membrane vesicles.

    Science.gov (United States)

    Sugawara, M; Toda, T; Kobayashi, M; Iseki, K; Miyazaki, K; Shiroto, H; Uchino, J; Kondo, Y

    1994-08-01

    The types of inhibitory effects caused by compound V (an analogue of ceftibuten) and alanylproline (dipeptide) on the uptake of ceftibuten by brush-border membrane vesicles (BBMV) prepared from human and rat small intestine were analysed. In the presence of an inward H(+)-gradient, the initial uptake rate of ceftibuten by both human and rat intestinal BBMV was concentration-dependent with apparent Km and Vmax values of 0.35 mM and 2.052 nmol (mg protein)-1 min-1 for human BBMV, and 0.50 mM and 3.056 nmol (mg protein)-1 min-1 for rat BBMV, respectively. For both human and rat BBMV, kinetic analysis by Dixon and Lineweaver-Burk plots demonstrated that the uptake of ceftibuten was competitively inhibited by compound V, whereas inhibition by alanylproline was noncompetitive or partially competitive. These results suggest that there is a stereospecific transport system which is common to ceftibuten and compound V, and that this system is not identical to the carrier system for the dipeptide, alanylproline.

  10. [The inhibitory effects of siRNA expression vector on the expression of human papillomavirus E6 gene].

    Science.gov (United States)

    Li, Da-ke; Peng, Zhi-lan; Niu, Xiao-yu; Wang, Dan-qing

    2005-05-01

    To investigate the inhibitory effects of RNAi(RNA interference)expression vector on the expression of human papilomavirus E6 gene. siRNA expression vectors were constructed to be aimed directly at HPV16 E6 gene. The recombinants were transfected into cervical cancer cell line, caski, with liposomes. Expression of E6 was detected with fluorescence quantitative PCR (FQ-PCR) and flow cytometry. Three kinds of expression vectors could reduce the expression of E6 mRNA and protein all in caski-B cell. The expression of E6 mRNA reduced to 21.7% of control group, and the protein inhibition ratio reached 98.1%. The RNAi expression vector can effectively inhibit the expression of HPVE6 gene.

  11. Digestion and absorption of an egg white ACE-inhibitory peptide in human intestinal Caco-2 cell monolayers.

    Science.gov (United States)

    Ding, Long; Wang, Liying; Yu, Zhipeng; Zhang, Ting; Liu, Jingbo

    2016-01-01

    The objective of this study was to investigate the digestion and absorption of egg white-derived angiotensin I-converting enzyme (ACE)-inhibitory peptide TNGIIR in human intestinal Caco-2 cell monolayers. Results showed that the digestion of TNGIIR to simulated gastrointestinal enzymes and brush border membrane peptidases were 5.87% ± 1.92% and 17.17% ± 0.64%, respectively (p Caco-2 cell monolayers was determined to be (4.92 ± 0.40) × 10(-6) cm/s, indicating that TNGIIR can transport across Caco-2 cell monolayers in intact form. In addition, only cytochalasin D, a disruptor of tight junctions (TJs), changed TNGIIR transport rate significantly (p Caco-2 cell monolayers was paracellular pathway via TJs.

  12. Quantitative analysis of human herpesvirus-6 genome in blood and bone marrow samples from Tunisian patients with acute leukemia: a follow-up study

    Directory of Open Access Journals (Sweden)

    Faten Nefzi

    2012-11-01

    Full Text Available Abstract Background Infectious etiology in lymphoproliferative diseases has always been suspected. The pathogenic roles of human herpesvirus-6 (HHV-6 in acute leukemia have been of great interest. Discordant results to establish a link between HHV-6 activation and the genesis of acute leukemia have been observed. The objective of this study was to evaluate a possible association between HHV-6 infection and acute leukemia in children and adults, with a longitudinal follow-up at diagnosis, aplasia, remission and relapse. Methods HHV-6 load was quantified by a quantitative real-time PCR in the blood and bone marrow samples from 37 children and 36 adults with acute leukemia: 33 B acute lymphoblastic leukemia (B-ALL, 6 T acute lymphoblastic leukemia (T-ALL, 34 acute myeloid leukemia (AML. Results HHV-6 was detected in 15%, 8%, 30% and 28% of the blood samples at diagnosis, aplasia, remission and relapse, respectively. The median viral loads were 138, 244, 112 and 78 copies/million cells at diagnosis, aplasia, remission and relapse, respectively. In the bone marrow samples, HHV-6 was detected in 5%, 20% and 23% of the samples at diagnosis, remission and relapse, respectively. The median viral loads were 34, 109 and 32 copies/million cells at diagnosis, remission and relapse, respectively. According to the type of leukemia at diagnosis, HHV-6 was detected in 19% of the blood samples and in 7% of the bone marrow samples (with median viral loads at 206 and 79 copies/million cells, respectively from patients with B-ALL. For patients with AML, HHV-6 was present in 8% of the blood samples and in 4% of the bone marrow samples (with median viral loads at 68 and 12 copies/million cells, respectively. HHV-6 was more prevalent in the blood samples from children than from adults (25% and 9%, respectively and for the bone marrow (11% and 0%, respectively. All typable HHV-6 were HHV-6B species. No link was shown between neither the clinical symptoms nor the

  13. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    Energy Technology Data Exchange (ETDEWEB)

    Fuchs, Dominik [Research Group Molecular Neuro-Oncology, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg (Germany); Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg (Germany); Daniel, Volker; Sadeghi, Mahmoud; Opelz, Gerhard [Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg (Germany); Naujokat, Cord, E-mail: cord.naujokat@med.uni-heidelberg.de [Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg (Germany)

    2010-04-16

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity of P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.

  14. Differential inhibitory effects of drugs acting at the noradrenaline and 5-hydroxytryptamine transporters in rat and human neocortical synaptosomes*

    Science.gov (United States)

    Mantovani, M; Dooley, DJ; Weyerbrock, A; Jackisch, R; Feuerstein, TJ

    2009-01-01

    Background and purpose: Although the amino acid sequences of rat and human 5-hydroxytryptamine (5-HT) and noradrenaline (NA) transporters (i.e. SERT and NET) are highly homologous, species differences exist in the inhibitory effects of drugs acting at these transporters. Therefore, comparison of the potencies of drugs acting at SERT and NET in native human and rat neocortex may serve to more accurately predict their clinical profile. Experimental approach: Synaptosomes prepared from fresh human and rat neocortical tissues were used for [3H]-5-HT and [3H]-NA saturation and competition uptake experiments. The drugs tested included NA reuptake inhibitors (desipramine, atomoxetine and (S,S)-reboxetine), 5-HT reuptake blockers (citalopram, fluoxetine and fluvoxamine) and dual 5-HT/NA reuptake inhibitors (duloxetine and milnacipran). Key results: In saturation experiments on synaptosomal [3H]-5-HT and [3H]-NA uptake, the dissociation constants did not indicate species differences although a smaller density of both SERT and NET was observed in human tissues. In competition experiments with the various drugs, marked species differences in their potencies were observed, especially at SERT. The rank order of selectivity ratios (SERT/NET) in human neocortex was as follows: citalopram ≥ duloxetine = fluvoxamine ≥ fluoxetine > milnacipran > desipramine = atomoxetine > (S,S)-reboxetine. Significant species differences in these ratios were observed for duloxetine, atomoxetine and desipramine. Conclusions and implications: This study provides the first compilation of drug potency at native human neocortical SERT and NET. The significant species differences (viz., human vs. rat) in drug potency suggest that the general use of rodent data should be limited to predict clinical efficacy or profile. PMID:19912224

  15. Investigation of the inhibitory effects of various drugs on the hepatic uptake of fexofenadine in humans.

    Science.gov (United States)

    Matsushima, Soichiro; Maeda, Kazuya; Ishiguro, Naoki; Igarashi, Takashi; Sugiyama, Yuichi

    2008-04-01

    Fexofenadine (FEX), an H(1)-receptor antagonist, is eliminated from the liver mainly in an unchanged form. Our previous study suggested that organic anion-transporting polypeptide (OATP) 1B3 contributes mainly to the hepatic uptake of FEX. On the other hand, a clinical report demonstrated that a T521C mutation of OATP1B1 increased its plasma area under the plasma concentration-time curve. Several compounds are reported to have a drug interaction with FEX, and some of this may be caused by the inhibition of its hepatic uptake. We determined which transporters are involved in the hepatobiliary transport of FEX by using double transfectants and examined whether clinically reported drug interactions with FEX could be explained by the inhibition of its hepatic uptake. Vectorial basal-to-apical transport of FEX was observed in double transfectants expressing OATP1B1/multidrug resistance-associated protein 2 (MRP2) and OATP1B3/MRP2, suggesting that OATP1B1 as well as OATP1B3 is involved in the hepatic uptake of FEX and that MRP2 can recognize FEX as a substrate. The inhibitory effects of compounds on FEX uptake in OATP1B3-expressing HEK293 cells were investigated, and the maximal degree of increase in plasma AUC of FEX by drug interaction in clinical situations was estimated. As a result, cyclosporin A and rifampicin were found to have the potential to interact with OATP1B3-mediated uptake at clinical concentrations. From these results, most of the reported drug interaction cannot be explained by the inhibition of hepatic uptake of FEX, and different mechanisms such as the inhibition of intestinal efflux should be considered.

  16. Synthesis and pharmacophore modeling of naphthoquinone derivatives with cytotoxic activity in human promyelocytic leukemia HL-60 cell line.

    Science.gov (United States)

    Pérez-Sacau, Elisa; Díaz-Peñate, Raquel G; Estévez-Braun, Ana; Ravelo, Angel G; García-Castellano, Jose M; Pardo, Leonardo; Campillo, Mercedes

    2007-02-22

    Catalyst/HypoGen pharmacophore modeling approach and three-dimensional quantitative structure-activity relationship (3D-QSAR)/comparative molecular similarity indices analysis (CoMSIA) methods have been successfully applied to explain the cytotoxic activity of a set of 51 natural and synthesized naphthoquinone derivatives tested in human promyelocytic leukemia HL-60 cell line. The computational models have facilitated the identification of structural elements of the ligands that are key for antitumoral properties. The four most salient features of the highly active beta-cycled-pyran-1,2-naphthoquinones [0.1 microM active 1,4-naphthoquinone derivatives accurately fulfill only three of these features. The results of our study provide a valuable tool in designing new and more potent cytotoxic analogues.

  17. HUMAN NK CELLS: FROM SURFACE RECEPTORS TO THE THERAPY OF LEUKEMIAS AND SOLID TUMORS

    Directory of Open Access Journals (Sweden)

    LORENZO eMORETTA

    2014-03-01

    Full Text Available Natural Killer (NK cells are major effector cells of the innate immunity. The discovery, over two decades ago, of MHC-class I specific NK receptors and subsequently of activating receptors, recognizing ligands expressed by tumor or virus-infected cells, paved the way to our understanding of the mechanisms of selective recognition and killing of tumor cells. Although NK cells can efficiently kill tumor cells of different histotypes in vitro, their activity may be limited in vivo by their inefficient trafficking to tumor lesions and by the inhibition of their function induced by tumor cells themselves and by the tumor microenvironment. On the other hand, the important role of NK cells has been clearly demonstrated in the therapy of high risk leukemias in the haploidentical hematopoietic cell (HSC transplantation setting. NK cells derived from donor HSC kill leukemic cells residual after the conditioning regimen, thus preventing leukemia relapses. In addition, they also kill residual dendritic cells and T lymphocytes, thus preventing both GvHD and graft rejection.

  18. Apoptotic Mechanism of Human Leukemia K562/A02 Cells Induced by Magnetic Ferroferric Oxide Nanoparticles Loaded with Wogonin.

    Science.gov (United States)

    Peng, Miao-Xin; Wang, Xiao-Yue; Wang, Fan; Wang, Lei; Xu, Pei-Pei; Chen, Bing

    2016-12-20

    Traditional Chinese medicine wogonin plays an important role in the treatment of leukemia. Recently, the application of drug-coated magnetic nanoparticles (MNPs) to increase water solubility of the drug and to enhance its chemotherapeutic efficiency has attracted much attention. Drugs coated with MNPs are becoming a promising way for better leukemia treatment. This study aimed to assess the possible molecular mechanisms of wogonin-coated MNP-Fe3O4 (Wog-MNPs-Fe3O4) as an antileukemia agent. After incubated for 48 h, the antiproliferative effects of MNPs, wogonin, or Wog-MNPs-Fe3O4on K562/A02 cells were determined by methyl thiazolyl tetrazolium (MTT) assay. The apoptotic rates of K562/A02 cells treated with either wogonin or Wog-MNPs-Fe3O4were determined by flow cytometer (FCM) assay. The cell cycle arrest in K562/A02 cells was determined by FCM assay. The elementary molecular mechanisms of these phenomena were explored by Western blot and reverse transcriptase polymerase chain reaction (RT-PCR). With cell viabilities ranging from 98.76% to 101.43%, MNP-Fe3O4was nontoxic to the cell line. Meanwhile, the wogonin and Wog-MNPs-Fe3O4had little effects on normal human embryonic lung fibroblast cells. The cell viabilities of the Wog-MNPs-Fe3O4group (28.64-68.36%) were significantly lower than those of the wogonin group (35.53-97.28%) in a dose-dependent manner in 48 h (P < 0.001). The apoptotic rate of K562/A02 cells was significantly improved in 50 μmol/L Wog-MNPs-Fe3O4group (34.28%) compared with that in 50 μmol/L wogonin group (23.46%; P< 0.001). Compared with those of the 25 and 50 μmol/L wogonin groups, the ratios of G0/G1-phase K562/A02 cells were significantly higher in the 25 and 50 μmol/L Wog-MNPs-Fe3O4groups (all P< 0.001). The mRNA and protein expression levels of the p21 and p27 in the K562/A02 cells were also significantly higher in the Wog-MNPs-Fe3O4group compared with those of the wogonin group (all P< 0.001). This study demonstrated that MNPs were the

  19. [The molecular mechanisms of curcuma wenyujin extract-mediated inhibitory effects on human esophageal carcinoma cells in vitro].

    Science.gov (United States)

    Jing, Zhao; Zou, Hai-Zhou; Xu, Fang

    2012-09-01

    To study the molecular mechanisms of Curcuma Wenyujin extract-mediated inhibitory effects on human esophageal carcinoma cells. The Curcuma Wenyujin extract was obtained by supercritical carbon dioxide extraction. TE-1 cells were divided into 4 groups after adherence. 100 microL RMPI-1640 culture medium containing 0.1% DMSO was added in Group 1 as the control group. 100 microL 25, 50, and 100 mg/L Curcuma Wenyujin extract complete culture medium was respectively added in the rest 3 groups as the low, middle, and high dose Curcuma Wenyujin extract groups. The effects of different doses of Curcuma Wenyujin extract (25, 50, and 100 mg/L) on the proliferation of human esophageal carcinoma cell line TE-1 in vitro were analyzed by MTT assay. The gene expression profile was identified by cDNA microarrays in esophageal carcinoma TE-1 cells exposed to Curcuma Wenyujin extract for 48 h. The differential expression genes were further analyzed by Gene Ontology function analysis. Compared with the control group, MTT results showed that Curcuma Wenyujin extract significantly inhibited the proliferation of TE-1 cells in a dose-dependent manner (PCurcuma Wenyujin extract could inhibit the growth of human esophageal carcinoma cell line TE-1 in vitro. The molecular mechanisms might be associated with regulating genes expressions at multi-levels.

  20. Estrogen modulates inhibitory control in healthy human females: evidence from the stop-signal paradigm

    NARCIS (Netherlands)

    Colzato, L.S.; Hertsig, G.; van den Wildenberg, W.P.M.; Hommel, B.

    2010-01-01

    Animal studies point to a role of estrogen in explaining gender differences in striatal dopaminergic functioning, but evidence from human studies is still lacking. Given that dopamine is crucial for controlling and organizing goal-directed behavior, estrogen may have a specific impact on cognitive

  1. Structural Determinants of the Gain-of-Function Phenotype of Human Leukemia-associated Mutant CBL Oncogene.

    Science.gov (United States)

    Nadeau, Scott A; An, Wei; Mohapatra, Bhopal C; Mushtaq, Insha; Bielecki, Timothy A; Luan, Haitao; Zutshi, Neha; Ahmad, Gulzar; Storck, Matthew D; Sanada, Masashi; Ogawa, Seishi; Band, Vimla; Band, Hamid

    2017-03-03

    Mutations of the tyrosine kinase-directed ubiquitin ligase CBL cause myeloid leukemias, but the molecular determinants of the dominant leukemogenic activity of mutant CBL oncogenes are unclear. Here, we first define a gain-of-function attribute of the most common leukemia-associated CBL mutant, Y371H, by demonstrating its ability to increase proliferation of hematopoietic stem/progenitor cells (HSPCs) derived from CBL-null and CBL/CBL-B-null mice. Next, we express second-site point/deletion mutants of CBL-Y371H in CBL/CBL-B-null HSPCs or the cytokine-dependent human leukemic cell line TF-1 to show that individual or combined Tyr → Phe mutations of established phosphotyrosine residues (Tyr-700, Tyr-731, and Tyr-774) had little impact on the activity of the CBL-Y371H mutant in HSPCs, and the triple Tyr → Phe mutant was only modestly impaired in TF-1 cells. In contrast, intact tyrosine kinase-binding (TKB) domain and proline-rich region (PRR) were critical in both cell models. PRR deletion reduced the stem cell factor (SCF)-induced hyper-phosphorylation of the CBL-Y371H mutant and the c-KIT receptor and eliminated the sustained p-ERK1/2 and p-AKT induction by SCF. GST fusion protein pulldowns followed by phospho-specific antibody array analysis identified distinct CBL TKB domains or PRR-binding proteins that are phosphorylated in CBL-Y371H-expressing TF-1 cells. Our results support a model of mutant CBL gain-of-function in which mutant CBL proteins effectively compete with the remaining wild type CBL-B and juxtapose TKB domain-associated PTKs with PRR-associated signaling proteins to hyper-activate signaling downstream of hematopoietic growth factor receptors. Elucidation of mutant CBL domains required for leukemogenesis should facilitate targeted therapy approaches for patients with mutant CBL-driven leukemias. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Cytotoxicity and inhibitory effects of low-concentration triclosan on adipogenic differentiation of human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Li-Wu [Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079 (United States); Wu, Qiangen [Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079 (United States); Green, Bridgett; Nolen, Greg [Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079 (United States); Shi, Leming [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079 (United States); LoSurdo, Jessica [Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 (United States); Deng, Helen [Arkansas Department of Health, Little Rock, AR 72205 (United States); Bauer, Steven [Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 (United States); Fang, Jia-Long, E-mail: jia-long.fang@fda.hhs.gov [Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079 (United States); Ning, Baitang, E-mail: baitang.ning@fda.hhs.gov [Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079 (United States)

    2012-07-15

    Humans at all ages are continually exposed to triclosan (TCS), a widely used antimicrobial agent that can be found in many daily hygiene products, such as toothpastes and shampoos; however, the toxicological and biological effects of TCS in the human body after long-term and low-concentration exposure are far from being well understood. In the current study, we investigated the effects of TCS on the differentiation of human mesenchymal stem cells (hMSCs) by measuring the cytotoxicity, morphological changes, lipid accumulation, and the expression of adipocyte differentiation biomarkers during 21-day adipogenesis. Significant cytotoxicity was observed in un-induced hMSCs treated with high-concentration TCS (≥ 5.0 μM TCS), but not with low-concentration treatments (≤ 2.5 μM TCS). TCS inhibited adipocyte differentiation of hMSCs in a concentration-dependent manner in the 0.156 to 2.5 μM range as indicated by morphological changes with Oil Red O staining, which is an index of lipid accumulation. The inhibitory effect was confirmed by a decrease in gene expression of specific adipocyte differentiation biomarkers including adipocyte protein 2, lipoprotein lipase, and adiponectin. Our study demonstrates that TCS inhibits adipocyte differentiation of hMSCs under concentrations that are not cytotoxic and in the range observed in human blood. -- Highlights: ► TCS is cytotoxic to un-induced hMSCs at concentrations ≥ 5.0 μM. ► TCS at concentrations ≤ 2.5 μM is not cytotoxic to induced hMSCs. ► TCS at non-cytotoxic concentrations inhibits lipid formation in induced hMSCs. ► TCS decreases the expression of specific biomarkers of adipocyte differentiation. ► TCS at concentrations observed in human blood inhibits adipogenesis of hMSCs.

  3. Development of ML390: A Human DHODH Inhibitor That Induces Differentiation in Acute Myeloid Leukemia.

    Science.gov (United States)

    Lewis, Timothy A; Sykes, David B; Law, Jason M; Muñoz, Benito; Rustiguel, Joane K; Nonato, Maria Cristina; Scadden, David T; Schreiber, Stuart L

    2016-12-08

    Homeobox transcription factor A9 (HoxA9) is overexpressed in 70% of patients diagnosed with acute myeloid leukemia (AML), whereas only a small subset of AML patients respond to current differentiation therapies. A cell line overexpressing HoxA9 was derived from the bone marrow of a lysozyme-GFP mouse. In this fashion, GFP served as an endogenous reporter of differentiation, permitting a high-throughput phenotypic screen against the MLPCN library. Two chemical scaffolds were optimized for activity yielding compound ML390, and genetic resistance and sequencing efforts identified dihydroorotate dehydrogenase (DHODH) as the target enzyme. The DHODH inhibitor brequinar works against these leukemic cells as well. The X-ray crystal structure of ML390 bound to DHODH elucidates ML390s binding interactions.

  4. Small-molecule inhibitor which reactivates p53 in human T-cell leukemia virus type 1-transformed cells.

    Science.gov (United States)

    Jung, Kyung-Jin; Dasgupta, Arindam; Huang, Keven; Jeong, Soo-Jin; Pise-Masison, Cynthia; Gurova, Katerina V; Brady, John N

    2008-09-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiologic agent of the aggressive and fatal disease adult T-cell leukemia. Previous studies have demonstrated that the HTLV-1-encoded Tax protein inhibits the function of tumor suppressor p53 through a Tax-induced NF-kappaB pathway. Given these attributes, we were interested in the activity of small-molecule inhibitor 9-aminoacridine (9AA), an anticancer drug that targets two important stress response pathways, NF-kappaB and p53. In the present study, we have examined the effects of 9AA on HTLV-1-transformed cells. Treatment of HTLV-1-transformed cells with 9AA resulted in a dramatic decrease in cell viability. Consistent with these results, we observed an increase in the percentage of cells in sub-G(1) and an increase in the number of cells positive by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assay following treatment of HTLV-1-transformed cells with 9AA. In each assay, HTLV-1-transformed cells C8166, Hut102, and MT2 were more sensitive to treatment with 9AA than control CEM and peripheral blood mononuclear cells. Analyzing p53 function, we demonstrate that treatment of HTLV-1-transformed cells with 9AA resulted in an increase in p53 protein and activation of p53 transcription activity. Of significance, 9AA-induced cell death could be blocked by introduction of a p53 small interfering RNA, linking p53 activity and cell death. These results suggest that Tax-repressed p53 function in HTLV-1-transformed cells is "druggable" and can be restored by treatment with 9AA. The fact that 9AA induces p53 and inhibits NF-kappaB suggests a promising strategy for the treatment of HTLV-1-transformed cells.

  5. New Whitening Constituents from Taiwan-Native Pyracantha koidzumii: Structures and Tyrosinase Inhibitory Analysis in Human Epidermal Melanocytes

    Directory of Open Access Journals (Sweden)

    Rong-Dih Lin

    2015-12-01

    Full Text Available Nontoxic natural products useful in skin care cosmetics are of considerable interest. Tyrosinase is a rate-limiting enzyme for which its inhibitor is useful in developing whitening cosmetics. Pyracantha koidzumii (Hayata Rehder is an endemic species in Taiwan that exhibits tyrosinase-inhibitory activity. To find new active natural compounds from P. koidzumii, we performed bioguided isolation and studied the related activity in human epidermal melanocytes. In total, 13 compounds were identified from P. koidzumii in the present study, including two new compounds, 3,6-dihydroxy-2,4-dimethoxy-dibenzofuran (9 and 3,4-dihydroxy-5-methoxybiphenyl-2ʹ-O-β-d-glucopyranoside (13, as well as 11 known compounds. The new compound 13 exhibited maximum potency in inhibiting cellular tyrosinase activity, the protein expression of cellular tyrosinase and tyrosinase-related protein-2, as well as the mRNA expression of Paired box 3 and microphthalmia-associated transcription factor in a concentration-dependent manner. In the enzyme kinetic assay, the new compound 13 acted as an uncompetitive mixed-type inhibitor against the substrate l-3,4-dihydroxyphenylalanine and had a Km value against this substrate of 0.262 mM, as calculated using the Lineweaver–Burk plots. Taken together, our findings show compound 13 exhibits tyrosinase inhibition in human melanocytes and compound 13 may be a potential candidate for use in cosmetics.

  6. Chemical constituents of Hericium erinaceum associated with the inhibitory activity against cellular senescence in human umbilical vascular endothelial cells.

    Science.gov (United States)

    Noh, Hyung Jun; Yang, Hyo Hyun; Kim, Geum Soog; Lee, Seung Eun; Lee, Dae Young; Choi, Je Hun; Kim, Seung Yu; Lee, Eun Suk; Ji, Seung Heon; Kang, Ki Sung; Park, Hye-Jin; Kim, Jae-Ryong; Kim, Ki Hyun

    2015-12-01

    Hericium erinaceum is an edible and medicinal mushroom widely used in Korea, Japan, and China. On the search for biologically active compounds supporting the medicinal usage, the MeOH extract of the fruiting bodies of H. erinaceum was investigated for its chemical constituents. Six compounds were isolated and identified as hericenone D (1), (22E,24R)-5α,8α-epidioxyergosta-6,22-dien-3β-ol (2), erinacerin B (3), hericenone E (4), hericenone F (5) and isohericerin (6) by comparing their spectroscopic data with previously reported values. The inhibitory effects on adriamycin-induced cellular senescence in human dermal fibroblasts (HDFs) and human umbilical vein endothelial cells (HUVECs) of the isolates (1-6) were studied. Among the isolated compounds, ergosterol peroxide (2) reduced senescence associated β-galactosidase (SA-β-gal) activity increased in HUVECs treated with adriamycin. According to experimental data obtained, the active compound may inspire the development of a new pharmacologically useful substance to be used in the treatment and prevention of age-related diseases.

  7. Binding of the Fap2 Protein of Fusobacterium nucleatum to Human Inhibitory Receptor TIGIT Protects Tumors from Immune Cell Attack

    Science.gov (United States)

    Gur, Chamutal; Ibrahim, Yara; Isaacson, Batya; Yamin, Rachel; Abed, Jawad; Gamliel, Moriya; Enk, Jonatan; Bar-On, Yotam; Stanietsky-Kaynan, Noah; Coppenhagen-Glazer, Shunit; Shussman, Noam; Almogy, Gideon; Cuapio, Angelica; Hofer, Erhard; Mevorach, Dror; Tabib, Adi; Ortenberg, Rona; Markel, Gal; Miklić, Karmela; Jonjic, Stipan; Brennan, Caitlin A.; Garrett, Wendy S.; Bachrach, Gilad; Mandelboim, Ofer

    2015-01-01

    SUMMARY Bacteria, such as Fusobacterium nucleatum, are present in the tumor microenvironment. However, the immunological consequences of intra-tumoral bacteria remain unclear. Here, we have shown that natural killer (NK) cell killing of various tumors is inhibited in the presence of various F. nucleatum strains. Our data support that this F. nucleatum-mediated inhibition is mediated by human, but not by mouse TIGIT, an inhibitory receptor present on all human NK cells and on various T cells. Using a library of F. nucleatum mutants, we found that the Fap2 protein of F. nucleatum directly interacted with TIGIT, leading to the inhibition of NK cell cytotoxicity. We have further demonstrated that tumor-infiltrating lymphocytes expressed TIGIT and that T cell activities were also inhibited by F. nucleatum via Fap2. Our results identify a bacterium-dependent, tumor-immune evasion mechanism in which tumors exploit the Fap2 protein of F. nucleatum to inhibit immune cell activity via TIGIT. PMID:25680274

  8. Inhibitory effects and molecular mechanisms of selenium-containing tea polysaccharides on human breast cancer MCF-7 cells.

    Science.gov (United States)

    He, Nianwu; Shi, Xiaolong; Zhao, Yan; Tian, Lingmin; Wang, Dongying; Yang, Xingbin

    2013-01-23

    Dietary supplementation of selenium-enriched tea is known to have an anticancer health benefit. This study was to investigate the inhibitory effect of selenium-containing tea polysaccharides (Se-GTPs) from a new variety of selenium-enriched Ziyang green tea against human MCF-7 breast cancer cells. Se-GTPs dose-dependently exhibited an effective cell growth inhibition with an IC(50) of 140.1 μg/mL by inducing MCF-7 cancer cells to undergo G2/M phase arrest and apoptosis. The blockade of cell cycle was associated with an up-regulation of p53 expression, but not CDK2. Se-GTPs clearly triggered the mitochondrial apoptotic pathway, as indicated by an increase in Bax/Bcl-2 ratio and subsequent caspase-3 and caspase-9 activation. It was also found that the generation of intracellular ROS is a critical mediator in Se-GTPs-induced cell growth inhibition. These findings suggest that Se-GTPs may serve as a potential novel dietary agent for human breast cancer chemoprevention.

  9. Identification and characterization of an inner ear-expressed human melanoma inhibitory activity (MIA)-like gene (MIAL) with a frequent polymorphism that abolishes translation

    DEFF Research Database (Denmark)

    Rendtorff, Nanna Dahl; Frödin, M; Attié-Bitach, T

    2001-01-01

    To discover new cochlea-specific genes as candidate genes for nonsyndromic hearing impairment, we searched in The Institute of Genome Research database for expressed sequence tags isolated from the cochlea only. This led to the cloning and characterization of a human gene named melanoma inhibitory...

  10. Inhibitory noise

    Directory of Open Access Journals (Sweden)

    Alain Destexhe

    2010-03-01

    Full Text Available Cortical neurons in vivo may operate in high-conductance states, in which the major part of the neuron's input conductance is due to synaptic activity, sometimes several-fold larger than the resting conductance. We examine here the contribution of inhibition in such high-conductance states. At the level of the absolute conductance values, several studies have shown that cortical neurons in vivo are characterized by strong inhibitory conductances. However, conductances are balanced and spiking activity is mostly determined by fluctuations, but not much is known about excitatory and inhibitory contributions to these fluctuations. Models and dynamic-clamp experiments show that, during high-conductance states, spikes are mainly determined by fluctuations of inhibition, or by inhibitory noise. This stands in contrast to low-conductance states, in which excitatory conductances determine spiking activity. To determine these contributions from experimental data, maximum likelihood methods can be designed and applied to intracellular recordings in vivo. Such methods indicate that action potentials are indeed mostly correlated with inhibitory fluctuations in awake animals. These results argue for a determinant role for inhibitory fluctuations in evoking spikes, and do not support feed-forward modes of processing, for which opposite patterns are predicted.

  11. Expression of leukemia/lymphoma-related factor (LRF/POKEMON) in human breast carcinoma and other cancers.

    Science.gov (United States)

    Aggarwal, Anshu; Hunter, William J; Aggarwal, Himanshu; Silva, Edibaldo D; Davey, Mary S; Murphy, Richard F; Agrawal, Devendra K

    2010-10-01

    The POK family of proteins plays an important role in not only embryonic development and cell differentiation, but also in oncogenesis. Leukemia/lymphoma-related factor (LRF) belongs to the POK family of transcriptional repressors and is also known as POK erythroid myeloid ontogenic factor (POKEMON), which binds to short transcripts of HIV-1 (FBI-1) and TTF-1 interacting peptide (TIP21). Its oncogenic role is known only in lymphoma, non-small cell lung carcinoma, and malignant gliomas. The functional expression of LRF in human breast carcinoma has not yet been confirmed. The aim of this study was to investigate and compare the expression of LRF in human breast cancer tissues and other human tumors. The expression of LRF mRNA transcripts and protein was observed in twenty human benign and malignant breast biopsy tissues. Expression of LRF was observed in several formalin-fixed tissues by immunohistochemistry and immunofluorescence. All malignant breast tissues expressed mRNA transcripts and protein for LRF. However, 40% and 15% benign breast biopsy tissues expressed LRF mRNA transcripts and protein, respectively. The overall expression of LRF mRNA transcripts and total protein was significantly more in malignant breast tissues than the benign breast tissues. LRF expression was also observed in the nuclei of human colon, renal, lung, hepatocellular carcinomas and thymoma tumor cells. In general, a significantly higher expression of LRF was seen in malignant tissues than in the corresponding benign or normal tissue. Further studies are warranted to determine the malignant role of LRF in human breast carcinoma. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Syntheses of alpha-arbutin-alpha-glycosides and their inhibitory effects on human tyrosinase.

    Science.gov (United States)

    Sugimoto, Kazuhisa; Nomura, Koji; Nishimura, Takahisa; Kiso, Taro; Sugimoto, Kenji; Kuriki, Takashi

    2005-03-01

    Alpha-arbutin is a tyrosinase inhibitor. We synthesized alpha-arbutin-alpha-glycosides by the transglycosylation reaction of cyclomaltodextrin glucanotransferase from Bacillus macerans using alpha-arbutin and starch as acceptor and donor molecules, respectively. We isolated and characterized two major products from the reaction mixture. The structural analyses using 13C- and 1H-NMR spectroscopy proved that they were 4-hydroxyphenyl alpha-maltoside (alpha-Ab-alpha-G1) and 4-hydroxyphenyl alpha-maltotrioside (alpha-Ab-alpha-G2). Both alpha-Ab-alpha-G1 and alpha-Ab-alpha-G2 exhibited competitive-type inhibition on human tyrosinase as alpha-arbutin does. Their K(i) values were calculated to be 0.6 mM and 2.8 mM, respectively, which is slightly and significantly higher than that of alpha-arbutin (0.2 mM).

  13. Application of Adoptive T-Cell Therapy Using Tumor Antigen-Specific T-Cell Receptor Gene Transfer for the Treatment of Human Leukemia

    Directory of Open Access Journals (Sweden)

    Toshiki Ochi

    2010-01-01

    Full Text Available The last decade has seen great strides in the field of cancer immunotherapy, especially the treatment of melanoma. Beginning with the identification of cancer antigens, followed by the clinical application of anti-cancer peptide vaccination, it has now been proven that adoptive T-cell therapy (ACT using cancer antigen-specific T cells is the most effective option. Despite the apparent clinical efficacy of ACT, the timely preparation of a sufficient number of cancer antigen-specific T cells for each patient has been recognized as its biggest limitation. Currently, therefore, attention is being focused on ACT with engineered T cells produced using cancer antigen-specific T-cell receptor (TCR gene transfer. With regard to human leukemia, ACT using engineered T cells bearing the leukemia antigen-specific TCR gene still remains in its infancy. However, several reports have provided preclinical data on TCR gene transfer using Wilms' tumor gene product 1 (WT1, and also preclinical and clinical data on TCR gene transfer involving minor histocompatibility antigen, both of which have been suggested to provide additional clinical benefit. In this review, we examine the current status of anti-leukemia ACT with engineered T cells carrying the leukemia antigen-specific TCR gene, and discuss the existing barriers to progress in this area.

  14. Juvenile Myelomonocytic Leukemia

    Science.gov (United States)

    ... myeloproliferative neoplasms, leukemia , and other conditions . Chronic Myelomonocytic Leukemia Key Points Chronic myelomonocytic leukemia is a disease ... chance of recovery) and treatment options. Chronic myelomonocytic leukemia is a disease in which too many myelocytes ...

  15. Atypical Chronic Myelogenous Leukemia

    Science.gov (United States)

    ... myeloproliferative neoplasms, leukemia , and other conditions . Chronic Myelomonocytic Leukemia Key Points Chronic myelomonocytic leukemia is a disease ... chance of recovery) and treatment options. Chronic myelomonocytic leukemia is a disease in which too many myelocytes ...

  16. Inhibitory effect of Trolox on the migration and invasion of human lung and cervical cancer cells.

    Science.gov (United States)

    Sung, Ho Joong; Kim, Yoonseo; Kang, Hyereen; Sull, Jae Woong; Kim, Yoon Suk; Jang, Sung-Wuk; Ko, Jesang

    2012-02-01

    The antioxidant 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) is implicated in migration and invasion of metastatic tumors. However, the molecular mechanism underlying the effect of Trolox on metastatic cancer cells is not known. We found that a non-cytotoxic dose of Trolox decreased phorbol 12-myristate 13-acetate (PMA)-induced invasion and migration of both A549 and HeLa cancer cells. We also found that Trolox suppressed both the expression and the proteolytic activity of matrix metalloproteinase-9 (MMP-9), and that the promoter activity of PMA-induced MMP-9 was inhibited by Trolox. Our results show that Trolox inhibits the transcriptional activity of MMP-9 by suppression of NF-κB transactivation. These results indicate that Trolox inhibits NF-κB-mediated MMP-9 expression, leading to the suppression of migration and invasion in lung and cervical cancer cells. Trolox is a potential agent for clinical use in preventing the invasion and metastasis of human malignant lung and cervical cancers.

  17. Inhibitory effects and molecular mechanisms of tetrahydrocurcumin against human breast cancer MCF-7 cells

    Directory of Open Access Journals (Sweden)

    Xiao Han

    2016-02-01

    Full Text Available Background: Tetrahydrocurcumin (THC, an active metabolite of curcumin, has been reported to have similar biological effects to curcumin, but the mechanism of the antitumor activity of THC is still unclear. Methods: The present study was to investigate the antitumor effects and mechanism of THC in human breast cancer MCF-7 cells using the methods of MTT assay, LDH assay, flow cytometry analysis, and western blot assay. Results: THC was found to have markedly cytotoxic effect and antiproliferative activity against MCF-7 cells in a dose-dependent manner with the IC50 for 24 h of 107.8 μM. Flow cytometry analysis revealed that THC mediated the cell-cycle arrest at G0/G1 phase, and 32.8% of MCF-7 cells entered the early phase of apoptosis at 100 μM for 24 h. THC also dose-dependently led to apoptosis in MCF-7 cells via the mitochondrial pathway, as evidenced by the activation of caspase-3 and caspase-9, the elevation of intracellular ROS, a decrease in Bcl-2 and PARP expression, and an increase in Bax expression. Meanwhile, cytochrome C was released to cytosol and the loss of mitochondria membrane potential (Δψm was observed after THC treatment. Conclusion: THC is an excellent source of chemopreventive agents in the treatment of breast cancer and has excellent potential to be explored as antitumor precursor compound.

  18. Lubiprostone reverses the inhibitory action of morphine on mucosal secretion in human small intestine.

    Science.gov (United States)

    Sun, Xiaohong; Wang, Xiyu; Wang, Guo-Du; Xia, Yun; Liu, Sumei; Qu, Meihua; Needleman, Bradley J; Mikami, Dean J; Melvin, W Scott; Bohn, Laura M; Ueno, Ryuji; Wood, Jackie D

    2011-02-01

    Treatments with morphine or opioid agonists cause constipation. Lubiprostone is approved for treatment of adult idiopathic constipation and constipation-predominant IBS in adult women. We tested whether lubiprostone can reverse morphine-suppression of mucosal secretion in human intestine and explored the mechanism of action. Fresh segments of jejunum discarded during Roux-En-Y gastric bypass surgeries were used. Changes in short-circuit current (ΔIsc) were recorded in Ussing flux chambers as a marker for electrogenic chloride secretion during pharmacological interactions between morphine, prostaglandin receptor antagonists, chloride channel blockers and lubiprostone. Morphine suppressed basal Isc. Lubiprostone reversed morphine suppression of basal Isc. Lubiprostone, applied to the mucosa in concentrations ranging from 3 nM to 30 μM, evoked increases in Isc in concentration-dependent manner when applied to the mucosal side of muscle-stripped preparations. Blockade of enteric nerves did not change stimulation of Isc by lubiprostone. Removal of chloride or application of bumetanide or NPPB suppressed or abolished responses to lubiprostone. Antagonists acting at CFTR channels and prostaglandin EP(4) receptors, but not at E(1), EP(1-3) receptors, partially suppressed stimulation of Isc by lubiprostone. Antisecretory action of morphine results from suppression of excitability of secretomotor neurons in the enteric nervous system. Lubiprostone, which does not affect enteric neurons directly, bypasses the action of morphine by directly opening mucosal chloride channels.

  19. Inhibitory effect by new monocyclic 4-alkyliden-beta-lactam compounds on human platelet activation.

    Science.gov (United States)

    Pavanetto, Martina; Zarpellon, Alessandro; Giacomini, Daria; Galletti, Paola; Quintavalla, Arianna; Cainelli, Gianfranco; Folda, Alessandra; Scutari, Guido; Deana, Renzo

    2007-08-01

    In the present study some new beta-lactam compounds were screened for their ability to inhibit human platelet activation. In particular four compounds differing in the group on the nitrogen atom of the azetidinone ring were investigated. A beta-lactam having an ethyl 2-carboxyethanoate N-bound group was demonstrated to inhibit, in the micromolar range, both the Ca(2+) release from endoplasmic reticulum, induced either by thrombin or by the ATPase inhibitor thapsigargin, and the Ca(2+) entry in platelets driven by emptying the endoplasmic reticulum. The compound also inhibited the platelet aggregation induced by a variety of physiological agonists including ADP, collagen, thrombin and thrombin mimetic peptide TRAP. The beta-lactam reduced the phosphorylation of pleckstrin (apparent MW 47 kDa), elicited by thrombin but not by the protein kinase C activator phorbol ester. Accordingly it did not significantly affect the aggregation evoked by phorbol ester or Ca(2+) ionophore. It was concluded that the beta-lactam likely exerts its anti-platelet-activating action by hampering the agonist induced cellular Ca(2+) movements. The beta-lactam concentration, which significantly inhibited platelet activation, only negligibly affected the cellular viability. Even if it is still premature to draw definitive conclusions, the present results suggest that this new compound might constitute a tool of potential clinical interest and the starting-point for the synthesis of new more beneficial anti-thrombotic compounds.

  20. Chimeras of receptors for gibbon ape leukemia virus/feline leukemia virus B and amphotropic murine leukemia virus reveal different modes of receptor recognition by retrovirus

    DEFF Research Database (Denmark)

    Pedersen, Lene; Johann, Stephen V; van Zeijl, Marja

    1995-01-01

    Glvr1 encodes the human receptor for gibbon ape leukemia virus (GALV) and feline leukemia virus subgroup B (FeLV-B), while the related gene Glvr2 encodes the human receptor for amphotropic murine leukemia viruses (A-MLVs). The two proteins are 62% identical in their amino acid sequences...

  1. Immunogenetics and the Pathological Mechanisms of Human T-Cell Leukemia Virus Type 1- (HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP

    Directory of Open Access Journals (Sweden)

    Mineki Saito

    2010-01-01

    Full Text Available Human T-cell leukemia virus type 1 (HTLV-1 is a replication-competent human retrovirus associated with two distinct types of disease only in a minority of infected individuals: the malignancy known as adult T-cell leukemia (ATL and a chronic inflammatory central nervous system disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. Although the factors that cause these different manifestations of HTLV-1 infection are not fully understood, accumulating evidence suggests that complex virus-host interactions play an important role in determining the risk of HAM/TSP. This review focuses on the role of the immune response in controlling or limiting viral persistence in HAM/TSP patients, and the reason why some HTLV-1-infected people develop HAM/TSP whereas the majority remains asymptomatic carriers of the virus.

  2. Myeloid Dysregulation in a Human Induced Pluripotent Stem Cell Model of PTPN11-Associated Juvenile Myelomonocytic Leukemia

    Directory of Open Access Journals (Sweden)

    Sonia Mulero-Navarro

    2015-10-01

    Full Text Available Somatic PTPN11 mutations cause juvenile myelomonocytic leukemia (JMML. Germline PTPN11 defects cause Noonan syndrome (NS, and specific inherited mutations cause NS/JMML. Here, we report that hematopoietic cells differentiated from human induced pluripotent stem cells (hiPSCs harboring NS/JMML-causing PTPN11 mutations recapitulated JMML features. hiPSC-derived NS/JMML myeloid cells exhibited increased signaling through STAT5 and upregulation of miR-223 and miR-15a. Similarly, miR-223 and miR-15a were upregulated in 11/19 JMML bone marrow mononuclear cells harboring PTPN11 mutations, but not those without PTPN11 defects. Reducing miR-223’s function in NS/JMML hiPSCs normalized myelogenesis. MicroRNA target gene expression levels were reduced in hiPSC-derived myeloid cells as well as in JMML cells with PTPN11 mutations. Thus, studying an inherited human cancer syndrome with hiPSCs illuminated early oncogenesis prior to the accumulation of secondary genomic alterations, enabling us to discover microRNA dysregulation, establishing a genotype-phenotype association for JMML and providing therapeutic targets.

  3. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor–modified T cells

    Science.gov (United States)

    Gill, Saar; Tasian, Sarah K.; Ruella, Marco; Shestova, Olga; Li, Yong; Porter, David L.; Carroll, Martin; Danet-Desnoyers, Gwenn; Scholler, John; Grupp, Stephan A.; June, Carl H.

    2014-01-01

    Many patients with acute myeloid leukemia (AML) are incurable with chemotherapy and may benefit from novel approaches. One such approach involves the transfer of T cells engineered to express chimeric antigen receptors (CARs) for a specific cell-surface antigen. This strategy depends upon preferential expression of the target on tumor cells. To date, the lack of AML-specific surface markers has impeded development of such CAR-based approaches. CD123, the transmembrane α chain of the interleukin-3 receptor, is expressed in the majority of AML cells but is also expressed in many normal hematopoietic cells. Here, we show that CD123 is a good target for AML-directed CAR therapy, because its expression increases over time in vivo even in initially CD123dim populations, and that human CD123-redirected T cells (CART123) eradicate primary AML in immunodeficient mice. CART123 also eradicated normal human myelopoiesis, a surprising finding because anti-CD123 antibody-based strategies have been reportedly well tolerated. Because AML is likely preceded by clonal evolution in “preleukemic” hematopoietic stem cells, our observations support CART123 as a viable AML therapy, suggest that CART123-based myeloablation may be used as a novel conditioning regimen for hematopoietic cell transplantation, and raise concerns for the use of CART123 without such a rescue strategy. PMID:24596416

  4. Preclinical targeting of human acute myeloid leukemia and myeloablation using chimeric antigen receptor-modified T cells.

    Science.gov (United States)

    Gill, Saar; Tasian, Sarah K; Ruella, Marco; Shestova, Olga; Li, Yong; Porter, David L; Carroll, Martin; Danet-Desnoyers, Gwenn; Scholler, John; Grupp, Stephan A; June, Carl H; Kalos, Michael

    2014-04-10

    Many patients with acute myeloid leukemia (AML) are incurable with chemotherapy and may benefit from novel approaches. One such approach involves the transfer of T cells engineered to express chimeric antigen receptors (CARs) for a specific cell-surface antigen. This strategy depends upon preferential expression of the target on tumor cells. To date, the lack of AML-specific surface markers has impeded development of such CAR-based approaches. CD123, the transmembrane α chain of the interleukin-3 receptor, is expressed in the majority of AML cells but is also expressed in many normal hematopoietic cells. Here, we show that CD123 is a good target for AML-directed CAR therapy, because its expression increases over time in vivo even in initially CD123(dim) populations, and that human CD123-redirected T cells (CART123) eradicate primary AML in immunodeficient mice. CART123 also eradicated normal human myelopoiesis, a surprising finding because anti-CD123 antibody-based strategies have been reportedly well tolerated. Because AML is likely preceded by clonal evolution in "preleukemic" hematopoietic stem cells, our observations support CART123 as a viable AML therapy, suggest that CART123-based myeloablation may be used as a novel conditioning regimen for hematopoietic cell transplantation, and raise concerns for the use of CART123 without such a rescue strategy.

  5. Photodynamically-induced Apoptosis Due to Ultraviolet A in the Presence of Lomefloxacin in Human Promyelocytic Leukemia Cells.

    Science.gov (United States)

    Nakai, Shouko; Imaizumi, Takahiro; Watanabe, Takahiro; Iwase, Yumiko; Nishi, Koji; Okudaira, Kazuho; Yumita, Nagahiko

    2017-11-01

    Lomefloxacin (LFX) is a widely used fluoroquinolone antimicrobial agent that plays an important role in the treatment of human and animal infections; however, it has been reported to cause phototoxicity. In this study, we investigated the induction of apoptosis due to ultraviolet A (UVA) light in the presence and absence of LFX in HL-60 human promyelocytic leukemia cells. HL-60 cells were exposed to UVA at an intensity of 1.1 mW/cm2 for 20 min in the presence and absence of LFX, and the induction of apoptosis was examined by analyzing cell morphology, DNA fragmentation, and caspase-3 activity. Cells treated with 100 μM LFX and UVA clearly showed membrane blebbing and cell shrinkage. The proportion of apoptotic cells was significantly higher in cells treated with both UVA and LFX than in those treated with UVA or LFX alone. In addition, DNA ladder formation and caspase-3 activation were observed in cells treated with both UVA and LFX. A significant reduction in the number of UVA-induced apoptotic cells and caspase-3 activation was observed when histidine was present, which suggested that photodynamically-generated singlet oxygen is an important mediator of apoptosis. These results indicate that the combination of UVA and LFX induces apoptosis in HL-60 cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Plumbagin exerts an immunosuppressive effect on human T-cell acute lymphoblastic leukemia MOLT-4 cells

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyoung Jun; Lee, Yura [Department of Biomedical Laboratory Science, Daejeon 34824 (Korea, Republic of); Kim, Soon Ae [Department of Pharmacology, School of Medicine, Daejeon 34824 (Korea, Republic of); Kim, Jiyeon, E-mail: yeon@eulji.ac.kr [Department of Biomedical Laboratory Science, Daejeon 34824 (Korea, Republic of)

    2016-04-22

    Of the hematological disorders typified by poor prognoses and survival rates, T-cell acute lymphoblastic leukemia (T-ALL) is one of the most commonly diagnosed. Despite the development of new therapeutic agents, the treatment options for this cancer remain limited. In this manuscript, we investigated the anti-proliferative effects of plumbagin, mediated by the activation of mitogen-activated protein kinase (MAPK) pathways, and inhibition of NF-κB signaling; the human T-ALL MOLT-4 cell line was used as our experimental system. Plumbagin is a natural, plant derived compound, which exerts an anti-proliferative activity against many types of human cancer. Our experiments confirm that plumbagin induces a caspase-dependent apoptosis of MOLT-4 cells, with no significant cytotoxicity seen for normal peripheral blood mononuclear cells (PBMCs). Plumbagin also inhibited LPS-induced phosphorylation of p65, and the transcription of NF-κB target genes. Our results now show that plumbagin is a potent inhibitor of the NF-κB signaling pathway, and suppressor of T-ALL cell proliferation. - Highlights: • Plumbagin induces caspase-dependent apoptosis in T-ALL MOLT-4 cells. • Plumbagin activates phosphorylation of stress-activated protein kinase (SAPK) JNK and p38. • Plumbagin inhibits LPS-mediated NF-κB signaling cascade. • Plumbagin inhibits LPS-mediated transcriptional activity of pro-inflammatory cytokines.

  7. Potent apoptosis-inducing activity of erypoegin K, an isoflavone isolated from Erythrina poeppigiana, against human leukemia HL-60 cells.

    Science.gov (United States)

    Hikita, Kiyomi; Hattori, Natsuki; Takeda, Aya; Yamakage, Yuko; Shibata, Rina; Yamada, Saori; Kato, Kuniki; Murata, Tomiyasu; Tanaka, Hitoshi; Kaneda, Norio

    2018-01-01

    Erypoegin K is an isoflavone isolated from the stem bark of Erythrina poeppigiana. It contains a furan group at the A-ring of the core isoflavone structure and can inhibit the activity of glyoxalase I, an enzyme that catalyzes the detoxification of methylglyoxal (MG), a by-product of glycolysis. In the present study, we found that erypoegin K has a potent cytotoxic effect on human leukemia HL-60 cells. Its cytotoxic effect was much stronger than that of a known glyoxalase I inhibitor S-p-bromobenzylglutathione cyclopentyl diester. Conversely, erypoegin K demonstrated weak cytotoxicity toward normal human peripheral lymphocytes. The treatment of HL-60 cells with erypoegin K significantly induced caspase-3 activity, whereas the pretreatment of the cells with caspase-3 inhibitor suppressed erypoegin K-induced cell death. Furthermore, nuclear condensation and apoptotic genome DNA fragmentation were observed in erypoegin K-treated HL-60 cells. These results indicated that the observed cell death was mediated by apoptosis. In addition, the toxic compound MG was highly accumulated in the culture medium of erypoegin K-treated HL-60 cells, suggesting that cell apoptosis was triggered by extracellular MG. The present study showed that erypoegin K has a potent apoptosis-inducing effect on cancerous cell lines, such as HL-60.

  8. A Rapid Culture Technique Produces Functional Dendritic-Like Cells from Human Acute Myeloid Leukemia Cell Lines

    Directory of Open Access Journals (Sweden)

    Jian Ning

    2011-01-01

    Full Text Available Most anti-cancer immunotherapeutic strategies involving dendritic cells (DC as vaccines rely upon the adoptive transfer of DC loaded with exogenous tumour-peptides. This study utilized human acute myeloid leukemia (AML cells as progenitors from which functional dendritic-like antigen presenting cells (DLC were generated, that constitutively express tumour antigens for recognition by CD8+ T cells. DLC were generated from AML cell lines KG-1 and MUTZ-3 using rapid culture techniques and appropriate cytokines. DLC were evaluated for their cell-surface phenotype, antigen uptake and ability to stimulate allogeneic responder cell proliferation, and production of IFN-γ; compared with DC derived from normal human PBMC donors. KG-1 and MUTZ-3 DLC increased expression of CD80, CD83, CD86, and HLA-DR, and MUTZ-3 DLC downregulated CD14 and expressed CD1a. Importantly, both KG-1 and MUTZ-3-derived DLC promoted proliferation of allogeneic responder cells more efficiently than unmodified cells; neither cells incorporated FITC-labeled dextran, but both stimulated IFN-γ production from responding allogeneic CD8+ T cells. Control DC produced from PBMC using the FastDC culture also expressed high levels of critical cell surface ligands and demonstrated good APC function. This paper indicates that functional DLC can be cultured from the AML cell lines KG-1 and MUTZ-3, and FastDC culture generates functional KG-1 DLC.

  9. Evaluation of the Inhibitory Effects of Bavachinin and Bavachin on Human Monoamine Oxidases A and B

    Directory of Open Access Journals (Sweden)

    Najla O. Zarmouh

    2015-01-01

    Full Text Available Monoamine oxidase B inhibitors (MAO-BIs are used in the early management of Parkinson’s disease (PD. Long-term suspected side effects of MAO-B classical inhibitors established the need for safer alternative therapeutic agents. In our study, the flavanone bavachinin (BNN and its analog bavachin (BVN found in the seeds of Psoralea corylifolia L. ethanolic extract (PCSEE were investigated for their human MAO-A and MAO-B (hMAO-A and hMAO-B inhibition. Both PCSEE and BNN effectively reduced hMAO-B activity more than hMAO-A while BVN had activating effects. BNN showed selective hMAO-B inhibition (IC50 ~ 8.82 μM more than hMAO-A (IC502009;~ 189.28 μM. BNN in the crude extract was determined by HPLC, also validated by TLC showing a yield of 0.21% PCSEE dry weight. BNN competitively inhibited hMAO-A and hMAO-B, with a lower hMAO-B Ki than hMAO-A Ki by 10.33-fold, and reduced hMAO-B Km/Vmax efficiency ratio to be comparable to the standard selegiline. Molecular docking examination of BNN and BVN predicted an indirect role of BNN C7-methoxy group for its higher affinity, selectivity, and reversibility as an MAO-BI. These findings suggest that BNN, which is known to be a potent PPAR-γ agonist, is a selective and competitive hMAO-B inhibitor and could be used in the management of PD.

  10. The inhibitory effect of simvastatin and aspirin on histamine responsiveness in human vascular endothelial cells.

    Science.gov (United States)

    Absi, Mais; Bruce, Jason I; Ward, Donald T

    2014-04-01

    Statins and aspirin deliver well-established cardiovascular benefits resulting in their increased use as combined polypills to decrease risk of stroke and heart disease. However, the direct endothelial effect of combined statin/aspirin cotreatment remains unclear. Histamine is an inflammatory mediator that increases vascular permeability, and so we examined the effect of treating human umbilical vein endothelial cells (HUVECs) for 24 h with 1 μM simvastatin and 100 μM aspirin on histamine responsiveness. Subsequent histamine (1 μM) challenge increased intracellular calcium (Ca(2+)i) concentration, an effect that was significantly inhibited by combined simvastatin/aspirin pretreatment but not when then the compounds were given separately, even at 10-fold higher concentrations. In contrast, the Ca(2+)i mobilization response to ATP challenge (10 μM) was not inhibited by combined simvastatin/aspirin pretreatment. The H1 receptor antagonist pyrilamine significantly inhibited both histamine-induced Ca(2+)i mobilization and extracellular signal-regulated kinase (ERK) activation, whereas ranitidine (H2 receptor antagonist) was without effect. However, combined simvastatin/aspirin pretreatment failed to decrease H1 receptor protein expression ruling out receptor downregulation as the mechanism of action. Histamine-induced ERK activation was also inhibited by atorvastatin pretreatment, while simvastatin further inhibited histamine-induced vascular endothelial cadherin phosphorylation as well as altered HUVEC morphology and inhibited actin polymerization. Therefore, in addition to the known therapeutic benefits of statins and aspirin, here we provide initial cellular evidence that combined statin/aspirin treatment inhibits histamine responsiveness in HUVECs.

  11. Inhibitory Effects of Standardized Extracts of Phyllanthus amarus and Phyllanthus urinaria and Their Marker Compounds on Phagocytic Activity of Human Neutrophils

    Directory of Open Access Journals (Sweden)

    Yuandani

    2013-01-01

    Full Text Available The standardized methanol extracts of Phyllanthus amarus and P. urinaria, collected from Malaysia and Indonesia, and their isolated chemical markers, phyllanthin and hypophyllanthin, were evaluated for their effects on the chemotaxis, phagocytosis and chemiluminescence of human phagocytes. All the plant extracts strongly inhibited the migration of polymorphonuclear leukocytes (PMNs with the Malaysian P. amarus showing the strongest inhibitory activity (IC50 value, 1.1 µg/mL. There was moderate inhibition by the extracts of the bacteria engulfment by the phagocytes with the Malaysian P. amarus exhibiting the highest inhibition (50.8% of phagocytizing cells. The Malaysian P. amarus and P. urinaria showed strong reactive oxygen species (ROS inhibitory activity, with both extracts exhibiting IC50 value of 0.7 µg/mL. Phyllanthin and hypophyllanthin exhibited relatively strong activity against PMNs chemotaxis, with IC50 values slightly lower than that of ibuprofen (1.4 µg/mL. Phyllanthin exhibited strong inhibitory activity on the oxidative burst with an IC50 value comparable to that of aspirin (1.9 µg/mL. Phyllanthin exhibited strong engulfment inhibitory activity with percentage of phagocytizing cells of 14.2 and 27.1% for neutrophils and monocytes, respectively. The strong inhibitory activity of the extracts was due to the presence of high amounts of phyllanthin and hypophyllanthin although other constituents may also contribute.

  12. C-terminal Domain Modulates the Nucleic Acid Chaperone Activity of Human T-cell Leukemia Virus Type 1 Nucleocapsid Protein via an Electrostatic Mechanism*

    OpenAIRE

    Qualley, Dominic F.; Stewart-Maynard, Kristen M.; Wang, Fei; Mitra, Mithun; Gorelick, Robert J.; Rouzina, Ioulia; Williams, Mark C.; Musier-Forsyth, Karin

    2009-01-01

    Retroviral nucleocapsid (NC) proteins are molecular chaperones that facilitate nucleic acid (NA) remodeling events critical in viral replication processes such as reverse transcription. Surprisingly, the NC protein from human T-cell leukemia virus type 1 (HTLV-1) is an extremely poor NA chaperone. Using bulk and single molecule methods, we find that removal of the anionic C-terminal domain (CTD) of HTLV-1 NC results in a protein with chaperone properties comparable with that of other retrovir...

  13. The growth inhibitory effects of cadmium and copper on the MDA-MB468 human breast cancer cells

    Directory of Open Access Journals (Sweden)

    Mojtaba Panjehpour

    2010-01-01

    Full Text Available Background: Cadmium chloride is an important occupational and environmental pollutant. However, it can also be anti-carcinogenic under certain conditions. Copper, an essential trace element, has the ability to generate reactive oxygen species and induce cell apoptosis. This study was aimed to determine the growth inhibitory effects of cadmium and copper on the MDA-MB468 human breast cancer cells. Methods: By using MTT cell viability test, treatment of monolayer cell cultures with different metal concentrations (1-1000 μM showed a significant dose dependent decrease (p < 0.05 of viable cells in different times. Results: A considerable cytotoxicity was observed for CdCl2 at 200 μM and 1 μM after 48 and 72 hours incubations, respectively. The highest concentration of CuCl2 (1000 μM had little cytotoxic effects after 48 hours incubation period, but 1 μM of CuCl2 revealed a considerable cytotoxicity after 72 hours. The maximum synergic cytotoxic effect was observed at 0.5 μM of both metals. Conclusions: The results of the present study indicate that cytotoxic effect of CuCl2 is somehow lesser than that of CdCl2. This may be due to vital role of copper which is not known for cadmium so far.

  14. Investigation of the inhibitory properties of some phenolic standards and bee products against human carbonic anhydrase I and II.

    Science.gov (United States)

    Aygul, Imdat; Yaylaci Karahalil, Fatma; Supuran, Claudiu T

    2016-01-01

    Polyphenols are important secondary products of plants with the potential to inhibit carbonic anhydrases. The aim of this study was to investigate the inhibition effects of various phenolic standards, honey, propolis, and pollen species on human carbonic anhydrase I and II. The inhibition values (IC50) of the phenolics (gallic acid, protocatechuic acid, quercetin, catechin, tannic acid, and chrysin) ranged from 0.009 to 0.32 μg/mL, tannic acid emerging as the best inhibitor. The inhibition values of three different types of honey, heather, rhododendron, and chestnut ranged between 2.32 and 25.10 μg/mL, the chestnut honeys exhibiting the best inhibition. The ethanolic extracts of pollen and propolis exhibited good inhibitory properties, with IC50 values between 0.486 and 3.320 μg/mL. In order to evaluate the phenolic composition of bee products, phenolic profiles and total phenolic contents (TFC) were also measured. The inhibition ranking among the natural products studied was phenolic standards > propolis > pollen > honeys, and inhibition was related to TFC.

  15. Matrix metalloproteinase-1 inhibitory activities of Morinda citrifolia seed extract and its constituents in UVA-irradiated human dermal fibroblasts.

    Science.gov (United States)

    Masuda, Megumi; Murata, Kazuya; Naruto, Shunsuke; Uwaya, Akemi; Isami, Fumiyuki; Matsuda, Hideaki

    2012-01-01

    The objective of this study was to examine whether a 50% ethanolic extract (MCS-ext) of the seeds of Morinda citrifolia (noni) and its constituents have matrix metalloproteinase-1 (MMP-1) inhibitory activity in UVA-irradiated normal human dermal fibroblasts (NHDFs). The MCS-ext (10 μg/mL) inhibited MMP-1 secretion from UVA-irradiated NHDFs, without cytotoxic effects, at 48 h after UV exposure. The ethyl acetate-soluble fraction of MCS-ext was the most potent inhibitor of MMP-1 secretion. Among the constituents of the fraction, a lignan, 3,3'-bisdemethylpinoresinol (1), inhibited the MMP-1 secretion at a concentration of 0.3 μM without cytotoxic effects. Furthermore, 1 (0.3 μM) reduced the level of intracellular MMP-1 expression. Other constituents, namely americanin A (2), quercetin (3) and ursolic acid (4), were inactive. To elucidate inhibition mechanisms of MMP-1 expression and secretion, the effect of 1 on mitogen-activated protein kinases (MAPKs) phosphorylation was examined. Western blot analysis revealed that 1 (0.3 μM) reduced the phosphorylations of p38 and c-Jun-N-terminal kinase (JNK). These results suggested that 1 suppresses intracellular MMP-1 expression, and consequent secretion from UVA-irradiated NHDFs, by down-regulation of MAPKs phosphorylation.

  16. Polymorphisms in the human inhibitory signal-regulatory protein α do not affect binding to its ligand CD47.

    Science.gov (United States)

    Hatherley, Deborah; Lea, Susan M; Johnson, Steven; Barclay, A Neil

    2014-04-04

    CD47 is a widely distributed membrane protein that interacts with signal-regulatory protein α (SIRPα), an inhibitory receptor on myeloid cells that gives a "don't-eat-me" signal. Manipulation of the interaction is of considerable interest in the immunotherapy of cancer and in xenotransplantation. The amino-terminal ligand binding domain of SIRPα is highly polymorphic in contrast to the single Ig-like domain of CD47. There is confusion as to whether the polymorphisms will affect ligand binding, but this is an important point for this interaction and other paired receptors being considered as targets for therapy. We show by x-ray crystallography that one human SIRPα allele differing in 13 amino acid residues has a very similar binding site and that several different alleles all bind CD47 with similar affinity as expected because the residues are mostly surface-exposed and distant from the binding site. A peptide from the binding site of CD47 has been reported to mimic the CD47 interaction with SIRPα, but we could find no binding. We discuss the possible pitfalls in determining the affinity of weak interactions and also speculate on how SIRPα polymorphisms may have been selected by pathogens and how this may also be true in other paired receptors such as the KIRs.

  17. Dexamethasone Regulates EphA5, a Potential Inhibitory Factor with Osteogenic Capability of Human Bone Marrow Stromal Cells

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Yamada

    2016-01-01

    Full Text Available We previously demonstrated the importance of quality management procedures for the handling of human bone marrow stromal cells (hBMSCs and provided evidence for the existence of osteogenic inhibitor molecules in BMSCs. One candidate inhibitor is the ephrin type-A receptor 5 (EphA5, which is expressed in hBMSCs and upregulated during long-term culture. In this study, forced expression of EphA5 diminished the expression of osteoblast phenotypic markers. Downregulation of endogenous EphA5 by dexamethasone treatment promoted osteoblast marker expression. EphA5 could be involved in the normal growth regulation of BMSCs and could be a potential marker for replicative senescence. Although Eph forward signaling stimulated by ephrin-B-Fc promoted the expression of ALP mRNA in BMSCs, exogenous addition of EphA5-Fc did not affect the ALP level. The mechanism underlying the silencing of EphA5 in early cultures remains unclear. EphA5 promoter was barely methylated in hBMSCs while histone deacetylation could partially suppress EphA5 expression in early-passage cultures. In repeatedly passaged cultures, the upregulation of EphA5 independent of methylation could competitively inhibit osteogenic signal transduction pathways such as EphB forward signaling. Elucidation of the potential inhibitory function of EphA5 in hBMSCs may provide an alternative approach for lineage differentiation in cell therapy strategies and regenerative medicine.

  18. Retargeting Oncolytic Vesicular Stomatitis Virus to Human T-Cell Lymphotropic Virus Type 1-Associated Adult T-Cell Leukemia

    Science.gov (United States)

    Betancourt, Dillon; Ramos, Juan Carlos

    2015-01-01

    ABSTRACT Adult T cell leukemia/lymphoma (ATL) is an aggressive cancer of CD4/CD25+ T lymphocytes, the etiological agent of which is human T-cell lymphotropic virus type 1 (HTLV-1). ATL is highly refractory to current therapies, making the development of new treatments a high priority. Oncolytic viruses such as vesicular stomatitis virus (VSV) are being considered as anticancer agents since they readily infect transformed cells compared to normal cells, the former appearing to exhibit defective innate immune responses. Here, we have evaluated the efficacy and safety of a recombinant VSV that has been retargeted to specifically infect and replicate in transformed CD4+ cells. This was achieved by replacing the single VSV glycoprotein (G) with human immunodeficiency virus type 1 (HIV-1) gp160 to create a hybrid fusion protein, gp160G. The resultant virus, VSV-gp160G, was found to only target cells expressing CD4 and retained robust oncolytic activity against HTLV-1 actuated ATL cells. VSV-gp160G was further noted to be highly attenuated and did not replicate efficiently in or induce significant cell death of primary CD4+ T cells. Accordingly, VSV-gp160G did not elicit any evidence of neurotoxicity even in severely immunocompromised animals such as NOD/Shi-scid, IL-2Rγ-c-null (NSG) mice. Importantly, VSV-gp160G effectively exerted potent oncolytic activity in patient-derived ATL transplanted into NSG mice and facilitated a significant survival benefit. Our data indicate that VSV-gp160G exerts potent oncolytic efficacy against CD4+ malignant cells and either alone or in conjunction with established therapies may provide an effective treatment in patients displaying ATL. IMPORTANCE Adult T cell leukemia (ATL) is a serious form of cancer with a high mortality rate. HTLV-1 infection is the etiological agent of ATL and, unfortunately, most patients succumb to the disease within a few years. Current treatment options have failed to significantly improve survival rate. In

  19. Retargeting Oncolytic Vesicular Stomatitis Virus to Human T-Cell Lymphotropic Virus Type 1-Associated Adult T-Cell Leukemia.

    Science.gov (United States)

    Betancourt, Dillon; Ramos, Juan Carlos; Barber, Glen N

    2015-12-01

    Adult T cell leukemia/lymphoma (ATL) is an aggressive cancer of CD4/CD25(+) T lymphocytes, the etiological agent of which is human T-cell lymphotropic virus type 1 (HTLV-1). ATL is highly refractory to current therapies, making the development of new treatments a high priority. Oncolytic viruses such as vesicular stomatitis virus (VSV) are being considered as anticancer agents since they readily infect transformed cells compared to normal cells, the former appearing to exhibit defective innate immune responses. Here, we have evaluated the efficacy and safety of a recombinant VSV that has been retargeted to specifically infect and replicate in transformed CD4(+) cells. This was achieved by replacing the single VSV glycoprotein (G) with human immunodeficiency virus type 1 (HIV-1) gp160 to create a hybrid fusion protein, gp160G. The resultant virus, VSV-gp160G, was found to only target cells expressing CD4 and retained robust oncolytic activity against HTLV-1 actuated ATL cells. VSV-gp160G was further noted to be highly attenuated and did not replicate efficiently in or induce significant cell death of primary CD4(+) T cells. Accordingly, VSV-gp160G did not elicit any evidence of neurotoxicity even in severely immunocompromised animals such as NOD/Shi-scid, IL-2Rγ-c-null (NSG) mice. Importantly, VSV-gp160G effectively exerted potent oncolytic activity in patient-derived ATL transplanted into NSG mice and facilitated a significant survival benefit. Our data indicate that VSV-gp160G exerts potent oncolytic efficacy against CD4(+) malignant cells and either alone or in conjunction with established therapies may provide an effective treatment in patients displaying ATL. Adult T cell leukemia (ATL) is a serious form of cancer with a high mortality rate. HTLV-1 infection is the etiological agent of ATL and, unfortunately, most patients succumb to the disease within a few years. Current treatment options have failed to significantly improve survival rate. In this study, we

  20. Idiotype vaccines against human T cell acute lymphoblastic leukemia. I. Generation and characterization of biologically active monoclonal anti-idiotopes.

    Science.gov (United States)

    Bhattacharya-Chatterjee, M; Pride, M W; Seon, B K; Kohler, H

    1987-08-15

    A murine monoclonal anti-tumor antibody termed SN2 (Ab1), isotype IgG1-kappa, that defines a unique human T cell leukemia-associated cell-surface glycoprotein, gp37 (m.w. 37,000), was used to generate monoclonal anti-idiotype antibodies (Ab2) in syngeneic BALB/c mice. The Ab2 were screened on the basis of their binding to the F(ab')2 fragments of SN2 and not to the F(ab')2 of pooled normal BALB/c mice sera IgG1 or to an unrelated BALB/c monoclonal antibody of the same isotype. Fifteen Ab2, obtained from two fusions, were specific for the SN2 idiotope and not against isotype or allotype determinants. To find out whether these Ab2 are directed against the paratope of SN2, the binding of radiolabeled SN2 to leukemic MOLT-4 and JM cells which contain gp37 as a surface constituent was studied in the presence of these anti-idiotopes. Clone 4EA2 inhibited the binding 100% at a concentration of 50 ng and 4DC6 inhibited 90% at a concentration of 250 ng. A third clone 4DD6 gave about 50% inhibition. Similar was the inhibition of SN2 binding to insolubilized MOLT-4 antigen or cell membrane preparation. The binding of SN2 (Ab1) to 4EA2 and 4DC6 was also inhibited by semipurified preparation of gp37 antigen. These results demonstrate that at least two of the anti-idiotope antibodies are binding either at or near the binding site idiotope of SN2. Next, the purified Ab2 was used to immunize syngeneic mice to induce antibody binding to MOLT-4 cells or gp37. Sera from mice immunized with 4EA2 and 4DC6 coupled to keyhole limpet hemocyanin contained antibodies which bind to semipurified gp37 antigen and MOLT-4 cells. Immune sera inhibited the binding of iodinated Ab2 and Ab1 indicating that an anti-anti-idiotopic antibody (Ab3) in mice shares idiotopes with Ab1 (SN2). Also, the binding of iodinated Ab2 to Ab1 was inhibited by rabbit antisera specific for gp37. Collectively, these data suggest that anti-idiotype antibodies 4EA2 and 4DC6 may be useful in the generation of idiotype

  1. Evaluation of effects of various drugs on platelet functions using phorbol 12-myristate 13-acetate-induced megakaryocytic human erythroid leukemia cells

    Directory of Open Access Journals (Sweden)

    Tada T

    2016-09-01

    Full Text Available Tomoki Tada,1 Kensaku Aki,2 Wataru Oboshi,1,3 Kazuyoshi Kawazoe,4 Toshiyuki Yasui,5 Eiji Hosoi2 1Subdivision of Biomedical Laboratory Sciences, Graduate School of Health Sciences, Tokushima University, 2Department of Cells and Immunity Analytics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 3Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Kagawa, 4Department of Clinical Pharmacy Practice Pedagogy, Institute of Biomedical Sciences, 5Department of Reproductive and Menopausal Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan Background: The hyperfunction and activation of platelets have been strongly implicated in the development and recurrence of arterial occlusive disease, and various antiplatelet drugs are used to treat and prevent such diseases. New antiplatelet drugs and many other drugs have been developed, but some drugs may have adverse effects on platelet functions. Objective: The aim of this study was to establish an evaluation method for evaluating the effect and adverse effect of various drugs on platelet functions. Materials and methods: Human erythroid leukemia (HEL cells were used after megakaryocytic differentiation with phorbol 12-myristate 13-acetate as an alternative to platelets. Drugs were evaluated by changes in intracellular Ca2+ concentration ([Ca2+]i mobilization in Fura2-loaded phorbol 12-myristate 13-acetate-induced HEL cells. Aspirin and cilostazol were selected as antiplatelet drugs and ibuprofen and sodium valproate as other drugs. Results: There was a positive correlation between [Ca2+]i and platelet aggregation induced by thrombin. Aspirin (5.6–560 µM and cilostazol (5–10 µM significantly inhibited thrombin-induced increases in [Ca2+]i in a concentration-dependent manner. On the other hand, ibuprofen (8–200 µM and sodium valproate (50–1,000 µg/mL also significantly inhibited

  2. Regulation of cancer stem cell properties by CD9 in human B-acute lymphoblastic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Hiroto [Division of Clinical Immunology, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Wilson Xu, C. [Drug Development Program, Nevada Cancer Institute, Las Vegas, NV (United States); Naito, Motohiko [Division of Clinical Immunology, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Nishida, Hiroko [Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Okamoto, Toshihiro; Ghani, Farhana Ishrat; Iwata, Satoshi [Division of Clinical Immunology, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Inukai, Takeshi; Sugita, Kanji [Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi (Japan); Morimoto, Chikao, E-mail: morimoto@ims.u-tokyo.ac.jp [Division of Clinical Immunology, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Drug Development Program, Nevada Cancer Institute, Las Vegas, NV (United States)

    2011-05-27

    Highlights: {yields} We performed more detailed analysis of CD9 function for CSC properties in B-ALL. {yields} Leukemogenic fusion/Src family proteins were markedly regulated in the CD9{sup +} cells. {yields} Proliferation of B-ALL cells was inhibited by anti-CD9 monoclonal antibody. {yields} Knockdown of CD9 by RNAi remarkably reduced the leukemogenic potential. {yields} CD9-knockdown affected the expression and phosphorylation of Src family and USP22. -- Abstract: Although the prognosis of acute lymphoblastic leukemia (ALL) has improved considerably in recent years, some of the cases still exhibit therapy-resistant. We have previously reported that CD9 was expressed heterogeneously in B-ALL cell lines and CD9{sup +} cells exhibited an asymmetric cell division with greater tumorigenic potential than CD9{sup -} cells. CD9{sup +} cells were also serially transplantable in immunodeficient mice, indicating that CD9{sup +} cell possess self-renewal capacity. In the current study, we performed more detailed analysis of CD9 function for the cancer stem cell (CSC) properties. In patient sample, CD9 was expressed in the most cases of B-ALL cells with significant correlation of CD34-expression. Gene expression analysis revealed that leukemogenic fusion proteins and Src family proteins were significantly regulated in the CD9{sup +} population. Moreover, CD9{sup +} cells exhibited drug-resistance, but proliferation of bulk cells was inhibited by anti-CD9 monoclonal antibody. Knockdown of CD9 remarkably reduced the leukemogenic potential. Furthermore, gene ablation of CD9 affected the expression and tyrosine-phosphorylation of Src family proteins and reduced the expression of histone-deubiquitinase USP22. Taken together, our results suggest that CD9 links to several signaling pathways and epigenetic modification for regulating the CSC properties of B-ALL.

  3. Phenotypic and gene expression diversity of malignant cells in human blast crisis chronic myeloid leukemia.

    Science.gov (United States)

    Simanovsky, Masha; Berlinsky, Sagi; Sinai, Pirchia; Leiba, Merav; Nagler, Arnon; Galski, Hanan

    2008-10-01

    Chronic myeloid leukemia (CML) is considered as a paradigm of neoplasias developing through multistep track. It is believed that in the blast crisis (BC) terminal phase of the disease, blood-circulating blasts represent an expansion of a single CML clone. However, although these blasts grow mostly in suspension under standard culture conditions, a relatively small cell-fraction adheres to the plastic dish. Yet, it is unknown whether these two cell-fractions are distinct sub-populations that originated from a common CML clone and whether they have different biological and malignant properties. To address these questions, we have characterized the plastic-adherent and non-adherent sub-populations of various cell lines and primary cells derived from patients with CML in BC. This study indicated that the adherent-subsets retain repopulating ability with indications of increased malignant properties as greater anchorage-independent clonogenicity, impairment of cell-cell contact inhibition, loss of serum-dependent attenuation of plastic-adhesion, and a significant up-regulation of the oncogenes BCR-ABL, c-JUN, and c-FOS along with the adhesion-related genes KiSS-1, THBS3, and ITGB5. The adherent blasts stably retain their unique properties even after elimination of the adherence selection pressure. Sub-cloning analyses indicated that the adherent cells could be continuously evolved from any parental non-adherent clone in a unidirectional manner. This study provides new insights into the biology and the malignant evolution of CML, indicating that at the BC phase, circulating blasts are heterogeneous and consisting of at least two distinct populations of a common clonal origin. The existence of a minor "pool" of blasts of greater clonogenic capacity along with significantly higher expression level of BCR-ABL, individually or in conjunction with other cancer and adhesion-related genes, might also signify clonal evolution toward subsequent increased malignancy and lower

  4. Caveolin-1 contributes to realgar nanoparticle therapy in human chronic myelogenous leukemia K562 cells

    Science.gov (United States)

    Shi, Dan; Liu, Yan; Xi, Ronggang; Zou, Wei; Wu, Lijun; Zhang, Zhiran; Liu, Zhongyang; Qu, Chao; Xu, Baoli; Wang, Xiaobo

    2016-01-01

    Chronic myelogenous leukemia (CML) is characterized by the t(9;22) (q34;q11)-associated Bcr-Abl fusion gene, which is an essential element of clinical diagnosis. As a traditional Chinese medicine, realgar has been widely used for the treatment of various diseases for >1,500 years. Inspired by nano-drug, realgar nanoparticles (NPs) have been prepared with an average particle size of <100 nm in a previous work. Compared with coarse realgar, the realgar NPs have higher bioavailability. As a principal constituent protein of caveolae, caveolin-1 (Cav-1) participates in regulating various cellular physiological and pathological processes including tumorigenesis and tumor development. In previous studies, it was found that realgar NPs can inhibit several types of tumor cell proliferation. However, the therapeutic effect of realgar NPs on CML has not been fully elucidated. In the present paper, it was demonstrated that realgar NPs can inhibit the proliferation of K562 cells and degrade Bcr-Abl fusion protein effectively. Both apoptosis and autophagy were activated in a dose-dependent manner in realgar NPs treated cells, and the induction of autophagy was associated with class I phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway. Morphological analysis indicated that realgar NPs induced differentiation effectively in CML cells. Furthermore, it was identified that Cav-1 might play a crucial role in realgar NP therapy. In order to study the effects of Cav-1 on K562 cells during realgar NP treatment, a Cav-1 overexpression cell model was established by using transient transfection. The results indicated that Cav-1 overexpression inhibited K562 cell proliferation, promoted endogenic autophagy, and increased the sensitivity of K562 cells to realgar NPs. Therefore, the results demonstrated that realgar NPs degraded Bcr-Abl oncoprotein, while the underlying mechanism might be related to apoptosis and autophagy, and Cav-1 might be considered as a

  5. Caveolin-1 contributes to realgar nanoparticle therapy in human chronic myelogenous leukemia K562 cells.

    Science.gov (United States)

    Shi, Dan; Liu, Yan; Xi, Ronggang; Zou, Wei; Wu, Lijun; Zhang, Zhiran; Liu, Zhongyang; Qu, Chao; Xu, Baoli; Wang, Xiaobo

    Chronic myelogenous leukemia (CML) is characterized by the t(9;22) (q34;q11)-associated Bcr-Abl fusion gene, which is an essential element of clinical diagnosis. As a traditional Chinese medicine, realgar has been widely used for the treatment of various diseases for >1,500 years. Inspired by nano-drug, realgar nanoparticles (NPs) have been prepared with an average particle size of realgar, the realgar NPs have higher bioavailability. As a principal constituent protein of caveolae, caveolin-1 (Cav-1) participates in regulating various cellular physiological and pathological processes including tumorigenesis and tumor development. In previous studies, it was found that realgar NPs can inhibit several types of tumor cell proliferation. However, the therapeutic effect of realgar NPs on CML has not been fully elucidated. In the present paper, it was demonstrated that realgar NPs can inhibit the proliferation of K562 cells and degrade Bcr-Abl fusion protein effectively. Both apoptosis and autophagy were activated in a dose-dependent manner in realgar NPs treated cells, and the induction of autophagy was associated with class I phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathway. Morphological analysis indicated that realgar NPs induced differentiation effectively in CML cells. Furthermore, it was identified that Cav-1 might play a crucial role in realgar NP therapy. In order to study the effects of Cav-1 on K562 cells during realgar NP treatment, a Cav-1 overexpression cell model was established by using transient transfection. The results indicated that Cav-1 overexpression inhibited K562 cell proliferation, promoted endogenic autophagy, and increased the sensitivity of K562 cells to realgar NPs. Therefore, the results demonstrated that realgar NPs degraded Bcr-Abl oncoprotein, while the underlying mechanism might be related to apoptosis and autophagy, and Cav-1 might be considered as a potential target for clinical comprehensive therapy of

  6. Human lymphocytic B-leukemia cell line treatment with the bacterial toxin listeriolysin O and rituximab (anti-CD20 antibody): Effects of similar localization of their receptors.

    Science.gov (United States)

    Gryzik, M; Grzywocz, Z; Wasilewska, D; Kawiak, J; Stachowiak, R; Bielecki, J; Hoser, G

    2015-09-01

    Small B-cell lymphocytic lymphoma/chronic lymphocytic leukemia, which typically affects elderly people, is a group of conditions that are not clinically uniform. It has been suggested that using the combined activity of the monoclonal antibody anti-CD20 (rituximab) and Listeria monocytogenes toxin listeriolysin O (LLO) for this condition could produce an enhanced treatment effect. Here, we tested the effect of the joint activity of rituximab and LLO, which is a cell membrane toxin, in human leukemia cell lines. The human B-leukemia Raji cell line, which expresses CD20, and the T-cell Jurkat cell line, which does not express CD20, for comparison were used in model tests. Cell cytotoxicity of rituximab or LLO and both applied jointly to the cell lines was compared in the presence of human plasma complement. Optimal cytotoxic effects dependent on rituximab or LLO concentration were tested separately. LD50 values were determined and used for optimal application of a mixture of the two factors. The cytotoxic effect on Raji cells of both rituximab and LLO was more than 2.5 times that of LLO alone and 1.5 times that of rituximab alone. At the highest tested concentrations, a mixture of the tested factors had a non-specific cytotoxic effect on the Jurkat cell line, as well. The rituximab and LLO binding sites appear to be in a similar region of the Raji leukemia cell membrane, suggesting an effective interaction of both factors. The joint interaction of these compounds in cell membrane pore formation suggests an explanation for the more effective cytotoxic activity that their combination was observed in this experiment. © The Author(s) 2015.

  7. Inhibitory effects of acyclic nucleoside phosphonates on human hepatitis B virus and duck hepatitis B virus infections in tissue culture

    NARCIS (Netherlands)

    R.A. Heijtink; J. Kruining; G.A. de Wilde; J. Balzarini; E. de Clercq; S.W. Schalm (Solko)

    1994-01-01

    textabstractThe inhibitory effects of the 9-(2-phosphonylmethoxyethyl)adenine-related compounds (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)-adenine, (S)-9-(3-fluoro-2-phosphonylmethoxypropyl)adenine, (R)-9-(2-phosphonylmethoxypropyl)adenine,

  8. Expression of leukemia/lymphoma related factor (LRF/Pokemon) in human benign prostate hyperplasia and prostate cancer.

    Science.gov (United States)

    Aggarwal, Himanshu; Aggarwal, Anshu; Hunter, William J; Yohannes, Paulos; Khan, Ansar U; Agrawal, Devendra K

    2011-04-01

    Leukemia/lymphoma related factor (LRF), also known as Pokemon, is a protein that belongs to the POK family of transcriptional repressors. It has an oncogenic role in many different solid tumors. In this study, the expression of LRF was evaluated in benign prostate hyperplastic (BPH) and prostate cancer (PC) tissues. The functional expression of LRF was studied using multiple cellular and molecular methods including RT-PCR, western blotting, immunohistochemistry, and immunofluorescence. Paraffin-embedded human tissues of BPH and PC were used to examine LRF expression. Histological staining of the BPH and PC tissue sections revealed nuclear expression of LRF with minimal expression in the surrounding stroma. The semi-quantitative RT-PCR and western immunoblot analyses demonstrated significantly higher mRNA transcripts and protein expression in PC than BPH. High expression of LRF suggests that it may have a potential role in the pathogenesis of both BPH and prostate cancer. Further studies will help elucidate the mechanisms and signaling pathways that LRF may follow in the pathogenesis of prostate carcinoma. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Detection of murine leukemia virus or mouse DNA in commercial RT-PCR reagents and human DNAs.

    Directory of Open Access Journals (Sweden)

    HaoQiang Zheng

    Full Text Available The xenotropic murine leukemia virus (MLV-related viruses (XMRV have been reported in persons with prostate cancer, chronic fatigue syndrome, and less frequently in blood donors. Polytropic MLVs have also been described in persons with CFS and blood donors. However, many studies have failed to confirm these findings, raising the possibility of contamination as a source of the positive results. One PCR reagent, Platinum Taq polymerase (pol has been reported to contain mouse DNA that produces false-positive MLV PCR results. We report here the finding of a large number of PCR reagents that have low levels of MLV sequences. We found that recombinant reverse-transcriptase (RT enzymes from six companies derived from either MLV or avian myeloblastosis virus contained MLV pol DNA sequences but not gag or mouse DNA sequences. Sequence and phylogenetic analysis showed high relatedness to Moloney MLV, suggesting residual contamination with an RT-containing plasmid. In addition, we identified contamination with mouse DNA and a variety of MLV sequences in commercially available human DNAs from leukocytes, brain tissues, and cell lines. These results identify new sources of MLV contamination and highlight the importance of careful pre-screening of commercial specimens and diagnostic reagents to avoid false-positive MLV PCR results.

  10. Effects of Vitamin K3 and K5 on Daunorubicin-resistant Human T Lymphoblastoid Leukemia Cells.

    Science.gov (United States)

    Nakaoka, Eri; Tanaka, Sachiko; Onda, Kenji; Sugiyama, Kentaro; Hirano, Toshihiko

    2015-11-01

    Anticancer efficacy of vitamin K derivatives on multidrug-resistant cancer cells has been scarcely investigated. The effects of vitamins K3 and K5 on proliferation of human leukemia MOLT-4 cells and on daunorubicin-resistant MOLT-4/DNR cells were estimated by a WST assay. Apoptotic cells were detected by Annexin V and propidium iodide staining, followed by flow cytometry. Vitamins K3 and K5 significantly inhibited proliferation of leukemic cells at 10 and 100 μM (pVitamin K3 induced cell apoptosis at 10 and 100 μM in both MOLT-4 and MOLT-4/DNR cells (pVitamin K5 also increased apoptotic cells, while rather inducing necrotic cell death. Vitamins K3 and K5 suppress MOLT-4 and MOLT-4/DNR cell-proliferation partially through induction of apoptosis, and these vitamin derivatives can overcome drug resistance due to P-glycoprotein expression. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Oxidative stress-mediated antiproliferative effects of furan-containing sulfur flavors in human leukemia Jurkat cells.

    Science.gov (United States)

    Zhang, Gong-Liang; Liang, Ying; Zhu, Jun-Ya; Jia, Qiong; Gan, Wei-Qi; Sun, Li-Ming; Hou, Hong-Man

    2015-08-01

    Antiproliferative effects of 15 sulfides were investigated in human leukemia Jurkat cells. Treatment with 5-50 μM of nine monosulfides and two linear disulfides did not induce DNA fragmentation. Whereas, furan-containing sulfur flavors including methyl 2-methyl-3-furyl disulfide (MMFDS), bis (2-methyl-3-furyl) disulfide (BMFDS), methyl furfuryl disulfide (MFDS) and difurfuryl disulfide (DFDS) induced DNA fragmentation to a varying extent in Jurkat cells. The cell viability-reduction effect of these sulfur flavors was in the following order: DFDS>BMFDS>MMFDS>MFDS based on the IC50 values. MMFDS and BMFDS, but not DFDS, significantly increased the intracellular ROS level by 1.90- and 3.02-fold, respectively. Addition of N-acetylcysteine (NAC) or glutathione (GSH) partially suppressed induction of DNA fragmentation, apoptosis and caspase-3 activation by MMFDS and BMFDS. These results suggest that the furan-containing disulfides have a strong antiproliferative effect, and the oxidative stress and subsequent caspase-3 activation are involved in antiproliferative effect induced by MMFDS and BMFDS in Jurkat cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Molecular Hallmarks of Adult T Cell Leukemia

    Directory of Open Access Journals (Sweden)

    Makoto eYamagishi

    2012-09-01

    Full Text Available The molecular hallmarks of adult T cell leukemia (ATL comprise outstanding deregulations of signaling pathways that control the cell cycle, resistance to apoptosis, and proliferation of leukemic cells, all of which have been identified by early excellent studies. Nevertheless, we are now confronted the therapeutic difficulties of ATL that is a most aggressive T cell leukemia/lymphoma. Using next-generation strategies, emerging molecular characteristics such as specific surface markers and an additional catalog of signals affecting the fate of leukemic cells have been added to the molecular hallmarks that constitute an organizing principle for rationalizing the complexities of ATL. Although human T cell leukemia virus type 1 (HTLV-1 is undoubtedly involved in ATL leukemogenesis, most leukemic cells do not express the viral protein Tax. Instead, cellular gene expression changes dominate homeostasis disorders of infected cells and characteristics of ATL. In this review, we summarize the state of the art of ATL molecular pathology, which supports the biological properties of leukemic cells. In addition, we discuss the recent discovery of two molecular hallmarks of potential generality; an abnormal microRNA (miRNA pattern and epigenetic reprogramming, which strongly involve the imbalance of the molecular network of lymphocytes. Global analyses of ATL have revealed the functional impact of crosstalk between multifunctional pathways. Clinical and biological studies on signaling inhibitory agents have also revealed novel oncogenic drivers that can be targeted in future. ATL cells, by deregulation of such pathways and their interconnections, may become masters of their own destinies. Recognizing and understanding of the widespread molecular applicability of these concepts will increasingly affect the development of novel strategies for treating ATL.

  13. Identification of delta-iodolactone in iodide treated human goiter and its inhibitory effect on proliferation of human thyroid follicles.

    Science.gov (United States)

    Dugrillon, A; Uedelhoven, W M; Pisarev, M A; Bechtner, G; Gärtner, R

    1994-10-01

    There is evidence that iodoarachidonates are mediators of iodide in thyroid autoregulation, however, their occurrence in vivo has not yet been demonstrated. We therefore tried to identify delta-iodolactone (5-Hydroxy-6-iodo-8,11,14-eicosatrienoic delta-lactone, IL-delta) in thyroid tissue from a patient with Graves' disease treated with high doses of iodide. Lipids were extracted from thyroid tissue, purified by reversed phase chromatography and analyzed by gas chromatography--tandem mass spectrometry (GC-MSMS). The retention time in gas chromatography and fragmentation pattern in tandem mass spectrometry were determined with biochemically synthesized non-deuterated and deuterated IL-delta. According to retention time (13.44 min) and specific fragments (m/z 303, m/z 259) the occurrence of IL-delta could be demonstrated in the extract of iodide treated goiter. In vitro, potassium iodide (40 microM) as well as IL-delta (1.0 microM) significantly inhibited the proliferation of human thyroid follicular cells induced by phorbol ester TPA (12-O-tetradecanoylphorbol 13-acetate). These results demonstrate for the first time that Il-delta is present in iodide treated human thyroid. As cell proliferation is under negative control of IL-delta, a crucial role in thyroid involution following iodide treatment may be possible.

  14. Spread of human T-cell leukemia virus (HTLV-I) in the Dutch homosexual community

    NARCIS (Netherlands)

    Goudsmit, J.; de Wolf, F.; van de Wiel, B.; Smit, L.; Bakker, M.; Albrecht-van Lent, N.; Coutinho, R. A.

    1987-01-01

    Sequential sera of 697 homosexual men, participating in a prospective study (1984-1986) of the risk to acquire human immunodeficiency virus (HIV) or AIDS, were tested for antibodies to human T-cell leukaemia virus (HTLV-I) by particle agglutination and immunoblotting. No intravenous drug users were

  15. Assessing the Mechanisms of MDS and Its Transformation to Leukemia in a Novel Humanized Mouse

    Science.gov (United States)

    2016-05-01

    support for stem cells; this represents an optimal environment for human HSC engraftment into the humanized niche. The niche microenvironment is...contribution of different genetic and epigenetic abnormalities, and patient history. MISTRG mice replicate the disease phenotype in patients. We...number of genetic and epigenetic alterations. MDS is inherently difficult to study in vitro. We established a MDS xenotransplantation model in

  16. The inhibitory effects of five alkaloids on the substrate transport mediated through human organic anion and cation transporters.

    Science.gov (United States)

    Shams, Tahiatul; Lu, Xiaoxi; Zhu, Ling; Zhou, Fanfan

    2018-02-01

    1. Human solute carrier transporters (SLCs) are important membrane proteins mediate the cellular transport of many endogenous and exogenous substances. Organic anion/cation transporters (OATs/OCTs) and organic anion transporting polypeptides (OATPs) are essential SLCs involved in drug influx. Drug-drug/herb interactions through competing for specific SLCs often lead to unsatisfied therapeutic outcomes and/or unwanted side effects. In this study, we comprehensively investigated the inhibitory effects of five clinically relevant alkaloids (dendrobine, matrine, oxymatrine, tryptanthrin and chelerythrine) on the substrate transport through several OATs/OCTs and OATPs. 2. We performed transport functional assay and kinetic analysis on the HEK-293 cells over-expressing each SLC gene. 3. Our data showed tryptanthrin significantly inhibited the transport activity of OAT3 (IC 50  = 0.93 ± 0.22 μM, K i  = 0.43 μM); chelerythrine acted as a potent inhibitor to the substrate transport mediated through OATP1A2 (IC 50  = 0.63 ± 0.43 μM, K i  = 0.60 μM), OCT1 (IC 50  = 13.60 ± 2.81 μM) and OCT2 (IC 50  =10.80 ± 1.16 μM). 4. Our study suggested tryptanthrin and chelerythrine could potently impact on the drug transport via specific OATs/OCTs. Therefore, the co-administration of these alkaloids with drugs could have clinical consequences due to drug-drug/herb interactions. Precautions should be warranted in the multi-drug therapies involving these alkaloids.

  17. Inhibitory receptor expression depends more dominantly on differentiation and activation than exhaustion of human CD8 T cells

    Directory of Open Access Journals (Sweden)

    Amandine eLegat

    2013-12-01

    Full Text Available Under conditions of chronic antigen stimulation, such as persistent viral infection and cancer, CD8 T cells may diminish effector function, which has been termed exhaustion. Expression of inhibitory Receptors (iRs is often regarded as a hallmark of exhaustion. Here we studied the expression of eight different iRs by CD8 T cells of healthy humans, including CTLA-4, PD1, TIM3, LAG3, 2B4, BTLA, CD160 and KLRG-1. We show that many iRs are expressed upon activation, and with progressive differentiation to effector cells, even in absence of long-term (chronic antigenic stimulation. In particular, we evaluated the direct relationship between iR expression and functionality in CD8 T cells by using anti-CD3 and anti-CD28 stimulation to stimulate all cells and differentiation subsets. We observed a striking upregulation of certain iRs following the cytokine production wave, in agreement with the notion that iRs function as a negative feedback mechanism. Intriguingly, we found no major impairment of cytokine production in cells positive for a broad array of iRs, as previously shown for PD1 in healthy donors. Rather, the expression of the various iRs strongly correlated with T cell differentiation or activation states, or both. Furthermore, we analyzed CD8 T cells from lymph nodes (LNs of melanoma patients. Interestingly, we found altered iR expression and lower cytokine production by T cells from metastatic LNs, but also from non-metastatic LNs, likely due to mechanisms which are not related to exhaustion. Together, our data shows that expression of iRs per se does not mark dysfunctional cells, but is rather tightly linked to activation and differentiation. This study highlights the importance of considering the status of activation and differentiation for the study and the clinical monitoring of CD8 T cells.

  18. Dependence of reactive oxygen species and FLICE inhibitory protein on lipofectamine-induced apoptosis in human lung epithelial cells.

    Science.gov (United States)

    Kongkaneramit, Lalana; Sarisuta, Narong; Azad, Neelam; Lu, Yongju; Iyer, Anand Krishnan V; Wang, Liying; Rojanasakul, Yon

    2008-06-01

    Cationic liposomes such as lipofectamine (LF) are widely used as nonviral gene delivery vectors; however, their clinical application is limited by their cytotoxicity. These agents have been shown to induce apoptosis as the primary mode of cell death, but their mechanism of action is not well understood. The present study investigated the mechanism of LF-induced apoptosis and examined the role of reactive oxygen species (ROS) in this process. We found that LF induced apoptosis of human epithelial H460 cells through a mechanism that involves caspase activation and ROS generation. Inhibition of caspase activity by pan-caspase inhibitor (z-VAD-fmk) or by specific caspase-8 inhibitor (z-IETD-fmk) or caspase-9 inhibitor (z-LEHD-fmk) inhibited the apoptotic effect of LF. Overexpression of FLICE-inhibitory protein (FLIP) or B-cell lymphoma-2, which are known inhibitors of the extrinsic and intrinsic death pathways, respectively, similarly inhibited apoptosis by LF. Induction of apoptosis by LF was shown to require ROS generation because its inhibition by ROS scavengers or by ectopic expression of antioxidant enzyme superoxide dismutase and glutathione peroxidase strongly inhibited the apoptotic effect of LF. Electron spin resonance studies showed that LF induced multiple ROS; however, superoxide was found to be the primary ROS responsible for LF-induced apoptosis. The mechanism by which ROS mediate the apoptotic effect of LF involves down-regulation of FLIP through the ubiquitination pathway. In demonstrating the role of FLIP and ROS in LF death signaling, we document a novel mechanism of apoptosis regulation that may be exploited to decrease cytotoxicity and increase gene transfection efficiency of cationic liposomes.

  19. Chaetominine reduces MRP1-mediated drug resistance via inhibiting PI3K/Akt/Nrf2 signaling pathway in K562/Adr human leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jingyun; Wei, Xing [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai (China); Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai (China); Lu, Yanhua, E-mail: luyanhua@ecust.edu.cn [State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai (China); Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai (China)

    2016-05-13

    Drug resistance limits leukemia treatment and chaetominine, a cytotoxic alkaloid that promotes apoptosis in a K562 human leukemia cell line via the mitochondrial pathway was studied with respect to chemoresistance in a K562/Adr human resistant leukemia cell line. Cytotoxicity assays indicated that K562/Adr resistance to adriamycin (ADR) did not occur in the presence of chaetominine and that chaetominine increased chemosensitivity of K562/Adr to ADR. Data show that chaetominine enhanced ADR-induced apoptosis and intracellular ADR accumulation in K562/Adr cells. Accordingly, chaetominine induced apoptosis by upregulating ROS, pro-apoptotic Bax and downregulating anti-apoptotic Bcl-2. RT-PCR and western-blot confirmed that chaetominine suppressed highly expressed MRP1 at mRNA and protein levels. But little obvious alternation of another drug transporter MDR1 mRNA was observed. Furthermore, inhibition of MRP1 by chaetominine relied on inhibiting Akt phosphorylation and nuclear Nrf2. In summary, chaetominine strongly reverses drug resistance by interfering with the PI3K/Akt/Nrf2 signaling, resulting in reduction of MRP1-mediated drug efflux and induction of Bax/Bcl-2-dependent apoptosis in an ADR-resistant K562/Adr leukemia cell line. - Highlights: • Chaetominine enhanced chemosensitivity of ADR against K562/Adr cells. • Chaetominine increased intracellular ADR levels via inhibiting MRP1. • Chaetominine induced apoptosis of K562/Adr cells through upregulation of ROS and modulation of Bax/Bcl-2. • Inhibition of MRP1 and Nrf2 by chaetominine treatment was correlative with blockade of PI3K/Akt signaling.

  20. Increased Growth Inhibitory Effects on Human Cancer Cells and Anti-Inflammatory Potency of Shogaols from Zingiber officinale Relative to Gingerols

    Science.gov (United States)

    Sang, Shengmin; Hong, Jungil; Wu, Hou; Liu, Jing; Yang, Chung S.; Pan, Min-Hsiung; Badmaev, Vadimir; Ho, Chi-Tang

    2009-01-01

    Ginger, the rhizome of the plant Zingiber officinale, has received extensive attention due to its antioxidant, anti-inflammatory, and anti-tumor activities. Most researchers have considered gingerols as the active principles and have paid little attention to shogaols, the dehydration products of corresponding gingerols during storage or thermal processing. In this study, we have purified and identified eight major components including three major gingerols and corresponding shogaols from ginger extract and compared their anti-carcinogenic and anti-inflammatory activities. Our results showed that shogaols ([6]-, [8]-, and [10]-) had much stronger growth inhibitory effects than gingerols ([6]-, [8]-, and [10]-) on H-1299 human lung cancer cells and HCT-116 human colon cancer cells, especially when comparing [6]-shogaol with [6]-gingerol (IC50: ~8 µM vs. ~150 µM). In addition, we found that [6]-shogaol had much stronger inhibitory effects on arachidonic acid release and nitric oxide (NO) synthesis than [6]-gingerol. PMID:19877681

  1. Resveratrol-induced transcriptional up-regulation of ASMase (SMPD1) of human leukemia and cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, Naoki [Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya (Japan); College of Life and Health Sciences, Chubu University, Kasugai (Japan); Omori, Yukari [Department of Pathophysiological Laboratory Science, Nagoya University Graduate School of Medicine, Nagoya (Japan); Kawamoto, Yoshiyuki; Sobue, Sayaka; Ichihara, Masatoshi [College of Life and Health Sciences, Chubu University, Kasugai (Japan); Suzuki, Motoshi [Division of Molecular Carcinogenesis, Nagoya University Graduate School of Medicine, Nagoya (Japan); Kyogashima, Mamoru [Department of Microbiology and Molecular Biology, Nihon Pharmaceutical University, Saitama (Japan); Nakamura, Mitsuhiro [Department of Drug Information, Gifu Pharmaceutical University, Gifu (Japan); Tamiya-Koizumi, Keiko [College of Life and Health Sciences, Chubu University, Kasugai (Japan); Nozawa, Yoshinori [Tokai Gakuin University, Kakamigahara (Japan); Murate, Takashi, E-mail: murate@isc.chubu.ac.jp [College of Life and Health Sciences, Chubu University, Kasugai (Japan)

    2016-02-19

    Resveratrol (RSV) is a plant-derived phytoalexin present in plants, whose pleiotropic effects for health benefits have been previously reported. Its anti-cancer activity is among the current topics for novel cancer treatment. Here, effects of RSV on cell proliferation and the sphingolipid metabolism of K562, a human leukemia cell line, were analyzed. Some experiments were also performed in HCT116, a human colon cancer cell line. RSV inhibited cell proliferation of both cell lines. Increased cellular ceramide and decreased sphingomyelin and S1P by RSV were observed in RSV-treated K562 cells. Further analysis revealed that acid sphingomyelinase mRNA and enzyme activity levels were increased by RSV. Desipramine, a functional ASMase inhibitor, prevented RSV-induced ceramide increase. RSV increased ATF3, EGR1, EGR3 proteins and phosphorylated c-Jun and FOXO3. However, co-transfection using these transcription factor expression vectors and ASMase promoter reporter vector revealed positive effects of EGR1 and EGR3 but not others. Electrophoresis mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) assay demonstrated the direct binding of EGR1/3 transcription factors with ASMase 5′-promoter. These results indicate that increased EGR1/3 and ASMase expression play an important role in cellular ceramide increase by RSV treatment. - Highlights: • Resveratrol inhibited cell proliferation of K562 and HCT116 cells. • Resveratrol increased cellular ceramide and decreased sphingomyelin and S1P. • ASMase mRNA and activity were increased with resveratrol. • ASMase inhibition suppressed RSV-induced ceramide accumulation. • Increased ASMase transcription was at least partially due to EGR family proteins.

  2. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism.

    Science.gov (United States)

    Farge, Thomas; Saland, Estelle; de Toni, Fabienne; Aroua, Nesrine; Hosseini, Mohsen; Perry, Robin; Bosc, Claudie; Sugita, Mayumi; Stuani, Lucille; Fraisse, Marine; Scotland, Sarah; Larrue, Clément; Boutzen, Héléna; Féliu, Virginie; Nicolau-Travers, Marie-Laure; Cassant-Sourdy, Stéphanie; Broin, Nicolas; David, Marion; Serhan, Nizar; Sarry, Audrey; Tavitian, Suzanne; Kaoma, Tony; Vallar, Laurent; Iacovoni, Jason; Linares, Laetitia K; Montersino, Camille; Castellano, Rémy; Griessinger, Emmanuel; Collette, Yves; Duchamp, Olivier; Barreira, Yara; Hirsch, Pierre; Palama, Tony; Gales, Lara; Delhommeau, François; Garmy-Susini, Barbara H; Portais, Jean-Charles; Vergez, François; Selak, Mary; Danet-Desnoyers, Gwenn; Carroll, Martin; Récher, Christian; Sarry, Jean-Emmanuel

    2017-07-01

    Chemotherapy-resistant human acute myeloid leukemia (AML) cells are thought to be enriched in quiescent immature leukemic stem cells (LSC). To validate this hypothesis in vivo, we developed a clinically relevant chemotherapeutic approach treating patient-derived xenografts (PDX) with cytarabine (AraC). AraC residual AML cells are enriched in neither immature, quiescent cells nor LSCs. Strikingly, AraC-resistant preexisting and persisting cells displayed high levels of reactive oxygen species, showed increased mitochondrial mass, and retained active polarized mitochondria, consistent with a high oxidative phosphorylation (OXPHOS) status. AraC residual cells exhibited increased fatty-acid oxidation, upregulated CD36 expression, and a high OXPHOS gene signature predictive for treatment response in PDX and patients with AML. High OXPHOS but not low OXPHOS human AML cell lines were chemoresistant in vivo. Targeting mitochondrial protein synthesis, electron transfer, or fatty-acid oxidation induced an energetic shift toward low OXPHOS and markedly enhanced antileukemic effects of AraC. Together, this study demonstrates that essential mitochondrial functions contribute to AraC resistance in AML and are a robust hallmark of AraC sensitivity and a promising therapeutic avenue to treat AML residual disease.Significance: AraC-resistant AML cells exhibit metabolic features and gene signatures consistent with a high OXPHOS status. In these cells, targeting mitochondrial metabolism through the CD36-FAO-OXPHOS axis induces an energetic shift toward low OXPHOS and strongly enhanced antileukemic effects of AraC, offering a promising avenue to design new therapeutic strategies and fight AraC resistance in AML. Cancer Discov; 7(7); 716-35. ©2017 AACR.See related commentary by Schimmer, p. 670This article is highlighted in the In This Issue feature, p. 653. ©2017 American Association for Cancer Research.

  3. Ultraviolet light-emitting diode irradiation-induced cell death in HL-60 human leukemia cells in vitro

    Science.gov (United States)

    XIE, DONG; SUN, YAN; WANG, LINGZHEN; LI, XIAOLING; ZANG, CHUANNONG; ZHI, YUNLAI; SUN, LIRONG

    2016-01-01

    Ultraviolet (UV) radiation is considered to be a potent cell-damaging agent in various cell lineages; however, the effect of UV light-emitting diode (LED) irradiation on human cells remains unclear. The aim of the present study was to examine the effect of UV LED irradiation emitting at 280 nm on cultured HL-60 human leukemia cells, and to explore the underlying mechanisms. HL-60 cells were irradiated with UV LED (8, 15, 30 and 60 J/m2) and incubated for 2 h after irradiation. The rates of cell proliferation and apoptosis, the cell cycle profiles and the mRNA expression of B-cell lymphoma 2 (Bcl-2) were detected using cell counting kit-8, multicaspase assays, propidium iodide staining and reverse transcription-quantitative polymerase chain reaction, respectively. The results showed that UV LED irradiation (8–60 J/m2) inhibited the proliferation of HL-60 cells in a dose-dependent manner. UV LED at 8–30 J/m2 induced dose-dependent apoptosis and G0/G1 cell cycle arrest, and inhibited the expression of Bcl-2 mRNA, while UV LED at 60 J/m2 induced necrosis. In conclusion, 280 nm UV LED irradiation inhibits proliferation and induces apoptosis and necrosis in cultured HL-60 cells. In addition, the cell cycle arrest at the G0/G1 phase and the downregulation of Bcl-2 mRNA expression were shown to be involved in UV LED-induced apoptosis. PMID:26820261

  4. Role of macrophage migration inhibitory factor (MIF) in the effects of oxidative stress on human retinal pigment epithelial cells.

    Science.gov (United States)

    Ko, Ji-Ae; Sotani, Yasuyuki; Ibrahim, Diah Gemala; Kiuchi, Yoshiaki

    2017-10-01

    Proliferative vitreoretinopathy (PVR) is the major cause of treatment failure in individuals who undergo surgery for retinal detachment. The epithelial-mesenchymal transition (EMT) in retinal pigment epithelium (RPE) cells contributes to the pathogenesis of PVR. Oxidative stress is thought to play a role in the progression of retinal diseases including PVR. We have now examined the effects of oxidative stress on the EMT and related processes in the human RPE cell line. We found that H 2 O 2 induced the contraction of RPE cells in a three-dimensional collagen gel. Analysis of a cytokine array revealed that H 2 O 2 specifically increased the release of macrophage migration inhibitory factor (MIF) from RPE cells. Reverse transcription-polymerase chain reaction and immunoblot analyses showed that H 2 O 2 increased the expression of MIF in RPE cells. Immunoblot and immunofluorescence analyses revealed that H 2 O 2 upregulated the expression of α-SMA and vimentin and downregulated that of ZO-1 and N-cadherin. Consistent with these observations, the transepithelial electrical resistance of cell was reduced by exposure to H 2 O 2 . The effects of oxidative stress on EMT-related and junctional protein expression as well as on transepithelial electrical resistance were inhibited by antibodies to MIF, but they were not mimicked by treatment with recombinant MIF. Finally, analysis with a profiling array for mitogen-activated protein kinase signalling revealed that H 2 O 2 specifically induced the phosphorylation of p38 mitogen-activated protein kinase. Our results thus suggest that MIF may play a role in induction of the EMT and related processes by oxidative stress in RPE cells and that it might thereby contribute to the pathogenesis of PVR. Proliferative vitreoretinopathy is a major complication of rhegmatogenous retinal detachment, and both oxidative stress and induction of the EMT in RPE cells are thought to contribute to the pathogenesis of this condition. We have now

  5. Human gut endogenous proteins as a potential source of angiotensin-I-converting enzyme (ACE-I)-, renin inhibitory and antioxidant peptides.

    Science.gov (United States)

    Dave, Lakshmi A; Hayes, Maria; Montoya, Carlos A; Rutherfurd, Shane M; Moughan, Paul J

    2016-02-01

    It is well known that endogenous bioactive proteins and peptides play a substantial role in the body's first line of immunological defence, immune-regulation and normal body functioning. Further, the peptides derived from the luminal digestion of proteins are also important for body function. For example, within the peptide database BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/en/biopep) 12 endogenous antimicrobial and 64 angiotensin-I-converting enzyme (ACE-I) inhibitory peptides derived from human milk and plasma proteins are listed. The antimicrobial peptide database (http://aps.unmc.edu/AP/main.php) lists over 111 human host-defence peptides. Several endogenous proteins are secreted in the gut and are subject to the same gastrointestinal digestion processes as food proteins derived from the diet. The human gut endogenous proteins (GEP) include mucins, serum albumin, digestive enzymes, hormones, and proteins from sloughed off epithelial cells and gut microbiota, and numerous other secreted proteins. To date, much work has been carried out regarding the health altering effects of food-derived bioactive peptides but little attention has been paid to the possibility that GEP may also be a source of bioactive peptides. In this review, we discuss the potential of GEP to constitute a gut cryptome from which bioactive peptides such as ACE-I inhibitory, renin inhibitory and antioxidant peptides may be derived. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities.

    Science.gov (United States)

    Li, Xue-Qing; Andersson, Tommy B; Ahlström, Marie; Weidolf, Lars

    2004-08-01

    The human clearance of proton pump inhibitors (PPIs) of the substituted benzimidazole class is conducted primarily by the hepatic cytochrome P450 (P450) system. To compare the potency and specificity of the currently used PPIs (i.e., omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole) as inhibitors of four cytochrome P450 enzymes (CYP2C9, 2C19, 2D6, and 3A4), we performed in vitro studies using human liver microsomal preparations and recombinant CYP2C19. Sample analysis was done using selected reaction monitoring liquid chromatography/tandem mass spectometry. With several systems for CYP2C19 activity (two marker reactions, S-mephenytoin 4'-hydroxylation and R-omeprazole 5-hydroxylation, tested in either human liver microsomes or recombinant CYP2C19), the five PPIs showed competitive inhibition of CYP2C19 activity with K(i) of 0.4 to 1.5 microM for lansoprazole, 2 to 6 microM for omeprazole, approximately 8 microM for esomeprazole, 14 to 69 microM for pantoprazole, and 17 to 21 microM for rabeprazole. Pantoprazole was a competitive inhibitor of both CYP2C9-catalyzed diclofenac 4'-hydroxylation and CYP3A4-catalyzed midazolam 1'-hydroxylation (K(i) of 6 and 22 microM, respectively), which were at least 2 times more potent than the other PPIs. All PPIs were poor inhibitors of CYP2D6-mediated bufuralol 1'-hydroxylation with IC(50) > 200 microM. The inhibitory potency of a nonenzymatically formed product of rabeprazole, rabeprazole thioether, was also investigated and showed potent, competitive inhibition with K(i) values of 6 microM for CYP2C9, 2 to 8 microM for CYP2C19, 12 microM for CYP2D6, and 15 microM for CYP3A4. The inhibitory potency of R-omeprazole on the four studied P450 enzymes was also studied and showed higher inhibitory potency than its S-isomer on CYP2C9 and 2C19 activities. Our data suggest that, although the inhibitory profiles of the five studied PPIs were similar, lansoprazole and pantoprazole are the most potent in vitro inhibitors

  7. SKP2 oncogene is a direct MYC target gene and MYC down-regulates p27(KIP1) through SKP2 in human leukemia cells.

    Science.gov (United States)

    Bretones, Gabriel; Acosta, Juan C; Caraballo, Juan M; Ferrándiz, Nuria; Gómez-Casares, M Teresa; Albajar, Marta; Blanco, Rosa; Ruiz, Paula; Hung, Wen-Chun; Albero, M Pilar; Perez-Roger, Ignacio; León, Javier

    2011-03-18

    SKP2 is the ubiquitin ligase subunit that targets p27(KIP1) (p27) for degradation. SKP2 is induced in the G(1)-S transit of the cell cycle, is frequently overexpressed in human cancer, and displays transformation activity in experimental models. Here we show that MYC induces SKP2 expression at the mRNA and protein levels in human myeloid leukemia K562 cells with conditional MYC expression. Importantly, in these systems, induction of MYC did not activate cell proliferation, ruling out SKP2 up-regulation as a consequence of cell cycle entry. MYC-dependent SKP2 expression was also detected in other cell types such as lymphoid, fibroblastic, and epithelial cell lines. MYC induced SKP2 mRNA expression in the absence of protein synthesis and activated the SKP2 promoter in luciferase reporter assays. With chromatin immunoprecipitation assays, MYC was detected bound to a region of human SKP2 gene promoter that includes E-boxes. The K562 cell line derives from human chronic myeloid leukemia. In a cohort of chronic myeloid leukemia bone marrow samples, we found a correlation between MYC and SKP2 mRNA levels. Analysis of cancer expression databases also indicated a correlation between MYC and SKP2 expression in lymphoma. Finally, MYC-induced SKP2 expression resulted in a decrease in p27 protein in K562 cells. Moreover, silencing of SKP2 abrogated the MYC-mediated down-regulation of p27. Our data show that SKP2 is a direct MYC target gene and that MYC-mediated SKP2 induction leads to reduced p27 levels. The results suggest the induction of SKP2 oncogene as a new mechanism for MYC-dependent transformation.

  8. Understanding Leukemia

    Science.gov (United States)

    ... certain types of leukemia who were exposed to Agent Orange while serving in Vietnam may be able to get help from the ... drugs or treatments, or new uses for approved drugs or treatments. The goal ... quality of life and to find cures. Consolidation therapy. ...

  9. Proviral Features of Human T Cell Leukemia Virus Type 1 in Carriers with Indeterminate Western Blot Analysis Results.

    Science.gov (United States)

    Kuramitsu, Madoka; Sekizuka, Tsuyoshi; Yamochi, Tadanori; Firouzi, Sanaz; Sato, Tomoo; Umeki, Kazumi; Sasaki, Daisuke; Hasegawa, Hiroo; Kubota, Ryuji; Sobata, Rieko; Matsumoto, Chieko; Kaneko, Noriaki; Momose, Haruka; Araki, Kumiko; Saito, Masumichi; Nosaka, Kisato; Utsunomiya, Atae; Koh, Ki-Ryang; Ogata, Masao; Uchimaru, Kaoru; Iwanaga, Masako; Sagara, Yasuko; Yamano, Yoshihisa; Okayama, Akihiko; Miura, Kiyonori; Satake, Masahiro; Saito, Shigeru; Itabashi, Kazuo; Yamaguchi, Kazunari; Kuroda, Makoto; Watanabe, Toshiki; Okuma, Kazu; Hamaguchi, Isao

    2017-09-01

    Western blotting (WB) for human T cell leukemia virus type 1 (HTLV-1) is performed to confirm anti-HTLV-1 antibodies detected at the initial screening of blood donors and in pregnant women. However, the frequent occurrence of indeterminate results is a problem with this test. We therefore assessed the cause of indeterminate WB results by analyzing HTLV-1 provirus genomic sequences. A quantitative PCR assay measuring HTLV-1 provirus in WB-indeterminate samples revealed that the median proviral load was approximately 100-fold lower than that of WB-positive samples (0.01 versus 0.71 copy/100 cells). Phylogenic analysis of the complete HTLV-1 genomes of WB-indeterminate samples did not identify any specific phylogenetic groups. When we analyzed the nucleotide changes in 19 HTLV-1 isolates from WB-indeterminate samples, we identified 135 single nucleotide substitutions, composed of four types, G to A (29%), C to T (19%), T to C (19%), and A to G (16%). In the most frequent G-to-A substitution, 64% occurred at GG dinucleotides, indicating that APOBEC3G is responsible for mutagenesis in WB-indeterminate samples. Moreover, interestingly, five WB-indeterminate isolates had nonsense mutations in Pol and/or Tax, Env, p12, and p30. These findings suggest that WB-indeterminate carriers have low production of viral antigens because of a combination of a low proviral load and mutations in the provirus, which may interfere with host recognition of HTLV-1 antigens. Copyright © 2017 American Society for Microbiology.

  10. [Inhibitory effect of magnesium cantharidate on human hepatoma SMMC-7721 cell proliferation by blocking MAPK signaling pathway].

    Science.gov (United States)

    Liu, Yun; Li, Xiaofei; Zou, Qianqian; Liu, Liu; Zhu, Xinting; Jia, Qi; Wang, Lingjun; Yan, Rong

    2017-03-01

    Objective To investigate the anticancer mechanism of magnesium cantharidate by observing its effect on the mitogen-activated protein kinase (MAPK) signaling pathway in human hepatoma SMMC-7721 cells. Methods The protein phosphatase 2A (PP2A) activity detection kit was used to detect the effects of magnesium cantharidate and okadaic acid (OA) on PP2A activity. After the treatment of SMMC-7721 cells with magnesium cantharidate and/or OA, mRNA levels of extracellular signal-regulated kinase 1 (ERK1), ERK2, p38MAPK, c-Jun N-terminal kinase 1 (JNK1) and JNK2 were detected by real-time quantitative PCR, and the protein expression levels and protein phosphorylation of ERK1, ERK2, p38 MAPK and JNK were determined by Western blotting. Results The effect of magnesium cantharidate on the activity of PP2A in SMMC-7721 cells was not evident at the concentration of 0.283 μmol/L, but the activity of PP2A was declined significantly at 0.567 μmol/L or higher concencentrations in a concentration-dependent manner. Likewise, OA also displayed apparent inhibitory effect on the activity of PP2A at 0.059 nmol/L. Compared with the control group, mRNA levels of ERK1 and ERK2 were not changed by magnesium cantharidate at 0.283 μmol/L, but they significantly declined at the concentrations greater than 0.567 μmol/L. In contrast, mRNA levels of ERK1 and ERK2 were significantly elevated by 0.059 nmol/L OA. mRNA levels of p38MAPK, JNK1 and JNK2 significantly increased after the treatment of 0.059 nmol/L OA or magnesium cantharidate at varying concentrations. Compared with the control group, phosphorylation levels of ERK1 and ERK2 were not changed by 0.283 μmol/L magnesium cantharidate, but decreased significantly when the concentration was 0.567 μmol/L or above. In contrast, the phosphorylation levels of ERK1 and ERK2 showed a significant increase in 0.059 nmol/L OA treated group. The phosphorylation levels of p38 MAPK, JNK1 and JNK2 were also significantly increased by 0.059 nmol/L OA or

  11. Cytotoxic capacity of IL-15-stimulated cytokine-induced killer cells against human acute myeloid leukemia and rhabdomyosarcoma in humanized preclinical mouse models

    Directory of Open Access Journals (Sweden)

    Eva eRettinger

    2012-04-01

    Full Text Available Allogeneic stem cell transplantation (allo-SCT has become an important treatment modality for patients with high risk acute myeloid leukemia (AML and is also under investigation for soft tissue sarcomas. The therapeutic success is still limited by minimal residual disease (MRD status ultimately leading to patients’ relapse. Adoptive donor lymphocyte infusions (DLI based on MRD status using IL-15-expanded cytokine-induced killer (CIK cells may prevent relapse without causing graft-versus-host-disease (GvHD. To generate preclinical data we developed mouse models to study anti-leukemic- and anti-tumor-potential of CIK cells in vivo. Immunodeficient mice (NOD/SCID/IL2Rγc-, NSG were injected intravenously with human leukemic cell lines THP-1, SH-2 and with human rhabdomyosarcoma (RMS cell lines RH41 and RH30 at minimal doses required for leukemia or tumor engraftment. Mice transplanted with THP-1 or RH41 cells were randomly assigned for analysis of CIK cell treatment. Organs of mice were analyzed by flow cytometry as well as quantitative polymerase chain reaction (qPCR for engraftment of malignant cells and CIK cells. Potential of CIK cells to induce GvHD was determined by histological analysis. Tissues of the highest degree of THP-1 cell expansion included bone marrow (BM followed by liver, lung, spleen, peripheral blood (PB, and brain. RH30 and RH41 engraftment mainly took place in liver and lung, but was also detectable in spleen and PB. In spite of delayed CIK cell expansion compared with malignant cells, CIK cells injected at an effector to target cell (E:T ratio of 1:1 were sufficient for significant reduction of RH41 cells, whereas against fast-expanding THP-1 cells an E:T ratio of 250:1 was needed to achieve comparable results. Our preclinical in vivo mouse models showed a reliably 100% engraftment of malignant cells which is essential for analysis of anti-cancer therapy. Furthermore our data demonstrated that IL-15-activated CIK cells

  12. Human leukemia antigen-A*0201-restricted epitopes of human endogenous retrovirus W family envelope (HERV-W env) induce strong cytotoxic T lymphocyte responses.

    Science.gov (United States)

    Tu, Xiaoning; Li, Shan; Zhao, Lijuan; Xiao, Ran; Wang, Xiuling; Zhu, Fan

    2017-08-01

    Human endogenous retrovirus W family (HERV-W) envelope (env) has been reported to be related to several human diseases, including autoimmune disorders, and it could activate innate immunity. However, there are no reports investigating whether human leukemia antigen (HLA)-A*0201(+) restriction is involved in the immune response caused by HERV-W env in neuropsychiatric diseases. In the present study, HERV-W env-derived epitopes presented by HLA-A*0201 are described with the potential for use in adoptive immunotherapy. Five peptides displaying HLA-A*0201-binding motifs were predicted using SYFEPITHI and BIMAS, and synthesized. A CCK-8 assay showed peptides W, Q and T promoted lymphocyte proliferation. Stimulation of peripheral blood mononuclear cells from HLA-A*0201(+) donors with each of these peptides induced peptide-specific CD8(+) T cells. High numbers of IFN-γ-secreting T cells were also detectable after several weekly stimulations with W, Q and T. Besides lysis of HERV-W env-loaded target cells, specific apoptosis was also observed. These data demonstrate that human T cells can be sensitized toward HERV-W env peptides (W, Q and T) and, moreover, pose a high killing potential toward HERV-W env-expressing U251 cells. In conclusion, peptides W Q and T, which are HERV-W env antigenic epitopes, have both antigenicity and immunogenicity, and can cause strong T cell immune responses. Our data strengthen the view that HERV-W env should be considered as an autoantigen that can induce autoimmunity in neuropsychiatric diseases, such as multiple sclerosis and schizophrenia. These data might provide an experimental foundation for a HERV-W env peptide vaccine and new insight into the treatment of neuropsychiatric diseases.

  13. Chronic Myelogenous Leukemia

    Science.gov (United States)

    Chronic myelogenous leukemia Overview Chronic myelogenous leukemia (CML) is an uncommon type of cancer of the blood cells. The term "chronic" in chronic myelogenous leukemia indicates that this cancer ...

  14. Localization of ORC1 During the Cell Cycle in Human Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Frederick D. Coffman

    2011-01-01

    Full Text Available The interaction of the origin recognition complex (ORC with replication origins is a critical parameter in eukaryotic replication initiation. In mammals the ORC remains bound except during mitosis, thus the localization of ORC complexes allows localization of origins. A monoclonal antibody that recognizes human ORC1 was used to localize ORC complexes in populations of human MOLT-4 cells separated by cell cycle position using centrifugal elutriation. ORC1 staining in cells in early G1 is diffuse and primarily peripheral. As the cells traverse G1, ORC1 accumulates and becomes more localized towards the center of the nucleus, however around the G1/S boundary the staining pattern changes and ORC1 appears peripheral. By mid to late S phase ORC1 immunofluorescence is again concentrated at the nuclear center. During anaphase, ORC1 staining is localized mainly in the pericentriolar regions. These findings suggest that concerted movements of origin DNA sequences in addition to the previously documented assembly and disassembly of protein complexes are an important aspect of replication initiation loci in eukaryotes.

  15. Perezone, from the gorgonian Pseudopterogorgia rigida, induces oxidative stress in human leukemia cells

    Directory of Open Access Journals (Sweden)

    Paula A. Abreu

    Full Text Available Abstract Four bisabolanes 1–4, including perezone (1 and triacetyl perezone (2, were isolated through a bioassay-guided fractionation of the extract obtained from the Caribbean gorgonian coral Pseudopterogorgia rigida collected during an expedition cruise to the Bahamas. All isolated compounds showed to be cytotoxic toward panel of four human tumor cell lines, as quantified by the MTT assay after 72 h incubation. Perezone (1, the most active one, was further analyzed, showing to be cytotoxic, but not selective, in a 12-cell line panel comprising tumor and non-tumor, as well as human and murine cells. Additionally, 1 was assayed for cytotoxicity against HL-60 leukemic cells. Pre-treatment with an acute free radical scavenger (L-NAC before exposure of cells to perezone virtually eliminated the generation of intracellular ROS and lessened its severe cytotoxicity. The protective effect delivered by L-NAC evidences that the mechanism of perezone-induced cytotoxicity is partially associated to production of ROS and a consequent induction of oxidative stress.

  16. The MLL recombinome of acute leukemias in 2013

    DEFF Research Database (Denmark)

    Meyer, C; Hofmann, Julian; Burmeister, T

    2013-01-01

    Chromosomal rearrangements of the human MLL (mixed lineage leukemia) gene are associated with high-risk infant, pediatric, adult and therapy-induced acute leukemias. We used long-distance inverse-polymerase chain reaction to characterize the chromosomal rearrangement of individual acute leukemia ...

  17. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line

    DEFF Research Database (Denmark)

    Suzuki, Harukazu; Forrest, Alistair R R; van Nimwegen, Erik

    2009-01-01

    Using deep sequencing (deepCAGE), the FANTOM4 study measured the genome-wide dynamics of transcription-start-site usage in the human monocytic cell line THP-1 throughout a time course of growth arrest and differentiation. Modeling the expression dynamics in terms of predicted cis-regulatory sites......, we identified the key transcription regulators, their time-dependent activities and target genes. Systematic siRNA knockdown of 52 transcription factors confirmed the roles of individual factors in the regulatory network. Our results indicate that cellular states are constrained by complex networks...... involving both positive and negative regulatory interactions among substantial numbers of transcription factors and that no single transcription factor is both necessary and sufficient to drive the differentiation process....

  18. New efficient artemisinin derived agents against human leukemia cells, human cytomegalovirus and Plasmodium falciparum: 2nd generation 1,2,4-trioxane-ferrocene hybrids.

    Science.gov (United States)

    Reiter, Christoph; Fröhlich, Tony; Zeino, Maen; Marschall, Manfred; Bahsi, Hanife; Leidenberger, Maria; Friedrich, Oliver; Kappes, Barbara; Hampel, Frank; Efferth, Thomas; Tsogoeva, Svetlana B

    2015-06-05

    In our ongoing search for highly active hybrid molecules exceeding their parent compounds in anticancer, antimalaria as well as antiviral activity and being an alternative to the standard drugs, we present the synthesis and biological investigations of 2nd generation 1,2,4-trioxane-ferrocene hybrids. In vitro tests against the CCRF-CEM leukemia cell line revealed di-1,2,4-trioxane-ferrocene hybrid 7 as the most active compound (IC50 of 0.01 μM). Regarding the activity against the multidrug resistant subline CEM/ADR5000, 1,2,4-trioxane-ferrocene hybrid 5 showed a remarkable activity (IC50 of 0.53 μM). Contrary to the antimalaria activity of hybrids 4-8 against Plasmodium falciparum 3D7 strain with slightly higher IC50 values (between 7.2 and 30.2 nM) than that of their parent compound DHA, hybrids 5-7 possessed very promising activity (IC50 values lower than 0.5 μM) against human cytomegalovirus (HCMV). The application of 1,2,4-trioxane-ferrocene hybrids against HCMV is unprecedented and demonstrated here for the first time. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Strong inhibitory effect of pre-eclampsia serum on angiogenesis detected in vitro by human cell-based angiogenesis tests.

    Science.gov (United States)

    Virtanen, Anita; Toimela, Tarja; Tihtonen, Kati; Sarkanen, Jertta-Riina; Huttala, Outi; Heinonen, Tuula; Uotila, Jukka

    2016-10-01

    To explore in vitro angiogenic properties of maternal and umbilical cord blood sera from women with symptomatic pre-eclampsia in comparison with sera from women with normotensive pregnancies. Maternal and umbilical blood serum samples were collected from eleven primiparous women with pre-eclampsia and ten healthy gestational-age-matched primiparous controls. The samples were tested for tubule formation in two different types of in vitro angiogenesis tests. The first test (fibroblast-HUVEC) showed effects on angiogenesis and the second test (hASC-HUVEC), in addition to angiogenesis, also showed effects on vasculogenesis. The pro-angiogenic and inhibitory properties of the samples were microscopically quantified after immunostaining tubular structures, using markers for von Willebrand factor (vWf) and collagen IV. Serum samples from pre-eclamptic women inhibited tubule formation in both models, while those from normal pregnancy didn't. Umbilical blood samples were inhibitory both after pre-eclampsia and normal pregnancy. In the fibroblast-HUVEC model the inhibition was stronger after preeclampsia pregnancy, and the difference between groups was statistically significant. In the pre-eclampsia group a correlation between the inhibitory effect of umbilical blood and birth weight adjusted to gestational age was found. No clear correlation between sera from pregnant women and corresponding umbilical sera was found. The strong inhibitory effect of maternal serum samples on tubule formation reflects the anti-angiogenic state that is present in pre-eclampsia. Copyright © 2016 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  20. LIF is a contraction-induced myokine stimulating human myocyte proliferation

    DEFF Research Database (Denmark)

    Broholm, Christa; Laye, Matthew J; Brandt, Claus

    2011-01-01

    Background: The cytokine leukemia inhibitory factor (LIF) is expressed by skeletal muscle and induces proliferation of myoblasts. We hypothesized that LIF is a contraction-induced myokine functioning in an autocrine fashion to activate gene regulation of human muscle satellite cell proliferation....

  1. Recombinant human IgG antibodies recognizing distinct extracellular domains of EGF receptor exhibit different degrees of growth inhibitory effects on human A431 cancer cells.

    Science.gov (United States)

    Chang, Chialun; Takayanagi, Atsushi; Yoshida, Tetsuhiko; Shimizu, Nobuyoshi

    2013-05-01

    Recently, we isolated 4 distinct kinds of single chain antibody against human EGF receptor (EGFR) after screening the Keio phage display scFv library by using two methods of target-guided proximity labeling. In the current study, these monovalent scFv antibodies were converted to bivalent IgGs of humanized forms (hIgGs) by recombinant technology using the specially designed expression vectors followed by protein production in CHO cells. The resulting recombinant hIgGs were examined for their binding specificity using several different transformed human BJ cell lines that express deletion mutants of EGFR, each lacking one of 4 distinct extracellular domains (L1, L2, C1 and C2). Immuno-fluorescent microscopy and immuno-precipitation assay on these cells indicated that 4 distinct kinds of hIgGs bind to one of 3 different domains (L1, C1 and C2). Then, these hIgGs were further examined for biological effects on human A431 cancer cells, which overexpress EGFR. The results indicated that hIgG38 binding to L1 and hIgG45 binding to C2 substantially suppressed the EGF-induced phosphorylation of EGFR, resulting in the growth inhibition of A431 cancer cells. On the contrary, hIgG40 binding to C1 and hIgG42 binding to another site (epitope) of C2 exhibited no such inhibitory effects. Thus, the newly produced four recombinant hIgG antibodies recognize 4 different sites (epitopes) in 3 different extracellular domains of EGFR and exhibit different biological effects on cancer cells. These characteristics are somewhat different from the currently utilized therapeutic anti-EGFR antibodies. Hence, these hIgG antibodies will be invaluable as a research tool for the detailed molecular analysis of the EGFR-mediated signal transduction mechanism and more importantly a possible application as new therapeutic agents to treat certain types of cancers. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Effects of anti-NKG2A antibody administration on leukemia and normal hematopoietic cells

    Science.gov (United States)

    Ruggeri, Loredana; Urbani, Elena; André, Pascale; Mancusi, Antonella; Tosti, Antonella; Topini, Fabiana; Bléry, Mathieu; Animobono, Lucia; Romagné, François; Wagtmann, Nicolai; Velardi, Andrea

    2016-01-01

    Natural killer cells are key cells of the innate immune system. Natural killer cell receptor repertoires are diversified by a stochastic expression of killer-cell-immunoglobulin-like receptors and lectin-like receptors such as NKG2 receptors. All individuals harbor a subset of natural killer cells expressing NKG2A, the inhibitory checkpoint receptor for HLA-E. Most neoplastic and normal hematopoietic cells express HLA-E, the inhibitory ligand of NKG2A. A novel anti-human NKG2A antibody induced tumor cell death, suggesting that the antibody could be useful in the treatment of cancers expressing HLA-E. We found that immunodeficient mice, co-infused with human primary leukemia or Epstein-Barr virus cell lines and NKG2A+ natural killer cells, pre-treated with anti-human NKG2A, were rescued from disease progression. Human NKG2A+ natural killer cells reconstituted in immunodeficient mice after transplantation of human CD34+ cells. These natural killer cells are able to kill engrafted human primary leukemia or Epstein-Barr virus cell lines by lysis after intraperitoneal administration of anti-human NKG2A. Thus, this anti-NKG2A may exploit the anti-leukemic action of the wave of NKG2A+ natural killer cells recovering after hematopoietic stem cell transplants or adoptive therapy with natural killer cell infusions from matched or mismatched family donors after chemotherapy for acute leukemia, without the need to search for a natural killer cell alloreactive donor. PMID:26721894

  3. Withania somnifera Induces Cytotoxic and Cytostatic Effects on Human T Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Eleonora Turrini

    2016-05-01

    Full Text Available Cancer chemotherapy is characterized by an elevated intrinsic toxicity and the development of drug resistance. Thus, there is a compelling need for new intervention strategies with an improved therapeutic profile. Immunogenic cell death (ICD represents an innovative anticancer strategy where dying cancer cells release damage-associated molecular patterns promoting tumor-specific immune responses. The roots of Withania somnifera (W. somnifera are used in the Indian traditional medicine for their anti-inflammatory, immunomodulating, neuroprotective, and anticancer activities. The present study is designed to explore the antileukemic activity of the dimethyl sulfoxide extract obtained from the roots of W. somnifera (WE. We studied its cytostatic and cytotoxic activity, its ability to induce ICD, and its genotoxic potential on a human T-lymphoblastoid cell line by using different flow cytometric assays. Our results show that WE has a significant cytotoxic and cytostatic potential, and induces ICD. Its proapoptotic mechanism involves intracellular Ca2+ accumulation and the generation of reactive oxygen species. In our experimental conditions, the extract possesses a genotoxic potential. Since the use of Withania is suggested in different contexts including anti-infertility and osteoarthritis care, its genotoxicity should be carefully considered for an accurate assessment of its risk–benefit profile.

  4. Withania somnifera Induces Cytotoxic and Cytostatic Effects on Human T Leukemia Cells.

    Science.gov (United States)

    Turrini, Eleonora; Calcabrini, Cinzia; Sestili, Piero; Catanzaro, Elena; de Gianni, Elena; Diaz, Anna Rita; Hrelia, Patrizia; Tacchini, Massimo; Guerrini, Alessandra; Canonico, Barbara; Papa, Stefano; Valdrè, Giovanni; Fimognari, Carmela

    2016-05-12

    Cancer chemotherapy is characterized by an elevated intrinsic toxicity and the development of drug resistance. Thus, there is a compelling need for new intervention strategies with an improved therapeutic profile. Immunogenic cell death (ICD) represents an innovative anticancer strategy where dying cancer cells release damage-associated molecular patterns promoting tumor-specific immune responses. The roots of Withania somnifera (W. somnifera) are used in the Indian traditional medicine for their anti-inflammatory, immunomodulating, neuroprotective, and anticancer activities. The present study is designed to explore the antileukemic activity of the dimethyl sulfoxide extract obtained from the roots of W. somnifera (WE). We studied its cytostatic and cytotoxic activity, its ability to induce ICD, and its genotoxic potential on a human T-lymphoblastoid cell line by using different flow cytometric assays. Our results show that WE has a significant cytotoxic and cytostatic potential, and induces ICD. Its proapoptotic mechanism involves intracellular Ca(2+) accumulation and the generation of reactive oxygen species. In our experimental conditions, the extract possesses a genotoxic potential. Since the use of Withania is suggested in different contexts including anti-infertility and osteoarthritis care, its genotoxicity should be carefully considered for an accurate assessment of its risk-benefit profile.

  5. Inhibitory effect of caffeic acid on human organic anion transporters hOAT1 and hOAT3: a novel candidate for food-drug interaction.

    Science.gov (United States)

    Uwai, Yuichi; Ozeki, Yukihiro; Isaka, Tomonori; Honjo, Hiroaki; Iwamoto, Kikuo

    2011-01-01

    Several kinds of food have been shown to influence the absorption and metabolism of drugs, although there is little information about their effect on the renal excretion of drugs. In this study, we performed uptake experiments using Xenopus laevis oocytes to assess the inhibitory effects of chlorogenic acid, caffeic acid and quinic acid, which are contained in coffee, fruits and vegetables, on human organic anion transporters hOAT1 and hOAT3; these transporters mediate renal tubular uptake of anionic drugs from blood. Injection of hOAT1 and hOAT3 cRNA into oocytes stimulated uptake of typical substrates of hOAT1 and hOAT3 (p-aminohippurate and estrone sulfate, respectively); among the three compounds tested, caffeic acid most strongly inhibited these transporters. The apparent 50% inhibitory concentrations of caffeic acid were estimated to be 16.6 µM for hOAT1 and 5.4 µM for hOAT3. Eadie-Hofstee plot analysis showed that caffeic acid inhibited both transporters in a competitive manner. In addition to the transport of p-aminohippurate and estrone sulfate, that of antifolates and antivirals was inhibited by caffeic acid. These findings show that caffeic acid has inhibitory potential against hOAT1 and hOAT3, suggesting that renal excretion of their substrates could be affected in patients consuming a diet including caffeic acid.

  6. Low CD4/CD8 T-cell ratio associated with inflammatory arthropathy in human T-cell leukemia virus type I Tax transgenic mice.

    Science.gov (United States)

    Ohsugi, Takeo; Kumasaka, Toshio

    2011-04-01

    Human T-cell leukemia virus type I (HTLV-1) can cause an aggressive malignancy known as adult T-cell leukemia/lymphoma (ATL) as well as inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). A transgenic mouse that expresses HTLV-1 Tax also develops T-cell leukemia/lymphoma and an inflammatory arthropathy that resembles rheumatoid arthritis. The aim of this study was to identify the primary T-cell subsets involved in the development of arthropathy in Tax transgenic mice. By 24 months of age, Tax transgenic mice developed severe arthropathy with a cumulative incidence of 22.8%. The pathological findings of arthropathy in Tax transgenic mice were similar to those seen in human rheumatoid arthritis or mouse models of rheumatoid arthritis, with synovial proliferation and a positive rheumatoid factor. Before the onset of spontaneous arthropathy, young and old Tax transgenic mice were not sensitive to collagen and did not develop arthritis after immunization with type II collagen. The arthropathic Tax transgenic mice showed a significantly decreased proportion of splenic CD4(+) T cells, whereas the proportion of splenic CD8(+) T cells was increased. Regulatory T cells (CD4(+)CD25(+)Foxp3(+)) were significantly decreased and CD8(+) T cells that expressed the chemokine receptor CCR4 (CD8(+)CCR4(+)) were significantly increased in arthropathic Tax transgenic mice. The expression of tax mRNA was strong in the spleen and joints of arthropathic mice, with a 40-fold increase compared with healthy transgenic mice. Our findings reveal that Tax transgenic mice develop rheumatoid-like arthritis with proliferating synovial cells in the joints; however, the proportion of different splenic T-cell subsets in these mice was completely different from other commonly used animal models of rheumatoid arthritis. The crucial T-cell subsets in arthropathic Tax transgenic mice appear to resemble those in HAM/TSP patients rather than those in

  7. Establishing human leukemia xenograft mouse models by implanting human bone marrow-like scaffold-based niches

    NARCIS (Netherlands)

    Antonelli, Antonella; Noort, Willy A.; Jaques, Jenny; de Boer, Bauke; de Jong-Korlaar, Regina; Brouwers-Vos, Annet Z.; Lubbers-Aalders, Linda; van Velzen, Jeroen F.; Bloem, Andries C.; Yuan, Huipin; de Bruijn, Joost D.; Ossenkoppele, Gert J.; Martens, Anton C. M.; Vellenga, Edo; Groen, Richard W. J.; Schuringa, Jan Jacob

    2016-01-01

    To begin to understand the mechanisms that regulate self-renewal, differentiation, and transformation of human hematopoietic stem cells or to evaluate the efficacy of novel treatment modalities, stem cells need to be studied in their own species-specific microenvironment. By implanting ceramic

  8. In vitro inhibitory effect of rupatadine on histamine and TNF-alpha release from dispersed canine skin mast cells and the human mast cell line HMC-1.

    Science.gov (United States)

    Queralt, M; Brazís, P; Merlos, M; de Mora, F; Puigdemont, A

    2000-07-01

    To examine the inhibitory potential of rupatadine, a new H1-antihistamine and anti-PAF agent, on histamine and TNF-alpha release. Comparison with an H1-antihistamine (loratadine) and a PAF-antagonist (SR-27417A). Dispersed canine skin mast cells were used to assess the effect of the drugs tested on FcepsilonRI-dependent and -independent histamine release; the human HMC-1 cell line was used to study TNF-alpha release. Before stimulation mast cell populations were treated with increasing concentrations of rupatadine, loratadine and SR-27417A. Histamine and TNF-alpha release were measured following 15-30 min and 3 h activation, respectively. The IC50 for rupatadine in A23187, concanavalin A and anti-IgE induced histamine release was 0.7+/-0.4 microM, 3.2+/-0.7 microM and 1.5+/-0.4 microM, respectively whereas for loratadine the IC50 was 2.1+/-0.9 microM, 4.0+/-1.3 M and 1.7+/-0.5 microM. SR-27417A exhibited no inhibitory effect. Rupatadine, loratadine and SR-27417A inhibited TNF-alpha release with IC50 2.0+/-0.9 microM, 2.1+/-1.1 M and 4.3+/-0.6 microM, respectively. Rupatadine and loratadine showed similar inhibitory effect on histamine and TNF-alpha release, whereas SR-27417A only exhibited inhibitory effect against TNF-alpha.

  9. Inhibitory activity of a standardized elderberry liquid extract against clinically-relevant human respiratory bacterial pathogens and influenza A and B viruses

    Directory of Open Access Journals (Sweden)

    Domann Eugen

    2011-02-01

    Full Text Available Abstract Background Black elderberries (Sambucus nigra L. are well known as supportive agents against common cold and influenza. It is further known that bacterial super-infection during an influenza virus (IV infection can lead to severe pneumonia. We have analyzed a standardized elderberry extract (Rubini, BerryPharma AG for its antimicrobial and antiviral activity using the microtitre broth micro-dilution assay against three Gram-positive bacteria and one Gram-negative bacteria responsible for infections of the upper respiratory tract, as well as cell culture experiments for two different strains of influenza virus. Methods The antimicrobial activity of the elderberry extract was determined by bacterial growth experiments in liquid cultures using the extract at concentrations of 5%, 10%, 15% and 20%. The inhibitory effects were determined by plating the bacteria on agar plates. In addition, the inhibitory potential of the extract on the propagation of human pathogenic H5N1-type influenza A virus isolated from a patient and an influenza B virus strain was investigated using MTT and focus assays. Results For the first time, it was shown that a standardized elderberry liquid extract possesses antimicrobial activity against both Gram-positive bacteria of Streptococcus pyogenes and group C and G Streptococci, and the Gram-negative bacterium Branhamella catarrhalis in liquid cultures. The liquid extract also displays an inhibitory effect on the propagation of human pathogenic influenza viruses. Conclusion Rubini elderberry liquid extract is active against human pathogenic bacteria as well as influenza viruses. The activities shown suggest that additional and alternative approaches to combat infections might be provided by this natural product.

  10. Direct inhibitory effects of Ganciclovir on ICAM-1 expression and proliferation in human coronary vascular cells (SI/MPL-ratio: >1)

    Science.gov (United States)

    Voisard, Rainer; Münder, Ulrike; von Müller, Lutz; Baur, Regine; Hombach, Vinzenz

    2011-01-01

    Summary Background Treatment of the human cytomegalovirus (HCMV) infection with ganciclovir has beneficial indirect effects on the complex interactions of HCMV with restenosis, atherosclerosis, and transplant vascular sclerosis. The current study reports on direct effects of ganciclovir on expression of ICAM-1 and cell proliferation, key events of coronary atherosclerosis/restenosis. A potential clinical relevance of the data will be evaluated with the help of SI/MPL-ratio’s. Material/Methods Definition of the SI/MPL-ratio: relation between significant inhibitory effects in vitro/ex vivo and the maximal plasma level after systemic administration in vivo (ganciclovir: 9 μg/ml). Part I of the study investigated in cytoflow studies the effect of ganciclovir (0.05–5000 μg/mL) on TNF-a induced expression of intercellular adhesion molecule 1 (ICAM-1) in endothelial cells derived from umbilical veins (HUVEC), human coronary endothelial cells (HCAEC), and human coronary smooth muscle cells (HCMSMC). Part II of the study analysed the effect of ganciclovir (0.05–5000 μg/mL) on cell proliferation (HUVEC, HCAEC, and HCMSMC). In part III cytotoxic effects of ganciclovir (0.05–5000 μg/mL) were studied (HUVEC, HCAEC, and HCMSMC). Results Ganciclovir caused slight but significant inhibitory effects on expression of ICAM-1 in HUVEC, HCAEC, and HCMSMC. In all three cell types studied strong dose depending significant antiproliferative effects of ganciclovir were detected. Partially, the antiproliferative effects of ganciclovir were caused by cytotoxic effects. Conclusions SI/MPL-ratio’s >1 in HCAEC and HCMSMC indicate that the inhibitory effects of gancliclovir on ICAM-1-expression and cell proliferation may only be expected in vivo following local high dose administration e.g. in drug eluting stents (DES). PMID:21169918

  11. Compound K, a metabolite of ginseng saponin, induces apoptosis via caspase-8-dependent pathway in HL-60 human leukemia cells

    Directory of Open Access Journals (Sweden)

    Choi Jung-Hye

    2009-12-01

    Full Text Available Abstract Background Compound K [20-O-β-(D-glucopyranosyl-20(S-protopanaxadiol], a metabolite of the protopanaxadiol-type saponins of Panax ginseng C.A. Meyer, has been reported to possess anti-tumor properties to inhibit angiogenesis and to induce tumor apoptosis. In the present study, we investigated the effect of Compound K on apoptosis and explored the underlying mechanisms involved in HL-60 human leukemia cells. Methods We examined the effect of Compound K on the viabilities of various cancer cell lines using MTT assays. DAPI assay, Annexin V and PI double staining, Western blot assay and immunoprecipitation were used to determine the effect of Compound K on the induction of apoptosis. Results Compound K was found to inhibit the viability of HL-60 cells in a dose- and time-dependent manner with an IC50 of 14 μM. Moreover, this cell death had typical features of apoptosis, that is, DNA fragmentation, DNA ladder formation, and the externalization of Annexin V targeted phosphatidylserine residues in HL-60 cells. In addition, compound-K induced a series of intracellular events associated with both the mitochondrial- and death receptor-dependent apoptotic pathways, namely, (1 the activation of caspases-3, -8, and -9; (2 the loss of mitochondrial membrane potential; (3 the release of cytochrome c and Smac/DIABLO to the cytosol; (4 the translocation of Bid and Bax to mitochondria; and (5 the downregulations of Bcl-2 and Bcl-xL. Furthermore, a caspase-8 inhibitor completely abolished caspase-3 activation, Bid cleavage, and subsequent DNA fragmentation by Compound K. Interestingly, the activation of caspase-3 and -8 and DNA fragmentation were significantly prevented in the presence of cycloheximide, suggesting that Compound K-induced apoptosis is dependent on de novo protein synthesis. Conclusions The results indicate that caspase-8 plays a key role in Compound K-stimulated apoptosis via the activation of caspase-3 directly or indirectly through

  12. Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells.

    Science.gov (United States)

    Quang, Tara; Marquez, Maribel; Blanco, Giselle; Zhao, Yuanxiang

    2014-01-01

    Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4-10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system.

  13. Dosage and Cell Line Dependent Inhibitory Effect of bFGF Supplement in Human Pluripotent Stem Cell Culture on Inactivated Human Mesenchymal Stem Cells

    Science.gov (United States)

    Quang, Tara; Marquez, Maribel; Blanco, Giselle; Zhao, Yuanxiang

    2014-01-01

    Many different culture systems have been developed for expanding human pluripotent stem cells (hESCs and hiPSCs). In general, 4–10 ng/ml of bFGF is supplemented in culture media in feeder-dependent systems regardless of feeder cell types, whereas in feeder-free systems, up to 100 ng/ml of bFGF is required for maintaining long-term culture on various substrates. The amount of bFGF required in native hESCs growth niche is unclear. Here we report using inactivated adipose-derived human mesenchymal stem cells as feeder cells to examine long-term parallel cultures of two hESCs lines (H1 and H9) and one hiPSCs line (DF19-9-7T) in media supplemented with 0, 0.4 or 4 ng/ml of bFGF for up to 23 passages, as well as parallel cultures of H9 and DF19 in media supplemented with 4, 20 or 100 ng/ml bFGF for up to 13 passages for comparison. Across all cell lines tested, bFGF supplement demonstrated inhibitory effect over growth expansion, single cell colonization and recovery from freezing in a dosage dependent manner. In addition, bFGF exerted differential effects on different cell lines, inducing H1 and DF19 differentiation at 4 ng/ml or higher, while permitting long-term culture of H9 at the same concentrations with no apparent dosage effect. Pluripotency was confirmed for all cell lines cultured in 0, 0.4 or 4 ng/ml bFGF excluding H1-4 ng, as well as H9 cultured in 4, 20 and 100 ng/ml bFGF. However, DF19 demonstrated similar karyotypic abnormality in both 0 and 4 ng/ml bFGF media while H1 and H9 were karyotypically normal in 0 ng/ml bFGF after long-term culture. Our results indicate that exogenous bFGF exerts dosage and cell line dependent effect on human pluripotent stem cells cultured on mesenchymal stem cells, and implies optimal use of bFGF in hESCs/hiPSCs culture should be based on specific cell line and its culture system. PMID:24465853

  14. SIRT1 activation by a c-MYC oncogenic network promotes the maintenance and drug resistance of human FLT3-ITD acute myeloid leukemia stem cells.

    Science.gov (United States)

    Li, Ling; Osdal, Tereza; Ho, Yinwei; Chun, Sookhee; McDonald, Tinisha; Agarwal, Puneet; Lin, Allen; Chu, Su; Qi, Jing; Li, Liang; Hsieh, Yao-Te; Dos Santos, Cedric; Yuan, Hongfeng; Ha, Trung-Quang; Popa, Mihaela; Hovland, Randi; Bruserud, Øystein; Gjertsen, Bjørn Tore; Kuo, Ya-Huei; Chen, Wenyong; Lain, Sonia; McCormack, Emmet; Bhatia, Ravi

    2014-10-02

    The FLT3-ITD mutation is frequently observed in acute myeloid leukemia (AML) and is associated with poor prognosis. In such patients, FLT3 tyrosine kinase inhibitors (TKIs) are only partially effective and do not eliminate the leukemia stem cells (LSCs) that are assumed to be the source of treatment failure. Here, we show that the NAD-dependent SIRT1 deacetylase is selectively overexpressed in primary human FLT3-ITD AML LSCs. This SIRT1 overexpression is related to enhanced expression of the USP22 deubiquitinase induced by c-MYC, leading to reduced SIRT1 ubiquitination and enhanced stability. Inhibition of SIRT1 expression or activity reduced the growth of FLT3-ITD AML LSCs and significantly enhanced TKI-mediated killing of the cells. Therefore, these results identify a c-MYC-related network that enhances SIRT1 protein expression in human FLT3-ITD AML LSCs and contributes to their maintenance. Inhibition of this oncogenic network could be an attractive approach for targeting FLT3-ITD AML LSCs to improve treatment outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Knockdown of HOXA10 reverses the multidrug resistance of human chronic mylogenous leukemia K562/ADM cells by downregulating P-gp and MRP-1.

    Science.gov (United States)

    Yi, Ying-Jie; Jia, Xiu-Hong; Wang, Jian-Yong; Li, You-Jie; Wang, Hong; Xie, Shu-Yang

    2016-05-01

    Multidrug resistance (MDR) of leukemia cells is a major obstacle in chemotherapeutic treatment. The high expression and constitutive activation of P-glycoprotein (P-gp) and multidrug resistance protein-1 (MRP-1) have been reported to play a vital role in enhancing cell resistance to anticancer drugs in many tumors. The present study aimed to investigate the reversal of MDR by silencing homeobox A10 (HOXA10) in adriamycin (ADR)-resistant human chronic myelogenous leukemia (CML) K562/ADM cells by modulating the expression of P-gp and MRP-1. K562/ADM cells were stably transfected with HOXA10-targeted short hairpin RNA (shRNA). The results of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis showed that the mRNA and protein expression of HOXA10 was markedly suppressed following transfection with a shRNA-containing vector. The sensitivity of the K562/ADM cells to ADR was enhanced by the silencing of HOXA10, due to the increased intracellular accumulation of ADR. The accumulation of ADR induced by the silencing of HOXA10 may be due to the downregulation of P-gp and MRP-1. Western blot analysis revealed that downregulating HOXA10 inhibited the protein expression of P-gp and MRP-1. Taken together, these results suggest that knockdown of HOXA10 combats resistance and that HOXA10 is a potential target for resistant human CML.

  16. Impact of human T-cell leukemia virus type 1 on living donor liver transplantation: a multi-center study in Japan.

    Science.gov (United States)

    Yoshizumi, Tomoharu; Takada, Yasutsugu; Shirabe, Ken; Kaido, Toshimi; Hidaka, Masaaki; Honda, Masaki; Ito, Takashi; Shinoda, Masahiro; Ohdan, Hideki; Kawagishi, Naoki; Sugawara, Yasuhiko; Ogura, Yasuhiro; Kasahara, Mureo; Kubo, Shoji; Taketomi, Akinobu; Yamashita, Natsumi; Uemoto, Shinji; Yamaue, Hiroki; Miyazaki, Masaru; Takada, Tadahiro; Maehara, Yoshihiko

    2016-06-01

    The natural history of human T-cell leukemia virus type 1 (HTLV-1), which causes adult T-cell leukemia (ATL) or HTLV-1 associated myelopathy, after liver transplantation is unclear. We conducted a nationwide survey to investigate the impact of HTLV-1 status on living donor liver transplantation (LDLT) in Japan. We analyzed the cases of 82 HTLV-1-positive recipients and six HTLV-1-negative-before-LDLT recipients who received a hepatic graft from HTLV-1-positive donors. Adult T-cell leukemia developed in five recipients who ultimately died. Of these five, two received grafts from HTLV-1-positive donors and three from HTLV-1-negative donors. The 1-, 3-, and 5-year ATL development rates were 4.5%, 6.5%, and 9.2%, respectively. Fulminant hepatic failure as a pre-transplant diagnosis was identified as an independent risk factor for ATL development (P = 0.001). The 1-, 3-, and 5-year survival rates for HTLV-1-positive recipients who received grafts from HTLV-1-negative donors were 79.9%, 66.1%, and 66.1%, and from HTLV-1-positive donors were 83.3%, 83.3%, and 60.8%, respectively. The 1-year survival rate for HTLV-1-negative recipients who received grafts from HTLV-1-positive donors was 33.3%. Fulminant hepatic failure is an independent risk factor for ATL development in HTLV-1-positive recipients. Grafts from HTLV-1-positive living donors can be transplanted into selected patients. © 2016 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  17. The recognition of N-glycans by the lectin ArtinM mediates cell death of a human myeloid leukemia cell line.

    Directory of Open Access Journals (Sweden)

    Fernanda Caroline Carvalho

    Full Text Available ArtinM, a D-mannose-binding lectin from Artocarpus heterophyllus (jackfruit, interacts with N-glycosylated receptors on the surface of several cells of hematopoietic origin, triggering cell migration, degranulation, and cytokine release. Because malignant transformation is often associated with altered expression of cell surface glycans, we evaluated the interaction of ArtinM with human myelocytic leukemia cells and investigated cellular responses to lectin binding. The intensity of ArtinM binding varied across 3 leukemia cell lines: NB4>K562>U937. The binding, which was directly related to cell growth suppression, was inhibited in the presence of Manα1-3(Manα1-6Manβ1, and was reverted in underglycosylated NB4 cells. ArtinM interaction with NB4 cells induced cell death (IC(50 = 10 µg/mL, as indicated by cell surface exposure of phosphatidylserine and disruption of mitochondrial membrane potential unassociated with caspase activation or DNA fragmentation. Moreover, ArtinM treatment of NB4 cells strongly induced reactive oxygen species generation and autophagy, as indicated by the detection of acidic vesicular organelles in the treated cells. NB4 cell death was attributed to ArtinM recognition of the trimannosyl core of N-glycans containing a ß1,6-GlcNAc branch linked to α1,6-mannose. This modification correlated with higher levels of N-acetylglucosaminyltransferase V transcripts in NB4 cells than in K562 or U937 cells. Our results provide new insights into the potential of N-glycans containing a β1,6-GlcNAc branch linked to α1,6-mannose as a novel target for anti-leukemia treatment.

  18. The Recognition of N-Glycans by the Lectin ArtinM Mediates Cell Death of a Human Myeloid Leukemia Cell Line

    Science.gov (United States)

    Carvalho, Fernanda Caroline; Soares, Sandro Gomes; Tamarozzi, Mirela Barros; Rego, Eduardo Magalhães; Roque-Barreira, Maria-Cristina

    2011-01-01

    ArtinM, a d-mannose-binding lectin from Artocarpus heterophyllus (jackfruit), interacts with N-glycosylated receptors on the surface of several cells of hematopoietic origin, triggering cell migration, degranulation, and cytokine release. Because malignant transformation is often associated with altered expression of cell surface glycans, we evaluated the interaction of ArtinM with human myelocytic leukemia cells and investigated cellular responses to lectin binding. The intensity of ArtinM binding varied across 3 leukemia cell lines: NB4>K562>U937. The binding, which was directly related to cell growth suppression, was inhibited in the presence of Manα1-3(Manα1-6)Manβ1, and was reverted in underglycosylated NB4 cells. ArtinM interaction with NB4 cells induced cell death (IC50 = 10 µg/mL), as indicated by cell surface exposure of phosphatidylserine and disruption of mitochondrial membrane potential unassociated with caspase activation or DNA fragmentation. Moreover, ArtinM treatment of NB4 cells strongly induced reactive oxygen species generation and autophagy, as indicated by the detection of acidic vesicular organelles in the treated cells. NB4 cell death was attributed to ArtinM recognition of the trimannosyl core of N-glycans containing a ß1,6-GlcNAc branch linked to α1,6-mannose. This modification correlated with higher levels of N-acetylglucosaminyltransferase V transcripts in NB4 cells than in K562 or U937 cells. Our results provide new insights into the potential of N-glycans containing a β1,6-GlcNAc branch linked to α1,6-mannose as a novel target for anti-leukemia treatment. PMID:22132163

  19. Leukemia revisited

    Energy Technology Data Exchange (ETDEWEB)

    Cronkite, E P

    1980-01-01

    Selected features of the historical development of our knowledge of leukemia are discussed. The use of different methodologies for study of the nature of leukemic cell proliferation are analyzed. The differences between older cell kinetic data using tritiated thymidine and autoradiography and the newer cell culture methods are more apparent than real. It is suggested that tritiated thymidine and extracorporeal irradiation of the blood may be useful for therapeutic agents that have not been given an adequate trial. Radiation leukemogenesis presents an opportunity for study of the nature of leukemogenesis that has not been exploited adequately.

  20. Hybridization of a myeloid leukemia-derived human cell line (K562) with a human Burkitt's lymphoma line (P3HR-1).

    Science.gov (United States)

    Klein, G; Zeuthen, J; Eriksson, I; Terasaki, P; Bernoco, M; Rosén, A; Masucci, G; Povey, S; Ber, R

    1980-04-01

    The myeloid leukemia-derived Epstein-Barr virus (EBV)-negative human lymphoid cell line K562 was successfully hybridized with the EBV-carrying Burkitt's lymphoma line P3HR-1. Authenticity of the hybrid PUTKO-1 was established by chromosome and isoenzyme studies. A virtually complete hybrid PUTKO-1 carried the EBV genome derived from the lymphoma parent. It averaged 26 EBV DNA copies per cell and was 100% positive for Epstein-Barr virus-associated nuclear antigen (EBNA). In most respects, the hybrid resembled the K562 parent: It had a high Fc receptor concentration, high sensitivity to natural killer cells, absence of EBV C3 receptors, and deficiency of membrane-associated beta 2-microglobulin (beta 2M) and HLA, in parallel with intracellular synthesis and secretion of beta 2M to the medium. Unlike the P3HR-1 parent, the hybrid was completely nonpermissive for antigens of the EBV cycle, early antigen, and viral capsid antigen. None of the 3 inducing agents, 5-lodo-2'-deoxyuridine, 12-O-tetradecanoyl-phorbol 13-acetate, or sodium butyrate, caused any viral antigen synthesis in PUTKO-1 in contrast to the good inducibility of the parental P3HR-1 subline. Thus the myeloid parent restricted expression of EBV antigens except EBNA. This exception further supports the concept that EBNA is an autonomous function of the viral genome, independent of host cell control that regulates expression of antigens related to the viral cycle. On the contrary, extinction of viral antigens in this hybrid between 2 cell lineages supports our previous concept that the ability to produce viral antigens is similar to a differentiated B-cell property.

  1. Inhibitory effects of black pepper (Piper nigrum) extracts and compounds on human tumor cell proliferation, cyclooxygenase enzymes, lipid peroxidation and nuclear transcription factor-kappa-B.

    Science.gov (United States)

    Liu, Yunbao; Yadev, Vivek R; Aggarwal, Bharat B; Nair, Muraleedharan G

    2010-08-01

    Black pepper (Piper nigrum) and hot pepper (Capsicum spp.) are widely used in traditional medicines. Although hot Capsicum spp. extracts and its active principles, capsaicinoids, have been linked with anticancer and anti-inflammatory activities, whether black pepper and its active principle exhibit similar activities is not known. In this study, we have evaluated the antioxidant, anti-inflammatory and anticancer activities of extracts and compounds from black pepper by using proinflammatory transcription factor NF-kappaB, COX-1 and -2 enzymes, human tumor cell proliferation and lipid peroxidation (LPO). The capsaicinoids, the alkylamides, isolated from the hot pepper Scotch Bonnet were also used to compare the bioactivities of alkylamides and piperine from black pepper. All compounds derived from black pepper suppressed TNF-induced NF-kappaB activation, but alkyl amides, compound 4 from black pepper and 5 from hot pepper, were most effective. The human cancer cell proliferation inhibitory activities of piperine and alklyl amides in Capsicum and black pepper were dose dependant. The inhibitory concentrations 50% (IC50) of the alklylamides were in the range 13-200 microg/mL. The extracts of black pepper at 200 microg/mL and its compounds at 25 microg/mL inhibited LPO by 45-85%, COX enzymes by 31-80% and cancer cells proliferation by 3.5-86.8%. Overall, these results suggest that black pepper and its constituents like hot pepper, exhibit anti-inflammatory, antioxidant and anticancer activities.

  2. Monoamine Oxidase Inhibitory Constituents of Propolis: Kinetics and Mechanism of Inhibition of Recombinant Human MAO-A and MAO-B

    Directory of Open Access Journals (Sweden)

    Narayan D. Chaurasiya

    2014-11-01

    Full Text Available Propolis is the resinous material that bees gather from leaf buds, flowers and vegetables. Propolis extracts contain constituents with a broad spectra of pharmacological properties and are important ingredients of popular dietary supplements. Propolis extracts were evaluated in vitro for inhibition of recombinant human monoamine oxidase (MAO-A and MAO-B. The dichloromethane extract of propolis showed potent inhibition of human MAO-A and MAO-B. Further fractionation identified the most active fractions as rich in flavonoids. Galangin and apigenin were identified as the principal MAO-inhibitory constituents. Inhibition of MAO-A by galangin was about 36 times more selective than MAO-B, while apigenin selectivity for MAO-A vs. MAO-B was about 1.7 fold. Apigenin inhibited MAO-B significantly more potently than galangin. Galangin and apigenin were further evaluated for kinetic characteristics and the mechanism for the enzymes’ inhibition. Binding of galangin and apigenin with MAO-A and -B was not time-dependent and was reversible, as suggested by enzyme-inhibitor binding and dissociation-dialysis assay. The inhibition kinetics studies suggested that galangin and apigenin inhibited MAO-A and -B by a competitive mechanism. Presence of prominent MAO inhibitory constituents in propolis products suggests their potential for eliciting pharmacological effects that might be useful in depression or other neurological disorders. The results may also have important implications in drug-dietary supplement interactions.

  3. Abundant synthesis of functional human T-cell leukemia virus type I p40x protein in eucaryotic cells by using a baculovirus expression vector.

    Science.gov (United States)

    Jeang, K T; Giam, C Z; Nerenberg, M; Khoury, G

    1987-01-01

    The human T-cell leukemia virus type I (HTLV-I) p40x protein is a 40-kilodalton polypeptide encoded in the 3'-terminal region of the virus. This protein is responsible for positive transcriptional trans-activation of promoter elements located within the HTLV-I long terminal repeat. We introduced the protein-coding region of HTLV-I p40x into the genome of the baculovirus Autographa californica nuclear polyhedrosis virus. After infection of the insect Spodoptera frugiperda (SF9) cell line, this recombinant strain of baculovirus produced approximately 200 mg of intact p40x protein per 2.5 X 10(8) cells. The protein was biologically active in trans-activation of an HTLV-I long terminal repeat-human beta-globin construct. Biochemical analyses of the protein suggest that the p40x polypeptide underwent posttranslational modification in these eucaryotic SF9 cells. Images PMID:3027397

  4. The cytotoxic macrolide FD-891 induces caspase-8-dependent mitochondrial release of cytochrome c and subsequent apoptosis in human leukemia Jurkat cells.

    Science.gov (United States)

    Inaba, Susumu; Eguchi, Tadashi; Motegi, Atsushi; Mizoue, Kazutoshi; Usui, Takeo; Nagai, Kazuo; Kataoka, Takao

    2009-09-01

    The 16-membered macrolide FD-891 exerts cytotoxicity toward several cancer cell lines. In this study, we showed that FD-891 induces apoptosis in various human cancer cell lines. Human leukemia Jurkat cells were highly sensitive to FD-891, exhibiting caspase activation and mitochondrial release of cytochrome c into the cytosol at early time points after exposure to FD-891. By contrast, Jurkat cells deficient in caspase-8 were resistant to FD-891-induced apoptosis and manifested little induction of cytochrome c release as well as caspase-9 processing. Consistent with these results, the overexpression of the Bcl-2 family member Bcl-x(L) or the caspase-8 modulator c-FLIP(L) markedly prevented FD-891-induced apoptosis. These results clearly demonstrate that FD-891 triggers caspase-8-dependent mitochondrial release of cytochrome c and subsequent apoptosis in Jurkat cells.

  5. BCL-x{sub L}/MCL-1 inhibition and RARγ antagonism work cooperatively in human HL60 leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Perri, Mariarita; Yap, Jeremy L.; Yu, Jianshi [Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201 (United States); Cione, Erika [Department of Pharmacy, Health and Nutritional Sciences, Ed. Polifunzionale, University of Calabria, 87036 Rende, CS (Italy); Fletcher, Steven [Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201 (United States); Kane, Maureen A., E-mail: mkane@rx.umaryland.edu [Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N Pine Street, Baltimore, MD 21201 (United States)

    2014-10-01

    The acute promyelocytic leukemia (APL) subtype of acute myeloid leukemia (AML) is characterized by chromosomal translocations that result in fusion proteins, including the promyelocytic leukemia–retinoic acid receptor, alpha fusion protein (PML–RARα). All-trans retinoic acid (atRA) treatment is the standard drug treatment for APL yielding cure rates >80% by activating transcription and proteasomal degradation of retinoic acid receptor, alpha (RARα). Whereas combination therapy with As{sub 2}O{sub 3} has increased survival further, patients that experience relapse and are refractory to atRA and/or As{sub 2}O{sub 3} is a clinically significant problem. BCL-2 family proteins regulate apoptosis and over-expression of anti-apoptotic B-cell leukemia/lymphoma 2 (BCL-2) family proteins has been associated with chemotherapeutic resistance in APL including impairment of the ability of atRA to induce growth arrest and differentiation. Here we investigated the novel BH3 domain mimetic, JY-1-106, which antagonizes the anti-apoptotic BCL-2 family members B-cell lymphoma-extra large (BCL-x{sub L}) and myeloid cell leukemia-1 (MCL-1) alone and in combination with retinoids including atRA, AM580 (RARα agonist), and SR11253 (RARγ antagonist). JY-1-106 reduced cell viability in HL-60 cells alone and in combination with retinoids. The combination of JY-1-106 and SR11253 had the greatest impact on cell viability by stimulating apoptosis. These studies indicate that dual BCL-x{sub L}/MCL-1 inhibitors and retinoids could work cooperatively in leukemia treatment. - Highlights: • Novel Bcl-x{sub L}/Mcl-1 inhibitor JY-1-106 reduces HL60 cell viability. • JY-1-106 is investigated in combination with retinoic acid, AM580, and SR11253. • AM580 is an RARα agonist; SR11253 is an RARγ antagonist. • Combined use of JY-1-106/SR11253 exhibited the greatest cell viability reduction. • JY-1-106 alone or in combination with retinoids induces apoptosis.

  6. Polysaccharopeptides derived from Coriolus versicolor potentiate the S-phase specific cytotoxicity of Camptothecin (CPT on human leukemia HL-60 cells

    Directory of Open Access Journals (Sweden)

    Jiang Pingping

    2010-04-01

    Full Text Available Abstract Background Polysaccharopeptide (PSP from Coriolus versicolor (Yunzhi is used as a supplementary cancer treatment in Asia. The present study aims to investigate whether PSP pre-treatment can increase the response of the human leukemia HL-60 cells to apoptosis induction by Camptothecin (CPT. Methods We used bivariate bromodeoxyuridine/propidium iodide (BrdUrd/PI flow cytometry analysis to measure the relative movement (RM of the BrdUrd positively labeled cells and DNA synthesis time (Ts on the HL-60 cell line. We used annexin V/PI flow cytometry analysis to quantify the viable, necrotic and apoptotic cells. The expression of cyclin E and cyclin B1 was determined with annexin V/PI flow cytometry and western blotting. Human peripheral blood mononuclear cells were used to test the cytotoxicity of PSP and CPT. Results PSP reduced cellular proliferation; inhibited cells progression through both S and G2 phase, reduced 3H-thymidine uptake and prolonged DNA synthesis time (Ts in HL-60 cells. PSP-pretreated cells enhanced the cytotoxicity of CPT. The sensitivity of cells to the cytotoxic effects of CPT was seen to be the highest in the S-phase and to a small extent of the G2 phase of the cell cycle. On the other hand, no cell death (measured by annexin V/PI was evident with the normal human peripheral blood mononuclear cells with treatment of either PSP or CPT. Conclusion The present study shows that PSP increases the sensitization of the HL-60 cells to undergo effective apoptotic cell death induced by CPT. The pattern of sensitivity of cancer cells is similar to that of HL-60 cells. PSP rapidly arrests and/or kills cells in S-phase and did not interfere with the anticancer action of CPT. PSP is a potential adjuvant to treat human leukemia as rapidly proliferating tumors is characterized by a high proportion of S-phase cells.

  7. Decitabine in Treating Children With Relapsed or Refractory Acute Myeloid Leukemia or Acute Lymphoblastic Leukemia

    Science.gov (United States)

    2013-01-22

    Childhood Acute Myeloblastic Leukemia With Maturation (M2); Childhood Acute Promyelocytic Leukemia (M3); Recurrent Childhood Acute Lymphoblastic Leukemia; Recurrent Childhood Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia

  8. Relationship Between Structure and Antiproliferative Activity of Novel 5-amino-4-cyanopyrazole-1-formaldehydehydrazono Derivatives on HL-60RG Human Leukemia Cells.

    Science.gov (United States)

    Nagahara, Yukitoshi; Nagahara, Katsuhiko

    2017-11-01

    Pyrazole derivatives have been reported to have potent antimicrobial and anticancer activity. We recently synthesized and determined the effects of analogs, benzamidoxime derivatives, on mammalian cells and discovered that benzamidoximes had an antiproliferative effect. Here we synthesized and determined the anticancer effects of hydrazonopyrazole derivatives on a mammalian cancer cell line. We synthesized 12 hydrazonopyrazole derivatives with several constant alkyl chain length or branched chains at the side chain to investigate their anticancer cell activity, using the human myelogenous leukemia cell line HL-60RG. Among all hydrazonopyrazole derivatives we synthesized, the hydrazonopyrazole derivative with a branched chain at the side chain rather than a constant alkyl chain significantly inhibited cell viability. The strongest hydrazonopyrazole derivative, 5-amino-4-cyanopyrazole-1-formaldehydehydrazono-3'-pentanal, tended to damage cells dose-dependently. This cell growth attenuation was a result of apoptosis, activating caspase-3 and fragmented DNA. Hydrazonopyrazole derivatives induced apoptosis of HL-60RG leukemia cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Human T-cell leukemia virus type 1 bZIP factor selectively suppresses the classical pathway of NF-kappaB.

    Science.gov (United States)

    Zhao, Tiejun; Yasunaga, Jun-ichirou; Satou, Yorifumi; Nakao, Mitsuyoshi; Takahashi, Masahiko; Fujii, Masahiro; Matsuoka, Masao

    2009-03-19

    Adult T-cell leukemia (ATL) is a highly aggressive T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1). The activation of NF-kappaB by Tax has been reported to play a crucial role in HTLV-1-induced transformation. The HTLV-1 bZIP factor (HBZ), which is encoded by an mRNA of the opposite polarity of the viral genomic RNA, is involved in both T cell proliferation and suppression of Tax-mediated viral gene transcription, suggesting that HBZ cooperates closely with Tax. In the present study, we observed that HBZ specifically suppressed NF-kappaB-driven transcription mediated by p65 (the classical pathway) without inhibiting the alternative NF-kappaB signaling pathway. In an immunoprecipitation assay, HBZ bound to p65 and diminished the DNA binding capacity of p65. In addition, HBZ induced p65 degradation through increasing the expression of the PDLIM2 gene, which encodes a ubiquitin E3 ligase for p65. Finally, HBZ actually repressed the transcription of some classical NF-kappaB target genes, such as IL-8, IL2RA, IRF4, VCAM-1, and VEGF. Selective suppression of the classical NF-kappaB pathway by HBZ renders the alternative NF-kappaB pathway predominant after activation of NF-kappaB by Tax or other stimuli, which might be critical for oncogenesis.

  10. c-Myb binds MLL through menin in human leukemia cells and is an important driver of MLL-associated leukemogenesis

    Science.gov (United States)

    Jin, Shenghao; Zhao, Huiwu; Yi, Yan; Nakata, Yuji; Kalota, Anna; Gewirtz, Alan M.

    2010-01-01

    Mixed-lineage leukemia (MLL) is a proto-oncogene frequently involved in chromosomal translocations associated with acute leukemia. These chromosomal translocations commonly result in MLL fusion proteins that dysregulate transcription. Recent data suggest that the MYB proto-oncogene, which is an important regulator of hematopoietic cell development, has a role in leukemogenesis driven by the MLL-ENL fusion protein, but exactly how is unclear. Here we have demonstrated that c-Myb is recruited to the MLL histone methyl transferase complex by menin, a protein important for MLL-associated leukemic transformation, and that it contributes substantially to MLL-mediated methylation of histone H3 at lysine 4 (H3K4). Silencing MYB in human leukemic cell lines and primary patient material evoked a global decrease in H3K4 methylation, an unexpected decrease in HOXA9 and MEIS1 gene expression, and decreased MLL and menin occupancy in the HOXA9 gene locus. This decreased occupancy was associated with a diminished ability of an MLL-ENL fusion protein to transform normal mouse hematopoietic cells. Previous studies have shown that MYB expression is regulated by Hoxa9 and Meis1, indicating the existence of an autoregulatory feedback loop. The finding that c-Myb has the ability to direct epigenetic marks, along with its participation in an autoregulatory feedback loop with genes known to transform hematopoietic cells, lends mechanistic and translationally relevant insight into its role in MLL-associated leukemogenesis. PMID:20093773

  11. Hyperglycemia acutely lowers the postprandial excursions of glucagon-like Peptide-1 and gastric inhibitory polypeptide in humans

    DEFF Research Database (Denmark)

    Vollmer, Kirsten; Gardiwal, Husai; Menge, Bjoern A

    2009-01-01

    INTRODUCTION: Impaired secretion of glucagon-like peptide 1 (GLP-1) has been suggested to contribute to the deficient incretin effect in patients with type 2 diabetes. It is unclear whether this is a primary defect or a consequence of the hyperglycemia in type 2 diabetes. We examined whether acute...... hyperglycemia reduces the postprandial excursions of gastric inhibitory polypeptide (GIP) and GLP-1, and if so, whether this can be attributed to changes in gastric emptying. PATIENTS AND METHODS: Fifteen nondiabetic individuals participated in a euglycemic clamp and a hyperglycemic clamp experiment, carried...... the hyperglycemic clamp experiments and 83 +/- 3 mg/dl during the euglycemia (P hyperglycemia, but meal ingestion led to a decline in glucose requirements in both experiments (P

  12. Effect of stimulus parameters and contraction level on inhibitory responses in human jaw-closing muscles: Implications for contingent stimulation

    DEFF Research Database (Denmark)

    Jadidi, F; Wang, K; Arendt-Nielsen, Lars

    2009-01-01

    % of the maximal voluntary contraction (MVC). Results: The stimulus intensities required to reach the perceived intensity levels were inversely related to stimulus duration (P stimuli was dependent on stimulus intensity (P ....001, respectively) but not contraction level. There were significant decreases evoked by the 450 ms stimuli in RMS-EMG values in the 400-500 ms compared with the pre-stimulus interval (P ... results suggest that the ES2 reflex response is associated with the duration of the electrical stimuli, the intensity level but not the contraction level. In contrast, the inhibitory effects of ultra-long stimuli (450 ms) are not specifically related to the intensity level suggesting that this is a non...

  13. Safety and efficacy of ofatumumab, a fully human monoclonal anti-CD20 antibody, in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: a phase 1-2 study

    DEFF Research Database (Denmark)

    Coiffier, B.; Lepretre, S.; Pedersen, L.M.

    2008-01-01

    Safety and efficacy of the fully human anti-CD20 monoclonal antibody, ofatumumab, was analyzed in a multicenter dose-escalating study including 33 patients with relapsed or refractory chronic lymphocytic leukemia. Three cohorts of 3 (A), 3 (B), and 27 (C) patients received 4, once weekly, infusio...

  14. Inhibitory Effect of Selaginellins from Selaginella tamariscina (Beauv. Spring against Cytochrome P450 and Uridine 5′-Diphosphoglucuronosyltransferase Isoforms on Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Jae-Kyung Heo

    2017-09-01

    Full Text Available Selaginella tamariscina (Beauv. has been used for traditional herbal medicine for treatment of cancer, hepatitis, and diabetes in the Orient. Numerous bioactive compounds including alkaloids, flavonoids, lignans, and selaginellins have been identified in this medicinal plant. Among them, selaginellins having a quinone methide unit and an alkylphenol moiety have been known to possess anticancer, antidiabetic, and neuroprotective activity. Although there have been studies on the biological activities of selaginellins, their modulatory potential of cytochrome P450 (P450 and uridine 5′-diphosphoglucuronosyltransferase (UGT activities have not been previously evaluated. In this study, we investigated the drug interaction potential of two selaginellins on ten P450 isoforms (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 2J2 and 3A and six UGT isoforms (UGT1A1, 1A3, 1A4, 1A6, 1A9 and 2B7 using human liver microsomes and liquid chromatography-tandem mass spectrometry. Selaginellin and selaginellin M had high inhibitory potential for CYP2C8-mediated amodiaquine O-demethylation with IC50 values of 0.5 and 0.9 μM, respectively. Selaginellin and selaginellin M also showed medium inhibitory potential against CYP2C9, CYP2J2, UGT1A1, and UGT1A3 (1 μM < IC50 < 5 μM. These two selaginellins had low inhibitory potential against CYP1A2, CYP2A6, CYP2E1, and UGT1A6 (IC50 > 25 μM. This information might be helpful to predict possible drug interaction potential of between selaginellins and co-administered drugs.

  15. Multi-spectroscopic and molecular modeling studies of interaction between two different angiotensin I converting enzyme inhibitory peptides from gluten hydrolysate and human serum albumin.

    Science.gov (United States)

    Assaran Darban, Reza; Shareghi, Behzad; Asoodeh, Ahmad; Chamani, Jamshidkhan

    2016-12-26

    The present study was carried out to characterize Angiotensin-converting enzyme (ACE) inhibitory peptides which are released from the trypsin hydrolysate of wheat gluten protein. The binding of two inhibitory peptide (P4 and P6) to human serum albumin (HSA) under physiological conditions has been investigated by multi-spectroscopic in combination with molecular modeling techniques. Time-resolved and quenching fluorescence spectroscopies results revealed that the quenching of HSA fluorescence by P4 and P6 in the binary and ternary systems caused HSA-peptides complexes formation. The results indicated that both peptides quenched the fluorescence intensity of HSA through a static mechanism. The binding affinities and number of binding sites were obtained for the HSA-peptides complexes. The circular dichroism (CD) data revealed that the presence of both peptides increased the α-helix content of HSA and induced the remarkable folding of the polypeptide of the protein. Therefore, the CD data determined that the protein structure has been stabilized in the percent of ACE inhibitory peptides in binary and ternary systems. The binding distances between HSA and both peptides were estimated by the Forster theory, and it was revealed that nonradiative energy transfer from HSA to peptides occurred with a high probability. ITC experiments reveal that, in the absence and presence of P6, the dominant forces are electrostatic in binary and ternary systems. Furthermore, molecular modeling studies confirmed the experimental results. Molecular modeling investigation suggested that P4 bound to the site IA and IIA of HSA in binary and ternary systems, respectively. This study on the interaction of peptides with HSA should prove helpful for realizing the distribution and transportation of food compliments and drugs in vivo, elucidating the action mechanism and dynamics of food compliments and drugs at the molecular level. It should moreover be of great use for understanding the

  16. Childhood Cancer: Leukemia (For Parents)

    Science.gov (United States)

    ... Late for the Flu Vaccine? Eating Disorders Arrhythmias Leukemia KidsHealth > For Parents > Leukemia Print A A A ... Causes Symptoms Diagnosis Treatment en español Leucemia About Leukemia The term leukemia refers to cancers of the ...

  17. Kelainan Hemostasis pada Leukemia

    Directory of Open Access Journals (Sweden)

    Zelly Dia Rofinda

    2012-09-01

    Full Text Available AbstrakLatar belakang: Leukemia adalah penyakit keganasan pada jaringan hematopoietik yang ditandai denganpenggantian elemen sumsum tulang normal oleh sel darah abnormal atau sel leukemik. Salah satu manifestasi klinisdari leukemia adalah perdarahan yang disebabkan oleh berbagai kelainan hemostasis.Kelainan hemostasis yang dapat terjadi pada leukemia berupa trombositopenia, disfungsi trombosit,koagulasi intravaskuler diseminata, defek protein koagulasi, fibrinolisis primer dan trombosis. Patogenesis danpatofosiologi kelainan hemostasis pada leukemia tersebut terjadi dengan berbagai mekanisme.Kata kunci: leukemia, kelainan hemostasisAbstractBackground: AbstractLeukemia is a malignancy of hematopoietic tissue which is characterized bysubstituted of bone marrow element with abnormal blood cell or leukemic cell. One of clinical manifestation ofleukemia is bleeding that is caused by several hemostasis disorders.Hemostasis disorders in leukemia such asthrombocytopenia, platelet dysfunction, disseminated intravascular coagulation, coagulation protein defect, primaryfibrinolysis and thrombosis. Pathogenesis and pathophysiology of thus hemostasis disorders in leukemia occur withdifferent mechanism.Keywords: leukemia, hemostasis disorder

  18. In vitro inhibition of human leukemia THP-1 cells by Origanum syriacum L. and Thymus vulgaris L. extracts.

    Science.gov (United States)

    Ayesh, Basim M; Abed, Abdalla A; Faris, Doa'a M

    2014-09-07

    Natural products including, traditional medicinal plants have emerged as a tempting alternative to conventional chemotherapeutic protocols of leukemia because of their minimum side effects and less documented drug resistance. Ethanol extracts were prepared from Thymus vulgaris L. and Origanum syriacum L. plants and investigated against the THP-1 leukemia cell line and freshly isolated peripheral blood mononuclear cells (PBMCs). The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay and the lactate dehydrogenase (LDH) assay were respectively used to determine the cellular viability and cytotoxicity in response to treatment with increasing extract concentrations. Both extracts exhibited a concentration dependent reduction in viability of the THP-1 cells (IC50 = 2.126 mg/mL for O. syriacum, and 0.1569 mg/mL for T. vulgaris). O. syriacum was more potent against the PBMCs (IC50 = 0.4247 mg/mL), while T. vulgaris was moderately selective (IC50 = 0.3345 mg/mL with PBMCs and SI = 2.1). Only in O. syriacum the reduction in cells viability was caused by cytotoxic effect against leukemic cells (LC50 = of 9.646 mg/mL). T. vulgaris and O. syriacum are both antileukemic in vitro. T. vulgaris represents a potential selective cytostatic and safe target for future anticancer agents' development. O. syriacum on the other hand is cytotoxic against the leukemia cell line THP-1.

  19. Allium compounds, dipropyl and dimethyl thiosulfinates as antiproliferative and differentiating agents of human acute myeloid leukemia cell lines

    Directory of Open Access Journals (Sweden)

    Faten Merhi

    2008-08-01

    Full Text Available Faten Merhi1, Jacques Auger2, Francine Rendu1, Brigitte Bauvois11UMR 7131 UPMC Paris Universitas/CNRS, Groupe Hospitalier Broussais-HEGP, Paris, France; 2University F. Rabelais, IRBI, UPRESA CNRS 6035, Tours, FranceAbstract: Epidemiologic studies support the premise that Allium vegetables may lower the risk of cancers. The beneficial effects appear related to the organosulfur products generated upon processing of Allium. Leukemia cells from patients with acute myeloid leukemia (AML display high proliferative capacity and have a reduced capacity of undergoing apoptosis and maturation. Whether the sulfur-containing molecules thiosulfinates (TS, diallyl TS (All2TS, dipropyl TS (Pr2TS and dimethyl TS (Me2TS, are able to exert chemopreventative activity against AML is presently unknown. The present study was an evaluation of proliferation, cytotoxicity, differentiation and secretion of AML cell lines (U937, NB4, HL-60, MonoMac-6 in response to treatment with these TS and their related sulfides (diallylsulfide, diallyl disulfide, dipropyl disulfide, dimethyl disulfide. As assessed by flow cytometry, ELISA, gelatin zymogaphy and RT-PCR, we showed that Pr2TS and Me2TS, but not All2TS and sulfides, 1 inhibited cell proliferation in dose- and time-dependent manner and this process was neither due to cytotoxicity nor apoptosis, 2 induced macrophage maturation, and 3 inhibited the levels of secreted MMP-9 (protein and activity and TNF-α protein, without altering mRNA levels. By establishing for the first time that Pr2TS and Me2TS affect proliferation, differentiation and secretion of leukemic cell lines, this study provides the opportunity to explore the potential efficiency of these molecules in AML.Keywords: acute myeloid leukemia, thiosulfinate, proliferation, differentiation, matrix metalloproteinase-9

  20. Reversal effect of arsenic sensitivity in human leukemia cell line K562 and K562/ADM using realgar transforming solution.

    Science.gov (United States)

    Wang, Xin; Zhang, Xu; Xu, Zhiliang; Wang, Zhizeng; Yue, Xiaoxuan; Li, Hongyu

    2013-01-01

    The success of arsenic trioxide (ATO) in treatment of acute promyelocytic leukemia (APL) attracts a great deal of attention to researchers to explore its activity of anti-leukemia. However, ATO has unavailable effect on chronic myeloid leukemia (CML), especially multidrug resistant (MDR)-CML, unless using high concentration. Realgar (As(4)S(4)) has been employed in Chinese traditional medicine for 1500 years. Research evidences confirmed realgar has similar effect on treating with APL as ATO, but the problem of large dose and long period in the CML/MDR-CML treatment still exist. By using a microbial leaching process with Acidithiobacillus ferrooxidans, we obtained realgar transforming solution (RTS) which showed significantly higher extent in inhibiting CML cell line K562 and MDR-CML cell line K562/ADM, and then trigger apoptosis. Both K562 and K562/ADM showed arsenic-dose-dependent effect on RTS. Interestingly, the overexpression of MDR1 mRNA and P-glucoprotein (P-gp) in K562/ADM cells were down-regulated by RTS, where there are no obvious effects on ATO and realgar and arsenic can be subsequently accumulated in K562/ADM cells efficiently. The intracellular accumulation of arsenic in K562/ADM cells treated with RTS for 4 h was 2-fold and 16-folds higher than those treated with realgar or ATO. Meanwhile, Western blot analysis of AQP9, the main transporter of arsenic, was increased by RTS treatment particularly in K562/ADM. Thus, these results suggested that the effect from a certain arsenical or a variety of arsenicals in RTS might be a promising candidate both for treating CML/MDR-CML alone and as combinations with currently used anti-CML/MDR-CML drug, although arsenical forms in RTS are undefined.

  1. Inhibition of the NAD-dependent protein deacetylase SIRT2 induces granulocytic differentiation in human leukemia cells.

    Directory of Open Access Journals (Sweden)

    Yoshitaka Sunami

    Full Text Available Sirtuins, NAD-dependent protein deacetylases, play important roles in cellular functions such as metabolism and differentiation. Whether sirtuins function in tumorigenesis is still controversial, but sirtuins are aberrantly expressed in tumors, which may keep cancerous cells undifferentiated. Therefore, we investigated whether the inhibition of sirtuin family proteins induces cellular differentiation in leukemic cells. The sirtuin inhibitors tenovin-6 and BML-266 induce granulocytic differentiation in the acute promyelocytic leukemia (APL cell line NB4. This differentiation is likely caused by an inhibition of SIRT2 deacetylase activity, judging from the accumulation of acetylated α-tubulin, a major SIRT2 substrate. Unlike the clinically used differentiation inducer all-trans retinoic acid, tenovin-6 shows limited effects on promyelocytic leukemia-retinoic acid receptor α (PML-RAR-α stability and promyelocytic leukemia nuclear body formation in NB4 cells, suggesting that tenovin-6 does not directly target PML-RAR-α activity. In agreement with this, tenovin-6 induces cellular differentiation in the non-APL cell line HL-60, where PML-RAR-α does not exist. Knocking down SIRT2 by shRNA induces granulocytic differentiation in NB4 cells, which demonstrates that the inhibition of SIRT2 activity is sufficient to induce cell differentiation in NB4 cells. The overexpression of SIRT2 in NB4 cells decreases the level of granulocytic differentiation induced by tenovin-6, which indicates that tenovin-6 induces granulocytic differentiation by inhibiting SIRT2 activity. Taken together, our data suggest that targeting SIRT2 is a viable strategy to induce leukemic cell differentiation.

  2. Loss of Egr1, a human del5q gene, accelerates BCR-ABL driven chronic myelogenous leukemia

    Science.gov (United States)

    Maifrede, Silvia; Magimaidas, Andrew; Sha, Xiaojin; Mukherjee, Kaushiki; Liebermann, Dan A.; Hoffman, Barbara

    2017-01-01

    There is substantial evidence that early growth response-1 (Egr1) gene, a zinc-finger transcription factor, behaves as a tumor suppressor in leukemia. This includes reports from this laboratory that constitutive Egr1 overrides leukemia conferred by deregulated c-Myc or E2F-1 in the M1 myeloid leukemic cell line by promoting differentiation. To investigate the effect of Egr1 on the initiation and progression of Chronic Myelogenous Leukemia (CML), lethally irradiated syngeneic wild type mice were reconstituted with bone marrow (BM) from either wild type or Egr1 null mice transduced with a 210-kD BCR-ABL-expressing MSCV-retrovirus (bone marrow transplantation {BMT}). Loss of Egr1 was observed to accelerate the development of BCR-ABL driven leukemia in recipient mice, resulting in the development of a more aggressive disease, a significantly shortened median survival time, and increased BCR-ABL expressing leukemic stem/progenitor cells (GFP+Lin-cKit+Sca+). Egr1 deficient progenitors expressing BCR-ABL exhibited decreased apoptosis, and increased cell viability and proliferation relative to WT counterparts. Secondary BMT of BCR-ABL BM revealed that loss of Egr1 resulted in enrichment of LSCs, consistent with shorter survival time and more aggressive disease of these mice compared to WT counterparts. Furthermore, serial re-plating colony assays indicated that loss of Egr1 increased self-renewal ability of BCR-ABL expressing BM. These novel findings on the tumor suppressor role of Egr1 in CML provide the impetus to study the effect of altering Egr1 expression in AML, where the overall five year survival rate remains low. The effect of loss of Egr1 in CML could reflect its established functions in normal hematopoiesis, maintaining quiescence of HSCs and driving terminal differentiation to the monocyte/macrophage lineage. Gain of function studies should validate these conclusions and provide further rationale for increased Egr1 as a therapeutic target in AML. PMID:29050203

  3. Matched sizes of activating and inhibitory receptor/ligand pairs are required for optimal signal integration by human natural killer cells.

    Directory of Open Access Journals (Sweden)

    Karsten Köhler

    2010-11-01

    Full Text Available It has been suggested that receptor-ligand complexes segregate or co-localise within immune synapses according to their size, and this is important for receptor signaling. Here, we set out to test the importance of receptor-ligand complex dimensions for immune surveillance of target cells by human Natural Killer (NK cells. NK cell activation is regulated by integrating signals from activating receptors, such as NKG2D, and inhibitory receptors, such as KIR2DL1. Elongating the NKG2D ligand MICA reduced its ability to trigger NK cell activation. Conversely, elongation of KIR2DL1 ligand HLA-C reduced its ability to inhibit NK cells. Whereas normal-sized HLA-C was most effective at inhibiting activation by normal-length MICA, only elongated HLA-C could inhibit activation by elongated MICA. Moreover, HLA-C and MICA that were matched in size co-localised, whereas HLA-C and MICA that were different in size were segregated. These results demonstrate that receptor-ligand dimensions are important in NK cell recognition, and suggest that optimal integration of activating and inhibitory receptor signals requires the receptor-ligand complexes to have similar dimensions.

  4. Identification and detection of murine leukemia blasts by flow cytometry

    OpenAIRE

    sprotocols

    2015-01-01

    Human leukemia has been determined and classified with the help of flow cytometry for the past two decades. Past attempts to detect leukemia blasts relied on both forward and side scatter (FSC and SSC) based on cell size and granularity. However, this technique failed to show a clean separation of blasts from normal lineage cells. In 1993, Borowitz, et al developed flow cytometric analysis to distinguish human leukemia blasts from other normal lineage cells by using fluorescence-conjugated CD...

  5. Low CD4/CD8 T-cell ratio associated with inflammatory arthropathy in human T-cell leukemia virus type I Tax transgenic mice.

    Directory of Open Access Journals (Sweden)

    Takeo Ohsugi

    Full Text Available BACKGROUND: Human T-cell leukemia virus type I (HTLV-1 can cause an aggressive malignancy known as adult T-cell leukemia/lymphoma (ATL as well as inflammatory diseases such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. A transgenic mouse that expresses HTLV-1 Tax also develops T-cell leukemia/lymphoma and an inflammatory arthropathy that resembles rheumatoid arthritis. The aim of this study was to identify the primary T-cell subsets involved in the development of arthropathy in Tax transgenic mice. PRINCIPAL FINDINGS: By 24 months of age, Tax transgenic mice developed severe arthropathy with a cumulative incidence of 22.8%. The pathological findings of arthropathy in Tax transgenic mice were similar to those seen in human rheumatoid arthritis or mouse models of rheumatoid arthritis, with synovial proliferation and a positive rheumatoid factor. Before the onset of spontaneous arthropathy, young and old Tax transgenic mice were not sensitive to collagen and did not develop arthritis after immunization with type II collagen. The arthropathic Tax transgenic mice showed a significantly decreased proportion of splenic CD4(+ T cells, whereas the proportion of splenic CD8(+ T cells was increased. Regulatory T cells (CD4(+CD25(+Foxp3(+ were significantly decreased and CD8(+ T cells that expressed the chemokine receptor CCR4 (CD8(+CCR4(+ were significantly increased in arthropathic Tax transgenic mice. The expression of tax mRNA was strong in the spleen and joints of arthropathic mice, with a 40-fold increase compared with healthy transgenic mice. CONCLUSIONS: Our findings reveal that Tax transgenic mice develop rheumatoid-like arthritis with proliferating synovial cells in the joints; however, the proportion of different splenic T-cell subsets in these mice was completely different from other commonly used animal models of rheumatoid arthritis. The crucial T-cell subsets in arthropathic Tax transgenic mice appear to resemble

  6. Honey bee venom combined with 1,25-dihydroxyvitamin D3as a highly efficient inducer of differentiation in human acute myeloid leukemia cells.

    Science.gov (United States)

    Mohseni-Kouchesfahani, Homa; Nabioni, Mohammad; Khosravi, Zahra; Rahimi, Maryam

    2017-01-01

    Most cancer cells exhibit a defect in their capacity to mature into nonreplicating adult cells and existing in a highly proliferating state. Differentiation therapy by agents such as 1,25-dihydroxyvitamin D3(1,25-(OH)2 VD3) represents a useful approach for the treatment of cancer including acute myeloid leukemia. Human myeloid leukemia cell lines are induced to terminal differentiation into monocyte lineage by 1,25-(OH)2 VD3. However, usage of these findings in the clinical trials is limited by calcemic effects of 1,25-(OH)2 VD3. Attempts to overcome this problem have focused on a combination of low concentrations 1,25-(OH)2 VD3 with other compounds to induce differentiation of HL-60 cells. In this study, the effect of honey bee venom (BV) and 1,25-(OH)2 VD3, individually and in combination, on proliferation and differentiation of human myeloid leukemia HL-60 cells were assayed. In this in vitro study, toxic and nontoxic concentrations of BV and 1,25-(OH)2 VD3 were tested using Trypan blue stained cell counting and (3[4, 5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. In addition, differentiation of cells was assayed using a Wright-Giemsa staining and nitroblue tetrazolium reduction test. Data were analyzed by a one-way analysis of the variance test using SPSS software. Our findings showed that both the BV and 1,25-(OH)2 VD3, in a dose and time-dependent manner, caused cell death at high concentrations and inhibited cell proliferation at lower concentrations. About 5 nM of 1,25-(OH)2 VD3 induced differentiation of HL-60 cells to monocytes after 72 h. 2.5 μg/ml of BV suppressed proliferation of HL-60 cells but had not any effects on their differentiation, whereas in combination with 5 nM of 1,25-(OH)2 VD3, it enhanced antiproliferative and differentiation potency of 1,25-(OH)2 VD3. These results indicate that BV potentiates the 1,25-(OH)2 VD3-induced HL-60 cell differentiation into monocytes.

  7. Structure-activity relationship studies of 5,7-dihydroxyflavones as naturally occurring inhibitors of cell proliferation in human leukemia HL-60 cells.

    Science.gov (United States)

    Ninomiya, Masayuki; Nishida, Kyohei; Tanaka, Kaori; Watanabe, Kunitomo; Koketsu, Mamoru

    2013-07-01

    Flavonoids are widely occurring polyphenols that are found in plants. The aim of this study was to investigate the structure-activity relationships of 5,7-dihydroxyflavones, with a focus on the effect of B ring structure substitution on the antiproliferative effects of the compounds in human leukemia HL-60 cells. We prepared a series of 5,7-dihydroxyflavones and evaluated their ability to inhibit the proliferation of HL-60 cells by using the MTT assay. The apoptosis- and cell differentiation-inducing ability of the most potent flavones were investigated using staining and morphological analyses. This study explored the antileukemic and chemopreventive potency of 5,7-dihydroxyflavones, particularly diosmetin and chrysoeriol, which have both hydroxy and methoxy groups on the B ring.

  8. Coinfection by Strongyloides stercoralis in blood donors infected with human T-cell leukemia/lymphoma virus type 1 in São Paulo city, Brazil

    Directory of Open Access Journals (Sweden)

    Pedro P Chieffi

    2000-10-01

    Full Text Available The frequency of coinfection with Strongyloides stercoralis and human T-cell leukemia/lymphoma virus type 1 (HTML-1 was determined in 91 blood donors examined at the blood bank of a large hospital in São Paulo city, Brazil. As control group 61 individuals, not infected by HTLV-1, were submitted to the same techniques for the diagnosis of S. stercoralis infection. In HTLV-1 infected patients the frequency of S. stercoralis infection was 12.1%; on the other hand, the control group showed a frequency significantly lower of S. stercoralis infection (1.6%, suggesting that HTLV-1 patients shoud be considered as a high risk group for strongyloidiasis in São Paulo city.

  9. Different mechanisms causing loss of mismatched human leukocyte antigens in relapsing t(6;11)(q27;q23) acute myeloid leukemia after haploidentical transplantation.

    Science.gov (United States)

    Tamaki, Hiroya; Fujioka, Tatsuya; Ikegame, Kazuhiro; Yoshihara, Satoshi; Kaida, Katsuji; Taniguchi, Kyoko; Kato, Ruri; Tokugawa, Taduko; Nakata, Jun; Inoue, Takayuki; Yano, Aya; Eguchi, Ryoji; Okada, Masaya; Maruya, Etsuko; Saji, Hiroh; Ogawa, Hiroyasu

    2012-12-01

    Mismatched human leukocyte antigens (HLAs) on leukemic cells can be targeted by donor T cells in HLA-mismatched/haploidentical stem cell transplantation. In two cases of acute myeloid leukemia with t(6;11)(q27;q23) abnormality presented here, flow cytometry analysis showed a lack of HLA-A unshared between recipients and donors in relapsing leukemic cells after HLA-haploidentical transplantation. However, high-resolution HLA genotyping showed that one case lacked a corresponding HLA haplotype, whereas the other preserved it. These cases suggest that leukemic cells, which lacked mismatched HLA expression, might have an advantage in selective expansion under donor T-cell immune surveillance after HLA-haploidentical transplantation. Most importantly, down-regulation of unshared HLA expression potentially occurs by genetic alterations other than loss of HLA alleles. © 2012 John Wiley & Sons A/S.

  10. The inhibitory effect of Thymus vulgaris extracts on the planktonic form and biofilm structures of six human pathogenic bacteria.

    Science.gov (United States)

    Mohsenipour, Zeinab; Hassanshahian, Mehdi

    2015-01-01

    Microorganisms are responsible for many problems in industry and medicine because of biofilm formation. Therefore, this study was aimed to examine the effect of Thymus vulgaris (T. vulgaris) extracts on the planktonic form and biofilm structures of six pathogenic bacteria. Antimicrobial activities of the plant extracts against the planktonic form of the bacteria were determined using the disc diffusion method. MIC and MBC values were evaluated using macrobroth dilution technique. Anti-biofilm effects were assessed by microtiter plate method. According to disc diffusion test (MIC and MBC), the ability of Thymus vulgaris (T. vulgaris ) extracts for inhibition of bacteria in planktonic form was confirmed. In dealing with biofilm structures, the inhibitory effect of the extracts was directly correlated to their concentration. Except for the inhibition of biofilm formation, efficacy of each extract was independent from type of solvent. According to the potential of Thymus vulgaris (T. vulgaris) extracts to inhibit the test bacteria in planktonic and biofilm form, it can be suggested that Thymus vulgaris (T. vulgaris) extracts can be applied as antimicrobial agents against the pathogenic bacteria particularly in biofilm forms.

  11. The inhibitory effect of Thymus vulgaris extracts on the planktonic form and biofilm structures of six human pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Zinab Mohsenipour

    2015-06-01

    Full Text Available Objective: Microorganisms are responsible for many problems in industry and medicine because of biofilm formation. Therefore, this study was aimed to examine the effect of Thymus vulgaris (T. vulgaris extracts on the planktonic form and biofilm structures of six pathogenic bacteria. Materials and methods: Antimicrobial activities of the plant extracts against the planktonic form of the bacteria were determined using the disc diffusion method. MIC and MBC values were evaluated using macrobroth dilution technique. Anti-biofilm effects were assessed by microtiter plate method. Results: According to disc diffusion test (MIC and MBC, the ability of Thymus vulgaris (T. vulgaris extracts for inhibition of bacteria in planktonic form was confirmed. In dealing with biofilm structures, the inhibitory effect of the extracts was directly correlated to their concentration. Except for the inhibition of biofilm formation, efficacy of each extract was independent from type of solvent. Conclusion: According to the potential of Thymus vulgaris (T. vulgaris extracts to inhibit the test bacteria in planktonic and biofilm form, it can be suggested that Thymus vulgaris(T. vulgaris extracts can be applied as antimicrobial agents against the pathogenic bacteria particularly in biofilm forms.

  12. CD90 and CD110 correlate with cancer stem cell potentials in human T-acute lymphoblastic leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Hiroto; Nishida, Hiroko; Iwata, Satoshi [Division of Clinical Immunology, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639 (Japan); Dang, Nam H. [Department of Hematologic Malignancies, Nevada Cancer Institute, Las Vegas, NV (United States); Morimoto, Chikao, E-mail: morimoto@ims.u-tokyo.ac.jp [Division of Clinical Immunology, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo 108-8639 (Japan)

    2009-05-29

    Although cancer stem cells (CSCs) have been recently identified in myeloid leukemia, published data on lymphoid malignancy have been sparse. T-acute lymphoblastic leukemia (T-ALL) is characterized by the abnormal proliferation of T-cell precursors and is generally aggressive. As CD34 is the only positive-selection marker for CSCs in T-ALL, we performed extensive analysis of CD markers in T-ALL cell lines. We found that some of the tested lines consisted of heterogeneous populations of cells with various levels of surface marker expression. In particular, a small subpopulation of CD90 (Thy-1) and CD110 (c-Mpl) were shown to correlate with stem cell properties both in vitro and in transplantation experiments. As these markers are expressed on hematopoietic stem cells, our results suggest that stem cell-like population are enriched in CD90+/CD110+ fraction and they are useful positive-selection markers for the isolation of CSCs in some cases of T-ALL.

  13. Stage-Specific Human Induced Pluripotent Stem Cells Map the Progression of Myeloid Transformation to Transplantable Leukemia.

    Science.gov (United States)

    Kotini, Andriana G; Chang, Chan-Jung; Chow, Arthur; Yuan, Han; Ho, Tzu-Chieh; Wang, Tiansu; Vora, Shailee; Solovyov, Alexander; Husser, Chrystel; Olszewska, Malgorzata; Teruya-Feldstein, Julie; Perumal, Deepak; Klimek, Virginia M; Spyridonidis, Alexandros; Rampal, Raajit K; Silverman, Lewis; Reddy, E Premkumar; Papaemmanuil, Elli; Parekh, Samir; Greenbaum, Benjamin D; Leslie, Christina S; Kharas, Michael G; Papapetrou, Eirini P

    2017-03-02

    Myeloid malignancy is increasingly viewed as a disease spectrum, comprising hematopoietic disorders that extend across a phenotypic continuum ranging from clonal hematopoiesis to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). In this study, we derived a collection of induced pluripotent stem cell (iPSC) lines capturing a range of disease stages encompassing preleukemia, low-risk MDS, high-risk MDS, and secondary AML. Upon their differentiation, we found hematopoietic phenotypes of graded severity and/or stage specificity that together delineate a phenotypic roadmap of disease progression culminating in serially transplantable leukemia. We also show that disease stage transitions, both reversal and progression, can be modeled in this system using genetic correction or introduction of mutations via CRISPR/Cas9 and that this iPSC-based approach can be used to uncover disease-stage-specific responses to drugs. Our study therefore provides insight into the cellular events demarcating the initiation and progression of myeloid transformation and a new platform for testing genetic and pharmacological interventions. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Anti-proliferative effect of Juglone from Juglans mandshurica Maxim on human leukemia cell HL-60 by inducing apoptosis through the mitochondria-dependent pathway.

    Science.gov (United States)

    Xu, Hua-Li; Yu, Xiao-Feng; Qu, Shao-Chun; Zhang, Rui; Qu, Xiang-Ru; Chen, Yan-Ping; Ma, Xing-Yuan; Sui, Da-Yuan

    2010-10-25

    Induction of apoptosis in tumor cells has become the major focus of anti-tumor therapeutics development. Juglone, a major chemical constituent of Juglans mandshurica Maxim, possesses several bioactivities including anti-tumor. Here, for the first time, we studied the molecular mechanism of Juglone-induced apoptosis in human leukemia HL-60 cells. In the present study, HL-60 cells were incubated with Juglone at various concentrations. Occurrence of apoptosis was detected by Hoechst 33342 staining and flow cytometry. Expression of Bcl-2 and Bax mRNA was determined by quantitative polymerase chain reaction (qPCR). The results showed that Juglone inhibits the growth of human leukemia HL-60 cells in dose- and time-dependent manner. Topical morphological changes of apoptotic body formation after Juglone treatment were observed by Hoechst 33342 staining. The percentages of Annexin V-FITC-positive/PI negative cells were 7.81%, 35.46%, 49.11% and 66.02% with the concentrations of Juglone (0, 0.5, 1.0 and 1.5 microg/ml). Juglone could induce the mitochondrial membrane potential (DeltaPsim) loss, which preceded release of cytochrome c (Cyt c), Smac and apoptosis inducing factor (AIF) to cell cytoplasm. A marked increased of Bax mRNA and protein appeared with Juglone treatment, while an evidently decreased of Bcl-2 mRNA and protein appeared at the same time. These events paralleled with activation of caspase-9, -3 and PARP cleavage. And the apoptosis induced by Juglone was blocked by z-LEHD-fmk, a caspase-9 inhibitor. Those results of our studies demonstrated that Juglone-induced mitochondrial dysfunction in HL-60 cells trigger events responsible for mitochondrial-dependent apoptosis pathways and the elevated ratio of Bax/Bcl-2 was also probably involved in this effect. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Human T-cell leukemia virus type 1 Tax oncoprotein represses the expression of the BCL11B tumor suppressor in T-cells.

    Science.gov (United States)

    Takachi, Takayuki; Takahashi, Masahiko; Takahashi-Yoshita, Manami; Higuchi, Masaya; Obata, Miki; Mishima, Yukio; Okuda, Shujiro; Tanaka, Yuetsu; Matsuoka, Masao; Saitoh, Akihiko; Green, Patrick L; Fujii, Masahiro

    2015-04-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia (ATL), which is an aggressive form of T-cell malignancy. HTLV-1 oncoproteins, Tax and HBZ, play crucial roles in the immortalization of T-cells and/or leukemogenesis by dysregulating the cellular functions in the host. Recent studies show that HTLV-1-infected T-cells have reduced expression of the BCL11B tumor suppressor protein. In the present study, we explored whether Tax and/or HBZ play a role in downregulating BCL11B in HTLV-1-infected T-cells. Lentiviral transduction of Tax in a human T-cell line repressed the expression of BCL11B at both the protein and mRNA levels, whereas the transduction of HBZ had little effect on the expression. Tax mutants with a decreased activity for the NF-κB, CREB or PDZ protein pathways still showed a reduced expression of the BCL11B protein, thereby implicating a different function of Tax in BCL11B downregulation. In addition, the HTLV-2 Tax2 protein reduced the BCL11B protein expression in T-cells. Seven HTLV-1-infected T-cell lines, including three ATL-derived cell lines, showed reduced BCL11B mRNA and protein expression relative to an uninfected T-cell line, and the greatest reductions were in the cells expressing Tax. Collectively, these results indicate that Tax is responsible for suppressing BCL11B protein expression in HTLV-1-infected T-cells; Tax-mediated repression of BCL11B is another mechanism that Tax uses to promote oncogenesis of HTLV-1-infected T-cells. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  16. Characterization of Total Phenolic Constituents from the Stems of Spatholobus suberectus Using LC-DAD-MSn and Their Inhibitory Effect on Human Neutrophil Elastase Activity

    Directory of Open Access Journals (Sweden)

    Yiming Li

    2013-06-01

    Full Text Available Spatholobus suberectus Dunn, belonging to the legume family (Fabaceae, has been used as a Traditional Chinese Medicine for the treatment of anemia, menoxenia and rheumatism. A limited number of studies report that various types of flavonoids are the main characteristic constituents of this herb. We have now found that S. suberectus contains about 2% phenolic components and characterized the major phenolic components as homogeneous B-type procyanidin conjugates using a liquid chromatography with diode-array detection-ESI mass spectrometry (LC-DAD/ESI-MS method. This is the first report on occurrence of most B-type procyanidins in this herb. Moreover, the total phenolics extract was assayed for inhibitory activity on human neutrophil elastase and its IC50 was found to be 1.33 μg/mL.

  17. Synthesis and structure-activity studies on novel analogs of human growth hormone releasing hormone (GHRH) with enhanced inhibitory activities on tumor growth.

    Science.gov (United States)

    Zarandi, Marta; Cai, Renzhi; Kovacs, Magdolna; Popovics, Petra; Szalontay, Luca; Cui, Tengjiao; Sha, Wei; Jaszberenyi, Miklos; Varga, Jozsef; Zhang, XianYang; Block, Norman L; Rick, Ferenc G; Halmos, Gabor; Schally, Andrew V

    2017-03-01

    The syntheses and biological evaluations of new GHRH analogs of Miami (MIA) series with greatly increased anticancer activity are described. In the design and synthesis of these analogs, the following previous substitutions were conserved: D-Arg2, Har9, Abu15, and Nle27. Most new analogs had Ala at position 8. Since replacements of both Lys12 and Lys21 with Orn increased resistance against enzymatic degradation, these modifications were kept. The substitutions of Arg at both positions 11 and 20 by His were also conserved. We kept D-Arg28, Har29 -NH2 at the C-terminus or inserted Agm or 12-amino dodecanoic acid amide at position 30. We incorporated pentafluoro-Phe (Fpa5), instead of Cpa, at position 6 and Tyr(Me) at position 10 and ω-amino acids at N-terminus of some analogs. These GHRH analogs were prepared by solid-phase methodology and purified by HPLC. The evaluation of the activity of the analogs on GH release was carried out in vitro on rat pituitaries and in vivo in male rats. Receptor binding affinities were measured in vitro by the competitive binding analysis. The inhibitory activity of the analogs on tumor proliferation in vitro was tested in several human cancer cell lines such as HEC-1A endometrial adenocarcinoma, HCT-15 colorectal adenocarcinoma, and LNCaP prostatic carcinoma. For in vivo tests, various cell lines including PC-3 prostate cancer, HEC-1A endometrial adenocarcinoma, HT diffuse mixed β cell lymphoma, and ACHN renal cell carcinoma cell lines were xenografted into nude mice and treated subcutaneously with GHRH antagonists at doses of 1-5μg/day. Analogs MIA-602, MIA-604, MIA-610, and MIA-640 showed the highest binding affinities, 30, 58, 48, and 73 times higher respectively, than GHRH (1-29) NH2. Treatment of LNCaP and HCT-15 cells with 5μM MIA-602 or MIA-690 decreased proliferation by 40%-80%. In accord with previous tests in various human cancer lines, analog MIA-602 showed high inhibitory activity in vivo on growth of PC-3 prostate

  18. Endothelin A receptor antagonism enhances inhibitory effects of anti-ganglioside GD2 monoclonal antibody on invasiveness and viability of human osteosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available Endothelin-1 (ET-1/endothelin A receptor (ETAR signaling is important for osteosarcoma (OS progression. Monoclonal antibodies (mAbs targeting ganglioside GD2 reportedly inhibit tumor cell viability independent of the immune system. A recent study suggests that ganglioside GD2 may play an important role in OS progression. In the present study, we for the first time explored the effects of anti-GD2 mAb alone or in combination with ETAR antagonist on OS cell invasiveness and viability. Human OS cell lines Saos-2, MG-63 and SJSA-1 were treated with control IgG (PK136 mAb, 50 µg/mL, anti-GD2 14G2a mAb (50 µg/mL, selective ETAR antagonist BQ123 (5 µM, or 14G2a (50 µg/mL+BQ123 (5 µM. Cells with knockdown of ETAR (ETAR-shRNA with or without 14G2a mAb treatment were also tested. Cells treated with selective phosphatidylinositide 3-kinase (PI3K inhibitor BKM120 (50 µM were used as a positive control. Our results showed that BQ123, ETAR-shRNA and 14G2a mAb individually decreased cell invasion and viability, matrix metalloproteinase-2 (MMP-2 expression and activity, PI3k activity, and phosphorylation at serine 473 (ser473 of Akt in OS cells. 14G2a mAb in combination with BQ123 or ETAR-shRNA showed significantly stronger inhibitory effects compared with each individual treatment. In all three cell lines tested, 14G2a mAb in combination with BQ123 showed the strongest inhibitory effects. In conclusion, we provide the first in vitro evidence that anti-ganglioside GD2 14G2a mAb effectively inhibits cell invasiveness, MMP-2 expression and activity, and cell viability in human OS cells. ETAR antagonist BQ123 significantly enhances the inhibitory effects of 14G2a mAb, likely mainly through inhibiting the PI3K/Akt pathway. This study adds novel insights into OS treatment, which will serve as a solid basis for future in vivo studies on the effects of combined treatment of OS with anti-ganglioside GD2 mAbs and ETAR antagonists.

  19. Synthesis and evaluation of the inhibitory activity of the four stereoisomers of the potent and selective human γ-glutamyl transpeptidase inhibitor GGsTop.

    Science.gov (United States)

    Watanabe, Bunta; Tabuchi, Yukiko; Wada, Kei; Hiratake, Jun

    2017-11-01

    2-Amino-4-{[3-(carboxymethyl)phenoxy](methoxy)phosphoryl}butanoic acid (GGsTop) is a potent, highly selective, nontoxic, and irreversible inhibitor of γ-glutamyl transpeptidase (GGT). GGsTop has been widely used in academic and medicinal research, and also as an active ingredient (Nahlsgen) in commercial anti-aging cosmetics. GGsTop consists of four stereoisomers due to the presence of two stereogenic centers, i.e., the α-carbon atom of the glutamate mimic (l/d) and the phosphorus atom (RP/SP). In this study, each stereoisomer of GGsTop was synthesized stereoselectively and their inhibitory activity against human GGT was evaluated. The l- and d-configurations of each stereoisomer were determined by a combination of a chiral pool synthesis and chiral HPLC analysis. The synthesis of the four stereoisomers of GGsTop used chiral synthetic precursors that were separated by chiral HPLC on a preparative scale. With respect to the configuration of the α-carbon atom of the glutamate mimic, the l-isomer (kon=174M-1s-1) was ca. 8-fold more potent than the d-isomer (kon=21.5M-1s-1). In contrast, the configuration of the phosphorus atom is critical for GGT inhibitory activity. Based on a molecular modeling approach, the absolute configuration of the phosphorus atom of the active GGsTop isomers was postulated to be SP. The SP-isomers inhibited human GGT (kon=21.5-174M-1s-1), while the RP-isomers were inactive even at concentrations of 0.1mM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Acute Lymphocytic Leukemia

    Science.gov (United States)

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, however, the bone marrow produces abnormal white blood ...

  1. Acute Myeloid Leukemia

    Science.gov (United States)

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, however, the bone marrow produces abnormal white blood ...

  2. Chronic Lymphocytic Leukemia

    Science.gov (United States)

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  3. Chronic Myeloid Leukemia

    Science.gov (United States)

    Leukemia is cancer of the white blood cells. White blood cells help your body fight infection. Your blood cells form in your bone marrow. In leukemia, the bone marrow produces abnormal white blood cells. ...

  4. Acute Lymphocytic Leukemia

    Science.gov (United States)

    ... al. Clinical manifestations and treatment of acute lymphoblastic leukemia in children. In: Hematology: Basic Principles and Practice. 6th ed. ... National Cancer Institute. http://www.cancer.gov/types/leukemia/patient/child-all-treatment-pdq#section/all. Accessed June 5, ...

  5. LEUKEMIAS OF CHILDHOOD

    Directory of Open Access Journals (Sweden)

    Janez Jazbec

    2008-04-01

    The results of retrospective analysis of treatment of children with leukemia in Slovenia inthe period from 1967 to 2004 are presented as well as new trends in treatment and challenges in future leukemia research

  6. Oridonin effectively reverses the drug resistance of cisplatin involving induction of cell apoptosis and inhibition of MMP expression in human acute myeloid leukemia cells

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    2017-03-01

    Full Text Available Cisplatin is the first generation platinum-based chemotherapy agent. However, the extensive application of cisplatin inevitably causes drug resistance, which is a major obstacle to cancer chemotherapy. Oridonin is a diterpenoid isolated from Rabdosia rubescens with potent anticancer activity. The aim of our study is to investigate the role of oridonin to reverse the cisplatin-resistance in human acute myeloid leukemia (AML cells. The effect of oridonin on human AML cell proliferation was evaluated by MTT assay, cell migration and invasion were evaluated by transwell migration and invasion assays in cisplatin-resistant human AML cells. Furthermore, cell apoptosis was examined by flow cytometry. The inhibitive effect of oridonin in vivo was determined using xenografted nude mice. In addition, the expressions of MMP2 and MMP9 were detected by Western blot. There was a synergistic antitumor effect between cisplatin and oridonin on cisplatin-resistant human AML cells in vitro and in vivo. In addition, the combination of cisplatin and oridonin synergistically induced cell apoptosis. Furthermore, the combination treatment not only inhibited AML cell migration and invasion, but more significantly, decreased the expressions of MMP2 and MMP9 proteins. Our results suggest that the synergistic effect between both agents is likely to be driven by the inhibition of MMP expression and the resulting increased apoptosis.

  7. RETINAL MANIFESTATIONS IN ADULT T-CELL LEUKEMIA/LYMPHOMA RELATED TO INFECTION BY THE HUMAN T-CELL LYMPHOTROPIC VIRUS TYPE-1.

    Science.gov (United States)

    Merle, Harold; Hage, Rabih; Meniane, Jean-Côme; Deligny, Christophe; Plumelle, Yves; Donnio, Angélique; Jean-Charles, Albert

    2016-07-01

    To describe the retinal manifestations in adult T-cell leukemia (ATL) related to an infection by the human T-cell lymphotropic virus type-1 (HTLV-1). Retrospective case series of patients with ATL with retinal findings. A total of 175 patients were diagnosed with ATL in Martinique between 1983 and 2013. Three of them showed intraocular findings related to ATL. They were bilateral deep retinal infiltrates associated with intermediate uveitis. In two cases, the ATL diagnosis was known. In the third, fluorescein angiography was remarkable for deep retinal infiltrates although fundus examination was unremarkable. The ATL cells were found in the blood of this patient. Despite chemotherapy, infiltrates progressed from the retinal periphery to the posterior pole in two patients, thus reducing visual acuity to light perception. They were associated with vasculitis. Retinal involvement in ATL is very rare. It can occur at any point during the natural course of the disease. Human T-cell lymphotropic virus type-1 carriers should benefit from a regular ophthalmic examination, and a fluorescein angiography must be performed in all patients with human T-cell lymphotropic virus type-1 with vitreous cells. The presence of deep retinal infiltrates must raise suspicion for ATL in a patient with human T-cell lymphotropic virus type-1.

  8. Human and rat hepatocyte toxicity and protein phosphatase 1 and 2A inhibitory activity of naturally occurring desmethyl-microcystins and nodularins.

    Science.gov (United States)

    Ufelmann, Helena; Krüger, Thomas; Luckas, Bernd; Schrenk, Dieter

    2012-03-11

    Contamination of water, foods and food supplements by various genera of cyanobacteria is a serious health problem worldwide for humans and animals, largely due to the toxic effects of microcystins (MCs) and nodularin (NOD), a group of hepatotoxic cyclic peptides. The toxins occur in variable structures resulting in more than 90 different MCs and 8 different NODs, many of them not having been investigated for their toxic potency. Potent MCs such as MC-LR have been shown to elicit their hepatotoxic potency via inhibition of hepatic protein phosphatases (PP) 1 and 2A leading to over-phosphorylation of vital cellular proteins. This mechanism of action is also thought to be responsible for the long term tumor promoting action of certain MCs and NOD in the liver. Here, we report on the isolation of certain MCs and NOD as well as a number of their desmethylated derivatives from algae bloom. Subsequently, we determined the cytotoxicity of these compounds in isolated primary human and rat hepatocytes in culture. In parallel experiments, we analyzed the inhibitory potency of these congeners on PP1 and 2A using commercially available enzymes. We found in primary rat hepatocytes that MC-LR, -YR and NOD were cytotoxic, namely in the 10 to >50 nM range, while MC-RR was not. The desmethylated congeners of MC-LR, -YR, and NOD were equally or more-toxic as/than their fully methylated counterparts. In primary human hepatocytes we could show that MC-LR, NOD and the desmethylated variants [³Asp]MC-LR, [⁷Dha]MC-LR and [¹Asp]NOD were cytotoxic in the 20 to >600 nM range. Inhibition data with human, bovine and rabbit protein phosphatases 1 and 2A were roughly in accordance with the cytotoxicity findings in human and rat hepatocytes, i.e. desmethylation had no pronounced effects on the inhibitory potencies. Thus, a variety of naturally occurring desmethylated MC and NOD congeners have to be considered as being at least as toxic as the corresponding fully methylated derivatives

  9. Leukemia Cutis Associated with Secondary Plasma Cell Leukemia

    OpenAIRE

    DeMartinis, Nicole C; Brown, Megan M; Hinds, Brian R; Cohen, Philip R.

    2017-01-01

    Plasma cell leukemia is an uncommon, aggressive variant of leukemia that may occur de novo or in association with multiple myeloma. Leukemia cutis is the cutaneous manifestation of leukemia, and indicates an infiltration of the skin by malignant leukocytes or their precursors. Plasma cell leukemia cutis is a rare clinical presentation of leukemia. We present a man who developed plasma cell leukemia cutis in association with multiple myeloma. Cutaneous nodules developed on his arms and legs 50...

  10. EM23, a natural sesquiterpene lactone from Elephantopus mollis H.B.K., induces apoptosis in human myeloid leukemia cells through thioredoxin- and reactive oxygen species-mediated signaling pathways

    Directory of Open Access Journals (Sweden)

    Hongyu eLi

    2016-03-01

    Full Text Available Elephantopus mollis H.B.K. (EM is a traditional herbal medicine with multiple pharmacological activities. However, the efficacy of EM in treating human leukemia is currently unknown. In the current study, we report that EM23, a natural sesquiterpene lactone isolated from EM, inhibits the proliferation of human chronic myeloid leukemia K562 cells and acute myeloid leukemia HL-60 cells by inducing apoptosis. Translocation of membrane-associated phospholipid phosphatidylserines, changes in cell morphology, activation of caspases and cleavage of PARP were concomitant with this inhibition. The involvement of the mitochondrial pathway in EM23-mediated apoptosis was suggested by observed disruptions in mitochondrial membrane potential (MMP. Mechanistic studies indicated that EM23 caused a marked increase in the level of reactive oxygen species (ROS. Pretreatment with N-acetyl-L-cysteine (NAC, a ROS scavenger, almost fully reversed EM23-mediated apoptosis. In EM23-treated cells, the expression levels of thioredoxin (Trx and thioredoxinreductase (TrxR, two components of the Trx system involved in maintaining cellular redox homeostasis, were significantly down-regulated. Concomitantly, Trx regulated the activation of apoptosis signal-regulating kinase 1 (ASK1 and its downstream regulatory targets, the p38, JNK, and ERK MAPKs. EM23-mediated activation of ASK1/MAPKs was significantly inhibited in the presence of NAC. Furthermore, tumor necrosis factor alpha (TNF-α-mediated activation of nuclear factor-κB (NF-κB was suppressed by EM23, as suggested by the observed blockage of p65 nuclear translocation, phosphorylation and reversion of IκBα degradation following EM23 treatment. Taken together, these results provide important insights into the anticancer activities of the EM component EM23 against human chronic myeloid leukemia K562 cells and acute myeloid leukemia HL-60 cells.

  11. axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase

    Energy Technology Data Exchange (ETDEWEB)

    O' Bryan, J.P.; Frye, R.A.; Cogswell, P.C.; Neubauer, A.; Kitch, B.; Prokop, C.; Earp, H.S.; Liu, E.T. (Univ. of North Carolina, Chapel Hill (United States)); Espinosa, R. III; Le Beau, M.M. (Univ. of Chicago, IL (United States))

    1991-10-01

    Using a sensitive transfection-tumorigenicity assay, the authors have isolated a novel transforming gene from the DNA of two patients with chronic myelogenous leukemia. Sequence analysis indicates that the product of this gene, axl, is a receptor tyrosine kinase. Overexpression of axl cDNA in NIH 3T3 cells induces neoplastic transformation with the concomitant appearance of a 140-kDa axl tyrosine-phosphorylated protein. Expression of axl cDNA in the baculovirus system results in the expression of the appropriate recombinant protein that is recognized by antophosphotyrosine antibodies, confirming that the axl protein is a tyrosine kinase. The juxtaposition of fibronectin type II and immunoglobulinlike repeats in the extracellular domain, as well as distinct amino acid sequences in the kinase domain, indicate that the axl protein represents a novel subclass of receptor tyrosine kinases.

  12. Prevalence of quinolone resistance mechanisms and associations to minimum inhibitory concentrations in quinolone-resistant Escherichia coli isolated from humans and swine in Denmark

    DEFF Research Database (Denmark)

    Cavaco, Lina; Frimodt-Møller, Niels; Hasman, Henrik

    2008-01-01

    Prevalence of quinolone resistance mechanisms and associations to minimum inhibitory concentrations (MICs) of nalidixic acid (NAL) and ciprofloxacin (CIP) were investigated in 124 Escherichia coli isolated from humans (n = 85) and swine (n = 39) in Denmark. The collection included 59 high-level CIP-resistant...... isolates (MIC >= 4) from human (n = 51) and pig origin (n = 8) and 65 low-level CIP-resistant isolates (MIC >= 0.125) from human (n = 34) and pig origin (n = 31). Resistance by target modification was screened by PCR amplification and sequencing, of the quinolone resistance determining regions (QRDRs......) of gyrA, gyrB, parC, and parE. QRDR mutations occurred in all except two isolates (98%). All high-level CIP-resistant E. coli had one or two mutations in gyrA in combination with mutations in parC or parE. Mutations in parC and parE were only found in combination with gyrA mutations, and no mutations...

  13. 5-HT2 receptors mediate functional modulation of GABAa receptors and inhibitory synaptic transmissions in human iPS-derived neurons.

    Science.gov (United States)

    Wang, Haitao; Hu, Lingli; Liu, Chunhua; Su, Zhenghui; Wang, Lihui; Pan, Guangjin; Guo, Yiping; He, Jufang

    2016-02-03

    Neural progenitors differentiated from induced pluripotent stem cells (iPS) hold potentials for treating neurological diseases. Serotonin has potent effects on neuronal functions through multiple receptors, underlying a variety of neural disorders. Glutamate and GABA receptors have been proven functional in neurons differentiated from iPS, however, little is known about 5-HT receptor-mediated modulation in such neuronal networks. In the present study, human iPS were differentiated into cells possessing featured physiological properties of cortical neurons. Whole-cell patch-clamp recording was used to examine the involvement of 5-HT2 receptors in functional modulation of GABAergic synaptic transmission. We found that serotonin and DOI (a selective agonist of 5-HT2A/C receptor) reversibly reduced GABA-activated currents, and this 5-HT2A/C receptor mediated inhibition required G protein, PLC, PKC, and Ca(2+) signaling. Serotonin increased the frequency of miniature inhibitory postsynaptic currents (mIPSCs), which could be mimicked by α-methylserotonin, a 5-HT2 receptor agonist. In contrast, DOI reduced both frequency and amplitude of mIPSCs. These findings suggested that in iPS-derived human neurons serotonin postsynaptically reduced GABAa receptor function through 5-HT2A/C receptors, but presynaptically other 5-HT2 receptors counteracted the action of 5-HT2A/C receptors. Functional expression of serotonin receptors in human iPS-derived neurons provides a pre-requisite for their normal behaviors after grafting.

  14. Growth inhibitory effects of the dual ErbB1/ErbB2 tyrosine kinase inhibitor PKI-166 on human prostate cancer xenografts.

    Science.gov (United States)

    Mellinghoff, Ingo K; Tran, Chris; Sawyers, Charles L

    2002-09-15

    Experiments with human prostate cancer cell lines have shown that forced overexpression of the ErbB2-receptor tyrosine kinase (RTK) promotes androgen-independent growth and increases androgen receptor-transcriptional activity in a ligand-independent fashion. To investigate the relationship between ErbB-RTK signaling and androgen in genetically unmanipulated human prostate cancer, we performed biochemical and biological studies with the dual ErbB1/ErbB2 RTK inhibitor PKI-166 using human prostate cancer xenograft models with isogenic sublines reflecting the transition from androgen-dependent to androgen-independent growth. In the presence of low androgen concentrations, PKI-166 showed profound growth-inhibitory effects on tumor growth, which could be partially reversed by androgen add-back. At physiological androgen concentrations, androgen withdrawal greatly enhanced the ability of PKI-166 to retard tumor growth. The level of extracellular signal-regulated kinase activation correlated with the response to PKI-166 treatment, whereas the expression levels of ErbB1 and ErbB2 did not. These results suggest that ErbB1/ErbB2 RTKs play an important role in the biology of androgen-independent prostate cancer and provide a rationale for clinical evaluation of inhibitors targeted to this pathway.

  15. Quantitative proteomic analysis of the inhibitory effects of CIL-102 on viability and invasiveness in human glioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Chih-Chuan [Institute of Nursing and Department of Nursing, Chang Gung University of Science and Technology, Taiwan (China); Chronic Diseases and Health Promotion Research Center, CGUST, Taiwan (China); Institute of Basic Medicine Science, National Cheng Kung University, Tainan, Taiwan (China); Kuo, Hsing-Chun [Institute of Nursing and Department of Nursing, Chang Gung University of Science and Technology, Taiwan (China); Chronic Diseases and Health Promotion Research Center, CGUST, Taiwan (China); Department of Medical Research China Medical University Hospital, Taichung, Taiwan (China); Sze, Chun-I, E-mail: szec@mail.ncku.edu.tw [Institute of Basic Medicine Science, Department of Cell Biology and Anatomy and Pathology, National Cheng Kung University, Tainan, Taiwan (China)

    2013-11-01

    CIL-102 (1-[4-(furo[2,3-b]quinolin-4-ylamino)phenyl]ethanone), the major active agent of the alkaloid derivative, has been demonstrated to exert anticancer effects. Herein, we present an investigation focused on the identification of the target(s) of CIL-102's action and the mechanism of its action in apoptotic and anti-invasive pathways. Proteomic approaches were used to purify and identify the protein substrates using 2D difference gel electrophoresis (2D SDS-PAGE) to assess changes in the expression of relevant protein treatment with CIL-102 that resulted in the inhibition of viability and invasion. Our results demonstrate that CIL-102 treatment of U87 cells decreased cell proliferation and invasiveness. CIL-102 dose-dependent induction of apoptosis and inhibitory invasiveness were accompanied by sustained phosphorylation of JNK1/2 and p70S6K as well as generation of the reactive oxygen species. In addition, differential proteins displayed between CIL-102-treated and untreated U87 were determined and validated. There were 11 differentially expressed proteins between the CIL-102-treated and untreated groups. Furthermore, we demonstrated that CIL-102 inhibited cancer cell proliferation and reduced anti-invasion properties by up-regulating the levels of FUMH (Fumarate hydratase). The investigation demonstrated that there was an increase in the cellular levels of FUMH in the CIL-102 reduction in viability and invasion via the activation of JNK1/2 and mTOR signaling modules. NAC administration and shRNA FUMH conferred resistance to CIL-102-inhibited HIF1α and MMP-2 levels via inhibition of JNK1/2 and mTOR activation. We concluded that CIL-102-induced an apoptosis cascade and decreased aggressiveness in astrocytoma cells by modulation of mitochondria function, providing a new mechanism for CIL-102 treatment. - Highlights: • We found the effect of CIL-102 on neuroblastoma cells. • Fumarate hydratase as a CIL-102's target by proteomic differential

  16. Allogeneic Human Double Negative T Cells as a Novel Immunotherapy for Acute Myeloid Leukemia and Its Underlying Mechanisms.

    Science.gov (United States)

    Lee, JongBok; Minden, Mark D; Chen, Weihsu C; Streck, Elena; Chen, Branson; Kang, Hyeonjeong; Arruda, Andrea; Ly, Dalam; Der, Sandy D; Kang, Sohyeong; Achita, Paulina; D'Souza, Cheryl; Li, Yueyang; Childs, Richard W; Dick, John E; Zhang, Li

    2017-10-26

    Purpose: To explore the potential of ex vivo expanded healthy donor-derived allogeneic CD4 and CD8 double-negative cells (DNT) as a novel cellular immunotherapy for leukemia patients.Experimental Design: Clinical-grade DNTs from peripheral blood of healthy donors were expanded and their antileukemic activity and safety were examined using flow cytometry-based in vitro killing assays and xenograft models against AML patient blasts and healthy donor-derived hematopoietic cells. Mechanism of action was investigated using antibody-mediated blocking assays and recombinant protein treatment assays.Results: Expanded DNTs from healthy donors target a majority (36/46) of primary AML cells, including 9 chemotherapy-resistant patient samples in vitro, and significantly reduce the leukemia load in patient-derived xenograft models in a DNT donor-unrestricted manner. Importantly, allogeneic DNTs do not attack normal hematopoietic cells or affect hematopoietic stem/progenitor cell engraftment and differentiation, or cause xenogeneic GVHD in recipients. Mechanistically, DNTs express high levels of NKG2D and DNAM-1 that bind to cognate ligands preferentially expressed on AML cells. Upon recognition of AML cells, DNTs rapidly release IFNγ, which further increases NKG2D and DNAM-1 ligands' expression on AML cells. IFNγ pretreatment enhances the susceptibility of AML cells to DNT-mediated cytotoxicity, including primary AML samples that are otherwise resistant to DNTs, and the effect of IFNγ treatment is abrogated by NKG2D and DNAM-1-blocking antibodies.Conclusions: This study supports healthy donor-derived allogeneic DNTs as a therapy to treat patients with chemotherapy-resistant AML and also reveals interrelated roles of NKG2D, DNAM-1, and IFNγ in selective targeting of AML by DNTs. Clin Cancer Res; 1-13. ©2017 AACR. ©2017 American Association for Cancer Research.

  17. Carbenoxolone Induces Apoptosis and Inhibits Survivin and Survivin-ΔEx3 Genes Expression in Human Leukemia K562 Cells

    Directory of Open Access Journals (Sweden)

    Z. Sanaat

    2011-12-01

    Full Text Available Background and the purpose of the study: Leukemia is a malignant disorder of the blood progenitor/stem cells which is characterized by abnormal proliferation of white blood cells. Although anti-cancer drugs induce apoptosis in cancerous cells, drug resistance is the significant problem mainly due to over-expression of inhibitors of apoptosis proteins (IAPs such as survivin. In this content, it has been reported that an anti-inflammatory drug, Carbenoxolone (CBX, could induce apoptosis and growth inhibition in several types of cancerous cells. In the present study, effects of CBX on apoptosis and level of the expression of survivin gene and its ΔEx3 splicing variant have were evaluated in K562 cells.Methods: K562 cells were cultured and treated with different concentrations of CBX (50-300 μM at different time intervals (12-48 hrs. Trypan blue exclusion test was used to evaluate cell viability. Fluorescent microscopy (Acridine Orange/Ethidium Bromide double staining and DNA fragmentation assay were used to study apoptosis. The expression level of survivin and its ΔEx3 splice variant were studied by RT- PCR.Results and Major Conclusion: It was found that both growth inhibition and apoptosis occurred in K562 cells. In addition, down-regulation of survivin and survin-ΔEx3 were observed, after 2-4 hrs treatment with 150 μM of CBX. However, the expression level of survivin and its ΔEx3 splice variant increased in subsequent time (6-12 hrs nearly to the level of control cells. From the results of this study, it may be concluded that CBX can be considered as a candidate for further studies in CML treatment, especially in the case of drug- resistant leukemia cells.

  18. Inhibition of the NAD-Dependent Protein Deacetylase SIRT2 Induces Granulocytic Differentiation in Human Leukemia Cells

    Science.gov (United States)

    Sunami, Yoshitaka; Araki, Marito; Hironaka, Yumi; Morishita, Soji; Kobayashi, Masaki; Liew, Ei Leen; Edahiro, Yoko; Tsutsui, Miyuki; Ohsaka, Akimichi; Komatsu, Norio

    2013-01-01

    Sirtuins, NAD-dependent protein deacetylases, play important roles in cellular functions such as metabolism and differentiation. Whether sirtuins function in tumorigenesis is still controversial, but sirtuins are aberrantly expressed in tumors, which may keep cancerous cells undifferentiated. Therefore, we investigated whether the inhibition of sirtuin family proteins induces cellular differentiation in leukemic cells. The sirtuin inhibitors tenovin-6 and BML-266 induce granulocytic differentiation in the acute promyelocytic leukemia (APL) cell line NB4. This differentiation is likely caused by an inhibition of SIRT2 deacetylase activity, judging from the accumulation of acetylated α-tubulin, a major SIRT2 substrate. Unlike the clinically used differentiation inducer all-trans retinoic acid, tenovin-6 shows limited effects on promyelocytic leukemia–retinoic acid receptor α (PML-RAR-α) stability and promyelocytic leukemia nuclear body formation in NB4 cells, suggesting that tenovin-6 does not directly target PML-RAR-α activity. In agreement with this, tenovin-6 induces cellular differentiation in the non-APL cell line HL-60, where PML-RAR-α does not exist. Knocking down SIRT2 by shRNA induces granulocytic differentiation in NB4 cells, which demonstrates that the inhibition of SIRT2 activity is sufficient to induce cell differentiation in NB4 cells. The overexpression of SIRT2 in NB4 cells decreases the level of granulocytic differentiation induced by tenovin-6, which indicates that tenovin-6 induces granulocytic differentiation by inhibiting SIRT2 activity. Taken together, our data suggest that targeting SIRT2 is a viable strategy to induce leukemic cell differentiation. PMID:23460888

  19. Staurosporine enhances ATRA-induced granulocytic differentiation in human leukemia U937 cells via the MEK/ERK signaling pathway.

    Science.gov (United States)

    Shi, Lei; Weng, Xiang-Qin; Sheng, Yan; Wu, Jing; Ding, Ming; Cai, Xun

    2016-11-01

    Although all-trans retinoic acid (ATRA) is regarded as a prominent example of differentiation therapy, it is not effective for the treatment of other subtypes of acute myeloid leukemia (AML) beyond acute promyelocytic leukemia (APL). Therefore, new strategies need to be explored to extend the efficacy of ATRA-based therapy to non-APL AML patients. In the present study, staurosporine, a protein kinase C (PKC) pan-inhibitor, exhibited synergism with ATRA to promote granulocytic differentiation in poorly ATRA-sensitive U937 cells but not in ATRA unresponsive K562 and Kasumi cells. Staurosporine or the combined treatment did not affect PKC activity in U937 cells. Moreover, other selective PKC inhibitors, UCN-01, Go6976 or rottlerin failed to enhance ATRA‑induced granulocytic differentiation in U937 cells. Therefore, staurosporine-enhanced ATRA-induced granulocytic differentiation in U937 cells may be independent of PKC. Staurosporine activated mitogen‑activated protein kinase kinase (MEK) and extracellular signal‑regulated kinase (ERK). Meanwhile, staurosporine also enhanced ATRA-promoted upregulation of the protein level of CCAAT/enhancer‑binding protein β (C/EBPβ) and C/EBPε in U937 cells. Furthermore, blockade of MEK activation suppressed staurosporine‑enhanced differentiation as well as the elevated protein level of C/EBPs. Taken together, we concluded that staurosporine enhanced ATRA‑induced granulocytic differentiation in U937 cells via MEK/ERK-mediated modulation of the protein level of C/EBPs.

  20. Exploring the Antitumor Mechanism of High-Dose Cytarabine through the Metabolic Perturbations of Ribonucleotide and Deoxyribonucleotide in Human Promyelocytic Leukemia HL-60 Cells

    Directory of Open Access Journals (Sweden)

    Zheng Li

    2017-03-01

    Full Text Available Despite the apparent clinical benefits of high-dose cytarabine (Ara-C over lower dose Ara-C in acute myeloid leukemia (AML therapy, the mechanism behind high-dose Ara-C therapy remains uncertain. In this study, a LC-MS-based method was carried out to investigate the metabolic alteration of ribonucleotide and deoxyribonucleotide in human promyelocytic leukemia cells (HL-60 after treatment with Ara-C to reveal its antitumor mechanism. The metabolic results revealed that four nucleotides (ATP, ADP, CDP, and dCTP could be used as potential biomarkers indicating the benefit of high-dose Ara-C over lower dose Ara-C treatment. Combining metabolic perturbation and cell cycle analysis, we conjectured that, apart from the acknowledged mechanism of Ara-C on tumor inhibition, high-dose Ara-C could present a specific action pathway. It was suggested that the pronounced rise in AMP/ATP ratio induced by high-dose Ara-C can trigger AMP-activated protein kinase (AMPK and subsequently Forkhead Box, class O (FoxO, to promote cell cycle arrest. Moreover, the significant decrease in CDP pool induced by high-dose Ara-C might further accelerate the reduction of dCTP, which then aggravates DNA synthesis disturbance. As a result, all of these alterations led to heightened tumor inhibition. This study provides new insight in the investigation of potential mechanisms in the clinical benefits of high-dose Ara-C in therapy for AML.

  1. The pleiotropic effects of fisetin and hesperetin on human acute promyelocytic leukemia cells are mediated through apoptosis, cell cycle arrest, and alterations in signaling networks.

    Science.gov (United States)

    Adan, Aysun; Baran, Yusuf

    2015-11-01

    Fisetin and hesperetin, flavonoids from various plants, have several pharmaceutical activities including antioxidative, anti-inflammatory, and anticancer effects. However, studies elucidating the role and the mechanism(s) of action of fisetin and hesperetin in acute promyelocytic leukemia are absent. In this study, we investigated the mechanism of the antiproliferative and apoptotic actions exerted by fisetin and hesperetin on human HL60 acute promyelocytic leukemia cells. The viability of HL60 cells was evaluated using the MTT assay, apoptosis by annexin V/propidium iodide (PI) staining and cell cycle distribution using flow cytometry, and changes in caspase-3 enzyme activity and mitochondrial transmembrane potential. Moreover, we performed whole-genome microarray gene expression analysis to reveal genes affected by fisetin and hesperetin that can be important for developing of future targeted therapy. Based on data obtained from microarray analysis, we also described biological networks modulated after fisetin and hesperetin treatment by KEGG and IPA analysis. Fisetin and hesperetin treatment showed a concentration- and time-dependent inhibition of proliferation and induced G2/M arrest for both agents and G0/G1 arrest for hesperetin at only the highest concentrations. There was a disruption of mitochondrial membrane potential together with increased caspase-3 activity. Furthermore, fisetin- and hesperetin-triggered apoptosis was confirmed by annexin V/PI analysis. The microarray gene profiling analysis revealed some important biological pathways including mitogen-activated protein kinases (MAPK) and inhibitor of DNA binding (ID) signaling pathways altered by fisetin and hesperetin treatment as well as gave a list of genes modulated ≥2-fold involved in cell proliferation, cell division, and apoptosis. Altogether, data suggested that fisetin and hesperetin have anticancer properties and deserve further investigation.

  2. Important Roles of Cellular MicroRNA miR-155 in Leukemogenesis by Human T-Cell Leukemia Virus Type 1 Infection.

    Science.gov (United States)

    Tomita, Mariko

    2012-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the pathogen that causes the aggressive and lethal malignancy of CD4+ T-lymphocytes called adult T-cell leukemia/lymphoma (ATLL). MicroRNAs (miRNAs), a class of short, noncoding RNAs, regulate gene expression by targeting mRNAs for translational repression or cleavage. miRNAs are involved in many aspects of cell biology linked with formation of several cancer phenotypes. However, the relation between miRNAs and pathologic implication in ATLL is not well elucidated. Here, we evaluated the roles of cellular miRNAs in ATLL caused by HTLV-1. We found that the expression of miR-155 was increased in HTLV-1-positive T-cell lines. miR-155 expression was enhanced by Tax and binding of transcription factors, NF- κ B and AP-1, on the transcription binding sites of miR-155 gene promoter region is important to increase the expression of miR-155 by Tax. Transfection of anti-miR-155 inhibitor, which inhibits the function of miR-155, inhibited the growth of HTLV-1-positive T-cell lines. On the other hand, the growth of HTLV-1-negative T-cell lines was not changed by transfection of anti-miR-155. Forced expression of miR-155 enhanced the growth of HTLV-1-positive T-cell lines. These findings indicate that targeting the functions of miRNAs is a novel approach to the prevention or treatment of ATLL.

  3. Purification and characterization of a heteromultimeric glycoprotein from Artocarpus heterophyllus latex with an inhibitory effect on human blood coagulation.

    Science.gov (United States)

    Siritapetawee, Jaruwan; Thammasirirak, Sompong

    2011-01-01

    Plant latex has many health benefits and has been used in folk medicine. In this study, the biological effect of Artocarpus heterophyllus (jackfruit) latex on human blood coagulation was investigated. By a combination of heat precipitation and ion-exchange chromatography, a heat stable heteromultimeric glycoprotein (HSGPL1) was purified from jackfruit milky latex. The apparent molecular masses of the monomeric proteins on SDS/PAGE were 33, 31 and 29 kDa. The isoelectric points (pIs) of the monomers were 6.63, 6.63 and 6.93, respectively. Glycosylation and deglycosylation tests confirmed that each subunit of HSGPL1 formed the native multimer by sugar-based interaction. Moreover, the multimer of HSGPL1 also resisted 2-mercaptoethanol action. Peptide mass fingerprint analysis indicated that HSGPL1 was a complex protein related to Hsps/chaperones. HSGPL1 has an effect on intrinsic pathways of the human blood coagulation system by significantly prolonging the activated partial thrombin time (APTT). In contrast, it has no effect on the human extrinsic blood coagulation system using the prothrombin time (PT) test. The prolonged APTT resulted from the serine protease inhibitor property of HSGPL1, since it reduced activity of human blood coagulation factors XI(a) and α-XII(a).

  4. Inhibitory effect of snake venom toxin on NF-κB activity prevents human cervical cancer cell growth via increase of death receptor 3 and 5 expression.

    Science.gov (United States)

    Lee, Hye Lim; Park, Mi Hee; Hong, Ji Eun; Kim, Dae Hwan; Kim, Ji Young; Seo, Hyen Ok; Han, Sang-Bae; Yoon, Joo Hee; Lee, Won Hyoung; Song, Ho Sueb; Lee, Ji In; Lee, Ung Soo; Song, Min Jong; Hong, Jin Tae

    2016-02-01

    We previously found that snake venom toxin inhibits nuclear factor kappa B (NF-κB) activity in several cancer cells. NF-κB is implicated in cancer cell growth and chemoresistance. In our present study, we investigated whether snake venom toxin (SVT) inhibits NF-κB, thereby preventing human cervical cancer cell growth (Ca Ski and C33A). SVT (0-12 μg/ml) inhibited the growth of cervical cancer cells by the induction of apoptotic cell death. These inhibitory effects were associated with the inhibition of NF-κB activity. However, SVT dose dependently increased the expression of death receptors (DRs): DR3, DR5 and DR downstream pro-apoptotic proteins. Exploration of NF-κB inhibitor (Phenylarsine oxide, 0.1 μM) synergistically further increased SVT-induced DR3 and DR5 expressions accompanied with further inhibition of cancer cells growth. Moreover, deletion of DR3 and DR5 by small interfering RNA significantly abolished SVT-induced cell growth inhibitory effects, as well as NF-κB inactivation. Using TNF-related apoptosis-inducing ligand resistance cancer cells (A549 and MCF-7), we also found that SVT enhanced the susceptibility of chemoresistance of these cancer cells through down-regulation of NF-κB, but up-regulation of DR3 and DR5. In vivo study also showed that SVT (0.5 and 1 mg/kg) inhibited tumor growth accompanied with inactivation of NF-κB. Thus, our present study indicates that SVT could be applicable as an anticancer agent for cervical cancer, or as an adjuvant agent for chemoresistant cancer cells.

  5. Combined xanthorrhizol-curcumin exhibits synergistic growth inhibitory activity via apoptosis induction in human breast cancer cells MDA-MB-231

    Directory of Open Access Journals (Sweden)

    Azimahtol Hawariah

    2009-01-01

    Full Text Available Abstract Background It has been suggested that combined effect of natural products may improve the treatment effectiveness in combating proliferation of cancer cells. The present study was undertaken to evaluate the possibility that the combination of xanthorrhizol and curcumin might show synergistic growth inhibitory effect towards MDA-MB-231 human breast cancer cells via apoptosis induction. The effective dose that produced 50% growth inhibition (GI50 was calculated from the log dose-response curve of fixed-combinations of xanthorrhizol and curcumin generated from the sulforhodamine B (SRB assay. The experimental GI50 value was used to determine the synergistic activity of the combination treatment by isobolographic analysis and combination-index method. Further investigation of mode of cell death induced by the combination treatment was conducted in the present study. Results Isobole analysis revealed that substances interaction was synergistic when xanthorrhizol and curcumin were added concurrently to the cultures but merely additive when they were added sequentially. The synergistic combination treatment was then applied to the cultures to investigate the mode of cell death induced by the treatment. Immunofluorescence staining using antibody MitoCapture™ revealed the possibility of altered mitochondrial transmembrane potential, which is one of the hallmark of apoptosis. Hoechst 33258 nuclear staining assay showed the rate of apoptosis of MDA-MB-231 cells to increase in response to the treatment. Apoptotic cell death was further confirmed by DNA fragmentation assay, where internucleosomal excision of DNA was induced upon treatment with xanthorrhizol-curcumin. Conclusion This is the first time the combined cytotoxic effect of xanthorrhizol and curcumin on MDA-MB-231 cells has been documented and our findings provide experimental support to the hypothesis that combined xanthorrhizol-curcumin showed synergistic growth inhibitory activity on

  6. Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV), Bovine Leukemia Virus (BLV), Human Papilloma Virus (HPV), and Epstein-Barr Virus (EBV).

    Science.gov (United States)

    Lawson, James S; Salmons, Brian; Glenn, Wendy K

    2018-01-01

    Although the risk factors for breast cancer are well established, namely female gender, early menarche and late menopause plus the protective influence of early pregnancy, the underlying causes of breast cancer remain unknown. The development of substantial recent evidence indicates that a handful of viruses may have a role in breast cancer. These viruses are mouse mammary tumor virus (MMTV), bovine leukemia virus (BLV), human papilloma viruses (HPVs), and Epstein-Barr virus (EBV-also known as human herpes virus type 4). Each of these viruses has documented oncogenic potential. The aim of this review is to inform the scientific and general community about this recent evidence. MMTV and human breast cancer-the evidence is detailed and comprehensive but cannot be regarded as conclusive. BLV and human breast cancer-the evidence is limited. However, in view of the emerging information about BLV in human breast cancer, it is prudent to encourage the elimination of BLV in cattle, particularly in the dairy industry. HPVs and breast cancer-the evidence is substantial but not conclusive. The availability of effective preventive vaccines is a major advantage and their use should be encouraged. EBV and breast cancer-the evidence is also substantial but not conclusive. Currently, there are no practical means of either prevention or treatment. Although there is evidence of genetic predisposition, and cancer in general is a culmination of events, there is no evidence that inherited genetic traits are causal. The influence of oncogenic viruses is currently the major plausible hypothesis for a direct cause of human breast cancer.

  7. Oncogenic Viruses and Breast Cancer: Mouse Mammary Tumor Virus (MMTV, Bovine Leukemia Virus (BLV, Human Papilloma Virus (HPV, and Epstein–Barr Virus (EBV

    Directory of Open Access Journals (Sweden)

    James S. Lawson

    2018-01-01

    Full Text Available BackgroundAlthough the risk factors for breast cancer are well established, namely female gender, early menarche and late menopause plus the protective influence of early pregnancy, the underlying causes of breast cancer remain unknown. The development of substantial recent evidence indicates that a handful of viruses may have a role in breast cancer. These viruses are mouse mammary tumor virus (MMTV, bovine leukemia virus (BLV, human papilloma viruses (HPVs, and Epstein–Barr virus (EBV-also known as human herpes virus type 4. Each of these viruses has documented oncogenic potential. The aim of this review is to inform the scientific and general community about this recent evidence.The evidenceMMTV and human breast cancer—the evidence is detailed and comprehensive but cannot be regarded as conclusive. BLV and human breast cancer—the evidence is limited. However, in view of the emerging information about BLV in human breast cancer, it is prudent to encourage the elimination of BLV in cattle, particularly in the dairy industry. HPVs and breast cancer—the evidence is substantial but not conclusive. The availability of effective preventive vaccines is a major advantage and their use should be encouraged. EBV and breast cancer—the evidence is also substantial but not conclusive. Currently, there are no practical means of either prevention or treatment. Although there is evidence of genetic predisposition, and cancer in general is a culmination of events, there is no evidence that inherited genetic traits are causal.ConclusionThe influence of oncogenic viruses is currently the major plausible hypothesis for a direct cause of human breast cancer.

  8. Simple and efficient expression of codon-optimized mouse leukemia ...

    African Journals Online (AJOL)

    Purpose: To obtain a higher yield of mouse leukemia inhibitory factor to maintain the proliferation potential of pluripotent stem cells at a low cost. Methods: A method was designed to produce recombinant mLIF protein (rmLIF) in Escherichia coli. Through analysis of rmLIF sequence, it was found that rare codons were ...

  9. Targeting acute myeloid leukemia with a small molecule inhibitor of the Myb/p300 interaction.

    Science.gov (United States)

    Uttarkar, Sagar; Dassé, Emilie; Coulibaly, Anna; Steinmann, Simone; Jakobs, Anke; Schomburg, Caroline; Trentmann, Amke; Jose, Joachim; Schlenke, Peter; Berdel, Wolfgang E; Schmidt, Thomas J; Müller-Tidow, Carsten; Frampton, Jon; Klempnauer, Karl-Heinz

    2016-03-03

    The transcription factor Myb plays a key role in the hematopoietic system and has been implicated in the development of leukemia and other human cancers. Inhibition of Myb is therefore emerging as a potential therapeutic strategy for these diseases. However, because of a lack of suitable inhibitors, the feasibility of therapeutic approaches based on Myb inhibition has not been explored. We have identified the triterpenoid Celastrol as a potent low-molecular-weight inhibitor of the interaction of Myb with its cooperation partner p300. We demonstrate that Celastrol suppresses the proliferative potential of acute myeloid leukemia (AML) cells while not affecting normal hematopoietic progenitor cells. Furthermore, Celastrol prolongs the survival of mice in a model of an aggressive AML. Overall, our work demonstrates the therapeutic potential of a small molecule inhibitor of the Myb/p300 interaction for the treatment of AML and provides a starting point for the further development of Myb-inhibitory compounds for the treatment of leukemia and, possibly, other tumors driven by deregulated Myb. © 2016 by The American Society of Hematology.

  10. From oncogene to tumor suppressor: the dual role of Myc in leukemia.

    Science.gov (United States)

    Uribesalgo, Iris; Benitah, Salvador Aznar; Di Croce, Luciano

    2012-05-01

    The transcription factor c-Myc strongly stimulates cell proliferation but also regulates apoptosis, senescence, cell competition and cell differentiation, and its elevated activity is a hallmark for human tumorigenesis. c-Myc induces transcription by forming heterodimers with Max and then directly binding DNA at E-box sequences. Conversely, transcription repression depends primarily on the inhibitory interaction of c-Myc/Max with Miz-1 at DNA initiator elements. We recently described a distinct mechanism of c-Myc gene regulation, in which c-Myc interacts with the retinoic acid receptor α (RARα) and is recruited to RAR DNA binding sequences (RAREs). In leukemia cells, this c-Myc/RARα complex functions either as an activator or a repressor of RARα-dependent targets through a phosphorylation switch. Unphosphorylated c-Myc interacts with RARα to repress the expression of RAR targets required for differentiation, thereby aggravating leukemia malignancy. However, if c-Myc is phosphorylated by the kinase Pak2, the c-Myc/RARα complex activates transcription of those same genes to stimulate differentiation, thus reducing tumor burden. Here, we discuss the role of c-Myc in balancing proliferation and differentiation and how modulating this previously unidentified c-Myc activity might provide alternative therapies against leukemia and possibly other types of tumors.

  11. Downregulation of proapoptotic Bim augments IL-2-independent T-cell transformation by human T-cell leukemia virus type-1 Tax.

    Science.gov (United States)

    Higuchi, Masaya; Takahashi, Masahiko; Tanaka, Yuetsu; Fujii, Masahiro

    2014-12-01

    Human T-cell leukemia virus type 1 (HTLV-1), an etiological agent of adult T-cell leukemia, immortalizes and transforms primary human T cells in vitro in both an interleukin (IL)-2-dependent and IL-2-independent manner. Expression of the HTLV-1 oncoprotein Tax transforms the growth of the mouse T-cell line CTLL-2 from being IL-2-dependent to IL-2-independent. Withdrawal of IL-2 from normal activated T cells induces apoptosis, which is mediated through the inducible expression of several proapoptotic proteins, including Bim. In this study, we found that Tax protects IL-2-depleted T cells against Bim-induced apoptosis. Withdrawal of IL-2 from CTLL-2 cells induced a prominent increase in the level of Bim protein in CTLL-2 cells, but not in Tax-transformed CTLL-2 cells. This inhibition of Bim in Tax-transformed CTLL-2 cells was mediated by two mechanisms: downregulation of Bim mRNA and posttranscriptional reduction of Bim protein. Transient expression of Tax in CTLL-2 cells also inhibited IL-2 depletion-induced expression of Bim, however, this decrease in Bim protein expression was not due to downregulation of Bim mRNA, thus indicating that Bim mRNA downregulation in Tax-transformed CTLL-2 occurs only after long-term expression of Tax. Transient expression of Tax in CTLL-2 cells also induced Erk activation, however, this was not involved in the reduction of Bim protein. Knockdown of Bim expression in CTLL-2 cells augmented Tax-induced IL-2-independent transformation. HTLV-1 infection of human T cells also reduced their levels of Bim protein, and restoring Bim expression in HTLV-1-infected cells reduced their proliferation by inducing apoptosis. Taken together, these results indicate that Tax-induced downregulation of Bim in HTLV-1-infected T cells promotes their IL-2-independent growth, thereby supporting the persistence of HTLV-1 infection in vivo. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  12. Effect of bovine dialyzable leukocyte extract on induction of cell differentiation and death in K562 human chronic myelogenous leukemia cells.

    Science.gov (United States)

    Sierra-Rivera, Crystel A; Franco-Molina, Moisés A; Mendoza-Gamboa, Edgar; Zapata-Benavides, Pablo; Santaolalla-Tapia, Jesús; Coronado-Cerda, Erika E; Tamez-Guerra, Reyes S; Rodríguez-Padilla, Cristina

    2016-12-01

    Differentiation induction therapy is an attractive approach in leukemia treatment due to the fact that in blast crisis stage, leukemic cells lose their differentiation capacity. Therefore, it has been proposed as a therapeutic strategy to induce terminal differentiation of leukemic blast cells into a specific lineage, leading to prevention of high proliferation rates. The aim of the present study was to demonstrate the potential of cell differentiation and death induced by bovine dialyzable leukocyte extract (bDLE) in the K562 cell line. For this purpose K562 and MOLT-3 human leukemic cell lines and primary human monocytes and murine peritoneal macrophages were exposed to bDLE, phorbol myristate acetate (PMA) and dimethyl sulfoxide for 96 h, and the viability, proliferation and cell cycle were evaluated. To determine the lineage that led to cell differentiation, Romanowsky staining was performed to observe the morphological changes following the treatments, and the expression of the surface markers cluster of differentiation (CD)14(+), CD68(+), CD163(+) and CD42a(+), as well as the phagocytic activity, and the production of nitric oxide (NO) (assessed by colorimetric assay), cytokines [interleukin (IL)-1β, IL-6, IL-8 and tumor necrosis factor-α] and chemokines [chemokine (C-C motif) ligand (CCL)2, CCL5 and chemokine (C-X-C motif) ligand 8] in cell supernatants was assessed by flow cytometry. The results of the present study reveal that high doses of bDLE increase the cell death in K562 and MOLT-3 lines, without affecting the viability of human monocytes and murine peritoneal macrophages. Furthermore, low doses of bDLE induce differentiation in K562 cells towards a monocyte/macrophage lineage with an M2 phenotype, and induced moderately upregulated expression of CD42(+), a megakaryocytic marker. Cell cycle arrest in the S and G2/M phases was observed in bDLE-treated K562 cells, which demonstrated similar phagocytic activity, NO levels and cytokine and chemokine

  13. Secretory products from thrombin-stimulated human platelets exert an inhibitory effect on NK-cytotoxic activity

    DEFF Research Database (Denmark)

    Skov Madsen, P; Hokland, P; Hokland, M

    1987-01-01

    We have investigated the interaction between human platelets and the NK-system, with special emphasis on the action of secretory products from platelets in an NK assay with 51Cr-labelled K562 as target cells. Supernatants from thrombin-stimulated platelets added to the NK assay consistently...... with thrombin, are capable of secreting different, yet undefined factors, which significantly inhibit NK activity in vitro. The results also suggest that the role of products from contaminating in vitro activated platelets should be borne in mind when performing conventional NK assays. Udgivelsesdato: 1986-Oct...

  14. [Production of recombinant human interleukin-38 and its inhibitory effect on the expression of proinflammatory cytokines in THP-1 cells].

    Science.gov (United States)

    Yuan, X L; Li, Y; Pan, X H; Zhou, M; Gao, Q Y; Li, M C

    2016-01-01

    Interleukin (IL)-38 is the latest member of the IL-1 cytokine family. However, as a result of lacking efficient method to generate relatively large quantity of IL-38, its precise functions are poorly understood. In the present study, the cloning, expression, purification, and activity analysis of recombinant human IL-38 was described. Human IL-38 cDNA was cloned into the prokaryotic expression vector pET-44. The recombinant IL-38 containing a C-hexahistidine tag was expressed in Escherichia coli BL21 (DE3) which induced by isopropyl-β-D-thiogalactoside. The expressed fusion protein was purified by Ni-NTA affinity chromatography. IL-38 protein was largely found in the soluble fraction. The purified IL-38 appeared a single band on SDS-PAGE, the yield of IL-38 was 4 mg from 1 L of bacterial culture, and the purity was more than 98% with low endotoxin level (<0.1 EU/μg). Western blotting confirmed the identity of the purified protein. Activity analysis showed that IL-38 can inhibit effectively the expression of proinflammatory cytokines, such as tumor necrosis factor-α, IL-1β, IL-17, and monocyte chemoattractant protein-1 in lipopolysaccharide-activated THP-1 cells. The production and characterization of biologically active IL-38 will be beneficial for its potential role in clinical applications.

  15. Study of the Cytotoxic Effects of the New Synthetic Isothiocyanate CM9 and Its Fullerene Derivative on Human T-Leukemia Cells

    Science.gov (United States)

    De Gianni, Elena; Turrini, Eleonora; Milelli, Andrea; Maffei, Francesca; Carini, Marco; Minarini, Anna; Tumiatti, Vincenzo; Da Ros, Tatiana; Prato, Maurizio; Fimognari, Carmela

    2015-01-01

    One important strategy to develop effective anticancer agents is based on natural products. Many active phytochemicals are in human clinical trials and have been used for a long time, alone and in association with conventional anticancer drugs, for the treatment of various types of cancers. A great number of in vitro, in vivo and clinical reports document the multi-target anticancer activities of isothiocyanates and of compounds characterized by a naphthalenetetracarboxylic diimide scaffold. In order to search for new anticancer agents with a better pharmaco-toxicological profile, we investigated hybrid compounds obtained by inserting isothiocyanate group(s) on a naphthalenetetracarboxylic diimide scaffold. Moreover, since water-soluble fullerene derivatives can cross cell membranes thus favoring the delivery of anticancer therapeutics, we explored the cytostatic and cytotoxic activity of hybrid compounds conjugated with fullerene. We studied their cytostatic and cytotoxic effects on a human T-lymphoblastoid cell line by using different flow cytometric assays. In order to better understand their pharmaco-toxicological potential, we also analyzed their genotoxicity. Our global results show that the synthesized compounds reduced significantly the viability of leukemia cells. However, the conjugation with a non-toxic vector did not increase their anticancer potential. This opens an interesting research pattern for certain fullerene properties. PMID:25679371

  16. Study of the Cytotoxic Effects of the New Synthetic Isothiocyanate CM9 and Its Fullerene Derivative on Human T-Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Elena De Gianni

    2015-02-01

    Full Text Available One important strategy to develop effective anticancer agents is based on natural products. Many active phytochemicals are in human clinical trials and have been used for a long time, alone and in association with conventional anticancer drugs, for the treatment of various types of cancers. A great number of in vitro, in vivo and clinical reports document the multi-target anticancer activities of isothiocyanates and of compounds characterized by a naphthalenetetracarboxylic diimide scaffold. In order to search for new anticancer agents with a better pharmaco-toxicological profile, we investigated hybrid compounds obtained by inserting isothiocyanate group(s on a naphthalenetetracarboxylic diimide scaffold. Moreover, since water-soluble fullerene derivatives can cross cell membranes thus favoring the delivery of anticancer therapeutics, we explored the cytostatic and cytotoxic activity of hybrid compounds conjugated with fullerene. We studied their cytostatic and cytotoxic effects on a human T-lymphoblastoid cell line by using different flow cytometric assays. In order to better understand their pharmaco-toxicological potential, we also analyzed their genotoxicity. Our global results show that the synthesized compounds reduced significantly the viability of leukemia cells. However, the conjugation with a non-toxic vector did not increase their anticancer potential. This opens an interesting research pattern for certain fullerene properties.

  17. Metabolomics profiles delineate uridine deficiency contributes to mitochondria-mediated apoptosis induced by celastrol in human acute promyelocytic leukemia cells.

    Science.gov (United States)

    Zhang, Xiaoling; Yang, Jing; Chen, Minjian; Li, Lei; Huan, Fei; Li, Aiping; Liu, Yanqing; Xia, Yankai; Duan, Jin-Ao; Ma, Shiping

    2016-07-19

    Celastrol, extracted from "Thunder of God Vine", is a promising anti-cancer natural product. However, its effect on acute promyelocytic leukemia (APL) and underlying molecular mechanism are poorly understood. The purpose of this study was to explore its effect on APL and underlying mechanism based on metabolomics. Firstly, multiple assays indicated that celastrol could induce apoptosis of APL cells via p53-activated mitochondrial pathway. Secondly, unbiased metabolomics revealed that uridine was the most notable changed metabolite. Further study verified that uridine could reverse the apoptosis induced by celastrol. The decreased uridine was caused by suppressing the expression of gene encoding Dihydroorotate dehydrogenase, whose inhibitor could also induce apoptosis of APL cells. At last, mouse model confirmed that celastrol inhibited tumor growth through enhanced apoptosis. Celastrol could also decrease uridine and DHODH protein level in tumor tissues. Our in vivo study also indicated that celastrol had no systemic toxicity at pharmacological dose (2 mg/kg, i.p., 21 days). Altogether, our metabolomics study firstly reveals that uridine deficiency contributes to mitochondrial apoptosis induced by celastrol in APL cells. Celastrol shows great potential for the treatment of APL.

  18. Subcutaneous injections of low doses of humanized anti-CD20 veltuzumab: a phase I study in chronic lymphocytic leukemia.

    Science.gov (United States)

    Kalaycio, Matt E; George Negrea, O; Allen, Steven L; Rai, Kanti R; Abbasi, Rashid M; Horne, Heather; Wegener, William A; Goldenberg, David M

    2016-01-01

    To evaluate the potential of subcutaneous (SC) injections with anti-CD20 antibody veltuzumab in chronic lymphocytic leukemia (CLL), 21 patients received 80, 160, or 320 mg injections every 2 weeks × 4 doses (n = 11) or 160 or 320 mg twice-weekly × 16 doses (n = 10). Treatment was well tolerated with only occasional, mild-moderate, transient injection reactions. Lymphocytosis decreased in all patients (maximum decrease, 5-91%), with 12 patients obtaining >50% decreases. Of 14 patients with lymphadenopathy on CT imaging, 5 (36%) achieved 14-61% reductions (sum of perpendicular diameters). By NCI-WG criteria, two patients achieved partial responses (10%). SC veltuzumab appeared active in all dose groups, with no obvious exposure-response relationship, despite cumulative doses ranging from 320-5120 mg. Overall median progression-free survival was 7.7 months; three patients remained progression-free >1 year (2 ongoing at 2-year study completion). These data suggest further studies of SC veltuzumab in CLL are warranted.

  19. The Tim-3-galectin-9 Secretory Pathway is Involved in the Immune Escape of Human Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Isabel Gonçalves Silva

    2017-08-01

    Full Text Available Acute myeloid leukemia (AML is a severe and often fatal systemic malignancy. Malignant cells are capable of escaping host immune surveillance by inactivating cytotoxic lymphoid cells. In this work we discovered a fundamental molecular pathway, which includes ligand-dependent activation of ectopically expressed latrophilin 1 and possibly other G-protein coupled receptors leading to increased translation and exocytosis of the immune receptor Tim-3 and its ligand galectin-9. This occurs in a protein kinase C and mTOR (mammalian target of rapamycin-dependent manner. Tim-3 participates in galectin-9 secretion and is also released in a free soluble form. Galectin-9 impairs the anti-cancer activity of cytotoxic lymphoid cells including natural killer (NK cells. Soluble Tim-3 prevents secretion of interleukin-2 (IL-2 required for the activation of cytotoxic lymphoid cells. These results were validated in ex vivo experiments using primary samples from AML patients. This pathway provides reliable targets for both highly specific diagnosis and immune therapy of AML.

  20. MiR-451 suppresses proliferation, migration and promotes apoptosis of the human osteosarcoma by targeting macrophage migration inhibitory factor.

    Science.gov (United States)

    Liu, Wei; Liu, Sheng-Yao; He, Yong-Bin; Huang, Rui-Liang; Deng, Song-Yun; Ni, Guo-Xin; Yu, Bin

    2017-03-01

    Previous studies have shown that MiR-451 plays an important role in human osteosarcoma carcinogenesis, but the underlying mechanism by which MiR-451 affects the osteosarcoma has not been fully understood. This study intends to uncover the mechanism by which MiR-451 functions as a tumor suppressor. The expression of MiR-451 in osteosarcoma tissues and osteosarcoma cell lines was monitored by real-time PCR. The proliferation ability was examined by MTT and cell cycle assay. The migration and apoptosis of cells were monitored by migration assay and flow cytometry, respectively. Moreover, the angiogenesis of HUVEC cells transfected with MiR-451 mimics was examined by tube formation assay. The effect of MiR-451 on MIF was determined by luciferase assays and Western blot assay. The results showed that MiR-451 expression level was significantly reduced in the osteosarcoma compared with normal bone tissues. Overexpression of MiR-451 significantly attenuated the proliferation and migration, and induced the apoptosis of osteosarcoma cells. Furthermore, the angiogenesis of HUVEC cells transfected with MiR-451 mimics was assayed and the decreased angiogenic ability was detected compared to the controls. Finally, we demonstrated that MiR-451 overexpression inhibited the malignant behavior of osteosarcoma by downregulating MIF. These findings suggest that MiR-451 may act as a tumor suppressor in osteosarcoma. MiR-451 inhibited cell proliferation, migration and angiogenesis and promoted apoptosis of human osteosarcoma cells, at least partially, by inhibiting the expression of MIF. MiR-451/MIF may be a novel therapeutic target in treatment of osteosarcoma. Copyright © 2016. Published by Elsevier Masson SAS.

  1. Human Th17 Cells Lack HIV-Inhibitory RNases and Are Highly Permissive to Productive HIV Infection.

    Science.gov (United States)

    Christensen-Quick, Aaron; Lafferty, Mark; Sun, Lingling; Marchionni, Luigi; DeVico, Anthony; Garzino-Demo, Alfredo

    2016-09-01

    Human immunodeficiency virus (HIV) infects and depletes CD4(+) T cells, but subsets of CD4(+) T cells vary in their susceptibility and permissiveness to infection. For example, HIV preferentially depletes interleukin-17 (IL-17)-producing T helper 17 (Th17) cells and T follicular helper (Tfh) cells. The preferential loss of Th17 cells during the acute phase of infection impairs the integrity of the gut mucosal barrier, which drives chronic immune activation-a key determinant of disease progression. The preferential loss of Th17 cells has been attributed to high CD4, CCR5, and CXCR4 expression. Here, we show that Th17 cells also exhibit heightened permissiveness to productive HIV infection. Primary human CD4(+) T cells were sorted, activated under Th17- or Th0-polarizing conditions and infected, and then analyzed by flow cytometry. Th17-polarizing cytokines increased HIV infection, and HIV infection was disproportionately higher among Th17 cells than among IL-17(-) or gamma interferon-positive (IFN-γ(+)) cells, even upon infection with a replication-defective HIV vector with a pseudotype envelope. Further, Th17-polarized cells produced more viral capsid protein. Our data also reveal that Th17-polarized cells have diminished expression of RNase A superfamily proteins, and we report for the first time that RNase 6 inhibits HIV. Thus, our findings link Th17 polarization to increased HIV replication. Our study compares the intracellular replicative capacities of several different HIV isolates among different T cell subsets, providing a link between the differentiation of Th17 cells and HIV replication. Th17 cells are of key importance in mucosal integrity and in the immune response to certain pathogens. Based on our findings and the work of others, we propose a model in which HIV replication is favored by the intracellular environment of two CD4(+) T cell subsets that share several requirements for their differentiation: Th17 and Tfh cells. Characterizing cells that

  2. The inhibitory mechanism of Cordyceps sinensis on cigarette smoke extract-induced senescence in human bronchial epithelial cells

    Directory of Open Access Journals (Sweden)

    Liu AL

    2016-07-01

    Full Text Available Ailing Liu,1,2,* Jinxiang Wu,1,* Aijun Li,2 Wenxiang Bi,3 Tian Liu,1 Liuzhao Cao,1 Yahui Liu,1 Liang Dong1 1Department of Pulmonary Diseases, Qilu Hospital, Shandong University, Jinan, Shandong, People’s Republic of China; 2Department of Pulmonary Diseases, Weihai Municipal Hospital, Weihai, Shandong, People’s Republic of China; 3Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, People’s Republic of China *These authors contributed equally to this work Objectives: Cellular senescence is a state of irreversible growth arrest induced either by telomere shortening (replicative senescence or stress. The bronchial epithelial cell is often injured by inhaled toxic substances, such as cigarette smoke. In the present study, we investigated whether exposure to cigarette smoke extract (CSE induces senescence of bronchial epithelial cells; and Cordyceps sinensis mechanism of inhibition of CSE-induced cellular senescence.Methods: Human bronchial epithelial cells (16HBE cells cultured in vitro were treated with CSE and/or C. sinensis. p16, p21, and senescence-associated-galactosidase activity were used to detect cellular senescence with immunofluorescence, quantitative polymerase chain reaction, and Western blotting. Reactive oxygen species (ROS, PI3K/AKT/mTOR and their phosphorylated proteins were examined to testify the activation of signaling pathway by ROS fluorescent staining and Western blotting. Then, inhibitors of ROS and PI3K were used to further confirm the function of this pathway.Results: Cellular senescence was upregulated by CSE treatment, and C. sinensis can decrease CSE-induced cellular senescence. Activation of ROS/PI3K/AKT/mTOR signaling pathway was enhanced by CSE treatment, and decreased when C. sinensis was added. Blocking ROS/PI3K/AKT/mTOR signaling pathway can attenuate CSE-induced cellular senescence.Conclusion: CSE can induce cellular senescence in human bronchial

  3. Cyclooxygenase-2 and prostaglandin F2 alpha in Syrian hamster Leydig cells: Inhibitory role on luteinizing hormone/human chorionic gonadotropin-stimulated testosterone production.

    Science.gov (United States)

    Frungieri, Mónica B; Gonzalez-Calvar, Silvia I; Parborell, Fernanda; Albrecht, Martin; Mayerhofer, Artur; Calandra, Ricardo S

    2006-09-01

    We have previously found that cyclooxygenase-2 (COX-2), a key enzyme in the biosynthesis of prostaglandins (PGs), is present in the testicular interstitial cells of infertile men, whereas it is absent in human testes with no evident morphological changes or abnormalities. To find an animal model for further investigating COX-2 and its role in testicular steroidogenesis, we screened testes from adult species ranging from mice to monkeys. By using immunohistochemical assays, we found COX-2 expression only in Leydig cells of the reproductively active (peripubertal, pubertal, and adult) seasonal breeder Syrian hamster. COX-2 expression in hamster Leydig cells was confirmed by RT-PCR. In contrast, COX-1 expression was not detected in hamster testes. Because COX-2 expression implies PG synthesis, we investigated the effect of various PGs on testosterone production and found that PGF2 alpha stood out because it significantly reduced human chorionic gonadotropin-stimulated testosterone release from isolated hamster Leydig cells in a dose-dependent manner. This mechanism involves a decreased expression of testicular steroidogenic acute regulatory protein and 17beta-hydroxysteroid dehydrogenase. Testicular concentration and content of PGF2 alpha in reproductively active hamsters as well as production of PGF2 alpha from isolated hamster Leydig cells were also determined. Moreover, PGF2 alpha receptors were localized in Leydig cells of hamsters and testicular biopsies from patients with Sertoli cell only and germ arrest syndromes. Thus, in this study, we described a COX-2-initiated pathway that via PGF2 alpha production, PGF2 alpha receptors, steroidogenic acute regulatory protein, and 17beta-hydroxysteroid dehydrogenase represents a physiological local inhibitory system of human chorionic gonadotropin-stimulated testosterone production in the Syrian hamster testes.

  4. Inhibitory effects of two G protein-coupled receptor kinases on the cell surface expression and signaling of the human adrenomedullin receptor

    Energy Technology Data Exchange (ETDEWEB)

    Kuwasako, Kenji, E-mail: kuwasako@med.miyazaki-u.ac.jp [Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692 (Japan); Sekiguchi, Toshio [Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa, 927-0553 (Japan); Nagata, Sayaka [Division of Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692 (Japan); Jiang, Danfeng; Hayashi, Hidetaka [Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692 (Japan); Murakami, Manabu [Department of Pharmacology, Hirosaki University, Graduate School of Medicine, Hirosaki, 036-8562 (Japan); Hattori, Yuichi [Department of Molecular and Medical Pharmacology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194 (Japan); Kitamura, Kazuo [Division of Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692 (Japan); Kato, Johji [Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692 (Japan)

    2016-02-19

    Receptor activity-modifying protein 2 (RAMP2) enables the calcitonin receptor-like receptor (CLR, a family B GPCR) to form the type 1 adrenomedullin receptor (AM{sub 1} receptor). Here, we investigated the effects of the five non-visual GPCR kinases (GRKs 2 through 6) on the cell surface expression of the human (h)AM{sub 1} receptor by cotransfecting each of these GRKs into HEK-293 cells that stably expressed hRAMP2. Flow cytometric analysis revealed that when coexpressed with GRK4 or GRK5, the cell surface expression of the AM{sub 1} receptor was markedly decreased prior to stimulation with AM, thereby attenuating both the specific [{sup 125}I]AM binding and AM-induced cAMP production. These inhibitory effects of both GRKs were abolished by the replacement of the cytoplasmic C-terminal tail (C-tail) of CLR with that of the calcitonin receptor (a family B GPCR) or β{sub 2}-adrenergic receptor (a family A GPCR). Among the sequentially truncated CLR C-tail mutants, those lacking the five residues 449–453 (Ser-Phe-Ser-Asn-Ser) abolished the inhibition of the cell surface expression of CLR via the overexpression of GRK4 or GRK5. Thus, we provided new insight into the function of GRKs in agonist-unstimulated GPCR trafficking using a recombinant AM{sub 1} receptor and further determined the region of the CLR C-tail responsible for this GRK function. - Highlights: • We discovered a novel function of GRKs in GPCR trafficking using human CLR/RAMP2. • GRKs 4 and 5 markedly inhibited the cell surface expression of human CLR/RAMP2. • Both GRKs exhibited highly significant receptor signaling inhibition. • Five residues of the C-terminal tail of CLR govern this function of GRKs.

  5. Biochemical characterisation of lectin from Indian hyacinth plant bulbs with potential inhibitory action against human cancer cells.

    Science.gov (United States)

    Naik, Sanjay; Rawat, Ravindra Singh; Khandai, Santripti; Kumar, Mukesh; Jena, Sidhartha S; Vijayalakshmi, Mookambeswaran A; Kumar, Sanjit

    2017-12-01

    This work describes purification and characterisation of a monocot mannose-specific lectin from Hyacinth bulbs. The purified lectin has a molecular mass of ∼30kDa in reducing as well as in non-reducing SDS-PAGE. In hydrodynamic studies by Dynamic Light Scattering (DLS) showed that purified lectin was monomeric in nature with a molecular size of 2.38±0.03nm. Agglutination activity of purified lectin was confirmed by rabbit erythrocytes and its agglutination activity was inhibited by d-mannose and a glycoprotein (ovalbumin). Glycoprotein nature of purified lectin was confirmed by Periodic Acid Schiff's (PAS) stain. Purified lectin showed moderate pH and thermal stability by retaining hemagglutination activity from pH 6-8 and temperature up to 60°C. It also suppressed the growth of human colon cancer cells (Caco-2) and cervical cancer cells (HeLa) with IC50 values of 127μg/mL and 158μg/mL respectively, after 24-h treatment. Morphological studies of treated cells (Caco-2 and HeLa) with hyacinth lectin by AO/EB dual staining indicated that purified lectin is capable of inducing apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cellular mechanisms underlying the inhibitory effect of flufenamic acid on chloride secretion in human intestinal epithelial cells

    Directory of Open Access Journals (Sweden)

    Pawin Pongkorpsakol

    2017-06-01

    Full Text Available Intestinal Cl− secretion is involved in the pathogenesis of secretory diarrheas including cholera. We recently demonstrated that flufenamic acid (FFA suppressed Vibrio cholerae El Tor variant-induced intestinal fluid secretion via mechanisms involving AMPK activation and NF-κB-suppression. The present study aimed to investigate the effect of FFA on transepithelial Cl− secretion in human intestinal epithelial (T84 cells. FFA inhibited cAMP-dependent Cl− secretion in T84 cell monolayers with IC50 of ∼8 μM. Other fenamate drugs including tolfenamic acid, meclofenamic acid and mefenamic acid exhibited the same effect albeit with lower potency. FFA also inhibited activities of CFTR, a cAMP-activated apical Cl− channel, and KCNQ1/KCNE3, a cAMP-activated basolateral K+ channel. Mechanisms of CFTR inhibition by FFA did not involve activation of its negative regulators. Interestingly, FFA inhibited Ca2+-dependent Cl− secretion with IC50 of ∼10 μM. FFA inhibited activities of Ca2+-activated Cl− channels and KCa3.1, a Ca2+-activated basolateral K+ channels, but had no effect on activities of Na+–K+–Cl− cotransporters and Na+–K+ ATPases. These results indicate that FFA inhibits both cAMP and Ca2+-dependent Cl− secretion by suppressing activities of both apical Cl− channels and basolateral K+ channels. FFA and other fenamate drugs may be useful in the treatment of secretory diarrheas.

  7. Transduction of a novel HLA-DRB1*04:05-restricted, WT1-specific TCR gene into human CD4+ T cells confers killing activity against human leukemia cells.

    Science.gov (United States)

    Katsuhara, Akiko; Fujiki, Fumihiro; Aoyama, Nao; Tanii, Satoe; Morimoto, Soyoko; Oka, Yoshihiro; Tsuboi, Akihiro; Nakajima, Hiroko; Kondo, Kenta; Tatsumi, Naoya; Nakata, Jun; Nakae, Yoshiki; Takashima, Satoshi; Nishida, Sumiyuki; Hosen, Naoki; Sogo, Shinji; Oji, Yusuke; Sugiyama, Haruo

    2015-03-01

    Wilms' tumor gene 1 (WT1) product is a pan-tumor-associated antigen. We previously identified WT1 protein-derived promiscuous helper peptide, WT1332. Therefore, isolation and characterization of the WT1332-specific T-cell receptors (TCRs) are useful to develop broadly applicable TCR gene-based adoptive immunotherapy. A novel HLA-DRB1*04:05-restricted WT1332-specific TCR gene was cloned and transduced into human CD4+ T-cells by using a lentiviral vector. The WT1332-specific TCR-transduced CD4+ T-cells showed strong proliferation and Th1-cytokine production in an HLA-DRB1*04:05-restricted, WT1332-specific manner. Furthermore, the WT1332-specific TCR-transduced CD4+ T-cells could lyse HLA-DRB1*04:05-positive, WT1-expressing leukemia cells in vitro. The novel TCR gene cloned here should be a promising tool to develop adoptive immunotherapy of WT1332-specific TCR-transduced CD4+ T-cells for the treatment of WT1-expressing cancer, such as leukemia. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. What You Need to Know about Leukemia

    Science.gov (United States)

    ... Publications Reports What You Need To Know About™ Leukemia This booklet is about leukemia. Leukemia is cancer of the blood and bone marrow ( ... This book covers: Basics about blood cells and leukemia Types of doctors who treat leukemia Treatments for ...

  9. The amino acid exchange R28E in ciliary neurotrophic factor (CNTF) abrogates interleukin-6 receptor-dependent but retains CNTF receptor-dependent signaling via glycoprotein 130 (gp130)/leukemia inhibitory factor receptor (LIFR).

    Science.gov (United States)

    Wagener, Eva-Maria; Aurich, Matthias; Aparicio-Siegmund, Samadhi; Floss, Doreen M; Garbers, Christoph; Breusing, Kati; Rabe, Björn; Schwanbeck, Ralf; Grötzinger, Joachim; Rose-John, Stefan; Scheller, Jürgen

    2014-06-27

    Ciliary neurotrophic factor (CNTF) is a neurotrophic factor with therapeutic potential for neurodegenerative diseases. Moreover, therapeutic application of CNTF reduced body weight in mice and humans. CNTF binds to high or low affinity receptor complexes consisting of CNTFR·gp130·LIFR or IL-6R·gp130·LIFR, respectively. Clinical studies of the CNTF derivative Axokine revealed intolerance at higher concentrations, which may rely on the low-affinity binding of CNTF to the IL-6R. Here, we aimed to generate a CNTFR-selective CNTF variant (CV). CV-1 contained the single amino acid exchange R28E. Arg(28) is in close proximity to the CNTFR binding site. Using molecular modeling, we hypothesized that Arg(28) might contribute to IL-6R/CNTFR plasticity of CNTF. CV-2 to CV-5 were generated by transferring parts of the CNTFR-binding site from cardiotrophin-like cytokine to CNTF. Cardiotrophin-like cytokine selectively signals via the CNTFR·gp130·LIFR complex, albeit with a much lower affinity compared with CNTF. As shown by immunoprecipitation, all CNTF variants retained the ability to bind to CNTFR. CV-1, CV-2, and CV-5, however, lost the ability to bind to IL-6R. Although all variants induced cytokine-dependent cellular proliferation and STAT3 phosphorylation via CNTFR·gp130·LIFR, only CV-3 induced STAT3 phosphorylation via IL-6R·gp130·LIFR. Quantification of CNTF-dependent proliferation of CNTFR·gp130·LIFR expressing cells indicated that only CV-1 was as biologically active as CNTF. Thus, the CNTFR-selective CV-1 will allow discriminating between CNTFR- and IL-6R-mediated effects in vivo. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. The Amino Acid Exchange R28E in Ciliary Neurotrophic Factor (CNTF) Abrogates Interleukin-6 Receptor-dependent but Retains CNTF Receptor-dependent Signaling via Glycoprotein 130 (gp130)/Leukemia Inhibitory Factor Receptor (LIFR)*

    Science.gov (United States)

    Wagener, Eva-Maria; Aurich, Matthias; Aparicio-Siegmund, Samadhi; Floss, Doreen M.; Garbers, Christoph; Breusing, Kati; Rabe, Björn; Schwanbeck, Ralf; Grötzinger, Joachim; Rose-John, Stefan; Scheller, Jürgen

    2014-01-01

    Ciliary neurotrophic factor (CNTF) is a neurotrophic factor with therapeutic potential for neurodegenerative diseases. Moreover, therapeutic application of CNTF reduced body weight in mice and humans. CNTF binds to high or low affinity receptor complexes consisting of CNTFR·gp130·LIFR or IL-6R·gp130·LIFR, respectively. Clinical studies of the CNTF derivative Axokine revealed intolerance at higher concentrations, which may rely on the low-affinity binding of CNTF to the IL-6R. Here, we aimed to generate a CNTFR-selective CNTF variant (CV). CV-1 contained the single amino acid exchange R28E. Arg28 is in close proximity to the CNTFR binding site. Using molecular modeling, we hypothesized that Arg28 might contribute to IL-6R/CNTFR plasticity of CNTF. CV-2 to CV-5 were generated by transferring parts of the CNTFR-binding site from cardiotrophin-like cytokine to CNTF. Cardiotrophin-like cytokine selectively signals via the CNTFR·gp130·LIFR complex, albeit with a much lower affinity compared with CNTF. As shown by immunoprecipitation, all CNTF variants retained the ability to bind to CNTFR. CV-1, CV-2, and CV-5, however, lost the ability to bind to IL-6R. Although all variants induced cytokine-dependent cellular proliferation and STAT3 phosphorylation via CNTFR·gp130·LIFR, only CV-3 induced STAT3 phosphorylation via IL-6R·gp130·LIFR. Quantification of CNTF-dependent proliferation of CNTFR·gp130·LIFR expressing cells indicated that only CV-1 was as biologically active as CNTF. Thus, the CNTFR-selective CV-1 will allow discriminating between CNTFR- and IL-6R-mediated effects in vivo. PMID:24802752

  11. Inhibitory activity of 1,8-cineol (eucalyptol) on cytokine production in cultured human lymphocytes and monocytes.

    Science.gov (United States)

    Juergens, Uwe R; Engelen, Tanja; Racké, Kurt; Stöber, Meinolf; Gillissen, Adrian; Vetter, Hans

    2004-01-01

    The therapeutic value of secretolytic agents in COPD and asthma is still disputed. For this reason, in a preclinical study we aimed to test the potential anti-inflammatory efficacy of 1,8-cineol (eucalyptol) in inhibiting polyclonal stimulated cytokine production by human unselected lymphocytes and LPS-stimulated monocytes. Cytokine production was determined following 20 h of incubation cells with 1,8-cineol simultaneously with the stimuli in culture supernatants by enzyme immunoassay. Therapeutic concentrations of 1,8-cineol (1.5 microg/ml=10(-5)M) inhibited significantly (n=13-19, p=0.0001) cytokine production in lymphocytes of TNF-alpha > IL-1beta> IL-4> IL-5 by 92, 84, 70, and 65%, respectively. Cytokine production in monocytes of TNF-alpha > IL-1beta> IL-6> IL-8 was also significantly (n=7-16, pcineol (0.15 microg/ml=10(-6)M) production of TNF-alpha>IL-1beta by monocytes and of IL-1beta> TNF-alpha by lymph-ocytes was significantly inhibited by 77, 61 and by 36, 16%, respectively. 1,8-cineol (10(-6)M) had a larger impact on TNF-alpha and IL-1beta-production in monocytes compared to lymphocytes (p0.59) at therapeutically relevant concentrations of 1,8-Cineol (10(-5)M). These results characterize 1,8-cineol as strong inhibitor of TNF-alpha and IL-1beta and suggest smaller effects on chemotactic cytokines. This is increasing evidence for the role of 1,8-cineol to control airway mucus hypersecretion by cytokine inhibition, suggesting long-term treatment to reduce exacerbations in asthma, sinusitis and COPD.

  12. Antioxidant activity of Calendula officinalis extract: inhibitory effects on chemiluminescence of human neutrophil bursts and electron paramagnetic resonance spectroscopy.

    Science.gov (United States)

    Braga, Pier Carlo; Dal Sasso, Monica; Culici, Maria; Spallino, Alessandra; Falchi, Mario; Bertelli, Aldo; Morelli, Roberto; Lo Scalzo, Roberto

    2009-01-01

    There is growing interest in natural chemical compounds from aromatic, spicy, medicinal and other plants with antioxidant properties in order to find new sources of compounds inactivating free radicals generated by metabolic pathways within body tissue and cells, mainly polymorphonuclear leukocytes (PMNs) whose overregulated recruitment and activation generate a large amount of reactive oxygen species (ROS) and reactive nitrogen species (RNS), leading to an imbalance of redox homeostasis and oxidative stress. The aim of this study was to examine whether a propylene glycol extract of Calendula officinalis interferes with ROS and RNS during the PMN respiratory bursts, and to establish the lowest concentration at which it still exerts antioxidant activity by means of luminol-amplified chemiluminescence. Electron paramagnetic resonance (EPR) spectroscopy was also used in order to confirm the activity of the C. officinalis extract. The C. officinalis extract exerted its anti-ROS and anti-RNS activity in a concentration-dependent manner, with significant effects being observed at even very low concentrations: 0.20 microg/ml without L-arginine, 0.10 microg/ml when L-arginine was added to the test with phorbol 12-myristate 13-acetate and 0.05 microg/ml when it was added to the test with N-formyl-methionyl-leucyl-phenylalanine. The EPR study confirmed these findings, 0.20 microg/ml being the lowest concentration of C. officinalis extract that significantly reduced 2,2-diphenyl-1-picrylhydrazyl. These findings are interesting for improving the antioxidant network and restoring the redox balance in human cells with plant-derived molecules as well as extending the possibility of antagonizing the oxidative stress generated in living organisms when the balance is in favor of free radicals as a result of the depletion of cell antioxidants. Copyright 2009 S. Karger AG, Basel.

  13. GCN2 has inhibitory effect on human immunodeficiency virus-1 protein synthesis and is cleaved upon viral infection.

    Directory of Open Access Journals (Sweden)

    Javier del Pino

    Full Text Available The reversible phosphorylation of the alpha-subunit of eukaryotic translation initiation factor 2 (eIF2alpha is a well-characterized mechanism of translational control in response to a wide variety of cellular stresses, including viral infection. Beside PKR, the eIF2alpha kinase GCN2 participates in the cellular response against viral infection by RNA viruses with central nervous system tropism. PKR has also been involved in the antiviral response against HIV-1, although this antiviral effect is very limited due to the distinct mechanisms evolved by the virus to counteract PKR action. Here we report that infection of human cells with HIV-1 conveys the proteolytic cleavage of GCN2 and that purified HIV-1 and HIV-2 proteases produce direct proteolysis of GCN2 in vitro, abrogating the activation of GCN2 by HIV-1 RNA. Transfection of distinct cell lines with a plasmid encoding an HIV-1 cDNA clone competent for a single round of replication resulted in the activation of GCN2 and the subsequent eIF2alpha phosphorylation. Moreover, transfection of GCN2 knockout cells or cells with low levels of phosphorylated eIF2alpha with the same HIV-1 cDNA clone resulted in a marked increase of HIV-1 protein synthesis. Also, the over-expression of GCN2 in cells led to a diminished viral protein synthesis. These findings suggest that viral RNA produced during HIV-1 infection activates GCN2 leading to inhibition of viral RNA translation, and that HIV-1 protease cleaves GCN2 to overcome its antiviral effect.

  14. Distinct Dasatinib-Induced Mechanisms of Apoptotic Response and Exosome Release in Imatinib-Resistant Human Chronic Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Juan Liu

    2016-04-01

    Full Text Available Although dasatinib is effective in most imatinib mesylate (IMT-resistant chronic myeloid leukemia (CML patients, the underlying mechanism of its effectiveness in eliminating imatinib-resistant cells is only partially understood. This study investigated the effects of dasatinib on signaling mechanisms driving-resistance in imatinib-resistant CML cell line K562 (K562RIMT. Compared with K562 control cells, exsomal release, the phosphoinositide 3-kinase (PI3K/protein kinase B (Akt/ mammalian target of rapamycin (mTOR signaling and autophagic activity were increased significantly in K562RIMT cells and mTOR-independent beclin-1/Vps34 signaling was shown to be involved in exosomal release in these cells. We found that Notch1 activation-mediated reduction of phosphatase and tensin homolog (PTEN was responsible for the increased Akt/mTOR activities in K562RIMT cells and treatment with Notch1 γ-secretase inhibitor prevented activation of Akt/mTOR. In addition, suppression of mTOR activity by rapamycin decreased the level of activity of p70S6K, induced upregulation of p53 and caspase 3, and led to increase of apoptosis in K562RIMT cells. Inhibition of autophagy by spautin-1 or beclin-1 knockdown decreased exosomal release, but did not affect apoptosis in K562RIMT cells. In summary, in K562RIMT cells dasatinib promoted apoptosis through downregulation of Akt/mTOR activities, while preventing exosomal release and inhibiting autophagy by downregulating expression of beclin-1 and Vps34. Our findings reveal distinct dasatinib-induced mechanisms of apoptotic response and exosomal release in imatinib-resistant CML cells.

  15. Mesenchymal stem cells expanded in human platelet lysate display a decreased inhibitory capacity on T- and NK-cell proliferation and function.

    Science.gov (United States)

    Abdelrazik, Heba; Spaggiari, Grazia M; Chiossone, Laura; Moretta, Lorenzo

    2011-11-01

    The use of fetal bovine serum (FBS) for the culture and expansion of mesenchymal stromal cells (MSCs) limits their possible clinical applications. Although some recent studies recommended substituting FBS with human platelet lysate (HPL) for the expansion of MSCs for clinical use, the functional capacity of the expanded cells has only been partially explored. 10% FBS and two other commercial FBS-containing media (MesenCult and MesenPro) were compared with 10% HPL-containing medium for their ability to support MSCs expansion and immunomodulation. We demonstrate that HPL sustained MSC proliferation and expansion in vitro. However, the cumulative cell numbers recovered were comparable with those obtained in MesenPro medium. Moreover, we show that HPL alters the expression of some relevant MSC surface molecules, namely the DNAM-1 ligands PVR and Nectin-2, the NKG2D ligand ULBP3, the adhesion molecules CD49d and αvβ3 and the fibroblast-associated protein. In addition, MSCs cultured in HPL displayed impaired inhibitory capacity on T-cell proliferation to alloantigen and NK-cell proliferation and cytotoxicity. Finally, they showed decreased constitutive PGE2 production while IL-6, IL-8 and RANTES secretion were upregulated. These results imply some limitations in the use of HPL for the expansion of MSCs to be used as immunomodulators in clinical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ophthalmic manifestations of leukemia.

    Science.gov (United States)

    Talcott, Katherine E; Garg, Ravin J; Garg, Sunir J

    2016-11-01

    This article aims to describe the ocular manifestations of leukemia, resulting both from direct infiltration of neoplastic cells and from the more common secondary effects of leukemia and its treatment. The prevalence of these findings is also discussed, along with their clinical significance, association with hematologic markers and the ophthalmologist's role caring for these patients. Recent studies have included a large case series examining the prevalence of ocular manifestations in newly diagnosed leukemic patients as well as case reports of ocular manifestations of leukemia. Patients with leukemia often have ocular manifestations. These occur either from direct infiltration of neoplastic cells or from indirect or secondary causes, including hematologic abnormalities, central nervous system involvement, opportunistic infections, or from treatment. Although nearly all ocular structures can be affected, leukemic retinopathy is often the most clinically apparent manifestation. Awareness of the ophthalmic manifestations of leukemia is important as they may precede systemic diagnosis or may be a sign of leukemia recurrence.

  17. Flavopiridol, Cytarabine, and Mitoxantrone in Treating Patients With Acute Leukemia

    Science.gov (United States)

    2013-10-07

    Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Secondary Acute Myeloid Leukemia; Untreated Adult Acute Lymphoblastic Leukemia; Untreated Adult Acute Myeloid Leukemia

  18. Bovine leukemia virus linked to breast cancer but not coinfection with human papillomavirus: Case-control study of women in Texas.

    Science.gov (United States)

    Baltzell, Kimberly A; Shen, Hua Min; Krishnamurty, Savitri; Sison, Jennette D; Nuovo, Gerard J; Buehring, Gertrude C

    2017-12-20

    Bovine leukemia virus (BLV) and human papillomavirus (HPV) were previously identified in human breast tissue and have been associated with breast cancer in independent studies. The objective of the current study was to test for the presence of BLV and HPV in the same breast tissue specimens to determine whether the viruses were associated with breast cancer either singly or together. Archival formalin-fixed paraffin-embedded breast tissue sections from 216 women were received from The University of Texas MD Anderson Cancer Center along with patient diagnosis. In situ polymerase chain reaction and/or DNA hybridization methods were used to detect targeted DNA segments of BLV and HPV. Standard statistical methods were used to calculate age-adjusted odds ratios, attributable risk, and P values for the trend related to the association between presence of a virus and a diagnosis of breast disease. Women diagnosed with breast cancer were significantly more likely to have BLV DNA in their breast tissue compared with women with benign diagnoses and no history of breast cancer. Women with breast pathology classified as premalignant and no history of breast cancer also were found to have an elevated risk of harboring BLV DNA in their breast tissue. HPV status was not associated with malignancy, premalignant breast disease, or the presence of BLV in the breast tissues. The data from the current study supported previous findings of a significant association between BLV DNA in breast tissue and a diagnosis of breast cancer, but did not demonstrate oncogenic strains of HPV associated with breast cancer or the presence of BLV DNA in breast tissue. The authors believe the findings of the current study contribute to overall knowledge regarding a possible causal role for viruses in human breast cancer. Cancer 2017. © 2017 American Cancer Society. © 2017 American Cancer Society.

  19. Inhibitory Effects of Aschantin on Cytochrome P450 and Uridine 5′-diphospho-glucuronosyltransferase Enzyme Activities in Human Liver Microsomes

    Directory of Open Access Journals (Sweden)

    Soon-Sang Kwon

    2016-04-01

    Full Text Available Aschantin is a bioactive neolignan found in Magnolia flos with antiplasmodial, Ca2+-antagonistic, platelet activating factor-antagonistic, and chemopreventive activities. We investigated its inhibitory effects on the activities of eight major human cytochrome P450 (CYP and uridine 5′-diphospho-glucuronosyltransferase (UGT enzymes of human liver microsomes to determine if mechanistic aschantin–enzyme interactions were evident. Aschantin potently inhibited CYP2C8-mediated amodiaquine N-de-ethylation, CYP2C9-mediated diclofenac 4′-hydroxylation, CYP2C19-mediated [S]-mephenytoin 4′-hydroxylation, and CYP3A4-mediated midazolam 1′-hydroxylation, with Ki values of 10.2, 3.7, 5.8, and 12.6 µM, respectively. Aschantin at 100 µM negligibly inhibited CYP1A2-mediated phenacetin O-de-ethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated bupropion hydroxylation, and CYP2D6-mediated bufuralol 1′-hydroxylation. At 200 µM, it weakly inhibited UGT1A1-catalyzed SN-38 glucuronidation, UGT1A6-catalyzed N-acetylserotonin glucuronidation, and UGT1A9-catalyzed mycophenolic acid glucuronidation, with IC50 values of 131.7, 144.1, and 71.0 µM, respectively, but did not show inhibition against UGT1A3, UGT1A4, or UGT2B7 up to 200 µM. These in vitro results indicate that aschantin should be examined in terms of potential interactions with pharmacokinetic drugs in vivo. It exhibited potent mechanism-based inhibition of CYP2C8, CYP2C9, CYP2C19, and CYP3A4.

  20. Inhibitory effects of the essential oil of chamomile (Matricaria recutita L.) and its major constituents on human cytochrome P450 enzymes.

    Science.gov (United States)

    Ganzera, M; Schneider, P; Stuppner, H

    2006-01-18

    Chamomile extracts and tea are widely used herbal preparations for the treatment of minor illnesses (e.g. indigestion, inflammation). In this study the inhibitory effect of chamomile essential oil and its major constituents on four selected human cytochrome P450 enzymes (CYP1A2, CYP2C9, CYP2D6 and CYP3A4) was investigated. Increasing concentrations of the test compounds were incubated with individual, recombinant CYP isoforms and their effect on the conversion of surrogate substances was measured fluorometrically in 96-well plates; enzyme inhibition was expressed as IC50 and Ki value in relation to positive controls. Crude essential oil demonstrated inhibition of each of the enzymes, with CYP1A2 being more sensitive than the other isoforms. Three constituents of the oil, namely chamazulene (IC50 = 4.41 microM), cis-spiroether (IC50 = 2.01 microM) and trans-spiroether (IC50 = 0.47 microM) showed to be potent inhibitors of this enzyme, also being active towards CYP3A4. CYP2C9 and CYP2D6 were less inhibited, only chamazulene (IC50 = 1.06 microM) and alpha-bisabolol (IC50 = 2.18 microM) revealed a significant inhibition of the latter. As indicated by these in vitro data, chamomile preparations contain constituents inhibiting the activities of major human drug metabolizing enzymes; interactions with drugs whose route of elimination is mainly via cytochromes (especially CYP1A2) are therefore possible.

  1. Glabridin mediate caspases activation and induces apoptosis through JNK1/2 and p38 MAPK pathway in human promyelocytic leukemia cells.

    Directory of Open Access Journals (Sweden)

    Hsin-Lien Huang

    Full Text Available BACKGROUND: Glabridin, a prenylated isoflavonoid of G. glabra L. roots, has been associated with a wide range of biological properties such as regulation of energy metabolism, estrogenic, neuroprotective, anti-osteoporotic, and skin-whitening in previous studies. However, the effect of glabridin on tumor cells metastasis has not been clearly clarified. Here, the molecular mechanism by which glabridin anticancer effects in human promyelocytic leukemia cells was investigated. METHODOLOGY AND PRINCIPAL FINDINGS: The results showed that glabridin significantly inhibited cell proliferation of four AML cell lines (HL-60, MV4-11, U937, and THP-1. Furthermore, glabridin induced apoptosis of HL-60 cells through caspases-3, -8, and -9 activations and PARP cleavage in dose- and time-dependent manner. Moreover, western blot analysis also showed that glabridin increase phosphorylation of ERK1/2, p38 MAPK and JNK1/2 in dose- and time-dependent manner. Inhibition of p38 MAPK and JNK1/2 by specific inhibitors significantly abolished the glabridin-induced activation of the caspase-3, -8 and -9. CONCLUSION: Taken together, our results suggest that glabridin induced HL-60 cell apoptosis through p38 MAPK and JNK1/2 pathways and could serve as a potential additional chemotherapeutic agent for treating AML.

  2. Promyelocytic leukemia nuclear bodies provide a scaffold for human polyomavirus JC replication and are disrupted after development of viral inclusions in progressive multifocal leukoencephalopathy.

    Science.gov (United States)

    Shishido-Hara, Yukiko; Higuchi, Kayoko; Ohara, Sinji; Duyckaerts, Charles; Hauw, Jean-Jacques; Uchihara, Toshiki

    2008-04-01

    Progressive multifocal leukoencephalopathy is a fatal demyelinating disorder due to human polyomavirus JC infection in which there are viral inclusions in enlarged nuclei of infected oligodendrocytes. We report that the pathogenesis of this disease is associated with distinct subnuclear structures known as promyelocytic leukemia nuclear bodies (PML-NBs). Postmortem brain tissues from 5 patients with the disease were examined. Affected cells with enlarged nuclei contained distinct dot-like subnuclear PML-NBs that were immunopositive for PML protein and nuclear body protein Sp100. Major and minor viral capsid proteins and proliferating cell nuclear antigen, an essential component for DNA replication, colocalized with PML-NBs. By in situ hybridization, viral genomic DNA showed dot-like nuclear accumulation, and by electron microscopy, virus-like structures clustered in subnuclear domains, indicating that PML-NBs are the site of viral DNA replication and capsid assembly. Molecules involved in the ubiquitin proteosome pathway (i.e. ubiquitin and small ubiquitin-like modifier 1) did not accumulate in the nuclei with viral inclusions, indicating that cell degeneration may not be dependent on this pathway. When viral progeny production was advanced, PML-NBs were disrupted. These data suggest that: 1) PML-NBs allow for efficient viral propagation by providing scaffolds, 2) disruption of PML-NBs is independent of the ubiquitin-proteasome pathway, and 3) this disruption probably heralds oligodendrocyte degeneration and the resulting demyelination.

  3. Expression Levels of Human Equilibrative Nucleoside Transporter 1 and Deoxycytidine Kinase Enzyme as Prognostic Factors in Patients with Acute Myeloid Leukemia Treated with Cytarabine.

    Science.gov (United States)

    Candelaria, Myrna; Corrales-Alfaro, Carmen; Gutiérrez-Hernández, Olga; Díaz-Chavez, José; Labardini-Méndez, Juan; Vidal-Millán, Silvia; Herrera, Luis A

    2016-01-01

    Cytarabine (Ara-C) is the primary drug in different treatment schemas for acute myeloid leukemia (AML) and requires the human equilibrative nucleoside transporter (hENT1) to enter cells. The deoxycytidine kinase (dCK) enzyme limits its activation rate. Therefore, decreased expression levels of these genes may influence the response rate to this drug. AML patients without previous treatment were enrolled. The expression of hENT1 and dCK genes was analyzed using RT-PCR. Clinical parameters were registered. All patients received Ara-C + doxorubicin as an induction regimen (7 + 3 schema). Descriptive statistics were used to analyze data. Uni- and multivariate analyses were performed to determine factors that influenced response and survival. Twenty-eight patients were included from January 2011 until December 2012. Median age was 36.5 years. All patients had an adequate performance status (43% with ECOG 1 and 57% with ECOG 2). Cytogenetic risk was considered unfavorable in 54% of the patients. Complete response was achieved in 53.8%. Cox regression analysis showed that a higher hENT1 expression level was the only factor that influenced response and survival. These results highly suggest that the pharmacogenetic analyses of Ara-C influx may be decisive in AML patients. © 2016 S. Karger AG, Basel.

  4. Modulation of mitochondrial K(+) permeability and reactive oxygen species production by the p13 protein of human T-cell leukemia virus type 1.

    Science.gov (United States)

    Silic-Benussi, Micol; Cannizzaro, Enrica; Venerando, Andrea; Cavallari, Ilaria; Petronilli, Valeria; La Rocca, Nicoletta; Marin, Oriano; Chieco-Bianchi, Luigi; Di Lisa, Fabio; D'Agostino, Donna M; Bernardi, Paolo; Ciminale, Vincenzo

    2009-07-01

    Human T-cell leukemia virus type-1 (HTLV-1) expresses an 87-amino acid protein named p13 that is targeted to the inner mitochondrial membrane. Previous studies showed that a synthetic peptide spanning an alpha helical domain of p13 alters mitochondrial membrane permeability to cations, resulting in swelling. The present study examined the effects of full-length p13 on isolated, energized mitochondria. Results demonstrated that p13 triggers an inward K(+) current that leads to mitochondrial swelling and confers a crescent-like morphology distinct from that caused by opening of the permeability transition pore. p13 also induces depolarization, with a matching increase in respiratory chain activity, and augments production of reactive oxygen species (ROS). These effects require an intact alpha helical domain and strictly depend on the presence of K(+) in the assay medium. The effects of p13 on ROS are mimicked by the K(+) ionophore valinomycin, while the protonophore FCCP decreases ROS, indicating that depolarization induced by K(+) vs. H(+) currents has different effects on mitochondrial ROS production, possibly because of their opposite effects on matrix pH (alkalinization and acidification, respectively). The downstream consequences of p13-induced mitochondrial K(+) permeability are likely to have an important influence on the redox state and turnover of HTLV-1-infected cells.

  5. Detailed Analysis of Apoptosis and Delayed Luminescence of Human Leukemia Jurkat T Cells after Proton Irradiation and Treatments with Oxidant Agents and Flavonoids

    Science.gov (United States)

    Baran, Irina; Ganea, Constanta; Privitera, Simona; Scordino, Agata; Barresi, Vincenza; Musumeci, Francesco; Mocanu, Maria Magdalena; Condorelli, Daniele F.; Ursu, Ioan; Grasso, Rosaria; Gulino, Marisa; Garaiman, Alexandru; Musso, Nicolò; Cirrone, Giuseppe A. Pablo; Cuttone, Giacomo

    2012-01-01

    Following previous work, we investigated in more detail the relationship between apoptosis and delayed luminescence (DL) in human leukemia Jurkat T cells under a wide variety of treatments. We used menadione and hydrogen peroxide to induce oxidative stress and two flavonoids, quercetin, and epigallocatechin gallate, applied alone or in combination with menadione or H2O2. 62 MeV proton beams were used to irradiate cells under a uniform dose of 2 or 10 Gy, respectively. We assessed apoptosis, cell cycle distributions, and DL. Menadione, H2O2 and quercetin were potent inducers of apoptosis and DL inhibitors. Quercetin decreased clonogenic survival and the NAD(P)H level in a dose-dependent manner. Proton irradiation with 2 Gy but not 10 Gy increased the apoptotic rate. However, both doses induced a substantial G2/M arrest. Quercetin reduced apoptosis and prolonged the G2/M arrest induced by radiation. DL spectroscopy indicated that proton irradiation disrupted the electron flow within Complex I of the mitochondrial respiratory chain, thus explaining the massive necrosis induced by 10 Gy of protons and also suggested an equivalent action of menadione and quercetin at the level of the Fe/S center N2, which may be mediated by their binding to a common site within Complex I, probably the rotenone-binding site. PMID:22829956

  6. Cellular determinants involving mitochondrial dysfunction, oxidative stress and apoptosis correlate with the synergic cytotoxicity of epigallocatechin-3-gallate and menadione in human leukemia Jurkat T cells.

    Science.gov (United States)

    Tofolean, Ioana Teodora; Ganea, Constanta; Ionescu, Diana; Filippi, Alexandru; Garaiman, Alexandru; Goicea, Alexandru; Gaman, Mihnea-Alexandru; Dimancea, Alexandru; Baran, Irina

    2016-01-01

    We have investigated the growth-suppressive action of epigallocatechin-3-gallate (EGCG) on human leukemia Jurkat T cells. Results show a strong correlation between the dose-dependent reduction of clonogenic survival following acute EGCG treatments and the EGCG-induced decline of the mitochondrial level of Ca(2+). The cell killing ability of EGCG was synergistically enhanced by menadione. In addition, the cytotoxic effect of EGCG applied alone or in combination with menadione was accompanied by apoptosis induction. We also observed that in acute treatments EGCG displays strong antioxidant properties in the intracellular milieu, but concurrently triggers some oxidative stress generating mechanisms that can fully develop on a longer timescale. In parallel, EGCG dose-dependently induced mitochondrial depolarization during exposure, but this condition was subsequently reversed to a persistent hyperpolarized mitochondrial state that was dependent on the activity of respiratory Complex I. Fluorimetric measurements suggest that EGCG is a mitochondrial Complex III inhibitor and indicate that EGCG evokes a specific cellular fluorescence with emission at 400nm and two main excitation bands (at 330nm and 350nm) that may originate from a mitochondrial supercomplex containing dimeric Complex III and dimeric ATP-synthase, and therefore could provide a valuable means to characterize the functional properties of the respiratory chain. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Adult T-cell leukemia/lymphoma in a Peruvian hospital in human T-lymphotropic virus type 1 (HTLV-1) positive patients.

    Science.gov (United States)

    Rodríguez-Zúñiga, Milton José Max; Cortez-Franco, Florencio; Qujiano-Gomero, Eberth

    2017-05-01

    Adult T-cell leukemia/lymphoma (ATLL) is an aggressive neoplasm of T-lymphocytes associated with human T-lymphotropic virus type I (HTLV-1) infection. As HTLV-1 is endemic in native ethnics in South America, and its infection leads to several chronic diseases as ATLL with poor prognosis, we aimed to present three ATLL cases and to review current literature. Two cases were from the mountains of Peru, while one was from an endemic harbor of the country. An acute ATLL patient presented with multipapular infiltration of the skin and died 2 weeks after admission because of septic shock. The two chronic ATLL patients presented with erythematous plaques and erythroderma. They had swollen lymph nodes, lymphocytosis, and atypical lymphocytes on blood smear, with normal biochemical results. They both passed away a few months after diagnosis. ATLL is developed after years of HTLV-1 carrier status; therefore, physicians should know the principal clinical and laboratory findings in order to make prompt diagnosis. Prognosis is still poor in aggressive and indolent variants, with survival rates from months to a few years. Treatment based on chemotherapy, antiretroviral, and allogeneic stem cell transplantation are improving survival rates but with limited results. © 2017 The International Society of Dermatology.

  8. Detailed Analysis of Apoptosis and Delayed Luminescence of Human Leukemia Jurkat T Cells after Proton Irradiation and Treatments with Oxidant Agents and Flavonoids

    Directory of Open Access Journals (Sweden)

    Irina Baran

    2012-01-01

    Full Text Available Following previous work, we investigated in more detail the relationship between apoptosis and delayed luminescence (DL in human leukemia Jurkat T cells under a wide variety of treatments. We used menadione and hydrogen peroxide to induce oxidative stress and two flavonoids, quercetin, and epigallocatechin gallate, applied alone or in combination with menadione or H2O2. 62 MeV proton beams were used to irradiate cells under a uniform dose of 2 or 10 Gy, respectively. We assessed apoptosis, cell cycle distributions, and DL. Menadione, H2O2 and quercetin were potent inducers of apoptosis and DL inhibitors. Quercetin decreased clonogenic survival and the NAD(PH level in a dose-dependent manner. Proton irradiation with 2 Gy but not 10 Gy increased the apoptotic rate. However, both doses induced a substantial G2/M arrest. Quercetin reduced apoptosis and prolonged the G2/M arrest induced by radiation. DL spectroscopy indicated that proton irradiation disrupted the electron flow within Complex I of the mitochondrial respiratory chain, thus explaining the massive necrosis induced by 10 Gy of protons and also suggested an equivalent action of menadione and quercetin at the level of the Fe/S center N2, which may be mediated by their binding to a common site within Complex I, probably the rotenone-binding site.

  9. Real-time RT-PCR analysis of human histidine decarboxylase, a new marker for several types of leukemia and cancer.

    Science.gov (United States)

    Melgarejo, Esther; Medina, Miguel Angel; Paz, José Carlos; Sánchez-Jiménez, Francisca; Urdiales, José Luis

    2006-01-01

    Histamine is involved in different physiological and pathological responses, such as immune response, gastric acid secretion or neurotransmission, as either angiogenesis or cancer. Histidine decarboxylase (HDC) catalyzes the formation of histamine from histidine. HDC has been suggested as a new marker for neuroendocrine differentiation, inflammatory pathologies and several leukemia and highly malignant forms of cancer, such as melanoma and small cell lung carcinoma. In the present work, we describe the use of Syber Green-based quantitative real-time RT-PCR to determine the expression of histidine decarboxylase in human cells and tissue. As an internal control, glyceraldehyde 3-phosphate dehydrogenase was also amplified. The linear dynamic range of the assay covered 4 orders of magnitude for HDC amplification. The detection limit was 0.1 ng of total RNA extracted from HMC-1 cells. This method is simple, rapid, sensitive, and quantitative, and allows for the specific identification of cells and tissue expressing HDC, stressing its potential diagnostic usefulness in malignancies in which HDC is described as a new marker.

  10. Combined treatment with fenretinide and indomethacin induces AIF-mediated, non-classical cell death in human acute T-cell leukemia Jurkat cells

    Energy Technology Data Exchange (ETDEWEB)

    Hojka-Osinska, Anna, E-mail: hojka@immuno.iitd.pan.wroc.pl [Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw (Poland); Ziolo, Ewa, E-mail: ziolo@immuno.iitd.pan.wroc.pl [Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw (Poland); Rapak, Andrzej, E-mail: rapak@immuno.iitd.pan.wroc.pl [Laboratory of Tumor Molecular Immunobiology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, 53-114 Wroclaw (Poland)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer The combination of fenretinide and indomethacin induces a high level of cell death. Black-Right-Pointing-Pointer Apoptotic pathway is caspase-independent. Black-Right-Pointing-Pointer Jurkat cells undergo AIF-mediated cell death. -- Abstract: Currently used cytotoxic drugs in cancer therapy have a similar mechanism of action and low specificity. Applied simultaneously, they show an additive effect with strong side effects. Clinical trials with the use of different agents in cancer therapy show that the use of these compounds alone is not very effective in fighting cancer. An alternative solution could be to apply a combination of these agents, because their combination has a synergistic effect on some cancer cells. Therefore, in our investigations we examined the effects of a synthetic retinoid-fenretinide when combined with a non-steroidal anti-inflammatory drug-indomethacin on the process of apoptosis in the acute human T-cell leukemia cell line Jurkat. We demonstrate that treatment with the combination of the tested compounds induces the death of cells, that is peculiar and combines features of apoptosis as well as non-apoptotic cell death. In detail we observed, cell membrane permeabilization, phosphatydylserine exposure, no oligonucleosomal DNA fragmentation, no caspase-3 activation, but apoptosis inducing factor (AIF) nuclear translocation. Taken together these results indicate, that Jurkat cells after treatment with a combination of fenretinide and indomethacin undergo AIF-mediated programmed cell death.

  11. Gene Regulatory Scenarios of Primary 1,25-Dihydroxyvitamin D{sub 3} Target Genes in a Human Myeloid Leukemia Cell Line

    Energy Technology Data Exchange (ETDEWEB)

    Ryynänen, Jussi; Seuter, Sabine [School of Medicine, Institute of Biomedicine, University of Eastern Finland, POB 1627, Kuopio FI-70211 (Finland); Campbell, Moray J. [Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263 (United States); Carlberg, Carsten, E-mail: carsten.carlberg@uef.fi [School of Medicine, Institute of Biomedicine, University of Eastern Finland, POB 1627, Kuopio FI-70211 (Finland)

    2013-10-16

    Genome- and transcriptome-wide data has significantly increased the amount of available information about primary 1,25-dihydroxyvitamin D{sub 3} (1,25(OH){sub 2}D{sub 3}) target genes in cancer cell models, such as human THP-1 myelomonocytic leukemia cells. In this study, we investigated the genes G0S2, CDKN1A and MYC as master examples of primary vitamin D receptor (VDR) targets being involved in the control of cellular proliferation. The chromosomal domains of G0S2 and CDKN1A are 140–170 kb in size and contain one and three VDR binding sites, respectively. This is rather compact compared to the MYC locus that is 15 times larger and accommodates four VDR binding sites. All eight VDR binding sites were studied by chromatin immunoprecipitation in THP-1 cells. Interestingly, the site closest to the transcription start site of the down-regulated MYC gene showed 1,25(OH){sub 2}D{sub 3}-dependent reduction of VDR binding and is not associated with open chromatin. Four of the other seven VDR binding regions contain a typical DR3-type VDR binding sequence, three of which are also occupied with VDR in macrophage-like cells. In conclusion, the three examples suggest that each VDR target gene has an individual regulatory scenario. However, some general components of these scenarios may be useful for the development of new therapy regimens.

  12. In vitro and in vivo activity of 4-thio-uridylate against JY cells, a model for human acute lymphoid leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Berenyi, Erika [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, 98 Nagyerdei Krt., Debrecen 4032 (Hungary); Benko, Ilona [Department of Pharmacology and Pharmacotherapy, Medical and Health Science Center, University of Debrecen, 98 Nagyerdei Krt., Debrecen 4032 (Hungary); Vamosi, Gyoergy [Cell Biology and Signaling Research Group of the Hungarian Academy of Sciences, Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, 98 Nagyerdei Krt., Debrecen 4032 (Hungary); Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, 98 Nagyerdei Krt., Debrecen 4032 (Hungary); Geresi, Krisztina [Department of Pharmacology and Pharmacotherapy, Medical and Health Science Center, University of Debrecen, 98 Nagyerdei Krt., Debrecen 4032 (Hungary); Tarkanyi, Ilona [3rd Department of Internal Medicine, Medical and Health Science Center, University of Debrecen, 98 Nagyerdei Krt., Debrecen 4032 (Hungary); Szegedi, Istvan [Department of Pediatrics, Medical and Health Science Center, University of Debrecen, 98 Nagyerdei Krt., Debrecen 4032 (Hungary); Lukacs, Levente [Coordinating Department of Surgical Techniques, Medical and Health Science Center, University of Debrecen, 98 Nagyerdei Krt., Debrecen 4032 (Hungary); Juhasz, Istvan [Department of Dermatology, Medical and Health Science Center, University of Debrecen, 98 Nagyerdei Krt., Debrecen 4032 (Hungary); Kiss, Csongor [Department of Pediatrics, Medical and Health Science Center, University of Debrecen, 98 Nagyerdei Krt., Debrecen 4032 (Hungary); Fesues, Laszlo [Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, 98 Nagyerdei Krt., Debrecen 4032 (Hungary); Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, 98 Nagyerdei Krt., Debrecen 4032 (Hungary); and others

    2011-07-08

    Highlights: {yields} s{sup 4}UMP a naturally occurring thiolated nucleotide, effectively inhibited the proliferation of JY cells in vitro and in vivo. {yields} s{sup 4}UMP decreased the cell number and colony forming activity of leukemia cells in SCID mice. {yields} The effect of s{sup 4}UMP was undetectable on the bone marrow of healthy mice. {yields} The biochemical changes of the treated cells suggested that s{sup 4}UMP induced apoptosis. -- Abstract: We have previously reported the in vitro anti-proliferative effect of 4-thio-uridylate (s{sup 4}UMP) on OCM-1 uveal melanoma cells. Here, we assessed the efficacy of s{sup 4}UMP on JY cells. Treatment of JY cells with s{sup 4}UMP suppressed their colony forming activity and induced apoptosis; healthy human bone marrow granulocyte-macrophage progenitor cells were 14-fold less sensitive to the nucleotide. In vivo effectiveness of s{sup 4}UMP was determined using xenograft SCID mouse model. s{sup 4}UMP decreased the cell number and colony forming activity of the total cell content of the femur of SCID mice transplanted with JY cells without affecting the bone marrow of healthy mice. These results suggest that s{sup 4}UMP alone or in combination with other clinically approved anti-leukemic remedies should be further explored as a potential novel therapeutic agent.

  13. The MLL recombinome of acute leukemias in 2017

    DEFF Research Database (Denmark)

    Meyer, C; Burmeister, T; Gröger, D

    2018-01-01

    Chromosomal rearrangements of the human MLL/KMT2A gene are associated with infant, pediatric, adult and therapy-induced acute leukemias. Here we present the data obtained from 2345 acute leukemia patients. Genomic breakpoints within the MLL gene and the involved translocation partner genes (TPGs)...

  14. CD47 Agonist Peptides Induce Programmed Cell Death in Refractory Chronic Lymphocytic Leukemia B Cells via PLCγ1 Activation: Evidence from Mice and Humans

    Science.gov (United States)

    Attout, Tarik; Boullet, Heloïse; Herbi, Linda; Vela, Laura; Barbier, Sandrine; Chateau, Danielle; Chapiro, Elise; Nguyen-Khac, Florence; Davi, Frédéric; Le Garff-Tavernier, Magali; Moumné, Roba; Sarfati, Marika; Karoyan, Philippe; Merle-Béral, Hélène; Launay, Pierre; Susin, Santos A.

    2015-01-01

    Background Chronic lymphocytic leukemia (CLL), the most common adulthood leukemia, is characterized by the accumulation of abnormal CD5+ B lymphocytes, which results in a progressive failure of the immune system. Despite intense research efforts, drug resistance remains a major cause of treatment failure in CLL, particularly in patients with dysfunctional TP53. The objective of our work was to identify potential approaches that might overcome CLL drug refractoriness by examining the pro-apoptotic potential of targeting the cell surface receptor CD47 with serum-stable agonist peptides. Methods and Findings In peripheral blood samples collected from 80 patients with CLL with positive and adverse prognostic features, we performed in vitro genetic and molecular analyses that demonstrate that the targeting of CD47 with peptides derived from the C-terminal domain of thrombospondin-1 efficiently kills the malignant CLL B cells, including those from high-risk individuals with a dysfunctional TP53 gene, while sparing the normal T and B lymphocytes from the CLL patients. Further studies reveal that the differential response of normal B lymphocytes, collected from 20 healthy donors, and leukemic B cells to CD47 peptide targeting results from the sustained activation in CLL B cells of phospholipase C gamma-1 (PLCγ1), a protein that is significantly over-expressed in CLL. Once phosphorylated at tyrosine 783, PLCγ1 enables a Ca2+-mediated, caspase-independent programmed cell death (PCD) pathway that is not down-modulated by the lymphocyte microenvironment. Accordingly, down-regulation of PLCγ1 or pharmacological inhibition of PLCγ1 phosphorylation abolishes CD47-mediated killing. Additionally, in a CLL-xenograft model developed in NOD/scid gamma mice, we demonstrate that the injection of CD47 agonist peptides reduces tumor burden without inducing anemia or toxicity in blood, liver, or kidney. The limitations of our study are mainly linked to the affinity of the peptides

  15. CD47 agonist peptides induce programmed cell death in refractory chronic lymphocytic leukemia B cells via PLCγ1 activation: evidence from mice and humans.

    Directory of Open Access Journals (Sweden)

    Ana-Carolina Martinez-Torres

    2015-03-01

    Full Text Available Chronic lymphocytic leukemia (CLL, the most common adulthood leukemia, is characterized by the accumulation of abnormal CD5+ B lymphocytes, which results in a progressive failure of the immune system. Despite intense research efforts, drug resistance remains a major cause of treatment failure in CLL, particularly in patients with dysfunctional TP53. The objective of our work was to identify potential approaches that might overcome CLL drug refractoriness by examining the pro-apoptotic potential of targeting the cell surface receptor CD47 with serum-stable agonist peptides.In peripheral blood samples collected from 80 patients with CLL with positive and adverse prognostic features, we performed in vitro genetic and molecular analyses that demonstrate that the targeting of CD47 with peptides derived from the C-terminal domain of thrombospondin-1 efficiently kills the malignant CLL B cells, including those from high-risk individuals with a dysfunctional TP53 gene, while sparing the normal T and B lymphocytes from the CLL patients. Further studies reveal that the differential response of normal B lymphocytes, collected from 20 healthy donors, and leukemic B cells to CD47 peptide targeting results from the sustained activation in CLL B cells of phospholipase C gamma-1 (PLCγ1, a protein that is significantly over-expressed in CLL. Once phosphorylated at tyrosine 783, PLCγ1 enables a Ca2+-mediated, caspase-independent programmed cell death (PCD pathway that is not down-modulated by the lymphocyte microenvironment. Accordingly, down-regulation of PLCγ1 or pharmacological inhibition of PLCγ1 phosphorylation abolishes CD47-mediated killing. Additionally, in a CLL-xenograft model developed in NOD/scid gamma mice, we demonstrate that the injection of CD47 agonist peptides reduces tumor burden without inducing anemia or toxicity in blood, liver, or kidney. The limitations of our study are mainly linked to the affinity of the peptides targeting CD47

  16. [Cutaneous manifestations of leukemia].

    Science.gov (United States)

    Pulido-Díaz, Nancy; Medina, Gabriela; Palomino, Nymrod; Peralta, Fidelio

    2015-01-01

    To describe the type and frequency of cutaneous manifestations of leukemia. Observational, descriptive study. We included patients over 16 years of age, with confirmed diagnosis of leukemia from the Hematology and Dermatology Departments of the outpatient clinic and from in-patients. Patients with bone marrow transplantation were excluded. A complete history and physical examination of the skin and appendages was performed, with biopsy and cultures if required. The cutaneous manifestations were classified as infection or drug-related, leukemic infiltration, associated dermatosis to leukemia and non-specific lesions. Descriptive statistics was employed. We included 142 patients (62 females, 80 males) with the following diagnoses: acute myeloid leukemia (n=36), acute lymphoblastic leukemia (n=52), chronic myeloid leukemia (n=21), chronic lymphocitic leukemia (n=30) and hairy cells leukemia (n=3). 42% of patients (n=60) presented some dermatoses. There were 36 non-specific dermatoses, 21 drug-related, 20 infectious, 3 infiltrative and none associated. Cutaneous manifestations directly related to leukemia are frequent, being the non-specific ones, the most commonly observed. However, a thorough dermatologic examination is important in these patients as part of an overall evaluation.

  17. Atomic bomb and leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Ichimaru, Michito; Tomonaga, Masao; Amenomori, Tatsuhiko; Matsuo, Tatsuki (Nagasaki Univ. (Japan). School of Medicine)

    1991-03-01

    Characteristic features of leukemia among atomic bomb survivors were studied. The ratio of a single leukemia type to all leukemias was highest for CML in Hiroshima, and the occurrence of CML was thought to be most characteristic for atomic bomb radiation induced leukemia. In the distribution of AML subtypes of FAB classification, there was no M3 cases in 1 Gy or more group, although several atypical AML cases of survivors were observed. Chromosome study was conducted using colony forming cells induced by hemopoietic stem cells of peripheral blood of proximal survivors. Same chromosome aberrations were observed in colony forming cells and peripheral blood of proximal survivors. (author).

  18. Flavopiridol in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, or Chronic Myelogenous Leukemia

    Science.gov (United States)

    2013-06-03

    Adult Acute Basophilic Leukemia; Adult Acute Eosinophilic Leukemia; Adult Acute Megakaryoblastic Leukemia (M7); Adult Acute Minimally Differentiated Myeloid Leukemia (M0); Adult Acute Monoblastic Leukemia (M5a); Adult Acute Monocytic Leukemia (M5b); Adult Acute Myeloblastic Leukemia With Maturation (M2); Adult Acute Myeloblastic Leukemia Without Maturation (M1); Adult Acute Myeloid Leukemia With 11q23 (MLL) Abnormalities; Adult Acute Myeloid Leukemia With Inv(16)(p13;q22); Adult Acute Myeloid Leukemia With t(16;16)(p13;q22); Adult Acute Myeloid Leukemia With t(8;21)(q22;q22); Adult Acute Myelomonocytic Leukemia (M4); Adult Erythroleukemia (M6a); Adult Pure Erythroid Leukemia (M6b); Blastic Phase Chronic Myelogenous Leukemia; Recurrent Adult Acute Lymphoblastic Leukemia; Recurrent Adult Acute Myeloid Leukemia; Relapsing Chronic Myelogenous Leukemia

  19. Berberine Induces Apoptotic Cell Death via Activation of Caspase-3 and -8 in HL-60 Human Leukemia Cells: Nuclear Localization and Structure-Activity Relationships.

    Science.gov (United States)

    Okubo, Shinya; Uto, Takuhiro; Goto, Aya; Tanaka, Hiroyuki; Nishioku, Tsuyoshi; Yamada, Katsushi; Shoyama, Yukihiro

    2017-01-01

    Berberine (BBR), an isoquinoline alkaloid, is a well-known bioactive compound contained in medicinal plants used in traditional and folk medicines. In this study, we investigated the subcellular localization and the apoptotic mechanisms of BBR were elucidated. First, we confirmed the incorporation of BBR into the cell visually. BBR showed antiproliferative activity and promptly localized to the nucleus from 5[Formula: see text]min to 15[Formula: see text]min after BBR treatment in HL-60 human promyelocytic leukemia cells. Next, we examined the antiproliferative activity of BBR (1) and its biosynthetically related compounds (2-7) in HL-60 cells. BBR exerted strongest antiproliferative activity among 1-7 and the results of structures and activity relation suggested that a methylenedioxyl group in ring A, an [Formula: see text]-alkyl group at C-9 position, and the frame of isoquinoline may be necessary for antiproliferative activity. Moreover, BBR showed the most potent antiproliferative activity in HL-60 cells among human cancer and normal cell lines tested. Next, we examined the effect of BBR on molecular events known as apoptosis induction. In HL-60 cells, BBR induced chromatin condensation and DNA fragmentation, and triggered the activation of PARP, caspase-3 and caspase-8 without the activation of caspase-9. BBR-induced DNA fragmentation was abolished by pretreatment with inhibitors against caspase-3 and caspase-8, but not against caspase-9. ERK and p38 were promptly phosphorylated after 15 min of BBR treatment, and this was correlated with time of localization to the nucleus of BBR. These results demonstrated that BBR translocated into nucleus immediately after treatments and induced apoptotic cell death by activation of caspase-3 and caspase-8.

  20. Development of a complete human IgG monoclonal antibody to transferrin receptor 1 targeted for adult T-cell leukemia/lymphoma.

    Science.gov (United States)

    Shimosaki, Shunsuke; Nakahata, Shingo; Ichikawa, Tomonaga; Kitanaka, Akira; Kameda, Takuro; Hidaka, Tomonori; Kubuki, Yoko; Kurosawa, Gene; Zhang, Lilin; Sudo, Yukio; Shimoda, Kazuya; Morishita, Kazuhiro

    2017-03-25

    Iron is an essential nutrient for normal cell growth, and reprogramming of iron metabolism is essential to tumor cell survival and progression. HTLV-1-associated adult T-cell leukemia/lymphoma (ATLL) has no effective therapy and high levels of cell surface transferrin receptor 1 (TFR1) expression have been reported in ATLL by us and other groups. In this study, to develop a novel molecular-targeted therapy against TFR1 to modulate iron metabolism, we initially determined the expression pattern of several iron-related genes along with TFR1 and found that ATLL cells presented characteristic of an iron-deficiency state such as high expression of iron-regulatory protein 2 (IRP2) and low expression of its E3 ubiquitin-ligase, FBXL5. Therefore, we developed human IgG monoclonal antibodies to human TFR1 using a phage display method (ICOS method) to block the incorporation of the transferrin (TF)-iron complex into ATLL cells for inhibiting cell growth. One of the mAbs, JST-TFR09, presented its greater affinity to TFR1 on ATLL cells in flow cytometry (FCM) analysis than those of commercially available anti-TFR1 antibodies and identified high expression of TFR1 in most of the acute-type ATLL cells. Moreover, JST-TFR09 could interfere with binding between TFR1 and TF, which resulted in effective blockade of TFR1 internalization and induction of cell apoptosis by the treatment of ATLL cells with JST-TFR09. JST-TFR09 showed dual activities through direct cell cytotoxicity and antibody-dependent cellular cytotoxicity (ADCC), and the treatment of JST-TFR09 significantly suppressed cell growth of ATLL cells with induction of apoptosis in in vitro and in vivo experiments. Thus, JST-TFR09 described here may become a promising therapeutic antibody for the treatment of ATLL. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. The apoptotic mechanism of action of the sphingosine kinase 1 selective inhibitor SKI-178 in human acute myeloid leukemia cell lines.

    Science.gov (United States)

    Dick, Taryn E; Hengst, Jeremy A; Fox, Todd E; Colledge, Ashley L; Kale, Vijay P; Sung, Shen-Shu; Sharma, Arun; Amin, Shantu; Loughran, Thomas P; Kester, Mark; Wang, Hong-Gang; Yun, Jong K

    2015-03-01

    We previously developed SKI-178 (N'-[(1E)-1-(3,4-dimethoxyphenyl)ethylidene]-3-(4-methoxxyphenyl)-1H-pyrazole-5-carbohydrazide) as a novel sphingosine kinase-1 (SphK1) selective inhibitor and, herein, sought to determine the mechanism-of-action of SKI-178-induced cell death. Using human acute myeloid leukemia (AML) cell lines as a model, we present evidence that SKI-178 induces prolonged mitosis followed by apoptotic cell death through the intrinsic apoptotic cascade. Further examination of the mechanism of action of SKI-178 implicated c-Jun NH2-terminal kinase (JNK) and cyclin-dependent protein kinase 1 (CDK1) as critical factors required for SKI-178-induced apoptosis. In cell cycle synchronized human AML cell lines, we demonstrate that entry into mitosis is required for apoptotic induction by SKI-178 and that CDK1, not JNK, is required for SKI-178-induced apoptosis. We further demonstrate that the sustained activation of CDK1 during prolonged mitosis, mediated by SKI-178, leads to the simultaneous phosphorylation of the prosurvival Bcl-2 family members, Bcl-2 and Bcl-xl, as well as the phosphorylation and subsequent degradation of Mcl-1. Moreover, multidrug resistance mediated by multidrug-resistant protein1 and/or prosurvival Bcl-2 family member overexpression did not affect the sensitivity of AML cells to SKI-178. Taken together, these findings highlight the therapeutic potential of SKI-178 targeting SphK1 as a novel therapeutic agent for the treatment of AML, including multidrug-resistant/recurrent AML subtypes. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Thymoquinone exerts potent growth-suppressive activity on leukemia through DNA hypermethylation reversal in leukemia cells.

    Science.gov (United States)

    Pang, Jiuxia; Shen, Na; Yan, Fei; Zhao, Na; Dou, Liping; Wu, Lai-Chu; Seiler, Christopher L; Yu, Li; Yang, Ke; Bachanova, Veronika; Weaver, Eric; Tretyakova, Natalia Y; Liu, Shujun

    2017-05-23

    Thymoquinone (TQ), a bioactive constituent of the volatile oil of Monarda fistulosa and Nigella sativa, possesses cancer-specific growth inhibitory effects, but the underlying molecular mechanisms remain largely elusive. We propose that TQ curbs cancer cell growth through dysfunction of DNA methyltransferase 1 (DNMT1). Molecular docking analysis revealed that TQ might interact with the catalytic pocket of DNMT1 and compete with co-factor SAM/SAH for DNMT1 inhibition. In vitro inhibitory assays showed that TQ decreases DNMT1 methylation activity in a dose-dependent manner with an apparent IC50 of 30 nM. Further, exposure of leukemia cell lines and patient primary cells to TQ resulted in DNMT1 downregulation, mechanistically, through dissociation of Sp1/NFkB complex from DNMT1 promoter. This led to a reduction of DNA methylation, a decrease of colony formation and an increase of cell apoptosis via the activation of caspases. In addition, we developed and validated a sensitive and specific LC-MS/MS method and successfully detected a dynamic change of TQ in mouse plasma after administration of TQ through the tail vein, and determined a tolerable dose of TQ to be 15 mg/kg in mouse. TQ administration into leukemia-bearing mice induced leukemia regression, as indicated by the reversed splenomegaly and the inhibited leukemia cell growth in lungs and livers. Our study for the first time demonstrates that DNMT1-dependent DNA methylation mediates the anticancer actions of TQ, opening a window to develop TQ as a novel DNA hypomethylating agent for leukemia therapy.

  3. Inhibitory effects of silibinin on proliferation and lung metastasis of human high metastasis cell line of salivary gland adenoid cystic carcinoma via autophagy induction

    Directory of Open Access Journals (Sweden)

    Jiang C

    2016-10-01

    Full Text Available Canhua Jiang,1 Shufang Jin,1 Zhisheng Jiang,1 Jie Wang2 1Department of Oral and Maxillofacial Surgery, Xiangya Hospital, 2Department of Immunology, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China Objective: To investigate the possible mechanisms and effects of silibinin (SIL on the proliferation and lung metastasis of human lung high metastasis cell line of salivary gland adenoid cystic carcinoma (ACC-M.Methods: A methyl thiazolyl tetrazolium assay was performed to detect the inhibitory effects of SIL on the proliferation of ACC-M cells in vitro. Fluorescence microscopy and transmission electron microscopy were used to observe the autophagic process. Western blot was performed to detect the expression of microtube-related protein 1 light-chain 3 (LC3. An experimental adenoid cystic carcinoma (ACC lung metastasis model was established in nude mice to detect the impacts of SIL on lung weight and lung cancer nodules. Immunohistochemistry was used to detect the expressions of LC3 in human ACC samples and normal salivary gland tissue samples.Results: SIL inhibited the proliferation of ACC-M cells in a dose- and time-dependent manner, and inductively increased the