WorldWideScience

Sample records for human leg muscle

  1. Bed rest attenuates sympathetic and pressor responses to isometric exercise in antigravity leg muscles in humans.

    Science.gov (United States)

    Kamiya, Atsunori; Michikami, Daisaku; Shiozawa, Tomoki; Iwase, Satoshi; Hayano, Junichiro; Kawada, Toru; Sunagawa, Kenji; Mano, Tadaaki

    2004-05-01

    Although spaceflight and bed rest are known to cause muscular atrophy in the antigravity muscles of the legs, the changes in sympathetic and cardiovascular responses to exercises using the atrophied muscles remain unknown. We hypothesized that bed rest would augment sympathetic responses to isometric exercise using antigravity leg muscles in humans. Ten healthy male volunteers were subjected to 14-day 6 degrees head-down bed rest. Before and after bed rest, they performed isometric exercises using leg (plantar flexion) and forearm (handgrip) muscles, followed by 2-min postexercise muscle ischemia (PEMI) that continues to stimulate the muscle metaboreflex. These exercises were sustained to fatigue. We measured muscle sympathetic nerve activity (MSNA) in the contralateral resting leg by microneurography. In both pre- and post-bed-rest exercise tests, exercise intensities were set at 30 and 70% of the maximum voluntary force measured before bed rest. Bed rest attenuated the increase in MSNA in response to fatiguing plantar flexion by approximately 70% at both exercise intensities (both P antigravity leg muscles.

  2. Blood pressure and the contractility of a human leg muscle.

    Science.gov (United States)

    Luu, Billy L; Fitzpatrick, Richard C

    2013-11-01

    These studies investigate the relationships between perfusion pressure, force output and pressor responses for the contracting human tibialis anterior muscle. Eight healthy adults were studied. Changing the height of tibialis anterior relative to the heart was used to control local perfusion pressure. Electrically stimulated tetanic force output was highly sensitive to physiological variations in perfusion pressure showing a proportionate change in force output of 6.5% per 10 mmHg. This perfusion-dependent change in contractility begins within seconds and is reversible with a 53 s time constant, demonstrating a steady-state equilibrium between contractility and perfusion pressure. These stimulated contractions did not produce significant cardiovascular responses, indicating that the muscle pressor response does not play a major role in cardiovascular regulation at these workloads. Voluntary contractions at forces that would require constant motor drive if perfusion pressure had remained constant generated a central pressor response when perfusion pressure was lowered. This is consistent with a larger cortical drive being required to compensate for the lost contractility with lower perfusion pressure. The relationship between contractility and perfusion for this large postural muscle was not different from that of a small hand muscle (adductor pollicis) and it responded similarly to passive peripheral and active central changes in arterial pressure, but extended over a wider operating range of pressures. If we consider that, in a goal-oriented motor task, muscle contractility determines central motor output and the central pressor response, these results indicate that muscle would fatigue twice as fast without a pressor response. From its extent, timing and reversibility we propose a testable hypothesis that this change in contractility arises through contraction- and perfusion-dependent changes in interstitial K(+) concentration.

  3. Regulation of PDH in human arm and leg muscles at rest and during intense exercise

    DEFF Research Database (Denmark)

    Kiilerich, Kristian; Birk, Jesper Bratz; Damsgaard, Rasmus

    2008-01-01

    To test the hypothesis that pyruvate dehydrogenase (PDH) is differentially regulated in specific human muscles, regulation of PDH was examined in triceps, deltoid, and vastus lateralis at rest and during intense exercise. To elicit considerable glycogen use, subjects performed 30 min of exhaustive...... arm cycling on two occasions and leg cycling exercise on a third day. Muscle biopsies were obtained from deltoid or triceps on the arm exercise days and from vastus lateralis on the leg cycling day. Resting PDH protein content and phosphorylation on PDH-E1 alpha sites 1 and 2 were higher (P ....05) in vastus lateralis than in triceps and deltoid as was the activity of oxidative enzymes. Net muscle glycogen utilization was similar in vastus lateralis and triceps ( approximately 50%) but less in deltoid (likely reflecting less recruitment of deltoid), while muscle lactate accumulation was approximately...

  4. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.

    Science.gov (United States)

    Markowitz, Jared; Herr, Hugh

    2016-05-01

    Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG), and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT) values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured) with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle.

  5. Human Leg Model Predicts Muscle Forces, States, and Energetics during Walking.

    Directory of Open Access Journals (Sweden)

    Jared Markowitz

    2016-05-01

    Full Text Available Humans employ a high degree of redundancy in joint actuation, with different combinations of muscle and tendon action providing the same net joint torque. Both the resolution of these redundancies and the energetics of such systems depend on the dynamic properties of muscles and tendons, particularly their force-length relations. Current walking models that use stock parameters when simulating muscle-tendon dynamics tend to significantly overestimate metabolic consumption, perhaps because they do not adequately consider the role of elasticity. As an alternative, we posit that the muscle-tendon morphology of the human leg has evolved to maximize the metabolic efficiency of walking at self-selected speed. We use a data-driven approach to evaluate this hypothesis, utilizing kinematic, kinetic, electromyographic (EMG, and metabolic data taken from five participants walking at self-selected speed. The kinematic and kinetic data are used to estimate muscle-tendon lengths, muscle moment arms, and joint moments while the EMG data are used to estimate muscle activations. For each subject we perform an optimization using prescribed skeletal kinematics, varying the parameters that govern the force-length curve of each tendon as well as the strength and optimal fiber length of each muscle while seeking to simultaneously minimize metabolic cost and maximize agreement with the estimated joint moments. We find that the metabolic cost of transport (MCOT values of our participants may be correctly matched (on average 0.36±0.02 predicted, 0.35±0.02 measured with acceptable joint torque fidelity through application of a single constraint to the muscle metabolic budget. The associated optimal muscle-tendon parameter sets allow us to estimate the forces and states of individual muscles, resolving redundancies in joint actuation and lending insight into the potential roles and control objectives of the muscles of the leg throughout the gait cycle.

  6. Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans

    DEFF Research Database (Denmark)

    Ara, I; Larsen, S; Stallknecht, Bente Merete

    2011-01-01

    was that fat oxidation during exercise might be differentially preserved in leg and arm muscles after weight loss.Methods:Indirect calorimetry was used to calculate fat and carbohydrate oxidation during both progressive arm-cranking and leg-cycling exercises. Muscle biopsy samples were obtained from musculus...... deltoideus (m. deltoideus) and m. vastus lateralis muscles. Fibre-type composition, enzyme activity and O(2) flux capacity of saponin-permeabilized muscle fibres were measured, the latter by high-resolution respirometry.Results:During the graded exercise tests, peak fat oxidation during leg cycling...... and the relative workload at which it occurred (FatMax) were higher in PO and O than in C. During arm cranking, peak fat oxidation was higher in O than in C, and FatMax was higher in O than in PO and C. Similar fibre-type composition was found between groups. Plasma adiponectin was higher in PO than in C and O...

  7. Muscle interstitial ATP and norepinephrine concentrations in the human leg during exercise and ATP infusion

    DEFF Research Database (Denmark)

    Mortensen, Stefan P.; Gonzalez-Alonso, Jose; Nielsen, Jens Jung

    2009-01-01

    ATP and NE concentrations to gain insight into the interstitial and intravascular mechanisms by which ATP causes muscle vasodilation and sympatholysis. Leg hemodynamics and muscle interstitial nucleotide and norepinephrine (NE) concentrations were measured during: 1) femoral arterial ATP infusion (0......, respectively (Pcontracting muscle (Pmuscle, whereas interstitial NE concentrations increased similarly in both active...... and inactive muscles. These results suggest that the vasodilatory and sympatholytic effects of intraluminal ATP are mainly mediated via endothelial prinergic receptors. Intraluminal ATP and muscle contractions appear to modulate sympathetic nerve activity by inhibiting the effect of NE rather than blunting its...

  8. Quantitation of progressive muscle fatigue during dynamic leg exercise in humans

    DEFF Research Database (Denmark)

    Fulco, C S; Lewis, S F; Frykman, Peter

    1995-01-01

    , a product of a contraction rate (1 Hz), force measured at the ankle, and distance of ankle movement from 90 degrees to 150 degrees of KE, was precisely controlled. Lack of rise in myoelectric activity in biceps femoris of the active leg during DKE and MVC was consistent with restriction of muscle action...

  9. Interdependence of torque, joint angle, angular velocity and muscle action during human multi-joint leg extension.

    Science.gov (United States)

    Hahn, Daniel; Herzog, Walter; Schwirtz, Ansgar

    2014-08-01

    Force and torque production of human muscles depends upon their lengths and contraction velocity. However, these factors are widely assumed to be independent of each other and the few studies that dealt with interactions of torque, angle and angular velocity are based on isolated single-joint movements. Thus, the purpose of this study was to determine force/torque-angle and force/torque-angular velocity properties for multi-joint leg extensions. Human leg extension was investigated (n = 18) on a motor-driven leg press dynamometer while measuring external reaction forces at the feet. Extensor torque in the knee joint was calculated using inverse dynamics. Isometric contractions were performed at eight joint angle configurations of the lower limb corresponding to increments of 10° at the knee from 30 to 100° of knee flexion. Concentric and eccentric contractions were performed over the same range of motion at mean angular velocities of the knee from 30 to 240° s(-1). For contractions of increasing velocity, optimum knee angle shifted from 52 ± 7 to 64 ± 4° knee flexion. Furthermore, the curvature of the concentric force/torque-angular velocity relations varied with joint angles and maximum angular velocities increased from 866 ± 79 to 1,238 ± 132° s(-1) for 90-50° knee flexion. Normalised eccentric forces/torques ranged from 0.85 ± 0.12 to 1.32 ± 0.16 of their isometric reference, only showing significant increases above isometric and an effect of angular velocity for joint angles greater than optimum knee angle. The findings reveal that force/torque production during multi-joint leg extension depends on the combined effects of angle and angular velocity. This finding should be accounted for in modelling and optimisation of human movement.

  10. Childhood development of common drive to a human leg muscle during ankle dorsiflexion and gait

    DEFF Research Database (Denmark)

    Hvass Petersen, Tue; Kliim-Due, Mette; Farmer, Simon F.

    2010-01-01

    static ankle dorsiflexion. A significant correlation with age was also found in the 15-25 Hz frequency band (beta) during static foot dorsiflexion. Chi2 analysis of differences of coherence between different age groups of children (4-6, 7-9, 10-12, and 13-15 yrs of age) revealed a significant lower...... to precisely control the ankle joint position with age, which may be contingent on maturation of corticospinal control of the foot dorsiflexor muscles....

  11. Within-step modulation of leg muscles activity by afferent feedback in human walking

    DEFF Research Database (Denmark)

    Klint, Richard af; Nielsen, Jens Bo; Cole, Jonathan D.

    2008-01-01

    To maintain smooth and efficient gait the motor system must adjust for changes in the ground on a step-to-step basis. In the present study we investigated the role of sensory feedback as 19 able-bodied human subjects walked over a platform that mimicked an uneven supporting surface. Triceps surae.......153+/-0.051; 3 degrees : 0.156+/-0.053) and significantly decreased when the platform was declined (-3 degrees : 0.133+/-0.048; -2 degrees : 0.132+/-0.049) compared with level walking (0.141+/-0.048) for the able-bodied subjects. A similar experiment was performed with a subject who lacked proprioception...

  12. The effect of age and unilateral leg immobilization for 2 weeks on substrate utilization during moderate intensity exercise in human skeletal muscle

    DEFF Research Database (Denmark)

    Vigelsø, Andreas; Gram, Martin; Dybboe, Rie

    2016-01-01

    in older than in young men, and while young men demonstrated net leg glycerol release during exercise, older men showed net glycerol uptake. At baseline, IMTG, muscle pyruvate dehydrogenase complex activity, protein content of adipose triglyceride lipase (ATGL), acetyl-CoA carboxylase 2, AMP-activated......; 23 ± 1 years) and older (n = 15; 68 ± 1 years) men, while the contralateral leg served as control. After immobilization, the participants performed two-legged isolated knee-extensor exercise at 20 ± 1 Watt (∼50% Wattmax ) for 45 min with catheters inserted in the brachial artery and both femoral...... veins. Biopsy samples obtained from vastus lateralis muscles of both legs before and after exercise were used for analysis of substrates, protein content and enzyme activities. During exercise, leg substrate utilization (RQ) did not differ between groups or legs. Leg fatty acid (FA) uptake was greater...

  13. Acute impact of intermittent pneumatic leg compression frequency on limb hemodynamics, vascular function, and skeletal muscle gene expression in humans.

    Science.gov (United States)

    Sheldon, Ryan D; Roseguini, Bruno T; Thyfault, John P; Crist, Brett D; Laughlin, M H; Newcomer, Sean C

    2012-06-01

    The mechanisms by which intermittent pneumatic leg compression (IPC) treatment effectively treats symptoms associated with peripheral artery disease remain speculative. With the aim of gaining mechanistic insight into IPC treatment, the purpose of this study was to investigate the effect of IPC frequency on limb hemodynamics, vascular function, and skeletal muscle gene expression. In this two study investigation, healthy male subjects underwent an hour of either high-frequency (HF; 2-s inflation/3-s deflation) or low-frequency (LF; 4-s inflation/16-s deflation) IPC treatment of the foot and calf. In study 1 (n = 11; 23.5 ± 4.7 yr), subjects underwent both HF and LF treatment on separate days. Doppler/ultrasonography was used to measure popliteal artery diameter and blood velocity at baseline and during IPC treatment. Flow-mediated dilation (FMD) and peak reactive hyperemia blood flow (RHBF) were determined before and after IPC treatment. In study 2 (n = 19; 22.0 ± 4.6 yr), skeletal muscle biopsies were taken from the lateral gastrocnemius of the treated and control limb at baseline and at 30- and 150-min posttreatment. Quantitative PCR was used to assess mRNA concentrations of genes associated with inflammation and vascular remodeling. No treatment effect on vascular function was observed. Cuff deflation resulted in increased blood flow (BF) and shear rate (SR) in both treatments at the onset of treatment compared with baseline (P < 0.01). BF and SR significantly diminished by 45 min of HF treatment only (P < 0.01). Both treatments reduced BF and SR and elevated oscillatory shear index compared with baseline (P < 0.01) during cuff inflation. IPC decreased the mRNA expression of cysteine-rich protein 61 from baseline and controls (P <0 .01) and connective tissue growth factor from baseline (P < 0.05) in a frequency-dependent manner. In conclusion, a single session of IPC acutely impacts limb hemodynamics and skeletal muscle gene expression in a frequency

  14. Identification of hemostatic genes expressed in human and rat leg muscles and a novel gene (LPP1/PAP2A suppressed during prolonged physical inactivity (sitting

    Directory of Open Access Journals (Sweden)

    Zderic Theodore W

    2012-10-01

    Full Text Available Abstract Background Partly because of functional genomics, there has been a major paradigm shift from solely thinking of skeletal muscle as contractile machinery to an understanding that it can have roles in paracrine and endocrine functions. Physical inactivity is an established risk factor for some blood clotting disorders. The effects of inactivity during sitting are most alarming when a person develops the enigmatic condition in the legs called deep venous thrombosis (DVT or “coach syndrome,” caused in part by muscular inactivity. The goal of this study was to determine if skeletal muscle expresses genes with roles in hemostasis and if their expression level was responsive to muscular inactivity such as occurs in prolonged sitting. Methods Microarray analyses were performed on skeletal muscle samples from rats and humans to identify genes associated with hemostatic function that were significantly expressed above background based on multiple probe sets with perfect and mismatch sequences. Furthermore, we determined if any of these genes were responsive to models of physical inactivity. Multiple criteria were used to determine differential expression including significant expression above background, fold change, and non-parametric statistical tests. Results These studies demonstrate skeletal muscle tissue expresses at least 17 genes involved in hemostasis. These include the fibrinolytic factors tetranectin, annexin A2, and tPA; the anti-coagulant factors TFPI, protein C receptor, PAF acetylhydrolase; coagulation factors, and genes necessary for the posttranslational modification of these coagulation factors such as vitamin K epoxide reductase. Of special interest, lipid phosphate phosphatase-1 (LPP1/PAP2A, a key gene for degrading prothrombotic and proinflammatory lysophospholipids, was suppressed locally in muscle tissue within hours after sitting in humans; this was also observed after acute and chronic physical inactivity conditions

  15. Identification of hemostatic genes expressed in human and rat leg muscles and a novel gene (LPP1/PAP2A) suppressed during prolonged physical inactivity (sitting)

    Science.gov (United States)

    2012-01-01

    Background Partly because of functional genomics, there has been a major paradigm shift from solely thinking of skeletal muscle as contractile machinery to an understanding that it can have roles in paracrine and endocrine functions. Physical inactivity is an established risk factor for some blood clotting disorders. The effects of inactivity during sitting are most alarming when a person develops the enigmatic condition in the legs called deep venous thrombosis (DVT) or “coach syndrome,” caused in part by muscular inactivity. The goal of this study was to determine if skeletal muscle expresses genes with roles in hemostasis and if their expression level was responsive to muscular inactivity such as occurs in prolonged sitting. Methods Microarray analyses were performed on skeletal muscle samples from rats and humans to identify genes associated with hemostatic function that were significantly expressed above background based on multiple probe sets with perfect and mismatch sequences. Furthermore, we determined if any of these genes were responsive to models of physical inactivity. Multiple criteria were used to determine differential expression including significant expression above background, fold change, and non-parametric statistical tests. Results These studies demonstrate skeletal muscle tissue expresses at least 17 genes involved in hemostasis. These include the fibrinolytic factors tetranectin, annexin A2, and tPA; the anti-coagulant factors TFPI, protein C receptor, PAF acetylhydrolase; coagulation factors, and genes necessary for the posttranslational modification of these coagulation factors such as vitamin K epoxide reductase. Of special interest, lipid phosphate phosphatase-1 (LPP1/PAP2A), a key gene for degrading prothrombotic and proinflammatory lysophospholipids, was suppressed locally in muscle tissue within hours after sitting in humans; this was also observed after acute and chronic physical inactivity conditions in rats, and exercise was

  16. Passive leg movement enhances interstitial VEGF protein, endothelial cell proliferation, and eNOS mRNA content in human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Rufener, Nora; Nielsen, Jens J

    2008-01-01

    .05) in blood flow without a significant enhancement in oxygen uptake. Muscle interstitial fluid was sampled with microdialysis technique and analyzed for vascular endothelial growth factor (VEGF) protein and for the effect on endothelial cell proliferation. Biopsies obtained from the musculus vastus lateralis...... to cultured endothelial cells revealed that dialysate obtained during leg movement induced a 3.2-fold higher proliferation rate (P level fourfold above resting levels. VEGF mRNA and MMP-2 mRNA levels were...

  17. Fiber orientation measurements by diffusion tensor imaging improve hydrogen-1 magnetic resonance spectroscopy of intramyocellular lipids in human leg muscles.

    Science.gov (United States)

    Valaparla, Sunil K; Gao, Feng; Daniele, Giuseppe; Abdul-Ghani, Muhammad; Clarke, Geoffrey D

    2015-04-01

    Twelve healthy subjects underwent hydrogen-1 magnetic resonance spectroscopy ([Formula: see text]) acquisition ([Formula: see text]), diffusion tensor imaging (DTI) with a [Formula: see text]-value of [Formula: see text], and fat-water magnetic resonance imaging (MRI) using the Dixon method. Subject-specific muscle fiber orientation, derived from DTI, was used to estimate the lipid proton spectral chemical shift. Pennation angles were measured as 23.78 deg in vastus lateralis (VL), 17.06 deg in soleus (SO), and 8.49 deg in tibialis anterior (TA) resulting in a chemical shift between extramyocellular lipids (EMCL) and intramyocellular lipids (IMCL) of 0.15, 0.17, and 0.19 ppm, respectively. IMCL concentrations were [Formula: see text], [Formula: see text], and [Formula: see text] in SO, VL, and TA, respectively. Significant differences were observed in IMCL and EMCL pairwise comparisons in SO, VL, and TA ([Formula: see text]). Strong correlations were observed between total fat fractions from [Formula: see text] and Dixon MRI for VL ([Formula: see text]), SO ([Formula: see text]), and TA ([Formula: see text]). Bland-Altman analysis between fat fractions (FFMRS and FFMRI) showed good agreement with small limits of agreement (LoA): [Formula: see text] (LoA: [Formula: see text] to 0.69%) in VL, [Formula: see text] (LoA: [Formula: see text] to 1.33%) in SO, and [Formula: see text] (LoA: [Formula: see text] to 0.47%) in TA. The results of this study demonstrate the variation in muscle fiber orientation and lipid concentrations in these three skeletal muscle types.

  18. Hemodynamic Changes in Rat Leg Muscles during Tourniquet-induced Ischemia-reperfusion Injury Observed by Near-infrared Spectroscopy

    Science.gov (United States)

    2009-07-01

    leg muscle during pressure increase (Arbabi et al 1999) and in the human leg muscle during exercise (Breit et al 1997, Egun et al 2002, van den Brand...time of flight measurement. Phys Med Biol 1988;33:1433–42. [PubMed: 3237772] Egun A, Farooq V, Torella F, Cowley R, Thorniley MS, McCollum CN. The

  19. Muscle response to leg lengthening during distraction osteogenesis.

    Science.gov (United States)

    Thorey, Fritz; Bruenger, Jens; Windhagen, Henning; Witte, Frank

    2009-04-01

    Continuous lengthening of intact muscles during distraction osteogenesis leads to an increase of sarcomeres and enhances the regeneration of tendons and blood vessels. A high distraction rate leads to an excessive leg and muscle lengthening and might cause damages of muscle fibers with fibrosis, necrosis, and muscle weakness. Complications like muscle contractures or atrophy after postoperative immobilization emphazize the importance of muscles and their function in the clinical outcome. In an animal model of distraction osteogenesis, 18 sheep were operated with an external fixator followed by 4 days latency, 21 days distraction (1.25 mm per day) and 51 days consolidation. The anatomical location (gastrocnemius, peroneus tertius, and first flexor digitorum longus muscle), dimension and occurrence of muscular defects were characterized histologically. The callus formation and leg axis was monitored by weekly X-rays. Additionally, serum creatine kinase was analyzed during a distraction and consolidation period. Significant signs of muscle lesions in all three observed muscles can be found postoperatively, whereas normal callus formation and regular leg axis was observed radiologically. The peroneus tertius and first flexor digitorum longus muscles were found to have significantly more signs of fibrosis, inflammatory, and necrosis. Creatine kinase showed two peaks: 4 and 39 days postoperative as an indication of muscle damage and regeneration. The study implicates that muscle damages should be considered when a long-distance distraction osteogenesis is planned. The surgeon should consider these muscle responses and individually discuss a two-stage treatment or additional muscle tendon releases to minimize the risk of muscle damages.

  20. Muscle activity of leg muscles during unipedal stance on therapy devices with different stability properties.

    Science.gov (United States)

    Wolburg, Thomas; Rapp, Walter; Rieger, Jochen; Horstmann, Thomas

    2016-01-01

    To test the hypotheses that less stable therapy devices require greater muscle activity and that lower leg muscles will have greater increases in muscle activity with less stable therapy devices than upper leg muscles. Cross-sectional laboratory study. Laboratory setting. Twenty-five healthy subjects. Electromyographic activity of four lower (gastrocnemius medialis, soleus, tibialis anterior, peroneus longus) and four upper leg muscles (vastus medialis and lateralis, biceps femoris, semitendinosus) during unipedal quiet barefoot stance on the dominant leg on a flat rigid surface and on five therapy devices with varying stability properties. Muscle activity during unipedal stance differed significantly between therapy devices (P < 0.001). The order from lowest to highest relative muscle activity matched the order from most to least stable therapy device. There was no significant interaction between muscle location (lower versus upper leg) and therapy device (P = 0.985). Magnitudes of additional relative muscle activity for the respective therapy devices differed substantially among lower extremity muscles. The therapy devices offer a progressive increase in training intensity, and thus may be useful for incremental training programs in physiotherapeutic practice and sports training programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. An MRI volumetric study for leg muscles in congenital clubfoot.

    Science.gov (United States)

    Ippolito, Ernesto; Dragoni, Massimiliano; Antonicoli, Marco; Farsetti, Pasquale; Simonetti, Giovanni; Masala, Salvatore

    2012-10-01

    To investigate both volume and length of the three muscle compartments of the normal and the affected leg in unilateral congenital clubfoot. Volumetric magnetic resonance imaging (VMRI) of the anterior, lateral and postero-medial muscular compartments of both the normal and the clubfoot leg was obtained in three groups of seven patients each, whose mean age was, respectively, 4.8 months, 11.1 months and 4.7 years. At diagnosis, all the unilateral congenital clubfeet had a Pirani score ranging from 4.5 to 5.5 points, and all of them had been treated according to a strict Ponseti protocol. All the feet had percutaneous lengthening of the Achilles tendon. A mean difference in both volume and length was found between the three muscular compartments of the leg, with the muscles of the clubfoot side being thinner and shorter than those of the normal side. The distal tendon of the tibialis anterior, peroneus longus and triceps surae (Achilles tendon) were longer than normal on the clubfoot side. Our study shows that the three muscle compartments of the clubfoot leg are thinner and shorter than normal in the patients of the three groups. The difference in the musculature volume of the postero-medial compartment between the normal and the affected side increased nine-fold from age group 2 to 3, while the difference in length increased by 20 %, thus, showing that the muscles of the postero-medial compartment tend to grow in both thickness and length much less than the muscles of the other leg compartments.

  2. Association between Thigh Muscle Volume and Leg Muscle Power in Older Women.

    Directory of Open Access Journals (Sweden)

    Ulrich Lindemann

    Full Text Available The construct of sarcopenia is still discussed with regard to best appropriate measures of muscle volume and muscle function. The aim of this post-hoc analysis of a cross-sectional experimental study was to investigate and describe the hierarchy of the association between thigh muscle volume and measurements of functional performance in older women. Thigh muscle volume of 68 independently living older women (mean age 77.6 years was measured via magnetic resonance imaging. Isometric strength was assessed for leg extension in a movement laboratory in sitting position with the knee flexed at 90° and for hand grip. Maximum and habitual gait speed was measured on an electronic walk way. Leg muscle power was measured during single leg push and during sit-to-stand performance. Thigh muscle volume was associated with sit-to-stand performance power (r = 0.628, leg push power (r = 0.550, isometric quadriceps strength (r = 0.442, hand grip strength (r = 0.367, fast gait speed (r = 0.291, habitual gait speed (r = 0.256, body mass index (r = 0.411 and age (r = -0.392. Muscle power showed the highest association with thigh muscle volume in healthy older women. Sit-to-stand performance power showed an even higher association with thigh muscle volume compared to single leg push power.

  3. Probenecid inhibits α-adrenergic receptor-mediated vasoconstriction in the human leg vasculature

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Piil, Peter Bergmann; Kiehn, Oliver Thistrup

    2018-01-01

    to α1- and α2-adrenergic receptor stimulation in the human forearm and leg vasculature of young healthy male subjects (23±3 years). By use of immunolabeling and confocal microscopy, Panx1 channels were found to be expressed in vascular smooth muscle cells of arterioles in human leg skeletal muscle....... Probenecid treatment increased (Padrenergic receptor stimulation) by ≈15%, whereas the response to the α1-agonist phenylephrine was unchanged. Inhibition...

  4. The Comparing the Leg Muscles Electromyography during Single Leg Drop Landing in Pesplanus and Normal Men

    Directory of Open Access Journals (Sweden)

    mostafa bazvand

    2016-03-01

    Full Text Available Objective: pesplanus is one of the changes that brings about changes in muscle activation patterns. Being aware of muscles activity changes in various standing positions among pesplanus patients provides insights into preventing lower extremity injuries in this population. The aim of this study was to compare leg muscles electromyography during various standing positions in pesplanus and normal subjects. Methods: 60 healthy male university students, 30 subjects with pesplanus deformity (with average age 23/54±3/57 year, average height 175/34±7/62 cm, average weight 74/87±10/72 kg and 30 normal subjects (with average age 22/97±2/38 year, average height 176/6±5/59 cm, average weight 73/58±8/36 kg participated in this comparative study. Deformity of pesplanus was assessed with navicular drop test. Each subject performed single-leg landing dropping from 30cm height onto a force platform where muscles activity was recorded with EMG device. For data analysis, Matlab and Spss softwares were used and independent sample t-test was used to compare the dependent variables at a significance level of P &le 0/05. Results: Significant differences were observed between the two groups for the activities of the longus peroneus and anterior tibialis muscles ( p&le0/05 while no significant differences were observed in other muscles. Conclusion: The changes in the normal structure of the foot might affect muscle activities during standing, which can cause changes in the injury patterns. Therefore, it is proposed that focusing on corrective exercises and therapy plan can reduce these risks.

  5. THE EFFECTS OF SINGLE LEG HOP PROGRESSION AND DOUBLE LEGS HOP PROGRESSION EXERCISE TO INCREASE SPEED AND EXPLOSIVE POWER OF LEG MUSCLE

    Directory of Open Access Journals (Sweden)

    Nining W. Kusnanik

    2015-05-01

    Full Text Available The main purpose of this study was to determine the effect of single leg hop progression and double legs hop progression exercise to increase speed and explosive power of leg muscles. Plyometric is one of the training methods that can increase explosive power. There are many models of plyometric training including single leg hop progression and double leg hop progression. This research was experimental using match subject design techniques. The subjects of this study were 39 students who joined basketball school club. There were 3 groups in this study: Group 1 were 13 students who given sin¬gle leg hop progression exercise, Group 2 were 13 students who given double legs hop progression exercise, Group 3 were 13 students who given conventional exercise. The data was collected during pre test and post test by testing 30m speed running and vertical jump. The data was analyzed using Analysis of Varians (Anova. It was found that there were significantly increased on speed and explosive power of leg muscles of Group 1 and Group 2. It can be stated that single leg hop progression exercise was more effective than double leg hop progression exercise. The recent findings supported the hypothesis that single leg hop progression and double legs hop progression exercise can increase speed and explosive power of leg muscles. These finding were supported by some previous studies (Singh, et al, 2011; Shallaby, H.K., 2010. The single leg hop progression is more effective than double legs hop progression. This finding was consistent with some previous evidences (McCurdy, et al, 2005; Makaruk et al, 2011.

  6. Optimizing the Distribution of Leg Muscles for Vertical Jumping.

    Directory of Open Access Journals (Sweden)

    Jeremy D Wong

    Full Text Available A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of

  7. The Motor and the Brake of the Trailing Leg in Human Walking: Leg Force Control Through Ankle Modulation and Knee Covariance

    Science.gov (United States)

    Toney, Megan E.; Chang, Young-Hui

    2016-01-01

    Human walking is a complex task, and we lack a complete understanding of how the neuromuscular system organizes its numerous muscles and joints to achieve consistent and efficient walking mechanics. Focused control of select influential task-level variables may simplify the higher-level control of steady state walking and reduce demand on the neuromuscular system. As trailing leg power generation and force application can affect the mechanical efficiency of step-to-step transitions, we investigated how joint torques are organized to control leg force and leg power during human walking. We tested whether timing of trailing leg force control corresponded with timing of peak leg power generation. We also applied a modified uncontrolled manifold analysis to test whether individual or coordinated joint torque strategies most contributed to leg force control. We found that leg force magnitude was adjusted from step-to-step to maintain consistent leg power generation. Leg force modulation was primarily determined by adjustments in the timing of peak ankle plantar-flexion torque, while knee torque was simultaneously covaried to dampen the effect of ankle torque on leg force. We propose a coordinated joint torque control strategy in which the trailing leg ankle acts as a motor to drive leg power production while trailing leg knee torque acts as a brake to refine leg power production. PMID:27334888

  8. Control of leg movements driven by EMG activity of shoulder muscles

    Directory of Open Access Journals (Sweden)

    Valentina eLa Scaleia

    2014-10-01

    Full Text Available During human walking there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here we present a novel approach for associating the electromyographic (EMG activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural coordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3-5 km/h, while EMG activity of shoulder (deltoid muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r>0.9. This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during overground stepping. The proposed approach may have important implications for the design of human-machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons.

  9. Optimizing the Distribution of Leg Muscles for Vertical Jumping

    Science.gov (United States)

    Wong, Jeremy D.; Bobbert, Maarten F.; van Soest, Arthur J.; Gribble, Paul L.; Kistemaker, Dinant A.

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas—which determine the maximum force deliverable by the muscles—constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal

  10. Diffusion Properties and 3D Architecture of Human Lower Leg Muscles Assessed with Ultra-High-Field-Strength Diffusion-Tensor MR Imaging and Tractography: Reproducibility and Sensitivity to Sex Difference and Intramuscular Variability.

    Science.gov (United States)

    Fouré, Alexandre; Ogier, Augustin C; Le Troter, Arnaud; Vilmen, Christophe; Feiweier, Thorsten; Guye, Maxime; Gondin, Julien; Besson, Pierre; Bendahan, David

    2018-05-01

    Purpose To demonstrate the reproducibility of the diffusion properties and three-dimensional structural organization measurements of the lower leg muscles by using diffusion-tensor imaging (DTI) assessed with ultra-high-field-strength (7.0-T) magnetic resonance (MR) imaging and tractography of skeletal muscle fibers. On the basis of robust statistical mapping analyses, this study also aimed at determining the sensitivity of the measurements to sex difference and intramuscular variability. Materials and Methods All examinations were performed with ethical review board approval; written informed consent was obtained from all volunteers. Reproducibility of diffusion tensor indexes assessment including eigenvalues, mean diffusivity, and fractional anisotropy (FA) as well as muscle volume and architecture (ie, fiber length and pennation angle) were characterized in lower leg muscles (n = 8). Intramuscular variability and sex differences were characterized in young healthy men and women (n = 10 in each group). Student t test, statistical parametric mapping, correlation coefficients (Spearman rho and Pearson product-moment) and coefficient of variation (CV) were used for statistical data analysis. Results High reproducibility of measurements (mean CV ± standard deviation, 4.6% ± 3.8) was determined in diffusion properties and architectural parameters. Significant sex differences were detected in FA (4.2% in women for the entire lower leg; P = .001) and muscle volume (21.7% in men for the entire lower leg; P = .008), whereas architecture parameters were almost identical across sex. Additional differences were found independently of sex in diffusion properties and architecture along several muscles of the lower leg. Conclusion The high-spatial-resolution DTI assessed with 7.0-T MR imaging allows a reproducible assessment of structural organization of superficial and deep muscles, giving indirect information on muscle function. © RSNA, 2018 Online supplemental material is

  11. Muscle Activity in Single- vs. Double-Leg Squats.

    Science.gov (United States)

    DeFOREST, Bradley A; Cantrell, Gregory S; Schilling, Brian K

    Muscular activity, vertical displacement and ground reaction forces of back squats (BS), rear-leg elevated split squats (RLESS) and split squats (SS) were examined. Nine resistance-trained men reported for two sessions. The first session consisted of the consent process, practice, and BS 1-repetition maximum testing. In the second session, participants performed the three exercises while EMG, displacment and ground reaction force data (one leg on plate) were collected. EMG data were collected from the gluteus maximus (GMX), biceps femoris (BF), semitendinosus (ST), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), tibialis anterior (TA), and medial gastrocnemius (MGas) of the left leg (non-dominant, front leg for unilateral squats). Load for BS was 85% one repetition maximum, and RLESS and SS were performed at 50% of BS load. Repeated measures ANOVA was used to compare all variables for the three exercises, with Bonferroni adjustments for post hoc multiple comparisons, in addition to calculation of standardized mean differences (ES). Muscle activity was similar between exercises except for biceps femoris, which was significantly higher during RLESS than SS during both concentric and eccentric phases (ES = 2.11; p=0.012 and ES= 2.19; p=0.008), and significantly higher during BS than the SS during the concentric phase (ES = 1.78; p=0.029). Vertical displacement was similar between all exercises. Peak vertical force was similar between BS and RLESS and significantly greater during RLESS than SS (ES = 3.03; p=0.001). These findings may be helpful in designing resistance training programs by using RLESS if greater biceps femoris activity is desired.

  12. The effects of surface condition on abdominal muscle activity during single-legged hold exercise.

    Science.gov (United States)

    Ha, Sung-min; Oh, Jae-seop; Jeon, In-cheol; Kwon, Oh-yun

    2015-02-01

    To treat low-back pain, various spinal stability exercises are commonly used to improve trunk muscle function and strength. Because human movement for normal daily activity occurs in multi-dimensions, the importance of exercise in multi-dimensions or on unstable surfaces has been emphasized. Recently, a motorized rotating platform (MRP) for facilitating multi-dimensions dynamic movement was introduced for clinical use. However, the abdominal muscle activity with this device has not been reported. The purpose of this study was to compare the abdominal muscle activity (rectus abdominis, external and internal oblique muscles) during an active single-leg-hold (SLH) exercise on a floor (stable surface), foam roll, and motorized rotating platform (MRP). Thirteen healthy male subjects participated in this study. Using electromyography, the abdominal muscle activity was measured while the subjects performed SLH exercises on floor (stable surface), foam roll, and MRP. There were significant differences in the abdominal muscle activities among conditions (P.05) (Fig. 2). After the Bonferroni correction, however, no significant differences among conditions remained, except for differences in both side IO muscle activity between the floor and foam roll conditions (padjexercises on a foam roll and MRP is more effective increased activities of both side of RA and IO, and Rt. EO compared to floor condition. However, there were no significant differences in abdominal muscles activity in the multiple comparison between conditions (mean difference were smaller than the standard deviation in the abdominal muscle activities) (padj>0.017), except for differences in both side IO muscle activity between the floor (stable surface) and foam roll (padj<0.017) (effect size: 0.79/0.62 (non-supporting/supporting leg) for foam-roll versus floor). Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Differential glucose uptake in quadriceps and other leg muscles during one-legged dynamic submaximal knee-extension exercise

    DEFF Research Database (Denmark)

    Kalliokoski, Kari K; Boushel, Robert; Langberg, Henning

    2011-01-01

    One-legged dynamic knee-extension exercise (DKE) is a widely used model to study the local cardiovascular and metabolic responses to exercise of the quadriceps muscles. In this study, we explored the extent to which different muscles of the quadriceps are activated during exercise using positron...... emission tomography (PET) determined uptake of [18F]-fluoro-deoxy-glucose (GU) during DKE. Five healthy male subjects performed DKE at 25 W for 35 min and both the contracting and contralateral resting leg were scanned with PET from mid-thigh and distally. On average, exercise GU was the highest...

  14. Fatigue-related changes in motor-unit synchronization of quadriceps muscles within and across legs

    NARCIS (Netherlands)

    Boonstra, T.W.; Daffertshofer, A.; van Ditshuizen, J.C.; van den Heuvel, M.R.C.; Hofman, C.; Willigenburg, N.W.; Beek, P.J.

    2008-01-01

    Two experiments were conducted to examine effects of muscle fatigue on motor-unit synchronization of quadriceps muscles (rectus femoris, vastus medialis, vastus lateralis) within and between legs. We expected muscle fatigue to result in an increased common drive to different motor units of

  15. Possibility of leg muscle hypertrophy by ambulation in older adults: a brief review

    Directory of Open Access Journals (Sweden)

    Ozaki H

    2013-03-01

    Full Text Available Hayao Ozaki,1 Jeremy P Loenneke,2 Robert S Thiebaud,2 Joel M Stager,3 Takashi Abe31Juntendo University, Inzai, Chiba, Japan; 2Department of Health and Exercise Science, University of Oklahoma, Norman, OK, USA; 3Department of Kinesiology, Indiana University, Bloomington, IN, USAAbstract: It is known that ambulatory exercises such as brisk walking and jogging are potent stimuli for improving aerobic capacity, but it is less understood whether ambulatory exercise can increase leg muscle size and function. The purpose of this brief review is to discuss whether or not ambulatory exercise elicits leg muscle hypertrophy in older adults. Daily ambulatory activity with moderate (>3 metabolic equivalents [METs], which is defined as the ratio of the work metabolic rate to the resting metabolic rate intensity estimated by accelerometer is positively correlated with lower body muscle size and function in older adults. Although there is conflicting data on the effects of short-term training, it is possible that relatively long periods of walking, jogging, or intermittent running for over half a year can increase leg muscle size among older adults. In addition, slow-walk training with a combination of leg muscle blood flow restriction elicits muscle hypertrophy only in the blood flow restricted leg muscles. Competitive marathon running and regular high intensity distance running in young and middle-aged adults may not produce leg muscle hypertrophy due to insufficient recovery from the damaging running bout, although there have been no studies that have investigated the effects of running on leg muscle morphology in older subjects. It is clear that skeletal muscle hypertrophy can occur independently of exercise mode and load.Keywords: aerobic exercise, muscle mass, aging, strength, sarcopenia

  16. Increasing trunk flexion transforms human leg function into that of birds despite different leg morphology.

    Science.gov (United States)

    Aminiaghdam, Soran; Rode, Christian; Müller, Roy; Blickhan, Reinhard

    2017-02-01

    Pronograde trunk orientation in small birds causes prominent intra-limb asymmetries in the leg function. As yet, it is not clear whether these asymmetries induced by the trunk reflect general constraints on the leg function regardless of the specific leg architecture or size of the species. To address this, we instructed 12 human volunteers to walk at a self-selected velocity with four postures: regular erect, or with 30 deg, 50 deg and maximal trunk flexion. In addition, we simulated the axial leg force (along the line connecting hip and centre of pressure) using two simple models: spring and damper in series, and parallel spring and damper. As trunk flexion increases, lower limb joints become more flexed during stance. Similar to birds, the associated posterior shift of the hip relative to the centre of mass leads to a shorter leg at toe-off than at touchdown, and to a flatter angle of attack and a steeper leg angle at toe-off. Furthermore, walking with maximal trunk flexion induces right-skewed vertical and horizontal ground reaction force profiles comparable to those in birds. Interestingly, the spring and damper in series model provides a superior prediction of the axial leg force across trunk-flexed gaits compared with the parallel spring and damper model; in regular erect gait, the damper does not substantially improve the reproduction of the human axial leg force. In conclusion, mimicking the pronograde locomotion of birds by bending the trunk forward in humans causes a leg function similar to that of birds despite the different morphology of the segmented legs. © 2017. Published by The Company of Biologists Ltd.

  17. Passive stiffness of monoarticular lower leg muscles is influenced by knee joint angle.

    Science.gov (United States)

    Ateş, Filiz; Andrade, Ricardo J; Freitas, Sandro R; Hug, François; Lacourpaille, Lilian; Gross, Raphael; Yucesoy, Can A; Nordez, Antoine

    2018-03-01

    While several studies demonstrated the occurrence of intermuscular mechanical interactions, the physiological significance of these interactions remains a matter of debate. The purpose of this study was to quantify the localized changes in the shear modulus of the gastrocnemius lateralis (GL), monoarticular dorsi- and plantar-flexor muscles induced by a change in knee angle. Participants underwent slow passive ankle rotations at the following two knee positions: knee flexed at 90° and knee fully extended. Ultrasound shear wave elastography was used to assess the muscle shear modulus of the GL, soleus [both proximally (SOL-proximal) and distally (SOL distal)], peroneus longus (PERL), and tibialis anterior (TA). This was performed during two experimental sessions (experiment I: n = 11; experiment II: n = 10). The shear modulus of each muscle was compared between the two knee positions. The shear modulus was significantly higher when the knee was fully extended than when the knee was flexed (P passive muscle force, these results provide evidence of a non-negligible intermuscular mechanical interaction between the human lower leg muscles during passive ankle rotations. The role of these interactions in the production of coordinated movements requires further investigation.

  18. Aberrant femoral torsion presenting with frog-leg squatting mimicking gluteal muscle contracture.

    Science.gov (United States)

    Chiang, Chia-Ling; Tsai, Meng-Yuan; Chang, Wei-Ning; Chen, Clement Kuen-Huang

    2012-04-01

    Patients with frog-leg squatting have restricted internal rotation and adduction of the affected hips during sitting or squatting. In the surgical literature, the cause generally has been presumed to arise from and be pathognomonic for gluteal muscle contracture. However, we have encountered patients with frog-leg squatting but without gluteal muscle contracture. We therefore raised the following questions: What are the imaging features of patients with frog-leg squatting? Do conditions other than gluteal muscle contracture manifest frog-leg squatting? We retrospectively reviewed the MR images of 67 patients presenting with frog-leg squatting from April 1998 to July 2010. There were four females and 63 males; their mean age was 22.2 years (range, 4-50 years). During MRI readout, we observed aberrant axes of some femoral necks and obtained additional CT to measure femoral torsion angles in 59 of the 67 patients. MR images of 27 (40%) patients had signs of gluteal muscle contracture. Twenty-two (33%) patients (40 femora) had aberrant femoral torsion, including diminished anteversion (range, 6°-0°; average, 3.9°) in 11 femora of eight patients and femoral retroversion (range, muscle contracture or aberrant femoral torsion. The observation of aberrant femoral torsion was not anticipated before imaging studies. In addition to gluteal muscle contracture, aberrant femoral torsion can be a cause of frog-leg squatting. Level II, diagnostic study. See the guidelines for Authors for a complete description of levels of evidence.

  19. THE ROLE OF LEG AND TRUNK MUSCLES PROPRIOCEPTION ON STATIC AND DYNAMIC POSTURAL CONTROL

    Directory of Open Access Journals (Sweden)

    SEYED Hossein Hosseinimehr

    2010-04-01

    Full Text Available The proprioception information is a prerequisite for balance, body’s navigation system, and the movement coordinator. Due to changes between the angles of ankle, knee, and hip joints the aforementioned information are important in the coordination of the limbs and postural balance. The aim of this study was to investigate therole of leg and trunk muscles proprioception on static and dynamic postural control. Thirty males students of physical education and sport sciences (age =21.23 ± 2.95 years, height = 170.4 ± 5.1 cm, and weight = 70.7 ± 5.6 kg participated in this study volunteered. Vibration (100HZ was used to disturb of proprioception. Vibrationoperated on leg muscle (gasterocnemius and trunk muscles (erector spine muscle, at L1 level. Leg stance time and Star Excursion Balance Test were used for evaluation of static and dynamic postural control respectively.Subjects performed pre and post (with operated vibration leg stance time and star excursion balance test. Paired sample test used for investigation the effect of vibration on leg and trunk muscles in static and dynamic postural control. Result of this study showed in static postural control, there is no significant difference between pre and post test (operated vibration in leg and trunk muscles (p≤0.05. In contrast there is significant difference indynamic postural control between pre and post test in leg muscles in 8 directions of star excursion balance test (p≤0.05 while there is only significant difference in trunk muscle in antrolateral and lateral of star excursion balance test (p≤0.05. During physical training such conditions like fatigue and injury can disturbproprioceptions’ information. Thus, due to the importance of this information we recommend that coaches'additionally specific trainings any sport used specific exercises to enhance the proprioception information

  20. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles

    Science.gov (United States)

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Aziz, Mohamed Fareez Bin; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M.; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect–machine hybrid legged robot). PMID:25140875

  1. A biological micro actuator: graded and closed-loop control of insect leg motion by electrical stimulation of muscles.

    Directory of Open Access Journals (Sweden)

    Feng Cao

    Full Text Available In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect-machine hybrid legged robot.

  2. Creatine Loading Does Not Preserve Muscle Mass or Strength During Leg Immobilization in Healthy, Young Males

    NARCIS (Netherlands)

    Backx, Evelien M.P.; Hangelbroek, Roland; Snijders, Tim; Verscheijden, Marie Louise; Verdijk, Lex B.; Groot, de Lisette C.P.G.M.; Loon, van Luc J.C.

    2017-01-01

    Background: A short period of leg immobilization leads to rapid loss of muscle mass and strength. Creatine supplementation has been shown to increase lean body mass in active individuals and can be used to augment gains in muscle mass and strength during prolonged resistance-type exercise

  3. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles

    OpenAIRE

    Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Aziz, Mohamed Fareez Bin; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M.; Sato, Hirotaka

    2014-01-01

    In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, ...

  4. Leg blood flow is impaired during small muscle mass exercise in patients with COPD

    DEFF Research Database (Denmark)

    Iepsen, Ulrik Winning; Munch, Gregers Druedal Wibe; Rugbjerg, Mette

    2017-01-01

    to both endothelium-independent (SNP) and endothelium-dependent (ACh) stimulation. The results suggests that leg muscle blood flow is impaired during small muscle mass exercise in patients with COPD possibly due to impaired formation of prostacyclin and increased levels of endothelin-1.......Skeletal muscle blood flow is regulated to match the oxygen demand and dysregulation could contribute to exercise intolerance in patients with COPD. We measured leg hemodynamics and metabolites from vasoactive compounds in muscle interstitial fluid and plasma at rest, during one-legged knee...... the formation of interstitial prostacyclin (vasodilator) was only increased in the controls. There was no difference between groups in the nitrite/nitrate levels (vasodilator) in plasma or interstitial fluid during exercise. Moreover, patients and controls showed similar vasodilatory capacity in response...

  5. Arm and leg substrate utilization and muscle adaptation after prolonged low-intensity training

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff

    2010-01-01

    This review will focus on current data where substrate metabolism in arm and leg muscle is investigated and discuss the presence of higher carbohydrate oxidation and lactate release observed during arm compared with leg exercise. Furthermore, a basis for a possible difference in substrate partiti...... at comparable workloads. Finally, the influence and capacity of low-intensity training to influence metabolic fitness in the face of a limited effect on aerobic fitness will be challenged....... partitioning between endogenous and exogenous substrate during arm and leg exercise will be debated. Moreover the review will probe if differences between arm and leg muscle are merely a result of different training status rather than a qualitative difference in limb substrate regulation. Along this line...... the review will address the available studies on low-intensity training performed separately with arm or legs or as whole-body training to evaluate if this leads to different adaptations in arm and leg muscle resulting in different substrate utilization patterns during separate arm or leg exercise...

  6. Template model inspired leg force feedback based control can assist human walking.

    Science.gov (United States)

    Zhao, Guoping; Sharbafi, Maziar; Vlutters, Mark; van Asseldonk, Edwin; Seyfarth, Andre

    2017-07-01

    We present a novel control approach for assistive lower-extremity exoskeletons. In particular, we implement a virtual pivot point (VPP) template model inspired leg force feedback based controller on a lower-extremity powered exoskeleton (LOPES II) and demonstrate that it can effectively assist humans during walking. It has been shown that the VPP template model is capable of stabilizing the trunk and reproduce a human-like hip torque during the stance phase of walking. With leg force and joint angle feedback inspired by the VPP template model, our controller provides hip and knee torque assistance during the stance phase. A pilot experiment was conducted with four healthy subjects. Joint kinematics, leg muscle electromyography (EMG), and metabolic cost were measured during walking with and without assistance. Results show that, for 0.6 m/s walking, our controller can reduce leg muscle activations, especially for the medial gastrocnemius (about 16.0%), while hip and knee joint kinematics remain similar to the condition without the controller. Besides, the controller also reduces 10% of the net metabolic cost during walking. This paper demonstrates walking assistance benefits of the VPP template model for the first time. The support of human walking is achieved by a force feedback of leg force applied to the control of hip and knee joints. It can help us to provide a framework for investigating walking assistance control in the future.

  7. ATP induced vasodilatation and purinergic receptors in the human leg: roles of nitric oxide, prostaglandins and adenosine

    DEFF Research Database (Denmark)

    Mortensen, Stefan P; Gonzalez-Alonso, Jose; Bune, Laurids

    2009-01-01

    .05) and was associated with a parallel lowering in leg vascular conductance and cardiac output and a compensatory increase in leg O2 extraction. Infusion of theophylline did not alter the ATP induced leg hyperemia or systemic variables. Real time PCR analysis of the mRNA content from the vastus lateralus muscle of 8...... subjects showed the highest expression of P2Y2 receptors of the 10 investigated P2 receptor subtypes. Immunohistochemistry showed that P2Y2 receptors were located in the endothelium of microvessels and smooth muscle cells, whereas P2X1 receptors were located in the endothelium and the sacrolemma....... Collectively, these results indicate that NO and prostaglandins, but not adenosine, play a role in ATP induced vasodilation in human skeletal muscle. The localization of the P2Y2 and P2X1 receptors suggest that these receptors may mediate ATP induced vasodilation in skeletal muscle. Key words: Skeletal Muscle...

  8. Training affects muscle phospholipid fatty acid composition in humans

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Wu, B J; Willer, Mette

    2001-01-01

    on the muscle membrane phospholipid fatty acid composition in humans. Seven male subjects performed endurance training of the knee extensors of one leg for 4 wk. The other leg served as a control. Before, after 4 days, and after 4 wk, muscle biopsies were obtained from the vastus lateralis. After 4 wk......, the phospholipid fatty acid contents of oleic acid 18:1(n-9) and docosahexaenoic acid 22:6(n-3) were significantly higher in the trained (10.9 +/- 0.5% and 3.2 +/- 0.4% of total fatty acids, respectively) than the untrained leg (8.8 +/- 0.5% and 2.6 +/- 0.4%, P fatty acids...... was significantly lower in the trained (11.1 +/- 0.9) than the untrained leg (13.1 +/- 1.2, P fatty acid composition. Citrate synthase activity was increased by 17% in the trained compared with the untrained leg (P

  9. Locomotor-like leg movements evoked by rhythmic arm movements in humans.

    Directory of Open Access Journals (Sweden)

    Francesca Sylos-Labini

    Full Text Available Motion of the upper limbs is often coupled to that of the lower limbs in human bipedal locomotion. It is unclear, however, whether the functional coupling between upper and lower limbs is bi-directional, i.e. whether arm movements can affect the lumbosacral locomotor circuitry. Here we tested the effects of voluntary rhythmic arm movements on the lower limbs. Participants lay horizontally on their side with each leg suspended in an unloading exoskeleton. They moved their arms on an overhead treadmill as if they walked on their hands. Hand-walking in the antero-posterior direction resulted in significant locomotor-like movements of the legs in 58% of the participants. We further investigated quantitatively the responses in a subset of the responsive subjects. We found that the electromyographic (EMG activity of proximal leg muscles was modulated over each cycle with a timing similar to that of normal locomotion. The frequency of kinematic and EMG oscillations in the legs typically differed from that of arm oscillations. The effect of hand-walking was direction specific since medio-lateral arm movements did not evoke appreciably leg air-stepping. Using externally imposed trunk movements and biomechanical modelling, we ruled out that the leg movements associated with hand-walking were mainly due to the mechanical transmission of trunk oscillations. EMG activity in hamstring muscles associated with hand-walking often continued when the leg movements were transiently blocked by the experimenter or following the termination of arm movements. The present results reinforce the idea that there exists a functional neural coupling between arm and legs.

  10. Recovery of atrophic leg muscles in the hemiplegics due to cerebrovascular accidents

    International Nuclear Information System (INIS)

    Odajima, Natsu; Ishiai, Sumio; Okiyama, Ryouichi; Furukawa, Tetsuo; Tsukagoshi, Hiroshi.

    1988-01-01

    Thirty-five patients with hemiplegia due to cerebrovascular accidents were studied with regared to the muscle wastings before and after rehabilitation training. Hemiplegics were composed of 12 improved and 23 non-improved patients. The CT scan was carried out at the midportion of the thigh and largest-diameter section of the calf. Muscle size of each cross-sectional area was measured on CT image and the increase of size (ΔS) in each muscle after training was calculated. The ΔS of quadriceps femoris was correlated with that of whole cross-section of the thigh. The gracilis in non-affected side was not correlated with that of whole muscles. In both legs, there was an increase in leg muscle size after training. These changes were nost marked in the non-affected side of the improved patients. After training the difference between the two limbs remained unchanged. Recovery of muscle wasting in both legs was seen first in the quadriceps in thigh and flexors in calf. Gracilis was relatively unchanged in comparison with other muscles. Remarkable increase of muscle size in non-affected side was worthwhile to note. (author)

  11. Recovery of atrophic leg muscles in the hemiplegics due to cerebrovascular accidents. Computed tomographic study

    Energy Technology Data Exchange (ETDEWEB)

    Odajima, Natsu; Ishiai, Sumio; Okiyama, Ryouichi; Furukawa, Tetsuo; Tsukagoshi, Hiroshi.

    1988-02-01

    Thirty-five patients with hemiplegia due to cerebrovascular accidents were studied with regared to the muscle wastings before and after rehabilitation training. Hemiplegics were composed of 12 improved and 23 non-improved patients. The CT scan was carried out at the midportion of the thigh and largest-diameter section of the calf. Muscle size of each cross-sectional area was measured on CT image and the increase of size (..delta..S) in each muscle after training was calculated. The ..delta..S of quadriceps femoris was correlated with that of whole cross-section of the thigh. The gracilis in non-affected side was not correlated with that of whole muscles. In both legs, there was an increase in leg muscle size after training. These changes were nost marked in the non-affected side of the improved patients. After training the difference between the two limbs remained unchanged. Recovery of muscle wasting in both legs was seen first in the quadriceps in thigh and flexors in calf. Gracilis was relatively unchanged in comparison with other muscles. Remarkable increase of muscle size in non-affected side was worthwhile to note.

  12. Factors associated with upper leg muscle strength in knee osteoarthritis: A scoping review

    Directory of Open Access Journals (Sweden)

    Arjan H de Zwart

    2017-11-01

    Full Text Available Objective: Muscle weakness is common and strongly related to clinical outcome in patients with knee or hip osteoarthritis. To date, there is no clear overview of the information on factors associated with muscle strength in knee and hip osteoarthritis. The aim of this paper is to provide an overview of current knowledge on factors associated with upper leg muscle strength in this population. Design: The framework of a scoping review was chosen. MEDLINE database was searched systematically up to 22 April 2017. Studies that described a relationship between a factor and muscle strength in knee or hip osteoarthritis were included. Results: A total of 65 studies met the inclusion criteria. In studies of knee osteoarthritis, 4 factors were consistently found to be associated with lower muscle strength. Due to the low number of studies on hip osteoarthritis no conclusions could be drawn on associations. Conclusion: Lower muscle quality, physical inactivity, more severe joint degeneration, and higher pain are reported to be associated with lower strength in the upper leg muscles in knee osteoarthritis. Future research into knee osteoarthritis should focus on other potential determinants of muscle strength, such as muscle quantity, muscle activation, nutrition and vitamins, and inflammation. In hip osteoarthritis, more research is needed into all potential determinants.

  13. Bilateral differences in muscle fascicle architecture are not related to the preferred leg in jumping athletes.

    Science.gov (United States)

    Aeles, Jeroen; Lenchant, Sietske; Vanlommel, Liesbeth; Vanwanseele, Benedicte

    2017-07-01

    In many sports, athletes have a preferred leg for sport-specific tasks, such as jumping, which leads to strength differences between both legs, yet the underlying changes in force-generating mechanical properties of the muscle remain unknown. The purpose of this study was to investigate whether the muscle architecture of the medial gastrocnemius (MG) is different between both legs in well-trained jumping athletes and untrained individuals. In addition, we investigated the effect of two ankle joint positions on ultrasound muscle architecture measurements. Muscle architecture of both legs was measured in 16 athletes and 11 untrained individuals at two ankle joint angles: one with the ankle joint in a tendon slack length (TSL) angle and one in a 90° angle. Fascicle lengths and pennation angles at TSL were not different between the preferred and non-preferred legs in either group. The comparison between groups showed no difference in fascicle length, but greater pennation angles were found in the athletes (21.7° ± 0.5°) compared to the untrained individuals (19.8° ± 0.6°). Analyses of the muscle architecture at a 90° angle yielded different results, mainly in the comparison between groups. These results provide only partial support for the notion of training-induced changes in muscle architecture as only differences in pennation angles were found between athletes and untrained individuals. Furthermore, our results provide support to the recommendation to take into account the tension-length relationship and to measure muscle architecture at individually determined tendon slack joint angles.

  14. Muscle Coordination and Locomotion in Humans.

    Science.gov (United States)

    Sylos-Labini, Francesca; Zago, Myrka; Guertin, Pierre A; Lacquaniti, Francesco; Ivanenko, Yury P

    2017-01-01

    Locomotion is a semi-automatic daily task. Several studies show that muscle activity is fairly stereotyped during normal walking. Nevertheless, each human leg contains over 50 muscles and locomotion requires flexibility in order to adapt to different conditions as, for instance, different speeds, gaits, turning, obstacle avoidance, altered gravity levels, etc. Therefore, locomotor control has to deal with a certain level of flexibility and non-linearity. In this review, we describe and discuss different findings dealing with both simplicity and variability of the muscular control, as well as with its maturation during development. Despite complexity and redundancy, muscle activity patterns and spatiotemporal maps of spinal motoneuron output during human locomotion show both stereotypical features as well as functional re-organization. Flexibility and different solutions to adjust motor patterns should be considered when considering new rehabilitation strategies to treat disorders involving deficits in gait. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Are substrate use during exercise and mitochondrial respiratory capacity decreased in arm and leg muscle in type 2 diabetes?

    DEFF Research Database (Denmark)

    Larsen, Steen; Ara, I; Rabøl, R

    2009-01-01

    and carbohydrate oxidation during both progressive arm-cranking and leg-cycling exercises. Muscle biopsies from arm and leg were obtained. Fibre type, as well as O(2) flux capacity of saponin-permeabilised muscle fibres were measured, the latter by high resolution respirometry, in patients with type 2 diabetes...

  16. Predicting muscle forces during the propulsion phase of single leg triple hop test.

    Science.gov (United States)

    Alvim, Felipe Costa; Lucareli, Paulo Roberto Garcia; Menegaldo, Luciano Luporini

    2018-01-01

    Functional biomechanical tests allow the assessment of musculoskeletal system impairments in a simple way. Muscle force synergies associated with movement can provide additional information for diagnosis. However, such forces cannot be directly measured noninvasively. This study aims to estimate muscle activations and forces exerted during the preparation phase of the single leg triple hop test. Two different approaches were tested: static optimization (SO) and computed muscle control (CMC). As an indirect validation, model-estimated muscle activations were compared with surface electromyography (EMG) of selected hip and thigh muscles. Ten physically healthy active women performed a series of jumps, and ground reaction forces, kinematics and EMG data were recorded. An existing OpenSim model with 92 musculotendon actuators was used to estimate muscle forces. Reflective markers data were processed using the OpenSim Inverse Kinematics tool. Residual Reduction Algorithm (RRA) was applied recursively before running the SO and CMC. For both, the same adjusted kinematics were used as inputs. Both approaches presented similar residuals amplitudes. SO showed a closer agreement between the estimated activations and the EMGs of some muscles. Due to inherent EMG methodological limitations, the superiority of SO in relation to CMC can be only hypothesized. It should be confirmed by conducting further studies comparing joint contact forces. The workflow presented in this study can be used to estimate muscle forces during the preparation phase of the single leg triple hop test and allows investigating muscle activation and coordination. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Leg muscle activation during gait in Parkinson's disease : Adaptation and interlimb coordination

    NARCIS (Netherlands)

    Dietz, [No Value; Zijlstra, W; Prokop, T; Berger, W

    1995-01-01

    Adaptation in leg muscle activity and coordination between lower limbs were studied during walking on a treadmill with split belts in one group of parkinsonian patients and one of age-matched healthy subjects. Four different belt speeds (0.25/0.5/0.75/1.0 m/sec) were applied in selected combinations

  18. Toe blood pressure and leg muscle oxygenation with body posture.

    Science.gov (United States)

    Rosales-Velderrain, Armando; Cardno, Michael; Mateus, Jaime; Kumar, Ravindra; Schlabs, Thomas; Hargens, Alan R

    2011-05-01

    In 1980 Katkov and Chestukhin measured blood pressures and oxygenation invasively at various body tilt angles at different locations on the body, including the foot. To our knowledge, such measurements have not been performed noninvasively. Therefore, the purpose of this study was to measure toe blood pressure (TBP) and lower limb muscle oxygenation noninvasively at various body tilt angles, and to assess the use of a Finometer for noninvasive TBP measurements. Our noninvasive results are compared with those performed by Katkov and Chestukhin. We hypothesized that: 1) the Finometer provides a noninvasive measurement of TBP at different tilt angles; and 2) muscle oxygenation is highest with 0 and -6 degrees, and decreases with increased head-up tilt (HUT). There were 10 subjects who were exposed to different body tilt angles (-6, 0, 10, 30, 70, and 90 degrees). At each angle we measured TBP noninvasively with a Finometer and muscle tissue oxygenation by near infrared spectroscopy. We found a strong correlation between TBP using the Finometer and TBP predicted by adding the hydrostatic component due to body tilt to the standard arm blood pressure measurement. At 10, 30, 70, and 90 degrees both TBP and tissue oxygenation were significantly different from the 0 degree (supine) level. Oxygenation decreased and TBP increased with higher HUT angles. No differences were observed in TBP or oxygenation between -6 and 0 degree. The Finometer accurately measures TBP noninvasively with body tilt. Also, muscle oxygenation is highest at small HUT angles and decreases with increased HUT.

  19. Coordinated development of muscles and tendon-like structures: early interactions in the Drosophila leg

    Directory of Open Access Journals (Sweden)

    cedric esoler

    2016-02-01

    Full Text Available The formation of the musculoskeletal system is a remarkable example of tissue assembly. In both vertebrates and invertebrates, precise connectivity between muscles and skeleton (or exoskeleton via tendons or equivalent structures is fundamental for movement and stability of the body. The molecular and cellular processes underpinning muscle formation are well established and significant advances have been made in understanding tendon development. However, the mechanisms contributing to proper connection between these two tissues have received less attention. Observations of coordinated development of tendons and muscles suggest these tissues may interact during the different steps in their development. There is growing evidence that, depending on animal model and muscle type, these interactions can take place from progenitor induction to the final step of the formation of the musculoskeletal system. Here we briefly review and compare the mechanisms behind muscle and tendon interaction throughout the development of vertebrates and Drosophila before going on to discuss our recent findings on the coordinated development of muscles and tendon-like structures in Drosophila leg. By altering apodeme formation (the functional Drosophila equivalent of tendons in vertebrates during the early steps of leg development, we affect the spatial localisation of subsequent myoblasts. These findings provide the first evidence of the developmental impact of early interactions between muscle and tendon-like precursors, and confirm the appendicular Drosophila muscle system as a valuable model for studying these processes.

  20. Rupture of the medial gastrocnemius muscle during namaz praying: an unusual cause of tennis leg.

    Science.gov (United States)

    Yilmaz, Cengiz; Orgenc, Yaman; Ergenc, Ruken; Erkan, Nazif

    2008-12-01

    The aim of this retrospective study is to report a unique group of patients in whom rupture of the medial gastrocnemius muscle (tennis leg) occurred during namaz praying. We reviewed the sonographic and/or MR imaging findings of 543 patients who were referred for the evaluation of leg pain and swelling during the last 7 years. Fourteen patients with a final diagnosis of tennis leg that occured during namaz praying were included in this study. Nine of 14 (64.2%) patients had incomplete and the remainder 5 (35.8%) patients had a partial tear at the musculotendinous junction (MTJ). Four of 14 (28.6%) patients were mistaken for deep vein thrombosis (DVT) on the basis of clinical findings and presentation. Associated fluid collection between the gastrocnemius and soleus muscle was noted in 11 (78.5%) patients. Isolated fluid collection between the gastrocnemius and soleus muscle without disruption of the gastrocnemius muscle was seen in 1 patient. Rupture of the medial gastrocnemius muscle may occur during namaz praying. The clinical presentation is not always characteristic and may simulate DVT. US and MRI are useful diagnostic tools to establish the correct diagnosis and prompt further treatment.

  1. A combination of resistance and endurance training increases leg muscle strength in COPD

    DEFF Research Database (Denmark)

    Iepsen, Ulrik Winning; Jørgensen, Karsten Juhl; Ringbæk, Thomas

    2015-01-01

    Resistance training (RT) is thought to be effective in preventing muscle depletion, whereas endurance training (ET) is known to improve exercise capacity and health-related quality of life (HRQoL) in chronic obstructive pulmonary disease (COPD). Our objectives were to assess the efficiency...... improvements in HRQoL, walking distance and exercise capacity. However, we found moderate quality evidence of a significant increase in leg muscle strength favouring a combination of RT and ET (standardized mean difference of 0.69 (95% confidence interval: 0.39-0.98). In conclusion, we found significantly...... increased leg muscle strength favouring a combination of RT with ET compared with ET alone. Therefore, we recommend that RT should be incorporated in rehabilitation of COPD together with ET....

  2. Computed tomographic findings of leg muscles in the hemiplegics due to cerebrovascular accidents

    International Nuclear Information System (INIS)

    Odajima, Natsu; Ishiai, Sumio; Kotera, Minoru; Furukawa, Tetsuo; Tsukagoshi, Hiroshi.

    1986-01-01

    The computed tomography (CT) scan was performed in 52 hemiplegics due to cerebrovascular accidents and 12 normal controls on the mid-portion of the thigh and the largest-diameter section of the calf. Muscle size and average CT density of the muscle were measured. The salient feature was hypertrophic gracilis muscle of the hemiplegic side. Other muscles were more atrophied with lower CT density compared with those of the contralateral side. The size of the quadriceps muscle was especially small. The ratio of the quadriceps to all the thigh muscles in cross section was significantly smaller in affected side of hemiplegics than that of normal controls. This was observed even in normal side of the hemiplegics but the ratios of adductor and flexor muscles of the thigh showed no difference. Hypertrophy of gracilis muscle with high CT density was observed only on hemiplegic side. Muscle atrophies were marked in non-ambulatory patients. The ratios of quadriceps and saltorius muscles of thigh in non-ambulatory patients were significantly smaller than those of ambulatory patients. It could not be detected that there is relationship of the sevirity of the muscle atrophy and parietal lobe dysfunction. This atrophy considered to be the result of disuse of the paralyzed leg and pyramidal tract dysfunction. (author)

  3. Maintained peak leg and pulmonary VO2 despite substantial reduction in muscle mitochondrial capacity

    DEFF Research Database (Denmark)

    Boushel, Robert; Gnaiger, E.; Larsen, F. J.

    2015-01-01

    We recently reported the circulatory and muscle oxidative capacities of the arm after prolonged low-intensity skiing in the arctic (Boushel et al., 2014). In the present study, leg VO2 was measured by the Fick method during leg cycling while muscle mitochondrial capacity was examined on a biopsy ...... at a higher mitochondrial p50. These findings support the concept that muscle mitochondrial respiration is submaximal at VO2max , and that mitochondrial volume can be downregulated by chronic energy demand....

  4. Motor-neuron pool excitability of the lower leg muscles after acute lateral ankle sprain.

    Science.gov (United States)

    Klykken, Lindsey W; Pietrosimone, Brian G; Kim, Kyung-Min; Ingersoll, Christopher D; Hertel, Jay

    2011-01-01

    Neuromuscular deficits in leg muscles that are associated with arthrogenic muscle inhibition have been reported in people with chronic ankle instability, yet whether these neuromuscular alterations are present in individuals with acute sprains is unknown. To compare the effect of acute lateral ankle sprain on the motor-neuron pool excitability (MNPE) of injured leg muscles with that of uninjured contralateral leg muscles and the leg muscles of healthy controls. Case-control study. Laboratory. Ten individuals with acute ankle sprains (6 females, 4 males; age= 19.2 ± 3.8 years, height= 169.4 ± 8.5 cm, mass= 66.3 ± 11.6 kg) and 10 healthy individuals(6 females,4 males; age= 20.6 ± 4.0 years, height = 169.9 ± 10.6 cm, mass= 66.3 ± 10.2 kg) participated. The independent variables were group (acute ankle sprain, healthy) and limb (injured, uninjured). Separate dependent t tests were used to determine differences in MNPE between legs. The MNPE of the soleus, fibularis longus, and tibialis anterior was measured by the maximal Hoffmann reflex (H(max)) and maximal muscle response (M(max)) and was then normalized using the H(max):M(max) ratio. The soleus MNPE in the ankle-sprain group was higher in the injured limb (H(max):M(max) = 0.63; 95% confidence interval [Cl],0.46, 0.80) than the uninjured limb (H(max):M(max) = 0.47; 95%Cl, 0.08, 0.93)(t(6) = 3.62,P =.01).In the acute ankle-sprain group, tibialis anterior MNPE tended to be lower in the injured ankle (H(max):M(max) =0.06; 95% Cl, 0.01, 0.10) than in the uninjured ankle (H(max):M(max) =0.22; 95%Cl, 0.09, 0.35),but this finding was not different (t(9) =-2.01, P =.07). No differences were detected between injured (0.22; 95% Cl, 0.14, 0.29) and uninjured (0.25; 95%Cl, 0.12, 0.38) ankles for the fibularis longus in the ankle-sprain group (t(9) =-0.739, P =.48). We found no side-to-side differences in any muscle among the healthy group. Facilitated MNPE was present in the involved soleus muscle of patients with acute

  5. The effects of passive leg press training on jumping performance, speed, and muscle power.

    Science.gov (United States)

    Liu, Chiang; Chen, Chuan-Shou; Ho, Wei-Hua; Füle, Róbert János; Chung, Pao-Hung; Shiang, Tzyy-Yuang

    2013-06-01

    Passive leg press (PLP) training was developed based on the concepts of the stretch-shortening cycle (SSC) and the benefits of high muscle contraction velocity. Passive leg press training enables lower limb muscle groups to apply a maximum downward force against a platform moved up and down at high frequency by an electric motor. Thus, these muscle groups accomplished both concentric and eccentric isokinetic contractions in a passive, rapid, and repetitive manner. This study investigates the effects of 10 weeks of PLP training at high and low movement frequencies have on jumping performance, speed, and muscle power. The authors selected 30 college students who had not performed systematic resistance training in the previous 6 months, including traditional resistance training at a squat frequency of 0.5 Hz, PLP training at a low frequency of 0.5 Hz, and PLP training at a high frequency of 2.5 Hz, and randomly divided them into 3 groups (n = 10). The participants' vertical jump, drop jump, 30-m sprint performance, explosive force, and SSC efficiency were tested under the same experimental procedures at pre- and post-training. Results reveal that high-frequency PLP training significantly increased participants' vertical jump, drop jump, 30-m sprint performance, instantaneous force, peak power, and SSC efficiency (p training (p training significantly increased participants' vertical jump, 30-m sprint performance, instantaneous force, and peak power (p training only increased participants' 30-m sprint performance and peak power (p training at high movement frequency. A PLP training machine powered by an electrical motor enables muscles of the lower extremities to contract faster compared with voluntary contraction. Therefore, muscle training with high contraction velocity is one of the main methods of increasing muscle power. Passive leg press training is a unique method for enhancing jump performance, speed, and muscle power.

  6. Experience with peroneus brevis muscle flaps for reconstruction of distal leg and ankle defects

    Directory of Open Access Journals (Sweden)

    Babu Bajantri

    2013-01-01

    Full Text Available Objective: Peroneus brevis is a muscle in the leg which is expendable without much functional deficit. The objective of this study was to find out its usefulness in coverage of the defects of the lower leg and ankle. Patients and Methods: A retrospective analysis of the use of 39 pedicled peroneus brevis muscle flaps used for coverage of defects of the lower leg and ankle between November 2010 and December 2012 was carried out. The flaps were proximally based for defects of the lower third of the leg in 12 patients and distally based for reconstruction of defects of the ankle in 26 patients, with one patient having flaps on both ankles. Results: Partial flap loss in critical areas was found in four patients requiring further flap cover and in non-critical areas in two patients, which were managed with a skin graft. Three of the four critical losses occurred when we used it for covering defects over the medial malleolus. There was no complete flap loss in any of the patients. Conclusion: This flap has a unique vascular pattern and fails to fit into the classification of the vasculature of muscles by Mathes and Nahai. The unusual feature is an axial vessel system running down the deep aspect of the muscle and linking the perforators from the peroneal artery and anterior tibial artery, which allows it to be raised proximally or distally on a single perforator. The flap is simple to raise and safe for the reconstruction of small-to moderate-sized skin defects of the distal third of the tibia and all parts of the ankle except the medial malleolus, which is too far from the pedicle of the distally based flap. The donor site can be closed primarily to provide a linear scar. The muscle flap thins with time to provide a good result aesthetically at the primary defect.

  7. [Electromyographic determination of the fatigability of respiratory and leg muscles before and after aortocoronary bypass operation].

    Science.gov (United States)

    Worth, H; Grundmann, C; Goeckenjan, G; Smidt, U; Irlich, G; Loogen, F

    1984-01-01

    To study the effect of postoperative confinement to bed on respiratory muscle fatigue, 31 male subjects (age, 34-66 years) undergoing coronary artery revascularization were examined. Fatigue of both respiratory muscles (musculi intercostales externi) and leg muscles (musculus gastrocnemius) was determined by electromyography prior to and 7 and 12 days after operation. Additionally, oscillatory resistance to breathing and phase angle were measured. Pre- and postoperative routine lung function tests were performed. A comparison between preoperative and postoperative measurements reveals that respiratory as well as leg muscle fatigue occurred at higher loads during the preoperative and the second postoperative than during the first postoperative determination. After surgery vital capacity, total lung capacity, 1-second capacity, and, to a lower extent, thoracic gas volume were diminished, while specific airway conductance, oscillatory resistance to breathing, phase angle, residual volume, and relative 1-second capacity remained unchanged. The constancy of the latter parameters indicates that neither airway obstruction nor a significant restriction of the lung and/or thorax occurred due to surgery. Therefore, the increase of respiratory muscle fatigue after surgery may more probably be attributed to a lack of training of respiratory muscles which may contribute to limitation of ventilation in bedridden patients.

  8. Human-like Walking with Compliant Legs

    NARCIS (Netherlands)

    Visser, L.C.; de Geus, Wouter; Stramigioli, Stefano; Carloni, Raffaella

    2011-01-01

    This work presents a novel approach to robotic bipedal walking. Based on the bipedal spring-mass model, which is known to closely describe human-like walking behavior, a robot has been designed that approaches the ideal model as closely as possible. The compliance of the springs is controllable by

  9. The influence of lower leg configurations on muscle force variability.

    Science.gov (United States)

    Ofori, Edward; Shim, Jaeho; Sosnoff, Jacob J

    2018-04-11

    The maintenance of steady contractions is required in many daily tasks. However, there is little understanding of how various lower limb configurations influence the ability to maintain force. The purpose of the current investigation was to examine the influence of joint angle on various lower-limb constant force contractions. Nineteen adults performed knee extension, knee flexion, and ankle plantarflexion isometric force contractions to 11 target forces, ranging from 2 to 95% maximal voluntary contraction (MVC) at 2 angles. Force variability was quantified with mean force, standard deviation, and the coefficient of variation of force output. Non-linearities in force output were quantified with approximate entropy. Curve fitting analyses were performed on each set of data from each individual across contractions to further examine whether joint angle interacts with global functions of lower-limb force variability. Joint angle had significant effects on the model parameters used to describe the force-variability function for each muscle contraction (p force output were more explained by force level in smaller angle conditions relative to the larger angle conditions (p force production. Biomechanical factors, such as joint angle, along with neurophysiological factors should be considered together in the discussion of the dynamics of constant force production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Lower leg muscle involvement in Duchenne muscular dystrophy: an MR imaging and spectroscopy study

    International Nuclear Information System (INIS)

    Torriani, Martin; Townsend, Elise; Thomas, Bijoy J.; Bredella, Miriam A.; Ghomi, Reza H.; Tseng, Brian S.

    2012-01-01

    To describe the involvement of lower leg muscles in boys with Duchenne muscular dystrophy (DMD) by using MR imaging (MRI) and spectroscopy (MRS) correlated to indices of functional status. Nine boys with DMD (mean age, 11 years) and eight healthy age- and BMI-matched boys (mean age, 13 years) prospectively underwent lower leg MRI, 1H-MRS of tibialis anterior (TA) and soleus (SOL) for lipid fraction measures, and 31P-MRS for pH and high-energy phosphate measures. DMD subjects were evaluated using the Vignos lower extremity functional rating, and tests including 6 min walk test (6MWT) and 10 m walk. DMD subjects had highest fatty infiltration scores in peroneal muscles, followed by medial gastrocnemius and soleus. Compared to controls, DMD boys showed higher intramuscular fat (P = 0.04), lipid fractions of TA and SOL (P = 0.02 and 0.003, respectively), pH of anterior compartment (P = 0.0003), and lower phosphocreatine/inorganic phosphorus ratio of posterior compartment (P = 0.02). The Vignos rating correlated with TA (r = 0.79, P = 0.01) and SOL (r = 0.71, P = 0.03) lipid fractions. The 6MWT correlated with fatty infiltration scores of SOL (r = -0.76, P = 0.046), medial (r = -0.80, P = 0.03) and lateral (r = -0.84, P = 0.02) gastrocnemius, intramuscular fat (r = -0.80, P = 0.03), and SOL lipid fraction (r = -0.89, P = 0.007). Time to walk 10 m correlated with anterior compartment pH (r = 0.78, P = 0.04). Lower leg muscles of boys with DMD show a distinct involvement pattern and increased adiposity that correlates with functional status. Lower leg MRI and 1H-MRS studies may help to noninvasively demonstrate the severity of muscle involvement. (orig.)

  11. Lower leg muscle involvement in Duchenne muscular dystrophy: an MR imaging and spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Torriani, Martin [Massachusetts General Hospital and Harvard Medical School, Division of Musculoskeletal Imaging and Intervention, Boston, MA (United States); Massachusetts General Hospital, Musculoskeletal Imaging and Intervention, Department of Radiology, Boston, MA (United States); Townsend, Elise [MGH Institute of Health Professions and Massachusetts General Hospital, Boston, MA (United States); Thomas, Bijoy J.; Bredella, Miriam A.; Ghomi, Reza H. [Massachusetts General Hospital and Harvard Medical School, Division of Musculoskeletal Imaging and Intervention, Boston, MA (United States); Tseng, Brian S. [Massachusetts General Hospital and Harvard Medical School, Pediatric Neuromuscular Clinic, Boston, MA (United States); Novartis Institute of Biomedical Research, Cambridge, MA (United States)

    2012-04-15

    To describe the involvement of lower leg muscles in boys with Duchenne muscular dystrophy (DMD) by using MR imaging (MRI) and spectroscopy (MRS) correlated to indices of functional status. Nine boys with DMD (mean age, 11 years) and eight healthy age- and BMI-matched boys (mean age, 13 years) prospectively underwent lower leg MRI, 1H-MRS of tibialis anterior (TA) and soleus (SOL) for lipid fraction measures, and 31P-MRS for pH and high-energy phosphate measures. DMD subjects were evaluated using the Vignos lower extremity functional rating, and tests including 6 min walk test (6MWT) and 10 m walk. DMD subjects had highest fatty infiltration scores in peroneal muscles, followed by medial gastrocnemius and soleus. Compared to controls, DMD boys showed higher intramuscular fat (P = 0.04), lipid fractions of TA and SOL (P = 0.02 and 0.003, respectively), pH of anterior compartment (P = 0.0003), and lower phosphocreatine/inorganic phosphorus ratio of posterior compartment (P = 0.02). The Vignos rating correlated with TA (r = 0.79, P = 0.01) and SOL (r = 0.71, P = 0.03) lipid fractions. The 6MWT correlated with fatty infiltration scores of SOL (r = -0.76, P = 0.046), medial (r = -0.80, P = 0.03) and lateral (r = -0.84, P = 0.02) gastrocnemius, intramuscular fat (r = -0.80, P = 0.03), and SOL lipid fraction (r = -0.89, P = 0.007). Time to walk 10 m correlated with anterior compartment pH (r = 0.78, P = 0.04). Lower leg muscles of boys with DMD show a distinct involvement pattern and increased adiposity that correlates with functional status. Lower leg MRI and 1H-MRS studies may help to noninvasively demonstrate the severity of muscle involvement. (orig.)

  12. Do oarsmen have asymmetries in the strength of their back and leg muscles?

    Science.gov (United States)

    Parkin, S; Nowicky, A V; Rutherford, O M; McGregor, A H

    2001-07-01

    The aim of this study was to establish whether asymmetry of the strength of the leg and trunk musculature is more prominent in rowers than in controls. Nineteen oarsmen and 20 male controls matched for age, height and body mass performed a series of isokinetic and isometric strength tests on an isokinetic dynamometer. These strength tests focused on the trunk and leg muscles. Comparisons of strength were made between and within groups for right and left symmetry patterns, hamstring: quadriceps ratios, and trunk flexor and extensor ratios. The results revealed no left and right asymmetries in either the knee extensor or flexor strength parameters (including both isometric and isokinetic measures). Knee extensor strength was significantly greater in the rowing population, but knee flexor strength was similar between the two groups. No difference was seen between the groups for the hamstring: quadriceps strength ratio. In the rowing population, stroke side had no influence on leg strength. No differences were observed in the isometric strength of the trunk flexors and extensors between groups, although EMG activity was significantly higher in the rowing population. Patterns of asymmetry of muscle activity were observed between the left and right erector spinae muscles during extension, which was significantly related to rowing side (P low back pain in oarsmen.

  13. A single bout of whole-leg, peristaltic pulse external pneumatic compression upregulates PGC-1α mRNA and endothelial nitric oxide sythase protein in human skeletal muscle tissue.

    Science.gov (United States)

    Kephart, Wesley C; Mobley, C Brooks; Fox, Carlton D; Pascoe, David D; Sefton, JoEllen M; Wilson, Trent J; Goodlett, Michael D; Kavazis, Andreas N; Roberts, Michael D; Martin, Jeffrey S

    2015-07-01

    What is the central question of this study? Does 60 min of peristaltic pulse external pneumatic compression (EPC) alter gene and protein expression patterns related to metabolism, vascular biology, redox balance and inflammation in vastus lateralis biopsy samples? What is the main finding and its importance? A single bout of EPC transiently upregulates PGC-1α mRNA, while also upregulating endothelial nitric oxide synthase protein and nitric oxide metabolite concentrations in vastus lateralis biopsy samples. We investigated whether a single 60 min bout of whole-leg, lower pressure external pneumatic compression (EPC) altered select vascular, metabolic, antioxidant and inflammation-related mRNAs. Ten participants (eight male, two female; aged 22.0 ± 0.4 years) reported to the laboratory 4 h postprandial, and vastus lateralis muscle biopsies were obtained before (PRE) and 1 and 4 h after EPC treatment. Messenger RNA expression was analysed using real-time RT-PCR, and significant mRNA findings were investigated further by Western blot analysis of respective protein concentrations. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA increased by 77% 1 h following EPC compared with PRE levels (P = 0.005), but no change in protein concentration 1 or 4 h post-EPC was observed. Increases in endothelial nitric oxide sythase (eNOS) mRNA (+44%) and superoxide dismutase 2 (SOD2) mRNA (+57%) 1 h post-EPC as well as an increase in interleukin-10 mRNA (+132%) 4 h post-EPC compared with PRE levels were observed, but only approached significance (P = 0.076, 0.077 and 0.074, respectively). Interestingly, eNOS protein (+40%, P = 0.025) and nitrate and nitrite (NOx) concentrations (+69%, P = 0.025) increased 1-4 h post-EPC. Moreover, SOD2 protein tended to increase from PRE to 4 h post-EPC (+43%, P = 0.074), although no changes in tissue 4-hydroxnonenal levels was observed. An acute bout of EPC transiently upregulates PGC-1α mRNA, while also upregulating e

  14. CT findings of leg muscles in the hemiplegics due to cerebrovascular accidents. Correlation to disuse atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Odajima, Natsu; Ishiai, Sumio; Okiyama, Ryouichi; Furukawa, Tetsuo; Tsukagoshi, Hiroshi

    1987-09-01

    Muscle wastings in hemiplegics due to cerebrovascular accidents were studied with CT scanning in the mid-portion of the thigh and largest-diameter section of the calf bilaterally. Muscle size and average CT density of muscle were measured. The 80 patients were classified into one of the following three stages of disability, i.e. stage 1, severely disabled (wheel-chair-bound but capable of self care (20 patients)); stage 2, moderately disabled (poorly ambulatory (41 patients)); and stage 3, mildly disabled (well ambulatory (19 patients)). Muscle cross-sectional area and CT density in both legs of non-ambulatory patients were smaller and lower than those of other groups. The atrophic change was marked in the affected side, but it was also noticeable in the non-affected side. Gracilis muscle was relatively well spared in all 3 stages. These CT findings of hemiplegics were similar to those of disuse atropy in patients with knee or hip joint lesions. Atrophy was seen first in the quadriceps in thigh and flexor muscle group in calf. These findings were similar to the systemic myogenic or neurogenic atrophies. Although gracilis and sartorius muscles were spared in these systemic deseases, only gracilis muscle was spared in hemiplegics and in patients with disuse atrophy. The ratios of the size of quadriceps, adductor group and sartorius muscle of thigh in affected side to that of non-affected side were smaller in more severely disabled group. Those of the other muscles showed no differences among each stages. In stage 3, there was significant negative correlation between the ratio of quadriceps muscle and periods from the attack. There was no relationship between the severity of the muscle atrophy and parietal lobe lesion. The atrophy is considered to be the result of disuse from immobilization.

  15. CT findings of leg muscles in the hemiplegics due to cerebrovascular accidents

    International Nuclear Information System (INIS)

    Odajima, Natsu; Ishiai, Sumio; Okiyama, Ryouichi; Furukawa, Tetsuo; Tsukagoshi, Hiroshi.

    1987-01-01

    Muscle wastings in hemiplegics due to cerebrovascular accidents were studied with CT scanning in the mid-portion of the thigh and largest-diameter section of the calf bilaterally. Muscle size and average CT density of muscle were measured. The 80 patients were classified into one of the following three stages of disability, i.e. stage 1, severely disabled (wheel-chair-bound but capable of self care [20 patients]); stage 2, moderately disabled (poorly ambulatory [41 patients]); and stage 3, mildly disabled (well ambulatory [19 patients]). Muscle cross-sectional area and CT density in both legs of non-ambulatory patients were smaller and lower than those of other groups. The atrophic change was marked in the affected side, but it was also noticeable in the non-affected side. Gracilis muscle was relatively well spared in all 3 stages. These CT findings of hemiplegics were similar to those of disuse atropy in patients with knee or hip joint lesions. Atrophy was seen first in the quadriceps in thigh and flexor muscle group in calf. These findings were similar to the systemic myogenic or neurogenic atrophies. Although gracilis and sartorius muscles were spared in these systemic deseases, only gracilis muscle was spared in hemiplegics and in patients with disuse atrophy. The ratios of the size of quadriceps, adductor group and sartorius muscle of thigh in affected side to that of non-affected side were smaller in more severely disabled group. Those of the other muscles showed no differences among each stages. In stage 3, there was significant negative correlation between the ratio of quadriceps muscle and periods from the attack. There was no relationship between the severity of the muscle atrophy and parietal lobe lesion. The atrophy is considered to be the result of disuse from immobilization. (author)

  16. Influence of unstable footwear on lower leg muscle activity, volume change and subjective discomfort during prolonged standing.

    Science.gov (United States)

    Karimi, Zanyar; Allahyari, Teimour; Azghani, Mahmood Reza; Khalkhali, Hamidreza

    2016-03-01

    The present study was an attempt to investigate the effect of unstable footwear on lower leg muscle activity, volume change and subjective discomfort during prolonged standing. Ten healthy subjects were recruited to stand for 2 h in three footwear conditions: barefoot, flat-bottomed shoe and unstable shoe. During standing, lower leg discomfort and EMG activity of medial gastrocnemius (MG) and tibialis anterior (TA) muscles were continuously monitored. Changes in lower leg volume over standing time also were measured. Lower leg discomfort rating reduced significantly while subjects standing on unstable shoe compared to the flat-bottomed shoe and barefoot condition. For lower leg volume, less changes also were observed with unstable shoe. The activity level and variation of right MG muscle was greater with unstable shoe compared to the other footwear conditions; however regarding the left MG muscle, significant difference was found between unstable shoe and flat-bottomed shoe only for activity level. Furthermore no significant differences were observed for the activity level and variation of TA muscles (right/left) among all footwear conditions. The findings suggested that prolonged standing with unstable footwear produces changes in lower leg muscles activity and leads to less volume changes. Perceived discomfort also was lower for this type of footwear and this might mean that unstable footwear can be used as ergonomic solution for employees whose work requires prolonged standing. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  17. Quantification of leg muscle perfusion using thallium-201 single photon emission computed tomography

    International Nuclear Information System (INIS)

    Oshima, M.; Akanabe, H.; Sakuma, S.; Yano, T.; Nishikimi, N.; Shionoya, S.

    1989-01-01

    The purpose of this study is to quantify leg muscle perfusion with 201 Tl single photon emission computed tomography (SPECT). Six normal controls and 21 patients with peripheral arterial disease underwent this examination. Thallium-201 leg SPECT of both stress and redistribution was performed using a dual-headed digital gamma camera. Each slice of transverse images was normalized with pixels and whole-body counts. In normal controls, the activity of posterior tibial muscle components was significantly higher than that of anterior tibial muscle components (p less than 0.001). In 14 components, where patients had insignificant lesions, profile curves were normal in 10 (71%). In 62 components, where patients had arteriographically significant lesions, stress profile curves were abnormal in 57 (92%) compared with normal controls. Approximately, in half (28/62) components which had significant lesions, profile curves showed redistribution after 3 hr compared with normal redistribution curves. In three patients who underwent successful bypass graftings, the activity of each muscle component returned to a normal range

  18. Decreased muscle oxygenation and increased arterial blood flow in the non-exercising limb during leg exercise.

    Science.gov (United States)

    Shiroishi, Kiyoshi; Kime, Ryotaro; Osada, Takuya; Murase, Norio; Shimomura, Kousuke; Katsumura, Toshihito

    2010-01-01

    We evaluated arterial blood flow, muscle tissue oxygenation and muscle metabolism in the non-exercising limb during leg cycling exercise. Ten healthy male volunteers performed a graded leg cycling exercise at 0, 40, 80, 120 and 160 watts (W) for 5 min each. Tissue oxygenation index (TOI) of the non-exercising left forearm muscle was measured using a near-infrared spatially resolved spectroscopy (NIR(SRS)), and non-exercising forearm blood flow ((NONEX)FBF) in the brachial artery was also evaluated by a Doppler ultrasound system. We also determined O(2) consumption of the non-exercising forearm muscle (NONEXV(O)(2mus)) by the rate of decrease in O(2)Hb during arterial occlusion at each work rate. TOI was significantly decreased at 160 W (p exercising muscle may be reduced, even though (NONEX)FBF increases at high work rates during leg cycling exercise.

  19. Myosin heavy-chain isoforms in the flight and leg muscles of hummingbirds and zebra finches.

    Science.gov (United States)

    Velten, Brandy P; Welch, Kenneth C

    2014-06-01

    Myosin heavy chain (MHC) isoform complement is intimately related to a muscle's contractile properties, yet relatively little is known about avian MHC isoforms or how they may vary with fiber type and/or the contractile properties of a muscle. The rapid shortening of muscles necessary to power flight at the high wingbeat frequencies of ruby-throated hummingbirds and zebra finches (25-60 Hz), along with the varied morphology and use of the hummingbird hindlimb, provides a unique opportunity to understand how contractile and morphological properties of avian muscle may be reflected in MHC expression. Isoforms of the hummingbird and zebra finch flight and hindlimb muscles were electrophoretically separated and compared with those of other avian species representing different contractile properties and fiber types. The flight muscles of the study species operate at drastically different contraction rates and are composed of different histochemically defined fiber types, yet each exhibited the same, single MHC isoform corresponding to the chicken adult fast isoform. Thus, despite quantitative differences in the contractile demands of flight muscles across species, this isoform appears necessary for meeting the performance demands of avian powered flight. Variation in flight muscle contractile performance across species may be due to differences in the structural composition of this conserved isoform and/or variation within other mechanically linked proteins. The leg muscles were more varied in their MHC isoform composition across both muscles and species. The disparity in hindlimb MHC expression between hummingbirds and the other species highlights previously observed differences in fiber type composition and thrust production during take-off. Copyright © 2014 the American Physiological Society.

  20. Net joint moments and muscle activation in barbell squats without and with restricted anterior leg rotation.

    Science.gov (United States)

    Chiu, Loren Z F; vonGaza, Gabriella L; Jean, Liane M Y

    2017-01-01

    Muscle utilisation in squat exercise depends on technique. The purpose of this study was to compare net joint moments (NJMs) and muscle activation during squats without and with restricted leg dorsiflexion. Experienced men (n = 5) and women (n = 4) performed full squats at 80% one repetition maximum. 3D motion analysis, force platform and (EMG) data were collected. Restricting anterior leg rotation reduced anterior leg (P = 0.001) and posterior thigh (P squat depth, ankle plantar flexor (P squats. Hip extensor NJM (P = 0.14) was not different between squat types at maximum squat depth. Vastus lateralis (P > 0.05), vastus medialis (P > 0.05) and rectus femoris (P > 0.05) EMG were not different between squat types. Unrestricted squats have higher ankle plantar flexor and knee extensor NJM than previously reported from jumping and landing. However, ankle plantar flexor and knee extensor NJM are lower in restricted squats than previous studies of jumping and landing. The high NJM in unrestricted squat exercise performed through a full range of motion suggests this squat type would be more effective to stimulate adaptations in the lower extremity musculature than restricted squats.

  1. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    DEFF Research Database (Denmark)

    Fritzen, Andreas Mæchel; Madsen, Agnete Louise Bjerregaard; Kleinert, Maximilian

    2016-01-01

    Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one-legged exer......Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one......-legged exercise training as well as in response to subsequent insulin stimulation in exercised and non-exercised human muscle. Acute one-legged exercise decreased (phuman muscle....... The decrease in LC3-II/LC3-I ratio did not correlate with activation of AMPK trimer complexes in human muscle. Consistently, pharmacological AMPK activation with AICAR in mouse muscle did not affect the LC3-II/LC3-I ratio. Four hours after exercise, insulin further reduced (p

  2. EFFECT OF MODERATE ALTITUDE ON PERIPHERAL MUSCLE OXYGENATION DURING LEG RESISTANCE EXERCISE IN YOUNG MALES

    Directory of Open Access Journals (Sweden)

    Toshio Matsuoka

    2004-09-01

    Full Text Available Training at moderate altitude (~1800m is often used by athletes to stimulate muscle hypoxia. However, limited date is available on peripheral muscle oxidative metabolism at this altitude (1800AL. The purpose of this study was to determine whether acute exposure to 1800AL alters muscle oxygenation in the vastus lateralis muscle during resistance exercise. Twenty young active male subjects (aged 16 - 21 yr performed up to 50 repetitions of the parallel squat at 1800AL and near sea level (SL. They performed the exercise protocol within 3 h after arrival at 1800 AL. During the exercise, the changes in oxygenated hemoglobin (OxyHb in the vastus lateralis muscle, arterial oxygen saturation (SpO2, and heart rate were measured using near infrared continuous wave spectroscopy (NIRcws and pulse oximetry, respectively. Changes in OxyHb were expressed by Deff defined as the relative index of the maximum change ratio (% from the resting level. OxyHb in the vastus lateralis muscle decreased dramatically from the resting level immediately after the start of exercise at both altitudes. The Deff during exercise was significantly (p < 0.001 lower at 1800AL (60.4 ± 6.2 % than at near SL (74.4 ± 7.6 %. SpO2 during exercise was significantly (p < 0.001 lower at 1800AL (92.0 ± 1.7 % than at near SL (96.7 ± 1.2 %. Differences (SL - 1800AL in Deff during exercise correlated fairly strongly with differences in SpO2 during exercise (r = 0.660. These results suggested that acute exposure to moderate altitude caused a more dramatical decrease in peripheral muscle oxygenation during leg resistance exercise. It is salient to note, therefore , that peripheral muscle oxygenation status at moderate altitude could be evaluated using NIRcws and that moderate altitudes might be effectively used to apply hypoxic stress on peripheral muscles.

  3. Insulin action in human thighs after one-legged immobilization

    DEFF Research Database (Denmark)

    Richter, Erik; Kiens, Bente; Mizuno, M.

    1989-01-01

    Insulin action was assessed in thighs of five healthy young males who had one knee immobilized for 7 days by a splint. The splint was not worn in bed. Subjects also used crutches to prevent weight bearing of the immobilized leg. Immobilization decreased the activity of citrate synthase and 3-OH......-acyl-CoA-dehydrogenase in the vastus lateralis muscle by 9 and 14%, respectively, and thigh volume by 5%. After 7 days of immobilization, a two-step euglycemic hyperinsulinemic clamp procedure combined with arterial and bilateral femoral venous catheterization was performed. Insulin action on glucose uptake and tyrosine release...... of the thighs at mean plasma insulin concentrations of 67 (clamp step I) and 447 microU/ml (clamp step II) was decreased by immobilization, whereas immobilization did not affect insulin action on thigh exchange of free fatty acids, glycerol, O2, or potassium. Before and during the clamp step I, lactate release...

  4. Ankle muscle activity modulation during single-leg stance differs between children, young adults and seniors.

    Science.gov (United States)

    Kurz, Eduard; Faude, Oliver; Roth, Ralf; Zahner, Lukas; Donath, Lars

    2018-02-01

    Incomplete maturation and aging-induced declines of the neuromuscular system affect postural control both in children and older adults and lead to high fall rates. Age-specific comparisons of the modulation of ankle muscle activation and behavioral center of pressure (COP) indices during upright stance have been rarely conducted. The objective of the present study was to quantify aging effects on a neuromuscular level. Thus, surface electromyography (SEMG) modulation and co-activity of ankle muscles during single-leg standing was compared in healthy children, young adults and seniors. Postural steadiness (velocity and mean sway frequency of COP), relative muscle activation (SEMG modulation) and co-activation of two ankle muscles (tibialis anterior, TA; soleus, SO) were examined during single-leg stance in 19 children [age, 9.7 (SD 0.5) years], 30 adults [23.3 (1.5) years] and 29 seniors [62.7 (6.1) years]. Velocity of COP in medio-lateral and anterior-posterior directions, mean sway frequency in anterior-posterior direction, relative muscle activation (TA and SO) and co-activation revealed large age effects (P  0.14). Post-hoc comparisons indicated higher COP velocities, anterior-posterior frequencies, relative SO activation and co-activation in children and seniors when compared with adults. Relative TA activation was higher in children and adults compared with seniors (P seniors seems to be counteracted with higher TA/SO co-activity and SO modulation. However, TA modulation is higher in children and adults, whereas seniors' TA modulation capacity is diminished. An aging-induced decline of TA motor units might account for deteriorations of TA modulation in seniors.

  5. Intermittent pneumatic leg compressions acutely upregulate VEGF and MCP-1 expression in skeletal muscle.

    Science.gov (United States)

    Roseguini, Bruno T; Mehmet Soylu, S; Whyte, Jeffrey J; Yang, H T; Newcomer, Sean; Laughlin, M Harold

    2010-06-01

    Application of intermittent pneumatic compressions (IPC) is an extensively used therapeutic strategy in vascular medicine, but the mechanisms by which this method works are unclear. We tested the hypothesis that acute application (150 min) of cyclic leg compressions in a rat model signals upregulation of angiogenic factors in skeletal muscle. To explore the impact of different pressures and frequency of compressions, we divided rats into four groups as follows: 120 mmHg (2 s inflation/2 s deflation), 200 mmHg (2 s/2 s), 120 mmHg (4 s/16 s), and control (no intervention). Blood flow and leg oxygenation (study 1) and the mRNA expression of angiogenic mediators in the rat tibialis anterior muscle (study 2) were assessed after a single session of IPC. In all three groups exposed to the intervention, a modest hyperemia (approximately 37% above baseline) between compressions and a slight, nonsignificant increase in leg oxygen consumption (approximately 30%) were observed during IPC. Compared with values in the control group, vascular endothelial growth factor (VEGF) and monocyte chemotactic protein-1 (MCP-1) mRNA increased significantly (P < 0.05) only in rats exposed to the higher frequency of compressions (2 s on/2 s off). Endothelial nitric oxide synthase, matrix metalloproteinase-2, and hypoxia-inducible factor-1alpha mRNA did not change significantly following the intervention. These findings show that IPC application augments the mRNA content of key angiogenic factors in skeletal muscle. Importantly, the magnitude of changes in mRNA expression appeared to be modulated by the frequency of compressions such that a higher frequency (15 cycles/min) evoked more robust changes in VEGF and MCP-1 compared with a lower frequency (3 cycles/min).

  6. Local NSAID infusion inhibits satellite cell proliferation in human skeletal muscle after eccentric exercise

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Langberg, H; Helmark, I C

    2009-01-01

    Despite the widespread consumption of nonsteroidal anti-inflammatory drugs (NSAIDs), the influence of these drugs on muscle satellite cells is not fully understood. The aim of the present study was to investigate the effect of a local NSAID infusion on satellite cells after unaccustomed eccentric...... exercise in vivo in human skeletal muscle. Eight young healthy males performed 200 maximal eccentric contractions with each leg. An NSAID was infused via a microdialysis catheter into the vastus lateralis muscle of one leg (NSAID leg) before, during, and for 4.5 h after exercise, with the other leg working...... cells (CD68(+) or CD16(+) cells) was not significantly increased in either of the legs 8 days after exercise and was unaffected by the NSAID. The main finding in the present study was that the NSAID infusion for 7.5 h during the exercise day suppressed the exercise-induced increase in the number...

  7. Prophylactic knee bracing alters lower-limb muscle forces during a double-leg drop landing.

    Science.gov (United States)

    Ewing, Katie A; Fernandez, Justin W; Begg, Rezaul K; Galea, Mary P; Lee, Peter V S

    2016-10-03

    Anterior cruciate ligament (ACL) injury can be a painful, debilitating and costly consequence of participating in sporting activities. Prophylactic knee bracing aims to reduce the number and severity of ACL injury, which commonly occurs during landing maneuvers and is more prevalent in female athletes, but a consensus on the effectiveness of prophylactic knee braces has not been established. The lower-limb muscles are believed to play an important role in stabilizing the knee joint. The purpose of this study was to investigate the changes in lower-limb muscle function with prophylactic knee bracing in male and female athletes during landing. Fifteen recreational athletes performed double-leg drop landing tasks from 0.30m and 0.60m with and without a prophylactic knee brace. Motion analysis data were used to create subject-specific musculoskeletal models in OpenSim. Static optimization was performed to calculate the lower-limb muscle forces. A linear mixed model determined that the hamstrings and vasti muscles produced significantly greater flexion and extension torques, respectively, and greater peak muscle forces with bracing. No differences in the timings of peak muscle forces were observed. These findings suggest that prophylactic knee bracing may help to provide stability to the knee joint by increasing the active stiffness of the hamstrings and vasti muscles later in the landing phase rather than by altering the timing of muscle forces. Further studies are necessary to quantify whether prophylactic knee bracing can reduce the load placed on the ACL during intense dynamic movements. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Glucose uptake heterogeneity of the leg muscles is similar between patients with multiple sclerosis and healthy controls during walking.

    Science.gov (United States)

    Kindred, John H; Ketelhut, Nathaniel B; Rudroff, Thorsten

    2015-02-01

    Difficulties in ambulation are one of the main problems reported by patients with multiple sclerosis. A previous study by our research group showed increased recruitment of muscle groups during walking, but the influence of skeletal muscle properties, such as muscle fiber activity, has not been fully elucidated. The purpose of this investigation was to use the novel method of calculating glucose uptake heterogeneity in the leg muscles of patients with multiple sclerosis and compare these results to healthy controls. Eight patients with multiple sclerosis (4 men) and 8 healthy controls (4 men) performed 15 min of treadmill walking at a comfortable self-selected speed following muscle strength tests. Participants were injected with ≈ 8 mCi of [(18)F]-fluorodeoxyglucose during walking after which positron emission tomography/computed tomography imaging was performed. No differences in muscle strength were detected between multiple sclerosis and control groups (P>0.27). Within the multiple sclerosis, group differences in muscle volume existed between the stronger and weaker legs in the vastus lateralis, semitendinosus, and semimembranosus (Pmuscle group or individual muscle of the legs (P>0.16, P≥0.05). Patients with multiple sclerosis and healthy controls showed similar muscle fiber activity during walking. Interpretations of these results, with respect to our previous study, suggest that walking difficulties in patients with multiple sclerosis may be more associated with altered central nervous system motor patterns rather than alterations in skeletal muscle properties. Published by Elsevier Ltd.

  9. Prosthetic Leg Control in the Nullspace of Human Interaction.

    Science.gov (United States)

    Gregg, Robert D; Martin, Anne E

    2016-07-01

    Recent work has extended the control method of virtual constraints, originally developed for autonomous walking robots, to powered prosthetic legs for lower-limb amputees. Virtual constraints define desired joint patterns as functions of a mechanical phasing variable, which are typically enforced by torque control laws that linearize the output dynamics associated with the virtual constraints. However, the output dynamics of a powered prosthetic leg generally depend on the human interaction forces, which must be measured and canceled by the feedback linearizing control law. This feedback requires expensive multi-axis load cells, and actively canceling the interaction forces may minimize the human's influence over the prosthesis. To address these limitations, this paper proposes a method for projecting virtual constraints into the nullspace of the human interaction terms in the output dynamics. The projected virtual constraints naturally render the output dynamics invariant with respect to the human interaction forces, which instead enter into the internal dynamics of the partially linearized prosthetic system. This method is illustrated with simulations of a transfemoral amputee model walking with a powered knee-ankle prosthesis that is controlled via virtual constraints with and without the proposed projection.

  10. Distal muscle activity alterations during the stance phase of gait in restless leg syndrome (RLS) patients.

    Science.gov (United States)

    Dafkin, Chloe; Green, Andrew; Olivier, Benita; McKinon, Warrick; Kerr, Samantha

    2018-05-01

    To assess if there is a circadian variation in electromyographical (EMG) muscle activity during gait in restless legs syndrome (RLS) patients and healthy control participants. Gait assessment was done in 14 RLS patients and 13 healthy control participants in the evening (PM) and the morning (AM). Muscle activity was recorded bilaterally from the tibialis anterior (TA), lateral gastrocnemius (GL), rectus femoris (RF) and biceps femoris (BF) muscles. A circadian variation during the stance phase in only TA (PM > AM, p  Controls, p < 0.05) during early stance and decreased GL activity (RLS < Controls, p < 0.01) during terminal stance in comparison to control participants in the evening. No other significant differences were noted between RLS patients and control participants. Activation of GL during the swing phase was noted in 79% of RLS patients and in 23% of control participants in the morning compared to 71% and 38% in the evening, respectively. EMG muscle activity shows no circadian variation in RLS patients. Evening differences in gait muscle activation patterns between RLS patients and control participants are evident. These results extend our knowledge about alterations in spinal processing during gait in RLS. A possible explanation for these findings is central pattern generator sensitization caused by increased sensitivity in cutaneous afferents in RLS patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Postural adjustments associated with voluntary contraction of leg muscles in standing man.

    Science.gov (United States)

    Nardone, A; Schieppati, M

    1988-01-01

    The postural adjustments associated with a voluntary contraction of the postural muscles themselves have been studied in the legs of normal standing men. We focussed on the following questions. Do postural adjustments precede the focal movement as in the case of movements of the upper limb? Which muscle(s) are involved in the task of stabilizing posture? Can the same postural muscle be activated in postural stabilization and in voluntary movement at the same time, in spite of the opposite changes in activity possibly required by these conditions? Six subjects standing on a dynamometric platform were asked to rise onto the tips their toes by contracting their soleus muscles, or to rock on their heels by contracting their tibialis anterior muscles. The tasks were made in a reaction time (RT) situation or in a self-paced mode, standing either freely or holding onto a stable structure. Surface EMGs of leg and thigh muscles, and the foot-floor reaction forces were recorded. The following results were obtained in the RT mode, standing freely. 1. Rising onto toe tips: a striking silent period in soleus preceded its voluntary activation; during this silent period, a tibialis anterior burst could be observed in three subjects; these anticipatory activities induced a forward sway, as monitored by a change in the force exerted along the x axis of the platform. 2. Rocking on heels: an enhancement in tonic EMG of soleus was observed before tibialis anterior voluntary burst, at a mean latency from the go-signal similar to that of the silent period; this anticipatory activity induced a backward body sway. 3. Choice RT conditions showed that the above anticipatory patterns in muscle activity were pre-programmed, specific for the intended tasks, and closely associated with the focal movement. When both tasks were performed in a self-paced mode, all the above EMG and mechanical features were more pronounced and unfolded in time. If the subjects held onto the frame, the early

  12. The role of eccentric regime of leg muscle work in alpine skiing

    Directory of Open Access Journals (Sweden)

    Ropret Robert

    2017-01-01

    Full Text Available Alpine skiing is characterized by a great number of leg movements with muscle contractions in eccentric regime. The role of these movements is to absorb gravitation and inertial forces, manage skis more precisely and maintain balance. Recent studies have determined the volume, duration and intenisty of eccentric contractions as well as the basic characteristics of movement amplitudes and velocities. Based on the previous findings the experiments involving eccentric training using a bicycle ergometer confirmed a positive impact that this kind of training has on increasing maximum power, strength, endurance, coordination, injury prevention, metabolic work efficiency, more efficient work with longer muscle length and its role in miming skiers' movements. This paper is an review of the studies so far in the field of kinematics, skiing dynamics and the effect of eccentric training on the development of athletes' performances.

  13. Muscle fatigue and exhaustion during dynamic leg exercise in normoxia and hypobaric hypoxia

    DEFF Research Database (Denmark)

    Fulco, C S; Lewis, S F; Frykman, Peter

    1996-01-01

    and during exercise. MVC force was 578 +/- 29 N in normoxia and 569 +/- 29 N in hypobaria before exercise and fell, at exhaustion, to similar levels (265 +/- 10 and 284 +/- 20 N for normoxia and hypobaria, respectively; P > 0.05) that were higher (P ...Using an exercise device that integrates maximal voluntary static contraction (MVC) of knee extensor muscles with dynamic knee extension, we compared progressive muscle fatigue, i.e., rate of decline in force-generating capacity, in normoxia (758 Torr) and hypobaric hypoxia (464 Torr). Eight...... healthy men performed exhaustive constant work rate knee extension (21 +/- 3 W, 79 +/- 2 and 87 +/- 2% of 1-leg knee extension O2 peak uptake for normoxia and hypobaria, respectively) from knee angles of 90-150 degrees at a rate of 1 Hz. MVC (90 degrees knee angle) was performed before dynamic exercise...

  14. MRI-based screening for metabolic insufficiency of leg muscle during aerobic exercise in Cystic Fibrosis

    NARCIS (Netherlands)

    Jeneson, J.A.L.; Werkman, M.S.; Blanken, N.; Oorschot, van J.W.M.; Ent, van der K.; Arets, H.G.; Hulzebos, H.J.; Takken, T.

    2012-01-01

    There is evidence for mitochondrial dysfunction in various tissues in Cystic Fibrosis (CF) including muscle. Among others, a slow rate of high-energy phosphate resynthesis following exercise involving single limb muscle activity was found in human CF using in vivo 31P magnetic resonance spectroscopy

  15. Volume estimation of extensor muscles of the lower leg based on MR imaging

    International Nuclear Information System (INIS)

    Lund, Hans; Christensen, Line; Savnik, Anette; Danneskiold-Samsoee, Bente; Bliddal, Henning; Boesen, Jens

    2002-01-01

    Magnetic resonance imaging can be used to measure the muscle volume of a given muscle or muscle group. The purpose of this study was to determine both the intra- and inter-observer variation of the manually outlined volume of the extensor muscles (tibialis anterior, extensor digitorum longus and extensor hallucis longus), to estimate the minimum number of slices needed for these calculations and to compare estimates of volume based on an assumed conic shape of the muscles with that of an assumed cylindrical shape, the calculation in both cases based on the Cavalieri principle. Eleven young and healthy subjects (4 women and 7 men, age range 24-40 years) participated. Magnetic resonance imaging of the left leg was obtained on a 1.5-T MR system using a knee coil (receive only). A total of 50 consecutive slices were obtained beginning 10 cm below the caput fibula sin. and proceeding distally with a slice thickness of 1.5 mm without gap. The intra-class correlation coefficient (ICC) was used to calculate the relative reliability (interval from 0 to 1.0). A high reliability for both intra- and inter-reliability was observed (ICC 0.98 and 1.0). The difference was only 0.004% between calculations based on measurement of all 50 slices with respect to 8 slices equally distributed along the muscle group. No difference was found between the two different volumetric assumptions in the Cavalieri principle. The manually outlining of extensor muscles volumes was reliable and only 8 slices of the calf were needed. No difference was seen between the two used mathematical calculations. (orig.)

  16. Lower leg muscle density is independently associated with fall status in community-dwelling older adults.

    Science.gov (United States)

    Frank-Wilson, A W; Farthing, J P; Chilibeck, P D; Arnold, C M; Davison, K S; Olszynski, W P; Kontulainen, S A

    2016-07-01

    Muscle density is a risk factor for fractures in older adults; however, its association with falls is not well described. After adjusting for biologically relevant confounding factors, a unit decrease in muscle density was associated with a 17 % increase in odds of reporting a fall, independent of functional mobility. Falls are the leading cause of injury, disability, and fractures in older adults. Low muscle density (i.e., caused by muscle adiposity) and functional mobility have been identified as risk factors for incident disability and fractures in older adults; however, it is not known if these are also independently associated with falls. The purpose of this study was to explore the associations of muscle density and functional mobility with fall status. Cross-sectional observational study of 183 men and women aged 60-98 years. Descriptive data, including a 12-month fall recall, Timed Up and Go (TUG) test performance, lower leg muscle area, and density. Odds ratio (OR) of being a faller were calculated, adjusted for age, sex, body mass index, general health status, diabetes, and comorbidities. Every mg/cm(3) increase in muscle density (mean 70.2, SD 2.6 mg/cm(3)) independently reduced the odds of being a faller by 19 % (OR 0.81 [95 % CI 0.67 to 0.97]), and every 1 s longer TUG test time (mean 9.8, SD 2.6 s) independently increased the odds by 17 % (OR 1.17 [95 % CI 1.01 to 1.37]). When both muscle density and TUG test time were included in the same model, only age (OR 0.93 [95 % CI 0.87 to 0.99]) and muscle density (OR 0.83 [95 % CI 0.69 to 0.99]) were independently associated with fall status. Muscle density was associated with fall status, independent of functional mobility. Muscle density may compliment functional mobility tests as a biometric outcome for assessing fall risk in well-functioning older adults.

  17. The effects of anthropometry and leg muscle power on drive and transition phase of acceleration

    DEFF Research Database (Denmark)

    Nikolaidis, Pantelis T.; Ingebrigtsen, Jørgen; Jeffreys, Ian

    2016-01-01

    Background: The aim of this study was to examine the effect of anthropometry and leg muscle power on accelerative ability and its phases (drive and transition). METHODS: Thirty-six soccer players (age 12.4±1.2 years, body mass 49.9±8.9 kg and height 154.2±10.3 cm) were tested twice, in the beginn......Background: The aim of this study was to examine the effect of anthropometry and leg muscle power on accelerative ability and its phases (drive and transition). METHODS: Thirty-six soccer players (age 12.4±1.2 years, body mass 49.9±8.9 kg and height 154.2±10.3 cm) were tested twice......, in the beginning and in the end of competitive season, for anthropometric characteristics, countermovement jump and 20-meter acceleration (split 0-10 meters and 10-20 meters, indices of drive and transition, respectively). The soccer players were grouped according to seasonal changes in 20-meter acceleration (δacc...

  18. ACTN3 R577X polymorphism and explosive leg-muscle power in elite basketball players.

    Science.gov (United States)

    Garatachea, Nuria; Verde, Zoraida; Santos-Lozano, Alejandro; Yvert, Thomas; Rodriguez-Romo, Gabriel; Sarasa, Francisco J; Hernández-Sánchez, Sonsoles; Santiago, Catalina; Lucia, Alejandro

    2014-03-01

    To determine the association of the ACTN3 R577X polymorphism with leg-muscle explosive power in Spanish (white) elite basketball players and controls. 100 (60 men) elite basketball players (cases) and 283 nonathletic controls. The authors assessed power performance by means of the vertical-squat and countermovement-jump tests. Genotype distributions did not differ between groups (cases: 37.0% [RR], 42.0% [RX], and 21.0% [XX]; controls: 31.8% [RR], 49.8% [RX], and 18.4% [XX]; P = .353). The authors did not observe any effect of the ACTN3 R577X polymorphism on study phenotypes in either group, including when they performed the analyses separately in men and women. They found no association between the ACTN3 R577X polymorphism and the likelihood of being an elite basketball player using the dominant or the recessive model, and the results remained unaltered when the analyses were adjusted for sex, weight, height, and age or when performed for men and women separately. Although the ACTN3 R577X is associated with explosive muscle performance and this phenotype is important in the sport of basketball (ie, during jumps), the authors found no association with leg explosive power in elite basket players or with the status of being this type of athlete.

  19. BUILDING A BETTER GLUTEAL BRIDGE: ELECTROMYOGRAPHIC ANALYSIS OF HIP MUSCLE ACTIVITY DURING MODIFIED SINGLE-LEG BRIDGES.

    Science.gov (United States)

    Lehecka, B J; Edwards, Michael; Haverkamp, Ryan; Martin, Lani; Porter, Kambry; Thach, Kailey; Sack, Richard J; Hakansson, Nils A

    2017-08-01

    Gluteal strength plays a role in injury prevention, normal gait patterns, eliminating pain, and enhancing athletic performance. Research shows high gluteal muscle activity during a single-leg bridge compared to other gluteal strengthening exercises; however, prior studies have primarily measured muscle activity with the active lower extremity starting in 90 ° of knee flexion with an extended contralateral knee. This standard position has caused reports of hamstring cramping, which may impede optimal gluteal strengthening. The purpose of this study was to determine which modified position for the single-leg bridge is best for preferentially activating the gluteus maximus and medius. Cross-Sectional. Twenty-eight healthy males and females aged 18-30 years were tested in five different, randomized single-leg bridge positions. Electromyography (EMG) electrodes were placed on subjects' gluteus maximus, gluteus medius, rectus femoris, and biceps femoris of their bridge leg (i.e., dominant or kicking leg), as well as the rectus femoris of their contralateral leg. Subjects performed a maximal voluntary isometric contraction (MVIC) for each tested muscle prior to performing five different bridge positions in randomized order. All bridge EMG data were normalized to the corresponding muscle MVIC data. A modified bridge position with the knee of the bridge leg flexed to 135 ° versus the traditional 90 ° of knee flexion demonstrated preferential activation of the gluteus maximus and gluteus medius compared to the traditional single-leg bridge. Hamstring activation significantly decreased (p bridge by flexing the active knee to 135 ° instead of 90 ° minimizes hamstring activity while maintaining high levels of gluteal activation, effectively building a bridge better suited for preferential gluteal activation. 3.

  20. The Effects of Active Straight Leg Raising on Tonicity and Activity of Pelvic Stabilizer Muscles

    Directory of Open Access Journals (Sweden)

    Azadeh Shadmehr

    2011-01-01

    Full Text Available Objective: Active straight leg raising (SLR test is advocated as a valid diagnostic method in diagnosis of sacroiliac joint (SIJ dysfunction that can assess the quality of load transfer between trunk and lower limb. The aim of this study is Comparison of changes in tonicity and activity of pelvic stabilizer muscles during active SLR, between healthy individuals and patients with sacroiliac joint pain. Materials & Methods: A case – control study was designed in 26 women (19-50 years old. With use of simple sampling, surface electromyography from rectus abdominis, external oblique, internal oblique, adductor longus, erector spine, gluteus maximus and biceps femoris was recorded in 26 subjects (15 healthy females and 11 females with sacroiliac pain in resting position and during active SLR test. Resting muscle tonicity and rms during ramp time and hold time in active SLR test were assessed by non parametric-two independent sample test. Results: Biceps femoris activity in resting position was significantly larger in patients group (P<0.05. During the active SLR, the women with sacroiliac joint pain used much less activity in some pelvic stabilizer muscles compared to the healthy subjects (P<0.05. Conclusion: The increased resting tonicity of biceps femoris and decreased activity of pelvic stabilizer muscles in subjects with sacroiliac joint pain, suggests an alteration in the strategy for lumbopelvic stabilization that may disrupt load transference through the pelvis.

  1. Structural Response of Lower Leg Muscles in Compression: A Low Impact Energy Study Employing Volunteers, Cadavers and the Hybrid III.

    Science.gov (United States)

    Dhaliwal, Trilok S; Beillas, Philippe; Chou, Clifford C; Prasad, Priya; Yang, King H; King, Albert I

    2002-11-01

    Little has been reported in the literature on the compressive properties of muscle. These data are needed for the development of finite element models that address impact of the muscles, especially in the study of pedestrian impact. Tests were conducted to characterize the compressive response of muscle. Volunteers, cadaveric specimens and a Hybrid III dummy were impacted in the posterior and lateral aspect of the lower leg using a free flying pendulum. Volunteer muscles were tested while tensed and relaxed. The effects of muscle tension were found to influence results, especially in posterior leg impacts. Cadaveric response was found to be similar to that of the relaxed volunteer. The resulting data can be used to identify a material law using an inverse method.

  2. Muscle stiffness of posterior lower leg in runners with a history of medial tibial stress syndrome.

    Science.gov (United States)

    Saeki, J; Nakamura, M; Nakao, S; Fujita, K; Yanase, K; Ichihashi, N

    2018-01-01

    Previous history of medial tibial stress syndrome (MTSS) is a risk factor for MTSS relapse, which suggests that there might be some physical factors that are related to MTSS development in runners with a history of MTSS. The relationship between MTSS and muscle stiffness can be assessed in a cross-sectional study that measures muscle stiffness in subjects with a history of MTSS, who do not have pain at the time of measurement, and in those without a history of MTSS. The purpose of this study was to compare the shear elastic modulus, which is an index of muscle stiffness, of all posterior lower leg muscles of subjects with a history of MTSS and those with no history and investigate which muscles could be related to MTSS. Twenty-four male collegiate runners (age, 20.0±1.7 years; height, 172.7±4.8 cm; weight, 57.3±3.7 kg) participated in this study; 14 had a history of MTSS, and 10 did not. The shear elastic moduli of the lateral gastrocnemius, medial gastrocnemius, soleus, peroneus longus, peroneus brevis, flexor hallucis longus, flexor digitorum longus, and tibialis posterior were measured using shear wave elastography. The shear elastic moduli of the flexor digitorum longus and tibialis posterior were significantly higher in subjects with a history of MTSS than in those with no history. However, there was no significant difference in the shear elastic moduli of other muscles. The results of this study suggest that flexor digitorum longus and tibialis posterior stiffness could be related to MTSS. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Muscle oxygen kinetics at onset of intense dynamic exercise in humans

    DEFF Research Database (Denmark)

    Bangsbo, J; Krustrup, P; González-Alonso, J

    2000-01-01

    The present study examined the onset and the rate of rise of muscle oxidation during intense exercise in humans and whether oxygen availability limits muscle oxygen uptake in the initial phase of intense exercise. Six subjects performed 3 min of intense one-legged knee-extensor exercise [65.3 +/-...

  4. Intermittent pneumatic compression of legs increases microcirculation in distant skeletal muscle.

    Science.gov (United States)

    Liu, K; Chen, L E; Seaber, A V; Johnson, G W; Urbaniak, J R

    1999-01-01

    Intermittent pneumatic compression has been established as a method of clinically preventing deep vein thrombosis, but the mechanism has not been documented. This study observed the effects of intermittent pneumatic compression of legs on the microcirculation of distant skeletal muscle. The cremaster muscles of 80 male rats were exposed, a specially designed intermittent pneumatic-compression device was applied to both legs for 60 minutes, and the microcirculation of the muscles was assessed by measurement of the vessel diameter in three categories (10-20, 21-40, and 41-70 microm) for 120 minutes. The results showed significant vasodilation in arterial and venous vessels during the application of intermittent pneumatic compression, which disappeared after termination of the compression. The vasodilation reached a maximum 30 minutes after initiation of the compression and could be completely blocked by an inhibitor of nitric oxide synthase, NG-monomethyl-L-arginine (10 micromol/min). A 120-minute infusion of NG-monomethyl-L-arginine, beginning coincident with 60 minutes of intermittent pneumatic compression, resulted in a significant decrease in arterial diameter that remained at almost the same level after termination of the compression. The magnitude of the decrease in diameter in the group treated with intermittent pneumatic compression and NG-monomethyl-L-arginine was comparable with that in the group treated with NG-monomethyl-L-arginine alone. The results imply that the production of nitric oxide is involved in the positive influence of intermittent pneumatic compression on circulation. It is postulated that the rapid increase in venous velocity induced by intermittent pneumatic compression produces strong shear stress on the vascular endothelium, which stimulates an increased release of nitric oxide and thereby causes systemic vasodilation.

  5. Histological Characteristics of Leg Muscles of 56-Day Old Pheasants Hatched from Eggs of Different Eggshell Colour

    Directory of Open Access Journals (Sweden)

    Dragan Zikic

    2015-05-01

    Full Text Available The aim of this paper was to examine the histological characteristics of leg muscles of pheasants hatched from eggs of a different colour. From muscle samples (M. biceps femoris of 56-day old pheasants hatched from eggs of different colour (dark brown, light brown, brown/green, blue/green histological preparations were made. Following parameters were examined: diameter of muscle cells, volume density of connective tissue in muscles, nucleo-cytoplasmatic ratio of muscle cells. Results showed that diameter of muscle cells was smaller in pheasants hatched from blue/green eggs compared to all other examinated groups. There was no differences in volume density of connective tissue in muscles between groups. Nucleo-cytoplasmatic ratio of muscle cells was higher in pheasants hatched from blue/green eggs compared to all other examinated groups. From obtained results it can be concluded that pheasants hatched from blue/green eggs had weaker muscle development than pheasants hatched from eggs of other eggshell colour. Cause of this could be related to structural differences of eggshells of various colour. This leads to weaker development of embryos and chicks hatched from blue/green eggs which reflects on differences in development of leg muscles.

  6. Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle.

    Science.gov (United States)

    Catoire, Milène; Mensink, Marco; Boekschoten, Mark V; Hangelbroek, Roland; Müller, Michael; Schrauwen, Patrick; Kersten, Sander

    2012-01-01

    Regular physical activity positively influences whole body energy metabolism and substrate handling in exercising muscle. While it is recognized that the effects of exercise extend beyond exercising muscle, it is unclear to what extent exercise impacts non-exercising muscles. Here we investigated the effects of an acute endurance exercise bouts on gene expression in exercising and non-exercising human muscle. To that end, 12 male subjects aged 44-56 performed one hour of one-legged cycling at 50% W(max). Muscle biopsies were taken from the exercising and non-exercising leg before and immediately after exercise and analyzed by microarray. One-legged cycling raised plasma lactate, free fatty acids, cortisol, noradrenalin, and adrenalin levels. Surprisingly, acute endurance exercise not only caused pronounced gene expression changes in exercising muscle but also in non-exercising muscle. In the exercising leg the three most highly induced genes were all part of the NR4A family. Remarkably, many genes induced in non-exercising muscle were PPAR targets or related to PPAR signalling, including PDK4, ANGPTL4 and SLC22A5. Pathway analysis confirmed this finding. In conclusion, our data indicate that acute endurance exercise elicits pronounced changes in gene expression in non-exercising muscle, which are likely mediated by changes in circulating factors such as free fatty acids. The study points to a major influence of exercise beyond the contracting muscle.

  7. Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Milène Catoire

    Full Text Available Regular physical activity positively influences whole body energy metabolism and substrate handling in exercising muscle. While it is recognized that the effects of exercise extend beyond exercising muscle, it is unclear to what extent exercise impacts non-exercising muscles. Here we investigated the effects of an acute endurance exercise bouts on gene expression in exercising and non-exercising human muscle. To that end, 12 male subjects aged 44-56 performed one hour of one-legged cycling at 50% W(max. Muscle biopsies were taken from the exercising and non-exercising leg before and immediately after exercise and analyzed by microarray. One-legged cycling raised plasma lactate, free fatty acids, cortisol, noradrenalin, and adrenalin levels. Surprisingly, acute endurance exercise not only caused pronounced gene expression changes in exercising muscle but also in non-exercising muscle. In the exercising leg the three most highly induced genes were all part of the NR4A family. Remarkably, many genes induced in non-exercising muscle were PPAR targets or related to PPAR signalling, including PDK4, ANGPTL4 and SLC22A5. Pathway analysis confirmed this finding. In conclusion, our data indicate that acute endurance exercise elicits pronounced changes in gene expression in non-exercising muscle, which are likely mediated by changes in circulating factors such as free fatty acids. The study points to a major influence of exercise beyond the contracting muscle.

  8. IMP metabolism in human skeletal muscle after exhaustive exercise

    DEFF Research Database (Denmark)

    Tullson, P. C.; Bangsbo, Jens; Hellsten, Ylva

    1995-01-01

    This study addressed whether AMP deaminase (AMPD)myosin binding occurs with deamination during intense exercise in humans and the extent of purine loss from muscle during the initial minutes of recovery. Male subjects performed cycle exercise (265 +/- 2 W for 4.39 +/- 0.04 min) to stimulate muscle...... inosine 5'-monophosphate (IMP) formation. After exercise, blood flow to one leg was occluded. Muscle biopsies (vastus lateralis) were taken before and 3.6 +/- 0.2 min after exercise from the occluded leg and 0.7 +/- 0.0, 1.1 +/- 0.0, and 2.9 +/- 0.1 min postexercise in the nonoccluded leg. Exercise...... activated AMPD; at exhaustion IMP was 3.5 +/- 0.4 mmol/kg dry muscle. Before exercise, 16.0 +/- 1.6% of AMPD cosedimented with the myosin fraction; the extent of AMPD:myosin binding was unchanged by exercise. Inosine content increased about threefold during exercise and twofold more during recovery; by 2...

  9. Postmortem changes in physiochemical and sensory properties of red snow crab (Chionoecetes japonicus leg muscle during freeze storage

    Directory of Open Access Journals (Sweden)

    Joon-Young Jun

    2017-07-01

    Full Text Available Abstract In order to evaluate the maximal storable period of the raw crab for a non-thermal muscle separation, the quality changes of the leg meat of red snow crab (Chionoecetes japonicus during freeze storage were investigated. Fresh red snow crabs were stored at −20 °C for 7 weeks, and the leg muscle was separated by a no heating separation (NHS method every week. During the storage, considerable loss of the leg muscle did not occur and microbiological risk was very low. In contrast, discoloration appeared at 2-week storage on around carapace and the leg muscle turned yellow at storage 3-week. In physiochemical parameters, protein and free amino acids gradually decreased with storage time, expected that proteolytic enzymes still activated at −20 °C. At 4-week storage, the sensory acceptance dropped down below point 4 as low as inedible and notable inflection points in pH and acidity were observed. The volatile base nitrogen was low, though a little increase was recorded. These results suggested that the maximal storable period at −20 °C of the raw material was within 2 weeks and it was depended on external factor such as the discoloration. The present study might be referred as basic data for approaches to solve quality loss occurred in non-thermal muscle separation.

  10. Test-retest reliability of maximal leg muscle power and functional performance measures in patients with severe osteoarthritis (OA)

    DEFF Research Database (Denmark)

    Villadsen, Allan; Roos, Ewa M.; Overgaard, Søren

    Abstract : Purpose To evaluate the reliability of single-joint and multi-joint maximal leg muscle power and functional performance measures in patients with severe OA. Background Muscle power, taking both strength and velocity into account, is a more functional measure of lower extremity muscle...... and scheduled for unilateral total hip (n=9) or knee (n=11) replacement. Patients underwent a test battery on two occasions separated by approximately one week (range 7 to 11 days). Muscle power was measured using: 1. A linear encoder, unilateral lower limb isolated single-joint dynamic movement, e.g. knee...... flexion 2. A leg extension press, unilateral multi-joint knee and hip extension Functional performance was measured using: 1. 20 m walk usual pace 2. 20 m walk maximal pace 3. 5 times chair stands 4. Maximal number of knee bends/30sec Pain was measured on a VAS prior to and after conducting the entire...

  11. Effect of exercise on insulin action in human skeletal muscle

    DEFF Research Database (Denmark)

    Richter, Erik; Mikines, K J; Galbo, Henrik

    1989-01-01

    The effect of 1 h of dynamic one-legged exercise on insulin action in human muscle was studied in 6 healthy young men. Four hours after one-legged knee extensions, a three-step sequential euglycemic hyperinsulinemic clamp combined with arterial and bilateral femoral vein catheterization...... was performed. Increased insulin action on glucose uptake was found in the exercised compared with the rested thigh at mean plasma insulin concentrations of 23, 40, and 410 microU/ml. Furthermore, prior contractions directed glucose uptake toward glycogen synthesis and increased insulin effects on thigh O2...... consumption and at some insulin concentrations on potassium exchange. In contrast, no change in insulin effects on limb exchange of free fatty acids, glycerol, alanine or tyrosine were found after exercise. Glycogen concentration in rested vastus lateralis muscle did not increase measurably during the clamp...

  12. A neuro-mechanical model of a single leg joint highlighting the basic physiological role of fast and slow muscle fibres of an insect muscle system.

    Directory of Open Access Journals (Sweden)

    Tibor Istvan Toth

    Full Text Available In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1 positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2 the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3 there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles.

  13. Tracking control of a leg rehabilitation machine driven by pneumatic artificial muscles using composite fuzzy theory.

    Science.gov (United States)

    Chang, Ming-Kun

    2014-01-01

    It is difficult to achieve excellent tracking performance for a two-joint leg rehabilitation machine driven by pneumatic artificial muscles (PAMs) because the system has a coupling effect, highly nonlinear and time-varying behavior associated with gas compression, and the nonlinear elasticity of bladder containers. This paper therefore proposes a T-S fuzzy theory with supervisory control in order to overcome the above problems. The T-S fuzzy theory decomposes the model of a nonlinear system into a set of linear subsystems. In this manner, the controller in the T-S fuzzy model is able to use simple linear control techniques to provide a systematic framework for the design of a state feedback controller. Then the LMI Toolbox of MATLAB can be employed to solve linear matrix inequalities (LMIs) in order to determine controller gains based on the Lyapunov direct method. Moreover, the supervisory control can overcome the coupling effect for a leg rehabilitation machine. Experimental results show that the proposed controller can achieve excellent tracking performance, and guarantee robustness to system parameter uncertainties.

  14. Impulsive ankle push-off powers leg swing in human walking.

    Science.gov (United States)

    Lipfert, Susanne W; Günther, Michael; Renjewski, Daniel; Seyfarth, Andre

    2014-04-15

    Rapid unloading and a peak in power output of the ankle joint have been widely observed during push-off in human walking. Model-based studies hypothesize that this push-off causes redirection of the body center of mass just before touch-down of the leading leg. Other research suggests that work done by the ankle extensors provides kinetic energy for the initiation of swing. Also, muscle work is suggested to power a catapult-like action in late stance of human walking. However, there is a lack of knowledge about the biomechanical process leading to this widely observed high power output of the ankle extensors. In our study, we use kinematic and dynamic data of human walking collected at speeds between 0.5 and 2.5 m s(-1) for a comprehensive analysis of push-off mechanics. We identify two distinct phases, which divide the push-off: first, starting with positive ankle power output, an alleviation phase, where the trailing leg is alleviated from supporting the body mass, and second, a launching phase, where stored energy in the ankle joint is released. Our results show a release of just a small part of the energy stored in the ankle joint during the alleviation phase. A larger impulse for the trailing leg than for the remaining body is observed during the launching phase. Here, the buckling knee joint inhibits transfer of power from the ankle to the remaining body. It appears that swing initiation profits from an impulsive ankle push-off resulting from a catapult without escapement.

  15. The minimum sit-to-stand height test: reliability, responsiveness and relationship to leg muscle strength.

    Science.gov (United States)

    Schurr, Karl; Sherrington, Catherine; Wallbank, Geraldine; Pamphlett, Patricia; Olivetti, Lynette

    2012-07-01

    To determine the reliability of the minimum sit-to-stand height test, its responsiveness and its relationship to leg muscle strength among rehabilitation unit inpatients and outpatients. Reliability study using two measurers and two test occasions. Secondary analysis of data from two clinical trials. Inpatient and outpatient rehabilitation services in three public hospitals. Eighteen hospital patients and five others participated in the reliability study. Seventy-two rehabilitation unit inpatients and 80 outpatients participated in the clinical trials. The minimum sit-to-stand height test was assessed using a standard procedure. For the reliability study, a second tester repeated the minimum sit-to-stand height test on the same day. In the inpatient clinical trial the measures were repeated two weeks later. In the outpatient trial the measures were repeated five weeks later. Knee extensor muscle strength was assessed in the clinical trials using a hand-held dynamometer. The reliability for the minimum sit-to-stand height test was excellent (intraclass correlation coefficient (ICC) 0.91, 95% confidence interval (CI) 0.81-0.96). The standard error of measurement was 34 mm. Responsiveness was moderate in the inpatient trial (effect size: 0.53) but small in the outpatient trial (effect size: 0.16). A small proportion (8-17%) of variability in minimum sit-to-stand height test was explained by knee extensor muscle strength. The minimum sit-to-stand height test has excellent reliability and moderate responsiveness in an inpatient rehabilitation setting. Responsiveness in an outpatient rehabilitation setting requires further investigation. Performance is influenced by factors other than knee extensor muscle strength.

  16. Pneumatic Artificial Muscles Force Modelling and the Position and Stiffness Control on the Knee Joint of the Musculoskeletal Leg

    Directory of Open Access Journals (Sweden)

    Jingtao Lei

    2017-03-01

    Full Text Available Pneumatic artificial muscles (PAMs have properties similar to biological muscle and are widely used in robotics as actuators. A musculoskeletal leg mechanism driven by PAMs is presented in this paper. The joint stiffness of the musculoskeletal bionic leg for jumping movement needs to be analysed. The synchronous control on the position and stiffness of the joint is important to improve the flexibility of leg. The accurate force model of PAM is the foundation to achieving better control and dynamic jumping performance. The experimental platform of PAM is conducted, and the static equal pressure experiments are performed to obtain the PAM force model. According to the testing data, parameter identification method is adopted to determine the force model of PAM. A simulation on the position and stiffness control of the knee joint is performed, and the simulation results show the effectiveness of the presented method.

  17. Leg pain

    Science.gov (United States)

    ... in the blood Medicines (such as diuretics and statins) Muscle fatigue or strain from overuse, too much exercise, or holding a muscle in the same position for a long time An injury can also cause leg pain from: A torn or overstretched muscle ( strain ) Hairline ...

  18. Female PFP patients present alterations in eccentric muscle activity but not the temporal order of activation of the vastus lateralis muscle during the single leg triple hop test.

    Science.gov (United States)

    Kalytczak, Marcelo Martins; Lucareli, Paulo Roberto Garcia; Dos Reis, Amir Curcio; Bley, André Serra; Biasotto-Gonzalez, Daniela Aparecida; Correa, João Carlos Ferrari; Politti, Fabiano

    2018-04-07

    This study aimed to compare the concentric and eccentric activity and the temporal order of peak activity of the hip and knee muscles between women with patellofemoral pain (PFP) and healthy women during the single leg triple hop test (SLTHT). Electromyographic (EMG) and Kinematic data were collected from 14 healthy women (CG) and 14 women diagnosed with PFP (PFG) during a single session of the single leg triple hop test. Integral surface electromyography (iEMG) data of the hip and knee muscles in eccentric and concentric phases and the length of time that each muscle needed to reach the maximal peak of muscle activity were calculated. The iEMG in the eccentric phase was significantly higher (p < 0.05) than the concentric phase, for the gluteus maximus and gluteus medius muscles (CG and PFG) and for the vastus lateralis muscle (PFG). The vastus lateralis muscle was the first muscle to reach the highest peak of activity in the PFG, and the third to reach this peak in the CG. In the present study, the activity of the vastus lateralis muscle during the eccentric phase of the jump was greater than concentric phase, as a temporal anticipation of its peak in activity among women with PFP. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Quantification of muscle oxygenation and flow of healthy volunteers during cuff occlusion of arm and leg flexor muscles and plantar flexion exercise

    Science.gov (United States)

    Durduran, Turgut; Yu, Guoqiang; Zhou, Chao; Lech, Gwen; Chance, Britton; Yodh, Arjun G.

    2003-07-01

    A hybrid instrument combining near infrared and diffuse correlation spectroscopies was used to measure muscle oxygenation and blood flow dynamics during cuff occlusion and ischemia. Measurements were done on six healthy subjects on their arm and leg flexor muscles. Hemodynamic response was characterized for blood oxygen saturation, total hemoglobin concenration and relative blood flow speed. The characterization allowed us to define the normal response range as well as showing the feasibility of using a hybrid instrument for dynamic measurements.

  20. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    Science.gov (United States)

    Fritzen, Andreas M.; Madsen, Agnete B.; Kleinert, Maximilian; Treebak, Jonas T.; Lundsgaard, Anne‐Marie; Jensen, Thomas E.; Richter, Erik A.; Wojtaszewski, Jørgen; Kiens, Bente

    2016-01-01

    Key points Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle.An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content.An acute bout of exercise regulates autophagy by a local contraction‐induced mechanism.Exercise training increases the capacity for formation of autophagosomes in human muscle.AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. Abstract Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one‐legged exercise, one‐legged exercise training and subsequent insulin stimulation in exercised and non‐exercised human muscle. Acute one‐legged exercise decreased (Pexercise in human muscle. The decrease in LC3‐II/LC3‐I ratio did not correlate with activation of 5′AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5‐aminoimidazole‐4‐carboxamide riboside (AICAR) in mouse muscle did not affect the LC3‐II/LC3‐I ratio. Four hours after exercise, insulin further reduced (Pexercised and non‐exercised leg in humans. This coincided with increased Ser‐757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3‐II/LC3‐I ratio. In response to 3 weeks of one‐legged exercise training, the LC3‐II/LC3‐I ratio decreased (Pexercise and insulin stimulation reduce muscle autophagosome content, while exercise

  1. Exercise induces transient transcriptional activation of the PGC-1a gene in human skeletal muscle

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Saltin, Bengt; Neufer, P. Darrell

    2003-01-01

    Endurance exercise training induces mitochondrial biogenesis in skeletal muscle. The peroxisome proliferator activated receptor co-activator 1a (PGC-1a) has recently been identified as a nuclear factor critical for coordinating the activation of genes required for mitochondrial biogenesis in cell...... culture and rodent skeletal muscle. To determine whether PGC-1a transcription is regulated by acute exercise and exercise training in human skeletal muscle, seven male subjects performed 4 weeks of one-legged knee extensor exercise training. At the end of training, subjects completed 3 h of two......-legged knee extensor exercise. Biopsies were obtained from the vastus lateralis muscle of both the untrained and trained legs before exercise and after 0, 2, 6 and 24 h of recovery. Time to exhaustion (2 min maximum resistance), as well as hexokinase II (HKII), citrate synthase and 3-hydroxyacyl...

  2. Does intermittent pneumatic leg compression enhance muscle recovery after strenuous eccentric exercise?

    Science.gov (United States)

    Cochrane, D J; Booker, H R; Mundel, T; Barnes, M J

    2013-11-01

    Intermittent pneumatic compression (IPC) has gained rapid popularity as a post-exercise recovery modality. Despite its widespread use and anecdotal claims for enhancing muscle recovery there is no scientific evidence to support its use. 10 healthy, active males performed a strenuous bout of eccentric exercise (3 sets of 100 repetitions) followed by IPC treatment or control performed immediately after exercise and at 24 and 48 h post-exercise. Muscular performance measurements were taken prior to exercise and 24, 48 and 72 h post-exercise and included single-leg vertical jump (VJ) and peak and average isometric [knee angle 75º] (ISO), concentric (CON) and eccentric (ECC) contractions performed at slow (30° · s⁻¹) and fast (180° · s⁻¹) velocities. Plasma creatine kinase (CK) samples were taken at pre- and post-exercise 24, 48 and 72 h. Strenuous eccentric exercise resulted in a significant decrease in peak ISO, peak and average CON (30° · s⁻¹) at 24 h compared to pre-exercise for both IPC and control, however VJ performance remained unchanged. There were no significant differences between conditions (IPC and control) or condition-time interactions for any of the contraction types (ISO, CON, ECC) or velocities (CON, ECC 30° · s⁻¹ and 180° · s⁻¹). However, CK was significantly elevated at 24 h compared to pre-exercise in both conditions (IPC and control). IPC did not attenuate muscle force loss following a bout of strenuous eccentric exercise in comparison to a control. While IPC has been used in the clinical setting to treat pathologic conditions, the parameters used to treat muscle damage following strenuous exercise in healthy participants are likely to be very different than those used to treat pathologic conditions. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Phase synchronisation of the three leg joints in quiet human stance.

    Science.gov (United States)

    Günther, Michael; Putsche, Peter; Leistritz, Lutz; Grimmer, Sten

    2011-03-01

    Quiet human stance is a dynamic multi-segment phenomenon. In literature, coupled ankle and hip actions are in the focus and examinations are usually restricted to frequency contributions below 4 Hz. Very few studies point to the knee playing an active role, and just one study gives evidence of higher frequency contributions. In order to investigate the dynamic coupling of all three leg joints in more depth, we revisited an experimental data set on quiet human stance. Since phase synchronisation is a strong indicator of non-linear coupling behind, we used the phase synchronisation index (PSI) to quantify the degree of leg joint coupling as a function of frequency. One main result is that we did not find any synchronisation between ankle and hip across the whole frequency range examined up to 8 Hz. In contrast, there is significant synchronisation between ankle and knee at a couple of frequencies between 1.25 Hz and 8 Hz when looking at the kinematics. Their joint torques rather synchronise below 2 Hz. There is also synchronisation between knee and hip kinematics above 6 Hz, however, only significant at one frequency bin in our data set. From this, we would infer that the multiple mechanical degrees of freedom contributing to quiet human stance should be chosen according to, thus map, physiology. Thereby, the knee is indispensable and bi-articular muscles play a central role in organising quiet human stance. Examining the non-stationarity of phase synchronisations will probably advance the understanding of self-organisation of quiet human stance. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Stabilometric response during single-leg stance after lower limb muscle fatigue

    Directory of Open Access Journals (Sweden)

    Carlos A. V. Bruniera

    2013-10-01

    Full Text Available OBJECTIVE: This study sought to analyze the effect of muscle fatigue induced by active isotonic resistance training at a moderate intensity by measuring the knee extension motion during the stabilometric response in a single-leg stance among healthy university students who perform resistance training on a regular basis. METHOD: Eleven healthy university students were subjected to a one-repetition maximum (1RM test. In addition, stabilometric assessment was performed before and after the intervention and consisted of a muscle fatiguing protocol, in which knee extension was selected as the fatiguing task. The Shapiro-Wilk test was used to investigate the normality of the data, and the Wilcoxon test was used to compare the stabilometric parameters before and after induction of muscle fatigue, at a significance level of p≤0.05. Descriptive statistics were used in the analysis of the volunteers' age, height, body mass, and body mass index (BMI. RESULTS: The sample population was 23.1±2.7 years of age, averaged 1.79.2±0.07 m in height and 75.6±8.0 Kg in weight, and had a BMI of 23.27±3.71 Kg.m-2. The volunteers performed exercises 3.36±1.12 days/week and achieved a load of 124.54±22.07 Kg on 1RM and 74.72±13.24 Kg on 60% 1RM. The center of pressure (CoP oscillation on the mediolateral plane before and after fatigue induction was 2.89±0.89 mm and 4.09±0.59 mm, respectively, while the corresponding values on the anteroposterior plane were 2.5±2.2 mm and 4.09±2.26 mm, respectively. The CoP oscillation amplitude on the anteroposterior and mediolateral planes exhibited a significant difference before and after fatigue induction (p=0.04 and p=0.05, respectively. CONCLUSIONS: The present study showed that muscle fatigue affects postural control, particularly with the mediolateral and anteroposterior CoP excursion.

  5. Hip proprioceptors preferentially modulate reflexes of the leg in human spinal cord injury

    Science.gov (United States)

    Onushko, Tanya; Hyngstrom, Allison

    2013-01-01

    Stretch-sensitive afferent feedback from hip muscles has been shown to trigger long-lasting, multijoint reflex responses in people with chronic spinal cord injury (SCI). These reflexes could have important implications for control of leg movements during functional activities, such as walking. Because the control of leg movement relies on reflex regulation at all joints of the limb, we sought to determine whether stretch of hip muscles modulates reflex activity at the knee and ankle and, conversely, whether knee and ankle stretch afferents affect hip-triggered reflexes. A custom-built servomotor apparatus was used to stretch the hip muscles in nine chronic SCI subjects by oscillating the legs about the hip joint bilaterally from 10° of extension to 40° flexion. To test whether stretch-related feedback from the knee or ankle would be affected by hip movement, patellar tendon percussions and Achilles tendon vibration were delivered when the hip was either extending or flexing. Surface electromyograms (EMGs) and joint torques were recorded from both legs. Patellar tendon percussions and Achilles tendon vibration both elicited reflex responses local to the knee or ankle, respectively, and did not influence reflex responses observed at the hip. Rather, the movement direction of the hip modulated the reflex responses local to the joint. The patellar tendon reflex amplitude was larger when the perturbation was delivered during hip extension compared with hip flexion. The response to Achilles vibration was modulated by hip movement, with an increased tonic component during hip flexion compared with extension. These results demonstrate that hip-mediated sensory signals modulate activity in distal muscles of the leg and appear to play a unique role in modulation of spastic muscle activity throughout the leg in SCI. PMID:23615544

  6. Trichinella spiralis in human muscle (image)

    Science.gov (United States)

    This is the parasite Trichinella spiralis in human muscle tissue. The parasite is transmitted by eating undercooked meats, especially pork. The cysts hatch in the intestines and produce large numbers of larvae that migrate into muscle tissue. The cysts ...

  7. Spring-like leg behaviour, musculoskeletal mechanics and control in maximum and submaximum height human hopping

    NARCIS (Netherlands)

    Bobbert, M.F.

    2011-01-01

    The purpose of this study was to understand how humans regulate their 'leg stiffness' in hopping, and to determine whether this regulation is intended to minimize energy expenditure. 'Leg stiffness' is the slope of the relationship between ground reaction force and displacement of the centre of mass

  8. Utilization of stored elastic energy in leg extensor muscles by men and women.

    Science.gov (United States)

    Komi, P V; Bosco, C

    1978-01-01

    An alternating cycle of eccentric-concentric contractions in locomotion represents a sequence when storage and utilization of elastic energy takes place. It is possible that this storage capacity and its utilization depends on the imposed stretch loads in activated muscles, and that sex differences may be present in these phenomena. To investigate these assumed differences, subjects from both sexes and of good physical condition performed vertical jumps on the force-platform from the following experimental conditions: squatting jump (SJ) from a static starting position; counter-movement jump (CMJ) from a free standing position and with a preparatory counter-movement; drop jumps (DJ) from the various heights (20 to 100 cm) on to the platform followed immediately by a vertical jump. In all subjects the SJ, in which condition no appreciable storage of elastic energy takes place, produced the lowest height of rise of the whole body center of gravity (C.G.). The stretch load (drop height) influenced the performance so that height of rise of C. of G. increased when the drop height increased from 26 up to 62 cm (males) and from 20 to 50 cm (females). In all jumping conditions the men jumped higher than the women. However, examination of the utilization of elastic energy indicated that in CMJ the female subjects were able to utilize most (congruent to 90%) of the energy produced in the prestretching phase. Similarly, in DJ the overall change in positive energy over SJ condition was higher in women as compared to men. Thus the results suggest that although the leg extensor muscles of the men subjects could sustain much higher stretch loads, the females may be able to utilize a greater portion of the stored elastic energy in jumping activities.

  9. Placebo effect of an inert gel on experimentally induced leg muscle pain

    Directory of Open Access Journals (Sweden)

    James G Hopker

    2010-11-01

    Full Text Available James G Hopker1, Abigail J Foad2, Christopher J Beedie2, Damian A Coleman2, Geoffrey Leach11Centre for Sports Studies, University of Kent, Chatham, Kent, UK; 2Department of Sports Science, Tourism and Leisure, Canterbury Christ Church University, Canterbury, Kent, UKPurpose: This study examined the therapeutic effects of an inert placebo gel on experimentally induced muscle pain in a sports therapy setting. It aimed to investigate the degree to which conditioned analgesia, coupled with an expectation of intervention, was a factor in subsequent analgesia.Methods: Participants were sixteen male and eight female sports therapy students at a UK University. With institutional ethics board approval and following informed consent procedures, each was exposed to pain stimulus in the lower leg in five conditions, ie, conditioning, prebaseline, experimental (two placebo gel applications, and postbaseline. In conditioning trials, participants identified a level of pain stimulus equivalent to a perceived pain rating of 6/10. An inert placebo gel was then applied to the site with the explicit instruction that it was an analgesic. Participants were re-exposed to the pain stimulus, the level of which, without their knowledge, had been decreased, creating the impression of an analgesic effect resulting from the gel. In experimental conditions, the placebo gel was applied and the level of pain stimulus required to elicit a pain rating of 6/10 recorded.Results: Following application of the placebo gel, the level of pain stimulus required to elicit a pain rating of 6/10 increased by 8.2%. Application of the placebo gel significantly decreased participant’s perceptions of muscle pain (P = 0.001.Conclusion: Subjects’ experience and expectation of pain reduction may be major factors in the therapeutic process. These factors should be considered in the sports therapeutic environment.Keywords: conditioning, expectation, perception, positive belief, sports therapy

  10. Evaluation of a muscle pump-activating device for non-healing venous leg ulcers.

    Science.gov (United States)

    Harris, Connie; Duong, Rochelle; Vanderheyden, Gwen; Byrnes, Beth; Cattryse, Renee; Orr, Ava; Keast, David

    2017-12-01

    This evaluation involves an innovative muscle pump-activating device (geko™) as an adjunctive therapy with best practices for non-healing venous leg ulcers (VLUs). Stimulating the common peroneal nerve (at the fibular head), the geko™ device creates a response that acts as foot and calf muscle pumps, increasing venous, arterial and microcirculatory flow. The aim was to evaluate and determine if the geko™ is effective in this population and if it should be added to the medical supply formulary. In all, 12 patients with 18 recalcitrant VLUs (defined as less than 30% reduction in wound size in 30 days with best practices) in two community settings in Ontario consented to the evaluation and were treated with the geko™ for up to 20 weeks. A total of 44% of wounds healed, and 39% decreased in size. One patient non-adherent with the geko™ and best practices had deterioration in his or her wounds. With the patients as their own control, the mean weekly healing rate with the geko™ was 9·35% (±SD 0·10) compared to 0·06% (±SD 0·10) prior to baseline, which was statistically significant (P devices in 7 of 12 (58%) patients. One patient stopped the device due to rash, while another had to take breaks from using the device. Subsequently, the manufacturer (FirstKind Ltd) has developed a new device and protocol specific to the requirements of wound therapy to minimise this response. This small case series demonstrated the highly significant effectiveness of the geko™ device in these hard-to-heal VLUs. Further evaluations to determine dose and patient selection criteria are underway. © 2017 The Authors. International Wound Journal published by Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  11. Calprotectin is released from human skeletal muscle tissue during exercise

    DEFF Research Database (Denmark)

    Mortensen, Ole Hartvig; Andersen, Kasper; Fischer, Christian

    2008-01-01

    Skeletal muscle has been identified as a secretory organ. We hypothesized that IL-6, a cytokine secreted from skeletal muscle during exercise, could induce production of other secreted factors in skeletal muscle. IL-6 was infused for 3 h into healthy young males (n = 7) and muscle biopsies obtained...... in skeletal muscle following IL-6 infusion compared to controls. Furthermore, S100A8 and S100A9 mRNA levels were up-regulated 5-fold in human skeletal muscle following cycle ergometer exercise for 3 h at approximately 60% of in young healthy males (n = 8). S100A8 and S100A9 form calprotectin, which is known...... as an acute phase reactant. Plasma calprotectin increased 5-fold following acute cycle ergometer exercise in humans, but not following IL-6 infusion. To identify the source of calprotectin, healthy males (n = 7) performed two-legged dynamic knee extensor exercise for 3 h with a work load of approximately 50...

  12. Precooling leg muscle improves intermittent sprint exercise performance in hot, humid conditions.

    Science.gov (United States)

    Castle, Paul C; Macdonald, Adam L; Philp, Andrew; Webborn, Anthony; Watt, Peter W; Maxwell, Neil S

    2006-04-01

    We used three techniques of precooling to test the hypothesis that heat strain would be alleviated, muscle temperature (Tmu) would be reduced, and as a result there would be delayed decrements in peak power output (PPO) during exercise in hot, humid conditions. Twelve male team-sport players completed four cycling intermittent sprint protocols (CISP). Each CISP consisted of twenty 2-min periods, each including 10 s of passive rest, 5 s of maximal sprint against a resistance of 7.5% body mass, and 105 s of active recovery. The CISP, preceded by 20 min of no cooling (Control), precooling via an ice vest (Vest), cold water immersion (Water), and ice packs covering the upper legs (Packs), was performed in hot, humid conditions (mean +/- SE; 33.7 +/- 0.3 degrees C, 51.6 +/- 2.2% relative humidity) in a randomized order. The rate of heat strain increase during the CISP was faster in Control than Water and Packs (P body or whole body cooling.

  13. Leg muscle mass and composition in relation to lower extremity performance in men and women aged 70 to 79 : the health, aging and body composition study

    NARCIS (Netherlands)

    Visser, Marjolein; Kritchevsky, Stephen B; Goodpaster, Bret H; Newman, Anne B; Nevitt, Michael; Stamm, Elizabeth; Harris, Tamara B

    OBJECTIVES: The loss of muscle mass with aging, or sarcopenia, is hypothesized to be associated with the deterioration of physical function. Our aim was to determine whether low leg muscle mass and greater fat infiltration in the muscle were associated with poor lower extremity performance (LEP).

  14. Pneumatic Artificial Muscles Based on Biomechanical Characteristics of Human Muscles

    Directory of Open Access Journals (Sweden)

    N. Saga

    2006-01-01

    Full Text Available This article reports the pneumatic artificial muscles based on biomechanical characteristics of human muscles. A wearable device and a rehabilitation robot that assist a human muscle should have characteristics similar to those of human muscle. In addition, since the wearable device and the rehabilitation robot should be light, an actuator with a high power to weight ratio is needed. At present, the McKibben type is widely used as an artificial muscle, but in fact its physical model is highly nonlinear. Therefore, an artificial muscle actuator has been developed in which high-strength carbon fibres have been built into the silicone tube. However, its contraction rate is smaller than the actual biological muscles. On the other hand, if an artificial muscle that contracts axially is installed in a robot as compactly as the robot hand, big installing space is required. Therefore, an artificial muscle with a high contraction rate and a tendon-driven system as a compact actuator were developed, respectively. In this study, we report on the basic structure and basic characteristics of two types of actuators.

  15. Human skeletal muscle releases leptin in vivo

    DEFF Research Database (Denmark)

    Wolsk, Emil; Grøndahl, Thomas Sahl; Pedersen, Bente Klarlund

    2012-01-01

    Leptin is considered an adipokine, however, cultured myocytes have also been found to release leptin. Therefore, as proof-of-concept we investigated if human skeletal muscle synthesized leptin by measuring leptin in skeletal muscle biopsies. Following this, we quantified human skeletal muscle...... was unaltered. During saline infusion the adipose tissue release averaged 0.8 ± 0.3 ng min(-1) 100g tissue(-1) whereas skeletal muscle release was 0.5 ± 0.1 ng min(-1) 100g tissue(-1). In young healthy humans, skeletal muscle contribution to whole body leptin production could be substantial given the greater...

  16. Muscle activity during leg strengthening exercise using free weights and elastic resistance: effects of ballistic vs controlled contractions.

    Science.gov (United States)

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H; Aagaard, Per; Andersen, Lars L

    2013-02-01

    The present study's aim was to evaluate muscle activity during leg exercises using elastic vs. isoinertial resistance at different exertion and loading levels, respectively. Twenty-four women and eighteen men aged 26-67 years volunteered to participate in the experiment. Electromyographic (EMG) activity was recorded in nine muscles during a standardized forward lunge movement performed with dumbbells and elastic bands during (1) ballistic vs. controlled exertion, and (2) at low, medium and high loads (33%, 66% and 100% of 10 RM, respectively). The recorded EMG signals were normalized to MVC EMG. Knee joint angle was measured using electronic inclinometers. The following results were obtained. Loading intensity affected EMG amplitude in the order: lowBallistic contractions always produced greater EMG activity than slow controlled contractions, and for most muscles ballistic contractions with medium load showed similar EMG amplitude as controlled contractions with high load. At flexed knee joint positions with elastic resistance, quadriceps and gluteus EMG amplitude during medium-load ballistic contractions exceeded that recorded during high-load controlled contractions. Quadriceps and gluteus EMG amplitude increased at flexed knee positions. In contrast, hamstrings EMG amplitude remained constant throughout ROM during dumbbell lunge, but increased at more extended knee joint positions during lunges using elastic resistance. Based on these results, it can be concluded that lunges performed using medium-load ballistic muscle contractions may induce similar or even higher leg muscle activity than lunges using high-load slow-speed contractions. Consequently, lunges using elastic resistance appear to be equally effective in inducing high leg muscle activity as traditional lunges using isoinertial resistance. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. a-Adrenergic vasoconstrictor responsiveness is preserved in the heated human leg

    DEFF Research Database (Denmark)

    Keller, David M; Sander, Mikael; Stallknecht, Bente Merete

    2010-01-01

    This study tested the hypothesis that passive leg heating attenuates a-adrenergic vasoconstriction within that limb. Femoral blood flow (FBF, femoral artery ultrasound Doppler) and femoral vascular conductance (FVC, FBF/mean arterial blood pressure), as well as calf muscle blood flow (Calf...

  18. Relationships Between Lower-Body Muscle Structure and, Lower-Body Strength, Explosiveness and Eccentric Leg Stiffness in Adolescent Athletes

    Directory of Open Access Journals (Sweden)

    Josh L. Secomb, Sophia Nimphius, Oliver R.L. Farley, Lina E. Lundgren, Tai T. Tran, Jeremy M. Sheppard

    2015-12-01

    Full Text Available The purpose of the present study was to determine whether any relationships were present between lower-body muscle structure and, lower-body strength, variables measured during a countermovement jump (CMJ and squat jump (SJ, and eccentric leg stiffness, in adolescent athletes. Thirty junior male (n = 23 and female (n = 7 surfing athletes (14.8 ± 1.7 y; 1.63 ± 0.09 m; 54.8 ± 12.1 kg undertook lower-body muscle structure assessment with ultrasonography and performed a; CMJ, SJ and an isometric mid-thigh pull (IMTP. In addition, eccentric leg stiffness was calculated from variables of the CMJ and IMTP. Moderate to very large relationships (r = 0.46-0.73 were identified between the thickness of the vastus lateralis (VL and lateral gastrocnemius (LG muscles, and VL pennation angle and; peak force (PF in the CMJ, SJ and IMTP. Additionally, moderate to large relationships (r = 0.37-0.59 were found between eccentric leg stiffness and; VL and LG thickness, VL pennation angle, and LG fascicle length, with a large relationship (r = 0.59 also present with IMTP PF. These results suggest that greater thickness of the VL and LG were related to improved maximal dynamic and isometric strength, likely due to increased hypertrophy of the extensor muscles. Furthermore, this increased thickness was related to greater eccentric leg stiffness, as the associated enhanced lower-body strength likely allowed for greater neuromuscular activation, and hence less compliance, during a stretch-shortening cycle.

  19. Focal vibration of quadriceps muscle enhances leg power and decreases knee joint laxity in female volleyball players.

    Science.gov (United States)

    Brunetti, O; Botti, F M; Roscini, M; Brunetti, A; Panichi, R; Filippi, G M; Biscarini, A; Pettorossi, V E

    2012-12-01

    This double-blind randomized controlled study aims at determining the effect of repeated muscle vibration (rMV) on explosive and reactive leg power and on knee laxity of female volleyball players. Eighteen voluntary volleyball athletes, belonging to the same senior regional level team (age=22.7 ± 3 years, height=180.3 ± 5 cm, mass= 64 ± 4 kg) were assigned to three groups (N.=6) for vibration on contracted quadriceps (VC), vibration on relaxed muscle (VR), and sham vibration (NV), respectively. Intervention consisted in 3 rMV sessions performed in 3 consecutive days. In each session, 100 Hz, 300-500 μm amplitude vibratory stimuli were bilaterally delivered to the quadriceps in three consecutive 10-minutes applications. Explosive and reactive leg power and knee joint laxity were evaluated 1 day before, and 1, 30, and 240 days after intervention. In VC group, explosive and reactive leg power increased respectively by ~16% and ~9% at 1 day, by ~19% and ~11% at 30 days and by ~26% and ~13% at 240 days, concomitantly knee laxity decreased by ~6%, ~15% and ~18% at the same times. These changes were significantly larger than in the other groups, in which leg power increment and knee joint laxity reduction remained close to ~3%, ~5% and ~10% at 1, 30 and 240 days, respectively. Combined bilateral voluntary contraction and rMV of the quadriceps muscles is a short-lasting, non-invasive technique that can significantly and persistently improve muscle performance and knee laxity in volleyball women players.

  20. Near-Infrared Spectroscopic Measurement of the Effect of Leg Dominance on Muscle Oxygen Saturation During Cycling

    Science.gov (United States)

    Ellerby, Gwenn E. C.; Lee, Stuart M. C.; Paunescu, Lelia Adelina; Pereira, Chelsea; Smith, Charles P.; Soller, Babs R.

    2011-01-01

    The effect of leg dominance on the symmetry of the biomechanics during cycling remains uncertain -- asymmetries have been observed in kinematics and kinetics, while symmetries were found in muscle activation. No studies have yet investigated the symmetry of muscle metabolism during cycling. Near-infrared spectroscopy (NIRS) provides a non-invasive method to investigate the metabolic responses of specific muscles during cycling. PURPOSE: To determine whether there was an effect of leg dominance on thigh muscle oxygen saturation (SmO2) during incrementally loaded submaximal cycling using NIRS. METHODS: Eight right leg dominant, untrained subjects (5 men, 3 women; 31+/-2 yrs; 168.6+/-1.0 cm; 67.2+/-1.8 kg, mean +/- SE) volunteered to participate. Spectra were collected bilaterally from the vastus lateralis (VL) during supine rest and cycling. SmO2 was calculated using previously published methods. Subjects pedaled at 65 rpm while resistance to pedaling was increased in 0.5 kp increments from 0.5 kp every 3 min until the subject reached 80% of age-predicted maximal heart rate. SmO2 was averaged over 3 min for each completed stage. A two-way ANOVA was performed to test for leg differences. A priori contrasts were used to compare work levels to rest. RESULTS: VL SmO2 was not different between the dominant and non-dominant legs at rest and during exercise (p=0.57). How SmO2 changed with workload was also not different between legs (p=0.32). SmO2 at 0.5 kp (60.3+/-4.0, p=0.12) and 1.0 kp (59.5+/-4.0, p=0.10) was not different from rest (69.1+/-4.0). SmO2 at 1.5 kp (55.4 4.0, p=0.02), 2.0 kp (55.7+/-5.0, p=0.04), and 2.5 kp (43.4+/-7.9, p=0.01) was significantly lower than rest. CONCLUSION: VL SmO2 during cycling is not different between dominant and non-dominant legs and decreases with moderate workload in untrained cyclists. Assuming blood flow is directed equally to both legs, similar levels of oxygen extraction (as indicated by SmO2) suggests the metabolic load of

  1. Magnetic Resonance Assessment of Hypertrophic and Pseudo-Hypertrophic Changes in Lower Leg Muscles of Boys with Duchenne Muscular Dystrophy and Their Relationship to Functional Measurements.

    Directory of Open Access Journals (Sweden)

    Ravneet S Vohra

    Full Text Available The primary objectives of this study were to evaluate contractile and non-contractile content of lower leg muscles of boys with Duchenne muscular dystrophy (DMD and determine the relationships between non-contractile content and functional abilities.Lower leg muscles of thirty-two boys with DMD and sixteen age matched unaffected controls were imaged. Non-contractile content, contractile cross sectional area and non-contractile cross sectional area of lower leg muscles (tibialis anterior, extensor digitorum longus, peroneal, medial gastrocnemius and soleus were assessed by magnetic resonance imaging (MRI. Muscle strength, timed functional tests and the Brooke lower extremity score were also assessed.Non-contractile content of lower leg muscles (peroneal, medial gastrocnemius, and soleus was significantly greater than control group (p<0.05. Non-contractile content of lower leg muscles correlated with Brooke score (rs = 0.64-0.84 and 30 feet walk (rs = 0.66-0.80. Dorsiflexor (DF and plantarflexor (PF specific torque was significantly different between the groups.Overall, non-contractile content of the lower leg muscles was greater in DMD than controls. Furthermore, there was an age dependent increase in contractile content in the medial gastrocnemius of boys with DMD. The findings of this study suggest that T1 weighted MR images can be used to monitor disease progression and provide a quantitative estimate of contractile and non-contractile content of tissue in children with DMD.

  2. Satellite cells in human skeletal muscle plasticity.

    Science.gov (United States)

    Snijders, Tim; Nederveen, Joshua P; McKay, Bryon R; Joanisse, Sophie; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2015-01-01

    Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodeling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodeling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodeling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  3. Muscle cooling delays activation of the muscle metaboreflex in humans.

    Science.gov (United States)

    Ray, C A; Hume, K M; Gracey, K H; Mahoney, E T

    1997-11-01

    Elevation of muscle temperature has been shown to increase muscle sympathetic nerve activity (MSNA) during isometric exercise in humans. The purpose of the present study was to evaluate the effect of muscle cooling on MSNA responses during exercise. Eight subjects performed ischemic isometric handgrip at 30% of maximal voluntary contraction to fatigue followed by 2 min of postexercise muscle ischemia (PEMI), with and without local cooling of the forearm. Local cooling of the forearm decreased forearm muscle temperature from 31.8 +/- 0.4 to 23.1 +/- 0.8 degrees C (P = 0.001). Time to fatigue was not different during the control and cold trials (156 +/- 11 and 154 +/- 5 s, respectively). Arterial pressures and heart rate were not significantly affected by muscle cooling during exercise, although heart rate tended to be higher during the second minute of exercise (P = 0.053) during muscle cooling. Exercise-induced increases in MSNA were delayed during handgrip with local cooling compared with control. However, MSNA responses at fatigue and PEMI were not different between the two conditions. These findings suggest that muscle cooling delayed the activation of the muscle metaboreflex during ischemic isometric exercise but did not prevent its full expression during fatiguing contraction. These results support the concept that muscle temperature can play a role in the regulation of MSNA during exercise.

  4. Pharmacological enhancement of leg and muscle microvascular blood flow does not augment anabolic responses in skeletal muscle of young men under fed conditions.

    Science.gov (United States)

    Phillips, Bethan E; Atherton, Philip J; Varadhan, Krishna; Wilkinson, Daniel J; Limb, Marie; Selby, Anna L; Rennie, Michael J; Smith, Kenneth; Williams, John P

    2014-01-15

    Skeletal muscle anabolism associated with postprandial plasma aminoacidemia and insulinemia is contingent upon amino acids (AA) and insulin crossing the microcirculation-myocyte interface. In this study, we hypothesized that increasing muscle microvascular blood volume (flow) would enhance fed-state anabolic responses in muscle protein turnover. We studied 10 young men (23.2 ± 2.1 yr) under postabsorptive and fed [iv Glamin (∼10 g AA), glucose ∼7.5 mmol/l] conditions. Methacholine was infused into the femoral artery of one leg to determine, via bilateral comparison, the effects of feeding alone vs. feeding plus pharmacological vasodilation. We measured leg blood flow (LBF; femoral artery) by Doppler ultrasound, muscle microvascular blood volume (MBV) by contrast-enhanced ultrasound (CEUS), muscle protein synthesis (MPS) and breakdown (MPB; a-v balance modeling), and net protein balance (NPB) using [1,2-(13)C2]leucine and [(2)H5]phenylalanine tracers via gas chromatography-mass spectrometry (GC-MS). Indexes of anabolic signaling/endothelial activation (e.g., Akt/mTORC1/NOS) were assessed using immunoblotting techniques. Under fed conditions, LBF (+12 ± 5%, P anabolism.

  5. A model of the human triceps surae muscle-tendon complex applied to jumping

    NARCIS (Netherlands)

    Bobbert, Maarten F.; Huijing, Peter A.; van Ingen Schenau, Gerrit Jan

    1986-01-01

    The purpose of this study was to gain more insight into the behavior of the muscle-tendon complex of human m. triceps surae in jumping. During one-legged vertical jumps of ten subjects ground reaction forces as well as cinematographic data were registered, and electromyograms were recorded from m.

  6. Timing of muscle response to a sudden leg perturbation: comparison between adolescents and adults with Down syndrome.

    Directory of Open Access Journals (Sweden)

    Maria Stella Valle

    Full Text Available Movement disturbances associated with Down syndrome reduce mechanical stability, worsening the execution of important tasks such as walking and upright standing. To compensate these deficits, persons with Down syndrome increase joint stability modulating the level of activation of single muscles or producing an agonist-antagonist co-activation. Such activations are also observed when a relaxed, extended leg is suddenly released and left to oscillate passively under the influence of gravity (Wartenberg test. In this case, the Rectus femoris of adults with Down syndrome displayed peaks of activation after the onset of the first leg flexion. With the aim to verify if these muscular reactions were acquired during the development time and to find evidences useful to give them a functional explanation, we used the Wartenberg test to compare the knee joint kinematics and the surface electromyography of the Rectus femoris and Biceps femoris caput longus between adolescents and adults with Down syndrome. During the first leg flexion, adolescents and adults showed single Rectus femoris activations while, a restricted number of participants exhibited agonist-antagonist co-activations. However, regardless the pattern of activation, adults initiated the muscle activity significantly later than adolescents. Although most of the mechanical parameters and the total movement variability were similar in the two groups, the onset of the Rectus femoris activation was well correlated with the time of the minimum acceleration variability. Thus, in adolescents the maximum mechanical stability occurred short after the onset of the leg fall, while adults reached their best joint stability late during the first flexion. These results suggest that between the adolescence and adulthood, persons with Down syndrome explore a temporal window to select an appropriate timing of muscle activation to overcome their inherent mechanical instability.

  7. Ultrasound measurement of the size of the anterior tibial muscle group: the effect of exercise and leg dominance

    LENUS (Irish Health Repository)

    McCreesh, Karen

    2011-09-13

    Abstract Background Knowledge of normal muscle characteristics is crucial in planning rehabilitation programmes for injured athletes. There is a high incidence of ankle and anterior tibial symptoms in football players, however little is known about the effect of limb dominance on the anterior tibial muscle group (ATMG). The purpose of this study was to assess the effect of limb dominance and sports-specific activity on ATMG thickness in Gaelic footballers and non-football playing controls using ultrasound measurements, and to compare results from transverse and longitudinal scans. Methods Bilateral ultrasound scans were taken to assess the ATMG size in 10 Gaelic footballers and 10 sedentary controls (age range 18-25 yrs), using a previously published protocol. Both transverse and longitudinal images were taken. Muscle thickness measurements were carried out blind to group and side of dominance, using the Image-J programme. Results Muscle thickness on the dominant leg was significantly greater than the non-dominant leg in the footballers with a mean difference of 7.3%, while there was no significant dominance effect in the controls (p < 0.05). There was no significant difference between the measurements from transverse or longitudinal scans. Conclusions A significant dominance effect exists in ATMG size in this group of Gaelic footballers, likely attributable to the kicking action involved in the sport. This should be taken into account when rehabilitating footballers with anterior tibial pathology. Ultrasound is a reliable tool to measure ATMG thickness, and measurement may be taken in transverse or longitudinal section.

  8. U-14C-lactate-to-glycogen conversion and glycogen resynthesis rates in Type I and Type II human vastus lateralis muscle determined from biopsy samples following supramaximal and submaximal exhaustive one-leg cycling: an in vitro versus in vivo comparison

    International Nuclear Information System (INIS)

    Thompson, J.L.

    1987-01-01

    To determine the in vitro lactate-to-glycogen conversion potential of human muscle, samples were incubated in U- 14 C-lactate. Because evidence existed suggesting that lactate-to-glycogen conversion occurred at a faster rate in Type II muscle in vivo glycogen resynthesis was calculated by the difference in muscle glycogen concentrations over the initial half-hour recovery period in the FT (Type II, fast-twitch) and ST (Type I, slow-twitch) muscle fiber pools from two of the original eight subjects

  9. The motor cortex drives the muscles during walking in human subjects

    DEFF Research Database (Denmark)

    Petersen, Tue Hvass; Willerslev-Olsen, Maria; Conway, B A

    2012-01-01

    Indirect evidence that the motor cortex and the corticospinal tract contribute to the control of walking in human subjects has been provided in previous studies. In the present study we used coherence analysis of the coupling between EEG and EMG from active leg muscles during human walking...... area and EMG from the anterior tibial muscle was found in the frequency band 24–40 Hz prior to heel strike during the swing phase of walking. This signifies that rhythmic cortical activity in the 24–40 Hz frequency band is transmitted via the corticospinal tract to the active muscles during walking...

  10. Ammonia uptake in inactive muscles during exercise in humans

    DEFF Research Database (Denmark)

    Bangsbo, Jens; Kiens, Bente; Richter, Erik

    1996-01-01

    The present study examined NH3 (ammonia and ammonium) uptake in resting leg muscle. Six male subjects performed intermittent arm exercise at various intensities in two separate 32-min periods (part I and part II) and in one subsequent 20-min period in which one-legged exercise was also performed ...

  11. Skeletal muscle glucose uptake during dynamic exercise in humans

    DEFF Research Database (Denmark)

    Richter, Erik; Kiens, Bente; Saltin, Bengt

    1988-01-01

    uptake was not compensated for by increased uptake of free fatty acids but was accompanied by decreases in plasma insulin and increases in plasma epinephrine and norepinephrine. During work with large muscle masses, arterial lactate increased to approximately 6 mM, and net leg lactate release reverted......To study the role of muscle mass in glucoregulation, six subjects worked with the knee extensors of one leg on a specially constructed cycle ergometer. The knee extensors of one leg worked either alone or in combination with the knee extensors of the other leg and/or with the arms. Substrate usage...... to net lactate uptake. Decreased glucose uptake could not be explained by decreased perfusion. It is concluded that thigh muscle glucose uptake is affected by the size of the total muscle mass engaged in exercise. The decrease in thigh glucose uptake, when arm cranking was added and O2 uptake...

  12. Human skeletal muscle mitochondrial capacity.

    Science.gov (United States)

    Rasmussen, U F; Rasmussen, H N

    2000-04-01

    Under aerobic work, the oxygen consumption and major ATP production occur in the mitochondria and it is therefore a relevant question whether the in vivo rates can be accounted for by mitochondrial capacities measured in vitro. Mitochondria were isolated from human quadriceps muscle biopsies in yields of approximately 45%. The tissue content of total creatine, mitochondrial protein and different cytochromes was estimated. A number of activities were measured in functional assays of the mitochondria: pyruvate, ketoglutarate, glutamate and succinate dehydrogenases, palmitoyl-carnitine respiration, cytochrome oxidase, the respiratory chain and the ATP synthesis. The activities involved in carbohydrate oxidation could account for in vivo oxygen uptakes of 15-16 mmol O2 min-1 kg-1 or slightly above the value measured at maximal work rates in the knee-extensor model of Saltin and co-workers, i.e. without limitation from the cardiac output. This probably indicates that the maximal oxygen consumption of the muscle is limited by the mitochondrial capacities. The in vitro activities of fatty acid oxidation corresponded to only 39% of those of carbohydrate oxidation. The maximal rate of free energy production from aerobic metabolism of glycogen was calculated from the mitochondrial activities and estimates of the DeltaG or ATP hydrolysis and the efficiency of the actin-myosin reaction. The resultant value was 20 W kg-1 or approximately 70% of the maximal in vivo work rates of which 10-20% probably are sustained by the anaerobic ATP production. The lack of aerobic in vitro ATP synthesis might reflect termination of some critical interplay between cytoplasm and mitochondria.

  13. Leg and trunk muscle coordination and postural sway during increasingly difficult standing balance tasks in young and older adults.

    Science.gov (United States)

    Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver

    2016-09-01

    Ageing impairs body balance and increases older adults' fall risk. Balance training can improve intrinsic fall risk factors. However, age comparisons of muscle activity responses during balance tasks are lacking. This study investigated relative muscle activity, muscle coordination and postural sway during various recommended static balance training tasks. Muscle activity (%MVC), amplitude ratios (AR) and co-activity (CAI) were determined during standing tasks for 30s (1: double limb stance on a foam surface, eyes open; 2: double limb stance on firm ground, eyes closed; 3: double limb stance, feet in step position on a foam surface, eyes open; 4: double limb stance, feet in step position on firm ground, eyes closed; 5: single limb stance on firm ground, eyes open) in 20 healthy young adults (24±2 y) and 20 older adults (73±6 y). Surface electromyography (SEMG) was applied (SENIAM guidelines) to ankle (tibialis anterior, soleus, medial gastrocnemius, peroneus longus) and thigh (vastus lateralis, vastus medialis, biceps femoris, semitendinosus) muscles (non-dominant leg). Electrodes over trunk (multifidus and internal oblique) muscles were applied bilaterally. Two- to six-fold higher levels of relative muscle activity were found in older adults for ankle (0.0002adults for the trunk (0.001older adults for the ankle (0.009Older adults had higher electrophysiological costs for all stance conditions. Muscle coordination showed inverse activity patterns at the ankle and trunk. Optimal balance and strength training programs should take into account age-specific alterations in muscle activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Magnetic Resonance Assessment of Hypertrophic and Pseudo-Hypertrophic Changes in Lower Leg Muscles of Boys with Duchenne Muscular Dystrophy and Their Relationship to Functional Measurements.

    Science.gov (United States)

    Vohra, Ravneet S; Lott, Donovan; Mathur, Sunita; Senesac, Claudia; Deol, Jasjit; Germain, Sean; Bendixen, Roxanna; Forbes, Sean C; Sweeney, H Lee; Walter, Glenn A; Vandenborne, Krista

    2015-01-01

    The primary objectives of this study were to evaluate contractile and non-contractile content of lower leg muscles of boys with Duchenne muscular dystrophy (DMD) and determine the relationships between non-contractile content and functional abilities. Lower leg muscles of thirty-two boys with DMD and sixteen age matched unaffected controls were imaged. Non-contractile content, contractile cross sectional area and non-contractile cross sectional area of lower leg muscles (tibialis anterior, extensor digitorum longus, peroneal, medial gastrocnemius and soleus) were assessed by magnetic resonance imaging (MRI). Muscle strength, timed functional tests and the Brooke lower extremity score were also assessed. Non-contractile content of lower leg muscles (peroneal, medial gastrocnemius, and soleus) was significantly greater than control group (pmuscles correlated with Brooke score (rs = 0.64-0.84) and 30 feet walk (rs = 0.66-0.80). Dorsiflexor (DF) and plantarflexor (PF) specific torque was significantly different between the groups. Overall, non-contractile content of the lower leg muscles was greater in DMD than controls. Furthermore, there was an age dependent increase in contractile content in the medial gastrocnemius of boys with DMD. The findings of this study suggest that T1 weighted MR images can be used to monitor disease progression and provide a quantitative estimate of contractile and non-contractile content of tissue in children with DMD.

  15. Effects of Long Term Supplementation of Anabolic Androgen Steroids on Human Skeletal Muscle

    Science.gov (United States)

    Yu, Ji-Guo; Bonnerud, Patrik; Eriksson, Anders; Stål, Per S.; Tegner, Yelverton; Malm, Christer

    2014-01-01

    The effects of long-term (over several years) anabolic androgen steroids (AAS) administration on human skeletal muscle are still unclear. In this study, seventeen strength training athletes were recruited and individually interviewed regarding self-administration of banned substances. Ten subjects admitted having taken AAS or AAS derivatives for the past 5 to 15 years (Doped) and the dosage and type of banned substances were recorded. The remaining seven subjects testified to having never used any banned substances (Clean). For all subjects, maximal muscle strength and body composition were tested, and biopsies from the vastus lateralis muscle were obtained. Using histochemistry and immunohistochemistry (IHC), muscle biopsies were evaluated for morphology including fiber type composition, fiber size, capillary variables and myonuclei. Compared with the Clean athletes, the Doped athletes had significantly higher lean leg mass, capillary per fibre and myonuclei per fiber. In contrast, the Doped athletes had significantly lower absolute value in maximal squat force and relative values in maximal squat force (relative to lean body mass, to lean leg mass and to muscle fiber area). Using multivariate statistics, an orthogonal projection of latent structure discriminant analysis (OPLS-DA) model was established, in which the maximal squat force relative to muscle mass and the maximal squat force relative to fiber area, together with capillary density and nuclei density were the most important variables for separating Doped from the Clean athletes (regression  =  0.93 and prediction  =  0.92, p<0.0001). In Doped athletes, AAS dose-dependent increases were observed in lean body mass, muscle fiber area, capillary density and myonuclei density. In conclusion, long term AAS supplementation led to increases in lean leg mass, muscle fiber size and a parallel improvement in muscle strength, and all were dose-dependent. Administration of AAS may induce sustained

  16. The Human Skeletal Muscle Proteome Project

    DEFF Research Database (Denmark)

    Gonzalez-Freire, Marta; Semba, Richard D.; Ubaida-Mohien, Ceereena

    2017-01-01

    Skeletal muscle is a large organ that accounts for up to half the total mass of the human body. A progressive decline in muscle mass and strength occurs with ageing and in some individuals configures the syndrome of ‘sarcopenia’, a condition that impairs mobility, challenges autonomy, and is a ri...

  17. Norepinephrine spillover from skeletal muscle during exercise in humans

    DEFF Research Database (Denmark)

    Savard, G K; Richter, Erik; Strange, S

    1989-01-01

    The purpose of this study was to determine the effect of increasing muscle mass involvement in dynamic exercise on both sympathetic nervous activation and local hemodynamic variables of individual active and inactive skeletal muscle groups. Six male subjects performed 15-min bouts of one...... legs, with a steeper rise occurring approximately 70% VO2max. These increases were not associated with any significant changes in leg blood flow or leg vascular conductance at the exercise intensities examined. These results suggest that, as the total active muscle mass increases, the rise...... in both legs. Arterial and venous plasma concentrations of norepinephrine (NE) and epinephrine were analyzed, and the calculated NE spillover was used as an index of sympathetic nervous activity to the limb. NE spillover increased gradually both in the resting, and to a larger extent in the exercising...

  18. Muscle ion transporters and antioxidative proteins have different adaptive potential in arm than in leg skeletal muscle with exercise training

    DEFF Research Database (Denmark)

    Mohr, Magni; Nielsen, Tobias Schmidt; Weihe, Pál

    2017-01-01

    for 15 weeks, and pre- and postintervention biopsies were obtained from deltoideus and vastus lateralis muscle. Before training, monocarboxylate transporter 4 (MCT4), Na(+)/K(+) pump α2, and superoxide dismutase 2 (SOD2) expressions were lower (P ... occurred exclusively in vastus lateralis muscle. The increased (P MCT4 and SOD2 in deltoid muscle after HIS and vastus lateralis muscle after SOC were similar. In conclusion, arm musculature displays lower basal ROS, La(-), K(+) handling capability but higher Na(+)-dependent H...

  19. Effect of a patella support brace on myoelectric activity of knee joint muscles during single leg landing

    Directory of Open Access Journals (Sweden)

    Fatemeh Salariesker

    2013-06-01

    Full Text Available Introduction: Patellfemoral pain syndrome is one of the most common knee joint problems that affect athletes and non-athletes. Knee brace is often used as a treatment method for patellar realignment. The aim of the present study was to determine the effects of a patella support brace on myoelectric activity of selected knee muscles during single leg landing in healthy females. Materials and Methods: 19 healthy female students (Mean age: 23.6±1.98 years, height: 163.5±5.88 cm, weight: 62.3±3.6 kg participated in this study. Myoelectric activity of biceps femoris, semitendinosus, vastus medialis and vastus lateralis were collected during single leg landing in with and without using the patella support brace conditions.Results: Use of the patella support brace had no significant effect on myoelectric activity for the semitendinosus (p=0.668, vastus medialis (VM (p=0.915 and vastus lateralis (VL (P=0.134, while myoelectric activity for biceps femoris (p=0.005 and ratio of VM/VL myoelectric activity significantly increased (p=0.045. Conclusion: Our results revealed that biceps femoris activity and vastus medialis/vastus lateralis ratio increased after using patella support brace during single leg landing. Further studies on kinematic and kinetic variables are needed to describe these changes in muscular activity when using the patella support brace.

  20. The validity of anthropometric leg muscle volume estimation across a wide spectrum: from able-bodied adults to individuals with a spinal cord injury.

    Science.gov (United States)

    Layec, Gwenael; Venturelli, Massimo; Jeong, Eun-Kee; Richardson, Russell S

    2014-05-01

    The assessment of muscle volume, and changes over time, have significant clinical and research-related implications. Methods to assess muscle volume vary from simple and inexpensive to complex and expensive. Therefore this study sought to examine the validity of muscle volume estimated simply by anthropometry compared with the more complex proton magnetic resonance imaging ((1)H-MRI) across a wide spectrum of individuals including those with a spinal cord injury (SCI), a group recognized to exhibit significant muscle atrophy. Accordingly, muscle volume of the thigh and lower leg of eight subjects with a SCI and eight able-bodied subjects (controls) was determined by anthropometry and (1)H-MRI. With either method, muscle volumes were significantly lower in the SCI compared with the controls (P muscle volume were strongly correlated to the values assessed by (1)H-MRI in both the thigh (r(2) = 0.89; P muscle volume compared with (1)H-MRI in both the thigh (mean bias = 2407cm(3)) and the lower (mean bias = 170 cm(3)) leg. Thus with an appropriate correction for this systemic overestimation, muscle volume estimated from anthropometric measurements is a valid approach and provides acceptable accuracy across a spectrum of adults with normal muscle mass to a SCI and severe muscle atrophy. In practical terms this study provides the formulas that add validity to the already simple and inexpensive anthropometric approach to assess muscle volume in clinical and research settings.

  1. Straight-leg rasing in 'short hamstrings'. An experimental study of muscle elasticy and defense reactions.

    NARCIS (Netherlands)

    Göeken, Ludwig Nanno Hiltjo

    1988-01-01

    The central guestion asked in this thesis is whether an Experimental Straight-Leg Raising test (E.S.L.R.) can contribute to the solution of a diagnostical problem frequently encountered in rehabilitation medicine. It concerns the determination of the cause of the movement restriction in patients who

  2. Satellite cells in human skeletal muscle plasticity

    Directory of Open Access Journals (Sweden)

    Tim eSnijders

    2015-10-01

    Full Text Available Skeletal muscle satellite cells are considered to play a crucial role in muscle fiber maintenance, repair and remodelling. Our knowledge of the role of satellite cells in muscle fiber adaptation has traditionally relied on in vitro cell and in vivo animal models. Over the past decade, a genuine effort has been made to translate these results to humans under physiological conditions. Findings from in vivo human studies suggest that satellite cells play a key role in skeletal muscle fiber repair/remodelling in response to exercise. Mounting evidence indicates that aging has a profound impact on the regulation of satellite cells in human skeletal muscle. Yet, the precise role of satellite cells in the development of muscle fiber atrophy with age remains unresolved. This review seeks to integrate recent results from in vivo human studies on satellite cell function in muscle fiber repair/remodelling in the wider context of satellite cell biology whose literature is largely based on animal and cell models.

  3. Muscle metaboreflex and autonomic regulation of heart rate in humans

    DEFF Research Database (Denmark)

    Fisher, James P; Adlan, Ahmed M; Shantsila, Alena

    2013-01-01

    ) conditions, but attenuated with β-adrenergic blockade (0.2 ± 1 beats min(-1); P > 0.05 vs. rest). Thus muscle metaboreflex activation-mediated increases in HR are principally attributable to increased cardiac sympathetic activity, and only following exercise with a large muscle mass (PEI following leg......We elucidated the autonomic mechanisms whereby heart rate (HR) is regulated by the muscle metaboreflex. Eight male participants (22 ± 3 years) performed three exercise protocols: (1) enhanced metaboreflex activation with partial flow restriction (bi-lateral thigh cuff inflation) during leg cycling...... exercise, (2) isolated muscle metaboreflex activation (post-exercise ischaemia; PEI) following leg cycling exercise, (3) isometric handgrip followed by PEI. Trials were undertaken under control (no drug), β1-adrenergic blockade (metoprolol) and parasympathetic blockade (glycopyrrolate) conditions. HR...

  4. Phosphorylation of human skeletal muscle myosin

    International Nuclear Information System (INIS)

    Houston, M.E.; Lingley, M.D.; Stuart, D.S.; Hoffman-Goetz, L.

    1986-01-01

    Phosphorylation of the P-light chains (phosphorylatable light chains) in human skeletal muscle myosin was studied in vitro and in vivo under resting an d contracted conditions. biopsy samples from rested vastus lateralis muscle of male and female subjects were incubated in oxygenated physiological solution at 30 0 C. Samples frozen following a quiescent period showed the presence of only unphosphorylated P-light chains designated LC2f (light chain two of fast myosin) CL2s and LC2s'(light chains two of slow myosin). Treatment with caffeine (10 mM) or direct electrical stimulation resulted in the appearance of three additional bands which were identified as the phosphorylated forms of the P-light chains i.e. LC2f-P, LC2s-P and LC2s'-P. The presence of phosphate was confirmed by prior incubation with ( 30 P) orthophosphate. Muscle samples rapidly frozen from resting vastus lateralis muscle revealed the presence of unphosphorylated and phosphorylated P-light chains in approximately equal ratios. Muscle samples rapidly frozen following a maximal 10 second isometric contraction showed virtually only phosphorylated fast and slow P-light chains. These results reveal that the P-light chains in human fast and slow myosin may be rapidly phosphorylated, but the basal level of phosphorylation in rested human muscle considerably exceeds that observed in animal muscles studied in vitro or in situ

  5. Monitoring of color and pH in muscles of pork leg (m. adductor and m. semimembranosus

    Directory of Open Access Journals (Sweden)

    Martina Bednářová

    2014-02-01

    Full Text Available In order to identify PSE pork meat, pH and color testing was performed directly in a cutting plant (72 hours post mortem in this research. Specifically pork leg muscles musculi adductor (AD and semimembranosus (SM from five selected suppliers (A, B, C, D, E were examined. Twenty samples of meat for each muscle were examined from each supplier. The measured pH values ranged from 5.43 to 5.63, and the L* values from 46.13 to 57.18. No statistically significant differences in pH values and color were detected among the various suppliers with the exception of the a* and b* parameters for two suppliers, namely A and B (p<0.01. On the contrary, a statistically significant difference (p<0.5 was recorded between individual muscles (AD/SM across all the suppliers (A, B, C, D, E with the exception of a* parameter from suppliers B, C, D, E, and pH values for the E supplier. Our results revealed that individual muscles differ in values of pH and color. In comparison with literature, pH and lightness L* values in musculus adductor point to PSE (pale, soft and exudative meat, while the values of musculus semimebranosus to RFN (red, firm and non-exudative. Use of PSE meat in production of meat products can cause several problems. In particular, it causes light color, low water-holding capacity, poor fat emulsifying ability, lower yield, granular or crumbly texture and poor consistency of the finished product. Therefore classification of the meat directly cutting plant may be possible solution for this problem. The finished product pruduces from muscles of musculi semimembranosus can obtain better quality than the finished product from musculi adductor.

  6. Esterase profile of human masseter muscle

    DEFF Research Database (Denmark)

    Kirkeby, S; Moe, D; Vilmann, H

    1988-01-01

    The esterase profile of fresh human masseter muscle was investigated by use of histochemistry and electrophoresis. The histochemical methods included reactions for alpha-naphthyl esterase, myofibrillar ATPase, reverse myofibrillar ATPase and succinic dehydrogenase. In frozen sections of the muscle...... the coloured reaction product for esterases was present both as a diffuse sarcoplasmic coloration and as distinct granules. The intensity of diffuse reaction was used to classify the muscle fibres as strongly, moderately and weakly reacting. The fibres with strong esterase activity belonged to Type I and ii......C. iM and Type II A fibres showed a moderate esterase reaction and Type II B fibres had a low activity. The electrophoretic gels stained for esterase activity showed that the human masseter muscle possesses a slow migrating double band with high enzyme activity and a cascade of faster migrating...

  7. Pneumatic muscle actuator for resistive exercise in microgravity: test with a leg model.

    Science.gov (United States)

    Serres, Jennifer L; Phillips, Chandler A; Reynolds, David B; Mohler, Stanley R; Rogers, Dana B; Repperger, Daniel W; Gerschutz, Maria J

    2010-02-01

    A proof-of-concept demonstration is described in which a DC servomotor (simulating the quadriceps of a human operator) rotated a pulley 90 degrees (simulating knee extension). A pneumatic muscle actuator (PMA) generated an opposing force (antagonist) to the rotating pulley. One application of such a device is for use in microgravity environments because the PMA is compact, simple, and of relatively small mass (283 g). In addition, the operator can set a computer-controlled force-level range in response to individual user changes in exercise conditioning over time. A PMA was used in this study and interacted with a DC servomotor. For each trial, the PMA contracted in response to internal pressure. An input voltage profile activated the DC servomotor, resulting in the following three phases: an isokinetic counterclockwise pulley rotation of 90 degrees over 5 s (Phase I), the position was held for 5 s (Phase II), and an isokinetic clockwise rotation of 90 degrees over 5 s (Phase III). Root mean square error (RMSE) values were used to evaluate the pulley rotation. For Phase I, when the PMA pressures (in kPa) were 300, 450, and 575, the percent RMSE, respectively, were 5.24, 6.23, and 4.59. For Phase II, the percent RMSE were 2.81, 2.57, and 5.63, respectively. For Phase III, the percent RMSE were 5.69, 2.63, and 3.30, respectively. This study presents a demonstration of a PMA device that can enhance exercise by providing a wide range of resistive loads.

  8. Activity of upper limb muscles during human walking.

    Science.gov (United States)

    Kuhtz-Buschbeck, Johann P; Jing, Bo

    2012-04-01

    The EMG activity of upper limb muscles during human gait has rarely been studied previously. It was examined in 20 normal volunteers in four conditions: walking on a treadmill (1) with unrestrained natural arm swing (Normal), (2) while volitionally holding the arms still (Held), (3) with the arms immobilized (Bound), and (4) with the arms swinging in phase with the ipsilateral legs, i.e. opposite-to-normal phasing (Anti-Normal). Normal arm swing involved weak rhythmical lengthening and shortening contractions of arm and shoulder muscles. Phasic muscle activity was needed to keep the unrestricted arms still during walking (Held), indicating a passive component of arm swing. An active component, possibly programmed centrally, existed as well, because some EMG signals persisted when the arms were immobilized during walking (Bound). Anti-Normal gait involved stronger EMG activity than Normal walking and was uneconomical. The present results indicate that normal arm swing has both passive and active components. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Expression of extracellular matrix components and related growth factors in human tendon and muscle after acute exercise

    DEFF Research Database (Denmark)

    Heinemeier, K M; Bjerrum, S S; Schjerling, P

    2013-01-01

    Acute kicking exercise induces collagen synthesis in both tendon and muscle in humans, but it is not known if this relates to increased collagen transcription and if other matrix genes are regulated. Young men performed 1 h of one-leg kicking at 67% of max workload. Biopsies were taken from...... the patellar tendon and vastus lateralis muscle of each leg at 2 (n = 10), 6 (n = 11), or 26 h (n = 10) after exercise. Levels of messenger ribonucleic acid mRNA for collagens, noncollagenous matrix proteins, and growth factors were measured with real-time reverse transcription polymerase chain reaction...

  10. Contribution of Leg-Muscle Forces to Paddle Force and Kayak Speed During Maximal-Effort Flat-Water Paddling.

    Science.gov (United States)

    Nilsson, Johnny E; Rosdahl, Hans G

    2016-01-01

    The purpose was to investigate the contribution of leg-muscle-generated forces to paddle force and kayak speed during maximal-effort flat-water paddling. Five elite male kayakers at national and international level participated. The participants warmed up at progressively increasing speeds and then performed a maximal-effort, nonrestricted paddling sequence. This was followed after 5 min rest by a maximal-effort paddling sequence with the leg action restricted--the knee joints "locked." Left- and right-side foot-bar and paddle forces were recorded with specially designed force devices. In addition, knee angular displacement of the right and left knees was recorded with electrogoniometric technique, and the kayak speed was calculated from GPS signals sampled at 5 Hz. The results showed that reduction in both push and pull foot-bar forces resulted in a reduction of 21% and 16% in mean paddle-stroke force and mean kayak speed, respectively. Thus, the contribution of foot-bar force from lower-limb action significantly contributes to kayakers' paddling performance.

  11. Esmolol acutely alters oxygen supply-demand balance in exercising muscles of healthy humans.

    Science.gov (United States)

    Proctor, David N; Luck, J Carter; Maman, Stephan R; Leuenberger, Urs A; Muller, Matthew D

    2018-04-01

    Beta-adrenoreceptor antagonists (β blockers) reduce systemic O 2 delivery and blood pressure (BP) during exercise, but the subsequent effects on O 2 extraction within the active limb muscles are unknown. In this study, we examined the effects of the fast-acting, β 1 selective blocker esmolol on systemic hemodynamics and leg muscle O 2 saturation (near infrared spectroscopy, NIRS) during submaximal leg ergometry. Our main hypothesis was that esmolol would augment exercise-induced reductions in leg muscle O 2 saturation. Eight healthy adults (6 men, 2 women; 23-67 year) performed light and moderate intensity bouts of recumbent leg cycling before (PRE), during (β 1 -blocked), and 45 min following (POST) intravenous infusion of esmolol. Oxygen uptake, heart rate (HR), BP, and O 2 saturation (SmO 2 ) of the vastus lateralis (VL) and medial gastrocnemius (MG) muscles were measured continuously. Esmolol attenuated the increases in HR and systolic BP during light (-12 ± 9 bpm and -26 ± 12 mmHg vs. PRE) and moderate intensity (-20 ± 10 bpm and -40 ± 18 mmHg vs. PRE) cycling (all P Exercise-induced reductions in SmO 2 occurred to a greater extent during the β 1 -blockade trial in both the VL (P = 0.001 vs. PRE) and MG muscles (P = 0.022 vs. PRE). HR, SBP and SmO 2 were restored during POST (all P exercising muscles of healthy humans. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. The Impact of Endurance Training on Human Skeletal Muscle Memory, Global Isoform Expression and Novel Transcripts.

    Directory of Open Access Journals (Sweden)

    Maléne E Lindholm

    2016-09-01

    Full Text Available Regularly performed endurance training has many beneficial effects on health and skeletal muscle function, and can be used to prevent and treat common diseases e.g. cardiovascular disease, type II diabetes and obesity. The molecular adaptation mechanisms regulating these effects are incompletely understood. To date, global transcriptome changes in skeletal muscles have been studied at the gene level only. Therefore, global isoform expression changes following exercise training in humans are unknown. Also, the effects of repeated interventions on transcriptional memory or training response have not been studied before. In this study, 23 individuals trained one leg for three months. Nine months later, 12 of the same subjects trained both legs in a second training period. Skeletal muscle biopsies were obtained from both legs before and after both training periods. RNA sequencing analysis of all 119 skeletal muscle biopsies showed that training altered the expression of 3,404 gene isoforms, mainly associated with oxidative ATP production. Fifty-four genes had isoforms that changed in opposite directions. Training altered expression of 34 novel transcripts, all with protein-coding potential. After nine months of detraining, no training-induced transcriptome differences were detected between the previously trained and untrained legs. Although there were several differences in the physiological and transcriptional responses to repeated training, no coherent evidence of an endurance training induced transcriptional skeletal muscle memory was found. This human lifestyle intervention induced differential expression of thousands of isoforms and several transcripts from unannotated regions of the genome. It is likely that the observed isoform expression changes reflect adaptational mechanisms and processes that provide the functional and health benefits of regular physical activity.

  13. Trunk and hip muscle recruitment patterns during the prone leg extension following a lateral ankle sprain: A prospective case study pre and post injury

    Directory of Open Access Journals (Sweden)

    Lehman Gregory J

    2006-02-01

    Full Text Available Abstract Background and case presentation The prone leg extension (PLE is commonly used to identify dysfunction of muscle recruitment patterns. The prone leg extension is theorized to identify proximal muscle disturbances which are a result of distal injury or dysfunction (i.e. an ankle sprain. This case study compares the trunk and hip muscle (bilateral lower erector spine, ipsilateral hamstring and ipsilateral gluteus maximus timing during a PLE of a 27 year old female runner during a healthy state (pre ankle sprain and 2 and 8 weeks post ankle sprain. Results and discussion The gluteus maximus muscle onsets at 8 weeks post injury appeared to occur earlier compared with 2 weeks post injury. The Right Erector Spinae at 8 weeks post injury was also active earlier compared with the participant's non-injured state. A large degree of variability can be noted within trials on the same day for all muscle groups. Conclusion An acute ankle injury did not result in a delay in gluteus maximus muscle activation. The utility of the prone leg extension as a clinical and functional test is questionable due to the normal variability seen during the test and our current inability to determine what is normal and what is dysfunctional.

  14. Impact of a single session of intermittent pneumatic leg compressions on skeletal muscle and isolated artery gene expression in rats.

    Science.gov (United States)

    Roseguini, Bruno T; Arce-Esquivel, Arturo A; Newcomer, Sean C; Laughlin, M H

    2011-12-01

    Intermittent pneumatic leg compressions (IPC) have proven to be an effective noninvasive approach for treatment of patients with claudication, but the mechanisms underlying the clinical benefits remain elusive. In the present study, a rodent model of claudication produced by bilateral ligation of the femoral artery was used to investigate the acute impact of a single session of IPC (150 min) on hemodynamics, skeletal muscle (tibialis anterior), and isolated collateral artery (perforating artery) expression of a subset of genes associated with inflammation and vascular remodeling. In addition, the effect of compression frequency (15 vs. 3 compressions/min) on the expression of these factors was studied. In ligated animals, IPC evoked an increase of monocyte chemoattractant protein-1 (MCP-1) and cytokine-induced neutrophil chemoattractant 1 (CXCL1) mRNA (P < 0.01) and immunostaining (P < 0.05), as well as a minor increase in VEGF immunostaining in the muscle endomysium 150 min postintervention. Further, collateral arteries from these animals showed an increased expression of MCP-1 (approximately twofold, P = 0.02). These effects were most evident in the group exposed to the high-frequency protocol (15 compressions/min). In contrast, IPC in sham-operated control animals evoked a modest initial upregulation of VEGF (P = 0.01), MCP-1 (P = 0.02), and CXCL1 (P = 0.03) mRNA in the muscle without concomitant changes in protein levels. No changes in gene expression were observed in arteries isolated from sham animals. In conclusion, IPC acutely up-regulates the expression of important factors involved in vascular remodeling in the compressed muscle and collateral arteries in a model of hindlimb ischemia. These effects appear to be dependent on the compression frequency, such that a high compression frequency (15 compressions/min) evokes more consistent and robust effects compared with the frequency commonly employed clinically to treat patients with claudication (3

  15. Improvement in upper leg muscle strength underlies beneficial effects of exercise therapy in knee osteoarthritis: secondary analysis from a randomised controlled trial

    NARCIS (Netherlands)

    Knoop, J.; Steultjens, M.P.M.; Roorda, L.D.; Lems, W.F.; van der Esch, M.; Thorstensson, C.A.; Twisk, J.W.R.; Bierma-Zeinstra, S.M.A.; van der Leeden, M.; Dekker, J.

    2015-01-01

    Objectives: Although exercise therapy is effective for reducing pain and activity limitations in patients with knee osteoarthritis (OA), the underlying mechanisms are unclear. This study aimed to evaluate if improvements in neuromuscular factors (i.e. upper leg muscle strength and knee

  16. Contribution of Leg Muscle Explosive Power and Eye-Hand Coordination to The Accuracy Smash of Athletes in Volleyball Club of Universitas Islam Riau

    Directory of Open Access Journals (Sweden)

    Mimi Yulianti

    2017-11-01

    Full Text Available The purpose of this study was to determine the contribution of leg muscle explosive power and eye-hand coordination. The type of research was correlational. The population in this study was all athletes who actively follow the training as many as 20 people and using total sampling technique. Thus the sample in this study amounted to 20 men athletes. The data were collected using the measurement test on the three variables: the leg muscle explosive power data was using vertical jump test, eyehand coordination was using ballwerfen und fangen test and smash accuracy was using smash accuracy test. The data were analyzed by product moment correlation and double correlation and then continued with contribution of the determinant formula. Based on data analysis found that there was contribution of leg muscle explosive power equal to 35,52%, eye-hand coordination equal to 20,79%, and both equal to 40,70% regarding to the accuracy smash of volleyball atletes of Universitas Islam Riau. It was concluded that there was contribution of leg muscle explosive power and eye-hand coordination to the smash accuracy of volleyball athlete of Universitas Islam Riau.

  17. Leg for life? The use of sartorius muscle flap for the treatment of an infected vascular reconstructions after VA-ECMO use. A case report

    Directory of Open Access Journals (Sweden)

    George V. Patrut

    2015-01-01

    Conclusion: Although ischemic complications associated with VA-ECMO are accepted by intensivists under the slogan “leg for life”, for the repair of the femoral artery in the presence of groin infection the sartorius muscle remains an efficient solution for limb salvage.

  18. Bilateral idiopathic calf muscle hypertrophy: an exceptional cause of unsightly leg curvature.

    Science.gov (United States)

    Herlin, C; Chaput, B; Rivier, F; Doucet, J C; Bigorre, M; Captier, G

    2015-04-01

    The authors present the management of a young female patient who presented with longstanding bilateral calf muscle hypertrophy, with no known cause. Taking into account the patient's wishes and the fact that the hypertrophy was mainly located in the posteromedial compartment, we chose to carry out a subtotal bilateral resection of medial gastrocnemius muscles. This procedure was performed with an harmonic scalpel, permitting a excellent cosmetic result while avoiding complications or functional impairment. After a reviewing of the commonly used techniques, the authors discuss the chosen surgical approach taking into account its clinical particularity. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Rasmussen, Lotte Klejs; Kadi, Fawzi

    2016-01-01

    muscles of one leg. Muscle biopsies were collected from the vastus lateralis muscles before and after stimulation (2.5 h and 2, 7, and 30 d) and were assessed for satellite cells and regeneration by immunohistochemistry and real-time RT-PCR, and we also measured telomere length. After injury, and compared...... activation of satellite cells and muscle remodeling during large-scale regeneration of injured human skeletal muscle.-Mackey, A. L., Rasmussen, L. K., Kadi, F., Schjerling, P., Helmark, I. C., Ponsot, E., Aagaard, P., Durigan, J. L. Q., Kjaer, M. Activation of satellite cells and the regeneration of human......With this study we investigated the role of nonsteroidal anti-inflammatory drugs (NSAIDs) in human skeletal muscle regeneration. Young men ingested NSAID [1200 mg/d ibuprofen (IBU)] or placebo (PLA) daily for 2 wk before and 4 wk after an electrical stimulation-induced injury to the leg extensor...

  20. Two weeks of one-leg immobilization decreases skeletal muscle respiratory capacity equally in young and elderly men

    DEFF Research Database (Denmark)

    Gram, Martin; Vigelsø Hansen, Andreas; Yokota, Takashi

    2014-01-01

    Physical inactivity affects human skeletal muscle mitochondrial oxidative capacity but the influence of aging combined with physical inactivity is not known. This study investigates the effect of two weeks of immobilization followed by six weeks of supervised cycle training on muscle oxidative...... capacity in 17 young (23±1years) and 15 elderly (68±1years) healthy men. We applied high-resolution respirometry in permeabilized fibers from muscle biopsies at inclusion after immobilization and training. Furthermore, protein content of mitochondrial complexes I-V, mitochondrial heat shock protein 70 (mt......HSP70) and voltage dependent anion channel (VDAC) were measured in skeletal muscle by Western blotting. The elderly men had lower content of complexes I-V and mtHSP70 but similar respiratory capacity and content of VDAC compared to the young. In both groups the respiratory capacity and protein content...

  1. Muscle activity during leg strengthening exercise using free weights and elastic resistance

    DEFF Research Database (Denmark)

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H

    2013-01-01

    ) activity was recorded in nine muscles during a standardized forward lunge movement performed with dumbbells and elastic bands during (1) ballistic vs. controlled exertion, and (2) at low, medium and high loads (33%, 66% and 100% of 10 RM, respectively). The recorded EMG signals were normalized to MVC EMG...

  2. Association between leg strength and muscle cross-sectional area of the quadriceps femoris with the physical activity level in octogenarians.

    Science.gov (United States)

    Latorre-Román, Pedro Á; Arévalo-Arévalo, Juan Manuel; García-Pinillos, Felipe

    2016-06-03

    Aging is a complex physiological process whose main feature is the progressive loss of functionality, which may be delayed or attenuated by improving physical fitness.  To determine the association between leg strength and the muscle cross-sectional area of the quadriceps femoris in relation to physical activity level in the elderly.  Thirty-two functionally autonomous people over 80 years (men: 82.80±2.09 years; women: 83.77±4.09 years) participated in this study. The Barthel Index, the Yale Physical Activity Survey and the Chair Stand Test were the instruments used.  There were significant differences between sexes in muscle area (pmen. The muscle area and the Chair Stand Test correlated significantly with the walk index (r=0.445, pactivity index (r=0.430, pactivity index, muscle area and the Chair Stand Test, only the latter behaved as a predictor variable.  Muscle strength and muscle mass of quadriceps showed a significant association with the physical activity level in older people. Leg muscle strength was useful to reveal muscle mass and physical activity level in older people, which is relevant as a clinical practice indicator.

  3. Phosphorylation potential in the dominant leg is lower, and [ADPfree] is higher in calf muscles at rest in endurance athletes than in sprinters and in untrained subjects.

    Science.gov (United States)

    Zoladz, J A; Kulinowski, P; Zapart-Bukowska, J; Grandys, M; Majerczak, J; Korzeniewski, B; Jasiński, A

    2007-12-01

    It has been reported that various types of mammalian muscle fibers differ regarding the content of several metabolites at rest. However, to our knowledge no data have been reported in the literature, concerning the muscle energetic status at rest in high class athletes when considering the dominant and non-dominant leg separately. We have hypothesised that due to higher mechanical loads on the dominant leg in athletes, the metabolic profile in the dominant leg at rest in the calf muscles, characterized by [PCr], [ADP(free)], [AMP(free)] and DeltaG(ATP), will significantly differ among endurance athletes, sprinters and untrained individuals. In this study we determined the DeltaG(ATP) and adenine phosphates concentrations in the dominant and non-dominant legs in untrained subjects (n = 6), sprinters (n = 10) and endurance athletes (n = 7) at rest. The (mean +/- SD) age of the subjects was 23.4 +/- 4.3 years. Muscle metabolites were measured in the calf muscles at rest, by means of (31)P-MRS, using a 4.7 T superconducting magnet (Bruker). When taking into account mean values in the left and right leg, phosphocreatine concentration ([PCr]) and DeltaG(ATP) were significantly lower (p<0.05, Wilcoxon-Mann-Whitney test), and [ADP(free)] was significantly higher (p = 0.04) in endurance athletes than in untrained subjects. When considering the differences between the left and right leg, [PCr] in the dominant leg was significantly lower in endurance athletes than in sprinters (p = 0.01) and untrained subjects (p = 0.02) (25.91 +/- 2.87 mM; 30.02 +/- 3.12 mM and 30.71 +/- 2.88 mM, respectively). The [ADP(free)] was significantly higher (p = 0.02) in endurance athletes than in sprinters and untrained subjects (p = 0.02) (42.19 +/- 13.44 microM; 27.86 +/- 10.19 microM; 25.35 +/- 10.97 microM, respectively). The DeltaG(ATP) in the dominant leg was significantly lower (p = 0.02) in endurance athletes than in sprinters and untrained subjects (p = 0.01) (-60.53 +/- 2.03 kJ.M(-1

  4. Muscle blood flow at onset of dynamic exercise in humans.

    Science.gov (United States)

    Rådegran, G; Saltin, B

    1998-01-01

    To evaluate the temporal relationship between blood flow, blood pressure, and muscle contractions, we continuously measured femoral arterial inflow with ultrasound Doppler at onset of passive exercise and voluntary, one-legged, dynamic knee-extensor exercise in humans. Blood velocity and inflow increased (P dicrotic and diastolic blood pressure notches, respectively. Mechanical hindrance occurred (P dicrotic notch. The increase in blood flow (Q) was characterized by a one-component (approximately 15% of peak power output), two-component (approximately 40-70% of peak power output), or three-component exponential model (> or = 75% of peak power output), where Q(t) = Qpassive + delta Q1.[1 - e-(t - TD1/tau 1)]+ delta Q2.[1 - e-(t - TD2/tau 2)]+ delta Q3.[1 - e-(t - TD3/tau 3)]; Qpassive, the blood flow during passive leg movement, equals 1.17 +/- 0.11 l/min; TD is the onset latency; tau is the time constant; delta Q is the magnitude of blood flow rise; and subscripts 1-3 refer to the first, second, and third components of the exponential model, respectively. The time to reach 50% of the difference between passive and voluntary asymptotic blood flow was approximately 2.2-8.9 s. The blood flow leveled off after approximately 10-150 s, related to the power outputs. It is concluded that the elevation in blood flow with the first duty cycle(s) is due to muscle mechanical factors, but vasodilators initiate a more potent amplification within the second to fourth contraction.

  5. Muscle activity and spine load during anterior chain whole body linkage exercises: the body saw, hanging leg raise and walkout from a push-up.

    Science.gov (United States)

    McGill, Stuart; Andersen, Jordan; Cannon, Jordan

    2015-01-01

    This study examined anterior chain whole body linkage exercises, namely the body saw, hanging leg raise and walkout from a push-up. Investigation of these exercises focused on which particular muscles were challenged and the magnitude of the resulting spine load. Fourteen males performed the exercises while muscle activity, external force and 3D body segment motion were recorded. A sophisticated and anatomically detailed 3D model used muscle activity and body segment kinematics to estimate muscle force, and thus sensitivity to each individual's choice of motor control for each task. Gradations of muscle activity and spine load characteristics were observed across tasks. On average, the hanging straight leg raise created approximately 3000 N of spine compression while the body saw created less than 2500 N. The hanging straight leg raise created the highest challenge to the abdominal wall (>130% MVC in rectus abdominis, 88% MVC in external oblique). The body saw resulted in almost 140% MVC activation of the serratus anterior. All other exercises produced substantial abdominal challenge, although the body saw did so in the most spine conserving way. These findings, along with consideration of an individual's injury history, training goals and current fitness level, should assist in exercise choice and programme design.

  6. Age-related differences in the response of leg muscle cross-sectional area and water diffusivity measures to a period of supine rest.

    Science.gov (United States)

    Lorbergs, Amanda L; Noseworthy, Michael D; MacIntyre, Norma J

    2015-06-01

    The object was to assess whether cross-sectional area (CSA) and water diffusion properties of leg muscles in young and older women change with increased time spent in supine rest. Healthy young (n = 9, aged 20-30 years) and older (n = 9, aged 65-75 years) women underwent MRI scanning of the right leg at baseline, 30 and 60 min of supine rest. Muscle CSA was derived from proton density images. Water diffusion properties [apparent diffusion coefficient (ADC) and fractional anisotropy (FA)] of the tibialis anterior and posterior, soleus, and medial and lateral heads of the gastrocnemius were derived from diffusion tensor imaging (DTI). Repeated measures ANOVAs and Bonferroni post hoc tests determined the effects of time and group on each muscle outcome. In both groups, muscle CSA and FA did not significantly change over time, whereas ADC significantly decreased. A greater decline at 30 min for young women was only observed for ADC in the medial gastrocnemius. Regardless of age, ADC values decreased with fluid shift associated with time spent supine, whereas CSA and FA were not affected. For leg muscle assessment in young and older women, DTI scanning protocols should consider the amount of time spent in a recumbent position.

  7. Liver and Muscle Contribute Differently to the Plasma Acylcarnitine Pool During Fasting and Exercise in Humans

    DEFF Research Database (Denmark)

    Xu, G.; Hansen, J S; Zhao, Jian-xin

    2016-01-01

    BACKGROUND: Plasma acylcarnitine levels are elevated by physiological conditions such as fasting and exercise but also in states of insulin resistance and obesity. AIM: To elucidate the contribution of liver and skeletal muscle to plasma acylcarnitines in the fasting state and during exercise...... in humans. METHODS: In 2 independent studies, young healthy males were fasted overnight and performed an acute bout of exercise to investigate either acylcarnitines in skeletal muscle biopsies and arterial-to-venous plasma differences over the exercising and resting leg (n = 9) or the flux over the hepato......-splanchnic bed (n = 10). RESULTS: In the fasting state, a pronounced release of C2- and C3-carnitines from the hepato-splanchnic bed and an uptake of free carnitine by the legs were detected. Exercise further increased the release of C3-carnitine from the hepato-splanchnic bed and the uptake of free carnitine...

  8. Intermittent pneumatic leg compressions enhance muscle performance and blood flow in a model of peripheral arterial insufficiency.

    Science.gov (United States)

    Roseguini, Bruno T; Arce-Esquivel, Arturo A; Newcomer, Sean C; Yang, Hsiao T; Terjung, Ronald; Laughlin, M H

    2012-05-01

    Despite the escalating prevalence in the aging population, few therapeutic options exist to treat patients with peripheral arterial disease. Application of intermittent pneumatic leg compressions (IPC) is regarded as a promising noninvasive approach to treat this condition, but the clinical efficacy, as well the mechanistic basis of action of this therapy, remain poorly defined. We tested the hypothesis that 2 wk of daily application of IPC enhances exercise tolerance by improving blood flow and promoting angiogenesis in skeletal muscle in a model of peripheral arterial insufficiency. Male Sprague-Dawley rats were subjected to bilateral ligation of the femoral artery and randomly allocated to treatment or sham groups. Animals were anesthetized daily and exposed to 1-h sessions of bilateral IPC or sham treatment for 14-16 consecutive days. A third group of nonligated rats was also studied. Marked increases in treadmill exercise tolerance (∼33%, P < 0.05) and improved muscle performance in situ (∼10%, P < 0.05) were observed in IPC-treated animals. Compared with sham-treated controls, blood flow measured with isotope-labeled microspheres during in situ contractions tended to be higher in IPC-treated animals in muscles composed of predominantly fast-twitch white fibers, such as the plantaris (∼93%, P = 0.02). Capillary contacts per fiber and citrate synthase activity were not significantly altered by IPC treatment. Collectively, these data indicate that IPC improves exercise tolerance in a model of peripheral arterial insufficiency in part by enhancing blood flow to collateral-dependent tissues.

  9. Activation timing of postural muscles of lower legs and prediction of postural disturbance during bilateral arm flexion in older adults.

    Science.gov (United States)

    Yaguchi, Chie; Fujiwara, Katsuo; Kiyota, Naoe

    2017-12-22

    Activation timings of postural muscles of lower legs and prediction of postural disturbance were investigated in young and older adults during bilateral arm flexion in a self-timing task and an oddball task with different probabilities of target presentation. Arm flexion was started from a standing posture with hands suspended 10 cm below the horizontal level in front of the body, in which postural control focused on the ankles is important. Fourteen young and 14 older adults raised the arms in response to the target sound signal. Three task conditions were used: 15 and 45% probabilities of the target in the oddball task and self-timing. Analysis items were activation timing of postural muscles (erector spinae, biceps femoris, and gastrocnemius) with respect to the anterior deltoid (AD), and latency and amplitude of the P300 component of event-related brain potential. For young adults, all postural muscles were activated significantly earlier than AD under each condition, and time of preceding gastrocnemius activation was significantly longer in the order of the self-timing, 45 and 15% conditions. P300 latency was significantly shorter, and P300 amplitude was significantly smaller under the 45% condition than under the 15% condition. For older adults, although all postural muscles, including gastrocnemius, were activated significantly earlier than AD in the self-timing condition, only activation timing of gastrocnemius was not significantly earlier than that of AD in oddball tasks, regardless of target probability. No significant differences were found between 15 and 45% conditions in onset times of all postural muscles, and latency and amplitude of P300. These results suggest that during arm movement, young adults can achieve sufficient postural preparation in proportion to the probability of target presentation in the oddball task. Older adults can achieve postural control using ankle joints in the self-timing task. However, in the oddball task, older adults

  10. Effects of graded exercise-induced dehydration and rehydration on circulatory markers of oxidative stress across the resting and exercising human leg.

    Science.gov (United States)

    Laitano, Orlando; Kalsi, Kameljit Kaur; Pearson, James; Lotlikar, Makra; Reischak-Oliveira, Alvaro; González-Alonso, José

    2012-05-01

    Exercise in the heat enhances oxidative stress markers in the human circulation, but the contribution of active skeletal muscle and the influence of hydration status remain unknown. To address this question, we measured leg exchange of glutathione (GSH), glutathione disulfide (GSSG), superoxide dismutase activity (SOD) and isoprostanes in seven males at rest and during submaximal one-legged knee extensor exercise in the following four conditions: (1) control euhydration (0% reduction in body mass), (2) mild-dehydration (2%), (3) moderate-dehydration (3.5%), (4) rehydration (0%). In all resting and control exercise conditions, a net GSH uptake was observed across the leg. In contrast, a significant leg release of GSH into the circulation (-354 ± 221 μmol/min, P exercise with moderate-dehydration, which was still present following full rehydration (-206 ± 122 μmol/min, P exercise, mild and moderate-dehydration decreased both femoral venous erythrocyte SOD activity (195 ± 6 vs. 180 ± 5 U/L, P release GSH into the circulation under moderate dehydration and subsequent rehydration, possibly to enhance the antioxidant defense.

  11. Complex Anatomic Abnormalities of the Lower Leg Muscles and Tendons Associated With Phocomelia: A Case Report.

    Science.gov (United States)

    Hodo, Thomas; Hamrick, Mark; Melenevsky, Yulia

    Musculoskeletal anatomy is widely known to have components that stray from the norm in the form of variant muscle and tendon presence, absence, origin, insertion, and bifurcation. Although these variant muscles and tendons might be deemed incidental and insignificant findings by most, they can be important contributors to pathologic physiology or, more importantly, an option for effective treatment. In the present case report, we describe a patient with phocomelia and Müllerian abnormalities secondary to in utero thalidomide exposure. The patient had experienced recurrent bilateral foot pain accompanied by numbness, stiffness, swelling, and longstanding pes planus. These symptoms persisted despite conservative treatment with orthotics, steroids, and nonsteroidal anti-inflammatory drugs. Radiographic imaging showed dysmorphic and degenerative changes of the ankle and foot joints. Further investigation with magnetic resonance imaging revealed complex anatomic abnormalities, including the absence of the posterior tibialis and peroneus brevis, lateralization of the peroneus longus, and the presence of a variant anterior compartment muscle. The variant structure was likely a previously described anterior compartment variant, anterior fibulocalcaneus, and might have been a source of the recurrent pain. Also, the absence of the posterior tibialis might have caused the pes planus in the present patient, considering that posterior tibialis tendon dysfunction is the most common cause of acquired pes planus. Although thalidomide infrequently affects the lower extremities, its effects on growth and development were likely the cause of this rare array of anatomic abnormalities and resulting ankle and foot pathologic features. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  12. Does peroperative external pneumatic leg muscle compression prevent post-operative venous thrombosis in neurosurgery?

    Science.gov (United States)

    Bynke, O; Hillman, J; Lassvik, C

    1987-01-01

    Post-operative deep venous thrombosis (DVT) is a frequent and potentially life-threatening complication in neurosurgery. In this field of surgery, with its special demands for exact haemostasis, prophylaxis against deep venous thrombosis with anticoagulant drugs has been utilized only reluctantly. Postoperative pneumatic muscle compression (EPC) has been shown to be effective, although there are several practical considerations involved with this method which limit its clinical applicability. In the present study per-operative EPC was evaluated and was found to provide good protection against DVT in patients with increased risk from this complication. This method has the advantage of being effective, safe, inexpensive and readily practicable.

  13. Effect of Feedback Corrective Exercise on Knee Valgus and Electromyographic Activity of Lower Limb Muscles in Single Leg Squat

    Directory of Open Access Journals (Sweden)

    Negar Koorosh-fard

    2015-07-01

    Full Text Available Objective: The aim of this study was assessing the effect of feedback correcting exercise in front of mirror during running on frontal plane knee and pelvic kinematic and electromyography activity of some lower extremity muscles in single leg squat (SLS. Materials & Methods: This study was quasi experimental. 23 active female subjects participated in two experimental and control groups with mean age (21.86± 2.43 years .experimental group contains subjects with knee valgus and pelvic drop angle more than a mean plus one standard deviation of the population in functional SLS. Muscular activity (RMS of gluteus maximus, Gluteus medius, rectus femoris, vastus medialis, vastus lateralis, biceps femoris and semitendinosus, angle of knee valgus and pelvic drop were register in end of SLS Pre and post of 8 training sessions. Comparing Variable has done with independent t statistical test between 2 groups and pair sample t test within each groups with significant level of 0.05. Results: Statistical analysis Before training showed no significant differences in pelvic drop between two groups (P&ge0.05, but knee valgus angle was significantly more than control group (P&le0.05. In spit that most muscle activities (% MVC except biceps femoris (P&le0.05, were greater in experimental group, no significant difference (P&ge0.05 has seen in two groups. Comparing pre and post test has showed no significant difference in knee valgus of experimental group, however it decreased around 2 degrees and although %MVC decreased in all muscles, just rectuse femoris has shown significant difference (P&le0.05. No significant difference has seen in control group in all variables (P&ge0.05. Conclusion: Findings showed poor neuromuscular control in experimental group which improved to some extent after training because lower muscle activity and energy consumption in specific movement with similar kinematic indicate improvement of motor control or cause learning. It seems that

  14. Improvement in upper leg muscle strength underlies beneficial effects of exercise therapy in knee osteoarthritis: secondary analysis from a randomised controlled trial.

    Science.gov (United States)

    Knoop, J; Steultjens, M P M; Roorda, L D; Lems, W F; van der Esch, M; Thorstensson, C A; Twisk, J W R; Bierma-Zeinstra, S M A; van der Leeden, M; Dekker, J

    2015-06-01

    Although exercise therapy is effective for reducing pain and activity limitations in patients with knee osteoarthritis (OA), the underlying mechanisms are unclear. This study aimed to evaluate if improvements in neuromuscular factors (i.e. upper leg muscle strength and knee proprioception) underlie the beneficial effects of exercise therapy in patients with knee OA. Secondary analyses from a randomised controlled trial, with measurements at baseline, 6 weeks, 12 weeks and 38 weeks. Rehabilitation centre. One hundred and fifty-nine patients diagnosed with knee OA. Exercise therapy. Changes in pain [numeric rating scale (NRS)] and activity limitations [Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function subscale and get-up-and-go test] during the study period. Independent variables were changes in upper leg muscle strength and knee joint proprioception (i.e. motion sense) during the study period. Longitudinal regression analyses (generalised estimating equation) were performed to analyse associations between changes in upper leg muscle strength and knee proprioception with changes in pain and activity limitations. Improved muscle strength was significantly associated with reductions in NRS pain {B coefficient -2.5 [95% confidence interval (CI) -3.7 to -1.4], meaning that every change of 1 unit of strength was linked to a change of -2.5 units of pain}, WOMAC physical function (-8.8, 95% CI -13.4 to -4.2) and get-up-and-go test (-1.7, 95% CI -2.4 to -1.0). Improved proprioception was not significantly associated with better outcomes of exercise therapy (P>0.05). Upper leg muscle strengthening is one of the mechanisms underlying the beneficial effects of exercise therapy in patients with knee OA. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  15. Detection of Botulinum Toxin Muscle Effect in Humans Using Magnetic Resonance Imaging: A Qualitative Case Series.

    Science.gov (United States)

    O'Dell, Michael W; Villanueva, Mark; Creelman, Carly; Telhan, Gaurav; Nestor, Jaclyn; Hentel, Keith D; Ballon, Douglas; Dyke, Jonathan P

    2017-12-01

    Although important for dosing and dilution, there are few data describing botulinum toxin (BT) movement in human muscle. To better understand BT movement within human muscle. Proof-of-concept study with descriptive case series. Outpatient academic practice. Five subjects with stroke who were BT naive with a mean age of 60.4 ± 14 years and time poststroke of 4.6 ± 3.7 years. Three standardized injections were given to the lateral gastrocnemius muscle (LGM): 2 contained 25 units (U) of onabotulinumtoxinA (Botox) in 0.25 mL of saline solution and the third 0.25 mL of saline solution only. The tibialis anterior muscle (TAM) was not injected in any subject. A leg magnetic resonance image was obtained at baseline, 2 months, and 3 months later with a 3.0 Tesla Siemens scanner. Three muscles, the LGM, lateral soleus muscle (LSM), and TAM, were manually outlined on the T2 mapping sequence at each time point. A histogram of T2 relaxation times (T2-RT) for all voxels at baseline was used to calculate a mean and standard deviation (SD) T2-RT for each muscle. Botulinum toxin muscle effect (BTME) at 2 months and 3 months was defined as a subject- and muscle-specific T2-RT voxel threshold ≥3 SD above the baseline mean at or near BT injection sites. BTME volume for each leg magnetic resonance imaging slice at 3 time points and 3 muscles for all subjects. One subject missed the 3-month scan, leaving 18 potential observations of BTME. Little to no BTME effect was seen in the noninjected TAM. A BTME was detected in the LGM in 13 of 18 possible observations, and no effect was detected in 5 observations. Possible BTME effect was seen in the LSM in 3 subjects due to either diffusion through fascia or needle misplacement. Volume of BTME, as defined here, appeared to be substantially greater than the 0.25-mL injection volume. This descriptive case series is among the first attempts to quantify BTME within human muscle. Our findings are preliminary and are limited by a few

  16. T₂ mapping provides multiple approaches for the characterization of muscle involvement in neuromuscular diseases: a cross-sectional study of lower leg muscles in 5-15-year-old boys with Duchenne muscular dystrophy.

    Science.gov (United States)

    Arpan, Ishu; Forbes, Sean C; Lott, Donovan J; Senesac, Claudia R; Daniels, Michael J; Triplett, William T; Deol, Jasjit K; Sweeney, H Lee; Walter, Glenn A; Vandenborne, Krista

    2013-03-01

    Skeletal muscles of children with Duchenne muscular dystrophy (DMD) show enhanced susceptibility to damage and progressive lipid infiltration, which contribute to an increase in the MR proton transverse relaxation time (T₂). Therefore, the examination of T₂ changes in individual muscles may be useful for the monitoring of disease progression in DMD. In this study, we used the mean T₂, percentage of elevated pixels and T₂ heterogeneity to assess changes in the composition of dystrophic muscles. In addition, we used fat saturation to distinguish T₂ changes caused by edema and inflammation from fat infiltration in muscles. Thirty subjects with DMD and 15 age-matched controls underwent T₂ -weighted imaging of their lower leg using a 3-T MR system. T₂ maps were developed and four lower leg muscles were manually traced (soleus, medial gastrocnemius, peroneal and tibialis anterior). The mean T₂ of the traced regions of interest, width of the T₂ histograms and percentage of elevated pixels were calculated. We found that, even in young children with DMD, lower leg muscles showed elevated mean T₂, were more heterogeneous and had a greater percentage of elevated pixels than in controls. T₂ measures decreased with fat saturation, but were still higher (P muscles than in controls. Further, T₂ measures showed positive correlations with timed functional tests (r = 0.23-0.79). The elevated T₂ measures with and without fat saturation at all ages of DMD examined (5-15 years) compared with unaffected controls indicate that the dystrophic muscles have increased regions of damage, edema and fat infiltration. This study shows that T₂ mapping provides multiple approaches that can be used effectively to characterize muscle tissue in children with DMD, even in the early stages of the disease. Therefore, T₂ mapping may prove to be clinically useful in the monitoring of muscle changes caused by the disease process or by therapeutic interventions in DMD

  17. Chronic impairment of leg muscle blood flow following cardiac catheterization in childhood

    International Nuclear Information System (INIS)

    Skovranek, J.; Samanek, M.

    1979-01-01

    In 99 patients with congenital heart defects or chronic respiratory disease without clinical symptoms of disturbances in peripheral circulation, resting and maximal blood flow in the anterior tibial muscle of both extremities were investigated 2.7 yrs (average) after cardiac catheterization. The method used involved 133 Xe clearance. Resting blood flow was normal and no difference could be demonstrated between the extremity originally used for catheterization and the contralateral control extremity. No disturbance in maximal blood flow could be proved in the extremity used for catheterization by the venous route only. Maximal blood flow was significantly lower in that extremity where the femoral artery had been catheterized or cannulated for pressure measurement and blood sampling. The disturbance in maximal flow was shown regardless of whether the arterial catheterization involved the Seldinger percutaneous technique, arteriotomy, or mere cannulation of the femoral artery. The values in the involved extremity did not differ significantly from the values in a healthy population

  18. Using leg muscles as shock absorbers: theoretical predictions and experimental results of drop landing performance.

    Science.gov (United States)

    Minetti, A E; Ardigò, L P; Susta, D; Cotelli, F

    1998-12-01

    The use of muscles as power dissipators is investigated in this study, both from the modellistic and the experimental points of view. Theoretical predictions of the drop landing manoeuvre for a range of initial conditions have been obtained by accounting for the mechanical characteristics of knee extensor muscles, the limb geometry and assuming maximum neural activation. Resulting dynamics have been represented in the phase plane (vertical displacement versus speed) to better classify the damping performance. Predictions of safe landing in sedentary subjects were associated to dropping from a maximum (feet) height of 1.6-2.0 m (about 11 m on the moon). Athletes can extend up to 2.6-3.0 m, while for obese males (m = 100 kg, standard stature) the limit should reduce to 0.9-1.3 m. These results have been calculated by including in the model the estimated stiffness of the 'global elastic elements' acting below the squat position. Experimental landings from a height of 0.4, 0.7, 1.1 m (sedentary males (SM) and male (AM) and female (AF) athletes from the alpine ski national team) showed dynamics similar to the model predictions. While the peak power (for a drop height of about 0.7 m) was similar in SM and AF (AM shows a +40% increase, about 33 W/kg), AF stopped the downward movement after a time interval (0.219 +/- 0.030 s) from touch-down 20% significantly shorter than SM. Landing strategy and the effect of anatomical constraints are discussed in the paper.

  19. Validity and reliability of an instrumented leg-extension machine for measuring isometric muscle strength of the knee extensors.

    Science.gov (United States)

    Ruschel, Caroline; Haupenthal, Alessandro; Jacomel, Gabriel Fernandes; Fontana, Heiliane de Brito; Santos, Daniela Pacheco dos; Scoz, Robson Dias; Roesler, Helio

    2015-05-20

    Isometric muscle strength of knee extensors has been assessed for estimating performance, evaluating progress during physical training, and investigating the relationship between isometric and dynamic/functional performance. To assess the validity and reliability of an adapted leg-extension machine for measuring isometric knee extensor force. Validity (concurrent approach) and reliability (test and test-retest approach) study. University laboratory. 70 healthy men and women aged between 20 and 30 y (39 in the validity study and 31 in the reliability study). Intraclass correlation coefficient (ICC) values calculated for the maximum voluntary isometric torque of knee extensors at 30°, 60°, and 90°, measured with the prototype and with an isokinetic dynamometer (ICC2,1, validity study) and measured with the prototype in test and retest sessions, scheduled from 48 h to 72 h apart (ICC1,1, reliability study). In the validity analysis, the prototype showed good agreement for measurements at 30° (ICC2,1 = .75, SEM = 18.2 Nm) and excellent agreement for measurements at 60° (ICC2,1 = .93, SEM = 9.6 Nm) and at 90° (ICC2,1 = .94, SEM = 8.9 Nm). Regarding the reliability analysis, between-days' ICC1,1 were good to excellent, ranging from .88 to .93. Standard error of measurement and minimal detectable difference based on test-retest ranged from 11.7 Nm to 18.1 Nm and 32.5 Nm to 50.1 Nm, respectively, for the 3 analyzed knee angles. The analysis of validity and repeatability of the prototype for measuring isometric muscle strength has shown to be good or excellent, depending on the knee joint angle analyzed. The new instrument, which presents a relative low cost and easiness of transportation when compared with an isokinetic dynamometer, is valid and provides consistent data concerning isometric strength of knee extensors and, for this reason, can be used for practical, clinical, and research purposes.

  20. Ketone body metabolism in normal and diabetic human skeletal muscle

    International Nuclear Information System (INIS)

    Nosadini, R.; Avogaro, A.; Sacca, L.

    1985-01-01

    Although the liver is considered the major source of ketone bodies (KB) in humans, these compounds may also be formed by nonhepatic tissues. To study this aspect further, 3-[ 14 C]hydroxybutyrate (BOH) or [3- 14 C]acetoacetate (AcAc) were constantly infused after a priming dose and contemporaneous arterial and venous samples were taken at splanchnic, heart, kidney, and leg sites in eight normal subjects (N) undergoing diagnostic catheterization and at the forearm site in five normal and six ketotic diabetic (D) subjects. After 70 min of infusion, tracer and tracee levels of AcAc and BOH reached a steady state in the artery and vein in both normal and diabetic subjects. The venous-arterial (V-A) difference at the forearm step for cold KB was negligible both in normal and diabetic subjects, whereas for labeled KB it was approximately 10-fold higher in diabetic subjects (V-A AcAc, -31 +/- 7 and -270 +/- 34 dpm/ml in N and D, respectively; V-A BOH, -38 +/- 6 and -344 +/- 126 dpm/ml in N and D, respectively). The authors assumed that the V-A difference in tracer concentration was consistent with dilution of the tracer by newly synthesized tracee inside the muscle and calculated that the forearm muscle produces KB at a rate of 16.2 +/- 3.3 mumol/min in D and 0.9 +/- 0.9 mumol/min in N. These findings can be accounted for by the hypothesis that the disappearance flux of KB from circulation was replaced by an equivalent flux of KB entering the vein at the muscle step in D but not in N. Moreover, in N KB were not only produced but also utilized by the splanchnic area (39 +/- 9 mumol/min)

  1. Subunit Stoichiometry of Human Muscle Chloride Channels

    OpenAIRE

    Fahlke, Christoph; Knittle, Timothy; Gurnett, Christina A.; Campbell, Kevin P.; George, Alfred L.

    1997-01-01

    Voltage-gated Cl? channels belonging to the ClC family appear to function as homomultimers, but the number of subunits needed to form a functional channel is controversial. To determine subunit stoichiometry, we constructed dimeric human skeletal muscle Cl? channels in which one subunit was tagged by a mutation (D136G) that causes profound changes in voltage-dependent gating. Sucrose-density gradient centrifugation experiments indicate that both monomeric and dimeric hClC-1 channels in their ...

  2. Theory Analysis and Experiment Research of the Leg Mechanism for the Human-Carrying Walking Chair Robot

    Directory of Open Access Journals (Sweden)

    Lingfeng Sang

    2014-01-01

    Full Text Available For the high carrying capacity of the human-carrying walking chair robot, in this paper, 2-UPS+UP parallel mechanism is selected as the leg mechanism; then kinematics, workspace, control, and experiment of the leg mechanism are researched in detail. Firstly, design of the whole mechanism is described and degrees of freedom of the leg mechanism are analyzed. Second, the forward position, inverse position, and velocity of leg mechanism are studied. Third, based on the kinematics analysis and the structural constraints, the reachable workspace of 2-UPS+UP parallel mechanism is solved, and then the optimal motion workspace is searched in the reachable workspace by choosing the condition number as the evaluation index. Fourth, according to the theory analysis of the parallel leg mechanism, its control system is designed and the compound position control strategy is studied. Finally, in optimal motion workspace, the compound position control strategy is verified by using circular track with the radius 100 mm; the experiment results show that the leg mechanism moves smoothly and does not tremble obviously. Theory analysis and experiment research of the single leg mechanism provide a theoretical foundation for the control of the quadruped human-carrying walking chair robot.

  3. Frozen allogeneic human epidermal cultured sheets for the cure of complicated leg ulcers.

    Science.gov (United States)

    Bolívar-Flores, Y J; Kuri-Harcuch, W

    1999-08-01

    Skin ulcers due to venous stasis or diabetes are common among the elderly and are difficult to treat. Repeated applications of cell-based products have been reported to result in cure or improvement of leg ulcers of small size in a fraction of patients. To examine the effects of frozen human allogeneic epidermal cultures for the treatment of acute and chronic ulcers. We treated a series of 10 consecutive patients with leg ulcers of different etiology and duration with frozen human allogeneic epidermal cultures stored frozen and thawed for 5-10 minutes at room temperature before application. Three patients had ulcers with exposed Achilles or extensor tendon. The ulcers treated were as large as 160 cm2 in area and of up to 20-years' duration. After preliminary preparation of the wounds by debridement to remove necrotic tissue and application of silver sulfadiazine to control infection, thawed cultures were applied biweekly from 2 to 15 times depending on the size and complexity of the ulcer. All ulcers healed, including those with tendon exposure. After the first few applications, granulation tissue formed in the ulcer bed and on exposed tendons, and epidermal healing took place through proliferation and migration of cells from the margins of the wound. The time required for complete healing ranged from 1 to 31 weeks after the first application. The use of frozen human allogeneic epidermal cultures is a safe and effective treatment for venous or diabetic ulcers, even those with tendon exposure. It seems possible that any leg ulcer will be amenable to successful treatment by this method.

  4. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross......-talk during physiological and pathological muscle remodelling. ABSTRACT: Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration......, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle...

  5. Near infrared spectroscopy of human muscles

    Science.gov (United States)

    Gasbarrone, R.; Currà, A.; Cardillo, A.; Bonifazi, G.; Serranti, S.

    2018-02-01

    Optical spectroscopy is a powerful tool in research and industrial applications. Its properties of being rapid, non-invasive and not destructive make it a promising technique for qualitative as well as quantitative analysis in medicine. Recent advances in materials and fabrication techniques provided portable, performant, sensing spectrometers readily operated by user-friendly cabled or wireless systems. We used such a system to test whether infrared spectroscopy techniques, currently utilized in many areas as primary/secondary raw materials sector, cultural heritage, agricultural/food industry, environmental remote and proximal sensing, pharmaceutical industry, etc., could be applied in living humans to categorize muscles. We acquired muscles infrared spectra in the Vis-SWIR regions (350-2500 nm), utilizing an ASD FieldSpec 4 Standard-Res Spectroradiometer with a spectral sampling capability of 1.4 nm at 350-1000 nm and 1.1 nm at 1001-2500 nm. After a preliminary spectra pre-processing (i.e. signal scattering reduction), Principal Component Analysis (PCA) was applied to identify similar spectral features presence and to realize their further grouping. Partial Least-Squares Discriminant Analysis (PLS-DA) was utilized to implement discrimination/prediction models. We studied 22 healthy subjects (age 25-89 years, 11 females), by acquiring Vis-SWIR spectra from the upper limb muscles (i.e. biceps, a forearm flexor, and triceps, a forearm extensor). Spectroscopy was performed in fixed limb postures (elbow angle approximately 90‡). We found that optical spectroscopy can be applied to study human tissues in vivo. Vis-SWIR spectra acquired from the arm detect muscles, distinguish flexors from extensors.

  6. Local NSAID infusion does not affect protein synthesis and gene expression in human muscle after eccentric exercise

    DEFF Research Database (Denmark)

    Mikkelsen, U R; Schjerling, P; Helmark, Ida Carøe

    2010-01-01

    models, and inhibit the exercise-induced satellite cell proliferation and protein synthesis in humans. However, the cellular mechanisms eliciting these responses remain unknown. Eight healthy male volunteers performed 200 maximal eccentric contractions with each leg. To block prostaglandin synthesis...... locally in the skeletal muscle, indomethacin (NSAID) was infused for 7.5 h via microdialysis catheters into m. vastus lateralis of one leg. Protein synthesis was determined by the incorporation of 1,2-(13)C(2) leucine into muscle protein from 24 to 28 h post-exercise. Furthermore, mRNA expression...... of selected genes was measured in muscle biopsies (5 h and 8 days post-exercise) by real-time reverse transcriptase PCR. Myofibrillar and collagen protein synthesis were unaffected by the local NSAID infusion. Five hours post-exercise, the mRNA expression of cyclooxygenase-2 (COX2) was sixfold higher...

  7. 5'AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes

    DEFF Research Database (Denmark)

    Wojtaszewski, Jørgen; Birk, Jesper Bratz; Frøsig, Christian

    2005-01-01

    adaptations within the AMPK system itself. We investigated the effect of strength training and T2DM on the isoform expression and the heterotrimeric composition of the AMPK in human skeletal muscle. Ten patients with T2DM and seven healthy subjects strength trained (T) one leg for 6 weeks, while the other leg......Strength training enhances insulin sensitivity and represents an alternative to endurance training for patients with type 2 diabetes (T2DM). The 5'AMP-activated protein kinase (AMPK) may mediate adaptations in skeletal muscle in response to exercise training; however, little is known about...... remained untrained (UT). Muscle biopsies were obtained before and after the training period. Basal AMPK activity and protein/mRNA expression of both catalytic (alpha1 and alpha2) and regulatory (beta1, beta2, gamma1, gamma2a, gamma2b and gamma3) AMPK isoforms were independent of T2DM, whereas the protein...

  8. Short-latency crossed responses in the human biceps femoris muscle

    DEFF Research Database (Denmark)

    Stevenson, Andrew J T; Kamavuako, Ernest N; Geertsen, Svend Sparre

    2015-01-01

    Interlimb reflexes contribute to the central neural coordination between different limbs in both humans and animals. Although commissural interneurons have only been directly identified in animals, spinally mediated interlimb reflexes have been discovered in a number of human lower limb muscles......, indicating their existence in humans. The aim of the present study was to investigate whether short-latency crossed-spinal reflexes are present in the contralateral biceps femoris (cBF) muscle following ipsilateral knee (iKnee) joint rotations during a sitting task, where participants maintained a slight pre...... pathways (likely involving commissural interneurons) from ipsilateral afferents to common motoneurons in the contralateral leg can likely explain the perturbation direction-dependent reversal in the sign of the short-latency cBF reflex. This article is protected by copyright. All rights reserved....

  9. Substrate availability and transcriptional regulation of metabolic genes in human skeletal muscle during recovery from exercise

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Osada, Takuya; Andersen, Lisbeth Tingsted

    2005-01-01

    before exercise and 2, 5, 8, and 24 hours after exercise. Muscle glycogen was restored to near resting levels within 5 hours in the HC trial, but remained depressed through 24 hours in the LC trial. During the 2- to 8-hour recovery period, leg glucose uptake was 5- to 15-fold higher with HC ingestion......In skeletal muscle of humans, transcription of several metabolic genes is transiently induced during recovery from exercise when no food is consumed. To determine the potential influence of substrate availability on the transcriptional regulation of metabolic genes during recovery from exercise, 9...... male subjects (aged 22-27) completed 75 minutes of cycling exercise at 75% V¿o2max on 2 occasions, consuming either a high-carbohydrate (HC) or low-carbohydrate (LC) diet during the subsequent 24 hours of recovery. Nuclei were isolated and tissue frozen from vastus lateralis muscle biopsies obtained...

  10. Characteristics and preliminary observations of the influence of electromyostimulation on the size and function of human skeletal muscle during 30 days of simulated microgravity

    Science.gov (United States)

    Duvoisin, Marc R.; Convertino, Victor A.; Buchanan, Paul; Gollnick, Philip A.; Dudley, Gary A.

    1989-01-01

    The effect of transcutaneous electromyostimulation (EMS) on the development of atrophy and the loss of strength in lower limb musculature in humans exposed to microgravity was determined in three subjects who received EMS twice daily in a 3-d on/1-d off cycle on their dominant leg during 30 days of bedrest. The output waveform from the stimulator was sequenced to the knee extensors, knee flexors, ankle extensors, and ankle flexors, and caused three isometric contractions of each muscle group per minute. It was found that, in the dominant leg, EMS acted to attenuate the changes caused by bedrest, such as reductions in the leg volume, muscle compartment size, cross-sectional area of slow- and fast-twitch fibers, strength, and aerobic enzyme activities, and an increase in leg compliance.

  11. Interleukin-6 production in contracting human skeletal muscle is influenced by pre-exercise muscle glycogen content

    DEFF Research Database (Denmark)

    Steensberg, A; Febbraio, M A; Osada, T

    2001-01-01

    1. Prolonged exercise results in a progressive decline in glycogen content and a concomitant increase in the release of the cytokine interleukin-6 (IL-6) from contracting muscle. This study tests the hypothesis that the exercise-induced IL-6 release from contracting muscle is linked to the intram......1. Prolonged exercise results in a progressive decline in glycogen content and a concomitant increase in the release of the cytokine interleukin-6 (IL-6) from contracting muscle. This study tests the hypothesis that the exercise-induced IL-6 release from contracting muscle is linked...... to the intramuscular glycogen availability. 2. Seven men performed 5 h of a two-legged knee-extensor exercise, with one leg with normal, and one leg with reduced, muscle glycogen content. Muscle biopsies were obtained before (pre-ex), immediately after (end-ex) and 3 h into recovery (3 h rec) from exercise in both...... legs. In addition, catheters were placed in one femoral artery and both femoral veins and blood was sampled from these catheters prior to exercise and at 1 h intervals during exercise and into recovery. 3. Pre-exercise glycogen content was lower in the glycogen-depleted leg compared with the control...

  12. On the relationship between lower extremity muscles activation and peak vertical and posterior ground reaction forces during single leg drop landing.

    Science.gov (United States)

    Mahaki, M; Mi'mar, R; Mahaki, B

    2015-10-01

    Anterior cruciate ligament (ACL) injury continues to be an important medical issue for athletes participating in sports. Vertical and posterior ground reaction forces have received considerable attention for their potential influence on ACL injuries. The purpose of this study was to examine the relationship between electromyographic activity of lower extremity muscles and the peak vertical and posterior ground reaction forces during single leg drop landing. Thirteen physical education male students participated in this correlation study. Electromyographic activities of gluteus medius, biceps femoris, medial gastrocnemius, soleus as well as anterior tibialis muscles along with ground reaction forces were measured. Participants performed single-leg landing from a 0.3 m height on to a force platform. Landing was divided into two phases: 100 ms preceding ground contact and 100 ms proceeding ground contact. Pearson correlation test was used to determine the relationships between these muscles activity and peak vertical and posterior ground reaction forces. The results of the study indicated that the activity of soleus and tibialis anterior in pre-landing phase were positively correlated with peak vertical ground reaction force ([P≤0.04], [P≤0.008], respectively). However, no significant correlation was found between the activities of other muscles in pre-landing phase and peak vertical as well as peak posterior ground reaction forces. Also, no significant correlation was found between the activities of muscles in post-landing phase and peak vertical as well as peak posterior ground reaction forces. Soleus loading shifts the proximal tibia posterior at the knee joint and tibialis anterior prevent hyperporonation of the ankle, a mechanisms of ACL injury. Hence, neuromuscular training promoting preparatory muscle activity in these muscles may reduce the incidence of ACL injuries.

  13. Lactate oxidation in human skeletal muscle mitochondria

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Meinild, Anne-Kristine; Nordsborg, Nikolai B

    2013-01-01

    of four separate and specific substrate titration protocols, the respirometric analysis revealed that mitochondria were capable of oxidizing lactate in the absence of exogenous LDH. The titration of lactate and NAD(+) into the respiration medium stimulated respiration (P = 0.003). The addition...... of exogenous LDH failed to increase lactate-stimulated respiration (P = 1.0). The results further demonstrate that human skeletal muscle mitochondria cannot directly oxidize lactate within the mitochondrial matrix. Alternately, these data support previous claims that lactate is converted to pyruvate within...

  14. Glycogen synthesis in human gastrocnemius muscle is not representative of whole-body muscle glycogen synthesis.

    NARCIS (Netherlands)

    Serlie, M.J.; Haan, J.H.A. de; Tack, C.J.J.; Verberne, H.J.; Ackermans, M.T.; Heerschap, A.; Sauerwein, H.P.

    2005-01-01

    The introduction of 13C magnetic resonance spectroscopy (MRS) has enabled noninvasive measurement of muscle glycogen synthesis in humans. Conclusions based on measurements by the MRS technique assume that glucose metabolism in gastrocnemius muscle is representative for all skeletal muscles and thus

  15. Glycogen synthesis in human gastrocnemius muscle is not representative of whole-body muscle glycogen synthesis

    NARCIS (Netherlands)

    Serlie, Mireille J. M.; de Haan, Jacco H.; Tack, Cees J.; Verberne, Hein J.; Ackermans, Mariette T.; Heerschap, Arend; Sauerwein, Hans P.

    2005-01-01

    The introduction of C-13 magnetic resonance spectroscopy (MRS) has enabled noninvasive measurement of muscle glycogen synthesis in humans. Conclusions based on measurements by the MRS technique assume that glucose metabolism in gastrocnemius muscle is representative for all skeletal muscles and thus

  16. Glucose transporter expression in human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Handberg, A; Beck-Nielsen, H

    2000-01-01

    , but its expression is markedly reduced around birth and is further reduced to undetectable levels within the first year of life; 2) GLUT-3 protein expression appears at 18 wk of gestation and disappears after birth; and 3) GLUT-4 protein is diffusely expressed in muscle cells throughout gestation, whereas...... after birth, the characteristic subcellular localization is as seen in adult muscle fibers. Our results show that GLUT-1, GLUT-3, and GLUT-4 seem to be of importance during muscle fiber growth and development. GLUT-5 protein was undetectable in fetal and adult skeletal muscle fibers. In adult muscle...... amplification (TSA) technique to detect the localization of glucose transporter expression in human skeletal muscle. We found expression of GLUT-1, GLUT-3, and GLUT-4 in developing human muscle fibers showing a distinct expression pattern. 1) GLUT-1 is expressed in human skeletal muscle cells during gestation...

  17. ATP and phosphocreatine utilization in single human muscle fibres during the development of maximal power output at elevated muscle temperatures.

    Science.gov (United States)

    Gray, Stuart R; Söderlund, Karin; Ferguson, Richard A

    2008-05-01

    In this study, we examined the effect of muscle temperature (Tm) on adenosine triphosphate (ATP) and phosphocreatine utilization in single muscle fibres during the development of maximal power output in humans. Six male participants performed a 6-s maximal sprint on a friction-braked cycle ergometer under both normal (Tm = 34.3 degrees C, s = 0.6) and elevated (T(m) = 37.3 degrees C, s = 0.2) muscle temperature conditions. During the elevated condition, muscle temperature of the legs was raised, passively, by hot water immersion followed by wrapping in electrically heated blankets. Muscle biopsies were taken from the vastus lateralis before and immediately after exercise. Freeze-dried single fibres were dissected, characterized according to myosin heavy chain composition, and analysed for ATP and phosphocreatine content. Single fibres were classified as: type I, IIA, IIAX25 (1 - 25% IIX isoform), IIAX50 (26 - 50% IIX), IIAX75 (51 - 75% IIX), or IIAX100 (76 - 100% IIX). Maximal power output and pedal rate were both greater (P < 0.05) during the elevated condition by 258 W (s = 110) and 22 rev . min(-1) (s = 6), respectively. In both conditions, phosphocreatine content decreased significantly in all fibre types, with a greater decrease during the elevated condition in type IIA fibres (P < 0.01). Adenosine triphosphate content was also reduced to a greater (P < 0.01) extent in type IIA fibres during the elevated condition. The results of the present study indicate that after passive elevation of muscle temperature, there was a greater decrease in ATP and phosphocreatine content in type IIA fibres than in the normal trial, which contributed to the higher maximal power output.

  18. Effects of concentric and repeated eccentric exercise on muscle damage and calpain-calpastatin gene expression in human skeletal muscle

    DEFF Research Database (Denmark)

    Vissing, K.; Overgaard, K.; Nedergaard, A.

    2008-01-01

    , and was compared to a control-group (n = 6). Muscle strength and soreness and plasma creatine kinase and myoglobin were measured before and during 7 days following exercise bouts. Muscle biopsies were collected from m. vastus lateralis of both legs prior to and at 3, 24 h and 7 days after exercise and quantified...... for muscle Ca2+-content and mRNA levels for calpain isoforms and calpastatin. Exercise reduced muscle strength and increased muscle soreness predominantly in the eccentric leg (P ... eccentric exercise bout (P muscle Ca2+-content did not differ between interventions. mRNA levels for calpain 2 and calpastatin were upregulated exclusively by eccentric exercise 24 h post-exercise (P

  19. Contraction-induced increases in Na+-K+-ATPase mRNA levels in human skeletal muscle are not amplified by activation of additional muscle mass

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai; Thomassen, Martin; Lundby, Carsten

    2005-01-01

    The present study tested the hypothesis that exercise with a large compared with a small active muscle mass results in a higher contraction-induced increase in Na+-K+-ATPase mRNA expression due to greater hormonal responses. Furthermore, the relative abundance of Na+-K+-ATPase subunit a1, a2, a3, a......% of the a2 expression, and no reliable detection of a3 and a4 was possible. In conclusion, activation of additional muscle mass does not result in a higher exercise-induced increase in Na+-K+-ATPase subunit-specific mRNA.......4, ß1, ß2, and ß3 mRNA in human skeletal muscle was investigated. On two occasions, eight subjects performed one-legged knee extension exercise (L) or combined one-legged knee extension and bilateral arm cranking (AL) for 5.00, 4.25, 3.50, 2.75, and 2.00 min separated by 3 min of rest. Leg exercise...

  20. Human-robot interaction: kinematics and muscle activity inside a powered compliant knee exoskeleton.

    Science.gov (United States)

    Knaepen, Kristel; Beyl, Pieter; Duerinck, Saartje; Hagman, Friso; Lefeber, Dirk; Meeusen, Romain

    2014-11-01

    Until today it is not entirely clear how humans interact with automated gait rehabilitation devices and how we can, based on that interaction, maximize the effectiveness of these exoskeletons. The goal of this study was to gain knowledge on the human-robot interaction, in terms of kinematics and muscle activity, between a healthy human motor system and a powered knee exoskeleton (i.e., KNEXO). Therefore, temporal and spatial gait parameters, human joint kinematics, exoskeleton kinetics and muscle activity during four different walking trials in 10 healthy male subjects were studied. Healthy subjects can walk with KNEXO in patient-in-charge mode with some slight constraints in kinematics and muscle activity primarily due to inertia of the device. Yet, during robot-in-charge walking the muscular constraints are reversed by adding positive power to the leg swing, compensating in part this inertia. Next to that, KNEXO accurately records and replays the right knee kinematics meaning that subject-specific trajectories can be implemented as a target trajectory during assisted walking. No significant differences in the human response to the interaction with KNEXO in low and high compliant assistance could be pointed out. This is in contradiction with our hypothesis that muscle activity would decrease with increasing assistance. It seems that the differences between the parameter settings of low and high compliant control might not be sufficient to observe clear effects in healthy subjects. Moreover, we should take into account that KNEXO is a unilateral, 1 degree-of-freedom device.

  1. The HO-1/CO system regulates mitochondrial-capillary density relationships in human skeletal muscle.

    Science.gov (United States)

    Pecorella, Shelly R H; Potter, Jennifer V F; Cherry, Anne D; Peacher, Dionne F; Welty-Wolf, Karen E; Moon, Richard E; Piantadosi, Claude A; Suliman, Hagir B

    2015-10-15

    The heme oxygenase-1 (HO-1)/carbon monoxide (CO) system induces mitochondrial biogenesis, but its biological impact in human skeletal muscle is uncertain. The enzyme system generates CO, which stimulates mitochondrial proliferation in normal muscle. Here we examined whether CO breathing can be used to produce a coordinated metabolic and vascular response in human skeletal muscle. In 19 healthy subjects, we performed vastus lateralis muscle biopsies and tested one-legged maximal O2 uptake (V̇o2max) before and after breathing air or CO (200 ppm) for 1 h daily for 5 days. In response to CO, there was robust HO-1 induction along with increased mRNA levels for nuclear-encoded mitochondrial transcription factor A (Tfam), cytochrome c, cytochrome oxidase subunit IV (COX IV), and mitochondrial-encoded COX I and NADH dehydrogenase subunit 1 (NDI). CO breathing did not increase V̇o2max (1.96 ± 0.51 pre-CO, 1.87 ± 0.50 post-CO l/min; P = not significant) but did increase muscle citrate synthase, mitochondrial density (139.0 ± 34.9 pre-CO, 219.0 ± 36.2 post-CO; no. of mitochondrial profiles/field), myoglobin content and glucose transporter (GLUT4) protein level and led to GLUT4 localization to the myocyte membrane, all consistent with expansion of the tissue O2 transport system. These responses were attended by increased cluster of differentiation 31 (CD31)-positive muscle capillaries (1.78 ± 0.16 pre-CO, 2.37 ± 0.59 post-CO; capillaries/muscle fiber), implying the enrichment of microvascular O2 reserve. The findings support that induction of the HO-1/CO system by CO not only improves muscle mitochondrial density, but regulates myoglobin content, GLUT4 localization, and capillarity in accordance with current concepts of skeletal muscle plasticity. Copyright © 2015 the American Physiological Society.

  2. Voluntary enhanced cocontraction of hamstring muscles during open kinetic chain leg extension exercise: its potential unloading effect on the anterior cruciate ligament.

    Science.gov (United States)

    Biscarini, Andrea; Benvenuti, Paolo; Botti, Fabio M; Brunetti, Antonella; Brunetti, Orazio; Pettorossi, Vito E

    2014-09-01

    A number of research studies provide evidence that hamstring cocontraction during open kinetic chain knee extension exercises enhances tibiofemoral (TF) stability and reduces the strain on the anterior cruciate ligament. To determine the possible increase in hamstring muscle coactivation caused by a voluntary cocontraction effort during open kinetic chain leg-extension exercises, and to assess whether an intentional hamstring cocontraction can completely suppress the anterior TF shear force during these exercises. Descriptive laboratory study. Knee kinematics as well as electromyographic activity in the semitendinosus (ST), semimembranosus (SM), biceps femoris (BF), and quadriceps femoris muscles were measured in 20 healthy men during isotonic leg extension exercises with resistance (R) ranging from 10% to 80% of the 1-repetition maximum (1RM). The same exercises were also performed while the participants attempted to enhance hamstring coactivation through a voluntary cocontraction effort. The data served as input parameters for a model to calculate the shear and compressive TF forces in leg extension exercises for any set of coactivation patterns of the different hamstring muscles. For R≤ 40% 1RM, the peak coactivation levels obtained with intentional cocontraction (l) were significantly higher (P hamstring muscle, maximum level l was reached at R = 30% 1RM, corresponding to 9.2%, 10.5%, and 24.5% maximum voluntary isometric contraction (MVIC) for the BF, ST, and SM, respectively, whereas the ratio l/l 0 reached its maximum at R = 20% 1RM and was approximately 2, 3, and 4 for the BF, SM, and ST, respectively. The voluntary enhanced coactivation level l obtained for R≤ 30% 1RM completely suppressed the anterior TF shear force developed by the quadriceps during the exercise. In leg extension exercises with resistance R≤ 40% 1RM, coactivation of the BF, SM, and ST can be significantly enhanced (up to 2, 3, and 4 times, respectively) by a voluntary hamstring

  3. Regenerating human muscle fibres express GLUT3 protein

    DEFF Research Database (Denmark)

    Gaster, M; Beck-Nielsen, H; Schrøder, H D

    2002-01-01

    The presence of the GLUT3 glucose transporter protein in human muscle cells is a matter of debate. The present study was designed to establish whether GLUT3 is expressed in mature human skeletal muscle fibres and, if so, whether its expression changes under different conditions, such as metabolic...... muscle fibres, nor did metabolic stress, training or de- and re-innervation induce GLUT3 expression, while a few GLUT3 expressing fibres were seen in some cases of polymyositis. In contrast, GLUT4 was expressed in all investigated muscle fibres. GLUT3 immunoreactivity was found in perineural...... and endoneural cells, indicating that GLUT3 is important for glucose transport into nerves through the perineurium. Taken together, these data suggest that GLUT3 expression is restricted to regenerating muscle fibres and nerves in adult human muscle. Although the significance of GLUT3 in adult human muscle...

  4. Oral glucose ingestion attenuates exercise-induced activation of 5'-AMP-activated protein kinase in human skeletal muscle

    DEFF Research Database (Denmark)

    Åkerström, Thorbjörn; Birk, Jesper Bratz; Klein, Ditte Kjærsgaard

    2006-01-01

    5'-AMP-activated protein kinase (AMPK) has been suggested to be a 'metabolic master switch' regulating various aspects of muscle glucose and fat metabolism. In isolated rat skeletal muscle, glucose suppresses the activity of AMPK and in human muscle glycogen loading decreases exercise-induced AMPK...... activation. We hypothesized that oral glucose ingestion during exercise would attenuate muscle AMPK activation. Nine male subjects performed two bouts of one-legged knee-extensor exercise at 60% of maximal workload. The subjects were randomly assigned to either consume a glucose containing drink or a placebo...... drink during the two trials. Muscle biopsies were taken from the vastus lateralis before and after 2 h of exercise. Plasma glucose was higher (6.0 +/- 0.2 vs. 4.9 +/- 0.1 mmol L-1, P

  5. Molecular biology of human muscle disease

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, P.W.; Epstein, H.F. (Baylor Coll. of Medicine, Houston, TX (United States))

    1991-01-01

    The molecular revolution that is transforming the entire biomedical field has had far-reaching impact in its application to inherited human muscle disease. The gene for Duchenne muscular dystrophy was one of the first cloned without knowledge of the defective protein product. This success was based upon the availability of key chromosomal aberrations that provided molecular landmarks for the disease locus. Subsequent discoveries regarding the mode of expression for this gene, the structure and localization of its protein product dystrophin, and molecular diagnosis of affected and carrier individuals constitute a paradigm for investigation of human genetics. Finding the gene for myotonic muscular dystrophy is requiring the brute force approach of cloning several million bases of DNA, identifying expressed sequences, and characterizing candidate genes. The gene that causes hypertrophic cardiomyopathy has been found serendipitously to be one of the genetic markers on chromosome 14, the {beta} myosin heavy chain.

  6. Xanthine oxidase in human skeletal muscle following eccentric exercise

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Frandsen, Ulrik; Orthenblad, N.

    1997-01-01

    the increase in xanthine oxidase in the muscle there were no detectable changes in the levels of muscle malondialdehyde or in plasma antioxidant capacity up to 4 days post-exercise. 5. It is concluded that eccentric exercise leads to an increased level of xanthine oxidase in human muscle and that the increase...

  7. Human skeletal muscle fatty acid and glycerol metabolism during rest, exercise and recovery

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Sacchetti, M; Rådegran, G

    2002-01-01

    glycerol uptake was observed, which was substantially higher during exercise. Total body skeletal muscle FA and glycerol uptake/release was estimated to account for 18-25 % of whole body R(d) or R(a). In conclusion: (1) skeletal muscle FA and glycerol metabolism, using the leg arterial-venous difference......This study was conducted to investigate skeletal muscle fatty acid (FA) and glycerol kinetics and to determine the contribution of skeletal muscle to whole body FA and glycerol turnover during rest, 2 h of one-leg knee-extensor exercise at 65 % of maximal leg power output, and 3 h of recovery....... To this aim, the leg femoral arterial-venous difference technique was used in combination with a continuous infusion of [U-(13)C]palmitate and [(2)H(5)]glycerol in five post-absorptive healthy volunteers (22 +/- 3 years). The influence of contamination from non-skeletal muscle tissues, skin and subcutaneous...

  8. Gender differences in rotation of the shank during single-legged drop landing and its relation to rotational muscle strength of the knee.

    Science.gov (United States)

    Kiriyama, Shinya; Sato, Haruhiko; Takahira, Naonobu

    2009-01-01

    Increased shank rotation during landing has been considered to be one of the factors for noncontact anterior cruciate ligament injuries in female athletes. There have been no known gender differences in rotational knee muscle strength, which is expected to inhibit exaggerated shank rotation. Women have less knee external rotator strength than do men. Lower external rotator strength is associated with increased internal shank rotation at the time of landing. Controlled laboratory study. One hundred sixty-nine healthy young subjects (81 female and 88 male; age, 17.0 +/- 1.0 years) volunteered to participate in this study. The subjects performed single-legged drop landings from a 20-cm height. Femoral and shank kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the joint angles around the knee (flexion/extension, valgus/varus, and internal/external rotation) were calculated. The maximal isometric rotational muscle strength of the knee was measured at 30 degrees of knee flexion in a supine position using a dynamometer. The female subjects had significantly less external shank rotation strength than did the male subjects (P external rotation strength and the peak shank internal rotation angle during landing (r = -0.322, P external rotator strength. This may lead to large shank internal rotation movement during the single-legged drop landing. Improving strength training of the external rotator muscle may help decrease the rates of anterior cruciate ligament injury in female athletes.

  9. Intake of branched-chain amino acids influences the levels of MAFbx mRNA and MuRF-1 total protein in resting and exercising human muscle.

    Science.gov (United States)

    Borgenvik, Marcus; Apró, William; Blomstrand, Eva

    2012-03-01

    Resistance exercise and amino acids are two major factors that influence muscle protein turnover. Here, we examined the effects of resistance exercise and branched-chain amino acids (BCAA), individually and in combination, on the expression of anabolic and catabolic genes in human skeletal muscle. Seven subjects performed two sessions of unilateral leg press exercise with randomized supplementation with BCAA or flavored water. Biopsies were collected from the vastus lateralis muscle of both the resting and exercising legs before and repeatedly after exercise to determine levels of mRNA, protein phosphorylation, and amino acid concentrations. Intake of BCAA reduced (P exercising legs, respectively. The level of MuRF-1 mRNA was elevated (P exercising leg two- and threefold under the placebo and BCAA conditions, respectively, whereas MuRF-1 total protein increased by 20% (P exercising muscle. In conclusion, BCAA ingestion reduced MAFbx mRNA and prevented the exercise-induced increase in MuRF-1 total protein in both resting and exercising leg. Further-more, resistance exercise differently influenced MAFbx and MuRF-1 mRNA expression, suggesting both common and divergent regulation of these two ubiquitin ligases.

  10. Selective activation of neuromuscular compartments within the human trapezius muscle

    DEFF Research Database (Denmark)

    Holtermann, A; Roeleveld, K; Mork, P J

    2009-01-01

    of the human trapezius muscle can be independently activated by voluntary command, indicating neuromuscular compartmentalization of the trapezius muscle. The independent activation of the upper and lower subdivisions of the trapezius is in accordance with the selective innervation by the fine cranial and main...... branch of the accessory nerve to the upper and lower subdivisions. These findings provide new insight into motor control characteristics, learning possibilities, and function of the clinically relevant human trapezius muscle....

  11. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration.

    Science.gov (United States)

    Mackey, Abigail L; Magnan, Mélanie; Chazaud, Bénédicte; Kjaer, Michael

    2017-08-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. The extent of cross-talk between fibroblasts, as the source of matrix protein, and satellite cells in humans is unknown. We studied this in human muscle biopsies and cell-culture studies. We observed a strong stimulation of myogenesis by human fibroblasts in cell culture. In biopsies collected 30 days after a muscle injury protocol, fibroblast number increased to four times control levels, where fibroblasts were found to be preferentially located immediately surrounding regenerating muscle fibres. These novel findings indicate an important role for fibroblasts in supporting the regeneration of muscle fibres, potentially through direct stimulation of satellite cell differentiation and fusion, and contribute to understanding of cell-cell cross-talk during physiological and pathological muscle remodelling. Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence on fibroblast activity. However, the influence of fibroblasts on satellite cells and muscle regeneration in humans is unknown. The purpose of this study was to investigate this in vitro and during in vivo regeneration in humans. Following a muscle injury protocol in young healthy men (n = 7), the number of fibroblasts (TCF7L2+), satellite cells (Pax7+), differentiating myogenic cells (myogenin+) and regenerating fibres (neonatal/embryonic myosin+) was determined from biopsy cross-sections. Fibroblasts and myogenic precursor cells (MPCs) were also isolated from human skeletal muscle (n = 4) and co-cultured using different cell ratios, with the two cell populations either in direct contact with each other or separated by a permeable

  12. The influence of foot arch on ankle joint torques andon sEMG signal amplitude in selected lower leg muscles

    Directory of Open Access Journals (Sweden)

    Żebrowska Kinga

    2016-09-01

    Full Text Available Introduction: This study sought to assess the influence of proper foot arch on electromyographic activity of selected lower limb muscles. The aim of this work was to evaluate the effects of foot arch on the activity of selected muscles and to determine whether electromyography might help to identify types of flat feet resulting from muscle- or ligament-related causes.

  13. Determination of human muscle protein fractional synthesis rate

    DEFF Research Database (Denmark)

    Bornø, Andreas; Hulston, Carl J; van Hall, Gerrit

    2014-01-01

    In the present study, different MS methods for the determination of human muscle protein fractional synthesis rate (FSR) using [ring-(13)C6 ]phenylalanine as a tracer were evaluated. Because the turnover rate of human skeletal muscle is slow, only minute quantities of the stable isotopically...

  14. Impact of adrenaline and metabolic stress on exercise-induced intracellular signaling and PGC-1α mRNA response in human skeletal muscle

    DEFF Research Database (Denmark)

    Brandt, Nina; Gunnarsson, Thomas Gunnar Petursson; Hostrup, Morten

    2016-01-01

    This study tested the hypothesis that elevated plasma adrenaline or metabolic stress enhances exercise-induced PGC-1α mRNA and intracellular signaling in human muscle. Trained (VO2-max: 53.8 ± 1.8 mL min(-1) kg(-1)) male subjects completed four different exercise protocols (work load of the legs...... exercise than at rest in all protocols, and higher (P adrenaline nor muscle metabolic stress determines the magnitude of PGC-1α mRNA response in human muscle. Furthermore, higher exercise-induced changes in AMPK, p38, and CREB...

  15. The relationship of temperature rise to specific absorption rate and current in the human leg for exposure to electromagnetic radiation in the high frequency band

    International Nuclear Information System (INIS)

    Wainwright, P R

    2003-01-01

    Of the biological effects of human exposure to radiofrequency and microwave radiation, the best-established are those due to elevation of tissue temperature. To prevent harmful levels of heating, restrictions have been proposed on the specific absorption rate (SAR). However, the relationship between SAR and temperature rise is not an invariant, since not only the heat capacity but also the efficiency of heat dissipation varies between different tissues and exposure scenarios. For small enough SAR, the relationship is linear and may be characterized by a 'heating factor'. Under whole-body irradiation the SAR may be particularly high in the ankles due to the concentration of current flowing through a relatively small cross-sectional area. In a previous paper, the author has presented calculations of the SAR distribution in a human leg in the high frequency (HF) band. In this paper, the heating factor for this situation is derived using a finite element approximation of the Pennes bio-heat equation. The sensitivity of the results to different blood perfusion rates is investigated, and a simple local thermoregulatory model is applied. Both time-dependent and steady-state solutions are considered. Results confirm the appropriateness of the ICNIRP reference level of 100 mA on current through the leg, but suggest that at higher currents significant thermoregulatory adjustments to muscle blood flow will occur

  16. An improved method to determine neuromuscular properties using force laws - From single muscle to applications in human movements.

    Science.gov (United States)

    Siebert, T; Sust, M; Thaller, S; Tilp, M; Wagner, H

    2007-04-01

    We evaluate an improved method for individually determining neuromuscular properties in vivo. The method is based on Hill's equation used as a force law combined with Newton's equation of motion. To ensure the range of validity of Hill's equation, we first perform detailed investigations on in vitro single muscles. The force-velocity relation determined with the model coincides well with results obtained by standard methods (r=.99) above 20% of the isometric force. In addition, the model-predicted force curves during work loop contractions very well agree with measurements (mean difference: 2-3%). Subsequently, we deduce theoretically under which conditions it is possible to combine several muscles of the human body to model muscles. This leads to a model equation for human leg extension movements containing parameters for the muscle properties and for the activation. To numerically determine these invariant neuromuscular properties we devise an experimental method based on concentric and isometric leg extensions. With this method we determine individual muscle parameters from experiments such that the simulated curves agree well with experiments (r=.99). A reliability test with 12 participants revealed correlations r=.72-.91 for the neuromuscular parameters (p<.01). Predictions of similar movements under different conditions show mean errors of about 5%. In addition, we present applications in sports practise and theory.

  17. Muscle protein degradation and amino acid metabolism during prolonged knee-extensor exercise in humans

    DEFF Research Database (Denmark)

    Van Hall, Gerrit; Saltin, B; Wagenmakers, A J

    1999-01-01

    to a substantial increase in net muscle protein degradation, and that a lowering of the starting muscle glycogen content leads to a further increase. The carbon atoms of the branched-chain amino acids (BCAA), glutamate, aspartate and asparagine, liberated by protein degradation, and the BCAA and glutamate......The aim of this study was to investigate whether prolonged one-leg knee-extensor exercise enhances net protein degradation in muscle with a normal or low glycogen content. Net amino acid production, as a measure of net protein degradation, was estimated from leg exchange and from changes...... in the concentrations of amino acids that are not metabolized in skeletal muscle. Experiments were performed at rest and during one-leg knee-extensor exercise in six subjects having one leg with a normal glycogen content and the other with a low glycogen content. Exercise was performed for 90 min at a workload of 60...

  18. Artificial Leg Design and Control Research of a Biped Robot with Heterogeneous Legs Based on PID Control Algorithm

    Directory of Open Access Journals (Sweden)

    Hualong Xie

    2015-04-01

    Full Text Available A biped robot with heterogeneous legs (BRHL is proposed to provide an ideal test-bed for intelligent bionic legs (IBL. To make artificial leg gait better suited to a human, a four-bar mechanism is used as its knee joint, and a pneumatic artificial muscle (PAM is used as its driving source. The static mathematical model of PAM is established and the mechanical model of a single degree of freedom of a knee joint driven by PAM is analyzed. A control simulation of an artificial leg based on PID control algorithm is carried out and the simulation results indicate that the artificial leg can simulate precisely a normal human walking gait.

  19. Muscle protein analysis. II. Two-dimensional electrophoresis of normal and diseased human skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S. (Argonne National Lab., IL); Barany, M.; Danon, M.J.; Anderson, N.G.

    1980-07-01

    High-resolution two-dimensional electrophoresis was used to analyze the major proteins of normal and pathological human-muscle samples. The normal human-muscle pattern contains four myosin light chains: three that co-migrate with the myosin light chains from rabbit fast muscle (extensor digitorum longus), and one that co-migrates with the light chain 2 from rabbit slow muscle (soleus). Of seven Duchenne muscular dystrophy samples, four yielded patterns with decreased amounts of actin and myosin relative to normal muscle, while three samples gave patterns comparable to that for normal muscle. Six samples from patients with myotonic dystrophy also gave normal patterns. In nemaline rod myopathy, in contrast, the pattern was deficient in two of the fast-type myosin light chains.

  20. Muscle Cramps

    Science.gov (United States)

    ... Talk to your provider about the risks and benefits of medicines. How can I prevent muscle cramps? To prevent muscle cramps, you can Stretch your muscles, especially before exercising. If you often get leg cramps at night, ...

  1. Prostaglandin synthesis can be inhibited locally by infusion of NSAIDS through microdialysis catheters in human skeletal muscle

    DEFF Research Database (Denmark)

    Mikkelsen, Ulla Ramer; Helmark, Ida Carøe; Kjaer, Michael

    2008-01-01

    of nonsteroidal anti-inflammatory drugs (NSAIDs). However, to study the local role of prostaglandins, the formation of prostaglandins within the tissue must be controlled. Microdialysis enables determination of local concentrations of water-soluble substances within the tissue. In the present study......, the microdialysis method was used to infuse NSAIDs locally into human skeletal muscles producing a local block of prostaglandin formation. In addition, the graded blockade at various distances from the infusion site within the muscle during rest, exercise and recovery was determined. Microdialysis was performed...... in thigh muscles (vastus lateralis muscle) in six healthy men. One of the microdialysis catheters was used to block prostaglandin synthesis by infusion of the NSAID indomethacin. Additional catheters were placed 1 and 4 cm away from the infusion and in the contralateral leg (working control). Following 2 h...

  2. Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle

    DEFF Research Database (Denmark)

    Jørgensen, Stine Ringholm; Biensø, Rasmus S; Kiilerich, Kristian

    2011-01-01

    Background: The aim was to test the hypothesis that one week of bed rest will reduce mitochondrial number and expression and activity of oxidative proteins in human skeletal muscle, but that exercise-induced intracellular signaling as well as mRNA and microRNA (miR) responses are maintained after......-legged knee extensor exercise performed before and after bed rest. Results: Maximal oxygen uptake decreased 5% and exercise endurance decreased non-significantly 25% by bed rest. Bed rest reduced skeletal muscle mitochondrial DNA/nuclear DNA content 15%, hexokinase II and sirtuin 1 protein content ~45%, 3...... bed rest. Research Design and Methods: Twelve young, healthy, male subjects completed 7 days of bed rest with vastus lateralis muscle biopsies taken before and after bed rest. In addition, muscle biopsies were obtained from 6 of the subjects prior to, immediately after and 3h after 45 min one...

  3. THE CAPILLARY PATTERN IN HUMAN MASSETER MUSCLE DURING AGEING

    Directory of Open Access Journals (Sweden)

    Erika Cvetko

    2013-10-01

    Full Text Available The effect of ageing on the capillary network in skeletal muscles has produced conflicting results in both, human and animals studies. Some of the inconsistencies are due to non-comparable and biased methods that were applied on thin transversal sections, especially in muscles with complicated morphological structures, such as in human masseter muscle. We present a new immunohistochemical method for staining capillaries and muscle fibres in 100 µm thick sections as well as novel approach to 3D visualization of capillaries and muscle fibres. Applying confocal microscopy and virtual 3D stereological grids, or tracing capillaries in virtual reality, length of capillaries within a muscle volume or length of capillaries adjacent to muscle fibre per fibre length, fibre surface or fibre volume were evaluated in masseter muscle of young and old subjects by an unbiased approach. Our findings show that anatomic capillarity is well maintained in masseter muscle in old subjects; however, vascular remodelling occurs with age, which could be a response to changed muscle function and age-related muscle fibre type transformations.

  4. Technetium-99m sestamibi leg scintigraphy for non-invasive assessment of propionyl-l-carnitine induced changes in skeletal muscle metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Cittanti, C. [Department of Nuclear Medicine, University of Ferrara (Italy); Colamussi, P. [Department of Nuclear Medicine, University of Ferrara (Italy); Giganti, M. [Department of Nuclear Medicine, University of Ferrara (Italy); Orlandi, C. [MEDCO Research, Inc., North Carolina (United States); Uccelli, L. [Department of Nuclear Medicine, University of Ferrara (Italy); Manfrini, S. [Surgical Pathology Institute, University of Ferrara (Italy); Azzena, G. [Surgical Pathology Institute, University of Ferrara (Italy); Piffanelli, A. [Department of Nuclear Medicine, University of Ferrara (Italy)

    1997-07-01

    Carnitine derivatives, such as propionyl-l-carnitine (PLC), have been shown to improve walking distance in patients with obstructive peripheral artery disease (PAOD). The aim of this study was to ascertain whether technetium-99m sestamibi leg scintigraphy may be a useful tool in the evaluation of changes in skeletal muscle metabolism induced by chronic therapy with PLC. Twenty patients with clinical and instrumental evidence of PAOD were randomly assigned to a 3-month period of therapy with either PLC or placebo. Rest {sup 99m}Tc-sestamibi leg scintigraphy and echo-Doppler sonography were performed on all subjects immediately before and upon completion of the treatment period. At the end of the protocol the following results were observed in patients who underwent PLC administration: (a) a significant increase in both thigh and calf {sup 99m}Tc-sestamibi uptake, in comparison with baseline values (P<0.001); (b) the absence of statistically significant modifications of Doppler blood flow indices of the lower limbs. In conclusion, after chronic administration of PLC, a significant increment in skeletal muscle uptake of {sup 99m}Tc-sestamibi was demonstrated without any apparent change in regional blood flow. This fact, if proven in further studies, may suggest a role for this tracer as a non-invasive probe of tissue bioenergetics. (orig.). With 4 figs., 4 tabs.

  5. Contributions of central command and muscle feedback to sympathetic nerve activity in contracting human skeletal muscle

    Directory of Open Access Journals (Sweden)

    Daniel eBoulton

    2016-05-01

    Full Text Available During voluntary contractions, muscle sympathetic nerve activity (MSNA to contracting muscles increases in proportion to force but the underlying mechanisms are not clear. To shed light on these mechanisms, particularly the influences of central command and muscle afferent feedback, the present study tested the hypothesis that MSNA is greater during voluntary compared with electrically-evoked contractions. Seven male subjects performed a series of 1-minute isometric dorsiflexion contractions (left leg separated by 2-minute rest periods, alternating between voluntary and electrically-evoked contractions at similar forces (5-10 % of maximum. MSNA was recorded continuously (microneurography from the left peroneal nerve and quantified from cardiac-synchronised, negative-going spikes in the neurogram. Compared with pre-contraction values, MSNA increased by 51 ± 34 % (P 0.05. MSNA analysed at 15-s intervals revealed that this effect of voluntary contraction appeared 15-30 s after contraction onset (P < 0.01, remained elevated until the end of contraction, and disappeared within 15 s after contraction. These findings suggest that central command, and not feedback from contracting muscle, is the primary mechanism responsible for the increase in MSNA to contracting muscle. The time-course of MSNA suggests that there is a longer delay in the onset of this effect compared with its cessation after contraction.

  6. A comparison and update of direct kinematic-kinetic models of leg stiffness in human running.

    Science.gov (United States)

    Liew, Bernard X W; Morris, Susan; Masters, Ashleigh; Netto, Kevin

    2017-11-07

    Direct kinematic-kinetic modelling currently represents the "Gold-standard" in leg stiffness quantification during three-dimensional (3D) motion capture experiments. However, the medial-lateral components of ground reaction force and leg length have been neglected in current leg stiffness formulations. It is unknown if accounting for all 3D would alter healthy biologic estimates of leg stiffness, compared to present direct modelling methods. This study compared running leg stiffness derived from a new method (multiplanar method) which includes all three Cartesian axes, against current methods which either only include the vertical axis (line method) or only the plane of progression (uniplanar method). Twenty healthy female runners performed shod overground running at 5.0 m/s. Three-dimensional motion capture and synchronised in-ground force plates were used to track the change in length of the leg vector (hip joint centre to centre of pressure) and resultant projected ground reaction force. Leg stiffness was expressed as dimensionless units, as a percentage of an individual's bodyweight divided by standing leg length (BW/LL). Leg stiffness using the line method was larger than the uniplanar method by 15.6%BW/LL (P method by 24.2%BW/LL (P stiffness from the uniplanar method was larger than the multiplanar method by 8.5%BW/LL (6.5 kN/m) (P stiffness estimate with the multiplanar method. Given that limb movements typically occur in 3D, the new multiplanar method provides the most complete accounting of all force and length components in leg stiffness calculation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Molecular aging and rejuvenation of human muscle stem cells

    DEFF Research Database (Denmark)

    Carlson, Morgan E; Suetta, Charlotte; Conboy, Michael J

    2009-01-01

    . Our findings establish key evolutionarily conserved mechanisms of human stem cell aging. We find that satellite cells are maintained in aged human skeletal muscle, but fail to activate in response to muscle attrition, due to diminished activation of Notch compounded by elevated transforming growth...... factor beta (TGF-beta)/phospho Smad3 (pSmad3). Furthermore, this work reveals that mitogen-activated protein kinase (MAPK)/phosphate extracellular signal-regulated kinase (pERK) signalling declines in human muscle with age, and is important for activating Notch in human muscle stem cells. This molecular......Very little remains known about the regulation of human organ stem cells (in general, and during the aging process), and most previous data were collected in short-lived rodents. We examined whether stem cell aging in rodents could be extrapolated to genetically and environmentally variable humans...

  8. Muscle morphometric effect of anterior cruciate ligament injury measured by computed tomography: aspects on using non-injured leg as control

    Science.gov (United States)

    2013-01-01

    Background Anterior cruciate ligament (ACL) tears are common, functionally disabling, and predispose to subsequent injuries and early onset of osteoarthritis in the knee. Injuries result in muscular atrophy and impaired muscular activation. To optimize surgical methods and rehabilitation strategies, knowledge of the effects of ACL injuries on muscles size and function is needed. Asymmetry due to limb dominance implies that the effect of ACL-injury might be different in right-sided and left-sided injuries which, should be taken in account when evaluating the effect of an injury. Evaluation of the effects of injuries is usually made with the contralateral leg as control. The aim of this study is to describe the effect of ACL-injuries on thigh muscle size and also to analyze feasibility of using contralateral limb as control. Methods Sixty-two patients scheduled to undergo ACL reconstruction were examined with computed tomography (CT). Muscle cross sectional area (CSA) was recorded for quadriceps, hamstrings, gracilis and sartorius 15 cm above the knee joint. Comparisons were made between the injured and non-injured side and between individuals separated by gender and side of injury. Comparisons were also made for patients with or without concomitant meniscal tear, for patients differing in time between injury and examinations and for patients with different level of physical activity after the injury. Results Quadriceps CSA was 5% smaller on the injured side. There was an indication that the muscles of the right thigh were generally bigger than those of the left thigh. The difference between the injured and the non-injured side was larger for right-sided injuries than for left-sided. There was also a greater difference in semimembranosus for women than for men. There were no differences related to meniscal injury, time since injury or physical activity. Conclusion The use of contralateral leg for evaluating the effect of ACL-injury is often the only available

  9. Upper-limb exoskeleton for human muscle fatigue

    OpenAIRE

    Ali, SK; Tokhi, MO

    2017-01-01

    Human muscle fatigue is identified as one of the causes to musculuskeletal disorder (MSD). The objective of this paper is to investigate the effect of an exoskeleton in dealing with muscle fatigue in a virtual environment. The focus of this work is, for the exoskeleton to provide support as needed by human joint. A (Proportional, Integration and Derivative) controller is used for both human and exoskeleton. Simmechanics and Simulink are used to evaluate the performance of the exoskeleton. Exp...

  10. Intermuscular force transmission between human plantarflexor muscles in vivo

    DEFF Research Database (Denmark)

    Bojsen-Møller, Jens; Schwartz, Sidse; Kalliokoski, Kari K

    2010-01-01

    of the present study was to investigate if intermuscular force transmission occurs within and between human plantarflexor muscles in vivo. Seven subjects performed four types of either active contractile tasks or passive joint manipulations: passive knee extension, voluntary isometric plantarflexion, voluntary...... surae muscles was seen during passive hallux extension. Large interindividual differences with respect to deep plantarflexor activation during voluntary contractions were observed. The present results suggest that force may be transmitted between the triceps surae muscles in vivo, while only limited...

  11. Human skeletal muscle contains no detectable guanidinoacetic acid

    DEFF Research Database (Denmark)

    Ostojic, Sergej M; Ostojic, Jelena

    2018-01-01

    We analyzed data from previously completed trials to determine the effects of supplemental guanidinoacetic acid (GAA) on markers of muscle bioenergetics in healthy men using 1.5 T magnetic resonance spectroscopy. No detectable GAA (<0.1 μmol/L) was found in the vastus medialis muscle at baseline ...... nor at follow-up. This implies deficient GAA availability in the human skeletal muscle, suggesting absent or negligible potential for creatine synthesis from GAA inside this tissue, even after GAA loading....

  12. Unique expression of cytoskeletal proteins in human soft palate muscles.

    Science.gov (United States)

    Shah, Farhan; Berggren, Diana; Holmlund, Thorbjörn; Levring Jäghagen, Eva; Stål, Per

    2016-03-01

    The human oropharyngeal muscles have a unique anatomy with diverse and intricate functions. To investigate if this specialization is also reflected in the cytoarchitecture of muscle fibers, intermediate filament proteins and the dystrophin-associated protein complex have been analyzed in two human palate muscles, musculus uvula (UV) and musculus palatopharyngeus (PP), with immunohistochenmical and morphological techniques. Human limb muscles were used as reference. The findings show that the soft palate muscle fibers have a cytoskeletal architecture that differs from the limb muscles. While all limb muscles showed immunoreaction for a panel of antibodies directed against different domains of cytoskeletal proteins desmin and dystrophin, a subpopulation of palate muscle fibers lacked or had a faint immunoreaction for desmin (UV 11.7% and PP 9.8%) and the C-terminal of the dystrophin molecule (UV 4.2% and PP 6.4%). The vast majority of these fibers expressed slow contractile protein myosin heavy chain I. Furthermore, an unusual staining pattern was also observed in these fibers for β-dystroglycan, caveolin-3 and neuronal nitric oxide synthase nNOS, which are all membrane-linking proteins associated with the dystrophin C-terminus. While the immunoreaction for nNOS was generally weak or absent, β-dystroglycan and caveolin-3 showed a stronger immunostaining. The absence or a low expression of cytoskeletal proteins otherwise considered ubiquitous and important for integration and contraction of muscle cells indicate a unique cytoarchitecture designed to meet the intricate demands of the upper airway muscles. It can be concluded that a subgroup of muscle fibers in the human soft palate appears to have special biomechanical properties, and their unique cytoarchitecture must be taken into account while assessing function and pathology in oropharyngeal muscles. © 2015 Anatomical Society.

  13. Reduced glycogen availability is associated with an elevation in HSP72 in contracting human skeletal muscle

    DEFF Research Database (Denmark)

    Febbraio, Mark A; Steensberg, Adam; Walsh, Rory

    2002-01-01

    To test the hypothesis that a decrease in intramuscular glycogen availability may stimulate heat shock protein expression, seven men depleted one leg of muscle glycogen the day before performing 4-5 h of exhaustive, two-legged knee extensor exercise at 40 % of leg peak power output. Subjects...... and both femoral veins and blood was sampled from these catheters prior to exercise and at 1 h intervals during exercise and into recovery for the measurement of arterial-venous differences in serum HSP72. Plasma creatine kinase (CK) was also measured from arterial blood samples. Pre-exercise muscle...

  14. Pneumatic Muscles Actuated Lower-Limb Orthosis Model Verification with Actual Human Muscle Activation Patterns

    Directory of Open Access Journals (Sweden)

    Dzahir M.A.M

    2017-01-01

    Full Text Available A review study was conducted on existing lower-limb orthosis systems for rehabilitation which implemented pneumatic muscle type of actuators with the aim to clarify the current and on-going research in this field. The implementation of pneumatic artificial muscle will play an important role for the development of the advanced robotic system. In this research a derivation model for the antagonistic mono- and bi-articular muscles using pneumatic artificial muscles of a lower limb orthosis will be verified with actual human’s muscle activities models. A healthy and young male 29 years old subject with height 174cm and weight 68kg was used as a test subject. Two mono-articular muscles Vastus Medialis (VM and Vastus Lateralis (VL were selected to verify the mono-articular muscle models and muscle synergy between anterior muscles. Two biarticular muscles Rectus Femoris (RF and Bicep Femoris (BF were selected to verify the bi-articular muscle models and muscle co-contraction between anterior-posterior muscles. The test was carried out on a treadmill with a speed of 4.0 km/h, which approximately around 1.25 m/s for completing one cycle of walking motion. The data was collected for about one minute on a treadmill and 20 complete cycles of walking motion were successfully recorded. For the evaluations, the mathematical model obtained from the derivation and the actual human muscle activation patterns obtained using the surface electromyography (sEMG system were compared and analysed. The results shown that, high correlation values ranging from 0.83 up to 0.93 were obtained in between the derivation model and the actual human muscle’s model for both mono- and biarticular muscles. As a conclusion, based on the verification with the sEMG muscle activities data and its correlation values, the proposed derivation models of the antagonistic mono- and bi-articular muscles were suitable to simulate and controls the pneumatic muscles actuated lower limb

  15. The expression of HSP in human skeletal muscle. Effects of muscle fiber phenotype and training background

    DEFF Research Database (Denmark)

    Folkesson, Mattias; Mackey, Abigail L; Langberg, Henning

    2013-01-01

    AIM: Exercise-induced adaptations of skeletal muscle are related to training mode and can be muscle fibre type specific. This study aimed to investigate heat shock protein expression in type I and type II muscle fibres in resting skeletal muscle of subjects with different training backgrounds...... myosin heavy chain I and IIA, αB-crystallin, HSP27, HSP60 and HSP70. RESULTS: In ACT and RES, but not in END, a fibre type specific expression with higher staining intensity in type I than type II fibres was seen for αB-crystallin. The opposite (II>I) was found for HSP27 in subjects from ACT (6 of 12...... HSPs in human skeletal muscle is influenced by muscle fibre phenotype. The fibre type specific expression of HSP70 is influenced by resistance and endurance training whereas those of αB-crystallin and HSP27 are influenced only by endurance training suggesting the existence of a training...

  16. Mediators on human airway smooth muscle.

    Science.gov (United States)

    Armour, C; Johnson, P; Anticevich, S; Ammit, A; McKay, K; Hughes, M; Black, J

    1997-01-01

    1. Bronchial hyperresponsiveness in asthma may be due to several abnormalities, but must include alterations in the airway smooth muscle responsiveness and/or volume. 2. Increased responsiveness of airway smooth muscle in vitro can be induced by certain inflammatory cell products and by induction of sensitization (atopy). 3. Increased airway smooth muscle growth can also be induced by inflammatory cell products and atopic serum. 4. Mast cell numbers are increased in the airways of asthmatics and, in our studies, in airway smooth muscle that is sensitized and hyperresponsive. 5. We propose that there is a relationship between mast cells and airway smooth muscle cells which, once an allergic process has been initiated, results in the development of critical features in the lungs in asthma.

  17. Observational Study on the Occurrence of Muscle Spindles in Human Digastric and Mylohyoideus Muscles

    Directory of Open Access Journals (Sweden)

    Daniele Saverino

    2014-01-01

    Full Text Available Although the occurrence of muscle spindles (MS is quite high in most skeletal muscles of humans, few MS, or even absence, have been reported in digastric and mylohyoideus muscles. Even if this condition is generally accepted and quoted in many papers and books, observational studies are scarce and based on histological sections of a low number of specimens. The aim of the present study is to confirm previous data, assessing MS number in a sample of digastric and mylohyoideus muscles. We investigated 11 digastric and 6 mylohyoideus muscles from 13 donors. Muscle samples were embedded in paraffin wax, cross-sectioned in a rostrocaudal direction, and stained using haematoxylin-eosin. A mean of 5.1 ± 1.1 (range 3–7 MS was found in digastric muscles and mean of 0.5 ± 0.8 (range 0–2 in mylohyoideus muscles. A significant difference (P<0.001 was found with the control sample, confirming the correctness of the histological procedure. Our results support general belief that the absolute number of spindles is sparse in digastric and mylohyoideus muscles. External forces, such as food resistance during chewing or gravity, do not counteract jaw-opening muscles. It is conceivable that this condition gives them a limited proprioceptive importance and a reduced need for having specific receptors as MS.

  18. A new anthropometric phantom of the human leg for calibrating in vivo measurements of stable lead in bone using x-ray fluorescence

    International Nuclear Information System (INIS)

    Spitz, Henry; Jenkins, Mark; Lodwick, Jeffrey

    1997-01-01

    Full text. A new anthropometric phantom of the human leg has been developed for calibrating in vivo measurements of stable lead in the bone using x-ray fluorescence. The phantom reproduces the shape and radiological characteristics of the midshaft of the human leg and includes tissue substitutes for cortical bone, bone marrow, and muscle which have been formulated using polyurethanes and calcium carbonate to provide the desired characteristics of density x-ray attenuation, and calcium content. The phantom includes a set of simulated tibia bones, each containing a precisely known concentration of stable lead, that can be easily inserted into the leg. Formerly, of a set of plexiglas cylinders filled with plaster of-paris, each containing a known lead content, was the consensus standard calibration phantom. Tissue substitute materials used in the new anthropometric calibration phantom are much more uniform in density and composition than the plaster-of-paris phantoms and its realistic appearance provides a practical means of evaluating the variability in measurements results due to the changes in subject-detector positioning. Use of the new anthropometric calibration phantom results in a energy spectrum that closely resembles the spectrum observed when measuring a human subject. The energy spectrum produced by the plaster-of-paris phantom lacks the substantial Compton Scattering component produced by the leg muscle mass which leads to unrealistic estimates of in vivo measurement sensitivity. The minimum detection limit (MDL) for in vivo measurement of stable lead in bone, using an efficiency derived from the new anthropometric phantom, ranges from 18,6 parts per million (ppm) to 26,3 ppm using the K β1,3 /Elastic ratio or the K 1 /Elastic ratio, respectively. These values are significantly greater than the MDL cited in the literature obtained using a efficiency derived the conventional cylindrical plaster-of-paris phantom. Likewise, the realistic shape of the new

  19. Variability of protein level and phosphorylation status caused by biopsy protocol design in human skeletal muscle analyses

    Directory of Open Access Journals (Sweden)

    Caron Marc-André

    2011-11-01

    Full Text Available Abstract Background Bergström needle biopsy is widely used to sample skeletal muscle in order to study cell signaling directly in human tissue. Consequences of the biopsy protocol design on muscle protein quantity and quality remain unclear. The aim of the present study was to assess the impact of different events surrounding biopsy protocol on the stability of the Western blot signal of eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1, Akt, glycogen synthase kinase-3β (GSK-3β, muscle RING finger protein 1 (MuRF1 and p70 S6 kinase (p70 S6K. Six healthy subjects underwent four biopsies of the vastus lateralis, distributed into two distinct visits spaced by 48 hrs. At visit 1, a basal biopsy in the right leg was performed in the morning (R1 followed by a second in the left leg in the afternoon (AF. At visit 2, a second basal biopsy (R2 was collected from the right leg. Low intensity mobilization (3 × 20 right leg extensions was performed and a final biopsy (Mob was collected using the same incision site as R2. Results Akt and p70 S6K phosphorylation levels were increased by 83% when AF biopsy was compared to R1. Mob condition induced important phosphorylation of p70 S6K when compared to R2. Comparison of R1 and R2 biopsies revealed a relative stability of the signal for both total and phosphorylated proteins. Conclusions This study highlights the importance to standardize muscle biopsy protocols in order to minimize the method-induced variation when analyzing Western blot signals.

  20. Human skeletal muscle glycogen utilization in exhaustive exercise

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Holmberg, Hans-Christer; Schrøder, Henrik Daa

    2011-01-01

    Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis...... to be influenced by fibre type prior to exercise, as well as carbohydrate availability during the subsequent period of recovery. These findings provide insight into the significance of fibre type-specific compartmentalization of glycogen metabolism in skeletal muscle during exercise and subsequent recovery. ....... that utilization of glycogen with different subcellular localizations during exhaustive arm and leg exercise differs and examined the influence of fibre type and carbohydrate availability on its subsequent resynthesis. When 10 elite endurance athletes (22 ± 1 years, VO2 max = 68 ± 5 ml kg-1 min-1, mean ± SD...

  1. Cryopreservation of human skeletal muscle impairs mitochondrial function

    DEFF Research Database (Denmark)

    Larsen, Steen; Wright-Paradis, C; Gnaiger, E

    2012-01-01

    functionality after long term cryopreservation (1 year). Skeletal muscle samples were preserved in dimethyl sulfoxide (DMSO) for later analysis. Human skeletal muscle fibres were thawed and permeabilised with saponin, and mitochondrial respiration was measured by high-resolution respirometry. The capacity...

  2. Localization of nitric oxide synthase in human skeletal muscle

    DEFF Research Database (Denmark)

    Frandsen, Ulrik; Lopez-Figueroa, M.; Hellsten, Ylva

    1996-01-01

    The present study investigated the cellular localization of the neuronal type I and endothelial type III nitric oxide synthase in human skeletal muscle. Type I NO synthase immunoreactivity was found in the sarcolemma and the cytoplasm of all muscle fibres. Stronger immunoreactivity was expressed...

  3. Sympathetic Vasoconstrictor Responsiveness of the Leg Vasculature During Experimental Endotoxemia and Hypoxia in Humans

    DEFF Research Database (Denmark)

    Brassard, Patrice; Zaar, Morten; Thaning, Pia

    2016-01-01

    . DESIGN: Prospective descriptive study. SETTING: Hospital research laboratory. SUBJECTS: Ten healthy young men (age [mean ± SD], 31 ± 8 yr; body weight, 83 ± 10 kg) participated in the study. INTERVENTIONS: Leg blood flow and mean arterial pressure were determined, whereas leg vascular conductance...... was calculated during 1) adenosine infusion (vasodilator control), 2) hypoxia (FIO2 = 10%), 3) endotoxemia, and 4) endotoxemia + hypoxia. Leg sympathetic vasoconstrictor responsiveness (reduction in leg vascular conductance) was evaluated by femoral artery tyramine infusion. MEASUREMENTS AND MAIN RESULTS......: Endotoxemia increased body temperature from 36.9 ± 0.4°C to 38.6 ± 0.5°C (p necrosis factor-α from 6 pg/mL (3-8 pg/mL) to 391 pg/mL (128-2258 pg/mL) (p

  4. Vibration sensitivity of human muscle spindles and Golgi tendon organs.

    Science.gov (United States)

    Fallon, James B; Macefield, Vaughan G

    2007-07-01

    The responses of the various muscle receptors to vibration are more complicated than a naïve categorization into stretch (muscle spindle primary ending), length (muscle spindle secondary endings), and tension (Golgi tendon organs) receptors. To emphasize the similarity of responses to small length changes, we recorded from 58 individual muscle afferents subserving receptors in the ankle or toe dorsiflexors of awake human subjects (32 primary endings, 20 secondary endings, and six Golgi tendon organs). Transverse sinusoidal vibration was applied to the distal tendon of the receptor-bearing muscle, while subjects either remained completely relaxed or maintained a weak isometric contraction of the appropriate muscle. In relaxed muscle, few units responded in a 1:1 manner to vibration, and there was no evidence of a preferred frequency of activation. In active muscle the response profiles of all three receptor types overlapped, with no significant difference in threshold between receptor types. These results emphasize that when intramuscular tension increases during a voluntary contraction, Golgi tendon organs and muscle spindle secondary endings, not just muscle spindle primary endings, can effectively encode small imposed length changes.

  5. Efficacy of Nintendo Wii Training on Mechanical Leg Muscle Function and Postural Balance in Community-Dwelling Older Adults

    DEFF Research Database (Denmark)

    Jorgensen, Martin G; Laessoe, Uffe; Hendriksen, Carsten

    2013-01-01

    BACKGROUND: Older adults show increased risk of falling and major risk factors include impaired lower extremity muscle strength and postural balance. However, the potential positive effect of biofeedback-based Nintendo Wii training on muscle strength and postural balance in older adults is unknown....... METHODS: This randomized controlled trial examined postural balance and muscle strength in community-dwelling older adults (75±6 years) pre- and post-10 weeks of biofeedback-based Nintendo Wii training (WII, n = 28) or daily use of ethylene vinyl acetate copolymer insoles (controls [CON], n = 30). Primary...... end points were maximal muscle strength (maximal voluntary contraction) and center of pressure velocity moment during bilateral static stance. RESULTS: Intention-to-treat analysis with adjustment for age, sex, and baseline level showed that the WII group had higher maximal voluntary contraction...

  6. Potentiation of cGMP signaling increases oxygen delivery and oxidative metabolism in contracting skeletal muscle of older but not young humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Piil, Peter Bergmann; Egelund, Jon

    2015-01-01

    regulation remain unresolved. Cyclic guanosine monophosphate (cGMP) is one of the main second messengers that mediate smooth muscle vasodilation and alterations in cGMP signaling could, therefore, be one mechanism by which skeletal muscle perfusion is impaired with advancing age. The current study aimed...... to evaluate the effect of inhibiting the main enzyme involved in cGMP degradation, phosphodiesterase 5 (PDE5), on blood flow and O2 delivery in contracting skeletal muscle of young and older humans. A group of young (23 ± 1 years) and a group of older (72 ± 2 years) male human subjects performed submaximal...... in the older subjects correlated with the increase in leg O2 uptake (r (2) = 0.843). These findings suggest an insufficient O2 delivery to the contracting skeletal muscle of aged individuals and that reduced cGMP availability is a novel mechanism underlying impaired skeletal muscle perfusion with advancing age....

  7. Detection of melatonin receptor mRNA in human muscle

    International Nuclear Information System (INIS)

    Li Lei

    2004-01-01

    To verify the expression of melatonin receptor mRNA in human, muscle, muscle beside vertebrae was collected to obtain total RNA and the mRNA of melatonin receptor was detected by RT-PCR method. The electrophoretic results of RT-PCR products by mt 1 and MT 2 primer were all positive and the sequence is corresponding with human melatonin receptor cDNA. It suggests that melatonin may act on the muscle beside vertebrae directly and regulate its growth and development. (authors)

  8. Metabolic control of muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher

    2003-01-01

    that combined blockade of NOS and PGI2, and NOS and cytochrome P450, both attenuate exercise-induced hyperemia in humans. Combined vasodilator blockade studies offer the potential to uncover important interactions and compensatory vasodilator responses. The signaling pathways that link metabolic events evoked...... to exert control of muscle vasodilation. Adenosine, nitric oxide (NO), prostacyclin (PGI2), and endothelial-derived hyperpolarization factor (EDHF) are possible mediators of muscle vasodilation during exercise. In humans, adenosine has been shown to contribute to functional hyperemia as blood flow...... by muscle contraction to vasodilatory signals in the local vascular bed remains an important area of study....

  9. Decellularized Human Skeletal Muscle as Biologic Scaffold for Reconstructive Surgery

    Directory of Open Access Journals (Sweden)

    Andrea Porzionato

    2015-07-01

    Full Text Available Engineered skeletal muscle tissues have been proposed as potential solutions for volumetric muscle losses, and biologic scaffolds have been obtained by decellularization of animal skeletal muscles. The aim of the present work was to analyse the characteristics of a biologic scaffold obtained by decellularization of human skeletal muscles (also through comparison with rats and rabbits and to evaluate its integration capability in a rabbit model with an abdominal wall defect. Rat, rabbit and human muscle samples were alternatively decellularized with two protocols: n.1, involving sodium deoxycholate and DNase I; n.2, trypsin-EDTA and Triton X-NH4OH. Protocol 2 proved more effective, removing all cellular material and maintaining the three-dimensional networks of collagen and elastic fibers. Ultrastructural analyses with transmission and scanning electron microscopy confirmed the preservation of collagen, elastic fibres, glycosaminoglycans and proteoglycans. Implantation of human scaffolds in rabbits gave good results in terms of integration, although recellularization by muscle cells was not completely achieved. In conclusion, human skeletal muscles may be effectively decellularized to obtain scaffolds preserving the architecture of the extracellular matrix and showing mechanical properties suitable for implantation/integration. Further analyses will be necessary to verify the suitability of these scaffolds for in vitro recolonization by autologous cells before in vivo implantation.

  10. The effect of swinging the arms on muscle activation and production of leg force during ski skating at different skiing speeds.

    Science.gov (United States)

    Göpfert, Caroline; Lindinger, Stefan J; Ohtonen, Olli; Rapp, Walter; Müller, Erich; Linnamo, Vesa

    2016-06-01

    The study investigated the effects of arm swing during leg push-off in V2-alternate/G4 skating on neuromuscular activation and force production by the leg muscles. Nine skilled cross-country skiers performed V2-alternate skating without poles at moderate, high, and maximal speeds, both with free (SWING) and restricted arm swing (NOSWING). Maximal speed was 5% greater in SWING (P<0.01), while neuromuscular activation and produced forces did not differ between techniques. At both moderate and high speed the maximal (2% and 5%, respectively) and average (both 5%) vertical force and associated impulse (10% and 14%) were greater with SWING (all P<0.05). At high speed range of motion and angular velocity of knee flexion were 24% greater with SWING (both P<0.05), while average EMG of m. biceps femoris was 31% lower (all P<0.05) in SWING. In a similar manner, the average EMG of m. vastus medialis and m. biceps femoris were lower (17% and 32%, P<0.05) during the following knee extension. Thus, swinging the arms while performing V2-alternate can enhance both maximal speed and skiing economy at moderate and, in particularly, high speeds. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Technetium-99m sestamibi leg scintigraphy for non-invasive assessment of propionyl-l-carnitine induced changes in skeletal muscle metabolism

    International Nuclear Information System (INIS)

    Cittanti, C.; Colamussi, P.; Giganti, M.; Orlandi, C.; Uccelli, L.; Manfrini, S.; Azzena, G.; Piffanelli, A.

    1997-01-01

    Carnitine derivatives, such as propionyl-l-carnitine (PLC), have been shown to improve walking distance in patients with obstructive peripheral artery disease (PAOD). The aim of this study was to ascertain whether technetium-99m sestamibi leg scintigraphy may be a useful tool in the evaluation of changes in skeletal muscle metabolism induced by chronic therapy with PLC. Twenty patients with clinical and instrumental evidence of PAOD were randomly assigned to a 3-month period of therapy with either PLC or placebo. Rest 99m Tc-sestamibi leg scintigraphy and echo-Doppler sonography were performed on all subjects immediately before and upon completion of the treatment period. At the end of the protocol the following results were observed in patients who underwent PLC administration: (a) a significant increase in both thigh and calf 99m Tc-sestamibi uptake, in comparison with baseline values (P 99m Tc-sestamibi was demonstrated without any apparent change in regional blood flow. This fact, if proven in further studies, may suggest a role for this tracer as a non-invasive probe of tissue bioenergetics. (orig.). With 4 figs., 4 tabs

  12. Protein turnover in the breast muscle of broiler chicks and studies addressing chlorine dioxide sanitation of hatching eggs, poultry leg problems and wheat middling diets for laying hens

    International Nuclear Information System (INIS)

    Patterson, P.H.

    1988-01-01

    Developmental changes occurred in breast muscle Ks measured by 14 C-tyrosine incorporation at 10, 16, 22 and 34 days of age. Protein synthesis rates decreased as the birds matures: 30 to 11.2%/d between 10 and 34 days of age. In a second study birds fed diets low in lysine or protein-energy had reduced fractional rates of protein synthesis and free tyrosine, branched chain and large neutral amino acid concentrations as compared to control birds the same body weight. Artificial weight loading and reduced dietary protein levels were used to study the effects of body weight on the severity of leg deformities in chicks and poults. Experiments investigating the practicality of wheat middlings as an alternate feedstuff for laying hens suggested that high levels in the diet will reduce egg production, feed conversion, hen livability and egg yolk color. Lastly, chlorine dioxide foam and dipping solutions were compared with formaldehyde fumigation for sanitizing hatching eggs

  13. Temperature and blood flow distribution in the human leg during passive heat stress.

    Science.gov (United States)

    Chiesa, Scott T; Trangmar, Steven J; González-Alonso, José

    2016-05-01

    The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia. Copyright © 2016 the American Physiological Society.

  14. AMP kinase expression and activity in human skeletal muscle: effects of immobilization, retraining, and creatine supplementation

    DEFF Research Database (Denmark)

    Eijnde, Bert O.; Derave, Wim; Wojtaszewski, Jørgen

    2005-01-01

    The effects of leg immobilization and retraining in combination with oral creatine intake on muscle AMP-activated protein kinase (AMPK) protein expression and phosphorylation status were investigated. A double-blind trial was performed in young healthy volunteers (n = 22). A cast immobilized...... the right leg for 2 wk, whereafter the knee-extensor muscles of that leg were retrained for 6 wk. Half of the subjects received creatine monohydrate throughout the study (Cr; from 15 g down to 2.5 g daily), and the others ingested placebo (P; maltodextrin). Before and after immobilization and retraining...... that immobilization-induced muscle inactivity for 2 wk does not alter AMPK a1-, a2-, and ß2-subunit expression or a-AMPK phosphorylation status. Furthermore, the present observations indicate that AMPK probably is not implicated in the previously reported beneficial effects of oral creatine supplementation on muscle...

  15. Morphology of muscle attachment sites in the modern human hand does not reflect muscle architecture.

    Science.gov (United States)

    Williams-Hatala, E M; Hatala, K G; Hiles, S; Rabey, K N

    2016-06-23

    Muscle attachment sites (entheses) on dry bones are regularly used by paleontologists to infer soft tissue anatomy and to reconstruct behaviors of extinct organisms. This method is commonly applied to fossil hominin hand bones to assess their abilities to participate in Paleolithic stone tool behaviors. Little is known, however, about how or even whether muscle anatomy and activity regimes influence the morphologies of their entheses, especially in the hand. Using the opponens muscles from a sample of modern humans, we tested the hypothesis that aspects of hand muscle architecture that are known to be influenced by behavior correlate with the size and shape of their associated entheses. Results show no consistent relationships between these behaviorally-influenced aspects of muscle architecture and entheseal morphology. Consequently, it is likely premature to infer patterns of behavior, such as stone tool making in fossil hominins, from these same entheses.

  16. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Søren; Scheele, Camilla; Yfanti, Christina

    2010-01-01

    Muscle specific miRNAs, myomiRs, have been shown to control muscle development in vitro and are differentially expressed at rest in diabetic skeletal muscle. Therefore, we investigated the expression of these myomiRs, including miR-1, miR-133a, miR-133b and miR-206 in muscle biopsies from vastus...... lateralis of healthy young males (n = 10) in relation to a hyperinsulinaemic–euglycaemic clamp as well as acute endurance exercise before and after 12 weeks of endurance training. The subjects increased their endurance capacity, VO2max (l min-1) by 17.4% (P improved insulin sensitivity by 19......, but their role in regulating human skeletal muscle adaptation remains unknown....

  17. Muscle-specific expression of hypoxia-inducible factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Mounier, Rémi; Pedersen, Bente Klarlund; Plomgaard, Peter

    2010-01-01

    fibres that possess unique patterns of protein and gene expression, producing different capillarization and energy metabolism systems. In this work, we analysed HIF-1alpha mRNA and protein expression related to the fibre-type composition in untrained human skeletal muscle by obtaining muscle biopsies...... from triceps brachii (characterized by a high proportion of type II fibres), from soleus (characterized by a high proportion of type I fibres) and from vastus lateralis (characterized by an equal proportion of type I and II fibres). The hypothesis was that type I muscle fibres would have lower HIF-1......alpha protein level. Interestingly, none of the HIF-1alpha target genes, like the most studied angiogenic factor involved in muscle angiogenesis, vascular endothelial growth factor (VEGF), exhibited a muscle fibre-specific-related mRNA expression at rest in normoxia. However, soleus presented...

  18. Transversal stiffness of fibers and desmin content in leg muscles of rats under gravitational unloading of various durations.

    Science.gov (United States)

    Ogneva, I V

    2010-12-01

    The aim of this research was the analysis of structural changes in various parts of the sarcolemma and contractile apparatus of muscle fibers by measuring their transversal stiffness by atomic force microscopy under gravitational unloading. Soleus, medial gastrocnemius, and tibialis anterior muscles of Wistar rats were the objects of the study. Gravitational unloading was carried out by antiorthostatic suspension of hindlimbs for 1, 3, 7, and 12 days. It was shown that the transversal stiffness of different parts of the contractile apparatus of soleus muscle fibers decreases during gravitational unloading in the relaxed, calcium-activated, and rigor states, the fibers of the medial gastrocnemius show no changes, whereas the transversal stiffness of tibialis anterior muscle increases. Thus the transversal stiffness of the sarcolemma in the relaxed state is reduced in all muscles, which may be due to the direct action of gravity as an external mechanical factor that can influence the tension on a membrane. The change of sarcolemma stiffness in activated fibers, which is due probably to the transfer of tension from the contractile apparatus, correlates with the dynamics of changes in the content of desmin.

  19. Regulation of the skeletal muscle blood flow in humans

    DEFF Research Database (Denmark)

    Mortensen, Stefan; Saltin, Bengt

    2014-01-01

    In humans, skeletal muscle blood flow is regulated by an interaction between several locally formed vasodilators including nitric oxide (NO) and prostaglandins. In plasma, ATP is a potent vasodilator that stimulates the formation of NO and prostaglandins and very importantly can offset local...... concentration does not increase during exercise. In the skeletal muscle interstitium, there is a marked increase in the concentration of ATP and adenosine and this increase is tightly coupled to the increase in blood flow. The sources of interstitial ATP and adenosine are thought to be skeletal muscle cells...... hyperaemia whereas the role of ATP remains uncertain due to lack of specific purinergic receptor blockers for human use. The purpose of this review is to address the interaction between vasodilator systems and to discuss the multiple proposed roles of ATP in human skeletal muscle blood flow regulation...

  20. Effect of exercise-induced enhancement of the leg-extensor muscle-tendon unit capacities on ambulatory mechanics and knee osteoarthritis markers in the elderly.

    Science.gov (United States)

    Karamanidis, Kiros; Oberländer, Kai Daniel; Niehoff, Anja; Epro, Gaspar; Brüggemann, Gert-Peter

    2014-01-01

    Leg-extensor muscle weakness could be a key component in knee joint degeneration in the elderly because it may result in altered muscular control during locomotion influencing the mechanical environment within the joint. This work aimed to examine whether an exercise-induced enhancement of the triceps surae (TS) and quadriceps femoris (QF) muscle-tendon unit (MTU) capacities would affect mechanical and biological markers for knee osteoarthritis in the elderly. Twelve older women completed a 14-week TS and QF MTU exercise intervention, which had already been established as increasing muscle strength and tendon stiffness. Locomotion mechanics and serum cartilage oligomeric matrix protein (COMP) levels were examined during incline walking. MTU mechanical properties were assessed using simultaneously ultrasonography and dynamometry. Post exercise intervention, the elderly had higher TS and QF contractile strength and tendon-aponeurosis stiffness. Regarding the incline gait task, the subjects demonstrated a lower external knee adduction moment and lower knee adduction angular impulse during the stance phase post-intervention. Furthermore, post-intervention compared to pre-intervention, the elderly showed lower external hip adduction moment, but revealed higher plantarflexion pushoff moment. The changes in the external knee adduction moment were significantly correlated with the improvement in ankle pushoff function. Serum COMP concentration increased in response to the 0.5-h incline walking exercise with no differences in the magnitude of increment between pre- and post-intervention. This work emphasizes the important role played by the ankle pushoff function in knee joint mechanical loading during locomotion, and may justify the inclusion of the TS MTU in prevention programs aiming to positively influence specific mechanical markers for knee osteoarthritis in the elderly. However, the study was unable to show that COMP is amenable to change in the elderly following a

  1. Muscle biopsies from human muscle diseases with myopathic pathology reveal common alterations in mitochondrial function.

    Science.gov (United States)

    Sunitha, Balaraju; Gayathri, Narayanappa; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Nalini, Atchayaram; Padmanabhan, Balasundaram; Srinivas Bharath, Muchukunte Mukunda

    2016-07-01

    Muscle diseases are clinically and genetically heterogeneous and manifest as dystrophic, inflammatory and myopathic pathologies, among others. Our previous study on the cardiotoxin mouse model of myodegeneration and inflammation linked muscle pathology with mitochondrial damage and oxidative stress. In this study, we investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies from muscle disease patients, represented by dysferlinopathy (dysfy) (dystrophic pathology; n = 43), polymyositis (PM) (inflammatory pathology; n = 24), and distal myopathy with rimmed vacuoles (DMRV) (distal myopathy; n = 31) were analyzed. Mitochondrial damage (ragged blue and COX-deficient fibers) was revealed in dysfy, PM, and DMRV cases by enzyme histochemistry (SDH and COX-SDH), electron microscopy (vacuolation and altered cristae) and biochemical assays (significantly increased ADP/ATP ratio). Proteomic analysis of muscle mitochondria from all three muscle diseases by isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis demonstrated down-regulation of electron transport chain (ETC) complex subunits, assembly factors and Krebs cycle enzymes. Interestingly, 80 of the under-expressed proteins were common among the three pathologies. Assay of ETC and Krebs cycle enzyme activities validated the MS data. Mitochondrial proteins from muscle pathologies also displayed higher tryptophan (Trp) oxidation and the same was corroborated in the cardiotoxin model. Molecular modeling predicted Trp oxidation to alter the local structure of mitochondrial proteins. Our data highlight mitochondrial alterations in muscle pathologies, represented by morphological changes, altered mitochondrial proteome and protein oxidation, thereby establishing the role of mitochondrial damage in human muscle diseases. We investigated whether human muscle diseases display mitochondrial changes. Muscle biopsies

  2. Metabolism of branched-chain amino acids in leg muscles from tail-cast suspended intact and adrenalectomized rats

    Science.gov (United States)

    Jaspers, Stephen R.; Henriksen, Erik; Jacob, Stephan; Tischler, Marc E.

    1989-01-01

    The effects of muscle unloading, adrenalectomy, and cortisol treatment on the metabolism of branched-chain amino acids in the soleus and extensor digitorum longus of tail-cast suspended rats were investigated using C-14-labeled lucine, isoleucine, and valine in incubation studies. It was found that, compared to not suspended controls, the degradation of branched-chain amino acids in hind limb muscles was accelerated in tail-cast suspended rats. Adrenalectomy was found to abolish the aminotransferase flux and to diminish the dehydrogenase flux in the soleus. The data also suggest that cortisol treatment increases the rate of metabolism of branched-chain amino acids at the dehydrogenase step.

  3. Development of Human Muscle Protein Measurement with MRI

    Science.gov (United States)

    Lin, Chen; Evans, Harlan; Leblanc, Adrian D.

    1997-01-01

    It is known that micro-gravity has a strong influence on the human musculoskeletal system. A number of studies have shown that significant changes in skeletal muscles occur in both space flight and bedrest simulation. In our 5 week bedrest study, the cross-sectional area of soleus-gastrocnemius decreased about 12% while the cross-sectional area of anterior calf muscles decreased about 4%. Using volume measurements, these losses increased after 17 weeks to approximately 30% and 21% respectively. Significant muscle atrophy was also found on the SL-J crew members after only 8 days in space. It is important that these effects are fully understood so that countermeasures can be developed. The same knowledge might also be useful in preventing muscle atrophy related to other medical problems. A major problem with anatomical measurements of muscle during bed rest and microgravity is the influence of fluid shifts and water balance on the measurement of muscle volume, especially when the exposure duration is short and the atrophy is relatively small. Fluid shifts were documented in Skylab by visual observations of blood vessel distention, rapid changes in limb volume, center of mass measurements and subjective descriptions such as puffy faces and head fullness. It has been reported that the muscle water content of biopsied soleus muscles decreased following 8 hours of head down tilt bed rest. Three aspects of fluid shifts that can affect volume measurements are: first, the shift of fluid that occurs whenever there is a change from upright to a recumbent position and vice versa; second, the potential for fluid accumulation in the lower limbs resulting from muscle damage caused by overextending atrophied muscle or swelling caused by deconditioned precapillary sphincter muscles during reambulation; third, the net change of hydration level during and after bed rest or spaceflight. Because of these transitory fluid shifts, muscle protein is expected to represent muscle capacity

  4. Hemodynamic changes in rat leg muscles during tourniquet-induced ischemia-reperfusion injury observed by near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Kim, J G; Lee, J; Tromberg, B J; Brenner, M; Roe, J; Walters, T J

    2009-01-01

    In this study, we hypothesized that non-invasive continuous wave near-infrared spectroscopy (CWNIRS) can determine the severity or reversibility of muscle damage due to ischemia/reperfusion (I/R), and the results will be highly correlated with those from physical examination and histological analysis. To test this hypothesis, we performed CWNIRS measurements on two groups of male Sprague-Dawley rats (∼400 g) that underwent 2 h (n = 6) or 3 h (n = 7) of pneumatic tourniquet application (TKA). Tissue oxyhemoglobin [HbO 2 ] and deoxyhemoglobin [Hb] concentration changes were monitored during the 2 h or 3 h of 250 mmHg TKA and for an additional 2 h post-TKA. Rats were euthanized 24 h post-TKA and examined for injury, edema and viability of muscles. Contralateral muscles served as controls for each animal. In both groups, [HbO 2 ] dropped immediately, then gradually decreased further after TKA and then recovered once the tourniquet was released. However, releasing after 2 h of TKA caused [HbO 2 ] to overshoot above the baseline during reperfusion while the 3 h group continued to have lower [HbO 2 ] than baseline. We found a significant correlation between the elapsed time from tourniquet release to the first recovery peak of [HbO 2 ] and the muscle weight ratio between tourniquet and contralateral limb muscles (R = 0.86). Hemodynamic patterns from non-invasive CWNIRS demonstrated significant differences between 2 h and 3 h I/R. The results demonstrate that CWNIRS may be useful as a non-invasive prognostic tool for conditions involving vascular compromise such as extremity compartment syndrome

  5. Alpha adrenergic receptor blockade increases capillarisation and fractional O2 extraction and lowers blood flow in contracting human skeletal muscle

    DEFF Research Database (Denmark)

    Mortensen, Stefan P; Egginton, Stuart; Madsen, Mads

    2017-01-01

    AIM: To investigate the effect of elevated basal shear stress on angiogenesis in humans, and the role of enhanced skeletal muscle capillarisation on blood flow and O2 extraction. METHODS: Limb haemodynamics and O2 extraction was measured at rest and during one-leg knee-extensor exercise (12 and 24W......) in 10 healthy untrained young men before and after 4 weeks treatment with an α1 receptor-antagonist (Terazosin, 1-2 mg day(-1) ). Corresponding biopsies were taken from the m. vastus lateralis. RESULTS: Resting leg blood flow was increased by 57% 6 hours following Terazosin treatment (P... basal capillary-to-fibre ratio was 1.69±0.08 and increased to 1.90±0.08 after treatment (Pblood flow and venous lactate levels lower (6-7%; P

  6. Effect of spaceflight on the subcutaneous venoarteriolar reflex in the human lower leg

    DEFF Research Database (Denmark)

    Gabrielsen, Anders; Norsk, Peter

    2007-01-01

    by gravity, we tested the hypothesis that long-term weightlessness would attenuate it. The reduction in subcutaneous blood flow was measured by the (133)Xe washout technique just proximal to the ankle joint in dependent lower legs of eight supine astronauts, where the knee joint was passively bent by 90...

  7. Human muscle proteins: analysis by two-dimensional electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S.; Danon, M.J.; Anderson, N.G.

    1983-09-01

    Proteins from single frozen sections of human muscle were separated by two-dimensional gel electrophoresis and detected by fluorography or Coomassie Blue staining. The major proteins were identical in different normal muscles obtained from either sex at different ages, and in Duchenne and myotonic dystrophy samples. Congenital myopathy denervation atrophy, polymyositis, and Becker's muscular dystrophy samples, however, showed abnormal myosin light chain compositions, some with a decrease of fast-fiber myosin light chains and others with a decrease of slow-fiber light chains. These protein alterations did not correlate with any specific disease, and may be cause by generalized muscle-fiber damage.

  8. Postexercise muscle glycogen resynthesis in humans.

    Science.gov (United States)

    Burke, Louise M; van Loon, Luc J C; Hawley, John A

    2017-05-01

    Since the pioneering studies conducted in the 1960s in which glycogen status was investigated using the muscle biopsy technique, sports scientists have developed a sophisticated appreciation of the role of glycogen in cellular adaptation and exercise performance, as well as sites of storage of this important metabolic fuel. While sports nutrition guidelines have evolved during the past decade to incorporate sport-specific and periodized manipulation of carbohydrate (CHO) availability, athletes attempt to maximize muscle glycogen synthesis between important workouts or competitive events so that fuel stores closely match the demands of the prescribed exercise. Therefore, it is important to understand the factors that enhance or impair this biphasic process. In the early postexercise period (0-4 h), glycogen depletion provides a strong drive for its own resynthesis, with the provision of CHO (~1 g/kg body mass) optimizing this process. During the later phase of recovery (4-24 h), CHO intake should meet the anticipated fuel needs of the training/competition, with the type, form, and pattern of intake being less important than total intake. Dietary strategies that can enhance glycogen synthesis from suboptimal amounts of CHO or energy intake are of practical interest to many athletes; in this scenario, the coingestion of protein with CHO can assist glycogen storage. Future research should identify other factors that enhance the rate of synthesis of glycogen storage in a limited time frame, improve glycogen storage from a limited CHO intake, or increase muscle glycogen supercompensation. Copyright © 2017 the American Physiological Society.

  9. A practical approach to assess leg muscle oxygenation during ramp-incremental cycle ergometry in heart failure

    Directory of Open Access Journals (Sweden)

    A.C. Barroco

    2017-10-01

    Full Text Available Heart failure is characterized by the inability of the cardiovascular system to maintain oxygen (O2 delivery (i.e., muscle blood flow in non-hypoxemic patients to meet O2 demands. The resulting increase in fractional O2 extraction can be non-invasively tracked by deoxygenated hemoglobin concentration (deoxi-Hb as measured by near-infrared spectroscopy (NIRS. We aimed to establish a simplified approach to extract deoxi-Hb-based indices of impaired muscle O2 delivery during rapidly-incrementing exercise in heart failure. We continuously probed the right vastus lateralis muscle with continuous-wave NIRS during a ramp-incremental cardiopulmonary exercise test in 10 patients (left ventricular ejection fraction <35% and 10 age-matched healthy males. Deoxi-Hb is reported as % of total response (onset to peak exercise in relation to work rate. Patients showed lower maximum exercise capacity and O2 uptake-work rate than controls (P<0.05. The deoxi-Hb response profile as a function of work rate was S-shaped in all subjects, i.e., it presented three distinct phases. Increased muscle deoxygenation in patients compared to controls was demonstrated by: i a steeper mid-exercise deoxi-Hb-work rate slope (2.2±1.3 vs 1.0±0.3% peak/W, respectively; P<0.05, and ii late-exercise increase in deoxi-Hb, which contrasted with stable or decreasing deoxi-Hb in all controls. Steeper deoxi-Hb-work rate slope was associated with lower peak work rate in patients (r=–0.73; P=0.01. This simplified approach to deoxi-Hb interpretation might prove useful in clinical settings to quantify impairments in O2 delivery by NIRS during ramp-incremental exercise in individual heart failure patients.

  10. Physical inactivity and muscle oxidative capacity in humans.

    Science.gov (United States)

    Gram, Martin; Dahl, Rannvá; Dela, Flemming

    2014-01-01

    Physical inactivity is associated with a high prevalence of type 2 diabetes and is an independent predictor of mortality. It is possible that the detrimental effects of physical inactivity are mediated through a lack of adequate muscle oxidative capacity. This short review will cover the present literature on the effects of different models of inactivity on muscle oxidative capacity in humans. Effects of physical inactivity include decreased mitochondrial content, decreased activity of oxidative enzymes, changes in markers of oxidative stress and a decreased expression of genes and contents of proteins related to oxidative phosphorylation. With such a substantial down-regulation, it is likely that a range of adenosine triphosphate (ATP)-dependent pathways such as calcium signalling, respiratory capacity and apoptosis are affected by physical inactivity. However, this has not been investigated in humans, and further studies are required to substantiate this hypothesis, which could expand our knowledge of the potential link between lifestyle-related diseases and muscle oxidative capacity. Furthermore, even though a large body of literature reports the effect of physical training on muscle oxidative capacity, the adaptations that occur with physical inactivity may not always be opposite to that of physical training. Thus, it is concluded that studies on the effect of physical inactivity per se on muscle oxidative capacity in functional human skeletal muscle are warranted.

  11. Regulation of human skeletal muscle perfusion and its heterogeneity during exercise in moderate hypoxia

    DEFF Research Database (Denmark)

    Heinonen, Ilkka H; Kemppainen, Jukka; Kaskinoro, Kimmo

    2010-01-01

    , the results show that increased BF during one-leg exercise in moderate hypoxia is confined only to the contracting muscles, and the working muscle hyperemia appears not to be directly mediated by adenosine. Increased flow heterogeneity in noncontracting muscles likely reflects sympathetic nervous constraints...... healthy young men using positron emission tomography during one-leg dynamic knee extension exercise in normoxia and moderate physiological systemic hypoxia (14% O(2) corresponding to approximately 3,400 m of altitude) without and with local adenosine receptor inhibition with femoral artery infusion...... to curtail BF increments in areas other than working skeletal muscles, but this effect is not potentiated in moderate systemic hypoxia during small muscle mass exercise....

  12. Efficacy of Nintendo Wii training on mechanical leg muscle function and postural balance in community-dwelling older adults: a randomized controlled trial.

    Science.gov (United States)

    Jorgensen, Martin G; Laessoe, Uffe; Hendriksen, Carsten; Nielsen, Ole Bruno Faurholt; Aagaard, Per

    2013-07-01

    Older adults show increased risk of falling and major risk factors include impaired lower extremity muscle strength and postural balance. However, the potential positive effect of biofeedback-based Nintendo Wii training on muscle strength and postural balance in older adults is unknown. This randomized controlled trial examined postural balance and muscle strength in community-dwelling older adults (75±6 years) pre- and post-10 weeks of biofeedback-based Nintendo Wii training (WII, n = 28) or daily use of ethylene vinyl acetate copolymer insoles (controls [CON], n = 30). Primary end points were maximal muscle strength (maximal voluntary contraction) and center of pressure velocity moment during bilateral static stance. Intention-to-treat analysis with adjustment for age, sex, and baseline level showed that the WII group had higher maximal voluntary contraction strength (18%) than the control group at follow up (between-group difference = 269 N, 95% CI = 122; 416, and p = .001). In contrast, the center of pressure velocity moment did not differ (1%) between WII and CON at follow-up (between-group difference = 0.23 mm(2)/s, 95% CI = -4.1; 4.6, and p = .92). For secondary end points, pre-to-post changes favoring the WII group were evident in the rate of force development (p = .03), Timed Up and Go test (p = .01), short Falls Efficacy Scale-International (p = .03), and 30-second repeated Chair Stand Test (p = .01). Finally, participants rated the Wii training highly motivating at 5 and 10 weeks into the intervention. Biofeedback-based Wii training led to marked improvements in maximal leg muscle strength (maximal voluntary contraction; rate of force development) and overall functional performance in community-dwelling older adults. Unexpectedly, static bilateral postural balance remained unaltered with Wii training. The high level of participant motivation suggests that biofeedback-based Wii exercise may ensure a high degree of compliance to home- and/or community

  13. Myogenic response of human skeletal muscle to 12 weeks of resistance training at light loading intensity

    DEFF Research Database (Denmark)

    Mackey, Abigail; Holm, L; Reitelseder, S

    2011-01-01

    There is strong evidence for enhanced numbers of satellite cells with heavy resistance training. The satellite cell response to very light muscle loading is, however, unknown. We, therefore, designed a 12-week training protocol where volunteers trained one leg with a high load (H) and the other leg...... with a light load (L). Twelve young healthy men [mean age 25 ± 3 standard deviation (SD) years] volunteered for the study. Muscle biopsies were collected from the m. vastus lateralis of both legs before and after the training period and satellite cells were visualized by CD56 immunohistochemistry....... A significant main effect of time was observed (P12 ± 0.03 to 0.15 ± 0.05, mean ± SD). The finding that 12 weeks of training skeletal muscle even with very light loads can induce an increase in the number of satellite...

  14. Calf muscle volume estimates: Implications for Botulinum toxin treatment?

    DEFF Research Database (Denmark)

    Bandholm, Thomas; Sonne-Holm, Stig; Thomsen, Carsten

    2007-01-01

    An optimal botulinum toxin dose may be related to the volume of the targeted muscle. We investigated the suitability of using ultrasound and anthropometry to estimate gastrocnemius and soleus muscle volume. Gastrocnemius and soleus muscle thickness was measured in 11 cadaveric human legs, using...

  15. Rapid switch-off of the human myosin heavy chain IIX gene after heavy load muscle contractions is sustained for at least four days.

    Science.gov (United States)

    Andersen, J L; Gruschy-Knudsen, T

    2018-02-01

    Long-term heavy load contractions decrease the relative amount of the myosin heavy chain (MHC) IIX isoform in human skeletal muscle, but the timing of the down-regulation in the short term is unknown. Untrained subjects performed two resistance bouts, in two consecutive days, with one leg, the other leg serving as a control (age 24±1, n=5). Muscle biopsies were obtained in both legs before, immediately after, and 24, 54, and 96 hours after exercise. Serial cryosection analysis combined immunohistochemistry and ATPase histochemistry with In Situ hybridization to identify the distribution of MHC isoforms and their corresponding transcripts, enabling identification of transitional fibers. Fibers positive solely for MHC IIX mRNA decreased in the exercised leg throughout the study period. At 96 hours post-exercise, no fibers solely expressed MHC IIX mRNA. In contrast, the number of fibers expressing MHC IIA mRNA increased throughout the study period. The percentage of fibers expressing mRNA for MHC I was unchanged in both legs at all time points. Pronounced depletion of glycogen in the MHC IIX fibers of the exercised leg verifies that the type IIX fibers were active during the heavy load contractions. Major mismatch between MHC at the mRNA and protein levels was only found in the fibers of the exercised leg. These data provide unequivocal in situ evidence of an immediate shutdown of the MHC IIX gene after resistance exercise. A further novel finding was that the silencing of the MHC IIX gene is sustained at least 4 days after removal of the stimulus. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Enhanced muscle blood flow with intermittent pneumatic compression of the lower leg during plantar flexion exercise and recovery.

    Science.gov (United States)

    Zuj, K A; Prince, C N; Hughson, R L; Peterson, S D

    2018-02-01

    This study tested the hypothesis that intermittent compression of the lower limb would increase blood flow during exercise and postexercise recovery. Data were collected from 12 healthy individuals (8 men) who performed 3 min of standing plantar flexion exercise. The following three conditions were tested: no applied compression (NoComp), compression during the exercise period only (ExComp), and compression during 2 min of standing postexercise recovery. Doppler ultrasound was used to determine superficial femoral artery (SFA) blood flow responses. Mean arterial pressure (MAP) and cardiac stroke volume (SV) were assessed using finger photoplethysmography, with vascular conductance (VC) calculated as VC = SFA flow/MAP. Compared with the NoComp condition, compression resulted in increased MAP during exercise [+3.5 ± 4.1 mmHg (mean ± SD)] but not during postexercise recovery (+1.6 ± 5.9 mmHg). SV increased with compression during both exercise (+4.8 ± 5.1 ml) and recovery (+8.0 ± 6.6 ml) compared with NoComp. There was a greater increase in SFA flow with compression during exercise (+52.1 ± 57.2 ml/min) and during recovery (+58.6 ± 56.7 ml/min). VC immediately following exercise was also significantly greater in the ExComp condition compared with the NoComp condition (+0.57 ± 0.42 ml·min -1 ·mmHg -1 ), suggesting the observed increase in blood flow during exercise was in part because of changes in VC. Results from this study support the hypothesis that intermittent compression applied during exercise and recovery from exercise results in increased limb blood flow, potentially contributing to changes in exercise performance and recovery. NEW & NOTEWORTHY Blood flow to working skeletal muscle is achieved in part through the rhythmic actions of the skeletal muscle pump. This study demonstrated that the application of intermittent pneumatic compression during the diastolic phase of the cardiac cycle, to mimic the mechanical

  17. Partial neuromuscular blockade in humans enhances muscle blood flow during exercise independently of muscle oxygen uptake and acetylcholine receptor blockade

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Krustrup, Peter; Iaia, F Marcello

    2009-01-01

    This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one-legged k......This study examined the role of acetylcholine for skeletal muscle blood flow during exercise by use of the competitive neuromuscular blocking agent cisatracurium in combination with the acetylcholine receptor blocker glycopyrrone. Nine healthy male subjects performed a 10-min bout of one...... conductance during exercise, events that are not associated with either acetylcholine or an increased oxygen demand. The results do not support an essential role for acetylcholine, released form the neuromuscular junction, in exercise hyperaemia or for the enhanced blood flow during neuromuscular blockade....... The enhanced exercise hyperemia during partial neuromuscular blockade may be related to a greater recruitment of fast-twitch muscle fibres. Key words: blood flow, neuromuscular blockade, exercise, skeletal muscle....

  18. Photobiomodulation in human muscle tissue: an advantage in sports performance?

    Science.gov (United States)

    Ferraresi, Cleber; Huang, Ying-Ying; Hamblin, Michael R

    2016-12-01

    Photobiomodulation (PBM) describes the use of red or near-infrared (NIR) light to stimulate, heal, and regenerate damaged tissue. Both preconditioning (light delivered to muscles before exercise) and PBM applied after exercise can increase sports performance in athletes. This review covers the effects of PBM on human muscle tissue in clinical trials in volunteers related to sports performance and in athletes. The parameters used were categorized into those with positive effects or no effects on muscle performance and recovery. Randomized controlled trials and case-control studies in both healthy trained and untrained participants, and elite athletes were retrieved from MEDLINE up to 2016. Performance metrics included fatigue, number of repetitions, torque, hypertrophy; measures of muscle damage and recovery such as creatine kinase and delayed onset muscle soreness. Searches retrieved 533 studies, of which 46 were included in the review (n = 1045 participants). Studies used single laser probes, cluster of laser diodes, LED clusters, mixed clusters (lasers and LEDs), and flexible LED arrays. Both red, NIR, and red/NIR mixtures were used. PBM can increase muscle mass gained after training, and decrease inflammation and oxidative stress in muscle biopsies. We raise the question of whether PBM should be permitted in athletic competition by international regulatory authorities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Lifelong physical activity preserves functional sympatholysis and purinergic signalling in the ageing human leg

    DEFF Research Database (Denmark)

    Mortensen, S P; Nyberg, Michael; Winding, K

    2012-01-01

    Ageing is associated with an impaired ability to modulate sympathetic vasoconstrictor activity (functional sympatholysis) and a reduced exercise hyperaemia. The purpose of this study was to investigate whether a physically active lifestyle can offset the impaired functional sympatholysis and exer......Ageing is associated with an impaired ability to modulate sympathetic vasoconstrictor activity (functional sympatholysis) and a reduced exercise hyperaemia. The purpose of this study was to investigate whether a physically active lifestyle can offset the impaired functional sympatholysis...... and exercise hyperaemia in the leg and whether ATP signalling is altered by ageing and physical activity. Leg haemodynamics, interstitial [ATP] and P2Y(2) receptor content was determined in eight young (23 ± 1 years), eight lifelong sedentary elderly (66 ± 2 years) and eight lifelong active elderly (62 ± 2...

  20. A 3-Dimensional Atlas of Human Tongue Muscles

    Science.gov (United States)

    SANDERS, IRA; MU, LIANCAI

    2013-01-01

    The human tongue is one of the most important yet least understood structures of the body. One reason for the relative lack of research on the human tongue is its complex anatomy. This is a real barrier to investigators as there are few anatomical resources in the literature that show this complex anatomy clearly. As a result, the diagnosis and treatment of tongue disorders lags behind that for other structures of the head and neck. This report intended to fill this gap by displaying the tongue’s anatomy in multiple ways. The primary material used in this study was serial axial images of the male and female human tongue from the Visible Human (VH) Project of the National Library of Medicine. In addition, thick serial coronal sections of three human tongues were rendered translucent. The VH axial images were computer reconstructed into serial coronal sections and each tongue muscle was outlined. These outlines were used to construct a 3-dimensional computer model of the tongue that allows each muscle to be seen in its in vivo anatomical position. The thick coronal sections supplement the 3-D model by showing details of the complex interweaving of tongue muscles throughout the tongue. The graphics are perhaps the clearest guide to date to aid clinical or basic science investigators in identifying each tongue muscle in any part of the human tongue. PMID:23650264

  1. Assessment of leg muscle activity using toe tapping in patients with Parkinson's disease: comparison of two types of toe tapping.

    Science.gov (United States)

    Taniguchi, Seira; Peper, Ferdinand; Shimokawa, Tetsuya

    2018-05-01

    [Purpose] This study investigates two types of toe tapping, i.e., "closed," with both feet on the floor, and "open," in which the foot does not touch the ground, and evaluates their usefulness in combination with monitoring of muscle activity during toe tapping. [Subjects and Methods] The study enrolled 11 patients with Parkinson's disease (PD) and 9 controls (Controls). The tibialis anterior (TA) and gastrocnemius (GS) muscle activity during toe tapping was measured using surface electromyography. [Results] In closed tapping, the minima in GS activation with the first tap was significantly higher in patients with PD than in Controls. In open tapping, the coefficient of variation (CV) of local maxima in TA activation was significantly higher in patients with PD than in Controls. In both types of tapping, the CV of extrema in GS activities increased with disease duration, but this may be due to the long-term administration of Levodopa, which itself tends to cause excessive GS activities. [Conclusion] Closed tapping is suitable for the assessment of GS activity and can detect excessive activities, which is observed as visible movement. Open tapping, on the other hand, is suitable for assessment of TA activity.

  2. Relationship between Human Aging Muscle and Oxidative System Pathway

    Directory of Open Access Journals (Sweden)

    Enrico Doria

    2012-01-01

    Full Text Available Ageing is a complex process that in muscle is usually associated with a decrease in mass, strength, and velocity of contraction. One of the most striking effects of ageing on muscle is known as sarcopenia. This inevitable biological process is characterized by a general decline in the physiological and biochemical functions of the major systems. At the cellular level, aging is caused by a progressive decline in mitochondrial function that results in the accumulation of reactive oxygen species (ROS generated by the addition of a single electron to the oxygen molecule. The aging process is characterized by an imbalance between an increase in the production of reactive oxygen species in the organism and the antioxidant defences as a whole. The goal of this review is to examine the results of existing studies on oxidative stress in aging human skeletal muscles, taking into account different physiological factors (sex, fibre composition, muscle type, and function.

  3. Multi-frequency bioimpedance in human muscle assessment

    DEFF Research Database (Denmark)

    Bartels, Else Marie; Sørensen, Emma Rudbæk; Harrison, Adrian Paul

    2015-01-01

    Bioimpedance analysis (BIA) is a well-known and tested method for body mass and muscular health assessment. Multi-frequency BIA (mfBIA) equipment now makes it possible to assess a particular muscle as a whole, as well as looking at a muscle at the fiber level. The aim of this study was to test...... healthy human control subjects and three selected cases were examined to demonstrate the extent to which this method may be used clinically, and in relation to training in sport. The electrode setup is shown to affect the mfBIA parameters recorded. Our recommendation is the use of noble metal electrodes......, contracted state, and cell transport/metabolic activity, which relate to muscle performance. Our findings indicate that mfBIA provides a noninvasive, easily measurable and very precise momentary assessment of skeletal muscles....

  4. Exercise-induced metallothionein expression in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Penkowa, Milena; Keller, Pernille; Keller, Charlotte

    2005-01-01

    in both type I and II muscle fibres. This is the first report demonstrating that MT-I + II are significantly induced in human skeletal muscle fibres following exercise. As MT-I + II are antioxidant factors that protect various tissues during pathological conditions, the MT-I + II increases post exercise......Exercise induces free oxygen radicals that cause oxidative stress, and metallothioneins (MTs) are increased in states of oxidative stress and possess anti-apoptotic effects. We therefore studied expression of the antioxidant factors metallothionein I and II (MT-I + II) in muscle biopsies obtained...... in response to 3 h of bicycle exercise performed by healthy men and in resting controls. Both MT-I + II proteins and MT-II mRNA expression increased significantly in both type I and II muscle fibres after exercise. Moreover, 24 h after exercise the levels of MT-II mRNA and MT-I + II proteins were still highly...

  5. Development and Physical Control Research on Prototype Artificial Leg

    Directory of Open Access Journals (Sweden)

    Fei Li

    2016-03-01

    Full Text Available To provide an ideal platform for research on intelligent bionic leg (IBL, this paper proposes a model of a biped robot with heterogeneous legs (BRHL. A prototype of an artificial leg is developed based on biological structure and motion principle analysis of human lower extremities. With regard to the driving sources, servomotors are chosen for the hip joint and ankle joint, while pneumatic muscle actuators (PMAs are chosen for the knee joint. The control system of the bionic artificial leg is designed and a physical experimental platform is established. The physical control experiments are done based on proportional-integral-derivative (PID control strategy. The experimental results show that such a system can realize the expected goals.

  6. Duchenne Muscular Dystrophy Gene Expression in Normal and Diseased Human Muscle

    Science.gov (United States)

    Oronzi Scott, M.; Sylvester, J. E.; Heiman-Patterson, T.; Shi, Y.-J.; Fieles, W.; Stedman, H.; Burghes, A.; Ray, P.; Worton, R.; Fischbeck, K. H.

    1988-03-01

    A probe for the 5' end of the Duchenne muscular dystrophy (DMD) gene was used to study expression of the gene in normal human muscle, myogenic cell cultures, and muscle from patients with DMD. Expression was found in RNA from normal fetal muscle, adult cardiac and skeletal muscle, and cultured muscle after myoblast fusion. In DMD muscle, expression of this portion of the gene was also revealed by in situ RNA hybridization, particularly in regenerating muscle fibers.

  7. Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans.

    Science.gov (United States)

    Krustrup, Peter; Secher, Niels H; Relu, Mihai U; Hellsten, Ylva; Söderlund, Karin; Bangsbo, Jens

    2008-12-15

    We tested the hypothesis that a greater activation of fast-twitch (FT) fibres during dynamic exercise leads to a higher muscle oxygen uptake (VO2 ) and energy turnover as well as a slower muscle on-kinetics. Subjects performed one-legged knee-extensor exercise for 10 min at an intensity of 30 W without (CON) and with (CUR) arterial injections of the non-depolarizing neuromuscular blocking agent cisatracurium. In CUR, creatine phosphate (CP) was unaltered in slow twitch (ST) fibres and decreased (P fibres, whereas in CON, CP decreased (P fibres, respectively. From 127 s of exercise, muscle VO2 was higher (P muscle VO2 response was slower (P muscle homogenate CP was lowered (P muscle lactate production was similar in CUR and CON (37.8 +/- 4.1 versus 35.2 +/- 6.2 mmol). Estimated total muscle ATP turnover was 19% higher (P fibres are less efficient than ST fibres in vivo at a contraction frequency of 1 Hz, and that the muscle VO2 kinetics is slowed by FT fibre activation.

  8. Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics.

    Science.gov (United States)

    Zampieri, Sandra; Mammucari, Cristina; Romanello, Vanina; Barberi, Laura; Pietrangelo, Laura; Fusella, Aurora; Mosole, Simone; Gherardi, Gaia; Höfer, Christian; Löfler, Stefan; Sarabon, Nejc; Cvecka, Jan; Krenn, Matthias; Carraro, Ugo; Kern, Helmut; Protasi, Feliciano; Musarò, Antonio; Sandri, Marco; Rizzuto, Rosario

    2016-12-01

    Age-related sarcopenia is characterized by a progressive loss of muscle mass with decline in specific force, having dramatic consequences on mobility and quality of life in seniors. The etiology of sarcopenia is multifactorial and underlying mechanisms are currently not fully elucidated. Physical exercise is known to have beneficial effects on muscle trophism and force production. Alterations of mitochondrial Ca 2+ homeostasis regulated by mitochondrial calcium uniporter (MCU) have been recently shown to affect muscle trophism in vivo in mice. To understand the relevance of MCU-dependent mitochondrial Ca 2+ uptake in aging and to investigate the effect of physical exercise on MCU expression and mitochondria dynamics, we analyzed skeletal muscle biopsies from 70-year-old subjects 9 weeks trained with either neuromuscular electrical stimulation (ES) or leg press. Here, we demonstrate that improved muscle function and structure induced by both trainings are linked to increased protein levels of MCU Ultrastructural analyses by electron microscopy showed remodeling of mitochondrial apparatus in ES-trained muscles that is consistent with an adaptation to physical exercise, a response likely mediated by an increased expression of mitochondrial fusion protein OPA1. Altogether these results indicate that the ES-dependent physiological effects on skeletal muscle size and force are associated with changes in mitochondrial-related proteins involved in Ca 2+ homeostasis and mitochondrial shape. These original findings in aging human skeletal muscle confirm the data obtained in mice and propose MCU and mitochondria-related proteins as potential pharmacological targets to counteract age-related muscle loss. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  9. Effects of exercise on insulin binding to human muscle

    International Nuclear Information System (INIS)

    Bonen, A.; Tan, M.H.; Clune, P.; Kirby, R.L.

    1985-01-01

    A procedure was developed to measure insulin binding to human skeletal muscle obtained via the percutaneous muscle biopsy technique. With this method the effects of exercise on insulin binding were investigated. Subjects (n = 9) exercised for 60 min on a bicycle ergometer at intensities ranging from 20-86% maximum O 2 consumption (VO 2 max). Blood samples were obtained before, during, and after exercise and analyzed for glucose and insulin. Muscle samples (250 mg) for the vastus lateralis were obtained 30 min before exercise, at the end of exercise, and 60 min after exercise. Two subjects rested during the experimental period. There was no linear relationship between exercise intensities and the changes in insulin binding to human muscle. At rest (n = 2) and at exercise intensities below 60% VO 2 max (n = 5) no change in insulin binding occurred (P greater than 0.05). However, when exercise occurred at greater than or equal to 69% VO 2 max (n = 4), a pronounced decrement in insulin binding (30-50%) was observed (P less than 0.05). This persisted for 60 min after exercise. These results indicate that insulin binding in human muscle is not altered by 60 min of exercise at less than or equal to 60% VO 2 max but that a marked decrement occurs when exercise is greater than or equal to 69% VO 2 max

  10. An exploration of diffusion tensor eigenvector variability within human calf muscles.

    Science.gov (United States)

    Rockel, Conrad; Noseworthy, Michael D

    2016-01-01

    To explore the effect of diffusion tensor imaging (DTI) acquisition parameters on principal and minor eigenvector stability within human lower leg skeletal muscles. Lower leg muscles were evaluated in seven healthy subjects at 3T using an 8-channel transmit/receive coil. Diffusion-encoding was performed with nine signal averages (NSA) using 6, 15, and 25 directions (NDD). Individual DTI volumes were combined into aggregate volumes of 3, 2, and 1 NSA according to number of directions. Tensor eigenvalues (λ1 , λ2 , λ3 ), eigenvectors (ε1 , ε2 , ε3 ), and DTI metrics (fractional anisotropy [FA] and mean diffusivity [MD]) were calculated for each combination of NSA and NDD. Spatial maps of signal-to-noise ratio (SNR), λ3 :λ2 ratio, and zenith angle were also calculated for region of interest (ROI) analysis of vector orientation consistency. ε1 variability was only moderately related to ε2 variability (r = 0.4045). Variation of ε1 was affected by NDD, not NSA (P < 0.0002), while variation of ε2 was affected by NSA, not NDD (P < 0.0003). In terms of tensor shape, vector variability was weakly related to FA (ε1 :r = -0.1854, ε2 : ns), but had a stronger relation to the λ3 :λ2 ratio (ε1 :r = -0.5221, ε2 :r = -0.1771). Vector variability was also weakly related to SNR (ε1 :r = -0.2873, ε2 :r = -0.3483). Zenith angle was found to be strongly associated with variability of ε1 (r = 0.8048) but only weakly with that of ε2 (r = 0.2135). The second eigenvector (ε2 ) displayed higher directional variability relative to ε1 , and was only marginally affected by experimental conditions that impacted ε1 variability. © 2015 Wiley Periodicals, Inc.

  11. An animal model for human masseter muscle: histochemical characterization of mouse, rat, rabbit, cat, dog, pig, and cow masseter muscle

    DEFF Research Database (Denmark)

    Tuxen, A; Kirkeby, S

    1990-01-01

    The masseter muscle of several animal species was investigated by use of a histochemical method for the demonstration of acid-stable and alkali-stable myosin adenosine triphosphatase (ATPase). The following subdivisions of fiber types were used: Type I fibers show weak ATPase activity at pH 9...... II and I fibers, with type II predominating. Cow masseter muscle consisted mainly of type I fibers, although some cow masseter muscles contained a very small number of type II fibers. Pig masseter muscle had both type I, II, and IM fibers. One of the characteristics of human masseter muscle is type...... IM fibers, which are rarely seen in muscles other than the masticatory muscles. Therefore, pig masseter muscle might be a suitable animal model for experimental studies, such as an investigation of the distribution and diameter of fiber types in the masticatory muscles before and after orthognathic...

  12. Nutrition and muscle loss in humans during spaceflight

    Science.gov (United States)

    Stein, T. P.

    1999-01-01

    The protein loss in humans during spaceflight is partly due to a normal adaptive response to a decreased work load on the muscles involved in weight bearing. The process is mediated by changes in prostaglandin release, secondary to the decrease in tension on the affected muscles. On missions, where there is a high level of physical demands on the astronauts, there tends to be an energy deficit, which adds to the muscle protein loss and depletes the body fat reserves. While the adaptive response is a normal part of homeostasis, the additional protein loss from an energy deficit can, in the long run, have a negative effect on health and capability of humans to live and work in space and afterward return to Earth.

  13. The automatic pelvic floor muscle response to the active straight leg raise in cases with pelvic girdle pain and matched controls.

    Science.gov (United States)

    Stuge, Britt; Sætre, Kaja; Ingeborg Hoff, Brækken

    2013-08-01

    The active straight leg raise (ASLR) test has been proposed as a clinical test for the assessment of pelvic girdle pain (PGP). Little is known about the activation of the pelvic floor muscles (PFM) during ASLR. The main aim of this study was to examine the automatic PFM contraction during ASLR. Specific aims were to compare automatic contraction to rest and to voluntary contraction, to compare PFM contraction during ASLR with and without compression and to examine whether there were any differences in PFM contraction between women with and without clinically diagnosed PGP during ASLR. Forty-nine pairs of women participated in a cross-sectional study with individual, one-to-one matched cases and controls. PFM was assessed by reliable and valid 3D ultrasound at rest, during voluntary and automatic contraction. Test-retest data for the levator hiatus during ASLR showed good repeatability. Significantly automatic PFM contractions occurred when ASLR tests were performed. There was a strong positive correlation between voluntary and automatic PFM contractions. Manual compression reduced the automatic PFM contraction during ASLR by 62-66%. There were no significant differences between cases and controls in reduction of levator hiatus or muscle length from rest to automatic contractions during ASLR. Interestingly, a significantly smaller levator hiatus was found in women with PGP than in controls, at rest, during an automatic contraction with ASLR and during voluntary contraction. In conclusion, a significant automatic PFM contraction occurred during ASLR, both in cases and in controls. Women with PGP had a significantly smaller levator hiatus than controls. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Leucine incorporation into mixed skeletal muscle protein in humans

    International Nuclear Information System (INIS)

    Nair, K.S.; Halliday, D.; Griggs, R.C.

    1988-01-01

    Fractional mixed skeletal muscle protein synthesis (FMPS) was estimated in 10 postabsorptive healthy men by determining the increment in the abundance of [ 13 C]-leucine in quadriceps muscle protein during an intravenous infusion of L-[1- 13 C]leucine. Whole-body muscle protein synthesis (MPS) was calculated based on the estimation of muscle mass from creatinine excretion and compared with whole-body protein synthesis (WBPS) calculated from the nonoxidative portion of leucine flux. A significant correlation was found between MPS. The contribution of MPS to WBPS was 27 ± 1%, which is comparable to the reports in other species. Morphometric analyses of adjacent muscle samples in eight subjects demonstrated that the biopsy specimens consisted of 86.5 ± 2% muscular as opposed to other tissues. Because fiber type composition varies between biopsies, the authors examined the relationship between proportions of each fiber type and FMPS. Variation in the composition of biopsies and in fiber-type proportion did not affect the estimation of muscle protein synthesis rate. They conclude that stable isotope techniques using serial needle biopsies permit the direct measurement of FMPS in humans and that this estimation is correlated with an indirect estimation of WBPS

  15. Short-term immobilization and recovery affect skeletal muscle but not collagen tissue turnover in humans

    DEFF Research Database (Denmark)

    Christensen, Britt; Dyrberg, Eva; Aagaard, Per

    2008-01-01

    Not much is known about the effects of immobilization and subsequent recovery on tendon connective tissue. In the present study, healthy young men had their nondominant leg immobilized for a 2-wk period, followed by a recovery period of the same length. Immobilization resulted in a mean decrease...... of 6% (5,413 to 5,077 mm(2)) in cross-sectional area (CSA) of the triceps surae muscles and a mean decrease of 9% (261 to 238 N.m) in strength of the immobilized calf muscles. Two weeks of recovery resulted in a 6% increased in CSA (to 5,367 mm(2)), whereas strength remained suppressed (240 N...... muscle size and strength, while tendon size and collagen turnover were unchanged. While recovery resulted in an increase in muscle size, strength was unchanged. No significant difference in tendon size could be detected between the two legs after 2 wk of recovery, although collagen synthesis...

  16. Surgery-induced changes and early recovery of hip-muscle strength, leg-press power, and functional performance after fast-track total hip arthroplasty: a prospective cohort study.

    Directory of Open Access Journals (Sweden)

    Bente Holm

    Full Text Available By measuring very early changes in muscle strength and functional performance after fast-track total hip arthroplasty (THA, post-operative rehabilitation, introduced soon after surgery, can be designed to specifically target identified deficits.Firstly, to quantify changes (compared to pre-operative values in hip muscle strength, leg-press power, and functional performance in the first week after THA, and secondly, to explore relationships between the muscle strength changes, and changes in hip pain, systemic inflammation, and thigh swelling.Prospective, cohort study.Convenience sample of patients receiving a THA at Copenhagen University Hospital, Hvidovre, Denmark, between March and December 2011.Thirty-five patients (65.9 ± 7.2 years undergoing THA.Hip muscle strength, leg-press power, performance-based function, and self-reported disability were determined prior to, and 2 and 8 days after, THA (Day 2 and 8, respectively. Hip pain, thigh swelling, and C-Reactive Protein were also determined.Five patients were lost to follow-up. Hip muscle strength and leg press power were substantially reduced at Day 2 (range of reductions: 41-58%, P<0.001, but less pronounced at Day 8 (range of reductions: 23-31%, P<0.017. Self-reported symptoms and function (HOOS: Pain, Symptoms, and ADL improved at Day 8 (P<0.014. Changes in hip pain, C-Reactive Protein, and thigh swelling were not related to the muscle strength and power losses.Hip muscle strength and leg-press power decreased substantially in the first week after THA - especially at Day 2 - with some recovery at Day 8. The muscle strength loss and power loss were not related to changes in hip pain, systemic inflammation, or thigh swelling. In contrast, self-reported symptoms and function improved. These data on surgery-induced changes in muscle strength may help design impairment-directed, post-operative rehabilitation to be introduced soon after surgery.ClinicalTrials.gov NCT01246674.

  17. Development of the epaxial muscles in the human embryo

    NARCIS (Netherlands)

    Mekonen, Hayelom K.; Hikspoors, Jill P. J. M.; Mommen, Greet; Eleonore KÖhler, S.; Lamers, Wouter H.

    2016-01-01

    Although the intrinsic muscles of the back are defined by their embryological origin and innervation pattern, no detailed study on their development is available. Human embryos (5-10 weeks development) were studied, using Amira3D® reconstruction and Cinema4D® remodeling software for visualization.

  18. Erythropoietin treatment enhances muscle mitochondrial capacity in humans

    DEFF Research Database (Denmark)

    Plenge, Ulla; Belhage, Bo; Guadalupe-Grau, Amelia

    2012-01-01

    in humans. In six healthy volunteers rhEpo was administered by sub-cutaneous injection over 8 weeks with oral iron (100 mg) supplementation taken daily. Mitochondrial OXPHOS was quantified by high-resolution respirometry in saponin-permeabilized muscle fibers obtained from biopsies of the vastus lateralis...

  19. Muscle mitochondrial capacity exceeds maximal oxygen delivery in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Gnaiger, Erich; Calbet, Jose A L

    2011-01-01

    Across a wide range of species and body mass a close matching exists between maximal conductive oxygen delivery and mitochondrial respiratory rate. In this study we investigated in humans how closely in-vivo maximal oxygen consumption (VO(2) max) is matched to state 3 muscle mitochondrial respira...

  20. The capillary pattern in human masseter muscle during ageing

    Czech Academy of Sciences Publication Activity Database

    Cvetko, E.; Janáček, Jiří; Kubínová, Lucie; Eržen, I.

    2013-01-01

    Roč. 32, č. 3 (2013), s. 135-144 ISSN 1580-3139 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : 3D analysis * capillaries * confocal microscopy * human * masseter * muscle Subject RIV: EA - Cell Biology Impact factor: 0.697, year: 2013

  1. Free-energy carriers in human cultured muscle cells

    NARCIS (Netherlands)

    Bolhuis, P. A.; de Zwart, H. J.; Ponne, N. J.; de Jong, J. M.

    1985-01-01

    Creatine phosphate (CrP), adenosine triphosphate (ATP), creatine kinase (CK), adenylate kinase (AK), protein, and DNA were quantified in human muscle cell cultures undergoing transition from dividing myoblasts to multinucleate myotubes. CrP is negligible in cultures grown in commonly applied media

  2. Muscle Carnosine Is Associated with Cardiometabolic Risk Factors in Humans.

    Directory of Open Access Journals (Sweden)

    Barbora de Courten

    Full Text Available Carnosine is a naturally present dipeptide abundant in skeletal muscle and an over-the counter food additive. Animal data suggest a role of carnosine supplementation in the prevention and treatment of obesity, insulin resistance, type 2 diabetes and cardiovascular disease but only limited human data exists.Samples of vastus lateralis muscle were obtained by needle biopsy. We measured muscle carnosine levels (high-performance liquid chromatography, % body fat (bioimpedance, abdominal subcutaneous and visceral adiposity (magnetic resonance imaging, insulin sensitivity (euglycaemic hyperinsulinemic clamp, resting energy expenditure (REE, indirect calorimetry, free-living ambulatory physical activity (accelerometers and lipid profile in 36 sedentary non-vegetarian middle aged men (45±7 years with varying degrees of adiposity and glucose tolerance. Muscle carnosine content was positively related to % body fat (r = 0.35, p = 0.04 and subcutaneous (r = 0.38, p = 0.02 but not visceral fat (r = 0.17, p = 0.33. Muscle carnosine content was inversely associated with insulin sensitivity (r = -0.44, p = 0.008, REE (r = -0.58, p<0.001 and HDL-cholesterol levels (r = -0.34, p = 0.048. Insulin sensitivity and physical activity were the best predictors of muscle carnosine content after adjustment for adiposity.Our data shows that higher carnosine content in human skeletal muscle is positively associated with insulin resistance and fasting metabolic preference for glucose. Moreover, it is negatively associated with HDL-cholesterol and basal energy expenditure. Intervention studies targeting insulin resistance, metabolic and cardiovascular disease risk factors are necessary to evaluate its putative role in the prevention and management of type 2 diabetes and cardiovascular disease.

  3. Artificial muscle: the human chimera is the future.

    Science.gov (United States)

    Tozzi, P

    2011-12-14

    Severe heart failure and cerebral stroke are broadly associated with the impairment of muscular function that conventional treatments struggle to restore. New technologies enable the construction of "smart" materials that could be of great help in treating diseases where the main problem is muscle weakness. These materials "behave" similarly to biological systems, because the material directly converts energy, for example electrical energy into movement. The extension and contraction occur silently like in natural muscles. The real challenge is to transfer this amazing technology into devices that restore or replace the mechanical function of failing muscle. Cardiac assist devices based on artificial muscle technology could envelope a weak heart and temporarily improve its systolic function, or, if placed on top of the atrium, restore the atrial kick in chronic atrial fibrillation. Artificial sphincters could be used to treat urinary incontinence after prostatectomy or faecal incontinence associated with stomas. Artificial muscles can restore the ability of patients with facial paralysis due to stroke or nerve injury to blink. Smart materials could be used to construct an artificial oesophagus including peristaltic movement and lower oesophageal sphincter function to replace the diseased oesophagus thereby avoiding the need for laparotomy to mobilise stomach or intestine. In conclusion, in the near future, smart devices will integrate with the human body to fill functional gaps due to organ failure, and so create a human chimera.

  4. Muscle glycogen content and glucose uptake during exercise in humans: influence of prior exercise and dietary manipulation

    DEFF Research Database (Denmark)

    Steensberg, Adam; van Hall, Gerrit; Keller, Charlotte

    2002-01-01

    on two occasions: one after 60 min of two-legged cycling (16 h prior to the experimental trial) followed by a high carbohydrate diet (HCHO) and the other after the same exercise followed by a low carbohydrate diet (LCHO) (Series 2). Muscle glycogen was decreased by 40 % when comparing the pre-exercised......There are many factors that can influence glucose uptake by contracting skeletal muscle during exercise and although one may be intramuscular glycogen content, this relationship is at present not fully elucidated. To test the hypothesis that muscle glycogen concentration influences glucose uptake...... during exercise, 13 healthy men were studied during two series of experiments. Seven men completed 4 h of two-legged knee extensor exercise 16 h after reducing of muscle glycogen by completing 60 min of single-legged cycling (Series 1). A further six men completed 3 h of two-legged knee extensor exercise...

  5. Human brain activity associated with painful mechanical stimulation to muscle and bone

    OpenAIRE

    Maeda, Lynn; Ono, Mayu; Koyama, Tetsuo; Oshiro, Yoshitetsu; Sumitani, Masahiko; Mashimo, Takashi; Shibata, Masahiko

    2011-01-01

    Purpose The purpose of this study was to elucidate the central processing of painful mechanical stimulation to muscle and bone by measuring blood oxygen level-dependent signal changes using functional magnetic resonance imaging (fMRI). Methods Twelve healthy volunteers were enrolled. Mechanical pressure on muscle and bone were applied at the right lower leg by an algometer. Intensities were adjusted to cause weak and strong pain sensation at either target site in preliminary testing. Brain ac...

  6. Exercise increases human skeletal muscle insulin sensitivity via coordinated increases in microvascular perfusion and molecular signaling

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Frøsig, Christian; Kjøbsted, Rasmus

    2017-01-01

    and increased similarly in both legs during the clamp and L-NMMA had no effect on these insulin-stimulated signaling pathways. Therefore, acute exercise increases insulin sensitivity of muscle by a coordinated increase in insulin-stimulated microvascular perfusion and molecular signaling at the level of TBC1D4...... and glycogen synthase in muscle. This secures improved glucose delivery on the one hand and increased ability to take up and dispose of the delivered glucose on the other hand....

  7. Assessment of leg muscles mechanical capacities: Which jump, loading, and variable type provide the most reliable outcomes?

    Science.gov (United States)

    García-Ramos, Amador; Feriche, Belén; Pérez-Castilla, Alejandro; Padial, Paulino; Jaric, Slobodan

    2017-07-01

    This study aimed to explore the strength of the force-velocity (F-V) relationship of lower limb muscles and the reliability of its parameters (maximum force [F 0 ], slope [a], maximum velocity [V 0 ], and maximum power [P 0 ]). Twenty-three men were tested in two different jump types (squat and countermovement jump: SJ and CMJ), performed under two different loading conditions (free weight and Smith machine: Free and Smith) with 0, 17, 30, 45, 60, and 75 kg loads. The maximum and averaged values of F and V were obtained for the F-V relationship modelling. All F-V relationships were strong and linear independently whether observed from the averaged across the participants (r ≥ 0.98) or individual data (r = 0.94-0.98), while their parameters were generally highly reliable (F 0 [CV: 4.85%, ICC: 0.87], V 0 [CV: 6.10%, ICC: 0.82], a [CV: 10.5%, ICC: 0.81], and P 0 [CV: 3.5%, ICC: 0.93]). Both the strength of the F-V relationships and the reliability of their parameters were significantly higher for (1) the CMJ over the SJ, (2) the Free over the Smith loading type, and (3) the maximum over the averaged F and V variables. In conclusion, although the F-V relationships obtained from all the jumps tested were linear and generally highly reliable, the less appropriate choice for testing the F-V relationship could be through the averaged F and V data obtained from the SJ performed either in a Free weight or in a Smith machine. Insubstantial differences exist among the other combinations tested.

  8. Intramuscular fatty acid metabolism in contracting and non-contracting human skeletal muscle

    DEFF Research Database (Denmark)

    Sacchetti, M; Saltin, B; Osada, T

    2002-01-01

    The present study was undertaken to investigate the fate of blood-borne non-esterified fatty acids (NEFA) entering contracting and non-contracting knee extensor muscles of healthy young individuals. [U-(13)C]-palmitate was infused into a forearm vein during 5 h of one-legged knee extensor exercis...... and degraded and that the metabolic fate of plasma NEFA entering the muscle is influenced by muscle contraction, so that a higher proportion is directed towards oxidation at the expense of storage in mTAG.......The present study was undertaken to investigate the fate of blood-borne non-esterified fatty acids (NEFA) entering contracting and non-contracting knee extensor muscles of healthy young individuals. [U-(13)C]-palmitate was infused into a forearm vein during 5 h of one-legged knee extensor exercise.......05) in the contracting muscle, whereas it was unchanged in the non-contracting muscle. The uptake of plasma NEFA, as well as the proportion directed towards oxidation, was higher in the exercising compared to the non-exercising leg, whereas the rate of palmitate incorporation into mTAG was fourfold lower (0.70 +/- 0...

  9. Immobilization increases interleukin-6, but not tumour necrosis factor-a, release from the leg during exercise in humans

    DEFF Research Database (Denmark)

    Reihmane, Dace; Hansen, Andreas Vigelsø; Jensen, Martin Gram

    2013-01-01

    have now studied the temporal relationship of leg IL-6 and TNF-a release before and during isolated two-legged exercise after 14 days of one-leg immobilization (IM) while the other leg served as the control (CON) leg. Fifteen healthy male subjects (mean ± SEM age, 23 ± 1 years; body mass index, 23.......6 ± 0.7 kg m; and maximal oxygen uptake, 46.8 ± 1.4 ml kg min) performed 45 min of two-legged dynamic knee-extensor exercise at 19.6 ± 0.8 W. Arterial and femoral venous blood samples from the CON and the IM leg were collected every 15 min during exercise, and leg blood flow was measured with Doppler...

  10. Neuromuscular blockade of slow twitch muscle fibres elevates muscle oxygen uptake and energy turnover during submaximal exercise in humans

    DEFF Research Database (Denmark)

    Krustrup, Peter; Secher, Niels; Relu, Mihai U.

    2008-01-01

    We tested the hypothesis that a greater activation of fast-twitch (FT) fibres during dynamic exercise leads to a higher muscle oxygen uptake (VO2 ) and energy turnover as well as a slower muscle on-kinetics. Subjects performed one-legged knee-extensor exercise for 10 min at an intensity of 30 W...... without (CON) and with (CUR) arterial injections of the non-depolarizing neuromuscular blocking agent cisatracurium. In CUR, creatine phosphate (CP) was unaltered in slow twitch (ST) fibres and decreased (P fibres, whereas in CON, CP decreased (P ... at a contraction frequency of 1 Hz, and that the muscle VO2 kinetics is slowed by FT fibre activation....

  11. Mechanical and neural stretch responses of the human soleus muscle at different walking speeds

    DEFF Research Database (Denmark)

    Cronin, Neil J; Ishikawa, Masaki; Grey, Michael J

    2009-01-01

    responses. Twelve healthy subjects walked on a treadmill with the left leg attached to an actuator capable of rapidly dorsiflexing the ankle joint. Ultrasound was used to measure fascicle lengths in SOL during walking, and surface electromyography (EMG) was used to record muscle activation. Dorsiflexion...

  12. Stable walking with asymmetric legs

    International Nuclear Information System (INIS)

    Merker, Andreas; Rummel, Juergen; Seyfarth, Andre

    2011-01-01

    Asymmetric leg function is often an undesired side-effect in artificial legged systems and may reflect functional deficits or variations in the mechanical construction. It can also be found in legged locomotion in humans and animals such as after an accident or in specific gait patterns. So far, it is not clear to what extent differences in the leg function of contralateral limbs can be tolerated during walking or running. Here, we address this issue using a bipedal spring-mass model for simulating walking with compliant legs. With the help of the model, we show that considerable differences between contralateral legs can be tolerated and may even provide advantages to the robustness of the system dynamics. A better understanding of the mechanisms and potential benefits of asymmetric leg operation may help to guide the development of artificial limbs or the design novel therapeutic concepts and rehabilitation strategies.

  13. Standardized intermittent static exercise increases peritendinous blood flow in human leg

    DEFF Research Database (Denmark)

    Langberg, Henning; Bülow, J; Kjaer, M

    1999-01-01

    . The radioactive isotope xenon-133 was injected just ventrally to the Achilles tendon 5 cm proximal to the tendon's insertion on the calcaneous. The disappearance of 133Xe was used to determine blood flow during intermittent static exercise of the calf muscle (1.5 s exercise/1.5 s rest) for 30 min at a workload...

  14. ATP economy of force maintenance in human tibialis anterior muscle

    DEFF Research Database (Denmark)

    Nakagawa, Yoshinao; Ratkevicius, Aivaras; Mizuno, Masao

    2005-01-01

    PURPOSE: The aim of this study was investigate ATP economy of force maintenance in the human tibialis anterior muscle during 60 s of anaerobic voluntary contraction at 50% of maximum voluntary contraction (MVC). METHODS: ATP turnover rate was evaluated using P magnetic resonance spectroscopy (P...... contraction. It averaged at 4.81 +/- 0.42 N.s.micromol-1, and correlated with the relative cross-sectional area of the muscle occupied by Type I fiber (r = 0.73, P contraction, subjects dropping in force showed lower ATP economy compared with those maintaining the force (3.......7 +/- 0.6 vs 5.3 +/- 0.6 N.s.micromol-1; P contraction could be due to an increase in the ATP economy of contracting muscle fibers offsetting the effects of increased temperature and low ATP economy...

  15. A new biarticular actuator design facilitates control of leg function in BioBiped3.

    Science.gov (United States)

    Sharbafi, Maziar Ahmad; Rode, Christian; Kurowski, Stefan; Scholz, Dorian; Möckel, Rico; Radkhah, Katayon; Zhao, Guoping; Rashty, Aida Mohammadinejad; Stryk, Oskar von; Seyfarth, Andre

    2016-07-01

    Bioinspired legged locomotion comprises different aspects, such as (i) benefiting from reduced complexity control approaches as observed in humans/animals, (ii) combining embodiment with the controllers and (iii) reflecting neural control mechanisms. One of the most important lessons learned from nature is the significant role of compliance in simplifying control, enhancing energy efficiency and robustness against perturbations for legged locomotion. In this research, we investigate how body morphology in combination with actuator design may facilitate motor control of leg function. Inspired by the human leg muscular system, we show that biarticular muscles have a key role in balancing the upper body, joint coordination and swing leg control. Appropriate adjustment of biarticular spring rest length and stiffness can simplify the control and also reduce energy consumption. In order to test these findings, the BioBiped3 robot was developed as a new version of BioBiped series of biologically inspired, compliant musculoskeletal robots. In this robot, three-segmented legs actuated by mono- and biarticular series elastic actuators mimic the nine major human leg muscle groups. With the new biarticular actuators in BioBiped3, novel simplified control concepts for postural balance and for joint coordination in rebounding movements (drop jumps) were demonstrated and approved.

  16. Human thermal responses during leg-only exercise in cold water.

    Science.gov (United States)

    Golden, F S; Tipton, M J

    1987-10-01

    1. Exercise during immersion in cold water has been reported by several authors to accelerate the rate of fall of core temperature when compared with rates seen during static immersion. The nature of the exercise performed, however, has always been whole-body in nature. 2. In the present investigation fifteen subjects performed leg exercise throughout a 40 min head-out immersion in water at 15 degrees C. The responses obtained were compared with those seen when the subjects performed an identical static immersion. 3. Aural and rectal temperatures were found to fall by greater amounts during static immersion. 4. It is concluded that 'the type of exercise performed' should be included in the list of factors which affect core temperature during cold water immersion.

  17. Mechanical stimulation improves tissue-engineered human skeletal muscle

    Science.gov (United States)

    Powell, Courtney A.; Smiley, Beth L.; Mills, John; Vandenburgh, Herman H.

    2002-01-01

    Human bioartificial muscles (HBAMs) are tissue engineered by suspending muscle cells in collagen/MATRIGEL, casting in a silicone mold containing end attachment sites, and allowing the cells to differentiate for 8 to 16 days. The resulting HBAMs are representative of skeletal muscle in that they contain parallel arrays of postmitotic myofibers; however, they differ in many other morphological characteristics. To engineer improved HBAMs, i.e., more in vivo-like, we developed Mechanical Cell Stimulator (MCS) hardware to apply in vivo-like forces directly to the engineered tissue. A sensitive force transducer attached to the HBAM measured real-time, internally generated, as well as externally applied, forces. The muscle cells generated increasing internal forces during formation which were inhibitable with a cytoskeleton depolymerizer. Repetitive stretch/relaxation for 8 days increased the HBAM elasticity two- to threefold, mean myofiber diameter 12%, and myofiber area percent 40%. This system allows engineering of improved skeletal muscle analogs as well as a nondestructive method to determine passive force and viscoelastic properties of the resulting tissue.

  18. Acute limb heating improves macro- and microvascular dilator function in the leg of aged humans.

    Science.gov (United States)

    Romero, Steven A; Gagnon, Daniel; Adams, Amy N; Cramer, Matthew N; Kouda, Ken; Crandall, Craig G

    2017-01-01

    Local heating of an extremity increases blood flow and vascular shear stress throughout the arterial tree. Local heating acutely improves macrovascular dilator function in the upper limbs of young healthy adults through a shear stress-dependent mechanism but has no such effect in the lower limbs of this age group. The effect of acute limb heating on dilator function within the atherosclerotic prone vasculature of the lower limbs of aged adults is unknown. Therefore, the purpose of this study was to test the hypothesis that acute lower limb heating improves macro- and microvascular dilator function within the leg vasculature of aged adults. Nine young and nine aged adults immersed their lower limbs at a depth of ~33 cm into a heated (~42°C) circulated water bath for 45 min. Before and 30 min after heating, macro (flow-mediated dilation)- and microvascular (reactive hyperemia) dilator functions were assessed in the lower limb, following 5 min of arterial occlusion, via Doppler ultrasound. Compared with preheat, macrovascular dilator function was unchanged following heating in young adults (P = 0.6) but was improved in aged adults (P = 0.04). Similarly, microvascular dilator function, as assessed by peak reactive hyperemia, was unchanged following heating in young adults (P = 0.1) but was improved in aged adults (P lower limb heating improves both macro- and microvascular dilator function in an age dependent manner. We demonstrate that lower limb heating acutely improves macro- and microvascular dilator function within the atherosclerotic prone vasculature of the leg in aged adults. These findings provide evidence for a potential therapeutic use of chronic lower limb heating to improve vascular health in primary aging and various disease conditions. Copyright © 2017 the American Physiological Society.

  19. Human skeletal muscle fibroblasts stimulate in vitro myogenesis and in vivo muscle regeneration

    DEFF Research Database (Denmark)

    Mackey, Abigail L.; Magnan, Mélanie; Chazaud, Bénédicte

    2017-01-01

    Accumulation of skeletal muscle extracellular matrix is an unfavourable characteristic of many muscle diseases, muscle injury and sarcopenia. In addition to the indispensable role satellite cells play in muscle regeneration, there is emerging evidence in rodents for a regulatory influence...

  20. Effect of ionizing radiation on human skeletal muscle precursor cells

    International Nuclear Information System (INIS)

    Jurdana, Mihaela; Cemazar, Maja; Pegan, Katarina; Mars, Tomaz

    2013-01-01

    Long term effects of different doses of ionizing radiation on human skeletal muscle myoblast proliferation, cytokine signalling and stress response capacity were studied in primary cell cultures. Human skeletal muscle myoblasts obtained from muscle biopsies were cultured and irradiated with a Darpac 2000 X-ray unit at doses of 4, 6 and 8 Gy. Acute effects of radiation were studied by interleukin – 6 (IL-6) release and stress response detected by the heat shock protein (HSP) level, while long term effects were followed by proliferation capacity and cell death. Compared with non-irradiated control and cells treated with inhibitor of cell proliferation Ara C, myoblast proliferation decreased 72 h post-irradiation, this effect was more pronounced with increasing doses. Post-irradiation myoblast survival determined by measurement of released LDH enzyme activity revealed increased activity after exposure to irradiation. The acute response of myoblasts to lower doses of irradiation (4 and 6 Gy) was decreased secretion of constitutive IL-6. Higher doses of irradiation triggered a stress response in myoblasts, determined by increased levels of stress markers (HSPs 27 and 70). Our results show that myoblasts are sensitive to irradiation in terms of their proliferation capacity and capacity to secret IL-6. Since myoblast proliferation and differentiation are a key stage in muscle regeneration, this effect of irradiation needs to be taken in account, particularly in certain clinical conditions

  1. Evaluation of human muscle in vivo by potassium radiometric measuring

    International Nuclear Information System (INIS)

    Sousa, Wanderson de P.

    2000-01-01

    Potassium is an essential element to the human metabolism and is present in all living cells, mainly in the striated muscular fibers. K-40 is one of the natural potassium isotopes with mass percentage of 0,0118% . This isotope emits beta particle and gamma rays with 1460 keV. The energy of K-40 photon and its uniform distribution within the human body allows its in vivo measurement. The objective of this study is to optimize this technique and evaluate the possibility of its medical application in order to quantify muscle increase during recovering procedures. Subjects of both sexes measured until this moment were divided into two groups. Subjects of Group 1 do not exercise routinely and subjects of Group 2 does. In Group 1 the average potassium mass, muscle mass and potassium concentration were (101±16)g of K, (20±3)kg of muscle and (1,3±0,3)g of K/kg of body mass, respectively, while in Group 2 average values were (125±38)g of K, (25±8)kg of muscle and (1,7±0,2)g of K/kg of body mass. The comparison between average values shows a clear difference, which allows to correlate a higher K mass with routine body activity. The technique has shown enough sensitivity for this application. (author)

  2. Muscle gene expression patterns in human rotator cuff pathology.

    Science.gov (United States)

    Choo, Alexander; McCarthy, Meagan; Pichika, Rajeswari; Sato, Eugene J; Lieber, Richard L; Schenk, Simon; Lane, John G; Ward, Samuel R

    2014-09-17

    Rotator cuff pathology is a common source of shoulder pain with variable etiology and pathoanatomical characteristics. Pathological processes of fatty infiltration, muscle atrophy, and fibrosis have all been invoked as causes for poor outcomes after rotator cuff tear repair. The aims of this study were to measure the expression of key genes associated with adipogenesis, myogenesis, and fibrosis in human rotator cuff muscle after injury and to compare the expression among groups of patients with varied severities of rotator cuff pathology. Biopsies of the supraspinatus muscle were obtained arthroscopically from twenty-seven patients in the following operative groups: bursitis (n = 10), tendinopathy (n = 7), full-thickness rotator cuff tear (n = 8), and massive rotator cuff tear (n = 2). Quantitative polymerase chain reaction (qPCR) was performed to characterize gene expression pathways involved in myogenesis, adipogenesis, and fibrosis. Patients with a massive tear demonstrated downregulation of the fibrogenic, adipogenic, and myogenic genes, indicating that the muscle was not in a state of active change and may have difficulty responding to stimuli. Patients with a full-thickness tear showed upregulation of fibrotic and adipogenic genes; at the tissue level, these correspond to the pathologies most detrimental to outcomes of surgical repair. Patients with bursitis or tendinopathy still expressed myogenic genes, indicating that the muscle may be attempting to accommodate the mechanical deficiencies induced by the tendon tear. Gene expression in human rotator cuff muscles varied according to tendon injury severity. Patients with bursitis and tendinopathy appeared to be expressing pro-myogenic genes, whereas patients with a full-thickness tear were expressing genes associated with fatty atrophy and fibrosis. In contrast, patients with a massive tear appeared to have downregulation of all gene programs except inhibition of myogenesis. These data highlight the

  3. Morphometric and Statistical Analysis of the Palmaris Longus Muscle in Human and Non-Human Primates

    Science.gov (United States)

    Aversi-Ferreira, Roqueline A. G. M. F.; Bretas, Rafael Vieira; Maior, Rafael Souto; Davaasuren, Munkhzul; Paraguassú-Chaves, Carlos Alberto; Nishijo, Hisao; Aversi-Ferreira, Tales Alexandre

    2014-01-01

    The palmaris longus is considered a phylogenetic degenerate metacarpophalangeal joint flexor muscle in humans, a small vestigial forearm muscle; it is the most variable muscle in humans, showing variation in position, duplication, slips and could be reverted. It is frequently studied in papers about human anatomical variations in cadavers and in vivo, its variation has importance in medical clinic, surgery, radiological analysis, in studies about high-performance athletes, in genetics and anthropologic studies. Most studies about palmaris longus in humans are associated to frequency or case studies, but comparative anatomy in primates and comparative morphometry were not found in scientific literature. Comparative anatomy associated to morphometry of palmaris longus could explain the degeneration observed in this muscle in two of three of the great apes. Hypothetically, the comparison of the relative length of tendons and belly could indicate the pathway of the degeneration of this muscle, that is, the degeneration could be associated to increased tendon length and decreased belly from more primitive primates to those most derivate, that is, great apes to modern humans. In conclusion, in primates, the tendon of the palmaris longus increase from Lemuriformes to modern humans, that is, from arboreal to terrestrial primates and the muscle became weaker and tending to be missing. PMID:24860810

  4. Morphometric and Statistical Analysis of the Palmaris Longus Muscle in Human and Non-Human Primates

    Directory of Open Access Journals (Sweden)

    Roqueline A. G. M. F. Aversi-Ferreira

    2014-01-01

    Full Text Available The palmaris longus is considered a phylogenetic degenerate metacarpophalangeal joint flexor muscle in humans, a small vestigial forearm muscle; it is the most variable muscle in humans, showing variation in position, duplication, slips and could be reverted. It is frequently studied in papers about human anatomical variations in cadavers and in vivo, its variation has importance in medical clinic, surgery, radiological analysis, in studies about high-performance athletes, in genetics and anthropologic studies. Most studies about palmaris longus in humans are associated to frequency or case studies, but comparative anatomy in primates and comparative morphometry were not found in scientific literature. Comparative anatomy associated to morphometry of palmaris longus could explain the degeneration observed in this muscle in two of three of the great apes. Hypothetically, the comparison of the relative length of tendons and belly could indicate the pathway of the degeneration of this muscle, that is, the degeneration could be associated to increased tendon length and decreased belly from more primitive primates to those most derivate, that is, great apes to modern humans. In conclusion, in primates, the tendon of the palmaris longus increase from Lemuriformes to modern humans, that is, from arboreal to terrestrial primates and the muscle became weaker and tending to be missing.

  5. Single muscle fiber gene expression in human skeletal muscle: validation of internal control with exercise

    International Nuclear Information System (INIS)

    Jemiolo, Bozena; Trappe, Scott

    2004-01-01

    Reverse transcription and real-time PCR have become the method of choice for the detection of low-abundance mRNA transcripts obtained from small human muscle biopsy samples. GAPDH, β-actin, β-2M, and 18S rRNA are widely employed as endogenous control genes, with the assumption that their expression is unregulated and constant for given experimental conditions. The aim of this study was to determine if mRNA transcripts could be performed on isolated human single muscle fibers and to determine reliable housekeeping genes (HKGs) using quantitative gene expression protocols at rest and in response to an acute exercise bout. Muscle biopsies were obtained from the gastrocnemius of three adult males before, immediately after, and 4 h following 30 min of treadmill running at 70% of VO 2 max. A total of 40 single fibers (MHC I and IIa) were examined for GAPDH, β-actin, β-2M, and 18S rRNA using quantitative RT-PCR and SYBR Green detection. All analyzed single fiber segments showed ribosomal RNA (28S/18S). No degradation or additional bands below ribosomal were detected (rRNA ratio 1.5-1.8). Also, no high or low-molecular weight genomic DNA contamination was observed. For each housekeeping gene the duplicate average SD was ±0.13 with a CV of 0.58%. Stable expression of GAPDH was observed at all time points for each fiber type (MHC I and IIa). Inconsistent expression of β-actin, β-2M, and 18S rRNA was observed during the post-exercise time points for each fiber type. These data indicate that successful extraction of high quality RNA from human single muscle fibers along with quantification of mRNA of selected genes can be performed. Furthermore, exercise does influence the expression of certain HKGs with GAPDH being the most stable

  6. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ~40 and ~1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed......Interleukin (IL)-6 is chronically elevated in type 2 diabetes but also during exercise. However, the exact metabolic role, and hence the physiological significance, has not been elucidated. The objective of this study was to investigate the in vivo effect of recombinant human (rh) IL-6 on human fat...... before, during, and 2 h after cessation of the infusion. Glucose metabolism was unaffected by rhIL-6. In contrast, rhIL-6 increased systemic fatty acid oxidation approximately twofold after 60 min, and it remained elevated even 2 h after the infusion. The increase in oxidation was followed by an increase...

  7. IL-6 selectively stimulates fat metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Wolsk, Emil; Mygind, Helene; Grøndahl, Thomas S

    2010-01-01

    and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ∼40 and ∼1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed......Interleukin (IL)-6 is chronically elevated in type 2 diabetes but also during exercise. However, the exact metabolic role, and hence the physiological significance, has not been elucidated. The objective of this study was to investigate the in vivo effect of recombinant human (rh) IL-6 on human fat...... before, during, and 2 h after cessation of the infusion. Glucose metabolism was unaffected by rhIL-6. In contrast, rhIL-6 increased systemic fatty acid oxidation approximately twofold after 60 min, and it remained elevated even 2 h after the infusion. The increase in oxidation was followed by an increase...

  8. Design of a biped robot actuated by pneumatic artificial muscles.

    Science.gov (United States)

    Liu, Yixiang; Zang, Xizhe; Liu, Xinyu; Wang, Lin

    2015-01-01

    High compliant legs are essential for the efficient versatile locomotion and shock absorbency of humans. This study proposes a biped robot actuated by pneumatic artificial muscles to mimic human locomotion. On the basis of the musculoskeletal architecture of human lower limbs, each leg of the biped robot is modeled as a system of three segments, namely, hip joint, knee joint, and ankle joint, and eleven muscles, including both monoarticular and biarticular muscles. Each rotational joint is driven by a pair of antagonistic muscles, enabling joint compliance to be tuned by operating the pressure inside the muscles. Biarticular muscles play an important role in transferring power between joints. Walking simulations verify that biarticular muscles contribute to joint compliance and can absorb impact energy when the robot makes an impact upon ground contact.

  9. Severe energy deficit upregulates leptin receptors, leptin signaling, and PTP1B in human skeletal muscle.

    Science.gov (United States)

    Perez-Suarez, Ismael; Ponce-González, Jesús Gustavo; de La Calle-Herrero, Jaime; Losa-Reyna, Jose; Martin-Rincon, Marcos; Morales-Alamo, David; Santana, Alfredo; Holmberg, Hans-Christer; Calbet, Jose A L

    2017-11-01

    In obesity, leptin receptors (OBR) and leptin signaling in skeletal muscle are downregulated. To determine whether OBR and leptin signaling are upregulated with a severe energy deficit, 15 overweight men were assessed before the intervention (PRE), after 4 days of caloric restriction (3.2 kcal·kg body wt -1 ·day -1 ) in combination with prolonged exercise (CRE; 8 h walking + 45 min single-arm cranking/day) to induce an energy deficit of ~5,500 kcal/day, and following 3 days of control diet (isoenergetic) and reduced exercise (CD). During CRE, the diet consisted solely of whey protein ( n = 8) or sucrose ( n = 7; 0.8 g·kg body wt -1 ·day -1 ). Muscle biopsies were obtained from the exercised and the nonexercised deltoid muscles and from the vastus lateralis. From PRE to CRE, serum glucose, insulin, and leptin were reduced. OBR expression was augmented in all examined muscles associated with increased maximal fat oxidation. Compared with PRE, after CD, phospho-Tyr 1141 OBR, phospho-Tyr 985 OBR, JAK2, and phospho-Tyr 1007/1008 JAK2 protein expression were increased in all muscles, whereas STAT3 and phospho-Tyr 705 STAT3 were increased only in the arms. The expression of protein tyrosine phosphatase 1B (PTP1B) in skeletal muscle was increased by 18 and 45% after CRE and CD, respectively ( P < 0.05). Suppressor of cytokine signaling 3 (SOCS3) tended to increase in the legs and decrease in the arm muscles (ANOVA interaction: P < 0.05). Myosin heavy chain I isoform was associated with OBR protein expression ( r  = -0.75), phospho-Tyr 985 OBR ( r  = 0.88), and phospho-Tyr 705 STAT3/STAT3 ( r = 0.74). In summary, despite increased PTP1B expression, skeletal muscle OBR and signaling are upregulated by a severe energy deficit with greater response in the arm than in the legs likely due to SOCS3 upregulation in the leg muscles. NEW & NOTEWORTHY This study shows that the skeletal muscle leptin receptors and their corresponding signaling cascade are upregulated in

  10. Bionic Humans Using EAP as Artificial Muscles Reality and Challenges

    Directory of Open Access Journals (Sweden)

    Yoseph Bar-Cohen

    2008-11-01

    Full Text Available For many years, the idea of a human with bionic muscles immediately conjures up science fiction images of a TV series superhuman character that was implanted with bionic muscles and portrayed with strength and speed far superior to any normal human. As fantastic as this idea may seem, recent developments in electroactive polymers (EAP may one day make such bionics possible. Polymers that exhibit large displacement in response to stimulation that is other than electrical signal were known for many years. Initially, EAP received relatively little attention due to their limited actuation capability. However, in the recent years, the view of the EAP materials has changed due to the introduction of effective new materials that significantly surpassed the capability of the widely used piezoelectric polymer, PVDF. As this technology continues to evolve, novel mechanisms that are biologically inspired are expected to emerge. EAP materials can potentially provide actuation with lifelike response and more flexible configurations. While further improvements in performance and robustness are still needed, there already have been several reported successes. In recognition of the need for cooperation in this multidisciplinary field, the author initiated and organized a series of international forums that are leading to a growing number of research and development projects and to great advances in the field. In 1999, he challenged the worldwide science and engineering community of EAP experts to develop a robotic arm that is actuated by artificial muscles to win a wrestling match against a human opponent. In this paper, the field of EAP as artificial muscles will be reviewed covering the state of the art, the challenges and the vision for the progress in future years.

  11. Broken Leg

    Science.gov (United States)

    ... the leg, which can result in a fracture. Stress fractures outside of sport situations are more common in people who have: ... shoes. Choose the appropriate shoe for your favorite sports or activities. And ... can prevent stress fractures. Rotate running with swimming or biking. If ...

  12. GLP-1 increases microvascular recruitment but not glucose uptake in human and rat skeletal muscle

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Holst, Jens Juul; Rattigan, Stephen

    2014-01-01

    The insulinotropic gut hormone, glucagon-like-peptide-1 (GLP-1) has been proposed to have effects on vascular function and glucose disposal. However, whether GLP-1 is able to increase microvascular recruitment (MVR) in humans has not been investigated. GLP-1 was infused in the femoral artery...... in overnight fasted healthy young men. Microvascular recruitment was measured with real time contrast-enhanced ultrasound and leg glucose uptake by the leg balance technique with and without inhibition of the insulinotropic response of GLP-1 by co-infusion of octreotide. As a positive control, MVR and leg...

  13. Ultrastructure of striated muscle fibers in the middle third of the human esophagus

    OpenAIRE

    Faussone-Pellegrini, M.S; Cortesini, C.

    1986-01-01

    Striated muscle fibers and .their spatial relationship to smooth muscle cells have been studied in the middle third of human esophagus. Biopsies were obtained from 3 patients during surgery. In both the circular and longitudinal layers, the muscle coat of this transition zone was composed of fascicles of uniform dimensioi~ (100-200 pm of diameter); some of these bundles were made up of striated muscle fibers, others were pure bundles of smooth muscle cells and ...

  14. History-dependence of muscle slack length following contraction and stretch in the human vastus lateralis.

    Science.gov (United States)

    Stubbs, Peter W; Walsh, Lee D; D'Souza, Arkiev; Héroux, Martin E; Bolsterlee, Bart; Gandevia, Simon C; Herbert, Robert D

    2018-06-01

    In reduced muscle preparations, the slack length and passive stiffness of muscle fibres have been shown to be influenced by previous muscle contraction or stretch. In human muscles, such behaviours have been inferred from measures of muscle force, joint stiffness and reflex magnitudes and latencies. Using ultrasound imaging, we directly observed that isometric contraction of the vastus lateralis muscle at short lengths reduces the slack lengths of the muscle-tendon unit and muscle fascicles. The effect is apparent 60 s after the contraction. These observations imply that muscle contraction at short lengths causes the formation of bonds which reduce the effective length of structures that generate passive tension in muscles. In reduced muscle preparations, stretch and muscle contraction change the properties of relaxed muscle fibres. In humans, effects of stretch and contraction on properties of relaxed muscles have been inferred from measurements of time taken to develop force, joint stiffness and reflex latencies. The current study used ultrasound imaging to directly observe the effects of stretch and contraction on muscle-tendon slack length and fascicle slack length of the human vastus lateralis muscle in vivo. The muscle was conditioned by (a) strong isometric contractions at long muscle-tendon lengths, (b) strong isometric contractions at short muscle-tendon lengths, (c) weak isometric contractions at long muscle-tendon lengths and (d) slow stretches. One minute after conditioning, ultrasound images were acquired from the relaxed muscle as it was slowly lengthened through its physiological range. The ultrasound image sequences were used to identify muscle-tendon slack angles and fascicle slack lengths. Contraction at short muscle-tendon lengths caused a mean 13.5 degree (95% CI 11.8-15.0 degree) shift in the muscle-tendon slack angle towards shorter muscle-tendon lengths, and a mean 5 mm (95% CI 2-8 mm) reduction in fascicle slack length, compared to the

  15. Physical inactivity and muscle oxidative capacity in humans

    DEFF Research Database (Denmark)

    Gram, Martin; Dahl, Rannvá; Dela, Flemming

    2014-01-01

    Physical inactivity is associated with a high prevalence of type 2 diabetes and is an independent predictor of mortality. It is possible that the detrimental effects of physical inactivity are mediated through a lack of adequate muscle oxidative capacity. This short review will cover the present...... literature on the effects of different models of inactivity on muscle oxidative capacity in humans. Effects of physical inactivity include decreased mitochondrial content, decreased activity of oxidative enzymes, changes in markers of oxidative stress and a decreased expression of genes and contents...... of proteins related to oxidative phosphorylation. With such a substantial down-regulation, it is likely that a range of adenosine triphosphate (ATP)-dependent pathways such as calcium signalling, respiratory capacity and apoptosis are affected by physical inactivity. However, this has not been investigated...

  16. Modifications of baropodograms after transcutaneous electric stimulation of the abductor hallucis muscle in humans standing erect.

    Science.gov (United States)

    Gaillet, Jean-Claude; Biraud, Jean-Claude; Bessou, Monique; Bessou, Paul

    2004-12-01

    Objective data on abductor hallucis muscle biomechanical function in the loaded foot (subject standing erect on both legs) are unavailable. To evaluate the effects of electrical stimulation of the abductor hallucis muscle in the loaded foot on the change of plantar pressures, as measured by digital baropodograms. Six indices were defined to compare baropodograms. The abductor hallucis muscle in 1 foot was subjected to transcutaneous electrical stimulation (20 min) while the subject was standing erect on the floor. Baropodograms were recorded before, immediately thereafter, then 15 days and 2 months later. Differences between baropodogram indices were subjected to one-way anova. Electrical abductor hallucis muscle stimulation induced, on the stimulation side, a post-contraction state easily detected on baropodograms as the increased plantar pressure on the anterior-medial part of the sole, and lateral displacements of the anterior maximal pressure point and the foot thrust center. These mechanical signs, consistent with foot inversion, induce external rotation of the leg and pelvic rotation on the stimulated side, leading to contralateral plantar-pressure changes: decreased maximal pressure point and thrust in the posterior part of the footprint and lateral displacement of the foot thrust center. Electrical stimulation of the abductor hallucis muscle in the loaded foot induces immediate specific changes in baropodogram indices, some of which persist 2 months later. The mechanical effect of abductor hallucis muscle stimulation (foot inversion) and its post-contraction state could be useful in podiatric and postural rehabilitation.

  17. Six weeks' aerobic retraining after two weeks' immobilization restores leg lean mass and aerobic capacity but does not fully rehabilitate leg strenght in young and older men

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Gram, Martin; Wiuff, Caroline

    2015-01-01

    OBJECTIVE: To determine the effect of aerobic retraining as rehabilitation after short-term leg immobilization on leg strength, leg work capacity, leg lean mass, leg muscle fibre type composition and leg capillary supply, in young and older men. SUBJECTS AND DESIGN: Seventeen young (23 ± 1 years...... immobilization had marked effects on leg strength, and work capacity and 6 weeks' retraining was sufficient to increase, but not completely rehabilitate, muscle strength, and to rehabilitate aerobic work capacity and leg lean mass (in the young men)....

  18. Influence of exercise contraction mode and protein supplementation on human skeletal muscle satellite cell content and muscle fiber growth

    DEFF Research Database (Denmark)

    Farup, Jean; Rahbek, Stine Klejs; Riis, Simon

    2014-01-01

    -specific association between emergence of satellite cells (SCs), muscle growth, and remodeling in response to 12 wk unilateral resistance training performed as eccentric (Ecc) or concentric (Conc) resistance training ± whey protein (Whey, 19.5 g protein + 19.5 g glucose) or placebo (Placebo, 39 g glucose......Skeletal muscle satellite cells (SCs) are involved in remodeling and hypertrophy processes of skeletal muscle. However, little knowledge exists on extrinsic factors that influence the content of SCs in skeletal muscle. In a comparative human study, we investigated the muscle fiber type......) supplementation. Muscle biopsies (vastus lateralis) were analyzed for fiber type-specific SCs, myonuclei, and fiber cross-sectional area (CSA). Following training, SCs increased with Conc in both type I and type II fibers (P

  19. The effect of starting or stopping skin cooling on the thermoregulatory responses during leg exercise in humans.

    Science.gov (United States)

    Demachi, K; Yoshida, T; Kume, M; Tsuneoka, H

    2012-07-01

    To assess the effects of starting or stopping leg cooling on the thermoregulatory responses during exercise, 60 min of cycling exercise at 30% of maximal oxygen uptake was performed under 4 conditions using tube trouser perfused with water at 10 °C; no leg cooling (NC), starting of leg cooling after 30 min of exercise (delayed cooling, DC), continuous leg cooling (CC), and stopping of continuous leg cooling after 30 min of exercise (SC) at an environmental temperature of 28.5 °C. During exercise under the DC conditions, an instantaneous increase in the esophageal temperature (Tes), a suppression of the cutaneous vascular conductance at the forearm (%CVC), and a decrease in the mean skin temperature (Tsk) were observed after leg cooling. The total sweat loss (Δm sw,tot) was lower under the DC than the NC condition. In the SC study, however, the Tes remained constant, while the %CVC increased gradually after leg cooling was stopped, and the Δm sw,tot was greater than that under the CC condition. These results suggest that during exercise, rapid skin cooling of the leg may cause an increase in core temperature, while also enhancing thermal stress. However, stopping skin cooling did not significantly affect the core temperature long-term, because the skin blood flow and sweat rate subsequently increased. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Experimental model of human corpus cavernosum smooth muscle relaxation

    Directory of Open Access Journals (Sweden)

    Rommel P. Regadas

    2010-08-01

    Full Text Available PURPOSE: To describe a technique for en bloc harvesting of the corpus cavernosum, cavernous artery and urethra from transplant organ donors and contraction-relaxation experiments with corpus cavernosum smooth muscle. MATERIALS AND METHODS: The corpus cavernosum was dissected to the point of attachment with the crus penis. A 3 cm segment (corpus cavernosum and urethra was isolated and placed in ice-cold sterile transportation buffer. Under magnification, the cavernous artery was dissected. Thus, 2 cm fragments of cavernous artery and corpus cavernosum were obtained. Strips measuring 3 x 3 x 8 mm3 were then mounted vertically in an isolated organ bath device. Contractions were measured isometrically with a Narco-Biosystems force displacement transducer (model F-60, Narco-Biosystems, Houston, TX, USA and recorded on a 4-channel Narco-Biosystems desk model polygraph. RESULTS: Phenylephrine (1µM was used to induce tonic contractions in the corpus cavernosum (3 - 5 g tension and cavernous artery (0.5 - 1g tension until reaching a plateau. After precontraction, smooth muscle relaxants were used to produce relaxation-response curves (10-12M to 10-4 M. Sodium nitroprusside was used as a relaxation control. CONCLUSION: The harvesting technique and the smooth muscle contraction-relaxation model described in this study were shown to be useful instruments in the search for new drugs for the treatment of human erectile dysfunction.

  1. Radioimmunoassay of human muscle carbonic anhydrase III in dystrophic states

    Energy Technology Data Exchange (ETDEWEB)

    Heath, R.; Jeffery, S.; Carter, N. (Department of Child Health, St. George' s Hospital Medical School, London (UK))

    1982-03-12

    A radioimmunoassay for the human isozyme carbonic anhydrase III (CAIII) has been developed. The assay can detect levels as low as 4..mu..g/l of sample. Plasma CAIII levels in patients suffering from Duchenne muscular dystrophy were found to be up to 39 times greater than in a control group. Urine CAIII levels in patients suffering from Duchenne muscular dystrophy were not significantly different from the levels found in urine from normal adults. Measurement of plasma CAIII levels may be useful in prenatal diagnosis of Duchenne muscular dystrophy, and in investigation of adult skeletal muscle disease.

  2. Radioimmunoassay of human muscle carbonic anhydrase III in dystrophic states

    International Nuclear Information System (INIS)

    Heath, R.; Jeffery, S.; Carter, N.

    1982-01-01

    A radioimmunoassay for the human isozyme carbonic anhydrase III (CAIII) has been developed. The assay can detect levels as low as 4μg/l of sample. Plasma CAIII levels in patients suffering from Duchenne muscular dystrophy were found to be up to 39 times greater than in a control group. Urine CAIII levels in patients suffering from Duchenne muscular dystrophy were not significantly different from the levels found in urine from normal adults. Measurement of plasma CAIII levels may be useful in prenatal diagnosis of Duchenne muscular dystrophy, and in investigation of adult skeletal muscle disease. (Auth.)

  3. Muscle cramps

    Science.gov (United States)

    ... the lower leg/calf Back of the thigh (hamstrings) Front of the thigh (quadriceps) Cramps in the ... Names Cramps - muscle Images Chest stretch Groin stretch Hamstring stretch Hip stretch Thigh stretch Triceps stretch References ...

  4. Dystrophic calcification in muscles of legs in calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, and telangiectasia syndrome: Accurate evaluation of the extent with 99mTc-methylene diphosphonate single photon emission computed tomography/computed tomography

    International Nuclear Information System (INIS)

    Chakraborty, Partha Sarathi; Karunanithi, Sellam; Dhull, Varun Singh; Kumar, Kunal; Tripathi, Madhavi

    2015-01-01

    We present the case of a 35-year-old man with calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly and telangiectasia variant scleroderma who presented with dysphagia, Raynaud's phenomenon and calf pain. 99m Tc-methylene diphosphonate bone scintigraphy was performed to identify the extent of the calcification. It revealed extensive dystrophic calcification in the left thigh and bilateral legs which was involving the muscles and was well-delineated on single photon emission computed tomography/computed tomography. Calcinosis in scleroderma usually involves the skin but can be found in deeper periarticular tissues. Myopathy is associated with a poor prognosis

  5. Induction of GLUT-1 protein in adult human skeletal muscle fibers

    DEFF Research Database (Denmark)

    Gaster, M; Franch, J; Staehr, P

    2000-01-01

    Prompted by our recent observations that GLUT-1 is expressed in fetal muscles, but not in adult muscle fibers, we decided to investigate whether GLUT-1 expression could be reactivated. We studied different stimuli concerning their ability to induce GLUT-1 expression in mature human skeletal muscle...... fibers. Metabolic stress (obesity, non-insulin-dependent diabetes mellitus), contractile activity (training), and conditions of de- and reinnervation (amyotrophic lateral sclerosis) could not induce GLUT-1 expression in human muscle fibers. However, regenerating muscle fibers in polymyositis expressed...... GLUT-1. In contrast to GLUT-1, GLUT-4 was expressed in all investigated muscle fibers. Although the significance of GLUT-1 in adult human muscle fibers appears limited, GLUT-1 may be of importance for the glucose supplies in immature and regenerating muscle....

  6. Training and muscle ammonia and amino acid metabolism in humans during prolonged exercise

    DEFF Research Database (Denmark)

    Graham, T E; Turcotte, L P; Kiens, Bente

    1995-01-01

    We studied the responses of NH3 and amino acids (AA) to prolonged exercise (3 h) in trained (Tr; n = 6) and untrained (Utr; n = 6) men. Each subject exercised the knee extensor muscles of one leg at 60% of maximum capacity. Thigh blood flow and femoral arteriovenous differences (0, 30, 60, 120, 150......, and 180 min) as well as muscle biopsies (0, 120, and 180 min) were taken for NH3 and AA measurements. In both groups, muscle Glu decreased (P ....4 +/- 6.8 mmol/kg wet wt in Tr and Utr, respectively. Tr had greater (P muscle Tau, Phe, Ala, and Glu. Both groups had a large Glu uptake and effluxes of NH3, Gln, and Ala as well as essential AA. The latter implies that there was a net protein catabolism. The efflux of NH3 and Gln was much...

  7. Sequenced response of extracellular matrix deadhesion and fibrotic regulators after muscle damage is involved in protection against future injury in human skeletal muscle

    DEFF Research Database (Denmark)

    Mackey, Abigail; Brandstetter, Simon; Schjerling, Peter

    2011-01-01

    ) 30 d later, or 30 d after a single stimulation bout (RBc). A muscle biopsy was collected from the control leg for comparison with the stimulated leg. Satellite cell content, tenascin C, and muscle regeneration were assessed by immunohistochemistry; real-time PCR was used to measure mRNA levels...... of collagens, laminins, heat-shock proteins (HSPs), inflammation, and related growth factors. The large responses of HSPs, CCL2, and tenascin C detected 48 h after a single bout were attenuated in the RB trial, indicative of protection against injury. Satellite cell content and 12 target genes, including IGF-1......, were elevated 30 d after a single bout. Among those displaying the greatest difference vs. control muscle, ECM laminin-ß1 and collagen types I and III were elevated ~6- to 9-fold (P...

  8. Does a crouched leg posture enhance running stability and robustness?

    Science.gov (United States)

    Blum, Yvonne; Birn-Jeffery, Aleksandra; Daley, Monica A; Seyfarth, Andre

    2011-07-21

    Humans and birds both walk and run bipedally on compliant legs. However, differences in leg architecture may result in species-specific leg control strategies as indicated by the observed gait patterns. In this work, control strategies for stable running are derived based on a conceptual model and compared with experimental data on running humans and pheasants (Phasianus colchicus). From a model perspective, running with compliant legs can be represented by the planar spring mass model and stabilized by applying swing leg control. Here, linear adaptations of the three leg parameters, leg angle, leg length and leg stiffness during late swing phase are assumed. Experimentally observed kinematic control parameters (leg rotation and leg length change) of human and avian running are compared, and interpreted within the context of this model, with specific focus on stability and robustness characteristics. The results suggest differences in stability characteristics and applied control strategies of human and avian running, which may relate to differences in leg posture (straight leg posture in humans, and crouched leg posture in birds). It has been suggested that crouched leg postures may improve stability. However, as the system of control strategies is overdetermined, our model findings suggest that a crouched leg posture does not necessarily enhance running stability. The model also predicts different leg stiffness adaptation rates for human and avian running, and suggests that a crouched avian leg posture, which is capable of both leg shortening and lengthening, allows for stable running without adjusting leg stiffness. In contrast, in straight-legged human running, the preparation of the ground contact seems to be more critical, requiring leg stiffness adjustment to remain stable. Finally, analysis of a simple robustness measure, the normalized maximum drop, suggests that the crouched leg posture may provide greater robustness to changes in terrain height

  9. The Fibularis (Peroneus Tertius Muscle in Humans: A Meta-Analysis of Anatomical Studies with Clinical and Evolutionary Implications

    Directory of Open Access Journals (Sweden)

    Kaissar Yammine

    2017-01-01

    Full Text Available Being considered an exclusive human structure for a long time, fibularis tertius (FT is believed to have a secondary function of foot dorsiflexion and eversion. This study is an attempt to approach the issue from an anatomical perspective. A systematic literature search identified 35 studies (7601 legs which met the inclusion criteria. The weighted results of FT presence were as follows: an “adult cadaveric” frequency of 93.2% and a clinical frequency of 80%. The most common FT origin and insertion sites were the distal half of fibula and the base of the 5th metatarsal, respectively. In 95% of cases, an accessory fibular muscle was detected when FT was lacking. We demonstrated that the discrepancy found between the adult cadaveric and clinical frequency values would point out a probable bias in interpreting previous kinesiological results. On an evolutionary level, comparative anatomy demonstrated a very low FT prevalence among monkeys while reaching a frequency of 30% in gorillas, the only non-human apes having an almost exclusive terrestrial locomotion. The consistent prevalence among humans and the presence of similar functional muscles when it is missing would support an essential role of FT during the phylogenetic development of the erect bipedal posture and probably during gait.

  10. Roles of sedentary aging and lifelong physical activity on exchange of glutathione across exercising human skeletal muscle

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Mortensen, Stefan Peter; Cabo, Helena

    2014-01-01

    Reactive oxygen species (ROS) are important signaling molecules with regulatory functions, and in young and adult organisms, the formation of ROS is increased during skeletal muscle contractions. However, ROS can be deleterious to cells when not sufficiently counterbalanced by the antioxidant sys...... underlying skeletal muscle and vascular dysfunction with sedentary aging. Lifelong physical activity up-regulates antioxidant systems which may be one of the mechanisms underlying the lack of exercise-induced increase in GSSG....... system. Aging is associated with accumulation of oxidative damage to lipids, DNA and proteins. Given the pro-oxidant effect of skeletal muscle contractions, this effect of age could be a result of excessive ROS formation. We evaluated the effect of acute exercise on changes in blood redox state across...... the leg of young (23±1 years) and older (66±2 years) sedentary humans by measuring the whole blood concentration of the reduced (GSH) and oxidized (GSSG) form of the antioxidant glutathione. To assess the role of physical activity, lifelong physically active older subjects (62±2 years) were included...

  11. [The investigation of control mechanisms of stepping rhythm in human in the air-stepping conditions during passive and voluntary leg movements].

    Science.gov (United States)

    Solopova, I A; Selionon, V A; Grishin, A A

    2010-01-01

    In unloading condition the degree of activation of the central stepping program was investigated during passive leg movements in healthy subjects, as well as the excitability of spinal motoneurons during passive and voluntary stepping movement. Passive stepping movements with characteristics maximally approximated to those during voluntary stepping were accomplished by experimenter. The comparison of the muscle activity bursts during voluntary and imposed movements was made. In addition to that the influence of artificially created loading onto the foot to the leg movement characteristics was analyzed. Spinal motoneuron excitability was estimated by means of evaluation of amplitude modulation of the soleus H-reflex. The changes of H-reflexes under the fixation of knee or hip joints were also studied. In majority of subjects the passive movements were accompanied by bursts of EMG activity of hip muscles (and sometimes of knee muscles), which timing during step cycle was coincided with burst timing of voluntary step cycle. In many cases the bursts of EMG activity during passive movements exceeded activity in homonymous muscles during voluntary stepping. The foot loading imitation exerted essential influence on distal parts of moving extremity during voluntary as well passive movements, that was expressed in the appearance of movements in the ankle joint and accompanied by emergence and increasing of phasic EMG activity of shank muscles. The excitability of motoneurons during passive movements was greater then during voluntary ones. The changes and modulation of H-reflex throughout the step cycle without restriction of joint mobility and during exclusion of hip joint mobility were similar. The knee joint fixation exerted the greater influence. It is supposed that imposed movements activate the same mechanisms of rhythm generation as a supraspinal commands during voluntary movements. In the conditions of passive movements the presynaptic inhibition depend on afferent

  12. Variation of the Surface of the Longissimus Dorsi (LD Muscle and the Section of the Leg of Mutton at Young Sheep of Different Breed Structures

    Directory of Open Access Journals (Sweden)

    Elena Ilişiu

    2010-10-01

    Full Text Available The research was done on carcasses from the slaughter of young male sheep intensively fattened belonging to the local Tsigai race of mountain ecotype and its half-breeds with Suffolk and German blackface (GCCN. The purpose of the research was to determine Logissimus dorsi (LD and leg of moutton area, because these parts provide information on Ist meat quality. Research results have noted that lots of half-breeds achieved higher Longissimus dorsi (LD and leg of moutton area, compared with the pure breed batch. Compared with Tsigai breed, Longissimus dorsi (LD area deterrmined was higher with 10,75% to Suffolk x Tsigai half-breeds, and 0,07% respectively to German Blackface x Tsigai half-breeds. Leg of moutton area was higher with 17,27% to Suffolk x Tsigai halfbreeds, and 2,75% respectively to German Blackface x Tsigai half-breeds. Research carried out special information on Ist meat quality on carcass.

  13. Regulation of Metabolic Signaling in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Albers, Peter Hjorth

    sensitivity in type I muscle fibers possibly reflects a superior effect of insulin on metabolic signaling compared to type II muscle fibers. This was investigated in the present thesis by examining muscle biopsies from lean and obese healthy subjects as well as patients with type 2 diabetes. From these muscle...

  14. Study of Statin- and Loratadine-Induced Muscle Pain Mechanisms Using Human Skeletal Muscle Cells

    Directory of Open Access Journals (Sweden)

    Yat Hei Leung

    2017-10-01

    Full Text Available Many drugs can cause unexpected muscle disorders, often necessitating the cessation of an effective medication. Inhibition of monocarboxylate transporters (MCTs may potentially lead to perturbation of l-lactic acid homeostasis and muscular toxicity. Previous studies have shown that statins and loratadine have the potential to inhibit l-lactic acid efflux by MCTs (MCT1 and 4. The main objective of this study was to confirm the inhibitory potentials of atorvastatin, simvastatin (acid and lactone forms, rosuvastatin, and loratadine on l-lactic acid transport using primary human skeletal muscle cells (SkMC. Loratadine (IC50 31 and 15 µM and atorvastatin (IC50 ~130 and 210 µM demonstrated the greatest potency for inhibition of l-lactic acid efflux at pH 7.0 and 7.4, respectively (~2.5-fold l-lactic acid intracellular accumulation. Simvastatin acid exhibited weak inhibitory potency on l-lactic acid efflux with an intracellular lactic acid increase of 25–35%. No l-lactic acid efflux inhibition was observed for simvastatin lactone or rosuvastatin. Pretreatment studies showed no change in inhibitory potential and did not affect lactic acid transport for all tested drugs. In conclusion, we have demonstrated that loratadine and atorvastatin can inhibit the efflux transport of l-lactic acid in SkMC. Inhibition of l-lactic acid efflux may cause an accumulation of intracellular l-lactic acid leading to the reported drug-induced myotoxicity.

  15. Series elasticity of the human triceps surae muscle : Measurement by controlled-release vs. resonance methods.

    NARCIS (Netherlands)

    Hof, AL; Boom, H; Robinson, C; Rutten, W; Neuman, M; Wijkstra, H

    1997-01-01

    With a newly developed Controlled-Release Ergometer the complete characteristic of the series elastic component can be measured in human muscles. Previous estimates were based on the resonance method: muscle elasticity was assessed from the resonance frequency of the muscle elasticity connected to a

  16. Influence of pre-exercise muscle glycogen content on exercise-induced transcriptional regulation of metabolic genes

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Keller, Charlotte; Steensberg, Adam

    2002-01-01

    Transcription of metabolic genes is transiently induced during recovery from exercise in skeletal muscle of humans. To determine whether pre-exercise muscle glycogen content influences the magnitude and/or duration of this adaptive response, six male subjects performed one-legged cycling exercise...... to lower muscle glycogen content in one leg and then, the following day, completed 2.5 h low intensity two-legged cycling exercise. Nuclei and mRNA were isolated from biopsies obtained from the vastus lateralis muscle of the control and reduced glycogen (pre-exercise glycogen = 609 +/- 47 and 337 +/- 33...... mmol kg(-1) dry weight, respectively) legs before and after 0, 2 and 5 h of recovery. Exercise induced a significant (P glycogen leg only. Although PDK4...

  17. Nuclear fusion-independent smooth muscle differentiation of human adipose-derived stem cells induced by a smooth muscle environment.

    Science.gov (United States)

    Zhang, Rong; Jack, Gregory S; Rao, Nagesh; Zuk, Patricia; Ignarro, Louis J; Wu, Benjamin; Rodríguez, Larissa V

    2012-03-01

    Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion. Copyright © 2011 AlphaMed Press.

  18. Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human cognitive and physical uniqueness.

    Directory of Open Access Journals (Sweden)

    Katarzyna Bozek

    2014-05-01

    Full Text Available Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys.

  19. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy

    DEFF Research Database (Denmark)

    Suetta, Charlotte Arneboe; Frandsen, Ulrik; Jensen, Line

    2012-01-01

    Important insights concerning the molecular basis of skeletal muscle disuse-atrophy and aging related muscle loss have been obtained in cell culture and animal models, but these regulatory signaling pathways have not previously been studied in aging human muscle. In the present study, muscle...... atrophy was induced by immobilization in healthy old and young individuals to study the time-course and transcriptional factors underlying human skeletal muscle atrophy. The results reveal that irrespectively of age, mRNA expression levels of MuRF-1 and Atrogin-1 increased in the very initial phase (2......-4 days) of human disuse-muscle atrophy along with a marked reduction in PGC-1α and PGC-1β (1-4 days) and a ∼10% decrease in myofiber size (4 days). Further, an age-specific decrease in Akt and S6 phosphorylation was observed in young muscle within the first days (1-4 days) of immobilization. In contrast...

  20. Molecular networks of human muscle adaptation to exercise and age.

    Directory of Open Access Journals (Sweden)

    Bethan E Phillips

    2013-03-01

    Full Text Available Physical activity and molecular ageing presumably interact to precipitate musculoskeletal decline in humans with age. Herein, we have delineated molecular networks for these two major components of sarcopenic risk using multiple independent clinical cohorts. We generated genome-wide transcript profiles from individuals (n = 44 who then undertook 20 weeks of supervised resistance-exercise training (RET. Expectedly, our subjects exhibited a marked range of hypertrophic responses (3% to +28%, and when applying Ingenuity Pathway Analysis (IPA up-stream analysis to ~580 genes that co-varied with gain in lean mass, we identified rapamycin (mTOR signaling associating with growth (P = 1.4 × 10(-30. Paradoxically, those displaying most hypertrophy exhibited an inhibited mTOR activation signature, including the striking down-regulation of 70 rRNAs. Differential analysis found networks mimicking developmental processes (activated all-trans-retinoic acid (ATRA, Z-score = 4.5; P = 6 × 10(-13 and inhibited aryl-hydrocarbon receptor signaling (AhR, Z-score = -2.3; P = 3 × 10(-7 with RET. Intriguingly, as ATRA and AhR gene-sets were also a feature of endurance exercise training (EET, they appear to represent "generic" physical activity responsive gene-networks. For age, we found that differential gene-expression methods do not produce consistent molecular differences between young versus old individuals. Instead, utilizing two independent cohorts (n = 45 and n = 52, with a continuum of subject ages (18-78 y, the first reproducible set of age-related transcripts in human muscle was identified. This analysis identified ~500 genes highly enriched in post-transcriptional processes (P = 1 × 10(-6 and with negligible links to the aforementioned generic exercise regulated gene-sets and some overlap with ribosomal genes. The RNA signatures from multiple compounds all targeting serotonin, DNA topoisomerase antagonism, and RXR activation were significantly related to

  1. Human eosinophil–airway smooth muscle cell interactions

    Directory of Open Access Journals (Sweden)

    J. Margaret Hughes

    2000-01-01

    Full Text Available Eosinophils are present throughout the airway wall of asthmatics. The nature of the interaction between human airway smooth muscle cells (ASMC and eosinophils was investigated in this study. We demonstrated, using light microscopy, that freshly isolated eosinophils from healthy donors rapidly attach to ASMC in vitro. Numbers of attached eosinophils were highest at 2 h, falling to 50% of maximum by 20 h. Eosinophil attachment at 2 h was reduced to 72% of control by anti-VCAM-1, and to 74% at 20 h by anti-ICAM-1. Pre-treatment of ASMC for 24 h with TNF-α, 10 nM, significantly increased eosinophil adhesion to 149 and 157% of control after 2 and 20 h. These results provide evidence that eosinophil interactions with ASMC involve VCAM-1 and ICAM-1 and are modulated by TNF-α.

  2. Effect of repeated forearm muscle cooling on the adaptation of skeletal muscle metabolism in humans

    Science.gov (United States)

    Wakabayashi, Hitoshi; Nishimura, Takayuki; Wijayanto, Titis; Watanuki, Shigeki; Tochihara, Yutaka

    2017-07-01

    This study aimed to investigate the effect of repeated cooling of forearm muscle on adaptation in skeletal muscle metabolism. It is hypothesized that repeated decreases of muscle temperature would increase the oxygen consumption in hypothermic skeletal muscle. Sixteen healthy males participated in this study. Their right forearm muscles were locally cooled to 25 °C by cooling pads attached to the skin. This local cooling was repeated eight times on separate days for eight participants (experimental group), whereas eight controls received no cold exposure. To evaluate adaptation in skeletal muscle metabolism, a local cooling test was conducted before and after the repeated cooling period. Change in oxy-hemoglobin content in the flexor digitorum at rest and during a 25-s isometric handgrip (10% maximal voluntary construction) was measured using near-infrared spectroscopy at every 2 °C reduction in forearm muscle temperature. The arterial blood flow was occluded for 15 s by upper arm cuff inflation at rest and during the isometric handgrip. The oxygen consumption in the flexor digitorum muscle was evaluated by a slope of the oxy-hemoglobin change during the arterial occlusion. In the experimental group, resting oxygen consumption in skeletal muscle did not show any difference between pre- and post-intervention, whereas muscle oxygen consumption during the isometric handgrip was significantly higher in post-intervention than in pre-test from thermoneutral baseline to 31 °C muscle temperature ( P cooling might facilitate oxidative metabolism in the skeletal muscle. In summary, skeletal muscle metabolism during submaximal isometric handgrip was facilitated after repeated local muscle cooling.

  3. Measurement of L-[1-14C]leucine kinetics in splanchnic and leg tissues in humans. Effect of amino acid infusion

    International Nuclear Information System (INIS)

    Gelfand, R.A.; Glickman, M.G.; Castellino, P.; Louard, R.J.; DeFronzo, R.A.

    1988-01-01

    Although whole-body leucine flux is widely measured to study body protein turnover in humans, the contribution of specific tissues to the total-body measurement remains unknown. By combining the organ-balance technique with the systemic infusion of L-[1-14C]leucine, we quantitated leucine production and disposal by splanchnic and leg tissues and by the whole body, simultaneously, in six normal men before and during amino acid infusion. At steady state, disposal of arterial leucine by splanchnic and leg tissues was calculated from the percent extraction (E) of L-[1-14C]leucine counts: uptake = E x [Leu]a x flow. Tissue release of cold leucine (from protein turnover) into vein was calculated as the difference between leucine uptake and the net tissue leucine balance. In the postabsorptive state, despite substantial (P less than .01) extraction of L-[1-14C]leucine by splanchnic (23 +/- 1%) and leg (18 +/- 2%) tissues, net leucine balance across both tissue beds was small, indicating active simultaneous disposal and production of leucine at nearly equivalent rates. Splanchnic tissues accounted for approximately 50% of the measured total-body leucine flux. During amino acid infusion, the net leucine balance across splanchnic and leg tissues became positive, reflecting not only an increase in leucine uptake but also a marked suppression (by approximately 50%, P less than .02) of cold leucine release. This reduction in splanchnic and leg leucine release was indicated by a sharp decline in whole-body endogenous leucine flux

  4. A predictive model of muscle excitations based on muscle modularity for a large repertoire of human locomotion conditions

    Directory of Open Access Journals (Sweden)

    Jose eGonzalez-Vargas

    2015-09-01

    Full Text Available Humans can efficiently walk across a large variety of terrains and locomotion conditions with little or no mental effort. It has been hypothesized that the nervous system simplifies neuromuscular control by using muscle synergies, thus organizing multi-muscle activity into a small number of coordinative co-activation modules. In the present study we investigated how muscle modularity is structured across a large repertoire of locomotion conditions including five different speeds and five different ground elevations. For this we have used the non-negative matrix factorization technique in order to explain EMG experimental data with a low-dimensional set of four motor components. In this context each motor components is composed of a non-negative factor and the associated muscle weightings. Furthermore, we have investigated if the proposed descriptive analysis of muscle modularity could be translated into a predictive model that could: 1 Estimate how motor components modulate across locomotion speeds and ground elevations. This implies not only estimating the non-negative factors temporal characteristics, but also the associated muscle weighting variations. 2 Estimate how the resulting muscle excitations modulate across novel locomotion conditions and subjects.The results showed three major distinctive features of muscle modularity: 1 the number of motor components was preserved across all locomotion conditions, 2 the non-negative factors were consistent in shape and timing across all locomotion conditions, and 3 the muscle weightings were modulated as distinctive functions of locomotion speed and ground elevation. Results also showed that the developed predictive model was able to reproduce well the muscle modularity of un-modeled data, i.e. novel subjects and conditions. Muscle weightings were reconstructed with a cross-correlation factor greater than 70% and a root mean square error less than 0.10. Furthermore, the generated muscle excitations

  5. Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle.

    Science.gov (United States)

    Treebak, Jonas T; Pehmøller, Christian; Kristensen, Jonas M; Kjøbsted, Rasmus; Birk, Jesper B; Schjerling, Peter; Richter, Erik A; Goodyear, Laurie J; Wojtaszewski, Jørgen F P

    2014-01-15

    We investigated the phosphorylation signatures of two Rab-GTPase activating proteins TBC1D1 and TBC1D4 in human skeletal muscle in response to physical exercise and physiological insulin levels induced by a carbohydrate rich meal using a paired experimental design. Eight healthy male volunteers exercised in the fasted or fed state and muscle biopsies were taken before and immediately after exercise. We identified TBC1D1/4 phospho-sites that (1) did not respond to exercise or postprandial increase in insulin (TBC1D4: S666), (2) responded to insulin only (TBC1D4: S318), (3) responded to exercise only (TBC1D1: S237, S660, S700; TBC1D4: S588, S751), and (4) responded to both insulin and exercise (TBC1D1: T596; TBC1D4: S341, T642, S704). In the insulin-stimulated leg, Akt phosphorylation of both T308 and S473 correlated significantly with multiple sites on both TBC1D1 (T596) and TBC1D4 (S318, S341, S704). Interestingly, in the exercised leg in the fasted state TBC1D1 phosphorylation (S237, T596) correlated significantly with the activity of the α2/β2/γ3 AMPK trimer, whereas TBC1D4 phosphorylation (S341, S704) correlated with the activity of the α2/β2/γ1 AMPK trimer. Our data show differential phosphorylation of TBC1D1 and TBC1D4 in response to physiological stimuli in human skeletal muscle and support the idea that Akt and AMPK are upstream kinases. TBC1D1 phosphorylation signatures were comparable between in vitro contracted mouse skeletal muscle and exercised human muscle, and we show that AMPK regulated phosphorylation of these sites in mouse muscle. Contraction and exercise elicited a different phosphorylation pattern of TBC1D4 in mouse compared with human muscle, and although different circumstances in our experimental setup may contribute to this difference, the observation exemplifies that transferring findings between species is problematic.

  6. Human skeletal muscle perilipin 2 and 3 expression varies with insulin sensitivity

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Prats Gavalda, Clara; Ploug, Thorkil

    2013-01-01

    Background: Impaired insulin sensitivity may partly arise from a dysregulated lipid metabolism in human skeletal muscle. This study investigates the expression levels of perilipin 2, 3, and 5, and four key lipases in human skeletal muscle from the subjects that exhibit a range from normal to very...

  7. Differences in intramuscular vascular connections of human and dog latissimus dorsi muscles.

    Science.gov (United States)

    Yang, D; Morris, S F

    1999-02-01

    Distal ischemia and necrosis of the dog latissimus dorsi muscle flap used in experimental cardiomyoplasty have been reported. However, little information on the intramuscular vascular anatomy of the dog latissimus dorsi is available. It is unclear whether there are any anatomic factors relating to the muscle flap ischemia and necrosis, and whether the dog latissimus dorsi is a suitable experimental model. To study the intramuscular vascular territories in the dog latissimus dorsi muscle, and to compare the intramuscular vasculature of the dog with that of the human, 5 fresh dog cadavers and 7 fresh human cadavers were injected with a mixture of lead oxide, gelatin, and water (200 mL/kg) through the carotid artery. Both the dog and the human latissimus dorsi muscles and neurovascular pedicles were dissected and radiographed. The intramuscular vascular anatomy of the latissimus dorsi muscles was compared. Radiographs demonstrate clearly that the pattern of latissimus dorsi intramuscular anastomoses between branches of the thoracodorsal artery and the perforators of posterior intercostal arteries in the proximal half of the muscle are different between the dog and the human. In the dog muscle, vascular connections between the thoracodorsal artery and the posterior intercostal arteries are formed by reduced-caliber choke arteries, whereas four to six true anastomoses without a change in caliber between them are found in the human muscle. The portion of the latissimus dorsi muscle supplied by the dominant thoracodorsal vascular territory was 25.9% +/- 0.3% in the dog and 23.9% +/- 0.5% in the human. For further comparison, an extended vascular territory in the latissimus dorsi muscle was demonstrated, including both the thoracodorsal territory and the posterior intercostal territories. The area of the extended vascular territory was 52% +/- 0.5% of the total muscle. The dog latissimus dorsi model may not be a perfect predictor of the behavior of the human latissimus

  8. [Relationship between muscle activity and kinematics of the lower extremity in slow motions of squats in humans].

    Science.gov (United States)

    Khorievin, V I; Horkovenko, A V; Vereshchaka, I V

    2013-01-01

    Squatting can be performed on ankle strategy when ankle joint is flexed more than a hip joint and on hip strategy when large changes occur at the hip joint. The relationships between changes ofjoint angles and electromyogram (EMG) of the leg muscles were studied in five healthy men during squatting that was performed at the ankle and hip strategies with a slow changes in the knee angle of 40 and 60 degrees. It is established that at ankle strategy the ankle muscles were activated ahead of joint angle changes and shifting the center of pressure (CT) on stabilographic platform, whereas activation of the thigh muscles began simultaneously with the change of the joint angles, showing the clear adaptation in successive trials and a linear relationships between the static EMG component and the angle changes of the ankle joint. In the case of hip strategy of squatting the thigh muscles were activated simultaneously with the change in the joint angles and the displacement of CT, whereas the ankle muscles were activated later than the thigh muscles, especially the muscle tibialis anterior, showing some adaptations in consecutive attempts. At the ankle strategy the EMG amplitude was greatest in thigh muscles, reproducing contour of changes in joint angles, whereas the ankle muscles were activated only slightly during changes of joint angles. In the case of hip strategy dominated the EMG amplitude of the muscle tibialis anterior, which was activated when driving down the trunk and fixation of the joint angles that was accompanied by a slight coactivation of the calf muscles with the step-like increase in the amplitude of the EMG of the thigh muscles. Choice of leg muscles to start the squatting on both strategies occurred without a definite pattern, which may indicate the existence of a wide range of options for muscle activity in a single strategy.

  9. Subcellular localization and mechanism of secretion of vascular endothelial growth factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Høier, Birgitte; Prats Gavalda, Clara; Qvortrup, Klaus

    2013-01-01

    The subcellular distribution and secretion of vascular endothelial growth factor (VEGF) was examined in skeletal muscle of healthy humans. Skeletal muscle biopsies were obtained from m.v. lateralis before and after a 2 h bout of cycling exercise. VEGF localization was conducted on preparations...... regions and between the contractile elements within the muscle fibers; and in pericytes situated on the skeletal muscle capillaries. Quantitation of the subsarcolemmal density of VEGF vesicles, calculated on top of myonuclei, in the muscle fibers revealed a ∼50% increase (P...

  10. Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition

    DEFF Research Database (Denmark)

    Nielsen, Anders Rinnov; Mounier, Remi; Plomgaard, Peter

    2007-01-01

    The cytokine interleukin-15 (IL-15) has been demonstrated to have anabolic effects in cell culture systems. We tested the hypothesis that IL-15 is predominantly expressed by type 2 skeletal muscle fibres, and that resistance exercise regulates IL-15 expression in muscle. Triceps brachii, vastus...... lateralis quadriceps and soleus muscle biopsies were obtained from normally physically active, healthy, young male volunteers (n = 14), because these muscles are characterized by having different fibre-type compositions. In addition, healthy, normally physically active male subjects (n = 8) not involved...

  11. Human brain activity associated with painful mechanical stimulation to muscle and bone.

    Science.gov (United States)

    Maeda, Lynn; Ono, Mayu; Koyama, Tetsuo; Oshiro, Yoshitetsu; Sumitani, Masahiko; Mashimo, Takashi; Shibata, Masahiko

    2011-08-01

    The purpose of this study was to elucidate the central processing of painful mechanical stimulation to muscle and bone by measuring blood oxygen level-dependent signal changes using functional magnetic resonance imaging (fMRI). Twelve healthy volunteers were enrolled. Mechanical pressure on muscle and bone were applied at the right lower leg by an algometer. Intensities were adjusted to cause weak and strong pain sensation at either target site in preliminary testing. Brain activation in response to mechanical nociceptive stimulation targeting muscle and bone were measured by fMRI and analyzed. Painful mechanical stimulation targeting muscle and bone activated the common areas including bilateral insula, anterior cingulate cortex, posterior cingulate cortex, secondary somatosensory cortex (S2), inferior parietal lobe, and basal ganglia. The contralateral S2 was more activated by strong stimulation than by weak stimulation. Some areas in the basal ganglia (bilateral putamen and caudate nucleus) were more activated by muscle stimulation than by bone stimulation. The putamen and caudate nucleus may have a more significant role in brain processing of muscle pain compared with bone pain.

  12. Are animal models predictive for human postmortem muscle protein degradation?

    Science.gov (United States)

    Ehrenfellner, Bianca; Zissler, Angela; Steinbacher, Peter; Monticelli, Fabio C; Pittner, Stefan

    2017-11-01

    A most precise determination of the postmortem interval (PMI) is a crucial aspect in forensic casework. Although there are diverse approaches available to date, the high heterogeneity of cases together with the respective postmortal changes often limit the validity and sufficiency of many methods. Recently, a novel approach for time since death estimation by the analysis of postmortal changes of muscle proteins was proposed. It is however necessary to improve the reliability and accuracy, especially by analysis of possible influencing factors on protein degradation. This is ideally investigated on standardized animal models that, however, require legitimization by a comparison of human and animal tissue, and in this specific case of protein degradation profiles. Only if protein degradation events occur in comparable fashion within different species, respective findings can sufficiently be transferred from the animal model to application in humans. Therefor samples from two frequently used animal models (mouse and pig), as well as forensic cases with representative protein profiles of highly differing PMIs were analyzed. Despite physical and physiological differences between species, western blot analysis revealed similar patterns in most of the investigated proteins. Even most degradation events occurred in comparable fashion. In some other aspects, however, human and animal profiles depicted distinct differences. The results of this experimental series clearly indicate the huge importance of comparative studies, whenever animal models are considered. Although animal models could be shown to reflect the basic principles of protein degradation processes in humans, we also gained insight in the difficulties and limitations of the applicability of the developed methodology in different mammalian species regarding protein specificity and methodic functionality.

  13. MUSCLE ACTIVITY RESPONSE TO EXTERNAL MOMENT DURING SINGLE-LEG DROP LANDING IN YOUNG BASKETBALL PLAYERS: THE IMPORTANCE OF BICEPS FEMORIS IN REDUCING INTERNAL ROTATION OF KNEE DURING LANDING

    Directory of Open Access Journals (Sweden)

    Meguru Fujii

    2012-06-01

    Full Text Available Internal tibial rotation with the knee close to full extension combined with valgus collapse during drop landing generally results in non-contact anterior cruciate ligament (ACL injury. The purpose of this study was to investigate the relationship between internal rotation of the knee and muscle activity from internal and external rotator muscles, and between the internal rotation of knee and externally applied loads on the knee during landing in collegiate basketball players. Our hypothesis was that the activity of biceps femoris muscle would be an important factor reducing internal knee rotation during landing. The subjects were 10 collegiate basketball students: 5 females and 5 males. The subjects performed a single-leg drop landing from a 25-cm height. Femoral and tibial kinematics were measured using a 3D optoelectronic tracking system during the drop landings, and then the knee angular motions were determined. Ground reaction forces and muscle activation patterns (lateral hamstring and medial hamstring were simultaneously measured and computed. Results indicated that lower peak internal tibial rotation angle at the time of landing was associated with greater lateral hamstring activity (r = -0.623, p < 0.001. When gender was considered, the statistically significant correlation remained only in females. There was no association between the peak internal tibial rotation angle and the knee internal rotation moment. Control of muscle activity in the lateral to medial hamstring would be an important factor in generating sufficient force to inhibit excessive internal rotation during landing. Strengthening the biceps femoris might mitigate the higher incidence of non-contact ACL injury in female athletes

  14. Localized irradiation of mouse legs using an image-guided robotic linear accelerator.

    Science.gov (United States)

    Kufeld, Markus; Escobar, Helena; Marg, Andreas; Pasemann, Diana; Budach, Volker; Spuler, Simone

    2017-04-01

    To investigate the potential of human satellite cells in muscle regeneration small animal models are useful to evaluate muscle regeneration. To suppress the inherent regeneration ability of the tibialis muscle of mice before transplantation of human muscle fibers, a localized irradiation of the mouse leg should be conducted. We analyzed the feasibility of an image-guided robotic irradiation procedure, a routine treatment method in radiation oncology, for the focal irradiation of mouse legs. After conducting a planning computed tomography (CT) scan of one mouse in its customized mold a three-dimensional dose plan was calculated using a dedicated planning workstation. 18 Gy have been applied to the right anterior tibial muscle of 4 healthy and 12 mice with immune defect in general anesthesia using an image-guided robotic linear accelerator (LINAC). The mice were fixed in a customized acrylic mold with attached fiducial markers for image guided tracking. All 16 mice could be irradiated as prevised without signs of acute radiation toxicity or anesthesiological side effects. The animals survived until scarification after 8, 21 and 49 days as planned. The procedure was straight forward and the irradiation process took 5 minutes to apply the dose of 18 Gy. Localized irradiation of mice legs using a robotic LINAC could be conducted as planned. It is a feasible procedure without recognizable side effects. Image guidance offers precise dose delivery and preserves adjacent body parts and tissues.

  15. Direct evidence of fiber type-dependent GLUT-4 expression in human skeletal muscle

    DEFF Research Database (Denmark)

    Gaster, M; Poulsen, P; Handberg, A

    2000-01-01

    GLUT-4 expression in individual fibers of human skeletal muscles in younger and older adults was studied. Furthermore, the dependency of insulin-stimulated glucose uptake on fiber type distribution was investigated. Fiber type distribution was determined in cryosections of muscle biopsies from 8...... of slow fibers in the young (r = -0.45, P > 0.25) or in the elderly (r = 0. 11, P > 0.75) subjects. In conclusion, in human skeletal muscle, GLUT-4 expression is fiber type dependent and decreases with age, particularly in fast muscle fibers....

  16. Lifelong physical activity prevents an age-related reduction in arterial and skeletal muscle nitric oxide bioavailability in humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Blackwell, James R; Damsgaard, Ramsus

    2012-01-01

    studied the effect of ROS on systemic and skeletal muscle NO bioavailability and leg blood flow by infusion of the antioxidant N-acetylcysteine (NAC). Infusion of NAC increased the bioavailability of NO in OS, as evidenced by an increased concentration of stable metabolites of NO (NOx) in the arterial...

  17. Surgery-induced changes and early recovery of hip-muscle strength, leg-press power, and functional performance after fast-track total hip arthroplasty

    DEFF Research Database (Denmark)

    Holm, Bente; Thorborg, Kristian; Husted, Henrik

    2013-01-01

    By measuring very early changes in muscle strength and functional performance after fast-track total hip arthroplasty (THA), post-operative rehabilitation, introduced soon after surgery, can be designed to specifically target identified deficits.......By measuring very early changes in muscle strength and functional performance after fast-track total hip arthroplasty (THA), post-operative rehabilitation, introduced soon after surgery, can be designed to specifically target identified deficits....

  18. Muscle triacylglycerol and hormone-sensitive lipase activity in untrained and trained human muscles

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Biba, Taus O; Galbo, Henrik

    2006-01-01

    During exercise, triacylglycerol (TG) is recruited in skeletal muscles. We hypothesized that both muscle hormone-sensitive lipase (HSL) activity and TG recruitment would be higher in trained than in untrained subjects in response to prolonged exercise. Healthy male subjects (26 +/- 1 years, body ...

  19. High triacylglycerol turnover rate in human skeletal muscle

    DEFF Research Database (Denmark)

    Sacchetti, Massimo; Saltin, Bengt; Olsen, David B

    2004-01-01

    In the present study we investigated the relationship between plasma fatty acids (FA) and intramuscular triacylglycerol (IMTAG) kinetics of healthy volunteers. With this aim [U-(13)C]-palmitate was infused for 10 h and FA kinetics determined across the leg. In addition, the rate of FA incorporation...

  20. Retained Myogenic Potency of Human Satellite Cells from Torn Rotator Cuff Muscles Despite Fatty Infiltration.

    Science.gov (United States)

    Koide, Masashi; Hagiwara, Yoshihiro; Tsuchiya, Masahiro; Kanzaki, Makoto; Hatakeyama, Hiroyasu; Tanaka, Yukinori; Minowa, Takashi; Takemura, Taro; Ando, Akira; Sekiguchi, Takuya; Yabe, Yutaka; Itoi, Eiji

    2018-01-01

    Rotator cuff tears (RCTs) are a common shoulder problem in the elderly that can lead to both muscle atrophy and fatty infiltration due to less physical load. Satellite cells, quiescent cells under the basal lamina of skeletal muscle fibers, play a major role in muscle regeneration. However, the myogenic potency of human satellite cells in muscles with fatty infiltration is unclear due to the difficulty in isolating from small samples, and the mechanism of the progression of fatty infiltration has not been elucidated. The purpose of this study was to analyze the population of myogenic and adipogenic cells in disused supraspinatus (SSP) and intact subscapularis (SSC) muscles of the RCTs from the same patients using fluorescence-activated cell sorting. The microstructure of the muscle with fatty infiltration was observed as a whole mount condition under multi-photon microscopy. Myogenic differentiation potential and gene expression were evaluated in satellite cells. The results showed that the SSP muscle with greater fatty infiltration surrounded by collagen fibers compared with the SSC muscle under multi-photon microscopy. A positive correlation was observed between the ratio of muscle volume to fat volume and the ratio of myogenic precursor to adipogenic precursor. Although no difference was observed in the myogenic potential between the two groups in cell culture, satellite cells in the disused SSP muscle showed higher intrinsic myogenic gene expression than those in the intact SSC muscle. Our results indicate that satellite cells from the disused SSP retain sufficient potential of muscle growth despite the fatty infiltration.

  1. Effects of muscle activation on shear between human soleus and gastrocnemius muscles.

    Science.gov (United States)

    Finni, T; Cronin, N J; Mayfield, D; Lichtwark, G A; Cresswell, A G

    2017-01-01

    Lateral connections between muscles provide pathways for myofascial force transmission. To elucidate whether these pathways have functional roles in vivo, we examined whether activation could alter the shear between the soleus (SOL) and lateral gastrocnemius (LG) muscles. We hypothesized that selective activation of LG would decrease the stretch-induced shear between LG and SOL. Eleven volunteers underwent a series of knee joint manipulations where plantar flexion force, LG, and SOL muscle fascicle lengths and relative displacement of aponeuroses between the muscles were obtained. Data during a passive full range of motion were recorded, followed by 20° knee extension stretches in both passive conditions and with selective electrical stimulation of LG. During active stretch, plantar flexion force was 22% greater (P stronger (stiffer) connectivity between the two muscles, at least at flexed knee joint angles, which may serve to facilitate myofascial force transmission. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Purinergic receptors expressed in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Bornø, A; Ploug, Thorkil; Bune, L T

    2012-01-01

    distribution of purinergic receptors in skeletal muscle fibres. We speculate that the intracellular localization of purinergic receptors may reflect a role in regulation of muscle metabolism; further studies are nevertheless needed to determine the function of the purinergic system in skeletal muscle cells.......Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content...... of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy...

  3. "Nutraceuticals" in relation to human skeletal muscle and exercise.

    OpenAIRE

    Deane, Colleen Siobhan; Wilkinson, D.J.; Phillips, B.E.; Smith, K.; Etheridge, T.; Atherton, P.J.

    2017-01-01

    Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cach...

  4. ATPase activity and contraction in porcine and human cardiac muscle

    Czech Academy of Sciences Publication Activity Database

    Griffiths, P. J.; Isackson, H.; Redwood, C.; Marston, S.; Pelc, Radek; Funari, S.; Watkins, H.; Ashley, C. C.

    2008-01-01

    Roč. 29, 6-8 (2008), s. 277-277 ISSN 0142-4319. [European Muscle Conference of the European Society for Muscle Research /37./. 13.09.2008-16.09.2008, Oxford] R&D Projects: GA MŠk(CZ) LC06063 Grant - others:EC(XE) RII3-CT-2004-506008 Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * ATP-asa * cardiac muscle * molecular motor Subject RIV: ED - Physiology

  5. The acute response of pericytes to muscle-damaging eccentric contraction and protein supplementation in human skeletal muscle.

    Science.gov (United States)

    De Lisio, Michael; Farup, Jean; Sukiennik, Richard A; Clevenger, Nicole; Nallabelli, Julian; Nelson, Brett; Ryan, Kelly; Rahbek, Stine K; de Paoli, Frank; Vissing, Kristian; Boppart, Marni D

    2015-10-15

    Skeletal muscle pericytes increase in quantity following eccentric exercise (ECC) and contribute to myofiber repair and adaptation in mice. The purpose of the present investigation was to examine pericyte quantity in response to muscle-damaging ECC and protein supplementation in human skeletal muscle. Male subjects were divided into protein supplement (WHY; n = 12) or isocaloric placebo (CHO; n = 12) groups and completed ECC using an isokinetic dynamometer. Supplements were consumed 3 times/day throughout the experimental time course. Biopsies were collected prior to (PRE) and 3, 24, 48, and 168 h following ECC. Reflective of the damaging protocol, integrin subunits, including α7, β1A, and β1D, increased (3.8-fold, 3.6-fold and 3.9-fold, respectively, P muscle-damaging ECC increases α7β1 integrin content in human muscle, yet pericyte quantity is largely unaltered. Future studies should focus on the capacity for ECC to influence pericyte function, specifically paracrine factor release as a mechanism toward pericyte contribution to repair and adaptation postexercise. Copyright © 2015 the American Physiological Society.

  6. Functional Echomyography of the human denervated muscle: first results

    Directory of Open Access Journals (Sweden)

    Riccardo Zanato

    2011-03-01

    Full Text Available In this study we followed with ultrasound three patients with permanent denervation to evaluate changes in morphology, thickness, contraction and vascularisation of muscles undergoing the home-based electrical stimulation program of the Rise2-Italy project. During a period of 1 year for the first subject, 6 months for the second subject and 3 months for the third subject we studied with ultrasound the denervated muscle comparing it (if possible to the contralateral normal muscle. We evaluated: 1. Changes in morphology and sonographic structure of the pathologic muscle; 2. Muscular thickness in response to the electrical stimulation therapy; 3. Short-term modifications in muscle perfusion and arterial flow patterns after stimulation; 4. Contraction-relaxation kinetic induced by volitional activity or electrical stimulation. Morphology and ultrasonographic structure of the denervated muscles changed during the period of stimulation from a pattern typical of complete muscular atrophy to a pattern which might be considered “normal” when detected in an old patient. Thickness improved significantly more in the middle third than in the proximal and distal third of the denervated muscle, reaching in the last measurements of the first subject approximately the same thickness as the contralateral normal muscle. In all the measurements done within this study, arterial flow of the denervated muscle showed at rest a low-resistance pattern with Doppler Ultra Sound (US, and a pulsed pattern after electrical stimulation. The stimulation- induced pattern is similar to the trifasic high-resistance pattern of the normal muscle. Contraction- relaxation kinetic, measured by recording the muscular movements during electrical stimulation, showed an abnormal behaviour of the denervated muscle during the relaxation phase, which resulted to be significantly longer than in normal muscle (880 msec in the denervated muscle vs 240 msec in the contralateral normal one

  7. Erythropoietin receptor in human skeletal muscle and the effects of acute and long-term injections with recombinant human erythropoietin on the skeletal muscle

    DEFF Research Database (Denmark)

    Lundby, Carsten; Hellsten, Ylva; Jensen, Mie B. F.

    2008-01-01

    The presence and potential physiological role of the erythropoietin receptor (Epo-R) were examined in human skeletal muscle. In this study we demonstrate that Epo-R is present in the endothelium, smooth muscle cells, and in fractions of the sarcolemma of skeletal muscle fibers. To study...... the potential effects of Epo in human skeletal muscle, two separate studies were conducted: one to study the acute effects of a single Epo injection on skeletal muscle gene expression and plasma hormones and another to study the effects of long-term (14 wk) Epo treatment on skeletal muscle structure. Subjects...... was studied in subjects (n = 8) who received long-term Epo administration, and muscle biopsies were obtained before and after. Epo treatment did not alter mean fiber area (0.84 +/- 0.2 vs. 0.72 +/- 0.3 mm(2)), capillaries per fiber (4.3 +/- 0.5 vs. 4.4 +/- 1.3), or number of proliferating endothelial cells...

  8. An Experimental Study of Muscle Coordination and Function during Human Locomotion

    Directory of Open Access Journals (Sweden)

    Hirai Hiroaki

    2011-12-01

    Full Text Available How humans solve the ill-posed problem of motor control is still a mystery. In this paper, we attempt to decompose human walking and running as the main movements of a leg into units of motor function. We introduce the key concept of “A-A ratio,” defined as the ratio of an extensor muscle’s electromyography (EMG signal to the sum of agonist and antagonist muscles’ EMG signals. Human walking and running are then decomposed into two units of motor function by applying Principal Component Analysis (PCA to the A-A ratio dataset. The kinematic meanings of these units are also experimentally shown by using a human-like musculoskeletal leg robot.

  9. Detection of human muscle glycogen by natural abundance 13C NMR

    International Nuclear Information System (INIS)

    Avison, M.J.; Rothman, D.L.; Nadel, E.; Shulman, R.G.

    1988-01-01

    Natural abundance 13 C nuclear magnetic resonance spectroscopy was used to detect signals from glycogen in the human gastrocnemius muscle. The reproducibility of the measurement was demonstrated, and the ability to detect dynamic changes was confirmed by measuring a decrease in muscle glycogen levels after exercise and its subsequent repletion. Single frequency gated 1 H decoupling was used to obtain decoupled natural abundance 13 C NMR spectra of the C-1 position of muscle glycogen

  10. Analysis of human muscle extracts by proton NMR

    International Nuclear Information System (INIS)

    Venkatasubramanian, P.N.; Barany, M.; Arus, C.

    1986-01-01

    Perchloric acid extracts were prepared from pooled human muscle biopsies from patients diagnosed with scoliosis (SCOL) and cerebral palsy (CP). After neutralization with KOH and removal of perchlorate, the extracts were concentrated by freeze drying and dissolved in 2 H 2 O to contain 120 O.D. units at 280 nm per 0.5 ml. 1 H NMR spectroscopy was performed with the 5 mm probe of a Varian XL300 instrument. Creatine, lactate, carnosine, and choline were the major resonances in the one-dimensional spectra of both extracts. With creatine as reference, 2.5-fold more lactate was found in SCOL than in CP, and a much smaller difference was also found in their carnosine content. Two-dimensional COSY comparison revealed several differences between the two extracts. Taurine, N-acetyl glutamate, glycerophosphoryl choline (or phosphoryl choline) and an unidentified spot were present only in the extract from SCOL but not in that from CP. On the other hand, aspartate, hydroxy-proline, carnitine and glycerophosphoryl ethanolamine were only present in CP but absent in SCOL. Alanine, cysteine, lysine and arginine appeared in both extracts without an apparent intensity difference

  11. Human skeletal muscle: transition between fast and slow fibre types.

    Science.gov (United States)

    Neunhäuserer, Daniel; Zebedin, Michaela; Obermoser, Magdalena; Moser, Gerhard; Tauber, Mark; Niebauer, Josef; Resch, Herbert; Galler, Stefan

    2011-05-01

    Human skeletal muscles consist of different fibre types: slow fibres (slow twitch or type I) containing the myosin heavy chain isoform (MHC)-I and fast fibres (fast twitch or type II) containing MHC-IIa (type IIA) or MHC-IId (type IID). The following order of decreasing kinetics is known: type IID > type IIA > type I. This order is especially based on the kinetics of stretch activation, which is the most discriminative property among fibre types. In this study we tested if hybrid fibres containing both MHC-IIa and MHC-I (type C fibres) provide a transition in kinetics between fast (type IIA) and slow fibres (type I). Our data of stretch activation kinetics suggest that type C fibres, with different ratios of MHC-IIa and MHC-I, do not provide a continuous transition. Instead, a specialized group of slow fibres, which we called "transition fibres", seems to provide a transition. Apart of their kinetics of stretch activation, which is most close to that of type IIA, the transition fibres are characterized by large cross-sectional areas and low maximal tensions. The molecular cause for the mechanical properties of the transition fibres is unknown. It is possible that the transition fibres contain an unknown slow MHC isoform, which cannot be separated by biochemical methods. Alternatively, or in addition, isoforms of myofibrillar proteins, other than MHC, and posttranslational modifications of myofibrillar proteins could play a role regarding the characteristics of the transition fibres.

  12. Contractile Force of Human Extraocular Muscle: A Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Hongmei Guo

    2016-01-01

    Full Text Available Aim. The length-contractile force relationships of six human extraocular muscles (EOMs in primary innervations should be determined during eye movement modeling and surgery of clinical EOMs. This study aims to investigate these relationships. Method. The proposal is based on the assumption that six EOMs have similar constitutive relationships, with the eye suspended in the primary position. The constitutive relationships of EOMs are obtained by optimizing from previous experimental data and the theory of mechanical equilibrium using traditional model. Further, simulate the existing experiment of resistance force, and then compare the simulated results with the existing experimental results. Finally, the mechanical constitutive relationships of EOMs are obtained. Results. The results show that the simulated resistance forces from the other four EOMs except for the horizontal recti well agree with previous experimental results. Conclusion. The mechanical constitutive relationships of six EOMs in primary innervations are obtained, and the rationality of the constitutive relationships is verified. Whereafter, the active stress-strain relationships of the six EOMs in the primary innervations are obtained. The research results can improve the eye movement model to predict the surgical amounts of EOMs before EOM surgery more precisely.

  13. The Effect of Upper Body Mass and Initial Knee Flexion on the Injury Outcome of Post Mortem Human Subject Pedestrian Isolated Legs.

    Science.gov (United States)

    Petit, Philippe; Trosseille, Xavier; Dufaure, Nicolas; Dubois, Denis; Potier, Pascal; Vallancien, Guy

    2014-11-01

    In the ECE 127 Regulation on pedestrian leg protection, as well as in the Euro NCAP test protocol, a legform impactor hits the vehicle at the speed of 40 kph. In these tests, the knee is fully extended and the leg is not coupled to the upper body. However, the typical configuration of a pedestrian impact differs since the knee is flexed during most of the gait cycle and the hip joint applies an unknown force to the femur. This study aimed at investigating the influence of the inertia of the upper body (modelled using an upper body mass fixed at the proximal end of the femur) and the initial knee flexion angle on the lower limb injury outcome. In total, 18 tests were conducted on 18 legs from 9 Post Mortem Human Subjects (PMHS). The principle of these tests was to impact the leg at 40 kph using a sled equipped with 3 crushing steel tubes, the stiffness of which were representative of the front face of a European sedan (bonnet leading edge, bumper and spoiler). The mass of the equipped sled was 74.5 kg. The test matrix was designed to perform 4 tests in 4 configurations combining two upper body masses (either 0 or 3 kg) and two knee angles (0 or 20 degrees) at 40 kph (11 m/s) plus 2 tests at 9 m/s. Autopsies were performed on the lower limbs and an injury assessment was established. The findings of this study were first that the increase of the upper body mass resulted in more severe injuries, second that an initial flexion of the knee, corresponding to its natural position during the gait cycle, decreased the severity of the injuries, and third that based on the injury outcome, a test conducted with no upper body mass and the knee fully extended was as severe as a test conducted with a 3 kg upper body mass and an initial knee flexion of 20°.

  14. Secreted Protein Acidic and Rich in Cysteine (SPARC) in Human Skeletal Muscle

    Science.gov (United States)

    Jørgensen, Louise H.; Petersson, Stine J.; Sellathurai, Jeeva; Andersen, Ditte C.; Thayssen, Susanne; Sant, Dorte J.; Jensen, Charlotte H.; Schrøder, Henrik D.

    2009-01-01

    Secreted protein acidic and rich in cysteine (SPARC)/osteonectin is expressed in different tissues during remodeling and repair, suggesting a function in regeneration. Several gene expression studies indicated that SPARC was expressed in response to muscle damage. Studies on myoblasts further indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis, and polymyositis patients to analyze SPARC expression in a selected range of inherited and idiopathic muscle wasting diseases. SPARC-positive cells were observed both in fetal and neonatal muscle, and in addition, fetal myofibers were observed to express SPARC at the age of 15–16 weeks. SPARC protein was detected in the majority of analyzed muscle biopsies (23 of 24), mainly in mononuclear cells of which few were pax7 positive. Myotubes and regenerating myofibers also expressed SPARC. The expression-degree seemed to reflect the severity of the lesion. In accordance with these in vivo findings, primary human-derived satellite cells were found to express SPARC both during proliferation and differentiation in vitro. In conclusion, this study shows SPARC expression both during muscle development and in regenerating muscle. The expression is detected both in satellite cells/myoblasts and in myotubes and muscle fibers, indicating a role for SPARC in the skeletal muscle compartment. (J Histochem Cytochem 57:29–39, 2009) PMID:18796407

  15. Myosin heavy chain composition of the human sternocleidomastoid muscle

    Czech Academy of Sciences Publication Activity Database

    Cvetko, E.; Karen, Petr; Eržen, I.

    2012-01-01

    Roč. 194, č. 5 (2012), s. 467-472 ISSN 0940-9602 R&D Projects: GA MŠk(CZ) MEB090910; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z50110509 Keywords : immunohistochemistry * MyHC isoforms * muscle fibre types * sternocleidomastoid muscle Subject RIV: FH - Neurology Impact factor: 1.960, year: 2012

  16. Coordinated collagen and muscle protein synthesis in human patella tendon and quadriceps muscle after exercise

    DEFF Research Database (Denmark)

    Miller, Benjamin F; Olesen, Jens L; Hansen, Mette

    2005-01-01

    We hypothesized that an acute bout of strenuous, non-damaging exercise would increase rates of protein synthesis of collagen in tendon and skeletal muscle but these would be less than those of muscle myofibrillar and sarcoplasmic proteins. Two groups (n = 8 and 6) of healthy young men were studied...... collagen (0.077% h(-1)), muscle collagen (0.054% h(-1)), myofibrillar protein (0.121% h(-1)), and sarcoplasmic protein (0.134% h(-1))). The rates decreased toward basal values by 72 h although rates of tendon collagen and myofibrillar protein synthesis remained elevated. There was no tissue damage...... of muscle visible on histological evaluation. Neither tissue microdialysate nor serum concentrations of IGF-I and IGF binding proteins (IGFBP-3 and IGFBP-4) or procollagen type I N-terminal propeptide changed from resting values. Thus, there is a rapid increase in collagen synthesis after strenuous exercise...

  17. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans.

    Directory of Open Access Journals (Sweden)

    Anthony E Civitarese

    2007-03-01

    Full Text Available Caloric restriction without malnutrition extends life span in a range of organisms including insects and mammals and lowers free radical production by the mitochondria. However, the mechanism responsible for this adaptation are poorly understood.The current study was undertaken to examine muscle mitochondrial bioenergetics in response to caloric restriction alone or in combination with exercise in 36 young (36.8 +/- 1.0 y, overweight (body mass index, 27.8 +/- 0.7 kg/m(2 individuals randomized into one of three groups for a 6-mo intervention: Control, 100% of energy requirements; CR, 25% caloric restriction; and CREX, caloric restriction with exercise (CREX, 12.5% CR + 12.5% increased energy expenditure (EE. In the controls, 24-h EE was unchanged, but in CR and CREX it was significantly reduced from baseline even after adjustment for the loss of metabolic mass (CR, -135 +/- 42 kcal/d, p = 0.002 and CREX, -117 +/- 52 kcal/d, p = 0.008. Participants in the CR and CREX groups had increased expression of genes encoding proteins involved in mitochondrial function such as PPARGC1A, TFAM, eNOS, SIRT1, and PARL (all, p < 0.05. In parallel, mitochondrial DNA content increased by 35% +/- 5% in the CR group (p = 0.005 and 21% +/- 4% in the CREX group (p < 0.004, with no change in the control group (2% +/- 2%. However, the activity of key mitochondrial enzymes of the TCA (tricarboxylic acid cycle (citrate synthase, beta-oxidation (beta-hydroxyacyl-CoA dehydrogenase, and electron transport chain (cytochrome C oxidase II was unchanged. DNA damage was reduced from baseline in the CR (-0.56 +/- 0.11 arbitrary units, p = 0.003 and CREX (-0.45 +/- 0.12 arbitrary units, p = 0.011, but not in the controls. In primary cultures of human myotubes, a nitric oxide donor (mimicking eNOS signaling induced mitochondrial biogenesis but failed to induce SIRT1 protein expression, suggesting that additional factors may regulate SIRT1 content during CR.The observed increase in

  18. Human skeletal muscle drug transporters determine local exposure and toxicity of statins.

    Science.gov (United States)

    Knauer, Michael J; Urquhart, Bradley L; Meyer zu Schwabedissen, Henriette E; Schwarz, Ute I; Lemke, Christopher J; Leake, Brenda F; Kim, Richard B; Tirona, Rommel G

    2010-02-05

    The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, or statins, are important drugs used in the treatment and prevention of cardiovascular disease. Although statins are well tolerated, many patients develop myopathy manifesting as muscle aches and pain. Rhabdomyolysis is a rare but severe toxicity of statins. Interindividual differences in the activities of hepatic membrane drug transporters and metabolic enzymes are known to influence statin plasma pharmacokinetics and risk for myopathy. Interestingly, little is known regarding the molecular determinants of statin distribution into skeletal muscle and its relevance to toxicity. We sought to identify statin transporters in human skeletal muscle and determine their impact on statin toxicity in vitro. We demonstrate that the uptake transporter OATP2B1 (human organic anion transporting polypeptide 2B1) and the efflux transporters, multidrug resistance-associated protein (MRP)1, MRP4, and MRP5 are expressed on the sarcolemmal membrane of human skeletal muscle fibers and that atorvastatin and rosuvastatin are substrates of these transporters when assessed using a heterologous expression system. In an in vitro model of differentiated, primary human skeletal muscle myoblast cells, we demonstrate basal membrane expression and drug efflux activity of MRP1, which contributes to reducing intracellular statin accumulation. Furthermore, we show that expression of human OATP2B1 in human skeletal muscle myoblast cells by adenoviral vectors increases intracellular accumulation and toxicity of statins and such effects were abrogated when cells overexpressed MRP1. These results identify key membrane transporters as modulators of skeletal muscle statin exposure and toxicity.

  19. Post-exercise adipose tissue and skeletal muscle lipid metabolism in humans

    DEFF Research Database (Denmark)

    Mulla, N A; Simonsen, L; Bülow, J

    2000-01-01

    , a subcutaneous abdominal vein and a femoral vein. Adipose tissue metabolism and skeletal muscle (leg) metabolism were measured using Fick's principle. The results show that the lipolytic rate in adipose tissue during exercise was the same in each experiment. Post-exercise, there was a very fast decrease......One purpose of the present experiments was to examine whether the relative workload or the absolute work performed is the major determinant of the lipid mobilization from adipose tissue during exercise. A second purpose was to determine the co-ordination of skeletal muscle and adipose tissue lipid...... metabolism during a 3 h post-exercise period. Six subjects were studied twice. In one experiment, they exercised for 90 min at 40% of maximal O2 consumption (VO2,max) and in the other experiment they exercised at 60% VO2,max for 60 min. For both experiments, catheters were inserted in an artery...

  20. Middle cerebral artery flow velocity and blood flow during exercise and muscle ischemia in humans

    DEFF Research Database (Denmark)

    Jørgensen, L G; Perko, M; Hanel, B

    1992-01-01

    Changes in middle cerebral artery flow velocity (Vmean), measured by transcranial Doppler ultrasound, were used to determine whether increases in mean arterial pressure (MAP) or brain activation enhance cerebral perfusion during exercise. We also evaluated the role of "central command......, they support the hypothesis that cerebral perfusion during exercise reflects an increase in brain activation that is independent of MAP, central command, and muscle metaboreceptors but is likely to depend on influence of mechanoreceptors.......," mechanoreceptors, and/or muscle "metaboreceptors" on cerebral perfusion. Ten healthy subjects performed two levels of dynamic exercise corresponding to a heart rate of 110 (range 89-134) and 148 (129-170) beats/min, respectively, and exhaustive one-legged static knee extension. Measurements were continued during 2...

  1. Secreted Protein Acidic and Rich in Cysteine (SPARC) in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Jørgensen, Louise H; Petersson, Stine J; Sellathurai, Jeeva

    2009-01-01

    indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis...

  2. FAK tyrosine phosphorylation is regulated by AMPK and controls metabolism in human skeletal muscle

    DEFF Research Database (Denmark)

    Lassiter, David G; Nylén, Carolina; Sjögren, Rasmus J O

    2018-01-01

    the FAK gene, PTK2. RESULTS: AMPK activation reduced tyrosine phosphorylation of FAK in skeletal muscle. AICAR reduced p-FAKY397in isolated human skeletal muscle and cultured myotubes. Insulin stimulation did not alter FAK phosphorylation. Serum starvation increased AMPK activation, as demonstrated...

  3. Quantifying Leg Movement Activity During Sleep.

    Science.gov (United States)

    Ferri, Raffaele; Fulda, Stephany

    2016-12-01

    Currently, 2 sets of similar rules for recording and scoring leg movement (LM) exist, including periodic LM during sleep (PLMS) and periodic LM during wakefulness. The former were published in 2006 by a task force of the International Restless Legs Syndrome Study Group, and the second in 2007 by the American Academy of Sleep Medicine. This article reviews the basic recording methods, scoring rules, and computer-based programs for PLMS. Less frequent LM activities, such as alternating leg muscle activation, hypnagogic foot tremor, high-frequency LMs, and excessive fragmentary myoclonus are briefly described. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Direct effects of locally administered lipopolysaccharide on glucose, lipid, and protein metabolism in the placebo-controlled, bilaterally infused human leg

    DEFF Research Database (Denmark)

    Buhl, Mads; Bosnjak, Ermina; Vendelbo, Mikkel H.

    2013-01-01

    Context: Accumulating evidence suggests that chronic exposure to lipopolysaccharide (LPS, endotoxin) maycreate a constant low-grade inflammation, leading to insulin resistance and diabetes. All previous human studies assessing the metabolic actions of LPS have used systemic administration, making...... palmitate isotopic dilution, although primary ANOVA tests did not reveal significant dilution. Leg blood flows, phenylalanine, lactate kinetics, cytokines, and intramyocellular insulin signaling were not affected by LPS. LPS thus directly inhibits insulin-stimulated glucose uptake and increases palmitate...... and stress hormone release may lead to overt glucose intolerance and diabetes....

  5. Muscle architectural changes after massive human rotator cuff tear.

    Science.gov (United States)

    Gibbons, Michael C; Sato, Eugene J; Bachasson, Damien; Cheng, Timothy; Azimi, Hassan; Schenk, Simon; Engler, Adam J; Singh, Anshuman; Ward, Samuel R

    2016-12-01

    Rotator cuff (RC) tendon tears lead to negative structural and functional changes in the associated musculature. The structural features of muscle that predict function are termed "muscle architecture." Although the architectural features of "normal" rotator cuff muscles are known, they are poorly understood in the context of cuff pathology. The purpose of this study was to investigate the effects of tear and repair on RC muscle architecture. To this end thirty cadaveric shoulders were grouped into one of four categories based on tear magnitude: Intact, Full-thickness tear (FTT), Massive tear (MT), or Intervention if sutures or hardware were present, and key parameters of muscle architecture were measured. We found that muscle mass and fiber length decreased proportionally with tear size, with significant differences between all groups. Conversely, sarcomere number was reduced in both FTT and MT with no significant difference between these two groups, in large part because sarcomere length was significantly reduced in MT but not FTT. The loss of muscle mass in FTT is due, in part, to subtraction of serial sarcomeres, which may help preserve sarcomere length. This indicates that function in FTT may be impaired, but there is some remaining mechanical loading to maintain "normal" sarcomere length-tension relationships. However, the changes resulting from MT suggest more severe limitations in force-generating capacity because sarcomere length-tension relationships are no longer normal. The architectural deficits observed in MT muscles may indicate deeper deficiencies in muscle adaptability to length change, which could negatively impact RC function despite successful anatomical repair. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2089-2095, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  6. Selective contribution of each hamstring muscle to anterior cruciate ligament protection and tibiofemoral joint stability in leg-extension exercise: a simulation study.

    Science.gov (United States)

    Biscarini, Andrea; Botti, Fabio Massimo; Pettorossi, Vito Enrico

    2013-09-01

    A biomechanical model was developed to simulate the selective effect of the co-contraction force provided by each hamstring muscle on the shear and compressive tibiofemoral joint reaction forces, during open kinetic-chain knee-extension exercises. This model accounts for instantaneous values of knee flexion angle [Formula: see text], angular velocity and acceleration, and for changes in magnitude, orientation, and application point of external resistance. The tibiofemoral shear force (TFSF) largely determines the tensile force on anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL). Biceps femoris is the most effective hamstring muscle in decreasing the ACL-loading TFSF developed by quadriceps contractions for [Formula: see text]. In this range, the semimembranosus generates the dominant tibiofemoral compressive force, which enhances joint stability, opposes anterior/posterior tibial translations, and protects cruciate ligaments. The semitendinosus force provides the greatest decreasing gradient of ACL-loading TFSF for [Formula: see text], and the greatest increasing gradient of tibiofemoral compressive force for [Formula: see text]. However, semitendinosus efficacy is strongly limited by its small physiological section. Hamstring muscles behave as a unique muscle in enhancing the PCL-loading TFSF produced by quadriceps contractions for [Formula: see text]. The levels of hamstrings co-activation that suppress the ACL-loading TFSF considerably shift when the knee angular acceleration is changed while maintaining the same level of knee extensor torque by a concurrent adjustment in the magnitude of external resistance. The knowledge of the specific role and the optimal activation level of each hamstring muscle in ACL protection and tibiofemoral stability are fundamental for planning safe and effective rehabilitative knee-extension exercises.

  7. Endurance training enhances skeletal muscle interleukin-15 in human male subjects

    DEFF Research Database (Denmark)

    Rinnov, Anders; Yfanti, Christina; Nielsen, Søren

    2014-01-01

    Regular endurance exercise promotes metabolic and oxidative changes in skeletal muscle. Overexpression of interleukin-15 (IL-15) in mice exerts similar metabolic changes in muscle as seen with endurance exercise. Muscular IL-15 production has been shown to increase in mice after weeks of regular...... endurance running. With the present study we aimed to determine if muscular IL-15 production would increase in human male subjects following 12 weeks of endurance training. In two different studies we obtained plasma and muscle biopsies from young healthy subjects performing: (1) 12 weeks of ergometer...... weeks of regular endurance training induced a 40% increase in basal skeletal muscle IL-15 protein content (p...

  8. Assessment of muscle function using hybrid PET/MRI: comparison of 18F-FDG PET and T2-weighted MRI for quantifying muscle activation in human subjects

    International Nuclear Information System (INIS)

    Haddock, Bryan; Holm, Soeren; Poulsen, Jakup M.; Enevoldsen, Lotte H.; Larsson, Henrik B.W.; Kjaer, Andreas; Suetta, Charlotte

    2017-01-01

    The aim of this study was to determine the relationship between relative glucose uptake and MRI T 2 changes in skeletal muscles following resistance exercise using simultaneous PET/MRI scans. Ten young healthy recreationally active men (age 21 - 28 years) were injected with 18 F-FDG while activating the quadriceps of one leg with repeated knee extension exercises followed by hand-grip exercises for one arm. Immediately following the exercises, the subjects were scanned simultaneously with 18 F-FDG PET/MRI and muscle groups were evaluated for increases in 18 F-FDG uptake and MRI T 2 values. A significant linear correlation between 18 F-FDG uptake and changes in muscle T 2 (R 2 = 0.71) was found. for both small and large muscles and in voxel to voxel comparisons. Despite large intersubject differences in muscle recruitment, the linear correlation between 18 F-FDG uptake and changes in muscle T 2 did not vary among subjects. This is the first assessment of skeletal muscle activation using hybrid PET/MRI and the first study to demonstrate a high correlation between 18 F-FDG uptake and changes in muscle T 2 with physical exercise. Accordingly, it seems that changes in muscle T 2 may be used as a surrogate marker for glucose uptake and lead to an improved insight into the metabolic changes that occur with muscle activation. Such knowledge may lead to improved treatment strategies in patients with neuromuscular pathologies such as stroke, spinal cord injuries and muscular dystrophies. (orig.)

  9. Fetal development of deep back muscles in the human thoracic region with a focus on transversospinalis muscles and the medial branch of the spinal nerve posterior ramus

    Science.gov (United States)

    Sato, Tatsuo; Koizumi, Masahiro; Kim, Ji Hyun; Kim, Jeong Hyun; Wang, Bao Jian; Murakami, Gen; Cho, Baik Hwan

    2011-01-01

    Fetal development of human deep back muscles has not yet been fully described, possibly because of the difficulty in identifying muscle bundle directions in horizontal sections. Here, we prepared near-frontal sections along the thoracic back skin (eight fetuses) as well as horizontal sections (six fetuses) from 14 mid-term fetuses at 9–15 weeks of gestation. In the deep side of the trapezius and rhomboideus muscles, the CD34-positive thoracolumbar fascia was evident even at 9 weeks. Desmin-reactivity was strong and homogeneous in the superficial muscle fibers in contrast to the spotty expression in the deep fibers. Thus, in back muscles, formation of the myotendinous junction may start from the superficial muscles and advance to the deep muscles. The fact that developing intramuscular tendons were desmin-negative suggested little possibility of a secondary change from the muscle fibers to tendons. We found no prospective spinalis muscle or its tendinous connections with other muscles. Instead, abundant CD68-positive macrophages along the spinous process at 15 weeks suggested a change in muscle attachment, an event that may result in a later formation of the spinalis muscle. S100-positive intramuscular nerves exhibited downward courses from the multifidus longus muscle in the original segment to the rotatores brevis muscles in the inferiorly adjacent level. The medial cutaneous nerve had already reached the thoracolumbar fascia at 9 weeks, but by 15 weeks the nerve could not penetrate the trapezius muscle. Finally, we propose a folded myotomal model of the primitive transversospinalis muscle that seems to explain a fact that the roofing tile-like configuration of nerve twigs in the semispinalis muscle is reversed in the multifidus and rotatores muscles. PMID:21954879

  10. Adenosine concentrations in the interstitium of resting and contracting human skeletal muscle

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Maclean, D.; Rådegran, G.

    1998-01-01

    BACKGROUND: Adenosine has been proposed to be a locally produced regulator of blood flow in skeletal muscle. However, the fundamental questions of to what extent adenosine is formed in skeletal muscle tissue of humans, whether it is present in the interstitium, and where it exerts its vasodilatory...... rest (0.13+/-0.03, 0.07+/-0.03, and 0.07+/-0.02 micromol/L, respectively) to exercise (10 W; 2.00+/-1.32, 2.08+/-1.23, and 1.65+/-0.50 micromol/L, respectively; Pskeletal muscle...... and demonstrates that adenosine and its precursors increase in the exercising muscle interstitium, at a rate associated with intensity of muscle contraction and the magnitude of muscle blood flow....

  11. Role of adenosine in regulating the heterogeneity of skeletal muscle blood flow during exercise in humans

    DEFF Research Database (Denmark)

    Heinonen, Ilkka; Nesterov, Sergey V; Kemppainen, Jukka

    2007-01-01

    receptor blockade. BF heterogeneity within muscles was calculated from 16-mm(3) voxels in BF images and heterogeneity among the muscles from the mean values of the four QF compartments. Mean BF in the whole QF and its four parts increased, and heterogeneity decreased with workload both without......Evidence from both animal and human studies suggests that adenosine plays a role in the regulation of exercise hyperemia in skeletal muscle. We tested whether adenosine also plays a role in the regulation of blood flow (BF) distribution and heterogeneity among and within quadriceps femoris (QF...... and with theophylline (P heterogeneity among the QF muscles, yet blockade increased within-muscle BF heterogeneity in all four QF muscles (P = 0.03). Taken together, these results show that BF becomes less heterogeneous with increasing...

  12. Direct observation of glycogen synthesis in human muscle with 13C NMR

    International Nuclear Information System (INIS)

    Jue, T.; Rothman, D.L.; Shulman, G.I.; Tavitian, B.A.; DeFronzo, R.A.; Shulman, R.G.

    1989-01-01

    On the basis of previous indirect measurements, skeletal muscle has been implicated as the major site of glucose uptake and it has been suggested that muscle glycogen formation is the dominant pathway. However, direct measurements of the rates of glycogen synthesis have not been possible by previous techniques. The authors have developed 13 C NMR methods to measure directly the rate of human muscle glycogen formation from infused, isotopically labeled [1- 13 C]glucose. They show that under conditions of imposed hyperglycemia and hyperinsulinemia, a majority of the infused glucose was converted to muscle glycogen in a normal man. This directly shows that muscle is the major site of glucose disposal under these conditions, and provides quantitation of the glucose flux to muscle glycogen

  13. Oxidation of urate in human skeletal muscle during exercise

    DEFF Research Database (Denmark)

    Hellsten, Ylva; Tullson, P. C.; Richter, Erik

    1997-01-01

    the level was more than twofold higher and remained elevated throughout recovery (p exercise, probably due to generation of free radicals. Furthermore, the findings support the suggested importance of urate......The purpose of the present study was to investigate whether high metabolic stress to skeletal muscle, induced by intensive exercise, would lead to an oxidation of urate to allantoin in the exercised muscle. Seven healthy male subjects performed short term (4.39 +/- 0.04 [+/-SE] min) exhaustive...... cycling exercise. Muscle samples were obtained from m. v. lateralis before and during the first few minutes after the exercise. Venous blood samples were obtained before and up to 45 min after the exercise. The concentration of urate in muscle decreased from a resting level of 0.26 +/- 0.023 to 0...

  14. Actovegin, a non-prohibited drug increases oxidative capacity in human skeletal muscle

    DEFF Research Database (Denmark)

    Søndergård, Stine D; Dela, Flemming; Helge, Jørn W

    2016-01-01

    Actovegin, a deproteinized haemodialysate of calf blood, is suggested to have ergogenic properties, but this potential effect has never been investigated in human skeletal muscle. To investigate this purported ergogenic effect, we measured the mitochondrial respiratory capacity in permeabilized h...

  15. "Nutraceuticals" in relation to human skeletal muscle and exercise.

    Science.gov (United States)

    Deane, Colleen S; Wilkinson, Daniel J; Phillips, Bethan E; Smith, Kenneth; Etheridge, Timothy; Atherton, Philip J

    2017-04-01

    Skeletal muscles have a fundamental role in locomotion and whole body metabolism, with muscle mass and quality being linked to improved health and even lifespan. Optimizing nutrition in combination with exercise is considered an established, effective ergogenic practice for athletic performance. Importantly, exercise and nutritional approaches also remain arguably the most effective countermeasure for muscle dysfunction associated with aging and numerous clinical conditions, e.g., cancer cachexia, COPD, and organ failure, via engendering favorable adaptations such as increased muscle mass and oxidative capacity. Therefore, it is important to consider the effects of established and novel effectors of muscle mass, function, and metabolism in relation to nutrition and exercise. To address this gap, in this review, we detail existing evidence surrounding the efficacy of a nonexhaustive list of macronutrient, micronutrient, and "nutraceutical" compounds alone and in combination with exercise in relation to skeletal muscle mass, metabolism (protein and fuel), and exercise performance (i.e., strength and endurance capacity). It has long been established that macronutrients have specific roles and impact upon protein metabolism and exercise performance, (i.e., protein positively influences muscle mass and protein metabolism), whereas carbohydrate and fat intakes can influence fuel metabolism and exercise performance. Regarding novel nutraceuticals, we show that the following ones in particular may have effects in relation to 1 ) muscle mass/protein metabolism: leucine, hydroxyl β-methylbutyrate, creatine, vitamin-D, ursolic acid, and phosphatidic acid; and 2 ) exercise performance: (i.e., strength or endurance capacity): hydroxyl β-methylbutyrate, carnitine, creatine, nitrates, and β-alanine. Copyright © 2017 the American Physiological Society.

  16. Mitochondrial dysfunction in human skeletal muscle biopsies of lipid storage disorder.

    Science.gov (United States)

    Debashree, Bandopadhyay; Kumar, Manish; Keshava Prasad, Thottethodi Subrahmanya; Natarajan, Archana; Christopher, Rita; Nalini, Atchayaram; Bindu, Parayil Sankaran; Gayathri, Narayanappa; Srinivas Bharath, Muchukunte Mukunda

    2018-02-09

    Mitochondria regulate the balance between lipid metabolism and storage in the skeletal muscle. Altered lipid transport, metabolism and storage influence the bioenergetics, redox status and insulin signalling, contributing to cardiac and neurological diseases. Lipid storage disorders (LSDs) are neurological disorders which entail intramuscular lipid accumulation and impaired mitochondrial bioenergetics in the skeletal muscle causing progressive myopathy with muscle weakness. However, the mitochondrial changes including molecular events associated with impaired lipid storage have not been completely understood in the human skeletal muscle. We carried out morphological and biochemical analysis of mitochondrial function in muscle biopsies of human subjects with LSDs (n = 7), compared to controls (n = 10). Routine histology, enzyme histochemistry and ultrastructural analysis indicated altered muscle cell morphology and mitochondrial structure. Protein profiling of the muscle mitochondria from LSD samples (n = 5) (vs. control, n = 5) by high-throughput mass spectrometric analysis revealed that impaired metabolic processes could contribute to mitochondrial dysfunction and ensuing myopathy in LSDs. We propose that impaired fatty acid and respiratory metabolism along with increased membrane permeability, elevated lipolysis and altered cristae entail mitochondrial dysfunction in LSDs. Some of these mechanisms were unique to LSD apart from others that were common to dystrophic and inflammatory muscle pathologies. Many differentially regulated mitochondrial proteins in LSD are linked with other human diseases, indicating that mitochondrial protection via targeted drugs could be a treatment modality in LSD and related metabolic diseases. © 2018 International Society for Neurochemistry.

  17. Three-Dimensional Human iPSC-Derived Artificial Skeletal Muscles Model Muscular Dystrophies and Enable Multilineage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Sara Martina Maffioletti

    2018-04-01

    Full Text Available Summary: Generating human skeletal muscle models is instrumental for investigating muscle pathology and therapy. Here, we report the generation of three-dimensional (3D artificial skeletal muscle tissue from human pluripotent stem cells, including induced pluripotent stem cells (iPSCs from patients with Duchenne, limb-girdle, and congenital muscular dystrophies. 3D skeletal myogenic differentiation of pluripotent cells was induced within hydrogels under tension to provide myofiber alignment. Artificial muscles recapitulated characteristics of human skeletal muscle tissue and could be implanted into immunodeficient mice. Pathological cellular hallmarks of incurable forms of severe muscular dystrophy could be modeled with high fidelity using this 3D platform. Finally, we show generation of fully human iPSC-derived, complex, multilineage muscle models containing key isogenic cellular constituents of skeletal muscle, including vascular endothelial cells, pericytes, and motor neurons. These results lay the foundation for a human skeletal muscle organoid-like platform for disease modeling, regenerative medicine, and therapy development. : Maffioletti et al. generate human 3D artificial skeletal muscles from healthy donors and patient-specific pluripotent stem cells. These human artificial muscles accurately model severe genetic muscle diseases. They can be engineered to include other cell types present in skeletal muscle, such as vascular cells and motor neurons. Keywords: skeletal muscle, pluripotent stem cells, iPS cells, myogenic differentiation, tissue engineering, disease modeling, muscular dystrophy, organoids

  18. Human skeletal muscle ceramide content is not a major factor in muscle insulin sensitivity

    DEFF Research Database (Denmark)

    Skovbro, M; Baranowski, M; Skov-Jensen, C

    2008-01-01

    -hyperinsulinaemic clamp was performed for 120 and 90 min for step 1 and step 2, respectively. Muscle biopsies were obtained from vastus lateralis at baseline, and after steps 1 and 2. RESULTS: Glucose infusion rates increased in response to insulin infusion, and significant differences were present between groups (T2D......AIMS/HYPOTHESIS: In skeletal muscle, ceramides may be involved in the pathogenesis of insulin resistance through an attenuation of insulin signalling. This study investigated total skeletal muscle ceramide fatty acid content in participants exhibiting a wide range of insulin sensitivities. METHODS......: The middle-aged male participants (n=33) were matched for lean body mass and divided into four groups: type 2 diabetes (T2D, n=8), impaired glucose tolerance (IGT, n=9), healthy controls (CON, n=8) and endurance-trained (TR, n=8). A two step (28 and 80 mU m(-2) min(-1)) sequential euglycaemic...

  19. GH receptor blocker administration and muscle-tendon collagen synthesis in humans

    DEFF Research Database (Denmark)

    Nielsen, Rie Harboe; Doessing, Simon; Goto, Kazushige

    2011-01-01

    The growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis stimulates collagen synthesis in tendon and skeletal muscle, but no studies have investigated the effect of reducing IGF-I on collagen synthesis in healthy humans.......The growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis stimulates collagen synthesis in tendon and skeletal muscle, but no studies have investigated the effect of reducing IGF-I on collagen synthesis in healthy humans....

  20. Influence of erythrocyte oxygenation and intravascular ATP on resting and exercising skeletal muscle blood flow in humans with mitochondrial myopathy

    DEFF Research Database (Denmark)

    Jeppesen, Tina D; Vissing, John; González-Alonso, José

    2012-01-01

    Oxygen (O(2)) extraction is impaired in exercising skeletal muscle of humans with mutations of mitochondrial DNA (mtDNA), but the muscle hemodynamic response to exercise has never been directly investigated. This study sought to examine the extent to which human skeletal muscle perfusion can incr...

  1. Single sodium channels from human skeletal muscle in planar lipid bilayers: characterization and response to pentobarbital

    NARCIS (Netherlands)

    Wartenberg, Hans C.; Urban, Bernd W.

    2004-01-01

    PURPOSE: To investigate the response to general anesthetics of different sodium-channel subtypes, we examined the effects of pentobarbital, a close thiopental analogue, on single sodium channels from human skeletal muscle and compared them to existing data from human brain and human ventricular

  2. Influence of Passive Muscle Tension on Electromechanical Delay in Humans

    Science.gov (United States)

    Lacourpaille, Lilian; Hug, François; Nordez, Antoine

    2013-01-01

    Background Electromechanical delay is the time lag between onsets of muscle activation and muscle force production and reflects both electro-chemical processes and mechanical processes. The aims of the present study were two-fold: to experimentally determine the slack length of each head of the biceps brachii using elastography and to determine the influence of the length of biceps brachii on electromechanical delay and its electro-chemical/mechanical processes using very high frame rate ultrasound. Methods/Results First, 12 participants performed two passive stretches to evaluate the change in passive tension for each head of the biceps brachii. Then, they underwent two electrically evoked contractions from 120 to 20° of elbow flexion (0°: full extension), with the echographic probe maintained over the muscle belly and the myotendinous junction of biceps brachii. The slack length was found to occur at 95.5 ± 6.3° and 95.3 ± 8.2° of the elbow joint angle for the long and short heads of the biceps brachii, respectively. The electromechanical delay was significantly longer at 120° (16.9 ± 3.1 ms; p0.95). Conclusion In contrast to previous observations on gastrocnemius medialis, the onset of muscle motion and the onset of myotendinous junction motion occurred simultaneously regardless of the length of the biceps brachii. That suggests that the between-muscles differences reported in the literature cannot be explained by different muscle passive tension but instead may be attributable to muscle architectural differences. PMID:23308153

  3. Increasing blood flow to exercising muscle attenuates systemic cardiovascular responses during dynamic exercise in humans.

    Science.gov (United States)

    Ichinose, Masashi; Ichinose-Kuwahara, Tomoko; Kondo, Narihiko; Nishiyasu, Takeshi

    2015-11-15

    Reducing blood flow to working muscles during dynamic exercise causes metabolites to accumulate within the active muscles and evokes systemic pressor responses. Whether a similar cardiovascular response is elicited with normal blood flow to exercising muscles during dynamic exercise remains unknown, however. To address that issue, we tested whether cardiovascular responses are affected by increases in blood flow to active muscles. Thirteen healthy subjects performed dynamic plantarflexion exercise for 12 min at 20%, 40%, and 60% of peak workload (EX20, EX40, and EX60) with their lower thigh enclosed in a negative pressure box. Under control conditions, the box pressure was the same as the ambient air pressure. Under negative pressure conditions, beginning 3 min after the start of the exercise, the box pressure was decreased by 20, 45, and then 70 mmHg in stepwise fashion with 3-min step durations. During EX20, the negative pressure had no effect on blood flow or the cardiovascular responses measured. However, application of negative pressure increased blood flow to the exercising leg during EX40 and EX60. This increase in blood flow had no significant effect on systemic cardiovascular responses during EX40, but it markedly attenuated the pressor responses otherwise seen during EX60. These results demonstrate that during mild exercise, normal blood flow to exercising muscle is not a factor eliciting cardiovascular responses, whereas it elicits an important pressor effect during moderate exercise. This suggests blood flow to exercising muscle is a major determinant of cardiovascular responses during dynamic exercise at higher than moderate intensity. Copyright © 2015 the American Physiological Society.

  4. Evidence of skeletal muscle damage following electrically stimulated isometric muscle contractions in humans

    DEFF Research Database (Denmark)

    Mackey, Abigail; Bojsen-Moller, Jens; Qvortrup, Klaus

    2008-01-01

    and desmin-negative staining in a small percentage of myofibers in five and four individuals, respectively. z-Line disruption was evident at varying magnitudes in all subjects and displayed a trend toward a positive correlation (r = 0.73, P = 0.0663) with the force produced by stimulation. Increased muscle...

  5. Enhanced Glycogen Storage of a Subcellular Hot Spot in Human Skeletal Muscle during Early Recovery from Eccentric Contractions

    Science.gov (United States)

    Nielsen, Joachim; Farup, Jean; Rahbek, Stine Klejs; de Paoli, Frank Vincenzo; Vissing, Kristian

    2015-01-01

    Unaccustomed eccentric exercise is accompanied by muscle damage and impaired glucose uptake and glycogen synthesis during subsequent recovery. Recently, it was shown that the role and regulation of glycogen in skeletal muscle are dependent on its subcellular localization, and that glycogen synthesis, as described by the product of glycogen particle size and number, is dependent on the time course of recovery after exercise and carbohydrate availability. In the present study, we investigated the subcellular distribution of glycogen in fibers with high (type I) and low (type II) mitochondrial content during post-exercise recovery from eccentric contractions. Analysis was completed on five male subjects performing an exercise bout consisting of 15 x 10 maximal eccentric contractions. Carbohydrate-rich drinks were subsequently ingested throughout a 48 h recovery period and muscle biopsies for analysis included time points 3, 24 and 48 h post exercise from the exercising leg, whereas biopsies corresponding to prior to and at 48 h after the exercise bout were collected from the non-exercising, control leg. Quantitative imaging by transmission electron microscopy revealed an early (post 3 and 24 h) enhanced storage of intramyofibrillar glycogen (defined as glycogen particles located within the myofibrils) of type I fibers, which was associated with an increase in the number of particles. In contrast, late in recovery (post 48 h), intermyofibrillar, intramyofibrillar and subsarcolemmal glycogen in both type I and II fibers were lower in the exercise leg compared with the control leg, and this was associated with a smaller size of the glycogen particles. We conclude that in the carbohydrate-supplemented state, the effect of eccentric contractions on glycogen metabolism depends on the subcellular localization, muscle fiber’s oxidative capacity, and the time course of recovery. The early enhanced storage of intramyofibrillar glycogen after the eccentric contractions may

  6. Skeletal muscle ATP turnover and muscle fiber conduction velocity are elevated at higher muscle temperatures during maximal power output development in humans.

    Science.gov (United States)

    Gray, Stuart R; De Vito, Giuseppe; Nimmo, Myra A; Farina, Dario; Ferguson, Richard A

    2006-02-01

    The effect of temperature on skeletal muscle ATP turnover and muscle fiber conduction velocity (MFCV) was studied during maximal power output development in humans. Eight male subjects performed a 6-s maximal sprint on a mechanically braked cycle ergometer under conditions of normal (N) and elevated muscle temperature (ET). Muscle temperature was passively elevated through the combination of hot water immersion and electric blankets. Anaerobic ATP turnover was calculated from analysis of muscle biopsies obtained before and immediately after exercise. MFCV was measured during exercise using surface electromyography. Preexercise muscle temperature was 34.2 degrees C (SD 0.6) in N and 37.5 degrees C (SD 0.6) in ET. During ET, the rate of ATP turnover for phosphocreatine utilization [temperature coefficient (Q10) = 3.8], glycolysis (Q10 = 1.7), and total anaerobic ATP turnover [Q10 = 2.7; 10.8 (SD 1.9) vs. 14.6 mmol x kg(-1) (dry mass) x s(-1) (SD 2.3)] were greater than during N (P < 0.05). MFCV was also greater in ET than in N [3.79 (SD 0.47) to 5.55 m/s (SD 0.72)]. Maximal power output (Q10 = 2.2) and pedal rate (Q10 = 1.6) were greater in ET compared with N (P < 0.05). The Q10 of maximal and mean power were correlated (P < 0.05; R = 0.82 and 0.85, respectively) with the percentage of myosin heavy chain type IIA. The greater power output obtained with passive heating was achieved through an elevated rate of anaerobic ATP turnover and MFCV, possibly due to a greater effect of temperature on power production of fibers, with a predominance of myosin heavy chain IIA at the contraction frequencies reached.

  7. Soy-dairy protein blend and whey protein ingestion after resistance exercise increases amino acid transport and transporter expression in human skeletal muscle

    Science.gov (United States)

    Reidy, P. T.; Walker, D. K.; Dickinson, J. M.; Gundermann, D. M.; Drummond, M. J.; Timmerman, K. L.; Cope, M. B.; Mukherjea, R.; Jennings, K.; Volpi, E.

    2014-01-01

    Increasing amino acid availability (via infusion or ingestion) at rest or postexercise enhances amino acid transport into human skeletal muscle. It is unknown whether alterations in amino acid availability, from ingesting different dietary proteins, can enhance amino acid transport rates and amino acid transporter (AAT) mRNA expression. We hypothesized that the prolonged hyperaminoacidemia from ingesting a blend of proteins with different digestion rates postexercise would enhance amino acid transport into muscle and AAT expression compared with the ingestion of a rapidly digested protein. In a double-blind, randomized clinical trial, we studied 16 young adults at rest and after acute resistance exercise coupled with postexercise (1 h) ingestion of either a (soy-dairy) protein blend or whey protein. Phenylalanine net balance and transport rate into skeletal muscle were measured using stable isotopic methods in combination with femoral arteriovenous blood sampling and muscle biopsies obtained at rest and 3 and 5 h postexercise. Phenylalanine transport into muscle and mRNA expression of select AATs [system L amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, system A amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, cationic amino acid transporter 1/SLC7A1] increased to a similar extent in both groups (P protein blend resulted in a prolonged and positive net phenylalanine balance during postexercise recovery compared with whey protein (P protein synthesis increased similarly between groups. We conclude that, while both protein sources enhanced postexercise AAT expression, transport into muscle, and myofibrillar protein synthesis, postexercise ingestion of a protein blend results in a slightly prolonged net amino acid balance across the leg compared with whey protein. PMID:24699854

  8. Changes in the referent body location and configuration may underlie human gait, as confirmed by findings of multi-muscle activity minimizations and phase resetting.

    Science.gov (United States)

    Feldman, Anatol G; Krasovsky, Tal; Baniña, Melanie C; Lamontagne, Anouk; Levin, Mindy F

    2011-04-01

    Locomotion is presumably guided by feed-forward shifts in the referent body location in the desired direction in the environment. We propose that the difference between the actual and the referent body locations is transmitted to neurons that virtually diminish this difference by appropriately changing the referent body configuration, i.e. the body posture at which muscles reach their recruitment thresholds. Muscles are activated depending on the gap between the actual and the referent body configurations resulting in a step being made to minimize this gap. This hypothesis implies that the actual and the referent leg configurations can match each other at certain phases of the gait cycle, resulting in minimization of leg muscle activity. We found several leg configurations at which EMG minima occurred, both during forward and backward gait. It was also found that the set of limb configurations associated with EMG minima can be changed by modifying the pattern of forward and backward gait. Our hypothesis predicts that, in response to perturbations of gait, the rate of shifts in the referent body location can temporarily be changed to avoid falling. The rate influences the phase of rhythmic limb movements during gait. Therefore, following the change in the rate of the referent body location, the whole gait pattern, for all four limbs, will irreversibly be shifted in time (long-lasting and global phase resetting) with only transient changes in the gait speed, swing and stance timing and cycle duration. Aside from transient changes in the duration of the swing and/or stance phase in response to perturbation, few previous studies have documented long-lasting and global phase resetting of human gait in response to perturbation. Such resetting was a robust finding in our study. By confirming the notion that feed-forward changes in the referent body location and configuration underlie human locomotion, this study solves the classical problem in the relationship between

  9. Induction and modulation of referred muscle pain in humans

    DEFF Research Database (Denmark)

    Laursen, René Johannes

    correlated to pain intensity, and LP and RP thresholds were reproducible within and between sessions. Experimentally (electrical stimulation and infusion of hypertonic saline) induced muscle pain seems to be mediated by myelinated and unmyelinated afferents and the peripheral component of RP by myelinated...... afferents. Furthermore, cutaneous anesthesia of the RP area resulted in a reduction of RP intensity of 22%, while a complete nerve block of afferents from the RP area resulted in a 40% reduction. In summary, observations from the presented experiments suggest that elicitation of referred muscle pain...... is depending on and correlated to local muscle pain. Peripheral input from the RP area is involved, but is not a necessary condition for RP to appear. The present studies as well as others suggest that central hyperexcitability is involved in the generation of RP, but further investigations on mechanisms of RP...

  10. Reduced blood flow to contracting skeletal muscle in ageing humans

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Hellsten, Ylva

    2016-01-01

    The ability to sustain a given absolute submaximal workload declines with advancing age likely due to a lower level of blood flow and O2 delivery to the exercising muscles. Given that physical inactivity mimics many of the physiological changes associated with ageing, separating the physiological...... consequences of ageing and physical inactivity can be challenging; yet, observations from cross-sectional and longitudinal studies on the effects of physical activity have provided some insight. Physical activity has the potential to offset the age-related decline in blood flow to contracting skeletal muscle...... the O2 demand of the active skeletal muscle of aged individuals during conditions where systemic blood flow is not limited by cardiac output seems to a large extent to be related to the level of physical activity. This article is protected by copyright. All rights reserved....

  11. Morphological analysis of the hindlimb in apes and humans. I. Muscle architecture.

    Science.gov (United States)

    Payne, R C; Crompton, R H; Isler, K; Savage, R; Vereecke, E E; Günther, M M; Thorpe, S K S; D'Août, K

    2006-06-01

    We present quantitative data on the hindlimb musculature of Pan paniscus, Gorilla gorilla gorilla, Gorilla gorilla graueri, Pongo pygmaeus abelii and Hylobates lar and discuss the findings in relation to the locomotor habits of each. Muscle mass and fascicle length data were obtained for all major hindlimb muscles. Physiological cross-sectional area (PCSA) was estimated. Data were normalized assuming geometric similarity to allow for comparison of animals of different size/species. Muscle mass scaled closely to (body mass)(1.0) and fascicle length scaled closely to (body mass)(0.3) in most species. However, human hindlimb muscles were heavy and had short fascicles per unit body mass when compared with non-human apes. Gibbon hindlimb anatomy shared some features with human hindlimbs that were not observed in the non-human great apes: limb circumferences tapered from proximal-to-distal, fascicle lengths were short per unit body mass and tendons were relatively long. Non-human great ape hindlimb muscles were, by contrast, characterized by long fascicles arranged in parallel, with little/no tendon of insertion. Such an arrangement of muscle architecture would be useful for locomotion in a three dimensionally complex arboreal environment.

  12. Leg Injuries and Disorders

    Science.gov (United States)

    ... are important for motion and standing. Playing sports, running, falling, or having an accident can damage your legs. Common leg injuries include sprains and strains, joint dislocations, and fractures. ...

  13. Electrical stimulation counteracts muscle atrophy associated with aging in humans

    Directory of Open Access Journals (Sweden)

    Helmut Kern

    2013-07-01

    Full Text Available Functional and structural muscle decline is a major problem during aging. Our goal was to improve in old subjects quadriceps m. force and mobility functional performances (stair test, chair rise test, timed up and go test with neuromuscular electrical stimulation (9 weeks, 2-3times/week, 20-30 minutes per session. Furthermore we performed histological and biological molecular analyses of vastus lateralis m. biopsies. Our findings demonstrate that electrical stimulation significantly improved mobility functional performancies and muscle histological characteristics and molecular markers.

  14. Partial body weight support treadmill training speed influences paretic and non-paretic leg muscle activation, stride characteristics, and ratings of perceived exertion during acute stroke rehabilitation.

    Science.gov (United States)

    Burnfield, Judith M; Buster, Thad W; Goldman, Amy J; Corbridge, Laura M; Harper-Hanigan, Kellee

    2016-06-01

    Intensive task-specific training is promoted as one approach for facilitating neural plastic brain changes and associated motor behavior gains following neurologic injury. Partial body weight support treadmill training (PBWSTT), is one task-specific approach frequently used to improve walking during the acute period of stroke recovery (training parameters and physiologic demands during this early recovery phase. To examine the impact of four walking speeds on stride characteristics, lower extremity muscle demands (both paretic and non-paretic), Borg ratings of perceived exertion (RPE), and blood pressure. A prospective, repeated measures design was used. Ten inpatients post unilateral stroke participated. Following three familiarization sessions, participants engaged in PBWSTT at four predetermined speeds (0.5, 1.0, 1.5 and 2.0mph) while bilateral electromyographic and stride characteristic data were recorded. RPE was evaluated immediately following each trial. Stride length, cadence, and paretic single limb support increased with faster walking speeds (p⩽0.001), while non-paretic single limb support remained nearly constant. Faster walking resulted in greater peak and mean muscle activation in the paretic medial hamstrings, vastus lateralis and medial gastrocnemius, and non-paretic medial gastrocnemius (p⩽0.001). RPE also was greatest at the fastest compared to two slowest speeds (ptraining at the slowest speeds. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Muscle networks: Connectivity analysis of EMG activity during postural control

    Science.gov (United States)

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-12-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.

  16. Study of Statin- and Loratadine-Induced Muscle Pain Mechanisms Using Human Skeletal Muscle Cells

    OpenAIRE

    Yat Hei Leung; Jacques Turgeon; Veronique Michaud

    2017-01-01

    Many drugs can cause unexpected muscle disorders, often necessitating the cessation of an effective medication. Inhibition of monocarboxylate transporters (MCTs) may potentially lead to perturbation of l-lactic acid homeostasis and muscular toxicity. Previous studies have shown that statins and loratadine have the potential to inhibit l-lactic acid efflux by MCTs (MCT1 and 4). The main objective of this study was to confirm the inhibitory potentials of atorvastatin, simvastatin (acid and lact...

  17. Pyruvate carboxylase is expressed in human skeletal muscle

    DEFF Research Database (Denmark)

    Minet, Ariane D; Gaster, Michael

    2010-01-01

    Pyruvate carboxylase (PC) is a mitochondrial enzyme that catalyses the carboxylation of pyruvate to oxaloacetate thereby allowing supplementation of citric acid cycle intermediates. The presence of PC in skeletal muscle is controversial. We report here, that PC protein is easily detectable...

  18. Corticospinal contribution to arm muscle activity during human walking

    DEFF Research Database (Denmark)

    Barthélemy, Dorothy; Nielsen, Jens Bo

    2010-01-01

    inhibitory interneurones, the suppression is in all likelihood caused by removal of a corticospinal contribution to the ongoing EMG activity. The data thus suggest that the motor cortex makes an active contribution, through the corticospinal tract, to the ongoing EMG activity in arm muscles during walking....

  19. Factors regulating fat oxidation in human skeletal muscle

    DEFF Research Database (Denmark)

    Kiens, Bente; Alsted, Thomas Junker; Jeppesen, Jacob

    2011-01-01

    In modern societies, oversupply of calories leads to obesity and chronic metabolic stress, which may lead to development of disease. Oversupply of calories is often associated with elevated plasma lipid concentrations and accumulation of lipids in skeletal muscle leading to decreased insulin...

  20. Acute exercise remodels promoter methylation in human skeletal muscle

    DEFF Research Database (Denmark)

    Barrès, Romain; Yan, Jie; Egan, Brendan

    2012-01-01

    DNA methylation is a covalent biochemical modification controlling chromatin structure and gene expression. Exercise elicits gene expression changes that trigger structural and metabolic adaptations in skeletal muscle. We determined whether DNA methylation plays a role in exercise-induced gene ex...

  1. Human and rodent muscle Na(+)-K(+)-ATPase in diabetes related to insulin, starvation, and training

    DEFF Research Database (Denmark)

    Schmidt, T A; Hasselbalch, S; Farrell, P A

    1994-01-01

    cerebral cortex Na(+)-K(+)-ATPase concentration as a result of diabetes, semistarvation, or insulin treatment. In human subjects, Na(+)-K(+)-ATPase concentration in vastus lateralis muscle biopsies was 17 and 22% greater (P dependent diabetes...... mellitus (n = 24) and insulin-dependent diabetes mellitus (n = 7) than in control subjects (n = 8). A positive linear correlation between muscle Na(+)-K(+)-ATPase and plasma insulin concentrations was observed (r = 0.50, P = 0.006; n = 29). Thus, insulin seems a regulator of muscle Na......(+)-K(+)-ATPase concentration, reduction of muscle Na(+)-K(+)-ATPase concentration with untreated diabetes bears similarities with undernourishment, and physical conditioning may ameliorate the muscle Na(+)-K(+)-ATPase concentration decrease induced by diabetes....

  2. Dexamethasone up-regulates skeletal muscle maximal Na+,K+ pump activity by muscle group specific mechanisms in humans

    DEFF Research Database (Denmark)

    Nordsborg, Nikolai; Goodmann, Craig; McKenna, Michael J.

    2005-01-01

    Dexamethasone, a widely clinically used glucocorticoid, increases human skeletal muscle Na+,K+ pump content, but the effects on maximal Na+,K+ pump activity and subunit specific mRNA are unknown. Ten healthy male subjects ingested dexamethasone for 5 days and the effects on Na+,K+ pump content......, maximal activity and subunit specific mRNA level (a1, a2, ß1, ß2, ß3) in deltoid and vastus lateralis muscle were investigated. Before treatment, maximal Na+,K+ pump activity, as well as a1, a2, ß1 and ß2 mRNA levels were higher (P ... increased Na+,K+ pump maximal activity in vastus lateralis and deltoid by 14 ± 7% (P Na+,K+ pump content by 18 ± 9% (P

  3. Leg vascular and skeletal muscle mitochondrial adaptations to aerobic high-intensity exercise training are enhanced in the early postmenopausal phase

    DEFF Research Database (Denmark)

    Nyberg, Michael Permin; Egelund, Jon; Mandrup Jensen, Camilla Maria

    2017-01-01

    the haemodynamic response to acute exercise in matched pre- and postmenopausal women before and after 12 weeks of aerobic high intensity exercise training. Twenty premenopausal and 16 early postmenopausal (3.1 ± 0.5 [mean ± SEM] years after final menstrual period) women only separated by 4 (50 ± 0 versus 54 ± 1...... receptor α (ERRα) were increased (P training in the postmenopausal women whereas only the levels of mitochondrial complex V, eNOS, and COX-2 were increased (P aerobic......Exercise training leads to favourable adaptations within skeletal muscle; however, this effect of exercise training may be blunted in postmenopausal women due to the loss of oestrogens. Furthermore, postmenopausal women may have an impaired vascular response to acute exercise. We examined...

  4. Foot, leg, and ankle swelling

    Science.gov (United States)

    Swelling of the ankles - feet - legs; Ankle swelling; Foot swelling; Leg swelling; Edema - peripheral; Peripheral edema ... Foot, leg, and ankle swelling is common when the person also: Is overweight Has a blood clot in the leg Is older Has ...

  5. Systematic review of economic evaluations of human cell-derived wound care products for the treatment of venous leg and diabetic foot ulcers

    Directory of Open Access Journals (Sweden)

    Langer Astrid

    2009-07-01

    Full Text Available Abstract Background Tissue engineering is an emerging field. Novel bioengineered skin substitutes and genetically derived growth factors offer innovative approaches to reduce the burden of diabetic foot and venous leg ulcers for both patients and health care systems. However, they frequently are very costly. Based on a systematic review of the literature, this study assesses the cost-effectiveness of these growth factors and tissue-engineered artificial skin for treating chronic wounds. Methods On the basis of an extensive explorative search, an appropriate algorithm for a systematic database search was developed. The following databases were searched: BIOSIS Previews, CRD databases, Cochrane Library, EconLit, Embase, Medline, and Web of Science. Only completed and published trial- or model-based studies which contained a full economic evaluation of growth factors and bioengineered skin substitutes for the treatment of chronic wounds were included. Two reviewers independently undertook the assessment of study quality. The relevant studies were assessed by a modified version of the Consensus on Health Economic Criteria (CHEC list and a published checklist for evaluating model-based economic evaluations. Results Eleven health economic evaluations were included. Three biotechnology products were identified for which topical growth factors or bioengineered skin substitutes for the treatment of chronic leg ulceration were economically assessed: (1 Apligraf®, a bilayered living human skin equivalent indicated for the treatment of diabetic foot and venous leg ulcers (five studies; (2 Dermagraft®, a human fibroblast-derived dermal substitute, which is indicated only for use in the treatment of full-thickness diabetic foot ulcers (one study; (3 REGRANEX® Gel, a human platelet-derived growth factor for the treatment of deep neuropathic diabetic foot ulcers (five studies. The studies considered in this review were of varying and partly low

  6. Physical activity is associated with retained muscle metabolism in human myotubes challenged with palmitate

    DEFF Research Database (Denmark)

    Green, C J; Bunprajun, T; Pedersen, B K

    2013-01-01

    in satellite cells challenged with palmitate. Although the benefits of physical activity on whole body physiology have been well investigated, this paper presents novel findings that both diet and exercise impact satellite cells directly. Given the fact that satellite cells are important for muscle maintenance......  The aim of this study was to investigate whether physical activity is associated with preserved muscle metabolism in human myotubes challenged with saturated fatty acids. Human muscle satellite cells were isolated from sedentary or active individuals and differentiated into myocytes in culture...... and correlated positively to JNK phosphorylation. In conclusion, muscle satellite cells retain metabolic differences associated with physical activity. Physical activity partially protects myocytes from fatty acid-induced insulin resistance and inactivity is associated with dysregulation of metabolism...

  7. Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle

    DEFF Research Database (Denmark)

    Hütter, Eveline; Skovbro, Mette; Lener, Barbara

    2007-01-01

    According to the free radical theory of aging, reactive oxygen species (ROS) act as a driving force of the aging process, and it is generally believed that mitochondrial dysfunction is a major source of increased oxidative stress in tissues with high content of mitochondria, such as muscle or brain....... However, recent experiments in mouse models of premature aging have questioned the role of mitochondrial ROS production in premature aging. To address the role of mitochondrial impairment and ROS production for aging in human muscles, we have analyzed mitochondrial properties in muscle fibres isolated...... from the vastus lateralis of young and elderly donors. Mitochondrial respiratory functions were addressed by high-resolution respirometry, and ROS production was analyzed by in situ staining with the redox-sensitive dye dihydroethidium. We found that aged human skeletal muscles contain fully functional...

  8. The effect of low intensity shockwave treatment (Li-SWT) on human myoblasts and mouse skeletal muscle

    DEFF Research Database (Denmark)

    Hansen, Lise K; Schrøder, Henrik D; Lund, Lars

    2017-01-01

    , proliferation and differentiation were tested. Cardiotoxin induced injury was created in tibialis anterior muscles of 28 mice, and two days later, the lesions were treated with 500 impulses of Li-SWT on one of the legs. The treatment was repeated every third day of the period and ended on day 14 after...... incremental effect on expression of pro-angiogenic genes. However, we found no changes in the number of PAX7 positive cells or blood vessel density in Li-SWT treated and control muscle. Furthermore, Li-SWT in the selected doses did not decrease survival, proliferation or differentiation of myoblasts in vitro....

  9. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia.

    Science.gov (United States)

    Pannérec, Alice; Springer, Margherita; Migliavacca, Eugenia; Ireland, Alex; Piasecki, Mathew; Karaz, Sonia; Jacot, Guillaume; Métairon, Sylviane; Danenberg, Esther; Raymond, Frédéric; Descombes, Patrick; McPhee, Jamie S; Feige, Jerome N

    2016-04-01

    Declining muscle mass and function is one of the main drivers of loss of independence in the elderly. Sarcopenia is associated with numerous cellular and endocrine perturbations, and it remains challenging to identify those changes that play a causal role and could serve as targets for therapeutic intervention. In this study, we uncovered a remarkable differential susceptibility of certain muscles to age-related decline. Aging rats specifically lose muscle mass and function in the hindlimbs, but not in the forelimbs. By performing a comprehensive comparative analysis of these muscles, we demonstrate that regional susceptibility to sarcopenia is dependent on neuromuscular junction fragmentation, loss of motoneuron innervation, and reduced excitability. Remarkably, muscle loss in elderly humans also differs in vastus lateralis and tibialis anterior muscles in direct relation to neuromuscular dysfunction. By comparing gene expression in susceptible and non-susceptible muscles, we identified a specific transcriptomic signature of neuromuscular impairment. Importantly, differential molecular profiling of the associated peripheral nerves revealed fundamental changes in cholesterol biosynthetic pathways. Altogether our results provide compelling evidence that susceptibility to sarcopenia is tightly linked to neuromuscular decline in rats and humans, and identify dysregulation of sterol metabolism in the peripheral nervous system as an early event in this process.

  10. Motor unit activity after eccentric exercise and muscle damage in humans.

    Science.gov (United States)

    Semmler, J G

    2014-04-01

    It is well known that unaccustomed eccentric exercise leads to muscle damage and soreness, which can produce long-lasting effects on muscle function. How this muscle damage influences muscle activation is poorly understood. The purpose of this brief review is to highlight the effect of eccentric exercise on the activation of muscle by the nervous system, by examining the change in motor unit activity obtained from surface electromyography (EMG) and intramuscular recordings. Previous research shows that eccentric exercise produces unusual changes in the EMG–force relation that influences motor performance during isometric, shortening and lengthening muscle contractions and during fatiguing tasks. When examining the effect of eccentric exercise at the single motor unit level, there are substantial changes in recruitment thresholds, discharge rates, motor unit conduction velocities and synchronization, which can last for up to 1 week after eccentric exercise. Examining the time course of these changes suggests that the increased submaximal EMG after eccentric exercise most likely occurs through a decrease in motor unit conduction velocity and an increase in motor unit activity related to antagonist muscle coactivation and low-frequency fatigue. Furthermore, there is a commonly held view that eccentric exercise produces preferential damage to high-threshold motor units, but the evidence for this in humans is limited. Further research is needed to establish whether there is preferential damage to high-threshold motor units after eccentric exercise in humans, preferably by linking changes in motor unit activity with estimates of motor unit size using selective intramuscular recording techniques.

  11. Combined inhibition of nitric oxide and prostaglandins reduces human skeletal muscle blood flow during exercise

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Langberg, Henning; Gemmer, Carsten

    2002-01-01

    The vascular endothelium is an important mediator of tissue vasodilatation, yet the role of the specific substances, nitric oxide (NO) and prostaglandins (PG), in mediating the large increases in muscle perfusion during exercise in humans is unclear. Quadriceps microvascular blood flow......, respectively (P exercise in humans. These findings demonstrate an important synergistic role of NO and PG for skeletal muscle vasodilatation and hyperaemia during muscular contraction....... was quantified by near infrared spectroscopy and indocyanine green in six healthy humans during dynamic knee extension exercise with and without combined pharmacological inhibition of NO synthase (NOS) and PG by L-NAME and indomethacin, respectively. Microdialysis was applied to determine interstitial release...

  12. An automatic hinge system for leg orthoses

    NARCIS (Netherlands)

    Rietman, J. S.; Goudsmit, J.; Meulemans, D.; Halbertsma, J. P. K.; Geertzen, J. H. B.

    2004-01-01

    This paper describes a new automatic hinge system for leg orthoses, which provides knee stability in stance, and allows knee-flexion during swing. Indications for the hinge system are a paresis or paralysis of the quadriceps muscles. Instrumented gait analysis was performed in three patients, fitted

  13. An automatic hinge system for leg orthoses

    NARCIS (Netherlands)

    Rietman, J.S.; Goudsmit, J.; Meulemans, D.; Halbertsma, J.P.K.; Geertzen, J.H.B.

    This paper describes a new, automatic hinge system for leg orthoses, which provides knee stability in stance, and allows knee-flexion during swing. Indications for the hinge system are a paresis or paralysis of the quadriceps muscles. Instrumented gait analysis was performed in three patients,

  14. X-Ray Exam: Femur (Upper Leg)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Femur (Upper Leg) KidsHealth / For Parents / X- ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  15. Noninvasive optical imaging of resistance training adaptations in human muscle

    Science.gov (United States)

    Warren, Robert V.; Cotter, Joshua; Ganesan, Goutham; Le, Lisa; Agustin, Janelle P.; Duarte, Bridgette; Cutler, Kyle; O'Sullivan, Thomas; Tromberg, Bruce J.

    2017-12-01

    A quantitative and dynamic analysis of skeletal muscle structure and function can guide training protocols and optimize interventions for rehabilitation and disease. While technologies exist to measure body composition, techniques are still needed for quantitative, long-term functional imaging of muscle at the bedside. We evaluate whether diffuse optical spectroscopic imaging (DOSI) can be used for long-term assessment of resistance training (RT). DOSI measures of tissue composition were obtained from 12 adults before and after 5 weeks of training and compared to lean mass fraction (LMF) from dual-energy X-ray absorptiometry (DXA). Significant correlations were detected between DXA LMF and DOSI-measured oxy-hemo/myoglobin, deoxy-hemo/myoglobin, total-hemo/myoglobin, water, and lipid. RT-induced increases of ˜6% in oxy-hemo/myoglobin (3.4±1.0 μM, p=0.00314) and total-hemo/myoglobin (4.9±1.1 μM, p=0.00024) from the medial gastrocnemius were detected with DOSI and accompanied by ˜2% increases in lean soft tissue mass (36.4±12.4 g, p=0.01641) and ˜60% increases in 1 rep-max strength (41.5±6.2 kg, p = 1.9E-05). DOSI measures of vascular and/or muscle changes combined with correlations between DOSI and DXA suggest that quantitative diffuse optical methods can be used to evaluate body composition, provide feedback on long-term interventions, and generate new insight into training-induced muscle adaptations.

  16. Architecture and functional ecology of the human gastrocnemius muscle-tendon unit.

    Science.gov (United States)

    Butler, Erin E; Dominy, Nathaniel J

    2016-04-01

    The gastrocnemius muscle-tendon unit (MTU) is central to human locomotion. Structural variation in the human gastrocnemius MTU is predicted to affect the efficiency of locomotion, a concept most often explored in the context of performance activities. For example, stiffness of the Achilles tendon varies among individuals with different histories of competitive running. Such a finding highlights the functional variation of individuals and raises the possibility of similar variation between populations, perhaps in response to specific ecological or environmental demands. Researchers often assume minimal variation in human populations, or that industrialized populations represent the human species as well as any other. Yet rainforest hunter-gatherers, which often express the human pygmy phenotype, contradict such assumptions. Indeed, the human pygmy phenotype is a potential model system for exploring the range of ecomorphological variation in the architecture of human hindlimb muscles, a concept we review here. © 2015 Anatomical Society.

  17. Robust generation and expansion of skeletal muscle progenitors and myocytes from human pluripotent stem cells.

    Science.gov (United States)

    Shelton, Michael; Kocharyan, Avetik; Liu, Jun; Skerjanc, Ilona S; Stanford, William L

    2016-05-15

    Human pluripotent stem cells provide a developmental model to study early embryonic and tissue development, tease apart human disease processes, perform drug screens to identify potential molecular effectors of in situ regeneration, and provide a source for cell and tissue based transplantation. Highly efficient differentiation protocols have been established for many cell types and tissues; however, until very recently robust differentiation into skeletal muscle cells had not been possible unless driven by transgenic expression of master regulators of myogenesis. Nevertheless, several breakthrough protocols have been published in the past two years that efficiently generate cells of the skeletal muscle lineage from pluripotent stem cells. Here, we present an updated version of our recently described 50-day protocol in detail, whereby chemically defined media are used to drive and support muscle lineage development from initial CHIR99021-induced mesoderm through to PAX7-expressing skeletal muscle progenitors and mature skeletal myocytes. Furthermore, we report an optional method to passage and expand differentiating skeletal muscle progenitors approximately 3-fold every 2weeks using Collagenase IV and continued FGF2 supplementation. Both protocols have been optimized using a variety of human pluripotent stem cell lines including patient-derived induced pluripotent stem cells. Taken together, our differentiation and expansion protocols provide sufficient quantities of skeletal muscle progenitors and myocytes that could be used for a variety of studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. K+ as a vasodilator in resting human muscle: implications for exercise hyperaemia

    DEFF Research Database (Denmark)

    Juel, C; Olsen, S; Rentsch, R L

    2007-01-01

    AIM: Potassium (K(+)) released from contracting skeletal muscle is considered a vasodilatory agent. This concept is mainly based on experiments infusing non-physiological doses of K(+). The aim of the present study was to investigate the role of K(+) in blood flow regulation. METHODS: We measured...... leg blood flow (LBF) and arterio-venous (A-V) O(2) difference in 13 subjects while infusing K(+) into the femoral artery at a rate of 0.2, 0.4, 0.6 and 0.8 mmol min(-1). RESULTS: The lowest dose increased the calculated femoral artery plasma K(+) concentration by approx.1 mmol L(-1). Graded K......(+) infusions increased LBF from 0.39 +/- 0.06 to 0.56 +/- 0.13, 0.58 +/- 0.17, 0.61 +/- 0.11 and 0.71 +/- 0.17 L min(-1), respectively, whereas the leg A-V O(2) difference decreased from 74 +/- 9 to 60 +/- 12, 52 +/- 11, 53 +/- 9 and 45 +/- 7 mL L(-1), respectively (P

  19. Walking on high heels changes muscle activity and the dynamics of human walking significantly

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Svendsen, Morten Bo Søndergaard; Nørreslet, Andreas

    2012-01-01

    The aim of the study was to investigate the distribution of net joint moments in the lower extremities during walking on high-heeled shoes compared with barefooted walking at identical speed. Fourteen female subjects walked at 4 km/h across three force platforms while they were filmed by five...... digital video cameras operating at 50 frames/second. Both barefooted walking and walking on high-heeled shoes (heel height: 9 cm) were recorded. Net joint moments were calculated by 3D inverse dynamics. EMG was recorded from eight leg muscles. The knee extensor moment peak in the first half of the stance...... phase was doubled when walking on high heels. The knee joint angle showed that high-heeled walking caused the subjects to flex the knee joint significantly more in the first half of the stance phase. In the frontal plane a significant increase was observed in the knee joint abductor moment and the hip...

  20. Stimulated echo diffusion tensor imaging and SPAIR T2 -weighted imaging in chronic exertional compartment syndrome of the lower leg muscles.

    Science.gov (United States)

    Sigmund, Eric E; Sui, Dabang; Ukpebor, Obehi; Baete, Steven; Fieremans, Els; Babb, James S; Mechlin, Michael; Liu, Kecheng; Kwon, Jane; McGorty, KellyAnne; Hodnett, Philip A; Bencardino, Jenny

    2013-11-01

    To evaluate the performance of diffusion tensor imaging (DTI) in the evaluation of chronic exertional compartment syndrome (CECS) as compared to T2 -weighted (T2w) imaging. Using an Institutional Review Board (IRB)-approved, Health Insurance Portability and Accountability Act (HIPAA)-compliant protocol, spectral adiabatic inversion recovery (SPAIR) T2w imaging and stimulated echo DTI were applied to eight healthy volunteers and 14 suspected CECS patients before and after exertion. Longitudinal and transverse diffusion eigenvalues, mean diffusivity (MD), and fractional anisotropy (FA) were measured in seven calf muscle compartments, which in patients were classified by their response on T2w: normal (20% change). Mixed model analysis of variance compared subject groups and compartments in terms of response factors (post/pre-exercise ratios) of DTI parameters. All diffusivities significantly increased (P DTI shows promise as an ancillary imaging method in the diagnosis and understanding of the pathophysiology in CECS. Future studies may explore its utility in predicting response to treatment. Copyright © 2013 Wiley Periodicals, Inc.

  1. Human lung mast cells modulate the functions of airway smooth muscle cells in asthma.

    Science.gov (United States)

    Alkhouri, H; Hollins, F; Moir, L M; Brightling, C E; Armour, C L; Hughes, J M

    2011-09-01

    Activated mast cell densities are increased on the airway smooth muscle in asthma where they may modulate muscle functions and thus contribute to airway inflammation, remodelling and airflow obstruction. To determine the effects of human lung mast cells on the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Freshly isolated human lung mast cells were stimulated with IgE/anti-IgE. Culture supernatants were collected after 2 and 24 h and the mast cells lysed. The supernatants/lysates were added to serum-deprived, subconfluent airway smooth muscle cells for up to 48 h. Released chemokines and extracellular matrix were measured by ELISA, proliferation was quantified by [(3) H]-thymidine incorporation and cell counting, and intracellular signalling by phospho-arrays. Mast cell 2-h supernatants reduced CCL11 and increased CXCL8 and fibronectin production from both asthmatic and nonasthmatic muscle cells. Leupeptin reversed these effects. Mast cell 24-h supernatants and lysates reduced CCL11 release from both muscle cell types but increased CXCL8 release by nonasthmatic cells. The 24-h supernatants also reduced asthmatic, but not nonasthmatic, muscle cell DNA synthesis and asthmatic cell numbers over 5 days through inhibiting extracellular signal-regulated kinase (ERK) and phosphatidylinositol (PI3)-kinase pathways. However, prostaglandins, thromboxanes, IL-4 and IL-13 were not involved in reducing the proliferation. Mast cell proteases and newly synthesized products differentially modulated the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Thus, mast cells may modulate their own recruitment and airway smooth muscle functions locally in asthma. © 2011 John Wiley & Sons A/S.

  2. Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type

    Science.gov (United States)

    Nielsen, Joachim; Holmberg, Hans-Christer; Schrøder, Henrik D; Saltin, Bengt; Ørtenblad, Niels

    2011-01-01

    Abstract Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis that utilization of glycogen with different subcellular localizations during exhaustive arm and leg exercise differs and examined the influence of fibre type and carbohydrate availability on its subsequent resynthesis. When 10 elite endurance athletes (22 ± 1 years, = 68 ± 5 ml kg−1 min−1, mean ± SD) performed one hour of exhaustive arm and leg exercise, transmission electron microscopy revealed more pronounced depletion of intramyofibrillar than of intermyofibrillar and subsarcolemmal glycogen. This phenomenon was the same for type I and II fibres, although at rest prior to exercise, the former contained more intramyofibrillar and subsarcolemmal glycogen than the latter. In highly glycogen-depleted fibres, the remaining small intermyofibrillar and subsarcolemmal glycogen particles were often found to cluster in groupings. In the recovery period, when the athletes received either a carbohydrate-rich meal or only water the impaired resynthesis of glycogen with water alone was associated primarily with intramyofibrillar glycogen. In conclusion, after prolonged high-intensity exercise the depletion of glycogen is dependent on subcellular localization. In addition, the localization of glycogen appears to be influenced by fibre type prior to exercise, as well as carbohydrate availability during the subsequent period of recovery. These findings provide insight into the significance of fibre type-specific compartmentalization of glycogen metabolism in skeletal muscle during exercise and subsequent recovery. PMID:21486810

  3. Aging is associated with diminished muscle re-growth and myogenic precursor cell expansion in the early recovery phase after immobility-induced atrophy in human skeletal muscle

    DEFF Research Database (Denmark)

    Suetta, Charlotte Arneboe; Frandsen, Ulrik; Mackey, Abigail L

    2013-01-01

    Recovery of skeletal muscle mass from immobilisation-induced atrophy is faster in young than older individuals, yet the cellular mechanisms remain unknown. We examined the cellular and molecular regulation of muscle recovery in young and old human subjects subsequent to 2 weeks of immobility...... expression analysis of key growth and transcription factors associated with local skeletal muscle milieu were performed after 2 weeks immobility (Imm) and following 3 days (+3d) and 4 weeks (+4wks) of re-training. OM demonstrated no detectable gains in MFA (VL muscle) and no increases in number of Pax7......-induced muscle atrophy. Re-training consisted of 4 weeks of supervised resistive exercise in 9 older (OM: 67.3yrs, range 61-74) and 11 young (YM: 24.4yrs, range 21-30) males. Measures of myofiber area (MFA), Pax7-positive satellite cells (SC) associated with type I and type II muscle fibres, as well as gene...

  4. Functional compartmentalization of the human superficial masseter muscle.

    Directory of Open Access Journals (Sweden)

    Rodrigo A Guzmán-Venegas

    Full Text Available Some muscles have demonstrated a differential recruitment of their motor units in relation to their location and the nature of the motor task performed; this involves functional compartmentalization. There is little evidence that demonstrates the presence of a compartmentalization of the superficial masseter muscle during biting. The aim of this study was to describe the topographic distribution of the activity of the superficial masseter (SM muscle's motor units using high-density surface electromyography (EMGs at different bite force levels. Twenty healthy natural dentate participants (men: 4; women: 16; age 20±2 years; mass: 60±12 kg, height: 163±7 cm were selected from 316 volunteers and included in this study. Using a gnathodynamometer, bites from 20 to 100% maximum voluntary bite force (MVBF were randomly requested. Using a two-dimensional grid (four columns, six electrodes located on the dominant SM, EMGs in the anterior, middle-anterior, middle-posterior and posterior portions were simultaneously recorded. In bite ranges from 20 to 60% MVBF, the EMG activity was higher in the anterior than in the posterior portion (p-value = 0.001.The center of mass of the EMG activity was displaced towards the posterior part when bite force increased (p-value = 0.001. The topographic distribution of EMGs was more homogeneous at high levels of MVBF (p-value = 0.001. The results of this study show that the superficial masseter is organized into three functional compartments: an anterior, a middle and a posterior compartment. However, this compartmentalization is only seen at low levels of bite force (20-60% MVBF.

  5. Mechanics of the human hamstring muscles during sprinting.

    Science.gov (United States)

    Schache, Anthony G; Dorn, Tim W; Blanch, Peter D; Brown, Nicholas A T; Pandy, Marcus G

    2012-04-01

    An understanding of hamstring mechanics during sprinting is important for elucidating why these muscles are so vulnerable to acute strain-type injury. The purpose of this study was twofold: first, to quantify the biomechanical load (specifically, musculotendon strain, velocity, force, power, and work) experienced by the hamstrings across a full stride cycle; and second, to determine how these parameters differ for each hamstring muscle (i.e., semimembranosus (SM), semitendinosus (ST), biceps femoris long head (BF), biceps femoris short head (BF)). Full-body kinematics and ground reaction force data were recorded simultaneously from seven subjects while sprinting on an indoor running track. Experimental data were integrated with a three-dimensional musculoskeletal computer model comprised of 12 body segments and 92 musculotendon structures. The model was used in conjunction with an optimization algorithm to calculate musculotendon strain, velocity, force, power, and work for the hamstrings. SM, ST, and BF all reached peak strain, produced peak force, and formed much negative work (energy absorption) during terminal swing. The biomechanical load differed for each hamstring muscle: BF exhibited the largest peak strain, ST displayed the greatest lengthening velocity, and SM produced the highest peak force, absorbed and generated the most power, and performed the largest amount of positive and negative work. As peak musculotendon force and strain for BF, ST, and SM occurred around the same time during terminal swing, it is suggested that this period in the stride cycle may be when the biarticular hamstrings are at greatest injury risk. On this basis, hamstring injury prevention or rehabilitation programs should preferentially target strengthening exercises that involve eccentric contractions performed with high loads at longer musculotendon lengths.

  6. Steroids induce acetylcholine receptors on cultured human muscle: Implications for myasthenia gravis

    International Nuclear Information System (INIS)

    Kaplan, I.; Blakely, B.T.; Pavlath, G.K.; Travis, M.; Blau, H.M.

    1990-01-01

    Antibodies to the acetylcholine receptor (AChR), which are diagnostic of the human autoimmune disease myasthenia gravis, block AChR function and increase the rate of AChR degradation leading to impaired neuromuscular transmission. Steroids are frequently used to alleviate symptoms of muscle fatigue and weakness in patients with myasthenia gravis because of their well-documented immunosuppressive effects. The authors show here that the steroid dexamethasone significantly increases total surface AChRs on cultured human muscle exposed to myasthenia gravis sera. The results suggest that the clinical improvement observed in myasthenic patients treated with steroids is due not only to an effect on the immune system but also a direct effect on muscle. They propose that the identification and development of pharmacologic agents that augment receptors and other proteins that are reduced by human genetic or autoimmune disease will have broad therapeutic applications

  7. Steroids induce acetylcholine receptors on cultured human muscle: Implications for myasthenia gravis

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, I.; Blakely, B.T.; Pavlath, G.K.; Travis, M.; Blau, H.M. (Stanford Univ. School of Medicine, CA (USA))

    1990-10-01

    Antibodies to the acetylcholine receptor (AChR), which are diagnostic of the human autoimmune disease myasthenia gravis, block AChR function and increase the rate of AChR degradation leading to impaired neuromuscular transmission. Steroids are frequently used to alleviate symptoms of muscle fatigue and weakness in patients with myasthenia gravis because of their well-documented immunosuppressive effects. The authors show here that the steroid dexamethasone significantly increases total surface AChRs on cultured human muscle exposed to myasthenia gravis sera. The results suggest that the clinical improvement observed in myasthenic patients treated with steroids is due not only to an effect on the immune system but also a direct effect on muscle. They propose that the identification and development of pharmacologic agents that augment receptors and other proteins that are reduced by human genetic or autoimmune disease will have broad therapeutic applications.